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ABSTRACT 

 

 

Lithium-ion (Li-ion) cells are increasingly used in many applications affecting our 

daily life, such as laptops computers, cell phones, digital cameras, and other portable 

electronic devices. Lithium-ion batteries are increasingly being considered for their use in 

Electric Vehicles (EV), Hybrid Electric Vehicles (HEV) and Plug-in Hybrid Electrical 

Vehicles (PHEV) due to their high energy density, slow loss of charge when not in use, 

and for lack of hysteresis effect. New application domains for these batteries has placed 

greater emphasis on their energy management, monitoring and control strategies. 

In this thesis, a comparative study between different models and state of charge (SOC) 

estimation strategies is performed. Battery models range from black-box representation to 

detailed electro-chemical reaction models that consider the underlying physics. The state 

of charge is estimated using the Extended Kalman filter (EKF) and the Smooth Variable 

Structure Filter (SVSF). The models and SOC estimation strategies are applied to 

experimental results from BMW Electrical and Hybrid Research and Development 

center and validated using a simulation model from AVL CRUISE software. 

Overall, different models and SOC estimation scenarios were studied. An average 

improvement of 30% in the estimation accuracy was shown by the SVSF SOC method 

when compared with the EKF SOC strategy. In general, the SVSF SOC estimation 

technique demonstrates excellent capability and a fast speed of convergence. 
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Symbol Name Unit 

ܽ௦ Active surface are per electrode unit volume cm2 cm-3 

 Electrode plate area cm2 ܣ

ܿ Electrolyte concentration mol cm-3 

ܿ௦ Solid concentration mol cm-3 

ܿ௦ Solid concentration at electrolyte interface mol cm-3 

 Faraday’s number C mol-1 ܨ

݅ Exchange current density of an electrode reaction A cm-2 

݅ Electrolyte current density A cm-2 

݅௦ Solid current density A cm-2 

 Battery applied current A ܫ

݆ Butler–Volmer current density A cm-3 

ܳ capacity A s 
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 Radial coordinate cm ݎ

ܴ Universal Gas constant J K-1 mol-1 

ܴ Film resistance on an electrode surface Ωcm2 

ܴ௦ Radius of solid active material particles cm 

s Laplace variable rad s-1 

 time s ݐ

 ݐ
transference number of lithium ion with respect to 

the velocity of solvent 
- 

ܶ Temperature K 

௦ܶ time step s 

	ܷ Open circuit voltage V 

ܷ Cathode open circuit voltage V 

ܷ Anode open circuit voltage V 

 spatial coordinate cm ݔ

   

Greek symbol Name Unit 

 overpotential V ߟ

߶ electrolyte potential V 

߶௦ solid potential V 

 -  normalized solid concentration at anodeߠ

 -  normalized solid concentration at cathodeߠ

݇ effective electrolyte phase ionic conductivity Ωିଵ cm-1 

݇


 effective electrolyte phase diffusion conductivity  

   effective conductivity of solid active materialߪ

∝ anodic transfer coefficients of electrode reaction - 
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∝ cathodic transfer coefficients of electrode reaction - 

   

Matrix/Vector Name Unit 

A,B,C,D state variable model matrices  

L Kalman filter (state estimator) gain matrix  

p, q left eigenvector, right eigenvector  

r residue vector  

u state variable model input vector  

x state vector  

y state variable model output vector  

z steady-state response vector  

   

Subscript Name Unit 

K sampling time step  

e electrolyte phase  

s solid phase  

s, avg average, or bulk solid phase  

s, e solid phase at solid/electrolyte interface  

s, max solid phase theoretical maximum limit  

sep separator region  

- negative electrode region  

+ positive electrode region  

K sampling time step  
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Superscript Name Unit 

T Transpose  

eff effective  

Li Lithium species  
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1. Introduction 

 

 

 

Recently, Lithium-ion (Li-ion) cells are increasingly used in many application 

affecting our daily life, such as laptops computers, cell phones, digital cameras, and other 

portable electronic devices. Lithium-ion batteries have gained attention in the past 10 

years due to their high energy density, slow loss of charge when not in use, and for lack of 

hysteresis. Nowadays they are being used in new second generation Hybrid Electric 

(HEV) and Plug-in Hybrid Electrical (PHEV) Vehicles. As battery applications and 

usage increase, accurate management, monitoring and control strategies are needed to 

improve the performance, efficiency, safety, reliability and longevity of battery packs. 

Especially, in the case of Hybrid and electrical vehicles Battery management systems 

(BMS) play an important role as the battery operating conditions are subjected to fast 

transients and frequent charging and discharging cycles due to sudden acceleration or 

regenerative braking system maneuvers. Battery Management Systems (BMS) must be 

able to provide an accurate real-time estimate for the Battery State of Charge (SOC), 
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State of Health (SOH), cell aging, and Remaining Useful Life (RUL). The Battery SOC 

value is so critical also for the driver’s point of view especially if the battery is the only 

source of power because SOC roughly speaking provide the driver with how much energy 

left within the battery. The main challenge with SOC is that it cannot be measured hence 

requiring state and parameter estimation strategies. 

This chapter, provides an overview of research motivations answering the question of why 

there is a need for accurate battery modelling and reliable SOC estimation strategies. Also 

a brief summary about previous work found in literature is presented. The scope of the 

research, goals and contributions are described. 

 Thesis Motivation 

The motivation for this research is driven by the world’s need to reduce emissions and 

use sustainable and renewable energy sources. Important considerations for Hybrid and 

Electric vehicles are energy storage and battery management are considered in this 

research. 

In conventional vehicles, the gasoline remaining in the tank can readily be measured by 

using a fluid level sensor. However, in the electric vehicles, it is not easy to measure the 

amount of useful energy remaining, known as SOC. This specifically the case when the 

battery is subjected to fast transients in terms of charging and discharging due to the 

driving cycle. Since SOC cannot be measured, an accurate mathematical model along 

with a robust estimation technique is necessary [1]. 

In Electric vehicles, another important consideration is the Remaining Useful Life (RUL) 

of the battery. Battery operation and management are important factors in extending 

battery life and Remaining Useful Life. Model based strategies are often used [2]. 
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 Thesis Scope and Objectives 

In this thesis, different battery modelling techniques and SOC estimations strategies 

are considered and compared with respect to their performances. The research objectives 

can be stated as follows: 

 Lithium ion battery cell models are selected, refined, implemented and validated 

using measured and simulated test data. The models considered can be 

categorized as: Behavioural, Equivalent circuit, and Electro-chemical models. 

Experimental data used for model validation were obtained from BMW AG 

Research and Development center (Munich, Germany). 

 Estimation strategies were used for obtaining the SOC. These included the 

Extended Kalman Filter (EKF) and Smooth Variable Structure Filter (SVSF) 

A performance comparative study of the battery models in conjunction with estimation 

strategies for obtaining SOC is presented. 

 Thesis Organization 

This thesis is divided into 7 chapters: 

Chapter 1: Thesis Motivation, Scope and Objectives are discussed. 

Chapter 2: A literature review of battery modelling techniques and SOC estimation 

strategies is presented. 

Chapter 3: Estimation algorithms are introduced and used for SOC estimation. The 

experimental and simulation test procedures used for model validation are 

described. 

Chapter 4: Behavioral modelling techniques categorized as Black-box are described 

and used for SOC estimation. 
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Chapter 5: Equivalent circuit modelling techniques also known as Impedance-based 

modelling are introduced and used for SOC estimation. 

Chapter 6: Electro-Chemical  modelling techniques are described and used for SOC 

estimation. 

Chapter 7: The performance of the SOC estimation using the three categories of 

models and the two types of estimation algorithms considered in this research are 

compared and discussed. Conclusion based on performance measurements and 

complexity analysis are presented. Recommendations for future research are also 

provided. 
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2. Literature Review  

 

 

 

Li-ion batteries are increasingly used in Hybrid and Electric Vehicles. However, for 

higher efficiency and longer life, special considerations must be given to their operating 

conditions for preventing thermal runaways, aging, and physical damage. Therefore, there 

is an important and fundamental need for a Battery Management System (BMS). These 

need to be able to accurately assess, estimate and control the Battery State of charge 

(SOC), State of Health (SOH) and core temperature. These three parameters allow the 

BMS to determine the optimal operating strategy such that the battery pack lifetime is 

maximized [3]. This chapter presents the basic battery terminologies, the basic operating 

principles and the different approaches to Li-Ion battery modelling and SOC Estimation. 

 Current and Future Energy Situation 

Presently, our societies rely heavily on fossil fuels, coal and oil for our energetic needs. 

However, there is a worldwide concern about these sources of energy due to factors 

associated with their geopolitical, economic and environmental impact. Even though, 
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fossil fuels are naturally produced, their consumption rate is higher than their production 

rate, causing strain on available reserves. Over reliance on fossil fuels is unsustainable and 

the reserves are diminishing rapidly as shown by the Association for the Study of Peak 

Oil and Gas (ASPO), who predicts that the oil extraction peak will be reached before 

2020 (as shown in Figure 2.1). Thus, consideration of alternative sources of energy and in 

particular electrification is a necessity. 

 
Figure 2.1 - Hubbert chart for oil peak production [4] 

A requirement of electrification is energy storage that in turn relies on electro-chemical 

batteries. They convert chemical energy to electrical energy and are widely used in all 

sectors of industry (automotive, aerospace, medical, military, etc.) as well as in consumer 

goods (e.g. low current applications, home appliances, cell phones, and laptop 

computers). 
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Batteries are a key element in hybrid and Electric vehicles. Lithium-based batteries are 

specifically of interest due to their high energy density. Furthermore, they are less toxic 

than nickel cadmium or lead acid cells, and after use they can be recycled posing fewer 

environmental concerns. 

 EV Batteries Energy-Power Trade-Off 

The Ragone1 plot in Figure 2.2 shows the difference between the power and energy 

densities for different energy supply systems. As shown the Internal Combustion Engine 

(ICE) remains the most desirable choice due to the high specific power and specific 

energy of fossil fuels. Ultracapacitors have a high power density, which enables them to 

supply a very high peak power in a very short period (milliseconds). Alternatively, fuel 

cells possess high energy density but need long time period (hours) to be charged or 

discharged. This limits their applications in the automotive industry where both high 

power as well as energy density are required.  

Lithium-based batteries provide a reasonable compromise between energy density and 

power density, making them an attractive choice for the next generation of Hybrid 

Electric Vehicles (HEVs), (PHEVs) and Electric Vehicles (EVs). 

                                                 
1 A Ragone plot is a 2- axis chart used for performance comparison of various energy storing devices. On 

such a chart, the energy density (in Wh/kg) is plotted versus power density (in W/kg). Both axes are 

logarithmic, which allows comparing performance of very different devices (for example extremely high, 

and extremely low power densities). 

Conceptually, the vertical axis describes how much energy is available, while the horizontal axis shows how 

quickly that energy can be delivered. Sloping lines on the Ragone plot indicate the required time to get the 

charge in or out of the device. 
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Figure 2.2 - Ragone Plot of Energy Storage Devices [5,6] 

 

The Ragone plot shown in Figure 2.2 shows that lithium ion batteries are better by at 

least a factor of 2.5 compared to other technologies in terms of high specific power and 

energy [7]. The Li-Ion battery at this time, is the technology best suited to the needs of 

electric vehicles, due to their large specific energy density and specific power, and their 

ability to accommodate fast transients as shown in Figure 2.3 [3]. As shown in the 

Ragone plot of Figure 2.3 above, it can be seen that the Li-ion battery is the best match 

to the EV goal. As such considerable investment is being made to their development and 

to improve their performance, reliability, durability, safety and aging [3,8]. 
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Figure 2.3 - Relative Performance of Various Electrochemical Energy-Storage Devices [9] 

 Overview of Battery Terminologies and Definitions 

Battery terminologies used to describe the parameters, characteristics and properties 

of a battery cells are as follows. 

 Rechargeable	and	Non‐Rechargeable	Battery	Cells	
If a battery does not allow irreversible chemical reactions to take place, it cannot be 

recharged, such a battery is called the primary battery. If there is another battery that 

allows reversible chemical reaction to take place (which means it a rechargeable battery), 

this second battery is called the secondary battery [10,11]. 

 Cell,	Modules	and	Packs	
Every Hybrid Electric Vehicles (HEVs), Plug-In Hybrid Electric Vehicles (PHEVs) 

and Electric Vehicles (EVs) contains a high voltage battery pack that consists of two or 

more modules; each module consists of two or more cells. A cell is the smallest unit 

connected in parallel or in series to form one module. A module is then connected in a 

parallel or series configuration to form one pack, as shown in Figure 2.4.  
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Figure 2.4 - Electric vehicle Cell, Module and Pack 

 Charge	Rate	(C‐Rate)	
Battery charge rate or as denoted by C-rate describes the rate at which the battery is 

charged or discharged relative to its maximum capacity. A 1C rate means that the applied 

discharge current will discharge a fully charged battery in 1 hour. For a battery with a 

capacity of 20 Amp-hours, this equals to a 20 Amps discharge current. A 5C rate for this 

battery would be 20 x 5 = 100 Amps, and a C/2 rate would be 20/2 = 10 Amps. 

 Terminal	Voltage	(Vt)	
The voltage measured between the battery terminals when a load is applied. 

 Open‐Circuit	Voltage	(Vocv)	
The voltage measured between the battery terminals when no load is applied. 
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 Capacity	or	Nominal	Capacity	
The coulometric capacity is the total Amp-hours that can be drawn from a battery 

when being fully discharged from 100% state-of-charge to its rated minimum cut-off 

voltage at a certain discharge current (specified as a C-rate). Capacity is calculated by 

multiplying the discharge current (in Amps) by the discharge time (in hours) [10]. 

 State	Of	Charge	(SOC)	
In electric vehicles, parameter is the State of Charge (SOC) as it shows the current 

battery capacity as a percentage of maximum capacity. As such it provides a measure of 

the amount of electric energy stored in a battery. It is analogous to a fuel gauge on a 

conventional internal combustion engine vehicle [10,12]. State of Charge (SOC) is a 

dimensionless number between 0 and 1 representing a percentage. It is worth noting that 

a zero SOC does not mean that the battery is fully empty, only that the battery cannot be 

discharged anymore without causing some permanent damage (irreversible chemical 

reaction) to it [11].  

 
Figure 2.5 - Imaginary State of Charge Gauge Indicator 
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 Depth	of	Discharge	(DOD)	
The Depth of Discharge (DOD) is the alternative method of indicating the Battery 

State of Charge (SOC), The DOD is the percentage of battery capacity that has been 

already discharged. In other words, DOD (%) = 100 – SOC (%). 

 Cut‐Off	Voltage	
The minimum allowable voltage at which the battery is known to be “empty”. 

 Cycle	Life	
This is the number of cycles that can be performed before the battery reaches End of 

Life (EoL). 

 State	Of	Health	(SOH)	
The State of Health (SOH) indicates a condition in the battery life between the 

beginning of life (BoL) and end of life (EoL) in percentages. The BoL of a battery is 

defined as the point in time when battery life begins. The EoL of a battery is reached 

when the battery cannot perform according to its predefined minimum requirements. For 

EV applications, the battery manufacturers define EoL, when one of the following 

conditions has been reached [13,14,15]:  

 80% drop in the battery capacity compared to its rated capacity under reference 

conditions. This is known as capacity fading.  

 80% drop in the battery’s maximum power compared to the rated power. This is 

known as power fading.  

 General Operating Principles of Li-Ion Battery  

In this section, the functionality of the lithium-ion battery using an electrolyte is 

discussed. A battery converts chemical energy into electrical energy and vice versa. The 

battery cell voltage is calculated by the energy of chemical reaction taking place inside the 
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cell. The basic setup of a battery consists of three main parts: the positive electrode, the 

separator, and the negative electrode. The positive and negative electrodes are referred to 

as the cathode and the anode, as shown in Figure 2.6. The battery is connected to an 

external load using current collector plates. In case of Li-ion cells, a copper collector is 

used in the negative electrode while an aluminum collector is used for the positive 

electrode [13,14,16,17]. 

 
Figure 2.6 - Electrochemical functionality of a battery during charging (a), discharging (b) [13] 

The anode is the electrode capable of supplying electrons to the load. The anode 

composite material defines the name of the Li-ion battery and is usually made up of a 

mixture of carbon (ex. LixC6), while the electrolyte can be made of liquid, polymer or 

solid materials (ex. LiPF6). In case of solid or polymer materials, the electrolyte will also 

act also as separator. 
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The separator is a porous membrane allowing the transfer of lithium ions only, thus 

serving as a barrier between electrodes. It prevent the occurrence of short-circuit and 

thermal run aways while at the same time offering negligible resistance. 

The cathode is the electrode usually made of metal oxides (ex. LiCoO2 or LiMn2O4) 

[13,14,16,17] as shown in Figure 2.7. 

 
Figure 2.7 - Schematic representation of a Li-ion battery during discharging [7]   

Under the presence of a load current, (Reduction – Oxidation) Redox reaction occurs. 

Oxidation reaction takes place at the anode where the trapped lithium particles start to 

deintercalate or diffuse toward the electrolyte-solid interface splitting lithium into ions 

and electrons. Lithium ions transfer through the solution due to the potential difference 

while the electrons moves through the current collector because the electrolyte solution 

acts as an electronic insulator [18]. Reduction reaction takes place at the cathode where 

the traveling lithium ions from the anode start to intercalate and react with the electrons 

coming from the positive collector. The process of lithium ion insertion into the electrode 
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happens without a change in the electrode crystal structure "intercalation" mechanism. 

The whole phenomenon of intercalation and deintercalation is reversible as lithium ions 

pass back and forth between the electrodes during charging and discharging [19,20,21]. 

In theory, this phenomenon could go on infinitely. Unfortunately, due to cell material 

degradation and other irreversible chemical reactions, the cell capacity and power 

degrades with the number of cycles and usage [5,14]. 

 Battery Modelling 

Battery modelling is an important and challenging consideration in battery 

management systems. In the literature, numerous battery models have been reported. The 

choice between these models is a trade-off between model complexity, accuracy, and 

parameterization effort. The models can be classified into four categories, starting from 

the most abstract to most detailed as shown in Figure 2.8. These categories are Ideal, 

Behavioral or Black-box, Equivalent circuit, and Electrochemical Models as to follows. 

 
Figure 2.8 - Pyramid of details showing the level of details in each modeling category 
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 Ideal Models 

As the name suggests, the battery is represented as an ideal voltage source with 

unlimited power. These models are used only if the energy storage device (battery) is not 

of interest. 

 Behavioral and Black-box Models 

Behavioral and Black-box Models simulate the terminal voltage behavior of the 

batteries without the need for the specification of the underlying physical or 

electrochemical behavior. These models consist of phenomenological functions that requires 

measured data to be used. Alternatively neural networks, empirical functions or look-up 

tables may be used. Peukert’s law [22] is one of the first well-known examples of a 

behavioral model for batteries, where an empirical function is used to describe the 

dependence of the battery’s remaining capacity on the discharge rate as follows. 

 
Iେt ൌ Constant  

Where, I is the discharge current, t is the maximum discharge time and PC is the 

Peukert’s Coefficient which ranges from 1 to 2 [23]. The battery capacity can be 

calculated as follows [23]: 

 
C୬ଵ ൌ C୬ ൬

I୬
I୬ଵ
൰
େିଵ

  

Where C୬ଵ is the battery remaining capacity at the discharge current of I୬ଵ [23].  

Another form of behavioral model was introduced by Shepherd [24], to predict the 

terminal voltage during charging/discharging conditions as follows [25]: 

 
Eሺtሻ ൌ E୭  Riሺtሻ 

Kଵ
qୱሺtሻ
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Where, E୭is the initial cell voltage, R is the cell internal resistance, qୱሺtሻ is the 

instantaneous stored charge, and Kଵis a constant. A further modification was made to 

equation (2.3) by the Unnewehr model, [25]: 

 
Eሺtሻ ൌ E୭  Riሺtሻ  Kଶqୱሺtሻ  

Nernst introduced another two constants Kଷ and Kସ which are used for curve fitting as 

follows [26]: 

 
Eሺtሻ ൌ E୭  Riሺtሻ  Kଷ ln ቆ

qୱሺtሻ
Q

ቇ െ Kସlnሺ
Q െ qୱሺtሻ

Q
ሻ  

Where, Q is the total charge capacity of the cell and the constants	Kଵ, Kଶ, Kଷ, and Kସ can 

be obtained by fitting experimental data [27]. 

Plett combined a series of behavioral models to simulate the battery operations 

[28,29,30]. Four models were discussed in his publication namely simple, zero-hysteresis, 

one-state hysteresis, and enhanced self-correcting (ESC). All of these were based on 

Peukert’s and Shepherd’s models. These models can account for cell hysteresis, 

polarization time constants, and ohmic loss effects [31]. Use of Artificial neural networks 

and fuzzy logic in modelling is discussed in [32]. Behavioral models can achieve 

accuracies of up to 2% [33,34].  

 Equivalent-Circuit Models 

Lumped-element equivalent-circuit components such as resistors and capacitors can 

be used to represent the behavior of a battery cell [25]. They are widely applied because of 

their simplicity, low number of parameters to tune, and easy implementation [35,36]. 

They commonly consist of first-order, second-order, or third-order RC models in 

addition to the hysteresis effect [37]. The model parameters such as resistances and 

capacitances are calculated by system-identification using test data. 
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Present Battery Management Systems (BMS) rely on Equivalent circuit models due to 

their simplicity and robustness, which allow these models to be implemented in real time 

applications. However, they have limitations in providing insight into the electrochemical 

reactions that occur internally inside the cell. This limitation makes them unable to 

predict electrochemical phenomena like cell degradation, capacity fading, and power 

fading. In literature, these models also can be coupled or integrated with thermal models 

to predict the overall cell behavior as discussed in [38]. 

 Electro-Chemical Models 

Electro-Chemical Models (ECM) or physics-based models can capture the 

electrochemical reactions using partial differential equations (PDE). This type of model 

links physical parameters to internal electrochemical dynamics of the cell allowing trade 

off analysis and high accuracy. A well-known early model with a high accuracy of 2% was 

originally developed by Doyle, Fuller and Newman [39,40]. Since electrochemical models 

use partial differential equations with typically numerous unknown parameters, they are 

significantly more complicated and computationally expensive than others, making their 

use in real-time applications for battery management systems (BMS) almost impractical. 

For real-time applications of ECM, model reduction is mandatory. Several approaches 

for ECM reduction have been proposed in literature. It was observed that much of the 

computational complexity involved in ECMs comes from solving PDEs for the lithium 

concentration in the solid particles of the electrodes (Spherical Diffusion). A common 

strategy is to make approximations and simplifications for this calculation [41]. Forman 

and Bashash in [42] have used the Padé approximation to match the power series 

representation of the solid diffusion equation to a desired order. This approach works well 

in matching the DC values, but does not perform well when the battery is subjected to 

high charging and discharging dynamic input currents existing due to sudden acceleration 

or regenerative braking action. Wang and Subramanian in [43,44] have used a parabolic 

profile to approximate the concentration throughout the solid particle, thus eliminating 
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the need for the spherical diffusion PDE. This approach works well at low discharge rates 

but does not perform well for high dynamic charge and discharge inputs such as those 

encountered in hybrid- and electric vehicle applications. Cai and White in [45] use proper 

orthogonal decomposition2 at discrete locations within the solid particle and across the cell 

to find electrochemical variables. This approach works well at high currents. To generate 

an accurate Reduced Order Model (ROM) look-up tables with model parameters 

gathered from simulation or experimental data have been used [41]. However, a short 

coming of this approach is that model parameters supplied in look-up tables need to 

change as the battery ages, thus compromising model accuracy. In Kandler Smith’s 

approach in [46,47], PDEs are used to model reductions for 2D-porous- electrodes. 

These are then linearized and a Laplace-domain transfer function is obtained. 

Optimization is then used for obtaining model parameters [48]. 

Electro-Chemical and thermal behavior are both considered in [49]. Here, the thermal 

energy equations are coupled to the electrochemical model by considering temperature-

dependent physiochemical properties [50,51]. Electro-chemical models have also been 

used in literature to capture battery aging through SOH estimation as discussed in 

[52,53]. 

 State of Charge (SOC) Determination 

The Battery Management System (BMS) and the accurate estimation of State of 

Charge (SOC) have been researched extensively in the past decade. SOC estimation not 

only provides information on battery performance, but also reminds the user of the 

remaining useful energy in the battery. SOC estimation is considered in this section. 

                                                 
2 Proper Orthogonal Decomposition (POD) is also named Principal component analysis (PCA), it is a 

mathematical procedure aims to obtain a compact representation from a set of data observations using the 

orthogonal transformation. 
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 Discharge Test. 

The Discharge test is the most reliable method for determining the State of Charge 

(SOC) of a battery cell. In this test, the cell is discharged under time and controlled 

conditions. The battery discharge time at controlled discharge rate indicates the value of 

SOC. This test requires consecutive recharging of the cell that is very time consuming. 

Also this test decreases the Remaining Useful Life (RUL) of the battery. 

 Ampere-Hour Counting 

Ampere-hour counting technique is the most common technique for calculating the 

SOC. Since the battery discharge and recharge is directly related to the supplied and the 

withdrawn currents respectively, the idea of battery current balancing is applied as 

follows. If a starting (	ܱܵܥ	) is known, the value of the current integral is the direct 

indicator for the SOC. Such that: 

 
ܥܱܵ ൌ ܥܱܵ െ

1
ܥ
න ܫ ݀߬
௧

௧బ

  

Where ܥ is the nominal capacity, I is the discharge current and ܱܵܥ	is the initial SOC 

value. Three main drawbacks of this method are: 

1. Incorrect current measurement could result in a large error due to integration in 

equation (2.1). 

2. Ampere-hour counting calculation is based on a predefined calibration point that 

may not always be available. 

3. Not all of the current discharged from the battery can be taken into account 

because of losses. 

 The first drawback can be overcome by having an accurate sensor that is often expensive. 

The second drawback is solved by having a predefined calibration point. The third 

drawback can be eliminated by adding a constant correction charging factor	ሺߟሻ	to the 
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battery at each charge/discharge cycle, where the value of	ሺߟሻ	changes with the number 

of cycles to compensate for battery capacitance losses as follows: 

 
ܥܱܵ ൌ ܥܱܵ െ

ߟ
ܥ
න ܫ ݀߬
௧

௧బ

  

The error in Ampere-hour counting can be maintained low by defining a correction 

factor and defining a re-calibration point [54].  

The Ah counting (known as Coulomb counting) method [55] provides a higher accuracy 

than other SOC calculation methods. It is easy and reliable if the current measurement is 

accurate and if the re-calibration point is available. 

 Measurement of the Electrolyte Physical Properties 

This method is used in lead-acid batteries. Here, a linear relationship between the 

electrolyte acid concentration and the SOC is established and used to determine the value 

of the SOC. A possible application of this method to batteries with liquid electrolyte is 

provided in [56]. 

 Open Circuit Voltage (OCV) 

This method is promising for applications where the battery is allowed to rest for long 

periods of time as the battery terminal voltage decays with time to the Open Circuit 

Voltage (OCV). SOC can then be inferred from the OCV via look-up tables. However, 

this method cannot be used for dynamic SOC estimation, and its accuracy is adversely 

affected by temperature variations and hysteresis. Since the rest periods occur from time 

to time; this technique can be used in addition to Ah counting. Such a combination 

allows the SOC to be calculated after a rest period using the OCV-SOC interrelation; 

this SOC can then be used as a re-calibration point for the Ah counting method [57]. 
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 Artificial Neural Network 

SOC determination using Artificial Neural Networks (ANN) is discussed in details in 

[58,59,60] . Since artificial neural networks can establish an input/output relationship for 

non-linear complex systems, SOC and SOH can readily be obtained with ANNs. An 

ANN is composed of neurons that are interconnected together to form a relationship 

between the network’s input and outputs as shown in Figure 2.9 

 
Figure 2.9 - Diagram of an Artificial Neuron [61] 

ݐ݁݊  ൌ 	 ଵݓଵݔ  ଶݓଶݔ  ଷݓଷݔ  ⋯ ݓݔ  ܾ  

 ܱ ൌ ߮൫݊݁ݐ൯  

Where (		ݔଵ, ,ଶݔ ,ଷݔ … . .,  ) represent neuron inputs, their weights areݔ

,ଵݓ) ,ଶݓ ,ଷݓ ……  .denotes a nonlinear activation function	), ܾ is bias and ߮ݓ,

ANN mimics the human brain and needs to be trained [62]. The techniques and 

algorithms used for training of the ANN are presented in [63]. A limitation of ANN is 

that it requires a large amount of data for training for all operating conditions and 

situations [64].  
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 Impedance Spectroscopy 

Electro-Chemical Impedance Spectroscopy (EIS) is widely discussed in literature 

[65,66,67]. It is based on establishing a baseline by measuring the cell impedances over a 

wide range of Alternating Current (AC) frequencies under different SOCs. SOC is 

inferred by measuring the cell impedance values and correlating them against baseline 

impedance for various SOC [68,69]. 

 State Estimation Techniques 

Any state estimation technique like Extended Kalman Filter (EKF) or smooth 

variable structure filter (SVSF) can be used to estimate the system’s observable states. In 

the case of batteries, one of the system’s states is the SOC. The above mentioned 

estimation methods require a model of the dynamic system. The EKF and the SVSF 

were applied to SOC estimation using six different battery models in [28,29,30,31] and 

delivered an estimation error of less than 5%. 

 Thermal Management Systems 

Thermal management of lithium ion batteries is an important consideration. Battery 

overheating or thermal runaways could result in unsafe operating conditions with 

unwanted consequences. In order to keep the battery within its desired operating range 

the temperature of the cell core needs to be determined and monitored. Since the core 

temperature is difficult to measure, this temperature needs to be estimated [70]. Battery 

models also can be integrated with thermal models to form a more comprehensive 

approach to battery performance characterization [38,49]. 

 Battery Aging Mechanisms for Li-Ion. 

The phenomenon of battery aging is complex [71] and is affected by the battery 

operating conditions as shown in [72,73,74,75]. In literature, the aging has been mainly 



Master of Applied Science  McMaster University

Mohammed Farag Department of Mechanical Engineering

  

24 

 

defined as capacity or power fading to a predefined limit, where capacity fade is identified 

as loss of capacity [76] and power fade is identified as increase in the battery internal 

resistance [30].  The main reasons for aging are: 

 Extreme Conditions: operating the battery under extreme conditions such as high 

temperature [72], high charging rates [77,78], or high SOC levels. 

 Normal Conditions: aging can be caused due to battery storage (calendar aging) or 

usage (cycling aging). It is observed to be a result of several processes where 

performance degradation takes place due to irreversible chemical reactions [79]. 

 Summary 

Battery cell modeling and state of charge estimation are very important aspects that 

can improve the reliability of a vehicle is Battery Management System. This chapter 

provided an overview of battery terminologies and modeling strategies. A number of 

different battery modeling techniques were presented selecting between them is a trade-

off between model complexity, accuracy, and parameterization. This chapter also 

discussed different SOC estimation techniques. The SOC determination using state 

estimation techniques is the focus of this thesis.  
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3. State of Charge Estimation  

 

 

 

In this chapter, estimation strategies for State of Charge (SOC) are discussed. A 

description of the evolution of SOC estimation techniques and strategies is considered. 

The application of various estimation techniques to estimate SOC in battery systems is 

presented. It is followed by simulation and experimental procedure used in model fitting 

and SOC estimation. Summary and conclusion are provided. 

 State and Parameter Estimation Theory 

“When the five senses fail to provide direct information, human beings rely on post-sensory 

cognitive function of the brain to interpret sensory inputs to derive new information. 

Fortunately for dynamic systems, this can be done more mathematically using modeling and 

state-estimation.” [1] 

Estimation is used to extract information from measurement signals. They are used in 

many fields such as target tracking, control, monitoring, filtering, signal/image 

processing, navigation, and communication [80]. 
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Figure 3.1 depicts the estimation process, requiring access to input and output data.  

 
Figure 3.1 - State estimation – Overview 

As shown in the above figure, in model-based estimations, information needed would 

typically include knowledge about: 

 A dynamic model or functional representation. 

 Probability distribution or upper bound for system and measurement noise. 

 The prior information. 

In any casual dynamic system (for example battery cell) as shown in Figure 3.1, the output 

(Measurement) is a function of the past and present input. The past input effect on the 

system are summarized in the System States. Measurements are typically a function of one 

or more state. In battery systems the system states may include SOC, hysteresis value, and 

value of polarization effects [28,29,30]. 

Discrete time state-space representation is commonly used in filtering for modelling of a 

system under consideration as follows:  

ାଵݔ  ൌ ݔܣ  ݑܤ  ߱ 

ݕ  ൌ ݔܥ  ݑܦ   ݒ

Where ݔ ∈ 		Թൈଵ is the state vector, ݑ ∈ 		Թൈଵ		is the input vector, ݕ ∈ 		Թൈଵ		is 

the system output vector, ߱ ∈ 		Թൈଵ		is the system noise, and ݒ ∈ 		Թൈଵ is the 

measurement noise. 		ܣ ∈ 		Թൈ		,	ܤ ∈ 		Թൈ		,ܥ ∈ 		Թൈ, and 	ܦ ∈ 		Թൈ		are the 
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system, input, measurement and feed through matrices. Equation (3.1) and (3.2) are the 

state and measurement equations. A commonly used method for obtaining the state 

vector from measurement is the Kalman Filter. 

 The Kalman Filter (KF) 

R.E. Kalman first introduced Kalman Filter [81] in 1960 as an optimal recursive model 

based data processing algorithm for linear filtering purposes. Since then extensive research has 

been conducted on KF and its modified form for non-liner systems referred to as the 

Extended Kalman Filter (EKF). The Kalman filter is an optimal filter for linear Gaussian 

problems as it addresses the estimation problem through minimizing the Minimum 

Mean Square Error (MMSE) between the state estimate ݔො	and the true state ݔ	given 

the measured input data and the observed output data. It’s a model-based method derived 

in discrete time domain. The Kalman filter [82] can be summarized in two set of 

mathematical equations: time update equations (Predictor) and measurement update 

equations (Corrector) [80,81,83], as shown in Figure 3.2 

 
Figure 3.2 - Overview of Predictor-Corrector method [84] 
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Consider the discrete-time system defined by equation (3.1) and (3.2), where the 

variables ߱	is the system noise, and ݒ is the measurement noise. The KF assume that 

both ߱	 and ݒ are independent of each other, and have zero mean Gaussian 

distribution as shown below: 

,ሺ߱ሻ~ࣨሺ0  ܳሻ 

,ሻ~ࣨሺ0ݒሺ  ܴሻ 

Where ܳ and ܴ are the system and measurement noise covariance, respectively. 

The KF is optimal if the system is linear, observable, and if ߱	and ݒ	are white. The KF 

is a predictor corrector method that has two stages. The first stage involves a time update 

using the model for obtaining a prediction of the state vector referred to as the a priori 

state estimate ݔොାଵ| such that: 

 
ොାଵ|ݔ ൌ ො|ݔܣ   ݑܤ

An error covariance estimate ܲାଵ| for the a priori estimate is then calculated: 

 
ܲାଵ| ൌ ܣ ܲ|்ܣ  ܳ 

Where k denotes the sample time. 

The error covariance estimate provides an indication of the level of uncertainty in the 

state estimate and is used for error bounds calculation. “Large singular values” for 

		 ܲାଵ|	indicate a high level of uncertainty in our estimated state, while “small singular 

values” for 		 ܲାଵ| indicate a high level of confidence in our estimated state [30].  In the 

second stage, a corrective term is calculated using the measurement and what is referred 

to as the Kalman gain	ܭାଵ, where:  
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ାଵܭ ൌ ܲାଵ|்ܥ൫ܥ ܲାଵ|்ܥ  ܴାଵ൯

ିଵ
 

A refined a posteriori state estimates ݔොାଵ|ାଵ is then calculated such that: 

 
ොାଵ|ାଵݔ ൌ ොାଵ|ݔ  ାଵݖାଵ൫ܭ െ  ොାଵ|൯ݔܥ

The associated a posteriori error covariance estimate ܲାଵ|ାଵ is obtained as [85]: 

 
ܲାଵ|ାଵ ൌ ሺܫ െ ሻܥାଵܭ ܲାଵ| 

The a posteriori state estimate ݔොାଵ|ାଵ effectively incorporates a knowledge of the 

measurement to correct or tune up the a priori estimate. A small value of Kalman gain 

		in equation (3.12) means a small error covariance matrix	ାଵܭ ܲାଵ|, which means that 

more confidence should be placed on the a priori estimate. A high value on the other 

hand indicates that higher emphasis is placed on measurements. The Kalman Filter 

algorithm is summarized in Figure 3.3. 

 
 

Figure 3.3 - Summary of Kalman Filter equations 

Details about the optimality and derivation of the Kalman filter can be found in 

[81,86,80,83]. The assumption that the noise processes are white is rarely met in practical 
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applications. If this assumption is violated the Kalman filter will not be optimal and can 

become unstable [31,87,88].  

 The Extended Kalman Filter (EKF) 

For non-linear systems the Extended Kalman Filter needs to be used. In the EKF the 

system model is linearized around the current a priori state estimate. The linearized 

model is then used for the calculation of the Kalman gain. In case of non-linear systems, 

let:  

 
ାଵݔ ൌ ݂ሺݔ, ሻݑ  ߱ 

ݕ  ൌ ݃ሺݔ, ሻݑ   ݒ

Where the first equation represents the state equation (3.15) and the second equation is 

the output equation (3.16), both ߱	and ݒ	are assumed to be white noise, with zero 

mean and known covariance matrices (Q) and (R) respectively. 

Similarly to the Kalman filter, the a priori estimates are obtained using the system model 

which in this case is as follows: 

ොାଵ|ݔ  ൌ ݂൫ݔො|,  ൯ݑ

 ܲାଵ| ൌ ܨ ܲ|ܨ
்  ܳ 

The system models is then linearized around ݔොାଵ| such that: 

ܨ  ൌ
߲݂ሺݔ, ሻݑ

ݔ߲
ቤ
௫ೖୀ௫ොೖశభ|ೖ
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ܪ  ൌ
߲݃ሺݔ, ሻݑ

ݔ߲
ቤ
௫ೖୀ௫ොೖశభ|ೖ

 

The Kalman gain ܭାଵ is then calculated using the linearized model such that: 

ାଵܭ  ൌ ܲାଵ|ܩାଵ
் ൫ܩାଵ ܲାଵ|ܩାଵ

்  ܴାଵ൯
ିଵ

 

The a posteriori estimates are then obtained as:   

ොାଵ|ାଵݔ  ൌ ොାଵ|ݔ  ାଵܭ ቀݖାଵ െ ݃൫ݔොାଵ|,  ൯ቁݑ

 ܲାଵ|ାଵ ൌ ሺܫ െ ାଵሻܩାଵܭ ܲାଵ| 

The Extended Kalman Filter algorithm is summarized in Figure 3.4. 

 
 

Figure 3.4 - Summary of Extended Kalman Filter equations 

The extended Kalman filter linearization may become unstable in the presence of 

uncertainties. A more robust estimation strategy for condition monitoring of batteries is 

the Smooth Variable Structure Filter (SVSF). 
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 The Smooth Variable Structure Filter (SVSF) 

Habibi proposed the smooth variable structure filter (SVSF) in 2007 [89]. The SVSF 

was initially inspired by the Variable Structure Filter (VSF) [90].  It is a model-based 

estimation strategy that is related to the sliding mode control (SMC) [89]. The SMC 

uses a discontinuous control signal to retain states on a desired trajectory while achieving 

robustness to disturbances and modeling uncertainties [91,92]. If a state is away from its 

desired trajectory, a switching gain is used to push the state again towards the desired 

trajectory in order to minimize the tracking errors. The SVSF can guarantee stability 

given bounded uncertainties [84].  

The SVSF uses the same concept as SMC’s switching action to correct state estimates 

[93]. The SVSF has a predictor-corrector structure as in KF. It can be applied to linear or 

non-linear systems and for both state and parameter estimation applications [89]. It is a 

model-based method that is robust to modelling uncertainties and noise [94,89]. The 

SVSF estimation concept is illustrated in Figure 3.5. It shows that the initial estimate is 

forced to converge to the actual state trajectory using the SVSF gain. The SVSF gain 

woks by pushing the estimate back and forth along the actual state trajectory while 

retaining it in a region known as the existence subspace. The width of the existence 

subspace β is a time varying and is function of modeling uncertainties [89]. 

Given a non-linear system with a model given in equations (3.15) and (3.16). The a priori 

state estimate xො୩ାଵ|୩ is obtained as: 

 
ොାଵ|ݔ ൌ መ݂൫ݔො|,  ൯ݑ

The SVSF assumes that the measurement equation is linear such that: 

 
ݖ ൌ ොାଵ|ݔܥ   ݒ
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An a priori estimate of the output vector ̂ݖାଵ| is obtained from equation (3.20) as 

follows: 

 
ାଵ|ݖ̂ ൌ  ොାଵ|ݔܥ

The corresponding error is obtained as: 

 
݁௭,ାଵ| ൌ ାଵݖ െ  ାଵ|ݖ̂

Further to [89], the SVSF corrective term is: 

 
ାଵܭ
ௌௌி ൌ መା൫ห݁௭,ାଵ|หܥ  ห݁௭,|ห൯ߛ ∘ ݐܽݏ ൬

݁௭,ାଵ|
߰

൰ 

 

 
Figure 3.5 - SVSF estimation concept 
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The SVSF gain depends on: the a priori measurement errors		݁௭,ାଵ|, the a posteriori 

measurement errors	݁௭,|, a smoothing boundary layer widths	߰, a constant	ߛ, and an 

estimate of the measurement matrix	ܥመ. The SVSF gain is used for obtaining the a 

posteriori estimate as: 

ොାଵ|ାଵݔ  ൌ ොାଵ|ݔ  ାଵܭ
ௌௌி 

The updated a posteriori measurement estimates ̂ݖାଵ|ାଵ and its corresponding 

error	݁௭,ାଵ|ାଵ are then calculated: 

ାଵ|ାଵݖ̂  ൌ  ොାଵ|ାଵݔܥ

 ݁௭,ାଵ|ାଵ ൌ ାଵݖ െ  ାଵ|ାଵݖ̂

The SVSF process is summarized in Figure 3.6 and is repeated iteratively.  

 
 

Figure 3.6 - Summary of Smooth Variable Structure Filter equations 

According to [89], the SVSF estimation process is stable and will converge to the 

existence subspace during the reachability phase according to equation (3.27): 
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 ቚ݁௭ାଵ|ାଵቚ ൏ ቚ݁௭|ቚ 

The SVSF proof yields the derivation of the SVSF gain from equation (3.27) as described 

in [89,95]. The proof of stability is discussed in [95]. 

 State of Charge Estimation Application 

An overview of two state and parameter estimation strategies that are used in this 

research (namely, the EKF and the SVSF) were presented. In this section, their use for 

condition monitoring of batteries is discussed. A battery condition monitoring system is 

depicted in Figure 3.7 

 

 
Figure 3.7 - Schematic diagram of state update 
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The battery has a single input (Current)	ݑ, and a measured output (Voltage)		ݕ. It has 

also has an internal states (such as SOC) represented by the state vector ݔ	. The 

condition monitoring systems proposed in this research were implemented by using both 

simulations and experimental studies conducted on lithium-ion battery cells. 

 Simulation and Experimental Cell Testing 

In this research, a range of models for lithium-ion batteries and two estimation 

methods are used for state estimation. The models and the estimation strategies are then 

compared. Here a strategy and procedure for their fair comparison is defined. This 

comparison is made by using both simulated and experimental data. The advantage of 

including a simulated study is that all parameters are known and a known disturbance can 

be injected into the process for examining robustness to uncertainties. 

 Simulation Experiment 

Simulation data was gathered using the AVL CRUISE software platform. This software 

is a well-known vehicle and powertrain simulation tool. The electric vehicle model of 

Figure 3.8 was used. It consists of several blocks connected through a simulation 

algorithm. The simulated vehicle as published in [96] is shown in Figure 3.8 is a typical 

mid-size, front-wheel sedan with gross weight of 3500 lbs. and a top speed of 120 km/hr. 

The vehicle is powered by a 32kWh capacity lithium-ion battery pack which is liquid-

cooled.  
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Figure 3.8 - AVL CRUISE Electric Vehicle model [96] 

The drivetrain includes a traditional PID controller that maintains the speed of the 

vehicle at the desired speed and thus mapping the velocity profile to battery pack current 

supply requirement. Since all the models are designed for cell-level batteries, battery pack 

current is scaled down in order to obtain the applied current per cell. The AVL CRUISE 

vehicle model is equipped with regenerative braking capability so the battery is recharged 

on braking. The cell in the simulation has a nominal capacity of 7.5 Ah.  

The driving cycle used in the simulation is the Urban Dynamometer Driving Schedule 

(UDDS). The vehicle components specifications are sized to meet the requirements of an 

Urban Dynamometer Driving Schedule (UDDS) cycle with maximum speed of 100 

Km/hr. The vehicle speed profile is shown in Figure 3.9, and the battery scaled down cell 

current is shown in Figure 3.10. 
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Figure 3.9 – Vehicle velocity profile [UDDS Cycle] 

 
Figure 3.10 – Battery cell current profile [UDDS Cycle] 
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The simulation test cycle is a sequence of 2 urban dynamometer driving schedule 

(UDDS) cycles, separated by 0A (rest period) as shown in Figure 3.11. A relatively large 

operating range was selected for the battery testing (5% to 95% of the SOC) as shown in 

Figure 3.12. 

 
Figure 3.11 - Simulation test cycle sequence 

 
Figure 3.12 - SOC vs. Time [UDDS Test Sequence] 

The overall current and terminal voltage for the test sequence can be seen in Figure 3.13 

and Figure 3.14 respectively, where every peak in the current profile represent a sudden 

acceleration or declaration (regenerative breaking action) event. 
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Figure 3.13 - Battery cell current profile [UDDS Test Sequence] 

 
Figure 3.14 - Battery Cell terminal Voltage profile [UDDS Test Sequence] 

Note that the decrease in the output voltage value overtime in Figure 3.14 is related to the 

discharging effect of the battery from 95% to 5% SOC. 
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 Experimental Testing Cycle 

An Experimental setup at the BMW3 Electrical and Hybrid Research and 

Development Center Research and Development was used for battery testing. The 

battery was subjected to a full discharging cycle with the current profile shown in Figure 

3.15. Battery cell nominal capacity was 20 Ah. The test were performed in a temperature 

controlled chamber at 25 degree celsius. The battery nomial voltage was 3.7 [V]. Due to 

proprietary nature of the experiment setup, some details are not provided.  

 
Figure 3.15 - Experimental battery current profile 

Note that the degradation in output terminal voltage overtime is shown in Figure 3.17 

and is related to the discharging of the battery from 100% to 0% SOC. 

                                                 

3 BMW, Research and development center 

Address: Dostlerstraße, 80809 Munich, Germany. 

Website:  www.bmwgroup.com  
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Figure 3.16 - Experimental battery SOC vs. Time profile 

 
Figure 3.17 - Experimental Battery Terminal Voltage behavior 

This simulation and Experimental data is used in the following chapters for comparing 

the models and estimations techniques. A quantitative measure used for comparison is the 
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root-mean-squared error (RMSE) for the estimated terminal voltage versus the measured 

or simulated battery voltage as given in equation (3.32) 

 
ܧܵܯܴ ൌ ඨ

∑ ሺሺݕ௧ െ ො௧ሻଶሻݕ
௧ୀ

݊
 

 Summary 

Estimation theory is an important tool for SOC estimation. This chapter provided a 

comprehensive review of three estimation strategies (KF, EKF, and SVSF). The Kalman 

filter provides an optimal solution for linear problems under certain assumptions. If any of 

these assumption are violated, the KF yields sub-optimal results and can become unstable. 

The EKF is a modified version of the KF for non-linear system 

This chapter also provided an overview of another methodology that is referred to as 

SVSF. The SVSF improves the robustness of the estimation process. The SVSF and the 

EKF implantations and comparisons with various battery models form the core of this 

thesis. 
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4.  Behavioral Modelling 

 

 

 

In this chapter, Behavioral models of Lithium ion cell are reviewed. Introduction and 

a detailed discussion of the advantages and disadvantages of this modelling approach is 

provided. It is followed by an overview of battery modelling evolution and behavioral 

models of varying complexity. Summary and discussions are provided. 

 Introduction 

A number of Behavioral models for electrical batteries have been proposed with 

varying degrees of complexity. These models are empirical functions with parameters 

derived from measurements without any knowledge of the internal structure or material 

properties of batteries. This leads to very accurate models for the measured operating 

conditions, but with limited validity outside the measured conditions. Increasing the 

number of parameters makes it easier to fit the function output to battery measurements, 

but can result in over parameterization, that compromises the validity of the model 

beyond the regions considered, while increasing computational complexity. 
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 Evolution of Behavioral Cell Models 

In this section, several techniques available for Behavioral modelling of batteries are 

discussed. The models can range from having one state representing the SOC to models 

capable of capturing the battery hysteresis and relaxation effects during charging and 

discharging cycles. 

 Combined Model  

The terminal voltage of the battery may be predicted in a number of different ways. 

One important method of predicting the voltage is based on the SOC. A number of 

models have been formulated and discussed in [97,98]. The following three are amongst 

the most popular [97,99]: 

 Shepherd: ݕ ൌ ܧ െ ܴ݅ െ  ݖ/ܭ

 Unnewehr universal model: ݕ ൌ ܧ െ ܴ݅ െ  ݖܭ

 Nernst: ݕ ൌ ܧ െ ܴ݅  ଶܭ lnሺݖሻ  ଷܭ lnሺ1 െ  ሻݖ

In these models, ݕ is the cell terminal voltage, ܴ is the cell internal resistance, ܭ is the 

polarization resistance, ݖ is the cell SOC, and ܭଵ, ,ଶܭ  ଷ are constants chosen to fit theܭ

model to the data [97]. Note that all of these models may be used in a ‘combined model’ 

that performs better than individually models. A combined model proposed in [97] is 

defined by the following equations: 

 
ାଵݖ ൌ ݖ െ ൬

ݐ∆ߟ
ܥ

൰ ݅ 
 

 
ݕ ൌ ܭ െ ܴ݅ െ

ଵܭ
ݖ
െ ݖଶܭ  ଷܭ lnሺݖሻ  ସܭ lnሺ1 െ  ሻݖ

 

The unknown quantities in the model may be estimated using system identification [97]. 

For example, given a set of ܰ cell input-output parameters	ሺݕ, ݅,  ሻ, the values may beݖ

solved by using least squares estimation [97]. A Simple offline (batch) processing method 
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for parameter calculation can be carried out as follows. Let the output vector ܻ be defined 

as: 

 
ܻ ൌ ሾݕଵ, ,ଶݕ ,ଷݕ …… . . ,  ேሿ்ݕ

 

An output matrix H is then defined: 

 
ܪ ൌ ሾ݄ଵ, ݄ଶ, ݄ଷ, …… . . , ݄ேሿ் 

 

The rows in matrix H are: 

 
݄
் ൌ ቈ1, ݅

ା, ݅
ି,
1
ݖ
, ,ݖ ln൫ݖ൯ , lnሺ1 െ  ሻݖ

 

Where ݅ is the battery current, ݅
ା is the charging current, and ݅

ି is the discharging 

current and can be calculated as follows: 

 ݅
ା ൌ ݅ if ݅  0  

݅
ି ൌ ݅ if ݅ ൏ 0 

݁ݏ݈݁ 
ା ൌ ݅

ି ൌ 0 

 

Then Y = Hߠ, where ்ߠ ൌ ሾ݇, ܴା, ܴି, ݇ଵ, ݇ଶ, ݇ଷ, ݇ସሿ is the parameter vector with 

unknown elements. By using least-squares estimation, the parameters in ߠ are obtained 

as: 

 
ߠ ൌ ሺܪ்ܪሻିଵ்ܻܪ.  

 

 

 Simple Model 
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As presented in [97], obtaining the parameters values for the combined model. The 

model may be divided into two additive parts: one depending only on the SOC	ሺ	ݖ	ሻ, and 

the other depending only on the current	ሺ	݅	ሻ. This yields two equations: 

 ݂ሺݖሻ ൌ ܭ െ
ଵܭ
ݖ
െ ݖଶܭ  ଷܭ lnሺݖሻ  ସܭ lnሺ1 െ   ሻݖ

 ݂ሺ݅ሻ ൌ ܴ݅  

Where, 

ݕ  ൌ ݂ሺݖሻ െ ݂ሺ݅ሻ  

As explained in [97], all the parameters in equation (4.8) are SOC dependent so 

decreasing the number of parameters in combined model for easier implementation can 

be as follows: 

ାଵݖ  ൌ ݖ െ ൬
ݐ∆ߟ
ܥ

൰ ݅  

ݕ  ൌ ሻݖሺܸܥܱ െ ܴ݅  

where ܱܸܥ refers to the open circuit voltage, the OCV curve is assumed to be the average 

of the charge and discharge curves taken at low currents (C/20) or (C/25) from fully 

charged to fully discharged. Use of low charging and discharging minimize the cell 

dynamics. A Simple offline (batch) processing method for parameter calculation can be 

carried out as follows. Let the output vector ܻ be defined as: 

 
ܻ ൌ ሾݕଵ, ,ଶݕ ,ଷݕ …… . . ,  ேሿ்ݕ

 

An output matrix H is then defined: 
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ܪ ൌ ሾ݄ଵ, ݄ଶ, ݄ଷ, …… . . , ݄ேሿ் 

 

The rows in matrix H are: 

 
݄
் ൌ ൣ ݅

ା, ݅
ି൧  

Where ݅ is the battery current, ݅
ା is the charging current, and ݅

ି is the discharging 

current and can be calculated as follows: 

 ݅
ା ൌ ݅ if ݅  0  

݅
ି ൌ ݅ if ݅ ൏ 0 

݁ݏ݈݁ 
ା ൌ ݅

ି ൌ 0 

 

Then Y = Hߠ, where ்ߠ ൌ ሾܴା, ܴିሿ is the parameter vector with unknown elements. By 

using least-squares estimation, the parameters in ߠ are obtained as: 

 
ߠ ൌ ሺܪ்ܪሻିଵ்ܻܪ.  

 

 Zero-State Hysteresis Model 

An important concept that is ignored by the previous two models is the hysteresis. 

The hysteresis affects the SOC estimation since after discharging, the cell voltage relaxes 

to a value less than the true OCV. Conversely, after charging, the cell voltage relax to a 

value higher than the true OCV. For improved SOC estimation, the hysteresis should be 

considered as described in [97]. In this model a term is added to the output equation to 

map the memory effect of the hysteresis. However, no extra state is added for the 

hysteresis. A basic model of hysteresis involves simply adding a term to the output 

equation (2.2.4) as follows: 
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ାଵݖ  ൌ ݖ െ ൬
ݐ∆ߟ
ܥ

൰ ݅  

ݕ  ൌ ሻݖሺܸܥܱ െ ܴ݅ െ   ሻݖሺܯݏ

Where	ݏ	represents the sign of the current (including a memory effect during a rest 

period). For some sufficiently small and positive value	ߝ, one has: 

ݏ  ൌ ൝
1
െ1

ݏ െ 1

݅  ߝ
݅ ൏ െߝ
|݅|  ߝ

  

Also, note that Mሺz୩ሻ is half the difference between the charge and discharge values (i.e., 

average between the discharging and charging curve) [97]. Typically, the value for M can 

be assumed constant. As per [97], the zero-state hysteresis model is an improvement over 

the simple model, but only crudely approximates the underlying phenomenon. Whereas 

the level of hysteresis slowly changes as the cell is charged or discharged, the model 

estimates hysteresis as immediately flipping between its maximum positive and negative 

values when the sign of current changes. A Simple offline (batch) processing method for 

parameter calculation can be carried out as follows. Let the output vector ܻ be defined as: 

 
ܻ ൌ ሾݕଵ, ,ଶݕ ,ଷݕ …… . . ,  ேሿ்ݕ

 

An output matrix H is then defined: 

 
ܪ ൌ ሾ݄ଵ, ݄ଶ, ݄ଷ, …… . . , ݄ேሿ் 

 

The rows in matrix H are: 

 ݄
் ൌ ൣ ݅

ା, ݅
ି,   ൧ݏ
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Using Y = Hߠ, where ்ߠ ൌ ሾܴା, ܴି,Mሿ is the parameter vector with unknown elements. 

By using least-squares estimation, the parameters in ߠ are obtained as: 

 
ߠ ൌ ሺܪ்ܪሻିଵ்ܻܪ.  

 

 One-State Hysteresis Model 

One of the drawbacks in the Zero-State Hysteresis model is that the hysteresis effect 

is added as a constant in the output equation. However, the hysteresis has a slow 

transition which can be modelled by adding a ‘hysteresis state’ to the model to capture the 

change in the hysteresis value. Suppose that ݄ሺݖ,  ሻ is the hysteresis voltage as a functionݐ

of SOC and time, then as shown in [97]: 

 ݄݀ሺݖ, ሻݐ
ݖ݀

ൌ ,ݖሺܯሶሻሾݖሺ݊݃ݏߚ ሶሻݖ െ ݄ሺݖ,  ሻሿݐ
 

Where Mሺz, zሶሻ is a function that gives the maximum hysteresis value as a function of 

SOC and the rate-of-change of SOC. The term ܯሺݖ, ሶሻݖ െ ݄ሺݖ, -ሻ states that the rate-ofݐ

change of hysteresis voltage is proportional to the distance away from the main hysteresis 

loop; leading to a type of voltage decay in the major loop. The term ߚ is considered 

positive and constant; and affects the rate of voltage decay. The sign function forces the 

equation to be stable for both charging and discharging [97]. However to add the 

hysteresis effect to the model, equation (3.22) needs to be transferred from being a 

differential equation in SOC to be a differential equation in the time domain by 

multiplying both sides of the equation by 
ௗ

ௗ௧
 . 

 

 



Master of Applied Science Thesis McMaster University

Mohammed Farag Department of Mechanical Engineering

  

51 

 

Equation (3.22) becomes: 

 ݄݀ሺݖ, ሻݐ

ݖ݀
ൈ
݀z
ݐ݀

ൌ ,ݖሺܯሶሻሾݖሺ݊݃ݏߚ ሶሻݖ െ ݄ሺݖ, ሻሿݐ ൈ
݀z
ݐ݀

 
 

It should be noted that 
ௗ

ௗ௧
 can be calculated as the differentiation of equation (3.1): 

 ݀z
ݐ݀

ൌ െቀ
ߟ
ܥ
ቁ ݅ሺݐሻ 

 

With: 

 
ሶሻݖሺ݊݃ݏሶݖ ൌ   |ሶݖ|

By substituting equations (3.24) and equations (3.25) to equations (2.23), then: 

 ሶ݄ ሺtሻ ൌ െ ቤ
ߚሻݐ݅ሺߟ
ܥ

ቤ ݄ሺݐሻ  െ ቤ
ߚሻݐ݅ሺߟ
ܥ

ቤܯሺݖ,   ሶሻݖ

Equation (3.26) can then be discretized as shown in [97]: 

 
݄ାଵ ൌ ݔ݁ ቆെ ቤ

ߚሻݐ݅ሺߟ
ܥ

ቤቇ ݄  ቆ1 െ ݔ݁ ቆെ ቤ
ߚሻݐ݅ሺߟ
ܥ

ቤቇቇܯሺݖ,   ሶሻݖ

As shown above, this equation is a linear time varying model as the states and the input 

change with current ݅ and hence with time. The overall state-space model for the one-

state hysteresis model is obtained as [97]: 

 
݄ାଵ
ାଵݖ

൨ ൌ ቂܨሺ݅ሻ 0
0 1

ቃ 
݄
ݖ
൨  

0 1 െ ሺ݅ሻܨ

െ
ݐ∆ߟ
ܥ

0
 

݅
,ݖሺܯ ሶሻݖ

൨  

 
ݕ ൌ ሻݖሺܸܥܱ െ ܴ݅  ݄ 
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Where: 

 
ሺ݅ሻܨ ൌ ݔ݁ ቆെ ቤ

ߚሻݐ݅ሺߟ
ܥ

ቤቇ 
 

The parameters vector to be optimized for this model is θ ൌ ሾܴା, ,ିܯ,ାܯ,ିܴ  .ሿߛ

 Enhanced Self-Correcting Model (2-States) 

The enhanced self-correcting (ESC) battery model represents one of the most 

accurate currently being used models for battery SOC estimation. This model can 

accurately capture battery dynamics and can thus be implemented in a vehicle BMS as it 

accommodates for hysteresis, polarization time constants, and ohmic losses. One of its 

major drawbacks in the previous model considered in section 4.2.4 is the relaxation effect 

as described by Plett in [97]. Relaxation effect can be defined as the phenomena that 

takes place when the battery is subjected to pulsed input current, as it takes time for the 

voltage to completely settle to a steady state value, while the same phenomena happens 

when the battery is allowed to rest and the voltage takes time to converge to the rest 

voltage (OCV). These time constants should be included in our model to capture the 

dynamics that take place in an electric vehicle applications. This model is required to: 

 Force the output voltage ݕ to converge to OCV  ݄	 after a rest period. 

 Force the output voltage ݕ to converge to OCV  ݄ െ 	Ri୩	 after a period of 

constant charging or discharging 

To meet these requirements while taking care of the hysteresis effect, the output equation 

of the model should be in a form that allows it to capture the dc gain (bias) and the fast 

variations also as shown in [28,97,30]: 

 
ݕ ൌ ሻݖሺܸܥܱ  ݄  ሺ݅ሻݐ݈݂݅ െ ܴ݅ 
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Where the filter ′݂݈݅ݐሺ. ሻ′ design must be enforced to satisfy the both requirements listed 

above. The first requirement could be fulfilled by implementing a stable linear filter, 

while the second one can be fulfilled by a linear filter with zero DC gain. A state space 

representation for a low-pass filter can be in the following form: 

 ݂ାଵ ൌ ܣ ݂    ݅ܤ

ݕ 
 ൌ G ݂  

Where ݂	is the filter state vector at a discrete time steps k, ݅		is the input vector, ݕ
	is 

the filter output vector, ܣ	is the state transition matrix and it determines the poles and 

resonant modes (stability) of the dynamic system. 

The filter stability is ensured if the poles of the		݉ܽݔห݁݅݃൫ܣ൯ห ൏ 1. In other words, by 

considering		ܣ ൌ ݀݅ܽ݃ሺߙሻ, then stability is achieved if all		െ1 ൏ ୨ߙ ൏ 1. However, the 

matrix ܤ	should be chosen with taking care of not having any zero entry [28,97,30]. 

After investigating the stability, it is guaranteed that ݕ	will tend to ܱܸܥሺݖሻ  ݄	during 

rest conditions. The two constants 	݃ଵ, ݃ଶ can be calculated by equation (3.33) as shown 

in [97] to ensure zero dc-gain of the filter, so that ݕ	will tend to ܱܸܥሺݖሻ െ ܴ݅ 

݄	during constant current profiles. 

 ݃୬ ൌ݃୩
ሺ1 െ ୬ሻߙ
ሺ1 െ ୩ሻߙ

୬

୩ୀଵ

  

The ESC with two filter states model in the state space form is as follows [97]:  
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ۏ
ێ
ێ
ۍ ଵ݂,ାଵ

ଶ݂,ାଵ

݄ାଵ
ାଵݖ ے

ۑ
ۑ
ې
ൌ ൦

ଵߙ 0 0 0
0 ଶߙ 0 0
0 0 ሺ݅ሻܨ 0
0 0 0 1

൪

ۏ
ێ
ێ
ۍ ଵ݂,

ଶ݂,

݄
ݖ ے
ۑ
ۑ
ې



ۏ
ێ
ێ
ێ
ۍ

1 0
1 0
0 ൫1 െ ሺ݅ሻ൯ܨ

െ
ݐ∆ߟ
ܥ

0 ے
ۑ
ۑ
ۑ
ې


݅

,ݖሺܯ ሶሻݖ
൨ 

 

ݕ  ൌ ሻݖሺܸܥܱ െ ܴ݅  ݄  ݃ଵ ଵ݂,  ݃ଶ ଶ݂,  

Where ݖ is the state of charge, ݂	is the states of the low pass filter on ݅ which is used to 

characterize the polarization time constants, ݄ is the state representing charging or 

discharging hysteresis effect, ܱܸܥ is the open circuit voltage, ܥ is the battery nominal 

capacity, ܴ is the battery internal resistance, ܩ is the output matrix of the low pass filter, 

and ߙ୧ are the poles of the low pass filter. This model contains two inputs as follows: ݅ is 

the battery input current and	ܯሺݖ,  .ሶሻ, that is the maximum polarization due to hysteresisݖ

The model has one output	ݕ, which is the terminal voltage. The parameters vector to be 

optimized for this model is θ ൌ ሾܴା, ܴି, ݃ଵ, ,ଵߚ ,ିܯ,ାܯ,ଶߚ ୬ߚ ሿ. Whereߛ ൌ tanh	ሺߙ୬ሻ 

and ߙ୬is the vector of the filter pole locations. The tanh	function is used to force the pole 

location to be within the unity circle of stability േ1 (i.e. stable system). 

 Enhanced Self-Correcting Model (4-States) 

The enhanced self-correcting (ESC) model is a two states model. System dynamics 

can be captured better by increasing the number of states to four states [97]. The resulting 

ESC model in the state space form is as follows:  
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ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ଵ݂,ାଵ

ଶ݂,ାଵ

ଷ݂,ାଵ

ସ݂,ାଵ

݄ାଵ
ାଵݖ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵߙ 0 0 0 0 0
0 ଶߙ 0 0 0 0
0 0 ଷߙ 0 0 0
0 0 0 ସߙ 0 0
0 0 0 0 ሺ݅ሻܨ 0
0 0 0 0 0 ے1

ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ଵ݂,

ଶ݂,

ଷ݂,

ସ݂,

݄
ݖ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې



ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

1 0
1 0
1 0
1 0
0 ൫1 െ ሺ݅ሻ൯ܨ

െ
ݐ∆ߟ
ܥ

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې


݅

,ݖሺܯ ሶሻݖ
൨ 

 

ݕ  ൌ ሻݖሺܸܥܱ െ ܴ݅  ݄  ݃ଵ ଵ݂,  ݃ଶ ଶ݂,  ݃ଷ ଷ݂,  ݃ସ ସ݂,  

 

Where the parameters vector to be optimized for this model is θ ൌ

ൣܴା, ܴି, ݃ଵ, ݃ଶ,, ݃ଷ, ,ଵߚ ,ଶߚ ,ଷߚ ,ିܯ,ାܯ,ସߚ ൧ߛ

. 

 Model Parameter Tuning 

The first three models (Combined Model, Simple Model, and Zero State Hysteresis 

Model) in this chapter are “linear with respect to their parameters”. This makes 

identifying the values of the model parameters straightforward using least squares 

estimation, where the parameters can be obtained by equation (4.7). 

When the model is not linear in parameters as in (One State Hysteresis and 

Enhanced self-correcting models), the least squares estimation cannot be used. A Matlab 

Global Optimization Toolbox called the Generalized Pattern Search (GPS) algorithm is 

used to calculate the model parameters. GPS algorithm is a pattern search algorithms that 

computes a sequence of points that approach an optimal point. At each step, the 
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algorithm searches a set of points, called a mesh, around the current point—the point 

computed at the previous step of the algorithm. The mesh is formed by adding the 

current point to a scalar multiple of a set of vectors called a pattern. If the pattern search 

algorithm finds a point in the mesh that improves the objective function at the current 

point, the new point becomes the current point at the next step of the algorithm.  

GPS algorithm is used to optimize model parameters by calculating the best value for the 

parametric vector ߠ to minimize a cost function. The GPS cost function is the Root-

Mean-Squared Error (RMSE) in predicting the terminal voltage. The stopping criterion 

adopted is based on the difference the fitness value of the cost function (i.e., RMSE 

between the measured and simulated voltage) at two consecutive steps (i.e., step t and 

t+1). The threshold value of this change is chosen to be 1e-06. The number of iterations 

changes from one model to another. The GPS requires a lower bounds, upper bounds 

and initial starting point of the elements of the parametric vector		ߠ. The starting point is 

usually randomly selected. The GPS’ output is the optimized parametric vector		ߠ. 

The measured and simulated currents and voltages are the inputs. The simulation data are 

shown in Figure 4.1 and Figure 4.2 are used for calculating the model parameters. In case 

of experimental results the data are shown in Figure 4.3 and Figure 4.4. These date are 

used for model parameter identification and represent approximately 25%, the renaming 

75% are used for validating the model. 

 



Master of Applied Science Thesis McMaster University

Mohammed Farag Department of Mechanical Engineering

  

57 

 

 
Figure 4.1 – Simulation battery cell current profile [UDDS Test Sequence] 

 
Figure 4.2 – Simulation battery Cell terminal Voltage profile [UDDS Test Sequence] 
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Figure 4.3 - Experimental battery current profile 

 
Figure 4.4 - Experimental Battery Terminal Voltage behavior 

The parametric vector ߠ for each of the models is obtained using the GPS to tune the 

model parameters. 
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 Simulation Results 

The simulation data set of Figure 3.13 and Figure 3.14 were used as input to all 

models, the output of the models compared to the cell terminal voltage under UDDS 

cycle is shown in Figure 4.5 - Figure 4.10. The parametric vector ߠ for all the models was 

obtained as in Table 4.2 using GPS algorithm with data from Figure 4.1 and Figure 4.2. 

 
Figure 4.5 – Simulation Results of cell modeling with combined model showing the model 

Terminal Voltage versus the True Voltage [UDDS] 
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Figure 4.6 – Simulation Results of cell modeling with Simple model showing the model Terminal 

Voltage versus the True Voltage [UDDS] 

 
Figure 4.7 – Simulation Results of cell modeling with Zero State Hysteresis model showing the 

model Terminal Voltage versus the True Voltage [UDDS] 
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Figure 4.8 - Simulation Results of cell modeling with One State Hysteresis model showing the 

model Terminal Voltage versus the True Voltage [UDDS] 

 
Figure 4.9 – Simulation Results of cell modeling with Enhanced Self Correcting model – 

2 States showing the model Terminal Voltage versus the True Voltage [UDDS] 
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Figure 4.10 – Simulation Results of cell modeling with Enhanced Self Correcting model –  

4 States showing the model Terminal Voltage versus the True Voltage [UDDS] 

 

The associated root mean squared error between the cell voltage and the simulated 

voltage is shown in Table 4.1. 

Model 

Parameters 
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RMSE 18.4 9.5 9.9 8.0 1.8 1.4 

Table 4.1 – The RMSE for each model 
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Model 

Parameters 

C
om

b
in

ed
 

S
im

p
le

 

Z
er

o-
S

ta
te

 H
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te
re
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s 

O
n

e-
S

ta
te

 H
ys

te
re

si
s 

E
S

C
-2

 

E
S

C
-4

 

݇  4.23 - - - - - 

݇ଵ 3.86E-05 - - - - - 

݇ଶ 0.24 - - - - - 

݇ଷ  0.22 - - - - - 

݇ସ  -0.04 - - - - - 

ܴା  0.0022 0.0023 0.0022 0.0022 0.0017 0.00174 

ܴି 0.002 0.0018 0.0016 0.0016 0.0017 0.00174 

݃ଵ  - - - - -6.90E-06 -6.90E-04

݃ଶ - - - - - 3.21E-05 

݃ଷ  - - - - - 0 

 ଵߚ - - - - 2.71 2.74 

 ଶ - - - - 3.86 0.35ߚ

 ଷ - - - - - 0.28ߚ

 ସ - - - - - 3.86ߚ

 ା - - 0.0041 0.0105 0.0105 0.0105ܯ

 ିܯ - - 0.0041 -0.016 -0.016 -0.01 

 ߛ - - - 0.1 0.1 0.1 

Table 4.2 - The parameteric Values for variable  in all models 
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 Experimental Results 

The experimental data set of Figure 3.15 and Figure 3.17 were used as input to all 

models, the output of the models compared to the cell terminal voltage is shown in Figure 

4.11- Figure 4.16. The parametric vector ߠ for all the models was obtained as in Table 

4.4 using GPS algorithm with data from Figure 4.3 and Figure 4.4. 

 
Figure 4.11 – Experimental Results of cell modeling with Combined model showing the model 

Terminal Voltage versus the True Voltage 
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Figure 4.12 – Experimental Results of cell modeling with Simple model showing the model 

Terminal Voltage versus the True Voltage 

 
Figure 4.13 – Experimental Results of cell modeling with Zero State Hysteresis model showing 

the model Terminal Voltage versus the True Voltage 



Master of Applied Science Thesis McMaster University

Mohammed Farag Department of Mechanical Engineering

  

66 

 

 
Figure 4.14 - Experimental Results of cell modeling with One State Hysteresis model showing 

the model Terminal Voltage versus the True Voltage 

 
Figure 4.15– Experimental Results of cell modeling with Enhanced Self Correcting model – 2 

States showing the model Terminal Voltage versus the True Voltage 
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Figure 4.16 – Experimental Results of cell modeling with Enhanced Self Correcting model – 4 

States showing the model Terminal Voltage versus the True Voltage 

 

The associated root mean squared error between the cell voltage and the simulated 

voltage is shown in Table 4.3 

Model 
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C
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RMSE 24.7 20.9 20.2 18.2 6.9 6.7 

Table 4.3 – The RMSE for each model 
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Model 

Parameters 
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n
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E
S

C
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݇  0.0018 - - - - - 

݇ଵ 0.0001 - - - - - 

݇ଶ -0.565 - - - - - 

݇ଷ  0.012 - - - - - 

݇ସ  -0.027 - - - - - 

ܴା  0.0018 0.0018 0.0018 0.0018 0.0013 0.00174 

ܴି 0.0007 0.0007 0.0007 0.0007 0.0012 0.00174 

݃ଵ  - - - - -6.90E-06 -6.90E-04

݃ଶ - - - - - 3.11E-05 

݃ଷ  - - - - - 0 

 ଵߚ - - - - 2.81 2.84 

 ଶ - - - - 4.13 0.14ߚ

 ଷ - - - - - 0.28ߚ

 ସ - - - - - 4.11ߚ

 ା - - 0.005 0.032 0.032 0.032ܯ

 ିܯ - - 0.005 -0.81 -0.81 -0.81 

 ߛ - - - 0.12 0.12 0.12 

Table 4.4 - The parameteric Values for variable  in all models 
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 SOC Estimation 

The SOC estimation results using the EKF and the SVSF for all of the six modeling 

techniques are presented in this section. 

 Simulation Results 

In this section, the EKF SOC and SVSF SOC estimation results will be presented 

and compared to the simulated and hence known value of the SOC for Behavioral models 

as shown in Figure 4.17 to Figure 4.22.  The estimated SOC is initialized at 85% while 

the true SOC is at 95% (i.e. 10% error). For all models the EKF system and measurement 

noise covariance, and the SVSF ‘memory’ or convergence rate and smoothing boundary 

layers were obtained as in Table 4.6. The RMSE associated with SOC estimation using 

the EKF and the SVSF was obtained as in Table 4.5. 

 
Figure 4.17 – Simulation results of SOC estimation with combined model showing the EKF and 

SVSF estimated versus model SOC. 
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Figure 4.18 – Simulation results of SOC estimation with simple model showing the EKF and 

SVSF estimated versus model SOC. 

 
Figure 4.19 - Simulation results of SOC estimation with Zero State Hysteresis showing the EKF 

and SVSF estimated versus model SOC. 
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Figure 4.20 - Simulation results of SOC estimation with One State Hysteresis showing the EKF 

and SVSF estimated versus model SOC. 

 
Figure 4.21 - Simulation results of SOC estimation with Enhanced Self Correcting model – 2 

States showing the EKF and SVSF estimated versus model SOC. 
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Figure 4.22 - Simulation results of SOC estimation with Enhanced Self Correcting model – 4 

States showing the EKF and SVSF estimated versus model SOC. 
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EKF –SOC 

[%] 
1.1 0.90 0.73 0.52 0.40 0.29 

SVSF –SOC 

[%] 
1.09 0.92 0.89 0.50 0.34 0.25 

Table 4.5 – Root mean squared error (RMSE) for SOC using the EKF and the SVSF. 
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Filter Parameters 
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Smooth 

Variable 

Structure 

Filter 

(SVSF) 

߰ 0.066 0.1003 0.684 4.12 0.0068 0.0075 

 0.91 0.97 0.99 0.99 0.932 0.305 ߛ

Table 4.6 – The EKF system and measurement noise covariance, and the SVSF ‘memory’ or 

convergence rate and smoothing boundary layers. 
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 Experimental Results 

In this section, the estimated EKF SOC and SVSF SOC will be presented and 

compared to the experimental SOC for Behavioral models as shown in Figure 4.23 to 

Figure 4.28.  The estimated SOC is initialized at 90% while the true SOC is at 100% 

(10% error). For all models the EKF system and measurement noise covariance, and the 

SVSF ‘memory’ or convergence rate and smoothing boundary layers were obtained as in 

Table 4.8. The RMSE associated with SOC estimation using the EKF and the SVSF 

was obtained as in Table 4.7. 

 
Figure 4.23 - Experimental results of SOC estimation with combined model showing the EKF 

and SVSF estimated versus model SOC. 
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Figure 4.24 - Experimental results of SOC estimation with simple model showing the EKF and 

SVSF estimated versus model SOC. 

 
Figure 4.25 - Experimental results of SOC estimation with Zero State Hysteresis showing the 

EKF and SVSF estimated versus model SOC. 
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Figure 4.26 - Experimental results of SOC estimation with One State Hysteresis showing the 

EKF and SVSF estimated versus model SOC. 

 
Figure 4.27 - Experimental results of SOC estimation with Enhanced Self Correcting model – 2 

States showing the EKF and SVSF estimated versus model SOC. 



Master of Applied Science Thesis McMaster University

Mohammed Farag Department of Mechanical Engineering

  

77 

 

 
Figure 4.28 - Experimental results of SOC estimation with Enhanced Self Correcting model – 4 

States showing the EKF and SVSF estimated versus model SOC. 
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[%] 
3.69 2.39 2.3 2.13 1.86 1.58 

SVSF –SOC 

[%] 
0.95 0.98 0.84 0.73 0.65 0.59 

Table 4.7 – Root mean squared error (RMSE) for SOC using the EKF and the SVSF. 
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Filter Parameters 
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(SVSF) 

߰ 2.458 2.097 0.776 0.048 0.0041 0.0068 

 0.91 0.18 0.293 0.968 0.514 0.518 ߛ

Table 4.8 – The EKF system and measurement noise covariance, and the SVSF ‘memory’ or 

convergence rate and smoothing boundary layers. 
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 Summary 

This chapter provided an overview about the Behavioral models and their 

implementation. These models simulate the terminal voltage behavior of the batteries 

without the need for the specification of the underlying physical or electrochemical 

behavior. The model parameters are tuned using numerical algorithms such as Globalized 

Pattern Search (GPS) Matlab toolbox. 

In this chapter six different behavioral models were compared. Their Root Mean squared 

Error (RMSE) are shown in Figure 4.29 and Figure 4.30. 

  
Figure 4.29 – Experimental Results for Behavioral Models comparison of average modeling 

results 
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Figure 4.30 - Simulation Results for Behavioral Models comparison of average modeling results 

 

As shown in Figure 4.29 and Figure 4.30, the model accuracy increases by increasing the 

number of states and parameters. Figure 4.31 and Figure 4.32 show the SVSF and the 

EKF state of charge estimation against simulation and experimental results respectively. 

The figures show SOC estimation results of the six model as discussed earlier. The SOC 

Root Mean squared Error (RMSE) percentage is shown as a measure of performance. 

According to Figure 4.31 and Figure 4.32, the SVSF has shown better results compared 

to the EKF. 
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Figure 4.31 - Experimental results for Behavioral Models comparison of SOC Estimation Error 

using EKF and SVSF 

 
Figure 4.32 – Simulation results for Behavioral Models comparison of SOC Estimation Error 

using EKF and SVSF 
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5.  Equivalent Circuit Modelling 

 

 

 

In this chapter, Lithium ion battery models based on first principal modelling 

approach (Equivalent Circuit Models) are reviewed. Introduction and a brief description 

of the advantages and disadvantages of this modelling approach is provided. It is followed 

by description of the evolution of the battery modelling techniques and implementation 

of six different models with various complexity. Summary and discussions are provided. 

 Introduction 

The Equivalent Circuit Model approach in BMS has been extensively researched 

[100]. This choice is due to the early popularity of BMS for portable electronics, where 

the approximation of the battery model with an equivalent circuit model is adequate. This 

modelling approach has been extended to Li-ion batteries for automotive or similar 

energy storage applications. The circuit can be rather simple, e.g. only a voltage source 

and a variable resistance, or complex given local conditions in a spatially-resolved model. 
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Electrical impedance-based models can be treated as a group of resistances and capacitors, 

model parameters can be obtained similarly to Behavioral models using optimization. 

This leads to accurate models for the measured operating conditions. A disadvantage of 

equivalent circuit models is that these models are unable to measure underlying physical 

behavior like power fading, capacity fading and aging effect. Main advantage is the ability 

to be implemented in real-time application with acceptable range of performance. 

 Evolution of Equivalent Circuit Cell Models 

 The 1st Order RC Model 

The OCV-R-RC model is the simplest equivalent circuit models and is selected to 

approximate the electrical performance of the battery as shown in Figure 5.1. It consists 

of 3 parts (1) Open Circuit Voltage OCV, (2) Internal Resistances representing the 

ohmic resistances, (3) Capacitors. 

 
Figure 5.1 - Schematic Diagram for R-RC Battery Model 

This model can capture the battery dynamics and can be easily implemented in a real-

time application. The R-RC model can be represented as follows: 
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ݕ ൌ ሻݖሺܸܥܱ െ ܴ݅ െ ଵܸ,  

where ݖ is the state of charge, ܱܸܥ is the open circuit voltage, ܥ is the battery nominal 

capacity, ܴ is the battery ohmic resistance, ܴଵܥଵ	are RC pair and they represent the 

polarization time constants, ଵܸ	is a state and represent the voltage across the capacitor. 

The states of the system are	ݖ, ଵܸ	. The model has one output	ݕ, which is the terminal 

voltage, the current ݅	is the input. 

 The 1st Order RC Model with One-State Hysteresis 

The OCV-R-RC-H model is the same as the OCV-R-RC except that it has and 

assed hysteresis state as shown in Figure 5.2. The model consists of 5 elements (1) Open 

Circuit Voltage OCV, (2, 3) Internal Resistances, (4) Capacitors, and (5) Hysteresis state 

to capture the battery charging and discharging hysteresis effect. 

 
Figure 5.2 - Schematic Diagram for R-RC_H Battery Model 
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The R-RC-H model can be represented as in Figure 5.2 and as follows:  
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ݕ ൌ ሻݖሺܸܥܱ െ ܴ݅ െ ଵܸ,  ݄  

The states of the system are	ݖ, ଵܸ, ݄	representing the SOC, voltage drop across the RC 

pair, and hysteresis state respectively. The model has one output	ݕ, which is the terminal 

voltage, the current ݅	is the input. 

 The 2nd Order RC Model 

The OCV-R-RC-RC model is as shown in Figure 5.3, [100]. The model is able to 

imitate fast and slow time constants for the voltage recovery of the battery.  

 
Figure 5.3 - Schematic Diagram for R-RC-RC Battery Model 
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This model can accurately capture the battery dynamics and can be easily implemented in 

a real-time application. The R-RC-RC model can be represented as follows: 
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ݕ ൌ ሻݖሺܸܥܱ െ ܴ݅ െ ଵܸ, െ ଶܸ,  

Where ܴଵܥଵ	represent the fast polarization time constants, ܴଶܥଶ	represent the slow 

polarization time constants, ଵܸ	is a state variable and represent the voltage across the first 

capacitor, ଶܸ	is a state variable and represent the voltage across the second capacitor. The 

state variables of the system are	ݖ, ଵܸ	, ଶܸ	. The model has one output	ݕ, which is the 

terminal voltage, the current ݅	is the input. The parameters vector to be optimized for 

this model is θ ൌ ሾܴା, ܴି, ܴଵ, ܴଶ, ,ଵܥ  .ଶሿܥ

 The 2nd Order RC Model with One-State Hysteresis 

The OCV-R-RC-RC-H model is the same as the OCV-R-RC-RC but with an 

added hysteresis state as shown in Figure 5.4. The model consists of 7 elements (1) Open 

Circuit Voltage OCV, (2, 3, 4) Internal Resistances, (5, 6) Capacitors, and (7) Hysteresis 

state to capture the battery charging and discharging dynamics. 
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Figure 5.4 - Schematic Diagram for R-RC-RC_H Battery Model 

The R-RC-RC-H model can be represented as follows:  
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The states of the system are	ݖ, ଵܸ, ଶܸ,, ݄	representing the SOC, voltage drop across 

the first RC pair, second RC pair, and hysteresis state respectively. The model has one 

output	ݕ, which is the terminal voltage, the current ݅	is the input. 
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 The 3rd Order RC Model 

The OCV-R-RC-RC-RC model is as shown in Figure 5.5, [100]. The model is able to 

imitate the battery time constants for the battery voltage recovery from charge or 

discharge pulse.  

 
 Figure 5.5 - Schematic Diagram for R-RC-RC-RC Battery Model 

The R-RC-RC-RC model can be represented as follows: 
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ݕ  ൌ ሻݖሺܸܥܱ െ ܴ݅ െ ଵܸ, െ ଶܸ, െ ଷܸ,  

where ܴଵܥଵ	represent polarization time constants, ܴଶܥଶ	represent polarization time 

constants,	ܴଷܥଷ	are the third RC pair represent polarization time constants,  ଵܸ	is a state 

and represents the voltage across the first RC pair, ଶܸ	is an internal state and represent 

the voltage across the second RC pair, ଷܸ, is a state in the system and represents the 

voltage across the third RC pair. The states of the system are	ݖ, ଵܸ, ଶܸ,, ଷܸ,. The model 

has one output	ݕ, which is the terminal voltage, the current ݅	is the input. The 

parameters vector to be optimized for this model is θ ൌ ሾܴା, ܴି, ܴଵ, ܴଶ, ܴଷ, ,ଵܥ ,ଶܥ  .ଷሿܥ

 The 3rd Order RC Model with One-State Hysteresis 

The OCV-R-RC-RC-RC-H has an added hysteresis state over the OCV-R-RC-RC-

RC as shown in Figure 5.6. The model consists of 9 elements (1) Open Circuit Voltage 

OCV, (2, 3, 4, 5) Internal Resistances, (6, 7, 8) Capacitors, and (9) Hysteresis state to 

capture the battery charging and discharging hysteresis effect. 

 
Figure 5.6 - Schematic Diagram for R-RC-RC-RC Battery Model  

The R-RC-RC-RC-H model can be represented in a state space form as follows:  
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ݕ  ൌ ሻݖሺܸܥܱ െ ܴ݅ െ ଵܸ, െ ଶܸ, െ ଷܸ,  ݄  

The states of the system are	ݖ, ଵܸ, ଶܸ,, ଷܸ,, ݄ representing the SOC, voltage drop 

across the first RC pair, second RC pair, third RC pair and hysteresis state respectively.  

The model has one output	ݕ, which is the terminal voltage, the current ݅	is the input. 

Where the parameters vector to be optimized for this model is θ ൌ

ሾܴା, ܴି, ܴଵ, ܴଶ, ܴଷ, ,ଵܥ ,ଶܥ ,ିܯ,ାܯ,ଷܥ  .ሿߛ

 Model Parameter Tuning 

The parametric vector ߠ in each model is obtained by applying the same strategy as 

discussed in Chapter 4. The GPS optimization algorithm is used to tune the model 

parameters to fit the data shown in Figure 4.1 –Figure 4.4. These date are used for model 

parameter identification and represent approximately 25%, the renaming 75% are used for 

validating the model. 
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 Simulation Results 

The simulation data set of Figure 3.13 and Figure 3.14 were used as input to all 

models, the output of the models compared to the cell terminal voltage under UDDS 

cycle is shown in Figure 5.7 to Figure 5.12. The parametric vector ߠ for all the models 

was obtained as in Table 5.2 using GPS optimization algorithm with data from Figure 

4.1 and Figure 4.2. 

 
Figure 5.7 - Simulation results of cell modeling with R_RC model showing the model terminal 

voltage versus simulated voltage 
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Figure 5.8 – Simulation results of cell modeling with R_RC_H model showing the model 

terminal voltage versus simulated voltage 

 
Figure 5.9 - Simulation results of cell modeling with R_RC_RC model showing the model 

terminal voltage versus simulated voltage 
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Figure 5.10 - Simulation results of cell modeling with R_RC_RC_H model showing the model 

terminal voltage versus simulated voltage 

 
Figure 5.11 - Simulation results of cell modeling with R_RC_RC_RC model showing the model 

terminal voltage versus simulated voltage 
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Figure 5.12 – Simulation results of cell modeling with R_RC_RC_H model showing the model 

terminal voltage versus simulated voltage 

The associated root mean squared error between the cell voltage and the simulated 

voltage is shown in Table 5.1. 
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RMSE 2.7 2.4 1.5 1.2 0.89 0.78 

Table 5.1 – The RMSE for each model 
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Model 

Parameters R
_R

C
 

R
_R

C
_H

 

R
_R

C
_R

C
 

R
_R

C
_R

C
_
H

 

R
_R

C
_R

C
_
R

C
 

R
_R

C
_R

C
_
R

C
_H

 

ܴା  0.00182 0.00175 0.0017 0.0017 0.00104 0.0017 

ܴି  0.00173 0.00179 0.0017 0.0017 0.0024 0.0017 

ܴଵ  0.00124 0.00118 0.00062 0.00071 0.00065 0.00071 

 ଵܥ 23691.5 20446.5 15397.04 14989.04 5847.08 14730.51 

ܴଶ  - - 0.000935 0.00106 0.00106 0.00106 

 ଶܥ - - 83763.66 101927.64 47719.07 100312.8 

ܴଷ  - - - - 0.0002 0.0002 

 ଷܥ − - - - 8.99E+09 8.99E+09 

 ାܯ - 0.001 - 0.12 - 0.05915 

 ିܯ - -0.02 - -0.19 - -0.0499 

 ߛ - 0.256 - 0.069 - 0.0693 

Table 5.2 - The parameteric Values for variable  in all models 
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 Experimental Results 

The experimental data set of Figure 3.15 and Figure 3.17 were used as input to all 

models, the output of the models compared to the cell terminal voltage as shown in 

Figure 5.13 - Figure 5.18. The parametric vector ߠ for all the models was obtained as in 

Table 5.4 using GPS algorithm with data from Figure 4.3 and Figure 4.4. 

 
Figure 5.13– Experimental results of cell modeling with R_RC model showing the model 

terminal voltage versus the true voltage 
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Figure 5.14– Experimental results of cell modeling with R_RC_H model showing the model 

terminal voltage versus the true voltage 

 
Figure 5.15– Experimental results of cell modeling with R_RC_RC model showing the model 

terminal voltage versus the true voltage 
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Figure 5.16– Experimental results of cell modeling with R_RC_RC_H model showing the model 

terminal voltage versus the true voltage 

 
Figure 5.17 – Experimental results of cell modeling with R_RC_RC_RC model showing the 

model terminal voltage versus the true voltage 
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Figure 5.18 - Experimental results of cell modeling with R_RC_RC_RC_H model showing the 

model terminal voltage versus the true voltage 

 

The associated root mean squared error between the cell voltage and the simulated 

voltage is shown in Table 5.3. 
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RMSE 8.2 8 6.8 6.6 6.57 6.48 

Table 5.3 – The RMSE for each model 
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Model 

Parameters R
_R
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_
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R
_R

C
_R

C
_
R

C
 

R
_R

C
_R

C
_
R

C
_H

 

ܴା  0.0014 0.0014 0.00132 0.00132 0.00131 0.00132 

ܴି  0.0012 0.0012 0.00132 0.00132 0.0013 0.00132 

ܴଵ  0.00175 0.0017 0.00077 0.00077 0.00077 0.00077 

 ଵܥ 22310.6 22310.6 14475.24 14636.24 14466.37 14939.24 

ܴଶ  - - 0.0011 0.0011 0.001178 0.0011 

 ଶܥ - - 98246.01 98246.02 90704.65 95449.01 

ܴଷ  - - - - 0.01057 6.49E-05 

 ଷܥ - - - - 9745774.7 9.99E+09 

 ାܯ - 0.0754 - 0.077 - 0.077065 

 ିܯ - -0.9153 - -0.819 - -0.8167 

 ߛ - 0.04807 - 0.062 - 0.0425 

Table 5.4 - The parameteric Values for variable  in all models 
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 SOC Estimation 

The SOC estimation results using the EKF and the SVSF for all of the six modeling 

techniques are presented in this section. 

 Simulation Results 

In this section, the EKF SOC and SVSF SOC estimation results will be presented 

and compared to the simulated and hence known value of the SOC for Equivalent 

Circuit Models as shown in Figure 5.19 - Figure 5.24.  The estimated SOC is initialized 

at 85% while the true SOC is at 95% (i.e. 10% error). For all models the EKF system and 

measurement noise covariance, and the SVSF ‘memory’ or convergence rate and 

smoothing boundary layers were obtained as in Table 5.6. The RMSE associated with 

SOC estimation using the EKF and the SVSF was obtained as in Table 5.5. 

 
Figure 5.19 - Simulation results of SOC estimation with R_RC model showing the EKF and 

SVSF estimated versus model SOC. 
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Figure 5.20 - Simulation results of SOC estimation with R_RC_H model showing the EKF and 

SVSF estimated versus model SOC. 

 
Figure 5.21 - Simulation results of SOC estimation with R_RC_RC model showing the EKF 

and SVSF estimated versus model SOC. 
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Figure 5.22 - Simulation results of SOC estimation with R_RC_RC_H model showing the EKF 

and SVSF estimated versus model SOC. 

 
Figure 5.23 - Simulation results of SOC estimation with R_RC_RC_RC model showing the 

EKF and SVSF estimated versus model SOC. 
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Figure 5.24 - Simulation results of SOC estimation with R_RC_RC_RC_H model showing the 

EKF and SVSF estimated versus model SOC. 
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EKF –SOC 

[%] 
0.47 0.39 0.31 0.24 0.16 0.12 

SVSF –SOC 

[%] 
0.48 0.37 0.34 0.2 0.14 0.12 

Table 5.5 – Root mean squared error (RMSE) for SOC using the EKF and the SVSF. 



Master of Applied Science Thesis McMaster University

Mohammed Farag Department of Mechanical Engineering

  

105 

 

Filter Parameters 
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ܴ 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519 

The 

Smooth 

Variable 

Structure 

Filter 

(SVSF) 

߰ 1.94 0.0105 3.058 4.043 4.02 4.038 

 0.441 0.484 0.506 0.503 0.109 0.9 ߛ

Table 5.6 – The EKF system and measurement noise covariance, and the SVSF ‘memory’ or 

convergence rate and smoothing boundary layers. 
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 Experimental Results 

In this section, the EKF SOC and SVSF SOC estimation results will be presented and 

compared to the true SOC for Behavioral models as shown in the following figures (). 

In this section, the estimated EKF SOC and SVSF SOC will be presented and 

compared to the experimental SOC for Equivalent Circuit Models as shown in Figure 

5.25 - Figure 5.30. The estimated SOC is initialized at 90% while the true SOC is at 

100% (i.e. 10% error). For all models the EKF system and measurement noise covariance, 

and the SVSF ‘memory’ or convergence rate and smoothing boundary layers were 

obtained as in Table 5.8. The RMSE associated with SOC estimation using the EKF and 

the SVSF was obtained as in Table 5.7. 

 
Figure 5.25 - Experimental results of SOC estimation with R_RC model showing the EKF and 

SVSF estimated versus model SOC. 
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Figure 5.26 - Experimental results of SOC estimation with R_RC_H model showing the EKF 

and SVSF estimated versus model SOC. 

 
Figure 5.27 - Experimental results of SOC estimation with R_RC_RC model showing the EKF 

and SVSF estimated versus model SOC. 
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Figure 5.28 - Experimental results of SOC estimation with R_RC_RC_H model showing the 

EKF and SVSF estimated versus model SOC. 

 
Figure 5.29 - Experimental results of SOC estimation with R_RC_RC_RC model showing the 

EKF and SVSF estimated versus model SOC. 
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Figure 5.30 - Experimental results of SOC estimation with R_RC_RC_RC_H model showing 

the EKF and SVSF estimated versus model SOC. 
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EKF –SOC 

[%] 
0.76 0.70 0.56 0.44 0.42 0.36 

SVSF –SOC 

[%] 
0.61 0.36 0.30 0.22 0.14 0.14 

Table 5.7 – Root mean squared error (RMSE) for SOC using the EKF and the SVSF for 

experimental data. 
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Filter Parameters 
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߰ 0.1356 0.1246 0.1424 0.0001 0.0677 0.0597 

 0.9936 0.4762 0.9659 0.8788 0.9979 0.7557 ߛ

Table 5.8 – The EKF experimental system and measurement noise covariance, and the SVSF 

‘memory’ or convergence rate and smoothing boundary layers. 
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 Summary 

This chapter provided a description of Equivalent Circuit Models and their 

implementation. These models are widely used because they are simple, have less 

parameters to tune, and are easy to implement [35,36]. The Equivalent circuit models 

consist of first-order, second-order, or third-order RC models in addition to hysteresis 

effect [37]. The model parameters were optimized using Globalized Pattern Search 

Matlab toolbox.  

A comparison of the model accuracies in capturing the measured terminal voltage for the 

six different models is shown in Figure 5.31 and Figure 5.32. The terminal voltage Root 

Mean squared Error (RMSE) is shown as a measure of performance. The error is the 

difference between the fitted models after parameter identification and the true voltage. 

 
Figure 5.31– Experimental Results for Equivalent Circuit Models comparison of average 

modeling results 
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Figure 5.32 - Simulation Experimental Results for Equivalent Circuit Models comparison of 

average modeling results 

 

As shown in Figure 5.31 and Figure 5.32. The model accuracy increase by increasing the 

number of states and parameters. Figure 5.33 and Figure 5.34 shows the SVSF and the 

EKF state of charge estimation against simulation and experimental results respectively. 

The figures show SOC estimation results of the six model as discussed earlier. The SOC 

Root Mean squared Error (RMSE) percentage is shown as performance measure. 

According to Figure 5.33 and Figure 5.34 the SVSF has shown better results compared to 

the EKF. 
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Figure 5.33 - Experimental Results for Equivalent Circuit Models comparison of SOC 

Estimation Error using EKF and SVSF 

 
Figure 5.34 - Experimental Results for Equivalent Circuit Models comparison of SOC 

Estimation Error using EKF and SVSF 
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6.  Electro-Chemical Modelling 

 

 

 

In this chapter, an electro-chemical model of the Lithium ion (Li-ion) cell using 

electrolyte is developed. The model is a spatially discretized partial differential equations 

(PDEs) in One Dimension (1D). In section 6.1, a general background and brief 

description of the working of the cell is discussed. In section 6.2 a full-order electro-

chemical model with PDEs is described, the cell PDEs is discretized in one dimension 

resulting in a high order non-linear function. Simulation of such a high order model is 

slow, complex and computationally unpractical for real time implementation. In section 

6.3, a Single Particle model is presented by simplifying the non-linear functions, then 

discretizing and rearranging them into a state-space form. In section 6.4, SOC estimation 

is presented using the Single Particle Model with SVSF and EKF. Conclusions are 

provided in section 6.5. 
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 Overview of Li-Ion Battery Composition and Operation 

The basic operation of the lithium ion batteries is discussed in Chapter 2. Here, an 

explanation of the mechanism associate with the charging and discharging of a cell is 

provided. 

 

Figure 6.1 - Fully charged battery (100%) 

 

Figure 6.2 - Fully discharged battery (0%) 
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As shown in Figure 6.1 and Figure 6.2, the cell consists of a negative electrode and a 

positive electrode immersed in an electrolyte and a separator. A simplified approach 

involve treating the electrodes as a spherical particle.  

When the cell is fully charged, the negative electrode is full with lithium ions i.e. the 

concentration of Lithium ions is at a maximum, as represented by a dark blue color in the 

Figure 6.1. The positive electrode is fully depleted of lithium ions. As the cell discharges, 

the Lithium ions moves from solid to liquid at the surface of the negative electrode. They 

travel through the electrolyte across the separator and reach the positive electrode. At the 

surface of the positive electrode, they again convert from liquid to solid and the positive 

electrode gets slowly charged with lithium ions. Thus during discharge, the concentration 

of Lithium ions decreases at the negative electrode while it increases at the positive 

electrode to finally reach a maximum. The exact opposite process happens during 

charging. End of discharge or charge is nothing but saturation or depletion of Lithium 

ion concentration at either electrode. These values of saturation or depletion of 

concentration can be considered as 0% and 100% of SOC and the intermediate range is a 

measure of SOC in percentage.  

The concentration of Lithium ions cannot be measured so estimation techniques are used 

to infer its value from the Terminal Voltage of the cell. This terminal voltage is directly 

correlated to Lithium ion concentration at the surface of the electrodes. As can be seen 

from the Figure 6.1 and Figure 6.2, the terminal contacts can only give information of the 

surface concentration, not the bulk concentration. In case of low magnitude of charging 

and discharging currents, the surface concentration is almost equal to the bulk 

concentration and the terminal voltage can provide a measure of the SOC directly and 

without need of dynamic models. While, in case of high charging and discharging 

currents, gradients start forming in the electrodes as shown in Figure 6.4. This happens 

because the transport of Lithium ions from the inner regions to the surface occurs by 

diffusion and, if the current is high, the diffusion in both electrodes is not able to keep up 
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with the reaction rate at the electrode surface and the concentration of the lithium-ion at 

the electrode surface becomes lower compared to the inner regions at the anode. The 

exact opposite happens at the cathode. Moreover the transport of Lithium ions through 

the electrolyte again by diffusion can also prove to be sluggish resulting lithium-ion 

electrolyte gradients as shown in Figure 6.4.  

 

Figure 6.3 - Simplified schematic diagram showing concentration gradients during high rate 

discharge 

The cell can be considered as a dynamic system, with current input, terminal voltage as its 

measurable output and the internal dynamics governed by the diffusion phenomena. The 

SOC can be considered as an internal state of the system which is the bulk concentration 

of the lithium-ions in the solid electrode particles that needs to be estimated using the 

terminal voltage. The terminal voltage is in turn correlated to the lithium-ion 

concentration in the electrode solid particles. Thus as a measure of the available SOC, the 

electrode average concentration of a single can be used as follows:  

 
ሻݐሺܥܱܵ ൌ

ܿ௦,௩ሺݐሻ െ ܿ௦,%
ܿ௦,ଵ% െ ܿ௦,%
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Where ܿ௦,௩ሺݐሻ is the electrode average concentration at time ሺݐሻ, ܿ௦,% and ܿ௦,ଵ% are 

the refererence values of concentration at 0% and 100% SOC respectively. This SOC 

definition is based on the fraction of concentration available in the solid phase. The 

concentration of lithium will be described using partial differential equations as will be 

explained in the next section. 

 The Full Order Electro-Chemical Model 

In this section, the electrochemical model is considered. A one-dimensional (1D)-spatial 

model of the battery dynamics is developed along only one axis (the horizontal x-axis) 

while neglecting the dynamics in the other dimensions (Y-axis and Z-axis) [101,102] as 

shown in Figure 6.4 

 
Figure 6.4 - Schematic diagram showing the intercalation approach for a battery cell [15] 
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The one-dimensional (1D)-spatial model can be described by four sets of equations: 

 Lithium ion Conservation Equations 

 Charge Conservation Equations 

 Butler-Volmer Kinetics Equations 

 Cell Potential Measurable Equations 

 The parameters for the cell and the model can be obtained from manufacturers, in the 

case of the cell considered in this research the parameters were obtained from [47] and 

can be found in Appendix A.  

 Lithium Ion Conservation Equations 

These set of equations consider the change in concentration of the lithium ion in space 

and time inside both the electrodes solid spherical particles and the electrolyte. 

In case of electrodes, equation (6.2) represents the conservation of Lithium ions in a single 

particle as described by Fick’s law of diffusion, assuming it is a sphere of radius	R௦  

 ߲ܿ௦ሺݔ, ,ݎ ሻݐ
ݐ߲

ൌ
1
ଶݎ

߲
ݎ߲
൬ܦ௦ݎଶ

߲ܿ௦ሺݔ, ,ݎ ሻݐ
ݎ߲

൰ 

Where ܿ௦ is the lithium ion concentration in the electrode solid particle, ݎ is the particle 

radial radius, ݔ is the particle location in x direction, and ܦ௦	is the solid phase diffusion 

coefficient.The boundary conditions for equation (6.2) are as follows:  

 ߲ܿ௦
ݎ߲
ฬ
ୀ

ൌ 0  

 
௦ܦ
߲ܿ௦
ݎ߲
ฬ
ୀோೞ

ൌ
െ݆

ܽ௦ܨ
 

Where ܽ௦ is the interfacial surface area, ܨ is the Faraday’s constant, and ݆  is the 

volumetric rate of chemical reaction. These equations reveals that at the surface of the 
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spherical particles, the rate at which ions exit the particle and enter the electrolyte is 

related to the volumetric rate of chemical reaction	݆, and this rate is zero at the centre of 

the particle and is as 
ିಽ

ೞி
 at the interface of the electrode particle as shown in Figure 6.5 . 

Note that we neglect diffusion between adjacent particles due to the high solid phase 

diffusive impedance between particles.  

 

Figure 6.5 -  Schematic simplification of lithium conservation equations in electrode spherical 

particle, red line equations represent boundary conditions, blue line represent the lithium ion 

governing equation 

At the surface of the spherical particle		ܿ௦ሺݔ, ,ݎ ሻݐ ൌ 	ܿ௦ሺݔ, ܴ௦,  ሻ, and is equal toݐ

ܿ௦ሺݔ,  that describes the lithium concentration at the surface of the electrode spherical	ሻݐ

particle [17]. 

In the case of Electrolyte, the conservation of Lithium ions in the electrolyte phase is as 

follows [18]: 
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,ݔܿሺߝ߲  ሻݐ
ݐ߲

ൌ
߲
ݔ߲

൬ܦ
 ߲ܿሺݔ, ሻݐ

ݔ߲
൰ 

1 െ ݐ

ܨ
݆ 

Where ܿ is the lithium concentration in the electrolyte, 	ܦ


is the effective diffusion 

coefficient, ߝis the volume fraction of the electrolyte (porosity), and ݐ is the transference 

number4 of the ݅ܮା ions. The boundary conditions for equation (6.5) are as follows: 

 ߲ܿ
ݔ߲

ฬ
௫ୀ

ൌ 0 

 ߲ܿ
ݔ߲

ฬ
௫ୀ

ൌ 0 

Which says that at the battery terminals the gradient of electrolyte concentration is zero 

as shown in Figure 6.6. 

 
Figure 6.6 - Schematic simplification of lithium conservation equations in electrolyte, red line 

represent boundary conditions equations, blue line represent the governing equation 

                                                 
4 Transference number is the fraction of the total electric current that anions and cations carry in passing 

through an electrolytic solution. 
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 Charge Conservation Equations 

These set of equations consider the relationship between the electrode potentials and 

currents inside the cell. 

In the case of electrodes, the entire current leaves or enters the cell through the electrode 

spherical particles at the terminals. The current flowing in the electrode is governed by 

Ohm’s law as [1]: 

 
݅௦ሺݔሻ ൌ െߪ

߲
ݔ߲

∅௦ሺݔ,  ሻݐ

Where ߪis the solid phase effective conductivity, ݅௦	is the solid phase current density, 

and ∅௦	is the potential in the solid phase. 

In the case of electrolyte, the current that flows through the electrolyte is also governed by 

Ohm’s law, such that: 

 
݅ሺݔሻ ൌ െ݇

߲
ݔ߲

∅ሺݔ, ሻݐ െ ݇
 ߲

ݔ߲
ln ܿ 

Where ݅	is the electrolyte current density, ݇	is the effective electrolyte phase ionic 

conductivity, ݇


 is the effective electrolyte phase diffusion conductivity, ܿ is the 

electrolyte concentration and ∅	is the potential in the electrolyte phase. Equation (6.9) 

follows a modified Ohm’s law where the first term is Ohm’s law, while the second term 

reflects the change in the electrolyte concentration across the electrolyte phase. 

At electrode spherical particles, due to the reaction taking place between the electrode 

and the electrolyte there is an induced current. This current is in the form of lithium ions. 

The magnitude of the induced current is related to the volumetric rate of reaction taking 

place at the solid/electrolyte interface	݆ such that: 
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 ߲
ݔ߲

݅௦ሺݔሻ ൌ െ݆ 

This induced current is added to the current already flowing through the electrolyte at 

that point given by [33]: 

 ߲
ݔ߲

݅ሺݔሻ ൌ ݆ 

The boundary conditions for equations (6.8), (6.9), (6.10) and (6.11) are [17]: 

 
݅௦ሺݔሻ|௫ୀ ൌ ݅௦ሺݔሻ|௫ୀ ൌ

ܫ
ܣ

 

 
݅ሺݔሻ|௫ୀ ൌ ݅ሺݔሻ|௫ୀ ൌ 0 

Where 	ܫ	is the cell current and ܣ is the collector surface area. These equations indicate 

that the current flowing through the battery terminal is passing only through the solid 

active particles. Since there is no current flowing through the separator. 

 ߲
ݔ߲

∅௦ሺݔ, ሻฬݐ
௫ୀஔ

ൌ
߲
ݔ߲

∅௦ሺݔ, ሻฬݐ
௫ୀஔାஔೞ

ൌ 0 

Furthermore, there will be no current passing through the separator and all the input 

current ܫ into the cell crosses the separator in the form of ݅ܮା	ions, and is governed by the 

following equations [1]: 

 ߲
ݔ߲

݅ሺݔሻ ൌ 0 

 
െ݇

߲
ݔ߲

∅ሺݔ, ሻݐ െ ݇
 ߲

ݔ߲
ln ܿ ൌ

ܫ
ܣ

 

These equation reveal that the electrolyte current density at the battery terminal is equal 

to zero while at the separator it is equal to 
ூ


 as shown in Figure 6.7. Where red line 

equations represent boundary conditions, blue line represents the charge conservation 

governing equation. 
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Figure 6.7 - Simplified schematic diagram showing all boundary conditions for Charge 

Conservation equations. 
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 Butler-Volmer Kinetics Equations: 

The volumetric rate of electrochemical reaction at the solid/electrolyte interface is 

governed by the Butler-Volmer current density equation. This equation links the Lithium 

ion conservation and charge conservation equations and is given by: 

 
ܬ ൌ ܽ௦݆ ݁ݔ ൬

∝ ܨ
ܴܶ

൰ߟ െ ݔ݁ ൬
∝ ܨ
ܴܶ

 ൰൨ߟ

where ∝	is the anodic transfer coefficients of electrode reaction, ∝	is the cathodic 

transfer coefficients of electrode reaction, ܨ is the Faraday’s constant, ܴ is the universal 

gas constant, ܶ is the absolute temperature in Kelvin and ܽ௦	is the active surface area per 

electrode unit volume which is zero in the separator region (leads to no divergence of 

current). The overpotential ߟ is defined as the difference between the battery’s 

electromotive force (EMF) and its charge/discharge voltage. It is responsible for driving 

the electrochemical reaction, and can be calculated as follows, [21]: 

 
ߟ ൌ ∅௦ െ ∅ െ ܷሺܿ௦ሻ 

Where ܷሺܿ௦ሻ	is the open circuit voltage which relate the open circuit voltage to the 

normalized state of charge. The open circuit voltage varies from the cathode and the 

anode. An empirical relationship is used to calculate ܷሺܿ௦ሻ	 which is given by [33]: 

 
ܷሺߠሻ ൌ 8.0029  ߠ5.064 െ .ହߠ12.578 െ 8.6322 ൈ 10ିସߠିଵ

 2.176 ൈ 10ିହߠ
ଷ
ଶ െ 0.46016 ሾ15ሺ0.06ݔ݁ െ ሻሿߠ

െ ߠሾെ2.4326ሺݔ0.55364݁ െ 0.92ሻሿ 

 
ܷ൫ߠ൯ ൌ ߠ85.681 െ ହߠ357.7  ସߠ613.89 െ ଷߠ555.65

 ଶߠ281.06 െ ߠ76.648 െ ଵଵହሻߠሺ5.657	ݔ0.30987݁
 13.1983 
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Where θ is the normalized solid-electrolyte concentration and can be obtained as follows, 

[17]: 

 
ߠ ൌ

ܿ௦,
ܿ௦,௫,

 

ߠ ൌ
ܿ௦,
ܿ௦,௫,

 

Where ߠ% and ߠଵ% are the normalized concentrations corresponding to 0% (fully 

discharged) and 100% (fully charged). ߠଵ%	can be defined by obtaining the 

concentration corresponding to the maximum fully charged battery. Subsequently, the  

0% reference value can be calculated by subtracting the battery capacity Q as in [33]:  

 
%ߠ ൌ %ଵߠ െ

ܳ
ߜ
ሺ

1
௦,௫ܿߝܨܣ

ሻ 

The coefficient ݆ in equation (6.17) depends on the solid and electrolyte concentrations 

according to the following equations [17]: 

 
݆ ൌ ߢ ሺܿሻఈೌ൫ܿ௦,௫ െ ܿ௦൯

ఈೌሺܿ௦ሻఈ 

Where ߢ is the electrolyetr phase ionic conductivity.  The lithium concentration at the 

solid electrolyte interface can be related to the Critical Surface Charge (CSC) as shown, 

[103]: 

 
ሻݐሺܥܵܥ ൌ

ߠ െ %ߠ
%ଵߠ െ %ߠ

 

 Cell Potential Measurable Equation: 

The cell potential across the cell terminals is determined as follows [18]: 

 
ܸ ൌ ∅௦ሺݔ ൌ ሻܮ െ ∅௦ሺݔ ൌ 0ሻ െ ܴ

ܣ
 ܫ
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Where ܴ is the film resistance at the electrode surface and its resistance increases after 

charging and discharging cycle (battery aging). Modelling the change in this value can 

give an indication about the current power fade and capacity fade. 

 Reduced Order Model - Single Particle Model (SPM) 

It is clear from section 6.2, that our model can be represented by a set of high order non-

linear equations making its real time implementation difficult. In this section, 

simplification are made to this model by spatially discretizing the PDEs in one dimension 

(1D) to obtain a set of Ordinary Differential Equations (ODE) and static relations as 

shown in Figure 6.8.  

 
Figure 6.8 - Schematic representation of Single Particle Model 

 

The full-order battery model of equations (6.2) to (6.25) are simplified in order to be 

implemented in real-time applications. The following assumptions are made [103,18,104] 

in relation to the schematic representation shown in Figure 6.8: 
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 The Lithium concentration in electrolyte ܿ		is assumed to be uniform, this 

simplifies equation (6.5) to a constant average. 

 All model parameters are assumed to be constant. 

 All thermal effects are ignored.  

 No aging or capacity fade has been accounted for. 

 The solid particle distribution along the electrode is neglected and is assumed to 

be a single sphere whose surface area is scaled to that of the porous electrode. 

 These assumptions leads to the possibility of describing the diffusion sub-model 

of equation (6.2) to (6.7) with a single representative solid material particle for 

each electrode (anode and cathode) [104].  

The simplified electrochemical model can be divided to four subsystems as shown in 

Figure 6.9, namely: (1) Butler–Volmer current calculation subsystem, (2) Spherical 

Particle Diffusion subsystem, (3) SOC Calculation subsystem, and (4) Voltage 

Calculation subsystem. These subsystems are discussed in details below. 

 
Figure 6.9 - Simplified reduced order model four main subsystems 
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 Butler-Volmer Current Calculation Subsystem 

The spatial dependence of the Butler-Volmer equation on the (x-direction) is ignored as 

shown below [18]:  

 
න ݆ሺݔሻ݀ݔ ൌ

ܫ
ܣ
ൌ

ఋ


݆

 ߜ

 
න ݆ሺݔሻ݀ݔ ൌ

ܫ
ܣ
ൌ



ఋାఋೞ

݆

 ߜ

Where ൬݆
݅ܮ
൰ is a constant value that satisfy the integral and boundary conditions of 

equations (6.10) and (6.11). ߜ,  , are the anode and cathode electrode thicknessesߜ

respectively as shown in Figure 6.8. 

 Spherical Particle Diffusion Sub-System 

The mass conservation equation (6.2) describes the variations of the lithium ion 

concentration in the active spherical particle in any of the electrodes. It is discretized 

using a first order finite difference method (see Appendix B for more details). Each 

particle is discretized into ܯ െ 1 regions along the radial dimension	ݎ and thus the 

diffusion phenomenon is approximated using discretized Fick’s law of diffusion (see 

Appendix C for more details) [104]. Consider the spherical active material particle of the 

negative electrode, discretizing equation (6.2) and the boundary conditions (6.3) and (6.4) 

leads to: 

 
ሶܿ௦,ሺ,ሻሺݍሻ ൌ

௦ܦ
ଶݎ∆

ቈቀܿ௦,ሺ,ሻሺݍ  1ሻ െ 2ܿ௦,ሺ,ሻሺݍሻ  ܿ௦,ሺ,ሻሺݍ െ 1ሻቁ


ݎ∆
ݎ2

ቀܿ௦,ሺ,ሻሺݍ  1ሻ െ ܿ௦,ሺ,ሻሺݍ െ 1ሻቁ 

Where ݍ ൌ 1,……… ., ܯ െ 1  and	ݎ ൌ ݍ ∗  substituting in equation (6.27) ,	ݎ∆
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ሶܿ௦,ሺ,ሻሺݍሻ ൌ

௦ܦ
ଶݎ∆

൬
ݍ െ 1
ݍ

൰ ܿ௦,ሺ,ሻሺݍ െ 1ሻ െ 2ܿ௦,ሺ,ሻሺݍሻ

 ൬
ݍ  1
ݍ

൰ ܿ௦,ሺ,ሻሺݍ  1ሻ൨ 

The boundary conditions equation (6.3) and (6.4) can be written as follows 

 
ܿ௦,ሺ,ሻሺ0ሻ ൌ ܿ௦,ሺ,ሻሺ1ሻ 

For spherical particles in the negative electrode the lithium surface electrolyte 

concentration can be obtained as follows [47]:  

 
ܿ௦ ൌ ܿ௦ሺܯሻ ൌ ܿ௦ሺܯ െ 1ሻ  ݎ∆

െ݆

ܽ௦,ݏܦܨ
 

While for spherical particles in the positive electrode: 

 
ܿ௦ ൌ ܿ௦ሺܯሻ ൌ ܿ௦ሺܯ െ 1ሻ  ݎ∆

െ݆

ܽ௦,ݏܦܨ
 

With the above approximations for the mass conservation equation (6.2), a state space 

representation of the model can be obtained from equations (6.33) to (6.39) as: 

 
ܿ௦ሶ ൌ ௦ܿ   ݆

 
ܿ௦ ൌ ௦ܿ   ݆ࡰ

Where the state space matrices, A, B, C, D are obtained as follows: 
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 ൌ ߙ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ െ2

ݍ  1
ݍ

0 ⋯ ⋯ 0 0 0

ݍ െ 1
ݍ

െ2
ݍ  1
ݍ

⋯ ⋯ 0 0 0

0
ݍ െ 1
ݍ

െ2 ⋱ 0 0 0

⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮

0 0 0 ⋱ െ2
ݍ  1
ݍ

0

0 0 0 ⋯ ⋯
ݍ െ 1
ݍ

െ2
ݍ  1
ݍ

0 0 0 ⋯ ⋯ 0
ݍ െ 1
ݍ

െ
ݍ െ 1
ݍ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 
 ൌ ߚ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

0
0
0
⋮
⋮

െ
ݍ  1
ݍ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 
 ൌ ሾ0 0 ⋯ ⋯ 0 1ሿ 

 
ࡰ ൌ െ

ߚ
ߙ

 

Where,	ߙ ൌ 	 ೞ
∆మ
		 and 		ߚ ൌ 	 ଵ

ೞ∗ி∗ݎ∆
		 

 Calculate Terminal Voltage Subsystem: 

The battery voltage is calculated by substituting equation (6.18) in equation (6.25) as 

follows: 
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 ܸሺݐሻ ൌ ,ܮሺߟ ሻݐ െ ,ሺ0ߟ ሻݐ െ ൫∅ሺܮ, ሻݐ െ ∅ሺ0, ሻ൯ݐ

 ቀܷሺܿ௦ሺܮ, ሻሻݐ െ ܷሺܿ௦ሺ0, ሻሻቁݐ െ
ܴ

ܣ
 ܫ

And by using the average simplifications values calculated above instead of using the 

boundary conditions the following equation is obtained 

 
ܸሺݐሻ ൌ ቀߟ െ ቁߟ െ ൫∅, െ ∅,൯  ቀܷ൫ܿ௦,൯ െ ܷ൫ܿ௦,൯ቁ െ

ܴ

ܣ
 ܫ

The output voltage ܸሺݐሻ	is calculated with 4 terms	ቀߟ െ ቁߟ , ൫∅, െ ∅,൯,

ቀܷ൫ܿ௦,൯ െ ܷ൫ܿ௦,൯ቁ ,
ோ

 each of them will be obtained separately using the average ,ܫ

current and the continuity at the interface and imposing the boundary conditions, as 

follows: 

The term 	൫∅, െ ∅,൯,  is the difference between the electrolyte phase potential at the 

anode and cathode current collector and can be calculated using the following equation, 

[47]: 

 
∅, െ ∅, ൌ െ

ܫ
݇ܣ2

൫ߜ  ௦ߜ2   ൯ߜ

The term	ቀߟ െ  , is the difference between the anode and cathode over potentials can	ቁߟ

be calculated using the following equations [105]: 

 
ߟ̅ ൌ

ܴܶ
ܨߙ

ln ቀߦ  ඥߦଶ  1ቁ 

 
ߟ̅ ൌ

ܴܶ
ܨߙ

ln ൬ߦ  ටߦଶ  1൰ 

Where 
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ߦ ൌ

ଔ̅

2ܽ௦݆
 

 
ߦ ൌ

ଔ̅

2ܽ௦݆
 

Where, ଔ̅ and ଔ̅ are the Butler-Volmer currents defined as follows: 

 
ଔ̅ ൌ

ܫ
ߜܣ

ൌ ܽ௦݆ ݁ݔ ൬
∝ ܨ
ܴܶ

൰ߟ̅ െ ݔ݁ ൬
∝ ܨ
ܴܶ

 ൰൨ߟ̅

 
ଔ̅ ൌ

ܫ
ߜܣ

ൌ ܽ௦݆ ݁ݔ ൬
∝ ܨ
ܴܶ

൰ߟ̅ െ ݔ݁ ൬
∝ ܨ
ܴܶ

 ൰൨ߟ̅

Finally, the battery output voltage equation can be obtained as a function of the average 

solid concentration and the battery current as: 

 ܸሺݐሻ ൌ
ܴܶ
ܨߙ

ln ൭
ߦ  ඥߦଶ  1

ߦ  ඥߦଶ  1
൱  ቆ

ܫ
݇ܣ2

൫ߜ  ௦ߜ2  ൯ቇߜ

 ቀܷ൫ܿ௦,൯ െ ܷ൫ܿ௦,൯ቁ െ
ܴ

ܣ
 ܫ

 

 SOC Calculation 

The		ܿ௦,		of the positive electrode is used to calculate the solid concentration at the solid 

electrolyte interface for the negative electrode ܿ௦,	using the following equation: 

 
ܿ௦̅, ൌ ܿ௦,௫, ቆߠ% 

ܿ௦̅, െ %ܿ௦,௫,ߠ

ሺߠ% െ %ሻܿ௦,௫,ߠ
∗ ሺߠଵ% െ  %ሻቇߠ

Where,	ߠ%, ,%ଵߠ ,%ߠ  ଵ% are the stoichiometry reference points for theߠ

negative and positive electrodes [33]. The solid concentrations at the electrode-electrolyte 

interface for the positive and negative particles are obtained by dividing the current solid 

concentration with the maximum solid concentration to get 	ߠ,  :as follows		ߠ
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ߠ  ൌ
ܿ௦,
ܿ௦,௫,

 

ߠ  ൌ
ܿ௦,
ܿ௦,௫,

Concentration values in equations (6.50) and (6.51) are further used in equations (6.19) 

and (6.20) using the empirical relationship that relates the open circuit voltage to the 

normalized state of charge [106]. The Normalized solid-electrolyte concentration θ is 

obtained first using equation (6.50) and (6.51); the State of Charge is calculated based on 

the positive electrode lithium concentration using the following equation [106]: 

 
ܥܱܵ ൌ

ߠ െ %ߠ
%ଵߠ െ %ߠ

 

The relation between SOC and solid surface concentration stoichiometry (also indicated 

as normalized concentration) is shown in Figure 6.10. 

 
Figure 6.10 - Relation between SOC and solid surface concentration stoichiometry 
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 SOC Estimation 

The EKF and the SVSF were applied to the Single Particle Model (SPM) to estimate the 

battery SOC and the critical surface concentration (CSC). The overall model (4 sub-

systems) consists of a linear system equation (6.33) and a nonlinear measurement 

equation (6.34). The model has one input (demanded current), one output (measured 

terminal voltage), and ܯ െ 1 states, the states represent the number of discretization 

along the radial dimension	ݎ. The SPM is considered to have 4 states (4 discretization 

along radial dimension). The Single Particle Model SPM battery terminal voltage is 

compared to the full order model terminal voltage as shown in Figure 6.11.  

 
Figure 6.11 - SOC estimation using SVSF 

The states are the solid concentration (ܥ௦) across various particle shells as in equation 

(6.35). The state space model is then obtained as: 
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ሶݔ ൌ ሻݐሺݔܣ   ሻݐሺݑܤ

 
ݕ ൌ ܸሺݔ,  ሻݑ

The matrices ܣ and ܤ are defined in equations (6.35) and (6.36). The nonlinear output 

equation is linearized with respect to the latest estimate to obtain a linearized 

measurement equation using the following: 

ܥ  ൌ
߲ܸ
ݔ߲
ฬ
௫ೖୀ௫ොೖ

 

The output C matrix has only one elements as follows, [18]: 

 
∂V

∂cതୱ,୮ሺ౨ିଵሻ
ൌ

∂U୮
∂cതୱ,୮ሺ౨ିଵሻ

െ
∂U୬
∂cതୱୣ,୬

∂cതୱୣ,୬
∂cതୱ,୮ሺ౨ିଵሻ

 

 

 Simulation Test Procedure and Results 

SOC estimation algorithm used in the cell simulation is shown in Figure 6.11, where the 

Single particle model terminal voltage is compared with the full order model terminal 

voltage. The error signal is fed to the state estimator (EKF or SVSF). The filter gain is 

then used to adjust the a priori estimate of states, including SOC. The full order battery 

cell is of nominal capacity of 6 Ah. The parameters and constant values for this cell can be 

found in Appendix A. 

Simulation	Driving	Cycle	

In this section two driving cycles used in simulating the battery performance are 

presented. The first driving cycle is the Urban Dynamometer Driving Schedule (UDDS) 

discussed in Chapter 3. The vehicle speed profile is shown in Figure 3.9, and the battery 

current is shown in Figure 3.10. The second driving cycle is the Charging/discharging 

Pulse train cycle, where the battery current is shown in Figure 6.12. 
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Figure 6.12 - Charging/discharging Pulse train cycle current profile 

The full order model SOC using UDDS cycle is shown in Figure 6.13, and the cell 

terminal voltage is shown in Figure 6.14. 

 
Figure 6.13 – Battery full order model SOC behavior [UDDS] 
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Figure 6.14 – Battery full-order model output voltage profile [UDDS] 

While using the Charging/discharging Pulse train cycle the SOC behavior is shown in 

Figure 6.15, and the cell terminal voltage is shown in Figure 6.16. 

 
Figure 6.15 - Battery full order model SOC behavior [Pulse train cycle] 
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Figure 6.16 - Battery full-order model output voltage profile [Pulse train cycle] 

 

Results	

In case of UDDS Cycle, the true SOC is 90% while the model is initialized at 75% (i.e. 

15%), the system and measurement noise covariance for EKF were defined as follows: 

ܳ ൌ ݀݅ܽ݃ሺ0.01, 0.01, 0.01, 0.01ሻ	
ܴ ൌ 0.1 

The SVSF ‘memory’ or convergence rate and smoothing boundary layers were defined as 

follows: 

߰ ൌ 	0.2	
ߛ ൌ 	0.8 

In case of Pulse train cycle, the true SOC is 60% while the model is initialized at 75%, the 

system and measurement noise covariance for EKF were defined as follows: 

ܳ ൌ ݀݅ܽ݃ሺ0.01, 0.01, 0.01, 0.01ሻ	
ܴ ൌ 0.08 
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The SVSF ‘memory’ or convergence rate and smoothing boundary layers were defined as 

follows:      ߰ ൌ 	0.25	

ߛ ൌ 	0.8 

 

 UDDS Cycle 

In Figure 6.17, Figure 6.18, Figure 6.19, and Figure 6.20, the solid line represent the 

full-order model results, the dashed and dotted lines represent the EKF and the SVSF 

results respectively for the Single particle Model (SPM). Figure 6.17 shows the 

concentration variation in the electrode solid particle. Figure 6.18, shows the lithium 

concentration on the surface of spherical particle ܿ௦ known as critical surface 

concentration CSC, the four dashed and dotted lines represent the states estimated by the 

KF and the SVSF respectively. Figure 6.19 shows the estimated SOC using the EKF and 

the SVSF. Figure 6.20, shows the estimated terminal voltage and the EKF and the SVSF 

in comparison with full-order model terminal voltage. 

 
Figure 6.17 - Lithium concentration in solid particle Full-order model vs. SPM with EKF and 

SVSF 
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Figure 6.18 - Critical Surface Concentration in solid particle Full-order model vs. SPM with 

EKF and SVSF 

 
Figure 6.19 - SOC estimation using SPM with EKF and SVSF vs. full order model 
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Figure 6.20 - Terminal Voltage comparison Full order Model vs. SPM with EKF and SVSF 

 

 Pulse Cycle 

In Figure 6.21 to Figure 6.24, the solid line represent the full-order model results, the 

dashed and dotted lines represent the EKF and the SVSF results respectively for the 

Single particle Model (SPM). Figure 6.21 shows the concentration variation in the 

electrode solid particle. Figure 6.22, shows the lithium concentration on the surface of 

spherical particle ܿ௦ known as critical surface concentration CSC, the four dashed and 

dotted lines represent the states estimated by the KF and the SVSF respectively. Figure 

6.23, shows the estimated SOC using the EKF and the SVSF. Figure 6.24, shows the 

estimated terminal voltage and the EKF and the SVSF in comparison with full-order 

model terminal voltage. 
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Figure 6.21 - Lithium concentration in solid particle Full-order model vs. SPM with EKF and 

SVSF [Pulse train Cycle] 

 
Figure 6.22- Critical Surface Concentration in solid particle Full-order model vs. SPM with EKF 

and SVSF [Pulse train cycle] 
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Figure 6.23 - SOC estimation using SPM with EKF and SVSF vs. full order model [Pulse train 

cycle] 

 
Figure 6.24 – Terminal Voltage comparison Full order Model vs. SPM with EKF and SVSF 

[Pulse train cycle] 
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 Summary 

This chapter provided a description of Electro-chemical Models (ECM) for lithium ion 

batteries and their implementation. These models are physics-based and capture the 

electrochemical reactions using partial differential equations (PDE). The models link 

physical parameters to internal electrochemical dynamics. The full order electro-chemical 

model provides a deep insight into the underlying physics. However, it is slow, complex, 

and computationally unfeasible for real time implementation. This chapter also provided 

the simplified Single Particle Model (SPM) that may be implemented in real time. The 

SPM was used for SOC estimation using both the EKF and the SVSF strategies. 

According to Figure 6.25 the SVSF shows a better performance compared to the EKF.  

 
Figure 6.25 – Simulation Electro-Chemical Model estimation comparison of SOC Estimation 

Error using EKF and SVSF 
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7. Conclusion and Recommendations 

 

 

 

 Summary of Research 

A comparative study between different lithium-ion battery models and state of charge 

(SOC) estimation strategies was performed. Three categories of battery models were 

considered: Behavioral or Black-box models, equivalent circuit models, and electro-

chemical models. The SOC was estimated using two estimation strategies, namely the 

Extended Kalman filter (EKF) and the Smooth Variable Structure Filter (SVSF). The 

models and SOC estimation strategies were applied to experimental data provided by the 

BMW Electrical and Hybrid Research and Development Center. The results were 

validated using simulation models obtained from the AVL CRUISE software. 

This thesis provided a detailed overview of Behavioral models and their implementation. 

The Behavioral models simulate the terminal voltage behavior of the batteries without the 

need for the specification of the underlying physical or electrochemical reactions. These 

models can be simple starting with one state to capture the SOC, and progressively 
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become more complex with more than one state used for to capture better the internal 

battery dynamics. The model parameters were optimized using the Globalized Pattern 

Search Matlab toolbox. 

The EKF and SVSF were applied to six different Behavioral models, and the SOC was 

estimated. The results were compared based on the SOC root mean squared error 

(RMSE). It was discovered that the SVSF provided a more accurate estimation result, 

with an improvement of 30 to 60%. The greatest RMSE difference occurred when 

applying the estimation methods on the Combined Model. The SVSF estimation results 

were consistent throughout all 6 models (i.e., the SOC estimation error varied by under 

0.5%). The EKF application results were less consistent; the SOC estimation error varied 

by upwards of 2.5%. The differences in consistency were likely due to the sensitivity of 

the EKF to modelling uncertainties. A comparison of results indicates that the SVSF is 

more robust to modelling uncertainties compared to the EKF. 

Six Equivalent circuit models and their implementation were also considered. These 

models are widely used because they are relatively simple, have fewer parameters to tune, 

and are easy to implement. The Equivalent circuit models consist of first-order, second-

order, or third-order resistance-capacitance (RC) models in addition to the hysteresis 

effect. The Equivalent circuit model parameters were also optimized using Globalized 

Pattern Search Matlab toolbox. 

The results of applying both the EKF and SVSF estimation methods on the Equivalent 

circuit models were shown and discussed. The SVSF SOC strategy yielded the best 

performance in terms of estimation accuracy. Similar to the Behavioral models, the SOC 

estimation RMSE was improved by 15 to 60%, depending on the model used. The worst 

model for both estimation methods was the first-order RC model; whereas the most 

accurate model was the third-order RC model which included hysteresis. This was to be 
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expected, as the RC model was unable to capture the nonlinear battery dynamics 

compared to the third-order RC model with hysteresis. 

Electro-chemical models (ECM) and their corresponding implementation were also 

considered. These models are physics-based and capture electrochemical reactions using 

partial differential equations (PDE). This type of models links physical parameters to 

internal electrochemical dynamics. It was concluded that the full order electro-chemical 

model provides a comprehensive insight to battery physical parameters and underlying 

physics. However, it was found to be slow, complex, and computationally unpractical for 

real time implementations. A detailed description for the simplified Single Particle Model 

(SPM) was also described, which may be implemented to improve the full order model’s 

computational performance. The EKF and SVSF estimation strategies were applied to an 

ECM model. It was found that the SOC estimation using the SVSF was significantly 

better than results obtained by using the EKF and improve RMSE by 60 to 80% 

compared to EKF. 

 Recommendations and Future Work 

A trade-off exists between model complexity, accuracy, and parameterization. It is 

recommended that the selection of a battery model should be made based on the required 

accuracy and the available computation power. For example, in some situations a simple 

RC model may suffice; such as in simple, low current operating conditions. However, a 

more complicated model is required to capture nonlinearities present in environments 

involving fast transients. 

The first recommendation for new research involves further study of electro-chemical 

models. In most cases, the ECM is considered to be one dimensional. This can be 

extended to higher dimensions (2 or 3) by using finite element analysis (FEA). An FEA 

strategy could be developed to create more accurate ECM models. 
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It is important to note that the temperature dependence of model parameters were not 

considered in this work. Future studies can include energy balance equations in the 

models to incorporate temperature information and its effects on the system. 

Additionally, a temperature sensor can be proposed for the cell along with a sensor for 

terminal voltage. This will add more information to the experimental setup, which can be 

used in modelling and SOC estimation. Furthermore, the aging effect of the cell was 

ignored in this work. A very important recommendation for future work includes the 

study of aging and its effects on a battery cell. This work is important because it may yield 

more accurate estimation for battery state of health (SOH). 
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APPENDIX A 

 

Model Parameters for Electro-chemical Li-Ion Cell 

Universal	Constants:	

Parameter Value 

Faraday’s number, ܨ (C mol-1) 96,487 

Universal Gas constant, ܴ (J K-1 mol-1) 8.3143 

Discretization,	Geometry	and	Volume	Fractions:	

Parameter Negative electrode Separator Positive electrode 

Thickness (cm) ߜ୬ ൌ ୱୣ୮ߜ 10-4×50  ൌ ୮ߜ 10-4×25.4 ൌ	36.4×10-4 

Particle radius ܴ௦ (cm) 1×10-4 - 1×10-4 

Active material volume 

fraction ߝ௦ 
0.580 - 0.500 

Electrolyte phase volume 

fraction (porosity) ߝ 
0.332 0.5 0.330 

Active surface area per 

electrode unit volume 
ܽ௦ ൌ

ߝ3
ܴ௦

 - ܽ௦ ൌ
ߝ3
ܴ௦
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Plate	Area‐Specific	Parameters	and	Temperature:	

Parameter Value 

Electrode plate area A (cm2) 10,452 

Current collector contact resistance, ܴ (Ωcm2) 20 

Temperature, T(K) 298 

Kinetic	and	Transport	Properties:	

Parameter Negative electrode Separator Positive electrode 

Change transfers 

coefficient ߙୟ, ߙୡ 
0.5,0.5 - 0.5,0.5 

Solid phase diffusion 

coefficient ܦ௦ 
2.0×10-12 - 3.7×10-12 

Conductivity of solid 

active material	ߪ  
1 - 0.1 

Electrolyte phase diffusion 

coefficient ܦ 
2.6×10-6 2.6×10-6 2.6×10-6 

Transference number 0.363 0.363 0.363 

Electrolyte phase ionic 

conductivity ߢ (Ωିଵܿ݉ିଵ) 

ߢ ൌ 0.0158ܿ
∗ ݁ሺ.଼ହୡ

భ.రሻ
ߢ ൌ 0.0158ܿ	
∗ ݁ሺ.଼ହୡ

భ.రሻ
ߢ ൌ 0.0158ܿ
∗ ݁ሺ.଼ହୡ

భ.రሻ

Effective conductivity of 

solid active material 
ߪ ൌ ௦ߝ ߪ - ߪ ൌ ௦ߝ  ߪ

Effective electrolyte phase 

diffusion coefficient 
ܦ
 ൌ ሺߝሻଵ.ହ ܦ ܦ

 ൌ ሺߝሻଵ.ହ ܦ ܦ
 ൌ ሺߝሻଵ.ହ  ܦ

Effective electrolyte phase 

ionic conductivity 
ߢ ൌ ሺߝሻଵ.ହ ߢ ߢ ൌ ሺߝሻଵ.ହ ߢ ߢ ൌ ሺߝሻଵ.ହ  ߢ

Effective electrolyte phase 

diffusion conductivity 
ߢ
 ൌ

ߢ2ܴܶ

ܨ
∗ ሺݐା െ 1ሻ

ߢ
 ൌ

ߢ2ܴܶ

ܨ
	

∗ ሺݐା െ 1ሻ

ߢ
 ൌ

ߢ2ܴܶ

ܨ
∗ ሺݐା െ 1ሻ
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Lithium	Ion	Concentrations:	

Parameter Negative electrode Separator Positive electrode 

Maximum solid-phase 

concentration  ܥ௦,௫ 
1.61×10-3 - 23.9×10-3 

Stoichiometry at 0% ߠ% 0.26 - 0.936 

Stoichiometry at 100% 

 %ଵߠ
0.676 - 0.442 

Average electrolyte 

concentration ܿୣ  

(mol cm-3) 

1.2 × 10-3 1.2 × 10-3 1.2 × 10-3 
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APPENDIX B 

 

Fick's Law of Diffusion 

Diffusion refers to the phenomenon of elements moving from a region of high 

concentration to one of low concentration, thus minimizing the concentration gradient in 

time. This effect is clearly visible in lithium diffusion batteries, where lithium ions 

transfer from high concentration areas to low concentrations during charging and 

discharging. 

Adolf Fick was a German physiologist who proposed two laws of diffusion named after 

him. The two laws describe solid state diffusion in one dimension, such as the 

concentration of one species in another over time. Fick's first law describes diffusion at 

steady state, where the source concentration never changes. The concentration gradient is 

constant and linear between the high and low concentration sides, as shown below: 

ܬ  ൌ െܦ ൬
߲ܿ
ݔ߲
൰ B.1 

Where ܬ is the flux, ܦ is the diffusion coefficient, and 
డ

డ௫
 is the change in concentration 

with distance as shown in Figure Appendix B.1 
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Figure Appendix B.1 – Concentration gradient (Constant in X-direction) [107]. 

Fick's second law describes the non-steady state diffusion, where the concentration 

gradient will not be linear as shown below: 

 
߲ܿ
ݔ߲

ൌ ܦ ቆ
߲ଶܿ
ଶݔ߲

ቇ B.2 

The difference between the steady state diffusion and non-steady state diffusion is shown 

in Figure Appendix B.2 [107]. 

 

Figure Appendix B.2 - Steady state and non-steady state diffusion 
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List of Acronyms 

μC Microcontrollers 

1D One Dimension 

AC Alternative Current 

Ah Ampere-hour 

ANN Artificial Neural Networks 

ASPO Association for the Study of Peak Oil and Gas 

BEV Battery Electric Vehicles 

BMS Battery Management System 
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BOL Beginning of Life 

CCCV Constant Voltage Constant Current 

CPU Central Processing Unit 

DOD Depth of Discharge 

DSP Digital Signal Processing 

EAM Electrode Averaged Model 

EIS Electrochemical Impedance Spectroscopy 

EKF Extended Kalman Filter 

EOL End of Life 

ESC Enhanced Self Correcting 

EV Electric Vehicles 

GHG Green House Gas 

GPS Generalized Pattern Search 

HEV Hybrid Electric Vehicles 

KF Kalman Filter 

Li-ion Lithium ion 

LTI Linear Time Invariant 

LTV Linear Time Varying 
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MMSE Minimum Mean Square Error 

MSE Mean Square Error 

OCV Open Circuit Voltage 

ODE Ordinary Differential Equation 

PDE Partial Differential Equation 

PHEV Plug-in Hybrid Electrical Vehicles 

RBS Regenerative Braking System 

RMS Root Mean Square 

RMSE Root Mean Square Error 

ROM Reduced Order Model 

RUL Remaining Useful Life 

SMC Sliding Mode Control 

SOC State of Charge 

SOH State of Health 

SVSF Smooth Variable Structure Filter 

VSC Variable Structure Control 

VSF Variable Structure Filter 

 


