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ABSTRACT
~ .

- N N ° -

1

In a pulsed radar system, due to the existence of incidental

-

frequency and amplitude modulation, the spectrum of ;he'transmttted.

Rthulsc mayhdeviate markedly from the ideal form. It is the

- purpose of this thesis to study the spectra of pulsed R¥ signals with

different forms of incidentél frequency modulation and amplitude

N

modul ation. : : \

r

.
L

The contribution of this thesis .may be summarized as follows:
(1) A phenomenological approach to tﬁe analysis of pulsed RF signals
. ) ' . 2

contadning inciden;al‘modulicion has been dcuelopgd using the Fast

SN
Fouricer transform method.
' ) 3

(2) A féirly general analytical formula has been developed for the, .

! L

pulsed RF spectra, using the convolution integral.

(3) A real-time experimenfalﬁi}mu{ation of pulsed signals yith

incidental modulation has be? successfhlly designed to measure the

pulsed RFlspectra.

" | '
lose agreementé between the results of these three approaches

-
.

has beén demonstrated.
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. CHAPTER 1 . ' ks
'S . . g
. INTRODUCTION
1-1  MOTIVATION" ’
The specfrum of a signal is 'an iwmportant indication of the

ransmitter performagce in a radar. or communication system. For

- . J,
example, for a gular pulse of width T and unit-amplitude, the

spectrum is of the form

T= pulse wigth
In a pulsed radar 'system, thgitrﬂggpitted RF pulse should ideally be
of constant amplitude and constant frequency. However, due to the
existence of incidentallfrequen;y and amplitude moduiation,.the
spectrum may deviate markedl} Erom the ideal. The incidental.
modulation characteristics are different fo ifferenﬁ transmitters,
At is the purpose of this thésis to study the spegtra of vérious kinds

of pulsed RF signals. that have incidental freququ modulation and

iﬁcidental amplitude modulation.
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1-2  APFROACHES - X4 A .
Three approaches are taken in the study !

"~ - -

(a) FFT Approach : Because of the tedious mathematics
‘  involved in taking the Fourier érahsforﬁ of a pulsea;signal, even for
a ‘sipple modulating waveform, the first approach taken is the
phenomenological approéch. A numerical computation technique known as
the Fast Fourier transform (?FTi is used to comrute the spectra of a

few pulseé with simple, medulating waveforms. . Bj-changing'the prrameters

l

— _ ' X
\\ ~

~

of the wodulating pulse, imsight 1s‘aeveloped into the resulting spectra:

.

(b), Analytical Apﬁroaéh ™\ Various Fourier transform techniques

are used to try to obtain a closed form mathematical solution to the -

-

Fourier transform of a pulsed signal. .

{c) Measurement : -This approach involves measuring the

spectrum using a spectrum analyzer. This provides a check on the

”

numerical or analytical resuitﬂ ' .

,%-3 APPLICATION

. ‘ " -
In radar, signal processing, a magnetron is used to generate

the pulsed RF signal. A high voltage pulse is fed as an input‘to
the magnetron and ideally a constant frequency and constant magnitude

pulse is emitted: at the output. This frequency is the resomant

o
4
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frequency of the magnetron. The high voltage pulse is usudlly very

. - - !
- short in time duration, in the order of a micro-second or so. In a

-

practical systgm, we have a {inite yise and fall time for the

¥ . .
resonatioch of the magnetron, and consequently, the output will not

be a p?rfectly coﬁstant amplituée and constant frequency pulse. 1In
order to fully understand tﬁc-épectrum of the pﬁiée produécq by a
magnetron, the résognting:characferi&tics should Bc meagured., The
quésg}ou is what kind_of\fréqucncy and amplitude rcsponse can he

expccted from the magnetron as a result of a certain given wave-shape

*

of an input voltage pulse and a given operating environment. Indecd,

much rescarch has to be done in this particular are%. This resonant
I

chardctcriqtic partly depends on the pﬁshing figure and pulling

figure of the magnetron us¢d. The pushing f}gure is the junstantancous

“frequency change in MHz. per aﬁpere chahge in peak DC current at

)

constant load. It ma§ be obtained by measuring the frequency shift

on a spectrum analyzer as the pulse current,is'changed by a known ~
o !
amount. The pulling figure denotes the variation of the resonant:

frequency with the variation of the load to the magnetron. We thus

find that different magnetfons, operat%ng under different conditions,

prbducé,totaily different incidental frequency modulation and -

incidental amplitude modulation.

-
-

Sometimes it may be desirable to purposely crcate a non-

symmetric spectrum by introducipg frequency modulation in the pulse.

L

\
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The 51oelobes of one side of. the spectrum would be lowared as
sin {x)
X

may be allocatei within a fixed frequency band, because the
f

inter—channel interference is reduced.

compared with the symmetric

spectrun. More channels

1-4  STRUCTURE OF .THE THESIS

The study of pulse spectra is de§cribed in £dur'$eperate

chapters. Chapter 2 is op some general properties of pulse spectra. -

Chapter 3 is on the phenomenological approach of analysis using the

Fast Fourier transform technique. Four different shapes of modulating
pulses are considered. These are the trapezoidal, exponential

-

sinusoidal and modified gau951an wave-shape.
1
Chapter 4 is-on the enalytical approach to the problem. Two
ways of computing the Fourier transform are described. Section 4-1
. | ] .
describes the method using the convolution techniques. A general

fornula is developéd that can compute the spectrum analytically.

The requireﬁents for using this method are the analytical formula f

of the Fotr%sr transform of the amplitude modulating pulse, ani the
Fourier%series representation of the frequency modulating pulse.
Section 4-2 describes the meqhod using direct integration. Only a

limited number of cases are considered using this method, betause

- of the mathematical complexity. The tables for Presnel'Integrai and -

 Bessel functiocn have to be referred to for some of the formulae

b RN



contalned 1n chapter 4.

Chapter 5 is oun the description ¢f the experiment used to
analyze the pulse spectra, Two modulating waveforms are acquired
simultaneously from the CDC. 1700 digital computerl They are used as
the alxl;\litude modulating and the frequency modulating pulses,
respectively. The spectzgm is measured using a spccgrum analyzer.
The experimental, results appear to agree very well with the

theoretical results.,

4
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CHAPTER 2 v

PROPERTIES OF-PULSED RF SPECTRA

[
Y

In this chapter some pertinent properties of pulse spectra

= '
will be considered. These properties hold true for genceral modulating

pulses. However we shall begin by briéflk‘rcviewing the pre-envelope

function representation of a modulated s&gnul.

v

2-1 THE_PRE-ENVELOPE SIGNAL

0y

The pre-envelope function representation of an amplitude and

frequency modulated pulse can be wfitteﬁ’ns [1]

p(t) = A(r) e

where p(t).

Taking the Fourier transform of the pre—envélope function, one obtains,

S(f) =

]

A(t)

g(t)
]
c

T

A(t) e

n

j2n[fct +’I g (x)dx]

amplithde modulation

t ‘ , £

jzn[fc t + J g(x)dx] >

0 ' T .. (2.1)

1~

pre—envelope function or 'complex waveform

representation of the signal

frequency modulation
carrier frequency

pulse duraticon

-

t

0 e—j2nft dt

Py

4

S
-



o t
j2ﬂ[ g (x)dx -
$(f) = I AL) ¢ 0 ed2nE7 4 (2.2)
where £ = f-f ‘ .

[

We have assumed that the bandwidth of the spectrum is small compared
4o -

to L,
c

Fquation (2.2). implies that the annlysis of the pulsed qibuzl
can be dnne using a baseband signal wiLh amplitude mudulation A(L)
and [requency mndulntiun g(t), Effcctively this is cquivalent to
shifting the origin of the spECCrﬁm graph from the point f=0. to
rf_ . o .
)

2-2 PROPERTIES OF PULSED RF SPECTRA

o

'he following properties can be deduced from louking at the
Fourjer trnns}orm of the signnl The waveshape of the modulating
pulse can be of any form.

: ¢
Property A - ) .

A signal with frequency modqlation gl(t).and amélitqde.
modulation Al(t) would have the Bape spectrum as another signal with
gz(t) and Az(t) as the frequency mod?lation and amplitude modulation
rcspcctiv‘c;ly,‘ with ' *

g, (t) = g, (T-t) | o (2.3)



Al(t) = AZ(T-c)

where T= pulse period (Refer to Fig. 2.1)

(2.4)

This property will be used extensivelgﬁin the subsequent sections of

the analysis.

~

Proof
We have to prove : |Sl(f)| = LSz(f)[
‘ t
. oo jZn[ g, (x)dx _
where Sl(f) ] [ Al(t) e 0 1 e j2ufe de
® t
o jZWI g,(x)dx  _
5,(£) = [ A0y e o 2 o320 gy
Now let ‘v= —xtT
Hence T :
: o j2n J g, (T-v)dv ., ..
5, (£) = I A, (t) e T-t 2 e 32mEE 4
v Y Y
Trt :
t @ _jan ) g (V)dV —i2nft
=¢1LA2(t)e o e P g
T *
o jZHJ ‘gz(T—v)dv
where ¢ )= e 0
Next let wu = T-t ‘ - -

u
-3j2n I-gl(v)dv

0 ejanu du

Hence Sz(f) = 4o J AZ(T—u) e

-3§27£T
where ¢» = $e Jem

(2.5)

e.0"

(2.7)

(2.8)

(2.9)



A b
AZ(t) f l\
*-E"' I ;———) >t
a
&'.Z(t)W :
|
va-—*
AL
§
l
: ,,,;;t
T T
2
At
8, (t)
M-k\
L
& -
e
A, (©)
Ak
— 4 3 t
A
k



‘ v “10
u ‘ ’ ;
Thus, [8,(D)] = I [mAl(u) e -JZn/JO gl(v?dvejz“fg N \
Now |Sz(f)| = |Conjugate ;f Sz(f)]
- [ o . ‘
) I.I A W) e P i d”l
= s} ) | , ' Q.E.D.
~ .
Property B ! \ . ‘ - i

When the frequency modulation is odd symmetric ;bout the

centre of the frequency deviation BM/2 , and the amplitude. modulation

!

Is cven symmetric about the widdle of the pulse T/2 , the spectrum
will be symmetric about the frequencwac+BH/2. This 1is oth a

sufficient condition for a spectrum to be symmetric. An example is

-
-

given in Fig. 2.2.
Proof

Let AM and FM of the signal be represented by A(t) and g(t) respectively,

and y : o -
ACe+ 3) = B(D). | @.10)
T _ -
g(t+ 2 } = h(t) _ (2.11)
B(t) = B(-t) | (2.12)
' 2.13
h(t) - %‘- = —[h(~t) -~ ﬁ’zi] ( )

Here we assume the signal is at baseband. .



11
t f - -
w© jzﬂj g(x)dx 9uf
Hence -S(f) LA(t) e Jo e 34IE 4y (2.14)
»Now let t=utt and x=v+r .
L% .o . ) )
Hence o n
: ‘ j2n (vt ddv fw " 2n (v+r-)d
-j2nft 3 [ g v g t-)dv 3
S(f) = e,j nf 0 e . to i [ “A(utt de o o e j2nfu du
v o ° !
. . - u
il jZﬂJ g{vit )dv -
and |S(f)] = [m\A(u+to) e ) ° e 327t 4y
) B \ vt R
r ijI gxtt Jdx _
= E ’\ff”o) e ‘o o oIt 4 - (2.15)

This proves time shiftipg a signaﬂcglh a fixed delay does not“alter
: o .
the magnitude of the Fourier transform. Now if to = T/2 and

substitute eqt. (2.10) and (2.11) in (2.15) , we have

-’

| . ,
. o jZH[ h{x)dx _ :
Iste)] = [L B(t) e g e 2Lt 4

. o
jz“l G- F1dx -i2nfe

|s(£+ B—’Z*)I = ”: B(t) e o dtl

t BM. . )
- jZnJ‘ h()- Byax
5 B | =|[ B) e Jo . 2 el

2

de| .
R L !

_/ '

Now let wu=-t and v= =x

v o BM . .
) -jZn[ h(-v)- =) dv o o
Hence |S(-f+ Eg)l = [m B(~u) e o -2 o J2miu d“l

-~

u ¢

X BM
o 2 J hiv)- =] dv _
- [- B(u) ej " o [ 2 e j2nfu dul

. .
. ’ -
, .
‘ . . : ‘ ’
o [
. . ,
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This proves IS(-f+ 2%)’ = ’S(f+ Eg)‘ : L
Thus, [S(£)| is symmetric about -'% . ' " Q.E.D.

. ‘ s . ]
Property C :

The pulse with gl(t) and Al(t) as the frequencx modulation

and ampligude modulation Tespectively, will havé the saﬂé spectrum
]

» - 3 )
waveform as the pulse with gz(t) and AZ(t) as the frequency modulation

and amplitude modulation, with

h ]

L

Al(t) = E'Az(u) .. (2.16) -
L g(e) = L g () ' o 2

By X B2 | ' (2.17)

u =£ o S (2.18)

'k = constant

Af(t)‘= o . for t<0 and T<t
A (t) =0 for t<0 and I<t ’
2 ‘ ST S k

T = pulse duration

An example is given in Fié: 2:3..,

-

-

. The frequency scale should be expanded by a facter of K in
ofder to obtain the same scale._ Using this'prOper;y, T can be

normalized to be unity.” This leaves only the maximum deviation

(BM or AF) to_be the "parameter that changes the T-AF product.

»

N
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Proof { >
T h J H = r
o show _ Sl(f) Sz(f_k) :
h ‘ |
where ) : j2n J g, (x)dx
- s
Sl(f) f [mAl(t) e 0 1 e j2nfe dt (2.19)
N t
. w j2n J g, (x)dx -
5,(6) = LAZ(!:). e o 2 A2 4o 220y
Substitute eqt. (2.16), (2.17) and (2.18) into (2.19).Y -
Hence " ' uy r
o 27 | — g.(wWdu-k
1 h| I g s
S;(f) = [;E Az(u) e ok 2 . e‘Jznfku k du
u .
= j2n J B, (u)du .
Lo J Az(u) e o 2 e jan%P du
, u ‘ _
© j2n I g, {u)du ~ -
Si(f/k) = [ Az(u) e ‘o 2 e j?nfu du
= Sz(f) .
or Sl(f) ‘= S, (k- f) Q.E.D.
Progcrtx'D £

The' total- area under the spectrum representing the square

root of the total power, remain

pulse, as long as the amplitude modu

This means that the total average powe
L

of frequency modulation so long as the

fixed.

changed for any.frequency modulating

ing’ pulse remains constant.
is inﬁqriant under the change

plitudé modulation is kept'

L



Proof \

o o - 2
fo show : E= [S(E)|” df
- !

= congtant for a fixed A(t)
where E = total power of the signal

S(f)= Fourler transform of signal s(t)
= 'Ims(t) e“j?"ft dt

g
s 12x I g(x)dx
A(t) e s

s(t)

A(t) = amplitude modulation

‘ g(t) frequency modulation

* Hence

E = [ [m a(u) e J2mEU 44 [w s*(v) etI2MEV 4y df .

a

where s*(t) deﬁotes‘complex_conjugate of s(t)

Now |
E =[ s (w) s*(v) du dv [ 2w
oo -
- | I s (u) B*(v) du dv ﬁ(u—v) |
d ) .- ({
= [ IB(U)Iz,du ~ ' .
- [ a1 de .

a constant for a fixed A(t) ' Q.E.D.
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CHAPTER 3

SPECTRAL ANALYSIS USING
THE FAST FOURLER TRANSFORM METHOD

The Fast Fourler transform- (FFT) method {2] provides the
B * . -/ .
fastest numerical techhique that is available for spectral analysis,

- " \.“. ‘
In this chapter the FFT method is used in the analysis of pulsed
signal spectra . The waveforms of the ﬁodulating pulse used are of

trapezoldal, exponential, sinusoidal and modified gaussian wave

shapes.

NOTE

A% depicted in the diagrams to.follow, .the. pulse waveforms
on the top are the modulating pulses. The le{t one is the frequdncy
modulatiné pulse and the right one 1is the amplitude wmodulating
" pulse. Different séecﬁrum graphs are stackéd on top of each other to
contrast the change i; shape of.the spectrum after a parameter is

incremented. The parameter changed is printed on the side of each

spectrum,

~

LY

3-1 TRAPEZOIDAL MODULATING PULSE
The mathematical representation for a trap2zoidal amplitude
médulating pulse is :

A(t) = 0 h . © for t<0 , T<t

2

15



t
A(t)= =
(t)= 5
=1
= It
B2
where A2
B2
T

16

0§t<A2 .

A2gtsT-B2

T-B2<t<T (3.1)

rise time of the pulse

= fall time of the pulse . ’

= pulse width normalized to be 1

.The mathematical representa;ion for a trapezoidal frequency

’

" modulating pulse is :

g(t) =0

Il
=]
=

I

where

BM

Al

Bl

" . .
t<0, Tst

t e
Al 0<t<Al
‘ Al<t<T-Bl
(T-t) ¢ : .
Bl T-Bl<t<T - (3.2)
A ) ' ,

= maximum frequency deviation

I

rise time of the ﬁulse

It

fall time of the pulse

[

In Fig. 3.1, the pulse has trapezoidal amplitude modulation

and no’ frequency modulation (BM=0). The resulting spectrum is

syametric no matter how the pafameter A2, the rise time, is varied.

The rest of the parameters remain. constant with the values as shown.

on the figure. It can be observed that when A2 increaées, the

LY

side-lcbe geveis decrease at an increasing rate. The main-lobe also

-

[



Magnitude of Foufier transform
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Fig. 3.1 Rect. FM and Trap. AM,. T=1, B2=033

]
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Normalized frequency




18

") - ) : A

decreases but at a slower rdte . The effect of spectrum,brondeﬁing

\

is symmetric on both sides of the RF frequency.

, &

<

fn Fig. 3.2, 3.3 and 3.4, the signal considered ié frequency
modul ated by a trapezoidal pulse and amplitude modulated by a
rectangular pulse, Tho only parémeter that is ;ariéd in each
fiéure is the rise time Al of the frequency modulating pulse. It is
observed that the spectrum becomes increasingly asymmetrical with
increasing Al. We see that the main. lobe decréaées in height while

the lower side lobes increase. Also, the position of the main
lobe shifts to a lower frequeﬁcy. When the frequency modulating
[

.

pulse becomes more asymmetrical, one can also observe, both in

Fig. 3.2 and ﬂ.3,fthat the locgl minima at frhe lower frequency range

of the spectrum rise from the zero point to some non-zero value,.

-

This phenomenon becomes more pronounced whgp the frequency modulating

pulse bhecomes more asymmetrical. It should be noted that the area

under the spectrum appears to have a constant value. Also the cases,

when Bl=0.1 with Al=0.5 on Fig.3.2, and Bl=0.5 with Al=0.1 on

Fig. 3;3, do qctually give.rise to the  same spectrum. These gwo\\\

8

examples verify properties D and A, respecti&ely.

These phenomena can be explained by considering the
distribution of gnergy in the moduléted-pulse. When Al increases, a
dedcased portion. of the modulated pulse is maintained at the constant

!
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AM, T=1, BM=3.5, Bl=0,1

Trap. FM and Rect.

Fig. 3.2
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]

f:jquuncy BM. Accordingly, ‘the main-lobe of the spectrum; which is
situated near the maxlmum‘frequency deviation BM=3.5, Jccfcnnes in
magnitude. The reduction in the energy of thé main-lobe is
compensated py an increase iu-the level {and therefore egergy) of
the Tower side-lobe. The rise in height of the local minima as the
ffcquoury modulating pulse becomes more asymmetrical, wlli be
explatned In gcction 4.2, using thé'anulyticnl approach.
i
T

}n Figs. 3.5,3.6 and 3.7, three different trapezoidal pulses
are used to medulate the frequency and amplitude of thc Jagnnl. The
wnly parameter that is var!%d in each figure 1is A2, the rise time
of the amplitude modulating pulse. The same phenomena that were
observed previously can also be seen in these figures, However, we
observe that as A2 increases, the lower side-lobes decrease in
height at ‘a faster rate than the main-lobe. This is due to the
increasing attenuation, on tha rising edge of the modulated pulse.
Comparing the top épectra in Figs. 3.5 to 3.7 which correspond to
mqintaining the rise time AZ constant at Oll‘gnd 1ncrcasiné the
fall time B2, we observe that the height of the lower side-lobe
decreases at a faster rate than the main-lobe,

When we compare the spectra in Figs. 3.5 to 3.7 with those

in Figs. 3.2 to 3.4, we observe that the main-lobe positions, in the

spectra of the first set of figures, are located closer to the peak

z
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Fig. 3.6 Trap. FM and Trap. AM, T=1,BM=3.5,A1=0.17,B1=0.33,52=0. 33
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frequency deviation than the spectra in the second set of figures.

‘The side-lobe levels also decreases significfently.

In Figs. 3.8 and 3.9, the signal .is frequency modulated by a
trapezoidal pulse. However, éhe signal in Fig. 3;8 is amplitude
modulated by a rectangular pulse, és distinct from the trapezoldal
pulse used in Fig. 3.9. The ﬁarying parameter in both figures ié‘thc .
maximum frequency deviation. ¥n\both casea, we observe thelphenomenon
of spectrum broadening. -Howev;r, because of the-linear attenuation in
the rising aqd falling edges 6f th amplitude modulating pulse in
Fig. 3.9, the sideglobe levels in_Fig. 3.9 are lower than the

carrdsponding one 1in Fig., 3.8. This phenomenon of spectrum

broadening will be treated analytically in section 4.2. ‘ ,ﬁy

In Fig. 3,10, the amplitude modulating pulse is kept fixed
with a rectangular wavegorm. In Fig. 3.11; the Amplitude mﬁdulacing
pulse ié of the same éhape as the frequency modulating pulse. ;n'
both cases, the waﬁesbape of the frequency modulating puise is varied
from a symmetric one about T/2 to an asfmmetriﬁ one abqut T/2.

%he corresponding spectra, as shown in these figures, deponstrate that
the le;els of the local minima of the spectra increase when the

frequency modulating pulse or the amplitude modulating.gulse or both

Itrt
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Fig. 3.9 Trap. FM and Trap. AM, T=1,Al=0.17,Bl=0.33,A2=0,17,B2=0.33
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become more asymmetrical with respect to the mid-point (T/2) of the

pulse.
. . ' .
33 EXPONENTIAL MODULATING PULSE L ' '
‘The mathematical represenﬁation of an exponential amplitude
modulating pulse is as follows : o
A(E):-=0 - | when t<0, T<t
I N .  0cteA2 '
—C2 A2 -
l-e.
w1 ’ . A2.t.T-B2 --
. e ETD) T-B2Sr<T (3.3)
e K282 7 , '

g

where A2 = rige time
B2 = fall time

T = pulse width ' , ]

Y
'

exponential rise comstant
K2 = exponential fall constant

-

Similarly the mathematical representation of an exponential

frequency modulating pulse is :

g(t) = 0 ; wvhen <0, Tet
. ~Cl-t e
1~-e ' ' 0=tzAl
- BY ————— : i -
i 1-e—CLAL- :

-

- BM | ; o Alce<T-Bl -
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Fig. .3.12 Rect. FM and Exp. AM, T=1,A2=B2%0.45,K2=10
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Fig. 3.16 Exp.\,FH and Rect. AM, T=1,AlmBl=0,33,C1=10,K1u6

I
.

(=T LI O - . -]

O N - & @

Magnitude of Fourier transform

[ T I
&sH

.2

-~

S — e

36

1 ) W= B0
-6. -3 0. 3. 6 S
Normalized frequency:
?#4r~f-



37

Fig. 3.17 Exp..FM and Exp. AM, T-_l,_A,lfAz-_nB_l-BZBO,5“(;1-(;2;[(1..\1(2.11_
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e 1-e €1 "(I-0) when T-Bl<r<T
g(t) = BM —— 00 St .
~C1-B1
l1-e . (3.4)
&
where Al = rise time
Bl = fall time ’ [
Cl = exponential rise constant
Kl'-'exponential fall constaat )
{ . L -
;

In Figs. 3.12 to 3.17, the signals are modulated by exponential
pulses and rectangular pulses as shown on the top of each.figure. The
various kinds of phenomena that were observed ‘in Fiés. 3.1 to 3.11 on

signals modulated by a trapezoidal pulse are also observed in Figs.

3.12 to 3.17.-

3-4 SINUSOIDAL MODULATING PULSE

N

Mathematjcal representation for a sinusoidal amplitude

modulating pulse is as follgus :

A(t) -'0\ - when t<0, T<t
[ = sin (nt/T) "t 0gteT (3.5)

Siéilarly, the mathematical representation for a sinusoidal

frequency modulating pulse s :

g{t) =0 ' - when .t<0, T<t
.- sithutlT) . 0<t<T ' (3.6)

- . ~
-

-~
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Fig., 3.19 Sin. FM and Sin. AM, T=l A
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where T = pulse width normalized. to unity. ~
, g
BM = maximum frequency deviation,

In Figs. 3.18 and 5.19, the pulses are modulated in frequency
by a sinusoidal pulse. In Fig. 3.18, the amplitude moduléting pulse
.ia of rectangular waveshape,-uhéreés 1n‘Fig. 3.19, the amplitude

.'modulating pulse is of sinusoidal waveshape. The varying ﬁarameter
is the maximum frequency deviation BM. When BM inérea;es, the
pheﬁomenon of spectrum broadening, similar to that observed previously,
do reoccur. Howevér in Figs. 3.18 and 3.i9, we observe thatythe main—-
1obehis 10cated;fd;thef away. from the maximum frequency‘deviation.

Thé phenbmena of increaﬁing side-lobes as Bﬁ.increases, ;nd the

loweriﬁg of side-lobes with,fhe application‘of the sinusoidal amplitude

modulation can also be observed here.
¢

.
!
)

3-5 MODIFIEﬁ GAUSSTAN MODULATiNG FULSE

.j.

The mathematical representation of the modified gaussian

éﬁplitude modulating pulse is as follows :

A(t) =0 when 't<0, T<t
: w2 2 o ’ '
) . -K2(t- %} %2 %‘ —~ o
2 : . T
é‘ -Kz % - - . 1
l-e

where. K2 = the constant that determines the shape of the pulse.
LY “

The maximum amplitude of the pulse 18 normalized to unity.
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Similarly, 2?& mathematical representation of the modified
gaussian frequency modulating pulée is
g(t) =0 _ ) when t<0, T<t }
Il .‘ 2 . . . 2 :
~K1(t- 5 K17 |
. - BM e - e 2 Oatf-'r. . (3.8)
' ~ =Kl %
l-e -
-where Kl = the constant that determines the shape of the pulse &

" —

BM = the maximum frequency deviation.
o

. . . \
In Figs. 3.20 to 3,24, the pulse is frequency modulated\gi\

a modified §aussian pulse, and amplitude modulated by elither a

#

rectangular pulse or another modified gadasian pulse. The gaussian

\

puI%e is modified such that the pulse has zero magnigaaé when t=0
_  and t=T. The‘various phenomena .that were mentioned'previously can bg

. observed hére too. Howeve;, we now see that the Yower side-lobe
ibe;omes comparable in heigHtAwith the main lobq or even larger in
-geight. Such a behaviour occurs in Fig. 3.21, when'the frequency
modulating pulse behaves more like an impulse  (when K1>25 in Fig." 3.21),
and in Fig. 3.23, when thé maximum frequency -deviation is large. The
phenomenoﬁ‘of shifting in location of the‘main-lobe tb the léwer
frequencf, wﬁen the rise time and fall timg-df the frequency‘
modulating pulse increases, can also be ob;erQed in Figg. 3.20 tﬁ‘ ,
. - : .

3.24, This phenomenon is, however, more pronounced here{ because

. o . . k .
the rigse time and fall time are quite long compared with those used

in the other frequency modulating pulses considered earlier. The
-t

“+
*

0 .
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Pig. 3.20 Rect. FM and Modified Gaussian AM, T=1
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Fig. 3.21 Modified Gaussian FM and Rect. AM, T=1,BM=3.5
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Fig. 3.22 Modified Gaussian-FM and AM, T=1,BM=3.5,Ki=10
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Fig. 3.23 Modified Gaussian FM and Rect. AM, T=1,Kl=i0 -
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Fig. 3.24 Modified Gaussian FM and AM, T=],K1=K2=15
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spectrum also can be observed to have a wide main lobe when the

amplitude modulating pulse has a narrow half power pulse width. This
is because of the fact that a narrower pulse in the time domain
corresponds to a wide spectrum in the frequency domain.

-

3—6- SUMMARY OF THE PHENOMENA OBSERVED

The variOus phenomeha exhibited by the_spectfa in Figs. 3.1
to 3.24 may be summarized as fo11ows :

(1) The spectra for RF pulses without frequency hodulétion are always
symmetrical. The attenuation at the rising and éalling edées of

_ fhe pulse-lcwers the side-lobe leve}s at a faster rate than the
main-lobe level, (sec.Figﬁ. 3.1, 3.;5 and 3.20) | i

(2) An RF‘signai that is frquency modulated byla pulse with a risiug
and falling edge has an asymmetric spectrum, The degree of this
asymmetTy becomes more pronounced as the fising edge or falling
edge or both increase in duration. ({see Figs. 3.2 to 3i4)

(3) When the RF pulse ¢ith frequency modulation is éﬁplitude modulated
by a trapezoidal, exponential; sinusoidal or modified gaussian‘
phlse;dgge side-lobe levels’ are reduced, and the ‘main-lobe is
broadened. (see Figs;‘3.5'to 3.7 , Figs. 3.14 to 3.15, Figs. 3.19
and 3.22) ‘

(4) When- the f;equency modulating and amplitude modulatfng pulses are
both symmet;ic about the’ mid-point of the pulse,lche local minima

of the spectra at the lower frequency range are at zero. (see

Fig. 3.2, 3.3, 3.10, 3.13 to 3.15 and 3.21 to 3.24)

~
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(%) Whan the frequency modulating or amplitude modulating puléa baconaa
- 1 N . f
asymmatric about the mid-point of the pulse, the local -minima of the

pulae rise in level while the main-lobe leval dacroancs. (wea Figs.

3.2, 3.3 and 3;10)

n

(6) Aw the maximufh lrequancy deviation increases the apactrum broadens-
to thé right, while tha.loﬁer aida-lohas incraasa in leovel, (naﬁ

. Flgs. 3.8, 3.9,°3.16, 3,17, 3.18, 3.23-and 3.24)

-

(n wheh the frequency modulating pulse is narrow, the lowqr sida-lobe

H

lavela taend to be as large as the main-lobe or even' largar. (ses

Figs. 3.21) - . -

)
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CHAPTER 4

ANALYTICAL APPROACH

In this chapt;r, the analyéical approach 1is used in the
analysis of pulsed RF spectra. The maqbemhticél iachnique applied to
the spectral analysis of pulsed signals was described in the paper
by Cumming [3], in which the pulsed signal with AH/PM conversiou is
cousidered. Cumming congidered signals with a symmetric gauaaian
'éﬁvelope. The 1ncidenta1 frequency modulation ia odd aymmecric about
thé c;trier frequency. This means the spectra considered are sympmetric
as stated in property B ih'chaper 2. However, the only'case of
interest 1n [3] is when the phase deviation 1s smaller than unity and
ic is plausible to use the aeries repreaentation of ej¢(t)

i.e'. jeb(t)

= 1+ 34(0) - :

L]

A recent paper by Brookher and Bonneau [4] compared this method with

_the disgrete Fourier transform technique. The result was quite

satisfactory when maximum phase deviation is less than or equal to
ﬁ .
unity.  For the case of large phase deviation this wethod ‘will no
longer hold true, P ‘, ' . o
In this chapter two.analytical techniques are considered. No
rcstriction is imposed on the magnitude of the maximum phase deviation

or frequency deviation. 'f

50
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4-1  CONVOLUTION APPROACH

. -
The convolution theorem [S] may be stated as follows B

F [Lx(v) y(t-v) dv] = X(£) Y(£) 4.1y

or F [x(t) y(t)] = L X(v) Y(f-v) dv (4.2)

where F denotes the "Fourfgi'transform of" .
and X(f) = F [x(t)] . _ \

1

Y(£) = F {y(t)] -

. /
Now fjrom eqt. (2.2), the ﬁLu;ier,transform of a pulsed signal,

with amplifude modulation A(t) an& Frequency modulation g(q), is

t
® jZnJ g{x)dx _
_A(‘t) e o e jzﬂft dt ) (4.3)
) "
Define M(f) = F [A(t)] )
T . \
\|
and T = pulge width _ ' : , \\

Next, we use the well known property that time shifting a pulsed signal
would neither.alter‘ita power spectrum qor ﬁheumagnitpde of its

Fourier transform Thus, without loss of generality we shall assume

oo

.A(t) and g{t) to have already been time shifted by -T/2. Now expressing

g(t) as a odic waveform p(tj as-f% logs :
h .

.5)

)\i—]

L.

T
p(t+nT) = g(t) for —gxtss

TN

/ “here n-o' tl. 12' l’....‘..

-
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The Fourier series representation of p(t) is

- Zat ),y 2mt
P(O) = ) 2y cos ( ?‘:,Elb stn (=) (4.6)

whe.re an and bn are Fourier series coefficients. Now because

t t ‘
24 j g(x)dx jZnJ p(x)dx
A(t) e o = A(r) e o (4.7)
' ) | :

{ A(t) = 0 for t;% and t;?’%)

Therefore we only have to find the Fourier transform of .

: /
t ' f;
j24 Ip(x)dx \_
e

o

and then couvolve it with F [A(t)] to obtain the desired spectrum S(f).

-

t
j2 Tl'l p(x)dx
Substituting eqt.” (4.6) into e , we obtain

"N

t _ t = m e
2 x Jp(x)d;y 32 ﬂJ { ): a cos (Znnx)+ Z bn sinf m() } dx
e = e

Q o n=0 o n=‘1
) t .
j2 nJ p(x) dx
Hence e o . \
2nt 4nt a 6ve, . ,
= T2 42 gin ——) 4T3 sin(—)
j2na t ,jTaISjLn.S T ) ] sin( 3 T  veaeann ’>
o 2 _
= e T e ) e _ e T
s R N A 4ne T
T} -n-!l -b.l) sin(—*' + -2') IT( ig) sin( Tt 2)
e - e ) e YRR
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fext, ve note that . J% SOy Jk(z)‘ejke (4.8)

n=s-—m

where Jk(z) 1s'Bessei function of the first kind of kth

order. ( Appendix-A) : ' /\

As an approximation, only three tetms* of the Fourier siries

will be considered. Henceh 7 '

t J
i2x IP(X)dx
e . Jo .

7 % pee o N 2 o= o)
e e MR 0 2_3 ) ) R ) Jklle) J}cz(f‘z)
: kl- | kzn—w k3-—w mlﬂ—m mz m3 -
- “ ‘
. :
( ) I () I iy AN
J z. ) J u,) J u
k3 3 o, 1 m2u2 my '3
t . + ' ’ (4.9)
ejZﬂT(kl+2k2+3k_.3+m1+2m2 3m3) | ot
LY ) ; \i
.on D :
where z = Tn and u = -T o ( (4.10)
" n . , n :

: ‘ N
“ The reason this approximation holds is that .modulation 1pdex 'is small.



Taking the Fourier transform.of {(4.9), we obtain

t v . : B
- j2m I p(x)dx i !

F[ e o ' i

=1
= ¢ " " E z ) ): z )j ): Jk (zl) Jk

- k. == k =.0 | m-w mp=-o q 2o q == 1
1 2
a
o R
F3(mptmytn,)

I3 () I (w) 3 (u) e
k3 3 m1 1 m2 ? m3 3

k +2k +3k3+m

i 2 +2m2+3m
T

1

(- 3

where f'"= f- a

%

From the convolution property and leqt. (4.11), we have
: -

t
y2u [ pooax
S(f) = F [A()] *F [e' o °

where * denotes the' convolution.

54
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n ' - ‘
S(f) z ;—- g g «@ bl e :
s e R u_; ‘21 ) ) )} I (zl) Iy (zz)
1 "2 ky™=e mymee mee e ) 2
' 2 (m +m +m.)
' - ’ 2V1 72 73
J (z)J (u)J (W)JI @W)e ¢
k3 3 my 4 S,y 2 my 3
- \
k. +2k_ +3k_ +4+m +2m +3m
FAG)] x (gn - A2 3L T2

T ) (4.12)

This is a general formula for computing the Fourier transform

$(f) of a *pulsed signal with amplitude modulation A(t) and frequency
. \_( .
modulation g(t). Now S(f) can be real or imaginary depending on the

terms : !

J ( )
(M and F [A()] .

]

- ,

where m o, m, and,m3'etc.,are indices of the summations generated

from the terms

.y b 1n(2“"t) ‘




of thunFour}ur‘scries rcpréﬁﬁhtation o; g(t). This formula can be
almplified further if A(t) and g(t) are syhmccfi; gbout the mid-point
of the pulne. Then F{A(L)] 1s rc)ul and b“ =0, 1.c. u o~ 0. These are
due to the hG\-itial conditions that A(t) and g(t) arc time shifted by

- %, mnklﬁg A(t) and g(t) now symmetric nbout t=0,

Hence, eqt. (4.12) can be re-written-as

t
j2n I p{x)dx
o]

F [A(L) o ].

- by = . k1+2k?+3k3 :
ey LY 3y I, (2) 3 (2,) FIAR)) K S(E" - )
T L LS Dl TR T
klu—-m kzn—m kj-—-m 1_‘ 2 R 3 .
| (4.13)

In the following, two cxamples are shown demonstrating the use of this

v

cnliVulution method.,

Example (1)
A(t) = Rect(z) = 1 for - 3 are - (4. 14)
Q /
T T
- 0 t< - 7, £> 5
T T (4.15)
g(t) = BM coa(—,;-) for . -3 &Ly )
. T T
=0 , t9 - 3 't> >



Fa) = 1 32D 0 gine(nen) (4.16)

T
From eqt. (4.7)

p{t) = BM cos(n%h

t -
j2m J p(x)dx j2T.BM ain(ﬂ%)

\
Hence e o = (j’ >

- krt
=] serme T

km=o

The latter equality follows from eqt. (4.8). Now using the convolution

method, we obtain™

t
jZnJ p{x)dx
F [A{t) e o

J"\

= ] 3 (2T-BM) T sinc(rfT) * &(f- o=
Koo K 27
oo o * . Kk . .
=T J J, (2T-BM) sinc[aT(f- ==)] (4.17)
ke=x k . 2T . i

In Fig. 4.1 and 4.2, the pulse spectra for two different
values of BM are plotted using eqt. (4.17). THe spectrum obtained
using the FFT method is also plotted on each graph to compare the

result. S

Example 2°
The amplitude modulating pulse A(t) is Rect (t) as defined in

. . L]
eqt. (4.14). The frequency modulating pulse.g(t) is a'trapezpidal

-]



Mégnitude of Fouriler transform

Fig. 4.1 Sin., FM and Rect. AM, T=1, BM=l;
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Fig. 4.2 Sin. FM and Rect. AM, T=1, BM=2.S.

FFT | Convplu;ion e
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. n
pulse as defined in eqt. (3.2). However, g(t) 1is time shifted by

T ' ' .
- 3 now. From eqt. (4.5), p(t) can be expressed in a Fourier series

form - .
T ntl 2 2mne,
p(t) = BM(l-a) + .2BM-a X {-1) sinc (nwa) cos(——g—)" {(4.18)
n=1
where BM = maximum frequency deviation.
a = rise time = fall time of the FM pulse.

Retaining only three terms in the Féurigr series, as an approximation,

we have from eqt. (4.10) °

z) = T{2BM-a) éincz(na) . (4.19)
z, =T (2B¥.a) sinc2(2na)/2 ' . (4.20)
z, = T(2BM-a) sinc2(3ﬂa)/3 ) ' (4.21)

Using eqt. (4;13), we get the Fouriler transform

s(fy = § ) ) I (z) 3 (z)) 3 (2) T
k.o~ k. .sm-o k m.o 1 2 3
1 2 3 v
- k +2k +3k
sinc[nT(f"— L TZ -3

v

Y] (4.22)

]

vwhere f" = f - BM(i-a)-

In Fig. 4.3 and 4.4, the pulse spectra for two different values

-

of BM are p&otted using eqt. (4.22). The spectrum obtained using the
FFT method is also plotted on each graph. to compare the results.

As shown in Figs. 4.1 to 4.4, the spectra obtalned using the
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Fig. 4.3
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Trap. FM'nnd Rect. AM, T=l, BM=1, Al=Bi=0.1,

Convolution ———eeme .

‘
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Fig. 4.4 Trap. FM and Rect. AM, T=1l, BM=2.5, Al=Bl=0.25
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" FFT e
1.
|/ o )
y_
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N
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convolution method agree well with those dsing the FFT metﬁod. The
analytical approach considercd in this section is good for any kind

of frcqueﬁcy and amplitude modulated pulsed signal, provided that the-

n

Fourler transform of A(t) and the analytical form of g(t) are known. -
. t . -
o : : . )
\ . -
Uaing thia method, we can’ cxplnin some of the phenqmend that

Al

occur in pulsed RF sPectra :

(a) When A(t) and g(t) are aymmctric about the mid-poinc of the pulse.
their corresponding Fourier transforms are real, and -the local
minima of the magnitude .of the gpeétrum-hre z;r;. o

(b) When A{t) or g(t).become_aaymmetric, the Fourier tranaf@;m becomes
complex as shown in eqn. (4.1?). The qpeg;rum‘wpuld th;n bﬁ the

combination of the real: and imﬁginary parts of its Fourler

transform. As the deviation from symmeiry of A(t) ad g{t) becomes

. . . R Y ' ’ .
more Pronounced, the magnitude of the imaginary part of the spectrum -

increases, Consequently, the local minima of the spectrum are !

-

, . [
raliged above zero level.

(¢) When the product”%M;T increases, the Bessel functions of higher

order cnnnot‘be neg£:éted\ié5fggmfgfggfft1bn of the pulsq_ﬁpeccra.

The inclusion of these extra terms of- Bessel functions results in

the broadening of the spectrum.

e

4-2  DIRECT. INTEGRATION. , - ) o

- The Fourier transform of & aignal 8; (t) is defined by

T

~
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In this section we shall evaluate §,(t) using.direct
. - 2

]
i

integration.

(1) Trapezoidal AM pulse.

-

: : ' L
If sl(t)'is a pulse with trapezoidal envelope as in eqt. (3.1),

then

A [ L (le-d2nfaly _ 1

8. (f) =
e 4 f°T a b

[T

4

( Appendix B)
where a = rige time of AM pulse. (A2)
b = fall time of AM pulse. (B2)

A comparison with the spectrum obtained

is shown in Fig. 4.5.

(2) Exponential AM pulse

(q-janT(l-b) . -danfT

)] |
(4.23)

1
-

. =]
using the FFT method

If Sz(t) is a pulse with an exponential amplitude modula:ion.

.as in eqt.(3.3), then

Jrft

; -tl(é2+jnf)_ -

1. . e 1
Sp(£) = Aot e sinc(nft,) + Ay c, + 32nE
-j2vfr, - -jomfe, o~ J2nET_ e-Jwatz
. e @ ‘-e .t A
+A —j2wf ) ' -j?wf
| | -qufT -j2ufe, -k (T-t,)
e S I 2 (4.24)
] k, - §2nf '
A - A
where Ay = ————"——— and A, =k, (T-t,)
- e 2 1 ' 1- e z . v

(Proof in Appendix C) -

4
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' ‘ A S .
by, = rise time of pulse. (A2) ‘
.
T-1t,= fall time of pulse, (B2)
. i . i ! q
A comparispn with the spectrum obtained usiﬁg the FFT method
4
s shown in Fig. 4.6, A
: R .
(3) Sinusoidal AM pulse.
1f 53(t) is a pulse with sinusoidal amplitude modulation, as
shown In eqt. (3.5), then
S. (L) = él'{sinc[n(f— JAOT] + sinc[n(f+ "l)T]} - {(4.25)
3t 2 2T 2T ‘ a,,
! »
(4) Trapezoidal FM pulse.’
Lf SA(t) is a pulse with trapezoidal frequency modulation, as
shofn in eqt. (3.2), then
‘ .[:: “j"quz ’ ' . ) 3 .
: - [aT . B o [2aT _ [2aT S
S(f) = A{WB e =5 -9, 5 £+ o .
@ o R )
\’ 1TTbT B 2 5 ( a b4 1).. . '
o AL By gaeer(- 230 o :
T ~ B b 2 2b ’2br. 26T,
E,E e - a pad | —"B—-'f N B (f B)]
; o
. E A _ ' .
_ 1 -~ -inaBT LP-jZ“(l-b)Tf” - e—jan'Ta] } (4.26)
JInE" ‘ : ‘

" where B = maximum frequéncy deviation

a = .rise time of the frequency modulating pulse. (Al)

| .

~ . b = fall time of the frequency modulating.pulée.(Bl) g
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I1(x,y) = complex conjugate of I(x,y) ‘
T = pulse width . \
/
I 4
x 33 e
and I(x,y) = I ¢ dt '
. Y
b4
x 0
=| [ cos{ %tz)dt - J cos( -%tz)dt Ik -
o ] '
- y | _
+ 3l I sin( -Tzltz)dt - Jl sin( -%tz)dt ] {(4.27)
o . ‘o

Eggglﬂﬁ the integrals A? eqt. (4.27) 1s recognlzed as a Fresnel
integral; tables of this integral are given in [6]. Proof of this E
result is given in Appendix D. (ﬁ comparigson with the spectrum obtained

using the FFT method is showm in ?ig, 4.7. SRR

o ;
™~ /

(5) A _special case of Combined\%nplituﬁe Modulation and Frequency

Modulation
1f Ss(t) is a puise with frequency and amplitude both modulated

by a pulse with waveférm g(t), then

T t
1 jZnBJ g(x)dx ;-janT j2nB Iog(x)dx

S(6) = § G535 & Yo

1}

- 1] + f.F[Ré'ct:(t) e

) o | o (4.28)

where B = maximum frequency deviation

Rect (t) =1 for . 0gesT
\ =.0 ' : t<0 , t>T

For a proof,. see .Appendix E,
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4.5 Trdp. AM and Rect. FM, T=l; A200.1, B240.3,

FFT
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Fig. 4.6 Exp. AM and Rect. FM, T=1, A2=0,1, B2=0.3, C2=10, K2=20.
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Fig. 4.8 Trap. AM and Trap. FNM, Twl, BM=3, Al=A2=(,1, Bl=D2«0,3,
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The spectrum of an RF pulse.thnt i1s both frequency and

amplitude modulated by the same trapezoidal waveform is plotted in
Fig. 4.8, using eqt, (4.23)\ The result of using the FFT method is

also included in Fig. 4.8 for comparison,

As shown in Fig. 4.5 to 4.8, the spectra obtained uainEJfﬂe
analytical method described in this section agree well with the

corresponding spectra obtaincd'using the FFT method. The analytical

" y . .
approach is manageable when there is only amplitude modulation in the

- ©

RF pulge. The mathematics becomes rather cumbersome when there is

frequency modulation in the sigpal.

[+]

-0




CHAPTER 5

EXPERIMENTAL APPROACH

In this chapter, the experimental approach 18 ‘taken to’
investigate the spectra of.puiséd RF signals under varyiﬁg congifions.The
experimental set up 1s-as-sh0wn in Fig.\§.1. Two pulses, each of 1 %secp
in duration, are‘genérated simultaneously from a CDC 1700 digital
computer. - Each pulse is constructed from 50 digigal samplgs of a
prc—dctcrmined-waveform. The_puiée repetition period is 10 msec,

One of these pulses is used as a fﬁequen?y modulating pulse to a
P 8660B synthesized signal'generator, ;hich is set in FM mode. This
equipéent ceﬁtfols the setting of the value for the maximum frequency
dcvi#tion of the pulsé. The unmoduiated carrier frequen9y is arbitrarily
chosen to ge 1 HHz. " The output of this signal generator.fﬁrms a
confinuous. frequency modulated waveforyy ?his éiggal_is‘in turn
multiplied by the a;blitude moddlaéinghpulse to give the desired
modulated pulse. Fig.-5.2 shoﬁs the circuit design of the analog
multiplier using the HClS9GG Hoﬁdlithic Balanced Hodulator-Demodulator
unit. ' The output of the multiplier is fed into the HP* 85538 spectrum
analyzer to display ita spectrum, Because the analyzer has a low ‘
-\,f*
- input impedance, a buffer stdge, with circuit’ design as shown in )

¢ Fig. 5.3, was built and connected between the multiplier and thg

, Spectrum analyeer.



~Amplitude Modulating Pulse

L
- N - ‘

coc 1700 To/A - ' | | HPB553B |
Digital 7 . ' - iHultiplier““*—" Buffer!——“»—a Spectrum
-~ : | Sonverter—»——Hp86605 . I il ‘Stage | ; LAnalyzer
Computer Synthesized / ‘ ; T

FlN i

Signal Generator! / - ;

; ' ‘ i /

o Modulated Pulse

. Frequency Modulating Pulse

: Ff;. 5.1 Block Diagram of Experimental Simulation.

A

£l
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1K 1K ;12 Vde
i_ LU | - "\,‘, — \
= 5]:9‘ i luf 2 l—_ ".I\l\ i i
. In
‘ | 1K 39K L T3k
From . luf ' "‘“g—! ' 6.\ .-_-..|.—--—- ——— Input to —
. HPBGEOB .——#*f'-——f--*-—-"‘—"'ri MC1596G \ Buffer Stage
S e G S
Pulse l~ T sy - Y K
sson 750 . T RSy, I
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‘f = ‘ ' : :6-8K

Fig. 5.2 Circuit Diagram of the Analog Multiplier.

i 8vdc
3.9K ‘. | |
1L 2N3607
W 2N5355 |J1 -
a |
S i ' Qluf
. luf . 1 j—- 2, —<To Spectrum
From | = L | Analyzer
Multiplier 2N3607 ' alyz
I — ‘
N o}t 285355
3.9k )

——- -
& el

- | -8vde

Fig. 5.3 Circuit Diagram of the Buffer Stage.
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| . ;

The experimental results are depicted in Figs. 5.4 ‘to 5.35.
From Figs. 5.4 to 5.31, the pulses and their aﬁectra,-consideréd in the
experiment, are used to veg}fy tﬁe spectra that were derived
theoretically in thapters .2 and 3. In Figs. 5.32 to 5.35, the
modulating pulses are chosen to sétisfy the sufficient condition
necessary for prOperty‘B discussed in chapter 2. We see that the

pulse spectra are symmetric, as expected.

——————

Comparison of Figg. 5.4 to 5.31 with Figs. 331 to 3.24 ~
indlcaﬁes that the spectra obtained experimentally nglec father'wcll
with the co;responding results cbtained prgviously in chapter 3 and 4.
This 1s illustrated by the four tables below comparing the spectra,
ocbtained using the FFT approach and the experimentai approach, for

four arbitrarily chosen modulated pulsed signals.

Table ld

Pulse : Rectangular AM and Trapezoidal FM.

i

BM=1, Al=0.17, B1=0.33,

| FFT Approach , |Experimental Approach
(Fig. 3.8) ' (Fig. 5.6). ]
Amplitude .of ‘main-lobe 1, ‘ 1.
}.mpncuae of lst lower o.zs' 0.30
side-lobe ' B
..'Amplitude of 2nd lower 0.17 - 0.17
side-lobe | ‘ . L

o4



L

16
Tagle 2 D
v Pulse‘: Rectanguldr AM and Exponential FM.
' BM=3.5, Al=B1=0.5, Cl=Klm2.
! T FFT Approadh * |Experimental Apéroach
(Flg. 3.13) | (Fig. 5.,15) : |
ﬂf\,;,,-liix-cigd-; ;.fu.n-]‘z-t;;—lobe 0.8 © 0.84
Amplitude of 1st lower|  0.50 | | 051
side-labe o B
Ampli tude « rz;i—_lc;a—e—; 0.27 - 0.27
“tde-lobe. l S
Table 3
Pulse : Sinusoidal AM and Sinusoidal EM.
BM=3, : |
e e e 1 T
| FFT épproach . Experimental Approach:
o (Fig. 5.19_5 (Fig. 5.24) c,
:‘:r;;;i;u.:;(;-‘;f—:ain-lobe‘ O.‘B(? o 0-59 o
,;:;;1_1;;1};_& 1st lower| 0.15 . B 6.- 15
side~lobe S
A;plitudeo; ?nd lower -'o.oks-' 0.05
7 o
Fide—lobe . . .




\ Table 4
Pulse ¢ Rectangular AM and Modified Gaussian FM,
BM=3.5, Kl=25,

: FFT Approach
. l (Fig. 3.21) (Fig. 5.27)
fam oot e e e e e e e e e e e
[Anplitude gf main-lobe 0.66 0.69
}hmplitude of lat lower 0.63 0.63
‘side-lobe ]
‘Anplitude of 2nd lower| 0.32 0.31
| .
side-lobe ) B RNV S —
-, — . . - .
\
L
) >.‘: [
\ \
r i
.

Exberimental Approach

e ——— e e cemm -

77
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- A ) \
EXPERIMENTAL MEASUREMENT. )
Digltal computer £DE 1700 setting
D/A Converter setting (bqforc connected to circui-t)
Peak voltage of nnﬁfude modulating pulnq = 10 volt,
IPeak voltn'gc of frequency modulating pulse - = 5 volt, .
‘ b4 , :
Pulse repeated period | - _ = 10 msec,
pulse width - ) ) ' = 1 muec.
Frequency Synthesizer sctting
Centre frt.-quency S -‘7 1 Mz,
Modulat i(;n mode o ’ ' . - FM
"R.M.S. voltage of continuous wave output - = 40 mV. ‘
Spectrum Analyzer setting - -
|)1,;{_l,1.a),‘ mode ‘ . . - linear -
C(--n(r(,‘ f';r(qulu:ﬁcy .=l Miiz.
Bandwidth | , _ _ . | ’ = 0.1 Kiiz, ! )
Scan widthr - . - . = 1 Kiz. . :
1'1{}Put at tenuation T - "'_0-.“‘ i -
. Scan time per division o . = 0.5 sec. o
)
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Fignren_on_finlpen \
fipper trace & Modulnted pulne nignal T ) I
Vert!eal nonle D = (.5 volt./em.
Hovizontal senle ) - -ﬂ.?.’ mscc, fem,
) “
Lower Lrace ! Frequency modulat ing pulse -
! ’ ’
Vertleal acnle = 1-volt./em.
Hovlzontal neale w 0,2 maec./om,
-
lgnres om npectrn
Dlnplay mode w l{noar
Centre freoquency = 1 Milz.
Vertleal seale = 0,125 unlt/division
Horlzontal weale (Figw. 5.4 to 5.27) = 1 KHz./division
(Fipgs. 5.28 to 5.35) = 2 Kz, /divinton:
‘ !
- .\
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Ideal spectrum obtained in experimaﬁ:.
: . <.

Pulse with constant amplitude and fraquency.

T v

e [
o  £11 | ‘
T S P Bt ol
0 RO I S T
+ ' . .._._!
:.L H
-]
1 . . ' . ) ]
—p L
rf -

Pulse : constant nmpiitude and Trapezoidal FM,

Al= 0.17, Bl=0.33.

e T oo —————— T T
.
: . ar ‘ «
¥ 1
| o - e
N " N
POV YRUSUY: PUror-1 S F S
L . fem . s mm 1.
Ai. i C T ar ' 1.
e .. ar - | 1.
‘ 1 . 1" 1!
- 1. -t 1" ooy L. [ TR 1
el 14 v w - Jre e p—
3 11 . .
: } 0 o
1 . " i x
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Fig. 5.6
Spectirum .Pulso ¢ as shown in ?Lg. 5.5
Max. frequoncy daviation BM = 1 Klz.
Lr"' he i 4 Y ""."-1' Ak fi | "'_."” Phal ol o ol et T"."—ﬂ
FlR- 507 .

Spectrum Pulse : aa shown in Fig. 5.5 ‘;

Max. frequency deviation BM = 4 Kiz.

LY TR S TR
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Pplae 1 Trapezoldal AM and constant FM.

A2=0.17, D2«0,33, -

FT o o LA ML b hamash 2 ot o e oo .y o

e

b e e ottt ettt i

Flg., 5.9

Spectrum

Pulse : as shown in'Fig. 5.8

Max. frequency deviation BM= 0.




Flg. 5.10

Tulne:

Trapezoldal AM and
Trapezoldal ¥M
Al=0,17, Bl=0,33,

A2-0,17, B2=0,33,

Flg. 5.11

§££gtrnm

Pulne:r as ohown in Fig. 5.10-

Max. Frequency deviation BM

=~ 3 Ktiz,

Fig, 5.12

Spectrum

Pulse:

FM pulae as shown in

- Fig. 5,10

th,»frcquency deviation BM

‘ = 3 iz,
4

I3

(

Rectangular AM and aame

TR &
MR e 1V o T T

s
1
!
K
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4 X
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|
!
[
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e o TR Cwh LANEI M v
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¥Fig. 5.10

Fulne: <

Tfuﬁczoidal AM and ’
Trapezoldal FM 3
Al=0.17, B1-0.33,

A2=0.17, B2~0,33,

Fipg. 5.11
Pulse: us shown in Fig., 5.10.
Max, Frcqueﬁcy devintion BYM

~ 3 Kilz,

Fig. 5.12

$pectium

fulse:

Rectangular AH and same
FM pulse as shown in
Fig. 5.10

Max, frcqu;ncy_devintion BM

= 3 KHz, . v
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. Fig. 5.13
Pulse : ' Rectangular AM and Trapzoidal FM.
Al=0.40, B1=0.50,
\
Fig 5. 14 ‘

(S eéérum
Pulsé : as shown in Fig. 5.13.

*  Max..frequency deQinﬁion.BM-S.s KHz.,




Fig. 5.15

Pulse : Rectangular AM and Exponential FM.
Al=0.5, Bl=0.5, Cl=2, Kin2,
i
b YN bt i s i

Pulse : as shown in Fig.” 5.I5

Max. frequency deviation BMm= 3.5 KHz,

86



Fig, H.Y0

Pulses }3

. e
Exponential AM und
Fxponential FM,
Al=B1-A2~N2= 0.5

Cl-tl~ 11, C2-K2~ 2,

DA i Dt f 4 w2l o Lad o 2l asadd ol St nan el
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v e
P T T .r.-..j
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Flg. 5.18
Spect rum

Pulue . ag shown in Fig. 5.17

Hax, frequency deviation BM-0.p

£ -

%

Fig. 5.19

Speelrum

Pulsc : as shown fu-Fig. 5.17
Max. frequency deviation BYM [

« 3.% KHz. [
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iy, 5.20
Pulue: Expancutial AM and Exponential M.
Al~Bl=A2-N2« 0.5

CleKle 11, C2+K2~ 14,
m*mmwwmwm.:-\w, .IW!‘WM"&W‘_I’, "
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Fig., 5.22
Pulae: Sluusoldal AM and Sinusoidal FM
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Fig., 5.24 e )
‘ Spectrum ) ) .
Pulse: as aho#u'in Flg. 5.22
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Fig.

5.26

- Pulse: Rectangular AM and modified GausaiaanM
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.Spectrum

i Pulse: as shown in Fig. 5.26
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Fig. 5.28

1

Pulsge:

Modified Gaussian AM and modified Gaussian FM.
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Pulse: as shdwn in Fig. 5.28
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Fig. 5.34 1

Pulse: AM f——'even sympetric about T/2.
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CHAPTER 6. ' »

. ) - - ’
CONCLUSION AND RECOMMENDATIONS FOR FURTHER RESEARCH . .

The contributions of this thesis may be summarizéed as follows :

,

(1.4 phenomenoiogical approach to the analysis of pulsed RF signals

containing incidental FM has been:developed. This approach was
. r

C e .

aideQ by use of the Fast Fourier transform (FFT) technique.

(25 Using the convolution integral, a fairly general analytical

. fdrmula has been developed that can be used to compute the Fourier -
/A | |

transform of 3 pulse with incidental AM and FM. -Also closed form

. ! .
analytical formulae were developed for a few selected simple

et

modulated pulsed RF signals.

3 Alrcal-time'experimenﬁal simulation of pulsed. signals, using a \_~
digital computer, was desigaed to ﬁeﬁsure pulsed RF spectra. The
experimental approach was uged to -verify the thgdreéical Tesults

obtained '4n (1) and (2) above. Good agreement was demonstrated -~

< r

K}

between thé~th§ordﬁf3al'énd experimental results.

VO

With regard. to the problem of estimaring the original complex

time domain signal from a knowledge of -only its power spectrum, it

~

see&s that ‘this knowledge is not sufficient. Ih*genéral, the phase

informaéion o} this signal connot be obpaihed'ftom'ips,pouer spectrum -
. , { -
only.
. ‘ J

el
-t
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. { 3 .
Several areas for further research are suggested by ‘the results’

of this thesis; for example :

(1)

@)

(3)

(4)

. ., , P B
There may be need for research in the area of measuring the

frequency cha;gctqristics, the building up and decay of the
LS .

oscillating frequency in the transmitter. A recent paper by

N.S.Nahman [7] suggests éome appropriate measuring technique.

It would be highly desirable to develope an optimal amplitude

modulnting waveform that can reduceQEhe asymmetry of the spectrum

“of a pulsed RF sigﬁal, and decrease the-side—lobps level [8].

There is need for erther research on the effect of local
OSCillator freqﬁeécy pulling upon the observed spectrum of.radar
signals. This effect can.be qubstantially reduced by.adding.a
well designed is;}7tor in between the niixer and the local
oscillator [9]. ' .

The trnvelling—;aveftube ahplifier (TWT), used in a radar bystem,
for the purpose of RF'émplifiéation, exhibits two kinds of )
nonl;nearities:: (a) amplitude modulation to phase modulation
(AM-PM) conmversion, and (b) nonlinear input-output power
characteristic: These can gé treated as known pﬁase‘and amplitude

modulations applied to the input signal. If these chaghcteristics

can be meaaured, then by differentiating the resultant phase

—

.characteristic with reapect to time, we get a frequency modulating

waveform. Then we can estimate the spectrum using the mthods -

considered in this thesis. : - ) S
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« APPENDIX A

Derivation of eqt. (4.8)

\ -

cjz .Sino - ): 3 (z) e

k=-co

jke

where Jk(z) is the Bessel function of the first kind of kth

order ) —
Nuw CDQ(Z 5in0) = J (z) + 2 Z J (2) cos (2k0) .
; k=l . -
sin(z sing) = 2&20 J2k¥l(z) Sin[(2k+{30] ‘ 1_
- n -
J_n(z) .= (Tl? Jn(z).
J2n+l(*z) s - 32q+1(2). '
—
and JZn(Z) f  m Jzn(—z) ) .
!
_ Hence cos(z sing) = J (z) + 2 Z JZk(z) COB(sz) +
k-
z 2k+1(z) cos[(2k+1)91
Koo Lo
K - E (z) cos(2k0§ + Z J2k+1(z) COB[(2k+1)9]
k-_‘n . ' k-.-ﬂ! . 4\ .
- z Jk(z) cos (k6) ’
km—=
- - ’ o /

Similarly sin(z sin8) = 2;20 J2k+l(z) aig[(Zkfl)B]-

’

" )
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,f~ ) T
" a2y 2k+1(z) sin[(2k+1)0] + Z 3, (2) siulake) . .
k=0 ) k==, ‘
N
} 2k+1(z)’4sin[(2k+l)6]+ )j 3 (2) sin(2Ke) -
k=~ km—m .
= Z Jk(z) sin (ko) -
jemmoo \ ) -
Hencé ',;
jz sinO
= cas(z sing) +3j sin(z sine)
s ’ e - !
= X J (z) cos(ko) + 3 z J (z) sin(k8)
ke—w k= -
ko ' L
k): I (2) e . DN . Q.E.D.-.
1
\ ‘s ' X
i ' v o
! ’
\ ;
. | N
: . \ N .
K] \ ) .
é{;‘? \\\ ] '
o o \ .

o
S <08
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APPENDIX B ) ' l

»

Derivation of eqt. (4.23)f

s(t) = 0 : for © <0, T <t
’ t
= A — .
aT . 0 << aT
\
‘ ‘ \
= A’ ‘ : aT <t< T(1-b)
= A T—,;,i— © . T(1-b) _}iti T
where T = pulse width .
aT = rise time of the pulse. 3 '

bT = fall time of the pulse. o i

Let r(t) = d s(t)

dt .
Hence r(t) =0 for t <0, T <t
A ' .
m — , < »
aT 0 —tf- aT
=0 i aT <t< T(1l-b)
A _
= - T(1l-b) <t< T
o (1-b) <ec
Now T : T
a - d .. A ~§2aft
F[r(t)]'J %ejzugt t+I -ﬁejﬂ“ - dt
o2 T(1-b) ‘
7 |
g A (1 god2ufaly _ 1. -32uf(l-b)T_ -J2xfT),
- jZ'IlfT{a (l € _.) b[ . e ]

.
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Because FIr(t.:)] = j2nf Fls(t)]

Hence : . I
- -j2nf ) 1-b)T  -3j2nfT
Fls(t)] = __*;_2. { %(1_ oi2ngaly 1pe 320E(1-DIT_ ~32n€Tyy
4uTETT '-'
? Q.E.D.
J
(%3
- P
kY
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dt

. / -
: / \ .
APPENDIX Oy | .
Derivation of eqt. A(l;,z'[.) B}
S(t) = 0 - } for t S.O, T.‘E-t
| ‘—czt N
=.‘All(.l'.-ﬂ_ ) g . ) 0 <t< £
= A : ty<t< €
-k, (T-t) ‘ . :
= A, [l-e ") t,<t< T
==t
3
3 A ) A - .
vhere AT p and A, )
: 271 2 2
1-e l-e
Then S(E)
= L s(t) e 127 ge | S o
g . . .
rt -c.t ’ . 2 - _k (T"‘t) -12 ft .
= I a (e 2y 7330 g 4 Af e 3270t 4 4 I A, [1-e 27 i
o S . , : t S Y )
{ s o 1 2
t - : t t, -
- 1 1 —c,t-j2nft 2 _
= AII e—jz'ft dt - AII e % ' At + AJ e J2xfe dt +
o] o . _ t .
’ : 1
T - .
' . -k, (T-t)-j2sfr
of s f L
t



S

c
After the integration, we have

-tl(c +j2nf)

- =Jnft e . -1
() = Aty e sine(nfe) + Ay ¥ g ¥
-y2mfr,  -j2nEe) —j2neT '""ﬁ-jhflz
A € - & + e - a
32nE Ay “jout
~qzepr | 3ZmEEy -k, (ToEy)
_x & - e , :
P T R 2T
i ,
-
N

3

105

Q.E.D.
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APPENDIX D
Derivation of eqt. (4.27) :
Define s(t) = O . for t<0, T<t
t
J2n j g(x)dx
=Ae 0 0 <t< T
where g(t) =0 for td, Tet
t
w B ;—Ii‘- 0 it._(_ aT
= B S aT ‘_c_t;:_T(l-b)
=_B %I‘t_ ‘ : ' T(1-b) <tg T
and al = rise time of FM pulse,
“bT = fall time of FM pulse. ’

B

maximum frequency deviation.

T pulse width,

- A = maximum amplitude of ﬁgodulated pulse,

Hence S(f) ; -

-

'E s(t) e 327EC 4¢ . | " | ,

. - rt x aT x_ t ]
aT ..‘lZHI‘B—-—dx : £ (1-b)T _ j2n J B—dx + J Bdx
= J e-jzwft e () aT dt + AI e JZnfe e . ‘o aT aT dt
1) . Jar 1) _
aT ' T(l-b t T :
LA . x ' -
v e et Tages [ [ e Bz

(1-b)T
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-j2x(ft - /= ¢ )
T ©rT(1-b) B e
- AJ e . de + A] . o 32¥(f-B)t -3BaTx dt ‘
o 7 aT . '
T o i2m(fe- B T+ 2:1, ¢2) ¥ yaxB100 - % - _‘;. 3 Elg')
+ Al e . e dt 4
T(1-b) o . |
Now complete the square, Then we have S(f) - .
:a'rfz. a'r - '2J - .
T iy g (B-£) j— t . ] -
., =
_ F: e .
+ o-JBaTx I -32x(1-b)T(£-B) _ -j21tTa(f-B)]
. —\jZI(f-B) R .
2
j2ebr(1 - 5 -5 - 5 %) m—fﬂ?— e 33t
+ e , ) . e’ dc }
- ZB ZbT -
ST 2L(E-B)
) Q.E.D.
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" APPENDIX E .
Derivation of eqt. (4.28) - v R
- g(t) = 0 ‘ ’ for t$0, T
. t, ~ A -
: quB] g(x) dx ; 0 <t T
. =Ag(the "o - :
‘wixere' A = maximum aﬁ:plitude"'pf modulated pulse
B/ maxdoum frequency deviation ’
g(t) £ 0 : / for "0 <t T
B o L T , ) >
. =0 - : ' ' t<0, t>T
Hence S(f) = L s () e-jz"ft dt
=3 t " -
: T thI}J g(x)dx _
- AI g(t) e o e j2nfe dt
t . N . )
LT jZIBI g{x)dx _ ' t :
= A e 0-4_ e jz'lft d [j2ul[ g(x)dx]
j2nB oo . "o
"0
. T g
j21BJ g(x)dx - : ’ - .
A - =32x£T +
"3z e Ty e =1 et /
' ’ I T quBI S(X)dx -j2uft
- thfj e o e . dt]
' o
f
. T . . -c
_A1 e o R I .
B 2 ’ - ‘
j.ﬂ ’ . ) jZ'BJ G(X)dx v
. £ P[ Rect(t) e ', Yo 11} .

qQ.E.D.



