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Abstract 
 
A considerable amount of our everyday tactile experience requires interactions between 
textured surfaces and our fingertips. Such interactions elicit complex vibrations on our 
skin surface, which are encoded by the mechanosensitive afferents and conveyed to the 
brain where the perception of the textures emerges seemingly effortlessly. Intuitively, a 
fundamental question that may be asked is: “what features of the vibration stimuli are 
behaviourally relevant and what are the neural signatures of these features?” The goal of 
this thesis is to investigate these questions, which we have done using a combination of 
theoretical and experimental approaches.  
 
Our theoretical approach (in Chapter 2) has been to create an ideal Bayesian perceptual 
observer that utilizes all the information available in a spike-rate based neural code and 
makes optimal inferences regarding the amplitude and the frequency of vibration stimuli. 
Our experimental approach has been to estimate the performance of human participants in 
vibrotactile detection (in Chapter 3), and in amplitude and frequency discrimination (in 
Chapter 4) tasks by using psychophysical procedures.  
 
The results of these approaches suggest that the human perceptual observer, i.e. the 
human nervous system, probably uses a rate code to represent vibrotactile amplitude, but 
a non-rate code, such as a spike timing code, to represent vibrotactile frequency. 
Additionally, we conclude that humans are capable of inferring and separately perceiving 
the amplitude and frequency of vibrotactile stimuli; however, depending on experimental 
tasks, humans might also rely on a feature that combines the amplitude and frequency of 
vibrotactile stimuli.  
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Preface 
 
This is a model-driven thesis, which consists of five chapters. Chapter 1 provides relevant 
background information and an overview of the goal of this thesis. Chapter 2 provides 
complete description of the Bayesian ideal observer model and presents simulation results 
that motivated the empirical studies reported in chapters 3 and 4. Chapter 5 summarizes 
the general findings of this thesis and discusses the implications of this body of work. 
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CHAPTER 1: GENERAL INTRODUCTION 
 
 

1.1 Perception 
 
Perception materializes as the brain interprets stimulus-evoked sensory data based on its 
internal hypotheses about the external world. This implies that perceptual accuracy 
critically depends on – a) the fidelity of the sensorineural response to the stimulus, and b) 
the efficiency of the brain’s interpretation or inference based on the sensorineural data. 
Note that when sensory data reaches the brain, it is obligated to process this data and 
determine the feature(s) of the stimulus that might have evoked the sensorineural data. 
Therefore, the quality of perception is primarily affected by the fidelity of the stimulus 
transformation process that evokes the sensory data, and by the efficiency of the brain in 
deriving the stimulus information from the acquired sensory data.  
 
The stimulus transformation process in the periphery is the first stage of encoding. Here, 
various factors can affect the fidelity of the sensorineural response. For example: 
intuitively, receptor density should affect the fidelity with which a stimulus is represented 
in the sensory data. Recently, Peters et al. (2009) demonstrated that people with smaller 
fingers, who presumably have more densely packed receptors than people with larger 
fingers, are better able to discern the spatial details of passively presented textured 
surfaces to their fingertip. There is no obvious reason to believe that humans with larger 
fingers, compared to those with smaller fingers, are less efficient in deciphering tactile 
stimuli yet there exists a difference in performance, which corroborates the effect of 
receptor density and demonstrates that the efficiency of encoding is critical for 
perception.  
 
Once the stimulus has been encoded, the efficiency with which the brain deciphers (i.e., 
“decodes”) the relevant stimulus information from the sensorineural data will ultimately 
determine the accuracy of perception. For example, studies have consistently shown that 
blind humans perform better than sighted humans on a variety of tactile tasks (Goldreich 
and Kanics, 2003; Bhattacharjee et al., 2010; Wong et al., 2011; see for review Wong, 
2013); however, there is no reason to believe that the fingertips of a blind person are any 
different from those of a sighted person. Presumably, cortical plasticity has enhanced the 
decoding capability in blind humans; this enhancement in decoding efficiency increases 
perceptual accuracy.  
 
In a recent study, Wong et al. (2013) trained sighted participants to discriminate 
orientation of fine textures presented passively to the participants’ fingertip. The authors 
observed that after training the participants’ spatial acuity enhanced; however, 
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intriguingly, this enhancement was limited by the participants’ finger size, i.e. the proxy 
for their receptor density. This can be interpreted as an indication that the perceptual 
decoder could be trained to increase its efficiency; however, perceptual accuracy is 
ultimately limited by the fidelity of the encoding process.  
 
Another recent study beautifully demonstrates how the efficiency of the encoding and the 
decoding interplay in perception, which is reflected in the overall performance in 
psychophysical tasks. Peters and Goldreich (submitted) following from Peters et al. 
(2009) predicted that if humans with smaller finger, compared to those with larger 
fingers, perform superiorly in tactile spatial acuity tasks, then children (who tend to have 
smaller fingers than adults) should have much better spatial acuity than adults. 
Surprisingly, Peters and Goldreich (submitted) did not find any difference in acuity 
between the two groups. To explain the results they reasoned that whereas younger 
children have smaller fingers, their central nervous system is still undergoing 
development and has not reached adult level maturation. The authors observed that, when 
they controlled for finger size, the performance of the children in the spatial acuity task 
enhanced with age, which validates their reasoning. Therefore, despite acquiring 
presumably very high fidelity sensory information the decoder in the younger children 
could not attain the efficiency acquired by the adults. As children grow to adulthood, the 
receptor density decreases and decoding efficiency increases, two processes that 
counteract each other; consequently the overall estimates of spatial acuity remain 
approximately constant. Later in life, aging presumably causes loss of receptors but the 
efficiency of the perceptual decoder stays relatively stable; as a result, tactile acuity 
declines with aging in adulthood (Gescheider et al., 1994; Goldreich and Kanics, 2003; 
Bhattacharjee et al., 2010; Wong et al., 2011).  
 
Evidently, the failure to observe a quantitative difference in performance between the 
children and the adults in Peters and Goldreich (submitted) suggests that psychophysical 
investigations of human perceptual tasks are only capable of quantifying our general 
ability to perceive different stimuli, and they cannot separately quantify the efficiency of 
the individual aforementioned steps of perception, i.e. the efficiency of the encoder and of 
the decoder. This limitation of psychophysical experimentation is overcome by the use of 
ideal observer models, which do allow us to separately study the encoding and decoding 
processes.  
 
Ideal observer analysis: This is an approach to determine the physical limits of 
perception. Central to this idea is an observer that ideally (i.e., optimally) decodes the 
sensory information – hence, the “ideal observer”. Conceptually, this analytical tool 
allows us to ask a simple, and yet fundamental, question in sensory neuroscience: Given 
full knowledge of the stimulus-evoked neural response (and the means by which that 
response is produced), what is the best performance that is possible? (Geisler, 2003). 
Although this concept has been known for a while, the application of this analytical tool 
became more popular during the 1980s (see Geisler, 1987). Because sensory information 
gets transformed at each level of sensory processing, from the activation of the receptors 
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to cortex, Geisler (1989) has demonstrated that this analytical tool – which the author 
called sequential ideal-observer analysis – can be applied at each level of sensory 
processing to determine the best performance and to quantify the progressive loss of 
information as it moves centrally through the nervous system.  
 
 

1.2 Tactile perception 
 
To study perception, I investigated the sense of touch as a model system. More 
specifically, I studied humans’ ability to perceive vibration presented on the glabrous part 
of the hand. During movement of our fingers over textured surfaces, or when textured 
surfaces are moved against our fingertip, the interaction between the fingertip and the 
textured surface generates complex vibrations (Bensmaïa and Hollins, 2003; Weber et al., 
2013). Interestingly, the fingerprint also contributes in this interaction. Scheibert et al. 
(2009) recently proposed that the fingerprint might work as a band-pass filter to 
accentuate or attenuate certain frequencies that are generated by the fingertip-texture 
movement. Presumably, even when the finger is scanned over a flat surface, vibrations 
are thereby induced as a result of the fingerprint. Therefore, to understand texture 
perception or even the perception of smooth surfaces via the moving finger, we have to 
understand an even more fundamental question: how do we perceive vibrations?  
 
There are four different tactile afferents that can be activated by vibrotactile stimuli of 
different frequencies (see for description: Johnson et al., 2000; Mountcastle, 2005; 
Gescheider et al., 2009). Stimuli with very low frequencies (0.5 to 5 Hz) activate the 
slowly-adapting type 1 (SA1) afferents, which terminate in the Merkel receptors. 
Functionally, these afferents and the corresponding receptors are activated by static touch 
and are involved in tactile spatial tasks. Stimuli with frequencies ranging from 5Hz to 
50Hz activate the rapidly-adapting type (RA) afferents, which terminate in the Meissner’s 
corpuscles. These afferents, functionally, are activated by micro-slippage or minute skin 
motion. Interestingly, the speed with which proficient Braille readers move their finger 
over Braille text suggests that they might be recruiting these afferents during Braille 
reading (Davidson, 1992; Bhattacharjee et al., 2010). Pacinian (PC) afferents, which 
terminate in the Pacinian corpuscles, are activated by stimuli with frequencies from 50Hz 
to 500 Hz (Bolanowski et al., 1988) or higher, and the best frequencies are around 250Hz 
to 300Hz. For instance, these afferents respond to vibrations produced by scanning a hard 
tool across a textured surface. The slow-adapting type 2 (or SA2) afferents apparently do 
not produce a conscious tactile percept (Ochoa and Torebjörk, 1983; Johnson, 2000). 
These afferents, which terminate in the Ruffini endings, signal skin stretch that may be 
important for proporioceptive feedback; they are activated at high frequencies around 
100Hz to 500Hz but only with very small vibratory probes (Verrillo and Bolanowski, 
1986).  
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Hollins and Risner (2000) argued that humans discriminate coarse texture, when 
presented passively, probably by using the sensory information in the SA1 afferents; 
however, to perceive fine textures finger movement might be necessary, which transforms 
the texture information into vibrotactile stimuli. Interestingly, both RA and PC afferents 
are sensitive to vibrotactile stimuli; therefore, to determine whether the RA1 afferents or 
the PC afferents are more informative for texture discrimination, Hollins and colleagues, 
conducted texture discrimination tasks on human participants using an adaptation 
paradigm (Hollins et al., 2001). In different experimental conditions, the authors 
selectively adapted the PC (with a 250 Hz vibration) and the RA afferents (with a 10 Hz 
vibration), and observed that human participants’ performance worsened only when PC 
afferents were adapted, which led Hollins et al. (2001) to conclude that PC afferents are 
more important for texture discrimination.  
 
Whereas Hollins et al. (2001) have suggested that the sensory information encoded in the 
PC afferents are more important, results from Gamzu and Ahissar (2001) suggest that 
human participants might prefer to encode sensory information by activating the RA 
afferents. Gamzu and Ahissar (2001) asked participants to discriminate textures with 
spatial gratings, i.e. the textures had grooves and ridges that varied in spatial frequency. 
The participants freely scanned the textures with their fingertip while wearing a glove 
with a tiny probe attached near the tip of the index finger such that only the probe touched 
the textured surface. Interestingly, the participants adjusted their scanning speed 
depending on the spatial frequency of the stimulus pieces such that the movement elicited 
temporal frequencies that primarily activate the RA afferents.  
 
 

1.3 Which features of vibration are behaviourally 
relevant? 

 
Miyaoka et al. (1999) investigated whether human participants utilized amplitude 
information of texture particles during texture discrimination. The investigators first 
estimated the discriminability of textured surfaces that varied in texture particle size; 
next, they reasoned that if participants were utilizing amplitude information of the 
particles then the participants’ texture discrimination performance should match a ridge-
height discrimination task (similar to an amplitude discrimination task). The authors 
found that the participants’ performance on both tasks were similar, which led them to 
conclude that to discriminate between fine-surface textures, humans might use amplitude 
information of texture particles. 
 
Results from Gamzu and Ahissar (2001) suggest those temporal cues generated by 
movement-induced vibrations are behaviourally important for texture perception. 
Similarly, Cascio and Sathian (2001) tested humans on roughness discrimination 
experiments by using gratings that varied in groove and ridge width, which were 
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passively moved below human participants’ index fingertip, and observed that the 
participants’ performance in roughness discrimination declined when the cue based on the 
temporal frequency was eliminated. These studies suggest that frequency of vibrations is 
one of the relevant cues. Interestingly, Bensmaïa and Hollins (2003) argued that instead 
of the frequency cues humans use intensity cues for fine texture discrimination.  
 
In fact, studies that did not investigate texture discrimination but investigated vibrotactile 
perception, found that humans use intensity cues in human frequency discrimination tasks 
(Goff, 1967; LaMotte and Mountcastle, 1975). More recently, Harris et al. (2006) 
proposed that humans encode the product of the amplitude and frequency of the stimulus 
(i.e., stimulus energy) as the cue to perform frequency discrimination tasks.  
 
All these studies considered together suggest that depending on the task, humans might 
use different features (amplitude, frequency, intensity, and/or energy) for vibrotactile 
stimulus discrimination tasks.  
 
 

1.4 What is the neural code? 
 
Central to the discussion of perception is, not only which stimulus features are encoded, 
but how are they encoded.  
 
Afferent level coding: In a landmark study, Talbot et al. (1968) showed that two different 
afferent types are involved in the perception of low (flutter-vibration) and high (vibration) 
frequency vibratory stimuli, which were RA and Pacinian afferents, respectively. 
Additionally, the authors observed that as they linearly increased the amplitude of a low 
(flutter) frequency vibration, the human participants’ estimation of the subjective 
magnitude also increased linearly. However, neural recordings obtained from monkeys 
showed that the firing rate of each RA afferent surprisingly did not follow the behavioural 
trend. In each RA afferent, as the amplitude of the stimulus was increased, the firing rate 
increased but only up to a certain amplitude value beyond which it responded (or 
entrained) at a rate of 1 spike/stimulus-cycle, and not until the stimulus amplitude crossed 
some other high critical amplitude value did the firing rate start to increase again. This 
was a perplexing result because there existed an apparent plateau where the change in 
amplitude had no effect on firing rate of the RA afferent yet the subjective magnitude 
matched the increase in stimulus amplitude. Based this observation, Johnson (1974) 
hypothesized that the perceived intensity depends on the activity of the population of RA 
afferents rather than the activity of any single afferent. To this end, Johnson (1974) 
proposed several candidate neural codes and tested whether each neural code could 
reliably describe the behavioural results. The author reported that not a single but a 
collection of neural codes probably determines perceived intensity, such as the total 
population activity, and various codes related to the total number of active fibers.  
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Recently, Bensmaïa and colleagues (Muniak et al., 2007) extended Johnson’s (1974) 
study by recording neural responses from RA, PC, and SA1 afferents and by using a 
range of stimulus types, such as diharmonic, noise stimuli, and sinusoidal stimuli. After 
testing eight plausible hypotheses, the authors concluded that perceived intensity depends 
on the firing rates in each afferent underneath or near the probe and the activity evoked in 
RA, PC, and SA1 afferents (or “weighed by afferent type”; Muniak et al., 2007).  
 
More recently, Güçlü and Dinçer (2013) investigated the neural codes that might explain 
human sensation magnitude exclusively in the RA afferents. To accomplish this, the 
authors estimated the participants’ sensation magnitude after adapting the PC afferents 
(which might contribute to the sensation magnitude, according to Muniak et al., 2007), 
and compared simulation results based on five hypothetical neural codes. The authors 
found that the human data matched the simulation results when they considered the neural 
codes that were based on the ‘number active fibers’, ‘the distribution of spike count’, and 
‘the total spike count’ (Güçlü and Dinçer, 2013).  
 
Whereas the above mentioned neural codes put forth to explain perceived intensity were 
based on spike counts, the strong entrainment seen in the afferent recordings suggests that 
stimulus frequency might be encoded not by spike count but by the temporal regularity of 
spiking activity (Talbot et al., 1968; Johnson, 1974). Whereas Güçlü and Dinçer (2013) 
reported that the neural code based on interspike interval did not match the human 
sensation magnitude, Whitsel et al (2000) strongly argued that the entrainment in the RA 
afferents code the frequency of the stimulus.  
 
Cortical level coding: In a seminal work Mountcastle et al. (1969), tested whether firing 
rates of the RA-like neurons (cortical neurons that show characteristics of RA afferents) 
modulate with changes in the stimulus frequency. However, these neurons entrained to 
the stimulus frequency, particularly between 20Hz and 40Hz, which led Mountcastle et 
al. (1969) to propose the periodicity hypothesis for encoding stimulus frequency.  
 
Relatively recently, Whitsel et al. (2001) reinvestigated the cortical coding strategy for 
vibrotactile stimulus frequency by recording from the RA afferent as well as RA-like 
cortical neurons. The authors observed that whereas the mean firing rate in the RA 
afferents increased monotonically, the mean firing rate in the RA-like neurons did not 
change with increasing frequency. Whitsel et al. (2001) illustrated a convincing 
comparison between human data acquired from other frequency discrimination study (for 
example, Goff, 1967; Mountcastle et al., 1969, 1990) and the predicted frequency 
discrimination threshold based on the entrainment neural code showed remarkable 
resemblance.  
 
In an interesting study, Torebjörk et al. (1987) using the microstimulation technique 
(where small currents are injected into the tactile afferents) showed activation of single 
afferents could elicit sensation similar to those felt during mechanical stimulation. 
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Intriguingly, participants reported ‘tapping on the skin’, ‘flutter sensation’, and ‘buzzing 
vibration’, as the authors increased the stimulation frequency from low, to 20Hz – 50Hz, 
and to frequencies above 50Hz, respectively.  
 
Whereas these aforementioned studies provide evidence for the periodicity or temporal 
code, Romo and colleagues, using various experimental and analytic techniques, have 
been consistently providing evidence for spike count or rate code as a neural code for 
stimulus frequency (see for review, Romo and Salinas, 2001, 2003). 
 
Romo et al. (1998) conducted frequency discrimination experiments on monkeys in 
which they presented mechanical stimulation on the monkeys’ fingertip, and / or 
microelectrical stimulus to the fingertip representation in the primary somatosensory 
cortex. The authors reported that regardless of the stimulation technique, the performance 
by the monkeys was indistinguishable and highly reliable. Furthermore, to test whether 
frequency discrimination requires periodic activation of relevant cortical neurons, Romo 
et al. (1998) created aperiodic stimuli by keeping the total duration of the stimuli similar 
to the periodic stimuli, but jittered the inter-pulse intervals. Once again, irrespectively of 
the stimulation technique, the frequency discrimination results suggested that the 
monkeys were able to extract the mean frequency from the aperiodic stimuli and thereby 
perform the frequency discrimination tasks.  
 
In Salinas et al. (2000), Romo and his colleagues tested monkeys’ ability to perform 
frequency discrimination task where the stimuli were periodic and / or aperiodic. The 
authors reported that the behavioural results were similar to Romo et al. (1998). In 
addition, using an information theoretic approach, the authors calculated the amount of 
information that was available in the stimulus evoked neural responses based on 
periodicity and on firing rate. Salinas et al. (2000) observed that the neural code based on 
periodicity had higher information content than the code based on firing rate; however, if 
the monkeys had used the periodicity code, the performance of the monkeys should have 
been at least 3 times better than the observed performance. Based on this result the 
authors suggested that the monkeys were most likely using spike rate as the neural code 
for frequency discrimination. 
 
In Hernández et al. (2000), Romo and colleagues conducted experiments similar to the 
Salinas et al. (2000) study. However, in the current study, the authors created neurometric 
functions based on periodicity and firing rate as two different measures, and compared the 
psychometric function of the monkeys to the derived neurometric functions. Like 
Hernández et al. (2000), Salinas et al. (2000) observed that the behavioural performance 
predicted spike rate as the neural code, i.e. the neurometric function derived from the 
spike rate as the decision criterion was more similar to the psychometric function than 
was the periodicity based neurometric function. Because the periodicity based 
neurometric function predicted much lower thresholds than the spike rate based 
neurometric function, Romo and colleagues once again suggested that the monkeys must 
be using a neural code based on spike rate to perform frequency discrimination tasks.  
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Interestingly, whereas this debate regarding the neural code exists in the somatosensory 
field, conceptually the distinction between rate code and temporal code is not absolute. 
The idea of the rate code strictly depends on a window within which the number of spikes 
are counted, and if we consider a small enough window that allows only a single spike to 
occur then the rate code becomes similar to a temporal code (Rieke et al., 1999). Indeed, 
it can be difficult to clearly define and distinguish the terms temporal and rate coding. 
One proposal, put forth by Dayan and Abbott (Dayan and Abbott, 2001), is that a 
temporal code is one in which information is carried by variations in spike rate that occur 
more rapidly than variations in the stimulus itself. In this thesis, however, we use the term 
“temporal code” as it is commonly used in the somatosensory literature, to mean that 
information is carried by the stimulus-driven time-varying responses of neurons, rather 
than by the average neuronal firing rates within a larger temporal window. 
 
 

1.5 Thesis overview 
 
Both neural coding strategies – periodicity coding and spike-rate coding, seem plausible 
in light of previous investigations. Whereas most of the aforementioned studies have 
linked encoding strategies to humans’ or monkeys’ perceptual behaviour during sensory 
testing, note that the thresholds obtained at the end of psychophysical experiments are 
quantified estimates of perceptual encoding and decoding processes. For example, Romo 
and colleagues claim that periodicity in the stimulus-evoked neural responses have high 
information content (Salinas et al., 2000) and if humans’ or monkeys’ were utilizing that 
encoding strategy for frequency discrimination then the animals’ threshold should have 
been much better than that observed in experiments. Salinas et al. (2000) have 
demonstrated that based on the periodicity of neural responses, the nervous system could 
conceivably perceive the temporal features of the vibrotactile stimuli with very high 
fidelity. However, it is quite plausible that humans and monkeys are suboptimal (Putzeys 
et al., 2012) in the sense that they do not take advantage, during the decoding process, of 
all information in the neural response. Indeed, Salinas et al. (2000) show that the 
periodicity code contains much more precise information than is evident in monkey’s 
performance, and suggest instead that monkey use a rate code for frequency 
discrimination. To further investigate whether this possibility applies as well to human 
observers, in Chapter 2, we create a Bayesian ideal observer model that optimally 
decodes rate code based simulated neural responses to vibrotactile stimuli, and in 
Chapters 3 and 4 we compare human behavior to the predictions resulting from the 
Bayesian observer. 
 
In chapter 2, we show that our Bayesian model has two parts, a generative module or the 
encoder, and an inference module or the decoder.  The encoder implements the stimulus-
response functions reported in Johnson (1974) and Freeman and Johnson (1982), using 
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the afferent density of human glabrous skin reported in Johansson and Vallbo (1979). The 
decoder infers the amplitude and frequency feature values. Following the logic of Geisler 
(1989), we first fed the model the neural responses of RA afferents; this allowed us to 
determine the optimal performance based on the full information content contained in the 
spike rates of the first neurons that respond to the vibrotactile stimulus. Next, we added 
Poisson variability to the afferent responses in order to determine the degree of 
information loss due to this feature of cortical neuronal firing rates. We quantified the 
model’s performance on common vibrotactile tasks that are conducted on humans, 
namely, vibrotactile threshold detection, amplitude discrimination, and frequency 
discrimination tasks.  
 
In chapter 3, we tested the model’s predictions that spatial and temporal summation 
should exist in the human RA afferent system – the phenomena that increasing the 
number of activated afferents, and increasing the duration of stimulus presentation, 
reduces the threshold (i.e. the amplitude required to detect the stimulus). Our results 
support our prediction and suggest that spatial and temporal summation exist in RA 
afferent system.  
 
In chapter 4, we compared the performance of our rate code based ideal observer model 
against human performance on a range of amplitude and frequency discrimination tasks. 
We examined three stimulus features – amplitude, frequency, and the product of 
amplitude and frequency (i.e. stimulus energy) – that the humans might use to 
discriminate vibrotactile stimuli. Because vibrotactile stimuli have two concomitant 
features – amplitude and frequency – we investigated the effect of each feature on tasks 
requiring the discrimination of the other. We also investigated whether humans can 
perceive separately the amplitude and frequency of a vibrotactile stimulus. We obtained 
psychophysical results that suggest that humans do have access to the individual stimulus 
features, and the non-target parameter does not affect discrimination performance unless 
the non-target parameter is surreptitiously changed during the experiment.  
 
Collectively, the results reported in this thesis suggest that humans utilize periodicity 
information while performing the frequency discrimination tasks, but use spike-rate code 
to perform the amplitude discrimination tasks.  
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CHAPTER 2: PERFORMANCE OF A 
BAYESIAN IDEAL-OBSEVER MODEL ON 
VIBROTACTILE DETECTION AND 
DISCRIMINATION TASKS 
 
 

2.1 Introduction 
 
Our ability to perceive the world appears deceptively simple! However, during this 
process our brain constantly encounters a challenging problem: how to efficiently infer 
the information about the world from the stimulus-evoked sensorineural data. Whereas 
the neural responses generated by the sensory system are informative about the sensory 
event, the stochastic nature of the encoding process introduces ambiguity in the stimulus-
evoked sensory data. An identical stimulus elicits a range of neural responses, and 
different stimuli can evoke the same neural responses. In short, there is not a one-to-one 
mapping from stimulus to neural responses, or from response back to stimulus. Under 
such conditions, the brain must somehow decode the neural response to infer the stimulus 
that caused it. How does the brain accomplish this difficult task?  
 
When faced with uncertainty, the ideal strategy for the brain is to generate probabilistic 
inferences about the stimulus that might have evoked the acquired sensory data (Gold and 
Shadlen, 2007; Goldreich and Tong, 2013). Interestingly, over the past decade several 
studies have provided convincing evidence that the brain performs probabilistic inference 
(Pouget et al 2000; Yang and Shadlen, 2007). Furthermore, studies have also shown that 
humans’ performance in perceptual tasks could be expressed in a Bayesian framework 
(Ernst and Banks, 2002; Geisler and Kersten, 2002; Knill and Saunders, 2003; Knill and 
Pouget, 2004; Ma et al., 2006; Goldreich, 2007; Kording, 2007; Wozny et al., 2008). In 
the current paper, we present a Bayesian ideal-observer model that decodes neural 
activity elicited by vibrotactile stimuli, i.e. vibrations presented on skin surfaces.  
 
Ideal-observer models, which are often described in a Bayesian decision theoretic 
framework, are analytical tools that are applied to determine the optimal performance 
possible in a given perceptual task (Geisler, 2003). Because of the neural response 
variability introduced during stimulus encoding, ideal-observer models (like humans) 
make errors in perceptual tasks. However, given the amount of information available to 
the ideal-observer, it decodes the neural responses most efficiently. Therefore, the 
optimality in the ideal-observers’ performance sets a reliable benchmark against which to 
compare human performance (Green and Swets, 1966). Furthermore, ideal observer 
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models can be used to investigate the effects of biologically plausible constraints on 
performance accuracy; for example, Bayesian models can be used to assess the effect of 
different values of receptor density, or the effect of different degrees of neural response 
variability, on perceptual tasks.  
 
Four different types of mechanoreceptive afferents – slowly adapting 1 (SA1), slowly 
adapting 2 (SA2), rapidly adapting (RA), and Pacinian (PC) – are present in the human 
skin and carry vibrotactile information to the brain (Bolanowski et al. 1988). The RA 
afferents are most sensitive to intermediate frequencies, responding best to stimuli 
between 30 and 50 Hz, whereas SA1 afferents are sensitive to low frequency vibrotactile 
stimulations (0.4 to 2 Hz), and PC afferents are most sensitive to high frequency 
vibrotactile stimuli (200-300 Hz) (Gescheider et al., 2004). The SA2 afferents are only 
activated using small diameter stimulators, and respond to frequencies above 100 Hz 
(Verrillo and Bolanowski, 1986).  
 
Although all four types of mechanoreceptive afferents may differentially contribute to 
vibrotactile perception in daily life (Muniak et al., 2007; Mackevicius et al., 2013), only 
the RA afferents respond the best to the vibrotactile stimuli in mid frequency range 
(Talbot et al., 1968; Johnson et al., 2000) that we have used to test humans in the studies 
described in this thesis. Therefore, we programmed our Bayesian model to decode only 
neural activity observed in RA afferents (Johnson, 1974, Freeman and Johnson, 1982). By 
optimally decoding the sensorineural data generated only from RA afferents, our ideal-
observer model provides us with an estimate of the best performance achievable based on 
the spike rates of RA afferents alone. 
 
Periodic vibrations have two parameters - amplitude and frequency; a key issue for 
neuroscientists is to identify the neural code that represents these parameters. Vibrotactile 
amplitude or intensity is thought to be encoded by the number of spikes that occur within 
a certain time period, i.e. a spike rate code (Bensmaïa, 2008; Tommerdahl et al., 2010); 
however, the neural code for vibrotactile frequency is unclear (see Johnson et al., 2000 
for a review). Some studies suggest that vibrotactile frequency is represented by a 
temporal code.  According to this hypothesis, the regularity or the periodicity of the 
spiking activity in neurons, which is phase-locked to the stimulus periodicity, encodes 
vibrotactile frequency (Mountcastle et al. 1969, 1990). However, other studies argue that, 
as for vibrotactile amplitude, vibrotactile frequency is represented by a spike rate code 
(Hernandez et al 2000; Salinas et al 2000; Luna et al., 2005). In the current study, we 
have constructed a Bayesian ideal observer that uses spike rate as the neural code for both 
vibrotactile amplitude and frequency. We do not discard the possibility of a temporal 
code for vibrotactile frequency; rather, our strategy is to learn how well an ideal observer 
makes perceptual decisions based only on the rate code. 
 
Johnson (1974) recorded neural activity from the RA afferents of macaque monkeys and 
measured the afferents’ response to vibrations at different amplitudes. Studying the same 
afferent type in the same primate species, Freeman and Johnson (1982) investigated the 
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changes in neural activity at different vibrotactile frequencies between 5 Hz and 80 Hz. 
By utilizing the information reported by Johnson (1974) and Freeman and Johnson 
(1982), we simulated neural responses to vibrotactile stimuli that activate the RA 
afferents. In the current study, because our simulated neural responses were derived from 
the recordings done on monkeys, we are making an assumption that these responses to 
identical vibrotactile stimuli are representative of those expected in human afferents. 
Interestingly, two different studies on vibrotactile detection and discrimination tasks have 
provided evidence that support the plausibility of this assumption (Mountcastle et al., 
1972; LaMotte and Mountcastle, 1975). Mountcastle and colleagues, in both studies, 
observed that on identical stimuli the human participants and the macaque monkeys 
performed very similarly, and that the psychophysical thresholds of both primate species 
were comparable in vibrotactile detection and frequency discrimination tasks. Therefore, 
we believe it is valid to compare the performance of our ideal-observer model, which 
decodes simulated neural activity based on recordings in monkeys, to that of humans. 
 
To perform ideal-observer analysis, we generated neural data based on the stimulus-
response functions characterized by Johnson (1974); however, these stimulus-response 
functions do not provide information about neural response variability. As we mentioned 
above, neural response variability is typical in all sensory systems – identical stimuli 
rarely evoke identical neural responses. Interestingly, different degrees of variability exist 
in the somatosensory pathway. For example, the variability in firing rates of peripheral 
afferents is lower than that in primary cortical areas. To realistically simulate the 
responses of RA afferents, we incorporated RA afferent neural variability (Vega-
Bermudez and Johnson, 1999) into the stimulus-response function (Johnson, 1974). To 
simulate cortical responses, we added firing rate variability characteristic of primary 
somatosensory cortex (Sripati et al., 2006). Apart from this variability, the brain also 
exhibits neural activity in the absence of any stimulus, which is an irregular and low 
spiking activity per unit of time, known as spontaneous noise (Mountcastle et al., 1969; 
de Lafuente and Romo, 2006; Vazquez et al., 2013). Therefore, in our cortical 
simulations, we also included spontaneous firing activity.  
 
Having constructed our ideal observer as described, we tested its performance on three 
vibrotactile tasks – threshold detection (TD), amplitude discrimination (AD), and 
frequency discrimination (FD). By separately feeding the ideal observer peripheral and 
cortical noise-affected stimulus responses, we quantified its performance in all three tasks 
at two different decoding levels within the somatosensory pathway – an approach known 
as sequential ideal-observer analysis (Geisler, 1989). This allowed us to determine the 
best performance an observer can attain in each of the above-mentioned tasks, using 
neural spike rates representative of either peripheral or cortical neurons. 
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2.2 Methods 
 
In this section, first we explain the steps for creating our ideal observer model, and next 
we describe the steps for determining the performance of the ideal observer model on 
simulated vibrotactile perceptual tasks. Our ideal observer model has two components – a 
generative component (or the encoding model), which simulates the sensorineural data 
evoked by vibrotactile stimuli of different amplitudes and frequencies, and a decoding 
component that optimally decodes the simulated stimulus-evoked neural responses to 
infer the task relevant parameter(s) of the vibrotactile stimuli. In the following subsection 
we describe in detail how we generated the stimulus-evoked responses. 
 

2.2.1 Generative model 
 
Because vibrotactile stimuli of mid-frequency range (5 Hz to 50 Hz) primarily activate 
the RA afferents (Bolanowski et al., 1988; Gescheider et al., 2009; Mountcastle, 2005), 
we simulated only the RA afferent responses by using the information about the stimulus 
response functions reported in Johnson (1974), and in Freeman and Johnson (1982). We 
have skipped the transduction level of encoding, which is at the level of the receptors, and 
simulated the neural responses that are represented in the RA afferents and cortical 
neurons.  
 

2.2.1.1 Simulating the afferent response 
Each RA afferent branches and terminates in Meissner’s corpuscles that are activated 
when vibrations are presented on the skin surface. Meissner’s corpuscles convert the 
vibratory stimuli into neural impulses, which are relayed by the RA afferents to the 
central nervous system (Mountcastle, 2005). Studies have shown that the neural activity 
in the RA afferents is affected by the frequency and amplitude of the vibration stimuli 
(Talbot et al., 1968; Johnson, 1974; Freeman & Johnson, 1982; Muniak et al., 2007). 
Talbot et al. observed, using vibrotactile stimuli of 40Hz and a range of stimulus 
amplitudes (0-200µm), that a linear increase in vibration amplitude did not increase the 
firing rate linearly in any recorded RA afferent; the responses of each RA afferent, 
instead, depended critically on certain threshold amplitude values and showed step-like 
functions (see Fig. 13 in Talbot et al., 1968). Johnson (1974), using stimuli of the same 
frequency but with a wider range of amplitudes (0-1000µm) compared to the range used 
by Talbot et al. (1968), observed the same phenomenon. In both studies the investigators 
computed the stimulus-response function by dividing the total number of spikes they 
acquired in each stimulus presentation by the total number of stimulus cycles that 
occurred during those corresponding stimulus durations. See figure 2.1, which shows the 
stimulus-response function of a simulated RA afferent. Separately, these investigators 
observed that in each stimulus cycle, i.e. per 25ms for a 40Hz stimulus, on average each 
RA afferent began to respond with a few spikes per second only when the stimulus 
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amplitude exceeded a critical threshold amplitude, which Johnson (1974) termed as I0 (or 
absolute threshold amplitude); beyond I0 the number of spikes per cycle increased linearly 
until the stimulus amplitude exceeded a second critical threshold, which Johnson (1974) 
termed as I1 (or entrainment threshold). At stimulus amplitudes above I1 the afferent 
responded periodically at 1-spike per stimulus cycle, and any further increase in 
amplitude did not affect the afferent’s response until the amplitude was increased to 
exceed another critical threshold called I2 (from Johnson, 1974). When Johnson increased 
the stimulus amplitude beyond I2, the number of spikes per cycle increased linearly to 2 
until the stimulus amplitude reached the final critical threshold, which Johnson (1974) 
termed it as I3 (or the doubling threshold). At stimulus amplitudes exceeding I3, the 
afferent entrained at 2-spikes per cycle without showing any effect of change in stimulus 
amplitude (Fig. 2.1; also see figure 3 in Johnson, 1974). Johnson (1974) formulated this 
stimulus-response function into a series of equations to predict the stimulus-evoked spike 
count of an RA afferent (see equation 1).   
 
For sinusoidal vibrations of frequency f (cycles per sec) and amplitude a (microns), the 
equations for the mean stimulus-evoked spike count of an RA afferent are (adapted from 
Johnson, 1974):  
 

µf (a) =

0 0 < a < I 0
n(a − I 0) / (I1− I 0) I 0 < a < I1
n I1 < a < I 2
n(1+ (a − I 2) / (I 3− I 2)) I 2 < a < I 3
2n I 3 < a

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

  (Equation 1) 

Here, n is the number of sinusoidal cycles, which depends on f and the stimulus duration, 
t: 
 

n = (t)( f )        (Equation 2) 
 
How to simulate the “critical threshold points”: I0, I1, I2, and I3? Interestingly, Johnson 
(1974) observed that a) the critical thresholds for each afferent are not random, rather 
there is a strict pattern where I0 < I1 < I2 < I3, and b) the I0 and I1 (and similarly I2 and I3) 
values are not independent of each other. This implies that to assign critical threshold 
amplitude values to our simulated afferents, we cannot independently sample the I0 and 
the I1 values from their respective population distributions (which is also true for I2 and 
I3).  
 
Johnson (1974) reported that the ratios I0/I1 and I2/I3 vary between 0 and 1 (i.e. very 
shallow to very steep slopes), and these ratios are normally distributed with a mean of 
0.32 and 0.62, respectively (see Fig. 2.2; also see Fig. 13 in Johnson, 1974). Furthermore, 
he showed that I0/I1 and I2/I3 are independent of the entrainment (i.e. I1) and the doubling 
(i.e. I3) thresholds, respectively (Johnson, 1974). Therefore, to determine an I0-I1 pair for 
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each RA afferent, we first sampled I1 values from the I1 distribution that we recreated 
from Johnson (1974) (see Fig. 2.3). Next, we sampled an I0/I1 ratio from the normal 
distribution shown in figure 2.2. Finally, by multiplying the sampled I1 and I0/I1 values, 
we derived the value of I0. Using the identical procedure we derived the I2 and I3 values 
for each RA afferent.  
 
Because Johnson (1974) only used 40Hz stimuli, the derived critical thresholds might be 
true only when the stimulus frequency is 40Hz; what happens when the frequency of the 
stimulus changes? Note that in equation 1 between I1 and I2, as well as beyond I3 (i.e. the 
entrainment periods), the afferents entrain at 1 (or 2 in case of I3 < a) spike(s) per 
stimulus cycle; this suggests that changes in stimulus frequency will correspondingly 
modify the firing rate of the afferents by the same factor. However, this might pose a 
problem for the observer. For instance, according to equation 1, a 20Hz stimulus at 
amplitudes above I3 will elicit 40 spikes in a second, and a 40Hz stimulus at any 
amplitude between I1 and I2 will also elicit 40 spikes in a second. How can an observer 
know whether it was a 20Hz or a 40Hz stimulus? Do the critical thresholds vary with 
frequency?  
 
Stimulus frequency affects critical threshold points. Freeman and Johnson (1982) 
observed that the absolute threshold (I0), the entrainment threshold (I1), and the ratio I0/I1 
all change with frequency (see Figs. 2.4 and 2.5, which are recreated from figures 2.7 and 
2.5, respectively of Freeman and Johnson, 1982). Similar to deriving the I0-I1 pairs for the 
40Hz vibrations mentioned in the subsection above, for all the frequencies between 5Hz 
and 50Hz, we first derived I1 and then the I0/I1 ratio using information from Freeman and 
Johnson (1982), and by combining these values, we derived I0.  
 
To derive the I0-I1 pairs at each relevant frequency (i.e., 5-50Hz) for all the afferents in 
our model, we followed a 4-step procedure. First, because Freeman and Johnson (1982) 
only reported the mean values of I1 at different frequencies and not the standard 
deviations (see fig. 2.4), we had to determine the factor by which the mean and the 
standard deviation of the 40Hz I1 and all the other frequencies between 5 and 50 Hz 
differed. To calculate this “I1 translation factor”, we divided the mean values of I1 at all 
the frequencies between 5 and 50Hz by the mean of 40Hz I1. Second, we sampled an I1 
value from the 40Hz I1 distribution (from Johnson, 1974) and depending on the frequency 
we multiplied it by the corresponding I1 translation factor. Third, we sampled an I0/I1 ratio 
for that frequency from figure 2.5. As shown in figure 2.5A, Freeman and Johnson (1982) 
investigated only a small number of frequencies. To sample from intervening frequencies, 
we interpolated between two I0/I1 ratios sampled from figure 2.5B. In the fourth and the 
final step, we combined the I1 and I0/I1 values to calculate the new I0 values, as in the 
final step mentioned in the previous subsection.  
 
Freeman and Johnson (1982) did not investigate the distribution of I3, or the ratio of I2/I3 
at different frequencies. Therefore, we did not update the I2/I3 or the I3 distribution in our 
model; however, to keep the distance (in amplitude points) constant between I1 to I2 and 
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I1 to I3, we shifted the mean of each distribution by the same amount (in amplitude) as 
was predicted for the 40Hz stimulus (Johnson, 1974). It is likely that, with an increase in 
frequency the amplitude required to reach I3 threshold might be higher than that at lower 
frequencies, and the I2/I3 slope might be shallower. Nevertheless, this will not pose a 
problem in the current study because the maximum amplitude tested here is 100µm (i.e., 
none of the RA afferents should reach the amplitude to entrain at 2-spikes per cycle). 
Interestingly, Güçlü and Bolanowski (2003a) reported I2 and I3 values in cat RA afferents 
lower than those reported by Johnson (1974) in monkey RA afferents. Furthermore, the 
authors observed that in cat RA afferents the ratios of I0/I1 and I2/I3 are similar (Güçlü and 
Bolanowski, 2003a,b). We have chosen to base our generative model on the available 
monkey RA data, under the assumption that it is more likely to be representative of 
human afferents. 
 
Because our sampling processes for I1 and I2 were independent from each other, there was 
a very small chance of obtaining samples where I1 > I2 (a situation that is biologically 
impossible). To assess this possibility, we drew 100,000 samples of I1 and I2 and 
confirmed that I1 was never greater than I2. 
 
How do the afferents respond that are away from the centre of the probe? Johnson 
(1974), using a 1mm stimulus-probe radius, studied a population of RA afferents and 
observed that the intensity of the stimulus attenuates with increasing distance d, beyond 2 
mm (probe radius + 1mm; see Muniak et al., 2007) from the centre of the stimulus-probe. 
We calculated the effective amplitude at a distance d by implementing equation 3 shown 
below:  
 

a(d) =
a d ≤ (probe radius + 1mm)

probe radius + 1mm
d

⎛
⎝⎜

⎞
⎠⎟

1.9

⋅a d > (probe radius + 1mm)

⎧

⎨
⎪

⎩
⎪
⎪

 (Equation 3) 

 
Interestingly, the critical threshold points (I0, I1, I2, I3) are characteristics of the afferents 
and are invariant to the distance from the centre of the stimulus-probe. The afferents 
respond to the effective stimulus amplitude as if the receptive field hotspot received a 
stimulus at reduced amplitude, which is similar to the distance-attenuated amplitude. 
Thus, different receptive fields equidistant from the centre of the probe will have very 
similar afferent response. Using this information we generated the population response by 
estimating the firing rate at the effective stimulus amplitude for each RA afferent.  
 
The density of the RA afferents on our fingertip and thenar eminence are 141units/cm2 
and 25units/cm2, respectively (Johansson and Vallbo, 1979). The afferent density 
probably varies in the proximodistal axis of the fingertip where the afferents are denser 
near the distal tip of the finger than near the first interphalangeal crease i.e. the proximal 
part of the distal phalanx (Güçlü and Bolanowski, 2002). However, in the current study 
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we made a simplifying assumption that the afferents are regularly distributed in a grid like 
pattern where each afferent is equidistant from its neighboring afferent by 0.84mm and 
2.5mm on simulated fingertip and thenar eminence respectively. For all the simulations 
we considered a 10mm-by-10mm grid of receptors or cortical neurons, and probe radius 
of 5.5mm. 
 
Vibrotactile stimulus evoked RA afferent responses. We followed all the steps mentioned 
in the above subsections and recreated the stimulus-response function at all the 
frequencies between 5Hz and 50Hz for each afferent that we considered in any 
experiment. To generate the number of spikes for a stimulus of a certain amplitude and 
frequency, we first referred to each afferent’s frequency relevant stimulus-response curve 
and depending on the effective amplitude (because effective amplitude changes with 
distance from the probe: see subsection above) we read out the expected number of spikes 
per stimulus cycle (see Fig. 2.1).  
 
Equations (1) give the mean stimulus-evoked spike count for an RA afferent stimulated 
with a vibration of effective amplitude a. The mean spikes per cycle are not necessarily 
integers. For example, a neuron might be expected to fire 0.6 spikes per cycle. We 
interpret fractional mean spikes per cycles as probabilities: a neuron expected to yield 0.6 
spikes/cycle has a 60% probability of firing a spike on any given cycle. Therefore, we 
drew binomial samples for each afferent, i, such that the probability, P(ri), of obtaining ri 
stimulus-evoked spikes was: 
 
P(ri) = 0 when, 0 < a < I 0      (Equation 4) 

P(ri) = n
ri

!
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when, I 0 < a < I1  (Equation 5) 

P(ri) =
1 if ri = n
0 if ri ≠ n 

when, I1< a < I 2

"
#
$

%$
  (Equation 6) 
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when, I 2 < a < I 3       (Equation 7) 

P(ri) =
1 if ri = 2n
0 if ri ≠ 2n 

when, I 3 < a
"
#
$

%$
   (Equation 8) 

 
To simulate the population response, we repeated this process for every afferent. Note 
that here we did not implement any convergence of afferents to a higher order neuron (see 
Güçlü and Bolanowski, 2000). We made the assumption that the N afferents are 
conditionally independent, given the stimulus, so the probability of the population 
response {r} is simply the product: 
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P( r{ }) = P(ri)
i=1

N

∏       (Equation 9)  

 

2.2.1.2 Modeling cortical response 
Compared to primary afferents, cortical somatosensory neurons show much greater 
response variability, and they show spontaneous activity in the absence of any stimulus. 
Each of these features reduces the signal-to-noise ratio in the cortex, in comparison to that 
in the periphery. To investigate the perceptual effects of these characteristics of cortical 
activity, we transformed each RA afferent into an idealized cortical neuron. For this 
purpose, we used a one-to-one mapping from peripheral afferent to idealized cortical 
neuron; we do not attempt here to model the convergence and divergence of inputs from 
the periphery to the cortex. 
 
The stochastic variability that occurs with the stimulus-evoked responses in the primary 
somatosensory system can be characterized as a Poisson distribution (Sripati et al. 2006). 
The unique feature of such a distribution is that the variability is equal to the mean of the 
distribution. Therefore, to represent cortical neurons, we introduced Poisson noise into 
our model neurons. Regarding cortical spontaneous activity, Mountcastle and colleagues 
(1969) observed that the average neuronal firing rate in the absence of any stimulus was 
5-20 spikes per second in monkey primary somatosensory cortex. More recently, Romo 
and colleagues (de Lafuente and Romo, 2005; Vazquez et al., 2013) reported a wider 
range (0 to 40 spikes per sec) with a median of 10 spikes per second (Vazquez et al., 
2013). To understand the effect of spontaneous noise in the perceptual tasks, we 
parametrically varied the number of spontaneous-spikes considered during the 
simulations.  
 
To simulate the total expected spike count for each cortical neuron i, we summed the 
expected stimulus-evoked spike count, µf(a)i , with the spontaneous spike count resulting 
from a spontaneous rate of s spikes/sec. We then sampled from a Poisson distribution to 
obtain the number of spikes during the stimulus period, t: 
 

P(ri) =
exp − µf (a)i + (s)(t)( )( ) µf (a)i + (s)(t)( )ri

ri!
   (Equation 10)  

 
By applying equation 9, we simulated neural response of a population of cortical neurons.  
 
As a preliminary attempt at creating a generative model, in the current study, we assumed 
that each afferent feeds directly to a cortical neuron. This approach, albeit simple, is 
probably generating neural responses with fidelity higher than real stimulus-evoked 
cortical neural responses in a monkey or a human participant, which means the ideal 
observer is getting more information than it would have gotten otherwise.  
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2.2.1.3 Modeling simulated subjects 
In the current study we created a population of RA afferents that represents the average 
density on human fingertip, and each RA afferent’s sensitivity thresholds (I0, I1, I2, and I3) 
are different, as explained in subsections above (see section 2.2.1.1). Because of the 
sampling process associated with simulating the RA afferents, it is possible to generate a 
new set of RA afferent population for each trail of a perceptual experiment; however, in 
reality the population of RA afferents on human skin does not change during multiple 
trials or during different experiments. Therefore, we only sampled once per simulated 
subject and created a population of RA afferents to match the densities of the fingertip 
and the thenar eminence.  
 

2.2.2 Decoding model  
 
After generating peripheral and cortical population responses to various mid-frequency 
vibrotactile stimuli, we programmed the ideal observer (i.e. the decoding model) to 
perform Bayesian inference on the simulated sensorineural data and to perceive the 
stimulus features necessary to perform the simulated vibrotactile perceptual tasks – 
vibrotactile threshold detection (TD) task, amplitude discrimination (AD) task, and 
frequency discrimination (FD). 
 
We implemented Bayesian model comparison for the detection task (TD), and Bayesian 
parameter estimation for vibrotactile discrimination tasks (AD and FD). Bayesian model 
comparison is a procedure in which the observer evaluates the probability of the acquired 
sensorineural data in light of two models (e.g., the stimulus was present or it was absent), 
and then compares these probabilities to identify the winning model (see subsection 
2.2.3.1, TD task for equations). Bayesian parameter estimation is a procedure in which 
the observer estimates the probability of stimulus parameter values (e.g., the probability 
of different values of stimulus amplitude in microns) given the sensorineural (see 
subsection 2.2.3.2, AD and FD tasks for equations). In all simulations the ideal observer 
knew its own receptive fields and knew the sources of variability, i.e., the ideal observer 
knew whether the sensorineural data were generated from the RA afferent population or 
from the cortical neuronal population, and it knew the mean spontaneous firing rate of the 
cortical neurons.   
 

2.2.2.1 Vibrotactile detection task 
In this 2-interval forced choice (2IFC) task, using the method of constant stimuli (MCS), 
we randomly presented a stimulus in one of two intervals. We started the simulation at the 
stimulus strength of 1 µm and after every 100 trials we increased the stimulus amplitude 
by 1 µm. The ideal observer treated each interval separately and performed Bayesian 
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model comparison, which is quantified as a likelihood ratio of two models (known as 
Bayes factor): 
 

BF = P({r} |M 1)
P({r} |M 0)

      (Equation 11) 

 
In the denominator of the ratio, M0 is the model that hypothesized that the stimulus 
amplitude was zero, which is equal to the probability calculated in equation 4, (i.e. the 
condition where 0 < a < I0): 

P r{ } |M 0( ) = P r{ } | a = 0( )      (Equation 12) 
 
And, in the numerator of the ratio, M1 is the model that hypothesized that the stimulus 
amplitude is a nonzero value from 1 to 100 microns: 

P r{ } |M 1( ) = P r{ } | a( ) ⋅P a |M 1( )
a=1µm

100µm

∑     (Equation 13) 

 
Thus, the ideal observer evaluated whether the interval under consideration had a 
stimulus and returned its confidence about that decision as a Bayes factor. Hence, for 
each trial the ideal observer returned two Bayes factor values and chose the interval with 
the higher Bayes factor as the interval with the stimulus. Finally we evaluated the ideal 
observer’s decisions to find the number of correct responses at all stimulus amplitudes, 
and estimated the ideal observer’s threshold as shown in equation 16 and 17. 

2.2.2.2 Vibrotactile discrimination tasks 
The implementation of vibrotactile AD and FD tasks was procedurally similar; we varied 
the target parameter (a for AD task, and f for FD task) while keeping the non-target 
parameter identical in both intervals of a trial in these 2IFC tasks. For each block of 100 
trials, we kept the standard stimulus fixed and progressively decreased the value of the 
comparison stimulus to below that of the standard stimulus. Thus, we progressively 
increased the difference between the target parameters, making the task progressively 
easier. We started with a difference of 1 µm for the AD task (1 Hz for FD task) and 
increased the difference by 1 unit after every 100 trials. As in the detection task, we 
analyzed the ideal observer’s responses to determine its threshold on the discrimination 
tasks. 
 
Vibrotactile amplitude discrimination task: In the AD tasks we presented two vibrotactile 
stimuli representing two intervals; in both intervals the f of the stimuli was identical, 
however the a was manipulated experimentally. In this 2IFC task, during each interval of 
a trial the ideal observer performed Bayesian parameter estimation to identify the most 
likely a value given the sensorineural data:  
 

P a | r{ }( )∝P r{ } | a( ) ⋅P a( )      (Equation 14) 
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We considered the mode of P(a|{r}) as the perceived a for each interval. Note that P(a) is 
a constant (i.e. uniform prior over amplitude); therefore, the mode of P(a|{r}) is the same 
as the maximum likelihood estimate. The simulated subjects chose the interval that 
yielded higher perceived a as the response for each trial.  
 
Vibrotactile frequency discrimination task: In the FD tasks, the stimulus f in one interval 
was higher (standard stimulus) than in the other (comparison stimulus), but the a was 
identical in the two intervals. The ideal observer performed Bayesian parameter 
estimation in each interval to identify the most likely f value given the sensorineural data:  
 

P f | r{ }( )∝P r{ } | f( ) ⋅P f( )      (Equation 15) 
 
As in the AD task, we considered the mode of P(f|{r}) as the perceived frequency; note 
that P(f) is a constant (i.e. uniform prior over frequency). Hence, for each trial we 
received two perceived f values from the ideal observer, which we compared and chose 
the interval with higher “perceived” f as the response in each trial.  
 

2.2.3 Estimation of thresholds 
 
To quantify the performance of the simulated subjects in the detection and discrimination 
tasks, we fit psychometric functions relating the probability of correct response, P(c), to 
stimulus level, l (where l could refer to stimulus amplitude, or change in amplitude or 
frequency, depending on the task).  Like Kontsevich and Tyler (1999) we used 
cumulative normal psychometric functions, parameterized by θ (the threshold parameter) 
and β (the slope parameter of the psychometric function), such that: 

P cl |θ ,β( ) = 1
2π

exp −x2

2
⎛
⎝⎜

⎞
⎠⎟−∞

1
2

l
θ

⎛
⎝⎜

⎞
⎠⎟
β

∫ dx    (Equation 16) 

where,  d ' = l
θ

⎛
⎝⎜

⎞
⎠⎟
β

such that d' = 1 when l=θ.       

We assumed a uniform prior over the parameters θ and β, and found the best-estimate, θ̂ , 
for each subject’s threshold as the posterior mode resulting from Bayesian binomial 
parameter estimation:  

θ̂ = argmax
θ

P cl |θ ,β( )crl ⋅ 1− P cl |θ ,β( )( )100−crl
l
∏⎡
⎣⎢

⎤
⎦⎥β

∑   (Equation 17) 

where, crl refers to the number of correct responses of the subject at stimulus level l.  
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2.2.4 Data extraction, simulations and statistics  
 
For the generative portion of the ideal observer analyses, we had to rely on previously 
published neurophysiological studies; therefore, we extracted relevant data from different 
studies using GraphClick (2008, Arizona Software). We performed all the simulations 
using LabVIEW 11 (National Instruments). Any statistics that we have reported were 
done using SPSS version 20 (IBM). 
 
 

2.3 Results 
 
Before implementing the tasks, we generated 10 simulated subjects (see section 2.2.1.3 
above). Each simulated subject was tested on 5 blocks in each perceptual task; within 
each block we presented 100 trials per stimulus level. For a given stimulus duration the 
number of stimulus cycles varies with frequency; therefore, for all the frequency 
discrimination tasks we kept the number of stimulus cycles constant.   

2.3.1 Effect of neural noise: afferent variability, cortical 
variability, and spontaneous noise 

 
To investigate the effect of neural noise on decoding efficiency, we conducted detection 
(TD) and discrimination (AD and FD) tasks where the ideal observer separately decoded 
RA noise and cortical noise (with and without spontaneous noise) affected sensory data. 
In this current set of experiments, we set the number of spontaneous spikes to zero. 
  
In the TD task, the neural noise (RA1 versus cortical) did not affect the performance of 
the ideal observer (t = –1.633, p = 0.137) (see Fig. 2.6A). In the discrimination tasks, an 
ANOVA with neural noise and task as within subject factors revealed a main effect of 
task [F(1,9) = 31.28; p < 0.001] and noise [F(1,9) = 5.51; p = 0.04] (see Fig. 2.6B). 
Although the mean discrimination thresholds were slightly higher for the cortical noise 
affected data, pairwise comparisons with Bonferroni corrections revealed that within each 
discrimination task, there was no significant effect of the level of sensory noise (p=0.05, 
and p=0.14, for AD and FD tasks, respectively).  
 
Next, to test the influence of spontaneous noise in cortical variability and how that affects 
inference, we added spontaneous spikes to the stimulus-evoked neural responses during 
the cortical encoding of simulated vibrotactile stimuli (see section 2.2.1.2). Addition of 
spontaneous spikes worsened the performance of the ideal observer in all the tasks (see 
Fig. 2.7 and 2.8).  
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An ANOVA with spontaneous rate (0, 10, 20, 30 spikes/s) as the only variable revealed 
its main effect in the TD task [F(3,27) = 308.17; p < 0.001], and pairwise comparisons 
with Bonferroni corrections revealed that the mean thresholds at each spontaneous rate 
were significantly different (p < 0.01) (see Fig. 2.7). In discrimination tasks, an ANOVA 
with two within subject factors – spontaneous rate (0, 10, 20, 30 spikes/s) and task (AD, 
FD), revealed a main effect of both factors (task: [F(3,27) = 1562.63; p < 0.001], 
spontaneous rate: [F(3,27) = 3466.37; p < 0.001]) (Fig. 2.8). The addition of spontaneous 
spikes particularly affected the ideal observer’s performance in the FD task (Fig. 2.8B). 
Pairwise comparisons with Bonferroni corrections revealed that within each task an 
increase in spontaneous rate increases the threshold to discriminate between two 
vibrations (p < 0.05 for all comparison except for FD, 20 spikes/s vs 30 spikes/s where 
p=0.07).  
 

2.3.2 Effect of receptor density and stimulus duration 
 
To investigate whether receptor density affects the ideal observer’s performance on 
detection and discrimination tasks we estimated the ideal observer’s performance at two 
receptor densities that match the density in human fingertip (141 RA units/cm2) and 
thenar eminence (25 RA units/cm2). For all cortical level simulations we added the 
median spontaneous rate (i.e. 10 spikes/sec, see Vazquez et al., 2013) to the stimulus-
evoked neural responses during the encoding stage. In all three tasks, irrespective of the 
decoding level (afferent or cortical), receptor density affected the performance of the 
ideal observer (see Fig. 2.9 and 2.10).  
 
Next, we investigated whether stimulus duration (i.e. number of stimulus cycles) affect 
the ideal observer’s performance. We tested the model only on the fingertip receptor 
density, and for all cortical level simulations we added the median spontaneous rate (i.e. 
10 spikes/sec, see Vazquez et al., 2013) to the stimulus-evoked neural responses during 
the encoding stage. In all tasks, it is clearly noticeable that the performance of the ideal 
observer improves with increasing stimulus cycles (see Fig. 2.11 and 2.12). Interestingly, 
with increasing stimulus cycles, the performance of the cortical ideal observer in the AD 
task approached the RA performance level. 
 

2.3.3 Effect of stimulus frequency on TD task 
 
Irrespective of the stimulus frequencies, 20Hz or 40Hz, the ideal observer’s threshold 
decreased with increasing stimulus duration (see Fig. 2.13). Also, the ideal observer’s 
detection thresholds at 40Hz vibrations were lower than at 20Hz vibrations. 
 
We performed two ANOVAs, one for each decoding levels, with number of taps (1, 2, 3), 
and stimulus frequency as within subject factors. The ANOVA on the afferent level 
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decoding thresholds revealed a significant main effect of the number of taps [F(2,18) = 
211.66; p < 0.001] and a marginal main effect of stimulus frequency [F(1,9) = 4.47; p = 
0.06]. Pairwise comparisons with Bonferroni corrections revealed that at each tap number 
condition the 40Hz stimuli had a threshold that was significantly lower than the 20Hz 
stimuli (p < 0.05), except when the stimulus contained a single cycle (p=0.21) (see Fig. 
2.13A). The ANOVA on the cortical level decoding thresholds revealed a significant 
main effect of the number of taps [F(2,18) = 227.39; p < 0.001] and stimulus frequency 
[F(1,9) = 7.72; p < 0.05]. Like afferent level decoding threshold differences, on the 
cortical level decoding threshold pairwise comparisons with Bonferroni corrections 
revealed that at each tap number condition the 40Hz stimuli had a threshold that was 
significantly lower than the 20Hz stimuli except when the stimulus contained a single 
cycle (1 tap: p=0.1; 2 taps: p=0.01; 3 taps: p=0.03) (see Fig. 2.13B). 
 

2.3.4 Effect of standard stimulus in discrimination tasks (effect 
of target and non-target features)  

 
To investigate the effect of changing the target feature (i.e. amplitude in AD, and 
frequency in FD tasks) and the non-target feature (i.e. frequency in AD, and amplitude in 
FD tasks) in discrimination tasks, we ran a series of simulations. We observed that the 
difference required to reliably discriminate the target feature in two vibrations grows with 
increase in the value of the target feature (see Fig. 2.14A and C). For example, the ideal 
observer required a bigger difference in amplitude between the standard and the 
comparison vibrations in the AD task when we increased the amplitude of the standard 
stimulus from 20µm to 40µm. Interestingly, the ideal observer’s performance at 
discriminating the target feature was affected very little by changing the non-target 
feature in different blocks. For instance, we estimated the ideal observer’s AD threshold 
at 20Hz and at 40Hz vibrations, and observed no change in its AD threshold (see Fig. 
2.14B). However, increasing the amplitude from 20µm to 40µm in the FD tasks slightly 
worsened the performance of the ideal observer (see Fig. 2.14D).  
 
Finally, to explore whether humans can actually infer the stimulus features during 
vibrotactile discrimination task, we ran simulations with identical combination of 
amplitude and frequency. We reasoned that if humans are melding the features then two 
tasks should reveal identical performances; however, because the ideal observer optimally 
infers the features, similarity between the trends in human performance and that of the 
ideal observer will provide evidence whether humans are inferring the features of 
vibrotactile stimuli. The simulation results show there the discrimination thresholds for 
AD and FD tasks should be different.  
 
 



Ph.D. Thesis - A. Bhattacharjee; McMaster University – Psychology, Neuroscience & 
Behaviour 

 29 

2.4 Discussion 
 
In the current study, we implemented a simple generative model based on binomial 
probabilities to simulate the total number of spikes evoked by vibrotactile stimuli of 
different amplitudes and frequencies. Whereas a sophisticated generative model has been 
proposed by Güçlü and Bolanowski (2004), which would have allowed us to create spike 
trains, the motivation of the current study was to explore the information content carried 
by a simple rate code, in order to determine whether this code is sufficient to perform 
different vibrotactile perceptual tasks. 
 
Thus we created a Bayesian ideal observer model to estimate the upper bounds of the 
performance efficiency that any observer can achieve from decoding spike rates on three 
different vibrotactile tasks. In each task, the ideal observer optimally inferred the stimulus 
parameters from the simulated neural responses evoked in the RA afferents and in the 
cortical neurons. Note that, in the current study our Bayesian ideal observer considered 
uniform prior probability distributions over stimulus amplitudes and frequencies, which 
means that its percepts were the same as those that would result from maximum 
likelihood estimation. In other words, simple decision rules based on signal detection 
theory would have generated the same results that we obtained by implementing Bayesian 
estimation. However, the benefits of using Bayesian estimation include systematic 
examination of the information that the perceptual observer might have while performing 
vibrotactile tasks, and of the effects of assumptions made by the observer. For example, 
during a 2IFC FD task human participants might not know the exact values of the 
amplitudes in the two intervals, but they might assume that the amplitudes are identical. 
Implementation of such scenarios is only possible by using Bayesian estimation where the 
ideal observer could effectively marginalize over the amplitude feature to determine the 
frequency of each interval. Our Bayesian observer can readily be extended to allow for 
these interesting decoding scenarios. 
 
Effect of neural noise – the quality of sensorineural data affects perceptual inference: The 
fidelity of the stimulus-evoked neural responses encoded by the nervous system affects an 
observer’s performance on any perceptual task. For example, the ideal observer 
performed better at the afferent than at the cortical level. We used the identical approach 
to test the ideal observer’s performance at both levels, and by definition the ideal observer 
takes all possible factors into consideration to achieve the highest level of accuracy. 
Therefore, the result of the ideal observer analysis demonstrated that the quality of the 
sensorineural data is better at the somatosensory afferent level than at the cortical level, 
presumably due to less response variability in the RA afferents than in the primary 
somatosensory areas (Vega-Bermudez and Johnson, 1999; Sripati et al., 2006), which 
results in a loss of information from the afferent to the cortical level. The spontaneous 
neural activity in the cortex probably adds to the noisiness of the cortical sensorineural 
data and contaminates the sensory information. Interestingly, when we restricted the 
contribution of the spontaneous activity to zero, the ideal observer’s performance at the 
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afferent and cortical level was comparable in all the tasks (see Fig. 2.6). This suggests 
that the cortical response variability is less influenced by the Poisson noise alone, and is 
more affected by a combined process of spontaneous spiking activity and Poisson noise. 
In a Poisson process the variability of a sampled value depends on the mean or the 
expected value of the distribution, i.e. if the expected value is high then the variance of 
the sampled values will be correspondingly high. This dependence of the sampled value 
on the expected value predicts the apparent reason for a detrimental effect of spontaneous 
noise. For example, even if the stimulus-evoked expected number of spikes is relatively 
small, adding a large number of spontaneous spikes will increase the new-expected 
number of spikes or the mean of the Poisson distribution, which introduces a bigger 
variability in the sampled number of spikes compared to a condition where the number of 
spontaneous noise-generated spikes is zero. 
 
Effect of receptor density and stimulus duration – the quantity of sensorineural data 
affects perceptual inference: Goldreich (2007), using a Bayesian model, demonstrated 
that the accuracy in perceptual inference depends on the density of tactile sensory 
receptors. Interestingly, Goldreich and colleagues have provided evidence in different 
studies that tactile spatial acuity is constrained by finger size (Peters et al., 2009; Wong et 
al., 2013). Assuming that the density of slowly adapting afferents that carry the 
information about tactile spatial details (Johnson et al., 2000) decreases with increasing 
finger size, these studies support the idea that the number of afferents activated affects the 
quantity of sensorineural data available to the perceptual observer, which in turn 
influences the accuracy of any perceptual inference. Similarly, in the current study, a 
decrease in afferent density increased both detection and discrimination thresholds, i.e. 
worsened the performance of the ideal observer (see Fig. 2.9 and 2.10).  
 
Similar to the effect of receptor density, we hypothesized that changes in stimulus 
duration would affect the quantity of sensorineural data and consequently the accuracy of 
inference of the ideal observer. Our simulation results support the hypothesis that 
stimulus duration affects the performance of the ideal observer in detection and 
discrimination tasks: the ideal observer performed better on long than on short duration 
stimuli (see Fig. 2.11, 2.12, and 2.13). Therefore, we predict that in a behavioural study, 
by changing the quantity of sensorineural data provided to humans, we will be able to 
affect their performance on tactile tasks (see Chapter 3).  
 
Effect of stimulus features in detection and discrimination tasks: The neural activity at the 
afferent level strictly depends on the critical amplitudes (I0, I1, I2, and I3), and it changes 
with frequency. Therefore, we predicted that changes in frequency in TD and AD tasks, 
and amplitude in FD tasks, would affect the performance of the ideal observer. In the TD 
tasks we assume that the threshold values rely on the afferents’ I0 values, which decreases 
with increasing frequency (Freeman and Johnson, 1982). However, when we compared 
the ideal observer’s detection ability at 20Hz to that at 40Hz, we observed that the 
detection threshold was statistically similar at stimulus durations that contained a single 
tap. Interestingly, as we increased the number of taps, the difference between the 
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detection threshold at these two frequencies became statistically significant, which 
suggests that probably the signal-to-noise ratio increases with the increase in the number 
of taps.  
 
We observed that the mean difference in amplitude (in the AD task) or frequency (in the 
FD task) increases with the increase in the target feature value, which might be due to the 
Poisson variability. Interestingly, there was very little effect of manipulation of the non-
target feature in AD and FD tasks, which reflects that the ideal observer optimally infers 
the target feature before performing the discrimination task. 
 
Encoding of vibrotactile stimulus features: The two key features of any vibrotactile 
stimuli are amplitude and frequency; however, it is unclear whether humans can perceive 
these features separately to perform corresponding discrimination tasks, i.e. vibrotactile 
AD and FD tasks. Recently, Harris et al. (2006) suggested that during the encoding of any 
vibrotactile stimulus, humans are unable to perceive the amplitude and the frequency 
features separately. According to the authors, humans meld these features together into a 
single feature that can be characterized as the product of the amplitude and the frequency, 
which is similar to the energy of the vibrotactile stimulus. The current study shows, 
however, that an ideal observer is capable of independently discriminating vibrotactile 
frequencies and amplitudes. Because the ideal observer analyses reflect the information 
content in the generative or the encoding stages, should there be qualitative similarity in 
performance between the ideal observer and the human participant’s performance, we can 
conclude that humans have access to both amplitude and frequency information. This 
interpretation is critical for our understanding of vibrotactile perception (see Chapter 4). 
 

2.4.1 What is the neural representation of vibrotactile features?   
 
Studies suggest that there are two plausible neural codes that the brain might utilize to 
encode vibrotactile stimulus features: a) the rate code, i.e. the total number of spikes per 
certain duration, and b) the temporal code, or the inter-spike interval – the duration 
between the spikes that are phase-locked to the periodicity of the stimulus (Romo and 
Salinas, 2003; Romo et al., 2012). Whereas there is a unanimous agreement that stimulus 
amplitude is encoded in a rate code (Bensmaïa, 2008; Tommerdahl et al., 2010), the 
literature is contradictory on the neural code for stimulus frequency. Some studies have 
argued that frequency is encoded in a rate code (Luna et al., 2005); however, others have 
argued in favour of a temporal code (Mountcastle et al., 1969, 1990; Mackevicius et al., 
2013). 
 
Mountcastle and colleagues have reported that the periodicity in spike trains elicited in 
RA afferents (Talbot et al., 1968) and in the cortex (LaMotte and Mountcastle, 1975; 
Mountcastle et al., 1969) of monkeys phase locks very precisely to the stimulus 
frequency, providing a temporal code for frequency discrimination tasks. However, Romo 
and colleagues showed through a series of studies that a rate code was sufficient for 
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monkeys to perform frequency discrimination tasks (Hernandez et al., 2000; Salinas et al., 
2000; Romo and Salinas, 2003). To further demonstrate that periodicity is not a necessary 
condition to perform frequency discrimination, Romo and colleagues (Salinas et al., 
2000) jittered the inter-pulse interval of sinusoidal stimuli, which eliminated the timing 
information present in the stimulus. The authors reasoned that if periodicity is essential 
for frequency discrimination, then scrambling the periodicity by varying the inter-pulse 
interval of the stimulus would disrupt the monkeys’ ability to do the task. However, in 
spite of a lack of temporal regularity, the experimental monkeys discriminated the 
aperiodic stimuli just as well as they discriminated the periodic stimuli. Thus, Romo and 
colleagues concluded that there is sufficient information in a rate code to discriminate 
between the frequencies of two vibrotactile stimuli. But interestingly, Harris et al. (2006) 
tested human participants' ability to discriminate aperiodic stimuli, and the authors 
reported that participants’ performance in this task was worse than for periodic stimuli. 
This led Harris et al. (2006) to conclude that humans must be utilizing temporal 
information to discriminate the frequency of different vibrations. Note that in Harris et al. 
(2006), the human participants were capable of discriminating two aperiodic stimuli, 
albeit only with a bigger difference between the stimuli compared to the periodic stimuli. 
Therefore, this suggests that humans probably have the capability to access either the rate 
code or the temporal code, depending on the difficulty of the task. Interestingly, 
Hernandez et al (2000) recorded neuronal activity from area 3b and 1 (primary 
somatosensory areas) while the monkeys were performing a frequency discrimination 
task; the authors observed that out of 188 RA neurons that responded to stimulus 
frequencies, 139 showed periodicity as the neural code, 72 modulated their firing rate 
with changing stimulus frequency, and 23 neurons responded to both periodicity and 
firing rate codes.  
 
In the current study, the ideal observer did not have any information about the stimulus 
inter-pulse interval or inter-spike durations; its inferences about stimulus frequency were 
strictly based on a rate code. Thus we conclude that there is sufficient information in a 
rate code for a perceptual observer to perform vibrotactile frequency discrimination tasks, 
along with amplitude discrimination and threshold detection tasks. 
 

2.4.2 Assumptions 
 
Although ideal observers are useful theoretical tools to examine any perceptual system’s 
decoding efficiency, finding and applying the right generative model is a strong limitation 
in this approach. In the current study, neurophysiological evidence from Johnson (1974) 
and from Freeman and Johnson (1982) provided us invaluable information to create an 
informative generative model for the afferent system; however, there is a need for studies 
in the monkey RA afferent system like the ones conducted on the cat RA afferent system 
(see Güçlü and Bolanowski, 2003a,b). For example, in the current study we assumed that 
the distribution of I0/I1 in all frequencies between 5Hz to 50Hz is identical to that at 40Hz 
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reported in Johnson (1974), which might not be true as shown by Güçlü and Bolanowski 
(2003b) in cat RA afferent recordings.   
 
Next, due to lack of complete information about a cortical generative model, we had to 
extend our afferent model to a cortical model with Poisson process. RA afferent responses 
have the characteristic rise (I0 to I1, I2 to I3) and plateau (I1 to I2, and I3 onwards) of 
responses (see Fig. 2.1); however, in cortical neurons the spiking activity monotonically 
increases with increasing stimulus amplitude (Vazquez et al., 2013) before saturating at a 
certain firing rate (Mountcastle et al., 1969). We acknowledge that the simulated cortical 
representation of the vibrotactile stimulus is unrealistic; however, it informs us about the 
effect of Poisson variability in the cortex, and the variability introduced by the 
spontaneous spikes. Because the architecture of the RA and cortical populations are 
identical in our model, a comparison of the ideal observer’s performance at these two 
levels interestingly reveals how much information is lost from the periphery to the cortex 
due to Poisson noise and spontaneous activity alone. 
 
In the current model, we assumed that the responses of different neurons are conditionally 
independent given the stimulus, which is very likely untrue for cortical neurons (Zohary 
et al 1994); however, it is a common assumption that is made for maintaining the 
tractability and simplicity of models (Jazayeri & Movshon, 2006; Gold & Shadlen, 2007). 
For example, within vibrotactile studies, to characterize the behaviour of thalamic and 
primary somatosensory neurons during vibrotactile detection tasks, Romo and colleagues 
simulated hypothetical neurons and assumed that the neuronal responses are conditionally 
independent (Vazquez et al paper 2013), even though Romo et al. (2003) reported mean 
noise correlation coefficients of 0.16 in primary somatosensory cortical neurons (de 
Lafuente and Romo, 2005).  
 
In the current study, we have assumed that tactile perceptual decisions are based on the 
activity of primary somatosensory cortical neurons. This assumption, though probably 
unrealistic, does provide us with valuable knowledge about the amount of information 
available in S1 that might be sufficient to perform different perceptual tasks. Romo and 
colleagues found that though S1 neurons respond consistently to changes in stimulus 
features, this neural activity does not co-vary with the monkeys’ trial-to-trial behavioural 
responses. Instead, the authors reported that the neural activity pattern of the prefrontal 
cortical areas more strongly predict the monkeys’ behavioural response patterns 
(Herenandez et al., 2002; de Lafuente and Romo, 2006, Romo et al., 2004, 2012). 
However, we do not have sufficient neurophysiological information to model the cortical 
areas downstream of S1. Therefore, we assumed that the ideal observer makes decisions 
based on the activity in the primary somatosensory cortical areas.  
 
 
 



Ph.D. Thesis - A. Bhattacharjee; McMaster University – Psychology, Neuroscience & 
Behaviour 

 34 

2.4.3 Predictions and future experiments 
 
The primary objective of creating this ideal observer model was not to propose a model of 
the brain but to generate testable predictions. We have tested some of these predictions in 
chapters 3 and 4; the remaining predictions suggest possible future experiments. Within 
the modeling paradigm, future experiments should include controlled sub-optimization of 
the model and comparing the obtained results to human performances; this will enable us 
to identify how information is lost or transformed to generate behaviour related to 
vibrotactile perception. For example, in the current study the ideal observer had 
knowledge of its average spontaneous noise rate; however, we can imagine a suboptimal 
observer that does not have this information. 
 
The simulation results in the current study demonstrated that the ideal observer’s 
performance improved with increasing amounts of information; therefore, we predict that 
human participants’ performance on vibrotactile detection and discrimination tasks 
should improve with increasing stimulus duration (Fig. 2.11, 2.12, and 2.13) – a 
phenomenon known as temporal summation (Gescheider et al., 2009). Because the RA 
afferent density is higher in the fingertip than in the thenar eminence, we also predict that 
the detection threshold estimated at the fingertip will be lower than that at the thenar 
eminence – a phenomenon known as spatial summation (Gescheider et al., 2009). Similar 
to detection thresholds, simulation results predict that the participants’ discrimination 
threshold must change with body site (see Fig. 2.9 and 2.10).  
 
The AD and FD simulation results, using the identical combination of amplitude and 
frequency, predict that human participants should have different AD and FD threshold 
values even for identical amplitude and frequency combinations (see Fig. 2.15).  
 
 

2.5 Conclusion 
 
In conclusion, we have shown that the stimulus-evoked spiking rate code has sufficient 
information to allow an ideal observer to perform three different vibrotactile tasks. By 
utilizing the strength of a Bayesian ideal observer model, i.e. the ability to perform 
optimal decoding, we have quantified the best possible performance achievable by a rate-
code-based perceptual observer. Our simulation results suggest that human performance 
in vibrotactile tasks should be affected by receptor density and stimulus duration; these 
predictions are tested empirically in the following chapter. 
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2.7 Figures and figure captions 
 
 

 

 

 
Figure 2.1: Typical stimulus response function of an RA afferent.  
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Figure 2.2: Distribution of ratios A) I0/I1 and B) I2/I3 
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Figure 2.3: Cumulative distribution of I1 and I3, recreated from Johnson, 1974 figure 11.  
 
 

 

 

 
Figure 2.4: Absolute (I0, solid curve) and entrainment (I1, dashed curve) thresholds as a 
function of increasing frequency. 
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Figure 2.5: A) Ratio of I0/I1 as a function of stimulus frequency (Hz). B) Recreation of 
figure 5 Freeman and Johnson, 1982. 
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Figure 2.6: An average performance of 10 simulated subjects in TD, AD, and FD tasks, 
where the sensory data were affected by RA and Cortical noise. Because we set the 
spontaneous rate to 0 spikes/s, the cortical sensory data is only affected by the Poisson 
variability. The amplitude refers to peak-to-peak values. The error bars represent ±1SE. 
A) The simulated subjects detected a 100ms stimulus at 20Hz in a 2IFC task. B) The 
black and grey bars represent the simulated subject’s performance in AD and FD task, 
respectively. In both tasks the standard stimulus was a 20Hz 20µm vibration, and the bars 
represent the percent difference in amplitude (for AD task) and frequency (for FD task) of 
the comparison stimulus that the simulated subjects required to reliably discriminate the 
vibrations in the 2IFC tasks. 
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Figure 2.7: An average performance of 10 simulated subjects in TD task. The number of 
spontaneous spikes added to the stimulus-evoked cortical neural responses depended on 
the stimulus duration that was 100ms. Each bar represents the average threshold required 
by the simulated subjects to detect a 20Hz stimulus in a 2IFC task at four different 
spontaneous rates (spikes/sec). The amplitude refers to peak-to-peak values. The error 
bars represent ±1SE. 
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Figure 2.8: An average performance of 10 simulated subjects in AD (panel A) and FD 
(panel B) tasks. The number of spontaneous spikes added to the stimulus-evoked cortical 
neural responses depended on the stimulus duration. The amplitude refers to peak-to-peak 
values. In AD and FD tasks the standard stimulus was a 20Hz 20µm vibration. The bars 
(black for AD, and grey for FD) represent the percent difference in amplitude (for AD 
task) and frequency (for FD task) of the comparison stimulus that the simulated subjects 
required to reliably discriminate the vibrations in the 2IFC tasks at four different 
spontaneous rates (spikes/sec). The error bars represent ±1SE.  
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Figure 2.9: Each bar represents the average performance of 10 simulated subjects in TD 
task (at 20Hz stimulus frequency) conducted at afferent densities that represent the human 
fingertip (white bar) and thenar eminence (hatched bar). The spontaneous rate was 10 
spikes/s for cortical noise simulations, which was equal to the stimulus duration of 
100ms. The amplitude refers to peak-to-peak values. The error bars represent ±1SE. 
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Figure 2.10: An average performance of 10 simulated subjects in AD (panel A) and FD 
(panel B) tasks conducted at fingertip (clear bars) and thenar eminence (hatched bars) 
densities. The spontaneous rate was 10 spikes/s for cortical noise simulations, and the 
number of spontaneous spikes depended on the stimulus duration. The amplitude refers to 
peak-to-peak values. In AD and FD tasks the standard stimulus was a 20Hz 20µm 
vibration, and the bars (black for AD, and grey for FD) represent the percent difference in 
amplitude (for AD task) and frequency (for FD task) of the comparison stimulus that the 
simulated subjects required to reliably discriminate the vibrations in the 2IFC tasks. The 
error bars represent ±1SE. 
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Figure 2.11: Each bar represents the average performance of 10 simulated subjects in TD 
task (at 20Hz stimulus frequency) conducted at two levels of decoding (afferent level: 
clear bars, cortical level: stippled bars). In separate blocks, we increased the stimulus 
duration by increasing the number of stimulus cycles. The spontaneous rate was 10 
spikes/s for cortical noise simulations and the stimulus duration determined the number of 
spontaneous spikes. The amplitude refers to peak-to-peak values. The error bars represent 
±1SE. 
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Figure 2.12: Each bar represents the average performance of 10 simulated subjects in AD 
(panel A) and FD (panel B) tasks conducted at different stimulus durations, which we 
manipulated by changing the number of stimulus cycles. We conducted the tasks at two 
levels of decoding (afferent level: clear bars, cortical level: stippled bars). The 
spontaneous rate was 10 spikes/s for cortical noise simulations and the stimulus duration 
determined the number of spontaneous spikes. The amplitude refers to peak-to-peak 
values. In AD and FD tasks the standard stimulus was a 20Hz 20µm vibration, and the 
bars (black for AD, and grey for FD) represent the percent difference in amplitude (for 
AD task) and frequency (for FD task) of the comparison stimulus that the simulated 
subjects required to reliably discriminate the vibrations in the 2IFC tasks. The error bars 
represent ±1SE. 
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Figure 2.13: Each bar represents the average performance of 10 simulated subjects in TD 
task at two stimulus frequencies (20Hz – white bars, and 40Hz – grey bars). The ideal 
observer’s performance at two decoding levels are shown in panel A (afferent level) and 
panel B with stippled bars (cortical level). The spontaneous rate was 10 spikes/s for 
cortical noise simulations and the stimulus duration determined the number of 
spontaneous spikes. The amplitude refers to peak-to-peak values. The error bars represent 
±1SE. 
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Figure 2.14: The average discrimination threshold of 10 simulated subjects at two 
decoding levels in AD tasks, in which A) the standard stimulus amplitudes were 20µm 
(clear black bars) and 40µm (hatched black bars), and frequency was 40Hz in all the 
blocks; B) the standard stimulus amplitude was 20µm in all the blocks, but the frequency 
(i.e. the non-target feature) was 20Hz (clear bars) and 40Hz (checkered bars).  
Performance of the simulated subjects at two decoding levels in FD tasks, in which C) the 
standard stimulus frequency were 20Hz (clear grey bars) and 40Hz (hatched grey bars), 
and amplitude was 40µm in all the blocks; D) the standard stimulus frequency was 20Hz 
in all the blocks, but the amplitude (i.e. the non-target feature) was 20µm (clear bars) and 
40µm (checkered bars). The spontaneous rate was 10 spikes/s for cortical noise 
simulations and the stimulus duration determined the number of spontaneous spikes. The 
amplitude refers to peak-to-peak values. The error bars represent ±1SE.  
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Figure 2.15: The average discrimination threshold of 10 simulated subjects at two 
decoding levels in AD (black bars) and FD (grey bars) tasks, where the standard stimuli 
were identical. The amplitude refers to peak-to-peak values. The error bars represent 
±1SE. 
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CHAPTER 3: SPATIAL AND TEMPORAL 
SUMMATION IN THE RA CHANNEL 
 
 

3.1 Introduction 
 
Perception is a process of making inferences about the stimuli that are presented to the 
sensory system (Goldreich, 2007). Sensory receptors convert stimulus features into nerve 
impulses, which are then relayed to the brain. Although this neural encoding process 
might be highly efficient, repeated presentations of identical stimuli rarely evoke identical 
cortical responses. As a consequence, a particular response could have been produced by 
any one of several stimuli. The brain can therefore at best infer probabilistically the most 
likely stimulus that may have evoked the neural data. Under these conditions, the 
accuracy of a perceptual inference depends strongly on the amount of sensory evidence 
that the nervous system has acquired (Shadlen and Newsome, 1996; Yang and Shadlen, 
2007). In this chapter, we investigate two features of the nervous system that can 
influence the amount of evidence it can acquire: 1) the ability of the nervous system to 
accumulate information over time, and 2) the ability of the nervous system to accumulate 
information over space (i.e., from pools of sensory receptors).  
 
A common and procedurally simple experiment used to investigate human’s sensitivity to 
vibration is the “vibrotactile threshold detection task”. In a 2-interval forced-choice 
(2IFC) protocol, we present a vibrotactile stimulus in one of two intervals, and the 
participants report the interval in which they perceived the stimulus. By using this 
procedure, we estimate the minimum amplitude at which the participants reliably detect 
the vibrotactile stimulus, i.e. we determine the detection threshold of the participants. 
Presumably, if the nervous system is capable of accumulating evidence over time, then 
sinusoidal stimuli applied for longer periods of time should be more easily detectable than 
the same stimuli applied for a shorter period of time – a phenomenon known as temporal 
summation. Similarly, if the nervous system is capable of accumulating responses from a 
pool of sensory receptors, then stimuli applied to skin regions of high receptor density 
should be more easily detectable than the same stimuli applied to skin regions of low 
receptor density – a phenomenon known as spatial summation. In both phenomena, an 
increase in detectability is quantified as a decrease in detection threshold.  
 
A vibratory stimulus delivered to the skin surface primarily activates two afferent systems 
or psychophysical channels: 1) rapidly adapting type-1 afferents (RA channel), which are 
effectively activated by vibrotactile frequencies ranging from 5  Hz to 50  Hz, and 2) 
rapidly adapting type-2 afferents (or Pacinian channel), which are effectively activated by 
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vibrotactile frequencies ranging from 50  Hz to 300  Hz (Talbot et al., 1968; Bolanowski 
et al., 1988; Gescheider et al., 2001). Several studies have investigated temporal and 
spatial summation in vibrotactile perception (for review, see Gescheider et al., 2009). To 
test for spatial summation, the investigators varied the number of receptors activated by a) 
changing the size of the stimulus probe, b) testing different body locations of varying 
receptor density, and/or c) testing different groups of participants who might have 
different receptor densities, e.g., young and old participants (Gescheider et al., 1994; 
Goble et al., 1996). By implementing one of these strategies (or some combination 
thereof) several studies have reported that spatial summation exists in the Pacinian 
channel (Verrillo, 1963; Gescheider et al., 1994, 2002, 2005; Goble et al., 1996; 
Whitehouse et al., 2006; Morioka et al., 2008; for review see Gescheider et al., 2009). By 
contrast, the results for the RA channel are unclear. While several studies have reported 
the absence of spatial summation in the RA channel (Gescheider et al., 1994; Goble et al., 
1996), others have reported that spatial summation does exist in the RA channel (e.g., 
Whitehouse et al., 2006; Morioka et al., 2008). To resolve this discrepancy, we 
investigated whether spatial summation exists in the RA channel by estimating 
vibrotactile detection threshold in the fingertip and thenar eminence; the afferent density 
in fingertip is 141 units/cm2, which is approximately six times that in thenar eminence (25 
units/cm2) (Johansson and Vallbo, 1979a).  
 
As with spatial summation, studies have consistently shown that temporal summation 
occurs in the Pacinian channel (Verrillo, 1965; Gescheider et al., 1999, 2002). However, 
it is unclear whether temporal summation occurs in the RA channel too. Whereas, results 
from a few studies indicate that temporal summation does not exist in the RA channel 
(Verrillo, 1965; Gescheider and Joelson, 1983), a few other studies reported evidence 
suggesting that temporal summation does exist in the RA channel (Green, 1976; 
Hämäläinen et al., 1981). To investigate whether temporal summation exists in the RA 
channel we conducted a series of five experiments to estimate vibrotactile detection 
thresholds with stimuli of different durations.  
 
 

3.2 Methods 
 

3.2.1 Participants 
 
We tested a total of 75 normally sighted (18.62 – 30.25 years of age; median age, 20.97; 
35 male, 40 female) participants. Based on a handedness survey (modified from Oldfield, 
1971), 65 of our participants were right-hand dominant. We ensured that participants 
(based on their self-report) did not have any nervous system disorders, learning 
disabilities, hearing impairment, and injuries or calluses on their index fingertip. 
Additionally, we screened participants for dyslexia as it adversely affects tactile acuity 
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(Grant et al., 1999), and for diabetes because it causes peripheral neuropathy and slows 
down action potential conduction (Hyllienmark et al., 1995). The Research Ethics Board 
of McMaster University approved all procedures of this study. The participants signed an 
informed consent form before starting the experiment, and were paid in cash or course-
credit for their time in the laboratory.  
 

3.2.2 Vibrotactile stimulation 
 
The experimental setup is identical to that reported in Bhattacharjee et al. (2010). Using 
LabVIEW 6.1 (National Instruments) running in a Macintosh G3 computer (Apple), we 
generated vibrotactile stimuli by passing voltage waveforms (32 kilo samples per second 
at 12 bit resolution) through an analog output channel (National Instruments PCI-MIO-
16E-1 board) to a power amplifier (Bruel & Kjaer type 2718) that displaced a flat surface 
circular glass probe (11 mm diameter) attached to a precision mini-shaker (Bruel & Kjaer 
4810). The probe displacement amplitudes (in microns) that we report in this study should 
be considered as nominal values because the on-line displacement profile was unavailable 
(for technical reasons); however, we precalibrated the system with a charge accelerometer 
(Bruel & Kjaer type 4381) threaded onto the mini-shaker.  
 
To ensure that the participant’s tested body region (fingertip or thenar eminence) 
maintained a light but steady force against the probe surface, we attached a load cell 
transducer (Daytronic model 434AM-250G) that triggered a warning (announced to the 
participant by a computer voice) if the forces were < 20 g or > 50 g; a force warning 
resulted in exclusion of the trial. We considered 20-50 g as an acceptable window 
because it was convenient for most participants and variation in baseline force within this 
range presumably exerts little effect on the responses of the relevant peripheral afferents 
(Johnson and Lamb, 1981). 
 
The mini-shaker was housed in a medium-density fiberboard box (L-29, W-29, H-14 cm) 
with a circular opening (13 mm diameter) in the top surface through which the probe 
contacted the skin. The probe surface was level with the top surface of the box with a 1 
mm gap separating the probe edge and the edge of the opening. During testing the 
forearm rested in prone position, level with the fiberboard box, on a foam pad (H-14cm). 
Depending on the experiment, the probe contacted the distal pad of the index finger or the 
thenar eminence (the palm region at the base of the thumb) while the palm and/or the 
(remaining) fingers rested on top of the box. 
 

3.2.3 Procedure 
 
The overall perceptual task and the design were identical in all five experiments. Before 
starting the experiment, the experimenter familiarized the participants with the equipment 
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and the response unit. The experimenter then conducted a “force practice” task in order to 
acquaint the participants with the amount of force they were allowed to exert on the 
vibrotactile probe (i.e. between 20-50 g, see section 3.2.2). Next, the experimenter 
explained the task to the participants and answered any questions the participants had 
about the task. To assure the experimenter that the participants fully understood the task, 
the participants had to repeat the task instructions back to the experimenter. The testing 
session began when the experimenter was satisfied that the participants had fully 
understood the task instructions. 
 
We tested participants on several blocks (10 in experiments 1, 3, and 5, 11 in experiment 
2, 22 in experiment 4) to estimate their vibrotactile detection threshold at two frequencies 
(40 Hz in experiments 1, 2, and 5, 20 Hz in experiment 3, 20 Hz and 40 Hz in experiment 
4). Every block consisted of 40 test trials and at least 10 practice trials. During practice 
trials, the participants received auditory feedback. In every experiment we implemented 
the 2IFC protocol, i.e. in each trial, a vibratory stimulus was presented randomly in one of 
two intervals announced by auditory tones; the participants, by pressing a response 
button, reported the interval in which they detected the stimulus. To estimate each 
participant’s detection threshold, we adaptively adjusted (see section 3.2.4) the amplitude 
of the vibrotactile stimulus to values between 1µm and 100µm. Specifics of each 
experiment are given in the following subsections. 
 
Experiment 1: To test for spatial summation, in 5 out of 10 blocks we delivered 40 Hz 
vibrotactile stimuli to the distal pad of the index finger, and in the remaining 5 blocks we 
delivered stimuli to the thenar eminence. To test for temporal summation, we delivered 
stimuli at 5 different durations (represented by the number of taps at 40 Hz), which were 
fixed within each block. The stimulus durations were 12.5ms, 237.5ms, 487.5ms, 
737.5ms, and 987.5ms, corresponding to 1, 10, 20, 30, and 40 taps, respectively. The 
starting duration was counterbalanced such that the participants either started at the 40-
taps block or at the 1-tap stimulus duration block. Four different combinations allowed us 
to counterbalance for the duration of the stimulus in the first block and for the stimulation 
location; 24 participants (6 participants X 4 conditions) were randomly assigned to each 
one of the 4 combinations. Before starting the first block on a new stimulation location 
(fingertip or thenar eminence), the participants performed the “force practice” task (see 
section 3.2.2 and 3.2.3). The participants received 20 practice trials on the first block at 
both stimulation locations.  
 
Experiment 2: Using 40 Hz vibrations, we further tested for temporal summation on the 
index fingertip. We conducted 11 experimental blocks at 7 different tap number 
conditions: 2 blocks each at 1, 2, 3, and 4 taps, which corresponded to 12.5ms, 34.5ms, 
62.5ms, and 87.5ms respectively, and 1 block each at 5, 10, and 20 taps, which 
corresponded to 112.5ms, 237.5ms, and 487.5ms respectively. Each participant was first 
tested sequentially on blocks with 20, 10, and 5 taps and then randomly tested twice on 
blocks with 1, 2, 3, and 4 taps. During the 20-taps block, the participants were presented 
with 20 practice trials. 



Ph.D. Thesis - A. Bhattacharjee; McMaster University – Psychology, Neuroscience & 
Behaviour 

 56 

 
Experiment 3: We tested for temporal summation on 20 Hz vibrations presented to the 
index fingertip. Each participant completed 10 experimental blocks, which consisted of 
10 different tap numbers: 1, 2, 3, 4, 5, 6, 8, 10, 15, and 20 taps; these tap numbers 
corresponded to stimulus durations: 25ms, 75ms, 125ms, 175ms, 225ms, 275ms, 375ms, 
475ms, 725ms, and 975ms, respectively. In the first 3 of 10 blocks, each participant was 
tested sequentially on 20-, 15-, and 10-taps condition, and then on the remaining 7 blocks, 
the participants were tested on a unique random order of the tap numbers enumerated 
above. Similar to experiment 2, during the first block, the participants were presented 
with 20 practice trials.  
 
To study the effect of stimulus duration and frequency on vibrotactile detection 
thresholds, we chose to control for stimulus duration by manipulating the number of 
stimulus cycles or pulses because at any fixed duration, doubling the stimulus frequency 
would double the number of stimulus cycles. Freeman and Johnson (1982) showed that 
increasing the frequency of the stimulus lowers the absolute threshold (i.e. the amplitude 
at which the afferents starts to elicit neural responses) of all the RA afferents. Moreover, 
if every RA afferent at certain amplitude has a certain probability of responding, then an 
increase in the number of stimulus cycles will increase the possibility that the afferent 
will respond at least in one of several stimulus cycles (even though the probability of 
generating a neural response of that afferent in a single cycle may be very low); this 
phenomenon is known as probability summation. Therefore, by keeping the stimulus 
duration constant at different frequencies we would have delivered different number of 
taps, and consequently, we would not have been able to determine whether the decline in 
detection threshold with the increase in the stimulus frequency was due to a) an increase 
in the number of stimulus cycles or pulses, or b) difference in the sensitivity of the RA 
afferents.  
 
Experiment 4: In experiments 1, 2, and 3, the stimuli were a combination of sinusoids and 
half-cycle sinusoids: for the single tap and the last tap in a series of taps or stimulus 
cycles, we presented a half-cycle pulse at the target frequency. Interestingly, at identical 
stimulus amplitudes, the effective amplitude of a full sinusoid (i.e. stimulus with 2 or 
more taps) is twice that of a half-cycle sinusoid (i.e. stimulus with 1 tap) (see Fig. 3.1 a 
and b). This suggests that if participants reliably detect a 1-tap stimulus at a microns, then 
they might be able to detect a multi-tap stimulus at a/2 microns (see Fig. 3.1c). To avoid 
this potential confound, in the current experiment we used pulsatile stimuli where all 
multi-tap stimuli consisted of a series of half-wave rectified half-cycle sinusoid taps (see 
Fig. 3.1d).  
 
Every participant attended two separate counterbalanced sessions (11 blocks per session) 
in which we tested for temporal summation on 20 Hz and 40 Hz vibrations using pulsatile 
stimuli presented to the index fingertip. On each testing session, as in experiment 2, we 
conducted 11 experimental blocks at 7 different tap number conditions: every participant 
was first tested sequentially on blocks with 20, 10, and 5 taps and then randomly tested 
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twice on blocks with 1, 2, 3, and 4 taps. The stimulus duration depended on the stimulus 
frequency. During the first testing block of both sessions, the participants were presented 
with 20 practice trials. 
 
Experiment 5: In all the experiments of this study the intervals within each trial were 
announced by 25ms auditory tones, and the SOA between the auditory tone and the 
vibrotactile stimuli was 0ms. To investigate whether the auditory tones that defined the 
intervals were suppressing the tactile stimulus-evoked responses (i.e. crossmodal 
masking; see Gescheider and Niblette, 1976), we tested each participant on two SOA 
durations (0ms and 500ms) in separate (counterbalanced) blocks.  
 
Within each SOA duration condition, we tested for temporal summation using pulsatile 
stimuli presented at 40 Hz on the index fingertip. We conducted 5 experimental blocks 
(per SOA condition) at 3 different tap number conditions. The participants were always 
tested first on a block with 10 taps, and then randomly tested twice on blocks with 1 and 4 
taps. During the 10-taps block, the participants were presented with 20 practice trials. 
 

3.2.4 Bayesian adaptive method 
 
To choose the most informative stimulus levels during the experiment, and to estimate 
each participant’s psychometric function (Pc(l), i.e. the probability of a correct response 
as a function of stimulus level, l), we implemented a modified version of the ψ method 
(Konstevich and Tyler, 1999). We modeled each participant’s psychometric function as a 
mixture of a cumulative normal function and a lapse rate term (δ): 
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 such that ′d = 1 when l = θ .

 

Thus, the θ-parameter is the threshold stimulus level, which corresponds to 76% correct 
response probability (see Fig. 3.2c), and the β-parameter is the slope of the psychometric 
function.  
 
We treated all three psychometric function parameters as unknown parameters and began 
the algorithm with a uniform prior probability distribution over a wide range of parameter 
values – threshold (θ: 1 to 100µm), slope (β: 0.01 to 15), and lapse rate (δ: 0.01 to 0.1). 
Thus the algorithm generated several thousand psychometric functions using all possible 
combinations of the above-mentioned parameter values. After each trial the algorithm 
updated the likelihood of the psychometric functions and calculated the expected 
information gain associated with each stimulus level; it then chose for the next stimulus 
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level the one that predicted the highest information gain. At the end of the testing block, 
the joint probability distribution over psychometric function parameters was marginalized 
over β and δ to obtain the posterior probability density function (PDF) for each 
participant’s θ-parameter (see Fig. 3.2b).  
 

3.2.5 Derived performance measures 
 
We parameterized a Temporal Summation Curve (TSC) to describe the decline in a 
participant’s threshold as a function of tap number, n: 
 

θ n( ) = θ1 − b( )sn−1 + b
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Here, s is the summation constant, τ is the exponential decay constant, θ1 is the threshold 
for a 1-tap stimulus, and b is the asymptotic threshold approached as the number of taps 
increases towards infinity. In the equation above, s is the magnitude of the reduction in 
detection threshold caused by each additional tap; hence, s = 1 implies no proportional 
difference between threshold at n and at n-1 taps.  
 
We found the TSC that best fit each participant’s performance (correct and incorrect 
answers at each tested stimulus level {crl, icl}) across all testing blocks. To do so, we 
considered TSCs with summation constants ranging from s = 1 to 1000 taps, θ1 ranging 
from 1 to 100 microns, and b ranging from 0 to θ1-1 microns. We then determined the 
maximum likelihood TSC: 
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3.2.6 Statistical analysis 
 
Participant response consistency: Based on a participant’s performance i.e. correct and 
incorrect responses at different stimulus amplitudes (Fig. 3.2a), the Bayesian adaptive 
method estimates the detection threshold for that participant. Specifically, the procedure 
calculates the probabilities that certain stimulus amplitude is the actual threshold of the 
participant, which is represented as a distribution known as the posterior Probability 
Distribution Function (PDF) (Fig. 3.2c); the mode of the posterior PDF is the most 
probable value of the participant’s threshold. The posterior PDF also reflects the 
participant’s attentiveness and response consistency, which can be quantified as the 95% 
confidence interval (CI). For example, Figure 3.3 shows performance of a participant in 
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two different experimental conditions; compared to the grey curve, the black curve 
represents more consistent performance. Because inconsistent performance leads to poor 
estimate of a participant’s threshold, we calculated the shortest 95% CI in each block for 
every participant and only considered the blocks where the shortest 95% CI was ≤ 10µm.  
 
We considered the derived performance measures and threshold estimates as dependent 
variables, and performed t-tests and analyses of variance (ANOVAs) using SPSS 20 
(IBM) for Macintosh, with a significance criterion of 0.05. In the results section, all 
reported Bonferroni-corrected comparisons are p values corrected for multiple 
comparisons.   
 
 

3.3 Results  
 

3.3.1 Detection threshold significantly varies with stimulation 
location 

 
To test for spatial summation in the RA channel, in experiment 1 we estimated 
participants’ ability to detect 40 Hz stimuli of varying tap numbers delivered to the 
fingertip and the thenar eminence. An ANOVA with stimulation location (fingertip, 
thenar eminence) and number of taps (1, 10, 20, 30, 40) as within-subject factors, and sex 
(male, female) as a between-subject factor revealed a main effect of stimulation location 
[F(1,11) = 14.67; p < 0.01; η2 = 0.571] and number of taps [F(4,44) = 34.44; p < 0.001; 
η2 = 0.758], but no main effect of sex (p = 0.98). For conditions with more than one tap, 
Bonferroni corrected comparisons of thresholds between thenar eminence and fingertip 
revealed significantly higher thresholds at the thenar eminence than at the fingertip 
(p<0.05). For the 1-tap condition, the thenar eminence threshold was also higher than the 
fingertip threshold, although this effect was not statistically significant (p = 0.066) (see 
Fig. 3.4a).  
 

3.3.2 Detection threshold significantly varies with the number 
of taps  

 
To test for temporal summation, we performed two-tailed t-tests on the summation 
component s of the derived measure TSC, and determined whether the mean s-value is 
significantly different from 1 (where s = 1 suggests no temporal summation). In all 5 
experiments, the mean s-value was significantly different from 1, suggesting that the 
detection thresholds decreased with increasing number of taps (see Fig. 3.5). In all the 
analyses on s values, we did not consider sex as a between-subject factor because 
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ANOVAs, performed on the threshold data of all 5 experiments, with sex as a between-
subject factor did not reveal a significant interaction of sex by number of taps.  
 
In experiment 1, participants showed temporal summation at both the thenar eminence 
and the fingertip (one-sample t-test: on s-values, p<0.001). A paired samples t-test 
showed that temporal summation was not different between the two stimulation locations 
(2-tailed, p=0.159) (see Fig. 3.4b; Fig. 3.5 bar 1, 2). Interestingly, whereas pairwise 
comparisons with Bonferroni corrections revealed that the participants’ detection 
thresholds significantly decreased as we increased the number of taps from 1 to 10 
(p<0.01), further increase in the number of taps did not have any favourable effect on the 
detection thresholds (p=1), i.e. the detection thresholds at 10, 20, 30, and 40 taps did not 
differ from one another.  
 
Because experiment 1 did not include tap numbers between 1 and 10, in experiment 2 we 
investigated whether, and how, gradually increasing the number of taps affect detection 
thresholds. We tested participants’ detection thresholds for 40 Hz vibrations presented as 
1-, 2-, 3-, 4-, 5-, 10-, and 20-tap stimuli. As evidence for temporal summation, a one-
sample t-test showed that the s-values were significantly different from 1 (p<0.001) (see 
Fig. 3.6b; Fig. 3.5 bar 3). Interestingly, an ANOVA with number of taps as the within-
subject factor and sex as between-subject factor revealed a main effect of number of taps 
[F(6,36) = 21.06; p < 0.001; η2 = 0.778] and a main effect of sex (p=0.671). Further 
pairwise comparisons with Bonferroni corrections revealed that the participants’ detection 
thresholds significantly decreased as we increased the number of taps from 1 to 2 
(p<0.01); however, the detection thresholds at 2 taps and above were not significantly 
different from one another (p ranges between 0.35 and 1) (see Fig. 3.6a).  
 
Next we investigated whether we would see effects similar to experiment 2 if we used a 
stimulus frequency of 20 Hz. In experiment 3, we tested participants’ detection thresholds 
at tap numbers 1, 2, 3, 4, 5, 6, 8, 10, 15, and 20 using 20 Hz vibrotactile stimuli. A one-
sampled t-test on s-values provided evidence for temporal summation (p<0.001) (See Fig. 
3.7b; Fig. 3.5 bar 4). However, an ANOVA with number of taps as the within-subject 
factor and sex as the between-subject factor revealed no main effect of number of taps 
(p=0.176) or sex (p=0.918) (see Fig. 3.7a). 
 
In experiment 4, we estimated the detection threshold for 20 Hz and 40 Hz pulsatile 
stimuli on the same group of participants. At both frequency conditions, increasing the 
number of taps of the stimuli reduced the detection threshold. The s-values in both 
conditions were significantly different from 1 (20 Hz, 40 Hz: p<0.01) and they did not 
differ between conditions (p=0.88) (see Fig. 3.8b; Fig. 3.5 bar 5, 6).  
 
In experiment 5, we estimated detection thresholds when the interval-identifying auditory 
stimuli were presented either simultaneously (SOA: 0ms) or 525ms before the 40 Hz 
vibrotactile stimuli. The s values in both conditions were significantly different from 1 
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(SOA 0ms: p<0.05, SOA 525ms: p<0.01) and they did not differ between conditions 
(p=0.74) (see Fig. 3.9b; Fig. 3.5 bar 7,8).  
 

3.3.3 Effect of frequency on detection threshold  
 
In experiments 2 and 3, we tested participants’ ability to detect 40 Hz and 20 Hz 
vibrotactile stimuli, respectively. However, these experiments were conducted on two 
different groups of participants. Therefore, to investigate the effect of frequency on 
detection threshold, in experiment 4 we estimated detection threshold for 20 Hz and 40 
Hz pulsatile stimuli on the same group of participants.  
 
An ANOVA with frequency (20 Hz, 40 Hz) and number of taps (1, 2, 3, 4, 5, 10, 20) as 
within-subject factors and sex as a between-subject factor revealed a main effect of 
frequency [F(1,8) = 17.37; p < 0.01; η2 = 0.685] and number of taps [F(6,48) = 10.99; p < 
0.001; η2 = 0.579] but no main effect of sex (p=0.321) (see Fig. 3.8a). The ANOVA 
failed to show a significant interaction between frequency and number of taps (p=0.362), 
which suggests that the effect of number of taps did not differ in the two frequency 
conditions. A further examination into the effect of frequency at each tap number 
condition revealed that the thresholds at 20 Hz were always higher than those at 40 Hz; 
however, Bonferroni corrected pairwise comparisons showed that this difference was 
statistically significant only for conditions where the stimulus contained 2, 3, 5, and 20 
taps (p<0.05), and not for conditions where the stimulus contained 1 (p=0.08), 4 (p=0.09), 
and 10 (p=0.25) taps.  
 

3.3.4 No evidence for crossmodal masking 
 
In the current study, because the intervals of each trial in all our tasks are identified by 
auditory stimuli, it might have been possible that the auditory stimuli were perceptually 
masking the single tap vibrotactile stimuli. To investigate, we tested participants’ ability 
to detect 1, 4, and 10 tap 40 Hz pulsatile stimuli at two different conditions where the 
interval-indicating auditory stimuli either appeared with (SOA: 0ms) or before (SOA: 
525ms) the vibrotactile stimuli.  
 
An ANOVA with SOA (0ms, 525ms) and number of taps (1, 4, 10) as within-subject 
factors and sex as a between-subject factor revealed only a main effect of number of taps 
[F(2,16) = 12.75; p < 0.001; η2 = 0.614] and no main effect of SOA (p=0.358) or sex 
(p=0.354), which suggests that the detection thresholds were not affected by the auditory 
stimuli (see Fig. 3.9a). If auditory stimuli were masking the responses of vibratory 
stimuli, particularly for the block with 1 tap stimuli, we would expect the detection 
threshold at 0 ms SOA to be higher than that at 525 ms SOA. On the contrary, a pairwise 
comparison with Bonferroni correction revealed that the average detection threshold of 1-
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tap stimuli at 0 ms SOA was significantly lower than that at 525 ms SOA (p=0.02), 
whereas there was no statistical difference at the other tap conditions (4 taps: p=0.65; 10 
taps: p=0.69).  
 
 

3.4 Discussion  
 
In this study we tested whether the RA channel is capable of spatial and temporal 
summation. Motivated by the simulation results from the ideal observer model (described 
in chapter 2), which showed differential performance due to changes in receptor density 
and stimulus duration, we conducted five experiments on human participants. Our data 
provide evidence for spatial and temporal summation in this channel.  
 

3.4.1 Effect of stimulation location: Evidence for spatial 
summation in the RA channel 

 
Decline in detection threshold with concurrent increase in stimulated area is defined as 
spatial summation (Gescheider et al., 2009). Alternatively, differences in detection 
sensitivity due to differences in receptor density could also be interpreted as spatial 
summation (Gescheider et al., 2002).  
 
Here, using the same equipment and testing protocol, we estimated participants’ ability to 
detect 40 Hz stimuli presented to their fingertip and to their thenar eminence. The 
thresholds were higher at the thenar eminence than at the fingertip in all stimulus 
durations tested. Because the RA afferent density at the fingertip is higher (by ~6 times) 
than at the thenar eminence (Johansson and Vallbo, 1979a), we interpret our results, albeit 
cautiously, as evidence for spatial summation.  
 
Gescheider et al. (2002) (using a 0.72 cm2 circular probe to present 5 Hz stimuli) did not 
find any difference in detection thresholds between the index fingertip and the thenar 
eminence. In the current study, we used a 0.95 cm2 circular probe to present 40 Hz 
stimulus and found an effect of stimulation location on detection thresholds. It is possible 
that, by using 40 Hz stimulus, we may have inadvertently activated the Pacinian channel 
(Gescheider and Joelson, 1983), which is known to show spatial summation (see for 
review Gescheider et al. 2009). Interestingly, Gescheider et al. (2002) reportedly failed to 
find a difference in detection thresholds at the fingertip and thenar eminence even for 
high frequency stimuli that activate the Pacinian channel, which is known to exhibit 
spatial summation (see for review Gescheider et al. 2009).  
 
Several investigators using different contactor sizes (probe diameters 2 and 8 mm, Kekoni 
et al., 1989; 6 and 10 mm, Morioka and Griffin, 2005; 1, 3, 6, and 10 mm, Gu and Griffin, 
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2013) reported lower detection thresholds at the fingertip than at the thenar eminence in 
human participants; however, none of these studies found an effect of contactor size, i.e. 
contactors with larger probe diameter did not yield lower detection thresholds at each 
tested location, which is contrary to the definition of spatial summation. 
 
Morioka et al. (2008) tested four different stimulation locations (fingertip, volar forearm, 
large toe, and heel) using 1 and 6 mm diameter stimulus probes. The authors reported that 
the detection thresholds were lowest on the fingertip, which has the highest density of 
afferents among the tested locations, and that the threshold at the volar forearm was the 
highest, which lacks Meissner’s corpuscles (the receptors that activate the RA afferents in 
the glabrous skin) (Vallbo et al., 1995). Morioka et al’s (2008) observations occurred for 
both stimulus probes; however, at all stimulated locations there was no effect of probe 
diameter on the detection thresholds at the RA effective frequencies.  
 
Verrillo (1963) did not test detection thresholds at the fingertip; however, the author used 
a range of contactor sizes (probe areas: 0.005, 0.02, 0.08, 0.32, 1.3, 2.9, and 5.1 cm2) to 
present RA channel activating frequencies at the thenar eminence and did not observe any 
change in detection threshold due to changes in contactor probe areas. 
 
Why do different studies consistently show an effect of stimulation location, but no effect 
of contactor size? If afferent density affects detection thresholds then changing 
stimulation location or contactor size should vary the number of activated afferents. 
Could the sensitivity of the afferents vary with location but when different contactor sizes 
are used on the same location the most sensitive afferents are always inadvertently 
activated? Johansson and Vallbo (1979b) studied psychophysical detection thresholds and 
the RA afferent sensitivities by directly recording neural responses from the afferents. 
They identified regions of high and low psychophysical thresholds on the glabrous skins 
of the human hand and compared the afferent thresholds (i.e., the minimum amplitude 
required to elicit neural responses) of those skin areas. The authors did not find any 
difference in afferents’ sensitivity at the high and low psychophysical threshold regions. 
Thus, Johansson and Vallbo’s (1979b) study suggests that the difference in 
psychophysical thresholds might be due to other factors and not due to any sensitivity 
differences in RA afferents at different skin regions.  
 
We speculate that the biomechanics of the skin at different stimulation locations might 
influence vibratory sensitivity. For example, Morioka et al. (2008) observed higher 
detection thresholds at the heel than at the large toe of human participants, although the 
density of afferents is presumably uniform throughout the plantar region of the foot 
(Kennedy and Inglis, 2002). The Meissner’s corpuscles that transform the vibratory 
stimulus into neural impulses are found in the papillary ridges of the dermis that extend 
into the epidermis of the glabrous skin (Nolano et al., 2003; Verrillo and Bolanowski, 
2009). Recently, an ultrasound study estimated the thickness of the skin on the plantar 
region of the foot and reported that the epidermis at the heel is thicker than that at the 
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pulp of the large toe (Chao et al., 2011), which might explain why Morioka et al. (2008) 
observed higher detection thresholds at the heel than at the large toe.  
 
Interestingly, Whitehouse et al. (2006) tested five different locations on the distal phalanx 
of the right middle finger starting from the most distal part to the more proximal part near 
the interphalangeal crease representing high density to lower density of receptors 
respectively. The investigators, using 1 and 6 mm diameter probe and stimulus 
frequencies that activate the RA channel, found a significant effect of location, with the 
lowest threshold at the highest density region. Nevertheless, at each stimulated location 
the authors of this study, like the above-mentioned studies, did not find a significant 
difference in thresholds due to differences in contactor size. Whitehouse et al. (2006) did, 
however, report that the effect of stimulation location was stronger for the 1 mm diameter 
probe than for the 6 mm diameter probe, presumably due to overlap in stimulation 
location with the bigger diameter probe. The 6 mm diameter probe probably activated the 
most sensitive afferents at the stimulated location, as well as some afferents at the 
adjoining stimulation locations.  
 
In light of these findings, we speculate, in addition to skin mechanics, that two further 
factors influence vibrotactile detection – a) the activation of the most sensitive afferent 
under the stimulus probe, and b) the activation of a small but critical number of 
mechanosensitive afferents. Perhaps the same most sensitive afferents are activated when 
a stimulus is delivered to one high-receptor-density location with probes of varying 
diameter; however, when the stimulation location is changed to one with sparser afferent 
density, the activation of a critical number of afferents is not reached. However, it is still 
unclear why a sufficiently large probe would not be effective at activating the critical 
number of receptors in a sparsely innervated skin area. 
 
Aging causes loss of receptors (Cauna, 1965; Bolton et al., 1966; Bruce, 1980), and if the 
density of receptors reduce due to aging this would presumably affect the threshold of 
vibrotactile detection (Gescheider et al. 1994; Goble et al. 1996). Gescheider et al. (1994), 
using different contactor sizes and a range of frequencies, concluded that aging adversely 
affects detection threshold with younger participants outperforming older participants. 
The difference in thresholds between the two age groups were, however, smaller for low-
medium frequency vibrations. Goble et al. (1996) found consistent differences in 
thresholds between young and old adults for a range of frequencies covering low-medium 
to high frequencies. The authors suggested that loss of receptors, among other factors, 
was a parsimonious explanation for the observed differences in thresholds between age 
groups.  
 
In the current study, detection thresholds of male and female participants in all the 
experiments were almost identical. Verrillo (1979), and more recently, Seah and Griffin, 
(2008) did not find a significant difference in detection thresholds in male and female 
participants. Bhattacharjee et al. (2010), however, reported a significant main effect of 
sex on the detection task; the investigators tested the ability of blind and sighted male and 
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female participants of a wide range of ages (19-80 years) to detect a single tap in a 2IFC 
task and found that female outperformed male participants. Interestingly, Gescheider et 
al. (1994) reported an effect of participants’ sex on vibrotactile detection tasks – female 
outperformed male participants; however, the authors found that the difference in the 
detection thresholds of male and female participants were statistically significant only for 
the older participants but not for the young participants. An interpretation of histological 
data from Dillon et al. (2001) and Nolano et al. (2003) suggest that the ratio of density of 
Meissner’s corpuscles in female to male participants are ~1.5 and ~1.6, respectively. 
Therefore, an effect of difference in receptor density between male and female 
participants may not reflect on the psychophysical thresholds; note that the fingertip 
surface area of male also tend to be larger than that of female participants (Dillon et al., 
2001; Nolano et al., 2003; Peters et al., 2009).  
 

3.4.2 Effect of stimulus duration: Evidence for temporal 
summation in the RA channel 

 
Temporal summation may be defined as a decrease in the detection threshold due to an 
increase in stimulus duration (Gescheider et al., 2009). In five experiments we changed 
the duration of the stimuli by changing the number of taps at 20 Hz and 40 Hz stimulus 
frequencies, and the data consistently provide evidence for temporal summation in the 
RA channel. Whereas different studies have concluded that temporal summation does not 
exist in the RA channel (Verrillo, 1965; Gescheider and Joelson, 1983; see Gescheider et 
al., 2009 for review), other studies (including the current study) have shown evidence 
supporting temporal summation in this channel (Green, 1976; Hämäläinen et al., 1981).  
 
Verrillo (1965), using 100 Hz, 200 Hz, and 500 Hz vibrations (that primarily activate the 
Pacinian channel) at different stimulator sizes, tested human participants’ ability to detect 
vibratory stimuli varying in number of taps or pulses, and showed that temporal 
summation is only possible when stimuli are presented with big surface contactors. 
According to Verrillo (1965) at contactor sizes ≤ 0.02 cm2 there was no effect of pulse 
number on the detection thresholds because smaller contactors (≤ 0.02cm2) are unable to 
activate the Pacinian channels (which shows temporal summation) and presumably 
instead activate the RA channel or the slowly adapting type 2 channel (which do not show 
temporal summation) (Bolanowski et al., 1988). However, Green (1976) pointed to the 
absence of electrophysiological studies that tested for the effect of contactor size on 
afferent responses; thus, the author argued that to determine whether the RA channel 
demonstrates temporal summation, the effect of the number of pulses on detection 
thresholds at low frequencies should be tested directly, and if temporal summation is still 
not present even with a larger probe then it could be concluded that the RA channel fails 
to show temporal summation. To investigate, Green (1976) delivered RA activating 
frequencies (25 Hz, 40 Hz) with a large contactor (diameter: 12.96 mm), and reported 
data that show temporal summation in the RA channel. However, the author was unsure 
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about the mechanism for observing the effect of pulse number on detection thresholds and 
reasoned that the effect could be due to: a) that temporal summation actually exists in the 
RA channel when activated by large sized contactors, or b) that there are two 
psychophysical channels and possibly both channels are getting activated; the RA channel 
might be the nonsummating channel, and the other summating channel might be causing 
the temporal summation effects.  
 
Hämäläinen et al. (1981) investigated human participants’ ability to detect 20 Hz 
vibrations at three different stimulus durations (50, 150, and 300 ms) and observed that 
participants’ detection threshold declined with the increase in stimulus duration. 
However, Gescheider and Joelson (1983) tested detection thresholds in human 
participants on a range of frequencies including 25 and 40 Hz, and reported absence of 
temporal summation in these frequencies.   
 
Should contactor size matter for temporal summation? Green (1976) used a contactor size 
of 12.96 mm diameter and we used 11 mm diameter. Both studies used a large contactor 
size and reported temporal summation, which follows one of the predictions of Green 
(1976) that large contactor size will cause temporal summation in the RA channel. 
However, Gescheider and Joelson (1983) used a contactor size of 19.54 mm diameter, 
which is larger than both of the above-mentioned studies, and yet did not observe 
temporal summation for 25 Hz and 40 Hz frequency vibrations. Interestingly, Hämäläinen 
et al. (1981) using a contactor size of 1.99 mm diameter observed temporal summation. 
Therefore, the difference in results between our study and that of Gescheider and 
Joelson’s (1983) study is certainly not due to contactor size.  
 

3.4.3 Our finding of temporal summation is not an artifact of 
cross-modal masking, or of activation of the Pacinian 
channel 

 
Our analyses of behavioural data from all the experiments showed temporal summation in 
the RA channel; it is important to note that our participants performed particularly poorly 
when their objective was to detect the presence of a single tap in one of two intervals. In 
the current study, to demarcate two intervals we used auditory tones and the stimulus-
onset-asynchrony (SOA) between the tactile stimulus and the auditory tone was set to 0 
ms. Because the duration of the auditory beeps were 25 ms, the 40 Hz single tap (12.5 ms 
duration) and 20 Hz (25 ms duration) single tap stimuli may have been partially masked 
by the auditory tone. Thus, we wondered whether increased detection threshold for a 
single tap stimulus could be due to cross-modal masking i.e. whether the auditory 
stimulus suppressed the tactile stimulus-evoked responses. To investigate, in experiment 
5 we compared participants’ performance in two conditions in separate blocks where we 
presented the auditory stimulus 525 ms or 0 ms before the onset of the tactile stimulus. 
We did not observe any difference in the participants’ performance. We conclude that 
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participants’ higher detection threshold at the single tap condition is not an artifact of the 
interval-identifying stimulus.  
 
Although both 20 and 40 Hz vibrations primarily activate the RA afferents (Gescheider et 
al., 2009; Mountcastle et al., 2005), Gescheider and Joelson (1983) suggested that 40 Hz 
vibrations might also activate the Pacinian channels but 20 Hz vibrations at threshold 
amplitudes should not activate the Pacinian channel. Because the Pacinian channel 
demonstrates both temporal and spatial summation, low frequency vibratory stimuli 
inadvertently activating the Pacinian channel could lead to erroneous conclusions about 
temporal and spatial summation in the low frequency channel. In experiment 1 and 2, we 
estimated participants’ detection threshold for 40 Hz stimuli. Therefore, to verify whether 
temporal summation exists in the RA channel we tested participants’ detection threshold 
at 20 Hz vibratory stimuli in experiment 3, and observed that increasing the number of 
taps decreased detection thresholds. To further confirm that in the current study both 20 
and 40  Hz vibrations are activating the RA channel, we conducted experiment 4 where 
within the same group of participants we measured detection thresholds at both 20 and 40  
Hz. The analyses of the summation factor s showed strong temporal summation effects, 
and the values of s at the two frequencies were almost identical, thus confirming the 
presence of temporal summation in the RA channel.  
 
 

3.5 Conclusion  
 
In Chapter 2 we simulated vibrotactile detection task using the ideal observer model, and 
found that afferent density and stimulus duration affected its performance on the detection 
task. In the current chapter, we tested whether human performance showed similar 
effects. In experiment 1, by testing the fingertip and the thenar eminence, we showed that 
detection threshold varies with RA afferent density. In experiment 1 to 5, we showed that 
detection threshold varies with stimulus duration. Further experiments are needed to 
conclusively determine whether spatial summation exists in the RA channel and the 
current effect of stimulus location is not due to accidental activation of the Pacinian 
channel, or due to differences in skin biomechanics of the fingertip and the thenar 
eminence. Future experiments are also needed to verify the existence of temporal 
summation by estimating the detection threshold in human participants with varying 
stimulus duration delivered through stimulus contactors of different sizes.  
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3.7 Figures and figure captions 
 
A B 

  
C D 

  
Figure 3.1: 20 Hz vibrotactile stimuli shown at two different amplitudes. Note that the 
amplitude of the single tap (panel A) is same as that of the two tap (panel B) stimulus; 
however, the effective (peak-to-peak) amplitude of the 2-tap stimulus (panel B) is twice 
that of 1-tap stimulus. Panel C shows a 2-tap stimulus with an amplitude of 4µm but has 
an effective amplitude of 8µm, which is same as the amplitude of the single tap stimulus 
(panel A). To resolve this discrepancy, in experiment 4 and 5 we used pulsatile stimuli for 
all multi-tap stimuli (panel D). Irrespective of the number of taps the effective amplitude 
was equal to the waveform amplitude of the stimulus.  
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Figure 3.2: a) Participant’s performance (o = correct, x = incorrect), b) participant’s 
psychometric function, c) posterior probability distribution function of threshold (θ) 
parameter. 
 
 
 

  
Figure 3.3: Shows a participant’s posterior probability distribution function of the 
threshold (θ) parameter on two different conditions. When compared to the black curve, 
the grey curve represents poor performance by the participant. The width of the 
probability distribution function affects our confidence on the participant’s threshold. 
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Figure 3.4: Panels A and B, show the mean threshold of participants on experiment 1 
where 40 Hz vibrations of 1, 10, 20, 30, and 40 taps (x-axis) were delivered to their 
fingertip (black bars in A, black dots in B) and thenar eminence (grey bars in A, grey dots 
in B). The error bars in panel A, the black pluses (+) and the grey crosses (x) flanking the 
mean thresholds in panel B represent ±1 SE. In panel B, along with the mean threshold 
values (also shown in A), we show the mean TSCs for fingertip (black curve) and thenar 
eminence (grey curve). To calculate each TSC, we computed the average of all the 
participants’ s, θ1, b values in each condition.  
 



Ph.D. Thesis - A. Bhattacharjee; McMaster University – Psychology, Neuroscience & 
Behaviour 

 75 

 

 
 

Figure 3.5: Shows the mean summation constant, i.e. the summation or s component of 
the TSCs, for all 5 experiments. The numbers in the x-axis represents every condition 
tested in this study. Bar 1 and 2, refers to fingertip and thenar eminence s-values in 
experiment 1, respectively. Bar 3, refers to experiment 2. Bar 4, refers to experiment 3. 
Bar 5 and 6 refer to 20 Hz and 40 Hz stimulus frequency s-values in experiment 4. Bar 7 
and 8 refer to 0 ms and 500 ms SOA s-values in experiment 5. 
 
A B 

  
Figure 3.6: Panel A and B, shows the mean threshold of participants on experiment 2 
where 40 Hz vibrations of 1, 2, 3, 4, 5, 10, and 20 taps (x-axis) were delivered to their 
fingertip (bars in A, dots in B). The error bars in panel A, and the black pluses (+) 
flanking the mean thresholds (dots) in panel B represent ±1 SE. In panel B, along with the 
mean threshold values (also shown in A), we show the mean TSC, which we computed 
from the average of all the participants’ s, θ1, b values in each condition.  
 
A B 
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Figure 3.7: Panel A and B, shows the mean threshold of participants on experiment 3 
where 20 Hz vibrations of 1, 2, 3, 4, 5, 6, 8, 10, 15, and 20 taps (x-axis) were delivered to 
their fingertip (bars in A, dots in B). The error bars in panel A, and the black pluses (+) 
flanking the mean thresholds (dots) in panel B represent ±1 SE. In panel B, along with the 
mean threshold values (also shown in A), we show the mean TSC, which we computed 
from the average of all the participants’ s, θ1, b values in each condition. 
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A B 

  
Figure 3.8: Panel A and B, shows the mean threshold of participants on experiment 4 
where 1-, 2-, 3-, 4-, 5-, 10-, and 20-tap (x-axis) vibrations were presented to their 
fingertip at two different frequencies - 20 Hz (hatched bars with clear background in 
panel A, and black dots in panel B) and 40 Hz (hatched bars with grey background in 
panel A, and grey dots in panel B). The error bars in panel A, the black pluses (+) and the 
grey crosses (x) flanking the mean thresholds in panel B represent ±1 SE. In panel B, 
along with the mean threshold values (also shown in A), we show the mean TSCs for 20 
Hz (black curve) and 40 Hz (grey curve) vibration conditions. To calculate each TSC, we 
computed the average of all the participants’ s, θ1, b values in each condition. 
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Figure 3.9: Panel A and B, shows the mean threshold of participants on experiment 5 
where 1-, 4-, and 10-tap (x-axis) vibrations were presented to their fingertip at two 
different beep and vibration SOAs – 0ms (stippled bars in A, and black dots in B) and 
525ms (plaid bars in A, and grey dots in B). The error bars in panel A, the black pluses 
(+) and the grey crosses (x) flanking the mean thresholds in panel B represent ±1 SE. In 
panel B, along with the mean threshold values (also shown in A), we show the mean 
TSCs for 0ms SOA (black curve) and 525ms SOA (grey curve) conditions. To calculate 
each TSC, we computed the average of all the participants’ s, θ1, b values in each 
condition. 
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CHAPTER 4: EFFECT OF TARGET AND 
NON-TARGET FEATURE MANIPULATION IN 
AMPLITUDE AND FREQUENCY 
DISCRIMINATION TASKS 
 
 

4.1 Introduction 
 
A vibrotactile stimulus presented on the skin surface evokes neural responses, which the 
brain has to decode to determine the stimulus features. In this study, we asked what 
features of a vibrotactile stimulus are encoded, and what are the neural signatures (i.e. 
neural codes) of those features?  
 
Two obvious choices for the vibrotactile stimulus features are amplitude and frequency. 
There is unanimous agreement that the brain encodes vibrotactile amplitude in neural 
firing rate, i.e. number of spikes per second (Bensmaïa, 2008; Simons et al., 2005; 
Tommerdahl et al., 2010; Güçlü and Dinçer, 2013; Harvey et al., 2013). However, the 
neural code for vibrotactile frequency is unclear. On the one hand, Romo and colleagues 
have argued that neural firing rate adequately encodes vibrotactile frequency (Hernandez 
et al 2000; Salinas et al 2000; Luna et al., 2005; see for review Romo and Salinas, 2003; 
Romo and de Lafuente, 2013). On the other hand, studies have shown that the activity of 
neurons that respond to vibrotactile stimuli are phase-locked to the frequency of the 
stimulus, which suggests that the stimulus frequency is encoded in the regularity of the 
neural activity (Mountcastle et al. 1969, 1990; Whitsel et al. 2001). 
 
Interestingly, because amplitude and frequency are two coexisting features of a 
vibrotactile stimulus, it is possible that humans might meld these features into a single 
feature to perform vibrotactile perceptual tasks (Harris et al., 2006). Neurophysiological 
studies, however, suggest that the frequency affects the sensitivity of the tactile 
mechanosensitive afferents (Freeman and Johnson, 1982) and the amplitude modulates 
the number of spikes (Johnson, 1974). Our Bayesian ideal observer model utilizes this 
information to infer the amplitude and frequency of a vibrotactile stimulus (see Chapter 
2). Therefore, to examine whether humans can separately perceive the amplitude and 
frequency features of vibrotactile stimuli, and to make an educated speculation about the 
neural code that the brain might utilize during vibrotactile tasks, we compared the 
performance of human participants to that of the ideal observer.  
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To probe the ideal observer model’s accuracy of inference, we could present a single 
stimulus and record the inferred feature values (e.g., the model’s inferred frequency in Hz 
and amplitude in µm); however, because it is infeasible for human participants to report 
the feature values of a vibrotactile stimulus, we could not implement this straightforward 
approach to determine the participants’ ability to infer the stimulus features. Therefore, in 
the current study we conducted a series of vibrotactile discrimination tasks, namely – 
amplitude discrimination (AD) and frequency discrimination (FD) tasks.  
 
Ideally, to perform a vibrotactile discrimination task the participant should infer the 
amplitude and frequency values from the stimulus-evoked neural responses in each 
interval and then, depending on the task (AD or FD), choose the interval with the higher 
target feature (A or F, respectively) value as the interval of choice. Recently, Harris et al. 
(2006) conducted two different versions of an FD experiment: one in which the amplitude 
in the two intervals was identical, and the other in which the authors adjusted the 
amplitude of both intervals such that the total energy (a x f) in the two intervals was 
identical. The authors observed that the participants’ FD threshold was higher on the 
identical-energy than on the identical-amplitude version of the task. Because Harris et al. 
(2006) eliminated the energy cue by matching the total energy in the intervals, they 
concluded that human participants encode the product of frequency and amplitude (i.e. 
the energy) of the vibration, and use that as a feature to perform FD tasks. Note that, 
although the participants showed higher threshold in the equal energy version compared 
to the identical amplitude version, the participants were still able to perform the task. 
How could the participants do the task if vibrotactile discrimination requires the energy 
cue and the experimenters eliminated that cue?  
 
Similar to energy difference as a potential cue, different studies have suggested that 
humans might utilize the intensity difference as a cue to perform vibrotactile FD tasks 
(Goff, 1967; LaMotte and Mountcastle, 1975; Mountcastle and Romo, 1990). Therefore, 
to match the “subjective intensity” in the two intervals, which presumably matches the 
number of spikes evoked in the intervals (Johnson, 1974; Mountcastle, 2005), the 
investigators adjusted the stimulus amplitude in two intervals by delivering high 
frequency intervals at amplitudes lower than the amplitudes of the low frequency 
intervals. Despite eliminating the intensity cue, the participants were able to perform the 
discrimination task and the investigators could estimate the participants’ threshold values, 
which suggest that the participants were probably inferring the frequency information in 
each interval, or the participants might have utilized the neural code related to the 
periodicity of the neural activity.  
 
Interestingly, in another experiment of the same study, Harris et al. (2006) showed that in 
an FD task the difference in amplitude (i.e. the non-target feature) of the vibrotactile 
stimulus in two intervals affects the FD threshold of human participants. During the task, 
the participants received two vibrations (corresponding to two intervals of a trial) at 
different frequencies and the amplitude of these vibrations was either identical or 
different such that in some “different” trials the interval containing the high frequency 
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stimulus was presented at amplitudes higher than that of the low frequency stimulus 
interval (i.e. congruent condition); in other trials, the low frequency stimulus was 
presented at amplitudes higher than that of the high frequency stimulus interval (i.e. 
incongruent condition) (see Table 4.1). The participants were unaware of this 
manipulation and were instructed to report the interval with the high frequency stimulus. 
Harris et al. (2006) observed that in the congruent condition, the participants correctly 
chose the high amplitude high frequency interval as the response; however, in the 
incongruent condition, the participants incorrectly chose the high amplitude low 
frequency interval as the response. Therefore, the amplitude manipulation affected the 
participants’ performance such that their FD thresholds were biased by the interval with 
the higher amplitude. This finding suggests that the participants may not have the ability 
to infer the amplitude and frequency features from the stimulus evoked neural responses; 
instead, they might have been choosing the interval with the higher number of spikes 
(assuming vibrotactile stimulus features are encoded in a rate code) as the response in 
each trial.  
 
Is it possible that humans are capable of making inference about the stimulus features, but 
rely on the energy or the intensity cue because these cues are always consistent with the 
change in frequency in FD tasks? This could explain the findings of Harris et al. (2006) 
where the authors secretly modified the amplitude feature of the stimulus during the FD 
task: The naïve participants assumed that the amplitude in the two intervals was equal, 
which would imply that the difference in the neural responses evoked by the stimuli in the 
two intervals is due to the manipulation of the target feature of the vibration, i.e. the 
frequency of the stimulus. Hence, the participants were deceived by this secret 
manipulation!  
 
We predicted that if participants were aware of this manipulation, then during the 
discrimination task they would infer the target feature from the stimuli, and the 
manipulation would no longer affect their discrimination performance. However, if 
participants only use the energy feature to discriminate between vibrations, they would be 
unable to detect the manipulation, and furthermore their performance on AD and FD task 
would be identical.  
 
To investigate this, we conducted three different vibrotactile discrimination experiments. 
In the first experiment we tested participants’ ability to discriminate vibrotactile stimuli 
separately based on the amplitude and frequency. For both AD and FD tasks, we chose 
the standard-stimulus amplitude and frequency combinations such that two experimental 
blocks had the same energy. We reasoned that if participants use only the energy cue to 
discriminate between vibrations, the experimental blocks with identical energy, 
irrespective of the task, should yield identical discrimination thresholds. In the second 
experiment, we tested whether surreptitiously changing the non-target feature affects the 
performance of the participants as reported by Harris et al. (2006). In the third experiment 
we tested whether participants can selectively identify the feature that changes in each 
trial. To test our prediction that participants’ assumption of equal non-target feature in 
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both intervals of every trial leads to the effect that was reported by Harris et al. (2006), 
we retested participants on the second experimental paradigm after they have been trained 
in a paradigm identical to the third experiment. We also simulated the first and the second 
experiment using the ideal observer model and compared the human performance to the 
ideal observer’s performance to gain insight into stimulus feature inference. The data 
obtained in the current study support our prediction that human participants are capable of 
inferring the stimulus features; however, they primarily rely on the energy cue to 
discriminate vibrotactile stimuli. 
 
 

4.2 Methods 
 

4.2.1 Behavioural methods 
 

4.2.1.1 Participants 
Two groups of normally sighted neurologically healthy naïve participants were tested on 
different vibrotactile discrimination tasks. One group participated only in experiment 1, 
and the other group participated in experiments 2 and 3. We ensured that the participants 
did not have any injuries or calluses on their tested fingertip. Also, all participants were 
screened (based on their self-report) for diabetes, dyslexia, learning disabilities, hearing 
impairment, or any nervous system disorders. Diabetes causes peripheral neuropathy and 
slows action potential conduction (Hyllienmark et al., 1995), and dyslexia adversely 
affects tactile acuity (Grant et al., 1999). The McMaster University Research Ethics 
Board approved all procedures implemented in this study. All participants signed the 
informed consent form, and were remunerated (cash or course-credit) for their 
participation.  
 

4.2.1.2 Vibrotactile stimulation 
Because this section is identical to that mentioned in the previous chapter, please refer to 
section 3.2.2 (in Chapter 3). In all the experiments, the stimulus duration was set to 10 
taps (i.e., 9.5 cycles) at respective stimulus frequencies.   
 

4.2.1.3 General procedure  
Procedures specific to each experiment are described in the corresponding subsections 
below; however, certain procedural steps that were identical for all the experiments are 
described here. First, we acquainted the participants with the equipment and the response 
unit. Next we conducted a “force practice” task, which familiarized the participants with 
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the permissible level of forces (between 20-50 g) that they could exert on the vibrotactile 
probe (during the experiment, forces beyond the permissible levels lead to a force 
warning and exclusion of the trial). Finally, we explained each task to the participants and 
answered their questions (if any) about the task. The participants repeated the instructions 
back to us to demonstrate full comprehension of the task instructions. We started the 
testing protocol once we were satisfied that the participants had fully understood the 
instructions. In all experiments, the stimuli were delivered to the participants’ distal pad 
of their left index finger. 
 

4.2.1.4 Experiment 1 
To investigate whether humans use energy as the discrimination-feature to perform 
vibrotactile amplitude (AD) and frequency discrimination (FD) tasks, we tested the 
group-one participants (total 24: 9 male and 15 female; age range: 18.42 – 23.14 years; 
median age: 21.06 years), of which 17 were right-hand dominant (based on questions 
modified from the Edinburgh Handedness Inventory; Oldfield, 1971).  
 
Perceptual tasks: All participants were tested on a total of 10 testing blocks. Because 
participants’ ability to detect vibrotactile stimuli presumably affects their performance in 
the FD task (LaMotte and Mountcastle, 1975), first we conducted two blocks of a 
vibrotactile threshold detection (TD) task. Next, we conducted 4 blocks (each) of AD and 
FD tasks. To counterbalance, we tested the odd numbered participants first on FD and 
then on AD tasks, and reversed the sequence for the even numbered participants.  
 
TD task: In two separate 40-trial blocks we tested each participant’s ability to detect a 10-
tap vibration delivered at 20Hz and 40Hz stimulus frequencies. The odd numbered 
participants were tested first in the 40Hz and then in the 20Hz block, and the reverse was 
true for the even numbered participants. During each trial, we presented the stimulus in 1 
of 2 intervals identified by auditory beeps, and using the response unit the participants 
reported the interval in which they perceived the stimulus. We determined each 
participant’s detection threshold by adaptively adjusting the amplitude of the stimulus 
ranging between 1µm and 100µm. In each block, prior to the testing phase every 
participant completed 20 practice trials during which the participant received an auditory 
feedback after each response.  
 
AD task: In four different 50-trial blocks we tested each participant’s ability to 
discriminate two 10-tap vibrations (representing each interval of a trial) delivered at 20Hz 
and 40Hz (2 blocks each) stimulus frequencies. For every trial, in 1 of 2 intervals we 
presented the standard stimulus at 40µm or 80µm (depending on the testing condition) 
stimulus amplitude, and in the other we presented the comparison stimulus at amplitudes 
that are a certain percentage lower than the standard stimulus. To estimate each 
participant’s AD threshold, we adaptively adjusted the difference in amplitude of the 
stimulus ranging between 1% and 100%. The stimulus frequency was identical in the two 
intervals. We created 4 sets of standard stimulus (in 4 separate blocks), shown in Table 
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4.2; two of which (20Hz-80µm, 40Hz-40µm) were iso-energy (i.e. equal a × f) 
combinations.  
 
FD task: The procedure and the number of trials for the FD task were identical to that of 
the AD task; here we manipulated the frequency in lieu of the amplitude feature of the 
vibrotactile stimulus. In separate blocks, we estimated each participant’s FD threshold at 
20Hz and 40Hz stimulus frequencies where the amplitude of the standard stimulus was 
either 40µm or 80µm (depending on the testing condition). Thus we tested each 
participant on all 4 sets of standard stimulus conditions (as shown in Table 4.2).   
 
Psychophysical method: To efficiently choose the stimulus levels, and to quantify the 
participants’ performance, we used the Bayesian adaptive method as described in Chapter 
2 (section 2.2.4). In this method, which is a modified version of the ψ method 
(Konstevich and Tyler, 1999), we considered each participants’ psychometric function 
(Pc(l), i.e. the probability of a correct response as a function of stimulus level, l) as a 
mixture of a cumulative normal function and a lapse rate term (δ): 
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Therefore, the threshold stimulus level is the θ-parameter, and it corresponds to 76% 
correct response probability (see Fig. 4.1). For the TD task, the θ-parameter refers to the 
stimulus amplitude values in microns, whereas for the discrimination tasks, this parameter 
refers to the percent difference of the target feature of the standard stimulus (i.e. standard 
stimulus’ amplitude value for AD, and frequency value for FD task). The slope of the 
psychometric function is represented by the β-parameter.  
 
We considered all the psychometric function parameters (θ, β, and δ) as unknown 
parameters and initiated the algorithm with a uniform prior probability distribution over a 
wide range of parameter values – threshold (θ: 1 to 100µm, or 1% to 100%), slope (β: 1 
to 15), and lapse rate (δ: 0.01 to 0.1). Using different combinations of these parameter 
values, the algorithm generated several thousand psychometric functions, and after each 
trial the algorithm updated the likelihood of the psychometric functions. During the 
testing session, based on the participant’s response after every trial, the algorithm 
estimated the expected information gain associated with each stimulus level; the stimulus 
level that predicted the highest gain value was chosen as the stimulus level for the next 
trial. At the end of each experimental block, this iterative process yielded a psychometric 
function that most closely represented the participant’s performance. Because each 
psychometric function is a combination of three parameters, we marginalized over the β- 
and the δ-parameters to generate the posterior probability density function (PDF) for each 
participant’s θ-parameter (see Fig. 4.1C).  
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4.2.1.5 Experiment 2 
To investigate whether the participants’ AD and FD performances are affected by 
surreptitious manipulation of the non-target (f and a, respectively) parameters, we tested 
the group-2 participants (7 male and 5 female; age range: 19.69 – 23.29 years; median 
age: 21.94 years; 11 right-hand dominant) in a series of experimental conditions.  
 
Perceptual tasks: Whereas all participants of group-2 were tested on 3 common tasks (a 
block each of TD, AD, and FD task), 6 odd-numbered participants were further tested on 
6 blocks of ADvF (a variation of the AD) task, and similarly, 6 even-numbered 
participants were further tested on 6 blocks of FDvA (a variation of the FD) task. Thus, 
every participant of this group was tested on 9 different experimental blocks.  
 
TD task: For the reason mentioned in section 2.2.1.4 (subsection, perceptual tasks), we 
estimated each participant’s detection threshold. The current testing protocol, procedure, 
and the number of trials were identical to those implemented in experiment 1 except the 
stimulus frequency was set to 30Hz.  
 
AD task: Similar to the AD task in experiment 1, we estimated each participant’s ability 
to discriminate two vibrations. The amplitude of the standard stimulus was 30µm and it 
was always higher than that of the comparison stimulus; the frequency of both stimuli 
representing each interval of the trials was 30Hz. The current testing protocol, procedure, 
and the number of trials were identical to that implemented in experiment 1.  
 
FD task: The FD task implemented here (including the procedure, testing protocol, and 
the number of trials) is identical to that mentioned in experiment 1. We estimated each 
participant’s ability to discriminate two vibrations based on the difference in frequencies. 
The frequency of the standard stimulus was 30Hz and it was always higher than that of 
the comparison stimulus; the amplitude of both stimuli was 30µm.  
 
ADvF (amplitude discrimination with variable frequency) task: In this 2-interval forced 
choice (2IFC) task, both vibrations representing two intervals of every trial contained 10 
taps. Conceptually the ADvF task is identical to the AD task mentioned above; however, 
in the ADvF task the frequency feature of the vibrations (i.e. the non-target feature) in 
each interval were secretly manipulated. In 6 different conditions, the frequency 
difference between intervals were 2Hz, 4Hz, 6Hz, 8Hz, 10Hz, and 12Hz, which 
corresponded to a difference of 6.66%, 13.33%, 20%, 26.66%, 33.33%, and 40% of 
30Hz. This difference in frequencies between intervals created two sets of stimuli: 
congruent (+) and incongruent (–) (see Table 4.1). In the congruent set of stimuli, the 
standard stimulus (which was always higher in amplitude than the comparison stimulus) 
was present at a higher frequency than the frequency of the comparison stimulus: for 
example, at +20% frequency difference between to intervals, the interval containing the 
standard stimulus was delivered at 33Hz and the comparison stimulus was delivered at 
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27Hz. Conversely, in the incongruent set of stimuli, the standard stimulus was presented 
at a lower frequency than that of the comparison stimulus; for example, at –20% 
frequency difference between to intervals, the interval containing the standard stimulus 
was delivered at 27Hz and the comparison stimulus was delivered at 33Hz. Each 
experimental block consisted of 100 trials; an equal number of trials were randomly 
chosen from congruent and incongruent set of stimuli. To estimate the participants’ ADvF 
threshold at each non-target-difference condition, we adaptively adjusted the difference in 
amplitude of the stimulus ranging between 1% and 100% for each set of stimuli (i.e. 
congruent and incongruent). 
 
FDvA (frequency discrimination with variable amplitude) task: Procedurally, the FDvA 
task is identical to the ADvF task, except we secretly manipulated the amplitude feature of 
the standard and comparison stimuli. We tested each participant on 6 different conditions 
where the amplitude difference in both intervals were 2µm, 4µm, 6µm, 8µm, 10µm, and 
12µm, which corresponded to a difference of 6.66%, 13.33%, 20%, 26.66%, 33.33%, and 
40% of 30µm. Similar to the estimation of FD thresholds, we determined the participants’ 
FDvA threshold at each non-target-difference condition by adaptively adjusting the 
difference in frequency of the stimulus ranging between 1% and 100% for each set of 
stimuli (i.e. congruent and incongruent) (see Table 4.1).  
 
Psychophysical method: To conduct the experiment and to estimate each participant’s 
TD, AD, FD, and ADvF or FDvA thresholds, we implemented the Bayesian adaptive 
method mentioned in the previous experiment. In case of ADvF and FDvA tasks, although 
we secretly manipulated the non-target feature of the standard and comparison stimuli, 
procedurally we treated these experimental conditions identically to the AD and FD 
conditions. We reasoned that if the non-target feature manipulation affected the 
participants’ response behaviour, the adaptive nature of the psychophysical method would 
accordingly adjust the stimulus levels of the target feature such that the participants’ 
performance is reflected in their discrimination thresholds. For example, if the non-target-
feature manipulation helped the participants to discriminate between the standard and the 
comparison stimuli, the participants would respond correctly, and in turn our adaptive 
algorithm would reduce the difference in the stimulus level of the target feature between 
the standard and the comparison stimuli in an attempt to increase the level of task 
difficulty. Conversely, if the non-target-feature manipulation hindered the participants’ 
ability to discriminate between the standard and the comparison stimuli, the participants 
would respond incorrectly, which would cause the adaptive algorithm to increase the 
difference between the standard and the comparison stimuli and alleviate the difficulty of 
the task.  
 

4.2.1.6 Experiment 3  
The goal of this experiment was to investigate whether humans can identify the features 
(amplitude and frequency) of a vibrotactile stimulus. To this end, we tested all the group-
2 participants who were also tested in experiment 2 in a previous testing session.  
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Perceptual task: In each trial we presented two 10-tap vibrations where the amplitude-
frequency combination of the first vibration was set to 30µm-30Hz. The amplitude-
frequency combination of the second vibration was such that its energy (a × f) was always 
higher than that of the first vibration by 20%. Hence, two possible combinations for the 
second vibrations were – a) high-amplitude trials, where the amplitude and frequency 
combination was 36µm and 30Hz, respectively, and b) high-frequency trials, where the 
combination changed to 30µm and 36Hz. We asked the participants to report, by pressing 
respective buttons of the response unit, the feature (amplitude or frequency) that they 
identified was higher in the second compared to the first interval.  
 
Before conducting the testing phase, we presented 40 practice trials that included 20 trials 
of both types (high-amplitude and high-frequency). In the practice trials the second 
vibration had 46.66% higher energy than the first vibration. Participants were provided 
feedback after every response.   
 
Psychophysical method: To quantify the participants’ ability to detect the stimulus feature 
that was higher in the second vibration, we randomly presented 50 trials each where the 
second vibration either had higher amplitude or higher frequency than that of the first 
vibration.  
 

4.2.1.7 Training regimen and test of effectiveness of training 
After determining participants’ ability to identify the features (amplitude and frequency) 
of a vibrotactile stimulus when the energy difference between the first and the second 
vibration was 20%, we initiated a training regimen using a procedure identical to 
experiment 3. The training regimen consisted of 24 blocks of 100 trials each, which we 
conducted in two sessions on consecutive days. Similar to experiment 3, all training 
blocks consisted of 50 high-amplitude and high-frequency trials each. The participants 
received feedback after every trial.  
 
During the training regimen, the participants’ percentage of correct responses in each 
block determined the energy difference for the next training block. The energy difference 
between the two vibrations in each trial increased (making the task easier), decreased 
(making the task harder), or stayed the same, if the participants’ percent correct was 
<70%, ≥85%, or between 70% and 85%, respectively. To start the training regimen we 
applied this criterion after calculating the participant’s percent-correct in experiment 3 
(i.e. participant’s first performance with an energy difference of 20%).  
 
After conducting the training regimen (i.e. all 24 blocks), we tested the effectiveness of 
the training regimen by conducting – a) experiment 3 once again, but without the practice 
session, and b) experiment 2 on the following day.  
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4.2.1.8 Data analyses 
We performed statistical tests (ANOVA, t-test), using SPSS v20 (IBM) for Macintosh 
with an alpha level of 0.05, on different performance measures.  
 
Performance measures: To analyze the performance of the participants in experiment 1, 
we used two measures – 1) the mode of the posterior PDF of the θ-parameter, and 2) the 
energy measure. The posterior PDF of the θ-parameter represents the probability that 
each stimulus level is the threshold of a participant; we took the mode of the posterior 
PDF as the participant’s threshold; this is our best-estimate of the participant’s detection 
amplitude (µm) for the TD task, and discriminable percent difference of target feature for 
AD and FD tasks. As shown in Table 4.2, two standard stimuli (20Hz-80µm, 40Hz-
40µm) have equal energy (1600 energy units); therefore, to compare each participant’s 
discrimination performance for these two iso-energy combinations in AD as well as FD 
tasks, we calculated the participant’s discrimination threshold in energy terms by 
multiplying the threshold estimate with the non-target parameter. This operation was 
necessary because both the target and the non-target features were different in these iso-
energy combinations.  
 
To analyze the discrimination performance of the human participants in experiment 2 (i.e. 
the “non-target Feature Affected Discrimination” or ntFAD performance), both before 
and after the training regimen, we derived the Best-Fit Line (BFLntFAD), which 
represented each participant’s performance change from the most incongruent (i.e. –40%) 
to most congruent (+40%) combination of target and non-target features of the two 
vibrations in each trial of all the ADvF and FDvA blocks. In other words, we parameterized 
a BFLntFAD as a function of non-target feature change, xntFAD: 
 

€ 

θntFAD = mntFAD × xntFAD + c  
 
Here, mntFAD is the ntFAD slope, c is the intercept, and θntFAD is the discrimination 
threshold due to the manipulation.  
 
We estimated the BFLntFAD that best fit each participant’s performance (correct and 
incorrect answers at each tested stimulus level {crl, icl}) across all relevant discrimination 
blocks (i.e. AD for ADvF and FD for FDvA). To do so, we considered BFLntFAD with 
ntFAD slope values ranging from mntFAD = 0 to 1, and c ranging from 1 to 100 microns. 
We then determined the maximum likelihood BFLntFAD: 
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To derive the best-fit line, instead of using a point estimate from each participants 
posterior PDF of the θ-parameter, we believe that by utilizing the participants’ every 
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correct and incorrect response provided us a reliable estimate of each participants’ 
BFLntFAD because the current approach weights the testing blocks during which the 
participants were attentive and responded most consistently.   
 
We analyzed the participants’ ability to detect the changing features of a vibration in 
experiment 3 by using the percentage of correct responses as the dependent variable.  
 

4.2.2 Ideal observer simulations for experiment 1 and 2 
 
In chapter 2, we demonstrated that the ideal observer can perform AD and FD tasks. To 
conduct the AD and FD tasks, we created 10 simulated subjects, and to conduct the ADvF 
and FDvA tasks, we created 6 simulated subjects. To implement ADvF and FDvA tasks that 
simulated pre-training performance, we changed the non-target feature (i.e. frequency and 
amplitude, respectively) values in the two intervals of each trial only in the generative 
section (i.e., the encoding section) of the model; however, during stimulus decoding we 
set the non-target feature value to 30Hz or 30µm (depending on the task) for both 
intervals. Therefore, the simulated subjected “assumed” that the non-target feature was 
identical in both intervals. To simulate the post-training ADvF and FDvA tasks, we 
provided the encoder and the decoder with identical non-target feature values; this 
replicated the behavioural condition in which the human subjects knew that the non-target 
feature values were not the same in the two intervals. To determine the BFLntFAD and 
ntFAD slope, we used the linear fitting algorithm provided in the LabVIEW software 
package.  
 
 

4.3 Results 
 

4.3.1 Experiment 1 
 
LaMotte and Mountcastle (1975) observed that during FD tasks stimulus amplitudes close 
to (approximately < 3 times) the detection threshold adversely affect human and non-
human primates’ performances. Therefore, to determine whether the lowest stimulus 
amplitude (i.e. 40µm) of the standard stimuli that we delivered during the FD task was at 
least 3-times the participants’ detection threshold, we conducted TD tasks at 20Hz and 
40Hz stimulus frequencies. The mean detection thresholds for 20Hz and 40Hz stimuli 
were 3.6µm (SD: 1.2) and 2.2µm (SD: 0.91), respectively. Therefore, for all participants 
the 40µm stimulus amplitude was higher than 3-times their detection threshold. 
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4.3.1.1 Effect of target and non-target feature manipulation  
To examine the effect of increasing the target and the non-target features of the standard-
stimulus in the AD and FD tasks, we performed two separate full factorial ANOVAs with 
standard-stimulus target feature (amplitude for AD: 40µm, 80µm; frequency for FD: 
20Hz, 40Hz) and non-target feature (frequency for AD: 20Hz, 40Hz; amplitude for FD: 
40µm, 80µm;) as within-subject factors.  
 
AD task: The ANOVA on the AD absolute thresholds revealed a significant main effect 
of standard-stimulus amplitude [F(1,23) = 109.27; p < 0.001; η2 = 0.826] but not of 
standard-stimulus frequency (p = 0.99), and there was no significant interaction between 
these factors (p = 0.75) (see Fig. 4.2A). Bonferroni corrected comparisons of AD 
thresholds showed that irrespective of stimulus frequency (20Hz or 40Hz), increasing 
standard-stimulus amplitude significantly increases the absolute AD thresholds (p < 0.001 
at both stimulus frequencies). A separate ANOVA with the above-mentioned factors on 
the percent-difference thresholds revealed no difference in thresholds, which was ~20% 
for all standard-stimulus conditions (see Fig. 4.2A).  
 
FD task: The ANOVA on the FD absolute thresholds revealed a significant main effect of 
standard-stimulus frequency [F(1,23) = 68.00; p < 0.001; η2 = 0.747] but no main effect 
of amplitude (p = 0.1), and the interaction was also not significant (p = 0.1) (see Fig. 
4.3A). To determine whether increasing the standard-stimulus frequency (i.e. the target 
feature) significantly increased the FD absolute thresholds at both stimulus amplitudes, 
we performed Bonferroni corrected comparisons of FD thresholds at each stimulus 
amplitudes, which revealed that irrespective of the amplitude of the stimuli there was a 
significant increase in threshold with increasing standard-stimulus frequency. An 
ANOVA on the FD percent-difference thresholds, with the same between-subject factors 
as mentioned above, revealed a significant main effect of standard-stimulus frequency 
[F(1,23) = 5.27; p < 0.05; η2 = 0.186] such that discrimination thresholds at the 40Hz 
were better than those at 20Hz stimulus by ~2Hz (see Fig. 4.3A). 
 

4.3.1.2 Performance on iso-energy standard-stimulus combinations 
In the current experiment we consider two iso-energy combinations – 20Hz-80µm, and 
40Hz-40µm, which corresponds to 1600 energy (i.e., a × f) units. Although AD and FD 
tasks presumably require discrimination of different features of the vibrations, converting 
the threshold to energy units allow us to compare different tasks and standard-stimulus 
combinations. Therefore, to examine whether humans compare vibrations using the 
energy feature, we performed a full-factorial ANOVA with iso-energy combination 
(20Hz-80µm, and 40Hz-40µm) and task (AD and FD) as the within-subject factors. The 
analysis revealed no main effect of iso-energy combination (p = 0.83) but a significant 
main effect of task [F(1,23) = 4.37; p = 0.048; η2 = 0.16] (see Fig. 4.4); participants 
required marginally higher energy to discriminate vibrations based on the amplitude 
rather than frequency of those vibrations.  
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4.3.1.3 Test for performance difference due to type of discrimination 
task 

To further examine the effect of task on vibrotactile discrimination performance, we 
compared the percent-difference threshold for the AD and FD tasks where the standard-
stimulus was 40Hz-40µm. The threshold for FD task was on average ~4% lower than that 
of the AD task, and a paired samples t-test shows a trend towards statistical difference in 
tasks (p = 0.07) (see Fig. 4.5A). 
 

4.3.2 Experiment 2 
 
Similar to experiment 1, to examine whether the stimulus amplitude for frequency 
discrimination (on average 30µm) was at least 3-times that of participants’ detection 
threshold, we tested participants’ ability to detect a 30Hz stimulus in a TD task. The mean 
detection threshold was 3.4µm (SD: 1.23), and for all participants, the 30µm stimulus 
amplitude was higher than 3-times their detection threshold. 
 

4.3.2.1 Secretly changing non-target feature affects discrimination 
threshold 

While group-2 participants were performing respective discrimination tasks we 
surreptitiously manipulated the non-target feature (frequency for ADvF, and amplitude for 
FDvA sub-groups) such that we obtained congruent and incongruent stimulus combination 
(see 2.1.5, ADvF, FDvA tasks). To characterize participants’ performance in all these 
conditions, we derived the ntFAD slope (see 2.1.8, performance measure) for each 
participant. We predicted that if participants are unaffected by the secret manipulation 
then the slope should be zero; however, the mean ntFAD slope calculated from the data 
obtained from the group-2 participants suggests that the secret manipulation of the non-
target feature affected their discrimination threshold (see Table 4.3). The incongruent 
condition increased whereas the congruent condition decreased the discrimination 
threshold in all participants; a one-sample t-test verified that the mean ntFAD slope was 
significantly different from 0 (t(11) = –4.215, p < 0.01). Separate one-sample t-tests on 
ADvF and FDvA sub-groups confirmed the overall effect (ADvF sub-group: t(5) = –3.995, p 
= 0.01; FDvA sub-group: t(5) = –2.602, p = 0.048). Interestingly, the effect of non-target 
feature manipulation was stronger in the ADvF compared to the FDvA sub-group (ntFAD 
slope difference for ADvF – FDvA: –0.199), and an independent samples t-test shows a 
trend towards statistical significance (p = 0.07) (see Fig. 4.6A).  
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4.3.2.2 Test for performance difference due to type of discrimination 
task 

In the current experiment we also estimated participants’ discrimination threshold in AD 
and FD tasks where the non-target feature was identical in both intervals; the frequency-
amplitude combination of the standard stimulus in both tasks was 30Hz-30µm. To 
examine whether the type of task determined the discrimination thresholds, we compared 
the participants’ percent discrimination threshold for AD and FD task. Interestingly, the 
thresholds were almost identical (AD mean: 19.04%, FD mean: 19.82%) (see Fig. 4.5B).  
 

4.3.3 Experiment 3 
 
All group-2 participants were also tested in this experiment. Here we tested whether 
participants could identify the feature that was increased in the second interval of each 
trial by 6µm or 6Hz (i.e. 20% increase in energy) depending on “high-amplitude” or 
“high-frequency” trial respectively. We predicted that if participants cannot detect the 
increased feature then the percentage of correct responses should be 50; however, a one-
sample t-test on the participants’ percentage of correct responses revealed a mean of 72.6 
(SD: 6.98), which was significantly different from 50 (t(11) = 11.194, p < 0.001).  
 

4.3.4 Effect of training regimen 
 
To determine the effectiveness of the training regimen, we re-tested participants on 
experiment 3. A paired-samples t-test on participants’ pre- and post-training performance 
showed an increase in percentage of correct responses after training by 4.5; this difference 
shows a trend towards statistically significant (p = 0.069) (see Fig. 4.7). 
 
After conducting the training regimen we also re-tested participants on all the tasks in 
experiment 2. First, to re-examine whether the performance of participants on AD and FD 
tasks (where the non-target feature was identical in both intervals) after the training 
differed due to type of discrimination task, we performed an ANOVA with training (pre, 
and post) and task (AD, FD) as two within-subject factors. The analysis revealed a main 
effect of training [F(1,20) = 17.77; p < 0.01; η2 = 0.618] but no main effect of task (p = 
0.44) and no significant interaction between the factors (p = 0.16). Whereas the pre-
training difference in AD and FD performance was negligible (see section 4.3.2.2), after 
training the FD threshold was ~3% lower than the AD threshold; however, this difference 
was not significant (Bonferroni corrected p = 0.13) (see Fig. 4.8).  
 
Finally, to test whether the ntFAD slopes changed after training, we performed a paired-
samples t-test on the participants’ pre- and post- ntFAD slopes and the test revealed no 
significant differences in the slopes (p = 0.47) (see Fig. 4.9A). The non-target feature was 
different for both discrimination tasks conducted on two sub-groups of participants; 
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therefore, to explore whether there was a differential effect of training within each tasks, 
we performed an ANOVA with training as a within-subjects factor (pre, and post) and 
task sub-group (ADvF, FDvA) as a between-subjects factor. The analyses revealed no main 
effect of training (p = 0.46) or condition (p = 0.16), and there was no significant 
interaction (p = 0.24) (see Fig. 4.9B and 4.10A). 
 

4.3.5 Simulation results 
 
To determine the ideal performance attainable in the AD and FD tasks with a spike-count 
code, we simulated experiment 1 and 2 using the Bayesian ideal observer (see Chapter 2).  
 

4.3.5.1 Experiment-1 simulation results 
Similar to human participants we ran all the conditions on the simulated subjects (see 
Chapter 2 section 2.2.1.3) and analyzed the absolute AD and FD thresholds in two 
different ANOVAs.  
 
AD task: The overall trends in performance of the model as a function of amplitude and 
frequency were similar to those of the human, though the model gave lower thresholds. 
An ANOVA with standard-stimulus amplitude (40µm, 80µm), and standard-stimulus 
frequency (20Hz, 40Hz) as between-subjects factor revealed a significant main effect of 
stimulus amplitude [F(1,9) = 173.07; p < 0.001; η2 = 0.951] and of stimulus frequency 
[F(1,9) = 16.63; p < 0.01; η2 = 0.649], which is the non-target feature in this task. The 
interaction of these two factors was also not significant (p = 0.85) (see Fig. 4.2B). Similar 
to human participants, Bonferroni corrected comparison of the simulation AD results 
showed an increase in threshold with an increase in the stimulus amplitude in both 
frequency conditions (p < 0.001).   
 
FD task: Unlike in AD, the model’s trends in the model’s performance as a function of 
amplitude and frequency differed markedly from those of humans. An ANOVA with 
standard-stimulus frequency (20Hz, 40Hz), and standard-stimulus amplitude (40µm, 
80µm) as between-subjects factor revealed a significant main effect of stimulus frequency 
[F(1,9) = 5.67; p < 0.05; η2 = 0.386] and of stimulus amplitude [F(1,9) = 62.32; p < 
0.001; η2 = 0.874]; however, there was no significant interaction between these factors (p 
= 0.47) (see Fig. 4.3B). Interestingly, the ideal observer performed relatively better at the 
40Hz compared to the 20Hz standard-stimulus frequency condition. Remarkably, the 
model performance was clearly worse than the human’s at 20Hz-80µm. 
 
Test for performance difference due to type of discrimination task: To test whether the 
model’s percent discrimination threshold for AD and FD tasks at 40Hz-40µm condition 
are statistically equal, we performed a paired samples t-test, which showed a significant 
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difference in threshold between the two tasks (t(9) = –6.67, p < 0.001); the FD threshold 
was higher than the AD threshold by ~6% (see Fig. 4.5C).  
 

4.3.5.2 Experiment-2 simulation results 
We simulated experiment-2 by presenting the ideal observer with all the stimulus 
combinations that we used for human participants. The encoding portion of the model 
(see Chapter 2 for details) generated the neural responses according to the stimulus 
combinations; however, the decoding portion “assumed” that the non-target feature was 
identical in both intervals, which we fixed at 30Hz or 30µm depending on the task (ADvF 
or FDvA, respectively). To replicate post-training simulations (see section 4.3.4 above), 
we provided the decoding portion of the model with the complete stimulus information.   
 
We conducted ADvF and FDvA on the same simulated subjects, which allowed us to 
perform an ANOVA on the ntFAD slope values with the decoder’s knowledge (unaware, 
aware) of the manipulation of the non-target feature and type of task (ADvF, FDvA) as two 
within-subject factors. The analysis revealed a significant main effect of decoder’s 
knowledge about the non-target feature manipulation [F(1,5) = 126.53; p < 0.001; η2 = 
0.962] and a main effect of the type of task [F(1,5) = 7.76; p < 0.05; η2 = 0.608]; the 
interaction between these factors was also statistically significant [F(1,5) = 18.03; p < 
0.01; η2 = 0.783] (see Figure 4.10B). Bonferroni corrected pairwise comparison of slopes 
from both tasks revealed a significant difference in ADvF and FDvA slopes that resulted 
from the “pre-training” simulations (p < 0.001); there was no difference between “post-
training” ADvF and FDvA slopes (p = 0.59). Most interestingly, the “pre-training” 
simulations revealed positive (see Table 4.4) rather than negative slopes, which we 
obtained from human participants (see Table 4.3). 
 
 

4.4 Discussion 
 
Can humans infer the features of vibrotactile stimuli? We investigated this question in 
three different experiments involving several discrimination tasks. The features that we 
considered in this study were amplitude, frequency, and the product of these two features, 
which is referred to as energy. The data suggest that human participants are capable of 
making inferences about the stimulus features; however, they might mostly rely on a 
feature that combines the amplitude and frequency, for example, the energy feature. We 
compared the human data to the performance of a spike-count-based ideal observer and 
found certainly similarities but several intriguing discrepancies, suggestive of the 
possibility that humans may make use of non-spike-count data (e.g., spike timing) on the 
FD task.  
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4.4.1 An increase in the standard-stimulus target feature value 
increases discrimination threshold  

 
AD task: In separate conditions, we tested participants’ ability to discriminate vibrations 
at 40µm and 80µm standard-stimulus amplitudes, and observed that doubling the 
standard-stimulus amplitude approximately doubled the participants’ absolute AD 
threshold. However, when the thresholds were expressed in percent difference, there was 
no difference between the conditions, which supports Weber’s law. We found that the AD 
threshold of ~20% is consistent with previous studies; some of those are: Bhattacharjee et 
al. (2010), using 20Hz vibrations and 100µm standard-stimulus amplitude, tested blind 
and sighted participants on an AD task and reported a threshold range of ~20% – 30%. 
Francisco et al. (2008) used 25Hz vibrations at various standard-stimulus amplitude 
values to determine participants’ Weber fraction; for the amplitude values 50µm and 
100µm (which are closer to the amplitudes we considered in our current study) the 
authors reported a discrimination threshold of ~30% and ~23%, respectively. Goble and 
Hollins (1993), using a standard stimulus of 25Hz and ~20µm, observed ~16% threshold 
in human participants. Gescheider et al. (1990) using 25Hz, and later Güçlü (2007) using 
40Hz vibrations, tested participants on at a range of standard-stimulus amplitude and 
reported Weber fractions of 19% and 32%, respectively. 
  
FD task: We conducted four conditions of the FD task, which resulted in threshold values 
that range between ~13% to ~17%. The absolute threshold of the participants increased as 
we doubled the standard-stimulus frequency from 20Hz to 40Hz; however, unlike the AD 
task, the FD threshold did not double. We observed that the threshold for the 20Hz 
stimulus was higher than that for the 40Hz stimulus, a phenomenon known as the near-
miss to Weber’s law (Gescheider et al., 1990). Goff (1967) matched subjective intensity 
of the stimuli and the Weber fraction reported by the author suggests near-miss only at a 
lower but not at higher amplitude. Because participants presumably use an intensity cue 
to perform the FD task, several studies matched the subjective intensity of both intervals 
in every trial during the task. Relative recently, Mountcastle et al. (1990), tested human 
and non-human primates on several FD tasks that included the conditions where the 
standard-stimulus frequency was 20Hz and 40Hz, and reported thresholds at 17% and 
7%, respectively showing near-miss to Weber’s law. These authors also matched the 
subjective intensity of stimulus in each interval. Goble and Hollins (1994) determined the 
threshold of their participants at 25Hz standard-stimulus frequency and reported Weber 
fractions between 0.14 and 0.23, i.e. the threshold range is 14% to 23%. Tommerdahl et 
al. (2005), using 25Hz standard-stimulus frequency, reported an average Weber fraction 
of 0.38, which is quite high at 38% threshold. Whereas most of the studies mentioned 
here reportedly matched the subjective intensity of the stimulus, Harris et al. (2006) 
matched the energy of the stimuli in each trial. The authors using 32Hz standard-stimulus 
frequency reported a threshold of ~20%; however, when the authors matched the stimulus 
amplitude (280µm) in both intervals of a 2IFC FD task, the threshold dropped to ~15%. 
Therefore, all these studies that used frequencies between 20Hz and 50Hz generally 
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reported thresholds within a small range between 10% and 25%, which include studies 
that matched energy or intensity or amplitude in both intervals of every trial. This raises 
the importance of the amplitude, i.e. the non-target feature, in FD tasks. 
 

4.4.2 Effect of non-target feature in vibrotactile discrimination 
tasks 

 
When the non-target feature is identical in both intervals: In all the AD or the FD tasks, 
we did not find any effect of the non-target feature. Gescheider et al. (1990), using 25Hz 
and 250Hz stimulus frequencies, conducted AD task on a range of standard-stimulus 
amplitudes and reported that there was no effect of the stimulus frequency on the AD 
thresholds. Craig (1974) tested participants on an AD task with the stimulus frequency of 
160Hz and observed a discrimination threshold of ~23%, which is similar to all the 
thresholds mentioned above (see section 4.4.1, AD task). However, Goff (1967) 
conducted FD tasks, at two different amplitude levels, on a range of standard-stimulus 
frequencies between 25Hz and 200Hz. The author observed that at all frequencies, the FD 
threshold was lower in the high than in the low amplitude conditions. Whereas Goff 
(1967) used supra-threshold amplitudes, Kuroki et al. (2013) tested participants on 
several FD tasks where the standard-stimulus frequency ranged from 15Hz to 240Hz, and 
the stimulus amplitude was 2 and 6.3 times the participant’s detection threshold. The 
authors reported that increasing stimulus amplitude lowered the FD threshold at all tested 
frequencies, which provides evidence for an “atonal interval”. Nonetheless, increasing 
amplitude enhanced the performance of the participants in the FD task. However, this 
enhancement in threshold with an increase in the non-target feature value was limited to 
the FD tasks only. 
 
When the non-target feature is not identical in both intervals: To the best of our 
knowledge, Harris et al. (2006) is the only other study that systematically examined the 
effect of a secret manipulation of the non-target feature on a discrimination task. Because 
Harris et al. (2006) only investigated the effect of secret manipulation of amplitude in an 
FD task, we will compare our FDvA results to that of Harris et al.’s (2006) study. Harris et 
al. (2006) tested 6 participants and showed a very strong effect of amplitude manipulation 
with an average slope of –0.42 (SD: 0.27), which is much steeper than the slope (mean: –
0.14, SD: 0.13) we obtained. Note that, on average AD thresholds vary around ~20% (see 
section 4.4.1, AD task), which implies that Harris et al.’s participants might not have 
detected the change even if they were informed about the manipulation. In the current 
study, we extended the amplitude difference to 40% of the mean amplitude (i.e. 30µm), 
which might have revealed the secret about the manipulation and resulted in a shallower 
slope than that from the Harris et al. (2006) study. Moreover, the amplitude that we used 
were comparatively much lower than that delivered by Harris et al., which suggests that 
the subjective intensity of their stimulus was much higher than that of our stimulus 
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(Verrillo, 1969). This might have affected their participants’ discrimination performance 
more strongly.   
 
To complement the FDvA task, we also conducted the ADvF task where we secretly 
manipulated the frequency of both intervals within each trial. We reasoned that if the 
participants use energy as the discrimination feature then the slopes of FDvA and ADvF 
should be identical. We observed that the ADvF slopes were relatively steeper than the 
FDvA (see Fig. 4.9B).  
 

4.4.3 Do humans use energy to discriminate vibrations?  
 
The results are puzzling because different lines of evidence suggest contradictory features 
or mechanisms for vibrotactile discrimination. For example, there was no effect of the 
non-target feature on the discrimination tasks with identical non-target feature in both 
intervals (Figs. 4.2a, 4.3a). Presumably, if participants were using energy as the 
discrimination feature, then an increase in the energy (by doubling the non-target feature) 
should have increased the discrimination threshold. However, within a particular 
discrimination task (AD or FD) there is no difference in thresholds of standard-stimulus 
with iso-energy combinations (20Hz-80µm and 40Hz-40µm) (Fig. 4.4), which indicates 
that humans might be using energy as a feature. Interestingly, the ANOVA that revealed 
no difference in thresholds obtained from the iso-energy discrimination tasks, also 
revealed a statistically significant effect of the type of discrimination task (i.e. AD vs 
FD). Once again, if participants were using the energy feature then irrespective of the task 
the thresholds should have been similar. For instance, comparison of the relative percent 
difference in threshold in AD and FD tasks at 30Hz-30µm standard stimulus showed 
almost identical threshold value (Fig. 4.5b). Although statistically not significant (p = 
0.07), a comparison of the relative percent difference in threshold in AD and FD tasks at 
40Hz-40µm standard stimulus showed lower threshold for the FD than for the AD task, 
which is inconsistent with the aforementioned assumption. Interestingly, Goff (1967) 
conducted FD task and observed that participants’ responses did not match the 
availability of the energy cues, which argues against the energy discrimination argument. 
Finally, the ADvF and FDvA tasks yielded different slopes, which suggest that the two 
groups of participants might have been using different discrimination features. Thus, it is 
unclear whether humans exclusively use energy as a discrimination feature. 
 

4.4.4 Do humans have access to the amplitude and frequency 
features of vibrotactile stimuli? 

 
The result from experiment 3 strongly suggests that humans are capable of inferring the 
stimulus amplitude and frequency (Fig. 4.7). Interestingly, all the participant’s 
performance was above chance even before we conducted the training regimen, which 
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demonstrates that consistently every participant could identify the feature that had a 
higher value in the second interval of each trial in the 2IFC task.  
 
We interpreted the results reported by Harris et al. (2006), where the authors secretly 
manipulated the amplitude during the FD task, as an indication that humans were unaware 
of the amplitude manipulation, and we predicted that if the participants are adequately 
informed about the manipulation of the non-target feature, we should see evidence for 
inference making during the ADvF or FDvA task, i.e. reduced effect of the non-target 
manipulation as quantified by the ntFAD slopes. We assumed that the most effective 
approach to inform participants about the manipulation would be to train them to identify 
the stimulus features. In the current study, we found that whereas the post-training ntFAD 
slopes were lower than that of the pre-training, the difference was not significant in either 
task. The negative slope implies that the incongruent conditions are strongly affecting the 
performance of the humans in the ADvF or FDvA task, and that human participants are 
probably utilizing the energy feature to perform the discrimination tasks. Interestingly, 
post-training performance revealed a trend towards shallower slope, which implies that 
the human participants were inferring the target feature to make the appropriate 
comparison; however, their inference was probably suboptimal, which might be the 
reason that the pre-training and post-training slopes were not statistically different.  
 
Note that the performance of the participants in experiment 3 before we conducted the 
training regimen was quite high (an indication that humans can perceive amplitude and 
frequency separately), and the post-training ntFAD slopes became shallower but not 
statistically significantly different from the pre-training ntFAD slopes. Therefore, it might 
be possible that during the post-training session just being aware of the non-target feature 
manipulation and not the training per se caused the shallowness of the slope, i.e. the 
participants realized that they should infer the features rather than use energy as a cue to 
perform in those blocks. Nevertheless, in light of these results we speculate humans can 
infer the amplitude and frequency features of a vibrotactile stimulus.  
 

4.4.5 Comparison of human and simulation results 
 
We simulated experiment 1 and 2 using the ideal observer model, which (by virtue of its 
architecture) makes inferences only about the amplitude and frequency feature of the 
stimulus. Whereas some of the simulation results matched the human performance, we 
also observed 4 main differences in simulation and human performance results.  
 
First difference: Increasing non-target stimulus affects ideal observer but not human 
participants. We tested the ideal observer on all the stimulus condition that we conducted 
in experiment 1. The simulation results revealed that the ideal observer’s performance 
enhanced in the AD, whereas worsened in the FD task, when the non-target feature was 
doubled. However, the non-target feature in any of the discrimination tasks did not affect 
the human participants. This discrepancy might have originated from the approach we 
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implemented to generate cortical neural responses – we assumed that the vibrotactile 
stimulus-evoked neural responses that are generated in the periphery pass through a 
Poisson sampler (see Chapter 2, section 2.2.1.2). Because fano factor (i.e. the ratio of the 
mean to the variance) of Poisson distribution is 1, increasing the mean increases the 
variance, which reflects in the sampling process. During an AD task, when we increased 
the frequency, (rather counter-intuitively) the firing rate in each afferent decreased, which 
was fed through the Poisson sampler. This in turn reduced the variability of the 
population response of each simulated vibration corresponding to each interval of a trial 
and the ideal observer predicted the amplitude more accurately, which reflected on the 
simulation results. On the contrary, during the FD task, we increased the amplitude of the 
simulated vibration, which (as expected) increased the neural responses in each afferent. 
To simulate the cortical responses, we passed the afferent responses through the Poisson 
sampler and (as mentioned above) the sampling variability increased, which affected the 
inference accuracy of the ideal observer. This in turn affected the simulation results.  
 
Second difference: The ntFAD slopes of ADvF and FDvA tasks in human participants 
showed negative values, which we predicted based on Harris et al. (2006) results, and 
based on the premise that human participants are unaware of the secret manipulation. 
Antithetical to human performance, the slope of ADvF and FDvA tasks in the ideal 
observer showed positive values. Similar to the reason mentioned above, during the 
congruent trials (i.e. the high amplitude interval was delivered at high frequency) the high 
amplitude interval elicited fewer spikes than the interval with low frequency and 
amplitude. Because the ideal observer was “unaware” of the frequency manipulation, it 
incorrectly inferred that a low amplitude stimulus must have been presented; however, 
during decoding the low amplitude interval, which also had the low frequency, the 
generative model elicited more spikes than the high amplitude interval. The ideal 
observer inferred that only a high amplitude stimulus could elicit this high number of 
spikes, which lead to the incorrect choice of interval as the response. The simulated 
subject erroneously chose the low amplitude interval as the “perceived high amplitude” 
interval. Conversely, during the simulation of incongruent trials, the high amplitude 
stimulus was presented at a low stimulus frequency. Because the low frequency interval 
evoked more spikes, the ideal observer inferred this interval as the “perceived high 
amplitude” interval, which was also the correct answer. Therefore, the thresholds for the 
incongruent blocks of trials were lower than the congruent trials, which created positive-
value rather negative-value slopes. Why did the FDvA task showed positive slopes? 
Because the ideal observer has all the information including the precise response 
characteristics of each afferent, the ideal observer “knows” that a high frequency stimulus 
evokes fewer spikes compared to a low frequency stimulus. During congruent conditions 
of FDvA task, high frequency stimuli were delivered at high stimulus amplitudes. The high 
stimulus amplitude evoked more spikes in the high frequency interval than the low 
frequency interval. Based on its knowledge, the ideal observer incorrectly inferred that 
the stimulus must have been presented at a low frequency. Conversely, the low frequency 
low amplitude interval evoked fewer spikes, which is consistent with the ideal observer’s 
knowledge of “high perceived frequency”. Thus, the simulated subject incorrectly 



Ph.D. Thesis - A. Bhattacharjee; McMaster University – Psychology, Neuroscience & 
Behaviour 

 100 

chooses the “high perceived frequency” as the response, which leads to increase in 
threshold for the congruent trials. In the incongruent trials, because the low amplitude and 
high frequency stimulus pair evokes few spikes, the ideal observer correctly infers that 
interval as the “high perceived frequency”, which leads to correct responses and lower 
thresholds. Interestingly, human participants do not show this behaviour, which suggests 
that human participants do not have access to the afferent responses. 
 
Third difference: Before performing the simulations that represented the post-training 
tests, we predicted that the ideal observer by “knowing” about the manipulation of the 
non-target feature it would correctly infer the interval with high target feature stimulus 
and veridically perform the ADvF and FDvA tasks. Our simulation results supported this 
prediction; however, the human performance did not.  
 
Fourth difference: Overall, the result of all the simulation tasks showed a higher threshold 
for the FD than for the AD tasks. However, a scrutiny of the human AD and FD 
thresholds show a higher threshold for the AD than for the FD tasks. More importantly, 
the ideal observer had higher thresholds than did the human on the FD task under certain 
conditions. Because an ideal observer, by definition, has all the information to perform a 
task most efficiently, the thresholds achieve by the ideal observer serves as the best 
possible performance. The current discrepancy suggest that the human participants had 
more information that did the ideal observer, which lead the human participants to attain a 
higher level of performance compared to the ideal observer.  
 
 

4.5 Conclusion: Speculations on the neural code 
 
The ideal observer inferred both features of the vibrotactile stimulus – amplitude and 
frequency – using the stimulus evoked number of spikes. Quantitatively, the AD 
thresholds of the ideal observer were better than human thresholds on the same task; 
however, the FD thresholds of the ideal observer were much higher compared to those of 
the human participants. We speculate that humans probably use both temporal and rate 
codes to perform the FD tasks. If human participants were exclusively using the rate code, 
their performance should have been worse than the ideal observer (as we see for the AD 
tasks). However, the results of the experiment in which we secretly manipulated the non-
target feature suggest that the human participants are unable to utilize the temporal code 
exclusively; we argue that exclusive use of temporal code should eliminate the effect of 
amplitude in the FDvA task because the temporal structure of the stimulus was identical in 
both, congruent and incongruent, conditions.  
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4.7 Tables and table captions 
 

  Amplitude 
  High Low 

Fr
eq

ue
nc

y High + − 

Low − + 

 
Table 4-1: Congruent (+) and incongruent (−) combinations of amplitude and frequency.  
 
 

  Amplitude 
  40µm 80µm 

Fr
eq

ue
nc

y 20Hz   

40Hz   

 
Table 4-2: All possible amplitude and frequency combinations of the standard-stimulus 
that we delivered in the AD and FD tasks. The grey cells represent iso-energy amplitude-
frequency combinations.  
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Participant 

Number 
Pre-training 

Slope 
Post-training 

Slope 
1 -0.27 -0.256 
2 -0.181 0 
3 -0.058 -0.067 
4 -0.329 -0.3 
5 -0.321 -0.244 
6 0 0 
7 -0.215 -0.188 
8 0 -0.102 
9 -0.536 -0.318 
10 -0.103 -0.591 
11 -0.608 -0.188 
12 -0.201 0 

 
Table 4-3: Pre- and post- training slopes obtained from experiment 2. The even numbered 
(grey cells) participants performed the FDvA and the remaining performed the ADvF task. 
 
 
Participant 

Number 
Pre-training 
ADvF Slope 

Post-training 
ADvF Slope 

Pre-training 
FDvA Slope 

Post-training 
FDvA Slope 

1 0.412 -0.032 0.8 -0.074 
2 0.418 -0.006 0.969 0.231 
3 0.47 0.001 0.899 -0.43 
4 0.407 0 0.707 0.036 
5 0.442 0.017 0.744 -0.064 
6 0.436 0.016 0.61 -0.011 

 
Table 4-4: Pre- and post- training slopes obtained from simulated ADvF and FDvA tasks.  
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4.8 Figures and figure captions 
 

 
 
Figure 4.1: a) Participant’s performance (o = correct, x = incorrect), b) participant’s 
psychometric function, c) posterior probability distribution function of threshold (θ) 
parameter. 
 
 
 
A         Human data B          Simulation data 

  
Figure 4.2: Amplitude discrimination performance estimated in human participants (panel 
A) and simulated subjects (panel B) are shown in this figure. In all simulations we 
presented 10 stimulus cycles and the spontaneous spike-rate was set to 10 spikes/sec (see 
Chapter 2 for detail). The open circles represent the mean percent difference threshold, 
which refers to the right y-axis, and the filled circles represent the mean absolute 
difference threshold (in microns), which refers to the left y-axis. The error bar represents 
±1SE.  
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A         Human data B          Simulation data 

  
Figure 4.3: Frequency discrimination performance estimated in human participants (panel 
A) and simulated subjects (panel B) are shown in this figure. In all simulations we 
presented 10 stimulus cycles and the spontaneous spike-rate was set to 10 spikes/sec (see 
Chapter 2 for detail). The open circles represent the mean percent difference threshold, 
which refers to the right y-axis, and the filled circles represent the mean absolute 
difference threshold (in Hertz), which refers to the left y-axis. The error bar represents 
±1SE. 
 
 
 

 

 

Figure 4.4: Performance of human participants on two different combinations of standard-
stimulus where the energy (a × f) is equal. The black bars represent AD threshold and 
grey bars represent FD threshold. The error bar represents ±1SE. 
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A B C     Simulation data 

   
Figure 4.5: Comparison of thresholds that were estimated in AD and FD tasks when the 
standard stimulus combination was identical. Panels A and B show human participants’ 
and panel C shows the performance of simulated subjects. In all simulations we presented 
10 stimulus cycles and the spontaneous spike-rate was set to 10 spikes/sec (see Chapter 2 
for detail). In all panels, the black bar indicates the AD threshold and the grey bar 
represents the FD threshold. The error bar represents ±1SE. 
 
A              Human data B              Simulation data 

  
Figure 4.6: Panels A and B, show the ADvF (black curve) and FDvA (grey curve) best-fit 
line (BFLntFAD) calculated by averaging the ntFAD slopes and intercepts from 12 (6 in 
each subgroup) human participants (panel A) and 6 simulated subjects (panel B). In all 
simulations we presented 4 stimulus cycles and the spontaneous spike-rate was set to 10 
spikes/sec (see Chapter 2 for detail). Note that the scale of y-axis in both panels is 
different. The non-target difference refers to the systematic manipulation of amplitude 
and frequency during the ADvF and FDvA tasks, respectively. 
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Figure 4.7: Shows the performance of the participants in experiment 3 in which the 
participants had to identify the feature (amplitude, or frequency) was higher in the second 
interval of the 2IFC task. Note that the performance of the participants before the training 
regimen was conducted is already higher than chance performance (50%). 
 

 

 

Figure 4.8: Comparison of thresholds that were estimated AD and FD tasks where the 
standard stimulus combination is identical before and after implementing the training 
regimen. The pre-training performance is also shown in Fig. 5C. The black bar indicates 
the AD threshold and the grey bar represents the FD threshold. The overall enhancement 
in discrimination threshold after training might also be due to practice effect. The error 
bar represents ±1SE.  
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A B 

  
Figure 4.9: The graph in panel A shows the mean ntFAD slope of all human participants' 
performance before and after the training regimen was conducted. The graph in panel B 
shows the ADvF and FDvA data, which is also shown in panel A, separated in the 
corresponding subgroups. 
 
A              Human data B              Simulation data 

  
Figure 4.10: Shows the effect of training or “awareness of manipulation” on the mean 
best-fit line (BFLntFAD) calculated by averaging the ntFAD slopes and intercepts 
ntFAD slopes that were estimated from the human participants’ (panel A) and 
simulated subjects’ (panel B) performances in the ADvF and FDvA tasks. In all 
simulations we presented 4 stimulus cycles and the spontaneous spike-rate was set to 
10 spikes/sec (see Chapter 2 for detail). The solid curves in both panels represent pre-
training performance, which is also shown in Fig. 6. The dash-curve in both panels 
represents post-training performance. The black curve in both panels refers to the 
participants’ and the simulated subject’s mean BFLntFAD in the ADvF task, and the 
grey curve refers to that of FDvA task. The non-target difference refers to the 
systematic manipulation of amplitude and frequency during the ADvF and FDvA tasks, 
respectively.  
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CHAPTER 5: GENERAL DISCUSSION 
 
 
Every vibrotactile stimulus has two features – amplitude and frequency. There is a 
general agreement that the neural code (i.e. the neural representation) for stimulus 
amplitude is the rate code; however, the neural code for stimulus frequency is unclear – 
whereas evidence from some studies support the periodicity code (i.e. a temporal code), 
other studies support the rate code. In this thesis, by using computational and 
psychophysical techniques, I investigated the neural code for these features, and the 
importance of and interaction between these features in vibrotactile detection and 
discrimination tasks. The results are consistent with the rate code for amplitude tasks and 
the periodicity code for frequency tasks.  
 
 

5.1 Summary of studies 
 
In chapter 2, to investigate whether human performance on amplitude and frequency tasks 
is consistent with optimal inference based on spike rate, we first created a spike-rate-
based ideal observer model. We implemented detection and discrimination (amplitude, 
frequency) tasks for three reasons: a) to quantify the loss of information due to Poisson 
noise, which represented the cortical noise in the model, b) to determine whether the 
amount of neural evidence (in terms of receptor density, stimulus duration, etc.) affects 
perception, and c) to quantify how well the ideal observer performed in frequency 
discrimination task using the rate code. The simulation results provide behavioural trends 
that we tested in chapters 3 and 4. 
 
In chapter 3, we conducted several behavioural experiments on young adults, 
investigating the effect of receptor density and stimulus duration on vibrotactile detection. 
Intuitively as well as based on the simulation results from chapter 2, perceptual 
performance should reflect the quantity of sensory evidence. Therefore, increases in 
receptor density and / or stimulus duration should result in lower thresholds, i.e., spatial 
summation and temporal summation. To test for spatial summation, in 1 experiment we 
estimated human participants’ threshold for detecting a 40Hz stimulus presented on their 
fingertip and thenar eminence because in humans, the RA afferent density in the thenar 
eminence is ~6 times lower than that in the fingertip. To test for temporal summation, in 5 
different experiments, we estimated human participants’ threshold for detecting 20Hz and 
40Hz vibrations presented for a range of stimulus durations. The results supported our 
predictions and validated the use of rate code to represent stimulus amplitude. These 
results are in accord with those of some previous studies (Green, 1976; Hämäläinen et al., 
1981) but in apparent disagreement with those of other (Verrillo, 1965; Gescheider and 
Joelson, 1983) (See discussion in Ch. 3). 
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In chapter 4, we tested human participants on a range of discrimination tasks to determine 
whether – a) human participants combined the vibrotactile stimulus features (amplitude 
and frequency) during discrimination tasks, and b) a rate code can explain frequency 
discrimination performance. We replicated Harris et al.’s (2006) experiment by 
surreptitiously manipulating the amplitude (i.e. the non-target) feature values during a 
frequency discrimination task. To complement Harris et al. (2006), we surreptitiously 
manipulated the frequency (i.e. the non-target) feature values during an amplitude 
discrimination task. We quantified the effect using a single slope parameter (ntFAD), and 
found that the frequency manipulation had a stronger effect on amplitude discrimination 
than vice-versa. This suggests, consistently with Harris et al. (2006), that the non-target 
feature influences performance, but also that humans do not combine the frequency and 
amplitude features precisely as suggested by Harris et al. (2006). To further investigate 
this, we conducted a novel feature identification task in which we asked the participants, 
using a 2-interval forced choice protocol, to identify the feature that increased in the 
second interval. Evidently, if participants can identify the features, then they certainly do 
not combine amplitude and frequency into a single discrimination feature. The 
comparisons between the human participants’ and the ideal observer’s performances in 
amplitude discrimination tasks further support the use of a rate code to represent stimulus 
amplitude; however, similar comparisons in frequency discrimination tasks imply that 
humans probably use a periodicity code to represent stimulus frequency.  
 
 

5.2 Neural code revisited 
 
Previous studies have consistently shown that stimulus amplitude is represented by a rate 
code (Bensmaïa, 2008; Simons et al., 2005; Tommerdahl et al., 2010; Güçlü and Dinçer, 
2013; Harvey et al., 2013). The trends that we found in all the simulated tasks related to 
stimulus amplitude are also present in the human data, which convinces us that 
vibrotactile amplitude information is represented by a rate code.  
 
However, there exists a debate about whether stimulus frequency is represented by a 
periodicity code or a rate code. Consistently, neurophysiological studies have provided 
evidence in support of a periodicity code (Moutcastle et al., 1969, 1990; Whitsel et al., 
2001; Harvey et al., 2013). Complementing these neurophysiological studies, three lines 
of behavioural evidence from this thesis suggest that humans represent frequency either 
with a periodicity code, or at the least with a neural code that is certainly not a rate code: 
a) whereas our rate-code-based ideal observer outperformed humans for amplitude 
discrimination tasks, humans outperformed the model in frequency discrimination tasks, 
b) humans could identify the stimulus feature that had a higher value in the second 
interval of each trial, and c) there was less effect of secret manipulation of amplitude in 
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the frequency discrimination task than of secret manipulation of frequency in the 
amplitude discrimination task. 
 
In contrast, Romo and colleagues have provided intriguing evidence in support of a rate 
code for frequency (Romo et al., 1998; Hernández et al., 2000; Salinas et al., 2000). Note 
that Romo and colleagues do show evidence for temporal response characteristics in 
cortical neural response (Hernández et al., 2000; Salinas et al., 2000). Of course, 
observing temporal signatures of cortical neural responses does not imply that 
experimental animals are utilizing that information. Nonetheless, the temporal 
information is available at the cortex.  
 
It is not clear why Romo and colleagues have consistently reported the rate code as a 
representation for stimulus frequency. I speculate that their frequency discrimination 
tasks may have procedurally become amplitude discrimination tasks. In Hernández et al. 
(2000), Salinas et al. (2000), and Luna et al. (2005), Romo and colleagues used an 
identical waveform frequency for each pulse (reportedly 20ms duration, which converts 
to 50Hz) and manipulated the duration between pulses to create stimuli of different 
frequencies. For example, to create a 500ms duration 20Hz stimulus, the authors 
presented 11 pulses (20ms-50Hz waveform frequency) with an inter-pulse duration of 
50ms (Salinas et al., 2000). Because the RA afferents’ sensitivity (I0) and entrainment (I1) 
thresholds are sensitive to the waveform frequency (see chapter 2, Freeman and Johnson, 
1982) and not the temporal frequency, the number of spikes evoked per stimulus cycle 
does not change in each interval unless the amplitude of each stimulus cycle is changed. 
Next the authors matched the subjective intensity by changing the amplitude of the 
stimuli, which will change the number of spikes evoked in each interval (Johnson, 1974). 
During training the authors presented bigger difference in frequencies, which implies the 
amplitude difference also increased concurrently. Furthermore, during the training, the 
authors presented visual cues to direct the monkeys to choose the correct "high temporal 
frequency low amplitude" interval and correct responses were rewarded. Therefore, it is 
possible that the monkeys associated juice reward with the low amplitude stimulus, 
effectively changing the intended "frequency discrimination" task into an "amplitude 
discrimination" task. This thesis shows that amplitude can be reliably represented as a rate 
code. 
 
 

5.3 Future experiments: investigating biological 
constraints 

 
To the best of our knowledge, the Bayesian ideal observer model presented in this thesis 
is the first of its kind to estimate optimal vibrotactile perception. Note that this model 
does not aspire to be a model of the brain; rather it is a tool with which we can estimate 
the efficiency of the human perceptual system. We found that human vibrotactile 
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amplitude discrimination is inefficient, in the sense that it quantitatively falls short of the 
performance of the ideal observer. Therefore, for future modelling experiments, a 
fascinating next step would be to investigate systematically the sources of sub-optimality 
in vibrotactile perception via the incorporation of plausible biological constraints.  
 
A strong advantage of Bayesian observer models is that they allow the incorporation of 
realistic biological constraints, and indeed we have already begun this process in this 
thesis. For example, neuronal response variability is a biological constraint: We found 
that the ideal observer’s performance in amplitude discrimination was superior to that of 
humans, which suggests that during perceptual processing there is loss of information in 
humans. This is typically the case in ideal observer comparisons to human performance 
(Geisler, 1989, 2011). Among other reasons, the loss of information could be due to the 
stochastic nature of neural information processing. Variability is intrinsically incorporated 
in successive stages of processing. For example, the RA afferent variability can be 
characterized as a Gaussian with a small standard deviations (Vega-Bermudez and 
Johnson, 1999); however, in RA-like cortical neurons the variability increases and is 
characterized by the Poisson or Poisson-like distribution (Sripati et al., 2006). Therefore, 
incorporating Poisson variability into the RA afferent activity, we quantified the decline 
in performance due exclusively to Poisson variability.  
 
Spontaneous neural activity as a biological constraint: The presence of spontaneous 
spiking activity in the cortex interferes with the stimulus-evoked neural responses, i.e. it 
reduces the fidelity of the neural signal. The Bayesian observer model presented in this 
thesis “knows” the sources of noise or variability (including spontaneous noise), which 
makes it ideal; however, it is possible that our brain, i.e., our perceptual observer, does 
not know about the spontaneously occurring spikes. How, and by how much, 
performance would degrade if the Bayesian observer were unaware of the spontaneous 
noise spikes could be explored in future investigations.  
 
Another biological constraint concerns noise correlations among cortical neurons. In the 
Bayesian ideal observer model presented in this thesis, the cortical neuronal responses are 
conditionally independent given the stimulus; this assumption of conditional 
independence is a common practice used to keep models computationally tractable 
(Jazayeri and Movshon, 2006); however this is possibly not true in human cortical 
neurons (Zohary et al., 1994). Therefore, such assumptions might oversimplify the model, 
which could lead to lower thresholds in relevant perceptual tasks. Future modelling work 
could incorporate dependencies among the simulated cortical neurons.  
 
By comparing the Bayesian ideal observer model results to the human results we learned 
that humans are not using a rate code to represent frequency, and that humans are sub-
optimal at using the rate code to represent amplitude. To complement the investigation 
into the sources of sub-optimality in human vibrotactile perception, another important 
modelling mission should be to create an ideal observer model that utilizes the periodicity 
code for frequency. Presumably, owing to several biological constraints, when compared 
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to the periodicity-based ideal observer model, humans would be inferior at utilizing all 
the periodicity related information to optimally perform in frequency tasks. Therefore, a 
systematic exploration of the sources of sub-optimality, using a periodicity-based ideal 
observer, would enhance our understanding of vibrotactile perception. 
 
 

5.4 Conclusion 
 
In conclusion, this thesis presents an ideal observer model for the RA afferent population 
with which we tested whether a rate code model faithfully represents the features of 
vibrotactile stimuli. The ideal observer analyses along with the behavioural results 
strongly suggest that vibrotactile frequency is represented as a periodicity code but that 
amplitude is represented by a rate code. Moreover, we show that humans can separately 
perceive the amplitude and the frequency features of vibrotactile stimuli. 
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