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* _ . The establishing of the principles

of mathematics and the natural sci-

. ences is the resronsibility of neta- 7

. physies... The general theory of

- gets ... belonms entirely to meto-
physics. You can easily convince
yourself of this by testing the
categories of cardinal number and
ordinzl type, these fundamental
concepts of set theory, with res<
.pect to the degree of their gener-
ality, and also noticé that the

: . . reasoning : them is quite pure,
h so that sfdncy has\no room for clay.
v is ig in no way changed by

the pictures which I, like all
metavhysicians, sometimes make use -
of to explain metaphysical concepts.
XNor does the fact that my work ap-
pears in mathematical journals af-
fect its metaphysical character and
content. ‘ ' _ .

(From a letter dated February 2, 1896 from Cantor te

Father Thomas Esser. Translated by H. Megchkowski?)
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. FREFACE .

» i . 'I\x )
Hﬁ?;ert once wrdte:K

in Y From time immemorial, the infinite
b "has sticvved men's .emotions move
‘thon any other auestion. Hardly
any other idea has stimulated the S -
: mind so fruitfully. Yet, no other ‘
concept needs clarification more

|

\ 7 ~ " than it does1.1

'-Thie_thesis was written in accoéﬂance wifh the above sentiments.
-'g‘ﬁeﬁe'thgt itjhas centributedxiéxsome Qa& to that "clagrification"
fof.whichiHilbertfspeaks, ‘\'
ST owe the inspiration'fo% Qﬁis thesis, and;indeedlfo: my
interest in the work of Georg Caﬁtog; to the {eaching and wfitings

of Professor Stenhan Ko*ner. In Fehruqrv 1973 I attended a colrse

-
-

of extramural 1ectures riven by Professor Korne" at the UﬂlVEISlty'

‘
-~ \

_‘of Brlstol The lecture concerning i nFlﬂlty I found to be- extra-
ordinarily stimlating, It was, for me, wbai Maslow would call,
a peak experience”. The combln ation of-seeh vonderful subgect
matter and such a wige and ex01t1ng teacher proved irresistible:
it has guided my studies ever since. |
.- I also w1sh to thank Dr. Radner and Dr. Hltchcock for
‘ésielping me to carry out my proaect - Dr. Hitchcock has been eSpecially

X helpful in his scrupulous criticism of c%?taln teehnical details,

he

1David_Hi1bert "On the Infinite"- (1925) 1n Paul Benacerraf

and ‘Hilary Putnam, ed., Philosophy of Mathema tics' Selected Rezdings

-
._,,.

(Yew Jersey, 1964);; 0.4,
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rriindung der transfiniten Mengenlehre“1 which is_signed "Halle
= ' ’

. . &hapier One; LYTHODUCTION <if\{ . |
L _ &
In this thesis T .propose to examiné the foundations

of transfinite cardinal arithmetic. I intend to present a "formal™
version of the "naive" account_of trangfirite cardi arithmetic

miven by Geors Cantor in 1895. To this end T shall present a -

fof;al axiomatization of the partidﬁlar number system {Chapter IT).
H%ving‘thus'obtainedlan uninterpreted calculus, I shall provide
ihfcﬁapter ITT a modél for this calculus. This modei_or inter-
pretation will be b;sed on Cantor's own account of transfinite
cardinal arithmetic. In bhapters IV and V I éhall discués
some of the arithmetical and algebraic properties of this par;
ticulai number sygstem, In Ch#pter-VI r&‘shall attempt fg Drove

the consistency of the axiomatized version of trd%sfinite cardinal

arithmetic{ the proof which I shall provide will be a: relative rither than

an absolute Dcon:‘aistency proof. Finally, in Chapter VII, I

B . 4 .\"
shall discuss the ontological status of transfinite cardinal

numbers, whether and in what sense they exist.

Cantor's "naive" account of transfinite cardinal arith-

metic is to be found in the article entitled “Beitrﬂge zur Be-

i

1Translated ag "Contributions to the Founding of the

Theory .of Transfinite Sets".

.1'
(¢
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March 1895". Tt appeared in tﬂe'joprnal MafheqatiSChe Annalerc

in 1895, ngefher with another article possessing the same titleg_

it has been translated into English by P.E.B, Jourdain and appears
. o ' | ,
in the book entitled .Contributions to the Founding of the Theory

LA

of Pransfinite Mumbers ( New York, 1955 }.

e

Lmy reasons for selec%iﬁé the 1895 artiéle to serve as
the basié‘fof aformal axiomatizatioﬁlof transfinite éérdinal
arithmetic are as follows: (1) The text is readily available in
translation. (2) It constitutes excellent source material since
it ia Cantor's mo;ﬁ comprehenéivq\and definitive tfeatﬁént-of.:
the subject. It should be noted, however, fhat most of the im~
portant ideas in this.article (exéept-the dgfinition of continuity
in Section 1T) had.been pfeviousl} published in a piecemeal |

|

fashion by Cantor. To trace the hisyérical development of thesge -

ideas is heyond the scope bf this thesis.

‘Nevertheless, I shall make a cursory reference to three

other publications of Canpor,ﬁTQg_firét of these is a monogravh

entitled Grundlagen einer-Allggmeinen Mannichfaltigkeitslehr94

2Yol. xlvi (1895), 484-512.

Spublished in Mathematische Mnalen, xlix (1897), 207-246.

4Translated ags "The Foundations of & General Theory of Setsﬁ.

- . )]

e
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\ (Lelpzxg, 1883) vhich consists, of an elaborated account of the _

,fifth part of "Ueher Unendliche Llneare Punktmannlchfaltigkelten"5

published'in-Mathematische Ahnalen, xxi (1883), 545-591, This

hés‘been translated into French and.appears in Acta Mathematica,

i1 (1883), %81-408,

The second souice is a letter from Cantor to F. Gold-~
scheider, dated "Halle, June, 1886". This letter has been trans- \
lated by Herbert-Meschkowski and appears.in Chapter IX of his book

1 .. entitled Ways of Thought of Great Mathematicisns ( m Francisco,

Y

1964),

The third source is @ letter from Cantor to Dedekind,

dated "Halle, June, -1899". This letter was first published by

Zérmelo in Gesammelte Abhandlungen (Berlin, 1952). It has been
6 tranglated by Stefan Bauer-Mengelberg and Jean van Heijencort,

and cah be found in From Freme to GBdel: A Source Book in Mathe-

matical Logic 1879-1931, ed. Jean van Heijgnoort (Cambridge, n

: ' Mhsséchusetts, 1967), 113-117. |
v ‘ : _ . 5

In conclusion, let me restate the aim of this thesiss

it is to examine the foundations of transfinite cardinal arith-

Pranslated as "On Infinite Linear Sets of Points".




metic, In making this examination I hope to accomplish four -
things: (1) Firstly, there is the (partly)‘histbrical tagsk of .
making clear some of the presuppoSitions\in Cantor's work.

(2) Secondly, there is the ( 21lbeit elementary) mathematical
tagk‘of drawing conciusions‘about the syétem oftransfinite cardinal
‘arithmetic unrecognized by Cantor himself. (3) lThirdly, there is P

the logical task of making a forﬁal axiomatization of this paru\\“w\\

. )
T

ticular brénch of méthematics, this last being undertaken in . T
" accordance with the "Hilbert prggramme“. (4j Pourthly, there,ié

the philoéophical task of considerihg whether trénsfinite cardinal

. numbers exist according to Cantor's theery of the eiistenée of

mathematical entities.
S



Chapter II: THE SYNTAX OF THRE THRORY OF ALEPHS

In %h;s chapter I shall present a formaliidiion of the
theoronf al?phs, thus obtgiﬁing an uninterpreted calculus‘or )
logisticAéystem which I shél} call A . Therg?are four bfincipal"
stages in thié procedure: . o
.+ (1) The specification of fhe'primitive symbols of A

(2) The definitions of "well-formed terms" and "well-defined
formulae™ of.AO by certain formation rules. -

(3) The Bpgcification of the axioms of AO. These a#ioms are
\f\\g;;\\ divided into two categories,li.e. "1ogica1"'énd "non-logical"

axioms.

(4) The specification qf-the rules of inference for Ao.

A, Primitive Symbols

(1) Individual Variables - . R L -

Small roman letters from the end of the -alphabet, i.e. x, ¥, 2z,
and also any of these followed by one or more occurrences of the

symbol | are used. for individual variables. Thus x, xl, x

n’
x|||’ M Yls yll ’ Y|‘| , ete. are used.for‘individﬁal variables.

]

\L\

1‘I‘hroughout this, thesis I sqall follow Cantor's procedure

in using the terms “transfinite cardinal number” and "aleph" -
interchangeébly.i
T ———
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‘"There are two binary predicate constants, i.e. € and = .

(ii) Individual Constonts

There is one individual constant, i.e. 0.

ffiii)_thctional Congtants

There is one unary and two binary functional pogstanfs. The

“unary functional constant is~ , and the two binary functional

constants are + and " .

(iv) Predicate Constants

<

- B. Imoroper Symbols

!

-

(i) Logical Constants

" There are two-logical constants,'i.e. ~ and the connective

—_) ' | e o

(i) OEeratoré

There is one operator, i.e. the universal quantifier h{ .

] )

(1ii) Muxiliary Symbols

These consist of parpntﬁéses f ) .

(2) Formation Rules

Note pn‘Metamathematiéﬁl SymBols

(£) Small roman letters from the beginning of thezélphaﬁét:

TesydL
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the well-formed formulae,

i.e. a, b, ¢, are used as syntactical variables whose range is
the individual variables and individual constant.
(ii) Capital roman letters from the beginning of the alphabet,

i.e. Ay B, C, are used as syntactical variables whose range is

&

(iii) The syntactical variables E a, F a, G a, etc. are used,
whose rangé is the well-formed.forﬁulae containing.oné-or more -
occurrences of individual véniamﬁ and such that, for Yny
individual variable,'~ -3 the well-formed formulae cdgtain

a

at least one free occurrence of the variabdble. : »

(A) Definition of "Well-formed Term"

1. 0 is a term.

2. The individual variables x, ¥y, z.-‘ are terms.

-

]

3, If a 1is a term, so.is a’.

44&5.If a and b are terms, so are (a +b) and (ai. b).



(B) Definition of "Well-formed Formula®

1, If & and b are terms, then a =D is axwffz.
2; If .2 and b are terms, then .a<b is @ Wit
3.4 4, If A and B are wifs, then.~A 'and (A= B) are wifs..

5. If A is a wff and & is an individual variable, then ¥ 2 4

is a wif.

6. The only wffs are those given by 1-5.

Note on Dgfiinitions

The list of definitions is divided into two categories: the first
category deals with definitions of logical symbols; the second

category deals with definitions of non-logical symbols.

Category A
(1) .(Av B) = 4o (~VA4->B)

b

(i1) (A AB) = o ™~ (~ AV~ 3B)

(1) (1€35) = . (AD A (B50))

2Hereafter we shall emoloy "wff" as an abbreviation for a

well—f ormed formula.
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(iv) a;é b ar

Il
-
<
)

~F§

) (v) aaFa.r

‘C?a.'tegorv B
(1) adbv = i ~a<®

. -',:." (ii) a>b -= af b< a

(111) =2<b = af (a< b‘V a=h) )\\ . )

(iv) a=1b =df_(a-\b\fa=b)

\__/

(3) Axioms '

The axioms of Ao are divided into two categories: ‘
(&) Logical Axioms (i.e. axioms 1-7).

(B) Non-logical Axioms (j.e. axioms B-22).

(&) Logical Axioms

JThe underlying logic of A’o is the predicate calculus c-af, the first

order, with identity. We have the following logipa.l axiom schemata



<
Bl

- k“"

1. ((A Vv 4) F)'A) R
2, (Aa'(x\}]a))
3. (_(Av B) = (BV 4))

4, ((A=23B) = ((c v A)=> (C'vEB)))

5. (VaFa — Fb)

7. (a =b =2 (Fa —> Fb) | ‘

Axiom schemate 1-4 are axiom schemata for the propositional
calculus. Axiom schema 5 ig an additional axiom sdhema for the
predicate calculus of.first orders. Axiom schemata 6 and 7 are,

axiom échemata for identity.

3Axioms 1-5 for the first order predicate calculus are -

taken from Principles of MatHematical Logic, p.67, by D. Hilbert

and W. Ackermann (New York, 1950).

10



(B) Non~lomical Axioms _

8. (x" = ¥/ > x = y)

9. x’ £ 0 . _ ,
Y ‘ e

10. Va(((Fa=—>Fa’ )A Va (;3 ba=b—>F s_x))#F a)f‘

11

(x # v = (x<yvyex))
12, (x<y>y 4 x)
o 13, ((x<yA ¥ < ;)-—)x< z)

14, (a = b e ¥x (< bV ra.S x))

+

15. (x+ Gy +2)) = ((x+v) +2)°

y ,

g

16, (x+y) = (v +x)

+

410 is an a.xiorﬁ gchema rather than an axiom.

B{?ioms 15 and 18 are not independent .of the other
- , .l .

axioms. i



:17.Vx Vy (x 2 yolx+ y) = x)
18, (x. (y.2) = ((x.y) . 2)
__.19". (x . y) = (}' . I) - -

20V E Wy 2y (x . y)'= x)

1. (x (y;z')) () 2))

JER2ERCE xA~Jzy =2 )A~Te<yalk< A~ vz = v )

c

(4) Rules of Inference ,

There are two rules of inferenc% for Ao. The first rTule
—y

belongs specifically. to the propositionai caleulus. The second rule

belongs to the predicate calculus,

(i) The Rule of Modus Ponens

If A and B are wifs, given A and (A=B), we may infer B.

A (A~ B)

B

(ii) The Rule of Consequent Universalization f

If (A->B a) is any wff such that -the variable a occurs free

12



in B a but does not occur at all in A, and if the variable b

is either a itself or else some variable different from a

——

fhat ‘does not occur free in A or at all in B a, we may pass to the
_ . . .
formila (AVDb Bb).

(A 3B a)
(A>V¥DpBb)

13
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Chapter ITI: THE SEMANTICS OF THE.THEORY OF ALEPHS
In‘this chapter I shall provide an "interpretation" or
ahodol“ of the.system Ay, thereby turning it into an interpreted
caleulus, Thig will be ecalled the "principal ioter?retationp
of the sysgem Ao. The interpretation of the non-logical primjitive
symbols and axéoms will be based (as I‘oave explained in the
introduction) on Cantor's toeory of alephs. I shall divide the
interpretation into two paoés, concerning (1) Primitive Symbols

and (2) Axioms.

-

{1) The Interpretation of the Primitive Symbols of .}

A. Prover Symbols

1

(1) Individual Variables

The range of the individual variables x, y, z, étc.,
is the set of alephsg or transfinite cardinal numbers, These are
denoted by the first letter of the Hebrew alphabet, together
with an ordinal integral subscrint. The subscript may be either -
& finite ordinal, e.g. N.o'MV N o }(5, '7"Nn’ or a transg-

finite ordinal, ‘o.g.NQ,N“oH, N w01 s N oo ete.

t .

14
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($i) Individunl Constants

]

The range of the one individual constant O is the first

-memberx of'the.sequence of alenvhs, i.e;;\f’o.

P

The interpretations (i) and (ii) may be found in (Cantor, .

1895, section 1, pp.B5-86, and section 6, pp.105-11Q)1.

Four definitions are involved here, i.e. the definitions

of "cardinal number", of "set", of "aleph-zero" (or the first

transfinite cardinal number), and of the succeeding "z2lephs'.
. e

Cantor defines cardinal number2 or'power_(ﬂgchtigkeit)
in terms of sets and acts of "doublePabstraction" by the mind.
My gsed M possesses both a particular nature and a particular

order. If we disregard its nature, we arrive at its ordinal type,

M ; if we disregard both its nature and its order, we arrive at

=

its card{gality or power; M . -Thus Canfor says (Cantor, 1895;

1Regarding citations of pr%mary aourée‘material from
Cantor's work, I shall use'the following convention:- I shall " -
cite Cantér's name, follodi by the date of the work in.q estion,
foilowed by the relevant section and vage numbers. The appropriate

edition may then be located in the Bihlggggaphyblﬁ(1) where_the

-

date .of the work will/be written in square brackets.

) .
2This'definitidn applies both to finite and transfini%n\

cardinal humbgrg (Caﬁfor, 1895, section 5, pﬁ.97-8)."

-
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section 1, p.B6):

Every aggregate M has a definite "power",
which we will call its "eardinal number',.
We will call by the name "power" or
"ecardinal. number™ of M the general con-
cept which, by means of our active

faculty of thought, arises from the
aggregate M when we make abstraction

of the nature of its various elements m
and of the order in which they are given.
We denote the result of this double act of
abstraction, the cardinal number or power
of M by
M.

Cantor's definition of set or aggregate runs as follows (Cantor,

F

1895, section 1, p.85):

By an "aggregate" (Menge) we are to under-
N stand any collection into a whole (Zu—

_sammenfassung zu einem Ganzen) M of

definite and separate objects m of our

Intuition or our thought.
Cantor defines aleph-zero as the cardinal number of the totality -
of finite cardinal numbers (Cantor, 1895, section 6, pp.103-4):

The first example of a transfinite

agegregate is given by the totality of

finite cardinal numbers ; we call its

cardinal number ( 1 ) "alevh-zero” and
.dénote it by N5 thus we define

Oag- e

M more significant definition of A  is in terms of what Cantor
calls "number classes", It is more significant in that Cantor defines
succeeding alephs in this way. The notieon ofr"number clasg™ rests

upon that of ordinal numbers. Thus Cantor says (bantorl 1897, .

sgcfion 14, p.159):
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.es to one and the some transfinite

cardinal number belong an infinity of.

ordinal numbers which form a unitary and

connected svatem. We will call this ¢
system the "number-class 2 (). '

In the same paragraph Cantor goes on to say:

'For in this comnexion we understdnd by
"the first number-class" the totallty
{v} of finite ordingl numbers.

"Aleph~zero ma.y"bhen'be defined as the ca.rdinality of the first

number class which is composed of the totality of finite ordinal +

. F) )
numbers. Cantor then goes on to define the second number-class.
Thus he says (ibid., section 15; P.160):

The second number-class Z ()V') is

the totality {q] of ordinal 'types}
a of well-ordered agp-regates of the
cardinal number )(

« .
cantor defines an Mordinal type" as follows (Cantor, 1895,

: B &
section 7, -pp.111-112):

Every ordered aggregate M has a ,
definite "ordinal type", or mdre 1
shortly a definite "type", which we will

denote by _ -
(@ mo. '

By this we understand the general concept which results from M
if we only abstract from the nature of the elements m, and |
retain the order of precedence among them. may add that this

definition differs from that of an ordinal numbgdr in that it is

stipulated that the latter be types of "well-ordered aggregates"



In (ibid., section 16, p.173) Cantor proves as a theorem that

The power of the second number-class CL]-
is the second preatest transfinite
cardinal number Aleph-one.

N

\ o and adds:

In the second number-class 2 ()V') )
we possess, consequently, the nataral
representative for the second greatest
tranefinite cardinal number Aleph- .
one.

18

(ibid.,'p.115). Every ordinal number is an ordinal typelEpt not vice

versa.
Cantor defines a simply Brdered aggregate as folldwg'(ibid.,

P.110): .
, We ecall an aggregate M "aimply .
R ' ordered" if a definite "order of
’ T © precedence" rules over its elements
m, .80 that, of every 2 elements my
, - d m,, one takes the "lowexr" ,
‘ : ' d the other the "higher" rank.

«

He defines a well—ordered aggregate as follows (Cantor, 1897,

section 12, D. 137)

. A WG call a simply ordered aggregate F(§ ')
~well-ordered" if its elements f
agscend in a definite succession from a
. S lowest - £, in such a way that:
1. There ls in T an element f1
which is 1owestfin rank, ,
2, 1f ¥’ is any part of F and if F
“hass one or many elements of higher rank
than ail elements of F’ s then there.is
an element £ of TP _which follows
immediately-after the totality F’ s 80 that
no elements in rank between f' and F’
~ ) oceur in F. :
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-In the letter of 1899,'Cantor generalizés this {to show that any
aleph)Vb may be defined as the caréinality of the number-class
"2 (Ny-). Furthermore, he says:
- o We éee that this process of formation
o of the alenhs and of the number classes
of the svsteNhfa that correspond to
w them is absolutely limitless.
Thus, the sequence of number classes 2 (A( ), Z (Af ), 2 (A/ ), e
Z (pr) (or, as Can“tor denotes ‘them in 1899:..(2 0?,{21,&2, vee,
Qv )} may be :r:egarr:ied ag "similar" to the sequence of alephsAfo,jVT,
N o s+ N, + Hence, we may say that there exists a one-to-one .

correspondence between alephs and number-classes.

' 4In 1899 Cantor used the symbol:f? to denote the system of
_all'ordinal.numbers (both finite and transfinite). He avpended the

subscripts crg ;,cf} 19 ch o etc. to denote the successive
transfinite "segments"* of the system EYB which he called "number

classes",

*In (Cani\ir, 1897, sectiom 13, 1p.141) Cantor writes:

If £ is any element of the well-
ordered aggregate F which 1s different

- from the initial element f,, then we
will call the aggregate A “of all
elements. of ¥ which precede f a
"gegment (Abschnitt) of F".

-



However, as Cantor says (Cantor, 1895, sect10n:6 . 109)
i 1
But even the unlimited sequence-of

cardinal numbers

No NN or se s Moy o

8 does not exhaust the conhcention of
. transfinite cardinal number., We will ,/

prove the existence of a cardinal s
number which we denote by Aw
and which shows itself to be the next
greater to all ‘the numbers Ny 3 out

o of it proceeds in the same wdy as
out of N a next greater.&f
“and so on, without end.

+1?

Unfortunately, we have no direct primary source material concerning

the way in which Cantor defines alephs’whose subscripts are trans—
! : - ' .

finite ordinals. Howevér, I think,fhat a‘definition of/NQ,(and'
zlephs Wlth even greater ordlna{/subscrlnts) may be derived from
suggestlons made by Canto;, In 1883 he expounded -two "Pr1nc1n1es of

Formation" by which one/gould condtruct the svstem of ordinals. He

permitted these two /principles to be extended to the system of

) _ S
cardinal numbe;s’(Cantor, 1895, sectfon 6, 1.109).

Thg/éécond principle describes a process of defining a

"limiﬁ;}ﬁumber. In this case, the "1limit" number 1s Af; and is
S o :
defined as the limit of the totality of finite numbers (Cantor,

1883, section 11):

Etant donné une sucecession quelconcue
‘déterminée de nombres entiers réels
définis, parmi lesquels il n'y en a
pas qui sont plus grands que tous les
autres, on pose, en s'appuyant sur
ce deuxiéme principe de formation,
un nouveau nombre que 1l'on regarde
comme la limite des premiers, c.a.d

20
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qui est aéfini commé Stant immddiatement
supérieur & tous ces nombres.
Malogously, we may define N, as the limit of the_algpﬁs)V'o,
N ‘ W gesine' AT, /45 the 14
N ¢ M,Q’ eeey Ny » ov We may define 203738 he limit
- ' ) i
of the alephsAfc'J+1,)(".’+2, ""Nmﬂv’ a:nd.‘_’so On.

e

(iii) Functional Constants e

- v '
(=) The unary functional constant ' = ' is defined as the
¥ '
"sucqgﬁsor of", A detailed interpretation of the successor
ey ' _
fundtion has been made on pp.l6-2l, There we defined the successor

of ééch'aleph as the cardinality of its corresvonding number class.

t——
——————

Thus, in general, the successqr-of»)Vv is z (My).

(B) The binary functional constant 1 + * designates the operation
of addition,

Cantor defines the operation of addition in terms of the

union of disjoint sets. He defines the union of sets as follows

(Cantor, 1895, section 1, pp.85-6): -
We denote the uniting of many aggre-
gates M, N, P. ..., which have no
common elements, into -a single
aggregate by’
_ (2) (M, N, P, ...).
B The elements of this aggregate

4 ~ are, therefore, the elements of .

M, of N, of P, ..., taken together.

He then goes on (Cantor, f895, sec%idh'j, p.91):

The union of two aggregates M and
N which have no common elements was
,-denoted in '§ 1, (2), by (M, N). We
call it the "union-aggregate
(Vereinisunssmenge) of M and N."

&



. v

i

(d-) The_binary

22

'
If HI and N are two other
aroresn tes without common elenonts, and

if MeeM’ and N~ ¥ , we saw that
we have ’

M, N)~ (1, ¥ .
Hence the cardinal number of (M, N)
only demends upon the cardinal numbers

M=Gand N=8.
This lends to the deflnltlon of
the sum of & and f . Yo mut

(1) a +b = N

functional constant * . ' desirmates the operation
. -

- of multivlication.

Cantor defines the operation of multinlication in terms

of the "cartesian nroduct“ of two sets. He defines the cartesian

el

product, or as he calls ift, the "aggregate of bindings of two

sets", as follows (Cantor, 1895, section 3, p.92):

He then goes on

Any element m of an arpregate M
can be thouzht to be bound up with any
element n of another aggregate N so

_as to form 2 new element (m, n); we
‘denote by (M#é N) the asgregate of all

these bindings (m, n), and call it

" the "ageregate of bindings

(Verbindungsmenge) of M and N7

Thus
@ 0. ={@, 0}
(Cantor, 1895, section 3, p. 92):

We see that,the power of {M . N)
only depends on the powers ;I'-I =g

and N =f ; for, if we replace the
aggregates M and N by the aggregates

s
M::{ I} and ,—{’}
respectlvely equlvalent to them, and

‘consider m, m’ and n, n’ as
corresponding elements, then the
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aggregate .

T o oy = e, ]
is brought into a reciprocal and
univocal corresvondence with (M , W)
by regarding (m, n) and (n’, n") as
corresponding elements. Thus

(5) (M. N) ~ (M. u.
We now define the product . by w
the equation ’

3 (6) anf = (1. N.

(iv) Predicate Constants
(%) The binary predicate constant ' & '‘designates the relation
"less than". In other words, it éesignates the set of well-ordered

pairs in which thé first element is less than the second element.

~ Consider a wff of the form a < b where a and b are syntactical

variables whose range is the individual*variables and individual
constant of the system Ao. Tvo cases are.preseﬁted:

(1) 1f a;(l b contains ne occurrences of individual varfables,
then a < b iB trup if the ﬁleph asgigned by the interprefation
of a is less than th eph assimmed to b, and otherwise false.
(2) If a < b contains occurrences of variables, then a < b
is satisfied by those assignments ]? of wvalues to the variables
for which; the aleph a?signed to o is less than the aleph 'bj: ,
and a<b is not satisfied if those agsignments A of value aa‘
are ndt.less than thé'assignments A 6f value by - In this case
a<< b is true if it is satisfied by all assignments of values to
the variables, and false if it is satisfied by no assignments of

values to the variables.

i
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\ Cantor defines the relation '< ' between cardinil numbers

-2

(both finite and transfinite) in terms of sets. If we define the

cardinal numbers a and b as follows:

= -
&L':dfp_i - and b=di,

then an—( b if M 1is a proper subset of N,
. "\‘v - .
Thus Cantor says (Cantor, 1895, section 2, pp.39—91):

If for two aggregates M and ¥ with '

. the cardinal numbers & =M. and & = ¥,
: both the conditions: :
T : (a) There is no part of M which is
' equivalent to N,
(b) There is a part W

are fulfilled, it is obvious that these .
conditions gtill hold if in them M and
N are replaced by two enuivalent
aggregates M’ and W', Thus they ex-
press a definite relotion of the cardinal
numbers & and § to one another...

1 of N, such that

We express the .rela‘%ion of @ to§
characterized by (2) ~nd (b) by
: ' saying: & is "less"" thonf§ or §
is "greater" than @ ; in signs
(Na<t orpra.

(g) The binary predicate constant ' = ' designates the relation
"is identical with". In other words, it designates the set of all
ordered pairs in which the first element is the same as the second
element. Consider a wff of the form a =b where a and b are

syntactical variables whose_range is the individual wvariables and

individual constant of the system Ao. Two cases are presented:



(1) If a = b contains no occurrences of individual variables, then
a=Db is true if the aleph assirnmed by the interpretation of a

a

is the same as the aleph assi-med to b, and otherwise false.

(2) If a = b contains occurrences of variables, then a = b

ig satisfied by tﬁqse assi-nments I\ of values to the variables

for which the ale}lah assigned to aog is the same as the alesh b ,
and a-=b is nof satisfied if those asgignments A of value aa

are not the same as those assignments A of value ba . In this
case a.=b 1is t;ue if it is satisfied by all assignments of

values to the variables, .and false if ié s satisfied by no assipgn-

ments of values to the variables,

r

> that identity of "equality"

For Cantor, it is a theoren
between cardinal numbers (both finite and transfinite) holds if
the sets (of which they are the power) are equivalent (aequivalent).

If we define_the cardinal numbers & and b as follows:

@ =4t and b= g
then a =b if M~ N, Two sets are equivalent if their elements

can be put into = one~to-one correspondence.

~ SIt should -be noted that what occurs as a theorem for Cant

occurs as part of the semantics of the principal interpretation/of A .

25_
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_Thus Cantor says (Cantor, 1895, section 1, pp.87-8):

‘0f fundamental importance is the theorem
that two aggresates M and ¥ have the
game cardinal number if, and only if
thqy are equivalent: thus,

- -l
(7) from M~ N we get M= N,
and . .
. - C-= § ‘ 3
//\\\ ’ " (8) from M= N we get M~ N,
\\\\ Thus the equivalence of amgregates

forms the necessary and sufficient
condition for the eauazlity of their
cardinal numberws. :

B. Improper Symbols

”(i) Logiecal Constants

(® ) The logicalrdonstﬁnt tr3 1 ig to be interpreted as the negation
sign, and is to be read as "not". If A is a wff with no free
occurrences of variab}es, then ~~ A is false if A\ is true and

~ A ;s true if A is false. If A 1is a wff with free occurrences.
of variaﬁles, then ™~ A* is not satisfied by those-assignments of
valués—to the free variables which satisfy A and is satisfied

by those assignments of values ?o the ffee vafiables which do not

satisfy "A.

(@) The comnective '=>! is to be interpreted as the conditionat\\
sign and is to be read as "If,.. then.,,". If A and B- are wffg
with no free occurrences of variables, tﬁen (A =—> B) is.true whenever
A 1s false or B 1is true. If A and B are wifs with free
occurrences of variagles, then (A= B) is satisfiéd by those

assignments of values to the free variables which do not satisfy
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A or vhich do satisfy 8; (A=) is not satisfied by any
other assimmment of wvalues to the(iiee variable;
(ii) Operators

The operator "/ ' is.to‘be interpreted as the universal
quénﬁifier and is to be read as "For all...h. let a be an in-
dividuél variable ond A a wff. For a given system of wvalues of
the free variables. of ‘%' alA, the wvalue of Y aA is true if A is
sa#isfied b& évery assignmen£ of values to a, ané.\,aﬁ is false

if A is not satisfied by at léast one assignment of welnes +o

e — a'

(2) The Interpretation of the Axioms of A ' '

To ciptumvent unnqtessary repetition, I shall only provide an

interpretation of the non-logical axioms of Ad;

Mxiom 8

"If two alephs have the same successor then the two alephs are

identical.™

™~ i

- // . -
Together with the successor function Axiom B assures that the
sequence of alephs is'infinite. Thus by application of the'succeésor
function, for every aleph there is a next greatef aleph, and by

Axiom 8, this aleph cannot be one of those already defined (for

N :
if it were, two alephs might have the same successor). Thus Cantor

!

sayes (Cantor, 1899): o h '



We see that the process of formation | _
of alephs... is absolutely limit- ~
leas, ' o . j:\:>

Again we find (Cantor, 1899):

The system of all alephs, when or-
dered according to magnitude,n%“ﬂnﬁ'—
a sequence that is similar to the
system &3 (i.e. the system of all gr-
dinals) and therefore inconsistent”,
or absolutely infinite.

;

"Alepvh zero is not the successor of any aleph.” . N

Axiom 9

Cantor proves as a theorem that aleph-zero is the least trans—-
finite cardinal number. Thus he says (Cantor, 1895, section 6,
p.104):

a

eer N o is the least transfinite

~cardinal number, If & is any
Ytransfinite cardinal number different
Tom No’ then

(BN, <ca

28

BN

5N.B., By an inconsistent Eet, Cantor means (1899)

ta

4

a multiplicity such that the as- |
‘gumption that all of its elements 'are ’
together! leads to a contradiction,
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Axiom 10 -

'“Anx‘pronerty which belonrs to the successor of every aleph which

-

hag that;pronerty and to every alevh which has no irmediate pre-

decessors, belonss to all alephs." \
~ One could argue that Cantor defines )V'01 as a "noni\nduCtive"

number, Thus he says {Cantor, 1895, section 5, p.997:

Every cardinal number except 1 is
the sum of the immediately pre—
ceding one and 1.

w

However, this does not apply tb')fo since )V'o s 1= N o+ Doss

this imply that the principle of transfinite induction has no
significance? This T must contes®. Again I shall.cite the passage
referred to earlier in connection with the definition ofaV'o,

)f1, ...,)V;,...,eté. (Ccantor, 1895,.section 6, p.109)1

Out of )f; proceeds, by a-definite law,
the next greater cardinal numberAf , out

of this by the same law, the next greater
"N 5, and so on. But even the unlimited

sequence of cardinal numbers
N N Nor ves s Myyens
o 1742 7
does not exhaust tHe concgption of trans-

finite cardinal number, We will prove
the existence of a cardinal number

which we denote by JVZiand'which shows
itself to be the next greater to all

the numbers My ; out of it proceeds in
the same way as Af out of Ne =« next

greater N, 1! and so on, without end.

!
i

Now it 1s this "definite law™ which, I contend, constitutes the



T

basis for transfinite induction, As we have already seen (pp.u-lq),

f_\the immediate successor. of any aleph is defined not as N;, + 1

b ——r
———

but for any Ny .its successor is Z(Np ). Theh, the question
arises, do .we have a suitable basis fér transfinite indu;:tién with
regard to alephs which have no immediate prédecessors? Cantor
does, however, have a methoc.i fér generating such alephs or _"limit:‘
numbers, - i.e. the transfinite analogue of the second principle
of formation ( referred to earlier). As N’o is qposi‘ted as .t_he
n1imit" of a1l the finite yumbers, so, for instance, M is posited
\prhs,<)('0, )(’1,)9 o1 e Nyr ees
Again,)(gw is posited as the)“l.imit" of all the a.le_phs)(u

. N‘u +2,..,”.u+v‘|.-

ag the I"limit" of all the =

g

+1?

Axiom 11 -

"If a4 and b are anvy two distinet alevhs, then either a is

£N

less than b or b is less than a."

This aciom is k:nbwn‘ as the law of trichotomy. For Cantor it was &
theorem which he believed held for cardinal numbers in general
- ~ (Cantor; 1895. section 2; p.90):

a If @ and b axe any two cardinal

& or

i

" numbers, then either @&
a>8 or o< 6.
Cantor was una.b}\? to prove the theorem that of these three relations
between cardinal numbers, one must necessarily hold. However, he

did prove the weaker theorem that at most one of the three relations

Y
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muat hold” between any\tWO’cardiﬁglsl

Axiom 12

] . 3

"If a asnd b are any two alevhs and a ‘is less than b, then.

b cannot be less than a."

-

Cantor makes a clear statement of the asymetry of '< ' when
speaking of ¢ 3 inals in general. He says (Cantor, 1895, section 2,

Pp.89-90): | .

The relation of & to & ié.such
that it makes impogssible the same
relation of 5 to & ,

Axiom 13

R h}
"If &, b and ¢ are any three alevhs, and if a is less than

P end b is legs than ¢, then a. ig leés than c." . -

Cantor makes a clear statement of the transitivity of 1€ 1 when,
speaking of cardinals in general, he says (ibid., p.90):

If@ <& and b <L, then we
also have a<t . )

[

Axiom 14
"An 2leph a is the successor of b if and only if every aleph

1

-4
¢ is either less than or egual to b, or preater than or equal

to. a."
’ /

This axiom, together with the use of the successor function as

)

.

31



& primitive symbol, implies that the sequence of alephs is con-

secutive. Thus €antor says (Cantor, 1899):

, . | A(; means the cardinality of the
sets "denumerable" in the usual sense,
A/} is the next greater cardinal
: number,)V'2 ig the next greater still,
and 80 on... : ' h
Af is not only distinet from)f ,

it is the next greater alervh, for we . '
can prove that there is no cardinal

'f' .number bétween,)f;. and )(}. )

CAxiom 15

"For any three alevhs =, b, ¢ the result of adding b and ¢

to a is the same as the result of adding ¢ to a and b."

Speakiﬁg of cardinal numbers in general, Cantor states the law

of associativity for addition (Cantor, 1895, section 3, p.92):"

4

“For any three cardinal numbers
o, & s C + we have

o (3) a+ (B+c) = (a+8) +¢.

Axiom 16

"For any two alevhs a and b, the result pf adding b to a

isg the gsame as the result of adding a to ‘b."

Speaking of cardiﬁal numbers in generif Cantor’states the law

of commutatlvity (Cantor, 1895, sectlon 3, D 92)

32
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Since -in the édnceptioﬂ_bf power, .
.we abstract from the order of the '
elements, we conclude at once that

L (2o +65= b +o.

Mxiom 17 . ‘ oo

"For any two alevhs a and b, if a is sareater than or equal

to b, then the sum of a and b feauals a,"

Thus Cantor gives the following example (Cantor, 1895, section 6,
: {

~, -

p.106): - , o

k]

o .

o
A(.o + )v-o ﬁ )vr *
| L

Again; he says.(Cantor, 1886):
\

For finite cardinals it is easily
seen that in-the-eguation
I
. a + & = b
b is hever equal to either of the
suwmands a and a’, For actually
infinite cardinals, however, it is
easily proved that the last theorem.
does not hold. For example, if a
is any actuzlly infinite cardinal,
. :
!

[

-3

1+a@ =

a
a+a = a.,. 2 =8

wl

Axiom 18 .

5

"For anv three élephs 2, b, and ¢, the result of multiplvineg

.

a_ by b and. ¢ is the game as the result of multiplying

aand b by c."

Speaking of czrdinal numbers in general; Cantor states the law

of agsociativity for multiplication (Cantor, 1895, section 3,

33
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. (10) a, ( & -c ) = (d.‘ .5) ¢ ; _

It should be noted thathantor regards thisjﬁé a theo;bm.

Mciom 19 . -  : .

T R
"For any.two alevhs ,a and b, the result of multinlvink a °

.

by b is the SQme‘és the result of rmltinlving b by al -

Speaﬁing of car&inéls in general, Cantor states the commutativéllaw_

? ]
for multiplication {Cantor, 1895, section 3, p.93): - RN

I

S a.§ = b-a

It should be noted that Cantor regards this as a theorem,

-

'

Axiom 20 a . L

Lo N -

"For any two alevhs a and b, if a 1is greatér than or esual to

-

b, then the product of a and b equals a."

‘Thus Cantor gives the following example {Cantor, 1895, section 6,

~ P}

I

p.106): - ¢ I~ | BN
- N, N, =N,
. /‘:'. ' "
Mciom 21 ' I

]

"For any three élephs 2, ﬁa and c,-the*ﬁésult of multiplving

A

. ; i ; .
a by the sum of b and c is the same as the result of adding

the product of 2 and b to the product of “a and c.M

R

i
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Speaking of cardinals in meneral, Cantor states the law of dis-
tribution (Cantor, 1895, section 3, p.93):
- N . ‘ ’ H a .
(11) & (g+c) = ab+ac
Tt should be noted that Cantor regards thgis as a theorem,
. ! ’ :
Axiom 22
"For any alech x, there is a least alevh v which is sreater
than x but has no immediate predecessor." .
This axiom provides for the existence of "limit" alephs, i.e.
alephs which have no immediate predecessors. It is clear from
. B
‘ : £
the following quotation that Cantor maintained the existence of
such alephs (Cantor, 1895, section 6, p.109):
But even the unlimited sequence of °
cardinal numbers (/

A NN o wee 1 Myy oee

does not exhaust the conception of
transfinite cardinal number. We will
prove the existence of a cardinal
number which we denote by A%,

- and which shows itself to be next
' greater to all the numbers M), .

It should be hoted tﬁat, although this a;iom allows us to generate
such alephs as Nu, AN ot ’Mnm’ it does not allow us to genlera.te
)Vg,z. For élthough this aleph is a "limit" aleph in the sense that
it has no immediate predecessors, yef it is not the least aleph in -
a: sequence which has this property. Similar remarks apply a fortiori

éo alephs of greater comolexity such as

4 N W
N‘*’B, Nun’ Mww, {\)ww , ete.,

1l . "

PRSI WL Y W
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) l‘- a
b -

It is clear,'from these‘remarks, that we cannot generate the'entire set

of alephs from the principal interpretation of AB,‘but‘qnly a subset

of them, Thus the princinal :-interpretation is- incomplete.
| 2

S
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Chapter IV: SOMNE ARTTHIETICAL PROPRRTIES OF THE THmRORY OF ALEPHES

In.this.chapter I shall draw some arithmetical conclusions
T

from the "prineipal intervretation" of Ao given in Chapter III.

The chapter will be divided into iwo parts, siving (1) a discussion

. of the four elementary operations of addition, multiplication,

subtraction and division vith respect to the theory of alephs,

and (2)‘an accounit of the laws of monotony for the adﬁition of

alephs.

(1)

(¢ ) Addition
Axiom 17 expresses some of the mos{ peculiar facts concerning the
addition of alephs;aFirst,‘evefy gleph mav be characterized as =
"neutral" element for the set of its successors under the operation

'
of addition. To clarify this, I shall define a neutraljélement in
general algebraic terms, Let G be,any set gnd. 0 a binary operation
6h G. Any element ¢ of G which satisfies °

(¢ 0 x ) = (lx 0¢ ) = x forall x in g

is called a neutral element for the operation 0'. Thus it is clear

r

'1§ee J.A. Gredn, Sets and Groups, (London, 1971), p.40.

, ) 3T
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that any aleph a acts as a neutral element in the following
situation: .
(a+b) = b where bD a .
For ins.tanceg ){'0 +)('1 = M1; or again, Mo +‘){'0 =N0.
Secondly, "every alevh may be charagterized as an "annihi-
1a‘€6r'} element for the set of its predecessors under the overation
of addition. Again, I-shall® define zn "annihilator" element in
general alpebraic terms, Let G be any set and 0 a binary op-
eration on G. Any element n of G which satisfies

(n0x) = (xOn)= n forall x in G

is called an annjhilator element in the following situectiori:

(a+b)= a where a Db

For instance, N , +N _ = N,i or again, N, o+ M = A/r

Thirdly, it is clear that in the case where

(a+b) = a where a=>%
that- a. may be described as either a neutral or an annihilator
element. In other words, we may say that every aleph may also be
characterized as aﬁ "ideﬁnotent“ element for the operation 0.
Kgain, T shall define an idempotent element in general algebraic
terms. Let G be any set and 0 a binary operation on G, Any
element'ﬂd of the set G which satisfies

(a0a) = a

is called an "idempotent" element for the operation ~ O. Thus we
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gee that for any aleph a
(a+a) = a 3

€-E. Nz*% = N -

"It is interesting to note that the idu:am'po‘l'.encyﬂ2 of transfinite
cardinal addition gives it an algebraic structure which is closer

" to the 2lgebra of propositions and of sets - than to that of

ordinary finite cardinal addition. Thus in the algebra of propositions
we see that conjunction is idempotent and, similarly, in tHe algebra
of sets, we see that union is idempotent. Thus for any prbposition )

(pA p) = p3 for ény set K, Xu K = K. However, for any

L
finite cardinal number n (except O ) it is not the case that

(n+n) = n.:

In conclusion, we may say that every aleph is a neuiral
element for the set of its successors under addition and every
aleph is an annihilator element for the set of its predecessors

under addition, Bvery aleph meanwhile is idempotent with respect

. to itself under addition. The only neutral element for the op-

eration of addition on the entire set of alephs is Af;. Moreover,
since A o has no predecessors, it is the ohly aleph which cannot
act as an annihilator element with réspect to a subset of the set

of alephs} There is no annihilator element fof addition on the set

2We apeak of the "idempotency" of an operation in a derived

genge: an operation is "idempotent" when each of its arguments is

an ldempotent element.
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!

of alephs since there is o rreatest aleph, Fin:hiy, it should be

ndded that the operation of additio

n on the set of alephs is - '
closed. . ’ \_\//

( g } lultiplication ' .

Like Axiom 17, Axiom 20 expresses somie reculiar fagts concerning
the arithmetic of alephs. In this case, the facts relate to multi-
pdication. First, every alerh may be chaiacte;ized as a "néutral"
element for the sei': of its successors unde‘r the bperation of
nmltiplilcation. Ay aleph a2 acts 2o 2 neutrzl c2lcocment in the
i:;allowing situatioﬁ_:

(2a.b) = b where b =a

For insta.nce,'Af'o .)(1 = N1 ;Ora&‘aihr)fo-)fo =N‘o

Secondly, every aieph may be characterized 'a.s"a.n "an-
nihilatpr" element fon.:' the get of its predecessors under the
operation of multiplication. Any' a.lepﬁ a acts as an annihilator
element in the following situation:

(a.b) = a where a2 b
For instancé, ,\(1 .)fo = M1 ; or again, A{'1 .)f1 = .M1
It is clear that in the case where
(m.b) = a where a=>»
that & may be characterized as an "idempotent" elemen‘t;, i;e.
( 3 . 8 ) = a ) i

For instance, A{z‘. N, = Ng
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In conclusion, we may say.that every aleph 1s @ neutral
element for the set of its successors under molt%%ifcation and

every alevh is an annihilator element for the szet of redecesaors

under multiplication. Every aleph,'meanwhile, is mpotent
with respect to itself under multiplication. The onl
element for the operotion of multipl;cation on‘tho entir
alephs is )(0. Morecover, since )V’o .has_no p:edec% org, it is
the only alerh which camot act as an annihilator eloment with
respect to a subset of the set of alephs, There is no annihilator
element for multiplication on the set of olephs since thers is no
greatest aleph. Finally it should be added .that the operation of
multiplication on the set of alephs is closed

N,B. A few further remarks must be made concerniog the operations

of additlon and multiplication. These remarks will be further

'simplified in Chapter VI, Although ‘as we saw in ChapterlII, these

operations are semantically differentiated, they always produce

-

the same rosults, eefe
N 3 + N =4A(3" No = A3
In other words, they are extensionally identical but intensionall&.

different.

(d- ) Subtraction
In his account of tranefinife cardinal arithmetic, Cantor makes
no mention of the operation of subtraction. For this reason, I

have not made provision for it either in the primitive symbols,



e — e e = e s

42

the definitioﬁs.or the axioms of the principal intérprefation
of A » 1 shall, however, dl"CUaS the dlfflculty of 1ntrodu01np
such an operatlon.

One could defiﬁe subtraction as the "inverse" operatioﬁ
of aﬁdition, i,e. -

- (a- b ) =i£ tc{b+c) = a
However, it can be shown in_general that {hére‘is more thaﬁ one
aleph .c such that b + ¢ = a, when, fér'instanCe, h=a.
Put a=b = )( . Then N -rﬁ(c) Afs y /N’B + A{1 )V’5 '
N +X2 N} :

' Tt is also clear that equations of the typs ZSTU
where b 2 a cannot be solved in the system of ale phsl In grder
toc%olve such én gquation as

N =Ny =
an extension of the number concept is necessary, However, Cantor

does not consider the possibility of introducing "negative

alephs"l

(&) Dbivision

As with the operatioh of subtraction, Cantor makeg no mentibn'

of “the operation of division in his account of transfinite cardinal
arithmetic. Again, I shall discuss the Qifficulty of intraducing
such an operation, One qould define division as the "inverse™

operation of multiplication i Y-
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However, it‘cén be shown in general that there is more thon one

)

aleph c such that (b . ¢ ) = a , when, f,SI" instance, .b = a.
Put 2 =% =N, Then NyNg =Ny Ni+N1=Ny
Ny N2 =Ny Ny N3 =Ny . .

It is also clear that equations of the type (a=1b ) = ¢
where b > a camnot be solved within the system of alephs. In order
ﬁo golve an eqxia.'l:ion such as Nli - Mf" = ¢ , an extension of
" the number concept is necessar:v. However, Cantor does not consider

the possibility of introducing "transfinite rationals". - -

g.

(2)

In the second part of this chapter I shall give an account of the

//

laws of monotony for transfinite addition, with resrect to the two
"
relations ' = ' and '< ]

(i) The first law of monotony with respect to the relation ' = !

runs as follows: .

"For any alephs a, b and ¢, ( a

il

b-*(aq-c) =(b+c))"
The first law of transfinite monotony is a theorem in 1l:he system of
alephs. Here is a gketch of t“he‘required proof:

Agsume a =1b ., . |

Then c& a or c=8 OF ¢ > a (Axiom 11).

If ¢ € a, then ¢ & b (Axiom 7);

!

(c+a)=a and (c+b)=1b (Axiom‘l?l);

[VS T SRS
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=

hence ( c+a ) = (c+b ). .
If ¢ =a, then c=b,(c;i-é.)c=c and(c+b)=t;;
hence (a+c )=(Db+c). |

If c->.‘a, then ¢ > b, ta+c)=_o. and ‘(b‘+c)=c,

]
~~
c
+
(@]
N’

- hence (a2 +c¢)

Hence in any case {(a+c¢ )= (b +c ).

We see here that the law of monotomf for ordinary finite cardinal
arithmetic {i.e. for any inteters a, b, ¢, (a=bd=> (a*c) =

( b+ ¢ )) holds absolutely. '

(2) The second law of transfinite monotony with respect to the relation

-

¢ <3 runs as follows:

"For any aleohs a, b and ¢, such that ¢ < b,

(a<b > (a+ c-) <{(b+c))"

The second law of transfinite monotony is a théoremQ in the gystem of
alerhs, Here is a sketch of the required proof:
_ Assume a< b and c < b.
Either aS$ ¢ or c¢< a {(Axiom 11),

If afc, (a+ec)=c andhence (a+c )< b.

If c<.a,J/(a+c) a and hence (a +c } < b,

5Sinc:e, in Chapter II, we defined a»b as b<a, the
following law also holds for the relation ' >' (with suitable change
of sign). Similarly, it hqlds (again with suitable ‘cha.nge of sign)

for the fourth law of transfinite monotony.



Since ¢< b, (b+ec)=h,

‘Hen.ie (a+c)<(b+c).

We see here that the second law of monotony for ordinary
finitel cardinal addition (i.e. for a.ny' integers a, b and L:, ' ’
( aé?( b."-)/(/a + ¢ )<{b+c) ) holds under certain restricted. ‘
conditi:bns, {.e. vhen ¢ < b. It does not hoid, 'hox-rew}er, vhers ¢ > b,
i.e. vhere ¢ acts as an annihilator element for b, Thus, if

a:.':M, b':AG and © =

R then it is fot the case that

2’
Noe Ny DN, * Noc Ny +Mp -

Again, the law does not hold where ¢ = b, i.e. where c
acte ag an idempotent eiement for b. Thus: |
.If.f,a.=/vo, b=/v1,and c=‘/lf1 .. ‘ \
#heh g.‘:b(Mo(Mi) | 7 .
'put (a+c )Ly +d); - . a
-(a',+6)-=-”0-!.-”1 =/V1
'a:nd(b-i—c) =M1+M1 =M1:
so that in this.case (a+ec) = (b+c.),
[ : q
(111) The third law of tra.nsfini-te monotony ruhs as fﬂlfjm:

"For any alevhs a; b and ¢, such that ¢ €£a and ¢ < b,

((a+e) =B +c)a=1)n ’

This is a restricted version of the converse of Law 1. The

' - e : |
third law of transfinite monotony is m theorem in the system of alephs.

-
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Here is a sketch of the rquired proof':

c

Acsume c Sa, c &b, (a+c)=(Db+c), but ‘a #0.
Thén adb or b< a. |

'If a2 <b, (by the second law) (a+c¢ }<(b+c),

L

_.contradicting our assumption.

If b<a, (bythe second law) (b +c )<( a + c),
contradicting our agsumption. _ ' : . *

Hence a ="> .
o -

We see here that the third law of 'monot'ony for ordinary

finite cardinal :;dei.’cj.on'dr (i.e. for a.n;,‘r integers. _a, b and c,

(( a+c) = (b+ec)=>ra =Y )) holds under certain restricted

conditions, i.e. where ¢ €& and ¢ ¥ b, However, the third law
does not hold where ¢ \'?\f a or ¢ Q\b For instance,'le_f us eﬁnﬁ;}e
two cases: | S ‘ - /

’l..'. [
/

i

(1) If ¢ > a, then it is not the case that

((ase) = (bic)da = b).
Thus, if a =‘N°,. b-:—:N;, and .c=M2, then ”&\
| Mo"l"% =N'2+N2.,9N0'=-,V2_
-
(2) If ¢ >, then it i not the case that
« , Wa+e) = (b+c)ra = b
Thus, if " a = Ny, b =N, and K =A/3, then )

Ny +Ns =Ny s NypNy =Npe -

4Some'l::i.mes; called 'bhg "aw of czmcel-la;tion".
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It should be noted that the thifd law holds trivially

(because the antecedent is false) in ée' cases where:

(1) ¢>a, 1v)e. d

e

\ ,/.'(2)‘0)'0, é.)c.

(iv) The fourth law of transfinite monotony runs as follows:

- "¥or any alevhs a, band ¢ ( (a+c )& (b +c ) a<b )"
This is the converse of Law 2 without the rééiz‘ic{‘.ioni“that c<b.
The fourth law of transfinite ‘.;nonotonjr iz a theorem in the éystem of

alephs. Here is a sketch of the reqﬁired proof:

Mssume (am+c ) £ ( b+ c?) but ad b,

Then a =b or b < a.

If a = b, then by the first 1awh (a=b>(a+c )= (bwe)),
céhtradi:c;ting ‘ckmr assumption, . - ' >

if b.'< a, then, by Axiomhﬂ, either 'cS a or a<c;

if ¢ €a, then (@+c ) =a (Ahciqm 17)

so that b<( a +¢ ) (#kiom 7Y, b< (b +c ) (Axiom 13),
(b + ¢ ) =c (xiom17) and ( b+ e )< (a+c¢) (Axiom 7), contra-

dicting our assumption;

if @< ¢ then R < c (Axiom 13),7o that (a4 c)=(b+c )=t

. f
We see here that the fourth law of monotony for, ordinary
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finite cardinal addition (i.e., for any fntesnts a, b and c,
((a+c¢ )¢ (b+c)->a<b)) holds absolutely.
r - ) ‘{‘ )

Note on Maltinlication

The four laws-of transfinite monotony with respect to ' = ! and

1 &t (also, by definition, with resrect to '> '), apply abdso-

lutely to transfinite multiplications This is connected with the

-~

fact cited in Chapter IIT fhat, regarding the set of alevhs,

the operations of addition and multiplicatioﬁ are extensionally

. identiéﬁl. It is interesting to note that although the transfinite

e

laws of monotony for mulfipligétioh cbt?éspond exactly to the trans—

oY

finite laws of monotony‘for addit§gh}'this is not so in the case of
ordlqgry finite cardinal hrithmekle. TLet us comnﬂre ordinary
additlon and multlpllcatlon. In the case of addition we flnd that
if a< b, then (a+c)< (1 +c ). In the case of multipli-
vation we find that if a;< b, then' (a.c )< (b .c ). pro-

vided that ¢ # 0. We see that. O acts as an annihilator element

in the case of ordinary multipli¢atiggx whereas it acts as a neutral

" element in the case of ordinary addition. There is nd such asymmetry
. 1n the case of transfinite cardin%}:arithmetic due ta{%ﬂ; exten—

* gional identity of transflnlte addition and multlplicészg_\gence -

transfinite cardinal addltlon angd . multlnlicatlon are slnilar in

that one does nog contain 2 restripxion (concerning the laws of

.'-.«‘q‘

_ monotony) which is not found in e other. For this reason the,

'if )

.
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full account\of the laws of transfinite monotony for addition can T T ‘
‘be rendered true for muliiplication_ simply by change of sign. A
.o 7
-~ ) )
o
B
H
)V' ) -,
+
A
s~ 1
A S
e
. -
'



Charter vZ THS AIGEﬁhATC STRUCTIHE, OF T THRORY OF ATWIHS

In this chapter I shall dIscuss Ehg'set of alephs inlterms
~of iis algebraic structure. To begin vith, the set of alephs,’
- togetﬁe; with the operation of addition (both being listed?amongst
't_he primitiw:e symbols of fhe pfincip'a.l interpretation of Ao);
constitutes a "gruppoid". This is one of the molst elementa;'y
. and general algebraic structures. We-hay define a gruppoid as
follows: | _

A gruppoid is a pair ( G, 0 ) vhere .G i3 a non-empty

‘set and O a binary operxtfbn on thé set1,
Thus we have the.set of alephs, which f shaﬂl call A, and a
binary operation on this set, i.e. ' + ', making the pair ( &, + ).

It may be added that the )set of alephs is an "absolﬂtely infinite"

. gruppoid2.

[8Y

&-.

1S‘ea J.A. Green, Sets and Grouvs, (London 1971), p.41.

Mhus Cantor says (Céntor, 1899):

The system JT of all =leohs is
similar to the system

[i.e. the system of all ordinal
numbers ] and therefore likewise
incongistent, or absolutely infinite.

50
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Axiom 15 characterizes the set of alephs as @ Vsemi-sroun®-
or "monoid". This particular algebraic structure is somewhat

less elementary and more specific than that descrided above. We

Cantor defines iriconsistent or absolutely infinite sets as follows

(Cantor, ibid.):

For a multiplicity can be such that

the assumption that all of its ele- . -
ments "are together" leads to a con-
tradiction, so that it is impossible

to conceive of the multiplicity as a

unity, as "one finished thing". Such
multiplicities T call ahsolutely in-

finite or inconsistent mltiplicities.

It should be noted, however, that, as we sow in Chaptéf'III;
the p?incipal interpretation of Ao ohly allows us to cenerate a
gubset of the set of alephs. This subset is, in fact, denumerably-
infinite:and heﬁce a “coﬂsistent multiplicity”. It is denumerably
infinite in the sense that it can be enuﬁerated (1iké'the rational

numbers) by Cantor's "diagonal procedure":

) ")(j.__5;A(2//;3‘A[5;::§)Vﬁ4 Afs veeneea A(n ...i
? N‘buﬁN“.{.'] Mg-{-? )(EOB M‘;+4 ....oo M..J-I-n.-.
N 20 ”25:1//?('2»{»2 N 2643 “""""‘x£9+n"'

N}u/}(BGH e e e e M}mn

N'.nu Mnﬂ-l-‘]-"“"""""“" "“'“"ani-n...'...

It can thus be put into a one-~to-one correspondence witﬁ the natural

numbérs and is thus denumerably infinite.
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may define a "semi-proup" as foilows:
A .semi-proup is a gruppoid ('A, + ) vhose operation
is associative. |
Furthermore, Axiom 16 characterizes thelset of alevhs as an
"abelian" semi-group insofar as it states the law of commitativity
for addition. .
" Thle questipn may now be asked: Can the set of zlephs
. be characterized ag an infinite abelian "sroun" ? fThe answer
ig in the negative. This can be eaéily demonstrated by reference
to the inverse operaﬁion of subtraction (discussed in Chapter .
Iv). .
.To begin with, however, I shall first state the necessary

properties of @ group:

A group is a semi-group ( G, 0 ) which satisfies the
additional conditions:
(1) ¢ has a unigue neutral element e, i.e.

Vx (e (x+e) = x

(11) Every element of G has a unique inverse element,

’

i.,s. for each x -in G there is an element -x in @,

§\ca.lltand the inverse of X, such thatr?

© Wax tx (x+{(x)) = e S

The set of alephs does, in fact, satisfy condition (i) insofar

as aleph zero constitutes a unjque neutral element for the entire

i

set of alephs,



\

-

The set of aleﬁhs, however, fails to satisfy coﬁd;tion (11).
It is\not the case that for every aleph a there is an inverse
aleph -a such that ( a + (-a)-). = e (where ‘e_:.Afb). As
we saw in the discussion of the operation of subtraction, it is

not significant to speak of "inverse" elements in this context.

""The set of alephs is comparable to the set of positive ‘intepers ~ = 7 o

in that we cannot soléé the followiﬁg tyne of equation in either
system:, ~
(a-b) = ¢ where .b > a
‘In thé cage df the positive infegers.w; may solve this equation
by introducinﬁ negative integers., However, no such extension of
the set of alephs has been made; there are no "negative alevhs"
and henca n6~"inverse" alevhs. Nofeover, even if negative alenhs
were to be introduced so that we could solve equations of the form
-(a;-b)=c where b & a
there wéuld sfill remain the problem that a - b has in general
several values where a =1b (as waé shown in the discussion of
subtraction in Chapter IV).
.I conclude, therefore, that the set of alephs fails to

satigfy the conditions necessary to characterize it as a group.

A Note on "One-Flement" Grouns

Finally, it may be noted ir connection with this discussion
of groups that althourh we cannot charncterize the set of alephs

‘as a group, vet we may represent each aleph as a "orne-element"

235
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rroup, ‘Thus, taking any aleph a  and the nﬁeration of addition we
gee that the five conditions of an abelian grouv are fulfilled:

(i) We have a pair { A, + ) vwhere A is a non-empty set (i.e. the

_singleton {a} and ' + ' is m binary operation on A.

(11) The operation of addition is associative, i.e.

((a+a)+ea) = (a ﬁ (a+a’)).

(111) A has a unique neutral element “a, i.e.

This follows from Axiom 17.

(iv) Every element of A has an inverse, i.e. for every a there

is an element -a in A called the inverse of a, such that

(a+(-2)) = av

(v) The operation of addition is commutative, i.e. y

(a._+§) = (a+a)

'£fshall now consider the set of alerphs, together‘with the
binary operations of multiplication (both being listed ;monéut the
primitive symbol;'og the principal interpretation of Ao). The |
pair ( A, . ) constitutes a "gruppoid". It must be noted that -

. here we are describing a different gruppoid from that described

oS
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at the beginning of this section, Althousgh both algebrniq structures
are concerned with tﬁe same set, i.e. the set of alephs, they rep~-
regent the set upder-distinct opertions, Aéain, there is an ab-

. solutely ihfinité gruppeid,

Axiom 1B‘characferizes the set of alephs-ds a "semi-group"
'iﬁéofar'as'i@°states the"laW'onaHsociati#ity for multiplication.-—-
Furthermore, Axiom 19 characterizes the set of alephs as an abelian
semi-group insofar as it stxtes the law of commutativity.

The question may now be as%gd: Can the set of alephs
be chﬁréctérized as an infinifa abelian "groﬁp" 7" This question
is obviously ﬁaréllel'to that concerning the betrof alephs under
the operation of addition, Again, the ansﬁer is in the n?gative.

‘First; it should be noted that, like the additive semi-

group, the multiplicative semi-pgroup fulfills the first condition

of being a group, i.e. the net of alephs possesses a unique element

e such that
Ve (x.0) =x :
IOnce again, this qlement is Af;. However, as in the case of the
additive }emi-group, the multiplicative sémi-group fails to
fulfill condition (ii), i.e. that-for-evory aleph a there is
an inverse a.l'eph‘ g such thlc;.t |
(ai3) = N,
( Af; beiﬁg the.ﬁnique neutral élement for the set of aleﬁhs
under multiplication), This is connected with the difficulty

of defining an inverse operation, i.e. division, upon the set of
5 _
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alephn.

| The set of 2lephs 13 compnrable tg‘fhe get of'inteﬁers

in that we cannot define the folldwing type of equation in either
syséem; |

-(%+b3,=m@ where b > a,

In the case-of the 1ntégers, wg may solve tﬁis:equaiion by intro-

—

ducing rational numbers. H&wéver, no such exéepﬁ?on of the met of‘
alephs has béen made: éhbre are n§'“transfinité_¥ﬁtionals“ and
hence no "inverse"'a}ephs.-l‘conclﬁde. the;efore,vthat again the
set of éiephs fails to satiafy the conQifions ﬂecessary to charac-

terize 1t as a pgroup,

o

A Note on Multiplicative "One-element! Grouns

RBecaunr  of. -» the identity regarding the extepsionality of the
two binary oporations '+ ' and ' . ', the remarks on additive
one-olemant gfeups apply (with suitable change of Elgn) to multi~

plicative "one-element" groups,.

In concluding, T shall contend that the set of alephs
‘may be characterized anm a commutative "gemi-field". Some ex-
planation is needed of this neolosism. A-ﬁglold", more especially,
& commutative field, consists of a non-empty et F with two

binary operations 'Sf' and 'P! defined on it. Moreover, it

56



satisfies the following conditions:
(1) (x.s(ysz)) = ((xs8y)sz)

(1) (xsy) = (ysx)
: N
(1i1) F has a unique neutral eleMent_-e such that
' v x Le (xS5e) = x -
(iv)' Every element x ;f P has ah'inverse, i.,e. for each x g
“of JF ‘there is an element -x called the inverselof x such
that
((x)Sx) = e,

3

() (xP(yPz)) = ((xPy)Pa)
(1) (xPy) = (yPx)

' (vii) F has a unique neutral element f such that

'Vx_gf (xPf) = x

(viti) Every x of F has an inverse, i.e. for each x of, F
there is an element 7éiih3\the inverse of x such that

M
(xPx) = ¢ .
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-1

(1x) (xP(ysz)) = ((xPy)s(xPz)).

-

The conditions for a commutative field consist of -the conditiogls
for two abelian groups togefher with condifion (ix), connecting

the two bilnarvry operations. By extension,‘we miéht say that-the
conditions for a commutative "semi;field" consist of the conditions
for two abellan semi-groups, together with an axiomlconnecting tﬁe
two operations (i.e. conditions (i)f(iii), (v)~{vii) and (ix))..

Ag we ha#e Seen,‘the get of alephs ﬁay be characteriied-as twa
abelian semi-groups., If we add to this therdistributive law

(i.e. Axiom 21), we may characterize the set of alephs as a

commutative semi-~field,
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Chapter VI: THE CONSISTELCY br THR THEQ?Y OF ALRPHS
' ' 2

In this chapter I shall consider the consistency of the
logistic system Aot and that of the principal interpretation.

The notion of consistency may be defined thus:

A deductive theory is called con-
sistent or non-contradictory if no-
two asserted statements of this
theory contradict each other, or,
in other words, if of any two
contradictory senten?es at least
one cannot be proved . o

Mecording to Hilbertz, there are two kinds of congistency proofs:

-

(1) Relative Consistency Proofs )

. We may establish a one-to-one corréspondéncgfbetween a formalized

‘théory and another theory which we believe to be consistent. The
consistency of our first theory will then be demonstrated. We
will say that if the second theory is consistent, so is the

first: the first is consistent relative to the second.

T

1Ab Tarski, Introduction to Logic (New York, 1965), p.135.

5 2H11bert;s mccount is to be found in vol.1 6£ the Grund-

lagon der Mathematik by D. Hilbvert and P. Bernays (2 vols., Berlin,

1934 and 19;9).

S 29
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_ Such proofs attempt to demonstrate the consistency of a theory

I

- 60

(2) Absolute Consistency Proofs

AS

~ without assuming the consiétency of a second theory.

7

In dealing with the consistency oflthe 1§gistic system 'Ao
and its'principal_intérpretation, I shall attemnt to ahow-iwo
things; | _ -

(&) That of the" "Loglcal Axioms" (i.e. Axioms 1«7) which con-

titute an axiomatization of the predicate calculus of the first

order, with identity, Axioms 1-5 can be shown #b be §onsis£ént

by an absolute congistency proof,

(B) That the "Logical Axioms" 6-~7 aﬁd the . J&; :}0ﬁ1ca1 Axioms"
\%//

(i.e.'Axioms 8-21) can be shown to be consisteng\éy a rclatiYe’

consistehcy ﬁroof. S ’ /

:;\//”‘

(1)

In presenting an absolute‘cdnsistency-ﬁroof fonAxioms 1-5,

I shall follow Hilbert's procedureB,”Thus in order to show

two formulae S ond ~S are not both derivable from a syetem' Q

!

3For an exposition in English of Hilbert's proof, see

G T. Kneebone, Mathematical Lorgic and the Foundations of Mathe-

matics (London, 1965), c.7, section 6; and E. Nagel & J, Newman,

Godel's Proof (New York, 1973), ce. 2 & 3,
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ve pfoceéd ag follows: - )
We.first select soma property of the rormulae of @ which
" patisfy the followins thrce conditions:
' ) L ) '
(1) The property must belong to all the grioms. .o .

=

e

N
(1i) The property must be ‘'hereditary' under the ‘rules of ierrence,

and must therefore_belinherited 5y_evcf} derived formula.
- \\_‘;;— ‘_ B

)
o

(iii) The propemty must not belong tq every formula that can be

constructed in Q, i.qc we must’ exhibit at least one formula that

" ~does not have the property. In other words; we mugt seek to discover

! 4

some formula which is not a thwdrem; for if 2 systenm is not con-
sigtent, then any formula yﬁateﬁerlcan be depiégd from the gxioms ',

ff’

-

YMhis may be demonstrated using the theorem (A= (~2-9B ) ).

This tile\Brem may be derived from Awiom 1 ( A ( AV B ) ). As
we saw in Chaptexf II, the wff ( AV B ) may be defined as (~ A>3 ).
';'Hhus we may define (A=d(~A =»B) ) as ( A= C A VB Y ).
Thus, given the theorem ('A -> (~.A - B ) )} and the rule of modus
ponens, we may proceed as foilows: “H'/F\\>

First, supposé fhat some formula § “and its contradictory
~ S were deducible from the axioms. By substituting S for A

)
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Now let us anply the prbcedure t¢ our absolute bdnsistehcy
proof of Axioms 1-5. For the szke of brevity, I sﬁall refer to the
system derived from (nnd~including) these Axiohs 1=5 =8 the ‘

systen A, Fqut we select a property of the formulae of A

1
which S1t15f109 the above conditlons (l) (111) _The property

1

chosen 1sﬂth1t of bexng “tautologous”. Now it can be c~ho\m by use
of truth-tbles that (i) Axioms 1-5 =re tautologo:ls, and

(ii) that this property is h’eredilﬁar::v in that it is inhgr-ited by
every derived formula. _ A v
"Let us first consider Axioms 1-4, i.é. those é% the

proposiiionalJcalculué. These can all be shown by means of truth-
| N 4

in the theorem cited above and avplyins modus ponens twice, the

fomula B is deducible. Thus we first obtain ((3-—-)('“3 -3 ),
¥rom this, together w1th .S which is asserted to be demonstrable,
we obtain by modus’ ponens (‘*S")B Yo Flnally, Bince‘*’S is also
asserted to be‘demongtrable, using mpdus pohens once more, we ob-—
.tain B. But if the formula B is demonstrable, it follows that

by substituting any formula whatSOeverjfor' B, any formula wh;tso—
éyer is deduoiblé.from the axioms. Thus if some formula S and its

contradictory ~'S were deducible from the nxioms, every formula

would be deducible. Iniather words, if Q 1s inconsistent, then

%ver§ formula is a theorem,
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tabies to‘be:tautologons. The gam~ proof is #lso applicable tqﬁ

Axiém 5 (i.e. the axiom of the ﬁredicaté caleulus of first ordef).

Here we d&&ﬁig/the individual variabies.;ﬁd quantifiers and treat
the‘éf;éiCate variables as if tﬁey were propos}tio?éi variables;

let uchall the résult of performing this.operation on a formula the
gleme;tary pfopositibﬁal form asséciated with that formuila. Thus

ciom 5 becomes ( A=A ), which cén.again e showﬁ, ¥ truth-

p)

tables to be tautologous”. Thus we see that, by means of truth-

tables, we can show that the .chosen property of being "tautolosous"

" - g

5It should be noted that Axiom.S is not strictly Speiking

tautologous, but its associated elementary propssition~l form is,
. a

This condition appears to be sufficient to prove the congistency

of the system, For if the system is iﬁconsistenﬁ there is at least

on; pair of contradictory propositions derivable in it, and henpe
‘the conjunction of that pai# is deri%abli. But the conjunction
of a pair.of contradictory propgsitions is'equivalen£ to a con-
Junction of the form ( PA~?P ), whose associated elementary form
is not tautblogousQQ R .

Hence, 1f the associ%ted elgmentaribpropositionallfonn of
every formula dérivable in the system ié tautoloéous,’then the A\\K:’ffzj
system is conaistent. TN
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belonss to all the axioms of A Thus it satisfies condition (i).

1.
Egain, using truth-t1bled, we can demonstrate that this vroverty.
belongs to all the derived formul-e of A1 .(or their associated
elementary propositional form). Thus it satisfies condition (ii).

Finally, we cam construct a formula of A, which does not

1
. have the property of being tautologous and is thus not/; theorem of

. A1. For instance, take the formula Awv D which is a formula but

»

1

not a theorem of A, since it is not tautologous. This can, once
again, be demonstrated by means of trath-tables. Thus the p;Lperty
of béing tautologous satisfies condition (iii), ;.e. it does not
belong to é&qry formula of A1. Thus; in accordance with Hilberf's
~pro¢eduré,;wc have given an.gbsolute consistency groof~of A1A and

consenquently of the Axiems 1-5.

o
I shall now give a relative consistenc; proof of the Logical

Mxioms 6 and T and.the Axioms 8-22 of the logistic syse’a A, and
”thereby of its prinecipal inxerpretation. For the sake of brevity

we will designate the gystem derived frdﬁ theqj axiops (including
the axioms themselves) as Ay. I shall now attempt to show thq}‘

the system A2‘,is consistent relative to another system which I
shall call B, I shall establish = one—to—one.co eéfbn ence
between Ao’ its prinpipél interpretation-(pf which A2 forms ;

part) and the system B. Let us first consider this correapondence



with regard to the "primitivé symb’ois" of ‘ench system: '

15)\"

5

&)

punctuation

- Proper Symbols o -'AE
Individual Xy ¥y 2, etcd Set of alephs 0;% e'},:s.“"
Variables | ¢ - C . ¢
Lo 'i’.!? % L
The set of rational
{dvads (Lle. a subset
of the set of, ration-
- {als):

Ex (30@0(32)

: w, ¥y and 2 '—!.re natural
Individual » [pumbersA x 2 A 32 Lt ')}
Constant ' ,'

: 0 JV;' ZeTO

- Functional 4 Successor . Successor function,
Constants v function, x“: x + % (the least’
ey integer greatar than
) . X—X ae. nuf
¥ Siem of adateion] X" 10+ (3)"x 3T
. i N the m-n.ximum of x a.nd ¥3
Sigh of milti- f+(x¥),  J(xy)
Predicate . plication
lCongtants < . less than 1&95 than
= “.8imn of equality [sisn of 6quali_ty
Improper ]
"Symbols ~ not ot
_i if...ther}-.. if....t:hen-.;
Y - universal universal quantifier
- quantifier : . &
marks of

marks of punctuation’

. -
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We can now iﬁterpﬁbt_the axioms 6-22 of B as follows:

Axiom é 7
"Every rational dyad is {dentical to itself."

Axiom T

"If @ rationnl dynd & is identical with a rationa) dyad b, .then

any property belonging to 2, belongs to b."

Axiom 8

"o two rational dyads have the same successor."

fAxiom 9

"0 1is not the succecssor of any rational dyad.™

Axiom 10

"Any property which belongs to the successor of e#ery rationnl dyad
which has that property and to every rational dyad which has no

" lmmediate predecesaors, belongs to all rational dyads.”

Meiom 11

"If mlﬁnnd n are any two distinet rational dyads then either m

is less than n or n is less than m."

Kxiom 12

"If m and n are any two rational dyads and m 4isp less than n,

&
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then n cannot be legs than m."

Axiom 13 - g\ _

At
"If my,n and p are any three rational dyads and if m 1o lesns th;?
n and n 1is less than p, then -m 1is lezs than p."

-

Axiom 14

"A rational dyad m is the successor of n if and only if every rational

dyad p is either less than or equal to n, or greater than or equal

to m."

Axiom 15°

"For any three rational dyads m, n, p, the maximum of m and.the

r

maximum of n and p 1is the same ag the maximum of the miximum of

m and n and p."

max ( my max (n, o ) = max (;"\q‘x.-Lm'.,\'), p)

Axiom 16
"For any two rational dvads m and n, the maximum of m and n
is the sume as;thd maximum of n and m,"

ma:c_(_m,n)_: max ( n, m )

Axiom 17

"For any rational dyads m and n, if m is greater than or equal

1
'

to n, then the maximum of m and n is m."

(m 2 n > max m; n) sm}) -
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Axiom 18
"For aﬁy thfee rational dynda m, n and p,lthohmaximﬁm of m and .
the maximum of .n and p is the same as the maximum of the maximuh
of m and n and :p.“ |

max (m, max (n,p) ) = max (max (m on ) p)

3

Axiom 19

~

"For any two rational dyaas m and n, the maximum of m and n
‘is the same as the maximum of n and m,"

max—{ m, n‘) = mnx‘(n, m )
~ Axiom 20
"F;r any two'rational dyads m and n, if m 1is greater than or
equal to- n, then the miximum of m and n 15 m,"

( m 2 n-> emax'( mn) = m)

Axiom 21
"For any threo rational dyads m, n and p, the maximum of m
and the maximum of n and p 15 the oame as the maximum of the

maximm of m and n ond the maximum of m and p."

max (m, max (n, p)) 5 max (max (m o), max (myp))

Mxiom 22

"For any rational dyad m, thore is m least rational dyad n which

io gronter than m but has no immedixte predecosnor."
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If the oystem B iﬁ consintent, then it follows (due to %he
pne—to—one cor;enﬁondbnce batween Ao, Ab and B )'thnt Ad and
A, are c0ngiu£nnt relative to B Now, wo may‘ask:“ls B consistent?
Unfortunately, this very quention shows the inadequncy of the .proof
by fnlntive consiotency from one aoystem to another. All we can say
i1s that if thes arithmetic of the p@cticulnr aubaet of,rnfionélu, under

the operation "maximum of" deperibed in #, in consintent, then so

are A and _ A..
o 2

b i i e St Lo N A i



Chavter VITi THE OMWQLoniCAL STATUS OF ALMUHS
, o

‘?. . In this final chapter I wish‘to discuss the oﬁtologicul
atatus accoréod to alephs ﬁy Cantor. In the cﬁrrcnt literﬁturé it
1a.now quite coﬁmonplné% to viow mathematical ontitien‘in roneral
from dno of thren stnndpeointor these are the fofmnlist,.intuitionist
.qnd logicist positionn1. For symoptic and e¢larificatory purposcs, I
phall begin by stzting Quine's outline of the three positiono, [
ohall then examine the Cnntorinn'corﬁuu with a viev to entablighing
Cantar's general "phileoophy of mathematies" and the pprticular
ontologleal status of alephs.

It should firnt be noted that for Ouine (and tindood for mont
writers on £he rhilonorhy of mathomatica), the formalist-intuitibnint-
logicint controveruy in enmsentially a:reqrudeucenco.of the medinnval
controversy concerning univorhaln, i.0. tho nominaligt=-concoptualist-
realint dibpute. Thus the fqrmal}ut ponition: whono leading pfo—
ponent in fhia century has been David Hilbert, is assoclinted with

mediaoval nominaliom., Quino characterizes formalism as follown:

1Soo inter rlia w.v.Of Quine, From a Loricnl Point of Viow

(New York, 1963); S. Kbrmer, Tho Philonophy of Mathomatios (Now York,

. 1962); S. Barker, Philosophy of Mathomatics (Mow Jornoy, 1966);

M. Black, Tho Nature of Mathemdtlocs (London, 1933).

Ny
~3
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@ The formalist keeps classical mathe-
o matics as a play of insimificant .
notations. This play of notations
can otill. be of utility =-vhatover
utility it has already shown itself
to have an a ecruteh for phyniointa

and technoloFists?.
Again, intuitionlem, Qhosc leading proponent has been L.E.J. Brouwer,
is acsocinted with medineval concoptualism, Ao mediacval conceptunl-
ists held "that there are universals but they are mind-made“3,_so
intuitionints belicve that mathematical entitles are not reducible

to notation, but exist in fhe mind, Finally, loricism, whose lending

proponent hns becn Russell, is asgsociated with medineval realinm.

- According to Quine, realism

is the Platonic doctrine that uni-
veroals or abstract ontities have
being independently of the mind;
the mind may discover but cannot

creatoe them4.

Having outlinéd thenoe threo bauic'poaitiona concerning the

- ontologioal status of mathematical entitien, I now wish to consider

which viewpoint was held by Cantor regarding alephs. However, before

I begin this investignation, I must issue two ocaveatn:

(1) Although the tripartite divioion outlined above is commonplace

-

“qutno, 1963, p.15.
5Ibid., .14

“1vid., p.14

1
- .-
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in the current‘litqrature,-it is overly simplistic, For ingtance,

A.A, Fraenkél, Y, Bar-Hillel and A. levy add a fourth division to

what they term "Plﬁtonism", "neo-nominalism'" and "nco-conceptudlism“,'

i.é. the "nnti—oﬁtoldgicnl view", The leadirg proponent of thic view
(which appears not to have any mediaeval forbeara)[is Carnaps.
Agcording to this view, the question of whother mathematical entities

exist or not is a "pacudo-quantion”. Carnap argues that there are two

types of "existence" qucstionslrégqrding mathematical entities;
First, there are "{nternal questions". Vo may asklwhether somé tjpa
of mathematical ohﬁity exists, but only within the frmmework of a
certﬁin thoory which we havc.a1¥eady nccopted, Secondly, there are
"axternal quentiong” regardihg the framework as a whole, Thése
gueations are not ﬁroperly ontoiocicql since ther reduce to'tho
"aoceptability" of tho frameﬁork or theory. Such "acceptability"
in turn devolves on such prasmatic questions as.thg utility and
focundity of the theory and on aecsthetic connidorntioﬁs such as
simplidity. Thus, for Carnap, the question "Do alephs exist?" is

. & paoudo-quostion. We must construe it oi£hor as an internal

quention of some. proviously accepted theory or am an external

5Rudolf Carnap, "Fmpricism, Somantiecs, and Ontology"

reprinted in Philosophy of Muthematics: Selectod Readings, ed.

\

Paul Benacerraf & Hilary Putnam (New Jorney, 1964).




question which involves pragmatic and aeathetic considerantions.

:‘(i{) Néxt, it should bersgrdssed:that Guine's eqﬁation of nominalist-
formaliot, concgptualist—intuifionist and realist-logicist is agéin
oﬁer{y‘simp}isticu Ipdeeﬁ,.it ‘can be dowhright misleading. For al-
.thouggﬂsome lpgicists such as Frepe are also realists in thaf thgy
accept mathematical entities'as’miﬁd—indepcndent and which ve discover
rather tﬁén invent, other 16}iciats such as Russell cannot so easily

be classified as reslists. Thus} alfhough I must agree with Quine

that in Principia Mathematica Russell "condones the use of bound

variables to refer to abgtract entities known and unkndgn, sneci-

fiable or unspecifiable, indiscriminwtely"é, yet 1 see no need to
\
draw any concluszions from thase reﬁpgdinn Rusnellts ontolorical

o

commitmentas. It is quite compatible with the ldgicist'progrumme

to hold a nominalist position: to view clagsaical mathematics as a

body of tautelogies. .

With those two caveats in mind, let us now approach Cantor.
Let us begin with the questién: To there'any evidence to supgest
that Cantor was a formalist? The evidence is slight but .deserves

conasideration, Thore are two passages within the Cantorian corpus

which have a formalist flayour:

6Quiné, 1963, p.14.
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(a) We mry remard the whold humbers as
‘ ‘tactual!' in so far as they, on.the
rround of definitions, take. a ner-
factly determined place in our un- .
deratnnding, are.clearly distincuished ¢f
from all other constitnents of our
" thought, stand in definite relations
to them, and thus modify, in a
‘definito way, the substance of our

mindv.‘
e
\ .

(b) Mathematics is, in itd develomment,

quite free, and only subject to the
. golf-evident condition that its con-

, coptions are both free from contra-
dietion in themselves and stand in -
fixed relations, arranred by defin-
itions, to previously formed and
tested concentions., In narticular,
in the introduction of new numbers,
it is only obligatory to mive auch
definitions of them rs will afford
them ouch a definiteness, and, tunder
cortain cireumstancaa, sueh o rel-
‘ation .to the older nmumbors, a&as ner-
mits them to be distinsuished from

f : .onao nnotheg in rlven enses. As goon
as a number satisfles all these con-
ditions, it e¢on and must be conniderad
. agr exiotent and real in mathematicsa.
In this I see the grourids on which
~ we must regard the rational, irrational -
and complex numbers as just as aexistent

&8 the poeitive integerss.

| T?rans, P.E.B. Jourdain in (Cantor, 1883(a), section 8,.
ppf545—591). ; |

BIbid., section 8 (Trans. P.R,B. Jourdain).
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" the consistency of a formal aystem, then this is a neceﬂshry and

implicitly defined by the axioms of that system.

‘ or tautologousness.

v " e
Both pashages are formalistic in the sense that they apnear to imnly

that freedom from centradiction and consistency are nccesgary and

 pufficient conditions for ascribing "existence" to, mrthematical

entitics, This is consonant with Hilbert's view that\if can show

H

sufficient condition for the amcripﬁion of exiatence to t cntities

3, a8 early as

1904, Hilbert says:

Having thus epgi=lished a certain

for the axioms adeonted

, , wa recormize that they never
lend to any centradiction at all,
and therefore we speak of the
thought-objectas defined by means of
them... as consistent notions or
operations, or nas consictently ecx-

iﬂtihg1o.

There are, however, many objections to viewing Cantor as

a formalist:

”
(1) In dealing.wifh "cBnoisteny", Hilbert is dealing with a meta-

matheg%ﬁical property of formal systems. Cantor, however, had no

<

Nt

oo
-

9H11bort is here reforring to tho property of "homogeneity"

10D1vid Hilbort, "On the Poundations of Logic and Arithmetic”,

Jean ven Heljencort, ed., From Froce to ngolJ A gource Beok in

. Mathemntioal Logic, 1879=1931 (Cnﬁbridgﬁ, Massachusetts, 1967).

(I
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otion of a formal svatem. As T stn:jy in Chapter T; Cantor's work
anrfinite eardinal arithmetic wWis "naive" rother than "fovmal,

Thus Crntor's notidn;of "conzistency" is so much less exzet than that

E ofAHilhert:thnt it would seem indppropriate to comba?e them,

e

- would subscribe to the Hilbertian dictum: | .

"

/ N
(11) It hhg\becn the principal -aim of -this thesis to formalize
I . - - : .

Cantor'!s work, However, as I have ghown 1in Chapter VI, I have been -

P v

unable to establish an absolute consoistency %roof for the avsten of

- alopha, Thus, even if we agrned that Contor possessed an embryonic

_hotion of;'the motamnthematical property of consiatency, his ayatem

has not so far beon Bhéﬁﬁ.to be congistent.

(111) We can seo quite clearly from rasaares (a) ond (b) thot Cantor
has none of the formalist tendency to identify méthomntical entities

ﬁith‘the notation for such entities. There {s no indication that he

L3 ’

The subject matter of mnthemntics is ...
the c®ncrote symbole thamaelves whose
structure is immedintoly olear and

I recopnisnblo .

AN

. .
' 11David Hilbart "on the JInfinite™ (1925) “YPaul Benacerraf

& Hilary Pﬁtnnm, ad I%djaonhv of Nﬁthemntics° qplocted Readtnns

" (New Jersey, 1964;. , o \



Or again,

e i

These numerical symbols which are
themselves our snbject matter have
no sirnificance in themgelvesi?,

Nor can such an identification of sggn and thiﬁs siénified
Sé found anywhere else in his work, Morveovewn, in passare (a) there
appears to be a:definifa rqferencélto mathematical entities ds |
existing no£ merely on papoi but in our mind. In fact, they
"médify; in a dqfinitehwn}, the substance.of our mind." I cone .
~clude, therefore, thnt}the evidence for Cantor's vieQ of mathe-
matical entities as formalistic is very inadequate,
We may now ask the cuestion: Is there any evidence to
show that Cantor was mm intuitionist? Did Cantor regsard mathe— .
maticq} enfitics in general and alephs in particular as mind;
_mdde ontitieé which we invent? Let us consider thoge passages
which might encourago us to view Cantér as a forerunner of
Brouwer, g
Pirst, there appears the statementy from passage (b)
oited above which runs ", . , mathematics is, in its devglop—
. ﬁmnt, quite free." This seems to vresage Heyting's later re-

marko:

The Intuitionist mathemntigianApro—
poses to do mathematics as a natural

121h1d., pe143.
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. 5 -
function of his intellnct, as a free,
vital activity of thourht. ¥or him,
hathemttics is m produgtion of the

In saying that the~ development of mathematics is "free", Cantor

appears to be speaking insfhe intuitioniat spirit.

L
— .

Azain, .we See another resemblance botweeen Cantor's view of
"mathemntical entities and that of the intuitionists, in that Contor

frequently makes reference to the notion of mind in his definitionu,
] . R

Thua, in his famous definition of a set, he says::

By an 'agrregate' we are to under—
stand any collection into.a vhole M
ol definite and seporate objects n
of our intuition or our thought14.

Interestingly cnough we find a reference to the (intnionistic) notion
of creating rather than the (roalistic) notion of discoverine numbers

in his definition of the first tronsfinite ordinal number:

If there is defined any definite
succession of renl interers, of -
which there 1s no greatast, on
the basis of this secofd prin-

15

eiple “ a new number is\crected which

13Arend Heyting, "The Intuitionist Foundations of Mathquiqu“

in Paul Benacerraf & Hilary Putnam, cds., Philasovhv of Mnthematicsza

Selected Readings (New Jersoy, 1964).

14(cantor, 1895, section 1, pi85).

15

THis refers to the second vrinciple of formation.

[}
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is defined ns the next rreater

number to them nllis.

Arain, Cantor snys:

It is ovon permiseihli~ ko think of

* the nowly created nmamber as the
1imit to which the numhgrn
strive17.

Such pagsagoes are definitely conceptualist:as'orposed to renlist
in tone: in thqir talk of "creation of" rather than of "digcovering
certainlnumbers and in their roforence to the ncfivitf of the
mind., | - .

Finally,. wa’may'citc our ntronnostlovidence for regarding
Cantor as a prospective intuitionist. In his defiﬁition of car-

dinal number, he says:

We will call by :the name 'power' or

. . 'cardinal nmumber' of ! the reneral
concept which, by means of our active
faculty of thought, arises™frem the
aggregite- M when we nake. abstraction”
0f the nature of its various elements
m and of the order in which they are

given 18.

Thus it appears that carﬂinal number is not gomething which exists

indopendently'of the mind ‘but is instead the result of a double

160 angloted and quoted by P.E.B. Jourdain in his intro-

duotion of Cantor, 1895, p.57. | !
T1via., pp.56-1 '

1elbid., section I, p.86.-
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act of abstraction performed by the mind. Amnin Cantor says:

Since every sinsle eclement m, if we
abstract from ita nature, becomes a

'unit', tho eardinnl number ﬁ
is a definite ncorrosnte comnonad of
units, and this number hag oxictence
in our mind az an intellectunl imnce

or projection of the.glven armgromite
T’I1 9 . ‘

Here we geem to hnwve incontrovertible evidonce that a ecrrdinnl
numbor ( both finite and infinite) im an "intellrctual imnge"

for Cantor. We now recall Heyting's remarik:

Even if they should be indopendent

df individual acts of thourht, .
mathematicnal objects ore by their very ‘
nature denendent on humrn thoneht,

Their existonce {8 mavrnterd only

in so far as they can be determined

)///’ffff——‘\\\\\ by thoughtzo.

So far, it seems that we hnve vory gaod ovidence for bo- '

ng that Cnn£or hold a conceptualist view with resard to cavdinal
number (both finite and transfinite). The evidence is clearly much
s¥ronger than that for characterizing him as a formalist. However,
apart from tho_vofy explicit platonistie dtateméntaiwhich I chall
soon cite, there are other roasona to beliave_that fhelconceptualiam
is palor than at first sicht. We mdy arsue, fof:instanco, that

Contor's referonces to "mind" in His definitions are inessential

19Ibid., saction 1, p.86. .

304 Hoyting in "the Intuitionist Foundntions of Mathematica"
(1964, ws42) o ‘

L
- “

e — - - . - - - o a o _‘ uny ™ s ."T.._-..v_.‘..‘;,r..-'__...;..'. -y
T T T T T Iy R T T R T T T TR T e TR T L R T e T o vt s R T G R TR TN T

o i e i A T s i

TR SR

i



L
L4

\

~

-/

~

innofar as they can bo omitted withonut any formal lonn, It in quito
cloar that his definition of n not would logo nothing in the dolotion
of referoncen to commitive procbﬁnen; Arsiin, £t mny be nrpued that
ﬁlthOUﬁh ko arrive at the notlon of eardinnl number by a double nct
of abgtraction, thin in viowod by Cuwntor only ~o n doncription of
cortain subjoctivn‘connitivo nrocessen which hnppen to occnrvtn our
mind in the formation of tho concopt;ﬁTo nuppone that nuch proconnon
Adofino" a cﬁrdtnnl number ig akin to tho f{allncy of "paycholosinm”,
i think that theno obJoctions aro valid nﬁd tﬁn; Cantor noed nnt be
clagped as an iﬁtuitioniat. |

Finnll‘}r, I come to conni'd the noattion knowm vi'u;i.ouu]y
ﬁa.logfcism, roalism or platonism, ¥ar the nnke nf convenionco, I
shnll rofer to fho poaition horeafter nn "platoniom", Tt in my cone-
toention that the ovidnnco‘iu ovaTwholminely in favour of our nocribing

this position to Cantor, Thus I hopo to show that for Crrtor, mathe-

¢ mationl entities and alephs in particular oiiat indopondoﬁtiy of

the mind. To bogin with, lot us attompt some further clarifioation
a8 to what 1t io to bo o platonint, with reogard to mathomatiocal

entities., Platoniom appears to involve two aspecto:

(1) The Ontologicnl Ampect.

As already stated, a platonist bolioves that mathematical ontities

gomehow "oximt" independently of the human mind. ‘I
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(13) The Epiutnmoloninnl Aopect,
-A platonist believen that wo "discover" rither than “cro~te" nuch

ontitien. Wo find a beautiful ntatement of thie in Froro:

The peopraphor doon not cronte o ron
when he drawg border lines nnd nnyn:
The p:rt of the gurfnce of the ocean
'dolimitod ‘by thene lines, T am poing
to cnll the Yellow Seny and no moro
ocan tho mnthomwticinn ronlly cvonto

anythinp by hin nct-bf dofinitioﬁ
Agndn, Fropo nnysos T : ’ -

. } +« ovon the mathematicinn cannot
oronte thingo at will, any moro thnn
tho meoprnphar canj he too enn only
discover what i{n thoro and sive 1t o

nf!.m022 .

NS

"I shall now cite tho ovidonceo for Cantorinn platonimm. Firnt, T

ohull cite pancagnn from Cantor's work nnd 1ott0rn;-nncond1y,
paooagoo from the wark 3f—h+ﬂ~canﬁnmpq\\fy, PWoro; thirdly, I
nhall rofor to cortnin 1nto njnotoon+h contury controvorcicu

which nupport tho view bf Cnn;or qua platonists

2 60tt10b Frogo, Grundaasotzo der Arithmetik, vol.l,

5\

trano. P. Gonoh & Max Dlack in Trnnnlnttdnn from tho Philosonhicnl

Writinmo of Gottlob Frome (Oxford, 1970), p.145.

22Gottlob Fropo, The Foundntionn of Arithmetic, trans.

JoL, Austin (Illinoin,1968), pp.107-8.
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&(1)
(k) Tn dincinning tho integorn, . Crntor holdn them to he "notnnl"
innofar nn tha “take a perfactly detormined plaece In our nndnr-

standinm." However, ho ronn.on:

Wo mny aneribe nctunl ity to thonm
. . 4in'so far nn.thoy muot b hold tn
S be nn oxpronnion or an imacoe

(Abbi1d) of proeenanrn and Tl -

ntiono in tho opter world, nan

dtntinnuinhdd from tho into]loot2§. o

O~
Thun wo ;:;”tgnt Cnntor ronn boyond tho noncnptuhl!nt ponltion
that tho intogors oxint on]y.in tha mind, to th~ ﬁlqtnniutin
ponitlpn.thnt thoy ﬁxint in onr mindn only nu "{mn~on' or "econian!
of nomothing nxtornnl to tho mind, Thaorn nanmn Lo he no roanon
why tbin nhould not alno apply to trnnnflnipn nunbern, How, 1t
nhould b: ntntndt of courno, thnt by thin ﬂnntnr did not holinvo
thntruuch.imnﬁnn vora coninn of pomathine (n tho ssnnibln world
- for to maintnin thin would be perilounly nenr to J.5. M{11l'g

viow of mathomation an an empiricnl nQion0024. No, for Cuntor,

numboer concoptns in qur mindn aro imames of nomd oupra~oenniblo

{

2prans. P.KR.B. Jourdain in (Cantor, 1883%(a), noction 8,

PP.545=591), f

245.8. ML11, Syntam of loric (Tondon, 1879), Bk.IT, c.VT,

4

pactiong 1-4; Bk, JIT, c.XXTV, nrction 5.

e )
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roal ity an thoy wore for Plato?).

(p } In 1884 Cantor wrote a lotter to A, Sehoonflien, in vhich he

nnid:

An to overything olne (oxanpt tho
nrt of ntyle and the nconomy of

exponition) thin in not ny merit;
with rersard ta tho eontontn of my

rosearch work T nam only n kind of
_£/nm§> 26
oportar and nocrotnry T,
Hora wo onn thnt.Cﬂntor tn Car from ramardine hin work an tho
"froe, vitnl activity of thoucght" thnt L4 wan for Heyting, Ao

wo know [rom Cantor's rnlipioun convictionn, it io likely thnt

he fognrdod himasolf nn God'n oncretary,
a . . B

'(6 ) An o noto to hin 1895 article Cantor wrotos

Nor do we give lnwn to tho intelloct
or to thingo necording to our own
- Judgomont, but likn frlthful porihen,
" thono 1nwn which arn born on the
voice of naturo itpolf and pro-

27

oclaimed, wo take un.nnd doncriboe™',

25Pln'bo, The Rnpublie, trans., F.M, Cornford (Now York, 1973),

6Quotod in a footnoto by A.A. Frnonkel 4in Abntrnc+ 8ot

Thoory (Amotordam, 1968), p. 80,

[(Cnntor, 1094, p.Bb).
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Thore L mome AL T1enlty here rorarding thoe {nterpretation. of tho
"volen of‘nuturﬁ"°(nnturno vocie). Howaver, T think that the mont
l1ikoly {internrotntion im thnt Cantor in reforring to a nuprn-nenniblo

world,

(2) -

Further ovidonece for repgurding Cantor au rlatoglnt coman

from romatks mado by hin contomporury, Frogo, Tﬁnn, {n diocunning
Cantor, Froro nays: "ourlnumbon -, {n 13 nound no ? or 5‘"28 ?nr
ffcno,-furbhnrmoro, nll nﬁmhorn nre "aolf-nufficlent nbjcctnﬁ?g
which mny nxtﬁt 1ndnpond6nt1y of thﬁ m!nﬁ. Whunlfnr Froro (and ho

nonmn to imply that Contor wonld arrea to thin) numbern, both

finite and trannfinite, are to be »latoninticnlly enrcnivad,

- (3)
Finnlly,_wo w11l look nt tho vartoun controverning (hoth

mathomationl nnd thoological) in whish Cantor was cmbroiled:

28

Gottlod Fropo, Foundntionn of Arithrmtio, nootiono 84-6.

??Ibid,5 noction 57.
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() Mnthe%nticni Nontmovarning

It in,wolifknown from biﬁnrapﬁiqn] nourcnnjn thnt Cantor wa on-
gaged for mhny.yonrn in an cerimonioun dlaputo with Kronnckpr.
The inmue which concerns us here in tho ontolosicnl otntun off‘;’
. numbors. Kronockoﬁ (n forerunnor of {ntuitioninm) hrld tho view
that "God mnde'tho'nnturnl nunbarn, nll the reont in mnﬁ'u hrnd -
work"51. M1 o;hnr numbera, nccofqinn to Kronocker, wore lenn
"rnﬁl" thnn ihn nntural numbers, and atatementn qﬂout the former
oould bo "raduced" to n{ntnmﬁntq about the latter, Now Cantor
olonrly rejoctn thin philooophy, Tn 1883, ho not enly gave o e¢loar
ohuructnrizntién of qunocqu'n:vtﬁwn,-but alno ntnted nnrnSUHlly

luoid ropudintion of thom52

t for him, tho procenn of roduction
'wnn unnacensary’ nince-nll mmbnrn were arunlly renl. Tn thin
controvorny we noo the plntoniatic vermun tho concoptunlint viow-

point,

30

I. Grattan=Guinena, "Towardo n Blopgraphy of Goors Cnntor',

Annala of Seimnen, vol.27, No.4 (1971), 345;591; F.T. Boll, Mon of

Mnthemnties (Now York,.1965), c.29,

3N

th,to bo found in any of Krenockor's publishod workn,

nince it comno from nn aftor-dinner sproch, -

32(Cnntor, 1883(&),'uoctioﬁ 8, pn.545-591).

B T
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Loss well=known 1o Cahtor‘g controvoray.with the mathematicinn,

Honﬁito._?nrndoxicnlly, Hdnqito wag both o pldtontnt nand nn anti-

Cantorian. Hin objection to-Cnntoﬁ'wan'thn_phouump

Thuu Poincnrd’ﬁnyn:

Doubtlans
relirioun
1t o kind
penetrato

\

! r
begnune of hin [Hnrmitn'nj
convictlonn he conaidered
of implety to wishste
a domain which Cod nlone

onn encomnana, without wiiting
. for Him to roveal ito myntorien

. one by ‘onn

33 -

n of the latteor,

—

/

Thus We pee that Hormite nooumen Cnntor to be a blatonint,

“though a rather 'Faustinn' oho, who obviouoly wanted to eont of the

' e
- treo of knowledge bofore his timo. Thig nrenne qupnin" in obviounly

.& roforence to Cantor's theory of trennfinite nrithmetic, However,:

Hormite® neod not hnve tnkon such objoction, since Cuntor wno far

moro modeot than thia, For Cuntor, trinnfinite arithemtic 1o oatil} b

only o symbol of tha Ahuolutei

The abpolutely infinlte nenucnce of
numbern thun oromo to mo to he, in o
certain nonne, n ouitnblo oymbol of

the Abnolutosd.

I conclude, therefore, that Cantor was o plntonint in hio view bf

mathematicnl entition in gcnprnl and in hio viow of nlevha in

531;1. Poinenre, Dnrni;ﬁnn Pnnni&g (Pario, 1913).

34Quoted by P.B.B. Jourdain in his Introduction to (Cantor,
- 1895, p.62), "



“have soon that, for tho formnlini a connintont axiomatic ayotem

" formo n nocenonry nnd nufficibnt_condition for the exiatonco of

a8

pnrticulnr.. Tﬁun, for Cantor, alophn do 1nd5nd extat In aome -

tranncondent realm indepondent of humnn mindsn, &

Pinally, we must connider the relation botween the axiom-
atized vorsion of trnnﬁfinita enrdinnl nrithmotic (an prdrontnd

in thonin) nnd Cantor's plnatonistic ponltion, Would a platonin

conoidky thosnxlomrfization of a particular hﬁmbpr oyntom an o kine

of ontologicnl proof for the existence of that numbor nyntom?-Wo

tho ontitien which it imnlicifly defines, Wo have no junttficatiqn
for belioving tho onme to bo trun for Lﬁo plutoniﬁt. Rather we
might any that for the platoriiat, the connlotrney of nn nxiomatic
nyhtnm in o neconoary ( but not sufficient) condition for ancribing
Qxintonco to the entities in quootion,

Now, wo have oeen that in-the ﬁnunngon clited on p.74
Cantor, at one time, appenro to have rogarded consistoncy ag botb
o neoosoary nnd sufficlent condition:for eotablishing the oxistonce

of o pnrticuinr numbor aysten. However, aince thore may be internnlly

oonosistont dbut mutually incompntible number systema, thls cannot

bo n nufficiont condition for the platonint We have neeon thnt

Cantor {n a platonist and that therefore connintnnoy can only be

& nocensary condition for him, It may bo quentioned as to what .

ndditionnl condition a platonint would reoaulre in order to ootobligh'

~a proof for the oxistonce or a particular ontity. The only ougrestion
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. ] r R . L
made by Cnntor in this renpoct concernn hin reference (p.?q)-to “

the "dlotation" by God of such ‘mathemrticn) theorien, Howaver,
benidos the inexactitude of ouch 2 condition, theve vemainn the

problem of how-&é/;:;;ingninh betweon a dletatod and a non-dictatod

thcnry; -
‘
Unfortunately, as ue -havae geon, wo hiivo only bean able to

r .. : . ". . . ] . -

rivo n rolative cnnsintoncy proof - and that only for a part of the

1

-ﬂyutom of ulophq; Thua wn have baen unxblo to ontubliqh even n

noconnnry condition fqr tho cxtutnncc of nlephu (Which would renuire

fn nbnoluto conﬂintoncy proof) We moy draw the following two con-

'cluuionn' Firnt, since wo hwvo boon un“b1c to rtvo nn nbno]uto con~

aintoncy proof evon of part of the nroten nf nlnphs,_thoro io o

ntrons nuﬂptcion.thnt an ~brolute conninatency nroof of thn wvholn

~oystom io impoooible. Socbndly! bochuno of the intractable motn-

rhysicnl olemont which ottachoen to any platontnhic_pfoof for the

oxiotence of a number nyatem, there scomn to be n radical difficulty

in substantinting Cantor's clalm that nloﬁhn axist,
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