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The esta.blishinC of the principles 
of mathematics and the natural sci - 1 
ences is the ~esronsibility. of meta­
physics ••• The cencr8.l theory of 

'sets ••• belon~ entirely to met<!-. 
physics'.' You can easily convince 
yourself of: this by testin(i the 
caterrories of: cardinal nwnber and 
ordin?l type, these f:und;unental 
concepts of set t;oeory ,e "i th res": 

,pect to the de(iree of their rrerier­
ality, and also notice that the 
reaSO~ing ~them is quite pure, 
so that" cy ha~no room f:or olay. 

, is is in no way che~ged by 
the pictures which I, like all 
metaphysicians, sonetimes make use 
of to explain metaphysical concepts. 
~or does the fact that ~f work ap­
pears in r.Jathemi1;ical journals af:­
f:ect its metaphysical character and 
content. 

(From a letter dated February 2, ,1896 f:rom Cantor t~ 

Father Thomas Esser. Translated by H. 

,J 

'3 Heschkowski.) 
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PRBFACF., 

't" . 

rutcrt once wrote: 

c ... 

',' 
From timc immemorial, the infinite 

'has stit'~ed men 'ser.1otions I"o"e 
'th= any other ""estion. H=dly 
any other ide~ has stimul~ted the 
"'ind so fruiti:ully. 'Yet, no other 
concept needs 'clarification more 

1 \, 
than it does. ' 

"'. 

\ 
This thesis was written in accordance with the above sentir.1cnts. 

\ 
1 hope'th,at it has contributed' itl .' . . . 

some way to that "cl;prification" 

\ 
;of which Hilbert' speaks, '\ 

, . 
,,' I owe the inspiration fur this thesis, and, indeed for my 

I \ 
I' 

interest in the \{ork of GeorG Cantor, to the te:lching and writing's 

" ' \ 
of Professor Stephan' Korner. In Fepruar'J, 1'973 I attended a cou!'se 

\ " of ext=mural lectures "iven by Professor KOJ;ner at the University 

of Brist'ol. The lecture concernin,; infinito' I found to be· extra-, 
\ 

ordinarily stliunulating. It was, for me, wha:t HasloH ,1Ould call, 
" 
.\ 

a "peak experience". The combination of such ;,onderful subject 
, 

matter and' such a ;,ise and .exciting teacherl,proved i=esistible: 
\ 

it has guided my studies ever since. 

;!i, I also ;,ish 

y helping me to carry 

to thank Dr. Radner and Dr. Hitchcock for 

out my project., Dr. HitchcoSk has been e;pecially 

• 4 helpful in his scrupulous criticism of c'trtain technical details. 

1 David Hilbert, "On the Infinite'" (1925) ,in Paul Benace=af 
.. 

and Hilary Putnam, ed., Philosonhy of l'hthem?,tics: Selected Re::tdinl)S 
.... " : 
'. t' 
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£hanter One: I~~RODUCTION ()~ 

In this thesis I ,pr01'0se to examine the found"tions 
I 

of tr=sfini te c,'lrdina1 arithmetic. I intend to nresent a "·formal''' 

version of the "naive" account of tran~ .'l,ithmetic 

r;iven by Georr; Cantor in 18"5. To this end Ishal1 present a 
, I 

formal a:xiomatization of the particular number system (Chapter II). 

Havinf, thus obtained an uninterpreted calculus, T shall provide 

in'Chapter III a model for this c~cu1us. This model or inter-

pretation will be bas"d on Cantor's own account of transfinite 

cardinal arithmetic. In Chapters TV and V I shall discu~8 

some of the ~ithmeti6al and algebraic properties of this p~r-

ticular n,~ber system. In Chapter VI I shall attempt to prove 

the consistency of the a:xiomatized version of trahsfinite cardinal 

ari thmetic; the proof which I shall provide will be a' rel"-tive rirther than 

.an absolute consistency proof. Finally, in Chapter VII, I 
0. 

sh~l discuss the ontolor;ica1 status of transfinite cardinal 

numbers, whether and in what sense they exist. 

Cantor's "naive" account of transfinite cardinal "-rith-

metic is to be found in the ar~icle entitled "Bei trige zur 13e-.. 

crf1ndung der transfini ten Mengen1ehre" 1 which is, signed "Hal1e, 

1Translated as "Contributions to the Founding of the , 
Theory,of'Tr2Jlsfinite Sets". 

1 
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Harch 1895". It aopeared in the journal Mathel'\atische Annalen.:! 

in 1895. Toeether with another article possesslne the S2.llle title" 

it has been translated .into English by P;E.B. Jourdain and appears 
\ 

in the book entitled .Contributions to the Foundinr, of the Theory 

of Transfinite Numbers ( New York, 1955 ) • 
'. . 

,MY reasons for selectirlg the 1895 article to serve as 

the basis for a' formal axioma.tizatio~ 'of trans,finite cardl,nal 

'axi thmetic are as follows: (1) The text is readily available in 

translation. (2}- It constitutes excellent source 'material since 
C , ' v 
, it is cantor's most comprehensiv,\ and definitive treatment ·of. 

the subject. It should be noted, however, that most of'the im­

portant ideas in this. article (except.the definition of continuity 

in Section 1T) had been previously pu~lished in a piecemeal 

fashion by Cantor. To trace the his~6rical development of these 

ideas is beyond the scope of this thesis. 

'Nevertheless, I shall make a cursory reference to three 

other publications of Cantor. The first of these is a monograph 
:< --

entitled Grundlagen einer Allgemeineri MannichfaltiR<eitslehre~ 

Zvol. xlvi (1895), 481-512. 

3Published in Mathematische Annalen, xlix (1897), 207-246 .. 

~slated as "The Foundations of "" General Thepry of Sets". 
~, 

) . 

2. 
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I ( 
\ (Leipzig, 1883) ;,hich consists, of'an elaborated account of the 

: rifth part or "Ueber Unendliche' _ Lineare Puclctmannichral tigkei ten,,5 

published in Mathematische Annalen, xxi (1883), 545-591. This 

has been translated into French and.appe,ars in Acta M"them?tica, 

ii (1883), 381-408. 

The second source is a letter rrom Cantor to F. Gold-

scheider, dated "Halle, June, 1886". This lette~-' h'ls been trans-

lated by Herbert- Meschkowski and appears in Chapter IX or his book 

entitled Hays or Thoul)ht of Great M:'.t~e~:?:l;icin'1S (S:T. F::-:mci::co, 

1964) • 
• 

The third'source is caletter rrom C~'1tor to Dedekind, 

dated "Halle, June,1899". This letter was first published. by 

Zermelo in Gesa:mmelte Abhandlunl\en (Berlin, 1932). It has been 

o translated by Steran Bauer-Heng-elberg and Jean van Heijenoort, 

and can be round in From Frerre to Glldel: .fl." Source Book in ~hthe­

mati cal Loric 1879-1931.! ed~ Jean van Heij<:,noort (Cambridge, 

Mass':"chusetts, ,1967), 11.3-111~ 

In conclusion, let me restate the aim or this thesis: , . 
it is ,to examine the foundations or transrinite cardinal arith-

5Transl~ted as "On Infinite Linear Sets or Points". 

" -.: - ---- ---.:~ 
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metic. In makin& this examination I hope to accomplish four 

things: (1) Firstly, there is the (partly) historical task of 

making clear some of the presuppositions in Cantor's 'work. 

(2) Secondly, there is the ( albeit elementary) mathematical 

task ,of drawing conclusions about the system of transfinite cardinal 

'arithmetic unrecognized by Cantor himself. (3) Thirdly, ther,: is 
./ 

"~ 

the logical task' of making a forn'tal axiomatization of this par- "'~_, 

ticular branch of mathematics, this last being undertaken in 

accordance with the "Hilbert programme". (4) Fourthly, there,is 

the philosophical task of considering whether transfinite cardinal 

numbers exist according to Cantor's theory of the existence of 

mathematical entities. 

" 

o 
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Ch~.pter II: THE SYN'l'AX OF THS Tf~ORY OF AtEPilS 
1 

In 'l;his chapter I shall present a: formaliiation of the 

theory of al~phs, thus obtaining an uninterpreted calculus or 

logistic system which I shall call A • There are four principal 
. '0 

stages in this procedure: 

(1) The specification of the primitive symbols of A • o 
, , 

(2) The definitions of "well-formed terms" and "well-defined 

formulae" of AO by certain formation rules. 

The specifioation of the axioms of A • These axioms are 
o 

divided into two cateeories, Le. "logical"'and "non-logical" 

axioms. 

The specifica±ion of the rules of inference for A • 
o 

A. Primitive Symbols 

(i) Individual Variables 

Small roman letters from the end of the'alphabet, ~.e. x, y, z, 

and also any of these followed by one or more occurrences of the 

symbol , are used. for individual va:r,iables. Thus x, xI' x 1\ ' 

x III ' y, Y I' y II ' y III ' etc. are used for, individual variables. 

1ThrOUghout this, thesis I s~all follow Cantor's procedure 

in using the terms "transfinite cardinal number" and. "aleph" _ 
. , 

interchangeablY.) 

. .----..." 

5 
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(ii) Indi.vidu'll Constcnts 

There is one individti;licolOstant, i.e. O. 

There is ,one unary and two , "" binary functional constants. The 
-:' 

I 
unary function~l constant is' and the two binary functional 

constants are + and 

(iv) Predicate Constants 

'There are two binary predicate constants, i.e. < ~,d = 
. 
" 

'B. Imnroner SYmbols ,. 

(i) Lo,'jical Conshnts 
I 
"-

There, are two'logical constonts, i.e. ""' and the connective i, -..... 
. / .. 

. ., 
-;:', ' 

(ii ) Operators 

There is one operator, i.e. the universal quantifier Qf • 
.. 

(iii) AUxiliary Symbols 

These consist of parentheses ~). 

(2) Formation Rules 

Note on·Metamathematical Symbols 

(1) Small roman letters" from the ber;innin(; of the' "lphaoet, 



,­

". 
1 

I 

r 

/) 

i.e. a, b, c, are used as syntactic~l variables whose range is 

the innividu~l variables and individual constant • 

...• ~ 

(ii) Capital roman letters from the begihning of the alphabet, 

Le. N, E, C, are used as syntactical variables "hose range is 

the well-fo'rmed formul~e. 

(iii) The syntactical variables E a, F a, G a, etc. are u~ed, 

whose range is the well-formed formulae containing one or more 

vaLLia't5'Ml"" and such that, f~lY 

.-... ~, the well-formed formulae c~tain 

occurrences of individual 

individual variable,~ 

at least one free occurrence of the variable. 

(A) Definition of "Hell-formed Ter.m" 

1. 0 is a' term. 

2 •. The individual variables x, y, z are terms. 

3. If a is a term, so. is I . 
a • 

4 & 5. II a and b .are terms, s'o are (a + b) and (a_. b). 

exproaaions defined by 1-5 are terms. 

, . '-

" 

7 

• 

• 
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(E) Definition of "\1p.ll-formed FOr:'1ula" 

1. If a' and b are terms, then 'a = b 2 is a wff • 

2. If ,a and b are terms, then ,a < b is a>. wff • 

3.& 4. If A and E are wffs, then ..... A 'and (A-? E) ~_re wffs. 

5. If A is a wff and a is an individual variable, then Va A 

is a wff. 

6. The only wffs are those given by 1-5. 

Note on Definitions 

The list of definitions is divided into two categories: the first 

category deals with definitions of logical symbols; the second 

category deals with definitions of non-logical symbols. 

Ca:tegory A'. 

(i) (A V E) = df ('" A ~E) 

(ii) (A r.. E) = df '" ("'-' A V. -v E) 

2 Hereafter we shall emuloy "wff",as an abbreviation for a 

well-formed formula. 

8 
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' ... 
d 

\ , 
" 

(iv) a:~b = df rv a = b 

(v) 3 a F a = <if "'"' F a 

" Categor;v B 

(i) a{b = <if 
..... a< b 

(ii) a>b = df b< a 

(iv) a~ b = df(a~bva = b) 

(3) Axioms 

The axioms of A are divided into two categories: o 

(A) Lo'gical Axioms (Le. axioms 1-7). 

(B) Non-logical Axioms (~.e. axioms 8-21). 

(A~ Logical Axioms 
, 

~The underlying logic of A is the predicate calculus of the first 
o 

order, with identity. We have the following logical axiom.schemata. 

., \ 

9 

s 
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," 

1. ((A V A) -? A) 

2, (A~(AVB)) 

3. ((AV B) ~ (B V A)) 

5. (Va F a 4 F b) 

'6. a = a 

7. (a = b ~ (F a ~'F b) 

Axiom schemata 1-4 are axiom schemata for the propositional 

calculus.. AXiom schema 5 is an additional axiom schema for the 

predicate calculus of first order3• AXiom sch,einata 6 and 7 are, 

axiom schemata for identity. 

3Axioms 1-5 for the first order predicate calculus are . 

taken from Principles of Mathematical LO$ic, p.67, by D. Hilbert 

and W. Ackermann (New York, 1950). 

. " 

10 



(B) Non-loCjic"l Axi.oms 

( 
I I ) 8. x = Y .~ x = y 

9. xl ~ 0 

10. V a'«(F a --? F a I )A Va (:""3 b a = b'~ F a))-H a)4 

11. (x .~ Y ~ (x< yVy<. x)) 

, 
1;. «x < y 1\ y < z) -7 x < z) 

14. (a = b
/
+--4 \Ix (x~ bV a~ x)) 

15. (x + (y + z)) = «x + y) + z) 5 

) 

16. (x + y) = (y + x) 

1 

410 is an axiom schema rather than an axiom. 

5A;;cioms 15 and 18 are not independent .of the other 
o , 

axioms. 
, 

11 
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18. (x • (y • z» = «x y). z)5 

19. (x • y) = (y • x) 

"", 

•. i.;. .20. V x~ \f y (x ~ y 4 (x • y) = x) 
'j ':": ' , 

21. (x ;':"(Y + z.)}~:= «x y) + (x • z» 
.' ;, 

.' 

"~ 22. V x .3 y( (y > x 1\"'" -3 z y = .: ) A '" 3 z(z < y ,,(x < z A~3" z = ..: » 

(4) Rules of Inference I 

There are two rules of inference for A • The first rule 
o 0 -belongs specifically to the propositional calculus. The second rule 

belongs to the predioate calculus. 

(i) The Rule of Modus Ponens 

If A and Bare wffs, given A and (A-?B) , we may infer B. 

A 
J 
(A~ B) 
B 

(ii) The Rule of Consenuent Universalization 

If (A ~B a) is any wft such that the variable a' occurs free 

12 
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in B a but does not occur at all in A, and if .the variable b 

is either a. itself or else some variable different from a 

that ·does not occur free in A' or at all in B a, we may pass to the· 
• 

formula (A..,VbB b). 

(A4Jla) 

'J 

13 



Chanter III: THE SE}!ANTICS OF THF. T'IT~O"Y OF ALF~PHS 

In this chapter I shall provide an "interpretation" or 

"model" of the system AI, thereby turning. it into an interpreted 
. 0 

calculus. This will be called the "principal interpretation l' 

of the sys~em Ao' The interpretation of the non-logical primJtive 

symbols and axe.oms will be based (as I ha.ve explained in the 

introduction) on Cantor's theory of alephs. I shall divide the 
j 

interpretation into two parts, concernine (1) Primitive Symbols 
~ 

and (2~ AXioms. 

(1) The Interpretation·of the Primitive Symbols of M o 

A. Proner Symbols 

(i) Individual Variables 

The range of the individual variables· x, y, z, etc., 

is the set of alephe or transfinite cardinal numbe~s. These are 

denoted by the first letter of the Hebrew alphabet, ~o&ether 

with an ordinal integral subscrint. The subscript may be either 

!1'.finite ordinal, e.g. J.( o,N'1' J( 2' N 3' .~.J.rn' or a trans­

finite ordinal,e.g.J(,J' ~+1' ).( w +2" './}If 2",'.'·' etc. 

14 



(ii) Individu~ Con~t~ts 

The ranrre of'the one individual constant 0 is the first 

member of the, sequence of alephs, Le. X{ . 
, 0 

The interpretations (i) and(ii) may be found in (Cantor, 

1895, section 1, pp.85-86, and section 6, PP.103-110)1. 

Four definitions are involved here, i.e. the definitions 

of "CaIrdinal number", of "set", of ,"aleph-zero" (or the first 

transfinite cardinal number), and of the :::l::cccc.:.:c:,;' "::.le.,h::". 
i? 

Cantor defines cardinal number2 or' power .(!-!1lchtirrkei t) 

in terms of sets and acts of "doubl~bstraction" by the mind. 

Aby set M possesses both a particular nature'and a ~artieular 

order. if we disregard its natul"e, we arrive at its ordinal type, 

M ; if we disregard both its nature and its order, we arrive at 

= 
o its card~ality or power, M • ,Thus Cantor says (Cantor, 1895, 

1 Regarding citations of primary source material, from 

Cantor's work, I shall use'the following convention:- I shall 

cite Cantor's name, followed by the date of the work in,qt,stion, 

followed by the relevant section and page numbers. The ap ropriate' 

edition may then be locate,d in the Bibl~aphY. A(1) whe lLthe 
- -, 

date "of the work willi be written in square brackets. 
" 

2Thisdefiniti6n applies 
, 

c=dinal humbers (Can~or, 1895, 

both to' finite and transfin~ 

section 5, pp.97-8).' 

15 
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section 1, p.86): 

Every aggregate.M has a definite "power", 
which ·we will call its "cardinal number". 
We will call by the name "nower" or 
"cardinal. number" of H the general con­
cept which, by moans of our active 
faculty of thought, 'arises from the 
aggregate M I<hen we make abstraction 
.of the nature of its variaus elements m 
and .of the .order in wh~ch' they are given. 
We denate the result .of this dauble act .of 
abstract ian, the cardinal number .or pawer 
of M by _ 

M. 

:. , ~ 

Cantar's definitian .of set or aggregate runs as fallaws (Cantor, 
• 

1895, sect~.on 1, p.85): 

By an "aggregate" (Henge) we are t.o under­
stand any collect ian inta a whale (Zu-­
sammenfassung zu einem Ganzen) M .of 
definite and separate .objects m .of .our 
intuit ian .or our thaught. 

Cantar defines aleph-zera as the cardinal number .of the tot~l,~ 

.of finite cardinal numbers (Cantar, 1895. section 6, pp·.103-4): 

The first example of a transfinite 
aggregate is given by the totality of 
finite cardinal numbers ; we call its 
cardinal number ( 1 ) "aleph-zero" and 
denote it by}( .; thus we define 

. (1) X 0 =0 W ' 
.N!. more significant definition of).{ is in terms of what Cantor o '. 

ca,lls "number classes". It is more significant in that Cantor defines 

succeeding alephs in this way. The notion of "number class" rests 

upon that of ordinal numbers. Thus Cantor says (Cantor, 1897, 

section 14, p.159): 



" 

\ 

, 

• •• to one and the s;une transfinite 
cardinal number belong "-n i.nfini ty of, 
orn inal numbers which form a uni tn,ry and 
oonnected system. We will call this 
system the "number-class Z (Il)". 

In 'the same paragraph C~tor eoes on to say: 
n 

, For in this connexion we understand by 
"the first number-class" the totality 
[,,} of fini te ordinil-1 numbers. 

Aleph-zero may'then'be defined as the cardinality of the first 

number class \{hich is composed of the totality of finite ordinal , 

J " 

numbers. Cantor then goes on to define the second number-class. 

Thus he,says (ibid., section 15, p.160): 

... 

The second nUJ'lber-class Z (IV) is 

the totality 'ta.} of orMnal~ypes3 
a of well-ordered aggregates of the 

cardinal number)( • o 

( 

3Cantor defines ~ !'ordinal type" as follows (Cantor, 1895,' 

section 7, .pp.111-112): 

Every ordered aggregate 'M h~~ a 
defini te "ordinal type", or md're " 
shortly ~ definite "type", which we wi1'l 
denote by 

(2) M 

. ,By this we understand the general concept which results from M 
, ' 

if we only abstract from the nature of the elements m, and 

retain the order of precedence among them~y add that this 

definition differs from that of an ordinal numbjr in that it is 

stipulated. that 'the latter be types of "well-ordered aggregates" 

.,." . 

\ 

, 

1 
1 

• 

\ 

---. 
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'. 

In (ibid., section 16, p.173) Captor proves as a theorem that 

The power of the second number-class f. a.} 
is th!! second r,reate,,,t transfinite 

and adds: 

cardinal number Aleph-one. 

In the second number-class Z (II() 
o we possess, consequently, the natural 

representative for the second greatest 
transfinite cardlnal number Aleph- , 
one. 

(ibid., p.115). Every ordinal number is an ordinal type but not vice 

Versa. 

p.110): 

~ 

, 
Cantor defines a simply ordered asgregate as follow~ '(ibid., 

We call an aegreeate M "simply 
ordered" if a definite "order of 
precedence" rules over its elements 
m, ,so that, of every 2 elements ,m

1 o ~d m2, one takes the "lower" . 
and the other the "higher" rank. 

He defines a well-ordered aggregate as follows (Cantor, 1897, 

section 12, p.137): 

, We call a simply ordered aggregate F(§ 7) 
~ell-ordered'! if its elem!!nts f 

ascend in a definite succession from a 
lowest, fl in such a way that: 
1. There s in F an element f1 
which is lowest' in rank. 
2. If F' is aIly part of F and if F 

'has one or many elements of higher rank 
thanaSJ. elements of F', then there, is 
an element' f' of F .. which follows' 
immediatelY'after the totality F/, so that , I, 
no elements in rank between f and F 
occur in F. 

18 
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'In the letter of 1899, Cantor rreneralizes this ,to shoH that any 

aleph N~ may be defined as the c:J.r'a.inali ty of the number-class 

,z (XII-I). FUrthermo~e, he says: 

We see that this process of formation 
of the aleuhs and of the number classes 
of the s~rstem Jd that correspond to 

c" them is absolutely limitless. 

Thus, the sequence of number classes Z (No), Z (lVf ) , Z (J(2) , ••• 1 

Z ()(I) (or, as Cantor denotes them in 1899: .Q 01 J11 ,Id 2' ••• , 

.r.J1/ ) may be regarded as "similar" to the sequence, of alephs}/o' IV l' 
)( 2' ' •• , JV;,. Hence, we may say that there exists a one-to-one 

correspondence between alephs and number-classes. 

4In 1899 Cantor used the symbol JJ to denote the system of 

all' ordinal numbers (both finite and transfinite). He appended the 

subscripts JJ 0' .Q l' JJ 2' etc. to denote the successive 

transfinite "segments"* of the system ~ which he called "number 

classes tl 
.-

*In 

r 
(Can~, 1897, section 13, p.141) Cantor writes: 

If f is any element of the well­
ordered aggre6ate F which is different 
from the initial element f

l
, then we 

will call the aggreeate It of all i 
elements·of F which nrecede f a 
"segment (Abschnitt) of F". 
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However, as Cantor says (Cantor, 1895, sectioni!?, 1'.109): 
4' " ! 
..; ,"/ 

But even the unlimited sec:.uence'of 
cardinal numbers 

)(0'/1(1')('2' 
does not exhaust the cohcention.of 
transfinite cardinal nUrlber. Wa will 
prove the existence of a cardinaJ / 
number which we denote by /'Vw / 
and ~Ihich shows itself to be the next 
GTeater to all 'the !lumbers N}I ; out/ 
of it proceeds in the sane way ~s At 1 
out of N 2. next ereater N l' 

. Co> + 
and so .on, without end. 

Unfortunately, we have no diFect prim~ry ource material concerning 

the way in which Cantor defines alenhs whose subscripts are trans-
. - ~ . 

finite ordinals. HOHever, I think/that a' definition of}.f1J (and 
. / 

. / 
ailephs with even great~'S_.Clrdinal subscripts) may be derived from 

Buggestions made by c~~o?~ 1883 he expounded two "Principles of 

Formation" by which one~ould construct the s~rstem of orcl in"ls. He 
/.. . 

permitted these t;ro/~rinciples to be extended to the system of 
- - / . ../ 

cardinal numbers (Cantor, 1895, section 6, p.109). . /. 
/ 

Th~Becond principle describes a process of defining a 
./ 

nlimi~number. In this case, the "limit" number ; ~ )fo 2nd is 

/ . ( defined as the limit of the tptaility of finite numbers Cantor, 

~83, section 11): 

/ . .. .-
Btant donne une succession quelconque 
determinee de nombres entiers reels 
definis, parmi lesquels'il n'y en a 
pas qui sont plus grands que tous les 
autres, on pose, en slappuyant sur 
ce deuxieme principe de format~on, \, 
un nouveau nombre que l'on re~de 
comme la limite des premiers, c.~.d • 

o 
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qui est dC'fini comme ttant imme"diatement 
suptrieur ~ tous ces nombres. 

Ahalogously, we may define)(l.> as the lim.lt of the alephs)( , 
/ 0 

/ 

X:2' "'/"'" , .... We may define).{ 2~/a:s the limit 
. -' 

of the alephs){"' .' N: 2' l.>+t (,)+ 

(iii) Functional Constants 

/ 
and so on. 

( C() ~-e unary functional constant I .' I is defined as the 
'\-: 

nsucc~fsor of". A detailed interpretation of the successor 
~7 f 

fun~t.~on has been made on pp./6-~ I. There we defined the successor 

of e~ch'aleph as the cardinality of its corresponding number class. 

Thus, in gene rai' , the successor .0fNIl is Z (N;,). 

(f3) The binary functional constaht I + I designates the operation 

of addition. 

Cantor defines the operation of addition in terms of the 

union of disjoint sets. He defines the union of sets as follows 

(Cantor, 1895, section 1, pp.85-6): 

Ws denote the uni tipg of many aggre­
gates M, N, P .••• , which have no 
common elements, into'a single 
aggregate by 

(2) (M, N, P, ••• ). 
The elements of this ag&regate 

, are, therefore, the elements of 
M, of N, of P, .," taken together. 

He then goes on (Cantor, 1895, secLon 3, p.91): 

The union of t{,o aggregates M and' 
N which have no common elements was 
denoted in)1, (2), by (M, N). We 
call it the "union-aegregate 
(Vereini[;1ffi'CS::lenge) of M and N." 

" 
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If M' and N' are two other 
ar..~eF,~tes without common .elencnts, and 
if M .... M' and N"" N' , we tim" tha.t 
we have ., 

(M, N) ~ (M', N ). 
Hence the c"rdin"l number of (H, N) 
only de!,ends upon the cClrninal numbers 

M = a. and N = ~ • 
This le~ds to the definition of 

the sum of a. and 6 • ':l~ nut 
(1) ex. + Q = (FF,tj). 

(~ ) The binary functional constant I • ' desif7lates the operation 
• 

of multiplication. 

Cantor defines thp operation of multiplication in terms 

of the "cartesian product" of two sets. He defines the cartesian 

product, or as he calls it, the "a:ggregate of bindings of two 

sets", as follows (Cantor, 1895, section 3, p.92): 

Any element m of an aegreF,ate H 
can be thought to be bound up with any 
element n of another aggregate N so 
as to form a new eleme:ot (m, n); >1e 
'denote by (M' N) the aggregate of all 
these bindin,~ (m, n), and call it 
the "rrgv:eITate of bindi:nF;S 
(Verbindungsmenge) of' M illld N." 
Thus 

(H • N) = (m, n)}. 
He th"m goes on (Cantor, 1895, section 3, p. 92): , 

,-
We see that. the power of (N • N) 
only depends on the powers M = CI. 

and N =6; for, if we replace the 
aggregates}! and N by the aggregates 

and 

respectively equivalent to them, and 
. • , . I 
consider m, m and n, Jl as 
corresponding elements, then the 
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aggret:,ate I N ') 
, (}!. 

isbro~~ht into a reciprocal ~nd 
univocal correspondence ;lith (H • u) 
by reearding (n, n) and (m', n') as 
correspondin,<; elements. Thus 

(5) (H'. N') .-v (11. n). 
We now define the product • by ~ 
the equation 

il (6) = (M • N). 

(iv) Predicate Constants 

(0() The binary predicate constant I <. I' designates the relation 

"less than". In other words, it iresignates the set of well-ordered 

pairs 'in which the fir~t element is less than the second element. 

Consider a wff of the form a < b where a and b are syntactical 

variables whose range is the individual ~ari~bles and individual 

constant of the system A • THO cases are "O'!Cesented: o -

(1) If ~'< b contains no occurrences of individual variables, 

then a' < b i the aleph assicned by the interpretation 

of a: is less eph assi';11ed to b, and other\dse false. 

(2) If a < b contains occurrences of variables, then a < b 

is satisfied by those assignments ~ of values to ,the variables 

for which, the aleph assigned to ~ is less than the aleph ,b~ , 

and a< b is not satisfied if those assignments 6. of value a 6 

are no~ess than the assignments A of value bo,. In this case 

a < b is true if it is satisfied by all assignments of values to 

the variables, and false if it is satisfied by no assignments of 

v~ues to the variables. 

') 
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..j C'\!ltor defines the rel3.tion ,< " between cardin"].l numbers 

(both finite and transfinite) in terms of sets. If we define the 

cardinal n~bers a and b as follows: 

-
!1l. = df M and b = df N, 

then at < b if M is a'. proper subset of N. 
'-v 

Thus Cantor says (Cantor, 189?, section 2, pp.89-91): 

.' 

If for two aggregates N and N with 
= 

. the card inal numbers . do = N· and 6 = N, 
both the c.onditions: 
(a) There is no part of N "hich is 
eQuivalent to N, 
(b) There is a part N1 of N, sUGh that 
N1 ,..... N, . . 

are fulfilled, it is obvious that these 
conditions still hold if in them M and 
N are replaced by t'.<o eouivale,-,t 

I I' a.c;gregates Hand N. Thus they ex-
press a definite relation of the cardinal 
numbers a. and 6 to one another ••• 

. , 
We express the relation of a. to 6 
characterized by (2.) =d (b) by 
sayinG': 0. is "less"" than 6 or 6 
is "gre"ter" than 11. ; in si(iTls 

(1 ) it < 'b or 1:3 ) a . 

( f3) The binary predic3.te constant ' = ' designates the relation 

nis identical >lith". In other words, it designa±es the set of all 

ordered pairs in which the first element is the same as the second 

element. Consider a wff of the form a = b where a and bare 

syntactical variables ,rhoseranr' is the individual variables and 

individual constant of the system Ao' Two cases are presented: 
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(1) If a = b contains no occu~ences of individu~l v~riables, then 

a = b is true if the aleph assi~ed by the interpretation of a -
is the sarne as the aleph assi:ned to b, and otherwise false. 

(2) If a = b contains occurrences' of variables, then a = b 

is satisfied by those assi-:n'Ilents r of values to the variables 

for which the aleph assigned to a:t' is the same as the ,,-leph b:t' , 

and a'-= b is not satisfied if those assign",cnts t::. of value a6 

are not the same as those assignments t::::. of value b A • In this 

case ac = b is true if it is satisfied by all assigrunents of 

values to the variables ,and false if it is satisfied by no assirrn-

ments of values ~o the variables. 

( 

For Cantor, it is m theoren5 that identity or "equality" 

between cardinal numbers (both finite and transfinite) hol~s if 

the sets (of which they are the power) are equivalent (aequivalent). 

If we define the cardinal numbers a: and b as folloHs: 

= and b = ~, 

then a = b if M N N. Two sets are equivalent if their elements 

can be put into ro one-to-one correspondence. 

5It should·be noted that what occurs as a theorem for Cant 

occurs as part of the semantics of the principal interpretation of A • 
o 
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Thus Cantor says (Cantor, 1695, section 1, pp.67-6): 

'Of fundamental importance is the theorem 
that two aI':GTeF,"_tes M and }! have the 
same cardinal number if, and only if 
th..,.- are equivalent: thus, 

and 
(7) from 

, 
M rV N we &at 

• ::z 

= -M = N, 

(6) from M = N we /Set H"'" N. 
Thus the equivalence of ~~eeates 
forms the necessary and sufficient 
condition for the enuality of their 
cardinal numbers. 

B: Improper Symbols 

--( 1) Logical Constants 

(0(. ) The logical constant '''' , is to be interpreted as the .nerration 

sign, and is to be read as "not". If A' is a wff with no free 

occurrences of variables, then rJ A is false if AI is true and 
" 

"'. A is true if A is false. If A' is a wff with free occu=ences 

of variables, then ..... A'- is not satisfied by those assignments of 

valu~to the free variables which ·satisfy A\ and is satisfied 

by those assignments of values to the free variables which do not 

satisfy 'A. 

(~) The connective ,~, is to be interpreted as the COnditiOna~ 
sign and is to be read as wlf ••• then ••• ". If A and Bare wffs 

/ 

with no free occu=ences of variables, then (A. ~ B) is .. true whenever 

M is false or B is true. If A and B are wffs with free 

occurrences of variables, then (Ae -? B) is satisfied by those 

assignments of v~lues to the free variables which do not satisfy 
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A or which do satisfy S; (A~) is not satisfied by any 

of values to the'r-ee variable. other assi~ent 

(ii) Oner".tars 

The operator I V I is to be interpreted as the universal 

quantifier and is .to be read as "For all ••• ". Let a be an in-

dividual variable xnd A a wff. For a given system of values of 

the free variables. of V aA , the value of VaA is true if 
-1'1 . 

A is 

ijatisfied by every assignment of values to a , and Valt is false 

if A is not satisfied by at' least one '"Iaa;~""''''''''+ ,..,f' "TP1"oa +n .. __ -v._.-... . - .. - ... - ,_ 

(2) The I teroretation of the Axioms of A o 

To ci cumvent unn~cessary reretition, I shall only provide an -----.-.--' interpretation of the non-logical axioms of Ao"· 

lIlx:iom 8 

"If two alephs have the same successor then the two alephs are 

identical. n .... 
,/ 

Together with the successor function Axiom 8 assures that the 

't • 

sequence of alephs is infinite. Thus by application of the successor 

t:unction, for every aleph there is a ne.xt greater aleph, and by 

Axiom 8, this aleph cannot be one of those al~eady defined (for 
• 

if it were, two alephs might have the same successor). Thus Cantor 

says (Cantor, 1899): 
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We see that the process of formation 
of alcphs ••• is absolutely limit­
less. 

Again we find (Cantor, 1899): 

AXiom 9 ! 

The system' of all alephs, whe~ or-, 
dered accordinG to magnitude, f~ 
a seouence th~t is similar to the 
syst~m'&6 (i.e. th~ sy~tem or all 3r­
d1nals) and therefore inconsistent, 
or absolutely infinite. 

nAleph zero is not the successor of anv "leuh." 

Cantor proves as a theorem that aleph-zero is the least trans-' 

finite cardinal number. Thus he says (Cantor, 1895, section 6, 

p.104) : 

3 

... J{ is the least transfinite 
o 

cardinal number. If 0. is any 
'!ransfinite cardinal number different 
-from}( , then 

o 

(4) ).( 0 < a. .' 

., 

N.B., By, an inconsistent set, Cantor means (1899)-

a multiplicity such that the as- . 
sumption that all, of its elements 'are 
together' leads to a contradiction. 
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Axiom 10 

"Any pronerly wnich bp.l~s to the successo,," of evwr-v "-lenh which 

has that pronerty and to every "lenh which has no immediate nre-

decessors. belonr;s to all a~." \ . 

One could argue that Cantor defines }{ 0 as a "non~\nductive" 

number. Thus he says (Cantor, 1895, sectionS, P.99{ 

Every cardinal number except 1 is 
the sum of the immediately pre­
ceding one and 1. 

" 
However, this does not" A.!Jply to -,Iv sinc';){ ... 1 :}{ • l)<:'es 

o 0 0 

this imply that the principle of transfinite induction has no 

Significance? This '1 lIDlSt contese. Again 1 shalt .'~i te the pass2{';e 

refe=ed to earlier in connection with the definition of).{ , 
o 

)(1' ... )N;" ... , et~. (Cantor, 1895. section 6, p.109): 

~t Of}{o proceeds, by a-definite law, 

the next greater cardinal number}{1' out 

of this by the same lA.w, the next greater 
"}( 2' - and so on. But even the unlimited 

sequence of cardinal numbers 

}(~, J{1' )(' 2' : •• ,Nil'." 
does not exhaust t~e conc~ption of trans­
finite cardinal number. We will prove 
the existence of a cardinal number 

which we denote by }f1J and which shows 
itself to be the neXt greater to all 

the numbers~ ; out of it proceeds in 
the same way as }{ 1 out of No a next 

greater}t: l' and' so on, without end. _ u + 

Now it is this "definite law" ,thich, 1 contend, constitutes the 

) --
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basis for t,ransfinite induction. As HC have "lready seen (pP."-"), 

~ the immedi"tc successor, of any alep~defined not as Xv +'! 

but for any Xv its successor is Z(Jt;,). Then, the q;'estion 

iU'ises, do He have a suit!3-lile basis for trnnsfinite induction with 

regard to alephs Hhich have no immediate predecessors? Cantor 

• 
does, hOHever, have a method for generatinrr such alephs or "limit" 

numbers,' i.e. the transfinite an~o~le of the sec~nd pr1nciple 

of formation ( referred to earlier). As Jo( 0 is "posited as the 

"limit" of all the finite \numbers, so, for instance, ~ is posited 

at:! the "limit" of all the ~phn, X 0' )( l' l'J 2', •• • ,}{~, ••• 

Ngain, X 2/.0) is posited as the) "limi ttl of all the alephs X"l +1' ," 

,Io{l.J +2, .. ,J{~ +11'··· 

Axiom 11 

"If a and bare anv hro distinct alellhs. then either a is 

less than b or b is less than a." 

This axiom is known as the law of trichotomy. For Cantor it was a 

theorem which he believed held for cardinal numbers in general 

(Cantor; 1895 •. section 2; 1'.90): 

Q. If a. and I) are any two cardinal 

numbers, 'then either a. = 6 or 

Gl > & or Q. <.6. 

Cantor was unab~J to prove the theorem that of these three relations 

betw~encardinal numbers, one mu;>t necessarily hold. However, he 

did prove the weaker theorem that at most one of the three relations 
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must hold- between any ,two ·cardinals., 

Axiom 12 

"If a' and bare ftnv two alenhs and a is less- thftn b, then. 

b cannot be' 18"s than a." 

Cantor makes a clear statement of ~he asymmetry ,of ,< ',when 

speaking of 

pp.89-90): 

Axiom 13 

"If a: , b 

C~inalS in general. He says (Cantor~ 1895, section 2, 

, ' 

The relation of a. to 6 'fs such 

that it makes impossible the same 

relation of 6 to a. . 

and c are an! three aleuhs, and if 

, , 

a .ts less than 

.!!b_!:.a:n=d_b!!-...;.i"-s_l=.e=s,,-s_t.!Ch~a;n,,,''-t-..:c,,-,-, _t",h~e",n"--,!ll=',-,l,,,' s,-,l",'e,-,s,-,s,-,t~h",a~n,--,,-c ." '. ' 

Cantor makes a clear statement of the transitivity of ,< , when, 

speaking of cardinals in gene~-he says (ibid., p.90):, 

Axiom 14 

If Q. ~ G and {; < C , then we 

also have a. .: C .. 

"An aleph a is the successor of b if and only if every aleph .. 
c is either less than or equal to b, or greater than or eaual 

to. a." 

This axiom, together \;1th the use of the successor function as 
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a:' primi ti ve syml1ol', implies that the sequence of alephs is con­

secutive. Thus Cantor says (Cantor, 1899): 

. Axiom 15 

~ means the cardinality of the 
o 

sets "denumerable" in the usual sense, 

Jv'1 is the next greater cardinal 

number')V'2 is the next greater still, 

and 80 on ••• 

)(1 is not only distinct from)./'o' but 

it is the next greater aleph, for we 
can prove that there is no cardinal 

,number between )(0' and }(1' 

"For any three aleuhs a:', b, c the result of adding band c 

to a' is the same ns the result of addin,O: c to a <md b." 

Speakirig of cnrdin"l numbers in general, Cantor states the' law 

of 8,-ssociativity for addition (Cantor, 1895, section 3, p.92): ,,: 

o 

For any three cardinal numbers 

0. ,6 , c , we have 

(3) 0.+ (6+&) = (Q.+6) +C. 

Axiom 16 

"For any two aleohs a and b, the result of adding b' to a 

is the same as the result of adding a to 'b." 
! 

Speaking of cardijal n~bers in gener~, Cantor1states the law 
'-J 

of commutativity (Cantor, 1895, 8e~tion 3, p.92): 

" 
; ,­., } 

'-
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A'lciom 17 

Since in the conception.of power, '/ 
, we abstract from the order of the 

elements, we conclude at once that 

(2) a. + G '" ~ + 0.. 

"For any two aleuhs a and b, if ~ is Ijreater thar! or equal 

to b i then the sum of a2Jld 'b enuals a." 

Thus Cantor gives the follm/ing example (C~tor, 1895, section 6, , ( 

p.106) : 
" 

, ( .,. 
='. "V , • "l 0 

Again, he says, (Cantor, 1886): 

c, 

Axiom 18 

For finit~ cardinals it is easily 
seen that ih,the'e'iuation , 

a + a = b 
b is never equal to either of the 
summands a and' a / • For actually 
infinite ,cardinals, hOHever, ~ t is 
easily proved that the last theorem. 
does not hold. For example, if a 
is any actually infinite cardinal, 

1+ro.= a 

a + a = a. 2 = a 
Q 

• 
o 

\ 

"For anv three ?lephs a, b, and c, the result of multiulvinp; 

a by b and c is the'same as the result of multiplying 
j 

a'and b by c." 

Speaking of czrdinal numbers in general, Cantor states the law 

of associativity for multiplication (Cantor, 1895, section 3, 

33 

/ 



p. 93): 
r ,;. 

(10) a.. ( b • c,) = (cJ... S) . c 

It should be noted that Cantor regards this Ja-; a theo~m • 

.AXiom 19 

"For any, two alenhs " a and b , the result a, 
---...,~ 

by b is the 's"-l!le ,2.S the res'llt of !:lUl ti vI-cine: b be' 2;~~-

'-, 

Speaking- of c~di?"als in general, Cnntor states the commutative 'law 
\' 

for multiplication (CMtor, 1'895, section 3, p.93): 

0.·6 = 6 . c;t.. 

It should be noted that Cantor recards this as a theorem. 

Axiom 20 0 
,~ 

"For anX hlO aleuhs ii' 2nd b, if a is ~e2.tcr than or e('1ual to 

b, then'the Eroduct of a and b eguals a " c • 

,Thus C=tor gives the following- example (Cantor, 1895, section 6, 

p.106): .~ 

.0 

" 
AXiom 21 .1 

"For any three alephs a, b·. and c,' the"lsul t of multiElvinl'j 

i 
is the Silffie as the 

, 
'resul t of adding by the sum of and b a c 

the Eroduct of a and b' to the product of' a. and c." 
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Speaking of c=din?ls in ~eneral, Cantor s~ates the 1m; of dis-

tribution (Cantor, 1895, section 3, p.93): 
Q 

(11) tJ. (6+c) = a.G+o.C 

It should be noted that Cantor reG?rds thls as 
i \ 

~ -/. 

A,'dom 22 

a theorem. 

"For any alenh x,there is a least alenh y which is .'(Teater 

than x but has no immediate nredecessor." 

This axiom provides for the existence of "limit" alephs, Le. 

alephs which have no immediate predecessors. It is clear from ., 
.' 

the follow~ng quotation that Canto~ maintained the existence of 

such alephs (Cantor, 1895, section 6, p.109): 

But even the unlimited sequence of ' 
cardinal nwnbe~~' 

Afo,JV1,N2' •.. ,)JIJ' ••• 
does not exh~ust the conception of 
transfinite cardinal number. We will 
prove the existence of a cardinal 
number which we denote by No 
and which shows itself to be next 
greater to all the numbers»11 . 

It should be noted that, although this axiom allows us to generate 

such alephs as I\J", N 2l.l' N" nt.>' .it does not allow us to generate 

Nu 2. For although this aleph is a "limit" aleph in the sense that 

it has no immediate predecessors, yet it is not the l~ast aleph in 

~sequence which has this property. Similar remarks apply a fortiori 
. 
to alephs of greater comolexity such as 

I 11.1 -
A I <.) 3 ./ \I un )J ~w JJ .,w'" "'V, , , - ,etc. 
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It is clear, from these remarks, that we cannot eenerate the entire set 

of ale-phs from the principal interpretation of A\ , .but only a subset 
·0· 

of them. Thus the pg.ncipal ,interpretation is· incomplete. 

" 

p' 
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Chanter IV: SOHE ARITHH~ICAL PROPERTIES OF THS TH80RY or" ALSPES 

In this chapter I shall draw some arithmetical conclusions 

from the "principal interpretation" of Ao given in Chapter III. 

The chapter will be divided into two parts, ~iving (1) a discussion 

of the four elementary oper"-tions.of addition, multiplication, 

subtraction and division ~ith respect to the theory of alephs, 

• and (2) an account of the ImlS of monotony for the addition of , 

alephs. 

(1 ) 

(CO( ) Addition 

Axiom 17 expresses some of the most peculiar facts concerning the 

addi tion of alephs .-_ First, every aieph m"y be ch"-r<!Cterized as a: 

"neutr,,-l" element for the set of its successors under the opere.tion 
'I, 

of addition. To clarify this, I shall define a neutral element in 

general algebraic terms. Let G be,any set ';I'd. 0 a bin,,-ry operation 

on G. Any element c of G which satisfies • 
( cOx) = ( x 0 s: ) = x for all x in g 

is called a neutral element for the operation 01 Thus it is clear 

1 ~ () See J.A. Gre~, Sets and Groups, London, 1971 , p.40. 
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that any aleph a acts as a neutral element in the. folloHinc; 

situation: 

( a + b) = b where b ~ a 

For irystn.nce', X 0 + J{1 = l'1; or ,~r,ain, J{ + }{ =}{. IY 0 0 0 

Secondly, -every aiLeph may be characterized as an "annihi-

laRr" element for the set of its predecessors under the operation 

of addition. AGain, I· shalla define 211 "annihilator" element in 

general algebraic terms. Let G be any set and 0 a binary op-

eration on G. liny element n of G which satisfies 

( n 0 x) = (x 0 n ) = n for all x in G 

is called an annihilator element in the following situation: 

( a. + b ) = a where a > b 

For instance, }(1 +J{o = ){1; or again,· X, +}.(, = N.. . r 

ThirUly, it is clear that in the case where 

( a + b) = a where a = b 

that a may be described 'as either a neutral or an annihilator 

element. In other words, we may say that every aleph may also be 

characterized as an "idemnotent" element for the operation O. 

~in, I shall define an idempotent element in c;eneral alc;ebraic 

terms. Let G be any set and 0 a binary operation on G. Any 
.i" 

element d of the set G which satisfies 

( dOd ) = d 

is ca:lled an "idempotent" element for the operation O. Thus we 
r--

/' 
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see that for any ale~h a. 

e.g. N2 +J{2 
-2 

It is interenting to note th.Clt the idcm~ote:1cy of transfinite 

" . 

cardinal addition gives it an ~lgebraic structure which is closer 

to the algebra of propositions and 9f sets than to that of 

ordin~ finite cardinal addition. Thun in the algebr,,: of propositions 

we see that conjunction is idempotent and, similarly, in tne aleebra , 

of sets, we see that union is idempotent. Thus for any proposition p 

( p 1\ p) = p; for jU'Y set K, K U K = If. However, for ~.ny 
" ._---..-/ 

finite cardinal numb~r n (except 0) it is not the case that 

( n + n) = n.· 

In' conclusion, 'Ie may say thnt every aleph is a neutral 

element for the set of its successors under addition and every 

aleph is an annihilator element for the set of its predecessors 

under addition. Every aleph meanwhile is idempotent with respect 

, to itself under addition. The only neutral element for the op­

eration of addition on the entire set of alephs is Ar . Moreover, o 

since}( has no predecessors, it is the only aleph which cannot 
o 

act as an annihilator element with respect to a subset gf the set 

of alephs. There is no annihilator element for addition on the set 

2we speak of the "idempotency" of an operation in a derived 

an idempotent element. 

"idempotent" when each of its argumen~ ,sense: an operation is 

I 
i 

1 
I 
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of n.lephs since there is no crentest aleph. Finbly, it should be 

added that the operation of nddition on the set of alephs is . ' ..-'-----­---
------------~~~ closed. 

(p) IlultinlicC!.tion 

Like AXiom 17, Axiom 20 expresses some peculin.r facts concerning 

the axithmetic of alcphs. In this cage, the facts relate to multi-

pllicatiori. Fir.st, every aleph mny., be characterized as ::1. "neutral" 

element for the sct of its successors under the operation of 

multiplication. ~~y ~leph ~ ~ct~ ~= ~ ~c~t=~l ~lc~cnt· in the 

fonowine si tU'l.tion: 

( n • b) =' b where b ~ a 

For instance;}{'o .)( 1 = J( 1 ; or neaih, )( 0 • )(0 =)( 0 

Secondly, every aleph may be characterized as,. an "nn-

nihilator" 'element for the set of its predecessors under the 

operation of multiplic::1.tion. Any aleph a acts as an annihiln.tor 

element in the following situation: 

( a • b) = a where a' ~ b 

For instance, At 1 .)( 0 = )(1 

It is clear that in the case where 

( ffi. b) = a whore a = b 

that a may be chn.racterized as an "idempotent" element, i.e. 

(a.a) = a 

For instance, )( 2" AI 2 "tV 2 

'. 



In conclusion, we may say.that every aleph is ~.neutral 

element for the set of its successors under multi~lfcation and 

every aleph is ~ annihilator element for the set of redecessors 

under multiplication. Every aleph, memwhile, .is ~ mpotent 

with respect to itself under multiplication. ~e on~ . utral 

element for the operation of multiplication on the entir set of 

alephs is No. Horeover, since }t' 0 has no predec'i! ors, it is 

the only aleph which c~ot act as an annihilator element with 

respect to a subset of the set of alephs. There is no annihilator 

element for multiplication on the S9t of alephs since there is no 

greatest aleph. Finally it should be· added that the operation of 

multiplication on the set of alephs is closed.· 

N.B; A few further remarks must be made concerning the operations 

of additioo and multiplication. These. remarks will be further 

simplified in Chapter VI. Although, ·as we S'IW in Chapter III, these 

operations are semantically differentiated, they always produce 

the same results, e.g. 

= . 
In other words, they are extensionally identical but intensionally. 

different. 

(d') Subtract i on 

In his account of transfinite cardinal arithmetic, Cantor makee 

no mention of the operation of subtraction. For this reas?n, I 

have not made provision for it either in the primitive symbols) 
,~ 
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the definitions or the axioms of the princip~l interpr~tation 

of A, I sh~ll, ho,rever, disCUGS the difficulty of introducing 
o 

such an operation, 

One could define subtr.nction as ,the "inver.se" operation 

of addition, i,e, 

( a - b ) c.c(b+c) = a 

Rowever., it can be shown in.t;eneral that thilr.e is r.:or.e than one 

aleph c such that b + c = a, when, for ins~~ce, b = a , 
" 

Put a = b =)( " Then )f , + If 0 ::){ 3 ' J( 3 + J( 1, = )( 3 ' 

JV,+){2=J(3'o 

where 

It is also clear that equationa of thetyp~ a - b~ = 

b > a cann'ot be solved in the system of alePhs\ In Jrder 

c 

'" . to solve such an equation as 

an extenB~on of t~e number concept is necessary, However, Cantor 

does not consider the possibility of introdUCing, "negmtive 
. 

alephs" , 

(&), Division 

As with the operation of subtraction, Cantor makes no mention 

of "'the operation of division in his account of transfinite cardinal 

arithmetic, Again, I shall discuse the difficulty of introducing 

such an operation. One could define division as the "inverse" 

operation of multiplication ,i.e. 

( a';' b) = I.c ( • c) = a 
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Hmrever, it· can be shown in &cneral that there is more than one 

aleph c such that (b. c) = a, Hhen, for instnnce, b = ~. 

Put a = b = )(4' Th'en ).( 4 .)( 0 =){~! Af 4' IV 1 =}/'4' 

}/4 ){2 =1{4' }{4'N3 =#4' 

It is also clear that eCluations of the type (a:'- b ) .= c 

where b > a pannot be solved within the system of alephs. In order 

to solve an equation such as )( 1 -:- )./3' = c, an extension of 

. the number concept is necessary. HOHever, Cantor does not consider 

the possibility of introducinB" "tre.nsfini te rationals". 

(2) 

In the second part of this chapter I shall ~ive nn account. of the 

laws of monotony for transfinite 8.ddition, Hith res'-ectto 

" relations ' = , and ,< ' 

the 'two/ 

(i) The first law of monotony with respect to the relation' = 

.runs as follows: 

43 

"For any alephs a. b and c! ( a = b ~ ( a + c) = ( b + c ))" 

The first law of transfinite monotony is a-theorem in the system of 

alephs. Here is a sketch of the required proof: 

Assume a = b • • 
['hen c <. a or c = a. or c :> a (Axiom 11). 

If c <. a, then c <. b (Axiom 7); 

( c + a. ) = a and ( c + b ) = b (Axiom 17); 
-, 
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hence ( c + a ) ~ ( c + b ). ., 
If c = a, then c ~ b. ( c + a ) ~ c and ( c + b ) ~ c· • , 
hence ( a + c ) ~ ( b + c ). 

If c> a. then c > b. ( a + c ) ~ c and ( b + c ) ~ c 

hence ( a + c' ) ~ ( b + c ) . 
Hence in any case ( a + c ) ~ ( b + c ). 

o We see here that the law of monotony for ordinary finite cardinal 

arithmetic {i.e. for any inte~ers a. b. c, (a ~ b 4 (a· -¥ c) ~ 

( b + c )) holds absolutely. 

~ (2) The second 10.'; of transfinite monotony wi t~espect ,t'o the relation 

, < ,,3 runs as follows: 

"For anv aleohs a, b and c r such that c <. b. 

( a <. b -+ (a + c ) <. ( b + c))" 

The second law'of transfinite monotony is a theore~in the system of 

alephs. Here is a sketch of the required proof: 

Assume a'< b and c ~ b. 

Either a~c or c < a (~iom 11). 

If a ~, c, ( a + c ). ~ c and hence ( a + c ) < b. 

If c < a, /( 
J . 

a + c ) ~ a and hence ( a + c ) '" b. 

'Since, in Chapter' II, we defined a:' b as b < a, the 

following law also holds for the relation' >, (with suitable change 

of sign). Sim~larly, it h~lds (again with suitable change of sign) 
• 

for -the fourth la\{ of transfinite monotony. 

,f 

,-

• 
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Since c < b, (b + c ) = b. 

Hele ( a + c ) <. ( b + c ). 

We see here that the second law of monotony for ordinary 

finite cardinal addit:lori (i.e. for any intecers a, b 
~ 

(1' <. b,-;) fa + c ) < ( b + c ) ) holds under certain 

and c, 

restricted 

conditions, I.e. :when c <. b. It does not hold, hOl/cver, where c;:' b, 

i.e. where c acts as an annihilator element for b. Thus, if 

(1;'= J,f" I b' = IV:, and c =J{2' then .it, is not the case that 

J( 0 <: J(1 4)(0 + ){2< X; +).(2· 

Again, the law does not hold where c = b, i.e. where c 

acts as an idempotent element for b. Thus: 

If, a =}{o' b =){1' and c ='#1 

then a < b ()( 0 <)(' 1 ) 

but (a + c ) ~ + 0' ); 

( a,+ c) =)( 0 -i-J{1 =)1"1 

and ( b + c) := }{ 1 +)/1 = N"1' 
so that in this casc (a ~ c) = (b + co) • 

• 
(iii) The third law of transfinite monotony ruhs 

, , 

.. 

• 
"For any alenhs at b and c. such that 

as f011s: 

c ~ a and c ~ b, 

« a + c) =(13 + c)~ a = b )11 

This is a restricted version 'of the converse of Law 1. Trre 

~ : 
third law of transfinite monotony is m'theorem in the system of alephs. 

/ 
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Here is a sketch of the rquired proof: 

Assume c ~ at c ~ b, ( a + c ) = (, b + c ), but a ~ b. 

Then a <. b or b < a. 

, If a < b, (by. the second hW) (a + c ) < ( b + c ), 
-, 

contradicting our assump~ion • 

If b < a, (by the second law) (b + C )« a + c), 

contradicting our assumption. 

Hence a = b .• ,.. 
., 

We see here that the third law of monotony for ordinary 

finite cardin<J.l addition4 (Le. for any integers0, b anji c, 

« a + c) = (b + c ) -t a = \l )) \1olds und'er certain re'stricted 

conditions, i.e. where c ~ En and c:S b .. However, the third l1!-w 
~. . 

does not hold "here c ~ <} or c .~ b. For instance, let us . , 
two cases: , 

(i) If c> a, then it is not the case that 
'., « a + c) = (b + c )~ a = 'b). 

Thus, if a = .¥o' b.:.=-"';, and c = }(2' the~ 

!VO + N2 =}{2 + X 2-#J{o = #2" 

(2) If c > h, then it is not the case that 

Thus, 

J 
«a'+c) = (b+c)-7a = b). 

if' a = 1('3' 'b =}(2' and, c =}(3' then 

N 3 +}f3 =N2 +J(3~N3 = "'2· 

:.:. 

4Sometimes called the "law of cancellation". 

) 
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It should,be noted 

(because the antecedent is 

c > a, b > c. 

"" 

th~t the thitd law holds trivially 

false) in ~e cases where: 

". 

J(2) c> b, a> c. 

IJ 

(iv) The fourth law of transfinite monotony runs as follOl{s: 

'''For any rlenhs a, b' and c ' ( ( a + c ) c::, ( b + c ) ~ a < b )" 

This is the converse of Law 2 wi thciut the restriction that ,c < b. 

The fourth law of }ransfinite 'monotony is a theorem ln the system of 
, ........ , 

; 
alephs. Here is a sketch of ,the required proof: 

A'ssume (m +c ) ~ ( b + c"") but a ~ b. 

Then a';' b or b'c::, a. 

If a = b, then by the first law (a = b ~( a + c ) = (b + c», 

contradi;ting ~ur assumption. 

If b, < a, then, by Axiom 11, either 'c ~ a or a <. C; 

if < c ..... a, then (ro.+c)=a (A~dom 17) 

so that b<.( a + c ) (A'Kiom 7), b <. ( b + c ) (Axiom 13), 

(b + c ) = c (Mc:iom 17) and (b + c )~ -( a + c ) (Axiom 7), contra-

dictingour assumption; 

if a'c::, r then < c (Axiom 13),~o that ( a + c ) = ( b + c )= 'c 

) 
for, ordinary 

• 

",' 

We see here that the fourth law of monotony 

\ 



finite cardinal addition (Le., for any inte.,:~rs a, band e,' 

«a + c ) <. ( b + c ) ~ a < b )) holds abs·"lutely'. 

I 
/ 

Note on Multinlie:\tion 

The, four l(lwe 'of tr<lllsfin~j;e monotony ':'lith respect to I = I and 

I < I ("lso, by definition, with resneet to I,> I)', apply abso-
, . 

lutely to transfinite multiplication,; This is connected with the 

fact cited iIi Chapter III th1.t, regardin.'i tne set of e:lephs, 

,~~ the operations of addition and multiplication are extensionally 
) 

identical. It is interestinG' to not!" that although the transfinite .. ' . 

laws of monotony for mu1 tiPlicati%)c~~espond exactlo" to the trans­

fini te lalffl of monotony for addi 1;D5'n', this is not so in the case of 

orqinJ;ry fini tec=dinal ,,!ithmetic'. I,et us cO!'1".ore ordinary 
L, 

addition' and multiplication. In the errsc of addition we find that 

if a < b, then (a + c ) < ( b + c ). In the case of multipli-

o cation we find that if i< b, then' ( a • c ) <. ( b .. c ) pro­

vided that c i O. We see that. 0 acts as an annihilator element 

in the case of ordinary mu1tiplicati~ whereas it acts as a neutral 

element in the case of ord:inary addition. There is nO'such asynimetry 

in the case of transfinite cardin'9;.' ari thmetic due tfh-~ ext en- . 

.L 
sional identity of transfinite addition and multiplicatiop. Hence 

. ------.. 
transfinite' cardinal addition andmilHiplication are siMilar in 

• 
that one does not 'cOntain, a: restr~tion (concerning the laws of 

<. \~ 

monotony) which ii,s not ,found in;;~"f",other. 
.~(~ .- ~ 

~ ' . . " 

For this reason the 

<> 

o 
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( 
, 

" 

r 

full accoun~f the laws of tr'1.!1sfiriite monot~ny for addi ion can 

,be rendered tr1:le for mul tiplic8.tion, simply 'by chanc;e of sign. 

) 
( 

, ' 

f 

, 

" 

• ,1 
" . 
, , 
, J 
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In this chapter I shaill drs-cuss thesct of alephs in terms 
, I 

, ofl ts a:lgebrai"c 'stricture; To be Gin Hi th, the set of alephs, .. 
tOGether with the operation of addition (both bein~ listed'amonest 

the primitive symbols of the princ~il interpretation of A ), 
o 

constitutes a', urrruppoidu. This is one of the most elementary 

and general alGebraic structures. We' may define a gruppoid as 

fol1ews: 

A c;ruppoid is a pair ( G, 0 ) ",here .G is a non-empty 

, set and 0 .' 1 a binary oper,tlon on the set • 

Thus we have the set of alephs, Hhich I shaill call A, =d a 

binary operation on this set, i.e. ' + " ma~inc the pair ( A, + ). , 

It may be added that the lset of alephs is an "absolutely infinite" 

2 gruppoid 

1 . 
SeeJ.A. Green, Sets and Groups, (London 1971), p.41 • 

2' 
Thus Cantor says (C~tor, 1899): 

The system 21 of all ~ephs is 
similar to the system ~ 

[i.e. the system of all ordinal 
numbers] and therefore likewise 
incon~istent, or absolutely infinite. 
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Axiom 15 ch:u-acterizes the set of alephs as ;n "semi-croun" 
" 

or "monoid". This particular algebraic structure is some',{hat 

less elementary and more specific than that described above. We 

Cantor defines iriconsistent or absolutely infinite sets as follo'.s 

'(Cantor, ibid..): 

For a multiplicity can be such that 
the assumption tho.t all of 'its ele­
ments "are together" leads to a con­
tradiction, so that it is impossible 
to conceive of the multiplicity as'a 
unity, as'''one finished thing". Such 
multiplicities I call absolutely in­
finite or inconsistent ~~lti~licities. 

It sf>,ould bo noted, h01{eve!", that, as He SC.w in Chapter III, 

the principal interpretation of A only allows us to cenerate a o 

subset of the set of alephs. This subset is, in fact, denumerably' 

infinite and hence a "consistent multiplicity". It is denumerably 

infinite in the sense that it can be enumerated (like·the rational 

numbers) by Cantor's "diagonal procedure": 

••••••• )( n •••• 

~+4 •.•••• k: ... &.I+n 

}Ii" nlol Xn'>+1 .... , ....... - ..... . . ...... 11' + . "Yl1" n ... ,: 

It can thus be put into a one-to-one correspondence with the natural 

numbers and is thus denumerably :3>nite; 
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ma.y define a' "semi-f,Toup" as foiblows: 

A,semi~croup is a eTUPpoid ('A, + ) whose operation 

is asnociative. 

Furthermore, Axiom 16 characterizes the set of alephs as an 

nabeli:m" s."mi-[;roup insofar as it states the law of cOl1Jl1lUt"t~vity 

for addition. 

, . 
The question may now be asked: Can the sct of ~lephs 

be characterized as an infinite abelian ",erroun"? The ,,"SHer 

o 
is in the negative. This can be easily demonstrated by reference 

to the inverse operation of subtraction (dLscussed'in Chapter, 

IV) ., 

To begin with, however, I sh~l first state the necessary 

properties of a:'. -croup: 

A group is a semi-group ( G, 0 ) which satisfies the 

addi tiona.l conditions': 

(i) G has a unique neutral element e, i.e. 

Vx le 

(ii) Every element of G has a unique inverse element, 

i.-e. for each x -in G there is an element -x in q, 

"" al <, such that-:> c led the inverse of x, 
("' 

v x I. -x (x + (-x)) = e 

The,set of ailephs does, in fact, satisfy condition (i) inQofar 

as aleph zero constitutes a un£que neutral element for the entire 

set of alephs. 



\ 
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The set of alephs, however, fails to satisfy condition (i·i). 

\ 
It is not the c~se that for every aleph a there is an inverse 

aleph -a such tho.t (a + (-a) ) = e (where e =- No)' As 

we saw in the discussion of the operation of 8ubtraction, it is 

not sienificMt to speak of "inverse" elements in this context. 

in that we cannot solve the followi~g type of equation in either 

system:. 

( a - b ) = ·c where b > a 

In the case of the positive interrers we may solve this equation 

by introducine negative inte~ers. However, no such extension of 

the Aet of alephs has been made: there are no "neeative aleDho" 

and hence no·" inverse" alephs. Noreover, even if nel;".t i ve alenhs 

were to be introduced so that we could solve equations of the form 

(a-b) = c where b :> a 

there would still remain the problem that a - b has in general 

several values where a = b (as ~Ias shown in the discussion of 

subtraction in Chaptpr IV). 

I conclude, therefore, that the set of a~phs fails to 

satisfy the conditions necessary to characterize it as a group • . 

A Note on "One-r.:lement" GrouDs 

Finally, it may be noted in connection with this diacussion 

of groups that al thou,n;h I<e cannot charr.cterize the set of alopha 

as a /rI"oup, yet we may represent each aleph as a "one-element" 



croup. 'Thus, tnkinr; :tny o.leph n =d thn Clperation of "ddHion we 

see that the five cnnditlons of an abeliM group arc fulfilled: 
--

(i) We have a p"-ir (A, +) where A io a non-empty set (i.~. the 

sinr,leton. [a}. o.nd '+' is ro. binary operation on A. 

(u) The operation of addition is associative, Le.'-

( ( a + a) + a) = (a + ( a + a') ). 

(iii) A has a unique neutral element a, i.e. 

( a + a) = a. 

This follows from Axiom 17. 

(iv) Every element of A has an inverse, i.e. for every a thore 

'is an element -a in A calle,d tho inverso of 0., sllch that 

( a + ( -a )) = a.' 

(v) The operation of addition is commutative, i.e. 

( a + a) = (a + a ) 

( 

I:shall now oonoidor the oet of alephs, togothor with tho 

binary operations of multiplication (both bein~ listed rumonr;ot tho 
, , 

primitive symbolo o~ the principrol interpretation of Ao)' The 

pair ( A, • ) constitutes a "gruppoid". It must be noted that 

here we are describing n different gruppoid from that desoribod 
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at the ber;innine of this section. Al thou!;h both alr;ebraic structures 

are concerned with the srumP. set, i.e. the set of alephs, they rep-

resent the net under distinct oper:tions. :,gnin, there in nn ab-

solutely infinite KrllPpoid. 

Axiom 18 characterizes the set of alephs as a "semi-group" 

~in8ofaras it states the law of associativity for multiplication. 

Furthermore, Axiom 19 characterizes the set of alephs as an abelian 

semi-group insofar as it states the law of commutativity. 

The question may now be asked: Cnn the set of alephs 
'" 

be charactorized as an infi.ni te abelian "~oup" ? This question 

is obviously parallel to that concerning the set of alephs under 

the operation of addition. Again, the MSHer is in the nec;ative. 

First, it should be noted that, like the additive semi-

group, the multiplicative semi-group fulfills tho first condition 

of being a j\"roup, i.e. the net of alephs possesses a unique element 

e such that 

v x \,e ( x • e) co x. 

Once again, this element is )("0' HOHever, as in the case of the 
, 

additive semi-group, the multiplicative semi-group fails to 

fulfill condition (ii), i.e. that for· overy aleph a there is 

an inverse aleph such that 

co )( o 

( }of being the unique neutral element for the sot of al'1phs o 

under multiplication), This is connected with the difficulty 

of definine an inverse operation, .1.e. division, upon the set of 

" 

". 

:1 
.; 
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alephn. ' 

The oet of 'alephs is compCtrable t"t;i the set of intc,";ero 

in that I're c,mnot define the folloHine type oJ e,!uation in either 

syste",: 

,( a ~ b) = c where b ~ a. 

In the case_of~e integers, He may solve thise'luation by intro-
-~--

dt\cing ration"l numbers. HOI,rever, no such ext'ension of the set of 

alephs has been ma.de: there are no "transfinite r/itionals" and 

hence no "inverse" a;te:r>hs. I conclude, therefore, that acain the 

set of alephs fails to satisfy the conditions necessa~J to charac-

terize it as a ~oup. 

A Note on Multiplicntive "One-clo",,,,,t" Grollnn 

Rncn.lln~ ,01', ''; the identity.reeardinr, the mcte;oaionaHty of the 

two binary operationo ' +' and • " tho remarks on additive 

one-olement irau:po Ilpnly (>lith suitllble chango of Olgn) to multi-

plico.tive "one-element" groupo. 

In concluding, I shall contend that the set of alephs 

mo.y be characterized as a commutntive "semi-field". Some ex-

Planation i's needed of this neolo!'",iam. A' ~Dld", _ 1 mor~ eapecially, 

a oommutative field, conaiots of a non-empty set F with two 

binary operntions 'S,' and 'P' defined on it. 11oreover, it 
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satisfieo the follm<ing condi tiona: 

(i) (x ,S ( y S z )) = ('( x S y ) s z ) 

(ii) ( x S y ) = ( y S x ) 

)-

(iii) F has a unique neutral element ·e such that 

'Ix I.e ( x S e ) = x 

(iv) 
~ 

~Yery element x of F has an inverse, i.e. for each x 

of F there is an element -x called the inverse of x such 

that 

( ( -~ ) S x) = e 

(v) ( x P ( y p z )) = « x p y ) p z ) 

(Vi) (x P y) c (y p x ) 

(Vii) F . has a unj.que neutral element f such that 

V x c.f (x P f) " x 

(Viii) Every x of\ F has an inverse, i.e. for each x of, F 

there is an elem:nt ~ tho 

( x P x) " f 

inverse of x such that 
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(ix) (x P ( Y S z )) = « x.p y ) S ( x P z ) ). 

The conditions for a commutative field connist of-the conditions 

for two abelian croups to~other with condition (ix), connectine 

the two binary operati~ns. By extension, we mieht say that the 

condit'ions for a conunutative "semi-field" consist of the conditions 

for two abelian semi-groups, toeether with an axiom connecting the 

two operations (i.e. conditions (i)-(iii), (v)-(vii) and (ix)). 

As we have soen, the set of rolephs lI)ay be characterized as two 

I 

abelian semi-/lToups. If we add to this tho distributive lm{ 

(i.e. Axiom 21), we may characterize the set of rrlephs as a 

commutative semi-field. 

" 

. .;) 



Chapter VI: 'PRE CONSIS'~E1.;CY 'oF 'PHS 1'HF,OilY or ALF.PHS 

,In this chapter I shall consider the consiRtency of the 

log~stic system A , and that of the princi~al interpretation. 
0, 

The notion of consistency may be defined thus: 

A deductive theory is called con­
sistent or non-contradictory if no' 
two asserted statements of this 
theory contr~dict e~ch oth~~, 0~, 

in other >lordo, if of nny hlo 
contradictory sentenges at least 
one cnnnot be proved • ", 

2 Nbcording to Hilbert, there are ~wo kinds of consistency proofs: 

Relative Consistency Proofs , 

We may establish a one~to-one correspondence between a formalized 

theory and another theory which 'Ie believe to' be consistent. The 
~ , ~ 

consistency of our' first theory will then be demonstrfl.ted. We 

will say that if the second theory is consistent, so is the 

first: the first is consistent relfttive to the second. 

• 
~A. Tarski, Introduotion to 1,o,o:ic (New York, 1965), p.135. 

, ~i1bert's !lCcount is to be found in vol.1 of the Grun~-

lagan der Mathematik by D. Hilbert and P. Bemays ,,(2. vols., Berlin, 

1934 and 1939). 
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. 
(2) Absolute Consi stenc;,' Proofs 

Such proofs attempt to demonstr~te the consistenc& of a theory 

without assumin!; the consistency of a second theory • 

In dealinG with the consistency of the lOGistic system 'A o 

and its principal. interpretation, I shan attempt to show, two 

things: 

(A) That of the "'Lo£\ical Axioms" (Le. Axioms 1-7) \,thich con-

sti tute an axiomatization of the predicate calculus of the firs,t 

order, with identity, Axioms 1-5 can be Shmm(be consistent 

by an absolute consistency proof. _, ,c' • 

/fr~, (B) That the "Logical Axioms" 6-7 aryd the",HNo...;'r.ogical Axioms" .. -......../ \ 
(i.e.Axiom~ 8-21) C3.ll be shown to be consistpn~;r a relative 

I , consistency proof. 

\' ": 0

1 )' 
'\ 

\ 

(A) 

In presentinG an absolute consistency-proof for Axioms 1-5, 

I shall folloH Hilbert's procedure·3 • .,Thus in order to 

two formulae S and,... S are not both derivable from a system Q 

,J 

3For an exposition in English of , Hilbert's proof, see 
'] 

G.T. Kne!3bone, Mathematical Lodc and the Foundations of Mathe-

mettics (London, 1965), c.7, section 6; and E. Nllgel & J. Newman, 

" ( ) GOdel's Proof New York, 1973 , c8.2 & 3. 
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) 

we proceed as follOl'IS: 

We first select ~omQ property of the formulae of Q which 

satisfy the followinr; three conditions: 

Il. 
(i) The property must belonc to all t,he 'Fiame. _ ) 

,-
(ii) The property muat be 'heredit'ary' under .the 'rules of 

• and must therefore. be inherited by.every derived formula. 

"-.:.-

(iii) T):le pro pOlity must not belonr; to evorY formula that can be 

" constructed in Q, i.e\ we must' exhibit at least one formula that 

. does not have the property. In other words, we mus·t secl< to discover 

some formula which 'is not aJ. th~"'rem; for if a sJstem' is not con­

sistent, ,then any formula Xhat~~er can be deriv~d from the axioms4 • 
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4This may be demonstrated us ing t.he theorem ( A ~ ( ..... A ~ B ) ). 

This theorem may be 'derived from Axiom 1 (M7 ( A VB)). As , 
". 

we saw in Chapter II, the wff (A VB) may be defined as (...., A-+ B ). 

Thus we maf define as (A~i.( AVB)'). 

Thus, given the theorem ( A ~ (.vA ~ B ) ) and the rule of modus 

ponens, we may proceed as follows: ~ 
First, suppose that some formula S and its contradictory 

~ S were deducible from the axioms. By substituting S for A 

( 

) 



.' ,~ 

.l 

~ 
Now let us apply the procedure to our ~bsol\lte consistency 

proof of Axioms 1-5: For the s?_ke of brevity, I shall refer to the 

system derived from (~d includine;) these AxiOMS 1-5 o.s the 

system Af~ .First we select a rrope'rty of the formulae of A1 

which srltisfies the above conditions (i)-(iii). The propert'y 
i . , 

chos~n is thn:t ·of being "tautoloIOOus". Now it .0= be. sho\ffi by use 
~ 

, of truth-t'lbles thClt (i) Axioms 1-5 -..re tautolocous, and 

(ii) that 'this property is heredi t3.I1- in thClt it is inherited by 

every derived formula. 
o 

r 
'Let us first consider Axioms 1-4, i.e. those of the 

proposi'tional, calculus. These can all be' shO\m by mems oJ: truth-

in the theorem cited above a.rid applyin!r modus ponens twice, the 
-.~ 

formula B is deducible. Thus we first obtain 

From this, together with S which is asserted to be demonstrable, 

we obtain by modus '-ponens ( ...... S 4 B ). Finally, since ....... ·S is also 

asserted to be demonstrable, using modus ponens once more, we ob-

,tain B. But if the'formula B is demonstrablo, it follows that 
, 

by substituting any formula whatsoever for B, any formula whatso-

e:ver is deduoible .from the axioms. Thus if some ·formula S ~d its 

oontradictory N~' S • ~ deducible from the, rudoms, every formula 

would be deducible. I ·~ther words, if Q is inconsistent, then 

~very formula is a eorem. 
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\ 
tables to be,t~utoloGolls. The S~0 proof is also applicable to 

Axiom 5 (i.e.' the axiom of the predicate calculus of first order). 

Here ",ra~ the individual variables n.nd 'luantifiers a!1d treat 

the ~r'edicate variables an if they ",ere propositional variables; 
: 
i 

let us call the result of performing this oneration on a' formula the 

elementary PTopositi'onal form associated with that formula.' Thus 

!lxiom 5 becomes (A-'t A ), "'hich can ~in be s"own,~y truth­

tables to be tautol050Us5. Thus we see that, by means 0 truth­

tables,we 'can show th'lt the ,chosen property of beinG' _' Q.utolo:;ous" 

/ 

5It should be noted that Axiom,5 is not strictly spedking 

tautologous, but its associated clement:,ry pro!,,,sit~o"",l foIT.! is. 

This condition appears to :e sufficient to prove the comlstency 

.' 

of the syst'em. For if the system is inconsistent there is at le'lst 

one pair of contradictory propositions derivable in it, and hence 

the conjunction of that pair is deTi'vabl,. But the c,onjunction 

of a pair .. of contradictory propqsitions is 'e,!uivalent to a con­

junction of the form (p 1\'" p'), whose associated elementary form 

is not tautoloLlOUS.~ 

Hence, 'if the associated elementary, propositional form of .. 
every formula derivable in the sys~em is tautolo~us,·then the 

system is consistent. 

o 



belonr:G to all the nxiom!'l of A
1

• Thus it satisfiec; condition (i). 

Again, usinc truth-t,bleif, we can demonotrate th,t this property. 

bclonr;s to all the deriverl formul".c of A1 (or their associated 

elementary propositional form). Thus it satisfies condition (ii). 

Finally, l1e can construct a formula of which does not . . 
. (: 

have the property of beinG tautolocous and is thus no\.a theorem of 

A
1 

.• For instance, toke the formula A V II which is a formula but 

not a theorem of A1 since it is not tautoloGOus. This can, once 

again, be demonstr~ed by means of truth~tables. Thus the p~perty 
of being tautoloGOus satisfies condition (iii), i.e. it does not 

belons to every formula of A
1

• Thus; in accordan~e with HilbeTt's 

proceduTe, .. we hR.ve "iven = absolute consiotency ,proof 'of /"1 and 

consc~ucntly of the ~~iom9 1-5. 

(B) 

I shall now give a relative consistency. proof of the Logical 
/' ~ 

AXioms 6 and 7 and.the Axioms 8-22 of the logistic Sys~~· A and 
- 0 

thereby of its principal interpretation. For the sake of brevity 

we will designate the system derived from thesj nxioms (including 

the axioms themselves) as A
2

• I shall now attempt to show th~t 

the system A
2

- is consistent relati 'C.e to another system which I 

shall call B. ~ shall establish a one-to-one·co~ence 
betwfilen Ao' its principal interpretation (of Wh~ A2 forms a 

part) and the system B. Let us first consider this correspondonce 
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• 
with regard to the "primitive symbols" of. each system: 

I 
Proper Symbols , A " 

o 

Individual x, y, z, etc 
Variables .,' 

Individual 
Constant 

0 . 

Functional , 
Constants . 

+ 

• 

Predicate 
ConstAnts < . 

" 

Improper 
. Symbols ~ 

v 

( ) 

. 

'A . 2 

Set of alephs 

, B 

o J..1."S· ,. .. ,~,,.,,, .... 
1,I,~,!f ,~ ; .. 

.. 

The set of rational 
. dyads (i:e. a subset. 
of the set of,ration­
als): 
It' 
""x: (.3w)(3y)(3z) 

. 

('01, y '~d z are natural 
numbers 1\ x = ~" ') .. "'''' I)J 

l~ '~., . 
Zoro ' N 

. 0 

Successor Successor function, 
function, pc'-: x + .;- (the least 

- ... , integer ~eater than 
, ~ x-x), 1. e. (!!!.)' _ .::Iu t I 

Si?:!l of addition .' .z'l -~ 
the maximum 'of x and YI 

SiRh of mul ti­
plication 

less than 

+(x,y), • (x,y) 

less than 

.si~ of equnlity si~ of oquality 

not 

if ... then .•. 

universal 
quantifier 

marks of 
punotuation 

Inot 

~iversal quantifier 
I 

marks of punctuation' 

;~, 
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We can now interp-det the axioms 6-22 of B as follo'''8: 

Axiom 6 
"Every rt1.tion:tl dyt1.d is identical to itself." 

Axiom 7 
. 

"If !t'rational dyc.d a is identical with a rational dyn.d b, .then 

any property belonr,int;' to a, belongs to b." 

) 
Axiom 8 

"110 two ra±ional dyads havo the s=e successor." 

Axiom 9 

"0 is not tho ouccessor of ony r:1tionn.l dyad," 

"Any property which bolonr-:n to tho 011CC0900r of overy r"tiont1.1 dyad 

which ht1.s tht1.t property and to every rat.ional dyad which has no 

. immodiA.te predecossors, belongn to all ration'll dyads." 

Meiom 11 

"If m and n are any. two diotinct rational dyn.do then eithor m 

is loso than n or n is le09 thM m." 

Axiom 12 

"If m nnd n =0 any two rA.ti.onal dyado and m io leoo than n, 
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then n cannot be Ions than m." 

Axiom 13 () 
"If m, n and aro any three i.-dional dj'Cldn rend if m io leoo 

n and n is loos thM p, thon - m io lens than p." 

Axiom 11 

"A rational dyad m is tho successor of n if and only if every rational 

dyad, p is either lesn than or o'1ual to n, or p:reatcr than or e'1\1al 

to m. fI 

Axiom 15' 

"For any three rational dyadn m, n, p, the m3Ximum of m nndtho 

maximum of n nnd p is the ~ar.lO ao tho r.lrudmun of the m'lx!mum of 

m and n and P." 

max ( m, max ( n, p) '" max (""'1xL~~-). p) 

Axiom 16 

"For any two rational dyado m and n, tho maximum of in and n 

is the samo as tho maximum of n and m." 

max ( m, n) '" mroc ( n, m ) 

Axiom 17 

"For any rational dyads m and n, if, m in treater than or oqual 

to n, then the maXimum of m and n is m." 

( m ~ n -? max ( m, n ) em) 



," 

( 

• 

Axiom 18 

"For any three rationa.l dyndo m, n, and p, tho I:1aximllm of m and 

the, maximum of n and p is the same as the maximum of tho maximum 

of m and nand p. II 

max ( m, max ( n, p )) '" max ( max ( m, n }. p ) 

Axiom 19 

",For any two rational dyads m and n, tho mIl.lCimum of m and n 

iB the Bame aB tho maximum of n and m." 

max~, m, n) ~ max (n, m ) 

A'lciom 20 

"For any two rational dyado m and n, if m is gro'Lter than nr 

oqual to' n, then tho mrtximum of m and n io m." 

( m i!: n ~·max ( m, n) =' m) 

Axiom 21 

"For any throo rational dyadB m, n and p, tho max'imum of m 

and the maximum of n and p io tho namo as tho maximum of the 

maximum of m and n Md tho maximum of m Md p. tI 

max ( m, mn.x ( n, p )) ;,; max ( max ( m, n ), max ( m,o 

f6cidm 22 

• 

p ) 

"For MY rn.tional dyn.d m, thoro ia I!l loaot rational dyad n which 

io groator than m but hna no immodi3lto predeconoor." 
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If the nyotef1 B in conointent, then it fOllows (due to +.he 

DnA-to-one corronpondf'nco bAtweon Ao' A'2 and B) thnt II' anei 
o 

112 are consiotont rolntivc to B~ Now, we may ask: Is B conointont1 

Unfortunr,toly, thio very ~uention ohows tho inaclo'ltmcy of the ,proof 

by r"lr,t1vo conAiotfmcy from one nyntom to Mother. All wo cnn' ony 

io thnt if thO" :d:i thmotic of tho pa.rlicular nuboet of, rrttiDnalo, unclor 

tho oporrttion "I'1D.ximum of" cleocribed in 11, in connintent, thon no 

\ 

o 

.1 
1 
'I , 
\ 

" 

1 
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r In thin final chapter I wioh,to dincunn the ontological 

stntus nccorded to alcphn by Cantor. In the current literature it 

"'-io now quito co~~onplacc to viow matho~~tical entitieo in r,enoral 

from one of three nbndpoi.nto:' theoo arc the formalint, intui tioniot 

1 and lo,~iciot ponitionn • For nynoptic and clar1ficatory purponco, I 

ahnll begin by otaXinr; Quino'o outline of the three ponitionn. I 
, 

ohnll then exnmine the Cantorinncorpuo with a viml to ootabliohin" 

Cn.ntor'o r;enernl "philooophy of mathematics" and the P!lrticular 

ontologic,~ status of alephs. , 

It nhould firnt bo notod thnt for (l,uin!) (and indeod for mont 

writero on the philooonhy of mathematics), tho formalist-intuiti~nint-

logicint controveroy in eooontially n reorudoscence of the medianval 

oontroverny concerning univeroalo, i.e. the nominaliot-conceptu"liot-

realint dispute. Thun the formaliot ponition, whone leadin~ pro-

ponent in this century has been David Hilbort, io asoocinted with 

mediaovnl nominnliom. Quins chnr"oterizeo formnliom no followo: ' 

1Soo inter alia W.v.O-. Quine, From a 1.o"ioal Point of Viow 

(New York, 196~h S. Kgrnor, Tho Philonophy of'MrnthematiCB (New York, 

1962); s. BC1.rker, Philooophy of Mathomatics (!low Je~oey, 1966); 

M. Blaok, Tho Nature of lmthomrit\oo (London, 193~): 
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'rhe formal int keep" clo.05ico.l m::ttho­
m::ttico no n plny of" inoi{\Tlificnnt 
notationn. Thin plny ofnoto.tiona 
can atill. be of utility '""Ihatovcr 
utility it han alrearlyohown itoolf 
to have an a crutch for phynicioto 

. '. ? 
and technolo"iots·. 

Again, intuitioniom, whooo leading proponont hao been L.E.J. Brouwer, 

io aooocintod ,lith medi'tCval concoptuaiinm. Ao modiaovnl concoptual­

isto held "thnt there ,"re universo.ls but they are mind-made,,3, nO 

intuitioniotsbeli0vo that.mathematical entities are not reducible 

to noto.tion, but eY-iot in the mInd. Finnlly, lon:iciBm, whose lending 

. proponent hns been Ruosoll, io aooociated with mediaevnl renlinm. 

According to Quine, realiom 

io the Platonic doctrino that uni­
voroo.ls or ·n.botract entitieD ho.ve 
being inclopcndorytly of the mincl.; 
the mind m~.y diDcover but cannot 

orcate them4. 

HaVing outlined theDo three baoic poaitions concerning the 

ontologioal statuo of 'mathemo.tioal entitieD, I now wioh to coneider 

which viewpoint waD held by Cnntor rer;nrding alepho. HO'lever, before 

I begin thiD inveotigntion, I muot iOBue two oavento: 

(i) Althouljh the tripartite cliviaion outlinod above io commonplace 

2 
Qiline, 1963, p.15. 

3 ' Ibid., p.14 

4 Ibid. , p.14 
, " 
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ln the current literature, -it is overly simplintic. }'or inotanco, 

A.A. Frnenkel, Y. Bar-Hillel and A. Levy add a fourth division to 

what they torm "Plutoniom,i, "neo-nomino.l i3m" nnel "neo-conceptuulinm" " 

1. e. the "anti-ontolor;icnl view". The leading proponent of thin view 

(which' appears not to havo any mediaeval forbears)1 is Carnap5. 

A'Qcordlnrr to this viow, the 'lueetion of whother mathematical entitieD 

exiot or not in a "pnp-udo-1uoc,tion". Carnap arr,ucs that thero aro two 

types of "oxlotqnce" 'luestionn reg~dins mathematical entitleo. 

First, thore are "internal questlono". Wo may ask whether oome tyPe 

of muthematical entity Qxists, but only Ifithintho frrunework of a 

oertain thoory Ilhich "e have already accopted. Secondly, there :tre 

"extornal 'luentiono" regardinq: the framework ao a whole. TheBe 

qllootions are not properly ontolor:ical Bince thoy roduco to the 

"aoceptability" of tho frame;rork or thoory. Such "acceptabllity" 

in turn devolves on ouch prac;matic questions aD th,e utHity and 

fecundlty of the theory and on aeothctlc conoldorntlons such as 

oimplicity. Thuo, for Carnap, the queotion "Do alepho exist?" 10 

e .. psoudo-quostlon. We must conotruo 1 t 01 thor ao an internal 

quostion of Borne pr~viously accepted theory or aD an extsrnal 

5Rudolf Carnap, "F:mpriclom, Somantios, and Ontology" 

reprinted in Philonophy of Mathematics: Soleotod noadinB"", ed. 

Paul Bonacerraf & Hilary Putnam (New Jorsoy, 1964).' 
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quention which involvos pral>fllatic and aeothetic considore,tiona •. 

(ii) llext, it should be stressed· that Q.\li.ne's equation of nominalist­

formaliot, conceptualist-intuitioniot and ro;.tl ist-logicint is again 

over~y sitJIplistic'. Indeed. it 'can be downrir:ht misleadinl\. F'or al­
\-., 

thoul\hUsome lOGicists ouch as Fre~ are also realists in that thgy 

accopt mathematical entities as mind-independent and which we discover 

rather than invent, other lORicists ouch as Russoll cannot so oasily 

be classified as reelists. 'rhuo'; although I must ngree with Qnine 

that in Principia Nnthematica HUSBOll "condonfls the nse of bound 

variables to refor to abotract entities kno~m and unknown. speci­

fiable or unspeoifiable. indiscrimin",tely,,6. yet I Boe no need to 
\ 

, \. 

draw any conclusi(lns from thOBe rOf:':'rdinf" nuo~oll,'n ontolo~ical 

commitments. It is q~ite compat~blo ~~\h tho log'ieiot' prop:rrtmmo 

to hold a 'nominaliot position: to vi ow claosical mathom:].tics as a 

body of t:].utoloGies. 

With these two caveats in mind, let us now approaqh Cantor. 

Let us begin with the question: Is there any evidence to suggest· 

that Cantor was a formalist? The ovidence in sliGht but,dosorvos 

oonsideration. 'rhore are two passal\es within the Cantorian corpus 

which have a formalist flavour: 

6 ' 6 Quine, 19 3, p.14. 
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(a) He m"y rCI';ard the ;Ihol" 'hunber" a.s 
'nctt",l' in so far ".s they, on .the 
r,Tound ofdcfinitinnn, ta.ke.a· ~er­
foctl:.' dcteI"f!\i,necl !-lace in our l1ri­
d('''''t".n~inr:, "rl> .cl"nrly cli8tin,,:ui~hecl 
from ,,11 other conatitllnnts of anI' 
thou"ht, sta.nd in definite rel"tiono 
to them, rund thu~' modify, in n 
'definito way, the Bubstance of our 

mind 7• -

(b) 11.1.them"tica is, in its dovelonmnnt,' 
quite froo, nnd only subjoct to the 

. solf-evident condition th"t its con­
coptiona nre both free from contra­
diction in thonsolvos and ntnnd in 
fixed relntions, [>'T-ranr:ed by defIn­
itions, to pr"ViOlt91y formpd and 
teoted conce!'tionR. In na~ticulnr, 
in the introduction of nO\1 numbors, 
it io only oblir:"tory to ;>;ive stich 
definitions of them C.8 will "fford 
thom !Juch " de fini tcno~a, ,ond, nnder 
'cortain ctrcum8t"rmcoD. onch n re"l­
ation.to tho older nl~b0rs, aa !,er­
mits them to be diatinl';uiohed from 

.ono. anothor in n;ivpn cc.ncs. As aoon 
as n ntuuber' s,1.tisfies ,,11 those con­
ditions, it co.n and must bo considered 
as-existent and real in mathematics. 
In this I soe the grourids on which 
we must regard tho rational, irrational 
and complex numbora as just ao existent 

8 as the positive inteGers. 

) 

7Trans • P.E.B. Jourdain in (Cruntor, 1883(a), seotion 8, 

pp.545-591). 

8Ibid ., ssotinn 8 (Trnno. P.E.E •. Jourdain). 
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Both pasnaeeo are formalistic in tho n~nso that they app~ar to imply 

that freedom from contradiction and consintency are nr.ces~ary and 

sufficient conditions for as crib inc: "exi.otence" tO~'"1.thom~t1.Cal 

entities. This is consonant with Hilbert's view that~~ml 

the consistency of a formal system, than this is r. necessary and 

sufficient condition for the ancript~on of existence to t 

implici tl"'definGd by the nxiomn 

1904, Hilbert says: 

!, 
Having a cortain 

proPGr ' 9 for tho axioms adontod 
he; ,wo rcco~i.zc that thc,'nGvpr 
lead to ::my contradiction n.t all, 
and therefore we,spen~ of'the 
thour,ht-objects de fined b" means of 
thGm ... aA consintrmt notions 0r 
operations t or. n.n conn tct0ntl~r cx-

10 . 
iati'nll' • 

early as 

C'. 

Thoro are, however, many objectionn to vicwing C,o.ntor as 

,a formalist: 

-(i) In dealinc;with "cClnoisteny", Hilbert- is dO::lling witl'} a meta.-

mathematical proporty of formal systems. Cantor, ho;rever, ha.,d' no 
11?> , 

9Hilbort io hero r(lforrinll" to tho property of "homogeneity" 

or tautoloc;ousnoss. 

7':1 

10 
Dwid H1.lb,'rt, "On the Foundations of LoC-ic and A.ri thmfltic", 

" Jean vnn HIl,ijenoort, ed., From F'1<'o,,,,, to Godol. A source Book in 

,Mathem~tioal LORio. 1879-1901 (Cnmbridc-e, MaeoaohuBotte, 1967). 
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" 
" 

otion of a' formal nyntf'm. ' An T ctc.tml<n Ch'\uter I, Cc.ntor'~ work" 

on c.n"fini te c:r.:-dinn.l ari thr:1')tic :z linn i. VO:' ro.ther than II fo=o.l". 

ThUG C,'ntor'G notion, of "con~intency" is 00 r:1uch 10s,; eXect thnn thn.t 
. 

of. Hilhert: that it "ould seem inc.ppropriate to comp:1.l:e them. 
. l 

; 
(11) It hh~ been the principal "ab of· this thenio to fO=:1.li"o 

I . 

C:1.ntor~s Hor1:. He\o!ever, ao I h~.ve oho\o/I1 in Ch:1.ptcr VI, I have bean 

I 
un:1.ble to est:1.blioh an :1.bool,lt(' condstenc:' proof for tho syoter:1 of 

. alophs. Thus, oven if '.10 at:rced th:1.t Contor pos~esDed un embryonic 

~notion oCthe motruJlc.themf,'tical property of conois1;cncy, his oyotem 

has not so' far b~on o~awn.to be oon9is~t. 

(iii) He can seo quito cl"c.rly fr()!n l':1.~n.'\~"o (a) o.nd (b) thc.t C,mtor 

has nono of tho formalist. tendency to identify r:1ather:1c.tical entities 

wi th tho notation for such enti tios. Thore is no indic'ltion that he 

.eo would subscribe to the Hilbortic.n dictum: 

• • 

Tho subjoct matter of m,'\thor:1Cltics is '" 
tho c:'l>ncroto oymbolo thnmoelvcB "hOBO 
structur~ is immediatoly olenr and 

. . 11 
I •. ' r.ocof,'nisnblo • 

"-. "-

11navid'Hilber:t,IIOn th'e .Infinite"- (192S)'i~Ul Bono.cerraf 
,. 

& HilarY PUtniun, od~~, Philoaonhy of N"th"mt\tics~: Solgcted Rettdi.nljS 

(New Jersoy, 19641. • 
., I, 

" ,. \ ,/; " 
,) 
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Or nF,ain, 

. " 
,; 

-. 

Thone numcric~l n~nbols which nre 
thorns" 1 ven our snb,iect m'lttor helve 
no nir.ni.fic:mce in them,!elvcs1? 

Nor c= such = idontificfition of sir.n and thin" simi.fied 

b~ found =ywhere else in his work. Horeover.:, in p~ss3.r:e (a) thero 

appears to be '" definite reference to mnther..,.ticnl enti tics ns 

existing not merely on papor but in our mind. In fact, they 

"modify, in a definite yay, th~ s;'bs·telnce.a.r our mind." I con-

clude, therefore, that the evidence for Cantor's vim; of mnthe-

matical entities as fornnlistic is very innde~u~te. 

Wo may now usk the nuestion: Is there ,uny cvidence to 

show that Cantor was an intuitionist? Did Cuntor ro,~rd mathe-

matic~ entitios in goneral und alephs in purticular as mind­

mdde onti Ues which we invent? Let us consider those passages, 

which might encourage us to view Cantor as a forerunner of 

Brouwer. 

First, there appoars the stutemen~from passage (b) 

oited above which runs " ••• me.them~tics is, in its develop­

\nent, q:ui te free. II This seems to nresl1.{;O Heytin/)'s later ro-. 

marko: 

The Intuitionist mathematician pro­
poses to do ma~hemati08 as' a natural. 

.J 
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, 
function of his inteH~ct, ;1.S '" fr~n, 
vital, activit:r of thour:ht. ",0" him, 
~th~nTticn i~ m production of the 

hum, mind 13. 

In s:tyinp; that tho"'<hwel. nmont of m;:lthnm"ti~s is "fren", C:mtor 

appoars to be spe~kinf; in"t'ho intui tionint spirit. 

'-'itain, ,>ro'-soo another resemblance botweeon Cnntor I s vinw of 

m"thnm"tic"l entities and that of the intuitionists, in that Centor 

frequently m~kes reforenc~ to the notion of mind in hie definitions • 
• 

Thue, in hie frunoun dofini tion of D. oet, he says: ' 

By an 'nr:llTog':'.to' we "re to under­
stand Mo' collection into" n ;rhole N 
of definito nnd nepc.rnteobjects m 
of our intuition or our thouITht1~ 

78 

Interontin"ly enouGh HO find :l reforcnco to t.he (j ntll ioni~t i c) notion 

of creatin,~ r:lthor th"n the (roalintic) r.~tion of dincovr.ri~,r: nunbers 

in his definition of tho first trcnsfinite ordin"l nUMber: 

If thoro is do fined .~y definite 
succession of ree.l inter:crs, of 
which thc~ is no eTen~~ t, on 
tho basis of this seco d prin-

cipln15 a now number is created which , 

13Arend Heytine:, liThe Intuitionist Foundations of Mathe~fosll 

in P:lul llenacerraf & Hilary Putn=, ods., PhllJ')Sonhy of H.~thematics:', 

Selected Readings (NeH Jersey, 1964). 

14(Cnntor, 1895, section 1, p~85). 

15This refors to the sncond principle of form"tion • 

• 



io dofinod ~o tho n~xt ~o~tor 
16 nUJ'1b'er to thom nll • 

Ar:ain, C;ln~o!' Days: 

It is ovon nor:nis8 j ", n /',0 think of 
, tho n(1wly crec.ted number no the 

limit to \{hich tho nUMhero 

strivo 17. 

Such .P~ODnr.oO nre deftnitely conceptu~lint_nD o~poDed to realiot 

in tono: in their talk of "creation of" r~thor than' of "discoverinc;" 
• 

cortain numbers and in their roforence to tho activity of tho 

mi.nd. 

Finall~-" wo M~y cite our ~tronr:oot ovidence for regarding 

Cantor as n prospectiv~ intuiti.onbt. Tn his dofinttiCln of car-

dinal numbor, ho nc.ys: 

We will call by ,tho name 'power' or 
, oardinal number' of 11 tho ,o:onor"l 
concept which, by moo.no of our :tctivo 
faculty 9f thou"ht, arise~Q~ __ 
aggrecat6--~! whIm \{Q I:nko. nbstre.ction-­
of tho nature of ito ve.rious elements 
m and of the order in which they aro 

18 givon • 

Thus it appoars th"t cardin"l number is. not something which e,xists 

• 
indopendently of the mind but is instead the result of n double 

16 Translated and quoted by P.E.B. Jourdain in his intro-

duotion of Cantor, 1895, p.57. 

17 . 6 Ibid.,: pp.5 -7 

18Ibid ., section I, p.86. 
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ClCt· of abstrClction pcrforTn!'d by tho Ijlind, Ar:ctin C.ctntor "ClyO: 

Since evC'ry ~inl':le ('l~mrnt m, if we 
nbet.rnct from itn n"turf', bC'co",cn n 
·'unit', the c1.rrlin .. tl numb~r M 

is a d!!finit!!c,r:r:ror:o.tc comno",,,1 of' 
unitn, itnd thio numbrr hao oxictrnr.r 
in onrmincl ao nn intcll!!ctunl imo.,r:e 
or proj!!ction of the. 'liven nl:r.rC'I':"t" 

1'119 , 

Here we oi-em to h".vo incont1:"ove-tibln !!vidf'n~r th"',t '" c",rdin"] 

number, ( both finito nnd infinitn) io nn "int!!llnctual imnr.o" 

for Cnntor,' Wo now recall Hoytin!;'u rem"l'!>: 

~, ( \ 

Evon if they ohould bo indnpond('nt 
df individual neto o·f thou.":ht, 
mathemo.ticltl ob,jeota ::>ro by I,h('i r very 
nature do!,ondent on hum,~.n thO"o:ht. 
ThC!ir oxiotonco 1 A """.-n'1trnd 0'11y 

in so fnr ns they ,,;tn be d!'t(,rl'lino'\ 
20 

by thouCht , 

So fnr, it oooms that we hnve very good ovidence for be-

Cnntor hold n cono!!ptnalist viow,l<ith r!!"nrd to cardinnl 

number (both finite nnd tranofini to),' Thil evidenco io clearly muon 

s~ronB"or th'tIl thnt for characterizin& h 1m no a formalist. Howover, 

apart from thovory explicit platonietio ritat.omonts which I ohalL 

soon cite, th!!r!! are othor roaoons to believe that tho conceptualiom 

is palor than at first sir,ht. Wo may ar~o, for ,inot~co, thRt 

Cnntor'o'roforonco8 to "mind". in hiD dofinitiono nro inosoontinl 

19Ibid ., ooction 1, p.86. 

,,~OA, Hoytinr; in ""tho Intuitioniot FOllnd,1.tiono of 11wthomatico" 

(1964, ~42) 
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inoofnr ',s they c:m bo omi ttee\ wi th"ut nny fornnl lonn. It tn 'lui to 

clonr thnt hio dofinition of n oot w"uId 1000 nothln~ in tho dnlotion 

of ro fet'oncC'o to cor,nit I vo procnnoon. AI;n!n, It mny bo :lTf:\lNI that 

nlthou.n:h \fO nrriv() nt tho n"Uon. of cardlnnl numt)nr by a doublo (tct 

of nbatrnction, thtn in vlowod by C'11ltor only ,',tl n dO[1crlptlon of 

certain nubjoctivo cor,ni tivo nrocen~C'n ~,hlch h'tppC'n to occur tn .our 

mlnd in tho fO'"!TlCttlon of tho concC'pt.,'Po ouppoo" tl",t ouch proconnon 

"dofino" n c,',rd innl numbor io akin to tho fallacy of "pnychclo/;lnm". 

I think thnt thoM objoctiono arc vnl tel rmd thnt Cantor nond not bo 

clnoood'no an intuitioniot. 

Finally, I como to connld~ tho no~ltlon knOlm v'trloll!11y 

,!!. nolof'iciom, ronH"m ,or plntonlnn. ,'or the 'nko nf cnnvnnlonrb, I , 
ohnll rofer'to tho pOQiticn horo1.ftor ItO "l'lntcnlnm"., rt In my con-

tonticn that tho ovid'mco io cvorwholmino:lY in favcur of our Hocribinp: 
~ 

, this pooi ticn tc Cnntcr. 'l'hUD I hopo to ohow thnt for CO,l\tor, m~f'-

~ mationl ontitioo and alopho in pnrticulnr oxiot indopondontly of 

the mind. To bop:in with, lot uo aitomptoomo furthor clarifioation 

as to whnt it io to bo n plntoniot, with rognrn to mathomaticnl 

ontitieo. Platoniom npponro to involvo two nspoctol 

(i) The Ontologionl Aspeot. 

As nlrondy, otntod,n platonist belioves that mnthomntical ontitioo 

somohow "oxist" independently of tho human mind. 

, 
• 



(u) Tho gpirJtOTnolot:i~"l Aoroet. 

.A,rlntoniot bol1nvon that wo "diocovor" r;,thor thrLn IcrO·'.to" nuch 

onti tieo. '.10 find n beautiful ntntnmont of I,hio in rTo!':o I 

Tho r:nor:r.'1.l'~or doon not erortto a "on 
whon ho drnwo bordor I ~ noo find flftyn: 
'!'ho l'"t't of tho ourfneo of tho oeonn 
dol1mttodby thono linnn, T .nm !'otnF( 
to cnll tho Yollow Son; and no moro 
onn tho mnthomnticinn rnnIly ero~to 

. 21 
nnythinF\ by hi" rtct"bf doftni tian' • 

Aefld.n, r'rop;o n(LYo: 

••• ovon tho mnthnmntici(Ln o[mnot 
oroato thinfOo rlt wnl, nny moro thrtn 
tho !\oor;t'fLphnr (In.n; ho too c,on only 
diocovor whrtt tn thoro nnd I;ivo it (L 

22 nfuno 

. I nhnll now cito tho ovidonoo for C'Lntod,m pln'oanlnm. Pi.rnt, r 

ohull cito paoongno from Cnntor'n work nnel lottor£'1!,"condly, 

pnonnr.OD from tho wQrk-af IrlB -COQ~~r:cry, I'To!;,,; thirdly, I 
•... ~ '. 

ohall rofor to connin Into nJ,notoonth contury controvoroioo . -r' . 
which nupport tho vinw "Y'Cnntor '1un pIn t.oniot I 

L~ 

'. 
" , 
, 
\'. , , 

21 . . 
Gottlob Froga, 9rlln~~2~.dor Arithml)tik, vo1.t, 

truno. P. Gonoh'&' Hruc BlaCk In Trnnnln.ttono from tho Philooonhion.l 

Wrltin~ of Gottlob FrnF\O (Oxford, 1970), 1'.145. 

22 Cottlob Fro(,;o, ~ FOllnchttnnn of Arithmntio, tr.nna. 

J.I,. 'Auatin (1111noin,196B), J'1'.107-B. 
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(~) Tn dl.",,·ionlnr, tho int/",o:orn, CO.ntor holdn t.hnm to hr. "rlCtwd" 

lnnofo.r nn thn "to.l~o 0. pct'foctly d"tnrmlnr·rj plae" 1n our 1In,lor-

. 
nto.nc\ lnr:," lIowov"r, ho r:on" ',on I 

Thun wo 
~~. 

. Wo mo.y ancrlbo flotunl1ty to thorn 
1n 'no fnr ao thny mllnl; bn hole\ to 
bo nn oxpronnion or fll1 10"",0;0 
(AbbUel) of pro"""nn" :me\ r01 -
ntiona 1n thn oUtor worlel, nn 

dtntlnl(lJ1nhnc\ from tho intolloot?3, 

nno"tho.t. Cant.or r:ono 'boyonrl thu oononptuo.ll nt ponl t.1 on 

tho.t tho Int/)I:orn oxlnt only in tho rnlnd, to th" p1ntonl·,t;l.n 

pooltton ~hat thoy oxlnt in m,r mlnd" only an·"lrnn.~nn" or "oonIn,," 

why thio nhoulel n'lt aloo nppJy to trrmnfl.n\l.o numb,.rn" 1101/, it .. 
nhoul c\ bo nto. tori, 0 r COllr!!O, t;hfl t by th I.n Co.n tnr eHe! nn t .bo 1 l,lYO 

th,\t uunh ,lmfLp;nn ""ro co·'ton of ,;omoth tn:: In t.ho onno I bl '1 wor.1 d 

- for to mn1ntc\tn thio woulrl bo po rllouoly no'Lr. to J ,S, ~Hll' a 

vinw of mnthomntioo IItn (LO nmp1rIonl no.ionco2~. No, for eemto.,., 

.numbor ooncopt,; In nr mind" nro imnr:on of nomb nupl'n-onnniblo 

23'l'rnno. P.l'l,B, Jourdrtin in (Cnnt",r, 18fl3(rt), Doction 8, 

pp. 54 5-591). 

24 ( J .S, Mill, fl'rntom of ]'01';10 ]'ondon, 1879), Bk.II, c.VI, 

[Jootir:mo 1-~; BY-.TIT t c.x:rrv, r:('cti.on 5. 

, . 
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:'5 .,.on1 i ty. flO thoy woro for PI ato' • 

(p ) In Hl£l4 C'tntor wroto fl lottDr to A. Schoonfllon, In ·"hl.eh ho ' 

nn.ldl 

An to ovorythinl> ol.n~ (OlCcopt tho 
nrt of ntylo nnr! tho oconomy of 
oxponition) thin in not My merit; 
with rOI~'7'r\ to th" cnntontn of my 

~
rch work T nm only a kind of 

;>6 
opor or nnd nocrotfLry • 

1I0.ro wo nno thnt Gnntor In fnr from rnl(flrriinp: hin wn"k nn tho 

"frno, vitnl nctivity of thotl.";ht" th".t t>. wn.n for 1I0ytinl~. An 

wo know from Cn.ntor'(J ro11I,:,loun oonvintinnrJ, it io llkoly thr,t 

he rogardod himon} f "n Go,l' n cocrotn.ry • 

. ( 6) An fL noto' to hin 1095 n.rHelo Cnntnr. wrOtol 

Nor do wo "ivo 1.r"lfI to tho intollect 
or to til Inl~n nccnrrll.nr: to our mm 
jude:nmont, hut. Uk" f"lthful nodhnn, 
thono 1 rJwn Hhlah 1.ro hnrn nn tho 
vOlco of n"turo l.toolf nod pro-

. 27 
olnirnod, ~/O tnko UTI ."nd rlnnc,,1.hn - • 

25Plnto, 'rho Rorn.tbl1o, tmno. F.M. Cornford (Now Yo-r.k, 1973), 

Bk.VI 509d-511~ • 

. 26QuotocJ. in Il footnoto by A.A. Frnonkol in Abntrn.ot. Bot 

Thoory (Amotordnm, 1968), p;80. 

27(C'lntor, 11\95, p.DS). 
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'rho"" tn "omn clU'fl"ulty hor" ror:"relinl: tho intorprob.tlon. of th,; 

"vat,," of ·nn.turn'" (nflturfl" VOC·'O). Howovor, I think th".t tho Jl'ont 

1 tkoly intornrotlltton 'in thflt Crmtor in. rofor,.tnl' to a nUl'r",-~"nnlblo 

worlc!. 

F\lrt.hnr oV.id"n,,;. for rOI(I,rdinl{' (;r1Oto1' rIll ~om"'l 

from rorna rkn rnado hy h in can tornporrlry, 1''rol':o. '[,hufI, in d i 0 euno tnr: 

C t }'- " I. - j I'" ,,?£j nn . or, . 1.-0(,;0 ~lrtyO: all r numuor --, ,0 :tfJ noun{ nf) c. or ) .. 

?'l 
Fro (':0 , f'.lrthnrmoro, all numhorn 'flro ""01 f-lIll rfie innt ov,loeln" 

For 

which may oxtnt Inlloponrlontly of tho mind. 'l'hlln for I"ro!:,! (.mll ho 

nonmn to J.mply th",t C.o.ntor wottld ,wron to ll]I.,,) Immhol'", hath 

finito (1Od t1'.1.nnfinito., ~ro to bn nl.1tonlnU.c1.11y "orcntv·"I. 

Finally, .wo wl.l) look at tho varloun controvornion (both 

mflthomatioal rind thoolor;ical) In whioh Cn.ntor W,1.0 ombroilod I 

26 
Gottlob F'ror,o, FOl1nrln.t ionn of Arl1hrr'" lli, nootionn 84-6. 

as! . 
. . Ibid.·, nootion 57. 
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. --.---, 

,0 . 
It i.n '1011-lmmm from biof':rnphlcrLl oourenn. that .Crlntor wnn on-

[;n[;o(\ far m.'tny yallr" in nn f'.crinaniolln· rllnput.a \Iith Y.rnn~ckot'. 

Tho iomlo Hhieh eoncorn~ un horo io tho nntaln::!:o"l ot:',tun of I 

numboro. Kranocko I' (,'1 fororunnor of lntt! 1 t ion inn), hn 1(1 tho Y low 

thnt "God nrtel(, tho nflturfl1 nunbarn, '11.11 tha ro"t io man'n hflltdi­

w(irk,,31. MlJ othor numboro, nccar'lin!: to Kronockor, ,,01'0 1000 

"ron1" thnn th" naturnl numboro, nnd nt'ltomontn nbout tho formnr 

ooulrl ba "rorlucod" to ntnt',nont.n nhout tho lilt tor. Now Cnntor 

oloarly rn,joctn thin phl.1000Tlhy. Tn 10[l3, ho not orily r;'tVO a elo'tr 

. 0 
oharnetar.l.'l.ntion of Kronnck~1:"(J vloHn,but ,'tlno ntnt0rl rIO naufllly 

luaid ropudintlon of thom32 : for hi.m, tho procon" of r0(\uct.lan 

wnn unnti'conon~" nlnco' n,l1 numbern worn "'>Irtlly rort1.. Tn thln 

eantrov.arny wa 000 tho nlntonint1.c '!or:l1to tho coneoptunllnt vl.O>I-

point. 

30I • Gratto.n-Guinooo, "'rawnrcln n lJiop,Tnphy af Gaor[; Crmtar", 

Annaln af Selonao, yo1.27, No.A (1971), 345-3,911 1'1.T. ]Joll, Mon of 

Ml\thnmlltl<lD (Now Yo:r.k,.1965), 0.29 • 

31 .' 
Nat, ta bo faund in' My af Kronoekor' 0 publirihod \"orkn, 

ninoo it eomno fram nn aftor-dinnor opnoch. .' 

3
2

(Cnntar, 1883(a), Doetian 8, pn.545-591). 
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;( P ) j'hdo 1 or'ieal Coni. rovor~ f 00. 

Lono ~/oll-known io Cnntor' 0 eontrovoroy. with tho mathomatieinn, 

Hormito •. Paradoxicnlly, Homito Wna both" l'laloniflt and nn antl.-

C'\nt.orirm, Bin ob,jnction to Cnntor wnn tho 

~'huo Poinc"r.( n"yo: 

PI.ouumPo 
r 

lloubtlnnrr boennno of. hin [llol"TTli to InJ 
roli~ioUD co~victlono h~ ennatrtprod 
it a kind of irlpiot,- to 'l1.n~o 
ponotrnto a dom.clln ~/hich Cod "lono 
ann ancnmp"na, with'out w·d.tin" 
for Hl.m to rovoal ito myotorion 

on<>', by 'on~ 3.3. 

of tho lattor. 

ThuD 1<0 000 th.1.t H"rmito nnoumnn Crmfor to bo n platontAt, 

thoueh n rathor 'Jo'nuotl.rm' ono, who obviouoly' ,mnto,l to oat of tho 

---troo of knowle,iff,o boforo hiu time. 'I'hin n.rC·tn" "'!3mlLln l io obvlotlOly 

.!L roforonoo to Cn.ntor'n thoory'of' tl'pnnffnito nrI+hrlotfc. Ho,,/pvor, 

Hom1.tl)' nood not h ... vo tnkon ouch ob.joetton, ninco Co.ntor \'Ino f"r 

moro modoot thnn thin. Por Cltntor, trCtnofl.nlto Itrith"mtic 1." ntill 

only n oyMbol of thcr' Ab!lolutol 

'l'ho nboolutoly 1.nfinito nMuonco of 
nnmborn thun oo')mD to mo to ho,. in n 
oortnin nonoo. n Duitnblo oymbol of 

tho AbDOlut0 34 • 

I concludo, thoro foro , thnt Cantor WM n pln.toniot in hiD v1.ow 'of 

ml1thomn.ticnl ontition in r,onornl and 1n hio viml of nlonhn in 

34quotod by P.E.E. Jourdain in hiD Introduotion to (Cantor, 

1895, p.62). " 
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parlicuL·.r. 'Phun, for Cantor, al"phn do llV\~f'tl ('xint. in aOJn0 

trannCf"nr\('nt r('cilm indf'1'"nricn I. 0 f hum~n mindn. 

l"lnally, Wf' mllot connidor tho ralation botwonn ~ho nxiom­

atizcd vornioa of tranofinito cardinTll fl~ithmotle (nn proc'onterl 

CCU1tor'n 1'lntonint1.c ponl tion. 

ization of, fl' artieul ar number cyotom nn a kinr 

of ontolor;icnl proof for, tho oxb ncn of th.'lt numhor nyntom7 Via 

havo ooon that, for tho formnlin , n conolotont axiomatic oyotom 

forma fl n'ocoooary and nufficinnt condition for tho ",:1nI;0nco of 

tho ontition which it imnlicitly definen. '.{o havo no ,ju!]tiflcatlon 

for beHovinr; tho Ollmo to bo truo for t.ho pllltonint. Ihthor wo 

mir;ht nfly that for tho platonint, tho con"iot."nc~' of n,n ax1.om:t1:ic 

oyotnm 10 a nocoootlry ( bitt not oltfficiont) condition for [\lIcribinp; 

oxintoneo to tho entitioo in q,\ootion. 

Now, wo havo ooon that in' tho paoaap;oo ci tod on 'p.74 

Cantor, at on'o timo, np1'on.ro to hnvn rop;ardod conoiotoncy 1\0 both 

n nooooonry and oufficiont eondition'for ootnbliching tho oxiotoneo 
. 

8A 

of n particul.'lr munbar oyoto". HOI;over, oinco thoro mny bo intornally 

oonoiotan.t but mutually incompatible numbar oyotomo, this cannot 

bo n ouffioiont condition for tho plntoniot. Wo .havo ooon thnt 

Cri.ntor. io a plntoniot and thn,t thoro foro conoiotoncy cnn only bo 

, a nocanonry conditIon fo'(' him. It mayba 'l,ueotionod no to whnt 

addl tiannl condition n plntonint Hould ron.utro in ordor to ootablioh\ 

n proof for tho Qxiotonco of a pnrticuln'(' ontity. Tho only oup;!\,ootion 

v' I 



, 
mnc10 b:r Cnntor i'1 thio renpoct concernn hir. reference (P.li'If)- to 

tho "cliotnt1.on" hy Coc1 of rJUch -mnthr·m'tticnl theorioa. HOI-/ovor, 

bno i dno the innx:lct it.u'\o of. ouch it crmd it ion, thoro romaine tho 

prohlem of °how ~in!,:\I\nh betwoon a dictato(\ an~\ a non-dictatod 

theory • 

Unfortunatoly, n" 110 havo ooon, ...,0 h!LVo -only boon nblo to 
r • 

r:ivo n rolativo nonointoncy proof --n.nd thnt only for n part of tho 
( , 

oyotom of oulophn.' 'rhuo wn h:wo boon \m'lblo to ootrtblioh ovon n 

nocooonry condItion fRr tho exlotnnco, of alepho (Which wouid rO~llire 
. ~~ ~ 

fin o.baoluto conolnLoncy proof): Wc mo.y draw the follm/inl\o two oon-

cluoiono: "i'rat, olnoo '-10 h'wo boon un"b1.c to ITl'lo nn° abaoluto o.on-

00 iatoncy prnof ovon of pnTt of tho n:~ntc<" of :\} "pha, thoro io 0. 

otronr: ~\Ioniclon thn.t nn "\Jaolnto conointor.r.y nroof of thn whalo 

oyotom io lmpooai\Jlo. Socondly, boon.uno of tho intrnctriblo mctn-

phyoicnl olemont which o.ttnchon to o.ny plrttonio\;ic proof for tho 

oxiotonco of 0. number nyotnm, thoro aoomn to bo n rndicnl dIfficulty: 

in oubotnntlntin6 Cnnto~lo claim thitt o.lopho oxiot. 

.-. 
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