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Abstract 

 Mechanical faults and failures are a common occurrence within all mechanical systems.  

Over time a minor mechanical fault can turn into a major failure if not detected and serviced with 

proper maintenance.  The detection and classification of minor faults is essential in reducing the 

occurrence of major faults, which will result in an increased lifetime of the mechanical system.  

Additionally, a good fault detection method should lead to increased efficiency, increased safety, 

improved performance, and reduced total lifetime costs of the system.  One of the most 

commonly used mechanical systems is the internal combustion engine.  Internal combustion 

engines dominate the automotive industry, and have numerous other applications in generation, 

transportation, etc.  This thesis presents the development of a fault detection and diagnosis 

(FDD) system for use with an internal combustion engine valve train. 

 A FDD system was developed with a focus on the valve impact amplitudes.  Engine cycle 

averaging and band-pass filtering methods were tuned and utilized for improving the signal to 

noise ratio.  A novel feature extraction method was developed that included a local RMS sliding 

window method and an adaptive threshold.  Faults were seeded in the form of deformed valve 

springs, as well as abnormal valve clearances.  The engine’s manufacturer specifies that a valve 

spring with 3 mm or more of deformation should be replaced.  This thesis investigated the 

detection of a relatively small 0.5mm spring deformation.  Valve clearance values were adjusted 

0.1mm above and below the nominal clearance value (0.15mm) to test large clearance faults 

(0.25mm) and small clearance faults (0.05mm).  The performance of the FDD system was tested 

using an instrumented diesel engine test bed.  A comparison of numerous signal processing 

techniques and classification methods was performed. 



v 

 

 The FDD system implementing the Naïve-Bayes classification method produced a worst 

case detection accuracy (DA) of 99.95% and worst case classification accuracy (CA) of 99.95% 

for spring faults of 0.5mm deformation, tested on multiple valves with a training size of 40 

engine cycles.  The total FDD execution time including feature extraction, training, and testing 

over 11,000 engine cycles was 4.5s.  Alternative classification methods also worked well with 

the FDD system, with decision trees and linear discriminant analysis producing worst case CAs 

of 98.96% and 97.77%, respectively.  Further experimental investigations were done where fault 

scenarios were varied, including simultaneous fault scenarios, and numerous parameter values 

were altered.  The proposed FDD method gave reliable and accurate classification results for 

many different cases, demonstrating the generality and robustness of the proposed method. 
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CHAPTER 1: Introduction 

1.1 Motivation for this research 

The internal combustion engine (ICE) has been the critical component of the automotive 

industry since its inception.  Even as the green energy initiative moves forward, the ICE still 

holds its value in both conventional and hybrid vehicles.  ICEs are composed of a number of 

mechanical components, each of which may be subject to various mechanical faults.  The valve 

train is a crucial component of an engine which controls the intake and exhaust timing.  Faults 

within the valve train will result in a reduction of performance and reliability. 

Faults occur naturally in mechanical systems over time.  The detection of faults in their 

early stages can be beneficial for the avoidance of larger, more severe faults.  Fault detection and 

diagnosis (FDD) methods are used to monitor a system, identify when a fault has occurred, and 

identify the type of fault and its location.  FDD methods are commonly seen in mechanical 

systems.  If a fault can be correctly detected and diagnosed, corrective measures can be applied 

to repair the fault and reduce any further damage to the system. 

A FDD method applied to an ICE can have significant impact on both the maintenance 

and research and development (R&D) processes of ICEs in the automotive industry.  Fault 

detection in the R&D stage can decrease the amount of defective products and reduce recalls in 

the future.  Early detection in the maintenance stage can increase asset lifetime, improve 

performance and reliability, and reduce the frequency of major failures.  Further development of 

the FDD system may produce a real-time online application in the future. 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

2 

 

1.2 Fault Detection and Diagnosis Classification Methods 

Most fault detection methods consist of three main phases which have distinct functions, 

where each phase may contain a number of different steps.  A FDD system generally requires the 

following phases: 

Signal Acquisition: Acquiring signals that measure the physical conditions of a system and 

convert them into digital values that can be manipulated and analyzed. 

Commonly consisting of sensors, data acquisition (DAQ) hardware, 

and DAQ software. 

Signal Processing:  Improving the signal to provide better understanding of the signal 

information.  May include noise reduction, filtering, signal 

compression, and other processing techniques.  Feature extraction 

methods may be used to extract relevant information. 

Detection & Diagnosis: Using a monitoring system to identify a fault in a system.  

Mathematical or statistical operations are performed on a signal to 

detect and diagnose normal or faulty operation of the system. 

Fault detection is commonly separated in two different methods.  Signal model-based 

fault detection as described in Figure 1-1, and process model-based fault detection as described 

in Figure 1-2.  Where U is the process input, Y is the process output, N is some external 

disturbance, and S is the fault symptom. 

 

Process Sensors 

Signal 

Model 

Feature 

Extraction 

Change 

Detection 

S 

Normal 

Y 

N 

U 

Figure 1-1: Fault detection with signal models (Isermann R. , 2006) 
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Signal models attempt to detect changes of the signal behaviour caused by the process 

faults.  Process models attempt to detect changes in the process behaviour by using some 

mathematical model of the process.  This thesis will focus on fault detection using signal models, 

as the complexity of a diesel engine makes process modelling difficult and unnecessary for our 

specific application.   

Fault detection includes analyzing the measured signals to extract pertinent features and 

generate the nominal and faulty symptoms.  Once these symptoms have been obtained they can 

be used to diagnose the faults.  The general approach for a signal model-based FDD can be seen 

in Figure 1-3 (Do & Chong, 2011).   

Process Sensors 

Process 

Model 

Feature 

Extraction 

Change 

Detection 
Normal 

Behaviour 
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Figure 1-2: Fault detection with process models (Isermann R. , 2006) 
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The two main classes of diagnosis are classification methods and inference methods. 

Figure 1-4 (Isermann, 2006) outlines some fault diagnosis methods.  This thesis will focus on 

classification methods for our FDD. 
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Figure 1-3: General structure of a FDD system (Do & Chong, 2011) 

Figure 1-4: Fault diagnosis methods (Isermann R. , 2006) 
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1.3 Objective and Organization of this Thesis 

The objectives of this thesis are to: 

1. Develop a DAQ system for a FDD system. 

2. Develop a novel FDD method and apply it to an instrumented diesel engine to detect 

specific valve train faults. 

3. Test the FDD method on the diesel engine test bed. 

4. Compare the developed method with other common FDD classification methods, and note 

any improvements or drawbacks. 

The organization of the thesis is as follows.  In Chapter 2 the relevant literature on fault 

detection methods is reviewed.  The test bed and signal acquisition are described in Chapter 3.  

In Chapter 4 the signal processing methods are presented.  Chapter 5 describes the new fault 

detection method as well as other common FDD methods.  Experimental results are presented in 

Chapter 6.  Finally, conclusions and recommendations for future work are presented in Chapter 

7. 
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CHAPTER 2: Literature Review 

 

2.1 Introduction 

In this chapter the research literature related to FDD methods will be reviewed.  FDD 

methods have been developing for numerous years and the related literature is abundant.  The 

literature related to the more specific case of engine valve train faults however is quite sparse.  

The following aspects will be reviewed: digital signal processing for FDD systems; classification 

methods for FDD systems; and engine valve train FDD systems.    

2.2 Digital Signal Processing for Fault Detection Systems 

Modern signal processing includes the operations on, and analysis of, discrete time 

signals.  Signal processing techniques are used to manipulate or modify an information signal in 

order to improve it (Stranneby & Walker, 2004).  Numerous signal processing techniques have 

been studied in the literature, with advantages and disadvantages determined by the specific 

application.  The following subsections will review the techniques most commonly used with 

FDD systems. 

2.2.1. Fourier Transform 

The Fourier transform is commonly used to convert a function from the time domain to 

the frequency domain.  A fast Fourier transform (FFT) is an algorithm for rapidly computing the 

Fourier transform of discrete time signal.   
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Obiad and Habetler (2003) developed a FDD for induction motors with arbitrary load 

conditions.  They claimed that mechanical faults such as load unbalance and shaft misalignment 

in induction motors can be detected by monitoring the stator current frequency spectrum.  Load 

unbalances were seeded by adding nuts and bolts on a balanced metal disk at different radial 

distances from the shaft.  Angular misalignments were seeded by rotating the machine some 

angle from its original position.  They suggested that such faults could be detected by looking at 

the frequency sidebands in the stator current and that these faults could be successfully detected 

at various levels of load.  They obtained the FFT of the current so the frequency spectrum could 

be analyzed.  A fault detection algorithm was presented by extracting the frequency sidebands 

from the FFT.  No fault detection results were given. 

Betta et al. (2001) customized a previously developed FFT analyzer for FDD of an 

induction motor based on vibration analysis.  A non-fault model was developed as well as four 

fault models: shaft unbalance, misalignment, mechanical looseness in the bearing cap, and an 

outer ball bearing defect.  Their FDD method consisted of a pattern matching procedure by 

comparing the actual device tests with the non-fault and fault models.  Their analysis suggested 

that the faults considered contained meaningful signals no higher than 1 kHz.  Signal processing 

techniques including filtering, windowing, FFT, and feature extraction were applied to improve 

the FDD algorithm.  Each sample sequence had its FFT evaluated and its characteristics 

compared to the models.  Their experiments included 200 tests for each fault case, with the 

lowest correct diagnosis rate of 97.5%.          

2.2.2. Wavelets 

The wavelet transform is similar and often compared to the Fourier transform.  The main 

difference being that wavelet transfoRMS are localized in both time and frequency compared to 
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a Fourier transform which is only localized in frequency.  This is advantageous in cases where 

the time features of a signal are of value.   

Lin and Qu (2000) used a Morlet wavelet for feature extraction for mechanical fault 

diagnosis.  A denoising method based on wavelet analysis was used for extracting the vibration 

period for FDD of rolling bearing and gear box faults.  For the bearing size studied, the 

characteristic impulse period for the rolling bearing inner-race damage was found to be 0.0061s.  

Using the Morlet wavelet denoising technique gave a period of about 0.006s, which agreed with 

the characteristic period for the inner-race damaged rolling bearing.  Additionally, a gear box 

was set up with impulse components whose period was equal to 0.24s.  Again the Morlet wavelet 

produced a denoised signal with a period of 0.24s.  

Zheng et al. (2002) developed a gear fault detection method based on a continuous 

wavelet transform.  Vibration signal analysis was used to detect cracking teeth in gear systems.  

They recorded the vibration signal from the beginning to the end of life test, and then picked five 

time blocks with equal intervals.  The blocks represented 0%, 25%, 50%, 75%, and 100% gear 

fault advancement assuming linear fault advancement with time.  Wavelet analysis characterized 

the signal in both time and frequency domains.  A time-averaged wavelet spectrum was 

developed to extract gear fault feature energy.  The feature energy was computed from the 

wavelet coefficients.  Their results showed successful gear fault diagnosis for 10 test cases.  

Jian-Da Wu (2009) developed an expert system for fault diagnosis in internal combustion 

engines using wavelet packet transfoRMS (WPT).  The faults detected included: air leakage 

faults, cam-shaft sensor faults, electronic control thermal faults, and misfiring faults.  Sound 

emission signals were analyzed using the WPT algorithm to effectively extract signal features.  
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They used Daubechies wavelets as the mother wavelets used to build and perform the WPT 

method.  The experimental data consisted of 150 data sets for each operating condition.  Training 

was done with 30 data sets, and 120 data sets were used for testing.  They found that all the 

recognition rates were over 95% and concluded that the WPT method is useful for FDD systems.  

They suggest that the WPT technique has several advantages over continuous wavelet transform 

(CWT) and discrete wavelet transform (DWT) techniques, however they provided no results 

using CWT or DWT for comparison. 

2.3 Classification for Fault Detection Systems 

Classification is the process of classifying information into specific categories or classes.  

Classification methods are useful in FDD systems as specific data sets can be classified into 

specific faults.  The most popular techniques will now be reviewed. 

2.3.1. Bayesian Classification 

Bayesian classification is a method which implements Bayes’ probability theorem.  The 

probability estimate for a hypothesis is updated as additional evidence is learned.  Naïve-Bayes 

(NB) classification generates a probabilistic classifier by applying Bayes’ theorem with 

independence assumptions. 

House et al. (1998) developed a classification technique for FDD of an air-handling unit.  

The objective was to demonstrate the application of several classification techniques to fault 

detection.  Artificial neural networks, nearest neighbour, nearest prototype, a rule-based 

classifier, and NB classification techniques were considered.  Their study showed that most of 

the classification methods being compared gave similar results, with the exception of NB.  Each 

method was tested against eight different fault types.  The NB method gave the largest 
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percentage of correct diagnoses for all but one fault type.  The cooling unit fault had correct 

diagnoses of 96% using NB, while all of the other classification methods gave less then 80% 

correct diagnoses. 

Choi et al. (2009) developed a novel Bayesian fusion classifier for FDD in automotive 

systems.  Classifier fusion is the practice of combining multiple classifiers in an attempt to 

improve overall classification.  They first isolated faults using various neural networks and 

nearest neighbour methods, and then fused these methods with class-specific Bayesian classifiers 

in order to classify different fault classes.  A realistic automotive engine model was employed 

which simulates the behaviour of an engine in real time.  The engine simulator tested eight fault 

cases: air flow sensor fault, leakage in air intake manifold, blockage of the air filter, throttle 

angle sensor fault, air/fuel ratio sensor fault, engine speed sensor fault, less fuel injection, and 

added friction.  The simulation parameters were set at 2485 rpm and were sampled at a rate of 

200 Hz for 2000 sample points per run.  Their results showed that NB had a correct classification 

rate of 88.19% which outperformed nearest neighbour 87.06% and neural network 85.17% 

individual classifications.  The novel Bayesian fusion classifier further improved the correct 

classification rate to 93.75%.  

Liu and Chen (2009) developed a FDD method using modified Bayesian classification on 

a subspace obtained using principle component analysis (PCA).  Their approach modifies 

Bayesian classification by first clustering data into groups and then classifying based on cluster 

center and covariance.  It was applied to the Tennessee Eastman chemical process to demonstrate 

the effectiveness of the fault detection.  In this study the training data sets of normal operating 

condition as well as overall cooling water flow faults, motor power faults, and inlet guide vane 

faults were used.  The data set contained 4,213 observations for monitoring the motor power at 
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two different classes.  The Bayesian clustering method gave a 96.6% correct classification rate 

for the motor power fault.  The other fault cases seemed to also give good results based on 

clustering, however exact classification rates were not given. 

2.3.2. Artificial Neural Network 

An artificial neural network (ANN) is a mathematical model which acquires its name due 

to its similarity to biological neural networks.  ANNs consist of numerous processing elements 

or nodes connected together to form a network.  Generally, each node consists of a simple 

nonlinear processing element.  ANNs are a commonly used method for classification.    

The FDD system from Wu and Liu (2009) implemented ANNs.  A generalized regression 

neural network (GRNN) was used in comparison with a conventional back-propagation network 

(BPN).  Their study looked into the following six different operating cases of an internal 

combustion engine: without fault, air leakage, cam-shaft sensor fault, electronic control thermal 

sensor fault, one-cylinder miss-fire, and two-cylinder miss-fire.  The experimental results 

showed a classification accuracy of over 95% for various engine working conditions.  When 

operating at idle engine speeds GRNN had classification accuracy of over 95% and an execution 

time of 4.86s, outperforming BPN which had classification accuracy of over 92.5% and an 

execution time of 13.42s. 

Desbazeille et al. (2010) developed a FDD method for large diesel engines using ANNs 

for fuel leakage faults.  ANNs were used for fault classification by looking at the angular speed 

waveform variations of the crankshaft.  At each fault level, 100 healthy samples and 100 fault 

samples were simulated.  75% of the data were used for training, and the remaining 25% for 

testing.  Their FDD method produced simulation results with greater than 90% classification 
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accuracy for fault levels of 30% and greater.  An experimental result was also obtained by 

decreasing the injected fuel mass by 80% on cylinder A6 and by 50% on cylinder A4.  In this 

experiment, cylinder A6 was correctly classified as a fault, however A4 was not. 

ANNs have advantages in that the can perform tasks which a linear classification method 

cannot.  They have been shown to be successful in classification for complex systems and have 

learning capabilities.  Some of the draw backs of ANNs are the large amount of training needed 

and the large processing time required.  ANN training may also become stuck in a local 

minimum, causing erroneous results. ANNs are considered “black box” compared to “white box” 

statistical methods such as Bayesian classification or decision trees.  

2.3.3. Decision Tree 

A decision tree (DT) is a tree-like model of decisions and their possible consequences.  

DTs can be used as a predictive model to map observations of a known object to generate 

predictions of the object’s target value.  DTs are a commonly used method for classification and 

sometimes are named classification trees.  DTs are relatively simple to implement, and easy to 

interpret.   

Sun et al. (2006) developed a DT and PCA-based FDD method for rotating machinery.  

The Bentley RK4 rotor kit was used for testing a number of cases: normal operation, unbalance, 

rotor radial rub, oil whirl, shaft crack, and unbalance and radial rub in combination.  PCA was 

used to reduce the number of features from 18 to 6.  Then a DT model was trained for 

classification and diagnosis of faults.  Fifty sample sets were taken for each fault case, 60% were 

used for training and 40% for testing.  An average diagnosis accuracy of 98.3% was found, 

compared to 95.8% from the BPN used for comparison.  
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Saravanan and Ramachandran (2009) developed a FDD method for a spur bevel gear 

box.  The vibration signal was analyzed using Daubechies wavelets for feature extraction.  DT 

classification was then used for fault diagnosis.  Four cases were examined: good gear, gear 

tooth breakage, gear with crack at root, and gear with face wear.  The sampling frequency was 

12,000 Hz with a sample length of 8,192 for all operating conditions.  The maximum 

classification accuracy was found to be 98.7%. 

 DTs are generally simple to understand and interpret, and require minor data preparation.  

They have advantages of being quite robust and perform well with relatively small computation 

time with large data sets.  Also DTs can be considered “white box” in comparison to some other 

classification methods.  A disadvantage of DTs is that some DT algorithms cannot guarantee that 

the optimal tree will be generated.   

2.3.4. Nearest Neighbour 

K-nearest neighbour (k-NN) classification is a commonly used geometric classification 

method.  A data point’s class is determined from its distance to some reference points.  The 

object is classified by the majority of its k nearest neighbour’s classifications, where k is some 

positive integer.  The nearest neighbour method is a simple and generally provides good results. 

He and Wang (2007) developed a k-NN approach for fault detection of semiconductor 

manufacturing processes.  They used an etching process industrial example to demonstrate the 

performance of their FDD method.  The data set consisted of 107 normal wafers and 20 faulty 

wafers.  Results showed k-NN to have a successful detection rate of 85%, a significant increase 

over the 55% achieved by the PCA method for this application. 
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Lai and Snider (2005) developed a high electrical impedance fault detection system.  

Their feature extraction method was based on DWT and RMS voltage and current values.  

Features were then applied to a k-NN classifier for pattern recognition. 95% of the RMS values 

were used for training while the remaining 5% were used for testing. In their study, 1000 non 

fault cases and 1000 fault cases were simulated.  Their FDD method gave a successful 

classification rate of 98% for faults and 97% for non faults. 

2.3.5. Linear Discriminant Analysis 

Polynomial classification uses a functional approximation to determine the posterior 

probabilities of the classes.  The simplest and most common form is linear discriminant analysis 

(LDA), commonly used in FDD applications.  LDA is a traditional statistical methodology which 

utilizes analysis of variance and regression analysis to obtain classification.  

Altman (1994) performed a comparison between LDA and neural networks for corporate 

distress diagnosis.  Over 1000 healthy, vulnerable, and unsound industrial fiRMS were analyzed.  

Both types of diagnostic techniques displayed acceptable classification of over 90%.  It was 

stated that although ANNs perform similarly or better than discriminant analysis in most cases, 

LDA was deemed to be the preferred method due to its simplicity and “white box” structure.  

The complexity as well as the training time needed for ANNs were listed as their disadvantages.  

Chiang et al. (2000) investigated FDD for a chemical process, comparing Fisher 

discriminant analysis (FDA), discriminant partial least squares (DPLS), and PCA.  Their 

research showed that FDA and DPLS were more proficient that PCA in diagnosing faults.  The 

techniques were applied to simulated data collected from the Tennessee Eastman chemical 

process simulator.  The data consisted of 500 observations for training and 960 observations for 
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testing.  There were 21 different simulated process fault cases.  Their results showed that PCA 

techniques produced a 66.7% misclassification rate, DPLS produced a 57.4% misclassification 

rate, and FDA produced a 20.6% misclassification rate for their specific application.  

LDA classification has the advantage of being quite simple to implement and understand.  

It also has seen extensive use and is one of the most time-tested classification methods.  Some 

disadvantages of LDA are that its linearity and normal distribution assumptions may not be 

suitable for more complex applications. 

2.4 Engine Valve Train Fault Detection 

Although the literature on FDD methods is abundant, the literature on FDD of ICE valve 

trains is very limited.  Lui et al. (2005) proposed a simple technique for engine valve fault 

detection by measuring vibration signals on the cylinder head using accelerometers.  This 

vibration signal was caused by five main impact forces on each cylinder (corresponding to inlet 

valve opening, inlet valve closing, exhaust valve opening, exhaust valve closing, and 

combustion).  A simple diagnostic technique named partial sampling and feature averaging 

(PSFA) was presented and used to detect abnormal valve clearances as well as gas leakage.  

Experiments were performed on a 4135D diesel engine at a sampling frequency of 50 kHz.  Inlet 

valve clearances were set to 0.15, 0.3, 0.6, 0.9, 1.2, and 1.5mm on cylinder 1, where 0.3mm was 

the nominal case.    It was found that both the abnormal valve clearance and gas leak faults could 

be detected by analyzing the peak impact values and crank angles at those peaks, however no 

classification rate results were given. 

Li et al. (2010) developed a FDD system for abnormal clearance between contacting 

components in a diesel engine.  Two accelerometers were mounted on the cylinder head to 
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measure vibration signals.  The vibration impact times and amplitudes were analyzed by re-

sampling the time domain signal into the crank angle domain.  Empirical mode decomposition 

was used to decompose the signal in order to minimize signal overlap and enhance the isolation 

of each event during combustion.  Their experiments tested a normal clearance of 0.40mm, a 

tight clearance of 0.25mm, and an excessive clearance of 0.70mm.  Their method was used to 

successfully detect abnormal valve clearance faults as well as worn piston ring faults.  They 

found that a normal clearance had an average intake valve close at 583.3º, tight clearance at 

604.5 º, and excessive clearance at 570.2º in the crank angle domain.  No classification rate 

results were given. 

Elamin et al. (2010) proposed a diesel engine valve clearance detection method using 

acoustic emissions (AE).  The AE sensors were mounted of the front and rear sides of the 

cylinder head to acquire the signals.  Nominal valve clearance was 0.38mm, faults were 

introduced by increasing valve clearance by 0.5mm and 0.8mm in the exhaust valve of cylinder 

one.  The engine was tested at 1000 and 2000 rpm with each signal containing 40000 samples 

per engine cycle.  The 0.8mm valve fault was found to open 46º later and close 25º earlier than 

the normal case.  Their results found that valve clearance faults can indeed be detected by 

analyzing the magnitude and phase of valve impacts from the AE signals and FFT analysis.  

They concluded that acoustic emission is a powerful and reliable method of detection and 

diagnosis for faults in diesel engines, specifically shown for valve faults.   However, no specific 

classification success results were given.  

Shen et al. (2000) developed a fault detection system for a diesel engine using FFTs and 

rough sets theory.  The engine valve faults studied were: small intake valve clearance, large 

intake valve clearance, and large exhaust valve clearance.  Vibration signals were collected and 
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analyzed to detect and diagnose these faults.  Both the time and frequency domain of the 

vibration signal were used in developing this system.  The focus of this paper was to develop a 

new method to discretize attributes extracted from the vibration signals. They stated that their 

system was “effective”, however they did not clearly quantify its detection accuracy or the levels 

of the faults they were investigating.   

2.5 Summary 

In this chapter, previous relevant research on FDD was reviewed.  Signal processing, 

signal-based classification and model-based classification algorithms were reviewed.  The 

amount of literature specifically related to valve train FDD of ICE is quite sparse.  The most 

relevant publications were by (Liu, 2005), (Yujun Li, 2010), (Elamin, 2010), and (Shen, 2000) 

who all used cylinder head vibration signals to detect abnormal valve clearances. 

The review of previous research using NB classification showed that this method 

provides accurate and reliable results, while being a relatively simple classification method.  

ANNs have been known to be a strong classification method for more complex applications.  

ANNs are generally more complex than other classification methods and may take more 

execution time for training.  DTs are commonly used for classification and have been found to 

give reliable results for many applications, they are fairly easy to implement and interpret.  The 

k-NN method was found to be an acceptable classification method for most applications and is 

also relatively simple to understand and implement.  LDA is a simple classification method 

which has also been shown to give reliable results for many applications.   

Although some literature exists for ICE valve train faults, the majority of this research is 

focused on valve clearance faults.  There was no relevant literature found for detecting faulty 
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valve springs.  Simultaneous faults on separate cylinders have also not been studied, with the 

exception of Desbazeille et al. (2010) whose method failed to detect these simultaneous faults.  

Furthermore, simultaneous faults on the same cylinder have not been studied in any of the 

literature found.  This thesis will look into both of these simultaneous fault cases.  Additionally, 

it was found that the majority of the ICE valve train FDD research did not implement a 

classification method or did not present adequate classification results. 

This thesis will develop a FDD technique for valve train faults by combining signal 

processing methods and classification algorithms using vibration signals.  The focus will be on 

the NB method due to its relative simplicity and high classification efficiency with FDD systems; 

however other classification methods will also be studied for comparison.   

 

 

 

 

 

 

 

 

 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

19 

 

 

CHAPTER 3: Experimental Test Bed  

 

3.1 Introduction 

 In this chapter, the experimental test bed will be discussed.  The instrumented engine will 

be described, followed by a description of the DAQ system including all sensors, conditioning 

circuitry, DAQ hardware, and DAQ software used.  Next, an overview of the engine valve train 

will be given.  Valve springs and valve clearances will be discussed, as well as potential valve 

faults and their mechanical tolerances. 

 

3.2 Instrumented Engine 

The engine used for the experiments consists of a modified Kubota Z482-E diesel engine.  

This is a vertical two cylinder, water cooled, 4-stroke indirect injection (IDI) diesel engine.  The 

total displacement is 479.0cm
3
 with a compression ratio of 23:1.  It has a continuous power 

output of 8.05kW (10.8HP) at 3600rpm with a maximum speed of 3800rpm.  A full list of 

specifications can be found in Table 3-1 (Kubota, 2008). 

The Kubota engine is connected to an electric generator.  This electric generator is 

connected to the generator test set which is used to draw a certain load from the generator and 

ultimately from the engine.  The generator is a Markon BL105E.  A full list of specifications can 

be found in Table 3-2 (Cummins Generator Technologies Inc., 2012). 
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Model Z482-E 

Type Vertical, water-cooled, 4-cycle diesel engine 

Number of cylinders 2 

Bore and stroke (mm) 67 x 68 

Total displacement (L) 0.479 

Combustion chamber type Spherical type  

SAE NET Intermittent power (kW) 9.32 @ 3600 rpm 

SAE NET Continuous (kW/rpm) 8.05 @ 3600 rpm 

Maximum speed (rpm) 3800 

Maximum idling speed (rpm) 800 to 900 

Order of firing 1-2 

Direction of rotation Counter-clockwise (viewed from flywheel 

side) 

Injection pump Bosch MD Type mini pump 

Injection pressure 140 kgf/cm
3
 (13.73 MPa, 1991 psi) 

Injection timing (Before T.D.C) 21
o
 

Compression ratio 23:1 

Fuel Diesel Fuel No.2-D 

Lubricant  Oil, above CC grade 

Dimension (length x width x height) (mm) 351 x 389 x 520 

Dry weight (kg) 53.1 

Starting system Cell starter (with glow plug) 

Starting motor 12 V 0.8 kW 

Charging generator 12 V 150 W 

Recommended battery capacity 12 V, 28 AH 

Table 3-1: Engine specifications 

 

Model BL 105E 

Type Single phase 4-wire alternator 

Voltage Series connection 110-120V or 220-240V 

Design Brushless self-exciting 

Apparent Power 6.0 kVA 

Power 6.0 kW 

Weight 26.5 kg 

Table 3-2: Electric generator specifications 
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The generator test set is a Sotcher Measurement Inc. model 627.  It is a load bank that 

imitates a real load that the generator would see in normal operation.  It is used to put dummy 

loads on the generator so the engine can be tested under load conditions.  A full list of 

specifications can be found in Table 3-3 (Sotcher Measurement Inc., 2013). 

Model 627 

Protection Circuit breaker protection provided  

Input Voltage 120/240V, 50-70Hz, single phase 

Load Capacity 0 – 10.8kW 

Duty Cycle Continuous 

Power Factor Unity 

Accuracies  

     Frequency Meter +/- 3% Center 

     Volt Meter +/- 3% FS 

     Ammeter +/- 3% FS 

Weight 16 kg 

Dimensions 500mm high, 400 mm wide, 260mm deep 

Table 3-3: Generator test set specifications 

 

The instrumented engine is shown in Figure 3-1.  The figure illustrates the Kubota engine 

connected to the electric generator, and the DAQ system.  The sensors are not easily visible in 

this figure due to their location and small size.  Specific sensors will be discussed in the next 

section. 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

22 

 

 

Figure 3-1: Experimental test bed (computer not shown) 

 

3.3 Data Acquisition System 

3.3.1 Data Acquisition Hardware 

The DAQ hardware consists of a National Instruments (NI) PCIe-6353 card and a 

desktop computer.  This DAQ card has 32 analog inputs with a sampling rate of 1.25 MS/s, 48 

digital input/output lines, and four 32-bit counter/timers.  A complete list of the NI PCIe-6353 

specifications is given in Table 3-4 (National Instruments, 2010). 

 

 

Generator 

Engine and 

sensors 

DAQ System 
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Product Name PCIe-6353 

Product Family Multifunction Data Acquisition 

Form Factor PCI Express 

Analog Input  

     Input Channels (single-ended, differential) 32, 16 

     Resolution 16 bits 

     Sample Rate 1.25 MS/s 

     Throughput (All Channels) 1 MS/s 

     Simultaneous Sampling No 

Analog Output  

     Output Channels 4 

     Resolution 16 bits 

     Update Rate 2.85 MS/s 

Digital I/O  

     Bidirectional Channels 48 

     Clocked Lines 32 

     Max Clock Rate 10 MHz 

Counter/Timers  

     Counters 4 

     Number of DMA Channels 8 

     Resolution 32 bits 

Table 3-4: Data acquisition card specifications 

 

Signal connections were accomplished using a NI SCC-68 terminal block.  The terminal 

block contains 68 screw terminals for I/O connections, 4 expansion slots for signal conditioning 

modules, and a general purpose breadboard for custom circuitry.  The complete list of NI SCC-

68 specifications is given in Table 3-5 (National Instruments, 2006). 

 

Product Name SCC-68 

Product Family Terminal Block 

I/O Connectors One 68-pin male SCSI connector 

Max Working Voltage (Channel-to-

earth) 

11 VDC 

Operating temperature 0 to 55 
o
C 

Table 3-5: Terminal block specifications 
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The computer used with the DAQ system for signal processing and analysis was a 

Windows PC with 8GB of RAM, and a 3.10 GHz Intel i5 processor.  The complete list of the 

computer specs is given in Table 3-6. 

 

Operating System Windows 7 Professional 64-bit 

Processor Intel Core i5-2400 

    Number of Cores 4 

    Number of Threads 4 

    Clock Speed 3.1 GHz 

    Intel Smart Cache 6 MB 

Memory 8 GB RAM 

Hard Drive Model ST1000DM003-9YN162 

     Capacity 1 TB 

     Cache 64 MB 

     Speed 7200 RPM 

Table 3-6: Computer specifications 

 

Connected to the DAQ hardware are a number of analog and digital sensors used to 

measure the physical phenomena of the mechanical system.  A rotary BEI optical encoder was 

coupled to the crankshaft to measure the crank-angle of the engine.  It has a resolution of 1440 

counts/rev.  A pressure sensing glow plug adapter PSIglow from OPTRAND was used.  The 

pressure sensor has replaced the glow plug on cylinder 1, and reads the absolute pressure of that 

cylinder.   The pressure sensor has a range of 0-200bar and total accuracy of 1% (Optrand, 

2013).  A PCB 353B18 piezoelectric accelerometer was mounted on the cylinder head to 

measure vibration signals.  The accelerometer has a measurement range of ±500g and a 

resolution of 0.005g.  A complete list of the accelerometer specifications are given in Table 3-7 

(PCB Piezotronics, 2011). 
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Model 353B18 

Sensitivity        10 mV/g 

Measurement Range  500g pk 

Frequency Range  1 to 10000 Hz 

Resonant Frequency ≥70 kHz 

Broadband Resolution (1 to 10000 Hz) 0.005g RMS 

Non-Linearity ≤1% 

Transverse Sensitivity ≤5% 

Overload Limit  10000g pk 

Temperature Range -65 to + 250
o
 F 

Base Strain Sensitivity ≤0.003g/με 

Excitation Voltage 18 to 30 VDC 

Constant Current Excitation 2 to 20 mA 

Output Impedance ≤100 ohm 

Output Bias Voltage 8 to 12 VDC 

Discharge Time Constant 0.5 to 2.0 sec 

Spectral Noise 64μg/    

Table 3-7: Accelerometer specifications 

 

Figure 3-2 displays a close-up of the cylinder head with the head cover removed.  The valve train 

as well as both the accelerometer and pressure sensor can be seen clearly.  The accelerometer is 

mounted directly to the engine’s cylinder head based on the literature review (e.g. Liu (2005); Li 

(2010); and Elamin (2010).).  The exact location of the accelerometer on the cylinder head is 

mostly due to the space available.   
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Figure 3-2: Accelerometer and pressure sensor 

  

The four valves of the engine can also be seen clearly.  Labels IV1 and EV1 indicate 

intake valve and exhaust valve of cylinder one, respectively.  IV2 and EV2 are the intake and 

exhaust valves of cylinder two.  This naming convention will be used throughout the thesis. 

 

3.4.2 Data Acquisition Software 

A program written using NI LabVIEW (National Instruments Corporation, 2013) was 

used for data acquisition, and to implement some signal processing and analysis techniques.  The 

program was originally written by Darren Van Rooyen and modified by the author for this 

research.  LabVIEW utilizes a visual programming language which is used widely in industry 

when data acquisition and signal processing are required.  NI LabVIEW 8.5.1 was used earlier 

EV2 

Pressure Sensor 

Accelerometer 

IV1 EV1 IV2 
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on in the research, and saw continued use for some of the data acquisition components.  Mid-way 

through the research, updated software was purchased and LabVIEW 10.0 was used for the more 

critical components.  The specific signal processing methods implemented using this software 

will be further discussed in Chapter Chapter 4:. 

Figure 3-3 shows a simplified block diagram of the experimental test bed.  It outlines the 

main components of the system and illustrates how these components interact with each other. 

 

This figure can be broken down into two separate sections: the electro-mechanical 

system, and the instrumentation.  The electro-mechanical system consists of the ICE, the electric 

generator, and the generator test set.  The engine is coupled to the electric generator via a flexible 

shaft coupler.  This electric generator is then connected to the generator test set. 

The instrumentation consists of the sensors, terminal block, the DAQ system (signal 

conditioning circuitry, ADC’s, DAC’s, etc.), and finally the computer which the data is loaded to 

Figure 3-3: DAQ system block diagram 
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and analyzed.  The figure shows the flow of information from the physical plant, transformed by 

sensors and connected to the terminal block.  The terminal block receives all sensor data and 

routes this information to the DAQ.  The sampled digital signals are sent to the computer where 

further signal processing and analysis is performed.   

3.4 Engine Valve Train 

3.4.1 Valve Trains – Introduction & Background Information 

An engine valve train is the device that controls the operation of the valves.  These 

usually consist of at least one intake valve and one exhaust valve for each cylinder in an internal 

combustion engine.  The valve train controls the air flow and fuel flow in and out of the 

combustion chambers.  Common valve trains consist of valves, rocker arms, lash adjusters, 

pushrods, lifters, camshafts, and valve springs. 

A number of different valve train configurations exist, however each layout performs the 

same basic function of controlling the valves for proper engine operation.  The most common 

valve train designs are cam-in-block and overhead camshaft. 

Figure 3-4 shows the workings of a cam-in-block valve design (Automotive Engineering, 

2013).  In this design, the camshaft is located somewhere within the engine block.  The camshaft 

is affixed to the pushrod, which is actuated as the camshaft rotates and the cam lobe is engaged.  

The pushrod then actuates the rocker arm which rocks about a pivot point, and compresses the 

valve spring.  This allows the valve to open according to the cam lobe design. Then the camshaft 

continues to rotate which disengages the cam lobe and the valve spring forces the valve closed. 

The Kubota Z482-E engine used for this research has a cam-in-block type valve train. 
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The overhead cam design can be seen in Figure 3-5 (Automotive Engineering, 2013).  

This design locates the camshaft above the valve; however it serves the same purpose and works 

similarly to the cam-in-block design.  The camshaft is affixed to a camshaft follower, which then 

compresses the valve spring due to the cam lobe design.  As the camshaft rotates, the valve will 

be forced open by the lobe, and closed by the valve spring.  It is important to note that although 

these two designs are different, both implement a valve spring in the same manner.  Thus, valve 

spring fault detection is important for both valve train designs. 

 

 

Figure 3-4: Cam-in-block valve design (Automotive Engineering, 2013) 
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Figure 3-5: Overhead cam design (Automotive Engineering, 2013) 

 

3.4.2 Valve Springs 

Valve springs deteriorate and deform gradually over time and extended use.  Gradual 

deformation of a material due to mechanical stresses is known as creep.  Creep is exaggerated 

when the material is subject to high temperature.  Creep has been observed in the case of valve 

springs even at moderate temperatures (Taylor, 1985).  A deformed spring results in undesired 

conditions known as “valve float” and “valve bounce” which reduces engine efficiency and 

performance due to improper valve closing and sealing.  These conditions tend to worsen as 

engine RPM increases.  Deformed valve springs are often difficult to detect and are commonly 

misdiagnosed as fuel injection or ignition problems.  A deformed spring if not detected and 
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properly repaired may lead to spring failure, which could result in catastrophic failure of the 

engine (Taylor, 1985).  Examples are shown in Figure 3-6 (LS1Tech, 2013). 

 

Figure 3-6: Catastrophic engine failure (Top left: Broken spring, Top Right: Broken con-

rod, Bottom left: Damaged cylinder head, Bottom Right: Damaged piston) 

 

An engine will specify the acceptable tolerances for the free length of its valve springs.  

If the valve spring free length goes below the manufacturer’s specified threshold, the engine 

efficiency and performance will decrease, and the possibility of failure will increase.  Thus 

detecting deformed valve springs near or prior to this threshold is desired.  The valve spring 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

32 

 

specifications for the Kubota Z482-E engine used in this thesis are given in Table 3-8 (Kubota, 

2008). 

 

Tilt (A) Allowable limit 1.2 mm  

   

Free length (B) 
Nominal size 31.3 to 31.8 mm 

Lower limit 28.4 mm 

Table 3-8: Valve spring specification limits (Kubota, 2008) 

 

Figure 3-7 (Kubota, 2008) illustrates both the tilt and free length of a compression valve 

spring.  Where (A) shows the spring tilt and (B) shows the free length of the spring.   

 

Figure 3-7: Free length and tilt of a valvespring (Kubota, 2008) 

 

In our research we utilized grinding techniques to seed a deformed valve spring fault by 

reducing its free length by 0.5mm.  A faulty spring can be installed on one or both the intake and 

exhaust valves of each cylinder, giving up to 16 separate fault cases.  The fault detection and 
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isolation method developed in this thesis should be able to successfully detect these faults.  The 

term spring fault (SF) will be used throughout this thesis.     

3.4.3 Valve Clearance 

Valve clearance typically refers to the clearance between the rocker and valve cap.  Each 

ICE has a nominal valve clearance value designed to allow for thermal expansion.  An abnormal 

valve clearance will result in improper valve closing and timing, degrading engine performance.  

Figure 3-8 gives an illustration of valve clearance. 

 

 

 

Figure 3-8: Valve clearance 
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The nominal operating valve clearance specification for the Kubota Z482-E is given in 

Table 3-9.  The manufacturer does not provide an upper or lower limit for the valve clearance.  

The chosen clearance fault specifications are also given in the table.  These values will be used 

throughout the thesis for the valve clearance fault cases.   

 

Valve Clearance Case Specification 

Small Clearance Fault (cold engine) 0.05 mm 

Nominal spec. from manufacturer (cold engine) 0.15 mm 

Large Clearance Fault (cold engine) 0.25 mm 

Table 3-9: Valve clearance specifications 

 

In our research we adjust the valve clearance with the adjusting screw (shown in Figure 

3-8) to seed a valve clearance fault.  The clearance faults were seeded on one or both the intake 

and exhaust valves of each cylinder.  The FDD method developed in this thesis should be able to 

successfully detect these faults.  The teRMS small clearance fault (SCF) and large clearance fault 

(LCF) will be used throughout this thesis.     

3.5 Summary 

In this chapter, the experimental test bed including the instrumented engine, generator, 

DAQ hardware, and DAQ software was described.  Details and specifications of the sensors and 

all other pertinent hardware components were provided.  The system to be monitored was 

described and specifications were given.  The faults to be seeded were introduced and explained, 

including the manufacturers allowable limits for the specific component.  The next chapter will 

discuss the signal processing methods used.  
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CHAPTER 4: Signal Processing Methods 

 

4.1 Introduction 

This chapter will describe the signal processing methods used to improve the quality of 

the signal information.  Signal processing commonly consists of signal acquisition, signal 

improvement, and/or signal compression.  These subjects will be discussed in this chapter.  First, 

the method of signal acquisition used will be described including all relevant aspects of the DAQ 

system.  Next signal improvement methods will be discussed, including filtering and denoising 

techniques.  After the signal processing methods are performed, the feature extraction and fault 

detection methods are applied.  These are described in the next chapter. 

4.2 Signal Acquisition 

Signal acquisition is the process of sampling a signal that describes a physical 

phenomenon.  Sensor output signals are sampled and converted into digital values that can then 

be analyzed computationally (Nise, 2008).  First an appropriate sampling rate will be determined 

and discussed, and then the data acquisition system utilized for this specific application will be 

described more thoroughly. 

4.2.1 Sampling Rate for the Vibration Signal 

Sampling is the process of representing a continuous signal as a discrete signal by taking 

a number of discrete samples of that continuous signal.  The sampling rate or sampling frequency 

sf  is the number of samples taken per second.   
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The Nyquist-Shannon sampling theorem states that the sampling frequency of a signal 

must be greater than twice the maximum frequency of the signal being sampled bf  in order to 

perfectly reconstruct a signal.  This is commonly written as: 

 2s bf f  (4.1)  

The Nyquist frequency is equal to two times the bandwidth of a signal: 

 2N bf f  (4.2)
 

The Nyquist-Shannon sampling theorem states that the sampling frequency thus must be above 

the Nyquist frequency in order to avoid aliasing.   

Unfortunately, an impact or step is not a band limited signal.  As mentioned in the 

previous chapter, our FDD system will be based on the valve closing impacts.  This means that 

our signal does not have a maximum frequency.  In other words, the highest possible sampling 

rate will give the best signal representation with the least amount of aliasing.  Of course, our 

sampling rate will be limited by many factors.  This section will describe how the sampling rate 

used with our FDD system was determined. 

First, our signal was sampled at an effectively “infinite” sampling rate of 1 MHz.  This 

rate should show us our “true” signal or at least the best representation of it possible with our 

DAQ hardware limitations.  The signal obtained by sampling at this rate can be seen in Figure 

4-1. 
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Figure 4-1: Vibration signal in time domain (sampling rate = 1MHz) 

 

Such a large sampling rate is not reasonable due to hardware constraints, memory 

constraints, computing time constraints, etc.  For this reason we must find a reasonable sampling 

rate, and compare it to our “true” signal to confirm it is appropriate. 

By plotting the frequency response of the signal we can see which frequencies have the 

most importance in our signal.  Figure 4-2 shows the frequency response when sampling at 1 

MHz. 
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Figure 4-2: Vibration signal (sampling rate = 1MHz) in frequency domain obtained by 

FFT. 

 

From this figure it can be seen that frequencies after 150 kHz are of little importance, so 

this shows that 1 MHz is indeed a large over-sampling.  Also from our sensor specifications it is 

known that the accelerometer has a resonance frequency of 70 kHz, which agrees with the spike 

seen around 70 kHz and a 2
nd

 resonance peak at 140 kHz.  Due to these resonance peaks the data 

above ~60 kHz is unreliable. 

There is another very important factor when selecting the sampling rate.  Since the 

impacts correlate to the crank angle, it makes sense to make the sampling rate proportional to the 

speed of the crankshaft (i.e. the RPM).   This is accomplished using the rotary encoder attached 

to the engine crankshaft via a flexible coupler.  In addition, its index channel is used to determine 
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the angle corresponding to the piston of cylinder 1 being at top dead centre.  Sampling using this 

method produces a vibration signal in the crank angle domain rather than the time domain.    The 

encoder has a resolution of 1440 pulses/revolution.  This corresponds to an encoder pulse every 

0.25º of crank angle.  Each pulse triggers the acquisition of one sample.  The sampling rate is 

given by the equation:  

 RPM
=

60
Sampling Rate Encoder Resolution  (4.3)

 

Most of the tests will be done at an engine speed of about 2000 RPM.  This results in a sampling 

rate of about 48 kHz.  Figure 4-3 shows a vibration signal sampled at ~48 kHz. 

 

 

Figure 4-3: Vibration signal in the crank angle domain.  The sampling rate is 

approximately 48 kHz. 
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From Figure 4-2, a sampling frequency of 48 kHz is less that the Nyquist rate so aliasing 

of the signal will occur.  Aliasing distorts the frequency content of a signal.  However, for this 

application the goal is FDD.  As later results will show, with our method it is not necessary to 

accurately represent the engine vibration.  If a more accurate vibration signal is needed in the 

future, faster sampling can be achieved by replacing the current encoder with a higher resolution 

model.  Note that this could be an expensive option since the encoder will have to withstand the 

heat, dirt and vibration generated by the ICE.  
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Figure 4-4: Vibration signal - 48 kHz (top) vs. 1 MHz (bottom) 

     



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

42 

 

4.2.2 Data Acquisition System 

A brief description of the DAQ components and their specifications were outlined in the 

previous chapter.  This section will give more specific details on how the pertinent signals are 

acquired. 

 As previously mentioned, the accelerometer is sampled in the crank angle domain at a 

frequency of about 48 kHz. A number of other sensors are sampled at the start and end of each 

test set, such as various engine temperatures and flow rates.  These signals are sampled less 

frequently because the signal values do not change as frequently as the vibration and thus don’t 

need as high of a sampling rate. 

 The data acquisition system was programmed to collect 500 engine cycles per data set.  

An engine cycle consists of two full crankshaft revolutions, thus 720º or 2880 encoder pulses.  

Figure 4-5 shows the general raw data vibration signal that is collected by the acquisition system 

for a single engine cycle.  
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Figure 4-5: Vibration signal of a single engine cycle 

 

 Figure 4-5 shows the vibration amplitude acquired from the accelerometer plotted against 

the crank angle acquired from the rotary encoder.  It shows the most important data collected by 

the DAQ system.  From this data we can see six distinct impact points in a single cycle.  These 

impact points represent valve closings and combustions of each cylinder as labelled in the figure.  

These impacts will be the distinguishing features of the signal which will be used to accomplish 

the FDD method to be discussed further in the next chapter. 

 In addition to the vibration signal, some initial and final temperature values are recorded 

for each data set collected.  Initial and final fuel weights are also recorded for each data set, as 

well as the time and date of the recording.  An example of these secondary data recordings can 

be seen in Table 4-1. 

Cyl. 1 EVC 

Cyl. 1 

Combustion 

Cyl. 2 EVC 

Cyl. 1 IVC 

Cyl. 2 

Combustion 

Cyl. 2 IVC 
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 Initial Value Final Value 

Date 12/10/2012 12/10/2012 

Time 11:35 AM 11:36 AM 

Engine Speed (RPM) 3523 3516 

Generator Current (A) 10 10 

Engine Load (N) 154 154 

Coolant Temp. (ºC) 72.9 81.1 

Exhaust Temp. (ºC) 326.4 327.9 

Fuel Weight (kg) 3.362 3.352 

Table 4-1: Secondary data recordings for a 3500RPM 10A load data set 

 

4.3 Signal Improvement 

Signal improvement is the process of enhancing the acquired signal for the given 

application.  Noise reduction is a commonly used process in signal improvement methods.  Some 

commonly used approaches towards noise reduction are averaging and filtering.  These methods 

will be discussed and explored in relation to the acquired signal. 

4.3.1 Averaging 

First, an averaging of the vibration signals will be explored.  As discussed in the previous 

section, each data set acquired contains 500 engine cycles.  Combustion is known to be an 

inconsistent event.  We do not want this inconsistency to be misinterpreted as a fault.  Therefore 

averaging of a number of engine cycles to reduce the variability should be beneficial for FDD.  
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For our purpose this variations may be considered “noise”.  Averaging a small number of 

cycles will not produce much noise reduction.  Averaging a large number of cycles will add a 

significant time delay to the fault detection.  To find an “optimal” number of engine cycles to 

average, a comparison of various averaging values was performed.  A signal-to-noise ratio 

(SNR) was calculated for a variety of averaging values and then compared in order to choose an 

appropriate averaging technique.  A signal-to-noise ratio is commonly given an informal 

definition of the ratio of useful information to irrelevant information.  In this application the 

useful information can be thought of as an impact point, and the irrelevant information can be a 

non-impact point.  Thus we can define the SNR to be: 

 ( )

( )

rms

rms

V impactuseful information
SNR

irrelevant information V non impact
 


 (4.4)  

where ( )rmsV impact  is the vibration RMS value (Volts) in the vicinity of impact point, and 

( )rmsV non impact is the vibration RMS (Volts) value at the vicinity of a non-impact point.  The 

vibration RMS value can be given by: 

  2 2 21
(1) (2) ( )rms acc acc acc snr

snr

V V V V N
N

     (4.5)
 

where accV is the vibration value of the accelerometer in Volts, and snrN  is the number of values 

used in the RMS calculation (here 80snrN  was used).  Using (4.4) and (4.5) the signal-to-noise 

ratio can be found for a number of different averaging techniques.  Table 4-2 gives a comparison 

of the SNR values found. 
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# of Engine Cycles 

Averaged 

( )rmsV impact  

“Signal” (V) 

( )rmsV non impact  

“Noise” (V) 

SNR 

No Averaging 0.698 0.0430 16.2 

20 cycles 0.384 0.0226 17.1 

40 cycles 0.365 0.0200 18.3 

60 cycles 0.363 0.0192 18.9 

80 cycles 0.364 0.0190 19.2 

Table 4-2: Signal-to-noise values for changing averages 

From Table 4-2 we can see that averaging does in fact reduce the noise, however it also 

reduces the impact signal that we wish to analyze.  Thus the signal-to-noise ratio can be used to 

better understand the effects of averaging.  The general trend shows that as the number of engine 

cycles averaged increases, both noise and relevant signal are reduced.  It can also be seen that the 

signal-to-noise ratio increases as averaging increases.  The table shows that SNR improvement 

tends to become marginal after about 60 cycles, thus an average of 60 engine cycles was 

determined to be the appropriate choice.  Figure 4-6 illustrates how different averaging values 

affect the signal.  These plots show that averaging reduces noise, however it also reduces the 

impact amplitudes.  For example, the case of no averaging has the largest noise and the most 

pronounced impacts.  Averaging was implemented in the FDD system as follows: 

 
1

( , ) ( , ) ( , 1) ( , 1)   for 1 to acc acc acc a d

a

y i j V i j V i j V i j N i N
N

         (4.6)
 

where ( , )accV i j is the vibration value for the i
th

 data point in the j
th

 engine cycle, 60aN  is the 

number of cycles averaged, and 2880dN  is the number of data points in a single engine cycle.  
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Figure 4-6: Effects of engine cycle averaging. 
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4.3.2 Filtering 

Filtering is the process of removing some unwanted component or feature from a signal.  

This is often used to suppress unwanted noise.  This makes filtering very useful and commonly 

used in signal processing.  The negative aspect of filtering is the unintended loss of information 

that is associated with it.  Thus similar to averaging, the objective of filtering becomes reducing 

unwanted noise while attempting to maintain the pertinent signal information. 

4.3.2.1 Moving Average Filtering 

The moving average filter is a filtering technique which smoothes data by replacing 

each data point by an average of the neighbouring data points within a given span.  It has a 

similar objective to a low-pass filter, and has a similar effect on the corresponding data.  This 

filter has the effect of smoothing; it is used for noise reduction however will also smooth the 

relevant data.  Since this may not be desirable for our FDD, tests were done to assess its 

usefulness. 

A variety of moving averaging spans were tested against the case of no moving 

average filtering.  To implement a moving average filter each data point is replaced by the 

corresponding smoothed data point given by: 

  
1

( ) ( ) ( 1) ( )
2 1

s s s s

s

y i y i N y i N y i N
N

       


 (4.7)
 

where ( )sy i  is the smoothed value for the i
th

 data point, sN  is the number of neighbouring data 

points on either side of ( )sy i , and 2 1sN   is the span of the moving average.  Again, a 

quantifiable comparison was done by using equations (4.4) and (4.5) to calculate the signal-to-
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noise ratio as described in Section 4.3.1.  The table below shows a comparison of SNR values for 

a variety of different moving average filter spans. 

Moving Average Span 
( )rmsV impact  

“Signal” (V) 

( )rmsV non impact  

“Noise” (V) 

SNR 

0 (No filtering) 0.363 0.0192 18.9 

3 0.155 0.0185 8.41 

5 0.083 0.0184 4.52 

7 0.070 0.0183 3.80 

9 0.053 0.0183 2.92 

Table 4-3: SNR comparison for various moving average spans 

From this table we can see that the moving span average filter does in fact reduce the 

noise, however it also reduces the impact signal.  Again we use the signal-to-noise ratio to better 

understand the effects of this filtering.  The general trend shows that as the smoothing is 

increased both noise and relevant signal are reduced.  It can also be seen that the signal-to-noise 

ratio decreases as smoothing increases.  For this reason moving average filtering will not be used 

for this application.  A more visual understanding of the moving average filter effect can be seen 

in Figure 4-7. 
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Figure 4-7: Vibration signal for various moving average filter spans 
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4.3.2.2 Median Filtering 

The median filter is a filtering technique that is commonly used in edge detection or step 

detection applications.  It has the advantage of preserving sudden changes in the signal while 

reducing noise for certain applications.  Since the impacts produce sudden changes in the 

acceleration signal the median filter is an important filter to investigate.    

A variety number of median filter spans were tested against the case of no median 

filtering.  To implement a median filter, each data point is replaced by the corresponding median 

value of a given span: 

 ( 1) ( 1)
( ) :

2 2

m m
m

N N
y i median y i y i

     
      

    
 (4.8) 

where ( )my i  is the median filtered value for the i
th

 data point, and mN  is the span of the median 

filter.  Again, a quantifiable comparison was done by using equations (4.4) and (4.5) to calculate 

the signal-to-noise ratio as described in Section 4.3.1.  Table 4-4 shows a comparison of SNR 

values for a variety of different median filter spans. 

Median Filter Span 
( )rmsV impact  

“Signal” (V) 

( )rmsV non impact  

“Noise” (V) 

SNR 

0 (No filtering) 0.363 0.0192 18.94 

3 0.190 0.0173 10.96 

5 0.144 0.0171 8.45 

7 0.129 0.0170 7.61 

9 0.113 0.0170 6.60 

Table 4-4: SNR comparison for variety of median filter spans 
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From Table 4-4 we can see that the median filter gives better SNR results than the 

moving average filter values found in Table 4-3.  The median filter does reduce the noise as 

expected, however the reduction in the impact signal again outweighs the noise reduction.  From 

this it can be seen that using a median filter reduces the SNR.  For this reason, although this filter 

gives better results than previous filtering methods, the median filter will not be used for this 

specific application.  The effects of the median filter can be better visualized by looking at 

Figure 4-8. 
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Figure 4-8: Vibration signal for various median filter spans 
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4.3.2.3 Recursive and Non-Recursive Filters 

A recursive filter is a filter that uses one or more of its outputs as an input.  These can 

be effective at noise reduction and are also commonly referred to as infinite impulse response 

(IIR) filters.  An example of a well known IIR filter is the Butterworth filter.  In this section a 

common digital Butterworth filter will be implemented and applied to our data.  A variety of 

different pass-bands and frequencies will be tested and compared with the Butterworth Filter.  

First, a tuning of the filtering frequencies was performed.  First we looked at the low-

pass 8
th

 order Butterworth filter.  By trial and error, we found that the low-pass cut-off frequency 

should be around 20 kHz.  We found the best cut-off frequency by comparing the SNR of 

various frequencies as shown in Table 4-5.  From Table 4-5 it can be seen that 19100 Hz gives 

the best SNR. 

Low-pass Cut-off 

Frequency (Hz) 

( )rmsV impact  

“Signal” (V) 

( )rmsV non impact  

“Noise” (V) 

SNR 

18900 0.2934 0.0231 12.72 

19000 0.2940 0.0231 12.73 

19100 0.2945 0.0231 12.74 

19200 0.2950 0.0232 12.73 

19300 0.2954 0.0232 12.72 

Table 4-5: Low-pass filter frequency tuning 

Next, a similar analysis was done for the high-pass Butterworth filter.  The SNR 

obtained with various high-pass cut-off frequencies are shown in the Table 4-6.  From Table 4-6 

it can be seen that 3400 Hz gives the best SNR. 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

55 

 

High-pass Cut-off 

Frequency (Hz) 

( )rmsV impact  

“Signal” (V) 

( )rmsV non impact  

“Noise” (V)  

SNR 

3200 0.360 0.0053 67.51 

3300 0.359 0.0053 67.59 

3400 0.359 0.0053 67.66 

3500 0.359 0.0052 67.66 

3600 0.358 0.0052 67.56 

Table 4-6: High-pass filter frequency tuning 

After low-pass and high pass frequencies have been tuned different filter types can be 

compared.  Table 4-7 shows the comparison between no filter, a low-pass filter, a high-pass 

filter, and a band-pass filter.  From Table 4-7 it can be seen that the high-pass filter or the band-

pass filter gives the best results. 

 

Filter Type 
( )rmsV impact  

“Signal” (V) 

( )rmsV non impact  

“Noise” (V) 

SNR 

No Filter 0.363 0.0192 18.9 

Low-Pass Filter 0.358 0.0190 18.9 

High-Pass Filter 0.359 0.0053 67.7 

Band-Pass Filter 0.352 0.0052 67.8 

Table 4-7: Comparison of filter methods 
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The effects of the recursive 8
th

 order Butterworth filter can be better visualized by 

looking at Figure 4-9.  The vibration signal is shown for the case of no filtering, low pass 

filtering, high pass filtering, and band pass filtering.  From Figure 4-9 it can be seen that no 

filtering gives the best impact signal, however also has considerable noise.  The band pass filter 

reduces the noise and maintains sufficient impact information.  For this reason we will be using 

an 8
th

 order Butterworth band-pass filter with a 3400 Hz high-pass cut-off and 19100 Hz low-

pass cut-off in our application. 

Figure 4-10 shows the effect of the signal processing techniques used.  The top plot is the 

raw signal with no processing done, the bottom plot is the vibration signal after the engine cycle 

averaging and band-pass filtering techniques have been applied.  It is evident that the signal 

processing has reduced the noise drastically and made the impacts more distinguishable and thus 

easier to detect. 
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Figure 4-9: Butterworth filter comparison 
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Figure 4-10: Raw signal (top) vs. processed signal (bottom) 
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4.4 Summary 

In this chapter signal processing techniques were described.  First the signal acquisition 

methods were described including the DAQ hardware and software.  An explanation of the DAQ 

system was also given. Signal improvement techniques were then described including the 

averaging, filtering, and denoising methods to be used in our application.  Cycle averaging and 

band-pass filtering techniques were found to be useful in the processing of our signal and will be 

used throughout this thesis.  The results of the signal processing methods used can be seen 

clearly in Figure 4-10.   The next chapter will discuss feature extraction methods as well as the 

classification system and FDD method. 
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CHAPTER 5: Development of Fault Detection and Diagnosis 

Methods 

 

5.1 Introduction 

FDD methods involve monitoring a specific system, and detecting any unexpected or 

undesired changes in that system.  If the system is monitored appropriately, minor faults can be 

detected in the early stages and corrective or preventative measures can be taken.  Detection 

refers to determining whether the system contains a fault or not. Diagnosis refers to locating and 

defining the type of fault. 

As described in previous chapters, our fault detection method is focused on the analysis 

of the engine’s vibration signal.  This chapter will describe feature extraction and classification 

methods.  The feature extraction method was newly developed for this application, and is 

described in the next section.  The base-line classification method, the NB method introduced in 

Chapter 2, is presented after that.  In the remainder of the chapter, several common classification 

methods are presented.  The classification results obtained using these methods will be compared 

and contrasted in the next chapter. 

5.2 Feature Extraction 

Feature extraction is the process of analyzing a signal and extracting important attributes 

or features of that signal.  A set of features were chosen that are associated with the valve closing 

impacts.  In this section, the techniques developed to extract these features will be presented.   
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5.2.1 Local RMS Computation Using a Sliding Window Method 

Vibration amplitude describes the severity of a vibration.  Several methods to quantify 

vibration amplitude exist including peak values, peak-to-peak values, average value, and RMS 

value.  The RMS value is a commonly used method with vibration signals as it gives a 

quantifiable value for amplitude and also maintains information on the time or phase of the 

signal (Brüel & Kjær, 1982). 

For this reason the local RMS values were used to quantify the vibration signal.  A 

sliding window method was used to calculate the local RMS value of a given window for each 

data point of the signal.  Figure 5-1 shows this method. 

 

Figure 5-1: Sliding Window Method 

 

Window Size, 

Nws= 2Nw+1 = 41  

Sliding Window  

Method 
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The size of the sliding window is 41 data points.  The window slides through the 

vibration signal and calculates the local RMS value for each point.  This local RMS signal was 

given by:  

  2 2 21
( ) ( ) ( 1) ( )

2 1
lrms w w w

w

y i y i N y i N y i N
N

       


 (5.1) 

where ( )lrmsy i   is the local RMS signal, ( )y i  is the cycle averaged vibration signal, and 

2 1ws wN N    is the size of the sliding window.  This technique transfoRMS the cycle averaged 

signal into a more meaningful signal as can be seen by comparing Figure 5-2 to Figure 5-1. The 

transformed signal describes the pertinent features of the cycle averaged signal including the 

impact amplitude and timing in a clear fashion.  From this signal the six major impact points can 

be easily distinguished.  This RMS signal will be the basis for the feature extraction. 

 

Figure 5-2: Local RMS vibration signature for the signal plotted in Figure 5-3 
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Figure 5-4: Local RMS Vibration Signal for 100 cycles of the Nominal Case 

   

 The local RMS vibration signal plotted in Figure 5-2 is for one engine cycle of the 

nominal (i.e. no fault) case. Figure 5-4 shows the RMS vibration signal for 100 cycles of the 

nominal case.  This illustrates the variation of the signal for the nominal case.  Figure 5-5 shows 

the RMS signal for the one cycle of the nominal case compared to one cycle of the EVC2 fault 

case. 
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Figure 5-5: Comparison of local RMS Signals - Nominal (Top) vs. EVC2 Fault (Bottom) 
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 From Figure 5-5 it can be seen that the second peak (at about 190
o
) is much lower in the 

bottom graph than in the top one.  It is also outside of the variation shown in Figure 5-4.  The 

peak was reduced due to a spring fault seeded on EV2.  This data suggests that the peak heights 

of the local RMS signature could be used as the basis of our FDD method. 

5.2.2 Impact Detection Using Thresholding 

Thresholding is a common technique used in signal processing.  A data point can be 

classified by checking whether it is below or above a given threshold.  In this application a 

threshold will be used to classify whether a specific point on the local RMS signature occurs in 

the vicinity of an impact (termed an “impact point”), or not (termed a “non-impact” point).  

When the signature point goes above the threshold value it is said to be an impact point, when 

the point is below the threshold it is a non-impact point.  This can be written mathematically as: 

 

( )

( )

( )

( )

lrms rms

lrms rms

if y i Y

impact i true

else if y i Y

impact i false

end









 

 where ( )lrmsy i  is the local RMS signature at the i
th

 point, and rmsY is the threshold value 

calculated by: 

 2

1

1
( )

dN

rms f

id

Y s y i
N 

   (5.2) 

where fs  is a scale factor, 0.5 2fs   , and 2880dN  .  Note that if fs = 1 then rmsY  is the 

RMS value of the vibration for one full engine cycle. 
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   From this thresholding method the impact points are determined and the important 

features can be extracted.   

 

Figure 5-6: Thresholding Method 

Figure 5-6 illustrates the thresholding method used.  Note that the threshold value 

successfully intersects the peaks corresponding to the six distinct impacts, and does not intersect 

with any other points on the signal.  The fs  value will be tuned in the next chapter to find an 

appropriate threshold value.  Lowering the threshold value will classify more points as impact 

points; however it may also cause misdetection of signal peaks that are not impacts, as well as 

errors distinguishing neighbouring impacts.  Raising the threshold value will reduce the 

occurrence of those problems; however too large of a value may cause an impact to be missed 

entirely. 

If the threshold value is set too high, in the extreme worst case scenario it will not detect 

any of the impacts.  More likely however, a high threshold value may overlook some of the small 

amplitude impacts.  A small impact may be due to some variation in the impact due to random 
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engine cycle variation, or a reduced impact due to a fault being present.  If the thresholding 

method does not detect these impacts, the fault detection method will be degraded.  Figure 5-7 

below illustrates a threshold value that is too high. 

 

Figure 5-7: High Thresholding 

Figure 5-7 shows that when the threshold is too high it misses the third impact, this 

would then incorrectly assume that only 5 impacts occur when 6 impacts are present.  This 

thresholding error will lead to problems with our FDD method as a missed impact point may 

incorrectly indicate the presence of a fault when no fault is present.   

A threshold value that is too low may falsely detect normal engine vibrations as valve 

impacts; it may also have trouble separating impacts that occur near each other.  Again this is 

undesirable and will lead to a degradation of the fault detection method.  Figure 5-8 below 

illustrates a threshold value that is too low.    

Missed 

Impact 
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Figure 5-8: Low Thresholding 

 In the case where additional peaks are detected or expected peaks are undetected, 

corrective measures are taken.  If additional peaks are detected each individual peak is examined 

and if determined to be inappropriate (i.e. the phase of the peak is unexpected) then this incorrect 

peak is removed.  If expected peaks are undetected then the missed peak is given a standardized 

impact phase as determined by the manufactures specifications.  Table 5-1 gives the standardized 

expected phase values for each valve impact (Kubota, 2008).  Since actual impact phase values 

will shift slightly, these values are not as accurate as the actual values detected from the vibration 

signature.   

 

 

 

Erroneous 

Impact 
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Engine Cycle Impact Standard Expected Phase 

Exhaust Valve Close Cylinder 1 15º 

Exhaust Valve Close Cylinder 2 180º 

Intake Valve Close Cylinder 1 225º 

Combustion Cylinder 1 360º 

Intake Valve Close Cylinder 2 405º 

Combustion Cylinder 2 540º 

Table 5-1: Standardized impact peak phase values (Kubota, 2008) 

  

5.2.3 Impact Amplitude Averaging 

An impact region is determined from the local RMS sliding window and threshold 

methods.  Figure 5-9 illustrates the impact region start point RSI , and the impact region end point 

REI .  The impact region is then calculated by 

 
R RE RSI I I   

(5.3) 

where RI  is the impact region. 
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Figure 5-9: Determining the impact region 

 

The impact amplitude is then averaged over this impact region to obtain the impact 

amplitude feature. 

 
1

( )
R

RS

I

amp lrms

i IR

I y i
I 

   
(5.4) 

where ampI  is the averaged impact amplitude.  This will be the feature used in this thesis. 

 

 

 

RSI  

RSI  

REI  
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5.2.4 More Complex Cases: Segmenting Impacts 

In some of the more complex testing cases such as faults on multiple valves or multiple 

faults on the same valve simultaneously it was found that the FDD results were not satisfactory.   

Figure 5-10 shows the vibration signal of a nominal test case compared to an EVC1 SF + LCF 

case.  From Figure 5-10 it can be seen that the vibration signals look quite similar, and detecting 

a fault could be difficult.  When looking at an RMS average of each individual impact as a 

whole, faults become difficult to detect for these cases.   

For these cases further analysis was done on the vibration signal in an attempt to improve 

FDD results.  It was found that different segments of the vibration signal impacts seemed to 

behave differently in fault and nominal cases, where sn will be the segment number.  Figure 5-11 

shows the segmentation method being applied to the EVC impact for cylinder 1.  This impact 

will be named EVC1.  Using the same naming convention, the other impacts are named: EVC2, 

IVC1, and IVC2.  It can be seen that the EVC1 impact occurs from 6º to 20º in the crank angle 

domain.  For non-complex cases this entire impact box would be RMS averaged as described in 

5.2.1 to 5.2.3 however further analysis shows that segmenting the impact may help distinguish 

between faults.  In this case the impact box was segmented into two equal sections, and then 

each section is analyzed as described in 5.2.1 to 5.2.3.  This method improved the results for 

these complex cases, as will be shown in the next chapter.  
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Figure 5-10: Vibration Signal - Nominal (Top), EVC1 SF + LCF (Bottom) 
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Figure 5-11: Vibration Signal of EVC1 - Nominal (Top), EVC1 SF + LCF (Bottom) 
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Figure 5-11 illustrates the segmentation method when an impact is segmented into two 

equal sections.  Further segmentation can be done to improve classification results if necessary. 

However it should be noted that increasing segmentation increases the number of features, which 

will require longer training time for the FDD. 

5.3 Naïve-Bayes Classification 

Classification or pattern recognition methods are applied when no prior knowledge of the 

relation between symptoms and faults is available.  Instead, reference patterns are determined for 

the faults experimentally by learning or training.  The NB method will be the base-line 

classification method for this thesis; however alternative methods will also be studied for 

comparison.  This method has been chosen due to its simplicity, white-box architecture, and the 

successful results found in the literature review.  

5.3.1 Introduction & Background Information 

NB classification is one of the most well known classification schemes (Isermann R. , 

2006).  This method is based on assumptions of the statistical distributions of the fault 

symptoms.  The Gaussian or normal distribution is assumed in this thesis.  This assumption is 

tested in 5.3.4. 

5.3.2 Training 

First, the amount of data to be used for training the classification method must be 

decided.  In general as the training size ( tN ) is increased the probability of successful 

classification also increases.  However, a larger amount of training data also increases the 

training computation time, and reduces the amount of data available for testing.  For this reason 

determining the smallest training data set without significantly deteriorating classification results 
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is desired. Training is applied to each possible case, including all fault cases and the nominal 

case.  This is done separately for each valve. 

Training is done utilizing the features obtained as described in section 5.2.  The impact 

mean   and standard deviation   are calculated for each case from a specified training set as 

follows: 

 

, , ,

1
, ,

tN

amp vn sn i

i
class vn sn

t

I

N



  (5.5)
 

 2 2

, , , , , , ,

1

1
( )

tN

class vn sn amp vn sn i class vn sn

it

I
N 

    (5.6)
 

where ,amp iI  is the i
th

 impact amplitude from the training set for the valve, tN  is the training size 

used, vn  represents the valve number, sn  represents the impact amplitude segment number, and 

 nominal, SF, SCF, LCF, SCF+SF, LCF+SFclass  represents the class of the segment.  Once 

these means and standard deviations are determined for all classes of each valve, additional data 

can be tested (i.e. classified) using statistical probability methods. 

5.3.3 Testing 

Once training is complete all other data is tested against our trained data to determine if 

the test case represents a fault.  This is accomplished by comparing NB probability posteriors for 

each individual case.  The probability of some value x  residing in some class c  can be 

computed using normal distribution: 
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 (5.7) 

where c  is the mean of the class as calculated by (5.5) and c  is the standard deviation of the 

class as calculated by (5.6).  If the mean and variance for each class are computed from our 

training set the probability of test data can be classified into one of the fault classes using some 

distinct feature.  As discussed in the previous sections, impact amplitude has been found to be a 

critical feature for the distinction of faults.  From this we can say: 
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, , ,

, 22
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( )1
| exp
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amp i class vn sn
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I
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(5.8)

 

where  , |amp iP I class  is the probability that 
,amp iI  resides in some class , and 

,amp iI  represents 

the amplitude of impact i .  Where , ,class vn sn  and , ,class vn sn  were found by training methods as 

described in Section 5.3.2     These calculations are done for each impact point and probabilities 

are determined for each fault class.  Spring faults are the main fault of interest; however more 

complex fault classes will be explored.  In the case where 1sn  , the probabilities are calculated 

using (5.8) for each segment and then multiplied to determine the total probability of the impact. 

    ,

1

| |
sn

amp amp j j

j

P I class P I class


  
(5.9) 

where ,amp jI  and jclass  are the impact amplitude and class of the j
th

 segment respectively. 
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The probability of each of the fault classes is calculated as described using equation (5.8).  

The probabilities are then compared to determine the class of the test case.  In equation form: 

  ˆ arg max |ampY P I class
 

(5.10)
  

where Ŷ  is the predicted class.  Each of the four valves has 6 possible classes, this give a total of 

46 1296  possible fault combinations in a single engine cycle.  It is unreasonable to attempt to 

test all of these combinations.  However, each individual valve and class will be tested, in 

addition to a few complex combinations.  These tests will be presented in the next chapter. 

5.3.4 Normality 

The use of these statistical methods and probabilities relies on the assumption of a normal 

distribution.  A normal or Gaussian distribution is a continuous probability distribution defined 

as: 

 
 

2

22
1

( )
2

x

x e





 

 

   (5.11) 

where ( )x  is the probability distribution function of variate x ,   is the expected mean and   

is the expected standard deviation.  The normal distribution is the most widely used statistical 

model for the distribution of random variables (Montgomery & Runger, 2007).  

In order to justify using these methods we must show that our data can be described by a 

normal distribution. Figure 5-12 shows a histogram of the RMS EVC1 impact amplitudes for 

440
1
 engine cycles.  A normal distribution curve is plotted over the histogram for visual 

                                                 
1
 Each data set originally consisted of 500 engine cycles.  After implementing engine cycle averaging with Na=60, 

440 averaged cycles remained for analysis and testing. 
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comparison.  Based on these results, and similar results found for the other impacts, we 

concluded that the normal distribution assumption is reasonable for our data. 

 

 

Figure 5-12: Normality testing of EVC1 impact amplitudes. 
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5.4 Alternative Classification Methods 

Based on the literature review presented in Chapter 2:, four well known classification 

methods were selected for comparison.  This section will briefly describe these methods. 

5.4.1 Artificial Neural Networks 

An ANN consists of numerous processing elements or nodes connected together to form 

a network.  Generally each node consists of a single simple processing element.  Each node 

output is computed by 

 

1

n

i i

i

y w x


  (5.12) 

where w  is the weight of the network node, x is the input value to that node, for all i  inputs.  In 

this thesis 
,i amp ix I  for the hidden layer.  Since they are commonly used for prediction and 

pattern recognition, a feedforward network will be used in this thesis.  Feedforward networks 

have a directed acyclic graph with one-way connections from input to output layers. Figure 5-13 

shows a simplified diagram of the feedforward ANN used for our application.  The network 

consists of 6 inputs which represent the 6 impacts in an engine cycle, 11 nodes or processing 

elements, and 5 outputs which represent the 5 possible fault cases.    The number of hidden layer 

nodes was obtained by using the general rule of thumb that the hidden layer nodes equal the sum 

of the inputs and outputs (Gupta, 2001).  The simplified case shown in Figure 5-13 is only 

concerned with detecting SFs, with the addition of other classes and complex cases including 

combinations of faults the ANN input, output, and hidden parameters will need to be altered 

accordingly.  
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From Figure 5-13 it can be seen that our ANN has two layers: the hidden layer and the 

output layer.  The hidden layer computes an activation input from the input features for each of 

its 11 nodes by: 

 
, ,

1

n

h h amp i h i

i

x b I w


    (5.13) 

where hx  is the hidden layer activation input, n  is the number of hidden layer inputs, ,h iw  is the 

weight of the i
th

 hidden layer input, and b  is some bias value.  This activation input hx  is then 

put through an activation function, in our case the activation function being used is the sigmoid 

function: 

 1
( )

1 h
h h x

y x
e





  (5.14)
 

This procedure is repeated for the five nodes of the output layer of the ANN, using the 

hidden layer outputs as the output layer inputs.  The output layer computes an activation input 

from the input features for each of its 5 nodes by: 

 
,

1
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o o h o i

i

x b y w


    (5.15) 
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Figure 5-13: Artificial neural network diagram for our application 
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where ox  is the output layer activation input, m  is the number of output layer inputs, 
,o iw  is the 

weight of the i
th

 output layer input, and ob  is some output layer bias value.  This activation input 

ox  is then put through an activation function, in our case the activation function being used is the 

sigmoid function: 

 1
( )

1 o
o o x

y x
e





 (5.16)
 

The weights of the ANN are initialized to small random values.  The weights must be 

updated or trained for the ANN to be useful. Training is done by minimizing some cost function.  

The cost function used in our application is the mean-squared error (MSE), which attempts to 

minimize the average squared error between the network’s output and the target value.  The 

mean-squared error can be determined by 

 2

1

1 ˆ( )
n

i i

i

MSE Y Y
n 

   (5.17) 

where Ŷ  is the predicted class and Y is the true value of the class.  This cost function is 

commonly minimized using the gradient decent method (Avriel, 2003).  These minimized errors 

are then used to update the weights for the next training epoch, where an epoch is a single pass 

through the entire training set.  This method is known as back-propagation or backward 

propagation of errors and is one of the most common methods for training neural networks 

(Isermann R. , 2006).  Once the weights are updated the ANN goes through another cycle and 

continues this learning algorithm until some stopping condition is met, in this case a minimum 

gradient magnitude of 61 10 .   
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5.4.2 Decision Trees 

Decision trees were chosen for this application since they are a commonly used method 

for classification, and are relatively simple to interpret and implement.  Figure 5-14 shows a 

simplified decision-tree diagram for our application when only concerned with detecting SFs. 

 

 

 

 Algorithms for constructing DTs generally work top-down and choose a variable at each 

step to split the set of items.  The classification and regression tree (CART) algorithm was 

chosen for this application (Breiman, Friedman, Stone, & Olshen, 1984).  The CART algorithm 

minimizes the Gini index to determine how to construct the tree (Isermann R. , 2006).  This 

produces the set of node values, e.g. for the root node in Figure 5-14 that node value is 0.051V.  

The resulting tree can be executed very quickly since it is a series of if-then rules. 

 

EVC1 SF Fault 

EVC2 SF Fault 

IVC1 SF Fault 

IVC2 SF Fault Nominal 

EVC1 Iamp >= 0.051  else 

EVC2 Iamp >= 0.049  

IVC1 Iamp >= 0.042  

IVC2 Iamp >= 0.059  

else 

else 

else 

Figure 5-14: Decision tree diagram for our application 
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5.4.3 k-Nearest Neighbour (k-NN) 

The k-NN classification method was chosen for this application since it is popular and 

generally provides good results.  Figure 5-15 shows an example of the k-NN classification 

method for a simple case of only two classes and 6 training data points for each class.  The test 

data point is classified based on the majority of its k nearest neighbours based on the Euclidean 

distance.  It can be seen that when 1k   the test data point would be classified as class 1, 

however when 3k   the test data point would be classified as class 2.  This example shows that 

using different k values can change classification results.  Unlike the previously described 

methods, the k-NN method requires no training computations.  However, all of the distance 

computations must be performed during testing which makes this method slow for large testing 

sets. 

 

     

= class 1 training data 

= class 2 training data 

= test data point 

 

Figure 5-15: k-Nearest Neighbour classification example 
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5.4.4 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a type of polynomial classification which uses 

functional approximations to compute probabilities of the classes rather than the independent 

Gaussian functions assumed for NB classification.  It was chosen since it has seen extensive use 

and is one of the most time-tested classification methods.  The standard LDA model can be used 

to classify samples using: 

 
0 1 ,1 2 ,2 ,class amp amp k amp kS s s I s I s I      (5.18) 

where classS  is the classification score of the fault class, ks are the classification coefficients 

where k  is the number of features being used dependant on sn  and vn , and ,amp kI  are the 

feature values.  Classification coefficients are calculated during training and then used for testing 

the unknown data.  Each sample tested will have a classification score for each class and will be 

placed into a specific class based on that score as follows: 

 ˆ arg max ( )Y S class
 

(5.19)
 

5.5 Software Implementation 

The FDD methods presented in this chapter were written in Matlab m code.  They were 

implemented using custom developed methods and functions as described in section 5.2, as well 

as functions from the Matlab Statistics and Neural Network toolboxes as described in section 5.3 

and 5.4.  This Matlab code was executed on a laptop PC with specifications as given in Table 

5-2. 
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Operating System Windows 7 Professional 64-bit 

Processor Intel Core 2 Duo T6400 

    Number of Cores 2 

    Clock Speed 2.0 GHz 

    Intel Smart Cache 2 MB 

Memory 4 GB RAM 

Hard Drive Model ST9250827AS ATA 

     Capacity 250 GB 

     Cache 8 MB 

     Speed 5400 RPM 

Table 5-2: Laptop PC specifications 

 

5.6 Summary 

The FDD methods were described including feature extraction and classification 

methods.  First, the newly developed feature extraction method was presented.  It features a 

sliding window RMS calculation, followed by a thresholding approach with the possible use of 

impact segmentation if necessary for more complex fault scenarios.  The main classification 

method explored was the NB classification method.  This method was described in detail for our 

specific application.  The alternative classification methods that will be used for comparison 

were also described.  The next chapter will present and discuss the classification results of the 

FDD methods described in this chapter. 

  



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

86 

 

 

CHAPTER 6: Experimental Results 

 

6.1 Introduction 

The experimental results obtained using the developed FDD system will be described in 

this chapter.  Tuning of parameters and a comparison of classification methods will be presented.  

Results will be displayed using confusion matrices.  A confusion matrix is a visualization tool 

commonly used to display the performance of a classification algorithm.  Each row of a 

confusion matrix represents an instance in an actual class, while each column represents the 

predicted class. 

6.2 Tuning of the FDD Parameters 

In this section the effect of changing various parameter values on final results will be 

explored, and the parameters tuned to obtain the best FDD results.  Parameters including window 

size, threshold value, engine speed, sampling rate, and filtering frequency will be explored.  Each 

fault case testing group contains 5 sets of 440 engine cycles for a total of 2200 engine cycles 

where each engine cycle contains 2880 data points. 

6.2.1 Tuning Window Size 

The first parameter we choose to explore is the window size used for RMS calculation in 

the feature extraction method (see Section 5.2.1).  If the window size is too large, the RMS 

signal becomes too smooth.  This over-smoothing makes detection of peaks or impacts more 

difficult, and could potentially make two impacts that are near each other become 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

87 

 

indistinguishable.  Some peaks or impacts may be missed due to this over-smoothing.  The over-

smoothing should reduce the variance, but will also reduce the mean.  Recall that our detection 

method uses both mean and variance as described in Section 5.3.  Figure 6-1 shows an RMS 

vibration signal that is over-smoothed when the window size 2 1 101ws wN N   .  With the 

RMSY  threshold shown, only 4 of the 6 impact regions would be detected. 

 

Figure 6-1: Over-smoothed local RMS signature with window size = 101 

 

If the window size becomes too small, the local RMS signal becomes more erratic.  The 

erratic signal may contain jumps which may lead to false impact detections or multiple region 

detections for a single impact region.  This will be shown to decrease the classification success 

rate.  Also an erratic local RMS signal will result in a higher variation between the cycles.  This 

increased variation will also lead to incorrect classification as our base-line detection method is 

based on signal means and variances as described in the Section 5.3.  Figure 6-2 shows a local 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

88 

 

RMS vibration signature when the window size 2 1 3ws wN N   . This signature is under-

smoothed.  With the YRMS threshold shown (the same as used previously), two erroneous impact 

regions would be detected as shown. 

 

 

Figure 6-2: Local RMS signature with window size = 3 

 

Figure 6-1 and Figure 6-2 explain visually how over-smoothing and under-smoothing can 

affect the impact region detection process.  Manual tuning was done to find an appropriate 

window size for our application.  Results are given for a number of different window sizes in 

Table 6-1 through Table 6-12 when 1.5fs  . 

Table 6-1 illustrates our classification results using a confusion matrix for the SF classes 

for window size of 101.  A confusion matrix plots the actual known class of the case on the rows 

Erroneous 

Impact 

Regions 
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of the matrix against the predicted class of the case from our FDD method on the columns of the 

matrix.  

From the confusion matrix both detection accuracy (DA) and classification accuracy 

(CA) can be determined.  We define DA as simply detecting if a fault is present or if the system 

is operating nominally.  CA then is the much more difficult process of classifying a fault into the 

correct class, location, and combination.  Equations and sample calculations for the EVC2 case 

using Table 6-1 results are given in (6.1) and (6.2).  
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(6.1)

 

where iDA  is the detection accuracy of class i , ,i jC  is the confusion matrix entry of row i  and 

column j , and TN  is the number of test cases used for testing.   
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(6.2)

 

where iCA  is the classification accuracy of class i .  Confusion matrices will be used exclusively 

for displaying the classification results throughout this chapter.  

From equations (6.1) and (6.2) it can be seen that a single sample is added to the 

denominator.  This is done because claiming 100% accuracy on a sample set would not be a fair 

claim; as increasing the sample size by a single sample could potentially cause a classification 
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error.  This ensures that our accuracies are calculated conservatively, and we state our sample 

size maximum DA and CA as 99.95% rather than 100%.  

It is important to note that although there are only 2200 cases for each fault class, it is 

possible that a single case can have multiple valve faults.  This results in the possibility of 

column and row sums of greater than 2200.  From Table 6-1 it can be seen that each fault is 

successfully detected as a “true positive” which is defined as when a predicted class is classified 

into the correct actual class.  However some cases also contain “false positives” which is defined 

as a case is predicted to be a fault when the actual case has no fault.  In Table 6-1 the actual class 

of an EVC2-SF fault is correctly predicted to have an EVC2 fault for all 2200 cycles; however 

an IVC2-SF fault is also incorrectly predicted for 365 cycles when an IVC2 is not in-fact present.  

Table 6-2 gives the NB parameter values of   and   for each ampI  for both the nominal 

and faulty case with a window size of 101 data points.  The values of   and   are given in 

volts, where 1 100V g .  Tuning the window size effects both ampI  feature values as well as the 

classification parameter values   and  .  Detection and classification results are determined by 

a combination of the feature and parameter values. Generally a decrease in window size 

increases  . From Table 6-2 and Table 6-12 , 2 0.1193nom EVC   when 101wsN  , 

, 2 0.1476nom EVC   when 3wsN  .  However also increases the variance -5

, 2 2.314  10nom EVC    

when 101wsN  , 
-5

, 2 1.720  10nom EVC    when 3wsN  .  Accuracy should improve with increased 

  and decreased   so tuning is performed to find an acceptable window size. 

  From Table 6-1 through Table 6-12 we find that the best results occur at a window span 

of 41 data points.  Table 6-7 shows that the lowest classification accuracy for this span occurs at 
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4 99.77%CA   and all other accuracies are above 99.95%. The results of Table 6-7 are very 

promising and a window size of 41 will be used for the remainder of this thesis. 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 365 99.95 85.74 

IVC1 (SF) 0 0 20 2200 0 99.95 99.05 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-1: Confusion matrix (window size = 101) 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0529 0.1193 0.0672 0.1053 

σ 2.895   10
-6

 2.313  10
-5

 2.405   10
-6

 9.831  10
-6

 

Fault 
μ 0.0118 0.0190 0.0105 0.0225 

σ 2.428   10
-7

 2.230   10
-6

 1.910  10
-7

 6.296  10
-7

 

Table 6-2: Parameter values μ and σ (window size = 101) 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 376 99.95 85.37 

IVC1 (SF) 0 0 18 2200 0 99.95 99.14 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-3: Confusion matrix, (window size = 81) 
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 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0818 0.1310 0.0723 0.1135 

σ 5.078   10
-6

 2.581  10
-5

 3.030   10
-6

 9.929  10
-6

 

Fault 
μ 0.0180 0.0187 0.0097 0.0231 

σ 6.442  10
-7

 2.392   10
-6

 1.038  10
-7

 7.834  10
-7

 

Table 6-4: Parameter values μ and σ (window size= 81) 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a
l 

C
la

ss
 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 52 99.95 97.65 

IVC1 (SF) 0 0 11 2200 0 99.95 99.46 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

 Table 6-5: Confusion matrix, (window size = 61)  

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0907 0.1455 0.0842 0.1227 

σ 6.986   10
-6

 3.721  10
-5

 2.141   10
-6

 1.296  10
-5

 

Fault 
μ 0.0197 0.0184 0.0092 0.0228 

σ 9.600  10
-7

 2.779   10
-6

 6.786  10
-8

 7.724  10
-7

 

Table 6-6: Parameter values μ and σ (window size= 61) 
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 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0  99.95  99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 4 2200 0 99.95 99.77 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-7: Confusion matrix, (window size = 41) 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0995 0.1662 0.0906 0.1340 

σ 2.213   10
-6

 4.286  10
-5

 3.094   10
-6

 1.931  10
-5

 

Fault 
μ 0.0200 0.0171 0.0089 0.0221 

σ 9.957  10
-7

 2.788   10
-6

 4.524  10
-8

 6.226  10
-7

 

 Table 6-8: Parameter values μ and σ (window size = 41) 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 14 2200 0 99.95 99.32 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-9: Confusion matrix, (window size = 21)  
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 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.1140 0.1846 0.0951 0.1492 

σ 9.982   10
-6

 1.590  10
-4

 2.336   10
-6

 1.656  10
-5

 

Fault 
μ 0.0178 0.0152 0.0088 0.0380 

σ 8.655  10
-7

 2.650   10
-6

 3.316  10
-8

 0.0016 

Table 6-10: Parameter values μ and σ (window size = 21) 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a
l 

C
la

ss
 

Nominal 2200 0 0 0 0 99.95 99.9 

EVC1 (SF) 0 2200 0 0 0 99.95 99.9 

EVC2 (SF) 293 0 1907 0 0 86.64 86.64 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-11: Confusion matrix, (window size = 3) 

 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.1258 0.1476 0.0753 0.1489 

σ 1.927  10
-5

 0.0017 3.152   10
-6

 1.140  10
-4

 

Fault 
μ 0.0141 0.0133 0.0075 0.0193 

σ 8.405  10
-7

 1.411 10
-6

 3.415  10
-8

 7.451  10
-7

 

Table 6-12: Parameter values μ and σ (window size = 3) 

  

6.2.2 Tuning Threshold Value 

The next parameter we explore is the threshold value used for impact detection in the 

feature extraction method (see section 5.2.2).  Manual tuning with 41wsN   was done to find an 
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appropriate threshold value for our application.  Results are given for different threshold values 

in Table 6-13 through Table 6-18.  It can be seen that the best classification results occur when 

1fs   which gives a worst case of 99.95%iDA   and 99.95%iCA   (see Table 6-15).  For the 

reasons explained in section 5.2.2, both low and high threshold values degrade classification 

results substantially by either missing or falsely detecting impact regions.  For the remainder of 

this thesis 1fs   will be used in the FDD methods. 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a
l 

C
la

ss
 

Nominal 2144 0 56 0 0 97.41 97.41 

EVC1 (SF) 0 2200 219 0 0 99.95 90.91 

EVC2 (SF) 386 0 1814 0 0 82.42 82.42 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 317 0 2200 99.95 87.37 

 Table 6-13: Confusion matrix, ( 2fs  )  

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0890 0.0899 0.0818 0.1316 

σ 9.464  10
-5

 6.726  10
-4

 2.260  10
-4

 6.429  10
-4

 

Fault 
μ 0.0150 0.0296 0.0098 0.0212 

σ 3.181   10
-6

 3.081  10
-4

 1.130   10
-6

 1.406  10
-6

 

Table 6-14: Parameter values μ and σ ( 2fs  ) 

 

 

 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

96 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-15: Confusion matrix, ( 1fs  ) 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0999 0.1455 0.0810 0.1332 

σ 1.030  10
-4

 0.0011 2.070  10
-4

 7.580  10
-4

 

Fault 
μ 0.0170 0.0169 0.0098 0.0212 

σ 5.411   10
-6

 4.839  10
-5

 1.130   10
-6

 1.406  10
-6

 

Table 6-16: Parameter values μ and σ ( 1fs  ) 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 1692 0 508 0 0 76.87 76.87 

EVC1 (SF) 0 2200 185 0 0 99.95 92.20 

EVC2 (SF) 494 0 1706 0 0 77.51 77.51 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 592 0 2200 99.95 78.77 

Table 6-17: Confusion matrix, ( 0.5fs  ) 
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 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0842 0.0816 0.0806 0.1222 

σ 6.521  10
-5

 6.899  10
-4

 2.283  10
-4

 5.249  10
-4

 

Fault 
μ 0.0193 0.0345 0.0098 0.0212 

σ 3.227   10
-6

 3.081  10
-4

 1.130   10
-6

 1.406  10
-6

 

Table 6-18: Parameter values μ and σ ( 0.5fs  ) 

 

6.2.3 Tuning the Training Size 

From the DAQ system described in Chapter 3, we have 2200 engine cycle data sets for 

each SF fault case (for a total of 5 2200 11000   data sets).  To maximize testing and minimize 

computation time the smallest training size tN  that gives a reliable success rate should be used. 

Also note that although training sets of below 30 may give good results, due to the 

assumption of normal distribution we should not go below 30 training data sets since the normal 

distribution assumption should consist of at least 30 samples (Montgomery & Runger, 2007). 

Manual tuning with 41wsN   and 1fs   was done to find an appropriate training size for 

our application. Results for different training sizes are given in Table 6-19 through Table 6-26.  

It can be seen that using more training cycles produces better classification results.  A training 

size of 40 cycles provides very good results, this is the lowest training size that produces a worst 

case of 99.95%iDA   and 99.95%iCA  , and will be used for the remainder of this thesis. 

 

 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

98 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-19: Confusion matrix, ( 50tN  ) 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0997 0.1628 0.0913 0.1328 

σ 2.469   10
-6

 8.290  10
-5

 5.749   10
-6

 2.716  10
-5

 

Fault 
μ 0.0193 0.0174 0.0090 0.0222 

σ 2.720   10
-6

 2.705   10
-6

 3.786  10
-8

 5.614  10
-7

 

Table 6-20: Parameter values μ and σ ( 50tN  ) 

 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-21: Confusion matrix, ( 40tN  ) 

 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

99 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0995 0.1662 0.0906 0.1340 

σ 2.213   10
-6

 4.286  10
-5

 3.094   10
-6

 1.931  10
-5

 

Fault 
μ 0.0200 0.0171 0.0089 0.0221 

σ 9.957  10
-7

 2.788   10
-6

 4.524  10
-8

 6.226  10
-7

 

Table 6-22: Parameter values μ and σ ( 40tN  ) 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a
l 

C
la

ss
 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 52 2200 0 99.95 97.65 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-23: Confusion matrix, ( 30tN  ) 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0992 0.1689 0.0904 0.1335 

σ 2.170   10
-6

 2.702  10
-5

 3.666   10
-6

 2.379  10
-5

 

Fault 
μ 0.0203 0.0166 0.0089 0.0221 

σ 4.615  10
-7

 2.703   10
-6

 5.395  10
-8

 6.582  10
-7

 

Table 6-24: Parameter values μ and σ ( 30tN  ) 
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 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 316 2200 0 99.95 87.41 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-25: Confusion matrix, ( 20tN  ) 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0987 0.1718 0.0916 0.1309 

σ 2.267   10
-6

 5.352   10
-6

 6.938  10
-7

 1.082  10
-5

 

Fault 
μ 0.0203 0.0157 0.0089 0.0218 

σ 4.775  10
-7

 1.593   10
-6

 7.325  10
-8

 3.892  10
-7

 

Table 6-26: Parameter values μ and σ ( 20tN  ) 

 

6.3 FDD Testing 

6.3.1 Comparison of Engine Speeds 

Multiple engine speeds (ES) were used to test the generality of our FDD method.  A 

medium engine speed of 2000 RPM has been the engine speed used thus far.  A low ES of 1200 

RPM and high ES of 3500 RPM were tested for comparison.  FDD training was performed at 

each speed with 41wsN  , 1fs  , and 40tN  .  The results are given in Figure 6-3; and Table 

6-27 through Table 6-32. 
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Lower ES give lower impacts ( , 2 0.0295nom EVC  from Table 6-28) however the detection 

method still works well at 1200 RPM, with a worst case of 3 98.18%CA   and 4 93.66%CA  .  

Higher ES give larger impacts ( , 2 0.2297nom EVC  from Table 6-32) but also have more noise 

and unwanted vibrations however the method still works fairly well at 3500 RPM, with a worst 

case DA and CA of 1 94.87%DA   and 5 87.48%CA    An engine speed of 2000 RPM gives the 

best results as originally assumed, with a worst case of 99.95%iDA   and 99.95%iCA  ; this is 

what we will use for the majority of our results and discussion in this thesis.  These tests show 

that even at the extreme ends of the engine speed spectrum our FDD method still works well.  

The FDD is trained for each engine speed so operating over a continuous range of speeds would 

require extensive training and a method for interpolating the parameters. 
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Figure 6-3: Vibration signal for various engine speeds 

 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

103 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 39 60 2161 0 0 98.18 95.58 

IVC1 (SF) 0 148 0 2200 0 99.95 93.66 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-27: Confusion matrix, (engine speed = 1200 RPM) 

 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0148 0.0295 0.0220 0.0272 

σ 8.276  10
-7

 9.879  10
-5

 1.414  10
-5

 1.184  10
-5

 

Fault 
μ 0.0093 0.0064 0.0057 0.0062 

σ 1.445   10
-6

 1.636   10
-6

 1.218   10
-6

 4.797  10
-7

 

Table 6-28: Parameter values μ and σ (engine speed = 1200 RPM) 

  

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-29: Confusion matrix, (engine speed = 2000 RPM) 
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 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0995 0.1662 0.0906 0.1340 

σ 2.213   10
-6

 4.286  10
-5

 3.094   10
-6

 1.931  10
-5

 

Fault 
μ 0.0200 0.0171 0.0089 0.0221 

σ 9.957  10
-7

 2.788   10
-6

 4.524  10
-8

 6.226  10
-7

 

Table 6-30: Parameter values μ and σ (engine speed = 2000 RPM) 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a
l 

C
la

ss
 

Nominal 2088 5 1 106 0 94.87 94.87 

EVC1 (SF) 36 2164 0 0 0 98.32 98.32 

EVC2 (SF) 0 9 2200 0 0 99.95 99.55 

IVC1 (SF) 0 16 41 2200 0 99.95 97.43 

IVC2 (SF) 0 6 291 17 2200 99.95 87.48 

Table 6-31: Confusion matrix, (engine speed = 3500 RPM) 

 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.1257 0.2297 0.1008 0.2981 

σ 3.093  10
-4

 6.473  10
-4

 1.225  10
-4

 2.186  10
-4

 

Fault 
μ 0.0283 0.0474 0.0634 0.0593 

σ 1.976  10
-5

 4.486  10
-4

 6.453  10
-5

 1.407  10
-5

 

Table 6-32: Parameter values μ and σ (engine speed = 3500 RPM) 
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6.3.2 Sensitivity to Sampling Rate 

In this section we explore the effects of changing the sampling rate parameter.  In 

Chapter 4 it was concluded that a 48 kHz sampling rate was adequate for our application.  This 

section gives results of different sampling rates to help confirm or disprove our original 

conclusion.  Results are given for different sampling rates in Table 6-33 through Table 6-42 with 

41wsN  , 1fs  , 40tN  , and 2000ES RPM .  It can be seen that as the sampling rate is 

reduced, the DA and CA are reduced.  This is due to a combination of the degradation of the 

signal representation at lower sampling, as well as increased variation at lower sampling rates 

5

, 2 =4.286 10nom EVC  when 48sf kHz , and 4

, 2 =1.249 10nom EVC   when 6sf kHz .  This 

agrees with our comments in section 4.2.1.  Obviously due to limitations we cannot have an 

infinite sampling rate, these results show that a sampling rate of 32 kHz gives fairly reliable 

results with a worst case of 3 99.73%DA   and 4 99.10%CA  .  A sampling rate as low as 12 

kHz still gives adequate results with a worst case of 1 99.68%DA   and 4 85.77%CA   which 

shows how robust our FDD method is with respect to the sampling rate.  As expected, the 

highest sampling rate of 48 kHz gives the best results with worst case of 99.95%iDA   and  

99.95%iCA  .  This sampling rate will be used for the remainder of this thesis. 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-33: Confusion matrix, (sample rate = 48 kHz) 
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 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.0995 0.1662 0.0906 0.1340 

σ 2.213   10
-6

 4.286  10
-5

 3.094   10
-6

 1.931  10
-5

 

Fault 
μ 0.0200 0.0171 0.0089 0.0221 

σ 9.957  10
-7

 2.788   10
-6

 4.524  10
-8

 6.226  10
-7

 

Table 6-34: Parameter values μ and σ (sample rate = 48 kHz) 

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a
l 

C
la

ss
 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 5 0 2195 0 0 99.73 99.73 

IVC1 (SF) 0 0 19 2200 0 99.95 99.10 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-35: Confusion matrix, (sample rate = 32 kHz) 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.1027 0.1692 0.0846 0.1375 

σ 4.195   10
-6

 4.139  10
-5

 5.021   10
-6

 5.255  10
-5

 

Fault 
μ 0.0180 0.0174 0.0087 0.0201 

σ 9.268  10
-7

 4.883   10
-6

 2.716  10
-8

 4.998  10
-7

 

Table 6-36: Parameter values μ and σ (sample rate = 32 kHz) 
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 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 23 99.95 98.92 

IVC1 (SF) 0 0 78 2200 0 99.95 96.53 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-37: Confusion matrix, (sample rate = 24 kHz) 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.1197 0.1970 0.0769 0.1516 

σ 1.466  10
-5

 8.085  10
-5

 4.943   10
-6

 5.272  10
-5

 

Fault 
μ 0.0184 0.0176 0.0091 0.0215 

σ 2.997   10
-6

 4.123   10
-6

 8.372  10
-8

 1.200  10
-6

 

Table 6-38: Parameter values μ and σ (sample rate = 24 kHz) 

  

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 2194 6 0 0 0 99.68 99.68 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 133 99.95 94.26 

IVC1 (SF) 0 0 351 2200 13 99.95 85.77 

IVC2 (SF) 0 36 0 0 2200 99.95 98.35 

Table 6-39: Confusion matrix, (sample rate = 12 kHz) 
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 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.1075 0.1738 0.0782 0.1390 

σ 1.560  10
-5

 6.704  10
-5

 4.267   10
-6

 1.0777e-04 

Fault 
μ 0.0166 0.0167 0.0083 0.0260 

σ 3.446  10
-6

 2.200  10
-6

 9.693  10
-8

 1.858  10
-6

 

Table 6-40: Parameter values μ and σ (sample rate = 12 kHz)  

 

 Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a
l 

C
la

ss
 

Nominal 1978 44 178 0 0 89.87 89.87 

EVC1 (SF) 0 2200 62 0 0 99.95 97.22 

EVC2 (SF) 0 0 2200 0 395 99.95 84.75 

IVC1 (SF) 0 0 1200 2200 8 99.95 64.54 

IVC2 (SF) 535 54 150 0 1613 73.28 68.58 

Table 6-41: Confusion matrix, (sample rate = 6 kHz) 

 

 EVC1 EVC2 IVC1 IVC2 

Nominal 
μ 0.1263 0.2232 0.0564 0.1436 

σ 1.828  10
-5

 1.249  10
-4

 6.699  10
-6

 2.658  10
-4

 

Fault 
μ 0.0174 0.0187 0.0082 0.0242 

σ 1.282   10
-6

 3.148   10
-6

 3.629  10
-7

 1.008  10
-6

 

Table 6-42: Parameter values μ and σ (sample rate = 6 kHz) 
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6.3.3 Fault Detection Sensitivity 

FDD methods are highly dependant on the severity of the fault in question.  A good FDD 

method should be able to detect small faults in their early stages so preventative maintenance can 

be done to prevent further damage to the system.  As described in Chapter 3, the engine 

manufacturer specifies that a valve spring should be replaced after a 3mm reduction in the 

spring’s free length.  A good FDD method should detect a faulty valve spring far before this limit 

is reached.  Several SF severities were tested to find the fault level that can be detected with a 

reasonable success rate, with 41wsN  , 1fs  , 40tN  , 2000ES RPM , and 48sf kHz .  

Although the SFs were only seeded with IVC1 it is believed that similar results would be 

obtained with the other valves. Table 6-43 shows that a 0.3mm SF is quite difficult to detect, this 

is a fairly small fault as it is only 10% of the manufacturers specified SF so it may be 

unreasonable to attempt to detect such a small fault.  Larger faults were tested and the results are 

compared in Table 6-44 through Table 6-46.  The standard SF severity used in this thesis is a 

valve spring with a 0.5mm deformation.  When deformation severity is reduced (0.4mm) the DA 

and CA decrease as would be expected.  When the deformation severity increases (0.55mm) the 

DA and CA improves.  The deformation of 0.5mm was chosen as the standard SF because this is 

when fault detection success rates become quite reliable. Since this fault level is much lower than 

the manufacturers specified fault (3.0mm deformation), a 0.5mm fault detection is still a 

relatively small fault, and early SF detection has been successfully achieved.   
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Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a

l 
C

la
ss

 

Nominal 1639 13 5 543 0 74.47 74.47 

IVC1 (SF) 179 0 0 2021 0 91.82 91.82 

Table 6-43: Confusion matrix, (small IVC1 0.3mm fault) 

 

 
Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a
l 

C
la

ss
 

Nominal 1675 0 0 525 0 76.10 76.10 

IVC1 (SF) 24 0 0 2176 0 98.86 98.86 

Table 6-44: Confusion matrix, (small IVC1 0.4mm fault) 

 

 
Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a
l 

C
la

ss
 

Nominal 2200 0 0 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

 Table 6-45: Confusion matrix, (0.5mm fault)   

 

 
Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) % DA % CA 

A
ct

u
a
l 

C
la

ss
 

Nominal 2200 0 0 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

Table 6-46: Confusion matrix, (large 0.55mm fault) 
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6.3.4 Complex Cases: Simultaneous Faults, Distinguishing Fault Types 

To test the robustness and generality of our method, a number of more complex scenarios 

were tested using the fixed set of parameters given in Table 6-47.   

FDD Parameter Symbol FDD Parameter Description Value Determined 

wsN  Window size 41 

fs  Threshold scaling value 1 

tN  Training size 40 

ES  Engine speed 2000 RPM 

sf  Sampling rate 48 kHz 

LF  Spring fault severity level 0.5mm 

Table 6-47: Set of parameters used for testing 

 

These tests were performed on 440 engine cycles, rather than 2200 engine cycles as done 

previously to reduce computation time and data storage requirements.  First, the case of 

simultaneous faults on different valves was tested.  The results are given in Table 6-48.  It can be 

seen that our FDD method can successfully detect multiple faults on different valves, a problem 

that previous research failed to solve (M. Desbazeille et al., 2010).  Our FDD method 

successfully detects multiple faults with a worst case of 99.8%iDA   and 4 97.8%CA  . 
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Predicted Class 

Nom EVC1 EVC2 IVC1 IVC2 
EVC2 

IVC2 

EVC2 

IVC2 

EVC1 

EVC2 

IVC2 

EVC1 

IVC1 

DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 440 0 0 0 0 0 0 0 99.8 99.8 

EVC1 0 440 0 0 0 0 0 0 99.8 99.8 

EVC2 0 0 440 2 0 0 0 0 99.8 99.3 

IVC1 0 0 9 440 0 0 0 0 99.8 97.8 

IVC2 0 0 0 0 440 0 0 0 99.8 99.8 

EVC2 

IVC2 
0 0 0 0 0 440 0 0 99.8 99.8 

EVC2 

IVC2 

EVC1 

0 0 0 0 0 0 440 0 99.8 99.8 

EVC2 

IVC2 

EVC1 

IVC1 

0 0 0 0 0 0 0 440 99.8 99.8 

Table 6-48: Multiple faults on different valves 

 

It is important to note that thus far our method has only been detecting one type of valve 

fault, and on which valve it occurred.  It has not been distinguishing between types of valve 

faults.  To further test our FDD method, some different types of valve fault were seeded.  First, 

valve SCFs were tested, and the results are given in Table 6-49.  These results show that the 

developed FDD method works very well not only for SFs, but also for SCFs, with all 

99.8%iDA   and 99.8%iCA  . 

 

 

 

 



Master’s Thesis – J. Flett McMaster University – Mechanical Engineering 

 

113 

 

 

Predicted Class 

Nom 
EVC1 

(SCF) 

EVC2 

(SCF) 

IVC1 

(SCF) 

IVC2 

(SCF) 
DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 440 0 0 0 0 99.8 99.8 

EVC1 (SCF) 0 440 0 0 0 99.8 99.8 

EVC2 (SCF) 0 0 440 0 0 99.8 99.8 

IVC1 (SCF) 0 0 0 440 0 99.8 99.8 

IVC2 (SCF) 0 0 0 0 440 99.8 99.8 

Table 6-49: Confusion matrix, (small clearance fault) 

     

Next, the SFs were tested against the SCFs to see if the FDD method could distinguish 

between the two valve fault types.  This is a particularly interesting case because both the spring 

faults (SF) and the small clearance faults (SCF) have very similar signal characteristics.  Both 

fault types result in diminished valve impact amplitude.  For this reason it would be expected 

that distinguishing between the two similar valve faults may be difficult and lead to poor 

classification results.  Surprisingly, the developed FDD method does a fairly good job 

distinguishing between such similar faults.  The results can be seen in Table 6-50. From these 

results it can be seen that most of the classification errors are from misdiagnosing a fault type; 

however the detection of a fault to a specific valve still remains very successful.  For example, 

when the actual class is an EVC1-SCF fault it is successfully classified as an EVC1-SCF fault 

for 391 tests and misclassified as an EVC1-SF fault for 49 tests; in both cases it is detecting a 

fault at EVC1.  This test illustrates the important difference between detection and classification 

as the worst case CA is 7 88.7%CA    however all 99.8%iDA      Even with such similar valve 

fault types the CA is still surprisingly accurate. 
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Predicted Class 

Nom 
EVC1 

(SF) 

EVC2 

(SF) 

IVC1 

(SF) 

IVC2 

(SF) 

IVC2 

(SCF) 

EVC1 

(SCF) 

IVC1 

(SCF) 

EVC2 

(SCF) 
DA% CA% 

A
ct

u
a

l 
C

la
ss

 

Nominal 440 0 0 0 0 0 0 0 0 99.8 99.8 

EVC1 

(SF) 
0 440 0 0 0 0 0 0 0 99.8 99.8 

EVC2 

(SF) 
0 0 440 0 0 0 0 0 0 99.8 99.8 

IVC1 

(SF) 
0 0 0 440 0 0 0 0 0 99.8 99.8 

IVC2 

(SF) 
0 0 0 0 435 5 0 0 0 99.8 98.6 

IVC2 

(SCF) 
0 0 0 0 29 411 0 0 0 99.8 93.2 

EVC1 

(SCF) 
0 49 0 0 0 0 391 0 0 99.8 88.7 

IVC1 

(SCF) 
0 0 0 0 0 0 0 440 0 99.8 99.8 

EVC2 

(SCF) 
0 0 22 0 0 0 0 0 418 99.8 94.8 

Table 6-50: Confusion matrix, distinguishing SF and SCF  

     

 Further complication was tested by seeding multiple fault types on the engine 

simultaneously.  The FDD method must now distinguish between fault types as well as multiple 

simultaneous faults on different valves.   Table 6-51 gives the experimental results of the 

multiple faults present on multiple valves at the same time.  This table shows that the addition of 

multiple faults on different valves does not worsen the results of the FDD drastically.  It still 

appears that the major difficulty of the method is distinguishing between the similar fault types 

and even with this difficulty the FDD still provides DA of 99.8%iDA   and a worst case CA of 

12 82.1%CA  .   
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Predicted Class 

Nom 
EVC1 

(SF) 

EVC2 

(SF) 

IVC1 

(SF) 

IVC2 

(SF) 

IVC2 

(SCF) 

EVC1 

(SCF) 

IVC1 

(SCF) 

EVC2 

(SCF) 

EVC2 

(SF) 

IVC2 

(SCF) 

EVC2 (SF) 

IVC2 (SCF) 

EVC1 (SCF) 

EVC2 (SF) 

IVC2 (SCF) 

EVC1 (SCF) 

IVC1 (SCF) 

DA% CA% 

A
ct

u
a

l 
C

la
ss

 

Nominal 440 0 0 0 0 0 0 0 0 0 0 0 99.8 99.8 

EVC1(SF) 0 440 0 0 0 0 0 0 0 0 0 0 99.8 99.8 

EVC2(SF) 0 0 440 0 0 0 0 0 0 0 0 0 99.8 99.8 

IVC1(SF) 0 0 0 440 0 0 0 0 0 0 0 0 99.8 99.8 

IVC2(SF) 0 0 0 0 435 5 0 0 0 0 0 0 99.8 98.6 

IVC2(SCF) 0 0 0 0 29 411 0 0 0 0 0 0 99.8 93.2 

EVC1(SCF) 0 49 0 0 0 0 391 0 0 0 0 0 99.8 88.7 

IVC1(SCF) 0 0 0 0 0 0 0 440 0 0 0 0 99.8 99.8 

EVC2(SCF) 0 0 0 0 0 0 0 0 440 0 0 0 99.8 99.8 

EVC2(SF) 

IVC2(SCF) 
0 0 0 0 29 0 0 0 0 411 0 0 99.8 93.2 

EVC2(SF) 

IVC2(SCF) 

EVC1(SCF) 

0 45 0 0 21 0 0 0 0 0 374 0 99.8 84.8 

EVC2(SF) 

IVC2(SCF) 

EVC1(SCF) 

IVC1(SCF) 

0 41 0 0 22 0 0 0 0 0 0 362 99.8 82.1 

Table 6-51: Multiple faults on different valves 

  

 The final test to challenge our FDD method was seeding multiple faults on the same 

valve.  This is the most challenging scenario and has not been attempted by other researchers 

based on our literature review.  This test contains a spring fault and clearance fault located on the 

same valve.  Both LCFs and SCFs were tested on the same valve as a SF.  The case of a LCF+SF 

fault is of particular interest because the two faults act in an opposing manner.  The SF tends to 

decrease the impact amplitude, while the LCF tends to increase the impact amplitude, making 

fault detection quite difficult for this specific case.  The case of a SCF+SF fault should not be as 
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difficult as these two faults act in a similar manner, both decreasing the impact amplitude.  Table 

6-52 shows the results of testing multiple faults on a single valve.  From these results it can 

easily be seen that the EVC1-LCF+SF combination caused most of the difficulties, as expected.  

The worst case DA and CA is quite low with 1 63.7%DA   and 1 63.7%CA  .  The reason 

behind this is that the SF is reducing the valve impact but at the same time the LCF is increasing 

the valve impact; the net result is a valve impact that looks nominal when in fact two faults are 

present.  This complex case was described in Section 5.2.3, and an impact segmentation method 

was proposed as the solution.  From Table 6-53 we can see that our impact segmentation method 

improves our results.  With 2sn   we obtain a worst case 99.8%iDA   of 4 87.0%CA   which 

is a significant improvement over the 63.7% obtained in Table 6-52 without the segmentation 

method.  Further segmentation may further improve results, however diminishing returns may 

occur after exceeding some sn  value, as shown in Table 6-54 and Table 6-55. 

 

Predicted Class 

Nom 
EVC1 

(SF) 

EVC2 

(SF) 

IVC1 

(SF) 

IVC2 

(SF) 

EVC1 

(SF) 

EVC1 

(SCF) 

EVC1 

(SF) 

EVC1 

(LCF) 

IVC1 

(SF) 

IVC1 

(SCF) 

DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 281 0 0 0 0 0 159 0 63.7 63.7 

EVC1 0 440 0 0 0 0 0 0 99.8 99.8 

EVC2 0 0 440 0 0 0 174 0 99.8 71.5 

IVC1 0 0 0 440 0 0 54 0 99.8 88.9 

IVC2 0 0 0 0 440 0 0 0 99.8 99.8 

EVC1(SF) 

EVC1(SCF) 
0 0 0 0 0 440 0 0 99.8 99.8 

EVC1(SF) 

EVC1(LCF) 
13 0 0 0 0 0 427 0 96.8 96.8 

IVC1(SF) 

IVC1(SCF) 
0 0 0 0 0 0 0 440 99.8 99.8 

Table 6-52: Multiple faults on a single valve 
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Predicted Class 

Nom 
EVC1 

(SF) 

EVC2 

(SF) 

IVC1 

(SF) 

IVC2 

(SF) 

EVC1 

(SF) 

EVC1 

(SCF) 

EVC1 

(SF) 

EVC1 

(LCF) 

IVC1 

(SF) 

IVC1 

(SCF) 

DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 440 0 0 0 0 0 0 0 99.8 99.8 

EVC1 0 440 0 0 0 0 0 0 99.8 99.8 

EVC2 0 0 440 0 0 0 0 31 99.8 93.2 

IVC1 0 0 58 434 0 0 0 6 99.8 87.0 

IVC2 0 0 0 0 440 0 0 0 99.8 99.8 

EVC1(SF) 

EVC1(SCF) 
0 0 0 0 0 440 0 0 99.8 99.8 

EVC1(SF) 

EVC1(LCF) 
0 0 0 0 0 0 440 0 99.8 99.8 

IVC1(SF) 

IVC1(SCF) 
0 0 0 2 0 0 0 438 99.8 99.3 

Table 6-53: Multiple faults on a single valve (segmentation method, sn=2) 

 

 

Predicted Class 

Nom 
EVC1 

(SF) 

EVC2 

(SF) 

IVC1 

(SF) 

IVC2 

(SF) 

EVC1 

(SF) 

EVC1 

(SCF) 

EVC1 

(SF) 

EVC1 

(LCF) 

IVC1 

(SF) 

IVC1 

(SCF) 

DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 440 0 0 0 0 0 0 0 99.8 99.8 

EVC1 0 440 0 0 0 0 0 0 99.8 99.8 

EVC2 0 0 436 0 0 0 4 0 99.8 98.9 

IVC1 0 0 0 440 0 0 0 0 99.8 99.8 

IVC2 0 0 0 0 440 0 0 0 99.8 99.8 

EVC1(SF) 

EVC1(SCF) 
0 0 0 0 0 440 0 0 99.8 99.8 

EVC1(SF) 

EVC1(LCF) 
0 0 0 0 0 0 440 0 99.8 99.8 

IVC1(SF) 

IVC1(SCF) 
0 0 0 0 0 0 0 440 99.8 99.8 

Table 6-54: Multiple faults on a single valve (segmentation method, sn=3) 
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Predicted Class 

Nom 
EVC1 

(SF) 

EVC2 

(SF) 

IVC1 

(SF) 

IVC2 

(SF) 

EVC1 

(SF) 

EVC1 

(SCF) 

EVC1 

(SF) 

EVC1 

(LCF) 

IVC1 

(SF) 

IVC1 

(SCF) 

DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 440 0 0 0 0 0 0 0 99.8 99.8 

EVC1 0 440 0 0 0 0 0 0 99.8 99.8 

EVC2 4 0 436 0 0 0 0 0 98.9 98.9 

IVC1 0 0 0 440 0 0 0 0 99.8 99.8 

IVC2 0 0 0 0 440 0 0 0 99.8 99.8 

EVC1(SF) 

EVC1(SCF) 
0 0 0 0 0 440 0 0 99.8 99.8 

EVC1(SF) 

EVC1(LCF) 
0 0 0 0 0 0 440 0 99.8 99.8 

IVC1(SF) 

IVC1(SCF) 
0 0 0 0 0 0 0 440 99.8 99.8 

Table 6-55: Multiple faults on a single valve (segmentation method, sn=4) 

 

6.4 Comparison with Other Classification Methods 

 All previous results shown were found using the NB classification method.  In this 

section we will compare the NB method to other well known classification methods.  A 

quantitative comparison will be done by comparing the accuracies iDA  and iCA  as well as the 

execution times for each classification method.  The execution time for the NB method is given 

in Table 6-56 below for 11000 engine cycles of SFs.  The total FDD execution time is separated 

into feature extraction time, training time, and testing time.  The feature extraction time is the 

same for all classification methods, and the average of 4.5s from Table 6-56 will be used.  

Training, testing, and total FDD time will change for each classification method and will be used 

for comparison.  
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Feature Extraction Time 

(11000 Cycles) 

Training Time 

(200 Cycles) 

Testing Time 

(11000 Cycles) 

Total FDD Time 

(11000 Cycles) 

Test #1 4.524 0.0156 0.0156 4.555 

Test #2 4.290 0.0156 0.0312 4.337 

Test #3 4.680 0.0312 0.0624 4.774 

Test #4 4.602 0.0156 0.0156 4.633 

Test #5 4.324 0.0156 0.0312 4.371 

Average 4.5 0.019 0.031 4.5 

Table 6-56: NB execution time 

 

6.4.1 Artificial Neural Networks 

ANNs were chosen for this application since they are one of the most commonly used 

classification algorithms and have seen application with FDD of ICEs as discussed in Chapter 

Chapter 2:.  This section will discuss the experimental fault classification results obtained using 

the ANN described in Section 5.4.1.  Results can be found in Table 6-57 through Table 6-65. 

Table 6-57 shows that the ANN method seems to work well with a worst case of 

99.95%iDA   and 5 99.91%CA  .  This test was done using the same 40 training cycles used 

for the NB method per class, for a total of 5 40 200tN     training cycles.  This test took 153 

epochs for the training, which took 10.64s of training time and 0.078s of testing time. 
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Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 1 2199 99.95 99.91 

Table 6-57: ANN results, 153 epochs, 200 training cycles 

   

However, further testing with the ANN method gave some surprising results.  Each time 

the network is trained random estimates are used to initialize the node weights.  These weights 

are then updated every epoch as described in Section 5.4.1.  It was found that the ANN training 

was very sensitive to the initial values of the weights, and was quite unreliable when small 

training sizes were used.  The exact same data was re-trained and Table 6-58 shows the 

surprising results.   These results show that the exact same data can provide very poor results if 

the initial estimates are poor, and has a worst case of 4 42.71%DA   and 4 0%CA  .  In general 

ANN reliability improves as training size and epochs are increased, however these will also 

increase execution time.  Table 6-59 through Table 6-61 show some more tests demonstrating 

the unreliable results of ANNs with 200 training cycles. 

 
Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 1261 0 643 0 297 42.71 0 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-58: ANN results, 141 epochs, 200 training cycles 
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Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 4 2196 0 99.95 99.77 

IVC2 (SF) 0 0 0 1 2199 99.95 99.91 

Table 6-59: ANN results, 81 epochs, 200 training cycles 

 

 
Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a
l 

C
la

ss
 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 1714 440 46 0 0 22.08 2.09 

IVC1 (SF) 2200 0 0 0 0 0 0 

IVC2 (SF) 2166 34 0 0 0 1.54 0 

Table 6-60: ANN results, 58 epochs, 200 training cycles 

 

 
Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 950 281 466 502 0 56.75 0 

Table 6-61: ANN results, 50 epochs, 200 training cycles 
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 Table 6-62 shows the execution times for the ANN method for various numbers of 

epochs when the training is set at 200 cycles.  It can be seen that as the number of epochs 

increases, the training time tends to increase. 

 

 Table 6-63 through Table 6-65 show the classification results of the ANN method when 

the training is set to 1000 cycles for various iteration values. From these results it can be seen 

that the increase in training size has improved our classification results, with a lowest 

classification accuracy of 5 99.91%CA  .  Increasing the training size to 1000 cycles has also 

made the training produce good results more consistently.  However it is still possible that poor 

initial weight estimates can lead to poor results.  Also, the increase of training size leads to a 

moderate increase in execution time as can be seen in comparing Table 6-66 with Table 6-62. 

 
Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 1 2199 99.95 99.91 

Table 6-63: ANN results, 72 epochs, 1000 training cycles 

 # of Epochs Training Time Testing Time 

Test #1 153 10.64 0.078 

Test #2 141 8.56 0.094 

Test #3 81 6.13 0.094 

Test #4 58 5.79 0.038 

Test #5 50 4.52 0.078 

Average 97 7.13 0.076 

Table 6-62: ANN execution times, 200 training cycles 
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Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 1 2199 99.95 99.91 

Table 6-64: ANN results, 65 epochs, 1000 training cycles 

 

 
Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a
l 

C
la

ss
 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 1 2199 99.95 99.91 

Table 6-65: ANN results, 55 epochs, 1000 training cycles 

 

 

 

 

 

 # of Epochs Training Time Testing Time 

Test #1 72 11.11 0.078 

Test #2 65 10.55 0.047 

Test #3 60 9.29 0.062 

Test #4 55 8.62 0.047 

Test #5 48 8.13 0.047 

Average 60 9.54 0.056 

Table 6-66: ANN execution times, 1000 training cycles 
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6.4.2 Decision Tree 

This section will discuss the experimental fault classification results obtained using the 

DT method described in Section 5.4.2.  The results can be found in Table 6-67 and Table 6-68.  

The worst case accuracies using the DT method are 99.95%iDA   and 4 98.96%CA   and it has 

an average training time of 0.0156s and testing time of 0.0156s.  These results were for 2200 

cycles per class using the same 40 cycles for training as used with NB.   These results are 

comparable to the NB method.  Although the results are slightly inferior, we believe that the DT 

method is an acceptable classification method for our application. 

Further comparison was done by implementing the DT method on the difficult case of 

multiple simultaneous faults on the same valve.  The segmentation method was used for this 

complex case with 3sn  , and gave worst case results of 2 95.0%DA   and 2 94.8%CA   as 

shown in Table 6-70.  Once again these DT results are slightly inferior in comparison with the 

NB results of Table 6-54, however still acceptable as a FDD classification method. 

 

 
Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 22 2178 0 99.95 98.96 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

Table 6-67: Decision tree confusion matrix 
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 Training Time  Testing Time 

Test #1 0.0156 0.0156 

Test #2 0.0156 0.0156 

Test #3 0.0156 0.0156 

Test #4 0.0156 0.0156 

Test #5 0.0156 0.0156 

Average 0.016 0.016 

Table 6-68: Decision tree execution times 

 

 

Predicted Class 

Nom 
EVC1 

(SF) 

EVC2 

(SF) 

IVC1 

(SF) 

IVC2 

(SF) 

EVC1 

(SF) 

EVC1 

(SCF) 

EVC1 

(SF) 

EVC1 

(LCF) 

IVC1 

(SF) 

IVC1 

(SCF) 

DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 392 0 0 0 48 0 0 0 88.9 88.9 

EVC1 0 422 0 0 0 18 0 0 99.8 95.7 

EVC2 0 0 420 20 0 0 0 0 99.8 95.5 

IVC1 0 0 81 336 23 0 0 0 99.8 76.2 

IVC2 8 0 0 2 430 0 0 0 98.0 97.5 

EVC1 

(SF) 

EVC1 

(SCF) 

0 0 0 0 0 440 0 0 99.8 99.8 

EVC1 

(SF) 

EVC1 

(LCF) 

0 0 0 80 0 0 360 0 99.8 81.6 

IVC1 

(SF) 

IVC1 

(SCF) 

0 0 0 0 0 0 0 440 99.8 99.8 

Table 6-69: Simultaneous faults on same valve, decision tree with sn = 2 
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Predicted Class 

Nom 
EVC1 

(SF) 

EVC2 

(SF) 

IVC1 

(SF) 

IVC2 

(SF) 

EVC1 

(SF) 

EVC1 

(SCF) 

EVC1 

(SF) 

EVC1 

(LCF) 

IVC1 

(SF) 

IVC1 

(SCF) 

DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 428 0 0 0 1 0 11 0 97.1 97.1 

EVC1 0 418 0 0 0 22 0 0 95.0 94.8 

EVC2 0 0 440 0 0 0 0 0 99.8 99.8 

IVC1 0 0 0 440 0 0 0 0 99.8 99.8 

IVC2 0 0 0 0 440 0 0 0 99.8 99.8 

EVC1 

(SF) 

EVC1 

(SCF) 

0 0 0 0 0 440 0 0 99.8 99.8 

EVC1 

(SF) 

EVC1 

(LCF) 

6 0 0 0 0 0 434 0 98.4 98.4 

IVC1 

(SF) 

IVC1 

(SCF) 

0 0 0 0 10 0 0 430 99.8 97.5 

Table 6-70: Simultaneous faults on same valve, decision tree with sn = 3 

 

6.4.3 k-Nearest Neighbour 

The k-NN method was introduced and described in Section 5.4.3.  This section will 

discuss the experimental fault classification results obtained using k-NN.  These results were for 

2200 cycles per class using the same 40 cycles for training as used with NB.   Table 6-71 

displays the results with 1k  .  Increasing the k value was found to either have no effect, or to 

worsen the classification results.  For example, Table 6-72 shows the worse classification results 

that were produced with 15k  .  Table 6-73 gives the execution times of the k-NN method when 

1k  .  The worst case DA and CA using the k-NN method when 1k   is 99.95%iDA   and 

99.95%iCA  , and has an average testing execution time of 0.9422s.    These results are 

comparable to the NB and DT methods, with the exception of the large increase in testing 
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execution time.  Although the testing time may be comparatively poor, it may still be an 

acceptable classification method depending on the application timing constraints.  From these 

results we conclude that the k-NN method with 1k   is a suitable classification method for our 

particular application. 

Further comparison was once again done by implementing the k-NN method on the 

difficult case of multiple simultaneous faults on the same valve.  The segmentation method was 

used for this complex case with 3sn  , and gave worst case results of 99.8%iDA   and 

99.8%iCA   as shown in Table 6-70.  The k-NN results are equally as good as the NB results of 

Table 6-54, however requires significantly more testing time than the other classification 

methods.  Depending on the timing constraints, k-NN is still very acceptable as a FDD 

classification method for this our application. 

 

 
Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a
l 

C
la

ss
 

Nominal 2200 0 0 0 0 99.95 99.95 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

 Table 6-71: k-NN confusion matrix (k=1)  
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Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 1974 51 0 159 16 89.69 89.69 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2200 0 0 99.95 99.95 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 0 2200 99.95 99.91 

Table 6-72: k-NN confusion matrix (k=15) 

 

 Training Time  Testing Time 

Test #1 0 0.9360 

Test #2 0 0.9360 

Test #3 0 0.9516 

Test #4 0 0.9516 

Test #5 0 0.9360 

Average 0 0.94 

Table 6-73: k-NN execution times (k=1) 
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Predicted Class 

Nom 
EVC1 

(SF) 

EVC2 

(SF) 

IVC1 

(SF) 

IVC2 

(SF) 

EVC1 

(SF) 

EVC1 

(SCF) 

EVC1 

(SF) 

EVC1 

(LCF) 

IVC1 

(SF) 

IVC1 

(SCF) 

DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 440 0 0 0 0 0 0 0 99.8 99.8 

EVC1 0 440 0 0 0 0 0 0 99.8 99.8 

EVC2 0 0 440 0 0 0 0 0 99.8 99.8 

IVC1 0 0 0 440 0 0 0 0 99.8 99.8 

IVC2 0 0 0 0 440 0 0 0 99.8 99.8 

EVC1 

(SF) 

EVC1 

(SCF) 

0 0 0 0 0 440 0 0 99.8 99.8 

EVC1 

(SF) 

EVC1 

(LCF) 

0 0 0 0 0 0 440 0 99.8 99.8 

IVC1 

(SF) 

IVC1 

(SCF) 

0 0 0 0 0 0 0 440 99.8 99.8 

Table 6-74: Simultaneous faults on same valve, k-NN (k=1) with sn = 2 
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Predicted Class 

Nom 
EVC1 

(SF) 

EVC2 

(SF) 

IVC1 

(SF) 

IVC2 

(SF) 

EVC1 

(SF) 

EVC1 

(SCF) 

EVC1 

(SF) 

EVC1 

(LCF) 

IVC1 

(SF) 

IVC1 

(SCF) 

DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 440 0 0 0 0 0 0 0 99.8 99.8 

EVC1 0 440 0 0 0 0 0 0 99.8 99.8 

EVC2 0 0 440 0 0 0 0 0 99.8 99.8 

IVC1 0 0 0 440 0 0 0 0 99.8 99.8 

IVC2 0 0 0 0 440 0 0 0 99.8 99.8 

EVC1 

(SF) 

EVC1 

(SCF) 

0 0 0 0 0 440 0 0 99.8 99.8 

EVC1 

(SF) 

EVC1 

(LCF) 

0 0 0 0 0 0 440 0 99.8 99.8 

IVC1 

(SF) 

IVC1 

(SCF) 

0 0 0 0 0 0 0 440 99.8 99.8 

Table 6-75: Simultaneous faults on same valve, k-NN (k=1) with sn = 3 

 

6.4.4 Linear Discriminant Analysis 

The LDA method was introduced and described in Section 5.4.4.  This section will 

discuss the experimental fault classification results obtained using LDA.  Results can be found in 

Table 6-76.  The worst case CA and DA using the LDA method is 1 98.46%DA   and 

3 97.77%CA   with an average execution time of 0.0374s.  Again, these results were for 2200 

cycles per class using the same 40 cycles for training as used with NB.  They are comparable to 

the other classification methods, with the exception of the slightly worse classification 

accuracies.  
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Predicted Class 

Nom EVC1 (SF) EVC2 (SF) IVC1 (SF) IVC2 (SF) DA % CA % 

A
ct

u
a

l 
C

la
ss

 

Nominal 2167 1 0 32 0 98.46 98.46 

EVC1 (SF) 0 2200 0 0 0 99.95 99.95 

EVC2 (SF) 0 0 2152 0 48 99.95 97.77 

IVC1 (SF) 0 0 0 2200 0 99.95 99.95 

IVC2 (SF) 0 0 0 0 2200 99.95 99.95 

 Table 6-76: LDA confusion matrix 

 

 Training time Testing time 

Test #1 0.0624 0.0156 

Test #2 0.0156 0.0156 

Test #3 0.0312 0.0156 

Test #4 0.0156 0.0312 

Test #5 0.0156 0.0156 

Average 0.028 0.019 

Table 6-77: LDA execution times 

 

6.5 Summary 

In this chapter, experiments were performed on the engine test bed.  Results were given 

and compared for a variety of different cases and parameters.  Tests were done for different 

window sizes, threshold values, training cycles, engine speeds, and sampling rates.  Additionally, 

smaller and larger faults were tested.  Testing and comparing these results helped demonstrate 

the generality and robustness of the fault detection method, and also gave insight to manual 
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tuning of the system parameters.  From manual tuning it was found that a window size of 41 

steps and a 
fs value of 1 gave the best classification results.  An engine speed of 2000 RPM and 

sampling rate of 48 kHz provided best results, however other rates also gave acceptable results.    

Lastly, the NB method developed for this thesis was compared to other common classification 

techniques, a summary of this comparison can be found in Table 6-78. 

Classification 

Method 

Worst Case 

DA 

Worst Case 

CA 

Feature 

Ext. Time 

Training 

Time 

Testing 

Time 

Total FDD 

Time 

NB 99.95% 99.95% 4.5 0.019 0.031 4.5 

ANN 0% 0% 4.5 7.13 0.076 11.7 

DT 99.95% 98.96% 4.5 0.016 0.016 4.5 

k-NN 99.95% 99.95% 4.5 0 0.94 5.4 

LDA 98.46% 97.77% 4.5 0.0281 0.0187 4.5 

Table 6-78: Classification Method Comparison Summary 

  

From Table 6-78 it can be seen that the NB method seems to give very good results as 

originally suggested from our initial literature review.  The results also show that other 

classification methods also work well for our application, which is a testament to our FDD signal 

processing and feature extraction methods.  It seems that each classification method tested gives 

quite reliable and accurate results, with the exception of the ANN method which works well in 

some cases and very poorly in other cases; seemingly dependant upon the training size being 

used as well as the initial weight estimates.  This is a positive attribute of our FDD method as it 

is robust for many classification methods, meaning a user can utilize our FDD method and 

implement the classification method of their choice. 
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CHAPTER 7: Conclusions 

 

7.1 Summary 

In this thesis a FDD system for an ICE application was developed.  A novel feature 

extraction method was developed with a focus on the valve impact amplitudes.  An instrumented 

diesel engine test bed was set up.  Faults were seeded in the form of deformed valve springs as 

well as abnormal valve clearances.  The performance of the FDD system was tested using the 

diesel engine test bed.  A comparison of numerous signal processing techniques and 

classification methods was performed.  The experimental results showed that the success rate of 

the FDD system was quite promising for a number of classification methods.  The FDD system 

was shown to reliably detect and classify faults in their early stages. 

7.2 Achievements  

The main achievements of this thesis are summarized as follows: 

1) This research studied and demonstrated the feasibility of early detection of ICE 

valve train faults.  It was found that the valve train faults under study can be 

detected and classified with high accuracy using valve-impact vibration analysis. 

2) A number of signal processing techniques were tested and compared. Engine 

cycle averaging and band-pass filtering methods were tuned and utilized for 

improving the SNR.  A novel feature extraction method was developed that 

included a local RMS sliding window method and an adaptive threshold.   
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3) Multiple classification methods were applied and tested, it was found that the NB 

method seems to give superior results, however a number of classification 

methods gave acceptable results.  This is a testament to the developed feature 

extraction method, as it provides good results for multiple classification methods.  

4) The proposed FDD method proved successful using only impact amplitudes as 

detection features.  In addition to single valve faults, multiple simultaneous faults 

on both separate and identical valves was tested and successfully diagnosed; 

something that has not been accomplished in previous research literature.    

5) A number of testing scenarios were varied and numerous parameter values were 

altered.  The proposed FDD method gave reliable and accurate classification 

results for many different cases, demonstrating the generality and robustness of 

the proposed method. 

7.3 Recommendations for Future Work 

1) The fault severity is the main distinguishing aspect of a FDD method.  As the 

fault severity is decreased it naturally becomes more difficult to detect.  Although 

a minor investigation of fault severities was done in this research, further testing 

on the severity of valve train faults could be analyzed to see the full effect of fault 

severities on classification accuracy. 

2) Testing the proposed FDD method on a larger engine with more valves and 

cylinders.  Our research was restricted to a two-cylinder engine using a single 

accelerometer for both cylinders.  It would be interesting to explore larger engines 

such as four-cylinder, six-cylinder, eight-cylinder, etc. and determine how well 
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the FDD method works for these cases.  Also to test a single accelerometer in 

comparison with multiple accelerometers for the large engine cases.   

3) This FDD method uses only sn  features to classify each valve.  Additional 

features can be used if needed.  It should be possible to detect more complicated 

cases using the method outlined in this section with additional features.   

4) Further development of this FDD method may potentially be used as a real-time 

online FDD system on a vehicle.  This would require alterations including 

hardware modifications, integration with current vehicle software systems, and 

addition of dynamic FDD methods to account for varying engine speeds and 

loads. 
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