Embedded Librarians
Three Models to Promote the Library and Improve Student Learning

Colgoni, Godfrey and Nicholson
McMaster University

#embedmac #acrl2011
Outline

- Poll
- What is embedded librarianship?
- Initial Vote
- Three models:
 - In a program
 - Virtually
 - In the campus teaching support centre/centre for teaching excellence
- Q & A + Your Experiences
- Final Vote
Poll
How many of you currently have embedded librarians at your institutions?

• In an academic program?
• Virtually?
• In a teaching support centre?
Embedded?
Cybrarians?
A corporation that is serious about its information needs may contemplate having at its disposal a network of cybrarians (i.e. librarians able to navigate in ‘cyberspace’), strategically located throughout the company.

Bauwens (1993)
Blow up the Library

Get out!
Connect information consumers with suppliers
Embedded Librarian
Characteristics

1. physical (or virtual) co-location
2. funding outside normal library budget lines
3. managerial and supervisory reporting lines
4. participation in organizational activities of library and client group (Shumaker & Tyler, 2008)
Roles

- embedded in courses
- members of research teams
- collaborating in scholarly communication activities
- embedded in virtual worlds or virtual learning environments
- *embedded in T&L support centres*
“It’s the human side, stupid”

- Traditional skills & competencies must be combined with advanced knowledge of customer domain
- Application changes, but underlying skills remain essential

(Shumaker & Tyler, 1997; Kesselman & Watstein, 2009)
Initial Vote

Which of our models do you think is most effective at building campus relationships and improving student learning?

1. Embedded into a Program
2. Embedding Virtually
3. Embedding into a T&L Support Centre
Embedding into a Program
Andrew Colgoni, Science Fluencies Librarian
colgoni@mcmaster.ca
Model Comparison

- Office located at program HQ ✓
- Salary paid by the program ❌
- Report to program and library ❌
- Participates in organizational activities of both groups ✓
- Completely integrated into the program’s activities and planning ✓
iSci

- 4 year Honours Degree Program
- Bringing sciences together - interconnectedness
- Research-focused, project based, inquiry-style groupwork
- Small (<60/yr), intensive
Location

- Facilitates communication between instructors and librarian
- Primacy of library for students
- Impromptu and scheduled student consultations with librarian
Curriculum, etc.

- iCore & iTeach
- Student Selection & Recruitment
- Project co-ordination (‘Sustainable Energy’)
- Guides, Resources, Links, Facebook
Science Literacy

- with Dr. Sarah Symons
- 2 hr. weekly class for Level I
- ‘thread’ that runs through all aspects
- Covers the overarching skills needed to ‘do’ science:
 - scientific writing/reading, note-taking, information research and management, academic integrity, communication, etc.
The P versus NP problem

The P versus NP problem is arguably one of the most important problems in mathematics and computer science. The basis behind the problem is quite simple; it simply asks "if a solution to a problem can be verified in any reasonable amount of time can all the solutions be found for the same problem in a reasonable amount of time?" In order to completely understand the complexity of the problem P and NP must be defined. A problem that can have a solution verified efficiently can be seen as having a polynomial time solution. NP represents a set of problems which are capable of having solutions verified in polynomial time. This NP set can also be considered to be a non-deterministic problem. A non-deterministic problem means that there can be numerous outcomes for a given value. P represents a subset of NP problems which means that all P problems can verify solutions in polynomial time. However, P is a special case of NP problems. The problems in the subset P are considered deterministic problems. A deterministic problem would mean that there is one outcome for one value.

![Image of NP Problems]

- **P Problems**
- **NP Complete**

Recent Posts

- The P versus NP problem
- The Alcohol Flush Reaction: It's The Science Behind Drinking
- The Synthetic Cell: History in the Making
- Your Thoughts (Are) Matter?
- Generation Y
- Is There a Common "Scientist Personality"?
- Teaching Tools
- Abiogenesis: Vesicle First Principle

Images (if any):

- A butterfly on a leaf.

Source:

Synopsis: Beta

Year II Integrated Science, McMaster University

Nov 30 / Kristen Costa
Presentations: The iSci Guide to Best Practice

Preparation

- Use props as necessary (i.e. cue cards and visuals).
- Practice, practice practice!
- Preparation brings up the choice between memorization and speaking spontaneously according to personal preference. Memorization is useful, but don’t memorize a script.

- Say the same thing on the slides, so that there’s no overlap in content; aim for good flow.

Planning

- Frame for people sitting in the audience
- Write your presentation down on slides, so that the presentation flows through.
- Draw pictures everywhere, but keep it flowing.
- Draw pictures, include graphs throughout, conclusion
- The most important part of your presentation is the slides, so make sure that they are visually appealing and clear.

- Adapted for iSci
- Original by Jackie Stapleton (University of Waterloo)
- Adaptable to different situations
- Embedding doesn’t need to be full-time
- Effectiveness comes from deep embedding across the curriculum
Embedding Virtually
Krista Godfrey, Liaison Librarian
godfrey@mcmaster.ca
Bridging Distances
Not just for distance education
Learning Management Systems
LMS

- Quizzes
- Discussion forums
- Pathfinders/subject guides
- Learning Objects (video, ppt, articulate)
- Chat/IM

Blackborg
Resistence is futile*

*typo to be fixed in next Service Pack

© LeSombre

Image credit
Social Networks

It’s about connections, being where our users are.
Virtual Worlds & Environments

Yes, Second Life may be a possibility
Advantages

- Be where your users already are
- No space or money issues
- Statistics gathering
Student Learning

- multiple learning styles
- asynchronous review
- point of need help
- anonymity
Promotion

- Social networks
- LMS one-stop shop
Embedding in the T&L Centre
Karen Nicholson, Teaching and Learning Librarian
knichol@mcmaster.ca
We are challenged to engage with faculty ... in designing integrated learning experiences for students that will help them develop their skills over the course of their undergraduate careers. This partnership role is one that is very different from that of invited guest lecturer.

Williams (2009)
Embedded Model: Secondment

2009: Embedded T&L Librarian
- Launching Communities of Practice
- Digital Media Literacy (DML) course design

2010: T&L Development Officer
- Quality Assurance Framework and degree level learning outcomes
Q: How do I play video games in the Lyons New Media Centre?

1. Go to the Lyons Room Bookings page and book a gaming station:
 http://library.mcmaster.ca/mrbs_lnmnc

2. Choose the game(s) you wish to play by the door.

3. Sign out the game(s) and controller(s) at the Help Desk

4. Sign out using your student ID card.

5. Return the game(s) and controller(s) to the Help Desk when finished.

Digital Media Literacy
DML Course Objectives

- Develop and apply critical thinking skills;
- Explore controversies and issues related to digital media within a social sciences’ framework; and
- Improve students’ communication skills and ability to use ICT effectively.
Quality Assurance

- Increasing focus in HE globally
- Accountability and / or enhancement
 - measuring inputs & outputs
 - focus on student learning outcomes (OBE)
Outcome-based Education

One obvious way in which universities have sought to articulate their role and purpose is through a description of the qualities of their graduates.

Barrie (2006)
T&L Centres and QA

- Increasing focus on educational developers and T&L centres as change agents (Fletcher & Patrick, 1993; Taylor (2005); Haynes & Stensaker (2006))
- Promoting student-centered learning
 - Curriculum mapping of program-level learning outcomes
Reframing IL as metaliteracy

- 21st century skills/fluencies & attributes
 - U.S.
 - Canada
 - Australia
Embedded Model

- Me: physically located in the CLL ✓
- Salary paid by the unit (secondment) ✓
- Dual report to CLL and Library ✓
- Participated in activities of both groups ✓
- Integrated into the unit’s activities ✓
Embedded Model

- traditional skills & competencies combined with advanced knowledge of customer domain ✓
- application changes, but underlying skills remain essential ✓
- effective ✓
- sustainable ✓
- transferable ✓
Summaries
Discussion/Questions

What kind of embedded roles do you have at your library?
Final Vote

Which of our models do you think is most effective at building campus relationships and improving student learning?

1. Embedded into a Program
2. Embedding Virtually
3. Embedding into a T&L Support Centre