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Abstract

Advancements in human genomic technology have helped to improve our understand-

ing of how genetic variation plays a central role in the mechanism of disease sus-

ceptibility. However, the very high dimensional nature of the data generated from

large-scale genetic association studies has limited our ability to thoroughly examine

genetic interactions.

A prioritization scheme – Variance Prioritization (VP) – has been developed to

select genetic variants based on differences in the quantitative trait variance between

the possible genotypes using Levene’s test (Paré et al., 2010). Genetic variants with

Levene’s test p-values lower than a pre-determined level of significance are selected

to test for interactions using linear regression models. Under a variety of scenarios,

VP has increased power to detect interactions over an exhaustive search as a result of

reduced search space. Nevertheless, the use of Levene’s test does not take into account

that the variance will either monotonically increase or decrease with the number of

minor alleles when interactions are present.

To address this issue, I propose a maximum likelihood approach to test for trends

in variance between the genotypes, and derive a closed-form representation of the

likelihood ratio test (LRT) statistic. Using simulations, I examine the performance of

LRT in assessing the inequality of quantitative traits variance stratified by genotypes,

iii



and subsequently in identifying potentially interacting genetic variants.

LRT is also used in an empirical dataset of 2,161 individuals to prioritize genetic

variants for gene-environment interactions. The interaction p-values of the prioritized

genetic variants are consistently lower than expected by chance compared to the non-

prioritized, suggesting improved statistical power to detect interactions in the set of

prioritized genetic variants. This new statistical test is expected to complement the

existing VP framework and accelerate the process of genetic interaction discovery in

future genome-wide studies and meta-analyses.
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Chapter 1

Introduction

The desire to understand the human genome and how genetic variations affect hu-

man health and physiology has largely driven the search for genetic determinants of

complex traits. In less than a decade, the advent of rapid and inexpensive genotyping

technology has led to waves of large-scale genome-wide association studies (GWASs),

in which millions of genetic variants are genotyped and analyzed at once. GWAS

interrogates the most common form of genetic variation – single nucleotide polymor-

phisms (SNPs) – to test for association with a disease status or a quantitative trait.

The agnostic nature of GWAS could potentially lead to false positives if the large

numbers of simultaneous hypotheses are not properly accounted. As a result, strin-

gent statistical criteria are proposed: a p-value significance threshold of 5E-08 has

been widely accepted to be the gold standard to claim a significant association (Pe’er

et al., 2008; Rice et al., 2008).

Currently, the GWAS catalogue (www.genome.gov/gwastudies) maintained by

the NIH characterizes over 900 SNPs that have been shown to be associated with
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human disease phenotypes and quantitative traits from the previously published re-

ports (Hindorff et al., 2009). GWAS has been extremely successful in terms of linking

single locus to human traits. However, these variants combined explain relatively

little of the heritability for most complex traits. The complexity of human traits has

inevitably stimulated interest in the search for gene-environment interactions as most

complex disease and traits are likely to be a result of the interplay between genes and

environmental factors. Identification of genetic interactions may help to address the

so-called missing heritability problem. Heritability is an important concept in genet-

ics since it establishes the relative contribution of genes compared to environmental

factors in influencing human trait (Visscher et al., 2008). The quantitative trait vari-

ance explained by genetic variants under an additive model (i.e. variance explained

by a linear combination of SNPs) is defined as the narrow sense heritability, while the

broad sense heritability encompasses both the additive and non-additive (i.e. gene-

gene, gene-environment and higher order interactions) genetic components. Under

the additive genetic assumption, the missing heritability refers to the inconsistency in

the total heritability derived indirectly from population data and the total heritabil-

ity according to the variance explained by all the known genetic variants detected

in GWASs. It is suggested that the unexplained proportion of heritability could be

due to an overestimate of the total heritability from population data without prop-

erly accounting for non-additive contributions from gene-gene and gene-environment

interactions (Zuk et al., 2012). That is, even if all the additive genetic variance were

accounted for, the total heritability would still be less than that estimated from the

population thus leading to an inflated proportion of unexplained heritability.

The secondary use of existing GWAS data offers a convenient platform to identify
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genes that influence phenotypic traits under the modification of environmental factors

(Bookman et al., 2011). However, the very high dimensional nature of the data gen-

erated from large-scale GWASs has limited our ability to thoroughly examine genetic

interactions. Furthermore, robust replications at the genome-wide significance thresh-

old are required to confirm interactions reported in the literature. On the other hand,

there is little consensus on how to handle borderline interactions as supposed to deal-

ing with main effect associations (Panagiotou and Ioannidis, 2012). Further, within

the context of genetic interactions, we face another challenge because the genetic ar-

chitecture of interactions is usually not known a priori and choices of the interaction

model (i.e. additive and multiplicative), are thus subjective to the investigators.

Despite these conundrums, there remains a pressing need to understand how the

environment in synergy with individual genetic profiles influences human conditions.

In the long run, it is hoped that gene-environment interactions can help improve

targeted intervention and predict individual drug responses. There has been an on-

going effort to develop statistical methods to identify genetic interactions. Many

sophisticated approaches such as Bayesian model selection, data mining, and machine

learning methods have been proposed (for a thorough review refer to Cordell (2009)).

These methods are typically designed to examine interactions in specific contexts,

such as non-linear models of interaction effects or higher order interactions, and thus

have limited utilities in genome-wide settings compared to more general methods such

as generalized linear models. It should be noted that for the purpose of this thesis,

statistical gene-environment interactions refer to the departure from a model that is

linear in main effects (Fisher, 1958).

Performing an exhaustive search using linear regression models for interactions

3



MSc. Thesis - Wei Q. Deng McMaster - Clinical Epidemiology and Biostatistics

on a whole genome has been shown to be computationally feasible (Cordell, 2009;

Marchini et al., 2005): the search time for pair-wise interactions increases linearly

in M for gene-environment and quadratically in M for gene-gene interactions, where

M is the number of SNPs. Rather, the rate-limiting factors in novel discovery of

gene-environment and gene-gene interactions are likely to be a result of the small

interaction effect sizes and the huge number of genetic variants to be corrected for in

multiple hypothesis testing (Lindstrom et al., 2009; Rice et al., 2008; Thomas, 2010).

To deal with these underlying issues, a large sample size is required. This may be

obtained through meta-analyses of multiple studies or individually large studies with

innovative designs (Bookman et al., 2011). These statistical challenges make a strong

case for novel prioritization methods to filter out genetic variants that are unlikely to

be involved in genetic interactions. One emerging approach is to combine pathway

information and prior GWAS results to define a group of SNPs at the gene or exon level

for gene-gene and gene-environment interactions (Bush et al., 2009). This approach

has demonstrated utility in association studies (Baranzini et al., 2009; Ritchie, 2009).

However, prioritization of SNPs using this method is limited by the existing body of

biological knowledge, overlooking the possibility of novel interactions between SNPs

that are yet to be characterized. Another strategy to reduce multiple hypotheses leads

to a two-step analysis, where SNPs are first selected based on a minimal main effect

on the trait of interest, and subsequently tested for interaction effects (Evans et al.,

2006; Kooperberg and Leblanc, 2008; Marchini et al., 2005; Millstein et al., 2006).

These methods have improved statistical power and computational efficiencies over

an exhaustive search. Nevertheless, they make the assumption that interacting SNPs

will necessarily show a main effect on the trait. Therefore, interacting SNPs with no
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or weak main effects will be incorrectly classified as non-interacting, which inevitably

results in a loss of overall statistical power (Culverhouse et al., 2002; Murcray et al.,

2009; Thomas, 2010).

Paré et al. (2010) recently proposed a novel method – variance prioritization (VP)

– to prioritize SNPs by leveraging the effect of genetic interactions manifested on

the variance of a quantitative trait; an active area of research (Struchalin et al., 2010,

2012). Prioritization of SNPs is achieved by comparing the quantitative trait variance

conditional on the three possible genotypes of biallelic SNPs using Levene’s test (Lev-

ene, 1960) for variance heterogeneity (Figure 1). That is, SNPs are first selected based

on the quantitative trait variance inequality p-values at a pre-determined threshold

(typically a nominal significance level of 0.05). Second, the subset of SNPs selected

for that particular trait (the response variable) is tested for interaction effects against

either categorical or continuous environmental covariates or other SNPs using linear

regression models.

This two-step procedure exploits the fact that tests for variance heterogeneity and

interaction effect are uncorrelated under the null hypothesis of no interaction, and

thus can be used to select SNPs for interaction testing according to their variance

heterogeneity p-values (Paré et al., 2010). The novelty of the VP framework lies

in the fact that it comprehensively searches through all SNPs in the first stage and

bases the prioritization on the additional information acquired from the quantitative

trait variability according to the theoretical model of statistical interactions under

plausible scenarios. Furthermore, the use of VP is not restricted to the variance

heterogeneity test. Depending on the underlying nature of the interaction effect,

variance heterogeneity tests with a general alternative such as Levene’s test are more
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Figure 1: Variance Prioritization Procedure

suitable for detection of non-linear (qualitative) interactions. On the other hand,

statistical tests with a specific alternative for ordered variances would perform better

if the interaction effects mediated in an additive fashion.

Instead of using a pre-determined threshold for all SNPs, we introduced a fast

algorithm – Gene Environment Wide Interaction Search Threshold (GEWIST) – to

efficiently and accurately determine the optimal significance level (η0) for the variance

heterogeneity test on a per SNP basis (Deng and Paré, 2011, 2012). GEWIST enables

implementation of optimal VP in more general genome-wide settings. The original

steps of VP are then equivalent to conducting two independent statistical tests, such

that the optimal choice of η for the variance heterogeneity test is conditional on mul-

tiple factors (i.e. minor allele frequency (MAF), sample size, variance explained by

covariate, and interaction effect size) and the level of significance for interaction test-

ing using linear regression is determined by the proportion of SNPs deemed significant
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in the variance heterogeneity test. Facilitated by GEWIST, we were able to show that

VP has increased statistical power to detect genetic interactions in a variety of sce-

narios, most strikingly when the interaction effect sizes are small. Though a powerful

approach, effectiveness of VP depends upon the statistical procedures employed to

quantify the heterogeneity of quantitative trait variance between genotype groups.

The performance of VP could potentially be compromised if the variance inequality

p-values computed for individual SNPs are overly conservative.

In this thesis, I propose a maximum likelihood approach to prioritize SNPs by

taking advantage of the monotonic trends in quantitative trait variance stratified

according to the genotype when interactions are present. Apart from leveraging for

gene-gene or gene-environment interactions, examining genetic effects on phenotypic

variance, or even higher order moments (Aschard et al., 2013) may help add to our

understanding of the phenotypic complexity. There has been on-going attention and

investigation into the effects of genetic variants on phenotypic variability since the first

publication of genetic variant affecting variance of C-Reactive Protein at genome-wide

significance (Paré et al., 2010). Yet it was not until recently that a consortium effort to

meta-analyze heterogeneity of phenotypic variance discovered an FTO genetic variant

associated with the variability of BMI at genome-wide significance (Yang et al., 2012).

The resulting likelihood ratio test (LRT) requires only the set of quantitative trait

variances per genotype and genotype counts to determine the variance inequality p-

value for a given SNP. A closed-form representation of the LRT statistic is derived to

expedite the computations for genome-wide studies. Using simulation studies, I will

compare the performance of VP using LRT and alternative variance heterogeneity

tests to a conventional exhaustive search in a variety of gene-environment scenarios.
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In addition, sensitivity analysis will be conducted to establish the empirical type I

error rates associated with LRT and alternative variance heterogeneity tests when

the normality assumption is violated. To validate the VP method empirically, I will

apply LRT to a genome-wide dataset in order to prioritize SNPs for interactions with a

variety of adiposity measures on selected metabolic traits. These analyses will address

two methodological issues in the search for novel genetic interactions using VP: first, is

there an efficient and reliable way to rank all potentially interacting covariates based

on the optimal gain in interaction power through VP? And secondly, how effective is

VP in terms of selecting potentially interacting SNPs under the alternative hypothesis

of variance heterogeneity?

8



Chapter 2

Statistical Methods to Prioritize

SNPs for Genetic Interactions

The present statistical framework to test for interactions uses a linear regression

model, where the interaction beta coefficient is either positive or negative under the

alternative hypothesis of interaction. In this section, I present the quantitative trait

variance conditional on genotype as a function of the interaction and interacting co-

variate beta coefficients. Under plausible assumptions, the conditional variance would

increase or decrease monotonically with the number of minor alleles if the interaction

beta coefficient is not zero. This theoretical observation leads to a statistical test

based on likelihood principles. The proposed likelihood ratio test (LRT) assesses the

specific alternative of increasing or decreasing variance against the null hypothesis of

variance homogeneity. I demonstrate that a closed form representation of the LRT

statistics is available when the variances increase or decrease by a factor of r. To

conclude this chapter, I describe four additional variance heterogeneity tests that will

be examined in the simulation studies (Chapter 3).
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2.1 Preliminaries

Among all forms of genetic variations, single nucleotide polymorphisms (SNPs) are

considered the most common type. A SNP denotes a single base pair change in

the DNA sequence, which contains four types of bases: adenine (A), cytosine (C),

thymine (T), or guanine (G). For most of the common SNPs, the possible number

of unique single nucleotides at a genetic locus is two. For example, in the sequence

TGAA to TGGA, there is a SNP at the third position with two possible alleles, A or

G. The allele most frequently observed in the human population is termed the major

allele and the other one termed the minor allele. The paired chromosomes give rise

to combinations of these two alleles and form genotypes. The genotype of a SNP

can be considered as a categorical variable with three levels, i.e. AA, AG, or GG.

The genotype consisting of two major alleles, two minor alleles, and one copy of each

allele is classified as the major allele homozygote, the minor allele homozygote, and

the heterozygote, respectively. The minor allele frequency (MAF) can be estimated

from the observed genotype counts. For each biallelic genetic variant with MAF p,

the expected number of individuals in each genotype group is determined according

to the Hardy-Weinberg principle:

N0 = (1− p)2N (2.1)

N1 = 2(1− p)(p)N (2.2)

N2 = (p)2N (2.3)

where N is the overall sample size. Let g denote the genotype of a biallelic SNP

with MAF p in Hardy-Weinberg Equilibrium (HWE), where g can take on the values
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0, 1, or 2, denoting the number of minor alleles. Under HWE, the genotype G can

be considered as a binomial random variable with probability p and size 2, written

G ∼ B(2, p). The statistical interaction between the genotype variable G and an

environmental covariate C can be tested by the linear regression model:

Y = β0 + β1G + β2C + β3GC + ε (2.4)

where Y is the quantitative trait. In the example to follow (Chapter 4), Y was the

triglyceride level, C was the waist circumference, and the interaction between 656,004

predictor variables (G) and waist circumference was investigated one at a time. Since

the distribution of the interacting covariate C above is not specified, Equation 2.4

can be generalized to different types of genetic interactions with categorical environ-

mental exposures, continuous environmental covariate or the three genotype classes of

a second biallelic SNP. For simplicity, assume both the covariate C and the genotype

variable G are standardized by subtracting the mean and dividing by the standard

deviation, so they have mean 0 and variance 1. However, as the population values

are usually unknown, the sample mean and variance are used in practice. It is also

assumed that the quantitative trait Y conditional on the genotype G and covariate C

has a standard normal distribution with mean 0 and variance 1, that is, ε∼ N(0,1).

In addition, assume the error term ε is independent of the genotype G and covariate

C.

Under the assumption of gene-environment independence (Lindstrom et al., 2009),
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the total variance of Y is (Paré et al., 2010):

Var(Y ) = Var(β0 + β1G + β2C + β3GC + ε)

= Var(β1G)+ Var(β2C)+ Var(β3GC)+ Var(ε)

+ 2Cov(β1G,β2C)+ 2Cov(β2C,β3GC)+ 2Cov(β1G,β3GC)

= Var(β1G)+ Var(β2C)+ Var(β3GC)+ Var(ε)

= 2p(1− p)β
2
1 + β

2
2Var(C)+ β

2
3Var(G)Var(C)+ Var(ε)

= 2p(1− p)β
2
1 + β

2
2 + 2p(1− p)β

2
3 + 1 (2.5)

Effect size θGE of a gene-environment interaction is defined by the proportion of

quantitative trait variance explained by the interaction (Paré et al., 2010):

θGE =
Var(β3GC)

Var(Y )
=

2p(1− p)β2
3

2p(1− p)β2
1 + β2

2 + 2p(1− p)β2
3 + 1

(2.6)

Similarly, the proportion of variance explained by an environmental covariate C is

(Paré et al., 2010):

θE =
Var(β2C)

Var(Y )
=

β2
2

2p(1− p)β2
1 + β2

2 + 2p(1− p)β2
3 + 1

(2.7)
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2.2 A Mathematical Representation of Variance

Conditional on the Genotype

2.2.1 Quantitative Trait Variance per Genotype

The conditional variance of the quantitative trait Y given a genotype g is:

σ
2
g = Var(Y |G = g) = Var(β0 + β1G + β2C + β3GC + ε|G = g)

= Var(β2C + β3GC + ε|G = g)

= (β2 + β3g)2Var(C|G = g)+ Var(ε|G = g)

= (β2 + β3g)2 + Var(ε|G = g) (2.8)

Assume the error term has constant variances across genotypes:

Var(ε|G = 0) = Var(ε|G = 1) = Var(ε|G = 2) = 1 (2.9)

The variance can be stratified according to the three possible genotypes:

σ
2
0 = β

2
2 + 1 (2.10)

σ
2
1 = (β2 + β3)2 + 1 (2.11)

σ
2
2 = (β2 + 2β3)2 + 1 (2.12)

13
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The conditional variances increase or decrease with the number of minor alleles

when the interaction effect is present (β3 6= 0) and the following conditions hold true:

1. Gene-environment independence.

2. The error term satisfies the constant variance assumption when stratified by the

genotypes.

3. The absolute value of the covariate term beta-coefficient must be at least 1.5

times greater than that of the interaction term coefficient when the two beta

coefficients are opposite in sign, i.e. |β2|>
∣∣∣3β3

2

∣∣∣ & β2β3 < 0 (see Appendix C.1

for details).

Under these assumptions, the relationship between the two beta-coefficients and

the trend in conditional variances given the genotypes is summarized in Table 1. Note

that the direction of the interaction is usually not known a priori.

2.2.2 Characterization of Ordered Variances Using a Ratio

Parameter

Let σ0
2, σ1

2, and σ2
2 denote the unknown population variance parameters condi-

tional on the three possible genotypes. I can specify either a multiplicative model

β2 > 0 β2 < 0

β3 > 0 σ2
0 < σ2

1 < σ2
2 σ2

0 > σ2
1 > σ2

2

β3 < 0 σ2
0 > σ2

1 > σ2
2 σ2

0 < σ2
1 < σ2

2

Table 1: Trends in Conditional Variances According to the Directions of Interaction
and Interacting Covariate Main Effects
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where the relative increase or decrease in variance is approximated by a ratio of size

r, or an additive model where the absolute increase or decrease in variance is ap-

proximated by a difference of size d. Mathematically, my motives for adopting a

ratio parameter are 1) the ratio parameter provides a better approximation to the

increase or decrease in variance between genotypes than the difference parameter, and

2) close-form representation of the maximum likelihood estimator (MLE) of the ratio

parameter is available under the additional assumption of normality of the trait given

the genotypes.

Let the ratio of conditional variances given the heterozygote and the major ho-

mozygote groups be r1, and the ratio of conditional variances given the minor ho-

mozygote and the heterozygote groups be r2.

r1 =
σ2

1

σ2
0

=
(β2 + β3)2 + 1

β2
2 + 1

= 1 +
2β2β3 + β2

3

β2
2 + 1

(2.13)

r2 =
σ2

2

σ2
1

=
(β2 + 2β3)2 + 1
(β2 + β3)2 + 1

= 1 +
2β2β3 + 3β2

3
(β2 + β3)2 + 1

(2.14)

Alternatively, let the difference in conditional variances given the heterozygote

and the major homozygote groups be d1, and the difference in conditional variances

given the minor homozygote and the heterozygote groups be d2.

d1 = σ
2
1−σ

2
0 = 2β2β3 + β

2
3 (2.15)

d2 = σ
2
2−σ

2
1 = 2β2β3 + 3β

2
3 (2.16)

The difference and the ratio are both functions of the two beta-coefficients ob-

tained from the linear regression model. I then show that the absolute difference
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between the two ratio parameters is smaller than the two difference parameters, and

thus a one parameter model with r = r1 = r2 is a better approximation than a one-

parameter model with d = d1 = d2 (Appendix C.2). Though, it has also been shown

elsewhere that results from a multiplicative and an additive model of the SNP effects

on phenotypic variance converge when the effect is small (Visscher and Posthuma,

2010).

2.3 A Likelihood Ratio Test for Variance Hetero-

geneity

Consider the null hypothesis that the conditional variances are all equal and the ratio

is 1. The alternative hypothesis states that the conditional variances increase or

decrease by a factor of r, or in mathematical terms:

Ho : r = 1 versus H1 : r 6= 1

The null model aims to estimate a common unknown variance parameter assuming

all variances share the same distribution, while the alternative model suggests a class

of distributions with three unknown variance parameters where each is a function of

the ratio and the variance of the heterozygote group. Recall that the likelihood ratio

statistic (Hogg et al., 2005)

Λ = 2(l1− lo) (2.17)
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asymptotically follows a central chi-squared distribution with 1 degree of freedom

(∼ χ2(1)) under the null hypothesis of r = 1, where l1 and l0 denote the log-likelihoods

under the null and alternative model, respectively. In the following section, I will

calculate the log-likelihoods under both the null and alternative hypotheses, and

derive closed-form solutions for the maximum likelihood estimators (MLEs).

2.3.1 Derivation of the Likelihood Ratio Test Statistic

Assume the quantitative trait Y given a genotype class g follows a normal distribution

with unknown mean and population variance σ2
g. Let s0

2, s1
2, and s2

2 denote the

observed variances conditional on the three possible genotypes. The observed variance

(or the sample variance) s2
g has a scaled chi-squared distribution with the population

variance σ2
g (Hogg et al., 2005):

(Ng−1)s2
g

σ2
g

∼ χ
2(Ng−1) (2.18)

where Ng denotes the sample size in the genotype group g.

Probability Density Function of the Quantitative Trait Variance Condi-

tional on the Genotype

Given the heterozygote group variance σ2
g and ratio parameter r, the probability

distribution function of the major homozygote group variance is

f (s2
0;σ

2
1,r) =

1

2
N0−1

2 Γ

(
N0−1

2

) ((N0−1)s2
0

2σ2
1/r

)N0−3
2

exp
(
−(N0−1)s2

0

2σ2
1/r

)
, (2.19)
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the density function for the heterozygote group variance is

f (s2
1;σ

2
1) =

1

2
N1−1

2 Γ

(
N1−1

2

) ((N1−1)s2
1

2σ2
1

)N1−3
2

exp
(
−(N1−1)s2

1

2σ2
1

)
, (2.20)

and the density function for the minor homozygote group variance is

f (s2
2;σ

2
1,r) =

1

2
N2−1

2 Γ

(
N2−1

2

) ((N2−1)s2
2

2σ2
1r

)N2−3
2

exp
(
−(N2−1)s2

2

2σ2
1r

)
. (2.21)

Log-Likelihood Function under the Alternative of Ordered Variance

Given the observed set of variances (s2
0, s2

1, s2
2) under the alternative hypothesis,

the ratio r and variance parameter σ2
1 are estimated by maximizing the log-likelihood

function:

l1(σ
2
1,r|s2

0,s
2
1,s

2
2) =

2

∑
g=0

log( f (s2
g;σ

2
1,r))

=− log(A)+
N0−3

2
(log(N0−1)+ log(s2

0)+ log(r)− log(σ
2
1))

+
N1−3

2
(log(N1−1)+ log(s2

1)− log(σ
2
1))

+
N2−3

2
(log(N2−1)+ log(s2

2)− log(σ
2
2)− log(r))

−
(N0−1)s2

0r +(N1−1)s2
1 +(N2−1)s2

2/r
2σ2

1

where A = 2
N0−1

2 Γ(N0−1
2 )2

N1−1
2 Γ(N1−1

2 )2
N2−1

2 Γ(N2−1
2 )
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The first partial derivatives of the log-likelihood function with respect to σ2
1 and

r are

dl1(σ2
1,r|s2

0,s
2
1,s

2
2)

dσ2
1

=−N0 + N1 + N2−9
2σ2

1
+

(N0−1)s2
0r +(N1−1)s2

1 +(N2−1)s2
2/r

2(σ2
1)2

(2.22)

and

dl1(σ2
1,r|s2

0,s
2
1,s

2
2)

dr
=

N0−3
2

(
1
r

)
+

N2−3
2

(
−1

r

)
−

(N0−1)s2
0− (N2−1)s2

2/r2

2(σ2
1)

.

(2.23)

Set the above partial derivatives to zero and the MLEs of σ2
1 and r are obtained

by solving the equations simultaneously (select only the positive root as r̂)

r̂ =
(N1−1)s2

1c +
√

((N1−1)s2
1c)2 + 4(N0−1)(N2−1)(1− c2)s2

2s2
0

2(N0−1)(1− c)s2
0

(2.24)

and

σ̂
2
1 =

(N0−1)s2
0r̂ +(N1−1)s2

1 +(N2−1)s2
2/r̂

N−9
, (2.25)

where c = N0−N2
N−9 .

It is analytically difficult to show the Hessian determinant to be positive. Instead,

I show under plausible scenarios that the hessian determinants for the simulated data

are positive. I then conclude from the second partial derivative test that these MLEs

indeed maximize the log-likelihood under the ordered alternative for reasonable values

of ratio (Appendix C.3).
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Log-Likelihood Function under the Null Hypothesis

Under the null model, the log-likelihood is reduced to a function of a single un-

known variance parameter σ2. The log-likelihood function under the null is:

l0(σ
2|s2

0,s
2
1,s

2
2) =

2

∑
g=0

log( f (s2
g;σ

2))

=− log(A)+
N0−3

2
(log(N0−1)+ log(s2

0)− log(σ
2))

+
N1−3

2
(log(N1−1)+ log(s2

1)− log(σ
2))

+
N2−3

2
(log(N2−1)+ log(s2

2)− log(σ
2))

−
(N0−1)s2

0 +(N1−1)s2
1 +(N2−1)s2

2
2σ2 (2.26)

The unknown variance parameter σ2 is then estimated by maximizing the above

log-likelihood function. The first partial derivative of the log-likelihood function with

respect to σ2 is:

dl0(σ2|s2
0,s

2
1,s

2
2)

dσ2 =
N0 + N1 + N2−9

2σ2 +
(N0−1)s2

0 +(N1−1)s2
1 +(N2−1)s2

2
2σ4 (2.27)

Set the above partial derivative to zero and the MLE of σ2 is obtained accordingly:

σ̂
2 =

(N0−1)s2
0 +(N1−1)s2

1 +(N2−1)s2
2

N−9
(2.28)
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The second partial derivative of the log-likelihood function is strictly negative:

dl0(σ2|s2
0,s

2
1,s

2
2)2

d2σ2 =
N0 + N1 + N2−9

2

(
1

σ4

)
+

(N0−1)s2
0 +(N1−1)s2

1 +(N2−1)s2
2

σ6

=
1

σ4

(
N−9

2
−

(N0−1)s2
0 +(N1−1)s2

1 +(N2−1)s2
2

σ2

)
=

1
σ4

(
N−9

2
− (N−9)

)
=− 1

σ4

(
N−9

2

)
< 0 (2.29)

so σ̂2 is indeed the MLE. Note that the MLEs derived above are biased. However,

considering GWASs usually have sample sizes in the order of thousands for the de-

tection of SNP main effects, the use of biased estimates should not present a major

problem.

2.3.2 Calculation of Non-centrality Parameter and Statisti-

cal Power

Finally, I derive the non-centrality parameter of our LRT for variance heterogeneity

to perform power calculation. The non-centrality parameter λ is computed as the

expected difference of the test statistic Λ under the alternative and null hypotheses

(Sham et al., 2000). Let S2
0, S2

1, and S2
2 denote the observed variance random vari-

ables for the major allele homozygote (G = 0), heterozygote (G = 1) and minor allele

homozygote (G = 2) groups, respectively. The expected value of the test statistic

under the null is simply 1 since the test statistic follows a chi-square distribution with

1 degree of freedom. The expected value of the test statistic under the alternative
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hypothesis can be derived:

E(Λ) = 2E(l1(σ
2
1,r|S2

0,S
2
1,S

2
2)− l0(σ

2|S2
0,S

2
1,S

2
2))

= 2E(− log(A)+
N0−3

2
(log(N0−1)+ log(S2

0)+ log(r)− log(σ
2
1))

+
N1−3

2
(log(N1−1)+ log(S2

1)− log(σ
2
1))+

N2−3
2

(log(N2−1)

+ log(S2
2)− log(σ

2
2)− log(r))−

(N0−1)S2
0r +(N1−1)S2

1 +(N2−1)S2
2/r

2σ2
1

− (− log(A)+
N0−3

2
(log(N0−1)+ log(S2

0)− log(σ
2))

+
N1−3

2
(log(N1−1)+ log(S2

1)− log(σ
2))+

N2−3
2

(log(N2−1)+ log(S2
2)− log(σ

2))

−
(N0−1)S2

0 +(N1−1)S2
1 +(N2−1)S2

2
2σ2 ))

= 2E(
N0−3

2
(log(r)− log(σ

2
1)+ log(σ

2))+
N1−3

2
(− log(σ

2
1)+ log(σ

2))

+
N2−3

2
(− log(σ

2
1)− log(r)+ log(σ

2))−
(N0−1)S2

0r +(N1−1)S2
1 +(N2−1)S2

2/r
2σ2

1

+
(N0−1)S2

0 +(N1−1)S2
1 +(N2−1)S2

2
2σ2 )

= (N−9) log
σ2

σ2
1

+(N0−N2) log(r)− (
(N−9)σ2

1

σ2
1

− (N−9)σ2

σ2 )

= (N−9) log
σ2

σ2
1

+(N0−N2) log(r) (2.30)

From Equation 2.18, the expected values of the sample variance variables are:

E(S2
0) = σ

2
0 = σ

2
1/r (2.31)

E(S2
1) = σ

2
1 (2.32)

E(S2
2) = σ

2
2 = σ

2
1r (2.33)

The non-centrality parameter is thus (N−9) log(σ2

σ2
1
)+(N0−N2) log(r)−1.
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2.4 Other Variance Heterogeneity Tests

A number of statistical tests have been proposed to test whether the variances of

subgroups from the same population are equal (Bartlett, 1937; Brown and Forsythe,

1974; Levene, 1960), among which Levene’s test has been frequently referenced for its

robustness to violations of the normality assumption and other irregularities. Despite

its popularity, Levene’s test has been shown to be conservative (Keyes and Levy, 1997;

O’Neill and Mathews, 2000) under unbalanced designs, in particular when the group

size varies dramatically. This would very likely be the case if the study population is

stratified by the observed genotypes of a genetic variant, which will almost always lead

to unbalanced groups. A more serious disadvantage, pertaining to the specific context

of prioritizing SNPs for genetic interactions, is that Levene’s test does not take into

account the theoretical observation that the conditional variance of the quantitative

trait will either monotonically increase or decrease with the number of minor alleles

when interactions are present. Alternative trend tests for increasing or decreasing

phenotypic variability have been proposed (Fujino, 1979; Hines and Hines, 2000), yet

are too computationally intensive to be conveniently adapted to the unique setting of

genome-wide interaction testing. Here, I briefly describe four variance heterogeneity

tests that will be compared against LRT.

2.4.1 Levene’s Test

The original Levene’s test is equivalent to performing a one-way ANOVA (analysis of

variance) on the transformed variable zg j = |yg j−Ȳg|, where Ȳg is the sample mean in

the genotype group g (= 0, 1, 2) and ¯̄Z the overall mean. Levene’s test statistic to

assess whether the variances conditional on the genotype are equal is:
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L =
(N−3)∑

2
g=0 Ng(Z̄g− ¯̄Z)2

(3−1)∑
2
g=0 ∑

Ng
j=1(zg j− Z̄g)2

(2.34)

Under the null hypothesis of variance homogeneity, Levene’s test statistic follows

an F -distribution with 2 (number of genotype groups minus one) and N−3 (N minus

number of genotype groups) degrees of freedom.

2.4.2 Levene-type Trend Tests

Levene-type trend tests have been introduced as a generalization to assess alterna-

tive hypotheses that feature an increasing or decreasing trend in variance amongst

ordered groups (Levene, 1960; Gastwirth et al., 2009). Specifically, these tests assign

a weighted score wg to the genotype group g and examine whether the beta coeffi-

cient obtained by regressing Zg j to the order weights wg is zero or not under the null

hypothesis of variance equality. The ordered weights can be defined by g for a linear

trend and
√

g for a quadratic trend (Gastwirth et al., 2009). The slopes of these

regression models can then be used to assess the statistical significance of a linear or

quadratic trend in variance.

2.4.3 Bartlett’s Test

Similar to the original Levene’s test, Bartlett’s test assesses the general alternative

hypothesis that at least two subgroups differ in variance (Bartlett, 1937). Following

the notation in Chapter 2, given the observed set of variances (s0
2, s1

2, s2
2), the
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Bartlett’s test statistic is (Bartlett, 1937; Snedecor and Cochran, 1980):

B =
(N−3) ln(Sp

2)−∑
2
g=0(Ng−1) ln(Sg

2)

1 + 1
3(3−1)(∑

2
g=0( 1

Ng−1)− 1
N−3)

(2.35)

where

S2
p =

∑
2
g=0(Ng−1)S2

g

N−3
(2.36)

The test statistic asymptotically follows a chi-square distribution with 2 degrees of

freedom. Bartlett’s test is frequently criticized for its sensitivity to violations of the

normality assumption. However, when the normality assumption does hold, Bartlett’s

test has been shown to provide better statistical power compared to Levene’s test

(Levene, 1960).
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Chapter 3

Simulation Studies

Consider a GWAS with N individuals genotyped on M genetic markers. To maintain

consistent genotype counts between simulation runs for a given SNP, the observed

genotypes were forced to be in exact HWE (Equations 2.1, 2.2, and 2.3). The quan-

titative trait variable Y was simulated according to Equation 2.4. Without loss of

generality, assume the absence of main effect from genetic variants in all scenarios

considered. The main objectives of these simulation studies are to assess the perfor-

mance of all five variance heterogeneity tests in terms of statistical power to prioritize

genetic variants for interactions using Variance Prioritization (VP) and how robust

they are against non-normality of the continuous traits. All simulation studies were

carried out using statistical programming software R version 2.14.1 in the Linux en-

vironment (R Core Team, 2010).
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3.1 Performance of VP to Detect Gene-Environment

Interactions with Variance Heterogeneity Tests

3.1.1 Statistical Power

In this simulation study, I examined the power to detect gene-environment inter-

actions using VP with five options of variance heterogeneity test compared to an

exhaustive search in the same sets of simulated data. Two studies of small (N =

2,000) and moderate (N =10,000) sample sizes were considered. For each sample size

specification, combinations of MAFs (10%, 20%, and 40%), interaction beta coeffi-

cients (β3= 0.05 and 0.08) and covariate beta coefficients (β2 = 0.35 and 0.5) were

used to simulate the outcome phenotype. The choice for MAFs of the simulated ge-

netic variants was motivated by the search for gene-environment interactions among

common variants (MAF > 5%). The interaction and covariate main effect beta coeffi-

cients were also chosen to reflect the effect sizes that have been currently observed or

projected in the literature (Goldstein, 2009). It is commonly assumed that the inter-

action effect sizes are likely to be an order of magnitude smaller than the SNP main

effects. While environmental covariates, such as life style factors, usually capture a

large proportion of variance in the phenotype. For instance, smoking status explains

up to 13% of the phenotypic variability in sICAM-1 levels (Paré et al., 2010).

For a single SNP, each simulation run returned a variance heterogeneity p-value

and an interaction p-value, which were then used to generate empirical statistical

power. Unless otherwise specified, each simulation run was repeated 5,000 times.

The conventional power using an exhaustive search corresponded to the proportion

of SNPs with interaction p-values passing a nominal significance level of 0.05 while
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correcting for M= 500,000 hypotheses simultaneously (interaction p-value < 0.05/M).

For each VP p-value threshold (η), the corresponding VP power was defined as the

proportion of SNPs that passed the Bonferroni correction at a nominal level of 0.05

for interaction testing (interaction p-value < 0.05/K), where K is the number of SNPs

passing the variance heterogeneity test (variance heterogeneity p-value < η; see Fig-

ure 1). The optimal VP p-value threshold (ηo) was determined empirically using

simulations and indicated by the VP p-value threshold at which the VP power was

maximized.

Figures 2 and 3 depict the VP power as a function of the VP p-value threshold η in

each scenario, where the optimal VP power is marked by the peak of the curve and the

conventional power is represented by a flat line invariant to the choice of η. The same

set of results is alternatively reported in Tables 2 and 3, showing the performance of all

variance heterogeneity test to prioritize SNPs as reflected by their respective optimal

VP thresholds ηo and optimal VP powers. In the range of effects considered for this

simulation study, the variance explained by the environmental covariate was robustly

related to its main effect beta-coefficient but the variance explained by interaction

was driven by both the MAFs and the interaction beta coefficients. This is also

mathematically evident from Equations 2.6 and 2.7 presented in Chapter 2.

These observations support the conclusion that VP is superior to an exhaustive

search in all scenarios considered, irrespective of the chosen variance heterogeneity

test. The interaction effect size, MAF of the SNP, sample size, and interplay of all of

these factors influence the optimal VP threshold ηo, and naturally the optimal VP

power (Deng and Paré, 2011). For a given sample size and comparable interaction

effect sizes, the exhaustive search power stayed relatively fixed while the optimal
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Figure 2: Comparison of VP Power with Variance Heterogeneity Tests and
an Exhaustive Search in a Sample of 2,000 Individuals The proportion of
variance explained by covariate was set at two levels: 10% (A-C) and 20% (D-I). Within
each level, the interaction beta coefficient was set at 0.05 (A-C, D-F) and 0.08 (G-I). In
addition, the MAF was fixed at 10% (A, D, G), 20% (B, E, H), and 40% (C, F, I). Each
condition was simulated 5,000 times with 2,000 individuals. The horizontal line in green
represents the power to detect an interaction with linear regression after correcting for M =
500,000 SNPs (p-value < 0.05/M). The coloured curves represent the power of VP at each
variance heterogeneity p-value threshold ranging from 0.001 to 1 with 0.001 incremental
increases. The power of VP is maximized at the optimal p-value threshold represented by
the peak in the curve.
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Figure 3: Comparison of VP Power with Variance Heterogeneity Tests and
an Exhaustive Search in a Sample of 10,000 Individuals The proportion of
variance explained by covariate was set at two levels: 10% (A-C) and 20% (D-I). Within
each level, the interaction beta coefficient was set at 0.05 (A-C) and 0.08 (D-I). In addition,
the MAF was fixed at 10% (A, D, G), 20% (B, E, H), and 40% (C, F, I). Each condition
was simulated 5,000 times with 10,000 individuals. The horizontal line in green represents
the power to detect an interaction with linear regression after correcting for M = 500,000
SNPs (p-value < 0.05/M). The coloured curves represent the power of VP at each variance
heterogeneity p-value threshold ranging from 0.001 to 1 with 0.001 incremental increases.
The power of VP is maximized at the optimal p-value threshold represented by the peak in
the curve.
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Simulation Parameters Simulation Results

β2 β3 MAF (θGE ,θE) ES Power VP Tests η0 Optimal VP Power

0.35

0.05

0.1 (0.040%, 10.9%) 0.00%

LRT 0.001 0.00%
Levene’s Test 0.001 0.00%
LV Linear 0.001 0.00%
LV Square 0.001 0.00%
Bartlett 0.001 0.00%

0.4 (0.107%, 10.9%) 0.00%

LRT 0.001 0.04%
Levene’s Test 0.001 0.02%
LV Linear 0.001 0.02%
LV Square 0.001 0.04%
Bartlett 0.001 0.02%

0.08

0.1 (0.103%, 10.9%) 0.02%

LRT 0.004 0.14%
Levene’s Test 0.019 0.10%
LV Linear 0.005 0.10%
LV Square 0.004 0.12%
Bartlett 0.002 0.08%

0.4 (0.273%, 10.9%) 0.18%

LRT 0.005 1.14%
Levene’s Test 0.004 0.76%
LV Linear 0.008 1.02%
LV Square
Trend

0.006 1.10%

Bartlett 0.008 0.86%

0.50

0.05

0.1 (0.036%, 20.0%) 0.00%

LRT 0.001 0.06%
Levene’s Test 0.002 0.02%
LV Linear 0.001 0.02%
LV Square 0.001 0.06%
Bartlett 0.001 0.04%

0.4 (0.096%, 20.0%) 0.04%

LRT 0.001 0.28%
Levene’s Test 0.016 0.18%
LV Linear 0.002 0.24%
LV Square 0.001 0.28%
Bartlett 0.010 0.20%

0.08

0.1 (0.096%, 20.0%) 0.00%

LRT 0.001 0.24%
Levene’s Test 0.018 0.10%
LV Linear 0.002 0.14%
LV Square 0.002 0.22%
Bartlett 0.005 0.16%

0.4 (0.245%, 20.0%) 0.32%

LRT 0.002 2.74%
Levene’s Test 0.004 1.74%
LV Linear 0.004 2.38%
LV Square 0.001 2.70%
Bartlett 0.004 2.08%

Table 2: Estimated VP Power to Detect a Gene-Environment Interaction in
a Sample of 2,000 Individuals The main effect of the SNP was set to 0 throughout. Variance
explained by covariate and interaction was calculated using beta-coefficients and also to reflect effect
sizes as a function of MAF. SNPs with variance heterogeneity p-values less than their respective
optimal VP p-value thresholds were then selected for interaction with a continuous environmental
covariate explaining either ∼10% or 20% of the phenotypic variance. Each condition was simulated
5,000 times with 2,000 individuals. The power to detect an interaction with linear regression using an
exhaustive search after correcting for M = 500,000 SNPs (p-value < 0.05/M) was recorded for each
scenario (ES Power). Optimal VP power represents the power at the optimal VP p-value threshold
for each variance heterogeneity test. Levene’s test with a linear trend alternative was denoted LV
Linear and Levene’s test with a square trend alternative was denoted LV Square.
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Simulation Parameters Simulation Results

β2 β3 MAF (θGE ,θE) ES Power VP Tests η0 Optimal VP Power

0.35

0.05

0.1 (0.040%, 10.9%) 0.12%

LRT 0.014 0.52%
Levene’s Test 0.007 0.30%
LV Linear 0.014 0.38%
LV Square 0.013 0.50%
Bartlett 0.007 0.34%

0.4 (0.107%, 10.9%) 3.02%

LRT 0.010 8.48%
Levene’s Test 0.056 6.14%
LV Linear 0.027 7.32%
LV Square 0.012 8.24%
Bartlett 0.037 6.76%

0.08

0.1 (0.103%, 10.9%) 2.84%

LRT 0.022 8.06%
Levene’s Test 0.055 5.60%
LV Linear 0.023 6.78%
LV Square 0.022 7.72%
Bartlett 0.056 6.16%

0.4 (0.273%, 10.9%) 57.68%

LRT 0.085 68.70%
Levene’s Test 0.266 63.48%
Linear Trend 0.136 66.54%
Square Trend 0.85 68.60%
Bartlett 0.189 65.28%

0.50

0.05

0.1 (0.036%, 20.0%) 0.04%

LRT 0.002 0.96%
Levene’s Test 0.003 0.40%
LV Linear 0.002 0.64%
LV Square 0.002 0.90%
Bartlett 0.004 0.58%

0.4 (0.096%, 20.0%) 2.70%

LRT 0.009 11.04%
Levene’s Test 0.019 8.22%
LV Linear 0.009 9.74%
LV Square 0.007 10.92%
Bartlett 0.019 9.02%

0.08

0.1 (0.096%, 20.0%) 2.52%

LRT 0.005 11.34%
Levene’s Test 0.023 7.76%
LV Linear 0.009 9.32%
LV Square 0.005 10.92%
Bartlett 0.009 8.90%

0.4 (0.245%, 20.0%) 56.72%

LRT 0.029 76.18%
Levene’s Test 0.078 69.16%
LV Linear 0.043 72.84%
LV Square 0.028 75.96%
Bartlett 0.048 71.96%

Table 3: Estimated VP Power to Detect a Gene-Environment Interaction
in a Sample of 10,000 Individuals The main effect of the SNP was set to 0 throughout.
Variance explained by covariate and interaction was calculated using beta-coefficients and also to
reflect effect sizes as a function of MAF. SNPs with variance heterogeneity p-values less than their
respective optimal VP p-value thresholds were then selected for interaction with a continuous en-
vironmental covariate explaining either ∼10% or 20% of the phenotypic variance. Each condition
was simulated 5,000 times with 2,000 individuals. The power to detect an interaction with linear
regression using an exhaustive search after correcting for M = 500,000 SNPs (p-value < 0.05/M) was
recorded for each scenario (ES Power). Optimal VP power represents the power at the optimal VP
p-value threshold for each variance heterogeneity test. Levene’s test with a linear trend alternative
was denoted LV Linear and Levene’s test with a square trend alternative was denoted LV Square.
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VP powers using variance heterogeneity tests increased with the effect sizes of the

covariate (Tables 2 and 3). For instance, when the interaction explained 0.182%

and 0.163% of the variance, the exhaustive search power was 20.9% and 20.48%,

respectively. However, the optimal VP power using LRT increased from 33.30% to

40.16%, a result of an almost 10% increase in variance explained by the covariate

(Figure 3-E, H). For the gene-environment interaction effect sizes considered above,

LRT consistently outperformed not only the original Levene’s test but also the trend

tests at their respective optimal VP p-value thresholds. The optimal VP p-value

thresholds determined using LRT were lower than that by Levene-type tests and

Bartlett’s test, which suggest that LRT is more sensitive to variance heterogeneity

induced by gene-environment interactions. This observation reflects the increased

power of VP using LRT to identify gene-environment interactions in various scenarios.

3.1.2 Sample Size

The sample size required to detect gene-environment interactions at 80% power was

calculated for VP using Levene’s test, using LRT, and an exhaustive search. The

following simulation parameters were considered to calculate the sample size: the

main effect of the environmental covariate ( = 5%, 15%, and 20%), and the interaction

effect ( = 0.05% to 1% with 0.05% incremental increases). The MAF of the interacting

SNP influenced the optimal VP power only marginally, and was consequently fixed

at 20% for simplicity. The sample size required to detect an interaction using a linear

regression model alone was determined at a nominal significance level of 0.05 while

correcting for simultaneous hypothesis testing of M = 500,000 SNPs. For sample

size calculations using VP with Levene’s test or LRT, the nominal level was also
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fixed at 0.05; however, correcting only for the proportion of SNPs prioritized at their

respective optimal VP p-value thresholds.

Since the optimal p-value threshold is influenced by many factors, namely, variance

explained by interaction, environmental covariate, MAF, and sample size (Deng and

Paré, 2011), the sample size required to detect an interaction using VP was iteratively

determined by the optimal VP p-value threshold that maximized the power for a given

effect size using LRT or Levene’s test. When the interaction effect is small (0.1% to

0.4%), the use of VP with LRT lead to significantly reduced sample size to detect

genetic interactions compared to with Levene’s test (Table 4). For both LRT and

Levene’ test, the greatest reduction in sample size occurred when the interacting

covariate explained a large proportion of the phenotypic variance. For instance, when

the covariate explained 20% of the phenotypic variance, VP using LRT and Levene’s

test led to a 18.4% and 10.5% reduction in sample size to detect an interaction that

explained 0.1% of the total variance (Table 4), respectively. This observation could

be used to guide covariate selection for the most gain in power when a variety of

interacting covariates are available.

As previously observed (Paré et al., 2010), the sample size required to detect an

interacting SNP using an exhaustive search drops substantially with large interaction

effect sizes (0.5% to 1%), such that the reduction in sample sizes provided by VP

using either LRT or Levene’s test tended to be minimal (Figure 4). Nevertheless,

while the relative advantage of VP decreases with increasing interaction effect sizes,

optimal VP power is always superior or at least equivalent to an exhaustive search.

In particular, if the interaction effect sizes followed the infinitesimal model (Fisher,

1958; Visscher et al., 2008), such that there are many genetic variants of small effects,
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θE = 5% θE = 10% θE = 15% θE = 20%

θGE (%) Exhaustive
Search

Levene LRT Levene LRT Levene LRT Levene LRT

0.05 76073 76068 76072 75043 71472 69108 64533 67558 61793
0.1 38025 38023 38019 37285 35304 34642 31917 33815 30804
0.15 25342 25339 25334 24604 23642 23092 21221 22661 20533
0.2 19000 19000 18984 18472 17506 17370 15894 16680 15435
0.25 15196 15192 15191 14767 14002 13786 12637 13427 12259
0.3 12659 12658 12651 12252 11625 11402 10495 11161 10127
0.35 10847 10846 10809 10588 9950 9766 9052 9582 8717
0.4 9488 9487 9386 9180 8675 8549 7924 8368 7632
0.45 8431 8431 8425 8154 7764 7609 6903 7376 6830
0.5 7586 7586 7505 7321 6839 6825 6250 6662 6128
0.55 6894 6894 6804 6649 6323 6207 5714 6093 5496
0.6 6318 6317 6166 6113 5719 5694 5197 5541 5091
0.65 5830 5829 5744 5622 5316 5278 4823 5114 4671
0.7 5412 5410 5272 5222 4911 4869 4491 4750 4314
0.75 5049 5047 4929 4865 4587 4560 4137 4416 4028
0.8 4732 4732 4600 4589 4280 4222 3863 4145 3770
0.85 4452 4451 4340 4294 4022 4011 3633 3910 3543
0.9 4204 4198 4080 4050 3784 3761 3429 3683 3375
0.95 3981 3980 3854 3823 3594 3586 3270 3469 3162

1 3781 3781 3685 3613 3394 3403 3052 3320 3007

Table 4: Sample Size at 80% Power to Detect a Gene-Environment Inter-
action using VP and Exhaustive Search MAF of the interacting SNP is set at
20%. The exhaustive search sample size at 80% power to detect an interaction with linear
regression after correcting for M= 500,000 SNPs (p-value < 0.05/M) as a function of inter-
action effect size alone. The VP sample size at 80% power to detect an interaction with
linear regression as a function of interaction effect size and covariate explained, account-
ing for SNPs acting on variance heterogeneity using either Levene’s test or LRT (p-value
< 0.05/K), where K is the number of SNPs prioritized.
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Figure 4: Sample Size at 80% Power to Detect a Gene-Environment In-
teraction using VP and an Exhaustive Search on a log10 scale The variance
explained by the covariate was set at four levels: 5% (A-C), 15% (D-F), and 20% (G-I).
Within each level, the MAF was set at 5% (A, D, G), 20% (B, E, H), and 40% (C, F, I). The
black squares represent the sample size on a log10 scale at 80% power to detect an inter-
action with linear regression after correcting for M = 500,000 SNPs (p-value < 0.05/M, i.e.
an exhaustive search) at each interaction effect size. The blue circles and the red triangles
represent the VP sample size on a log10 scale at 80% power to detect an interaction with lin-
ear regression accounting for SNPs acting on variance heterogeneity using Levene’s test and
LRT, respectively. The Bonferroni corrected interaction p-value threshold is 0.05/(Mη0)),
where η0 is the optimal VP Levene’s test or LRT p-value threshold.
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VP would be advantageous in prioritizing the thousands of weakly interacting SNPs

underlying the genetic architecture of complex traits.

3.1.3 Computational Efficiency

In all simulated scenarios, LRT performed at least equally well when compared to

Bartlett’s test and the trend versions of Levene’s test in terms of statistical power.

Further, if prioritization were to be performed genome-wide, LRT would strike a bet-

ter balance between computational efficiency and statistical performance. The same

set of simulated data with 500,000 SNPs genotyped on 15,000 individuals was used

to compare the computational time used by each variance heterogeneity test. Under

the same computing environment (Red Hat Enterprise Linux 5 with dual Intel CPUs

with 16 cores), it took 5.84 hours, 4.64 hours, 4.76 hours and 0.44 hours, respec-

tively, to carry out Levene’s test, its two modifications against ordered alternatives

and Bartlett’s test, whereas LRT was completed in 0.28 hours. In comparison, an

exhaustive search of gene-environment interactions using linear regression under the

same computing environment was completed in 3.7 hours. The closed-form solutions

to the maximum likelihood estimators of LRT greatly speeded up the computation,

an evident advantage in genome-wide settings.
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3.2 Impact of non-normality on Variance Hetero-

geneity Tests

The proposed LRT statistic relies on distributional assumptions to derive the proba-

bility density functions of the sample variances; therefore its performance is contingent

upon normality of the continuous trait. Similarly, Bartlett’s test has also been shown

to be sensitive to departure from normality (Conover et al., 1981). In this simulation

study, I examined the empirical type I error rate associated with each variance hetero-

geneity test when the error term followed: 1) a Student’s t-distribution with k degrees

of freedom, where k = 5, 10, 20, 50; and 2) a skew-normal distribution with a shape

parameter of 0.5, 1, 2, and 4 under the null hypothesis of no interaction (Figure 5).

To evaluate this simulation study in reference to the empirical analyses presented in

Chapter 4, a sample of 2,000 individuals was generated. In addition, four scenarios

including a MAF of 5%, 10%, 20% and 40% were considered.

Figure 5: Probability Density Plots of Student’s t and Skew-Normal Distributions
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Since no systematic difference was observed across the spectrum of MAFs (tables

with other choices of MAFs are available in Appendix C.4), only results for SNPs with

a MAF of 20% are reported. The empirical type I error rate was calculated as the

proportion of SNPs with variance heterogeneity test p-values less than the nominal

α-level.

Type I error rates associated with different combinations of skewness and kurtosis

estimated through simulations are shown in Table 5. No noticeable inflation was

detected in all five tests when the theoretical skewness and kurtosis were 0 and 3.13

(a Student’s t-distribution with 50 df, mesokurtosis designated by 3), respectively.

However, LRT and Bartlett’s test were more sensitive to large values of kurtosis than

Levene-type tests. Specifically, LRT and Bartlett’s test both had various levels of

inflation in type I error rates when the error term followed a Student’s t-distribution

with degrees of freedom less than 20, whereas the others had satisfactory type I error

rates. For example, when the error term followed a Student’s t-distribution with 5

degrees of freedom, the mean sample skewness was approximately zero and mean

sample kurtosis was 7.6992 (±0.1320), the empirical type I error rate of Levene and

its trend tests did not deviate considerably from the nominal levels of 0.01, 0.05 and

0.001, while LRT was associated with higher type I error rates than the nominal α-

levels. Nevertheless, when the distribution had moderate values of kurtosis (< 3.5)

and sample skewness was less than 0.5; all five tests provided satisfactory results. For

example, when the error followed a skew-normal distribution with shape parameter

less or equal to 2, type I error rates of all tests were adherent to the null distribution.

Simulated data with imperfections helped to further evaluate the effect violation
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Type of Distribution Student’s t Distribution Skew-Normal Distribution
Degrees of Freedom Shape Parameter

5 10 20 50 0.5 1 2 4

Theoretical Skewness 0.000 0.000 0.000 0.000 0.0239 0.137 0.454 0.784
Theoretical Kurtosis 9.000 4.000 3.375 3.130 3.006 3.062 3.305 3.633
Mean Sample Skewness -0.013 -0.001 -0.001 -0.001 0.024 0.137 0.454 0.781
Standard Error 0.0072 0.0016 0.0010 0.0008 0.0008 0.0008 0.0009 0.0009
Mean Sample Kurtosis 7.699 3.983 3.369 3.125 3.000 3.057 3.300 3.617
Standard Error 0.1320 0.0067 0.0027 0.0018 0.0015 0.0017 0.0025 0.0035

α Variance Tests

0.001

LRT 0.0648 0.0078 0.0024 0.0016 0.0008 0.0008 0.0014 0.0050
Bartlett 0.0918 0.0082 0.0032 0.0010 0.0016 0.0012 0.0018 0.0060
Levene 0.0020 0.0020 0.0006 0.0014 0.0016 0.0008 0.0010 0.0036
LV Linear 0.0014 0.0016 0.0002 0.0012 0.0012 0.0008 0.0008 0.0022
LV Square 0.0018 0.0014 0.0012 0.0008 0.0008 0.0004 0.0004 0.0010

0.01

LRT 0.1414 0.0332 0.0150 0.0132 0.0074 0.0090 0.0160 0.0254
Bartlett 0.1892 0.0410 0.0198 0.0130 0.0098 0.0098 0.0202 0.0330
Levene 0.0122 0.0082 0.0100 0.0092 0.0094 0.0096 0.0124 0.0222
LV Linear 0.0118 0.0084 0.0078 0.0092 0.0070 0.0074 0.0106 0.0192
LV Square 0.0100 0.0084 0.0080 0.0110 0.0064 0.0074 0.0082 0.0106

0.05

LRT 0.2562 0.1020 0.0728 0.0568 0.0464 0.0500 0.0714 0.0828
Bartlett 0.3306 0.1260 0.0816 0.0588 0.0466 0.0536 0.0750 0.1032
Levene 0.0534 0.0442 0.0504 0.0490 0.0454 0.0542 0.0604 0.0826
LV Linear 0.0494 0.0478 0.0486 0.0570 0.0438 0.0516 0.0540 0.0724
LV Square 0.0468 0.0466 0.0506 0.0496 0.0444 0.0432 0.0504 0.0502

0.1

LRT 0.3398 0.1706 0.1330 0.1156 0.0912 0.1018 0.1308 0.1544
Bartlett 0.4238 0.2020 0.1556 0.1152 0.0960 0.1100 0.1354 0.1738
Levene 0.1002 0.0930 0.0986 0.1002 0.1000 0.1028 0.1154 0.1492
LV Linear 0.1088 0.0936 0.1024 0.1076 0.0930 0.0982 0.1096 0.1368
LV Square 0.0950 0.0936 0.0990 0.1068 0.0890 0.0954 0.1024 0.0964

Table 5: Type I Error Rates Associated with Non-normal Distributions
(MAF = 20%) Each condition was simulated 5,000 times with 2,000 individuals. A
MAF of 20% was used throughout. The empirical type I error rate was calculated as the
proportion of SNPs with variance heterogeneity p-values less than the nominal α-level.
Levene’s test with a linear trend alternative was denoted LV Linear and Levene’s test with
a square trend alternative was denoted LV Square.
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and the nature of the violation has on the type I error rate. Normality of the con-

tinuous quantitative trait is often assumed in practice. However, in actuality, this

assumption is almost always violated to some degree and transformation may be

necessary. Although sample kurtosis and skewness offer useful insight in assessing

deviation from normality, it is more important to inspect the empirical distribution

of the sample population for additional irregularities. I conclude that Bartlett’s test

is the most sensitive to non-normally distributed data while the modified Levene’s

tests for trend alternatives are comparably more robust choices. Such irregularities

in the non-transformed continuous trait may cause the LRT statistic to significantly

deviate from the null distribute of variance homogeneity and thus induce inflated type

I error rates. In the context of VP, this inflation leads to a lower optimal VP p-value

threshold in the first stage with more SNPs prioritized, and as a result, compromises

the optimal VP power to identify interactions in the second stage.
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Chapter 4

Empirical Analysis of Variance

Heterogeneity and Variance

Prioritization

Genome-wide analyses were conducted to identify SNPs with variance heterogene-

ity using LRT, and subsequently whether these SNPs could potentially be interact-

ing with environmental covariates using linear regression models. The genome-wide

dataset is accessible through the database of Genotype and phenotype (dbGap) (Mail-

man et al., 2007) as a part of the Multi Ethnic Study of Atherosclerosis (MESA) study

depository. The MESA cohort (Study accession: phs000209.v10.p2, http://www.

ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000209.v10.

p2) consists of a population-based sample of 7,258 asymptomatic individuals, about

30% of which are of Caucasian origin (Bild et al., 2002). Considering the genetic

and lifestyle variations among different ethnicities, my investigation was restricted

to an ethnically and geographically homogeneous subgroup of European Caucasians
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according to self reported with ancestry confirmed through principal component anal-

ysis in the study report. Statistical analyses were primarily conducted using PLINK

(http://pngu.mgh.harvard.edu/~purcell/plink/); (Purcell et al., 2007) and the

statistical program R version 2.14.1 (R Core Team, 2010) in the Linux environment.

Genotype Data Genotyping was performed on Affymetrix Human SNP array 6.0.

The genotype data were initially cleaned prior to being deposited to dbGap, excluding

monomorphic SNPs (that is, SNPs with only one observed genotype in all samples),

SNPs with high missing rate (greater than 5% in total or within each race), and

SNPs with observed heterozygosity greater than 53% (that is, SNPs with an excess

of heterozygote genotypes than expected under HWE). For the subset of Caucasian

individuals, I performed additional quality controls to the cleaned genotype data

based on missing rate per SNP, MAF, and HWE. SNPs with high missing rates (>

5%) were removed out of consideration for genotyping quality. I also decided to

exclude SNPs with MAFs below 5%, which is higher than the conventional threshold

of 1% for common variants, out of consideration for the calculation of per genotype

variance in the minor allele homozygote genotype group (at least two individuals

are needed to calculate variance). Additionally, SNPs with observed genotypes that

deviated from the expected distribution under HWE were removed based on an α-

level of 1E-06. 656,004 autosomal SNPs remained after the quality control (Table 6),

the α-level with Bonferroni correction for declaring a statistical significant interaction

is 0.05/656,004= 7.62E-08.
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Quality Control Filters SNPs Lost SNPs Remained

SNP probes 934,940

Genotyping center filters 25,318 909,622

HWE < 1E−6 in Caucasian samples 3,279

Missing rate per SNP > 5% 7,312

MAF < 5% 223,242

Percentage of SNPs removed due to filters 27.2%

Non-autosomal SNPs 24,546 680,550

656,004

Table 6: Summary of SNP Quality Controls

Phenotype Data Only unrelated individuals were retained based on self-report. In-

dividuals with self-reported sex contradicting that estimated by X chromosome het-

erozygosity were excluded. In addition, I excluded individuals with diabetes as defined

by plasma fasting glucose level greater than or equal to 7 mmol/L. Genotyping rates

per subject in the remaining 2,166 European Caucasians were greater than 95%. A

common set of quantitative trait variables including body mass index (BMI), waist

circumference (WC), hip circumference, height, high density lipoprotein cholesterol

(HDL-C), low density lipoprotein cholesterol (LDL-C), triglyceride (TG), fasting glu-

cose (FG) and total cholesterol are available. Only directly measured biological traits

with less than 20% missing data were selected for analysis. All continuous variables

underwent log-transformation and were standardized to have mean 0 and variance 1.

To eliminate outlier effects and reduce possible false positive findings, winsorization

at three standard deviations was performed. Summary statistics of these transformed

traits can be found in Table 7.
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Transformation Traits Mean Std Dev Skewness Kurtosis

No transformation

BMI (kg/m2) 27.54 4.96 0.86 4.18
WC (cm) 97.44 14.22 0.42 4.27
HDL-C (mg/dl) 53.03 15.91 1.00 4.45
TG (mg/dl) 128.32 74.72 2.22 13.47
FG (mg/dl) 87.25 8.98 0.26 3.25

log transformed, winsorized
at 3 standard deviations

log(BMI) 0.00 1.00 0.28 3.03
log(WC) 0.00 0.99 -0.12 3.04
log(HDL-C) 0.00 1.00 0.16 2.81
log(TG) 0.00 1.00 0.12 2.78
log(FG) 0.00 0.98 0.09 2.78

Table 7: Summary Statistics of Selected Traits and Interacting Covariates

Model Selection Among the phenotypic variables passing quality control, I was

primarily interested in TG, HDL-C, and FG because these traits are highly heritable

and have established clinical roles in relation to cardiovascular risks (Teslovich et al.,

2010; Edmondson and Rader, 2008; Willer et al., 2008; Kathiresan et al., 2007). In

addition, these traits tend to fluctuate over time and thus are more susceptible to ei-

ther changes in the environment or the interplay between environment and individual

genetic profiles. BMI and WC were included as potentially interacting covariates, as

it has been suggested that adiposity such as BMI modifies the influence of genetic

variants on metabolic traits (Manning et al., 2011). In light of the simulation results,

I constructed linear regression models the form:

Y = Age + Sex + G +C + G×C, (4.1)

where G is the genotype of a biallelic SNP and C is the potentially interacting co-

variate. These models are selected for the VP procedure according to Pearson’s
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correlation coefficients calculated between the log-transformed response variables and

log-transformed covariates (Table 8).

Response
Variable

Interacting
Covariate

Pearson’s Correlation Variance Explained

TG
BMI 0.319 10.07%
WC 0.3228 10.39%

HDL-C
TG -0.439 19.86%
WC -0.369 13.54%
BMI -0.316 9.907%

FG
WC 0.3475 11.59%
BMI 0.283 8.223%

Table 8: Summary of Candidate Models for VP
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4.1 Genome-Wide Variance Heterogeneity and In-

teraction Analyses

Two genome-wide analyses were conducted independently to examine the variance

heterogeneity p-values of all autosomal SNPs and the effects of those SNPs interacting

with adiposity measures on the quantitative traits.

4.1.1 Trait Specific Tests (Step 1 in Figure 1)

Variance Heterogeneity Levene’s test and LRT were applied separately to each of

the three outcome traits, i.e. TG, HDL-C, and FG. It was observed from the analysis

using empirical data that the optimal performance of LRT relied on the normality

assumption, as type I error rate inflation was associated with TG and HDL-C: both

had skewness greater than 0.3 and kurtosis greater than 4 when no transformation

was applied (Table 7, Figure 6). Similarly, type I error rates in Levene’s test p-values

for TG and HDL-C were also inflated due to the high kurtosis values. Transforma-

tion was necessary to maintain skewness and kurtosis measures similar to that of a

normal distribution (Table 7). Consequently, the quantile-quantile plots of variance

heterogeneity p-values for each of three transformed traits suggest the type I error

rates are well controlled (Figure 7).
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Figure 6: Quantile-Quantile Plots of Variance Heterogeneity Test p-values
using Untransformed Traits Illustrated in the upper row are the quantile-quantile
plots of LRT p-values for untransformed traits: TG (A), HDL-C (B), and FG (C).
Illustrated in the lower row are the quantile-quantile plots of Levene’s test p-values
for untransformed traits: TG (D), HDL-C (E), and FG (F).
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Figure 7: Quantile-Quantile Plots of Variance Heterogeneity Test p-values
using Transformed Traits Illustrated in the upper row are the quantile-quantile plots
of LRT p-values for TG (A), HDL-C (B), and FG (C) after log-transformation and win-
sorization at three standard deviations. Illustrated in the lower row are the quantile-quantile
plots of Levene’s test p-values for TG (D), HDL-C (E) and FG (F) after log-transformation
and winsorization at three standard deviations.
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The top ten SNPs with the lowest LRT or Levene’s test p-values for each of

the three traits are presented in Tables 9 and 10, respectively. None of the SNPs

showed genome-wide significant LRT or Levene’s test p-value, however, a strong agree-

ment between the LRT and Levene’s test p-values is consistently observed. To bring

perspective to these results, I searched for nearby SNPs associated at the genome-

wide significance with any traits or disease in the catalogue of published GWAS

(http://www.genome.gov/gwastudies/), filtering based on a maximum distance of

500KB and r2 > 0.8 or D′ > 0.8. I found that rs2197089 near the LPL gene, which

is known to be associated with metabolic syndrome and lipid traits such as TG and

HDL-C (Kraja et al., 2011), was in weak linkage disequilibrium (LD) with rs1441771

(r2 = 0.119; D’ = 0.823; Distance = 69.07 KB) and rs12543154 (r2 = 0.112; D′ =

0.820; Distance = 70.40KB) that showed highly suggestive Levene’s test p-value for

TG. Nevertheless, this particular known SNP (rs2197089) did not show any evidence

of variance heterogeneity (Levene’s test and LRT p-value > 0.1) for neither TG nor

HDL-C. None of the other top variance heterogeneous SNPs for TG, HDL-C or FG

were linked to genetic variants associated with other traits or diseases in their neigh-

bouring regions. It should be noted that an FTO variant (rs12932428) was identified

with the lowest variance heterogeneity p-value using both LRT and Levene’s test for

HDL-C. Despite the weak LD between this variant and any of the known FTO genetic

variants, the FTO gene has been shown to be functional and associated with obesity

and type 2 diabetes (Meyre et al., 2009; WTCC, 2007), and thus the identified variant

may be of biological relevance.
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Figure 8: Manhattan Plot of Gene-Environment Interaction p-values for TG
Genome-wide results showing−log10 of the interaction p-value from linear regression models
using TG as the response variable and BMI (A) or WC (B) as the interacting covariate.
The blue and red horizontal lines represent a nominal p-value threshold at 1E−05 and the
genome-wide significance threshold of 5E−08, respectively.

4.1.2 Covariate Specific Tests (Step 2 in Figure 1)

Gene-Environment Interaction To identify gene-environment interactions acting

on these selected traits, I considered linear regression models with TG as the re-

sponse variable, BMI or WC as the interacting covariate. Age and sex were included

as covariates but their interactions with the genes were not explored. Similar re-

gression models were examined with HDL-C or FG as the response variable (Table

7). Additionally, when the response variable was HDL-C, I also investigated the lin-

ear regression model with TG as the interacting covariate. The interaction results

were presented using Manhattan plots (Figures 8 to 10), where the x-axis denotes

the chromosomal location of each SNP and y-axis the p-value for a gene-environment
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Trait Covariate SNP Nearest
Gene*

CHR MAF Ratio Variance Het p-value G-E Interaction

LRT Levene’s Test β3 Interaction p-value

TG

BMI

rs2882974 CTLA4 2 0.48 1.10 2.18E-02 1.43E-01 0.172 9.78E-07
rs6767746 - 3 0.18 1.07 2.41E-01 1.24E-01 0.119 1.24E-06
rs10179639 CTLA4 2 0.49 1.10 2.66E-02 1.42E-01 0.170 1.46E-06
rs12485894 - 3 0.18 1.07 1.89E-01 7.42E-02 0.117 1.59E-06
rs1447262 MPPED2 11 0.20 0.96 4.69E-01 3.07E-01 -0.120 1.94E-06
rs7933755 MPPED2 11 0.18 0.97 6.20E-01 6.61E-01 -0.117 2.41E-06
rs294363 MPPED2 11 0.20 0.96 4.89E-01 3.56E-01 -0.118 2.84E-06
rs294365 MPPED2 11 0.20 0.97 5.20E-01 3.50E-01 -0.118 2.89E-06
rs7896207 ARL5B 10 0.09 0.99 8.99E-01 4.41E-01 -0.104 4.08E-06
rs12354939 ARL5B 10 0.08 1.00 9.86E-01 5.70E-01 -0.101 6.62E-06

WC

rs2882974 CTLA4 2 0.48 1.10 2.18E-02 1.43E-01 0.170 1.09E-06
rs10179639 CTLA4 2 0.49 1.10 2.66E-02 1.42E-01 0.166 2.09E-06
rs9790882 ENC1 5 0.20 0.89 3.81E-02 1.26E-01 -0.116 3.44E-06
rs7933755 MPPED2 11 0.18 0.97 6.20E-01 6.61E-01 -0.113 3.89E-06
rs4879523 - 9 0.13 1.18 9.40E-03 1.10E-02 0.105 4.77E-06
rs10813599 - 9 0.13 1.15 2.47E-02 2.97E-02 0.103 5.67E-06
rs10970405 - 9 0.13 1.15 2.61E-02 2.58E-02 0.103 5.79E-06
rs9791149 ENC1 5 0.20 0.90 5.62E-02 1.60E-01 -0.113 6.74E-06
rs10970371 - 9 0.13 1.15 2.86E-02 4.01E-02 0.103 6.80E-06
rs11515349 - 9 0.13 1.15 2.90E-02 3.83E-02 0.102 7.36E-06

HDL-C

BMI

rs4019375 PTPRN2 7 0.26 0.88 1.53E-02 1.14E-01 0.112 3.04E-06
rs8069454 PRKCA 17 0.19 1.01 8.39E-01 9.69E-01 -0.101 4.24E-06
rs1684901 CCDC6 10 0.46 0.87 1.61E-03 2.59E-03 0.136 5.47E-06
rs8069142 PRKCA 17 0.19 1.01 8.40E-01 9.76E-01 -0.099 5.61E-06
rs510321 NOTCH4 6 0.19 1.11 6.36E-02 2.79E-01 -0.097 7.02E-06
rs9891403 PRKCA 17 0.19 1.01 8.37E-01 9.74E-01 -0.097 8.67E-06
rs10993842 VAV2 9 0.14 0.91 1.40E-01 1.56E-01 0.090 1.02E-05
rs11067772 MED13L 12 0.33 1.10 4.15E-02 9.36E-02 -0.113 1.09E-05
rs6931344 TINAG 6 0.12 1.14 4.39E-02 2.44E-01 -0.089 1.11E-05
rs6569294 SMPDL3A 6 0.45 0.94 1.17E-01 1.59E-01 0.131 1.12E-05

WC

rs12002290 VAV2 9 0.16 0.89 4.44E-02 4.07E-02 0.099 3.22E-06
rs1684901 CCDC6 10 0.46 0.87 1.61E-03 2.59E-03 0.140 3.46E-06
rs11067772 MED13L 12 0.33 1.10 4.15E-02 9.36E-02 -0.115 6.04E-06
rs10993842 VAV2 9 0.14 0.91 1.40E-01 1.56E-01 0.093 6.46E-06
rs4271376 API5 11 0.46 0.96 3.51E-01 2.89E-01 0.133 7.00E-06
rs12002767 VAV2 9 0.15 0.91 9.54E-02 1.23E-01 0.094 7.97E-06
rs7122883 API5 11 0.49 0.96 3.92E-01 6.50E-01 0.137 9.16E-06
rs2110910 ZDHHC22 14 0.29 1.04 3.79E-01 1.30E-01 -0.109 1.07E-05
rs10196056 MAP2 2 0.28 1.15 2.95E-03 4.55E-02 -0.105 1.39E-05
rs10821533 VAV2 9 0.15 0.90 8.19E-02 1.04E-01 0.091 1.48E-05

TG

rs13437130 POU3F2 6 0.06 0.95 6.29E-01 4.59E-01 0.091 1.69E-07
rs203466 AKAP10 17 0.38 0.91 3.26E-02 1.38E-02 0.130 3.28E-07
rs203457 AKAP10 17 0.38 0.91 3.11E-02 1.30E-02 0.130 3.44E-07
rs2108978 AKAP10 17 0.38 0.91 3.20E-02 1.25E-02 0.129 3.65E-07
rs119672 AKAP10 17 0.38 0.91 3.62E-02 1.54E-02 0.126 7.47E-07
rs17604987 AKAP10 17 0.26 0.94 2.48E-01 6.71E-02 0.106 1.60E-06
rs1638527 AKAP10 17 0.26 0.94 2.27E-01 6.47E-02 0.105 1.72E-06
rs6813 AKAP10 17 0.26 0.94 2.19E-01 5.64E-02 0.105 1.78E-06
rs11950959 DTWD2 5 0.42 0.94 1.69E-01 6.12E-01 0.119 3.09E-06
rs12361016 - 11 0.22 0.91 6.75E-02 1.24E-01 0.095 3.42E-06

FG

BMI

rs10098680 ASAP1 8 0.20 1.05 3.30E-01 4.52E-01 0.114 1.94E-06
rs16904325 ADCY8 8 0.16 1.02 7.51E-01 9.64E-01 0.108 2.52E-06
rs12549418 ADCY8 8 0.16 1.02 7.05E-01 9.32E-01 0.108 2.56E-06
rs16904315 ASAP1 8 0.16 1.03 5.95E-01 9.43E-01 0.107 2.90E-06
rs2491395 C4BPA 1 0.24 1.04 4.71E-01 6.51E-01 0.117 4.55E-06
rs9963062 CTIF 18 0.25 0.94 2.11E-01 2.72E-02 -0.117 5.13E-06
rs16904323 ADCY8 8 0.17 1.03 5.63E-01 9.02E-01 0.105 6.61E-06
rs12543088 ASAP1 8 0.16 1.01 8.59E-01 8.35E-01 0.102 8.44E-06
rs12195946 SPACA1 6 0.29 1.07 1.47E-01 2.97E-01 0.115 1.64E-05
rs8090560 NFATC1 18 0.24 1.06 2.74E-01 8.97E-03 0.105 1.70E-05

WC

rs2815551 MKX 10 0.41 1.09 3.67E-02 4.05E-02 0.139 3.48E-06
rs2642295 MKX 10 0.41 1.09 4.24E-02 3.96E-02 0.134 7.54E-06
rs11780061 ZFAT 8 0.11 0.79 9.28E-04 2.82E-03 -0.098 8.97E-06
rs1835812 TCF7L1 2 0.46 1.05 2.94E-01 1.93E-01 0.143 1.01E-05
rs2647389 ST6GALNAC3 1 0.15 1.27 6.16E-05 4.09E-05 0.099 1.39E-05
rs6984278 XKR4 8 0.12 1.10 1.47E-01 1.41E-01 0.095 1.42E-05
rs7014798 GSDMC 8 0.30 0.95 3.14E-01 8.10E-01 -0.117 1.50E-05
rs1900576 SYNPR 3 0.12 1.17 1.97E-02 1.91E-02 0.096 1.52E-05
rs7824281 XKR4 8 0.12 1.10 1.53E-01 6.87E-02 0.094 1.69E-05
rs1570857 UBR4 1 0.43 0.94 1.59E-01 3.12E-01 -0.130 2.08E-05

Table 11: Top Ten SNPs per Model Ranked by Gene-Environment Interaction
p-values * Nearest genes are based on a maximum of 500KB distance
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Figure 9: Manhattan Plots of Gene-Environment Interaction p-values for
HDL-C Genome-wide results showing −log10 of the interaction p-value from linear re-
gression models using HDL-C as the response variable and BMI (A), WC (B) or TG (C)
as the interacting covariate. The blue and red horizontal lines represent a nominal p-value
threshold at 1E−05 and the genome-wide significance threshold of 5E−08, respectively.

interaction on a log10 scale. An exhaustive search on the entire autosomal SNPs

revealed no genome-wide significant interactions (Table 11).
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Figure 10: Manhattan Plots of Gene-Environment Interaction p-values for
FG Genome-wide results showing −log10 of the interaction p-value from linear regression
models using FG as the response variable and BMI (A) or WC (B) as the environmental
covariate. The blue and red horizontal lines represent a nominal p-value threshold at 1E−05
and the genome-wide significance threshold of 5E−08, respectively.
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4.1.3 Variance Prioritization Result

The interaction p-values of SNPs with all possible interacting covariates as well as the

variance heterogeneity p-values (from LRT and Levene’s test) of SNPs were cross ex-

amined according to the response variable for each linear regression model. Although

none of the interactions were genome-wide significant, there is a clear and consistent

enrichment in the lowest gene-environment interaction p-values among SNPs with low

variance heterogeneity p-values (Table 11). In addition, see Figures 11 to 13 for a

summary of number of SNPs prioritized for subsequent interaction testing at different

VP thresholds using Levene’s test and LRT. It is of note that half of the SNPs inter-

acting with BMI on FG would have been prioritized for interactions at a VP p-value

threshold of 0.05 using either LRT or Levene’s test. For TG and HDL-C, SNPs that

demonstrated the lowest interaction p-value with either BMI or WC also had LRT

p-values less than a nominal level of 0.05. Furthermore, some interactions turned out

significant after Bonferroni correction when accounting for only the prioritized SNPs

at various VP p-value threshold (Table 12). These results suggest that VP using LRT

or Levene’s test selects potentially interacting SNPs for gene-environment interactions

yet larger sample sizes are required to positively identify these interactions.

58



MSc. Thesis - Wei Q. Deng McMaster - Clinical Epidemiology and Biostatistics

4.2 Enrichment Analysis

In this section, I will address the second methodological question of whether VP

provides an effective filter to select a subset of interacting SNPs. To evaluate the

contribution of variance heterogeneity to the enrichment of low interaction p-values

genome-wide, all autosomal SNPs were divided into the prioritized and the non-

prioritized sets based on LRT VP p-value thresholds of 0.001, 0.01, 0.05, and 0.1.The

corresponding Bonferroni corrected thresholds for claiming a significant interaction

were determined for each VP threshold according to the number of SNPs prioritized

(lower than the respective LRT VP p-value thresholds).

Across the four choices of VP p-value thresholds, there existed at least one prior-

itized SNP with interaction p-value less than its corresponding Bonferroni correction

threshold for all linear regression models tested (Figures 14 to 16). The quantile-

quantile plots also suggest that the collections of prioritized SNPs have generally

lower interaction p-values or larger interaction effects than expected when compared

to the non-prioritized SNPs. I also observed distinct prioritization patterns in the

seven linear models: 1) For the same quantitative trait, there were clearer cases of

enrichment depending on the strength of correlation between the trait and interacting

covariates as the theory suggested; 2) for the same interacting covariate, the choice of

prioritization p-value threshold heavily influenced the enrichment signal as marked by

the level of deviation from the null distribution in the quantile-quantile plots (such

as in Figure 16-A, E, I and M). It was evident that as the VP p-value threshold

increased, the deviation from the null became more moderate. These results also con-

firm empirically that effective prioritization depends on the choice of prioritization

p-value threshold for the specific interaction model under consideration. In addition,
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this excess of lower interaction p-values in the prioritized set is robustly related to

the strength of correlation between the trait and interacting covariates as well as the

choice of the prioritization threshold η.

Enrichment was further quantified for low interaction p-values in the set of pri-

oritized SNPs by counting the number of concordant SNPs in terms of direction of

effects between log-transformed ratio and interaction beta coefficient. Concordance in

direction of effects are based on the theoretical model presented in Table 1, where the

beta coefficients of the covariate and interaction terms together determine the trend in

variance to be monotonically increasing (ratio greater than 1) or decreasing (ratio less

than 1). For example, when the interacting covariate and trait are negatively corre-

lated, increasing variance or an estimated ratio of greater than 1 indicates a negative

interaction effect and vice versa. For each LRT VP p-value threshold (0.001, 0.01, and

0.05), the direction of effect for interaction beta coefficient and log-transformed ratio

were highly concordant in the prioritized sets (Table 13). For the same quantitative

trait, the stronger the correlation between the trait and the interacting covariate, the

further away the interaction p-values of the prioritized SNPs deviate from the null

distribution. In addition, the percentage of concordant SNPs was also inversely re-

lated to the prioritization threshold selected, i.e. lower VP thresholds provided higher

concordant rates in the original linear models examined. For instance, the percentage

of concordant SNPs for HDL-C increased 1.5% when η dropped from 0.01 to 0.001

and increased 5.4% when η dropped from 0.05 to 0.01.
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η = 0.01

20082 1222112954

Levene
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Figure 11: Venn Diagrams Showing the Number of SNPs Prioritized using
Levene’s test and LRT (TG) VP prioritization thresholds of η = 0.001, 0.01, 0.05 were
considered. The left circle represents the SNPs with Levene’s test p-value lower than the VP thresh-
old of η. The right circle represents the SNPs with LRT p-value lower than the VP threshold of η.
SNPs with both LRT and Levene’s test p-values lower than the VP threshold of η correspond to
number in the area where the two circles overlap.

537 232124

Levene

LRT

η = 0.001

4697 26392144
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η = 0.01

20398 1291213481

Levene
LRT
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Figure 12: Venn Diagrams Showing the Number of SNPs Prioritized using
Levene’s test and LRT (HDL-C) VP prioritization thresholds of η = 0.001, 0.01, 0.05
were considered. The left circle represents the SNPs with Levene’s test p-value lower than the VP
threshold of η. The right circle represents the SNPs with LRT p-value lower than the VP threshold
of η. SNPs with both LRT and Levene’s test p-values lower than the VP threshold of η correspond
to number in the area where the two circles overlap.
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20476 1164213359

Levene
LRT

η = 0.05

Figure 13: Venn Diagrams Showing the Number of SNPs Prioritized using
Levene’s test and LRT (FG) VP prioritization thresholds of η = 0.001, 0.01, 0.05 were
considered. The left circle represents the SNPs with Levene’s test p-value lower than the VP thresh-
old of η. The right circle represents the SNPs with LRT p-value lower than the VP threshold of η.
SNPs with both LRT and Levene’s test p-values lower than the VP threshold of η correspond to
number in the area where the two circles overlap.
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Figure 14: Quantile-Quantile Plots of Gene-Environment Interaction p-
values for SNPs Prioritized with LRT (TG) Illustrated in the first column are
the quantile-quantile plots of gene-BMI interaction p-values when SNPs were prioritized at LRT
p-value thresholds of 0.001 (A), 0.01 (E), 0.05 (I) and 0.1 (M). In contrast, the second column illus-
trates the quantile-quantile plots of gene-BMI interaction p-values when SNPs were not prioritized
at LRT p-value thresholds of 0.001 (B), 0.01 (F), 0.05 (J) and 0.1 (N). Similarly illustrated in the
third column are the quantile-quantile plots of gene-WC interaction p-values when SNPs were pri-
oritized at LRT p-value thresholds of 0.001 (C), 0.01 (G), 0.05 (K) and 0.1 (O). Finally, the fourth
column illustrates the quantile-quantile plots of gene-WC interaction p-values when SNPs were not
prioritized at LRT p-value thresholds of 0.001 (D), 0.01 (H), 0.05 (L) and 0.1 (P). The horizontal
line represents the Bonferroni correction p-value threshold accounting for the number of SNPs in
each scenario.
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Figure 16: Quantile-Quantile Plots of Gene-Environment Interaction p-
values for SNPs Prioritized with LRT (FG) Illustrated in the first column are the
quantile-quantile plots of gene-BMI interaction p-values when SNPs were prioritized at LRT p-value
thresholds of 0.001 (A), 0.01 (E), 0.05 (I) and 0.1 (M). In contrast, the second column illustrates the
quantile-quantile plots of gene-BMI interaction p-values when SNPs were not prioritized at LRT p-
value thresholds of 0.001 (B), 0.01 (F), 0.05 (J) and 0.1 (N). Similarly illustrated in the third column
are the quantile-quantile plots of gene-WC interaction p-values when SNPs were prioritized at LRT
p-value thresholds of 0.001 (C), 0.01 (G), 0.05 (K) and 0.1 (O). Finally, the fourth column illustrates
the quantile-quantile plots of gene-WC interaction p-values when SNPs were not prioritized at LRT
p-value thresholds of 0.001 (D), 0.01 (H), 0.05 (L) and 0.1 (P). The horizontal line represents the
Bonferroni correction p-value threshold accounting for the number of SNPs in each scenario.
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4.3 Sensitivity Analysis of Variance Prioritization

The enrichment signals were indicated by the deviation of interaction p-values in the

prioritized subsets from the null distribution, which could be perceived as inflation and

therefore question the validity of our method in two possible ways. These concerns

have been addressed previously (Paré et al., 2010) in theory using mathematical

proofs. First, quantitative trait variance per genotype and interaction beta coefficients

are uncorrelated under the null hypothesis of no interaction. Second, when variance

heterogeneity is invoked by factors other than interactions, correct type I error rate

will be maintained. To empirically exclude the possibility that the enrichment could

reflect inflation of type I error in disguise for any of the reasons above, I repeated

the analyses using covariate-adjusted traits. In the context of VP, adjusting the trait

of interest for the interacting covariate removes any heterogeneity of variance caused

by the interaction. Therefore, heteroscedasticity is eliminated as a possible source of

inflation owing to the absence of type I error inflation in interaction testing of SNPs

based solely on the heterogeneity of variance of adjusted traits.

For each of the seven linear regression models, the quantitative trait was adjusted

for its respective interacting covariate, and similar analyses were repeated. On one

hand, the variance heterogeneity p-values distribution of the SNPs changed after

adjustment of interacting covariate was applied as suggested by the scatter of p-

values on the log10 scale (Figures 17 to 19). In particular, a small proportion of

SNPs had reduced variance heterogeneity p-values; some showed increased p-values,

while the majority maintained similar ranks. On the other hand, the interaction p-

values remained the same when adjustment was applied (Figure 20). Statistically, the

proportion of variance explained by the covariate would be accounted for in either the
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full model with covariate in the regression model or the adjusted model so that the

interaction term beta coefficient was indifferent to the inclusion of the covariate main

effect. This observation suggests that a biologically relevant correlation between the

trait and interacting covariate is unimportant for statistical interaction testing.

Adjusting the trait of interest for the interacting covariate did not change the

interaction p-values, however, it did influence the variance heterogeneity p-values.

Since interaction testing does not depend on the correlation between the trait and

interacting covariate but prioritization of SNPs using LRT does, while the set of

SNPs prioritized was not different from any random sets in terms of enrichment for

low interaction p-values. For the adjusted analyses, I did not observe any inflation of

type I error of interaction p-values in the prioritized and non-prioritized sets of SNPs

at various prioritization p-value thresholds (Figures 21 to 23). More importantly,

there was very little concordance between log-transformed ratio and interaction beta

coefficient in the adjusted models (Table 14). These results suggest that selecting

SNPs solely on the basis of variance heterogeneity did not lead to inflated type I error

rate, and thus the enrichment in the original analysis was indeed encouraging.
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Figure 17: Distribution of Variance Heterogeneity Test p-values for TG
before and after Adjusting for Interacting Covariate These scatterplots show
the variance heterogeneity tests p-values for TG before and after adjusted for BMI
(A, C) and WC (B, D). The top row shows the changes in LRT p-value distribution
while the bottom row shows the changes in Levene’s test p-values.
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Figure 18: Distribution of Variance Heterogeneity Test p-values for HDL-C
before and after Adjusting for Interacting Covariate These scatterplots show
the variance heterogeneity tests p-values for HDL-C before and after adjusted for BMI
(A, D), WC (B, E), and TG (C, F). The top row shows the changes in LRT p-value
distribution while the bottom row shows the changes in Levene’s test p-values.
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Figure 19: Distribution of Variance Heterogeneity Test p-values for FG
before and after Adjusting for Interacting Covariate These scatterplots show
the variance heterogeneity tests p-values for FG before and after adjusted for BMI
(A, C) and WC (B, D). The top row shows the changes in LRT p-value distribution
while the bottom row shows the changes in Levene’s test p-values.
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Figure 20: Gene-Environment Interaction p-value Before and After Adjust-
ing for Interacting Covariate The top row shows the gene-environment interaction
p-values for TG before and after adjusted for BMI (A) and WC (B). The second row
shows the gene-environment interaction p-values for HDL-C before and after adjusted
for BMI (C), WC (D), and TG (E). The bottom row shows the gene-environment in-
teraction p-values for FG before and after adjusted for BMI (F) and WC (G).
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Figure 21: Quantile-Quantile Plots of Gene-Environment Interaction p-
values of SNPs Prioritized Using LRT on TG Adjusted for Interacting
Covariates Illustrated in the first column are the quantile-quantile plots of gene-BMI interaction
p-values for BMI adjusted TG when SNPs were prioritized at LRT p-value thresholds of 0.001 (A),
0.01 (E), 0.05 (I) and 0.1 (M). In contrast, the second column illustrates the quantile-quantile plots
of gene-BMI interaction p-values when SNPs were not prioritized at LRT p-value thresholds of 0.001
(B), 0.01 (F), 0.05 (J) and 0.1 (N). Similarly illustrated in the third column are the quantile-quantile
plots of gene-WC interaction p-values for WC adjusted TG when SNPs were prioritized at LRT p-
value thresholds of 0.001 (C), 0.01 (G), 0.05 (K) and 0.1 (O). Finally, the fourth column illustrates
the quantile-quantile plots of gene-WC interaction p-values when SNPs were not prioritized at LRT
p-value thresholds of 0.001 (D), 0.01 (H), 0.05 (L) and 0.1 (P). The horizontal line represents the
Bonferroni correction p-value threshold accounting for the number of SNPs in each scenario.
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Figure 23: Quantile-Quantile Plots of Gene-Environment Interaction p-
values of SNPs Prioritized Using LRT on FG Adjusted for Interacting
Covariates Illustrated in the first column are the quantile-quantile plots of gene-BMI interaction
p-values for BMI adjusted FG when SNPs were prioritized at LRT p-value thresholds of 0.001 (A),
0.01 (E), 0.05 (I) and 0.1 (M). In contrast, the second column illustrates the quantile-quantile plots
of gene-BMI interaction p-values when SNPs were not prioritized at LRT p-value thresholds of 0.001
(B), 0.01 (F), 0.05 (J) and 0.1 (N). Similarly illustrated in the third column are the quantile-quantile
plots of gene-WC interaction p-values for WC adjusted FG when SNPs were prioritized at LRT p-
value thresholds of 0.001 (C), 0.01 (G), 0.05 (K) and 0.1 (O). Finally, the fourth column illustrates
the quantile-quantile plots of gene-WC interaction p-values when SNPs were not prioritized at LRT
p-value thresholds of 0.001 (D), 0.01 (H), 0.05 (L) and 0.1 (P). The horizontal line represents the
Bonferroni correction p-value threshold accounting for the number of SNPs in each scenario.
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Chapter 5

Concluding Remarks

In this thesis, I proposed a statistical test to detect trends in variances of subgroups

using a maximum likelihood approach, and illustrated its application in genetics to

optimize the Variance Prioritization (VP) p-value threshold for selection of potentially

interacting SNPs. The most commonly used statistical framework to test interactions

employs a linear regression model. Under plausible conditions, the quantitative trait

variance conditional on genotype either monotonically increases or decreases with the

number of minor alleles when interactions are present. Based on the ratio parameteri-

zation, I introduce a LRT for variance heterogeneity. The proposed LRT requires only

the set of quantitative trait variances per genotype and genotype counts to determine

the variance inequality p-value for a given SNP.

The closed-form representation requires only the quantitative variance conditional

on the three genotypes and observed genotype counts to accurately and quickly com-

pute the variance inequality p-values for genome-wide dataset. The use of an or-

dered alternative hypothesis as compared to that of a general alternative leads to

an improvement in statistical power. Indeed, the simulation studies suggest that
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LRT outperforms the original Levene’s test, Bartlett’s test, Levene type trend tests

and the conventional exhaustive search across a variety of interaction scenarios and

demonstrates computational feasibility.

Inflated type I error rates usually arise when the normality assumption is not sat-

isfied. Although LRT was less robust to non-normally distributed quantitative trait,

as long as transformation was applied to maintain acceptable measures of skewness

and kurtosis, the performance of LRT was not compromised.

Furthermore, I also explored the utility of LRT using a genome-wide dataset.

There were no genome-wide significant interactions detected when correcting for all

SNPs tested. However, some turned out significant after Bonferroni correction when

accounting for only the prioritized SNPs at various VP p-value threshold. More-

over, there are strong enrichment signals and a good agreement in the direction of

interaction effects at various VP p-value thresholds in the linear regression models

investigated. I further conducted the same set of analyses on covariate-adjusted traits

to ensure the enrichment signals were not a result of inflation of type I error rate due

to heteroscedasticity.

To summarize, I have demonstrated the effectiveness of LRT in prioritizing indi-

vidual SNPs for genetic interactions using only the variance per genotype and geno-

type counts. An R Bioconductor package containing the statistical functions will

be made publicly available online (http://www.bioconductor.org/packages/2.12/

bioc/html/GEWIST.html). This new statistical test is expected to complement the

existing VP framework and accelerate the process of genetic interaction discovery in

future genome-wide studies and meta-analyses. Further, the novel gene-environment
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and gene-gene interactions identified will improve our understanding of disease sus-

ceptibility, and combined with clinical predictors, help to target personalized disease

prevention.
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Appendix A

Ethical Considerations

This thesis work involved only secondary use of the genome-wide datasets that are

available from the database of Genotype and Phenotype (dbGap) portal at the Na-

tional Institute of Health (NIH). No research ethics board review was required for

the datasets applied. Only participants who consented to General Research Use are

included for analysis. Data source has been managed centrally. All computers and

servers are password protected and only members of the Paré research group associ-

ated with the project have access to the data.
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Appendix B

List of Computer Codes
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Listing B.1: PLINK code to test for gene-environment interactions

1 ###### PLINK SCRIPT TO TEST FOR GENE−ENVIRONMENT ######
2

3 ### 1. Generate Ethnic Specific tped
4 for filename in Caucasian Asian African Hispanic
5 do
6 plink −−noweb \\
7 −−remove ./Pheno/Diabetic/$filename_∗ \\
8 −−bfile $bfile \\
9 −−keep ./TransPheno/$filename_excluded∗ \\

10 −−maf 0.05 \\
11 −−hwe 1e−6 \\
12 −−mind 0.05 \\
13 −−geno 0.05 \\
14 −−recode\\
15 −−transpose\\
16 −−out ./Geno/$filename_CLEAN_GENO
17

18 ### 2. Performs Sex check
19

20 plink −−bfile $bfile \\
21 −−keep $pheno_caucasian \\
22 −−check−sex −−out $QCdir/Report_SexCheck
23

24 gawk '$5!="OK" print $1, $2' Report_SexCheck.sexcheck > Report_Sex_discrepancy
25 # 2 IIDs with mismatched sex removed ##
26

27 ### 3. Run Interactions
28

29 plink −−noweb \\
30 −−bfile $Cbfile \\
31 −−pheno $Caucasian_Pheno \\
32 −−pheno−name trig1_logw \\
33 −−linear \\
34 −−covar $Caucasian_Pheno \\
35 −−covar−name age1c,gender1,waistcm1_logw \\
36 −−interaction \\
37 −−parameters 1,2,3,4,7 \\
38 −−standard−beta \\
39 −−missing−phenotype NA \\
40 −−out $outdir/Interaction/trig_logw_x_waistcm1_logw
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Listing B.2: Likelihood ratio test

1 LRTratio<− function(variance, obs ,verbose=F){
2 ### check inputs
3 if (dim(variance)[2]!=3)
4 stop("number of rows of variance should be 3")
5

6 if (dim(obs)[2]!=3)
7 stop("number of rows of observed genotype counts should be 3")
8

9 if (dim(obs)[2]!=dim(variance)[2])
10 stop("observed genotype counts and variance should have the same number of rows")
11 n1 <− obs[,1]
12 n2 <− obs[,2]
13 n3 <− obs[,3]
14 N <− rowSums(obs, na.rm=T)
15 s1 <− variance[,1]
16 s2 <− variance[,2]
17 s3 <− variance[,3]
18

19 ## constants:
20 log_A <− lgamma(n1/2−1/2)+ lgamma(n2/2−1/2)
21 + lgamma(n3/2−1/2) + log(2)∗(n1/2−1/2)+ log(2)∗(n2/2−1/2)+ log(2)∗(n3/2−1/2)
22 C <− (n1−n3)/(N−9)
23

24 ########### NULL MLE
25

26 opt_theo <− ((n1−1)∗s1+(n2−1)∗s2+(n3−1)∗s3)/(N−9)
27 likelihood.null <− −log_A +(n1/2−3/2)∗(log(n1−1)+
28 log(s1)−log(opt_theo))+(n2/2−3/2)∗(log(n2−1)+log(s2)−
29 log(opt_theo))+(n3/2−3/2)∗(log(n3−1)+log(s3)−log(opt_theo))−
30 (N−9)/2
31

32 ############ ALTERNATIVE
33

34 opt_ratio <− ((n2−1)∗s2∗C+sqrt(((n2−1)∗s2∗C)^2+
35 4∗(n1−1)∗s1∗(n3−1)∗s3∗(1−C^2)))/(2∗((n1−1)∗s1)∗(1−C))
36 opt_variance <− ((n1−1)∗s1∗opt_ratio+(n2−1)∗s2+(n3−1)∗
37 s3/opt_ratio)/(N−9)
38 likelihood.alter <− −log_A +(n1/2−3/2)∗(log(n1−1)+log(s1)−
39 log(opt_variance)+log(opt_ratio))+(n2/2−3/2)∗(log(n2−1)+
40 log(s2)−log(opt_variance)) +(n3/2−3/2)∗(log(n3−1)+log(s3)−
41 log(opt_variance)−log(opt_ratio))−(N−9)/2
42

43 ##### p_values
44

45 MLR <− 2∗likelihood.alter−2∗likelihood.null
46 pval <− pchisq(MLR,1,lower.tail=F)
47 if (verbose == F)return(list("LRT_pvalue"=pval))
48 else return(list("Test_Statistics" = MLR, "RatioPar" = opt_ratio))
49 }
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Listing B.3: Statistical Power of VP with Five Variance Heterogeneity Tests

1 ########### Calculate Simulation Parameters #############
2 b2 <− c(0.35, 0.5)
3 b3 <− c(0.05, 0.08)
4 p <− c(0.1, 0.2, 0.4)
5

6 calc_ve <− function(input){
7 b2 <− input[1]
8 b3 <− input[2]
9 p <− input[3]

10 ve_e <− (b2^2)/(b2^2 + 2∗p∗(1−p)∗b3^2 + 1)
11 ve_ge <− (2∗p∗(1−p)∗b3^2)/(2∗p∗(1−p)∗b3^2 + b2^2 + 1)
12 return(c(ve_e, ve_ge)∗100)
13 }
14

15 datamat <− data.frame(rep(b2,each=6),
16 rep(rep(b3,each=3),2),
17 rep(rep(p, each=1),4))
18

19 ## Function to Calculate the probability of MAF
20

21 genotype.gen <− function(maf,n){
22 n0 <− round(n∗(1−maf)^2)
23 n1 <− round(n∗maf∗(1−maf)∗2)
24 n2 <− n−n0−n1
25 c(n0,n1,n2)}
26

27 ################# Step 1. Set Simulation Parameters ###############
28

29 #@# number of simualtions K and number of SNPs corrected M
30 K <− 5000
31 M <− 500000
32

33 datamat <− data.frame(rep(b2,each=6),
34 rep(rep(b3,each=3),2),
35 rep(rep(p, each=1),4))
36

37 N <− c(2000, 5000, 10000, 20000)
38

39 #################### Step 2. Set Output Lists ###################
40

41 Outputlist <− list()
42 for (k in 1:length(N)){
43 k <− 1
44 n <− N[k]
45

46 Outputlist[[k]] <− list()
47

48 for (t in 1:dim(datamat)[1]){
49 p <− datamat[t, 3]
50 b2 <− datamat[t, 1]
51 b3 <− datamat[t, 2]
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52 b1 <− 0
53

54 #################### Step 3. Simulate Data #####################
55 ## simulate genotype and covariate independently
56 Genotype <− sample(rep(0:2,genotype.gen(p,n)))
57 COV <− rnorm(n)
58

59 ## Test P−values
60 test_pvalues <− data.frame(levene_p = NA,levene_t1 = NA,
61 levene_t2 = NA,bart=NA, intp = NA)
62 mafvar <− data.frame (major=NA, heter=NA, minor=NA)
63

64 for (j in 1:K){
65 error <− rnorm(n)
66 Geno <− sample(Genotype)
67 trait <− b2∗COV + b3∗COV∗Geno + error
68 mafvar[j,] <− c(var(trait[Geno==0]),var(trait[Geno==1]),
69 var(trait[Geno==2]))
70 interaction_pval <− summary(lm(trait ~ COV∗Geno))$coef[4,4]
71

72 ############### Levene
73

74 valid_cases <− complete.cases(trait, as.factor(Geno))
75 mean_per_geno <− tapply(trait[valid_cases], as.factor(Geno)[valid_cases],mean)
76 resp <− abs(trait−mean_per_geno[as.factor(Geno)])
77 levene_pval<− anova(lm(resp ~ as.factor(Geno)))[, c(1, 4, 5)][1,3]
78

79 ############### Levene Trend 1
80 lvt1_pval <− summary(lm(resp~Geno))$coef[2,4]
81

82 ############### Levene Trend 2
83 lvt2_pval <− summary(lm(resp~sqrt(Geno)))$coef[2,4]
84

85 ############### Bartlett Test
86 bart <− bartlett.test(trait ~ Geno)$p.value
87 test_pvalues[j,] <− c(levene_pval, lvt1_pval, lvt2_pval,
88 pv_pval, bart, interaction_pval)
89 }
90 ############## LRT
91 test_pvalues$lrt_p <− LRTratio(mafvar,
92 obs=data.frame(rep(genotype.gen(p,n)[1],K),
93 rep(genotype.gen(p,n)[2],K),rep(genotype.gen(p,n)[3],K)))$LRT
94

95 Outputlist[[k]][[t]] <− list(mafvar, test_pvalues)
96 }
97 }
98 save.image("POWERsim_K1.rdata")
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Listing B.4: Statistical Power of VP with Five Variance Heterogeneity Tests

1

2 gewistLRT <− function(p, N, obs=NA, theta_gc, theta_c, M, K = 20000,verbose=FALSE){
3

4 ## Input the known parameters (variance explained ~ (0,1))
5 ## Assume Gene x Environment
6

7 ### check inputs
8 if (length(obs) == 3) {
9 n1 <− obs[1]

10 n2 <− obs[2]
11 n3 <− obs[3]
12 N <− sum(n1, n2, n3, na.rm=TRUE)
13 }else {
14 if (p > 0.5 | p <= 0)
15 stop("minor allele frequency should be a number between 0 and 0.5")
16

17 if (!(N > 0 | M > 0 | K > 0 | theta_gc >0 | theta_c > 0))
18 stop( "negative input values are not allowed")
19

20 N <− round(N)
21 n1 <− round(N∗(1 − p)^2)
22 n2 <− round(N∗(1 − p)∗p∗2)
23 n3 <− N − n1 − n2
24 }
25 if (!(theta_gc < 1 | theta_c < 1 ))
26 stop(" variance explained should be a number between 0 and 1 ")
27

28 M <− round(M)
29 K <− round(K)
30

31 ### calculate beta coefficients
32

33 b2 <− sqrt(( theta_c )/( 1 − theta_gc − theta_c ))
34 b3 <− sqrt(theta_gc/(2∗p∗(1 − p)∗( 1 − theta_gc − theta_c )))
35

36 ############ sample the variance of covariate and error per genotype
37

38 var_C_G_1 <− rchisq(K,n1 − 1)/(n1 − 1)
39 var_C_G_2 <− rchisq(K,n2 − 1)/(n2 − 1)
40 var_C_G_3 <− rchisq(K,n3 − 1)/(n3 − 1)
41

42 error_G_1 <− rchisq(K,n1 − 1)/(n1 − 1)
43 error_G_2 <− rchisq(K,n2 − 1)/(n2 − 1)
44 error_G_3 <− rchisq(K,n3 − 1)/(n3 − 1)
45

46 ########### sample the b_x's
47

48 b_x1 <− rnorm(K,b2 + b3∗( − 2∗p),sqrt(1/(var_C_G_1∗(n1 − 1))))
49 b_x2 <− rnorm(K,b2 + b3∗(1 − 2∗p),sqrt(1/(var_C_G_2∗(n2 − 1))))
50 b_x3 <− rnorm(K,b2 + b3∗(2 − 2∗p),sqrt(1/(var_C_G_3∗(n3 − 1))))
51
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52 ########### the covariance of error term and covariate per genotype
53

54 cov_error_C_1 <− (b_x1 − (b2 + b3∗( − 2∗p)))∗var_C_G_1
55 cov_error_C_2 <− (b_x2 − (b2 + b3∗(1 − 2∗p)))∗var_C_G_2
56 cov_error_C_3 <− (b_x3 − (b2 + b3∗(2 − 2∗p)))∗var_C_G_3
57

58 sum_of_C_square_G <− var_C_G_1∗n1∗( − 2∗p) +
59 var_C_G_2∗n2∗(1 − 2∗p) + var_C_G_3∗n3∗(2 − 2∗p)
60 sum_of_C_G_square <− var_C_G_1∗n1∗( − 2∗p)^2 +
61 var_C_G_2∗n2∗(1 − 2∗p)^2 + var_C_G_3∗n3∗(2 − 2∗p)^2
62 sum_C_2 <− var_C_G_1∗n1 + var_C_G_2∗n2 + var_C_G_3∗n3
63

64 total_cov_error <− ( − 2∗p)∗n1∗cov_error_C_1 +
65 (1 − 2∗p)∗n2∗cov_error_C_2 + (2 − 2∗p)∗n3∗cov_error_C_3
66 total_cov <− n1∗cov_error_C_1 + n2∗cov_error_C_2 + n3∗cov_error_C_3
67

68 ############ observed b2s
69

70 beta2 <− b2 + (sum_of_C_square_G∗total_cov_error + total_cov∗
71 sum_of_C_G_square)/(sum_C_2∗sum_of_C_G_square +
72 sum_of_C_square_G^2)
73 beta3 <− b3 + ((b2 − beta2)∗sum_of_C_square_G +
74 total_cov_error)/(sum_of_C_G_square)
75

76 ########### Thus we can obtain the total variance per genotype
77

78 var_group_1 <− abs(var_C_G_1∗(b2 + b3∗( − 2∗p))^2 +
79 error_G_1 + 2∗cov_error_C_1∗(b2 + b3∗( − 2∗p)))
80 var_group_2 <− abs(var_C_G_2∗(b2 + b3∗(1 − 2∗p))^2 +
81 error_G_2 + 2∗cov_error_C_2∗(b2 + b3∗(1 − 2∗p)))
82 var_group_3 <− abs(var_C_G_3∗(b2 + b3∗(2 − 2∗p))^2 +
83 error_G_3 + 2∗cov_error_C_3∗(b2 + b3∗(2 − 2∗p)))
84

85 lrt_p <− LRTratio(data.frame(var_group_1,var_group_2,var_group_3),
86 obs = data.frame(rep(n1, length(var_group_1)),
87 rep(n2, length(var_group_2)), rep(n3, length(var_group_3))),
88 verbose=F)$LRT
89

90 ############ Calculate interation p values
91 RSS1 <− error_G_1 + (b2 + b3∗( − 2∗p)− beta2 −
92 beta3∗( −2∗p))^2∗var_C_G_1 + 2∗(b2 + b3∗( −2∗p)
93 − beta2 − beta3∗( − 2∗p))∗cov_error_C_1
94 RSS2 <− error_G_2 + (b2 + b3∗(1 − 2∗p) − beta2 −
95 beta3∗(1 − 2∗p))^2∗var_C_G_2 + 2∗(b2 + b3∗(1 − 2∗p)
96 − beta2 − beta3∗(1 − 2∗p))∗cov_error_C_2
97 RSS3 <− error_G_3 + (b2 + b3∗(2 − 2∗p) − beta2 −
98 beta3∗(2 − 2∗p))^2∗var_C_G_3 + 2∗(b2 + b3∗(2 − 2∗p)
99 − beta2 − beta3∗(2 − 2∗p))∗cov_error_C_3

100

101 f_stats <− 2∗beta3^2∗p∗(1 − p)∗(N − 4)^2/(RSS1∗(n1 − 1)
102 + RSS2∗(n2 − 1) + RSS3∗(n3 − 1))
103
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104 interaction_p <− 1 − pf(f_stats,df1 = 1,df2 = N − 4)
105 ########## Calculate powers
106

107 result <− data.frame("p−value_Cut−offs" = NA, "VP_power" = NA)
108

109 for (i in 1:1000){
110 power <− mean(lrt_p < i/1000 & interaction_p<0.05/(M∗i/1000))
111 result[i,] <− c( i/1000,power)
112 }
113 conv_power <− power
114 optimal_power <− max(result[,2])
115 optimal_p_threshold <− which.max(result[,2])/1000
116

117 if (verbose){return(result)
118 }else {
119 return(list("Conventional_power"=conv_power,
120 "Optimal_VP_power"=optimal_power,
121 "Optimal_pval_threshold"=optimal_p_threshold))
122 }
123 }
124 ############## End of Script
125

126 f2.power <− function(theta_ge, theta_e, N, power, alpha=0.05){
127 f2 <− theta_ge/(1−theta_ge−theta_e)∗N
128 power−1+pf(qf(1−alpha,df1=1,df2=N−4), df1=1,df2=N−4,ncp=f2)
129 }
130 ### model 1 has 4 parameters − including intercept
131 ### model 2 has 3 parametesr − including intercept
132 ### partial F test statistics df1 = 1, df2 = N−4
133

134 calc_beta <− function(input){
135 theta_c <− input[1]
136 theta_gc <− input[2]
137 p <− input[3]
138

139 b2 <− sqrt(theta_c/(1−theta_c−theta_gc))
140 b3 <− sqrt(theta_gc/(1−theta_c−theta_gc)/(2∗p∗(1−p)))
141 }
142 ###########################
143 VP_Power <− function(n, effect.size, p.cut=0.05, power, cov_exp, MAF , var.method, m=500000){
144

145 f2 <− effect.size/(1−effect.size−cov_exp)
146 NCP <− (effect.size)/(1−effect.size)∗n
147

148 if (var.method=="LRT"){
149 optimal.p <− gewistLRT(MAF, n, theta_gc = effect.size,
150 theta_c = cov_exp, M = m)$Optimal_pval_threshold
151 } else if (var.method=="Levene") {
152 optimal.p <− gewistLevene(MAF, n, theta_gc = effect.size,
153 theta_c = cov_exp, M = m)$Optimal_pval_threshold
154 } else {optimal.p=1
155 }
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156 power−1+pf(qf(1−p.cut/(optimal.p∗m),df1=1,df2=n−2), df1=1,df2=n−4,ncp=NCP)
157 }
158 #############################
159 int_exp <− seq(0.05,1, by = 0.05)/100
160 Conditions <− list(c(0.05, 0.05),c(0.05, 0.2), c(0.05, 0.4),
161 c(0.1, 0.05),c(0.1, 0.2), c(0.1, 0.4),
162 c(0.2, 0.05),c(0.2, 0.2), c(0.2, 0.4),
163 c(0.25, 0.05),c(0.25, 0.2), c(0.25, 0.4))
164

165 sample.size.list <− list()
166 for (j in 1:length(Conditions)){
167 MAF <− Conditions[[j]][2]
168 COV <− Conditions[[j]][1]
169

170 sample.size <− data.frame("Interaction" = NA, "VP_Lv" = NA, "VP_LRT" = NA)
171 for (i in 1:length(int_exp)){
172 int <− uniroot(VP_Power, c(1000, 10e10), effect.size = int_exp[i],
173 p.cut = 0.05, power= 0.8, cov_exp= COV, var.method="None")$root
174 LVint <− uniroot(VP_Power, c(1000, 10e10), effect.size = int_exp[i],
175 p.cut = 0.05, power= 0.8, cov_exp= COV, MAF = MAF, var.method="Levene")$root
176 LRTint <− uniroot(VP_Power, c(1000, 10e10), effect.size = int_exp[i],
177 p.cut = 0.05, power= 0.8, cov_exp= COV, MAF = MAF, var.method="LRT")$root
178 sample.size[i,] <− c(int, LVint, LRTint)
179 }
180 sample.size.list[[j]] <− sample.size
181 }
182 setwd("/home/dengw/LRT/Thesis/Simulations")
183 save.image("SAMPLESIZE.rdata")
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Listing B.5: PLINK R plugin Script to Produce Summary Statistics for LRT and

Levene’s Test

1 ######## PLINK R plugin Function for Variance Het P−values ####
2 Rplink <− function(PHENO,GENO,CLUSTER,COVAR)
3 {
4 f1 <− function(x)
5 {
6 ######### LRT−Variance Calculation
7

8 PHENO <− (PHENO−mean(PHENO, na.rm=T))/sd(PHENO,na.rm=T)
9

10 mafvar <− c(var(PHENO[x==0],na.rm=T), var(PHENO[x==1],na.rm=T),var(PHENO[x==2],na.rm=T))
11 geno.counts <− c(sum(x==0, na.rm=T), sum(x==1, na.rm=T),sum(x==2, na.rm=T))
12

13 valid_cases <− complete.cases(PHENO, as.factor(x))
14 mean_per_geno <− tapply(PHENO[valid_cases], as.factor(x)[valid_cases],mean)
15

16 responses <− abs(PHENO−mean_per_geno[as.factor(x)])
17

18 z_avg <− c(mean(responses[x==0],na.rm=T),
19 mean(responses[x==1],na.rm=T),
20 mean(responses[x==2],na.rm=T))
21

22 z_var <− c(var(responses[x==0],na.rm=T),
23 var(responses[x==1],na.rm=T),
24 var(responses[x==2],na.rm=T))
25

26 r <− c(mafvar, geno.counts, z_avg, z_var)
27 c( length(r) , r )
28 }
29 apply(GENO, 2 , f1)
30 }
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Listing B.6: R Script to Produce Variance Prioritization Results

1 ##### Make Figure Prioritiation #######
2

3 traits <− c("trig1_logw", "hdl1_logw", "glucos1c_logw")
4 VarHet_files <− c("trig1_logwVarHet_LeveneLRT_SAVE.txt",
5 "hdl1_logwVarHet_LeveneLRT_SAVE.txt",
6 "glucos1c_logwVarHet_LeveneLRT_SAVE.txt")
7

8 interaction_traits <− list(c("trig_logw_x_bmi1c_logw", "trig_logw_x_waistcm1_logw"),
9 c("hdl1_logw_x_bmi1c_logw", "hdl1_logw_x_waistcm1_logw",

10 "hdl1_logw_x_trig1_logw"),
11 c("glucos1c_logw_x_bmi1c_logw", "glucos1c_logw_x_waistcm1_logw"))
12

13 p_threshold=c(0.001, 0.01, 0.05, 0.1)
14

15 ####################### Original Analysis ########################
16 for (t in 1:length(traits)){
17 trait <− traits[t]
18 subset_analyzed_var <− read.table(paste(datadir, VarHet_files[t] ,sep=""), head=T)
19

20 tiff(paste(trait, "_VarPLRT_IntP_QQplot.tiff", sep=""),
21 width = 1000∗length(interaction_traits[[t]]), height = 2000,
22 units = "px", res = 200, compression = "lzw")
23 par(mfcol=c(4, length(interaction_traits[[t]])∗2), mar=c(4,4,3,1), oma=c(0,0,1,0))
24

25 for (c in 1:length(interaction_traits[[t]])){
26 ####### READ IN DATA FROM PLINK #######
27 subset_int_data <− read.table(paste(datadir, interaction_traits[[t]][c],
28 ".assoc.linear_InteractionP_SAVE.txt", sep=""), head=F)
29 names(subset_int_data) <− c("CHR", "SNP", "BP", "N", "BETA", "TEST", "P")
30

31 ######## MERGE VARIANCE Het output and INTERACTION output #########
32 vp_data <− merge(subset_int_data,subset_analyzed_var,
33 by.x="SNP", by.y="MarkerName", sort=F)
34

35 for (p in 1:length(p_threshold)){
36 vp <− subset(vp_data, vp_data$LRT < p_threshold[p])
37 #nonvp <− subset(vp_data, vp_data$LRT >= p_threshold[p])
38 produce_qqplot_fun(vp, which.p=which(names(vp_data)=="P"))
39 abline(h=−log10(0.05/dim(vp)[1]))
40 title(paste(fig_LET[[t]][p+8∗(c−1)], ")"), line=1)
41 }
42

43 for (p in 1:length(p_threshold)){
44 #vp <− subset(vp_data, vp_data$LRT < p_threshold[p])
45 nonvp <− subset(vp_data, vp_data$LRT >= p_threshold[p])
46 produce_qqplot_fun(nonvp, which.p=which(names(vp_data)=="P"))
47 abline(h=−log10(0.05/dim(nonvp)[1]))
48 title(paste(fig_LET[[t]][p+8∗(c−1)+4], ")"), line=1)
49 }
50 }
51 dev.off()
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52 }
53 ############### END:: Original P−values #########################
54 rm(list=ls())
55

56 ###################### Adjusted P−values #####################
57

58 traits <− c("trig1_logw", "hdl1_logw", "glucos1c_logw")
59

60 p_threshold=c(0.001, 0.01, 0.05, 0.1)
61

62 VarHet_adj_files <− list(c("trig_logw_adj_bmi1c_logwVarHet_LeveneLRT_SAVE.txt",
63 "trig_logw_adj_waistcm1_logwVarHet_LeveneLRT_SAVE.txt"),
64 c( "hdl1_logw_adj_bmi1c_logwVarHet_LeveneLRT_SAVE.txt",
65 "hdl1_logw_adj_waistcm1_logwVarHet_LeveneLRT_SAVE.txt",
66 "hdl1_logw_adj_trig1_logwVarHet_LeveneLRT_SAVE.txt"),
67 c( "glucos1c_logw_adj_bmi1c_logwVarHet_LeveneLRT_SAVE.txt",
68 "glucos1c_logw_adj_waistcm1_logwVarHet_LeveneLRT_SAVE.txt"))
69

70 adjusted_traits <− list(c("trig_logw_adj_bmi1c_logwInteractionP_SAVE.txt",
71 "trig_logw_adj_waistcm1_logwInteractionP_SAVE.txt"),
72 c("hdl1_logw_adj_bmi1c_logwInteractionP_SAVE.txt",
73 "hdl1_logw_adj_waistcm1_logwInteractionP_SAVE.txt",
74 "hdl1_logw_adj_trig1_logwInteractionP_SAVE.txt"),
75 c("glucos1c_logw_adj_bmi1c_logwInteractionP_SAVE.txt",
76 "glucos1c_logw_adj_waistcm1_logwInteractionP_SAVE.txt"))
77

78

79 for (t in 1:length(traits)){
80 trait <− traits[t]
81

82 tiff(paste(trait, "_VarPLRT_IntP_Adjusted_QQplot.tiff", sep=""),
83 width = 1000∗length(adjusted_traits[[t]]), height = 2000,
84 units = "px", res = 200, compression = "lzw")
85 par(mfcol=c(4, length(adjusted_traits[[t]])∗2), mar=c(4,4,3,1), oma=c(0,0,1,0))
86

87 for (c in 1:length(adjusted_traits[[t]])){
88

89 subset_analyzed_var_adj <− read.table(paste(data_dir2, VarHet_adj_files[[t]][c] ,sep=""), head=T)
90 subset_int_data_adj <− read.table(paste(data_dir2, adjusted_traits[[t]][c], sep=""), head=T)
91

92 vp_data <− merge(subset_int_data_adj,subset_analyzed_var_adj,
93 by.x="SNP", by.y="MarkerName", sort=F)
94

95 for (p in 1:length(p_threshold)){
96 vp <− subset(vp_data, vp_data$LRT < p_threshold[p])
97 #nonvp <− subset(vp_data, vp_data$LRT >= p_threshold[p])
98 produce_qqplot_fun(vp, which.p=which(names(vp_data)=="P"))
99 abline(h=−log10(0.05/dim(vp)[1]))

100 title(paste(fig_LET[[t]][p+8∗(c−1)], ")"), line=1)
101 }
102 for (p in 1:length(p_threshold)){
103 #vp <− subset(vp_data, vp_data$LRT < p_threshold[p])
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104 nonvp <− subset(vp_data, vp_data$LRT >= p_threshold[p])
105 produce_qqplot_fun(nonvp, which.p=which(names(vp_data)=="P"))
106 abline(h=−log10(0.05/dim(nonvp)[1]))
107 title(paste(fig_LET[[t]][p+8∗(c−1)+4], ")"), line=1)
108 }
109 }
110 dev.off()
111 }
112 ################### END:: Adjusted P−values ###################
113

114 produce_qqplot_fun <− function(data, which.p, titles=NULL){
115 pval_data <− data[order(data[,which.p], decreasing=T, na.last=NA ),]
116 pval_data$pvalref <− ((dim(pval_data)[1]:1)/dim(pval_data)[1])
117

118 pval <− pval_data[,which.p]
119

120 if (length(pval) < 100000){
121 pval_qq11 <− pval
122 ordering <− length(pval)+1 − 1:length(pval)
123 pval_ref <− pval_data$pvalref
124 }else{
125 pval_qq11 <− pval[c(seq(1, sum(pval > 0.01, na.rm=T), 100),
126 seq(sum(pval > 0.01,na.rm=T),sum(pval > 0.001,na.rm=T),10),
127 sum(pval> 0.001,na.rm=T):length(pval))]
128

129 ordering <− length(pval)+1 − c(seq(1, sum(pval > 0.01, na.rm=T), 100),
130 seq(sum(pval > 0.01,na.rm=T),sum(pval > 0.001,na.rm=T),10),
131 sum(pval> 0.001,na.rm=T):length(pval))
132 pval_ref <− pval_data$pvalref[c(seq(1, sum(pval > 0.01, na.rm=T), 100),
133 seq(sum(pval > 0.01,na.rm=T),sum(pval > 0.001,na.rm=T),10),
134 sum(pval> 0.001,na.rm=T):length(pval))]
135 }
136 c05 <− NA
137 c95 <− NA
138 for(i in 1:length(ordering)){
139 c95[i] <− qbeta(0.95,ordering[i],length(pval)−ordering[i]+1)
140 c05[i] <− qbeta(0.05,ordering[i],length(pval)−ordering[i]+1)
141 }
142 plot(−log10(pval_ref), −log10(pval_qq11), xlim=c(0,max(−log10(pval_ref))),
143 ylim=c(0,7.5), col="blue", xlab=NA, ylab=NA)
144 title(xlab=expression(Expected~~−log[10](italic(p))),
145 ylab=expression(Observed~~−log[10](italic(p))),line=2.6,
146 main=titles, cex.lab=1, cex.axis=1)
147 polygon(x=c(−log10(pval_ref), rev(−log10(pval_ref))),
148 y=c(−log10(c95), rev(−log10(c05))), col="lightgrey", border=NA)
149 points(−log10(pval_ref), −log10(pval_qq11), pty=1, col="blue")
150 abline(0,1,col=2)
151 }
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Appendix C

Additional Materials

C.1 Regularity Conditions

The set of variances stratified according to the three possible genotypes are expressed

in terms of the linear regression beta coefficients:

σ
2
0 = β

2
2 + 1 (C.1)

σ
2
1 = (β2 + β3)2 + 1 (C.2)

σ
2
2 = (β2 + 2β3)2 + 1 (C.3)
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Increasing variances with the number of minor alleles, or σ2
0 < σ2

1 < σ2
2 implies:

β
2
2 + 1 < (β2 + β3)2 + 1 < (β2 + 2β3)2 + 1 ⇐⇒

β
2
2 < β

2
2 + 2β2β3 + β

2
3 < β

2
2 + 4β2β3 + 4β

2
3 ⇐⇒

0 < 2β2β3 + β
2
3 < 4β2β3 + 4β

2
3 ⇐⇒

(2β2 + β3)β3 > 0 & (2β2 + 4β3)β3 > 0 ⇐⇒

β3 > 0 & 2β2 + β3 > 0 & 2β2 + 3β3 > 0 or β3 < 0 & 2β2 + β3 < 0 & 2β2 + 3β3 < 0 ⇐⇒

β3 > 0 & β2 >−
β3

2
& β2 >−

3β3

2
> 0 or β3 < 0 & β2 <−

β3

2
& β2 <−

3β3

2
⇐⇒

β3 > 0 & β2 >−
β3

2
>−3β3

2
> 0 or β3 < 0 & β2 <−

β3

2
<−3β3

2
⇐⇒

|β2|>
∣∣∣∣3β3

2

∣∣∣∣ & β2β3 < 0

The results for a decreasing trend in variance with the number of minor alleles

(σ2
0 > σ2

1 > σ2
2) can be derived analogously.

C.2 The Approximation of Ordered Variances Us-

ing a Ratio and a Difference Parameter

To show that a one parameter model with r = r1 = r2 is a better approximation than

a one-parameter model with d = d1 = d2, I just need to demonstrate the absolute

difference between the two ratio parameters is smaller than that between the two

difference parameters.
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The difference between the two ratios is:

|r2− r1|=
∣∣∣∣1 +

2β2β3 + 3β2
3

(β2 + β3)2 + 1
− (1 +

2β2β3 + β2
3

β2
2 + 1

)

∣∣∣∣
=

∣∣∣∣ 2β2β3 + 3β2
3

(β2 + β3)2 + 1
−

2β2β3 + β2
3

β2
2 + 1

∣∣∣∣
=

∣∣∣∣(2β2β3 + 3β2
3)(β2

2 + 1)− (2β2β3 + β2
3)((β2 + β3)2 + 1)

(β2
2 + 1)((β2 + β3)2 + 1)

∣∣∣∣
=

∣∣∣∣(2β2β3 + β2
3)(β2

2 + 1− (β2 + β3)2−1)+ 2β2
3(β2

2 + 1)

(β2
2 + 1)((β2 + β3)2 + 1)

∣∣∣∣
=

∣∣∣∣−(2β2β3 + β2
3)2 + 2β2

3(β2
2 + 1)

(β2
2 + 1)((β2 + β3)2 + 1)

∣∣∣∣
=

∣∣∣∣ 2β2
3

((β2 + β3)2 + 1)

2(β2
2 + 1)− (2β2 + β3)2

2(β2
2 + 1)

∣∣∣∣
=

2β2
3

((β2 + β3)2 + 1)

∣∣∣∣1− (2β2 + β3)2

2(β2
2 + 1)

∣∣∣∣ (C.4)

And the difference between the two differences is:

|d2−d1|= 2β
2
3 > 0 (C.5)

To demonstrate that the absolute difference between the ratios is always less than

that between the differences, I only need to show the maximum of
∣∣∣1− (2β2+β3)2

2(β2
2+1)

∣∣∣ is

bounded by (β2 + β3)2 + 1, or equivalently, (2β2+β3)2

2(β2
2+1)

> 0 is bounded by (β2 + β3)2 + 2

(Appendix C.2).

So the difference between the two difference parameters is greater than or equal

to the difference between the two ratio parameters;

|d2−d1|= 2β
2
3 > |r2− r1| (C.6)
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To demonstrate under the regularity conditions that the multiplicative model is

superior than the additive model, I need to show the maximum of
∣∣∣1− (2β2+β3)2

2(β2
2+1)

∣∣∣ is

bounded by (β2 +β3)2 +1, or equivalently, (2β2+β3)2

2(β2
2+1)

> 0 is bounded by (β2 +β3)2 +2.

(β2 + β3)2 + 2− (2β2 + β3)2

2(β2
2 + 1)

= (β2 + β3)2 + 2−
4β2

2 + 4β2β3 + β2
3

2(β2
2 + 1)

= (β2 + β3)2 + 2−
4β2

2 + 4−4 + 4β2β3 + β2
3

2(β2
2 + 1)

= (β2 + β3)2−
4β2β3 + β2

3−4
2(β2

2 + 1)

=
2(β2

2 + 1)(β2 + β3)2

2(β2
2 + 1)

−
4β2β3 + β2

3−4
2(β2

2 + 1)

=
2β2

2β2
3 + 2β2

3 + 4β3
2β3 + 4β2β3 + 2β4

2 + 2β2
2−4β2β3−β2

3 + 4
2(β2

2 + 1)

=
2β2

2β2
3 + β2

3 + 4β3
2β3 + 2β4

2 + 2β2
2 + 4

2(β2
2 + 1)

=
2β2

2(β2
3 + 2β2β3 + β2

2)+ β2
3 + 2β2

2 + 4
2(β2

2 + 1)

=
2β2

2(β3 + β2)2 + β2
3 + 2β2

2 + 4
2(β2

2 + 1)
> 0 (C.7)

C.3 Second Partial Derivative Test

The second order partial derivatives of the log-likelihood function under the alterna-

tive model are:
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d2l1
d(σ2

1)2
=

N−9
2(σ2

1)2
−

(N0−1)s2
0r +(N1−1)s2

1 +(N2−1)s2
2/r

(σ2
1)3

, (C.8)

d2l1
d(σ2

1)dr
=

(N0−1)s2
0 +(N2−1)s2

2/r2

2(σ2
1)2

, (C.9)

d2l1
dr2 =

N0−N2

2
(− 1

r2 )−
(N2−1)s2

2/r3

(σ2
1)

< 0, (C.10)

d2l1
drdσ2

1
=

(N0−1)s2
0 +(N2−1)s2

2/r2

2(σ2
1)2

. (C.11)

The second order derivative with respect to σ2
1 evaluated at the MLEs, r̂ and σ̂1

2,

is negative:

d2l1
d(σ2

1)2
(r̂, σ̂1

2) =
N−9

2(σ̂1
2)2
−

(N0−1)s2
0r +(N1−1)s2

1 +(N2−1)s2
2/r

(σ̂2
1)3

=− N−9

2(σ̂2
1)2

< 0

(C.12)

The determinant of the Hessian matrix evaluated at r̂ and σ̂2
1, is then:

D(r̂, σ̂1
2) = det(H((r̂, σ̂1

2)))

=
d2l1

d(σ2
1)2

d2l1
dr2 (r̂, σ̂1

2)−
(

d2l1
drdσ2

1
(r̂, σ̂1

2)

)2

=− N−9
2(σ̂1

2)2
(
N0−N2

2
(− 1

r̂2 )−
(N2−1)s2

2/r̂3

(σ̂1
2)

)− (
(N0−1)s2

0 +(N2−1)s2
2/r̂2

2(σ̂1
2)2

)2
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It is extremely difficult to work out the expression in terms of r̂ alone and show the

minimum of that function is strictly positive. Instead, I simulate plausible range of

ratio values and show the Hessian determinants are indeed positive. The conditional

variance given the heterozygote genotype (σ2
1) was assumed to be 1 for simplicity. I

considered ratio of size 0.8, 0.9, 1, 1.1, 1.2, encompassing the range of ratios observed

empirically (presented in Chapter 4). In addition, considering that the likelihood is

also a function of genotype counts, combinations of MAF (0.05, 0.1, 0.2, 0.4) and

sample size (2,000, 5,000, 10,000, 20,000) were also investigated (Table 15).
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C.4 Tables of Type I Error Inflation Rates Asso-

ciated with Non-normal Distributions When

MAF is 5%, 10%, or 40%

Type of Distribution Student’s t-Distribution Skew-Normal Distribution
Degrees of Freedom Shape Parameter

5 10 20 50 0.5 1 2 4

α Variance Tests

0.001

LRT 0.0626 0.0088 0.0032 0.0028 0.0006 0.0012 0.0044 0.0060
Bartlett 0.0572 0.0058 0.0018 0.0014 0.0006 0.0008 0.0022 0.0028
Levene 0.0080 0.0024 0.0016 0.0016 0.0014 0.0014 0.0022 0.0022
LV Linear 0.0014 0.0012 0.0008 0.0014 0.0006 0.0010 0.0016 0.0030
LV Square 0.0030 0.0006 0.0014 0.0016 0.0004 0.0010 0.0008 0.0012

0.01

LRT 0.1346 0.0390 0.0188 0.0158 0.0128 0.0122 0.0216 0.0260
Bartlett 0.1278 0.0334 0.0146 0.0118 0.0106 0.0100 0.0170 0.0208
Levene 0.0202 0.0124 0.0074 0.0094 0.0108 0.0090 0.0150 0.0204
LV Linear 0.0118 0.0134 0.0080 0.0104 0.0112 0.0102 0.0148 0.0192
LV Square 0.0182 0.0100 0.0084 0.0102 0.0092 0.0090 0.0114 0.0094

0.05

LRT 0.2340 0.1174 0.0700 0.0600 0.0558 0.0634 0.0740 0.0878
Bartlett 0.2398 0.1084 0.0670 0.0554 0.0500 0.0536 0.0668 0.0812
Levene 0.0536 0.0504 0.0446 0.0498 0.0498 0.0512 0.0562 0.0694
LV Linear 0.0578 0.0532 0.0470 0.0524 0.0524 0.0514 0.0606 0.0704
LV Square 0.0520 0.0478 0.0432 0.0454 0.0512 0.0486 0.0474 0.0446

0.1

LRT 0.3082 0.1852 0.1304 0.1144 0.1106 0.1144 0.1328 0.1514
Bartlett 0.3284 0.1762 0.1330 0.1144 0.0978 0.1054 0.1242 0.1468
Levene 0.0984 0.1016 0.1000 0.1060 0.1050 0.1046 0.1086 0.1368
LV Linear 0.1066 0.1020 0.0922 0.1018 0.1000 0.1010 0.1152 0.1322
LV Square 0.0952 0.1006 0.0878 0.0976 0.0970 0.0964 0.1004 0.0888

Table 16: Type I Error Rates Associated with Non-normal Distributions
(MAF = 5%) Each condition was simulated 5,000 times with 2,000 individuals. A MAF
of 5% was used throughout. The empirical type I error rate was calculated as the proportion
of SNPs with variance heterogeneity p-values less than the nominal α-level.
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Type of Distribution Student’s t-Distribution Skew-Normal Distribution
Degrees of Freedom Shape Parameter

5 10 20 50 0.5 1 2 4

α Variance Tests

0.001

LRT 0.0602 0.0062 0.0030 0.0012 0.0008 0.0014 0.0026 0.0044
Bartlett 0.0784 0.0088 0.0018 0.0016 0.0008 0.0014 0.0014 0.0048
Levene 0.0016 0.0024 0.0008 0.0010 0.0014 0.0014 0.0014 0.0024
LV Linear 0.0008 0.0016 0.0012 0.0008 0.0008 0.0008 0.0022 0.0030
LV Square 0.0008 0.0012 0.0004 0.0002 0.0010 0.0004 0.0014 0.0014

0.01

LRT 0.1324 0.0328 0.0226 0.0118 0.0104 0.0140 0.0154 0.0282
Bartlett 0.1682 0.0368 0.0212 0.0128 0.0106 0.0128 0.0154 0.0272
Levene 0.0142 0.0094 0.0104 0.0082 0.0112 0.0100 0.0102 0.0204
LV Linear 0.0102 0.0086 0.0098 0.0096 0.0100 0.0096 0.0116 0.0174
LV Square 0.0098 0.0086 0.0088 0.0088 0.0100 0.0110 0.0092 0.0090

0.05

LRT 0.2476 0.1080 0.0732 0.0568 0.0526 0.0588 0.0702 0.0966
Bartlett 0.3030 0.1182 0.0846 0.0606 0.0538 0.0576 0.0712 0.0978
Levene 0.0556 0.0458 0.0538 0.0466 0.0522 0.0518 0.0544 0.0782
LV Linear 0.0484 0.0480 0.0478 0.0510 0.0516 0.0558 0.0570 0.0784
LV Square 0.0448 0.0444 0.0516 0.0502 0.0508 0.0512 0.0494 0.0520

0.1

LRT 0.3272 0.1758 0.1274 0.1122 0.1054 0.1116 0.1346 0.1592
Bartlett 0.4040 0.1982 0.1496 0.1162 0.1020 0.1086 0.1364 0.1684
Levene 0.1062 0.0970 0.1064 0.1008 0.1036 0.1080 0.1122 0.1480
LV Linear 0.1034 0.0960 0.0948 0.1006 0.0988 0.1072 0.1158 0.1360
LV Square 0.0968 0.0944 0.0982 0.0980 0.0970 0.1072 0.0994 0.1024

Table 17: Type I Error Rates Associated with Non-normal Distributions
(MAF = 10%) Each condition was simulated 5,000 times with 2,000 individuals. A
MAF of 10% was used throughout. The empirical type I error rate was calculated as the
proportion of SNPs with variance heterogeneity p-values less than the nominal α-level.
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Type of Distribution Student’s t-Distribution Skew-Normal Distribution
Degrees of Freedom Shape Parameter

5 10 20 50 0.5 1 2 4

α Variance Tests

0.001

LRT 0.0678 0.0104 0.0028 0.0010 0.0012 0.0004 0.0012 0.0040
Bartlett 0.1078 0.0112 0.0026 0.0008 0.0020 0.0010 0.0012 0.0060
Levene 0.0010 0.0010 0.0010 0.0006 0.0020 0.0006 0.0012 0.0028
LV Linear 0.0004 0.0026 0.0012 0.0014 0.0008 0.0004 0.0010 0.0024
LV Square 0.0008 0.0018 0.0012 0.0008 0.0010 0.0004 0.0006 0.0002

0.01

LRT 0.1418 0.0344 0.0148 0.0098 0.0096 0.0084 0.0168 0.0242
Bartlett 0.2176 0.0496 0.0212 0.0118 0.0108 0.0108 0.0198 0.0312
Levene 0.0096 0.0134 0.0106 0.0094 0.0118 0.0094 0.0116 0.0232
LV Linear 0.0098 0.0106 0.0084 0.0108 0.0112 0.0092 0.0140 0.0216
LV Square 0.0084 0.0110 0.0072 0.0088 0.0088 0.0064 0.0098 0.0110

0.05

LRT 0.2538 0.1130 0.0742 0.0544 0.0478 0.0552 0.0724 0.0870
Bartlett 0.3704 0.1314 0.0836 0.0528 0.0496 0.0566 0.0756 0.1036
Levene 0.0490 0.0516 0.0514 0.0476 0.0516 0.0542 0.0648 0.0846
LV Linear 0.0526 0.0540 0.0494 0.0466 0.0490 0.0514 0.0632 0.0726
LV Square 0.0512 0.0490 0.0510 0.0450 0.0490 0.0500 0.0574 0.0506

0.1

LRT 0.3342 0.1738 0.1260 0.1094 0.0962 0.1076 0.1254 0.1490
Bartlett 0.4620 0.2136 0.1494 0.1080 0.1000 0.1098 0.1442 0.1768
Levene 0.1022 0.1032 0.1080 0.0930 0.1004 0.1034 0.1176 0.1490
LV Linear 0.1024 0.0978 0.0992 0.0938 0.0958 0.1034 0.1154 0.1322
LV Square 0.1040 0.1042 0.1004 0.0994 0.0946 0.1030 0.1040 0.1010

Table 18: Type I Error Rates Associated with Non-normal Distributions
(MAF = 40%) Each condition was simulated 5,000 times with 2,000 individuals. A
MAF of 40% was used throughout. The empirical type I error rate was calculated as the
proportion of SNPs with variance heterogeneity p-values less than the nominal α-level.
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Paré, G., Cook, N., Ridker, P., and DI., C. (2010). On the use of variance per

genotype as a tool to identify quantitative trait interaction effects: a report from

the Women’s Genome Health Study. PLoS Genet, 6(6).

Pe’er, I., Yelensky, R., Altshuler, D., and Daly, M. J. (2008). Estimation of the

multiple testing burden for genomewide association studies of nearly all common

variants. Genet Epidemiol, 32(4), 381–5.

109



MSc. Thesis - Wei Q. Deng McMaster - Clinical Epidemiology and Biostatistics

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D.,

Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., and Sham, P. C. (2007). PLINK:

a tool set for whole-genome association and population-based linkage analyses. Am

J Hum Genet, 81(3), 559–75.

R Core Team (2010). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rice, T. K., Schork, N. J., and Rao, D. C. (2008). Methods for handling multiple

testing. Adv Genet, 60, 293–308.

Ritchie, M. D. (2009). Using prior knowledge and genome-wide association to identify

pathways involved in multiple sclerosis. Genome Med, 1(6), 65.

Sham, P. C., Lin, M. W., Zhao, J. H., and Curtis, D. (2000). Power comparison of

parametric and nonparametric linkage tests in small pedigrees. Am J Hum Genet,

66(5), 1661–8.

Snedecor, G. W. and Cochran, W. G. (1980). Statistical Methods. Iowa State Uni-

versity Press, Ames, Iowa, 7th edition.

Struchalin, M. V., Dehghan, A., Witteman, J. C., van Duijn, C., and Aulchenko,

Y. S. (2010). Variance heterogeneity analysis for detection of potentially interacting

genetic loci: method and its limitations. BMC Genet, 11, 92.

Struchalin, M. V., Amin, N., Eilers, P. H., van Duijn, C. M., and Aulchenko, Y. S.

(2012). An R package ”VariABEL” for genome-wide searching of potentially inter-

acting loci by testing genotypic variance heterogeneity. BMC Genet, 13, 4.

110



MSc. Thesis - Wei Q. Deng McMaster - Clinical Epidemiology and Biostatistics

Teslovich, T. M., Musunuru, K., Smith, A. V., Edmondson, A. C., Stylianou, I. M.,

Koseki, M., Pirruccello, J. P., Ripatti, S., Chasman, D. I., Willer, C. J., Johansen,

C. T., Fouchier, S. W., Isaacs, A., Peloso, G. M., Barbalic, M., Ricketts, S. L.,

Bis, J. C., Aulchenko, Y. S., Thorleifsson, G., Feitosa, M. F., Chambers, J., Orho-

Melander, M., Melander, O., Johnson, T., Li, X., Guo, X., Li, M., Shin Cho, Y.,

Jin Go, M., Jin Kim, Y., Lee, J. Y., Park, T., Kim, K., Sim, X., Twee-Hee Ong,

R., Croteau-Chonka, D. C., Lange, L. A., Smith, J. D., Song, K., Hua Zhao, J.,

Yuan, X., Luan, J., Lamina, C., Ziegler, A., Zhang, W., Zee, R. Y., Wright, A. F.,

Witteman, J. C., Wilson, J. F., Willemsen, G., Wichmann, H. E., Whitfield, J. B.,

Waterworth, D. M., Wareham, N. J., Waeber, G., Vollenweider, P., Voight, B. F.,

Vitart, V., Uitterlinden, A. G., Uda, M., Tuomilehto, J., Thompson, J. R., Tanaka,

T., Surakka, I., Stringham, H. M., Spector, T. D., Soranzo, N., Smit, J. H., Sinisalo,

J., Silander, K., Sijbrands, E. J., Scuteri, A., Scott, J., Schlessinger, D., Sanna, S.,

Salomaa, V., Saharinen, J., Sabatti, C., Ruokonen, A., Rudan, I., Rose, L. M.,

Roberts, R., Rieder, M., Psaty, B. M., Pramstaller, P. P., Pichler, I., Perola, M.,

Penninx, B. W., Pedersen, N. L., Pattaro, C., Parker, A. N., Pare, G., Oostra,

B. A., O’Donnell, C. J., Nieminen, M. S., Nickerson, D. A., Montgomery, G. W.,

Meitinger, T., McPherson, R., McCarthy, M. I., et al. (2010). Biological, clinical

and population relevance of 95 loci for blood lipids. Nature, 466(7307), 707–13.

Thomas, D. (2010). Gene-environment-wide association studies: emerging ap-

proaches. Nat Rev Genet, 11(4), 259–272.

Visscher, P. M. and Posthuma, D. (2010). Statistical power to detect genetic loci

affecting environmental sensitivity. Behav Genet, 40(5), 728–33.

111



MSc. Thesis - Wei Q. Deng McMaster - Clinical Epidemiology and Biostatistics

Visscher, P. M., Hill, W. G., and Wray, N. R. (2008). Heritability in the genomics

era–concepts and misconceptions. Nat Rev Genet, 9(4), 255–66.

Willer, C. J., Sanna, S., Jackson, A. U., Scuteri, A., Bonnycastle, L. L., Clarke, R.,

Heath, S. C., Timpson, N. J., Najjar, S. S., Stringham, H. M., Strait, J., Duren,

W. L., Maschio, A., Busonero, F., Mulas, A., Albai, G., Swift, A. J., Morken,

M. A., Narisu, N., Bennett, D., Parish, S., Shen, H., Galan, P., Meneton, P.,

Hercberg, S., Zelenika, D., Chen, W. M., Li, Y., Scott, L. J., Scheet, P. A., Sundvall,

J., Watanabe, R. M., Nagaraja, R., Ebrahim, S., Lawlor, D. A., Ben-Shlomo,

Y., Davey-Smith, G., Shuldiner, A. R., Collins, R., Bergman, R. N., Uda, M.,

Tuomilehto, J., Cao, A., Collins, F. S., Lakatta, E., Lathrop, G. M., Boehnke, M.,

Schlessinger, D., Mohlke, K. L., and Abecasis, G. R. (2008). Newly identified loci

that influence lipid concentrations and risk of coronary artery disease. Nat Genet,

40(2), 161–9.

WTCC (2007). Genome-wide association study of 14,000 cases of seven common

diseases and 3,000 shared controls. Nature, 447(7145), 661–78.

Yang, J., Loos, R. J., Powell, J. E., Medland, S. E., Speliotes, E. K., Chasman, D. I.,

Rose, L. M., Thorleifsson, G., Steinthorsdottir, V., Magi, R., Waite, L., Smith,

A. V., Yerges-Armstrong, L. M., Monda, K. L., Hadley, D., Mahajan, A., Li, G.,

Kapur, K., Vitart, V., Huffman, J. E., Wang, S. R., Palmer, C., Esko, T., Fischer,

K., Zhao, J. H., Demirkan, A., Isaacs, A., Feitosa, M. F., Luan, J., Heard-Costa,

N. L., White, C., Jackson, A. U., Preuss, M., Ziegler, A., Eriksson, J., Kutalik,

Z., Frau, F., Nolte, I. M., Van Vliet-Ostaptchouk, J. V., Hottenga, J. J., Jacobs,

K. B., Verweij, N., Goel, A., Medina-Gomez, C., Estrada, K., Bragg-Gresham,

112



MSc. Thesis - Wei Q. Deng McMaster - Clinical Epidemiology and Biostatistics

J. L., Sanna, S., Sidore, C., Tyrer, J., Teumer, A., Prokopenko, I., Mangino, M.,

Lindgren, C. M., Assimes, T. L., Shuldiner, A. R., Hui, J., Beilby, J. P., McArdle,

W. L., Hall, P., Haritunians, T., Zgaga, L., Kolcic, I., Polasek, O., Zemunik, T.,

Oostra, B. A., Junttila, M. J., Gronberg, H., Schreiber, S., Peters, A., Hicks, A. A.,

Stephens, J., Foad, N. S., Laitinen, J., Pouta, A., Kaakinen, M., Willemsen, G.,

Vink, J. M., Wild, S. H., Navis, G., Asselbergs, F. W., Homuth, G., John, U.,

Iribarren, C., Harris, T., Launer, L., Gudnason, V., O’Connell, J. R., Boerwinkle,

E., Cadby, G., Palmer, L. J., James, A. L., Musk, A. W., Ingelsson, E., Psaty,

B. M., Beckmann, J. S., Waeber, G., Vollenweider, P., Hayward, C., Wright, A. F.,

Rudan, I., et al. (2012). FTO genotype is associated with phenotypic variability of

body mass index. Nature, 490(7419), 267–72.

Zuk, O., Hechter, E., Sunyaev, S. R., and Lander, E. S. (2012). The mystery of

missing heritability: Genetic interactions create phantom heritability. Proc Natl

Acad Sci USA, 109(4), 1193–8.

113


