
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHARACTERIZATION OF CYB5D2 AND ITS HEME BINDING FUNCTIONS 



 

 

 

 

 

CHARACTERIZATION OF CYB5D2 AND ITS HEME BINDING  

ASSOCIATED FUNCTIONS 

 

 

 
By ANTHONY BRUCE, B.Sc., M.Sc. 

 

 
 

 

 

 

 
A Thesis Submitted to the School of Graduate Studies 

 

in Partial Fulfillment of the Requirements for the Degree 

 

Doctor of Philosophy 

 

 

 

 

McMaster University 

 

 

 

© Copyright by Anthony Bruce, September 2013 

 



  ii 

DOCTOR OF PHILOSOPHY (2013)      McMaster University 

 

Medical Sciences                                                                         Hamilton, Ontario, Canada 

 

 

 

TITLE: Characterization of CYB5D2 and its heme binding associated functions 

 

AUTHOR: Anthony Bruce, B.Sc. (University of Western Ontario), M.Sc. (York   

                   University) 

 

SUPERVISOR: Dr. Damu Tang 

NUMBER OF PAGES: xxi, 192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  iii 

ABSTRACT 

Cytochrome b5 heme binding domain 2 (CYB5D2) is a heme binding protein that was 

initially identified for its ability to attenuate the function of the PTEN tumor suppressor 

gene.  CYB5D2 sustains ectopic PTEN expression in U87 cells, and can also confer 

survival from serum starvation in NIH3T3 cells.  An antibody was generated to the 

carboxyl terminus of CYB5D2 to detect endogenous protein expression.  The highest 

expression of CYB5D2 protein is in neural cancer cell lines.  CYB5D2 is weakly 

expressed in breast and kidney cancer cell lines, and moderately expressed in prostate 

cancer cell lines.  To investigate the role of the heme binding domain in CYB5D2, a 

conserved aspartic acid (D86) within this domain was mutated to glycine, and this was 

characterized as being unable to bind heme.  CYB5D2(D86G) displayed a loss of 

function compared to wild-type CYB5D2.   To study the loss of expression of CYB5D2, 

stable CYB5D2 shRNA was achieved in HeLa and Huh7 cells.  While ectopic CYB5D2 

inhibited HeLa cell proliferation and growth in soft agar, CYB5D2(D86G) expression and 

CYB5D2 shRNA increased cell proliferation and soft agar growth.  While ectopic 

CYB5D2 conferred survival from chemotherapeutic drugs in HeLa cells, CYB5D2(D86G) 

and  CYB5D2 shRNA cells were susceptible to drug treatments.  CYB5D2 inhibits 

SREBP signalling, which requires its heme binding ability.  Using cyclohexamide 

treatments, CYB5D2 stabilized ectopic Insig1, while CYB5D2(D86G) destabilized 

ectopic Insig1.  CYB5D2 shRNA reduced endogeneous CYP51A1 (lanosterol 

demethylase) and Insig1 protein levels, and increased the susceptibility of HeLa cells to 

mevalonate treatments.  Furthermore, CYB5D2 shRNA HeLa cells displayed reduced 
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CYP3A4 activity, a cytochrome P450 enzyme involved in drug metabolism.  CYB5D2 

binds to cytochrome P450 reductase (POR), while CYB5D2(D86G) cannot.  CYB5D2 

co-immunoprecipitates with endogenous POR under serum-free conditions in HeLa and 

Huh7 cells, while CYB5D2(D86G) cannot.  Collectively, CYB5D2 is a POR interacting 

protein, which regulates CYP51A1 and CYP3A4 activity.  



  v 

 

FOREWORD 

 

This thesis is organized into eight chapters, of which the Results section 

comprises chapters 3 to 7. Special thanks to the following personnel for their 
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Chapter 1 

Introduction 
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1.0 Heme and Hemoproteins 

 

          Iron is one of the most abundant metals on earth, and is essential for nearly all 

organisms. The redox potential of iron has a greater range (depending on the ligand 

environment) relative to other transition elements because it can donate and accept 

electrons relatively easily. Iron exists the divalent ferrous [(Fe+2)] and the trivalent ferric 

[(Fe+3)] iron, which is required for electron transfer and for binding to biological ligands.  

This ability makes iron an important cofactor for several hemoproteins and non-heme 

iron containing proteins (Pantopolous et al., 2012).  Heme is a prosthetic group composed 

of an iron atom, surrounded by a protoporphrin ring moiety (4 pyroles), which are 

attached to the iron by four nitrogen atoms (Kaplan, 1977).  There are five types of heme 

ligands, type a, type b, type c, type d and type d1.  Heme type b, (protoporphyrin IX) is 

the original basic structure that other hemes (a,c and d) are derived, and is the most 

common type heme (Woodard and Dailey. 2000).   Heme biosynthesis requires several 

steps, beginning and ending in the mitochondria.  Heme has numerous functions, with the 

main functions being related to oxygen and oxidative metabolism (Khan and Quigley. 

2011).   

     Some hemoproteins function in respiration as cytochromes in the mitochondria.   Two 

of these are cytochrome reductase and cytochrome c oxidase (complex IV), which 

function in electron transfer, in the electron transport chain.   Some hemoproteins 

function as gas sensors detecting levels of O2, CO and NO, relaying responses in signal 

transduction (Gilles-Gonzalez and Gonzalez.  2005).  Some hemoproteins function as 
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catalases, peroxidases, nitric oxide synthases (NOS), guanyl cyclases, oxygen binding 

proteins and transporters (hemoglobins), and transcription factors (Tsiftsoglou et al., 

2006; Khan and Quigley. 2011).   

      P450 cytochromes are a large family of heme binding proteins that function as 

monooxygenases.  They are involved in the metabolism of foreign compounds 

(xenobiotics), the biosynthesis and metabolism of steroids, the metabolism of sterols and 

the synthesis of bile acids from cholesterol (Miller. 2012).  All P450 cytochromes receive 

electrons from cytochrome P450 reductase (POR), or to a lesser extent cytochrome b5 

(Strobel et al., 1995).  The major P450 cytochrome in sterol synthesis in CYP51A1 a 

lanosterol demethylase which removes the 14α-methyl group from lanosterol (Nelson et 

al., 1993). 

1.1.0 CYB5D2 and PGRMC1 

1.1.1 Identification of CYB5D2 in a screen for Novel Negative Regulators of the 

PTEN Tumor Supressor Gene 

     CYB5D2 (MGC3214) was initially identified in a screen for PTEN negative 

regulators by Dr. Justin He in 2001 (McMaster University).  The prostate cancer cell line 

LNCAP (a PTEN-null cell line), was initially transfected with a cDNA library from 

normal prostate.  Sixty hours post-transfection, a pBabe-PTEN packaged retrovirus was 

used to infect these LNCAP cells (that were pre-transfected with the cDNA library).   

Ectopic PTEN expression in LNCAP cells is lethal. Puromycin was then used to 

selectively destroy all non-infected PTEN pBabe expressing cells. CYBD2 was found in 

a cell that attenuated this lethal PTEN induced cell death in these LNCAP cells. 
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1.1.2 Structure of CYB5D2 

The CYB5D2 gene resides on chromosome 17p13.2, and it encodes for the protein 

CYB5D2 of 264 amino acid residues.  It has an amino terminal transmembrane domain, 

residues 7-29.  Adjacent and COOH terminal to the transmembrane domain lies a 

cytochrome b5 heme binding domain (amino acids 38-133).  These microsomal 

cytochrome b5 heme binding proteins belong to the family of membrane associated 

progesterone receptors (MAPRs).  This family of cytochrome b5 heme binding proteins 

are represented by, progesterone receptor membrane component 1 (PGRMC1), the most 

characterized protein in this family.   Two polymorphisms, an R7G and an R7P have 

been reported for CYB5D2 in colon cancer in Gene Ontology searches for consensus 

coding of sequences of human colorectal cancer (Sjoeblom et al., 2006).  A third 

polymorphism, a glutamine Q167K to lysine, has also been reported for CYB5D2 from 

the NIH full length cDNA project Mammalian Gene Collection (MGC) (Ota et al., 2004, 

Gerrard et al., 2004).  A putative secretion signal sequence lies at the amino terminus 

amino acids 1-22 (Kimura et al., 2010).  Structural analysis further reveals a 43% amino 

acid homology between the heme binding domain of PGRMC1 and CYB5D2.   The 

conservation of three key tyrosines Y73, Y79 and Y127 and one aspartic acid D86 in the 

heme binding domain of four cytochrome P450 Heme binding proteins: Human 

PGRMC1, yeast Dap1, Arabidopsis IJO3 and human CYB5D2, imply these residues are 

important in the heme binding pocket (Figure 5.1, panel A).   
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1.1.3 CYB5D2 is a Heme Binding Protein that Inhibits Neural Differentiation 

The first published report on CYB5D2 characterized CYB5D2/Neuferricin as an 

extracellular heme-binding protein that promoted neurogenesis (Kimura et al., 2010). 

 High Five cells were used to produce recombinant CYB5D2, which was seen to be 

efficiently secreted into the media.  When recombinant CYB5D was added to Neuro2a 

cells it suppressed their survival. A heme binding defective mutant (Δ55-98 amino acids) 

was generated, which abolished this inhibition of Neuroa2a survival when this 

recombinant protein was ectopically added (Kimura et al., 2010).   This recombinant 

mouse neuferricin demonstrated the ability to promote neurogenesis in primary cultured 

mouse neural precursor cells.   In differentiating Neuro2a cells, siRNA knockdown of 

CYB5D2/Neuferricin promoted cell survival and proliferation, and suppressed neurite 

outgrowth.  It is unclear if these affects are due to the loss of the secreted protein (as 

claimed by the authors) or due to the loss of the intracellular protein.  Endogenous mouse 

CYB5D2 mRNA was shown to be expressed mainly in the brain in the embryo stage, and 

later on in the heart, adrenal gland, kidney and brain in the post natal stage (Kimura et al., 

2010).  This group is the first to show that CYB5D2 is a heme binding protein, and that 

endogenous CYB5D2 present in the media of Neura2a cells is heme bound. 

 

1.1.4 CYB5D2 Confers Survival from Etoposide 

The first report on intracellular CYB5D2 function demonstrated that CYB5D2 could 

enhance HeLa cell survival from etoposide (Xie et al., 2011).  When CYB5D2 conferred 

survival from etoposide, it did not affect the ATM-dependant DNA damage response, 
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induced by etoposide.  Additionally, CYB5D2 did not affect TNFα induced apoptosis.  

Moreover, CYB5D2 did affect UV induced cell death, nor did it affect the core apoptotic 

machinery (Xie et al., 2011).  The ability of CYB5D2 to confer survival from etoposide 

required its transmembrane domain (and subsequent peri-nuclear localization) and it`s 

cytochrome b5 heme binding domain (amino acids 35-134). 

 

1.1.5 Cytochrome B5 Heme Binding Proteins: Progesterone Receptor Membrane 

Component  1 (PGRMC1) 

   The most characterized cytochrome b5 heme binding domain containing protein is 

PGRMC1.  PGRMC1 was initially found in 1996 by two different groups.  Using a 

differential display for dioxin induced genes in rat liver, researchers identified a 25 kDa 

protein that was found to be expressed in liver, lung and kidney (Selmin, O., et al., 1996).    

Another group discovered a 20 amino acid fragment of PGRMC1 to be contained in a 

membrane-associated progesterone binding complex (Meyer, C., et al., 1996).   

Microsomes were purified from porcine liver cells to eventually identify the progesterone 

binding component.  Eventually this same group cloned the full length cDNA from rat 

and called it membrane progesterone receptor (mPR) (Falkenstein E., et al., 1998).  

Eventually antibodies were generated to this protein, and researchers subsequently cloned 

the human homologue Hpr6.6 (human progesterone receptor) (Gerdes, D., 1998).   

   PGRMC1 is located in the ER, and has been shown to exist as a dimer at 56 kDa 

(disulfide linked homodimers) and a monomer at 28 kDa (Falkenstein et al., 2001).  

PGRMC1 directly binds to b type heme (Min et al., 2005), various pharmacological 
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compounds, associates with cytochrome P450 proteins (Min et al., 2005, Hughes et al., 

2007; Szczesna-Skorupa and Kemper., 2011) and has been implicated in progesterone 

signalling.  When purified, PGRMC1 is alone unable to bind progesterone as it seems to 

bind in a protein complex, with unknown proteins that in concert serve to bind 

progesterone (Cahill et al., 2007, Losel et al., 2007).  When PGRMC1 is overexpressed, 

it increased progesterone binding in intact granulosa cells, while siRNA PGRMC1 

decreased progesterone binding (Peluso JJ., et. al., 2003).   Functionally, PGRMC1 is 

induced in a spectrum of cancers, where it promotes tumor survival and genotoxic drug 

resistance (Rohe et al., 2009).  PGRMC-1 is considered to be an adaptor protein, which 

functionally serves to bind to other proteins in various cellular contexts (Cahill, M. 2007; 

Losel et al., 2008).  Despite the cytochrome b5 heme binding domain being the only 

functional domain in PGRMC1, the majority of publications on PGRMC1 are on its role 

as a progesterone receptor (Cahill, M. 2007; Losel et al., 2008; Rohe et al., 2009).    

 

1.1.6 PGRMC1 (Hpr6) Regulates the Susceptibility of Cancer Cells to 

Chemotherapeutic Drugs 

     In order to study the affect of PGRMC1 on survival from chemotherapeutic drugs, a 

heme binding defective mutant a D120G of PGRMC1 was overexpressed with an 

Adenovirus in MDA-MB-231 breast cancer cells and treated with doxorubicin and 

camptothecin (Crudden et al., 2006).   Using MTT cell viability assays, this heme binding 

defective Ad-D120G-PGRMC1 conferred a greater susceptibility to doxorubicin and 

camptothecin treatments than an Ad-LacZ control (Crudden et al., 2006).   
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    PGRMC1 was also found to regulate the viability of cisplatin in ovarian cancer cells 

(Peluso et al., 2008).  Here, in the presence of progesterone, overexpression of PGRMC1 

in Ovcar-3 cells reduced the effectiveness of cisplatin treatment.  Additionally, PGRMC1 

siRNA increased cisplatin effects and an antibody to PGRMC1 increased cisplatin 

induced cell death (Peluso, JJ., et al., 2008). 

      

1.1.7 PGRMC1 is a Sigma 2 Receptor, Connections with Progesterone 

     Recently, researchers screened for the elusive sigma 2 receptor using a photoaffinity 

probe WC-21 and found PGRMC1 as a protein that directly cross-linked to WC-21 (Xu 

et al., 2011).  The first report of progesterone binding to sigma receptors was more than 

twenty years ago (Su et al., 1988).   Furthermore, progesterone has been shown to be a 

ligand for sigma receptors (Su., TP., 1991), and others have shown that sigma receptor 

ligands competed for progesterone binding in porcine liver microsomes (Meyer et al., 

1998).  Recently, progesterone was reported to act as an antagonist to sigma receptor 

agonists in Na
+
 channel inhibition (Johannessen M., et al., 2011).  Because PGRMC1 so 

strongly connects progesterone biology to sigma-2 receptor mechanisms, Dr. Rolf Craven 

has renamed the protein S2R
Pgrmc1 

(Ahmed et al., 2012). 

 

1.1.8 Yeast Dap1 is a Heme Binding Protein that Regulates Ergosterol Synthesis 

 

     Yeast Dap1p is a cytochrome b5 heme binding protein that belongs to the family of 

highly conserved membrane-associated progesterone receptor (MAPR) family (Hand et 

al., 2003), which include PGRMC1.  Initial experiments demonstrated that genes 
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involved in the ionizing radiation response and treatment with methyl methane-sulfonate 

(MMS) were involved in sterol synthesis (Bennett et al., 2003).  Deletion of ERG3 

(encodes C-5 sterol desaturase) lead to increased MMS sensitivity.  Others have shown 

that Dap1p is required for growth in the presence of MMS (Hand et al., 2003).  Deletion 

of Dap1p resulted in sensitivity to MMS, elongated telomeres, loss of mitochondrial 

function and partial arrest in sterol synthesis.  Moreover, Dap1p conferred resistance to 

the antifungal compounds itraconazole and fluconazole (ERG11, lanosterol demethylase 

inhibitors) (Hand et al., 2003).  Specifically, Dap1p mutant cells have decreased levels of 

ergosterol (the yeast version of cholesterol), but increased levels of the ergosterol 

intermediates squalene and lanosterol (Hand et al., 2003).  Later that year, it was 

confirmed that Dap1p was a indeed a bona fide heme binding protein, subsequently 

mutating conserved  aspartic acid D91 to a glycine in Dap1p, rendering it unable to bind 

heme (Mallory et al, 2005).  This heme binding defective Dap1p(D91G) was unable to 

confer survival from MMS, but this sensitivity to MMS could be bypassed by exogenous 

addition of heme (Mallory et al., 2005).   Additionally, overexpressing ERG11 

(lanosterol demethylase) in Dap1p mutant yeast suppressed this sensitivity to ERG11 

inhibitors itraconazole and fluconazole (Mallory et al., 2005).  Furthermore, protein 

expression of endogenous ERG11 required Dap1p protein expression.  These 

experiments confirm that ERG11, the lanosterol demthylase is downstream of Dap1p.  It 

is important to note that Dap1p also increased the metabolism of squalene and episterol, 

implicating Dap1p in activating Erg1/squalene epoxidase and Erg2/sterol-C5 desaturase 

(Craven et al., 2007, Hand et al., 2003, Mallory et al., 2005).  Squalene epoxidase 
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requires cytchrome P450 reductase (POR) for its activity (Ono et al., 1980), however the 

mechanism of how Dap1p activates Erg3/sterol C-5 desaturase is unknown (Ahmed et al., 

2012). 

 

1.1.9 PGRMC1 Modulates Cytochrome P450 enzymes 

     The first physical association of Dap1p with yeast P450 cytochrome enzymes used 

TAP tagged Dap1p chromatography to show an interaction between endogenous ERG11 

and Dap1p and between endogenous ERG5 and Dap1p (Hughes et al.,2007 ). These two 

interactions with Dap1p were subsequently confirmed with ectopic co-

immunoprecipitations.  A Y138F heme binding defective mutant of Dap1p, was used to 

show reduced ergosterol levels, and higher lanosterol levels and dienol and trienol levels, 

reflecting defects in ERG11 and ERG5 function (Hughes et al., 2007 ).   

     Turning to the mammalian PGRMC1, mass spec analysis was used on shRNA 

PGRMC1 knockdown in 293T cells, revealing an increase in lanosterol levels, three fold 

higher than shRNA control 293T cells (Hughes et al., 2007).  This suggests that 

PGRMC1 was required specifically for the demethylation of lanosterol by the ERG11 

homolog CYP5A1 (lanosterol demethylase) (Hughes et al., 2007).  To detect a physical 

interaction, these researchers co-transfected PGRMC1 and CYP5A1 into 293T cells and 

performed co-immunoprecipitation experiments.  PGRMC1 was able to co-

immunoprecipitate with CYP5A1 (lanosterol demethylase), as well as with three other 

P450 cytochromes, CYP7A1 (bile synthesis), CYP21A2 (progesterone 21-hydroxylase), 

and CYP3A4 (drug metabolism) (Hughes et al., 2007). 
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      This corroborates previous connections between PGRMC1 and the P450 system, 

which showed that the activity of CYP21A2 is enhanced in cells upon overexpression of 

PGRMC1 (Min et al., 2005).     A clinical consequence of a PGRMC1 H165R missense 

mutation was observed in premature ovarian failure (Mansouri et al., 2008).  Here the 

binding between PGRMC1 and CYP21A2 was abolished by this HI65R mutation 

(Mansouri et al., 2008).    

     The ability of PGRMC1 to affect the P45O CYP19 (aromatase) enzyme in breast 

cancer cells was examined. CYP19/aromatase is the major enzyme that converts 

androsteenedione and testosterone into estrogen (Miki et al., 2007, Bulun et al., 2005).  

Using PGRMC1 shRNA MCF7 and control shRNA MCF7 cells, CYP19 activity was 

significantly reduced in PGRMC1 knockdown cells, while expression of CYP19 was 

unchanged between control and PGRMC1 knockdown cells (Ahmed et al., 2012).  

Adding recombinant PGRMC1 ectopically to MCF7 cells had little effect on CYP19 

activity at a 1:1 molar ratio but did affect activity at a 10:1 molar ratio (Ahmed et al., 

2012).  This relationship was examined further with co-immunoprecipitation experiments 

using ectopic PGRMC1 and ectopic CYP19.   Using HEK 293T cells that were 

transfected with both plasmids, CYP19 was found to co-immunoprecipitate with 

PGRMC1, but only weakly co-immunoprecipitated with a D120G heme binding 

defective PGRMC1.   This experiment shows that heme binding of PGRMC1 is required 

for its association with CYP19 (Ahmed et al., 2012).  
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1.2.0 SREBP transcription factors and their Regulation 

 

1.2.1  PGRMC1 interacts with SCAP and INSIG1. 

 

     Work done in 2005 demonstrated that PGRMC1 could be found in a protein complex 

with SCAP and Insig1 (Suchanek et al., 2005).  Using a novel photo-activatable amino 

acid cross linking method, researchers identified a protein complex of PGRMC1, SCAP 

and Insig1 in COS cells.  This implies that PGRMC1 might reside in a protein complex 

with the sterol regulatory SCAP and Insig1 proteins to somehow modulate sterol 

signalling. 

 

1.2.2 Sterol regulation of the SREBP transcription factors  

     Cholesterol is a critical component of mammalian cell membranes providing structure 

and membrane permeability (Brown and London. 1998; Schroeder et al., 2001).   In 

membranes, cholesterol plays a role in forming microdomains such as lipid rafts, and 

caveolae (Lajoie and Nabi. 2010; Staubach and Hanisch. 2011).   Besides its function in 

cell membranes, cholesterol is a central precursor of steroid hormones, oxysterols and 

bile acids (Rezen et al., 2010; Mclean et al., 2012).   Cholesterol homeostasis is regulated 

by the ER-resident transcription factors called Sterol Regulatory Element Binding 

Proteins SREBP (Horton and Shimomura 1999; Rawson 2003; Eberle et al., 2004; 

McPherson and Gauthier, 2004).   When processed into the nuclear amino terminal active 

form, SREBPs transcribe a specific set of genes involved in cholesterol metabolism and 
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fatty acid synthesis (Eberle et al. 2004).   One target of SREBPs is the Low Density 

Lipoprotein Receptor (LDL Receptor) (Yokoyama et al., 1993).   Other transcriptional 

targets of SREBPS are genes involved in fatty acid synthesis, triglyceride metabolism 

and phospholipid synthesis (McPherson and Gauthier, 2004).  There are two genes for 

SREBPs, SREBP1 (which has two isoforms, 1a and 1c), and SREBP2 (Shimano H. 2001).  

For non-liver tissues, SREBP2 is the predominant isoform, and some of its transcriptional 

targets are genes that are involved in cholesterol metabolism ie HMG co-Reductase, and 

the LDL Receptor (Amemiya-Kudo et al., 2002).   SREBP1c is the main liver SREBP 

isoform (and a different gene than SREBP2), and it is involved in transcribing genes 

involved in fatty acid and triglyceride metabolism ie fatty acid synthase (Horton et al., 

2002). 

     SREBPs are retained in the ER by two proteins, SREBP cleavage activating protein 

(SCAP) and the insulin-induced gene product (Insig) (Nohturfft et al., 1998; Yabe et al., 

2002).   The abundance of sterol in the cell, regulates the proteolytic cleavage of SREBP 

( ~120 kDa precursor) and activation of SREBPs through two proteins, SCAP and Insig 

(Brown and Goldstein. 1997; Brown and Goldstein 1999).  When cholesterol levels are 

high, SREBPs are retained in the ER by SCAP (which has a sterol sensing domain) and 

Insig (Sakai et al., 1998; Espenshade et al. 1999).  The binding of sterols to SCAP`s 

sterol sensing domain (SSD), causes a conformational change, which results in SCAP 

binding to Insig. This results in the SREBP/SCAP complex being retained in the ER 

(Brown et al., 2002, Yabe et al., 2002).  When cholesterol levels are low, SCAP 

dissociates from Insig and escorts the full length SREBP precursors to the Golgi 
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apparatus.  In the Golgi, the full length SREBP precursors are cleaved by site 1 and site 2 

proteases to generate the mature protein (Sakai et al., 1998; Espenshade et al., 1999).  

Now the mature form of SREBP, an NH2-terminal processed fragment of SREBP 

containing the bHLH domain, translocates to the nucleus to transcribe genes involved in 

cholesterol and fatty acid synthesis (McPherson and Gauthier. 2004; Ye and DeBose-

Boyd. 2011). A schematic model in figure 1.1 outlines this process.  
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Figure 1.1 Schematic Model of SREBP signalling. 1. When sterols are high, SREBP 

and SCAP are retained in the ER by Insig1. 2. When sterols are low, SREBP and SCAP 

dissociate from Insig1, leave the ER and translocate to the Golgi. 3.  In the Golgi, SREBP 

gets cleaved by two site directed proteases into the amino terminal active form. 4.  This 

mature NH2 form of SREBP now translocates to the nucleus to transcribe genes for 

cholesterol metabolism.  Figure from Rawson, R.B., 2003. The SREBP Pathway. Insight 

from Insigs and Insects.  Nat Rev Mol Cell Biol 4.631-640. 
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1.2.3  SREBP Activation Regulated by AKT/PKB Signalling  

 

     When growth factors and serum stimulate cells to grow, they activate their respective 

cognate receptor tyrosine kinases (RTK), which in turn activate the PI3Kinase signalling 

pathway (Toker and Cantley. 1997; Franke et al., 1997).  This is a key signal transduction 

pathway linking receptors and oncogenes to proliferation, and numerous cellular 

functions, and representing one of the most activated pathways in cancer (Luo et al., 

2003; Engelman et al., 2006).  PI3Kinase consists of two subunits, a p85 subunit which 

interacts with activated RTKs, and a catalytic subunit p110 which now activated, 

converts phosphatidylinositol-4,5-bisphosphate (Ptdlns(4,5)P2)  to phosphatidylinositol-

3,4,5-triphosphate (Ptdlns(3,4,5)P3)  at the membrane (Tolias and Cantley. 1999).  This 

(Ptdlns(3,4,5)P3)  now serves as a docking site for pleckstrin homology domain 

containing proteins such as AKT, which now get recruited to the membrane to become 

activated (Stokoe et al., 1997; Stephens et al., 1998).  The PTEN tumor suppressor is a 

lipid phosphatase that antagonizes PI3Kinase signalling by dephosphorylating 

(Ptdlns(3,4,5)P3) to (Ptdlns(4,5)P2) (Maehama and Dixon. 1998; Cantley and Neel. 1999; 

Maehama and Dixon. 1999).  AKT/PKB phosphorylates numerous substrates ie GSK3β, 

FOXO family of transcription factors, proteins involved protein synthesis, cell survival, 

proliferation and metabolism, and mTOR (mammalian target of Rapamycin) a protein 

involved in regulating translation, and in the monitoring of cellular energy status 

(Manning and Cantley. 2003).  Initial research uncovered that SREBP proteins were 

regulated targets of PKB and PI3Kinase signalling (Fleischmann and Lynedjian. 2000).   
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Using insulin stimulated rat hepatocytes, researchers demonstrated that SREBP1 mRNA 

levels were dependant on PKB and PI3Kinase.  Others have also demonstrated this 

connection as well (Porstman et al., 2005; Yellaturu et al., 2009; Porstmann et al., 2009).  

Using inhibitors of PI3Kinase, Wortmanin and LY294002, ligand stimulated (VEGF, 

PDGF) activation of SREBP-1 was blocked, implicating this pathway in SREBP1 

activation (Demoulin et al., 2004; Zhou et al., 2004; Hegarty et al., 2005).  Moreover, 

PI3Kinase/Akt has been shown to be involved in the ER to Golgi transport of SCAP and 

SREBP2 (Du X., et al., 2006).   More recently it has been demonstrated that this insulin 

stimulated SREBP lipogenesis pathway in primary rat hepatocytes was dependant on 

mTOR, PKB and PI3Kinase, (Li et al., 2010).  

 

1.3.0 Insig interaction with SCAP and HMG CoA Reductase: a central role in sterol 

regulation 

 

1.3.1 HMG CoA Reductase 

 

     HMG CoA reductase is a highly conserved, membrane bound enzyme in the ER.  It 

catalyzes a rate-limiting step in sterol synthesis, the production of mevalonate, and is 

involved in isoprenoid biosynthesis (Goldstein and Brown. 1990; Burg and Espenshade. 

2011). HMG CoA reductase is embedded in the ER membrane by its eight membrane 

spanning regions in its NH2 terminus (Roitelman et al., 1992).  This region has been 

shown to mediate sterol regulated binding to Insig1 (Sever et al., 2003).   Enzymatically, 

HMG-CoA reductase catalyzes the reduction of 3-hydroxy-3-methylglutaryl-CoA to 

mevalonate (Brown and Goldstein. 1980; Liscum et al., 1985)).  This step is an 
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irreversible step, near the beginning of the pathway in the biosynthesis of cholesterol 

from acetyl-CoA.   Mammalian HMG-CoA reductase enzymatic activity is regulated by 

AMP kinase which phosphorylates HMG-CoA reductase at a conserved serine 872 

inhibiting it`s activity (Clarke et al., 1990, Istvan et al., 2000).  As previously mentioned, 

HMG-CoA reductase is a transcriptional target of SREBPs. 

 

1.3.2 Degradation of HMG CoA Reductase through Insig1 

     HMG-CoA reductase protein degradation is regulated by its association with Insig.  In 

mice lacking Insig, liver HMG-CoA reductase was reported to be 85 fold higher than in 

control mice (Engelking et al., 2005).  Insig regulates HMG-CoA reductase degradation 

by a sterol-responsive feedback inhibition system.  When sterols induce HMG CoA 

reductase to bind to Insig, in results in the ubiquitination and degradation of HMG CoA 

reductase (Skalnik et al., 1988; Ravid et al., 2000).  In high sterol conditions, Insig binds 

to the NH2 terminal region of HMG-CoA reductase and recruits enzymes that target 

ubiquitin to HMG-CoA reductase (Burg and Espenshade. 2011).  When sterols are low, 

Insig1 and HMG-CoA reductase dissociate and HMG-CoA reductase is stable.  This 

action required a tetrapeptide sequence YIYF, located in the second transmembrane 

segment of HMG CoA reductase.  When this YIYF sequence was mutated to alanines, 

HMG CoA reductase (mutant) was unable to bind Insigs, and was refractory to rapid 

degradation (Sever et al., 2003).  

    Evidence demonstrating that degradation of HMG CoA reductase was dependant on 

Insig1 and Insig2 came from experiments transfecting (overexpressing) HMG CoA 
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reductase in chinese hamster ovary (CHO) cells. When HMG CoA reductase was 

overexpressed using a CMV promoter plasmid, it was refractory to sterol mediated 

degradation (Sever et al., 2003).  Re-establishment of this regulated degradation of 

overexpressed HMG CoA reductase was restored by co-overexpressing Insig1 or Insig2 

(Sever et al., 2003).   This re-established sterol induced HMG CoA reductase degradation 

was associated with the binding of HMG CoA reductase to Insig1 as demonstrated by co-

immunoprecipitation (Sever et al., 2003). Moreover, siRNA dual knockdown of Insig1 

and Insig2 ablated the sterol mediated ubiquitination of HMG CoA reductase (Sever et al., 

2003 ).  Lastly, in mutant cells lacking Insig1, sterols fail to induce sterol mediated 

ubiquitination and degradation of HMG CoA reductase (Sever et al., 2004).   

 

1.3.3 Lanosterol, an intermediate in the synthesis of cholesterol, promotes the Insig-

mediated degradation of HMG CoA Reductase 

 

     Initial studies using a mammalian cell line with a mutant lanosterol 14 alpha-methyl 

demethylase, implicated lanosterol as a key intermediate molecule in sterol synthesis 

(Chen et al., 1988).  Subsequent studies implicated lanosterol in the regulation of HMG 

CoA reductase levels (Frye et al., 1994, Leonard et al., 1994; Trzaskos et al., 1995).  

Eventually it was demonstrated that lanosterol was the sterol intermediate that promoted 

the Insig mediated degradation of HMG CoA reductase (Song et al., 2005).  Using SV-

589 transformed human fibroblasts cells, lanosterol and 24,25-Dihydrolanosterol, and 25-

Hydroxycholesterol was added individually and HMG CoA reductase 
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immunoprecipitations were probed for ubiquitination and protein levels.  This was done 

using a previously established permeabilized cell system that supported the ubiquitination 

of HMG CoA-reductase, stimulated by the in vitro addition of sterols (Song and DeBose-

Boyd, 2004).  Here, 25-Hydroxycholesterol, lanosterol, and 24,25-dihydrolanosterol were 

able to promote the ubiquitination of HMG CoA reductase in a dose dependant manner, 

whereas cholesterol only modestly stimulated HMG CoA reductase ubiquitination (being 

10 fold less potent than lanosterol and 24,25-dihydrolanosterol) (Song et al., 2005).  

Further studies testing zymosterol, zymostenol, demosterol and 7-dehydroxycholesterol 

demonstrated these sterol moieties could not promote HMG CoA reductase ubiquitination 

implicating the C4 and/or C14 methylation of lanosterol and 24,25- dihydrolanosterol as 

being required for ubiquitination of HMG CoA reductase, (Song et al., 2005). 

 

1.3.4 Gp78 is a membrane ubiquitin ligase, associated with Insig1 (and couples 

lanosterol-regulated ubiquitination to degradation of HMG CoA reductase)  

    In order to identify proteins that could be interacting with the sterol mediated HMG 

CoA reductase-Insig complex, mass spec technology was used to find proteins that co-

immunoprecipitated (affinity purification) with this HMG CoA reductase-Insig complex 

(Song et al., 2005).  Here gp78 a membrane bound ubiquitin ligase, was found to bind 

Insig-1.  Knockdown of gp78 by RNA interference (RNAi) prevented the lanosterol 

dependant ubiquitination and degradation of endogenous HMG CoA reductase (Song et 

al., 2005).   Subsequently, experiments overexpressing gp78`s membrane domain 

abrogated lanosterol induced Insig mediated ubiquitination of HMG CoA reductase.    
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This likely occurs because the membrane domain of gp78 competes with the endogenous 

full-length gp78 for Insig1 binding (Debose-Boyd. 2008). 

     Another protein, Valosin-containing protein (VCP), an ATPase, was found to bind to 

gp78, and eventually was demonstrated to be required for HMG CoA reductase 

degradation (Song et al., 2005). 

 

1.3.5 SCAP and HMG CoA Reductase bind to the same region on Insig1 

     As mentioned previously, the HMG CoA reductase YIYF tetrapeptide motif was 

found to be responsible for sterol (lanosterol) mediated Insig binding (Sever et al., 2003).  

SCAP, another Insig binding protein also contains this YIYF motif in its second 

transmembrane domain, and it also has been shown to mediate sterol dependant 

formation of SCAP-Insig complexes (Yang et al., 2002; Yabe et al., 2002).   When the 

sterol sensing domain of SCAP was overexpressed in cells, it blocked Insig mediated 

sterol (lanosterol) induced HMG CoA reductase degradation (Yang et al., 2002).  

Mutating SCAP`s sterol sensing domain YIYF motif, abolished this inhibition.   

When a conserved aspartic acid 205 in Insig1 was mutated to alanine, it abolished Insig`s 

ability to bind to SCAP, as well as HMG CoA reductase, demonstrating that SCAP and 

HMG Co reductase both bind to Insig1 at the same site (Gong et al., 2006). 

Therefore, this strongly suggests that HMG CoA reductase and SCAP bind to Insigs on 

the same site, and that HMG CoA reductase and SCAP compete for Insigs (De-Bose 

Boyd. 2008).  
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1.3.6 Sterol regulated ubiquitination and degradation of Insig1 by gp78 

  Early reports on Insig1 degradation came from the lab of Jin Ye in 2004.  Using 

thapsigargin (an ER stress inducer), and hypotonic cell stress culture conditions, 

researchers demonstrated that Insig1 becomes degraded and subsequently SREBP 

becomes activated in each of these stress conditions (Lee and Ye. 2004).  These two 

cellular stresses bypass the sterol regulation of Insig1 degradation. Researchers in the lab 

of Drs. Brown and Goldstein demonstrated that Insig1 gets ubiquitinated in sterol 

depeleted cells where it is rapidly degraded by proteasomes (Gong et al., 2006).  When 

sterols are low, this SCAP/SREBP complex dissociates from Insig1, which now gets 

ubiquitinated on lysines 156, and 158 and is degraded in proteosomes (Gong et al., 2006).  

Eventually, this sterol regulated degradation of Insig1 was determined to be mediated by 

the membrane bound ubiquitin ligase gp78 (Lee et al., 2006).   These researchers 

demonstrated that when sterols induce SCAP to bind Insig1, gp78 becomes displaced, 

and is unable to ubiquitinate Insig-1, consequently stabilizing the Insig-1 protein (Lee et 

al., 2006).  This blocked the release of SCAP-SREBP from the ER, and subsequently 

inhibited SREBP maturation (Lee et al., 2006; De-Bose Boyd, 2008).  While the release 

of SCAP/SREBP from Insig1 does not require ubiquitination, Insig1 degradation post 

SCAP/SREBP dissociation establishes a requirement for synthesis of new Insig1 for 

feedback inhibition (Gong et al. 2006).   As mentioned previously, sterol deprivation 

causes SCAP/SREBP to translocate to the Golgi, where SREBP gets cleaved by two site 

directed proteases, S1P and S2P, generating an NH2 terminal nuclear fragment.  This N-

terminal SREBP fragment then translocates to the nucleus to transcribe genes to 
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synthesize more cholesterol, one of these transcriptional targets being Insig-1 (Gong et al., 

2006).  When this newly generated Insig1 and cholesterol converge on SCAP, 

SCAP/SREBP bind to Insig-1, preventing ubiquitination (Gong et al., 2006). This 

process is called “convergent feedback inhibition” whereby the newly synthesized Insig-

1/SCAP/SREBP complex accumulates in the ER, awaiting regulation by sterol 

deprivation once again (Gong et al., 2006).   

   Experiments using domain swapping mutations on Insig1 demonstrated that serine 149, 

which lies NH2 terminal to the ubiquitination sites (lysines 156, and 158) regulates the 

accelerated degradation by ubiquitin of Insig1 (Lee et al., 2006).  Insig2 stability was 

demonstrated to be regulated by serine 106, which lies COOH terminal to the 

ubiquitination site of glutamine 214 on Insig2 (Lee et al., 2006). 

        

1.4.0 A connection between PGRMC1 and cytochrome P450 reductase (POR) 

 

1.4.1 PGRMC1 Heme binding defective mutants 

     In accordance with containing a cyt-b5 domain, PGRMC1 binds to heme and the 

association with heme contributes to PGRMC1 function (Crudden et al., 2006). 

Experiments using UV-visible absorption and electron paramagnetic resonance (ESR) 

spectra demonstrated that PGRMC1 could bind to b-type heme (Min et al., 2005).  This 

group also demonstrated that PGRMC1`s hydrophobic heme binding pocket was affected 

by mutating two conserved tyrosines in PGRMC1 Y107, Y113 , and the amino acid 

residues between D99 and K102 (Min et al., 2005).  These homologous tyrosines 107 and 

113 in PGRMC1, are conserved in CYB5D2, at tyrosine 73 and tyrosine 79 (Results 
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Section Figure 5.1).  Further characterization of the heme binding in yeast Dap1 used site 

directed mutagenesis to ablate heme binding when Y138 was mutated in Dap1 (Ghosh et 

al., 2005).  This tyrosine, is homologous to Y165 in PGRMC1, and to tyrosine 127 in 

CYB5D2 (Figure 5.1).  When a highly conserved aspartatic acid 120 to glycine (D120G) 

was mutated in HPR6 (PGRMC1) this generated a heme binding defective PGRMC1 

(Crudden et al., 2005).  When this PGRMC1(D120G) mutant was overexpressed by an 

adenovirus in a MCF7 cell line, it rendered these cells more susceptible to the 

chemotherapeutic drugs doxorubicin and camptothecin (Crudden et al., 2005). This 

aspartic acid in PGRMC1 D120 mutated for loss of heme binding is conserved in 

CYB5D2, D86.    

 

 

1.4.2 Cytochrome P450 enzymes  

 

     Cytochrome P450 enzymes are part of a large family of monooxygenases that catalyze 

the oxidation of organic substances.  They function in the metabolism of foreign 

xenobiotic compounds, the biosynthesis and metabolism of steroids and in facilitating 

steps in sterol synthesis and homeostasis (Fluck and Pandey. 2010). They are well 

conserved throughout evolution, with over 50 different cytochrome P450 enzymes in 

humans, and many more (over 500) in plants (Omura. 2013).  In humans, cytochrome 

P450 enzymes are expressed throughout the body, with the highest concentration of 

expression in the liver, and steroidogenic tissues (Miller. 2012).  Cytochrome P450 

enzymes can be located in the mitochondria or in the endoplasmic reticulum (ER) 

microsomes.  The mitochondrial forms are mostly involved in steroid metabolism while 
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the ER forms are mostly involved in xenobiotic metabolism and sterol metabolism 

(Szczesna-Skorupa and Kemper, 2008).    Cytochrome P450 enzymes catalyze a reaction 

whereby one oxygen molecule atom is incorporated into a monooxygenoase and one 

oxygen molecule is incorporated into water (Black and Coon, 1987).  In this reaction, two 

electrons are consumed, which then get donated from NADPH to cytochrome P450 

enzyme redox partners (Strobel et al., 1995).  

     In the majority of tissues, there are significantly more cytochrome P450 enzymes than 

there is cytochrome P450 reductase (POR) protein. Thus cytochrome P450 enzymes 

interact with POR in a transient manner, instead of forming stable protein complexes 

(Szczesna-Skorupa and Kemper, 2010).  Cytochrome P450 enzymes can form homo or 

hetero oligomeric structures (Backes and Kelley. 2003).   A single POR molecule can 

bind to these oligomeric complexes of P450 enzymes (Szczesna-Skorupa and Kemper, 

2010).        

     Cytochrome P450 enzymes have been shown to be targeted to the ER through a signal 

recognition particle mediated delivery to the sec61 complex (High et al., 1991; Oliver, J., 

et al., 1995).  How Cytochrome P450 enzymes are retained in the ER is still unclear 

(Szczesna-Skorupa and Kemper, 2008).  Certain experimental evidence showing that 

inhibiting heme synthesis in cos1 cells resulted in higher cytosolic levels of 

overexpressed CYP1A1, implicates a heme binding protein responsible for ER retention  

(Meyer et al., 2002).  Also addition of hematin to cell-free reactions enhanced CYP1A1 

activity in kidney and brain extracts.  On this basis, Dap1p/PGRMC1 is a candidate for 
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an ER retention receptor for cytochrome P450 enzymes (Szczesna-Skorupa and Kemper, 

2008). 

 

1.4.3 PGRMC1 inhibits the activity of drug-metabolizing cytochrome P450s and 

binds to cytochrome P450 reductase (POR) 

 

     The first protein interaction between PGRMC1 and cytochrome P450 reductase (POR) 

was demonstrated by Byron Kemper`s group (Szczesna-Skorupa and Kemper, 2010).   

These experiments also showed that PGRMC1 could interact with CYP2C2 and CYP2C8 

as well as CYP3A4.  Experiments using PROMEGA`s P450 Glo luciferase assays to 

detect activity of CYP2C2, CYP2C8 and CYP3A4, determined that PGRMC1 in dose 

dependant transfections, led to the slight inhibition of the activities of these three P450 

enzymes (Szczesna-Skorupa and Kemper, 2010).  This PGRMC1 inhibition of these 

P450 cytochromes could be overcome with increased expression of POR.   A different 

result was seen with CYP51A1 whereby shRNA knockdown of PGRMC1 in 293T cells 

resulted in an increase in lanosterol levels, indicating CYP51A1 was inhibited by a 

PGRMC1 shRNA knockdown (Szczesna-Skorupa and Kemper, 2010), corroborating 

previously reported results (Hughes et al, 2007).  

     Recently, it was reported that PGRMC1 negatively regulated the human drug-

metabolizing activities of P450 enzymes CYP3A4, CYP2C9 through direct interaction, in 

liver cells (Oda et al., 2011).  Using HEPG2 cells, and an adenoviral expression system, 

PGRMC1 inhibited the activity of CYP3A4 and CYP2C9, with minimal effect on 

CYP2E1 activity.   These results were subsequently confirmed in human hepatocytes 

(Oda et al., 2011).     
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1.4.4 Cytochrome P450 enzymes and drug metabolism 
 

     Cytochrome P450 enzymes are responsible for the metabolism of therapeutic drugs, 

many exogenous and endogenous compounds.  The CYP families classified as CYP 1-3 

(grouped by pairwise amino acid sequence identity between family members) function in 

the metabolism of human drugs and xenobiotic compounds (Sim and Ingelman-Sundberg. 

2010).  Other CYP family members (CYP 4, 11, 17, 19, and 21) function in metabolising 

endogenous compounds such as fatty acids, steroids, eicosanoids, bile acids and vitamins 

(Ingelman-Sundberg. 2005).  The six major drug metabolising enzyme families are 

CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4, which collectively 

account for around 90% of all drug clearance and bioavailability (Singh et al., 2011).  

CYP 3A4 accounts for nearly 50% of all drug metabolism (Pinto and Dolan. 2011).  It is 

the most abundant CYP protein isoform expressed in human liver, and intestines, 

comprising almost 15-30% of the liver microsomal pool.   

     Additionally, CYP3A4 is a steroid hydroxylase, having an important role in the 

catabolism of several endogenous steroids ie testosterone, progesterone, cortisol and bile 

acids (Patki et al., 2003, Bodin et al. 2005). 

     The CYP enzymes display extensive genetic polymorphic variability, with certain 

P450 enzymes conferring fast metabolising to poor metabolising drug affects.  An 

example of this is seen in CYP2D6 which metabolizes the pro-drug tamoxifen in breast 

cancer treatment, which gets metabolized to active form 4-OH tamoxifen and endoxifen 

(Ingelman-Sundberg. 2005).   CYP2D6 individual polymorphisms influence the 

effectiveness of the drug through the ability to metabolise the pro-drug.  
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     Another drug example of a polymorphic P450 enzyme CYP2C9 affecting drug 

metabolism is with the anti-coagulant warfarin.  Insufficient dosing in normal patients 

leads to clotting, stroke and heart attacks, while individuals who are slow metabolizers 

need longer time periods to achieve a stable dose and are vulnerable to serious bleeding 

(McClain et al., 2008; Lindh et al., 2009).   

 

1.4.5 Roles and involvement of cytochrome P450 enzymes in cholesterol metabolism 

 

     Cholesterol is the precursor for the biosynthesis of steroid hormones, oxysterols, bile 

acids and vitamin D.   In mammalian steroidogenesis, cholesterol is initially converted 

into pregnenolone, the precursor for all other steroid hormones ie progesterone, cortisol, 

aldosterone and testosterone (Miller and Bose. 2011).  Cholesterol homeostasis is 

regulated through elimination pathways, where the oxysterols (oxidized derivatives of 

cholesterol) become significant intermediates in steroid and bile acid synthesis (Vaya et 

al., 2011). The increased polarity of oxysterols enhances their transport across 

membranes and the blood-brain barrier (Crosignani et al., 2011). Cholesterol conversion 

to bile acids to excrete cholesterol is necessary for its elimination.  Additionally, bile 

acids are natural ligands for G protein coupled receptors and the nuclear transcription 

factor farnesoid X receptor (FXR) (Hylemon et al., 2009).   Cholesterol is catabalized 

into bile acids by two major routes, the classic (neutral) pathway and the alternative 

(acidic) route (McClean et al., 2012).  Primary bile acid formation in the classic neutral 

route requires CYP7A1 to make 7α-hydroxyxholesterol, then subsequent oxidations 

(Russel. 2003).  In the alternative (acidic) pathway, CYP27A1 is required to generate 27-

hydroxycholesterol and CYP7B1 to modify it (Norlin and Wikvall. 2007).    In the brain, 
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bile acid synthesis by CYP46A1 converts cholesterol to (24S)-hydroxycholesterol which 

allows its permeablility across the blood brain barrier (Mast et al., 2010).  (24S)-

hydroxycholesterol (and other oxysterols) activate the liver X receptor (LXR) (Hylemon 

et al., 2009; Makishima et al., 1999).  As previously discussed, CYP51A1 (sterol 14 

alpha-demethylase) removes the 14 alpha-methyl group of lanosterol.  This is the first 

rate limiting step after squalene in cholesterol biosynthesis.  This 14 alpha-demethylation 

step was demonstrated to be dependent on addition of NADPH and cytochrome P450 

reductase (Trazkos et al., 1984; Fischer et al., 1989).   Some of the P450 cytochromes 

involved in bile acid synthesis, have dual roles in vitamin D synthesis (McClain et al., 

2008).  

          Three cytochrome P450 hydroxylases are responsible for vitamin D synthesis and 

degradation: the liver D-25-hydroxylase (25-OHase), 25(OH)D-1alpha-hydroxylase 

CYP27B1 and CYP24A1 in the kidneys (Chen et al., 2012).  The active form of vitamin 

D, 1 alpha, 25-dihydroxyvitamin D, interacts with the vitamin D receptor to induce anti-

proliferative, anti-invasive, pro-apoptotic and pro-differentiation activities (Otto et al., 

2003).    Recently is has been shown that both CYP 27B1 and CYP24A1 are expressed in 

many tissues and cells, including the prostate, implicating their potential involvement in 

processing Vitamin D in prostate cancer (Flanagan et al., 2006; Chen et al., 2012).  

 

1.4.6 Cytochrome P450 reductase (POR) mutations 

 

  A variety of POR mutations and polymorphisms have been linked to several 

characteristics in the heterogeneous disease Antley Bixler Syndrome (ABS) (Miller. 

1986). ABS collectively comprises a group of heterogeneous disorders characterized by 
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skeletal, cardiac, and urogenital abnormalities (Miller. 2012).  ABS has often been 

associated with mutations in fibroblast growth factor receptor 2 (FGFR2) and cytochrome 

P450 reductase (Chun et al., 1998; Miller. 2012). Recessive mutations in POR are often 

found in more disordered steroidgenesis type ABS, while a mainly skeletal phenotype 

lacking genital anomalies or disordered steroidgenesis correlate with a dominant 

mutations in a FGFR2 gene (Fluck and Pandey. 2011). Clinically, these ABS 

heterogeneous pathologies include brachycephaly, facial hypoplasia, bowed ulna or 

femur, synostosis of the radius, camptodactyly and cardiac and urogenital abnormalities 

(Miller et al., 2005).  Severe POR mutations A287P and R457H have been shown to 

cause Antley-Bixler skeletal malformation syndrome (ABS) (Miller et al., 2004, Pandey 

et al., 2004, Fluck et al., 2004).  The A287P mutation is the most common documented 

mutation in Caucasian patients (Fluck et al., 2004; Arlt et al., 2004)., while the R457H 

mutation is most often found in the Japanese population (Huang et al., 2005; Fukami et 

al., 2009).  Infants with ABS had genital ambiguity, as a result of deficiencies of 17 

alpha-hydroxylase and 21-hydroxylase, caused (indirectly) by combined deficiencies in 

the steroidogenic enzymes CYP17A1 and CYP21A2, and also by the sex steroid 

aromatase CYP19A1 (Fluck et al., 2004).   

     The skeletal malformations seen in many (but not all) in POR ABS patients are 

thought to caused by disruption of enzymes involved in sterol synthesis, specifically 14 

alpha-lanosterol demethylase (CYP51A1) and squalene epoxidase, and disruption of 

retinoic acid metabolism catalyzed by CYP26 isozymes (Idkowiak et al., 2012).    
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     Another POR genetic disorder which is caused by the deletion of 1.2 Mb from the 

POR gene is Williams syndrome.  This deletion reduces the transcription of the POR 

gene, as a cis-regulatory element in lost, affecting expression of the POR transcript 

(Merla et al., 2006).    Some patients with Williams syndrome display characteristics of 

POR deficiency, ie radio-ulnar syntosis and other skeletal abnormalities (Charvat et al., 

1991).  Also, some individuals show modest defective cortisol synthesis, and defective 

androgen synthesis (Partsch et al., 1994).    

 

1.4.7 Cytochrome P450 reductase (POR) knockout mice and POR
Low 

mice 

 

   POR knockout (-/-) mice  with germline deletions of POR have been reported initially 

by two groups (Shen et al., 2002; Otto et al., 2003).  The first POR -/- mouse was 

constructed by a targeted deletion of the translational start site and membrane-binding 

domain of POR (Shen et al., 2002).  By mid-gestation, these POR -/- mice developed 

multipile embryonic defects including neural tube defects, eye, heart and limb 

abnormalities, an overall retardation of development and embryonic death at day 13.5 of 

gestation (Shen et al., 2002).  The POR heterozygotes displayed limited embryonic 

lethality.  A second POR -/- mice was generated by deleting exons 4 to 15, which contain 

the majority of the coding sequence of POR (Otto et al., 2003).  This POR -/- mouse 

displayed inhibited vasculogenesis and hematopoiesis, as well as defects in the brain and 

limbs, as it died embryonically, in early to mid gestation (Otto et al., 2003).   



Ph.D. Thesis – A. Bruce McMaster University Medical Sciences 

 32 

     In order to overcome the embryonic lethality of these POR -/- mice,  a hypomorphic, 

reduced POR (low expressing) mouse was generated by the insertion of a neomycin 

cassette into the 15
th

 intron of the genomic POR gene, and resulted in a global reduction 

in POR (74% to 95% decrease in POR expression) in all tissues examined (Wu et al., 

2005).  A decrease in overall body weight was observed in male adult PORlow 

homozygote mice, with decreased weights of heart, lung and kidney (Wu et al., 2005).  

Adult female homozygous PORlow mice had increased serum testosterone and 

progesterone and were infertile (Wu et al., 2005).  Both male and female adult POR low 

homozygous mice had decreased plasma cholesterol, with some mice displaying mild 

centrilobular hepatic lipidosis (Wu et al., 2005).  Also, reductions in the systemic 

clearance of pentobarbital, as well as hepatic microsomal metabolism of testosterone and 

acetomenophin were observed (Wu et al., 2005).  

 

 

1.4.8 Cytochrome P450 reductase (POR) and cholesterol 

 

     There are several lines of evidence that implicate cholesterol biosynthesis in POR 

deficient ABS.  Firstly, cholesterol biosynthesis requires two major enzymes lanosterol 

14alpha demethylase (CYP51A1) and a non-P450 enzyme squalene epoxidase (Ono and 

Bloch, 1975; Debeljak et al., 2003).  Two studies have shown that in fibroblasts from an 

infant with ABS and POR deficiency, researchers detected reduced lanosterol 

demethylase activity (Fluck et al., 2004 and Kelley et al., 2002).  Secondly, maternal 

ingestion of fluconazole, an antifungal agent that inhibits CYP51A1 activity is associated 

with ABS (Aleck and Bartley, 1997; Pursley et al., 1996).  Thirdly, Smith-Lemli-Opitz 
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syndrome, a cholesterol Sonic Hedge-Hog disorder is also associated with skeletal 

malformations (Miller et al., 2011).  Moreover, cholesterol modification of hedgehog 

proteins is required for signalling in bone formation (Cooper et al., 2003).  ABS 

phenotype is a result of POR mutations disrupting the metabolism of all-trans retinoic 

acid, as increased doses of maternally ingested retinoic acid partially rescued the 

phenotype of the POR -/- mouse (Otto et al., 2003). 

     CYP51A1 is a lanosterol 14 alpha-demethylase, and is the most conserved member or 

the CYP enzyme family as it is present in yeast, fungi and plants where it functionally is 

also conserved, participating in the synthesis of ergosterol (yeast and fungi) and sitosterol 

(plants) respectively (Stromstedt et al., 1996).  In mammals, the lanosterol de-

methylation reaction is essential for the biosynthesis of sterols.  Because of its high 

amino acid conservation across kingdoms, CYP51A1 can by inhibited by the anti-fungal 

compounds fluconazole and itraconazole.  While fluconazole has been used to treat 

meningitis, numerous reports of maternally ingested fluconazole resulted in babies born 

with ABS (Lee et al., 1992; Pursley et al., 1996).  Some of these congenital anomalies 

seen included craniofacial, skeletal (thin, wavy ribs and ossification defects) and cardiac 

defects (Pursley., et al., 1996).   Although serum concentrations are largely normal in 

individuals with ABS, lanosterol and dihydrolanosterol accumulate when cells from 

affected individuals are grown in cholesterol-depleted medium (Fukami et al., 2005).   

     Recently, a CYP51A1 (lanosterol 14 alpha-demthylase) -/- mouse was generated 

(Keber et al., 2011).  These mice died at embryonic day 15, with marked accumulation of 

the two CYP51A1 substrates, lanosterol and 24,25-dihyrolanosterol.  Cholesterol 
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precursors downstream of the CYP51A1 enzyme step were not detected, indicating a 

blockage of cholesterol synthesis at this step.  Lethality was attributed to heart failure due 

to hypoplasia, and vascular defects, suggesting that CYP51A1 was involved in heart 

development and coronary vessel formation, with downstream defects detected in sonic 

hedgehog signalling and retinoic acid signalling pathways (Keber et al., 2011).  This 

phenotype strongly resembles those of Antley-Bixler Syndrome (loss of cytochrome 

P450 reductase activity).  This knockout confirms a genetic interaction of POR and 

CYP51A1, and further implicates CYP51A1 as the major substrate of POR in Antley-

Bixler syndrome (Kerber et al., 2011).   

 

 

1.4.9 Tissue specific liver knockouts of cytochrome P450 reductase (POR) in mice  

develop fatty liver 

 

     In the liver, the P450 system executes a major role in bile acid synthesis, as well as in 

the metabolic breakdown of xenobiotic chemicals.  Several groups have generated liver 

specific mouse models with POR deleted in the mouse liver (Gu et al., 2003,Henderson 

et al., 2003, Weng et al., 2005).  

     These mice with conditional liver POR deletions developed fatty liver, characteristics 

similar to non-alcoholic fatty liver disease. These mice developed hepatic steatosis, 

which had accumulated triglycerides and cholesterol esters, and had around a 90% 

reduction in bile acid production, and increased lipid metabolism resulting in fatty liver.  

This severe hepatic lipidosis was characterized by the accumulation of diglycerides, 

triglycerides and monosaturated fatty acids, which eventually led to development of 

fibrosis and inflammation  (Weng et al., 2005; Mutch et al., 2007). 
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Specifically, POR null liver mice had drastic increases in hepatic lipid content 

(diacylglycerols, triacylglycerols, phosphtidylcholine and cholesterol esters) and a 

specific enrichment in n-7 and n-9 monounsaturated fatty acids.  In the liver, cholesterol 

is converted to bile acids by the cytochrome P450 enzymes CYP7A1 and CYP8B1, 

which could explain why bile acid reductions were lower in these livers (Mutch et al.  

2007).    Numerous groups continue to study this liver POR -/-  mouse and the 

mechanisms for the observed fatty liver, with data pointing to lipids accumulating in the 

liver due to impaired secretion (Mutch et al., 2007, Finn et al., 2009., Porter et al., 2011). 

     In the experiments with the POR -/- liver mice, metabolic changes in drug metabolism 

were also measured (Henderson et al., 2003).  Hepatic POR-/- mice had a dramatically 

reduced ability to metabolize the narcotic drug pentobarbital, as well as the analgesic 

acetaminophen (Henderson et al., 2003).  This further demonstrates the predominant role 

of the cytochrome P450 liver enzymes in metabolic involvement in the pharmacology 

and toxicology of these compounds. 
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1.5 Hypothesis, Objectives and Summary of thesis work 

 

1.5.1. Hypothesis 

Initially we set out to determine how CYB5D2 attenuated the function of the PTEN 

tumour suppressor.  We hypothesized that CYB5D2 was directly inhibiting PTEN.  

Alternatively, our null hypothesis addressed whether CYB5D2 conferred survival from 

the inhibition of the PI3Kinase signalling pathway.   At the time these studies were 

initiated, CYB5D2 was classified as a “hypothetical protein”.  Therefore we needed to 

determine if CYB5D2 was a real bona fide protein, thus an antibody to detect the 

endogenous CYB5D2 protein was generated.  During the development of a CYB5D2 

antibody, CYB5D2 was observed to inhibit SREBP signalling in transient transfection 

assays.  We therefore hypothesized that CYB5D2 inhibited SREBP signalling because it 

could co-immunoprecipitate with ectopic Insig1and stabilize it. Alternatively, in a 

corresponding null hypothesis, we addressed whether the heme binding of CYB5D2 was 

required for this inhibition of SREBP signalling.  Subsequently, the requirement of heme 

binding of CYB5D2 to inhibit SREBP signalling was uncovered, using a CYB5D2(D86G) 

heme binding defective mutant.  We attempted to determine why heme binding of 

CYB5D2 was required for inhibition of SREBP signalling.  More specifically, we 

hypothesized that heme binding was required for CYB5D2 to function in the cytochrome 

P450 reductase and P450 cytochrome system, resulting in the regulation of sterol 

synthesis and Insig1 stability.  We predicted that CYB5D2 would modulate CYP51A1 

(lanosterol demethylase) like Dap1p and PGRMC1 did.  Lastly, we questioned whether 



Ph.D. Thesis – A. Bruce McMaster University Medical Sciences 

 37 

other CYB5D2 functions were associated with heme binding, and loss of CYB5D2 

expression.   

 

1.5.2. Objectives 

Aim  1. To determine whether CYB5D2 is a direct negative regulator of the PTEN tumor 

suppressor protein, or if CYB5D2 attenuated ectopic PTEN death through another 

mechanism. 

Aim 2.  Initially, CYB5D2 was uncharacterized and classified as a “hypothetical protein”.  

Published reports of the protein were non-existent, and a commercially produced 

antibody was not available.  Therefore a polyclonal antibody was generated to determine 

if the CYB5D2 gene encodes for a bona fide protein, and to determine where the 

endogenous CYB5D2 protein was expressed.   

Aim 3.  To examine how CYB5D2 modulates SREBP signalling.  Specifically, we 

addressed if CYB5D2 inhibited SREBP signalling because of CYB5D2 binding and 

stabilization of the ectopic Insig1 protein, or was this due to CYB5D2`s ability to bind to 

heme?  In order to address this question a heme binding defective mutant was generated 

and characterized. 

Aim 4.  To determine why heme binding of CYB5D2 was required to inhibit SREBP 

signalling.  A D86G heme binding defective mutant of CYB5D2 was made that could not 

inhibit SREBP signalling, or stabilize ectopic Insig1.  I next researched why heme 

binding of CYB5D2 was required to inhibit SREBP signalling. 
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Aim 5.  To ascertain the role of heme binding in CYB5D2 functions.   Using this 

CYB5D2(D86G) heme binding defective mutant, and a CYB5D2 shRNA, I examined the 

heme binding requirement in the functions of CYB5D2 in conferring survival from 

chemotherapeutic compounds, regulation of proliferation, stabilizing CYP51A1 and 

binding to cytochrome P450 reductase (POR). 

 

1.5.3. Summary of thesis work      

     Initially we set out to examine how CYB5D2 prevented PTEN induced apoptosis in 

LNCAP prostate cancer cells.   CYB5D2 also prevented ectopic PTEN from killing U87 

glioma cells.  In U87 cells stably expressing CYB5D2, the ability of PTEN to kill U87 

cells was attenuated, and its ectopic expression was sustained.  When CYB5D2 sustained 

ectopic PTEN expression, we observed reduced levels of phosphorylated serine 473 

ATK/PKB, indicating that PTEN was expressing sufficiently in the inactivation of the 

PI3Kinase pathway.   When these dual expressing CYB5D2 + PTEN U87 cells were 

cultured in reduced serum conditions, CYB5D2 could be immunoprecipitated as a 56 

kDa dimer.  CYB5D2 did not co-immunoprecipitate with PTEN in these conditions. 

CYB5D2 also conferred survival from serum starvation in NIH3T3 cells.   While 

CYB5D2 could confer survival from serum starvation, CYB5D2 could not co-

immunoprecipitate with PTEN in these NIH3T3 cells.  Moreover, CYB5D2 serum 

starved NIH3T3 cells were more viable after three days of culturing without serum. 

When cultured in reduced serum, CYB5D2 could also be immunoprecipitated as a 56 

kDa dimer. A schematic model summarizing this work is seen in figure 1.2. 
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Figure 1.2 Schematic Model of Regulation for CYB5D2`s Pro-Survival Functions. A.  

A PTEN retrovirus serves to inactivate PI3Kinase in U87 cell, promoting cell death.  

CYB5D2 conferred survival from ectopic PTEN death.  B.  Serum withdrawl serves to 

inactivate PI3Kinase in NIH3T3 cells.  CYB5D2 confers survival from serum starvation 

in NIH3T3 cells. 
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     A polyclonal antibody to CYB5D2 was made to the COOH terminal of CYB5D2.   

 

Specificity of this antibody was confirmed with siRNA and shRNA knockdown 

methodologies.   This antibody detected the presence of endogenous CYB5D2 in liver, 

kidney, breast, prostate and neural cancer cell lines.  CYB5D2 protein was not detected in 

HEPG2 liver cells, but was detected in Huh7 liver cells.    

     In order to ascertain the role of the heme binding domain of CYB5D2, I generated a 

heme binding defective mutant.  Examining the structure of the heme binding domain, 

three conserved tyrosines, Y73, Y79 and Y127 were individually mutated to alanine, 

along with a conserved aspartic acid D86 which was mutated to glycine.  These CYB5D2 

mutants were measured for heme binding.  When these three conserved tyrosines were 

individually mutated to alanine, they still maintained the ability to bind to heme-agarose.  

The CYB5D2(D86G)  mutant however, could not be precipitated by heme-agarose.  

When purified as a recombinant protein this CYB5D2(D86G) mutant could not be 

oxidized or reduced, like wild type recombinant CYB5D2 protein.  Functionally, this 

CYB5D2(D86G) behaves in the opposite fashion to wild-type CYB5D2.  CYB5D2 

inhibited HeLa cell proliferation and growth in soft agar. Stable CYB5D2(D86G) HeLa 

cells and CYB5D2 shRNA HeLa cells demonstrate increased cell proliferation and 

growth in soft agar.  CYB5D2 conferred survival from chemotherapeutic compounds 

(paclitaxel, cisplatin and doxorubicin) in HeLa cells.  CYB5D2(D86G)-expressing HeLa 

cells and CYB5D2 shRNA HeLa cells have diminished survival responses from these 

chemotherapeutic drugs.  Previously, the transmembrane domain of CYB5D2 was 
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responsible for the subsequent peri-nuclear localization of CYB5D2, and for its ability to 

confer survival from etoposide (Xie et al., 2011).   

     CYB5D2 inhibited 3xSREBP reporters in transient transfection assays in 293T cells.  

Moreover, when CYB5D2 and Insig1 were co-transfected into 293T cells, CYB5D2 co-

immunoprecipitated with ectopic Insig.  More significantly, CYB5D2 stabilized ectopic 

Insig1 levels, when both cDNAs were transfected into 293T cells and treated with 

cyclohexamide.  CYB5D2 can inhibit the transcriptional activity of full length SREBP1c 

and SREBP2 in 3xSRE-Luciferase assays.  CYB5D2 cannot inhibit the mature amino 

terminal form of SREBP1c and SREBP2 in 3xSRE Luciferase assays.  The heme binding 

domain and the transmembrane domain of CYB5D2 were required for inhibition of 

3xSRE-reporters, when transiently co-transfected into 293T cells.  The CYB5D2(D86G) 

heme binding defective mutant could not inhibit 3xSRE-Luciferase reporters.  This 

CYB5D2(D86G) mutant destabilized ectopic Insig1 with cyclohexamide treatments, even 

though it could still interact with ectopic Insig1.  PGRMC1 can also stabilize ectopic 

Insig1, and can also inhibit a 3xSRE-reporter in transient transfection assays performed 

in 293T cells. 

    CYB5D2 can co-immunoprecipitate with cytchrome P450 reductase, (POR), when 

both CYB5D2 and POR were co-tansfected into 293T cells.  When ectopic POR is co-

transfected with ectopic CYB5D2, CYB5D2 is induced into a 56 kDa dimer form. In 

stable CYB5D2 Hela cells, ectopic CYB5D2 can immunoprecipitate with endogenous 

POR in serum free conditions.  When CYB5D2(D86G) was stably expressed in HeLa 

cells, it was unable to co-immunoprecipitate with endogenous POR in 10% FBS or 
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serum-free culture conditions.  HMG CoA reductase protein levels were higher in 

CYB5D2-expressing HeLa cells relative to control cells, and CYB5D2(D86G) cells.  In 

stable CYB5D2 shRNA HeLa cells, CYP51A1 protein levels were significantly reduced.  

This would indicate that the function of endogenous CYB5D2 is to stabilize CYP51A1, 

similar to Dap1. Protein levels of endogenous Insig1 were also reduced in stable 

CYB5D2 shRNA HeLa cells. These CYB5D2 shRNA HeLa cells were more susceptible 

to increasing concentrations of mevalonate than shRNA HeLa cells.  Lastly these 

CYB5D2 shRNA HeLa cells had a slight reduction in CYP3A4 activity compared to 

shRNA HeLa cells.   

     In stable CYB5D2-expressing Huh7 liver cells, ectopic CYB5D2 slightly increased 

cell proliferation (not significant statistically).  Conversely, stable CYB5D2(D86G)-

expressing Huh7 cells displayed decreased cell proliferation.  Additionally, CYB5D2 

shRNA Huh7 cells proliferated slower compared to shRNA control cells.  This result is 

the opposite to that seen in HeLa cells for CYB5D2, CYB5D2(D86G) and CYB5D2 

shRNA. In CYB5D2 shRNA Huh7 cells, reduced levels of Insig1 protein were observed.  

Ectopic CYB5D2 (in stable Huh7 cells) could co-immunoprecipitate with endogenous 

POR in serum reduced culture conditions.  Ectopic CYB5D2(D86G) (in stable Huh7 cells) 

could not co-immunoprecipitate with endogenous POR. This result is the same as seen 

for CYB5D2 and endogenous POR in HeLa cells.   Furthermore, CYB5D2 shRNA Huh7 

cells could not form colonies in soft agar, unlike shRNA control Huh7 cells. 

Subcutaneous mouse xenograft tumours generated from CYB5D2 knockdown Huh7 cells 

displayed significantly reduced size compared to Huh7 shRNA control xenograft tumours.    
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Figure 1.3 Schematic model of CYB5D2 function. A. Inactivation of PI3Kinase by 

serum withdrawl induces CYB5D2 into a complex with POR.  CYB5D2 stabilizes 

CYP51A1, and activates it with POR.  This results in the turnover of lanosterol levels. B. 

The CYB5D2/POR interaction activates the drug metabolizing cytochrome CYP3A4. C. 

A heme binding defective CYB5D2(D86G) cannot bind to POR, and acts like a dominant 

negative. 
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Figure 1.4 Overall schematic model of CYB5D2 .  1.  CYB5D2 stabilizes 

CYP51A1(lanosterol demethylase) and activates it through cytochrome P450 reductase 

(POR).  This facilitates the turnover of lanosterol, decreasing its levels, increasing the 

rate at this step in sterol synthesis.  2. Reduced lanosterol results in less HMG CoA 

reductase associated with Insig1, which means more Insig1 is available for SCAP.  This 

also results in more stable HMG CoA reductase. 3.  More stable HMG CoA reductase 

and CYP51A1 result in more cholesterol. 4. Increased cholesterol binds to SCAP which 

now binds to Insig1 resulting in the stabilization of Insig1 and inhibition of SREBP 

signalling. Inset from Goldstein, J., DeBose-Boyd, R., and Brown, M. Protein Sensors for 

Membrane Sterols.  Cell.  2006.  124. 35-46. 
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Chapter 2.  MATERIALS AND METHODS 

 

 

2.1 Cloning of CYB5D2 

 

     The CYB5D2 cDNA was cloned from a cDNA library derived from normal prostate 

by Dr. Justin He in 2001 (McMaster University, Hamilton. Ontario. Canada).  The cDNA 

was found in a screen of LNCAP prostate cancer cells, for its ability to confer survival 

from ectopic PTEN induced cell death.  CYB5D2 was then cloned into pCDNA3.0 with 

an N-terminal Flag tag.  

 

2.2 Plasmids and constructs 

     The cDNA for CYB5D2 was cloned with an N-terminal Flag tag into pcDNA3.0 

(Invitrogen), and pLHCX.  Empty vectors pcDNA3.0 and pLHCX were used as controls.  

PTEN was subcloned in the pcDNA3.0 plasmid, and pBabe retroviral plasmids. The 

CYB5D2(D86G), and all heme binding domain mutants (Y73A, Y79A, and Y127A) 

were mutated and re-inserted back into the pcDNA3.0 plasmid.  The mutants with 

deletions in the transmembrane domain (∆TM) and the entire cytochrome b5 heme 

binding domain (∆CYB5, ~300bp deleted) were subcloned into the pcDNA3.0 plasmid, 

and described previously (Xie et al., 2010).  The polymorphism mutants, R7G, R7P and 

Q167P were generated according to our site directed mutagenesis protocol (see site 

directed mutagenesis section) and cloned in the pcDNA3.0 plasmid.   

For generation of GST fusion proteins, the PGEX4T.1 plasmid was used to generate GST 

fusion proteins.   



Ph.D. Thesis – A. Bruce McMaster University Medical Sciences 

 46 

 

SREBP1 plasmids were obtained from Dr. Joan Krepinsky (McMaster University, 

Hamilton. Ontario. Canada), who originally obtained the SREBP1c full length from Dr. 

Almut Shulze (London Research Institute, London. U.K.), and the SREBP1c mature 

nuclear form from Dr. Hitoshi Shimano (University of Tsukuba, Tsukuba. Japan). The 

PGRMC1 plasmid was obtained from Dr. Peter Espenshade (NIH Institute, Washington 

D.C. U.S.A.). The YFP-Cytochrome P450 plasmid was obtained from Dr. Byron Kemper 

( University of Illinois at Urbana-Champaign, Illinois, U.S.A.).  The Insig1 plasmid (c-

myc tagged) was obtained from Dr. Richard Austin (McMaster University, Hamilton. 

Ontario. Canada).  The 3xSRE-GFP and the 3xSRE-Luciferase plasmid were also 

obtained from Dr. Richard Austin (McMaster University, Hamilton. Ontario. Canada).  

The full length SREBP2, and the nuclear N-terminal mature form were also obtained 

from Dr. Richard Austin (McMaster University, Hamilton. Ontario. Canada). 

     The 3xSRE-GFP and the 3xSRE-Luciferase constructs used in this thesis contain this 

SREBP responsive element from the LDL Receptor 5′-ATCACCCCAC-3` (Brown and 

Goldstein. 1997; Athanikar and Osborne 1997; Yokoyama et al., 1993). 

 

2.3 Cesium Chloride/Ethidium Bromide (CsCl/EthBr) DNA preparation 

 

     All plasmids used in cell culture transfections were prepared according to our 

CsCl/EthBr protocol.  Initially, an overnight starter culture of 3 ml Luria Broth (LB, 10 g 

tryptone, 5 g yeast extract, 10 g NaCl/1 Litre ddH20) (usually with Ampicillin, 100 µg/ml) 

was inoculated with a single clone containing our plasmid of interest, and shaken 

overnight at 37˚C at 250 rpm.  The next day, this starter culture was used to inoculate a 
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500 ml culture of LB media (ampicillin 100 µg/ml), shaking for several hours at 250 rpm, 

at 37˚C.  These large scale inoculated cultures were then centrifuged at 5x10
3
 g for 15 

minutes at 4˚C.  Supernatant was decanted and pellets were then resuspended in 10 ml 

GTE solution (50 mM glucose, 25 mM Tris pH=8.0, 10 ml EDTA).  To this solution 20 

ml of 0.2N NaOH/1% SDS was added, inverted several times to mix, and incubated on 

ice for 5-10 minutes.  Next 15 ml of a potasium acetate solution (3M K+, 5M Acetate 

pH=4.8) was added, and solutions were mixed by inverting several times, and then placed 

on ice for 20 minutes. 

     The supernatant was then centrifuged at 4˚C at 12x10
3  

g for 15 minutes.  The 

supernatant was removed to new tubes and 0.67 X volume of isopropanol was added, 

mixed by inversion, then centrifuged at 2x10
4
 g for 15 minutes at 4˚C.  The following 

pellet was then washed with 5 ml of 70% ethanol and centrifuged down at 6x10
4
 g for 5 

minutes at 4˚C.  The final pellet was air dried at room temperature and resuspended in 8.3 

ml CsCl/TE (8.8 g of CsCl was added to 8 ml TE).  This DNA CsCl/EthBr solution was 

added to a Beckman Quick-Seal tube with a pasteur pipette.  Next, 800 µl of 1 mg/ml 

EthBr solution was added to these tube and then tubes were topped up with mineral oil to 

eliminate any bubbles.  Tubes were then balanced by weight and then sealed with a heater 

from the Beckman Quick-Seal kit.   Sealed tubes with the DNA and CsCl/EthBr in TE 

were then centrifuged (with red metal caps) in a Beckman Ultracentrifuge, in a Ti70 rotor 

at 6x10
4
 rpm for 24 hours.   

     Twenty four hours later, the DNA in the lower of two bands was removed with a 20 

mm gauge needle.  Ethidium Bromide was extracted with an equal volume of saturated 
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Butanol until all red color was removed.  DNA was precipitated with 100% ethanol, and 

a final wash with 70% ethanol.  DNA pellets were air dried in a sterile tissue culture 

laminar flow hood and resuspended in 1ml of sterile ddH20.  DNA was quantified in a 

spectrophotometer.     

 

 

2.4 Generation of a carboxyl terminal CYB5D2 polyclonal antibody 

 

     Two antibodies were made to the carboxyl terminal portion of CYB5D2.  The 

carboxyl terminus of CYB5D2 (amino acids 171 to 264) was cloned in-frame into the 

GST fusion plasmid pGEX4T.1, that had been digested with the restriction enzymes 

BamHI and XhoI.  This region does not include the heme binding domain.  

 

     BL21 Rossetta bacteria was transformed with pGET4T.1 containing the carboxyl 

terminus of CYB5D2 (aa 171-264) plasmid and cultured to an optical density of 1.0-1.2 

at absorbance 595 nm.  Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added at a 

final concentration of 0.2 mM to induce expression of recombinant COOH-CYB5D2.  

IPTG induced cultures were shaken overnight at room temperature. 

 

    The following day, the culture was centrifuged at 4x10
4
 g for 15 minutes at 4˚C, and 

the pellet resuspended in 10 ml of MT-PBS-1 mM DTT.   This resuspended pellet was 

sonicated at medium speed (5), “remote” setting, on ice, 20 times for 10 seconds, with a 

20 second rest interval between each sonication.  Triton X-100 (10%) was then added to a 

final concentration of 1%, and the solution centrifuged at 10x10
4 

g, for 20 minutes at 4˚C.  

The supernantant was then supplemented with 1 ml of reduced glutathione agarose, and 
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incubated on a nutator for 1 hour at 4˚C.  This slurry was then washed with cold MT-PBS 

and then treated with 1 ml of 5 mM glutathione in several elutions, waiting 10 minutes 

for the second incubation of the second eluted fraction.   Successful production of 

recombinant COOH-CYB5D2 was quantified with Bradford assays, and verified with 

SDS-PAGE gel and coomasie blue staining, and western blots. 

 

   To prepare glutathione agarose, 70 mg of dried powder was added to 7-10 mls of ddH20, 

and incubated on a nutator at 4˚C overnight.  This slurry was then washed with 10 mls of 

MTPBS –DTT (with DTT at a final concentration of 1 mM).  This slurry was then 

resuspended in 1ml of MTPBS-DTT, and stored at 4˚C. 

 

 

2.5 Injection of rabbits and purification of rabbit immunoglobulin (IgG) from       

serum. 

 

     An equal volume of complete Freund’s adjuvant was mixed thoroughly with 300-400 

µg of recombinant GST-COOH-CYB5D2.  This was used by the Central Animal Facility 

at McMaster university to inject two large New Zealand White rabbits (8 to 10 weeks 

old), at several subcutaneous points.  Rabbits were injected for over one year, with 

injections occurring every two months.  Serum was extracted roughly one month after 

each injection, and immunoglobulins purified and tested for specificity.  Western blots 

and immunoprecipitations were carried out to determine antibody specificity.  The final 

bleeds were carried out after one year, and serum immunoglobulins purified with 

ammonium sulfate “salting out” precipitation and affinity purification.  Affinity 

purification was performed using recombinant COOH-CYB5D2 that had the 
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transmembrane domain deleted.  Deletion of the transmembrane domain resulted in 

significantly higher induction and expression of the recombinant protein in E.-coli.  This 

COOH CYB5D2 was then coupled to CnBr Sepharose (CNBr)-activated-sepharose 4B 

(Sigma) to a final concentration of 9 mg recombinant protein/ml CNBr-sepharose 4B 

(CNBR) beads.  Approximately, 15 mls of rabbit serum was initially eluted through a 

GST-coupled CNBR activated sepharose 4B column to exclude IgG against GST. The 

elution was then applied to a CYB5D2 coupled sepharose 4B column to affinity purify 

the anti-CYB5D2 antibody. The antibody specificity was confirmed, as signals could be 

specifically competed by addition of GST-CYB5D2 (1 mg/mL) but not GST (1 mg/mL) 

during western blotting analysis (Xie et al., 2010). 

  

2.6 Calcium Chloride Transfection Method 

All DNA (CsCl prepared ) was added to 450 μl sterile ddH20.  To this DNA/ddH20, 50 μl 

of 2.5 M calcium chloride solution was added and mixed.  This cocktail was then allowed 

to incubate at room temperature for 5 minutes.  Then an equal volume of 2xHBSP (500 μl) 

was added while gently vortexing in a sterile tissue culture incubator  This DNA cocktail 

was incubated at room temperature for 15-20 minutes.  This DNA cocktail was then 

added to our 293T plates drop-wise.  This transfection cocktail was incubated for 12 

hours, and then the media replaced, and cultured for 48 hours.     

2.7 Generating Stable cell lines of CYB5D2 

    
     All retroviral packaging was performed in 293T cells. Briefly, a 10 cm plate of sub-

confluent (~70%) 293T cells were transfected via calcium phosphate transfection method. 



Ph.D. Thesis – A. Bruce McMaster University Medical Sciences 

 51 

All calcium phosphate transfections for retrovirus and shRNA lentivirus were done in 

293T cells.  

 

 

   To package retrovirus, 10 µg of each retroviral packaging plasmids (VSV and GP), 

were co-transfected with 10 µg of pLHCX containing CYB5D2 cDNA.  Twelve hours 

post-transfection, media was changed and replaced with fresh media.  Viral conditioned 

media was then collected forty-eight hours later and centrifuged at 48 x10
4 

g for 2 hours.  

After centrifugation, supernatant was immediately decanted into bleach, and the pellet 

resuspended with 1ml of media, and subsequently added to 1 x10 cm plate containing the 

cells of interest (HeLa, Huh7, NIH3T3 and U87 cells).  These cells were incubated with 

the concentrated viral media for 3-4 hours with gentle agitation every 20 minutes.  

Afterwards, 9 ml of media was added to the plate and left overnight to incubate.  The 

following day media was replaced with media containing antibiotics for successful 

selection (hygromycin at a concentration of 0.5 mg/ml for pLHCX constructs).  Media 

containing corresponding hygromycin (0.5 mg/ml) was replaced every 2 or 3 days for 

two weeks to select for successful stable viral incorporation.  All stable cell lines (HeLa, 

Huh7, NIH3T3 and U87) were confirmed by Western blot analysis. 

 

 

2.8 Generating stable shRNA-mediated CYB5D2 knockdown cells 

 

     A pooled population of CYB5D2 shRNA lentiviral plasmids was purchased from 

Santa Cruz.  These were packaged along with lentiviral packaging plasmids VSV, GP 

and Rev, by transfecting 10 µg of each plasmid into 1x10 cm plate of 293T cells via 
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calcium phosphate transfection.  The same methodology for packaging retrovirus was 

then used to package the shRNA CYB5D2 knockdown virus to infect HeLa and Huh7 

cells (see retrovirus production of stable cell lines).  Puromycin (1µg/ml) was 

subsequently added to select for successful infection of CYB5D2 shRNA virus.   

Successful stable CYB5D2 shRNA was confirmed by western blot analysis using the 

CYB5D2 polyclonal antibody.   

 

 

2.9 Construction of CYB5D2 Mutants through site-directed mutagenesis 

 

     All site directed mutants were made according to a slightly modified version of the 

Stratagene Quick Change site directed mutagenesis kit.  Briefly primers were designed by 

the Primer X program, using overlapping primers with the designated mutation in both 

primers.  Primers were then ordered from the McMaster Mobix facility.  To start, 0.5 µl 

of a forward primer (2.5 pmoles/µl), 0.5ul of a reverse primer (2.5 pmoles/µl), 1.0 µl of 

dNTP mix (10 mM each), 1.25 µl 10xPfu buffer, 1µl ( template DNA, 20 ng), 0.5 µl of 

PfuUltra HotStart (Invitrogen),  and 8.25 µl sterile ddH20.  This reaction was gently 

mixed and PCR was performed. Initially, a 5 minute denaturing step at 95˚C was 

performed, followed by 18 cycles (45 seconds denaturing at 95˚C, 45 seconds annealing 

at 60˚C, followed by 8 minutes extension at 68˚C).  One final extension step for 10 

minutes at 68˚C was performed.  Conditions for each primer are listed in Table 2. 

     Amplified DNA was then extracted by phenol/chloroform and precipitated first with 

100% ethanol, then 70% ethanol, lyophalyzed, then resuspended with 10 µl of sterile 

ddH20.  The amplified PCR product was then digested with the DpnI restriction 
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endonuclease for 3-5 hours at 37˚C.   Digested DNA was precipitated by 

phenol/chloroform, then transformed into XL-10 Gold competent cells, and plated at 

37˚C overnight.   The primers for each specific mutant are listed below, in Table 1. 

 

Table 1. Site-directed mutants for CYB5D2 and their primer sequences 

 
Q167K Primer 1 

Primer 2 
AAAGAGAAGCAGACATTCCCGC  
CAGCTGTAGTTTGTTGGCCTCC                  

R7P Primer 1 

Primer 2 
CCCAAGCTTATGTTGAGGTGCGGAGGCCCTGGGCTTTTGTTGGG 
GCTCTAGATTAGAGTGGAAGGGAGCATGTGATGG 

R7G Primer 1 

Primer 2 
CCCAAGCTTATGTTGAGGTGCGGAGGCGGTGGGCTTTTGTTGGG 
GCTCTAGATTAGAGTGGAAGGGAGCATGTGATGG 

Y73A Primer 1 

Primer 2 
GTCCTCCGGCCGGAGGCACTTTGAGCCTGGGTCCCACTATAG 
CTATAGTGGGACCCAGGCTCAAAGTGCCTCCGGCCGGAGGAC 

Y79A Primer 1 

Primer 2 
CTGGGTCCCACTTTAGCGGCTTCGC 
GACCCAGGGTGAAATCGCCGAAGCG 

D86G Primer 1 

Primer 2 
CTTCGCAGGCCGAGGAGCATCCAGAGCTTTC 
GAAAGCTCTCTGGATGCTCCTCGGCCTGCGAAG 

Y127A Primer 1 

Primer 2 
CATTCTATGAGAAGAATTTTGTGTGTGTTGGGAGGG 
CCCTCCCAACACACACAAAATTCTTCTCATAGAATG 

GST/CYB5D2- 

GST/D86G 

Primer 1 

Primer 2 
CGGGATCCGGTCCCCGCGCT 
GGAATTCTTAGAGTGGAAAGGAGCAT 

 

 

 

Table 2. Site-directed mutants for CYB5D2 and their PCR conditions 

 
Q167K 94

O
C 1 minute, 59

0
C 45 seconds, 72

0
C 14 minutes, 35 cycles 

R7P 94
O
C 45 seconds, 64

0
C 45 seconds, 72

0
C 2 minutes, 35 cycles 

R7G 94
O
C 45 seconds, 64

0
C 45 seconds, 72

0
C 2 minutes, 35 cycles 

Y73A 95
O
C 50 seconds, 50

0
C 50 seconds, 68

0
C 7 minutes, 18 cycles 

Y79A 95
O
C 50 seconds, 60

0
C 50 seconds, 68

0
C 7 minutes, 18 cycles 

D86G 95
O
C 50 seconds, 60

0
C 50 seconds, 68

0
C 7 minutes, 18 cycles 

Y127A 95
O
C 50 seconds, 60

0
C 50 seconds, 68

0
C 7 minutes, 18 cycles 

GST/CYB5D2- 

GST/D86G 
94

O
C 45 seconds, 56

0
C 45 seconds, 72

0
C 2 minutes, 35 cycles 
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2.10 Heme binding assays demonstrating D86G is heme binding defective 

 

     Heme agarose chromatography was performed on lysates prepared from 293T cells 

that were transfected with CYB5D2, and CYB5D2 heme binding domain mutants, Y73A, 

Y79A, D86G and Y127A.  10 µg of each plasmid were individually transfected into 

293T cells via Calcium Phosphate.  DMEM complete media was changed after 12 hours 

each transfection.  After 48 hours, cells were scraped in cold 1xPBS, centrifuged at 5x10
4 

g for 5 minutes at 4˚C, then lysed in 1.0% Triton, 0.5 mM EDTA, 150 mM NaCl, and 

incubated for 20 minutes on ice.  After lysis, cells were centrifuged for 5 minutes at 

13x10
3
 g at 4˚C.  After centrifugation, supernantant was transferred to a fresh tube and 

then 100 µl of this supernatant was added to 900 µl of co-immunoprecipitation buffer, 

and 20 µl of Hemin Agarose (Sigma) (washed three times with cold co-

immunoprecipitation buffer).  Subsequent lysates with heme-agarose were then placed on 

a shaker overnight at 4˚C.  The following day, samples were washed with co-

immunoprecipitation buffer, six times, and the final slurry resuspended in 20 µl 

2xLamelli buffer.  Samples were then boiled for 5 minutes and centrifuged down at 

12x10
3
 g for 5 minutes at 4˚C.  These heme-agarose precipitated samples were then run 

on a 12% SDS-PAGE gels and subsequent western blots performed, using 100 µg of the 

corresponding whole cell lysate for input.  An M2 Flag antibody (Sigma) was used to 

probe these western blots.     
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2.11 In Gel Peroxidase assay 

 

   In order to produce higher amounts of recombinant GST-CYB5D2 and GST-D86G in 

BL21 E. Coli, the hydrophobic transmembrane domain, nucleotides 1-87, were deleted. 

Purified recombinant GST-CYB5D2 and GST-CYB5D2 (D86G) (200 µg) were 

resuspended in PBS. Solutions of protein were measured for absorbance by scanning 

from the wavelength 350 – 490 nm with an increment 1 nm using a spectrophotometer 

(Ultrospec2100). 

 

     Heme-bound GST-CYB5D2 was also assayed by peroxidase reaction staining 

following published conditions (Thomas et al., 1976; Kimura et al., 2008). Briefly, 10 µg 

of recombinant GST-CYB5D2 and GST-CYB5D2 (D86G) were individually incubated 

with heme (Sigma) (50 µM) at room temperature for 30 minutes, followed by separation 

by SDS-PAGE without addition of dithiothreitol (DTT). This SDS-PAGE gel was rinsed 

with TBST for 5 min, followed by developing signal using an ECL Western Blotting Kit 

(Amersham). 

 

2.12 Oxidation and reduction of CYB5D2 

 

In order to measure the oxidation and reduction of CYB5D2, the GST-fusion was 

removed from the purified recombinant CYB5D2 with thrombin.  One mg of purified 

recombinant GST-CYB5D2 and GST-D86G was cleaved with thrombin overnight at 

room temperature.  Cleaved recombinant CYB5D2 and D86G was separated from GST 
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using GST-Sepharose chromatography.  Eluted purified CYB5D2 and D86G was then 

measured using a Bradford assay.  

   Absorbance differences between these two thrombin cleaved CYB5D2 and D86G were 

measured in oxidized and reduced states.  Measurement of assays occurred in increment 

of 1nm using a spectrophotometer (Ultrospec2100).  In a reaction containing 200 mM 

NaOH, 40% pyridine, and 0.6 mM K3Fe(CN)6, heme a and b will be release from a heme 

binding protein and it will become oxidised. While heme c will not be released from 

cytochrome c, the existence of the protein does not interfere with heme c oxidization 

(Berry and Trumpower 1987). Thrombin-cleaved recombinant CYB5D2 and 

CYB5D2(D86G) proteins were reduced by sodium dithionite treatment and scanned for 

their absorbance peaks within the indicated wavelength range. 

 

2.13 Reporter Assays (Luciferase Assays) 

 

All reporter assays were done in 293T cells that were seeded into 24 well 

Plates, and performed in quadruplicate.  Cells were seeded at 5x10
3
cells per well, and 

transfected the next day with Polyethylenimine (PEI Sigma).  Each well was transfected 

with 5 µg of 3xSRE-Luciferase and 2.5 µg of β- galactosidase (β- gal) plasmid, along 

with cDNAs of interest (varying amounts indicated in figure legends).  All plasmids were 

purified by CsCl/EthBr method, and all reactions transfected with the same amount of 

DNA, topped up with pCDNA3.0 control plasmid.   

   PEI (Sigma) transfections were used for luciferase assays in 24 well plates in 500 µl of 

antibiotic free media.  A DNA mixture (0.5μg of 3xSRE-Luciferase Reporter, 0.25 µg of 

β-gal and cDNA of interest) was mixed with 62.5 µl DMEM media, and vortexed gently.  
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Next 1 µl of PEI (2 mg/ml) was added to this mix, gently vortexed and incubated at room 

temperature for 5 minutes.  This PEI/DNA cocktail was then added to the cells drop-wise 

and allowed to incubate for 4- 6 hours, when the transfection media was replaced with 

fresh media.  Beta-gal and Luciferase assays were performed after 48 hours.  

     Luciferase assays were performed using the PROMEGA Luciferase Assay Substrate 

kit.  Briefly, cells that were transfected in 24 well plates by PEI, were washed twice in 

1xPBS, then 100 µl of 1x Passive Lysis Buffer (from the 5x Reagent, PROMEGA) was 

added, and incubated for 30 minutes with gentle shaking at room temperature.  Samples 

were resuspended, and 25 µl used for a β-gal assay.  The remainder (75 µl) of the 

resuspended sample was added to 25 µl of Luciferase reagent and samples read 

immediately in a 96 well white Luciferase plate (COSTAR), on a LUMIstar BMG 

LABTECH luminometer.  Data was analysed with the corresponding BMG 

Labtechnologies, LUMIstar control program.  All luciferase values were then divided by 

their corresponding β-galactosidase (β-gal) assay values, to obtain a normalized value.  

     Beta-galactosidase assays were performed by lysing each well of the 24 well plate 

with 100 µl 1xPassive Lysis Buffer (as mentioned above), then taking 25 µl of each 

sample for the beta-galactosidase assay.  To each sample, 3 μl of 100xMg Buffer, 66 µl 

of ONPG (4mg/ml in N2HPO4) made fresh, 211 µl of Sodium Phosphate Buffer (0.1M 

NaHPO4 and 0.1M NaH2PO3) was added, pippetted up and down, and incubated at 37˚C, 

in clear 96 well plate, until yellow appeared in each sample.  A blank of the reagent mix 

was used as a background control. Samples were read for 5, 10, 15 and 20 minutes, at an 
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OD of 420 nm on a uQuant BIOTEK Instruments Inc., plate reader.  Only samples giving 

readings over 0.2 nm and under 0.8 nm absorbances were used.   

 

2.14 Lysates for Western blot analyses and co-immunoprecipitations 

 

Cell lysates for western blots were made as follows.  Cells cultured in a 10 cm plate were 

washed twice with cold PBS buffer.  Excess PBS was aspirated, and 1 ml of cold PBS 

was added to the plate.  Cells were scraped with a rubber policeman, and centrifuged 

down at 6x10
3
 rpm for 5 minutes at 4˚C.  The cell pellet was then resuspended in 500-

1000 µl of cell lysis buffer.  Cell lysis buffer consisted of 50 mM Tris pH 7.4-7.5, 150 

mM NaCl, 5 mM EDTA, 1% Triton X-100, 10 µM sodium fluoride, 10 µM sodium 

orthovanadate, 1 mM PMSF, 2 µg/ml leupeptin, and 10 µg/ml aprotinin.  Cells were 

resuspended in this lysis buffer and incubated on ice for 10 minutes.  Cells were then 

centrifuged at 12x10
3
 g for 10 minutes.  Bradford assays were then performed on the cell 

lysate supernatant.  Cell lysates were then resuspended in Laemmli buffer (final 

concentration of 1% SDS, 10% glycerol, 5% β-mercaptoethanol, 0.002% bromophenol 

blue and 75 mM Tris HCL), boiled for 5 minutes, then centrifuged at 12x10
3
 g for 5 

minutes, and stored at -80˚C.  

Immunoprecipitations 

     Co-immunoprecipitation experiments were performed on cells that had been freshly 

lysed with our lysis buffer (see above).  Cells cultured in 10 cm plates were washed and 

scraped in PBS.  Cell were centrifuged at 6x10
3
 rpm for 5 minutes at 4˚C and then lysed 

in 500-1000 µl lysis buffer.  After cells were lysed, and then centrifuged at 12x10
3
 gfor 5 

minutes at 4˚C, an equal volume of 100 µl of lysate was added to 900 µl of co-
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immunoprecipitation buffer (0.1% Triton X-100, 150 mM sodium chloride) solution.  

Protein A agarose was washed 2-3 times, and 20 µl of this slurry was added to these 

lysates in co-immunoprecipitation buffer.  Roughly 1 µg of antibody of interest was also 

added, and the mixture incubated on a shaker for several hours at 4
o
C.  All 

immunoprecipitations were then washed with co-immunoprecipitation buffer at least 6-8 

times, and the resulting slurry treated with an equal bed volume (20 µl to 25 µl) of 

2xLaemmli buffer and boiled for five minutes.  Boiled immunoprecipitations were then 

centrifuged down and stored at -80˚C.  A list of all commercial antibodies used, their 

dilutions, species and company of production are listed in table 3 below. 
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Table 3. Antibodies used for Western blot analyses 

 

ANTIBODY COMPANY SPECIES DILUTION 

HA 12CA5 SANTA CRUZ Mouse 

monoclonal 

1:1000 

HA Y-11 SANTA CRUZ rabbit polyclonal 1:200 

PTEN (A2B1) SANTA CRUZ Mouse 1:1000 

PTEN(138G6) Cell signalling Rabbit 1:1000 

Insig1  N-19 SANTA CRUZ goat polyclonal 1:200 

HMG CoReductase H-

3000 

SANTA CRUZ rabbit polyclonal 1:200 

Cytochrome P450 

Reductase (CYPOR) (F-

2) 

SANTA CRUZ Mouse 1:1000 

CYP51A1 13-431  Proteintech Group, 

Inc. 

Rabbit polyclonal 1:1000 

M2 Flag  F3165 Sigma Monoclonal 1:1000 

c-myc (9E10), sc-40 SANTA CRUZ Mouse 

monoclonal 

1:1000 

AKT C-20 SANTA CRUZ Goat 1:1000 

Phosphorylated serine 

473 AKT 587F11 

 Cell signalling Mouse 

monoclonal 

1:1000 

CyclinD1 H-295 SANTA CRUZ rabbit polyclonal 1:200 

CyclinE1 C-19  SANTA CRUZ rabbit polyclonal 1:200 

P27 (F-8) SANTA CRUZ Mouse 

monoclonal 

1:200 

P21 (C-19) SANTA CRUZ rabbit polyclonal 1:200 

IKappaBα 9242 Cell Signaling rabbit polyclonal 1:1000 

GFP (FL) Sc-8334 SANTA CRUZ Rabbit Polyclonal 1:1000 

Phosphorylated ERK 1/2 

(Thr202/Tyr 204) 

Cell Signaling Rabbit Polyclonal 1:1000 

GRP78 (N-20) SANTA CRUZ Goat 1:200 

 SREBP2  2A4 ID2 

hybridoma.  .  Cultures 

were grown in flasks 

and media and 

conditioned media was 

collected and IgG 

purified with Protein A 

agarose 

chromatography. 

SANTA CRUZ Mouse 

monoclonal 

1:200 

β-Actin C-11 SANTA CRUZ Goat polyclonal 1:1000 

SREBP1 K10 SANTA CRUZ Rabbit 1:1000 
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2.15 RNA Extractions 

 

RNA extractions were performed according to the manufacturer’s protocol using Trizol 

reagent (Sigma).  Briefly, a 10 cm plate containing cells of interest was washed 2x with 

PBS.  Cells were then scraped with a rubber policeman in cold PBS, gently resuspended 

in 1ml PBS, and then centrifuged down at 2x10
3
 rpm for 5 minutes.  Cell pellets were 

then lysed with 1-2 ml of Trizol Reagent (depending on cell confluency), pipetting up 

and down several times and then incubated at room temperature for 5 minutes.  To 

separate phases, 0.2 ml of chloroform was added, and samples vigorously shaken by hand 

for 15 seconds, then incubated at room temperature for 2 to 3 minutes.  Samples were 

centrifuged at 12x10
4 

g for 15 minutes at 4˚C.  RNA from the top aqueous phase was 

removed and transferred to a fresh tube, where isopropyl alcohol (0.5 ml for every 1 ml 

of Trizol reagent) was added.  Samples were gently mixed then centrifuged down at 

12x10
3
 rpm for 10 minutes at 4˚C.  All supernatant was removed and the RNA pellet was 

washed with 1 ml of 75% ethanol (for every 1 ml of Trizol reagent used).  The RNA 

pellet was then centrifuged at 7.5x10
3
 g for 5 minutes at 4˚C.  The RNA pellet was dried 

in a vacuum-dry spinner for 5 minutes and the final RNA pellet was resuspended in 20-

30 µl of DEPC ddH20.  All purified RNA was quantitated using a spectrophotometer 20 

in a quartz cuvette.    

     Reverse transcription of RNA was performed in a 2 step procedure.  Initially, 2 µg (2 

µl) of Trizol purified RNA added in a mixture with 1 µg(1 µl) of Oligo dT (Invitrogen), 

0.5 µl RNAase out (Invitrogen) (40U/µl) and 8.5 µl of DEPC ddH20.  This cocktail was 

heated at 65˚C for 5minutes and then placed on ice for 2 minutes.  To this reaction, 4 µl 
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of 5x First Strand Buffer (Invitrogen) , 2 µl of DTT (Invitrogen)(0.1M), 1µl of dNTP 

(Invitrogen)(10 mM), 0.5 µl of RNAase out, 0.5 µl of Superscript II Reverse 

Transcriptase (Invitrogen) was added. This cocktail was gently mixed and incubated at 

42˚C for 50 minutes.  In order to inactivate the reverse transcriptase enzyme, the reaction 

was incubated at 70˚C for 10 minutes.      

 

2.16 Quantitative PCR (qPCR) 

 

Quantitative PCR was performed on an Applied Biosystems 7500 Fast Real Time PCR 

system machine, using the 7500 Software v2.0.4.  Primers for CYB5D2 were designed by 

the Genius program.  Primer sequences are listed in table 4.  

Table 4. Primers for qPCR.  

 

 PRIMER NAME 

 

SEQUENCE 

Human β-Actin Forward 

Human β-Actin Reverse 

5` -ACC GAG CGC GGC TAC AG- 3` 

5` -CTT AAT GTC ACG CAC GAT TTC C-3` 

Human CYB5D2 Forward 

Human CYB5D2 Reverse 

5` -GGT GGT CCA GGT CCC CAC GA-3` 

5` -GGC CAG ATG CCG GAC AAC CC-3` 

Human GAPDH Forward  

Human GAPDH Reverse 

 

5-CCA CTC CTC CAC CTT TGA- 3` 

5` -ACC CTG TTG CTG TAG CCA- 3` 

 

 

Each Q-PCR reaction was performed in triplicate as follows.  9.5 µl of Nuclease Free 

water, 12.5 µl of SYBR Green, 0.5 µl of Forward primer (10 µM), 0.5 µl of Reverse 

primer (10 µM) and 2.0 µl of cDNA (one fourth diluted from RT-PCR reaction), for a 

total of 25 µl.  All reactions were done as master mixes, thoroughly mixed and individual 

reactions loaded into 96 well ABI Prism plates (96 well Opitcal Reaction Plate).   Beta-

Actin and GAPDH were used as internal controls.  A total of 35 cycles was selected, and 
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Rox selected as the detector.  Samples were performed in triplicate, and the averages for 

each CT value calculated, along with the standard deviation of each value. The CT value 

was defined by the number of cycles each sample took for the end of the exponential 

phase of the reaction to reach threshold. The differences in two samples of the PCR 

reaction was used to calculate the delta delta CT, which represents the fold change in 

gene expression.  Briefly, this calculation goes as  2
–[delta][delta]Ct

 method, where 

[delta][delta]Ct = [delta]Ct, sample - [delta]Ct reference.  Final fold change values for 

each sample were normalized relative to a value of 1 for control. 

 

2.17 Soft agar assays 

 

Soft agar assays were performed in 6 cm plates, seeding 50x10
4
 cells per plate.  Initially a  

bottom layer (4 mls) was poured, comprising 2 mls of 1.5% agar in ddH20, and 2 mls of 

2xDMEM.  This was allowed to solidify in a sterile tissue culture hood for 30-60 minutes.  

Next 5x10
4
 cells were added to pre-warmed top agar (2 mls 0.75% Agar and 2 mls 

2xDMEM), and seeded on top of the solidified bottom layer.  Assays were then cultured 

for several weeks in a sterile CO2 incubator at 37˚C incubator, and 1ml DMEM media 

(10% FBS, 1% P/S) was added every two or three days to maintain the semi-solid media 

conditions. 

     After 5-6 weeks, hundreds of black and white contrast images were taken, in phase 

contrast setting 2x, at 5x and 10x magnification, for quantitation using the Image Pro Plus 

program.  Images were then counted and measured using this program. 
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2.18 Tumour xenograft formation 

 

Stable CYB5D2 shRNA and control shRNA Huh7cells (10
5 

cells per cell line) were 

resuspended in DMEM/Matrigel mixture (1:1 volume), followed by implantation of 

0.1 ml of this mixture subcutaneously (s.c.) into the flanks of 10-week-old male 

NOD/SCID mice (The Jackson Laboratory). A total of five mice were injected per cell 

line. Mice were inspected for tumour appearance, by observation and palpation, and 

tumor growth was measured weekly using a caliper. Tumour volume was determined 

using the standard formula: L × W2 × 0.52, where L and W are the longest and shortest 

diameters, respectively.  All animal work was carried out according to experimental 

protocols approved by the McMaster University Animal Research Ethics Board, Animal 

Utilization Protocol 13-08-31. 

 

 

2.19 Cell viability assay 

 

Using a Roche Cell Proliferation Kit 1 (MTT) assay, cells were seeded in clear 96 well 

dishes at 5x10
4
 cells per well, with 100 µl volume of media.  24 hours after seeding, 10 

µl of MTT labeling reagent (final concentration was 0.5 mg/ml) was added to each well, 

and samples were incubated at 37˚C for 4 hours.  Next, 100 µl of solubilization solution 

was added and samples were incubated overnight in a chamber.  Absorbance readings 

were carried out on SPECTRAmax Plus 384 spectrophotometer (Molecular Devices),  

and OD 575 values were subtracted from background (OD 690) values.  Treated samples 

were then normalized against non-treated samples.  All values were done in triplicate.  
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2.20 Growth curves (Evaluation of cell proliferation) 

 

All cells (U87, NIH3T3, Huh7 and Hela) were culutured in DMEM (10%FBS, 1% P/S or 

2% FBS, 1% P/S) on 12 well plates, in a sterile CO2 incubator at 37˚C.  Cells were 

trypsonized then counted on a heamocytometer.  All cells were counted using Typan Blue, 

to counter stain and exclude for dead cells (blue).  Media was replaced every second day 

through the growth curve.  Cells were counted for several days, or until cells started 

becoming confluent, with noticeable cell to cell contact.  Each sample was counted 8x 

(four plates, 2x each), and averages plotted with standard deviation.   

 

 

2.21 P450 CYP3A4 Activity assays 

 

     The P450-Glo CYP3A4 assay was obtained from PROMEGA.  This assay was done 

in 12 well plates, where 5x10
4
 HeLa cells per well were seeded.  HeLa cells were 

transfected with PEI (see above protocol) and all assays topped up with  control 

pCDNA3.0.  Media was changed 4 hours later, and 24 hours later P450 assays performed.  

Briefly, 50 µM Luciferin-IPA was added to each well, and all samples done in triplicate.  

Three hours later 100 µl of media was added to 100 µl Luciferase Detection Reagent, and 

20 minutes later luciferase activity was measured on a LUMIstar luminometer (BMG 

LABTECH). 

 

2.22 Mevalonate Treatment 

 

     Mevalonate was resuspended in DMSO, and added at the designated concentrations to 

DMEM supplemented with 0.5% Lipoprotein media. All cells, HeLa shRNA CYB5D2 
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and HeLa  shRNA control cells were cultured in these treatments for 24 hours, and 

subsequently MTT cell viability assays were performed. 

2.23 Immunofluorescence 

     Cells were seeded in chamber slides and fixed with 4% paraformaldehyde for 20 

minutes.  Cells were then washed with TBS 0.1% BSA.  Cells were permeabolized with 

TBST (Triton 0.3%, 0.1% BSA).  Primary antibody was added at a dilution of 1:200 to 

1:300 overnight at 4˚C.  The following day, primary antibody was removed and cells 

were washed with TBS.  Secondary antibody was added for one hour at room 

temperature, then washed off.  Cells were stained with Vectamount containing Dapi to 

stain for the nucleus.     

2.24 Statistics    

All values for cell proliferation were represented as mean, +/- standard error.  When 

growth of a cell population was analyzed for differences from a control population, 

values were analyzed using the two sample independent student`s T test assuming 

unequal variance, n=4.  Statistical significance was defined as p > 0.05 (*).  When 

statistical significance was p> 0.01, double asterisks are indicated (**).  

All luciferase assays were performed in triplicate, and pooled values were averaged, 

using standard deviation to measure the variance, n=3. Similarly statistical significance 

was analyzed using the two sample independent student`s T test.  When statistical 

significance was defined as p> 0.05, a single asterisk is indicated (*), when significance 

was p>0.01 double asterisks are indicated (**).     



Ph. D. Thesis - A. Bruce McMaster University Medical Sciences 

 

 67 

Chapter 3.  CYB5D2 attenuates PTEN function, and confers survival from serum 

starvation 

 

3.1 CYB5D2 confers survival from PTEN in U87 cells 

     As mentioned previously, CYB5D2 was identified in a screen for genes that conferred 

survival from ectopically expressed PTEN, in prostate LNCAP cells (PTEN deficient) by 

Dr. Justin He in 2001, (McMaster University, Hamilton. Ontario. Canada). The neural 

cancer cell line U87 is also a PTEN deficient cell line.  Ectopic PTEN induces apoptosis 

in U87 cells (Beckner et al., 2005).  When CYB5D2 U87 cells were generated, they were 

able to confer survival from ectopic PTEN death (Figure 3.1).  A control U87 cell line 

expressing the pLHCX virus was effectively killed by this PTEN retrovirus.  

          Interestingly, these CYB5D2 U87 cells could also sustain ectopic PTEN expression 

(Figure 3.1B).  In these CYB5D2 stable U87 expressing cells (that were sustaining 

ectopic PTEN expression), a reduction in phosphorylated serine 473 AKT/PKB was 

observed using a phosphorylated serine/threonine 473 AKT/PKB antibody.  This 

indicates that PTEN was still expressing sufficiently in de-activating the PI3Kinase 

pathway, as evidenced by this reduction in activated AKT/PKB signalling activation 

(Figure 3.1B). 
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Figure 3.1 Stable CYB5D2 U87 cells confer survival from ectopic PTEN and sustain 

its expression.  A. U87 cells were constructed to stably express CYB5D2 and an 

EV( pLHCX) plasmid.  A PTEN (pBabe) retrovirus was used to infect these stable U87 

cells.  Puromycin treatment was used to select for successful PTEN infection.  B.  Lysates 

of these cells were run on a 12% SDS-PAGE gel, and subsequent western blots 

performed.  In CYB5D2 U87 cells that sustained ectopic PTEN, we see reduced levels of 

phosphorylated serine 473 AKT/PKB.   
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Figure 3.1                                                                 
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  In order to examine if CYB5D2 was inhibiting PTEN function due to a protein 

association, co-immunoprecipitation experiments were performed using these dual stable 

(CYB5D2+PTEN) U87 cell lines.  These U87 cells were cultured in 10% FBS and 2% 

FBS conditions for 24 hours.  When CYB5D2 was immunoprecipitated with an M2 Flag 

antibody, ectopic PTEN could not be detected in a co-immunoprecipitation, in 10% FBS 

conditions, or in 2% FBS culture conditions (Figure 3.2).  Similarly, when PTEN was 

immunoprecipitated, CYB5D2 could not be detected in co-immunoprecipitations, in 

either 10% FBS or 2% FBS culture conditions (Figure 3.2).  This indicates that CYB5D2 

and PTEN might not be associated in a protein interaction. 

   Interestingly, when ectopic CYB5D2 was immunoprecipitated in 2% FBS conditions 

(while sustaining PTEN expression) CYB5D2 appeared in a higher 56 kDa form, in 

addition to its 28 kDa form (Figure 3.2, asterisk *).   

          In order to measure how ectopic PTEN affected the proliferation of these CYB5D2 

U87 cells, growth curves were performed in 10% FBS and 2% FBS conditions. These 

double stable CYB5D2 and ectopic PTEN U87 cells were also seen to proliferate slower 

than EV U87 cells and CYB5D2 stable U87 cells, when cultured in both 10% FBS and 

2% FBS conditions (Figure 3.3).  When CYB5D2 U87 cells were cultured in 2% FBS 

conditions, they displayed a reduction in proliferation, relative to EV U87 cells, but only 

at the highest cell densities seen in day 5 (Figure 3.3). 
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Figure 3.2 CYB5D2 sustains ectopic PTEN expression but does not co-

immunoprecipitate with it. CYB5D2 and CYB5D2+PTEN U87 expressing cells were 

cultured in DMEM 10% FBS and 2% FBS serum (24 hours).  CYB5D2 and PTEN were 

immunoprecipitated with 1µg of M2 Flag and PTEN monoclonal antibodies respectively.   

Immunoprecipitations were performed with 30 µl of protein G Sepharose at 4°C, 

followed by 6 washes in 0.1% triton co-immunoprecipitation buffer.   Washed beads 

were then treated with Laemelli sample buffer and boiled, then run on 12.5% SDS PAGE 

gels. Western blots were probed with anti PTEN and M2 Flag antibodies.  An asterisk 

indicates the appearance of the CYB5D2 56 kDa dimer that immunoprecipitates in the 

2% FBS culture conditions. 
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Figure 3.3 Growth Curve of CYB5D2 U87 with sustained PTEN expression.  

CYB5D2 expressing U87, CYB5D2 + PTEN expressing U87 cells and control EV U87 

cells were seeded in 6 well dishes (10
4
 cells/well) and counted every 2 days for cell 

growth.   Cells were cultured in both 10% FBS and 2% FBS, with serum being replaced 

every two or three days.  All data points are presented as mean +/- standard error, n=4. A 

two tailed students T-test was used to analyse differences between cell lines and control 

EV U87 cell lines.  A p-value <0.05 was considered statistically significant (*), p-value 

<0.01 was considered more statistically significant (**).  
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3.2 CYB5D2 confers survival from serum starvation in NIH3T3 cells 

     In order to study CYB5D2 in a non-transformed cell line, NIH3T3 cells were 

generated that stably express CYB5D2 and an EV (pLHCX).  Using these NIH3T3 cells, 

cell viability was assessed in serum starved conditions. CYB5D2 NIH3T3 cells were able 

to survive better in serum starved conditions than EV cells (Figure 3.4).  Bright Field 

microscopy was used to image adherent cells in conditions of prolonged serum starvation.  

After seeding the same number (5x10
4
cells) of EV and CYB5D2 NIH3T3 cells in 6 cm 

plates, cells were serum starved up to 5 days.  All floating cells were washed off.  

CYB5D2 NIH3T3 cells exhibited more attached cells, even after 5 days of serum 

starvation (Figure 3.4).   

    In order to better visualize this cellular adherence and viability, cells were fixed with 

2% formaldehyde/2% glutaraldehyde and then stained at day 3 with 0.1% crystal violet.  

CYB5D2 NIH3T3 cells had significantly more adherent (viable cells) than the EV 

NIH3T3 cells (Figure 3.5 A).  This was evident from day 3 to day 5 of serum starvation.  

To measure the non-adherent floating cells of these CYB5D2 and EV NIH3T3 cell lines 

that were serum starved at day three, floating cells were collected, centrifuged down for 5 

minutes at 2x10
3
 rpm and stained with trypan blue (which stains for dead cells).  The EV 

NIH3T3 cell line contained significantly more dead cells than the CYB5D2 NIH3T3, at 

day three (Figure 3.5 B).  
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Figure 3.4 CYB5D2 confers survival from serum starvation in NIH3T3 cells.  

CYB5D2 and EV NIH3T3 cells were seeded at 5x10
4 

cells per 6 cm plate and then 

cultured in serum free DMEM.  Photographs from day 3 to day 5, were taken at 20x 

magnification in bright field microscopy. 
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Figure 3.5 CYB5D2 NIH3T3 cells are more viable in serum starvation.  CYB5D2 

and EV NIH3T3 cells were seeded at 5x10
4
 cells per 6 cm plate and then cultured in 

serum free DMEM for five days. A. Cells were then fixed with 2% formaldehyde/ 2% 

glutaraldehyde and then stained at day 3, 4 and 5 with 0.1% crystal violet.  B. CYB5D2 

and EV NIH3T3 cells were seeded at 5x10
4
cells per 6 cm plate and serum starved for 5 

days.  At day 3 of serum starvation, cells that were floating were collected from the 

media, washed and stained with trypan blue and then counted.  Values are presented as 

mean +/- standard error, n=4. A two tailed students T-test was used to analyse differences 

between CYB5D2 cell lines and control EV NIH3T3 cell lines.  A p value <0.05 was 

considered statistically significant (*). A p value <0.01 was considered very statistically 

significant (**).  
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 Figure 3.5                                                             
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    To ascertain whether the remaining attached cells were still viable after culturing under 

serum free conditions for 3 days, complete 10% FBS serum was added back to CYB5D2 

NIH3T3 and EV NIH3T3 that had been cultured without serum for three days.  These 

cells were then allowed to re-grow for two days after the re-addition of 10% FBS serum. 

After two days, a significant number of CYB5D2 NIH3T3 cells renewed proliferation 

and re-grew to confluence conditions when 10% FBS containing media was added back 

for 2 days.  The EV NIH3T3 cells however, struggled to re-grow (images not shown).  

These NIH3T3 cells were then trypsonized and counted on a heamocytometer, staining 

with trypan blue to exclude for dead cells.  CYB5D2 NIH3T3 cells significantly re-

populated, compared to the EV NIH3T3 which struggled to re-grow (Figure 3.6). 

 

       In order to evaluate proliferation of these cells, growth curves were performed using 

CYB5D2 and EV NIH3T3 cells.  Cells were cultured in 10% FBS and 2% FBS for 

several days.  CYB5D2 NIH3T3 cells proliferated at a similar rate as the EV cells in 10% 

FBS conditions.  However, when cultured in 2 % FBS conditions, CYB5D2 cells 

significantly impaired proliferation compared to the EV NIH3T3 cells (Figure 3.7). 
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Figure 3.6 CYB5D2 NIH3T3 cells recovered from serum starvation better than EV 

NIH3T3 cells.  A. CYB5D2 and EV NIH3T3 cells were seeded at 5x10
4
cells per 60 mm 

plate and then serum starved for 3 days.  DMEM Media containing 10% FBS was then 

added back and the cells were counted after 2 days of culture in 10% FBS media.  Cells 

were then counted on a heamocytometer, staining with trypan blue to exclude dead cells.  

Values are presented as mean +/- standard error, n=4. A two tailed students T-test was 

used to analyse differences between CYB5D2 cell lines and control EV NIH3T3 cell 

lines.  A p-value <0.05 was considered statistically significant (*). A p-value <0.01 was 

considered very statistically significant (**). 
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Figure 3.7 CYB5D2 NIH3T3 cells have impaired proliferation when cultured in 

reduced serum conditions.  EV and CYB5D2 NIH3T3 cells, were seeded in 12 well 

plates, 10x10
3
cells per well.  Cells were cultured in 10% FBS, and in 2% FBS conditions.  

Cells were counted every two days for 10 days.  All data points are presented as mean +/- 

standard error, n=4. A two tailed students T-test was used to analyse differences between 

CYB5D2 cell lines and control EV NIH 3T3 cell lines.  A p-value <0.05 was considered 

statistically significant (*), p-value <0.01 was considered more statistically significant 

(**). 
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     It is unclear how CYB5D2 conferred survival from serum starvation here.  Our overall 

objective was to determine whether CYB5D2 conferred survival from serum starvation 

by attenuating PTEN function.  Therefore co-immunoprecipitations of CYB5D2 and 

PTEN were performed, to see if they were associated in a protein complex. This 

experiment was performed to detect an interaction between endogenous PTEN and 

ectopic CYB5D2, in different serum culture conditions.  Immunoprecipitations were 

performed in these stable EV and CYB5D2 NIH3T3 cells in 10% and 2% FBS culture 

conditions.   While the PTEN antibody could effectively immunoprecipitate endogenous 

PTEN (Figure 3.8 A and C), it could not co-immunoprecipitate ectopic CYB5D2 in either 

10 % FBS or 2 % FBS culture conditions (Figure 3.8 B and D).  In a reciprocal manner, 

when ectopic CYB5D2 was effectively immunoprecipitated with an M2 Flag antibody, 

endogenous PTEN could not be detected in co-immunoprecipitations (Figure 3.8 A and 

C).  Whole cell lysates generated from these cells demonstrate that ectopic CYB5D2 

protein is more abundant in the 2% serum conditions, as compared to the 10% FBS 

cultured conditions.  Moreover, the appearance of the CYB5D2 56 kDa dimer, in 

immunoprecipitations performed in 2% FBS cultured conditions is observed (Figure 3.8 

B, asterisk). This CYB5D2 56 kDa dimer is not present in immunoprecipitations 

performed in 10% FBS cultured conditions.  This demonstrates that serum starvation 

induced ectopic CYB5D2 into this 56 kDa dimer form.   
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Figure 3.8 CYB5D2 does not co-immunoprecipitate with endogenous PTEN in 

NIH3T3 cells.  EV and CYB5D2 NIH3T3 cells were cultured in 10% FBS and 2% FBS. 

Endogenous PTEN and ectopic CYB5D2 were then immunoprecipitated.  A.C.  

Endogenous PTEN did not co-immunoprecipitate with CYB5D2, in either 10% FBS or in 

2% serum culture conditions. B. D. Similarly, when endogenous PTEN was 

immunoprecipitated, CYB5D2 could not co-immunoprecipitate (A and C were re-probed 

with an M2 Flag antibody, to generate B and D western blots respectively).  B. An 

asterisk is shown at the site that CYB5D2 immunoprecipitates as a 56 kDa dimer in 2% 

FBS culture conditions. 
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Chapter 4.  Generation of a COOH-terminal Polyclonal Antibody to CYB5D2. 

 

4.1 Generation of a COOH-terminal Polyclonal antibody to CYB5D2 

 

At the time when I started to investigate CYB5D2, this protein was classified as 

“hypothetical”, without any published reports of its existence.  Furthermore, a 

commercial CYB5D2 antibody was not available.  Therefore, it was essential to generate 

this reagent.  A polyclonal COOH-terminal CYB5D2 antibody was then produced.  This 

segment of the CYB5D2 gene encompassed amino acids 171-264, which was carboxy 

terminus to the cytochrome b5 heme binding domain (Figure 4.1).  This segment did not 

contain any homology with any members of this cytochrome b5 heme binding family, 

thus was chosen to negate any cross reactivity with other proteins in this family.   

Subsequently this COOH terminus segment of CYB5D2 was cloned into the pGEX 4T.1 

plasmid, in frame with a GST fusion gene.  This segment is depicted in figure 4.1 as the 

underlined sequence.  This COOH CYB5D2 fusion was then expressed in BL21 E.coli 

bacteria, and induced with IPTG to generate the expression of recombinant COOH-

CYB5D2 protein.  
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 1   MLRCGGRGLL LGLAVAAAAV MAARLMGWWG PRAGFRLFIP EELSRYRGGP             

 

 51  GDPGLYLALL GRVYDVSSGR RHYEPGSHYS GFAGRDASRA FVTGDCSEAG 

        

 101 LVDDVSDLSA AEMLTLHNWL SFYEKNYVCV GRVTGRFYGE DGLPTPALTQ 

 

 151 VEAAITRGLE ANKLQLQEKQ TFPPCNAEWS SARGSRLWCS QKSGGVSRDW 

   

 201 IGVPRKLYKP GAKEPRCVCV RTTGPPSGQM PDNPPHRNRG DLDHPNLAEY 

       

 251 TGCPPLAITC SFPL 

 

 

 

 

 

Figure 4.1  Amino acid sequence of CYB5D2.  The underlined sequence of CYB5D2 

was used to generated the COOH terminal fragment for a polyclonal antibody ( amino 

acids 171-264).  The cytochrome  b5 heme binding domain is outlined in red (amino 

acids 31-133).  The transmembrane domain at the NH2 terminus is in green (amino acids 

7-29).  The CYB5D2 protein is 264 amino acids in total.  
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     Recombinant COOH-CYB5D2 protein was then purified with GST-Sepharose affinity 

chromatography and run on a 12% SDS PAGE gel. A 10 minute incubation with 0.2 M 

glycine, was performed at the second eluted fraction to produce the highest elution 

quantity.  Eluted fractions of recombinant purified CYB5D2 protein were subsequently 

run on a 12% SDS PAGE gel, and stained with coomasie blue.  As seen in figure 4.2 A, 

the combined molecular weights making up the recombinant COOH- CYB5D2 are seen 

around the 46 kDa marker.   

 

       Because of the low visible yield seen in the coomasie blue stained SDS-PAGE gel, 

western blots were performed. The same eluted fractions of purified recombinant protein 

were run on a 12% SDS PAGE and then transferred to a nitrocellulose membrane, and 

western blots probed with an M2-Flag Sigma antibody.   The same banding pattern from 

panel A is also seen in figure 4.2 B.  

 

     The COOH-CYB5D2 recombinant purified protein from more than one preparation 

were combined and used to immunize 2 rabbits (New Zealand White) and animals were 

boosted every 2 months for a year.  Anti-CYB5D2 IgG was purified by ammonium 

sulphate precipitation and protein A agarose affinity chromatography purification. 
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Figure 4.2 Generating a COOH-CYB5D2 recombinant fusion protein.  A. COOH-

CYB5D2 fusion protein was generated and recombinant protein induced in BL21 bacteria.  

The recombinant protein was then purified, and eluted fractions 1-8 were subsequently 

run on SDS-PAGE gels, then stained with coomasie blue (Figure 4.2 A).  B. Eluted 

fractions of recombinant COOH-CYB5D2 protein 1-8 were also run on SDS-PAGE gels, 

transferred to western blots and probed for with an M2 Flag antibody. 
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     The purified anti-CYB5D2 IgG was then used to examine CYB5D2 expression in a 

panel of various cell lines by western blot analysis (Figure 4.3).  Cell lysates from various 

cell types were run on a 12% SDS PAGE gel, transferred to nitrocellulose membranes, 

and probed with this COOH-CYB5D2 antibody.  Lysates from HEK 293T cells, HeLa, 

LNCAP, 1933, R32, ACHN, and A498 were used.  As a positive control, HeLa cells 

stably over-expressing CYB5D2 were used.  A doublet band around 56 kDa was 

predominantly seen in all cell lines tested (Figure 4.3, panel A).  In order to re-confirm 

these results, the same lysates were run again with similar results (Figure 4.3, panel B).  

The predicted endogenous band for CYB5D2 around 27-28 kDa was not detected, except 

for the band in the positive control CYB5D2 HeLa cells around the 27-28 kDa region.   

 

    To explore the possibility that endogenous CYB5D2 protein in these cell lysates was 

not denatured and the lysis conditions might have caused the CYB5D2 to migrate as a 56 

kDa dimer (and not the molecular weight at 28 kDa), 50 mM DTT was added to the 

laemelli sample buffer to increase the denaturing capacity of this buffer.  Additionally, 

the final concentration of SDS was increased from 1% to 1.5%.  Lysates were 

subsequently generated and treated with this more denaturing laemelli sample buffer. As 

seen in figure 4.4, a 27-28 kDa band now appeared in several samples.  A predominant 

band in the high 40 kDa range also appeared in all lanes.   
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Figure 4.3 The COOH-CYB5D2 antibody detects an endogenous band that migrates 

as a doublet around 56-58 kDa. A control CYB5D2 Hela stable line was used. Lysates 

from 293T, 293T transfected with SREBP2, LNCAP, 1933, R32, ACHN, A498, Hela 

cells and a control CYB5D2 Hela cell were used. 
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Figure 4.4 Increased denaturing conditions resolve CYB5D2 protein into a 28 kDa 

band.  Lysates from various cell lines were made in a final 1.5 x SDS concentrated 

Lamelli sample buffer supplemented with 50 mM DTT.  Lysates were run on a 12% 

SDS-PAGE gel then transferred to a western blot which was probed with the COOH-

CYB5D2 antibody (1µg/ml).  Endogenous CYB5D2 protein monomer bands appear at 28 

kDa.  CYB5D2 HeLa cells are used as a control.  
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   To confirm the specificity of this COOH terminus CYB5D2 antibody, CYB5D2 siRNA 

knockdown technology was used to ablate CYB5D2 expression in 293T cells.  

Confirmation that endogenous CYB5D2 was successfully knocked down was sought at 

the level of RNA and protein. Subsequently, an siRNA oligo from Sigma, specifically 

designed to knockdown endogenous CYB5D2 was transfected into 293T cells with 

Lipofectamine 2000.  Forty-Eight hours post transfection, whole cell lysates were made 

and run on SDS PAGE gels and western blots performed.  The COOH-CYB5D2 antibody 

was then used to probe western blots.  We observe that endogenous CYB5D2 was 

successfully knocked down, and this result was performed in duplicate (Figure 4.4 A).  

Subsequent knockdown of CYB5D2 mRNA was confirmed by real time PCR (Figure 4.4 

B).    

     Using this COOH terminal CYB5D2 antibody, we sought to determine where the 

protein was expressed.  Subsequently, whole cell lysates of cell lines from breast cancer, 

prostate cancer, kidney cancer, neural cancer cells and liver cancers, were analyzed by 

western blots and subsequently probed with the COOH-CYB5D2 antibody.  As seen in 

figure 4.5 A, Huh7 liver cancer cells expressed CYB5D2, but HEPG2 cells did not.  In 

three breast cancer cell lines examined, MDA MB-231, MCF7 and T47D panel B. 

CYB5D2 was weakly detected (Figure 4.5 panel B).   
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Figure 4.5 CYB5D2 siRNA knockdown confirms CYB5D2 antibody specificity.  An 

siRNA oligo for CYB5D2 was purchased from Sigma.  293T cells were then transfected 

with Lipofectamine 2000 with this CYB5D2 siRNA and a control siRNA. A. Cell lysates 

were analyzed by western blot probed with the COOH-CYB5D2 antibody (1µg/µl).  

Beta-Actin was used as an internal control. B.  RNA was extracted and reverse 

transcribed to cDNA.  Real Time PCR reveals that CYB5D2 mRNA is reduced using this 

siRNA oligo for CYB5D2.   Data represent mean +/- standard deviation, n=3.   

A two tailed student T-test was used to determine significance in differences in fold 

change.  A p-value <0.01 was considered very statistically significant (**). 
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The kidney cell lines, 1933, R32, A498 and ACHN were probed with the COOH-

CYB5D2 antibody (Figure 4.5 C).  Expression of CYB5D2 protein was low in all kidney 

cell lines.   Additionally, the prostate cancer cell lines DU145, LNCAP and PC3 were 

probed, expressing low to moderate levels of CYB5D2 protein (Figure 4.5 C).  HeLa cell 

lysates were also run on this western blot as a relative control (Figure 4.5 C).  Four neural 

cancer cell lines were examined next, LN229, U373, T98G and U87, for CYB5D2 

protein expression (Figure 4.5 D).  All neural cancer cell lines had high expression levels 

of CYB5D2 protein (Figure 4.5 D). 
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Figure 4.6 Expression of CYB5D2 protein in various cancer cell lines.  The CYB5D2 

COOH-terminus rabbit polyclonal (affinity purified) was used (1µg/ml) to probe these 

western blots.  Beta-Actin was used to reprobe these western blots as an internal control. 

A. CYB5D2 protein is expressed in the liver cell line Huh7 but not HEPG2. B. CYB5D2 

protein is weakly expressed in the breast cancer cell lines MDA MB-231, MCF7 and 

T47D. C. CYB5D2 protein is expressed weakly in the kidney cell lines of HK2, R32, 

A498, 1933 and ACHN, and moderately in the prostate cancer cell lines of BPH1, 

DU145 and LNCAP, and PC3. D. CYB5D2 protein is highly expressed in the neural 

cancer cell lines LN229, U373, T98G and U87. 50 µg of protein from each cell lines was 

run on a 12% SDS-PAGE. 
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Chapter 5.  CYB5D2 binds to heme and a D86G heme binding defective mutant 

demonstrates loss of functions 

 

CYB5D2/Neuferricin has been reported to bind heme (Kimura et al. 2010). Whether this 

association is mediated through specific residues in the cyt-b5 domain of CYB5D2 

remains unclear. To identify these potential residues responsible for heme binding, we 

researched that Y107 and Y113 in human PGRMC1, as well as Y138 in Dap1 (the yeast 

homologue of PGRMC1), contribute to heme binding (Min et al. 2005; Ghosh et al. 

2005). These three tyrosine residues are conserved in CYB5D2 as Y73, Y79, and Y127, 

respectively (Figure 5.1A). Additionally, D120 of PGRMC1 was recently reported to 

play a major role in heme binding (Crudden et al. 2006). This critical heme-binding D120 

residue is conserved at D86 in CYB5D2 (Figure 5.1A). Collectively, this comparative 

structural analysis suggests that Y73, Y79, D86, and Y127 are conserved and potentially 

involved in CYB5D2-mediated heme association. As previously reported, all of these 

mutants were involved in affecting heme binding in either Dap1 in yeast or PGRMC1 in 

mammalian cells.  Comparatively, these residue are conserved in yeast Dap1, human 

PGRMC1, Arabidopsis IJ03 and human CYB5D2 (Figure 5.1A).   In order to generate a 

CYB5D2 mutant defective for heme binding, these three tyrosine residues were 

individually replaced with alanine (Y73A, Y79A, and Y127A), and the conserved 

aspartic acid D86 replaced with glycine (D86G). These mutants were confirmed by DNA 

sequencing through the McMaster MOBIX sequencing facility, McMaster University, 

Hamilton, Ontario, Canada.  When transiently expressed in 293T cells, these mutants 
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were expressed at comparable levels to wild-type CYB5D2 in whole cell lysates (Figure 

5.1B), suggesting that the overall configuration and folding was not significantly affected 

by the aforementioned substitutions.  

    Heme agarose was then used to affinity precipitate wild type CYB5D2 and these heme 

binding domain mutants.   While CYB5D2, Y73A, Y79A, and Y127A were effectively 

precipitated by heme-agarose, the D86G mutant was not precipitated (Figure 5.1B, 

bottom panel). This result demonstrates that D86 is a critical residue responsible for 

CYB5D2-mediated association with heme.  

 

5.1 D86 mediates a direct association of heme with CYB5D2 

     The above analysis of heme binding using transient expression of CYB5D2 in 293T 

cells, coupled with heme-agarose pull-down,  does not exclude the possibility that D86 

may mediate CYB5D2 to associate with a potential heme-binding protein.  It could be 

possible that this putative CYB5D2 binding protein may thus be responsible for heme-

agarose-mediated precipitation of CYB5D2.  To exclude this possibility, we purified 

GST-CYB5D2 and GST-CYB5D2 (D86G) recombinant fusion proteins using BL-21 E. 

coli.  To enhance the solubility of the fusion proteins, we have deleted the transmembrane 

domain (∆TM). During the purification process, we noticed that GST-CYB5D2-bound 

glutathione displayed a dark brown color compared to GST-CYB5D2(D86G)-bound 

glutathione-agarose which had a light brown color (Figure 5.2A).  This observation is 

consistent with those previously reported for recombinant Neuferricin (CYB5D2) and 

PGRMC1 (Kimura et al. 2010; Crudden et al. 2006).   



Ph. D. Thesis – A. Bruce McMaster University Medical Sciences 

 95 

Figure 5.1 The D86 residue of CYB5D2 contributes to CYB5D2-mediated heme 

binding. A. Alignment of a portion of the conserved cytochrome b5 heme-binding like 

(cyt-b5) domain of human CYB5D2 (aa. 33 to 133) with human PGRMC1 (aa. 73 to 170), 

Dap1 protein (Saccharmyces cerevisiae; aa. 44 to 144) and the putative steroid-binding 

protein 1J03 (Arabidopsis thaliana; aa. 5 to 100), as previously published in Cahill 

(2007). Identical residues are indicated with an astericks. Alignment was performed using 

the Clustal W Alignment Program. CYB5D2 shares 19.8% identity and 26.2% similarity 

with PGRMC1 as determined by the EMBOSS Alignment Program. The D86 residue of 

CYB5D2  and the conserved D120 residue in PGRMC1 are indicated, along with 

conserved tyrosine (Y73, Y79, Y127) residues previously implicated in PGRMC1-

mediated heme binding.  B. 293T cells were transiently transfected with empty vector 

(EV), CYB5D2, and the indicated CYB5D2 mutants. The expression of the ectopic 

proteins in whole cell lysates was examined by western blot (top panel), and the ectopic 

proteins were precipitated by heme-agarose (bottom panel). The D86G mutation rendered 

CY5D2 unable to bind heme agarose. 
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Figure 5.1 
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     From the respective glutathione-agarose, GST-CYB5D2 and GST-CYB5D2(D86G) 

were subsequently eluted/purified with comparable levels of purity (Figure 5.2B).  Heme-

associated proteins possess a maximal absorbance at approximate 402 nm wavelength 

(Kimura et al., 2010; Crudden et al., 2006). In accordance with these reports, GST-

CYB5D2, but not GST-CYB5D2(D86G), displayed a peak absorbance at approximately 

402 nm (Figure 5.2C). This observation further confirms that GST-CYB5D2 associates 

with heme and that substitution of D86 with G substantially reduced the heme association.  

     To consolidate the above observation, we performed peroxidase reaction staining. 

When loaded with heme, heme-binding proteins were detected by peroxidase reaction 

staining (Thomas et al. 1976; Kimura et al. 2008; Kimura et al. 2010). While 

recombinant CYB5D2(D86G) was not detected by peroxidase reaction staining with and 

without heme loading, CYB5D2 was detected only under the heme-loaded condition 

(Figure 5.2D).  In these reactions, heme was present in excess, as comparable amounts of 

free heme was observed among the reactions of CYB5D2 + heme, CYB5D2(D86G) + 

heme, and heme only (Figure 5.2D, middle panel). Therefore, the inability to detect 

CYB5D2(D86G) was not caused by an insufficient amount of heme being present. Taken 

together, the above observations reveal that D86 is directly responsible for CYB5D2 to 

bind heme. 
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Figure 5.2 D86G substitution renders recombinant CYB5D2 incapable of binding 

heme. A. GST-CYB5D2 (CYB5D2)-bound and GST-CYB5D2(D86G)-bound 

glutathione-agarose. B. 10 µg of purified recombinant GST-CYB5D2 (CYB5D2) and 

GST-CYB5D2(D86G) (CYB5D2(D86G)) was separated by SDS-PAGE, followed by 

Coomassie blue staining. C. Recombinant GST-CYB5D2 and GST-CYB5D2(D86G) 

protein (200 µg protein in 1 ml of 1×TBST), referred to as CYB5D2 and CYB5D2(D86G) 

respectively, were scanned for their absorbance peaks within the indicated wavelength 

range. D.  Recombinant GST-CYB5D2 (CYB5D2) and GST-CYB5D2(D86G) (200 µg) 

were analyzed by peroxidase reaction staining (see Materials and Methods for technical 

details). The recombinant proteins were also stained with Coomassie blue (bottom panel).  
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5.2 CYB5D2 binds to Heme b, and exists in both oxidized and reduced forms 

     The heme population consists of heme a, b, and c. While heme c covalently links to 

proteins (cytochrome c), both heme a and b attach to protein via non-covalent bonds 

(Nakamoto et al. 2000). In fact, cytochrome a, b, or c was named because of the 

existence of heme a, b, or c, respectively (Nakamoto et al. 2000). Among the three types 

of heme, heme b is the most common type (Nakamoto et al. 2000). Therefore, the 

existence of a cyt-b5 (heme-binding) motif suggests that CYB5D2 binds heme b. In a 

reaction containing 200 mM NaOH, 40% pyridine, and 0.6 mM K3Fe(CN)6, heme a and b 

will be released from a heme-binding protein and it will become oxidised. While heme c 

will not be released from cytochrome c, the existence of the protein does not interfere 

with heme c oxidization (Berry and Trumpower 1987). Oxidised heme a, b, and c display 

a specific spectrum of absorbance, with the peak absorbance for type a, b, and c being at 

588 nm, 556 nm, and 550 nm, respectively (Berry and Trumpower 1987). To exclude the 

possibility that the presence of GST in the GST-CYB5D2 may have affected heme 

association, we cleaved off the GST portion by treating with thrombin (Figure 5.3A). 

When CYB5D2-associated heme is oxidized, its peak absorbance was observed at 

approximately 559 nm. Under the same conditions, CYB5D2(D86G) did not generate an 

absorbance peak (Figure 5.3B). Taken together, these observations thus suggest that 

CYB5D2 binds to type b heme.  

     To further characterize the association between CYB5D2 and heme, the properties of 

CYB5D2 under oxidized and reduced conditions have been examined. The GST-free 

CYB5D2 protein displayed peak absorbance at 402 nm (oxidized condition) which 
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shifted to 420 nm under reduced conditions (Figure 5.3C), the typical absorbance pattern 

for heme-associated proteins including CYB5D2/Neuferricin (Kimura et al., 2010). The 

GST-free CYB5D2(D86G) recombinant protein could not be oxidized, or reduced 

(Figure 5.3B). Taken together, the above observations reveal that D86 is directly 

responsible for CYB5D2 to bind heme. 

 

5.3 Heme-binding contributes to CYB5D2-mediated regulation of HeLa cell 

proliferation and anchorage-independent growth 

 

     Neuferricin/CYB5D2 promotes neuron differentiation via inhibiting cell proliferation 

(Kimura et al., 2010). Initially, HeLa cells were infected with empty vector (EV), 

CYB5D2, or heme-binding defective CYB5D2(D86G) retrovirus (Figure 5.4A and B). 

Using dual immunofluorescence, CYB5D2 and D86G co-localized with GRP78, and ER 

marker, in HeLa cells (Figure 5.4 A). Subsequent western blots confirm stable expression 

of CYB5D2 and D86G in HeLa cells (Figure 5.4 B).  To examine the impact of heme-

association of CYB5D2 on cell proliferation, growth curves were conducted.  In 

comparison to EV control cells, ectopic CYB5D2 significantly reduced HeLa cell 

proliferation (Figure 5.4 C). However, this inhibition of HeLa cell proliferation is cell 

density dependent, as seeding at densities <10
4
 cells/well in a 12 well-plate does not 

result in a significant difference in cell growth between CYB5D2-expressing cells and 

EV control cells.  Moreover, the concept that ectopic CYB5D2 reduces HeLa cell 

proliferation was strengthened by the observation that ectopic expression of the heme-



Ph. D. Thesis – A. Bruce McMaster University Medical Sciences 

 101 

binding defective mutant CYB5D2(D86G) increased proliferation (Figure 5.4B). The 

impact of ectopic CYB5D2(D86G) on HeLa cell proliferation is likely not due to the 

induction of the unfolded protein response (UPR), as neither CYB5D2 nor 

CYB5D2(D86G) overexpression affected GRP78 expression (Figure 5.4B), an ER stress 

marker (Kim et al., 1987; Normington et al., 1989; Gething and Sambrook, 1992).  

Furthermore, ectopic CYB5D2 was not detected in the media of these CYB5D2 HeLa 

cells, therefore it was not detected as being secreted in these cells.   

     To address whether heme-binding by CYB5D2 contributes to HeLa cell anchorage-

independent growth, CYB5D2 and CYB5D2(D86G)-expressing HeLa cells were seeded 

in soft agar-containing serum-supplemented media. CYB5D2 expression reduced HeLa 

cell anchorage-independent growth in soft agar, while CYB5D2(D86G) increased colony 

growth (colony number and size) compared to EV cells (Figure 5.4D, E). Taken together, 

this demonstrates that heme-binding by CYB5D2 is necessary in inhibiting HeLa cell 

proliferation and survival under anchorage-independent conditions. 
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Figure 5.3 CYB5D2 binds to type b heme, and exists in both oxidized and reduced 

forms. A. 10 µg of purified recombinant GST-CYB5D2 and GST-CYB5D2(D86G) were 

thrombin-cleaved, and the uncleaved and cleaved (CYB5D2 and CYB5D2(D86G), 

respectively) proteins were separated by SDS-PAGE followed by Western blot analysis 

for CYB5D2 using anti-CYB5D2 antibody. B. Recombinant CYB5D2 and 

CYB5D2(D86G) protein (2 µM), were oxidised by K3Fe(CN)6, followed by scan with the 

indicated range of wavelength using a spectrophotometer. The peak absorbance for 

CYB5D2 was observed at approximately 559 nm. C. Thrombin-cleaved recombinant 

CYB5D2 and CYB5D2(D86G) proteins were reduced by sodium dithionite treatment and 

scanned for their absorbance peaks within the indicated wavelength range. The maximum 

absorbance peaks for the oxidized and reduced forms of human CYB5D2 were 402 nm 

and 420 nm, respectively. 
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Figure 5.4 CYB5D2 regulates adherent cell proliferation and colony growth of HeLa 

cells in a heme-association dependent manner. A HeLa cells were infected with 

pLHCX (empty vector: EV), pLHCX/CYB5D2, or and pLHCX/CYB5D2(D86G) 

retrovirus as indicated to generate stable cell lines. Co-localization with GRP78, an ER 

protein is demonstrated for both CYB5D2 and CYB5D2(D86G) in stable HeLa cell lines. 

B. The expression of ectopic CYB5D2 and CYB5D2(D86G) proteins is shown. The 

expression of GRP78 and β-actin were also determined. C. Cell proliferation of HeLa 

cells following ectopic expression of CYB5D2 and CYB5D2(D86G). The indicated cell 

lines were seeded at 10
4
 cell/well in a 12-well plate. Cell numbers were determined daily 

for a period of 6 days. Experiments were conducted in quadruplicate, with triplicate 

replicates in each experiment. Cell numbers determined at each time point are presented 

as mean ± SD. **p < 0.01 (two-tailed independent Student’s t-test). D. Anchorage-

independent growth. Representative images of soft agar plates (top panels) and phase 

contrast images of colonies at 50x magnification (bottom panels). Scale bar is equal to 

200 µm. D and E. Mean number and diameter of colonies in 10 random fields. **p < 0.01 

(two-tailed independent Student’s t-test). 
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     To further investigate the effects of CYB5D2 on HeLa cell proliferation, shRNA 

CYB5D2 HeLa cells were generated using shRNA lentivrus technologies for CYB5D2 

(Santa Cruz, see Materials and Methods)  (Figure 5.5A). In comparison to shRNA HeLa 

treated cells, CYB5D2 shRNA enhanced HeLa cell proliferation (Figure 5.5B). In 

addition, knockdown of CYB5D2 in HeLa cells increased their anchorage-independent 

growth, in terms of colony number and size, compared to shRNA HeLa treated cells 

(Figure 5.5C, D). Collectively, these results reveal that the heme-binding activity of 

CYB5D2 is required for CYB5D2 to inhibit HeLa cell growth under anchorage-

dependent and independent conditions, which results in a loss of function of CYB5D2 

similar to the shRNA CYB5D2. 

     As an effect on proliferation of these stable HeLa cell lines was observed, we 

examined whether various cell cycle regulators or signalling pathways were affected.  

Whole cell lysates were prepared from EV, CYB5D2 and D86G HeLa cell lines, as well 

as shRNA control and shRNA CYB5D2 HeLa cells.  As seen in figure 5.6 panel A, 

phosphorylated serine 473 AKT/PKB levels were unchanged between these cell lines 

(top panel).  Next IkB-α protein levels were also examined and also observed to be 

unchanged.  Cell cycle regulators CyclinD1, CDK inhibitors p27 and p21 were also 

found to be unchanged.   

  Similar to what has been previously published, no significant differences were seen in 

ERK1/2 phosphorylation levels, relative to total ERK levels, (Figure 5.6 B) (Kimura et al, 

2010). 
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Figure 5.5 CYB5D2 knockdown promotes adherent cell proliferation and 

anchorage-independent growth of HeLa cells. A. Western blot analysis of HeLa cells 

following CYB5D2 shRNA-mediated knockdown (shCYB5D2) compared to shRNA 

control (shCTRL) HeLa cells. B. Cell proliferation of HeLa cells following CYB5D2 

knockdown. Experiments were conducted in quadruplicate, with triplicate replicates in 

each experiment. Cell numbers determined at each time point are presented as mean ± SD. 

**P < 0.01 (two-tailed independent Student’s t-test). C. Anchorage-independent growth. 

Representative images of soft agar plates (top panels) and phase contrast images of 

colonies at 50x magnification (bottom panels). Scale bar is equal to 200 µm. D and E.  

Mean number and diameter of colonies in 10 random fields. **P < 0.01 (two-tailed 

independent Student’s t-test). 
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Figure 5.6 Examination of cell cycle regulators, IĸB-α protein levels, AKT/PKB and 

ERK signal activation in CYB5D2-expressing and CYB5D2 loss-of-function HeLa 

cells. A. Western blot analysis of empty vector (EV), CYB5D2 and CYB5D2(D86G)-

expressing HeLa cells (left panels), or shRNA control (shCTRL) and CYB5D2 shRNA-

mediated knockdown (shCYB5D2) HeLa cells (right panels). Expression of cyclinD1, 

IkB-α, p21 and p27 proteins were examined. AKT activation was determined by 

examining the phosphorylation of AKT at the Serine 473 residue (AKT-P).  B.  ERK 

signalling activation was examined using a phosphorylated ERK 1/2 antibody. 
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Figure 5.6  
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5.4 Heme binding of CYB5D2 is required for survival from chemotherapeutic     

      compounds   

 

     Previously, PGRMC1 has been shown to confer survival from chemotherapeutic drugs.  

A PGRMC1 (D120G) heme binding defective mutant was overexpressed in MCF7 cells,  

to asses susceptibility to the drugs doxorubicin and cisplatin (Crudden et al., 2006).  This 

PGRMC1( D120G) decreased cellular viability to these drug treatments.  Moreover, we 

have previously demonstrated CYB5D2 overexpression in HeLa cells, conferred survival 

from etopiside (Xie et al., 2011).   Using deletion mutants, both the transmembrane 

domain and the cytochrome b5 domain were required for CYB5D2`s ability to confer 

survival (Xie et al., 2011).  Initially, we sought out whether CYB5D2 could confer 

survival from paclitaxel and cisplatin.  As seen in figure 5.6, dose curves were carried out 

for 24 and 48 hours, using CYB5D2 HeLa, D86G HeLa, and control EV HeLa cells.  

     HeLa cells expressing ectopic CYB5D2 were more resistant to increasing 

concentrations of paclitaxel and cisplatin treatment, using a concentration range which 

has previously been shown to be effective at reducing HeLa cell viability after 48 h 

treatment (Osmak and Eljuga 1993; Lee et al., 2005).  Furthermore, CYB5D2(D86G) 

expression resulted in increased susceptibility towards paclitaxel and cisplatin treatment 

in a dose-dependent fashion 
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Figure 5.7 Dose-dependent response curves following treatment of HeLa cells with 

Paclitaxel and Cisplatin. Relative survival of paclitaxel and cisplatin-treated HeLa cells 

expressing ectopic CYB5D2 or CYB5D2(D86G) compared to empty vector (EV) control 

cells. Cells were treated with increasing concentrations of paclitaxel or cisplatin for 24 

hours (h) (left panels) or 48 h (right panels). All values are mean +/- SD, (n=3), *p  < 

0.05; **p  < 0.01 (two-tailed independent Student’s t-test). 
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     A significant difference in CYB5D2 resistance, and CYB5D2(D86G) sensitivity, was 

observed, following paclitaxel or cisplatin treatment (Figure 5.7). This was most 

noticeable at doses of 400 ng/ml following 24 h and 48 h for both drug treatments. 

Therefore, we evaluated the sensitivity of CYB5D2 knockdown cells following paclitaxel 

and cisplatin treatment at a concentration of 400 ng/ml for 24h and 48 hours. 

      Treatment of CYB5D2-expressing HeLa cells with both paclitaxel and cisplatin at 

400 ng/ml resulted in enhanced cell survival relative to EV (control) HeLa cells (Figure 

5.8). Conversely, the CYB5D2(D86G) HeLa cells demonstrated an increased 

susceptibility to both paclitaxel and cisplatin after 24h and 48 h, relative to control (EV) 

cells (Figure 5.8).  Furthermore, CYB5D2 shRNA knockdown resulted in HeLa cell 

susceptibility following both paclitaxel and cisplatin treatments at 400 ng/ml, relative to 

shCTRL cells (Figure 5.8).        

     Lastly, treatment of these HeLa cell lines with doxorubicin (10 µM) also demonstrated 

that CYB5D2 expression conferred cell survival, while loss of function (CYB5D2(D86G) 

and CYB5D2 knockdown) reduced HeLa cell survival relative to control (Figure 5.9). 

This doxorubicin concentration was consistent with a ~75% reduction in HeLa cell 

viability after 48 hour treatments (Zhang et al., 2006). Taken together, these results 

demonstrate that CYB5D2 confers survival from chemotherapeutic compounds, which is 

dependent on its ability to bind heme. 
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Figure 5.8 CYB5D2 confers survival from Paclitaxel and Cisplatin, while the D86G 

and shRNA display susceptibility.  Relative survival of HeLa cells expressing ectopic 

CYB5D2 or CYB5D2(D86G) compared to empty vector (EV) control cells (left panels), 

or shRNA control (shCTRL) and CYB5D2 shRNA-mediated knockdown (shCYB5D2) 

HeLa cells (right panels), following treatment with either paclitaxel (400 ng/ml), cisplatin 

(400 ng/ml) for 24 and 48 h. All values are mean +/- SD, n=3, *p < 0.05; **p  < 0.01 

(two-tailed independent Student’s t-test). 
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Figure 5.9 CYB5D2 confers survival from Doxorubicin.  Relative survival of HeLa 

cells expressing ectopic CYB5D2 or CYB5D2(D86G) compared to empty vector (EV) 

control cells (left panels), or shRNA control (shCTRL) and CYB5D2 shRNA-mediated 

knockdown (shCYB5D2) HeLa cells (right panels), following treatment with either 

Doxorubicin (10 µM) for 24 and 48 h. All values are mean +/- SD, n=3 *p  < 0.05; **p  < 

0.01 (two-tailed independent Student’s t-test). 
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5.5 Generation and characterization of EV, CYB5D2, D86G, shRNA control and   

 

shRNA CYB5D2 Huh7stable cell lines: Heme binding is required for CYB5D2  

 

to regulate proliferation in Huh7 cells. 

 

  As the previous studies on CYB5D2 were done in HeLa cells, experiments were 

performed to test if CYB5D2 had the same effect on a different cell line.  Stable Huh7 

cell lines expressing and EV (pLHCX), the wild type CYB5D2 and D86G were generated, 

according to our previously described methodologies.  Lystaes were prepared and 

subsequent western blots performed using the M2-Flag antibody to confirm successful 

stable expression (Figure 5.10 A).  Additionally, shRNA CYB5D2 stable Huh7 cell lines 

were also generated as well as a shRNA Huh7 stable cell line, as previously described.  

The carboxyl CYB5D2 antibody was used to confirm successful knockdown in the 

CYB5D2 shRNA Huh7 cell line, right panel (Figure 5.10 B). 

 

     These stable Huh7 cell lines were then seeded in 12 well dishes and growth curves 

were performed as previously described.  As seen in figure 5.10 C, the CYB5D2 Huh7 

proliferated slightly faster than EV Huh7 (not statistically significant), and the D86G 

Huh7 cells grew significantly slower.  The shRNA CYB5D2 Huh7 cells also proliferated 

slower than shRNA control cells (Figure 5.10 D).  This result is the opposite effect on 

proliferation that is seen in HeLa cells for the D86G and shRNA CYB5D2. 
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Figure 5.10 Generation of EV, CYB5D2, D86G, shRNA CYB5D2 and control 

shRNA Huh7 cell lines A.  CYB5D2 and D86G stable Huh7 cells.  293T cells were 

transfected with CYB5D2 and D86G (pLHCX) retrovirus, along with GP and VSV 

retroviral packaging plasmids.  48 hours post-transfection, viral media from these 293T 

was used to infect Huh7 cells. Hygramycin was then used to select for stable 

EV,CYB5D2 and D86G expressing Huh7 cells.  B.  A Santa Cruz CYB5D2 shRNA 

lentiviral pool was used to package lentivirus made in 293T cells, and infect Huh7 cells.  

An scrambled shRNA lentivirus was used as a control.  Cells were selected with 

Puromycin for 10 days. Lysates were prepared and western blots probed with the anti-

CYB5D2 antibody.  C and D.  The D86G and shRNA CYB5D2 inhibit proliferation.  All 

Huh7 cell lines were seeded into 12 well plates, 10x10
3
cells per well, and counted for 6 

days.   All data points represented by mean +/- standard error, n=4.  *p  < 0.05; **p  < 

0.01 (two-tailed independent Student’s t-test). 
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     As these shRNA CYB5D2 Huh7 cells exhibited a reduction in proliferation in 

adherent culture, we examined their effect on non-adherent Huh7 cells in soft agar colony 

formation.  These shRNA CYB5D2 Huh7 cells and a shRNA control Huh7 cell line were 

used in soft agar assays to asses growth in an anchorage independent scenario.  As seen 

in figure 5.11 A, the shRNA CYB5D2 Huh7 cells developed fewer colonies and smaller 

colonies than the shRNA control Huh7 cells, after five weeks of growth in soft agar (data 

not quantified). 

   In order to examine an in vivo tumorigenic scenario, immuno-comprimised NOD/SCID 

mice were used to assess xenograft tumor forming capacity of these Huh7 cell lines.  

Approximately 1 million cells of each cell line was mixed with 1 ml of matrigel.  This 

cell and matrigel mixture was then injected into the flanks of five mice (each side), for 

each cell line.  Tumor growth was measured every week for five weeks.  As seen in 

figure 5.11 B the shRNA Huh7 cells were severely impaired in their ability to form 

tumors, relative to an shRNA Huh7 cell line that formed large tumors after five weeks 

(Figure 5.11 B). 
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Figure 5.11 CYB5D2 is required for Huh7 tumor formation. A. Soft agar assays were 

performed with shRNA Huh7 and shRNA CYB5D2 Huh7 cells.  After 5 weeks, the 

shRNA Huh7 cells formed numerous large colonies, while the shRNA CYB5D2 Huh7 

cells did not (data not quantified).  B.  NOD/SCID mice xenografts of shRNA control 

Huh7 and shRNA CYB5D2 Huh7 cells.  After five weeks, the shRNA control huh7 

developed larger tumors.  The shRNA CYB5D2 Huh7 cells had significantly smaller 

tumors.  Date points represent mean +/- standard deviation, n=5.  A two-tailed student`s 

T-test was used to determine significance, p<0.05 *. 
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Chapter 6.  Heme binding of CYB5D2 is required for inhibition of SREBP 

signalling  

 

     Using a novel photo-activated cross-linking method, researchers demonstrated that 

PGRMC1 associated in a complex with the SCAP and Insig1 proteins (Suchanek et al., 

2005).  This suggests a role of the MAPR family in regulating SREBP 

maturation/activation. In order to determine if CYB5D2 could be involved with an ER 

resident SREBP complex we first wanted to see if CYB5D2 localized to the ER.  We 

started with 293T cells that were transfected with ectopic CYB5D2 via calcium 

phosphate method.  An ER (KDEL) marker was then used in indirect 

immunofluorescence (Figure 6.1).   When CYB5D2 was stained with an M2 Flag 

antibody and rhodamine red secondary, and the ER stained with a KDEL antibody and 

FITC Green secondary, merged images show that CYB5D2 and KDEL signals overlap, 

revealing CYB5D2 localized to the ER.  As CYB5D2 now resides in the ER, we 

proceeded to examine whether CYB5D2 could affect sterol/SREBP signalling.  

Specifically, we tested if CYB5D2 could reduce the transcriptional activity of SREBP 

using 3xSREBP Responsive Element Reporters.   SREBPs bind to promoter regions of 

sterol regulatory genes that contain non-palindromic sterol regulatory elements and 

palindromic sequences called E boxes (Shimomura et al., 1998). SREBPs bind to DNA 

sequences of a direct repeat of 5′-PyCAPy-3′ (Magana and Osborne 1996). In the LDL 

receptor the SREBP recognition site is 5`ATCACCCCAC-3′ which is designated sterol 

regulatory element 1 (SRE-1) (Yokoyama et al. 1993). 

http://www.sciencedirect.com.libaccess.lib.mcmaster.ca/science/article/pii/S0092867400802135#BIB32
http://www.sciencedirect.com.libaccess.lib.mcmaster.ca/science/article/pii/S0092867400802135#BIB61
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Figure 6.1 CYB5D2 localizes at the ER.  293T cells were transfected with CYB5D2 

and stained for M2 Flag (rhodamine red secondary), and KDEL (FITC Green secondary).  

CYB5D2 (Red) co-localized with KDEL (Green) revealing an ER locale (Merge). Dapi 

was used to stain the nucleus (blue). 
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 Initially, we started by using a 3xSRE-GFP (Green Fluorescent Protein) reporter.  This 

reporter contained 3x DNA binding sites of the SREBP1/2 transcription factor, which 

drives the transcriptional activity of a GFP gene.  Transiently, 5 µg of CYB5D2 and 5 µg 

Empty Vector (EV; pcDNA3) were each co-transfected with 5 µg of this 3xSRE-GFP 

promoter reporter into 293T cells via calcium phosphate.  As the expression of SRE-GFP 

depends on endogenous SREBP activity, the readily detected fluorescence signal in cells 

transfected with SRE-GFP plus an empty vector (EV) demonstrated the existence of high 

levels of active SREBP activity in 293T cells (Figure 6.2A).  The EV transfected samples 

showed a high level of 3xSRE-GFP activity in 293T cells. However when CYB5D2 was 

co-transfected with this reporter, a dramatic reduction of this high endogenous basal level 

of 3xSRE-GFP was observed.  To test if CYB5D2 reduced GFP levels of the 3xSRE-

GFP due to the translational inhibition of the GFP protein, a CMV-GFP was transfected 

with the EV (pcDNA3) and with CYB5D2 into 293T cells. CYB5D2 did not affect the 

CMV-GFP levels relative to the EV control.  Thus CYB5D2 reduced 3xSRE-GFP 

activity due to a specific reduction of SREBP transcriptional activity (Figure 6.2A). 
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Figure 6.2 CYB5D2 inhibits a 3xSRE-GFP reporter.  A 3xSRE-GFP reporter (5µg) 

was transfected with 5μg CYB5D2 plasmid and with 5µg Empty Vector (EV) into 293T 

cells, via calcium phosphate method.  CYB5D2 reduced 3xSRE-GFP protein level, but 

did not reduce the CMV-GFP protein levels.  Lysates from 293T cells from figure A were 

generated.  Western blots confirmed that CYB5D2 reduced 3xSRE-GFP protein levels 

compared to the control (EV).  CYB5D2 could not reduce the control CMV-GFP protein 

levels. 
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     Whole cell lysates from all these samples were prepared and run on SDS-PAGE gels 

and subsequently transferred to nitrocellulose membranes. Western blots were probed 

with antibodies for GFP and M2 flag-CYB5D2 to confirm these results as seen in figure 

6.2 B.  CYB5D2 inhibited the 3xSRE-GFP relative to the control EV.  CYB5D2 could 

not repress the CMV-GFP. 

     To quantify CYB5D2-mediated attenuation of SREBP activity, 239T cells were co-

transfected with a 3xSRE-luciferase reporter, and a β-gal plasmid (as an internal control 

for transfection efficiency), and increasing doses of CYB5D2. Upon normalization to β-

galactosidase activity, normalized luciferase assays revealed that CYB5D2 dose-

dependently inhibited endogenous SREBP activity of 293T cells (Figure 6.2A). Taken 

together, the above observations demonstrate that CYB5D2 reduces SREBP-mediated 

transcriptional activity.    

     When full length SREBP proteins dissociate from Insig1 in the ER, they are escorted 

by SCAP, which brings them to the Golgi Apparatus (GA).  In the Golgi, they are 

cleaved by two site directed proteases to generate an NH2 terminal mature fragment.  

This NH2 terminal fragment, now translocates to the nucleus to transcribe genes for 

sterol metabolism.  To identify the point at which CYB5D2 inhibits SREBP-derived 

transcriptional activity, 293T cells were transfected with the full length SREBP2 or the 

NH2 terminal mature form of SREBP2 along with CYB5D2 and the SRE-luciferase 

reporter, in a dose dependant manner.  Normalized luciferase values reveal that cells 

transfected with the mature active form of SREBP2 elicited higher levels of luciferase 

activity compared to cells transfected with the full length SREBP2 without the presence 
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of ectopic CYB5D2 (Figure 6.2A). When these forms of SREBP2 were co-transfected 

with CYB5D2 in a dose dependant manner, CYB5D2 inhibited the activation of the 

3xSRE-Luciferase by this full length SREBP2 in a dose dependant manner.  However, 

the robust activation from the N-terminal fully processed SREBP2 cDNA (nuclear only, 

and constitutively active), was refractory to CYB5D2 inhibition in a dose independent 

manner (Figure 6.3 A).   

      Similarly, a full length SREBP1c and an amino terminal mature SREBP1c were 

transfected into 293T along with CYB5D2 in a dose dependant manner.  Here, the full 

length SREBP1c was able activate the 3xSRE-Luciferase in a dose dependant manner, 

and this activation was inhibited by CYB5D2.  The amino terminal mature NH2-

SREBP1c potently activated the 3xSRE-Luciferase reporter.  Similarly, CYB5D2 was 

unable to inhibit this robust activation of the 3xSRE-Luciferase reporter by NH2-

SERBP1c (Figure 6.3 B). Collectively, these observations reveal that CYB5D2 inhibits 

the maturation process of SREBP at the point in ER retention. 
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Figure 6.3 CYB5D2 inhibits 3xSRE Luciferase Activity.  CYB5D2 was co-transfected 

in increasing amounts, along with 0.5 µg of a 3xSRE-Luciferase construct, and resulted 

in a dose dependent decrease of 3xSRE-Luciferase activity. A. CYB5D2 decreased the 

activity that a full length SREBP2 plasmid conferred on a 3xSRE-Luciferase reporter in a 

dose dependent manner.  CYB5D2 was unable to inhibit the activity of an NH2 terminal 

SREBP2 mature form, which potently activated the 3xSRE-Luciferase reporter. B. 

CYB5D2 was transfected in increasing amounts, along with 0.5 µg of a 3xSRE-

Luciferase reporter construct, and resulted in a dose dependent decrease of 3xSRE-

Luciferase activity.  CYB5D2 decreased the 3xSRE-Luciferase activity of a full length 

SREBP1c plasmid. CYB5D2 was unable to inhibit the highly potent activation of the 

3xSRE-Luciferase reporter by an N-terminal SREBP1c plasmid. All relative luciferase 

unit (RLU) values are represented as mean +/- standard deviation (n=3). * p < 0.05; ** p 

< 0.01 (two-tailed Student’s t-test). Abbreviations: full-length SREBP (FL-SREBP), N-

terminal SREBP (N-SREBP), ns (not significant). 
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6.1 CYB5D2 Co-Immunoprecipitates with Insig1 

     Since an essential step governing SREBP maturation is the release of the 

SREBP/SCAP complex from Insig1 association, it is possible that CYB5D2 inhibits 

SREBP maturation via binding to Insig1.  As previously mentioned, researchers used a 

novel photo-cross-linking method to demonstrate that PGRMC1 could be detected in a 

complex with SCAP and Insig1 (Suchanek et al., 2005).  Using this information, we set 

out to examine if CYB5D2, like PGRMC1, could also interact with SCAP and Insig1. 

    In order to test for an interaction between CYB5D2 (Flag tagged) and Insig1 (myc 

tagged), 10 µg of each cDNA were transfected via calcium phosphate method into 293T 

cells.  Lysates were prepared from these transfected cells, and co-immunoprecipitations 

were performed.  These samples were subsequently run on a 12% SDS PAGE gels then 

transferred to western blots.  As seen in figure 6.4 panel A, a Flag-CYB5D2 

immunoprecipitation pulled down Insig1-myc, when both were co-transfected.  When 

this western blot from panel A was re-probed with an M2 Flag antibody (for CYB5D2), 

myc-Insig1 immunoprecipitation pulls down flag-CYB5D2 (Figure 6.4 panel B).  

Conversely, in panel C, when both are co-transfected, a myc-Insig1 immunoprecipitation 

pulls down flag-CYB5D2, but not a negative control of flag-CYB5D2 alone.   
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Figure 6.4 CYB5D2 co-immunoprecipitates with ectopic Insig1.  Flag tagged 

CYB5D2 (10 µg) and myc tagged Insig1 (10 µg) were transfected seperately and together 

in 293T cells. Subsequently immunoprecipitations were performed.  A.  Flag CYB5D2 

immunoprecipitation brings down Insig1(myc), asterisk (*).  B  The Western blot from 

figure A is reprobed with an M2 Flag antibody for CYB5D2, which co-

immunoprecipitates with a myc (Insig1) co-immunoprecipitation.  C.  When Insig1-myc 

and CYB5D2 are co-transfected together, a myc-Insig1 immunoprecipitation pulls down 

an M2 flag tagged CYB5D2 (co-immunoprecipitation). 
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6.2 CYB5D2 Stabilizes Ectopic Insig1 

The observations that CYB5D2 binds Insig1, and inhibits SREBP maturation suggest that 

CYB5D2 could stabilize Insig1. An increase of Insig1 protein stability could retain the 

SREBP/SCAP complex in the ER, whereas a decrease in the stability on Insig1 might 

result in the ER exit of the complex, a step that is required for SREBP maturation.  Thus 

we wanted to see if CYB5D2 could potentiate the stability of Insig1.  Here in figure 6.5 

10 µg each of myc-Insig1 plasmid was co-transfected with 10 µg of CYB5D2 (pcDNA3) 

plasmid. This was compared to a control transfection of 10 µg EV (pcDNA3) plus 10 µg 

Insig-1.  All plasmids were transfected into a 10 cm plate of 293T cells via calcium 

phosphate method, and allowed to express for 24 hours.  These transfected cells were 

then trypsonized and then re-seeded into 6 well plates to accommodate for any 

transfection differences between time points. These cells were then treated with 

cyclohexamide (an inhibitor of protein translation) for the indicated times: 30 minutes, 60 

minutes and 120 minutes.  Cell lysates were prepared and 100 µg were run on an SDS-

PAGE and then transferred to western blots. Western blots were probed for the indicated 

Ab: myc-Insig1, flag-CYB5D2 and β-Actin as an internal loading control.  
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Figure 6.5 CYB5D2 stabilizes ectopic Insig1.  Ectopic Insig1-myc (10 µg) was co-

transfected with CYB5D2 (10 µg) and with an Empty Vector pcDNA3 (10 µg) into 293T 

cells in 10 cm plates. Twenty four hours after transfection, cells were trypsonized and re-

seeded into 6 well plates. Cells were eventually treated with cyclohexamide for the 

indicated times 0, 30, 60, and 120 minutes. Subsequently lysates were prepared, SDS-

PAGE gels were run and western blots performed.   CYB5D2 ectopic expression resulted 

in higher amounts (or more stable levels) of Insig1, at all time points of cyclohexamide 

treatments, relative to the EV + Insig1 control samples. 
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     CYB5D2 resulted in increased Insig1 levels throughout all times for cyclohexamide 

treatments, compared to lower levels of Insig1 when transfected with the EV (pcDNA3) 

control (Figure 6.5). CYB5D2 increased the overall stability of INSIG1.   

     The cyclodextran HPCD to acutely causes an efflux of cholesterol from the 

membranes of cells, resulting in the activation of the SREBP signalling pathway.  As 

CYB5D2 has been demonstrated to inhibit SREBP signalling, we examined if SREBP 

activation stimulated by HPCD could be blocked by CYB5D2.  EV and CYB5D2 HeLa 

cells were culutred in 5% FBS conditions, 0.5% Lipoprotein serum conditions, and 0.5% 

lipoprotein free serum plus 1% HPCD for one hour.  In these conditions we examined the 

cleavage of both SREBP1 and SREBP2, and if CYB5D2 could prevent this cleavage. 

HPCD treatment induced the maturation of SREBP1 and SREBP2 in EV HeLa  cells, 

based on reduction of the SREBP1 and SREBP2 full length proteins and the generation of 

the NH2-terminal SREBP2 fragment (Figure 6.6).  This maturation process was 

compromised in HeLa CYB5D2 cells (Figure 6.6). 
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Figure 6.6 CYB5D2 impairs HPCD induced cleavage of SREBP 1 and SREBP2.  EV 

and CYB5D2 HeLa cells were cultured in indicated conditions; 5% FBS for 24 hours, 

0.5% LPDS for 24 hours, and 0.5% LPDS for 24 hours plus 1% HPCD for 1 hour.  

Whole cell lysates were prepared, run on SDS PAGE gels, followed by western blot 

analysis for the indicated proteins or protein fragments. LPDS: lipoprotein deficient 

serum. 
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6.3 The Transmembrane domain and heme binding are required for CYB5D2 to 

inhibit SREBP signalling       

     Recently, three polymorphisms of CYB5D2 were constructed by Dr. Damu Tang and 

Dr. YanYun Xie.  Two arginine 7 mutants of CYB5D2 an R7 to proline and an R7 to 

glycine, were observed in Gene Ontology searches for consensus coding sequences of 

human colorectal cancer (Sjoblom et al., 2006).   A third naturally occurring 

polymorphism was observed in further studies of the NIH full length cDNA project 

Mammalian Gene Collection (MGC) (Ota et al., 2004, Gerrard et al., 2004), a glutamine 

at 167 changed to a lysine, Q167K.  Site directed mutagenesis was subsequently 

performed generating these CYB5D2 mutants.  A schematic diagram of these mutants is 

shown (Figure 6.7 A).  These cDNAs were then transfected into 293T cells and allowed 

to express for 48 hours.  Lysates were prepared and run on SDS-PAGE gels, and 

subsequent western blots were probed with an M2 Flag antibody to confirm expression of 

each mutant (Figure 6.7 B).   
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Figure 6.7 Schematic diagram and expression of two CYB5D2 deletion mutants, and 

three CYB5D2 polymorphism mutants.  A. CYB5D2 mutants were contsructed by Dr. 

Damu Tang and Dr. YanYun Xie. Full Length CYB5D2 of 792 bp or 264 amino acids.  A 

300 bp pair region corresponding to the cytochrome heme binding region (red) was 

deleted (nt 103-389).  The transmembrane domain at the amino terminus (black) was 

deleted (nt 1-87).  Two Gene Ontology reported polymorphisms a R7P (*) and a R7G (*) 

have been reported for MGC32124/CYB5D2 in colorectal cancer. A Q167K (*) 

polymorphism has also been reported. B.  All cDNAs were transfected into 293T cells via 

calcium phosphate and 48 hours later whole cell lysates were prepared.  SDS-PAGE gels 

were run and subsequent western blots probed with an M2 Flag antibody.  Beta-Actin 

was used as a control. 
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     Subsequently these mutants, were tested for their capability to inhibit SREBP 

signalling, as wild type CYB5D2 could.  These five mutants, along with a wild type 

CYB5D2 cDNA were co-transfected into 293T cells with a 3xSRE-Luciferase reporter, 

and a β-gal SV40 plasmid. Luciferase assays were performed and normalized to the 

internal β -gal value.  As seen in figure 6.8, the ΔTM and the ΔCYB5D were unable to 

repress the 3xSRE-luciferase reporter like CYB5D2 could.  The three polymorphisms 

mutants, however, were all able to repress the 3xSRE-Luciferase, similar to wild type 

CYB5D2.  Therefore, the transmembrane domain, and the heme binding domain were 

required for CYB5D2 to inhibit 3xSRE reporter activity. 

     In order to further pinpoint the residues responsible for the requirement of heme 

binding in inhibiting SREBP signalling, the heme binding domain mutants Y73A, Y79A, 

Y127A and D86G,  and EV pcDNA3 and CYB5D2 were transfected into 293T cells 

along with a 3xSRE-Luciferase reporter and a β-gal plasmid.  Luciferase assays were 

performed and normalized to the internal β-gal value.  The CYB5D2(D86G) Heme 

binding defective mutant could not repress the 3xSRE-Luciferase reporter, the way the 

wild type CYB5D2 and other heme domain mutants could (Figure 6.8).  Collectively, 

these experiments establish that the transmembrane domain of CYB5D2 and heme 

binding of CYB5D2 are required to inhibit SREBP activation.   
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Figure 6.8 The transmembrane domain, and heme binding are required for 

CYB5D2 to inhibit SREBP signalling.  A. Empty vector (EV; pcDNA3), wild-type 

CYB5D2, a deletion of the transmembrane region (Delta TM), three polymorphism 

mutants (R7P, R7G and Q167K), and a 300 bp deletion of the heme binding domain 

(Delta HBD) were co-transfected into 293T cells with a 3xSRE-Luciferase reporter. 

Luciferase values were normalized with β-galactosidase (β-gal) assay controls.  The 

Delta TM plasmid and the Delta HBD mutant could not inhibit the 3xSRE-Luciferase 

reporter.   B. Empty vector (EV; pcDNA3) and CYB5D2 constructs (CYB5D2, Y73A, 

Y79A, D86G, Y127A) were transfected into 293T cells along with a 3xSRE-Luciferase 

reporter and (β-gal) plasmid.  Luciferase assays were performed and normalized to β-gal 

assay values.  All CYB5D2 cDNAs inhibited 3xSRE-Luciferase activity except the heme 

binding defective mutant CYB5D2(D86G) relative to EV control. All relative luciferase 

unit (RLU) values are represented as mean +/- standard deviation (n=3). ** p < 0.01 

(two-tailed Student’s t-test). 
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6.4 The D86G CYB5D2 destabilizes ectopic Insig1.   

  As the wild type CYB5D2 could stabilize Insig1, we next examined if the 

CYB5D2(D86G) functioned in a similar or possibly different manner.  As CYB5D2 

inhibited SREBP signalling, and the D86G heme binding defective mutant could not, we 

sought to determine if this was through the stabilization of Insig1.  Therefore, 10 µg each 

of myc-Insig1 was co-transfected with 10 µg D86G and compared to a control of 10 µg 

EV pcDNA3 plus 10 µg Insig-1. All plasmids were transfected into 293T cells via 

calcium phosphate method, and 24 hours post-transfection were re-seeded into 6 well 

plates, as described previously.  These cells were then treated with cyclohexamide (an 

inhibitor of protein translation) for the indicated times: 30 minutes, 60 minutes and 120 

minutes.  Lysates were prepared then run on an SDS-PAGE gels and subsequent western 

blots performed. Western blots were probed for the indicated antibodies: myc-Insig1, 

flag-D86G and β-Actin as an internal loading control.  As seen in figure 6.8, the D86G 

resulted in decreased Insig1 levels throughout all times for cyclohexamide treatments, 

compared to higher levels of Insig1 when transfected with the  E V pcDNA3.  Therefore 

CYB5D2 increased the overall stability of Inisg1, but the D86G heme binding defective 

mutant decreased the stability of Insig1.  

        While the CYB5D2(D86G) destabilized ectopic Insig1, we examined if this D86G 

could still co-immunoprecipitate with ectopic Insig1.  To test if the D86G heme binding 

defective mutant could still co-immunoprecipitate with ectopic Insig1, both D86G and 

Insig1 were co-transfected into 293T cells, and co-immunoprecipitations were performed 

as described.  As seen in figure 6.9, when both D86G and Insig1 were co-transfected, 
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M2-Flag immunoprecipitations of the D86G pulled down ectopic Insig1 as seen with a 

myc antibody (Figure 6.9 A).  When myc-Insig1 was immunoprecipitated, we see that 

D86G also co-immunoprecipitates when this western blot is probed with an M2 Flag 

antibody (Figure 6.9 B).  This reveals that CYB5D2 co-immunoprecipitating with Insig1 

did not cause its stabilization.  This tells us that the heme binding of CYB5D2 is required 

for the stabilization of Insig1 and inhibition of SREBP signalling.   

       In order to examine if PGRMC1 could also stabilize ectopic Insig1, both PGRMC1 

and Insig1 were co-transfected into 293T cells as previously described.  A control sample 

of EV and Insig1 was also co-transfected.  Each plate was re-seeded to 6 well plates, 24 

hours lates as described previously, and cyclohexamide was added for the indicated times.  

Lysates were prepared, run on SDS-PAGE gels and then transferred to western blots.  

PGRMC1 also promoted the stabilization of ectopic Insig1, relative to an EV pCDNA3.0 

(Figure 6.11 A).  Experiments were performed exactly as conducted for CYB5D2 and 

Insig1 cyclohexamide treatments (Figure 6.5).   In order to see if PGRMC1 could also 

inhibit SREBP signalling, 3xSRE-Luciferase assays were performed as previously 

described.  PGRMC1 was co-transfected in a dose dependant manner with a 3xSRE-

Luciferase reporter, and a β-Gal plasmid into 293T cells.  All values were normalized to 

β-gal values.  As seen in figure 6.11 B, PGRMC1 decreased the 3xSRE-Luciferase 

reporter in a dose dependant manner. 
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Figure 6.9 The CYB5D2(D86G) heme binding defective mutant destabilizes ectopic 

Insig1.  A 10 cm plate of 293T cells was transfected with 10 µg of Insig1 together with  

EV pcDNA3,  and another  plate with 10 µg of CYB5D2(D86G) with 10 µg of Insig1.  

Twenty-four hours post-transfection, cells from each plate were re-seeded to a 6 well 

plate.  The following day, cells were treated with cyclohexamide for the times indicated 

(0, 30, 60, 90, and 120 minutes). Cell lysates were generated and 100 µg from each 

sample was run on a 12% SDS PAGE gel. This gel was transferred to nitrocellulose and 

probed with the antibodies indicated.  This experiment was re-produced three separate 

times with this same result. 
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Figure  6.10 The CYB5D2(D86G) co-immunoprecipitates with ectopic Insig1.    293T 

cells were co-transfected with 10 µg of Insig1 and 10 µg of the CYB5D2(D86G) mutant .  

Immunoprecipitations (IP) were performed, with equal amounts of lysate 

immunoprecipitated with M2 Flag for D86G, and myc for Insig1.  A. An M2-Flag 

immunoprecipitation can pull-down Insig1-myc, as detected on this anti-myc Western 

blot. B.  A myc-Insig1 immunoprecipitation can pull-down the D86G, as detected on this 

anti-Flag (M2) co-immunoprecipitation western blot.  
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Figure 6.11 PGRMC1 stabilizes ectopic Insig1, and inhibits SREBP signalling. A.  

PGRMC1 and Insig1 were co-transfected into 293T cells compared with an empty vector  

control (EV pcDNA3) plus Insig1.  Cells were treated with cyclohexamide for 30, 60, 90 

and 120 minutes.  Lysates were prepared, and western blots performed. β-Actin was used 

as a loading control.  B.  PCRMC1 was co-transfected in increasing amounts along with a 

3xSRE Luciferase reporter and a β-galactosidase (β-gal) plasmid.  PGRMC1 inhibited the 

3xSRE Luciferase in a dose dependant manner.  All relative luciferase unit (RLU) values 

were mean +/- standard deviation (n=3). ** p < 0.01 (two-tailed Student’s t-test). 
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Chapter 7.  CYB5D2 co-Immunoprecipitates with cytochrome P450 reductase, and 

regulates CYP51A1 lanosterol demethylase.   

     Previous reports have demonstrated that PGRMC1 could interact with cytochrome 

P450 reductase (POR) (Szczesna-Skorupa and Kemper 2011).  PGRMC1 has also been 

shown to interact with several P450 cytochrome enzymes (Hughes et al., 2007, Szczesna-

Skorupa and Kemper 2011).   We have observed that the heme binding of CYB5D2 is 

required to confer survival from chemotherapeutic drugs and to inhibit SREBP signalling.  

We therefore hypothesized that CYB5D2 could interact with cytochrome P450 reductase 

(POR), and possibly regulate the activities of certain P450 cytochromes.  Furthermore, 

we attempted to address why heme binding of CYB5D2 was required to stabilize the 

ectopic Insig1 protein.  In order to determine if CYB5D2 could co-immunoprecipitate 

with POR, 10 µg of CYB5D2 and 10 µg of YFP-POR were co-transfected into a semi-

confluent 10 cm plate of 293T cells, and co-immunoprecipitations were performed.  

When ectopic YFP-POR was co-transfected with ectopic CYB5D2, and a GFP antibody 

was used to immunoprecipitate YFP-POR, ectopic CYB5D2 was co-immunoprecipitated 

(Figure 7.1 A).  This co-immunoprecipitation was confirmed in both 10% FBS and serum 

free (24 hours) culture conditions.  When we examined CYB5D2 expression in the input 

lysate, we observe that ectopic POR induced CYB5D2 into the 56 kDa dimer form, in 

both 10% FBS and serum free culture conditions (Figure 7.1 B). 
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Figure 7.1 CYB5D2 co-immunoprecipitates with ectopic POR.  A.  Ectopic POR 

(YFP) and CYB5D2(Flag) co-immunoprecipitate, *asterisk.  B.  The Input demonstrates 

that ectopic POR induces CYB5D2 into the 56 kDa dimer, when both are co-transfected.  

C.  Re-probing of panel B (input lysate) with anti GFP antibody showing expression of 

POR-YFP.   
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7.1 CYB5D2 shRNA HeLa cells have reduced CYP51A1 and Insig1 protein levels  

      

     While the previous experiments in chapter 6 examined the affect that CYB5D2 had on 

the stability of ectopically transfected Insig1, we wanted to determine if endogenous 

Insig1 protein levels were affected by CYB5D2.  Therefore, the levels of endogenous 

Insig1 were examined in the stable HeLa EV, CYB5D2, D86G, shRNA control and 

shRNA CYB5D2 cell lines.  Each cell line was cultured in both 10% FBS and serum free 

conditions for 24 hours.  Whole cell lysates were prepared, run on SDS-PAGE gels and 

subsequent western blots performed.  Endogenous Insigl protein levels were reduced in 

shRNA CYB5D2 knockdown HeLa cells in both 10% FBS and serum free culture 

conditions (Figure 7.2). A β-Actin antibody was used to monitor equal loading. These 

western blots were re-probed with a CYP51A1 (lanosterol demethylase) antibody. We 

observed that shRNA CYB5D2 cells have significantly reduced CYP51A1 protein levels, 

relative to the shRNA control HeLa cell line, in both 10% FBS and serum free culture 

conditions (Figure 7.2, middle panel).  The D86G HeLa cells however still seem to 

display normal levels of the CYP51A1 protein. 
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Figure 7.2 CYP51A1 and Insig1 proteins are reduced in shRNA CYB5D2 HeLa cells.   

EV, CYB5D2 and D86G, shRNA control and CYB5D2 shRNA (shCYB5D2) HeLa cells 

were cultured in 10% FBS and serum free conditions (24 hours) and probed with anti-

Insig1 and anti-CYP51A1 antibodies.   As seen in the shRNA control and shRNA 

CYB5D2 cell lines, Insig1 protein levels are reduced in the shRNA CYB5D2 cell lines in 

both the 10% FBS and serum free conditions.  A β-actin loading control 

was used to measure equal loading.  When these blots were re-probed with a CYP51A1 

antibody, we see reduced protein levels in the shRNA CYB5D2 cells in both 10% FBS 

and serum free conditions.  
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    Previously we observed that CYB5D2 could co-immunoprecipitate with ectopic Insig1.  

We subsequently examined if CYB5D2 could co-immunoprecipitate with endogenous 

Insig1 protein.  These same Hela stable lines cultured in 10% FBS and serum free 

conditions (24 hours) were used to immunoprecipitate ectopic CYB5D2 and D86G, to 

look for an interaction with endogenous Insig1.  Additionally, immunoprecipitations with 

the COOH CYB5D2 antibody were performed to detect an interaction between 

endogenous CYB5D2 (from shRNA control HeLa), to look for an interaction with 

endogenous Insig1.  As seen in figure 7.3, immunoprecipitations of ectopic CYB5D2 did 

not pull down endogenous Insig1, in either 10% FBS or serum free cultured conditions.  

Immunoprecipitations of endogenous CYB5D2, with the COOH-terminus CYB5D2 

antibody did not pull down endogenous Insig1 either (shRNA control HeLa) (Figure 7.3). 
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Figure 7.3 CYB5D2 does not co-immunoprecipitate with endogenous Insig1 in HeLa 

cells.  CYB5D2, and D86G were immunoprecipitated with anti-Flag (M2) antibody.  

Immunoprecipitations were run on SDS-PAGE gels and transferred to western blots.  

Western blots were probed for endogenous Insig1. Endogenous Insig1 did not co-

immunoprecipitate with ectopic CYB5D2.  Endogenous CYB5D2 was 

immunoprecipitated with our polyclonal antibody to CYB5D2 from shRNA control HeLa 

and shRNA CYB5D2 HeLa (negative control) cells. Endogenous Insig1 could not co-

immunoprecipitate with endogenous CYB5D2. 
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     While ectopic CY5D2 and POR could co-immunoprecipitate in 293T cells, we wanted 

to confirm they co-localized in HeLa cells.  Ectopic POR was transfected into CYB5D2 

HeLa cells, and dual immunoflouresence performed.  As seen in figure 7.4 A, CYB5D2 

co-localizes with POR.    As previously reported in figure 7.2, shRNA CYB5D2 HeLa 

cells have reduced protein levels of CYP51A1 relative to shRNA HeLa cells.  This result 

was reproduced in figure 7.4 B, which is similar to Dap1 in yeast in regulating CYP51A1 

(lanosterol demethylase) protein levels. Thus lanosterol would be accumulating in 

shRNA CYB5D2 HeLa cells with reduced CYP51A1 to facilitate its turnover.  If the 

sterol synthesis pathway could be primed with excess doses of mevalonate, this 

accumulation of lanosterol could be evident in these shRNA CYB5D2 HeLa cells, as 

high lanosterol levels are toxic to the cell.  Therefore shRNA CYB5D2 HeLa cells and 

shRNA HeLa cells were cultured in 0.5 % lipoprotein free serum for 24 hours and then 

treated with increasing concentrations of mevalonate. Subsequently MTT cell viability 

assays were performed.  As seen in figure 7.4 C, the shRNA CYB5D2 HeLa cells were 

more susceptible to increasing mevalonate concentrations, compared to the shRNA HeLa 

cell line (Figure 7.4 C). CYB5D2 conferred survival from paclitaxel, cisplatin and 

doxorubicin and etoposide (Xie et al., 2011).  Cytochrome P450 3A4 is the major drug 

metabolizing P450 cytochrome.  Using a PROMEGA P450 Glo assay kit the cytochrome 

activity of CYP3A4 was measured in these cell lines.  As seen in figure 7.4 D, shRNA 

CYB5D2 cells had reduced CYP3A4 activity.  Ectopically transfected POR significantly 

increased CYP3A4 activity in the shRNA HeLa cells, but only modestly increased 

CYP3A4 activity in the shRNA CYB5D2 HeLa cells (Figure 7.4 D). 
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Figure 7.4 CYB5D2 shRNA HeLa cells are more susceptible to mevalonate 

treatment, and have reduced CYP3A4 activity.  A.  Ectopically transfected POR 

(green) co-localizes with CYB5D2 (red) in HeLa cells in dual immunoflouresence 

staining. B.  CYP51A1 protein levels are reduced in shRNA CYB5D2 HeLa cells.  Here 

100 µg of lysates were run on an SDS-PAGE gel and subsequent western blots probed 

with a CYP51A1 antibody. C. Increasing concentrations of mevalonate decreased cell 

viability, however this effect was greater in the shRNA CYB5D2 HeLa cells. D. 

Cytochrome activity of CYP3A4 was measured using the PROMEGA P4503A4 

luciferase assay. These shRNA CYB5D2 HeLa and shRNA  HeLa cells were transfected 

with an EV pcDNA3 and POR plasmid. CYP3A4 activity was reduced in shRNA 

CYB5D2 HeLa cells, with and without POR.  All data points represent mean +/- standard 

deviation (n=3), *p < 0.05; **p < 0.01 (two-tailed independent Student’s T-test). 
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     As ectopic CYB5D2 was able to co-immunoprecipitate with ectopic POR, I sought to 

determine if ectopic D86G could co-immunoprecipitate with ectopic POR. 

Both D86G and ectopic POR were transiently co-transfected into 293T cells.  When 

D86G was immunoprecipitated with M2-Flag, a GFP antibody could not detect ectopic 

POR, which was YFP tagged.  When ectopic POR was immunoprecipitated with a GFP 

antibody, and immunoprecipitations probed with the M2-Flag antibody, the D86G could 

not be detected.  Ectopic POR could not co-immunoprecipitate with ectopic D86G 

(Figure 7.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ph. D. Thesis – A. Bruce  McMaster University Medical Sciences 

 149 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 The D86G heme binding defective mutant cannot co-immunoprecipitate 

with ectopic cytochrome P450 reductase (POR).  The D86G and POR were transfected 

(10 µg each) into 293T cells.   Forty eight hours later, lysates were prepared, and D86G 

was immunoprecipitated with an M2 Flag antibody.  YFP-POR was immunoprecipitated 

with a GFP antibody.  When the D86G was immunoprecipitated with an M2 Flag 

antibody, POR could not be detected in a co-immunoprecipitation with D86G (top panel).  

Similarly, when YFP-POR was immunoprecipitated with a GFP antibody, the D86G 

could not be detected in a co-immunoprecipitation when western blots were probed with 

an M2 Flag antibody (bottom panel). 
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7.2 CYB5D2 co-immunoprecipitates with endogenous POR in HeLa cells in serum 

free conditions 

     Previously we demonstrated that CYB5D2 was induced into a 56 kDa dimer when 

PTEN is overexpressed in U87 cells cultured in reduced serum, and when NIH3T3 cells 

are serum starved.  Moreover, CYB5D2 confers a pro-survival affect in these conditions. 

Therefore we examined if ectopic CYB5D2 could co- immunoprecipitate with 

endogenous POR in 10% FBS conditions as well as serum free (24 hours) culture 

conditions.  Stable HeLa cell lines, EV, CYB5D2 and D86G were cultured in 10% FBS 

and in serum free conditions for 24 hours.  Lysates were prepared and the M2 Flag 

antibody was used to immunoprecipitate CYB5D2, and D86G, in both 10% FBS and 

serum free conditions.   As seen in figure 7.6, CYB5D2 co-immunoprecipitates with 

endogenous POR in serum free conditions, but not in 10% FBS culture conditions.  The 

D86G could not co-immunoprecipitate with endogenous POR in either culture condition 

in HeLa cells (Figure 7.6).  When whole cell lysates from these cells  were examined by 

western blots probed with a  POR antibody, we observe that endogenous POR protein 

levels do not change between these cell lines.  Endogenous POR protein levels do not 

change from 10% FBS culture conditions to serum free conditions.  Thus ectopic 

CYB5D2 co-immunoprecipitates with endogenous POR in serum free conditions in HeLa 

cells.  The heme binding defective D86G does not co-immunoprecipitate with 

endogenous POR in HeLa cells. 

 

 



Ph. D. Thesis – A. Bruce  McMaster University Medical Sciences 

 151 

 

 

E
V

C
Y
B
5D

2

D
86G

E
V

C
Y
B
5D

2

D
86

G

10% FBS SF
IP
M2 Flag:

POR
(76 kDa)

POR
(76 kDa)

actin

Lysate

HeLa Cells

 

 

 

 

Figure 7.6 Ectopic CYB5D2 co-immunoprecipitates with endogenous POR in HeLa 

cells in serum free conditions.  EV, CYB5D2 and D86G HeLa cells were cultured in 

10% FBS and serum free conditions for 24 hours.  CYB5D2 and D86G were then 

immunoprecipitated in both conditions with an M2 Flag antibody, and run on SDS-PAGE 

gels. When subsequent western blots were probed with a POR antibody, we see 

endogenous POR co-immunoprecipitates with ectopic CYB5D2 in serum free conditions, 

but not in 10% FBS culture conditions.  Whole cell lysates from these cell lines show that 

endogenous protein levels of POR are unchanged in these cell lines, and unchanged in 

10% FBS and serum free culture conditions between these cell lines.  
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        Lanosterol has been shown to regulate the association of HMG CoA reductase with 

Insig1, resulting in the degradation of HMG CoA reductase by the membrane anchored 

ubiquitin ligase gp78 (Song et al., 2005). If overexpressing CYB5D2 stabilizes 

CYP51A1 (lanosterol demthylase), this will result in increased lanosterol turn over, and 

reduction of lanosterol levels.  As a result, HMG CoA reductase will dissociate from 

Insig1, enhancing its protein stability. Therefore, HMG CoA reductase protein levels 

were examined in EV, CYB5D2 and D86G HeLa cells.  As seen in figure 7.7, HMG CoA 

reductase protein levels are highest in CYB5D2 HeLa cells, relative to an EV HeLa and 

D86G HeLa cells.  This result indirectly demonstrates that CYB5D2 overexpression is 

causing a reduction in lanosterol levels. 
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Figure 7.7 HMG CoA Reductase protein levels are increased by CYB5D2.  Lysates 

from EV, CYB5D2 and D86G HeLa cells were prepared, and run on an SDS PAGE gel. 

Subsequently western blots were probed for HMG CoA reductase.  CYB5D2 HeLa cells 

had a higher amount of HMG CoA reductase protein, relative to an EV control and the 

D86G HeLa cells.  
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7.3 CYB5D2 does not co-immunoprecpitates with endogenous Insig1 in Huh7 cells, 

but shRNA CYB5D2 Huh7 cells have reduced endogenous Insig1 levels 

 

     Since we were unable to detect an interaction between CYB5D2 and endogenous 

Insig1 in HeLa cells, co-immunoprecipitations of these proteins were performed in Huh7 

cells.  Using previously described stable Huh7 cell lines, EV, CYB5D2 and D86G, anti-

M2 Flag immunoprecipitations were performed, for CYB5D2 and D86G.   Moreover 

endogenous CYB5D2 was immunoprecipitated with the COOH-CYB5D2 polyclonal 

antibody, from the shRNA  control Huh7 and shRNA CYB5D2 Huh7 cell lines.  As seen 

in figure 7.8, endogenous Insig1 could not co-immunoprecipitate with ectopic CYB5D2 

and endogenous CYB5D2 in Huh7 cells (shRNA control Huh7).  Lysates from these co-

immunoprecipitations were run on SDS-PAGE gels, and subsequent western blots probed 

for endogenous Insig1.   
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Figure 7.8 CYB5D2 does not co-immunoprecipitate with endogenous Insig1 in Huh7 

cells, but shRNA CYB5D2 Huh7 cells have reduced endogenous Insig1 protein levels.   

Ectopic CYB5D2 and D86G were immunoprecipitated with M2 Flag from EV control, 

CYB5D2 and D86G stable Huh7 cells.  Endogenous Insig1 did not co-immunoprecipitate 

with CYB5D2 or D86G in 10% or serum free (24 hours) culture conditions.  Endogenous 

CYB5D2 was immunoprecipitated with the COOH-CYB5D2 polyclonal antibody from 

shRNA Huh7 control and shRNA CYB5D2 Huh7 cells.  Endogenous Insig1 did not co-

immunoprecipitate with endogenous CYB5D2. 
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     Similar to shRNA CYB5D2 HeLa cells, endogenous Insig1 protein levels were 

reduced in shRNA CYB5D2 Huh7 cells, relative to shRNA Huh7 cells, in both 10% FBS  

conditions and serum free culture conditions (Figure 7.8).  Collectively this demonstrates 

that endogenous CYB5D2 functions to stabilize endogenous Insig1 levels, in both HeLa 

and Huh7 cells. 

 

7.4 CYB5D2 co-immunoprecipitates with endogenous POR in Huh7 cells in serum 

free conditions 

 As CYB5D2 could co-immunoprecipitate with endogenous POR in HeLa cells that were 

serum starved, we examined whether CYB5D2 in Huh7 cells could interact with 

endogenous POR in these conditions.  The Huh7 stable cell lines, EV, CYB5D2 and 

D86G were cultured in 10% FBS and in serum free conditions for 24 hours.   The M2 

Flag antibody was used to immunoprecipitate CYB5D2 and D86G, in both 10% FBS and 

serum free culture conditions.   As seen in figure 7.9, endogenous POR co-

immunoprecipitates with CYB5D2 in serum free conditions, but not in 10% FBS culture 

conditions.  The D86G Huh7 could not co-immunoprecipitate with endogenous POR in 

either 10% FBS or serum free culture conditions in Huh7 cells (Figure 7.9).  Thus 

endogenous POR interacts with CYB5D2 in serum free conditions in Huh7 cells, similar 

to HeLa cells. 
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Figure 7.9 CYB5D2 co-immunoprecipitates with endogenous POR in serum free 

conditions in Huh7 cells.  EV, CYB5D2 and D86G Huh7 cells were cultured in 10% 

FBS and serum free conditions for 24 hours.   CYB5D2 and D86G were 

immunoprecipitated in these two conditions, and these immunoprecipitates run on SDS-

PAGE gels and subsequent western blots probed with a POR antibody. CYB5D2 co-

immunoprecipitates with endogenous POR in serum free conditions, but not in 10% FBS 

culture conditions.  This result is consistent with CYB5D2 in HeLa cells, despite having 

different proliferative affects in these two cell types.  Endogenous POR protein levels did 

not change in 10% FBS culture conditions compared to serum free conditions.  

Endogenous POR protein levels did not change between these various Huh7 stable cell 

lines.  
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Chapter 8. Discussion 

8.1 Discussion (Chapter 3) 

     CYB5D2 was identified in a screen in LNCAP cells as a gene that conferred survival 

from ectopic PTEN death.  Additionally, CYB5D2 confers protection from PTEN 

induced cell death in U87 cells.  In CYB5D2 U87 cells that sustained PTEN expression, 

we observed reduced phosphorylated serine 473 AKT/PKB levels, indicating that ectopic 

PTEN is still functioning, sufficient to reduce activation of PI3Kinase signalling and 

subsequent AKT/PKB signalling.   CYB5D2 was not detected in an interaction with 

PTEN, as seen in these co-immunoprecipitations. From this information it is possible, 

though unknown, if CYB5D2 attenuates some lipid phosphatase independent PTEN 

function.  Alternatively, it is also possible that CYB5D2 confers survival downstream of 

reduced AKT/PKB signalling.   

     CYB5D2 conferred survival from serum starvation in NIH3T3 cells, relative to EV 

NIH3T3.  In these serum reduced culture conditions, CYB5D2 dramatically reduces the 

proliferative capacity of these cells. Moreover CYB5D2 NIH3T3 cells were observed to 

be more viable, when recovering from serum starvation.  This implicates CYB5D2 as 

having a pro-survival function in nutrient deprived conditions.   Since overexpressing 

PTEN and serum starving cells can inactivate the PI3Kinase signalling pathway, 

CYB5D2 could well function in a pro-survival role when PI3Kinase signalling is 

downregulated.  This pro-survival function of CYB5D2 could also be induced by these 

conditions (inhibition of PI3Kinase signalling), as CYB5D2 appears in a 56 kDa dimer in 

these conditions. 
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Discussion (Chapter 4) 

   By generating a polyclonal antibody to CYB5D2, the existence of the endogenous 

protein in numerous human cell types is verified.  CYB5D2 protein was expressed (in 

varying degrees) in all cell types, with the exception of liver HEPG2 cells.  It is unclear 

why CYB5D2 was expressed in the Huh7 liver cancer cell line, but not the HEPG2 liver 

cancer cell line. As CYB5D2 was highly expressed in neural cancer cell lines, its high 

expression in these cell lines could indicate a requirement for a role in survival or 

maintenance of neural cancer.  A similar rationale for prostate cancer could be made due 

to its moderate expression levels in these cancer cell lines.  

    Moreover, these results indicate that endogenous CYB5D2 exists as a 56 kDa dimer 

(doublet) in lysates from these various cell lines.   By increasing the denaturing 

conditions of the sample buffer used to prepare lysates from these cells, we can resolve 

CYB5D2 into a protein band at 28 kDa, indicative of a monomer of 28 kDa.  Therefore, 

CYB5D2 only really exists in vivo as a 56 kDa dimer, and it is the denaturing conditions 

of the sample buffer and SDS PAGE gel that resolve the endogenous protein into a 28 

kDa monomer.   

Discussion (Chapter 5) 

     CYB5D2/ Neuferricin has previously been shown to bind heme, a process that requires 

the cyt-b5 domain (Kimura et al., 2010). However, the critical residue(s) responsible for 

this association remains unknown. While several residues, including Y73, Y79, D86, and 

Y127, have been implicated to play a role in heme binding based on the roles of their 
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conserved counterparts in heme association in other MAPR members, the systematic 

investigation of these residues individually, clearly demonstrates that D86 plays an 

essential role in CYB5D2-mediated heme association. This conclusion was based on the 

loss of heme binding, when D86 was substituted with G86 (D86G). The recombinant 

CYB5D2(D86G) was demonstrated to be heme binding defective by heme agarose 

precipitations, “in gel” peroxidase assays, UV visible absorbption spectra data, and 

through the inability to be oxidized and reduced.  Overall, the recombinant D86G protein 

was incapable of heme association in comparison to recombinant CYB5D2, 

demonstrating that the mutant is defective in directly binding to heme. This recombinant 

protein data shows that CYB5D2 alone binds to heme, and that the D86G is defective in 

this, meaning that no accessory protein is responsible for this. 

     An shRNA CYB5D2 knockdown was also generated, and this was used in tandem 

with D86G stable cell lines to compare both of these loss of function tools against the 

wild type CYB5D2.  The CYB5D2(D86G) behaved in an opposite fashion to CYB5D2, 

and in a similar fashion to the shRNA CYB5D2 cell lines, in proliferation and growth in 

HeLa cells and Huh7 cells.  Furthermore, the heme binding of CYB5D2 was required for 

CYB5D2 to confer survival from chemotherapeutic compounds.  These experiments 

shows that lack of heme binding results in a loss of function for CYB5D2.  

     Overall the different effects that CYB5D2 conferred on HeLa and Huh7 cell 

proliferation was related to its ability to bind heme.  Exactly how heme binding of 

CYB5D2 is affecting the different proliferative functions of CYB5D2 in different cell 

lines is unknown here.   
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Discussion (Chapter 6) 

     The CYB5D2 protein co-localizes to the Endoplasmic Reticulum (ER).  This location 

places CYB5D2 in an area where sterol metabolism, and cytochrome P450 microsomal 

proteins reside.  CYB5D2 inhibits SREBP signalling, in transient transfection assays in 

293T cells.  We show that only the full length unprocessed form of SREBP1c and 

SREBP2 are inhibited by CYB5D2, indicating that CYB5D2 only inhibits these 

transcription factors when they are retained in the ER. 

     Structurally, the transmembrane domain and the heme binding domain are required for 

CYB5D2 to inhibit SREBP signalling.  This transmembrane domain deletion mutant 

(∆TM) has been shown to ablate the peri-nuclear localization of CYB5D2 (Xie et al., 

2011).  Thus the ER localization of CYB5D2 is required for its inhibition of SREBP 

signalling.  Specifically the D86G heme binding defective mutant cannot inhibit SREBP 

signalling.  This indicates that CYB5D2 needs to bind to heme to inhibit SREBP 

signalling.  While CYB5D2 can bind to and stabilize ectopic Insig1, the D86G promoted 

the destabilization of Insig1, but still co-immunoprecipitated with Insig1.  Therefore it is 

not the binding of CYB5D2 to Insig1 that promotes its stabilization, but rather its ability 

to bind to heme that confers its stabilization affect on Insig1.  PGRMC1 can also stabilize 

Insig1 and inhibit the 3xSRE Luciferase reporter in dose dependant manner. It could 

therefore be possible that CYB5D2, like PGRMC1, might affect the CYP51A1 protein 

stability, and ultimately lanosterol levels, resulting in more stable Insig1 protein. 
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Discussion (Chapter 7) 

 

     Microsomal P450 cytochromes require cytochrome P450 reductase (POR) for their 

activation.  Yeast Dap1, has been shown to be involved in regulating ERG11p (lanosterol 

demethylase) (Hand et al., 2003; Mallory et al., 2005).   PGRMC1 has been shown to 

bind to P450 cytochromes and to cytochrome P450 reductase (Hughes et al 2007; 

Sczesna and Kemper 2010).  Furthermore, these groups have shown that Dap1 is required 

to stabilize the ERG11p lanosterol demethylase protein, and knockdown of PGRMC1 has 

been shown to result in an increase of lanosterol levels (Mallory et al., 2005; Hughes et 

al., 2007; Szczesna-Skorupa and Kemper, 2010).  CYB5D2 can interact with POR when 

both were co-transfected into 293T cells.  Moreover, this ectopic co-expression of POR 

induced CYB5D2 into the 56 kDa dimer form. This 56 kDa dimer was oberved when 

CYB5D2 NIH3T3 cells are serum starved, and when CYB5D2 + PTEN U87 cells are 

cultured in reduced serum (chapter 3).  CYB5D2 also co-localizes with POR in dual 

immunoflouresence staining.  CYP51A1 protein levels are reduced in shRNA CYB5D2 

HeLa cells, indicating that CYB5D2 protein functions to stabilize the CYP51A1 protein, 

similar to Dap1.   In these shRNA CYB5D2 HeLa, reduced CYP51A1 would result in a 

defect in sterol synthesis, which is evident in their increased susceptibility to mevalonate 

treatment.  Priming sterol synthesis with excess mevalonate results in a greater flux 

through the sterol synthesis pathway.  Without sufficient CYP51A1 to modify lanosterol 

it would accumulate, resulting in cellular toxicity.  This block in lanosterol turnover in the 

sterol synthesis pathway in the shRNA CYB5D2 HeLa cells, is exposed by their increase 

in susceptibility to mevalonate treatment.  Additionally, by regulating lanosterol levels, 
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CYB5D2 would affect stability of HMG CoA reductase.   This is observed as CYB5D2 

HeLa cells have higher levels of HMG CoA reductase, relative to EV HeLa and D86G 

HeLa.   Since CYB5D2 functions to stabilize CYP51A1, which results in lower lanosterol 

and more stable HMG CoA reductase, this promotes an increase in the sterol synthesis 

pathway at these two major steps.  This overall increase in sterol synthesis production 

would result in higher levels of cholesterol, which would be detected by SCAP.   When 

this excess cholesterol and SCAP bind to Insig1, Insig1 becomes more stable.  This 

suggests that CYB5D2 and PGRMC1 can initiate an increase in sterol synthesis by 

affecting CYP51A1 stability/activity and lanosterol levels, and this excess cholesterol is 

detected by increased Insig1 stability.  Since endogenous Insig1 protein levels were 

reduced in shRNA CYB5D2 HeLa and Huh7 cells, this indicates that sterol synthesis and 

overall cholesterol levels were reduced by the loss of CYB5D2.  While CYB5D2 

stabilized ectopic Insig1, the D86G heme binding defective mutant destabilized ectopic 

Insig1.  CYB5D2 can interact with POR but the D86G cannot.  It is likely that CYP51A1 

(a P450 cytochrome) requires activation from POR, and by CYB5D2 to some degree.  It 

is important to note, that CYP51A1 protein levels were not reduced in the D86G HeLa 

cell line.  This result implies that it is the expression of CYB5D2 protein that would cause 

the stabilization of CYP51A1, and not the heme binding.  It seems plausible that these 

cytochrome b5 heme binding proteins like PGRMC1 and CYB5D2 keep Insig1 in close 

proximity, to be receptive to regulated lanosterol levels.    

     CYB5D2 interacted with endogenous POR in serum free conditions.  This happens 

when CYB5D2 is overexpressed in HeLa cells and Huh7cells, despite CYB5D2 having 
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different proliferative affects on these cell lines.  It is likely that the signalling pathways 

that regulate the interaction of CYB5D2 with POR are similar between these two cell 

types, even though the affect of CY5D2 on proliferation and growth is different in these 

cell types. The D86G could not interact with endogenous POR in any serum culture 

conditions.  This explains the mechanism of why the D86G acts in a dominant negative 

fashion compared to wild type CYB5D2 in the functions studied here ie proliferation, 

survival from chemotherapeutic drugs, and Insig1 stabilization. This data further 

demonstrates that CYP51A1 protein levels and CYP3A4 activity are reduced in shRNA 

CYB5D2 HeLa cells.   These are both cytochrome P450 enzymes, which require POR for 

their activity. 

 

8.2 Conclusion 

     CYB5D2 was identified from a screen in LNCAP prostate cancer cells for its ability to 

confer survival from the PTEN tumor suppressor gene.  CYB5D2 also conferred survival 

from PTEN overexpression in U87 cells, and from serum starvation in NIH3T3 cells.  

CYB5D2 likely confers survival from the inhibition of PI3Kinase signalling in these cells.  

These conditions also induce ectopic CYB5D2 into a 56 kDa dimer when CYB5D2 is 

immunoprecipitated, where it would function in a pro-survival capacity.  

     The endogenous CYB5D2 56 kDa dimer is resolved into a 28 kDa monomer by 

increasing the denaturing capacity of the lysis buffer.  The endogenous CYB5D2 protein 

is expressed in neural, breast, prostate, kidney, and liver cells.   
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     CYB5D2 inhibits SREBP signalling in transient expression assays.  This inhibition 

requires the transmembrane domain and the heme binding domain of CYB5D2.  While 

SREBP signalling was affected following transient transfections of CYB5D2 with SRE 

reporters in 293T cells, in our stable HeLa and Huh7 cell lines, we did not detect any 

differences between EV, CYB5D2, D86G,  shRNA CYB5D2 or shRNA control HeLa 

and Huh7 cells using a 3xSRE-GFP reporter. One possibility for the lack of effect on the 

3xSRE-GFP reporter could be that Insig1 itself is an SREBP target, which would be now 

downregulated when the Insig1 protein is stabilized and SREBP signalling is inhibited.   

  This work characterizes the generation and characterization of a heme binding defective 

mutant of CYB5D2 (D86G) that acts in a dominant negative fashion for CYB5D2.  Using 

this mutant in tandem with CYB5D2 shRNA we show that heme binding of CYB5D2 is 

required to confer survival from chemotherapeutic compounds.  Moreover heme binding 

of CYB5D2 is required to regulate proliferation in HeLa and Huh7 cells. Heme binding 

of CYB5D2 is also required to stabilize Insig1, and to inhibit SREBP signalling.  Similar 

to Dap1`s function to stabilize the (CYP51A1) protein in yeast (Craven et al., 2007), 

CYB5D2 regulated CYP51A1 protein levels.    PGRMC1 reportedly bound to CYP51A1, 

and consequently regulates lanosterol levels as well (Hughes et al., 2007; Szczesna-

Skorupa and Kemper. 2011).  An interaction between CYB5D2 and CYP51A1 was not 

detected in co-immunoprecipitations (data not shown).  These results demonstrate that 

CYB5D2 shRNA HeLa cells have reduced CYP51A1 protein levels, reduced CYP3A4 

activity and reduced Insig1 protein levels. This suggests that CYB5D2 functions to 

regulate CYP51A1 protein levels (and subsequently regulating lanosterol levels), results 
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in increased sterol synthesis which ultimately modulates Insig1 stability.  This thesis is 

the first demonstration that PGRMC1 could stabilize ectopic Insig1 and inhibit the 

3xSRE-Luciferase reporter.   PGRMC1 and CYB5D2 likely keep Insig1 in close physical 

proximity, where it can be readily available to fluctuating lanosterol levels (DeBose-Boyd, 

2007).    Stabilizing CYP51A1 would result in lower lanosterol levels, averting an 

interaction between Insig1 and HMG CoA-reductase, resulting in more stable HMG CoA-

reductase levels.  This would also leave more Insig1 available for SCAP binding, and 

increase the rate of sterol synthesis at the 3-hydroxy-3-methylglutary-CoA/mevalonate 

step by HMG CoA reductase.  Excess levels of sterols would be sensed by SCAP and 

induce its interaction with Insig1, which would now stabilize Insig1. The stabilization of 

Insig1 by CYB5D2 is a direct measure of increased cholesterol production.   However, 

stabilizing Insig1 would inhibit SREBP signalling, and decrease transcription of Insig1. 

CYB5D2 would  inhibit this model of “convergent feedback”.  How this would affect the 

overall cholesterol picture and feedback mechanisms remains unclear. Further 

investigation of how these processes are affected by these proteins is required.  

     More directly, heme binding of CYB5D2 is required to interact with cytochrome P450 

reductase (POR).  CYB5D2 interacted with endogenous POR in serum free culture 

conditions in HeLa and Huh7 cells, while the D86G could not.  Overall, this represents a 

primary direct function of CYB5D2, and explains the dominant negative functions of 

D86G.  As CYP51A1 is the major cytochrome P450 associated with POR and its 

associated roles and phenotypes, it seems both PGRMC1 and CYB5D2 have evolved to 

regulate this POR dependant enzyme and this step of lanosterol breakdown. Additionally, 



Ph. D. Thesis – A. Bruce  McMaster University Medical Sciences 

 167 

lanosterol is an important molecule in regulating HMG CoA reductase association with 

Insig1 and subsequent degradation (Song et al., 2005).  Therefore by regulating lanosterol 

levels, both PGRMC1 and CYB5D2 can indirectly regulate Insig1 stability, and inhibit 

SREBP activation. 

      It remains to be seen what other cytochrome P450 enzymes are also regulated by 

CYB5D2.  It is possible, that these cytochrome P450 substrates regulated by CYB5D2-

POR could vary from one cell type to another.  Further investigation to identify CYB5D2 

interacting proteins and POR P450 cytochrome substrates will be required.  Because 

CYB5D2 interacted with endogenous POR in HeLa cells and Huh7 cells that were serum 

starved (despite having different proliferative affects in these cell lines), CYB5D2 might 

function to promote cell survival in these conditions by interacting with POR and 

regulating specific P450 cytochrome enzymes in these conditions. 

     Whether a process like autophagy becomes induced by CYB5D2 (POR associated) in 

this serum starved scenario remains to be seen.  Further definitive examination of the role 

of CYP51A1, lanosterol demethylase, could be performed by inhibiting this protein with 

itraconazole and fluconazole.  Inhibition of this protein could determine its role in 

CYB5D2 and PGRMC1 mediated Insig1 stability.  One overall picture of these MAPR 

proteins PGRMC1 and CYB5D2 could be to increase sterol synthesis to increase the 

cholesterol needed for the processes that these P450 cytochrome enzymes are involved in. 

    We were unable to detect ectopic CYB5D2 expressed in the media from stable CYBD2 

HeLa cells.  Therefore the secretion of CYB5D2 is likely cell type specific, and all the 

functions described here refer to the intracellular protein and its subsequent functions.   
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     While most papers published on PGRMC1 describe its function as a progesterone 

receptor, we do not know if CYB5D2 functions as some kind of hormone receptor.  

Moreover, it is unclear if any cytochrome P450 enzymes involved in steroid biosynthesis 

or bile acid synthesis are regulated by this CYB5D2 POR interaction in serum starved 

conditions.  Furthermore, while PGRMC1 has been shown to be a sigma 2 receptor, we 

have yet to determine if CYB5D2 is also a sigma receptor.  Future experiments will be 

needed to address this.    

    Experiments and data implicating CYB5D2 in an ER stress response were omitted 

from this thesis.  Further experiments characterizing this connection need to be explored, 

as this story is only partially characterized.  Moreover, examining the signalling pathways 

regulating the association of CYB5D2 and POR were not permitted in this thesis.  Future 

work elucidating the signalling regulating CYB5D2 functions would be required. 

 

8.3 Future Directions 

     In this study, we identify two P450 cytochromes affected by CYB5D2, CYP51A1 and 

CYP3A4.  Whether additional P450 cytochromes are affected by CYB5D2 would need 

further investigation.  In order to show that CYP51A1 activity was affected directly, mass 

spec analysis to measure lanosterol levels would need to be performed.  While CYB5D2 

conferred survival from serum starvation, the exact mechanism was not determined.  

Further investigation on CYB5D2`s pro-survival function would be required, along with 

indentifying the cytochrome P450 enzymes that could be underlying this CYB5D2-POR 

mediated pro-survival response.  Furthermore, the exact mechanistic explanation of why 
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the heme binding of CYB5D2 affected proliferation and survival from chemotherapeutic 

drugs is not answered.  Whether CYP3A4 or CYP51A1 are responsible for survival from 

chemotherapeutic drugs is uncertain. 

    Experiments examining a PI3Kinase signalling pathway regulating CYB5D2 functions 

should be addressed.   The output for examining this signalling pathway could be an 

interaction with POR, survival from serum starvation, or an affect on 3xSRE-reporter 

activity.   

     While the initial reports of CYB5D2/Neuferricin claimed it functioned as a secreted 

protein, the authors failed to acknowledge the existence of the intracellular protein.  

Ectopic CYB5D2 in HeLa cells was not detected as secreted in these cells, therefore all 

work performed here is on the intracellular function.  Whether any function of the 

secreted protein exists is unknown. 

     Further experiments to examine the type of cholesterol that is affected by CYB5D2 

could also be conducted.  Specifically, the role of CYB5D2 in the liver could be explored, 

and whether or not CYB5D2 participates with POR P450 cytochromes involved in 

converting cholesterol to bile acids. CYB5D2`s role could vary from cell type to cell type, 

as liver conversion of cholesterol to bile acids by P450 cytochromes could be different 

than CYB5D2`s neural function with P450 cytochromes involved in processing and 

exporting bile acids.  As CYP7A1 has been implicated and studied in colorectal cancer, 

examining the CYB5D2 R7P and CYB5D2 R7G mutants found in colorectal cancer, 

could implicate CYB5D2`s role in affecting this cytochrome involved in bile acid 

synthesis, and the role of CYB5D2 in colorectal cancer.  It is also possible that CYB5D2 
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could function to modulate some of the POR affected cytochrome P450 substrates 

observed in Antley Bixler Syndrome.   

    An examination of the promoter and transcriptional regulation of the CYB5D2 gene 

was not performed here. Future work could examine the regulatory elements in the 

promoter region of the CYB5D2 gene.  

   A more extensive analysis of interacting proteins that could interact with CYB5D2 

could be performed, using mass spec analysis.  This could be performed in serum free 

culture conditions as well as complete 10% FBS culture conditions.    

    Lastly, an examination of CYB5D2 functions with hormones could be performed.  

While PGRMC1 is a progesterone receptor, experiments could be conducted with both 

PGRMC1 and CYB5D2 in tandem, to determine if CYB5D2 is also a progesterone 

receptor.  If CYB5D2 is not a progesterone receptor, identifying which (if any) hormone 

ligand it could be a receptor for, would need to be addressed.  Moreover, experiments 

addressing whether or not CYB5D2 affects the synthesis of various cytochrome P450 

enzymes in hormone synthesis could also be determined.   
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