
EMG Controlled Hand Prosthesis:

EMG Classification System

by

Philip Chrapka

Electrical and Biomedical Engineering Design Project (4BI6)

Department of Electrical and Computer Engineering

McMaster University

Hamilton, Ontario, Canada



EMG Controlled Hand Prosthesis:

EMG Classification System

by

Philip Chrapka

Electrical and Biomedical Engineering

Faculty Advisor: Prof. Sirouspour

Electrical and Biomedical Engineering Project Report

submitted in partial fulfillment of the degree of

Bachelor of Engineering

McMaster University

Hamilton, Ontario, Canada

April 23, 2010

Copyright c©April 23, 2010 by Philip Chrapka



Abstract

Since the 1970s, electromyographic control of a prosthetic device has been attempted in a

number of different ways. It was only until recently, that the classification of electromyo-

graphic signals was possible through the use of neural networks. With the advent of more

advanced techniques like support vector machines this type of control is becoming more re-

alistic. This would initiate a great step in the development of prosthetic devices. It would

become possible for more advanced control of these devices with a more natural interface.

This project focuses on the development of an electromyographic classification system on an

embedded platform for the specific use of controlling a prosthetic device.

Keywords - Electromyographic control, support vector machines, neural networks, cus-

tom hardware design

ii



Acknowledgements

I would like to thank my project partners Phillip Kinsman and Shameem Bhatti for all

their hard work and support while working on this project. I would also like to thank Prof.

Sirouspour for his helpful guidance on certain aspects of this project. I cannot forget Prof.

Niccolicci and his graduate students who were willing to provide our group with the use of

their lab.

iii



Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.4 General Approach to the Problem . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Scope of the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 4

2.1 Electromyographic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Support Vector Machines in EMG Classification . . . . . . . . . . . . . . . . 10

3 Statement of Problem 12

4 Methodology of Solution 13

4.1 Theoretical Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Multiclass SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.2 SVM Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iv



4.1.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 EMG Classification System . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Design Procedures and Experimental Procedures 17

5.1 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Runtime Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Design Alterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.5 Custom Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Results and Discussion 25

7 Conclusions and Recommendations 27

8 Appendix 28

Bibliography 29

v



List of Figures

2.1 Neural network with one hidden layer and one output layer [1] . . . . . . . . 6

2.2 Optimal hyperplane with linearly separable data [1] . . . . . . . . . . . . . . 8

2.3 Optimal hyperplane with nonseparable data [1] . . . . . . . . . . . . . . . . 9

4.1 Generalized block diagram of the EMG Classification System . . . . . . . . . 16

5.1 Altera DE2-70 FPGA Development Board . . . . . . . . . . . . . . . . . . . 18

5.2 Simulation of the EMG classifier custom hardware block . . . . . . . . . . . 23

5.3 Diagram of the segmentation of the EMG signal for classification [2] . . . . . 24

6.1 A sample EMG signal during closing of the hand . . . . . . . . . . . . . . . 26

vi



List of Tables

vii



1

Introduction

1.1 Definition

This project encompasses the design and implementation of an electromyograhic (EMG)

signal classification system that is able to distinguish between different gestures. It is a

portion of a group project whose overall goal is to be able to control a robotic hand prosthesis

using EMG signals from the upper limb. The group consisted of Phillip Kinsman, Shameem

Bhatti and myself.

1.2 Background

Disabilites due to amputations almost always impose severe loss of functionality in individ-

uals and make their lives much more difficult. Of course, the amputated limb is replaced by

a prosthetic device, nevertheless these have limited functionality and are often difficult to

use. It would be very convenient to develop a practical prosthesis that can make use of the

original EMG signals that were used to control the limb prior to the amputation to create a

natural and seamless interface.

1.3 Objectives

The objective of this project was to design a system that can learn and discriminate between

at least 3 sets of different hand gestures by analyzing the EMG signals elicited in the upper

limb by these gestures. The chosen gestures were: opening and closing of the hand, flexion

and extension of the wrist as well as pronation and supination. The result of the classification

would be used as the input to control a robotic prosthesis. To ensure that this type of solution

1



is indeed practical, the entire system would be implemented on an embedded platform.

1.4 General Approach to the Problem

In order to design a suitable system for the classification of EMG signals, one must realize

that EMG signals are biological signals and have a lot of noise and variability associated

with them. These characteristics make classification difficult as the EMG signal for the

same gesture will never be identical. Many of the current approaches employ artificial neural

networks to help resolve this issue. Neural networks have a distinct ability to model very

complex relationships between the inputs and outputs of a system. This project makes use

of the support vector machine (SVM) as the main classification algorithm, which has become

a very popular tool for tasks involving classification.

The classification system will be composed of two modes: training and classification. To

configure the system properly, it has to be trained using a data set gathered from the user.

This is then analyzed to set the parameters for the SVM to be able to classify the myoelectric

sigmals.

According to recent literature, the two most common neural networks used for the classi-

fication of myoelectric signals are multilayer perceptron neural networks (MLP) and support

vector machines (SVM) [3, 4, 5, 2, 6]. Both of these methods have demonstrated classifica-

tion accuracies of over 90% [2, 6]. However, the research suggests that the SVM provides

slightly better classification accuracy accompanied by shorted learning times [6]. Improve-

ments to the typical SVM have been documented, however to keep the complexity of the

algorithm mangeable in the prescribed timeline these improvements will be kept as extra

features that may be implemented if time permits. Ideally, the project would make use of an

SVM classification algorithm provided the algorithm is not too excessive for the embedded

platform. Many of the previous implementations have made use of PC software to classify

the myoelectric signals including MATLAB [5, 6] and LIBSVM [5, 2]. Since this software

would be unavailable on an embedded platform, it would be impractical to use these tools

to begin development. The implementation will have to be developed from scratch.

1.5 Scope of the Project

The scope of the project is mostly limited to the development and implementation of a

system that is able to classify myoelectric signals. There is no attempt to improve on

current theoretical approaches. The initial intention of the project was to design the EMG

classification system entirely on an embedded platform, including both modes of operation

2



training as well as classification. This would ensure a very practical solution where the

operation of the device would require substantially less equipment and less procedures.

3



2

Literature Review

2.1 Electromyographic Control

The idea of being able to control artificial limbs with electromyographic signals goes back

to the 1970s. At that point in time, the typical method of controlling an artifical limb was

through an amplitude-level coding algorithm [7]. This type of controller would essentially

require the patient to produce an almost exact amplitude within the EMG signal to achieve

the desired movement of the prosthetic device. Needless to say, this was a very simple

approach to a very complicated problem. Using this method of control, it would require a

great deal of time to train the patient to produce an EMG signal with a specific amplitude.

Even if training is more or less successful, the results may not always be reproducible. EMG

signals are biological signals and as a result they are modeled as random processes. This

implies that an EMG signal that is generated when a patient attempts to open their wrist

is unique.

Because of the obvious need for less improvised methods, researchers began to focus

on more rigorous statistical analysis to be able to classify EMG signals, which included

autoregression models as well as autoregressive-moving-average (ARMA) models [7]. In an

ideal setting pure statistical analysis could yield good results being able to extract features

that are common to all signals of a particular set. However, in a practical everyday situation

the performance would decline, which could be easily attributed to increased noise in the

acquisition portion of the system. This is one major disadvantage of using EMG signals for

control purposes. The fact that surface electrodes are required to acquire the signal may

make the signal more sensitive to the movements of the patient. Muscle fatigue is another

reason the performance would decline. It is common knowledge that if one uses a particular

group of muscles for an extended amount of time, they will fatigue. Once fatigue sets in, the

same group of muscles will not be able to produce the same level of force and in turn the

4



EMG signal will diminish.

Ideally, in order to minimize the effect of all these fluctuations a system should incorporate

the concept of pattern recognition that would also be able to recognize slight generalizations

of the pattern. Pattern recognition was not suggested until 1972 [7]. However, due to the

limited processing power and the complexity of the algorithms, these approaches were not

typically used. It was not until 1993 that pattern recognition was successfully used to classify

EMG signals [8]. Hudgins et al. [8] were able to use an artifical neural network to classify

EMG signals.

2.2 Neural Networks

A neural network is a computational algorithm or machine that attempts to model the human

brain. Its structure consists of an extremely parallelized network of “neurons”. Each of the

neurons, or computational units, receives a multiple number of input signals and produces

a single output by performing a simple computation. In order to achieve the phenomenon

of learning as the human brain does, the weight of the connection, or synapse, between

neurons is altered through a learning algorithm. Figure 2.1 shows an example of a two layer

neural network composed of a hidden layer and an output layer where each of the arrows in

the figure represents a synapse with its own weighting. The input of the neuron j can be

modeled as

vj(n) =
m∑
i=0

wji(n)yi(n)

where yi(n) represents an input to neuron j and wji(n) represents the weighting between the

input and neuron j.

Neural networks are remarkable as they are theoretically able to learn any task. Its main

benefits include its parallel distributed structure and its ability to generalize [1]. This gen-

eralization can be demonstrated by the fact that a neural network can produce a reasonable

result based on an input that it has never come across during its training.

The neural network structure used in [8] was a simple two-layer network that was trained

using the back propagation algorithm. The back propagation algorithm is a type of su-

pervised learning, in that it requires a “teacher” to decide whether the response of a neural

network to a certain input is correct [1]. The idea behind training this type of neural network

is to reduce the total error of the system. Once the neural network produces an output, the

error between the output and the desired output is calculated. This error is then transferred

to the preceding layer of neurons in order to recalculate the weightings of those synapses.

5



Figure 2.1: Neural network with one hidden layer and one output layer [1]

The process repeats until the error minimized enough to yield acceptable results.

Although the result of the training may produce acceptable results, the process may take

a very long time because of the stochastic nature of the learning algorithm. Since the back

propagation algorithm uses an instantaneous estimate of the error, it follows a random path

and eventually converges to a minimum error [1]. However, this minimum error is typically a

local minimum but there is no guarantee that this error is a global minimum. Furthermore,

if the neural network is trained on a large set of training data, it may simply “memorize”

the training data. The neural network would be able to recognize very specific patterns

in the training data and may lose its ability to recognize slight variations from the norm.

Essentially, this would decrease its ability to generalize and would lead to overfitting [1].

With this type of neural network the number of input, output and hidden nodes is

decided by the problem at hand. There is no exact method of determining the optimal

number. A general guideline states that the hidden layer should be as small as possible in

order to minimize the complexity of the network, but it must be large enough to be able to

adequately map the inputs to the outputs. This is an important issue as the neural network

is not theoretically proven to be the optimal solution to the problem.

6



2.3 Feature Extraction

At first glance, it would seem reasonable to use the entire raw EMG signal as an input

to the neural network. This would require one input node for every data point in the

EMG signal. The obvious disadvantage would be the decrease in performance because of

the large complexity of the input stage of the neural network. In addition, because of the

variability in the EMG signals that are produced, using the raw EMG signal could lead to

poor classification performance since each of the data points would have a large variance

from signal to signal.

The inputs to the neural network in [8] consisted of a certain set of features that char-

acterized the overall EMG signal. These features included: mean absolute value, mean

absolute value slope, zero crossings, slope sign changes and waveform length. Although the

EMG signal has a very large variance, these statistics attempt to offer enough stability so

that they can adequately characterize a particular type of contraction over a variety of EMG

signals. Using this approach Hudgins et al. [8] were able to achieve a 90% classification rate.

Feature extraction is a very interesting area of research. Many mathematical tools and

models have been developed to characterize waveforms, however choosing the appropriate

features is typically only based on empirical results. In comparison with [8], better results

have been achieved using features based on wavelet transforms and wavelet packet transforms

[9]. Using a wavelet packet transform feature set, the four channel continuous classification

system described in [9] only yielded a 3.5% error rate when discriminating between six classes.

2.4 Support Vector Machines

Ever since Hudgins et al. [8] developed their pattern recognition based multifunctional

myoelectric control system, many other types of algorithms have been employed to classify

EMG signals, such as, linear discriminant analysis, radial basis function neural networks,

fuzzy networks, Gaussian mixture models and hidden Markov models [2]. Recently, some

researchers have begun to employ support vector machines to EMG analysis [5, 6, 2, 10].

Support vector machines (SVM) have only recently begun to receive increasing attention

even though the theory was originally proposed by Vapnik in 1992 [11]. This attention

is due the fact that SVMs have some interesting properties that will be discussed after a

brief introduction to SVMs. SVMs can be described as binary classifiers, which determine

whether a sample belongs to one class or another. They make use of the concept of structural

risk minimization which provides a trade off between the empirical error and the model’s

complexity [1].

7



Figure 2.2: Optimal hyperplane with linearly separable data [1]

An integral part of an SVM is the construction of a decision surface such that the distance

between positive and negative examples is maximized. Since the input vectors are elements

of Rn, the decision surface is a hyperplane in a higher dimension. For simplicity we will first

discuss linearly separable data, i.e. data that can be separated with a simple line [1]. In this

case, the optimal hyperplane can be described by

wTx + b = 0

where w represents a weight vector and x represents an input vector. Figure 2.2 shows an

example of an optimal hyperplane with linearly separable data in two dimensions. Once

the optimal hyperplane is determined a particular set of input vectors are used to define

this hyperplane, which are called support vectors. As seen in Figure 2.2 these vectors are

typically those input vectors that lie closest to the optimal hyperplane. For any new samples

xi, classification is then performed based on the following conditions

if wTxi + b ≥ 0 yi = +1

if wTxi + b < 0 yi = −1

where xi is the ith sample and yi is the ith output.

The concept of an SVM is simple and very intuitive. However, difficulties arise when

8



Figure 2.3: Optimal hyperplane with nonseparable data [1]

the data is nonseparable. Figure 2.3 illustrates the issue where a data point falls within the

margin of separation, which is the distance between the optimal hyperplane and the support

vectors, or the data point falls on the other side of the hyperplane. SVMs take this into

account by means of a slack variable ξi which accounts for the deviation of a data point from

its ideal position. Thus, the general form of an SVM can be succintly summarized by the

following optimization problem [12]:

For a set of labeled pairs (xi, yi) , i = 1, ..., l where xi ∈ Rn and y ∈ {1,−1} an SVM is

defined by the solution to:

minw,b,ξ
1

2
wTw + C

l∑
i=1

ξi

such that yi
(
wTφ(xi) + b

)
≥ 1− ξi, ξi ≥ 0

The optimization problem includes a C parameter, which is a user-defined parameter.

This parameter is a penalty parameter of the error which controls the balance between the

complexity of the SVM and the number of nonseparable points. With this parameter, the

user can control the SVM’s ability to generalize. This problem is then solved using quadratic

optimization.

As there is an issue with the separability of data, there is another element in the structure

of an SVM. SVMs employ a nonlinear kernel function that tranforms the input vector defined

in the input space to a vector in a higher dimensional feature space. In doing so there is a

stronger probability that the input vectors are more separable.

9



After the optimal hyperplane is constructed, the operation of an SVM is rather simple.

The input vector is mapped into the feature space. The SVM then determines where the

vector is located with respect to the hyperplane and that consists of its decision. The unique

advantage of SVMs is their ability to generalize. By incorporating the deviation of input

vectors as a variable in its optimization algorithm, SVMs can account for some variability

of the input vector which makes it a good candidate for classifying EMG signals.

2.5 Support Vector Machines in EMG Classification

A number of researchers have made use of support vector machines with a direct application

to the classification of EMG signals [5, 6, 2, 10]. All of the implementations have reported

accuracy rates above 90%, the highest being 96.76% [6].

Yoshikawa et al. [5] proposed a real time hand motion estimation method using EMG

signals. To accomplish this, they used four surface electrodes placed on a patient’s forearm

to distinguish between seven hand motions: at rest, opening of the hand, closing of the hand,

pronation, supination as well as wrist flexion and extension. The EMG signals were mea-

sured using a professional EMG measurement device (Personal-EMG, Oisaka Development

Ltd.) and the rest of the signal processing and classification was performed on a PC. In

order to perform the classification they used an SVM with input vectors composed of the

integrated EMG signal, cepstrum coefficients which are used in speech analysis and regres-

sion coefficients. With this set of features, the classification rate ranged from approximately

87% to 92%.

Oskoei et al. [2] compared the classification ability of SVMs with linear discriminant

analysis (LDA) and multilayer perceptron (MLP) neural networks. This article described

many interesting observations that resulted from slightly modifying many of the parameters

surrounding the calculation of the input vector. One of the experiments tested the accuracy

of classifications that were performed on different lengths of EMG data ranging from 50 to

500 ms. The performance of various features or sets of features was evaluated. The results of

the research indicated that longer segments of raw EMG data produced better classification

accuracy. The SVM based classifiers achieved the highest classification accuracy at 95.5%,

with the LDA classifier performing at 94.5%. A two layer MLP performed with similar

accuracy to the SVM and LDA, whereas a one layer MLP lost 6% in accuracy.

Rekhi et al. [10] performed EMG classification using features determined through wavelet

packet analysis and then singular value decomposition. The purpose of the singular value

decomposition was to reduce the dimensionality of the coefficients produced by the wavelet

packet analysis. This study attempts to classify six different hand motions similar to the

10



previous articles and results in an accuracy rate of 96%.

Liu et al. [6] used a much more complex cascaded kernel learning machine which was

composed of a generalized discriminant analysis algorithm as well as an SVM. It documents

the superior performance of this classifier in comparison with other common neural networks

including the k-nearest neighbor algorithm, MLP networks and SVMs. The cascaded ker-

nel learning machine was able to achieve an accuracy of 93.5%. This research team moved

further than the previous ones in that it implemented a digital signal processor based EMG

classification system in order to demonstrate the practicality of the solution. The classifica-

tion module was developed on the DSP TMS320C31 which performs a classification based

on 1000 raw EMG data points sampled at 2.5kHz.

11



3

Statement of Problem

The goal of the group project is to develop a robotic prosthetic device that can be controlled

using EMG signals. The main motivation for this device is the need for greater functionality

in prosthetic devices as well as the need for better interfaces. The group project consists of

three major systems: EMG data acquisition, EMG classification and the robotic prosthetic.

This project attempts to fill a void between man and machine, which addresses the

seemingly simple issue of being able to autonomously determine the hand gesture a patient

is performing from the corresponding EMG signal produced by the muscles of the patient.

As has already been discussed, the EMG signals that are produced while performing a

particular hand gesture are never identical which requires the use of a pattern recognition

algorithm. The hand gestures that would be classified would consist of gross movements of

the hand including: rest position, opening of the hand, closing of the hand, wrist flexion,

wrist extension, wrist pronation and wrist supination.

For practical purposes, the goal for the control system of the prosthetic device is real time

(or at least continuous) operation. This EMG classification system will need to be developed

specifically to interface with an EMG data acquisition system as well as a robotic prosthetic

hand. To meet these constraints and to be a practical solution, the system would inevitably

have to be developed on an embedded platform. Other practical matters that should be taken

under consideration are power consumption and the bulkiness of the physical equipment.

12



4

Methodology of Solution

4.1 Theoretical Development

4.1.1 Multiclass SVM

Based on the current literature, the most popular and the most successful algorithm used

for EMG classification are support vector machines or derivations of them [5, 6, 2, 10]. As

was described in the Literature Review, the accuracy rate of the EMG classification using an

SVM is typically above 90%. The main issue that remains is the configuration of the SVM

and the choice of the features that will be extracted from the EMG signal.

Since SVMs are binary classifiers, a single SVM would only be able to classify two classes

of gestures. In order to classify six gestures, a multiclass SVM is required which can be

accomplished in one of two ways. The first approach would involve solving the optimization

problem involving data from all six classes. The second approach simply builds the multiclass

SVM out of a combination of binary SVMs. The combination of binary SVMs is much simpler

and does not hinder the performance of the classification [2].

In order to implement the multiclass SVM using binary SVMs, there are two possible

schemes that can be utilized: “one against all” (OAA) or “one against one” (OAO) [2].

For n classes, OAA uses n binary classifiers where each classifier is trained to distinguish

between one class and the remainder of the classes. OAO requires n(n−1)
2

binary classifiers,

where each classifier distinguishes between a pair of classes. In OAO, the final classification

is based on a voting mechanism, where the outputs of all the classifiers are added together.

The class with the most votes is the final output. According to [2], both schemes show more

or less the same performance. However by comparing all pairs of classes, the OAO scheme

calculates a better measure of the probability of each class. The EMG classification system

implemented in this project using the OAO scheme.

13



4.1.2 SVM Kernel

An SVM uses a kernel in order to map the input data to a feature space. There are three

commonly used kernels [12]:

linear:K (xi,xj) = xTi xj

polynomial:K (xi,xj) =
(
γxTi xj + r

)d
, γ > 0

radial basis function:K (xi,xj) = e−γ‖xi−xj‖2 , γ > 0

sigmoid:K (xi,xj) = tanh
(
γxTi xj + r

)
In terms of selecting a kernel function to use with the SVM, there are no methods that can

determine what kernel function should be used for a particular application. According to

[12], the radial basis function (RBF) kernel should be a first choice. One reason being that

for certain parameters C and γ the RBF kernel can behave like sigmoid and linear kernels.

Another reason to use the RBF kernel is that there are less difficulties with mathematical

computations. The output of the RBF kernel ranges between 0 and 1, whereas a polynomial

kernel may approach infinity or 0.

4.1.3 Feature Extraction

As was mentioned in the Literature Review, feature extraction is not an exact science. There

is still much work to be done in this area to determine the features that best represent EMG

signals. Luckily, the literature has revealed a few studies that attempt to determine the

features that produce the best results for EMG classification. Zardoshti-Kermani et al. [13]

present an investigation into the class discrimination, robustness as well as computational

complexity of a number of features. Using the Davies-Boulin index whihc is a measure of

cluster separability as well as the k-nearest neighbour algorithm, they were able to compare:

the integral of the absolulte value, zero crossings, variance, Willison amplitude, v-order de-

tector, log detector, an autoregressive model as well as the histogram of the EMG signal.

The analysis indicated that the histogram of the EMG signal had the best performance.

Huang et al. [14] compare a similar list of features: the integral of the EMG signal, wave-

form length, variance, zero crossing, slope sign changes, Willison amplitude, a 4th order

autoregressive model and a histogram of the EMG signal. The best results were obtained

using the autoregressive model and the histogram of the EMG signal, however the analysis

was done using a k-nearest neighbour algorithm. Using the results from [14], Liu et al. [6]

achieve very good results with features based on the 4th order autoregressive model and a

histogram of the EMG signal using the cascaded kernel learning machine.

14



It should be noted that when determining the types of features to extract from an EMG

signal, one must seriously account for computational complexity in addition to its ability to

help separate the data. Furthermore, as the project’s focus is on the design and implemen-

tation of an EMG classification system and not the development of new feature extraction

methods, the chosen feature extraction methods will be based on those that have been proven

to be effective. From the literature, the two best candidates are the autoregressive model as

well as the histogram of the EMG signal.

Autoregressive Moving Average Model

The analysis of EMG signals using an autoregressive moving average model (ARMA) dates

back to 1975 [7]. In order to model an EMG signal, a fourth order model is adequate [13].

Using a least squares algorithm over a certain time window, the calculation of the model of

order p can be described by the following equations

ai = ai−1 + PiXi

(
xi −XT

i ai−1
)

Pi = Pi−1 −
Pi−1XiX

T
i Pi−1

1 + XT
i Pi−1Xi

where Xi = [xi−1 xi−2 ...xi−p ]T , ai is the vector of the ARMA coefficients, ai−1 contains the

previous ARMA coefficients, Pi is a p by p matrix. Before any calculations are begun, P0 = I

and a0 = 0. These equations are used to perform a recursive calculation over all the data

points within a certain window, updating ai and Pi on each pass.

EMG Histogram

The EMG histogram draws on a simple observation. As a muscle contracts, the signal begins

to deviate from its resting position. Measuring the frequency with which the EMG signal

reaches multiple amplitude levels proves to be an effective tool to characterize an EMG

signal. The histogram is implemented in a similar fashion as has been documented in the

literature [13]. It separates a voltage range that is symmetric around 0 V into 10 bins.

4.2 EMG Classification System

The overall design of the EMG classification system can be seen in Figure 4.1. There will

be three channels to record EMG signals at 3 postions on the upper extremity. Feature

extraction will be performed on each of the 3 channels to produce an input vector. The

system will consist of two modes of operation: a training phase and a classification phase.

15



Figure 4.1: Generalized block diagram of the EMG Classification System

During the training phase, each binary SVM will be trained using control data provided by

the patient which will result in a model. The model will then be used during the classification

phase to continuously classify new EMG signals provided by the patient.

16



5

Design Procedures and Experimental

Procedures

5.1 Hardware Design

During the initial stages of the design of the EMG classification system, the hardware re-

quirement seemed to be any ordinary processor that could be interfaced with an EMG data

acquisition system as well as a robotic prosthetic. In the most general sense, the system

would be required to perform a large amount of data manipulation, which would be im-

plemented entirely in software. Before looking into the various types of microcontrollers

and microprocessors that would be suitable for the task, it was suggested to me by Phillip

Kinsman to develop an FPGA-based implementation. The main reason for the suggestion

stems from the fact that the EMG acquisition system would be implemented on this FPGA.

The interface between these two parts of the overall project would be much smoother and it

would reduce the need for another clunky piece of equipment. The FPGA used to develop

the EMG classification system was the Altera DE2-70 which can be seen in Figure 5.1.

FPGA stands for field-programmable gate array which is essentially an integrated circuit

that is designed to be reprogrammable. FPGAs contain a large amount of logic blocks

and memory elements that can be configured together to produce useful logic operations.

In order to program an FPGA, a hardware description language (HDL), like Verilog, is

used which helps with reducing the complexity when designing a digital system. There

are also many advantages to using an FPGA. Depending on the type of application, very

fast solutions can be developed using custom hardware. In implementing custom hardware,

the solution is tailored specifically to the needs at hand and eventually result in less power

consumption when compared with a general purpose digital signal processor. In comparison

17



Figure 5.1: Altera DE2-70 FPGA Development Board

18



with a microprocessor, an FPGA runs at a much slower clock rate however operations can

be performed in parallel whereas a microprocessor can only execute instructions serially.

FPGAs can be reprogrammed. In a manufacturing process, this would be very desirable as

any patches could still be applied to products in the field.

To simplify development it was initially decided to use a soft core processor on the FPGA

to run the classification algorithm. The soft core processor is called Nios II which is a 32-

bit embedded processor architecture that can be placed on an FPGA. This would allow

development in C and avoid the need to develop the complex algorithm in Verilog.

5.2 Software Design

The bulk of the software implmentation of the EMG classification system lies within the

SVM. As the project’s scope does not include the development of a more efficient imple-

mentation of an SVM, an open source implementation was chosen as a starting point. Two

implementations were found that were most commonly used in the literature: LIBSVM [15]

and SVMLight [16]. SVMLight was chosen simply on the fact that it was written in C which

would correspond directly with the development enviroment of the Nios II processor.

The SVMLight implementation produced two exectuables: svm learn and svm classify.

svm learn was used to train the SVM based on samples in a specified file and it output a

model file that could be used in the classification process. svm classify performed classifi-

cations based on samples in a file and the model file produced by svm learn. In order to

make the system more automatic these executables were incorporated into a larger multiclass

SVM.

The initial protoyping was done on a PC using Microsoft’s Visual Studio. In order to

classify 6 gestures, using the OAO method this would require 15 binary SVMs, each of which

needs to be trained on a particular data set. The training algorithm was set up in such a way

that it asked the user for an input file, containing control EMG data from the patient, for

each gesture. This control data would have been captured using an EMG data acquisition

system while the patient was performing a certain gesture. Since these files would contain

the raw EMG data, features would have to be extracted for each EMG signal. The input

vector from each channel would be composed of 14 components, 10 from the EMG histogram

(HEMG) and 4 from the ARMA model. Therefore, since the initial design was to accomodate

3 EMG channels, the entire input vector would be composed of 42 components. Once the

raw EMG data is processed for all the samples describing one gesture it is stored in memory

until all the gestures have been processed. Then a training data file is created for each SVM

containing the specific input vectors of the two gestures that it classifies. For example, the

19



third SVM may be charged with the responsibility of classifying between wrist flexion and

wrist extension. The training data file would contain all the input vectors describing wrist

flexion and wrist extension that were calculated in the previous stage. All that remains is

the actual training of the SVMs.

In order to get better classification performance, the training algorithm requires the user

to specify two parameters for each SVM: γ and C. C was discussed in the section describing

SVMs and γ is a parameter used in the kernel function. Since the data set for each SVM

is different, each of these parameters can be adjusted in such a way to help minimize the

classification error. This is automated by using a grid search algorithm outlined in [12]. A

4x4 grid is created where each node has a corresponding value of γ and C. Each of parameters

are initialized to values between 2−8 and 28. Once the grid has been created, a particular

SVM is trained sequentially using the parameters specified by each node in the grid. The

SVMLight implementation allows the calculation of an error estimate, which is based on a

leave one out approach. This approach can be better illustrated with a thorough example.

Supposing the training data consists of 5 input vectors, to determine the accuracy of the

model, one of these input vectors is left out and the model is retrained using the remaining

4 input vectors. Once the model is retrained, it is used to classify the input vector that was

left out. This process is repeated for each of the input vector. Since the desired outcome is

known for each classification a corresponding total error can be calculated. Of course this is

not an ideal measure of the error, but it does provide a better understanding of classification

ability of the model. After all the error estimates are calculated, the grid search is refined

within the neighbourhood of the node with the highest accuracy. The parameters, showing

the most accurate results after this refinement, are chosen as the final parameters and the

SVM is trained one last time. As soon as training is completed, a model file is created which

is used in the classification phase.

A note should be made regarding the run time of this algorithm. The leave one out

method was chosen to estimate the error as it was provided in the implementation. [12]

provides an alternative method called cross validation. It is similar to the leave one out

method, however it divides the training data set into large subsets and computes the error

while leaving out those subsets instead of individual input vectors. As this development was

only concerned with prototyping, it was not an issue at this point in time.

The classification phase is more straightforward. The user is prompted for an input file

containing the raw EMG signal to be classified. The features are extracted from the signal

and the input vector is processed by the SVM model that was created during the training

phase. The result is a number between -1 and 1 which indicates where the new sample lies

in comparison to the decision surface. This process would be repeated for all of the SVMs.

20



All of the outputs are then tabulated to vote on a final output. This output would then be

used to drive the robotic prosthetic device.

5.3 Runtime Measurements

Since the system was being developed for an embedded platform, a lot of time was spent

measuring the various system requirements during the development process. The main

runtime measurements were made with respect to memory allocations as well as processing

time.

The results of these measurements indicated that the training phase of the SVM required

a large amount of memory. This is due to the fact that SVMLight uses a fast kernel caching

algorithm, which is meant to speed up training times. The default setting for this kernel

cache is 40MB whereas the absolute maximum amount of fast memory (SSRAM) available

on the FPGA was 2MB. It should be noted that although there were 2 blocks of 32MB of

SDRAM on the development board, we did not have the memory controllers to make use

of these blocks at this point in time. This memory requirement could be scaled by simple

decreasing the kernel cache to less than 2 MB at the price of a decrease in training time.

When it comes to processing time, it is a rather lengthy process. As the training data can

vary from training run to training run, it is never the same length of time. The training

time can range anywhere from a few minutes to over half an hour, depending on the data

set and the choice of C and γ parameters.

The classification phase, on the other hand, performed much better. The memory usage

depended greatly on how many support vectors were included in the model file, since one

of these files was stored in memory at all times during classification. The processing time

took slightly longer than 1s. Although this is an acceptable result for offline classification, it

presents a slight problem when it is meant to perform classifications continuously. Ideally, a

maximum delay of a few hundred milliseconds would be preferred to 1s.

An important issue that arose at this point was the almost overwhelming complexity

of the algorithm. The classification system would have to be ported from a PC running

a Core 2 Duo CPU at 2.1GHz to an FPGA development board where the clock runs at

50MHz. In using the FPGA to implement the classification algorithm, the main objective

was to reduce the number of components that would make up the entire system and to

streamline the interface between all three portions of the project. By planning to use the

Nios II processor, all the instructions would essentially be processed serially leading to a 42x

increase in processing time. Since this was unacceptable for an embedded system, design

alterations had to be made.

21



5.4 Design Alterations

The results from the runtime measurements were not too encouraging. A large portion of the

algorithm had to be redesigned in terms of implementation. This was done by considering

each of the two modes of operation separately.

It was inevitable that the training phase would require a longer amount of time no matter

where or how it was implemented. Since the training algorithm is very involved and very

complex it would require a considerable amount of time and skill to develop a more efficient

solution on the embedded platform. From the point of view of the patient in a practical

situation, they would probably not sit around and wait while the device was training. This

phase could be completed over a longer period of time. The current implementation, although

not on an embedded platform, satisfied this point. In order to perform the training on a

PC, we required a method to transfer the data from the development board. The board

has almost all of the standard input and output interfaces, including an SD Card as well

as USB. Since an SD Card controller was available for the DE2-70, it was decided that the

data could be transferred using an SD Card.

The classification phase posed a larger issue as processing time was a crucial component

to the successful functioning of the system. A closer look at the classification algorithm

revealed a somewhat straightforward computation, which could possibly be implemented

using custom hardware. Taking advantage of the strengths of the FPGA, the algorithm

could be implemented much more efficiently. Unfortunately, this would require the complete

redevelopment of the entire classification phase.

Other issues outside of the project also required the scaling back of certain objectives.

Being able to mimic six different gestures in a robotic prosthetic proved to be a difficult

task. Furthermore, developing a prototype for the EMG data acquisition front end was also

rather challenging. There was only enough time to build one data acquisition board. As a

result, one EMG channel would not provide enough information to classify six different hand

gestures. Therefore, to satisfy a proof of concept the classification was limited to 2 gestures:

opening of the hand and closing of the hand. This would only require one SVM

5.5 Custom Hardware Design

The solution to the runtime problems was to design custom hardware for the classification

phase using Verilog. A major obstacle was my complete unfamiliarity with the language as

well as unfamiliarity with custom hardware design. The general outline of the design did not

change. Feature extraction would be performed on the raw EMG signal producing an input

22



Figure 5.2: Simulation of the EMG classifier custom hardware block

vector. The input vector would be classified by the SVM based on the model generated in

the training phase and the SVM would produce a single output.

In designing the custom hardware, a lot of simulations were performed using ModelSim.

A simulation of the EMG classifier can be seen in Figure 5.2. This proved to be a very useful

tool in designing and debugging the various blocks.

Once the implementation of the hardware modules was complete, the compilation showed

that a surprising amount of resources were required for the EMG classifier. The entire

classifier, including the feature extraction modules, consumed about 15% of the FPGA, with

the ARMA module consuming about 10% on its own.

The processing time of the custom hardware implementation was very fast. The raw

EMG data samples were supplied at 10kHz, meaning one sample arrived every 5000 clock

cycles. The custom hardware implementation allowed the feature extraction to occur as soon

as the samples arrived. The HEMG module took approximately 3 clock cycles to update its

internal registers whereas the ARMA module took over 200 clock cycles for a single iteration

of the algorithm outlined earlier. One classification was based on 1024 raw EMG samples

which turns out to be approximately 100ms, meaning that one classification would occur

every 5 million clock cycles. In the digital world, this is plenty of time to perform any sort of

calculation. One single pass through the SVM module took approximately 83 clock cycles,

23



Figure 5.3: Diagram of the segmentation of the EMG signal for classification [2]

with an overlap of about 30 clock cycles between subsequent inputs. The processing time of

this module depends heavily on the amount of support vectors that the model contains. For

400 support vectors this process takes approximately 17000 clock cycles. Figure 5.3 shows

the operation of the EMG classifier in a continuous setting.

Thus with these processing times the classification is very fast, with the limiting factor

being the length of the EMG signal window. A 100ms window allows a maximum of 10

classifications per second.

With this approach it would be very simple to extend this design to the 15 SVMs required

to classify 6 gestures. All of the processing could be done in parallel, without any additional

time added. The only problems would arise with the amount of resources.

24



6

Results and Discussion

Overall the results of the implementation of the EMG classification system were rather

satisfactory. A functional demonstration of the prototype system demonstrated the ability

to continuously classify the EMG signals recorded from the forearm of a patient. Based on

qualitative observations, the response of the classification seemed a little delayed and not

all classifications were made correctly. Since much of the overall system has been developed

from scratch, it would be difficult to judge where the issues would reside.

The actual accuracy rate during online operation is unknown. Since the classification

occurs in real time, it would be very difficult to implement something that keeps track of the

classification error. It would at least require the answer to the question “Was that classifica-

tion correct?”, which could only be provided by a human being. However, using the original

classification algorithm developed on the PC, I was able to simulate the classification and

determine an accuracy rate of approximately 82%. For a first attempt at EMG classification,

I believe this is an acceptable result. Figure 6.1 shows a sample EMG signal recorded during

the closing of the hand using the data acquisition system. It can be seen in the figure that

there is some drift in the signal and still contains a lot of noise. The quality of the signal

may be a factor in the classification accuracy of the SVM, since the SVM may be noticing

the similarities between the noise patterns as opposed to the differences in the EMG signals.

During the operation of the system, I was able to notice that the electrodes that were

being used, seemed to stop working after a short period of time. This obviously affected the

signal as time passed by, since the signal was much more degraded.

Not all of the initial objectives were met, however much was learned in the process. The

initial intention to use 3 EMG data channels as well as the ability to classify 6 different

hand gestures proved to be far too difficult to implement within the time frame that was

available. The main objective of the project was to develop an EMG classification system

for an embedded platform and this goal was achieved.

25



Figure 6.1: A sample EMG signal during closing of the hand

26



7

Conclusions and Recommendations

The project has succesfully demonstrated that electromyographic control on an embedded

platform is achievable. With more time and experience, I am confident that this system

would be able to achieve the original goal of the satisfactory classification of 6 differents

hand gestures.

There are always many improvements that could be made. It would be interesting to see if

the implementation of the training algorithm on the FPGA would be feasible. Furthermore,

in order to be able to classify more gestures, more SVMs would be needed and as a result the

modules would have to be much more efficient. Since there are so many clock cycles where

the modules do nothing, it could be possible to extend the processing of these modules to

just barely meet the time constraints. By doing this, each module could reuse its constituent

multiplier and addition blocks, eliminating the waste of precious resources. It would also be

interesting if this approach could be extended to the classification of the finer movements of

the fingers.

27



8

Appendix

The source code used in this project can be found on the attached CD.

28



Bibliography

[1] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice Hall, 2nd ed.,

1999.

[2] M. A. Oskoei and H. Hu, “Support vector machine-based classification scheme for my-

oelectric control applied to upper limb,” Biomedical Engineering, IEEE Transactions

on, vol. 55, no. 8, pp. 1956–1965, 2008.

[3] M. F. Kelly, P. A. Parker, and R. N. Scott, “Myoelectric signal analysis using neural

networks,” Engineering in Medicine and Biology Magazine, IEEE, vol. 9, no. 1, pp. 61–

64, 1990.

[4] K. Ito, T. Tsuji, A. Kato, and M. Ito, “Limb-function discrimination using emg signals

by neural network and application to prosthetic forearm control,” Neural Networks,

IEEE International Joint Conference on, vol. 2, pp. 1214–1219, 1991.

[5] M. Yoshikawa, M. Mikawa, and K. Tanaka, “Real-time hand motion estimation using

emg signals with support vector machines,” SICE-ICASE, 2006. International Joint

Conference, pp. 593–598, 2006.

[6] Y.-H. Liu, H.-P. Huang, and C.-H. Weng, “Recognition of electromyographic signals

using cascaded kernel learning machine,” Mechatronics, IEEE/ASME Transactions on,

vol. 12, no. 3, pp. 253–264, 2007.

[7] D. Graupe and W. K. Cline, “Functional separation of emg signals via arma identifi-

cation methods for prosthesis control purposes,” Systems, Man and Cybernetics, IEEE

Transactions on, vol. 5, no. 2, pp. 252–259, 1975.

[8] B. Hudgins, P. Parker, and R. Scott, “A new strategy for multifunction myoelectric

control,” Biomedical Engineering, IEEE Transactions on, vol. 40, no. 1, pp. 82–94,

1993.

29



[9] K. Englehart, B. Hudgin, and P. A. Parker, “A wavelet-based continuous classification

scheme for multifunction myoelectric control,” Biomedical Engineering, IEEE Transac-

tions on, vol. 48, no. 3, pp. 302–311, 2001.

[10] N. S. Rekhi, A. S. Arora, S. Singh, and D. Singh, “Multi-class svm classification of sur-

face emg signal for upper limb function,” in Bioinformatics and Biomedical Engineering

, 2009. ICBBE 2009. 3rd International Conference on, pp. 1–4, 2009.

[11] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classi-

fiers,” in Proceedings of the Fifth Annual Workshop on Computational Learning Theory,

(Pittsburgh), pp. 144–152, ACM Press, 1992.

[12] C.-C. C. Chih-Wei Hsu and C.-J. Lin, “A practical guide to support vector classifica-

tion.” Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2009.

[13] M. Zardoshti-Kermani, B. C. Wheeler, K. Badie, and R. M. Hashemi, “Emg feature

evaluation for movement control of upper extremity prostheses,” Rehabilitation Engi-

neering, IEEE Transactions on, vol. 3, no. 4, pp. 324–333, 1995.

[14] H.-P. Huang, Y.-H. Liu, and C.-S. Wong, “Automatic emg feature evaluation for con-

trolling a prosthetic hand using supervised feature mining method: an intelligent ap-

proach,” Robotics and Automation, Proceedings IEEE International Conference on,

vol. 1, pp. 220–225, 2003.

[15] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[16] T. Joachims, “Making large-scale svm learning practical,” in Advances in Kernel Meth-

ods - Support Vector Learning (B. Schlkopf, C. Burges, and A. Smola, eds.), MIT-Press,

1999.

30

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Vitae

Name: Philip Chrapka

Place of Birth: Hamilton, Ontario

Year of Birth: 1987

Secondary Education: Westdale Secondary School

Honours and Awards:

The W. Reymont Foundation Scholarship (2006, 2007, 2009)

The Stanislaw Smolinski Foundation Scholarship (2007,2008)

McMaster President’s Award (2005)

Nortel Networks Entrance Scholarship (2005, 2005)

The PEO Foundation for Education in-Course Scholarship (2006)

Ontaio Scholar Award (2005), Carol Moule Memorial Award (2005)

31


	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Definition
	Background
	Objectives
	General Approach to the Problem
	Scope of the Project

	Literature Review
	Electromyographic Control
	Neural Networks
	Feature Extraction
	Support Vector Machines
	Support Vector Machines in EMG Classification

	Statement of Problem
	Methodology of Solution
	Theoretical Development
	Multiclass SVM
	SVM Kernel
	Feature Extraction

	EMG Classification System

	Design Procedures and Experimental Procedures
	Hardware Design
	Software Design
	Runtime Measurements
	Design Alterations
	Custom Hardware Design

	Results and Discussion
	Conclusions and Recommendations
	Appendix
	Bibliography

