

Development of a Novel Wearable Posture Correction

Apparatus Using Advanced Accelerometry Techniques:

Signal Analysis Unit
Nanxi Zha

Electrical and Biomedical Engineering

Faculty Advisor: Prof. de Bruin

Electrical and Biomedical Engineering Project Report

Submitted in partial fulfillment of the degree of

Bachelor of Engineering

McMaster University

Hamilton, Ontario, Canada

April 23, 2010

Copyright © April 23, 2010 by Nanxi Zha

2

ABSTRACT

Proper posture is an integral part of a healthy lifestyle. For individuals suffering from unilateral

body neglect, proper posture cannot always be guaranteed. The wearable posture correction

apparatus uses measurements from accelerometers. Based on gravitational acceleration,

calculations are performed to measure posture tilt. This action is modeled on a software program.

Improper posture is also noted, and corrective instructions are given. The theory behind our

device, hardware design, the experimental results, and correctness of the system are presented.

Keywords: Posture correction, accelerometer, tilt, unilateral body neglect

3

ACKNOWLEDGEMENTS

The author would like to thank David Zhitomirsky of McMaster University, who worked on the

signal acquisition component of this design project. Without his contribution, this project would

not have been possible. In addition, the author would also like to thank Prof. deBruin of

McMaster University for his invaluable advice during the design project. Lastly, the author

would like to thank Larissa Schudlo for providing hardware advice to the project.

4

TABLE OF CONTENTS

1. INTRODUCTION .. 8

1.1 Objectives ... 8

1.2 Methodology ... 8

1.3 Scope ... 9

2. LITERATURE REVIEW ... 10

3. PROBLEM AND METHODOLOGY OF SOLUTION ... 11

3.1 Tilt Calculation ... 11

3.2 Wireless Tranceiver .. 12

4. DESIGN & EXPERIMENTATION PROCEDURES .. 14

4.1 Initial Testing .. 14

4.2 Trajectory Calculation .. 17

4.3 Real Time Implementation ... 19

4.4 Wireless Implementation .. 20

5. RESULTS AND DISCUSSIONS ... 24

6. CONCLUSIONS AND RECOMMENDATIONS ... 30

7. APPENDIX A: MATLAB CODE FOR TILT ANALYSIS ... 32

8. APPENDIX B: TEST CODE FOR THE NRF24L01 TRANSCEIVERS 34

8.1 Transmission side.. 34

8.2 Receiver Side .. 35

9. APPENDIX C: WIRELESS LINK PROGRAM FOR TRANSMITTING ACCELEROMETER

DATA ... 37

9.1 Transmission Side ... 37

9.2 Receiving Side .. 39

10. APPENDIX D: FINAL MICROCONTROLLER CODE .. 42

10.1 Microcontroller #1 .. 42

10.2 Microcontroller #2 .. 49

11. APPENDIX E: LABVIEW FINALIZED PROGRAM .. 51

11.1 Front Panel .. 51

11.2 Top Left of Block Diagram... 52

11.3 Bottom Left of Block Diagram ... 52

11.4 Top Right of Block Diagram .. 53

11.5 Bottom Right of Block Diagram ... 53

11.6 Overall Block Diagram ... 54

5

11.7 SubVI for Angle Calculation .. 54

12. VITAE... 55

13. BIBLIOGRAPHY ... 56

6

LIST OF TABLES

3.1 Data Storage in 1-Dimensional Byte Array 12

4.1 Initial Test Setup 14

4.2 Initial Accelerometer Trajectory 15

4.3 Low-pass Filtered Trajectory 16

4.4 Moving Average Filtered Trajectory 17

4.5 Translational Movement of the Accelerometer 18

4.6 Tilt Trajectory 19

4.7 Project Schematic 20

4.8 Transmitter Module 21

4.9 Receiver Module 22

5.1 Accelerometer at the home position (correct posture) 25

5.2 Accelerometer tilted backwards 26

5.3 Accelerometer tilted forwards 26

5.4 Accelerometer tilted to the right 27

5.5 Accelerometer tilted to the left 27

5.6 Accelerometer tilted backwards and to the right 28

5.7 Accelerometer tilted forwards and to the left 28

5.8 Accelerometer tilted forwards and to the left 29

5.9 Accelerometer tilted backwards and to the left 29

7

LIST OF FIGURES

5.1 Percent Error for Left/Right Tilt………………………………………………24

5.2 Percent Error for Forwards/Backwards Tilt…………………………………..24

8

Development of a Novel Wearable Posture Correction Apparatus Using

Advanced Accelerometry Techniques: Signal Analysis Unit

1. INTRODUCTION

 Biomedical engineering involves using conventional engineering practices to improve

healthcare-related problems. In this project, the overall goal is to design a posture correction

system for physiotherapy and rehabilitation purposes. Upon sensing the patient’s posture, the

device will display the information graphically, and offer corrective feedback.

1.1 Objectives

 The signal analysis portion of the project includes a hardware objective and a software

objective. In the hardware component, the signal generated by the accelerometer is processed by

the microcontroller, and then transmitted wirelessly to a second microcontroller, which is then

connected to a computer. The software component consists of utilizing this data and displaying a

graphically model of the patient’s movement on a computer, as well as calculating any posture

changes the patient needs to make.

1.2 Methodology

 It was determined that accelerometers would be used to implement a posture sensing

algorithm. Through testing procedures, it was determined that one accelerometer would be

adequate in sensing the thoracic posture of the patient. The methodology begins with the

accelerometer (ADXL335) sends 3-axis acceleration signals to a microcontroller (Adruino

ATmega 328 on an Adruino Duemilanove USB board), hereby known as Microcontroller #1.

The data is then processed on Microcontroller #1 to determine the tilt angles with respect to the x,

y, and z – axis. Afterwards, the data is then sent from Microcontroller #1 to a second

microcontroller (Adruino ATmega 328 on an Adruino Duemilanove USB board), hereby known

9

as Microcontroller #2. The link between Microcontroller #1 and Microcontroller #2 is wireless.

This is accomplished by using two nRF24L01 tranceiver chips. After the data arrives at

Microcontroller #2, it is then sent to a computer, via a USB connection. The data is then used to

plot the patient’s position on a screen (in LabVIEW), as well as offering posture correction

feedback.

1.3 Scope

 Since the signal analysis unit must be connected with the signal acquirement unit

seamlessly, a scope for this portion must be defined. It is determined that the signal analysis unit

will include data hand-off from Microcontroller #1 to the LabVIEW program on the computer.

10

2. LITERATURE REVIEW

 Patients who are suffering from unilateral body neglect (e.g., as a result of a stroke) have

a decreased awareness of a particular side of their body. Although they have trouble maintaining

proper posture, corrections to their postures are possible when given encouragement (Punt,

Riddoch 2006).

Currently, there are posture monitoring systems available involving accelerometers and

gyroscopes (Hyde et al. 2008). This project will focus on the use of accelerometers due to their

small size, light weight, and low cost (Mizuike, Ohgi & Morita 2009). Past accelerometer studies

have been applied to posture maintenance and gait analysis. A series of accelerometers attached

at the joints can model movements of the entire human body (Giansanti et al. 2003). By using

frequency filtering and analysis techniques (e.g., Fourier Transform), the signals can be

classified based on different posture (DC signals) and movement (AC signals) (Fahrenberg et al.

1997). Furthermore, incorrect gait patterns can be detected by accelerometers using normalized

root mean square and auto correlation analysis (Mizuike, Ohgi & Morita 2009).

 In comparison, the posture correction system designed will focus solely on

accelerometers. Posture maintenance will be reinforced through the usage of vibration motors,

LED lights, as well as a graphical modeling tool. Analysis performed on the acceleration signals

will be based on tilt calculations. This allows for much simpler calculations, which can save time

and memory, while ensuring accuracy of the system. By using tilt angles to model posture, it also

allows for a very simple posture correction algorithm to be implemented. Its simplicity also

saves time and memory resources, allowing all this to be performed on Microcontroller #1.

 Through this comparison, it is believed that this posture correction system is a novel

design in the rehabilitation and physiotherapy sciences. The resources used to implement this

system are inexpensive but efficient. It allows for a portable system that can be applied to

rehabilitation and physiotherapy.

11

3. PROBLEM AND METHODOLOGY OF SOLUTION

 In this project, there existed three main problems: a tilt calculation algorithm need to be

designed, as well as a wireless software library need to be implemented for data transmission and

receiving. These problems are the backbones for the project, and are all essential to its success.

3.1 Tilt Calculation

 From the application notes of the ADXL 335 (Tuck 2007) it was determined that the

angle of tilt can be found with the following equation, using one axial acceleration data:

𝜃 = 𝑠𝑖𝑛−1
𝑉𝑥 − 𝑉𝑜𝑓𝑓𝑠𝑒𝑡

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 ………… (3.1)

In this equation, 𝑉𝑥 is the voltage measured from the accelerometer in the x-axis direction,

𝑉𝑜𝑓𝑓𝑠𝑒𝑡 is the voltage offset recorded when the x-axis is perpendicular to the gravitational

acceleration, the sensitivity is taken from the ADXL 335 datasheet, and 𝜃 is the angle of tilt as

measured from the x-axis. Similarly, the tilt of the y and z-axis can be found using equation (3.1).

 Unfortunately, the ADXL 335 has a limited region of linearity. To compensate for this

problem, all tilt angles were calculated based on two axial acceleration data. The equations are as

follows (Tuck 2007):

𝜙 = 𝑡𝑎𝑛−1
 𝑎𝑥2 + 𝑎𝑦2

𝑎𝑧
 ………… (3.2)

𝜌 = 𝑡𝑎𝑛−1
𝑎𝑥

 𝑎𝑧2 + 𝑎𝑦2
 ………… 3.3

𝜃 = 𝑡𝑎𝑛−1
𝑎𝑦𝑥

 𝑎𝑧2 + 𝑎𝑥2
 ………… (3.4)

The angles 𝜙, 𝜌,𝑎𝑛𝑑,𝜃 correspond to the angles with respect to the x, y, and z-axis respectively.

12

Figure 3.1: Data storage in 1-dimensional byte array

 Z data X data Y data

3.2 Wireless Tranceiver

 To implement a wireless connection between the two microcontrollers, controls must be

implemented between the microcontrollers and the transceivers. The signals from the

microcontroller are in integer form, and this must be translated into bytes in order for

transmission to occur. This can be accomplished by typecasting an integer into its corresponding

1-dimensional byte array. Unfortunately, the same process could not be used when three integers

were required to be transmitted (this is necessary as the accelerometer produces three integer

acceleration values, which pertains to the x, y, and z-axis). If the data were to be sent one by one,

the first integer can be received, but the two subsequent numbers are lost. Therefore, the three

integers must be combined into one 1-dimensional byte array, which is then sent.

 In order to transmit three integers as one 1-dimensional byte array, a byte array with the

size of three integers must first be initialized. The three axial acceleration data are stored as

integers, and then converted into three 1D byte arrays. Since the input of the data sending

method is one 1D byte array, the three 1D byte arrays must be compressed into one 1D byte

array. The three numbers are then stored into the array.

From Figure 3.1, it can be seen that the three integers are stored into one byte array. The right

cell represents the first index of the array, which stores data in the x-axis direction. The middle

cell refers to the second index of the array, which stores data in the y-axis direction. Lastly, the

left cell contains the last index of the array, which stores data in the z-axis direction. The final

result is a single 1-dimensional byte array, which is the compatible input for the Adruino-Nordic

library’s send data function.

13

At the receiving terminal, a 1-dimensional byte array is then received by the nRF24L01

transceiver. Processing is done to extract the three numbers from the byte array. Since the x

direction data occupies the lowest indices of the byte array, each element was multiplied by

256𝑛 , where n is the index of the array (zero being the lowest). This concept was then applied to

the y and z direction data, and the respective numbers were obtained.

14

4. DESIGN & EXPERIMENTATION PROCEDURES

The design procedures occurred in four steps. First, the accelerometer was connected to a

simple LabVIEW software, where initial filtration techniques were tested. Next, the

accelerometer was put through a series of planned trajectories, which were then compared to the

measured trajectories. After this, real-time analysis of the accelerometer was computed. Lastly, a

wireless link was established between the data acquisition unit and the data analysis unit.

4.1 Initial Testing

 The initial testing design schematic can be seen on Figure 4.1. The “Vcc” pin of the

ADXL 335 is connected to the supply voltage, which is 3.3V. The “GND” pin is connected to

the ground. The “X”, “Y”, and “Z” connections at the laptop is a serial connection.

This set up allowed for simple trajectories to be performed with the accelerometer, and

the results were recorded in LabVIEW. The results were then saved in a text file from LabVIEW,

and then passed into MATLAB for filtration purposes.

Using one such trajectory, as seen in Figure 4.2, various filtration techniques were

performed.

Figure 4.1: Initial testing setup

15

Figure 4.2: Initial accelerometer trajectory

0 1 2 3 4 5 6 7 8 9 10
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6
Unfiltered Signal in Time Domain

Time (s)

V
o
lt
a
g
e
 (

V
)

First, a digital low pass filter was implemented in MATLAB, in order to minimize the

noise that occurred in the higher frequencies. This resulted in the graph shown in Figure 4.3. It

can be seen that the minimal changes resulted when the low pass filter was implemented.

Furthermore, extra error was added to the plot near the beginning of the trajectory. This was due

to the internal error of the filter function in MATLAB. Therefore, it was decided to forego the

digital low pass filter, as the processing time costs outweighed the benefits.

16

Figure 4.3: Low-pass filtered trajectory

0 1 2 3 4 5 6 7 8 9 10
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6
Low Pass Filtered Signal Processing

Time (s)

V
o
lt
a
g
e
 (

V
)

Next, a moving average filter was implemented. In this case, ten samples of the

accelerometer’s data were taken, and the average value was determined. Based on the results in

Figure 4.4, it can be noted that the moving average filter did not smooth out the results as much

as expected. Therefore, the improvements seen in the moving average filter were deemed to be

not worth the extra cost of processing time.

17

Figure 4.4: Moving average filtered trajectory

0 1 2 3 4 5 6 7
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6
Moving Average Signal Processing

Time (s)

V
o
lt
a
g
e
 (

V
)

As seen in the two results, it was determined that the improved outcomes due to digital

filtration were not worth the extra processing time required.

4.2 Trajectory Calculation

 For the trajectory calculation, the accelerometer was first moved horizontally and then

vertically along a horizontal plane, and the resulting accelerations were then recorded.

 A computer-calculated model of the accelerometer’s movements was first calculated

based on the equations of motion:

𝑣𝑓 = 𝑎 ∗ ∆𝑡 + 𝑣𝑖 ………… 4.1

18

Figure 4.5: Translational movement of the accelerometer

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Translational Movement Position Graph

X Coordinate

Y
 C

o
o
rd

in
a
te

𝑑 = 𝑣𝑖 +
1

2
𝑎∆𝑡2 ………… (4.2)

Where 𝑣𝑓 is the final velocity, 𝑣𝑖 is the initial velocity, a is the acceleration, ∆𝑡 is the time

interval, and d is the distance travelled.

 For each time interval, the final velocity calculated becomes the initial velocity of the

next time interval. The initial velocity at the start is assumed to be at zero. The distance travelled,

as calculated from equation 4.2, is then plotted in MATLAB, as seen in Figure 4.5.

Since this trajectory matched the actual trajectory of the accelerometer, it was concluded that the

accelerometer is functioning correctly, and can be used to determine the patient’s positions in

posture control.

19

Figure 4.6: Tilt trajectory

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
-5

-4.5

-4

-3.5
Tilt Movement Position Graph

X Coordinate

Y
 C

o
o
rd

in
a
te

 After this, the accelerometer was spun around a wheel apparatus for tilt angle testing. The

tilt algorithm was tested, using equation 3.1.

 Figure 4.6 shows the tilt trajectory, as plotted in MATLAB. This trajectory matched the

actual trajectory of the accelerometer.

The programming code for this tilt algorithm can be found in Appendix A.

4.3 Real Time Implementation

 To implement real time analysis of data, the LabVIEW program needed to be modified

such that all calculations would take place here, as opposed to in MATLAB. This was done with

the usage of a “formula node” in LabVIEW. The two-axis acceleration equations (3.2 to 3.4)

were also implemented in this step.

20

Figure 4.7: Project schematic

 In order to make this project more portable, the National Instruments DAQ was replaced

with an Adruino Dueomilanove USB microcontroller. This board was chosen for its fast

processing power, onboard analog to digital converters and multiple analog read-in and digital

read-out pins. It can be powered via a USB connection, or a 9V battery source, which makes the

project portable. Figure 4.7 shows the new schematic for the project, where the pins on the right

of the Adruino are analog read-in pins, and the pins on the left are digital write-out pins.

4.4 Wireless Implementation

 The wireless module is based on the nRF24L01 transceiver. This chip is capable of acting

both as the transmitter and the receiver.

The nRF24L01 transceiver was chosen especially for its low input voltage requirements

(3.3V). An on-chip voltage regulator reduces all input voltages to a maximum of 3.3V. This was

helpful, especially since the output pins of the Adruino Duemilanove are driven high to 5V.

21

Figure 4.8: Transmitter module

Figure 4.8 shows the transmitter module’s schematic, while figure 4.9 shows the receiver

module.

22

The power supply for the transceiver can be taken directly from the 3.3V supply source

of the Adruino. The pins, MISO and MOSI are for output and input of data respectively. CE is

the chip enable, which enables transmit or receive mode. CSN is the chip select pin. SCK is the

digital clock for the SPI.

Figure 4.9: Receiver module

23

An Adruino-Nordic library was found specific for the nRF24L01 transceiver. The library

works in conjunction with the SPI (Serial Peripheral Interface) library. The details of these

functions are not explored; however, several key methods (that are essential to the project) are

mentioned below.

void setRADDR(byte *addr) is responsible for setting the receiving address. The

address mentioned in the transmitter module and the receiver module must match.

void setTADDR(byte *addr) is used to set the transmission address. The address

mentioned in the transmitter module and the receiver module must match.

bool dataReady() determines if there is data ready to be received.

void getData(byte *data) gets the data that is sent.

void send(byte *data) sends the data.

bool isSending() determines if there is data that is currently being sent.

 Initially, a test program was run to send one integer number over the wireless network

(refer to Appendix B).

24

5. RESULTS AND DISCUSSIONS

The following table shows the angle calculation performed using equations 3.2 to 3.4,

versus actual angles:

Table 5.1: Percent Error for Left/Right Tilt

Theoretical Angle

(degrees)

Actual Angle

(degrees)

%

Error

-90 -89.04 1.06667

-60 -56.76 5.4

-30 -26.96 10.1333

0 4.27 N/A*

30 28.95 3.5

60 66.03 10.05

90 86.98 3.35556

 *N/A due to division by the theoretical value, which is

zero.

Table 5.2: Percent Error for Forward/Backward Tilt

Theoretical Angle

(degrees)

Actual Angle

(degrees)

%

Error

-90 -86.72 3.64444

-60 -58.91 1.81667

-30 -27.54 8.2

0 1.787 N/A*

30 30.57 1.9

60 62.19 3.65

90 85.25 5.27778

 *N/A due to division by the theoretical value, which is

zero.

 It can be seen that the angle calculations are fairly accurate. The biggest % error is

10.1333% (probably due to the nonlinearity behaviour of the accelerometer at boundary cases),

with the majority of the % errors under 5%. Therefore, the angle calculation equations are

25

deemed to be accurate for this tilt application. Better accuracy can be obtained by using a look-

up table with voltages and their corresponding angles.

The following series of screen captures illustrates the graphical animation program used

to model the movement of the accelerometer:

Figure 5.1: Accelerometer at the home position (correct posture)

26

Figure 5.2: Accelerometer tilted backwards

Figure 5.3: Figure 5.2: Accelerometer tilted forwards

27

Figure 5.4: Accelerometer tilted to the right

Figure 5.5: Accelerometer tilted to the left

28

Figure 5.6: Accelerometer tilted backwards and to the right

Figure 5.7: Accelerometer tilted forwards and to the left

29

Figure 5.8: Accelerometer tilted forwards and to the left

Figure 5.9: Accelerometer tilted backwards and to the left

 From Figures 5.1 to 5.9, it can be seen that the graphical model successfully mimicks

patient’s posture movements, in three dimensions. The corrective instructions agree with the

position of the accelerometer. Furthermore, when the corrective instructions are followed, the

accelerometer is brought back to the home position (Figure 5.1).

30

6. CONCLUSIONS AND RECOMMENDATIONS

 It can be seen that the novel, wearable posture sensing device is capable of measuring tilt

posture in three dimensions. The hardware component senses improper posture, and delivers a

vibration (via a vibration motor) to the patient. Meanwhile, the software component models the

patient’s posture, as well as offering corrective feedback.

 The portability of the system is convenient for the user, as the hardware component

communicates wirelessly with the software module. Furthermore, the tilt angle tolerances can be

adjusted by the user.

 Upon reflection, it can be seen that both primary goals and secondary goals were

completed successfully. The accelerometer data was converted into corresponding tilt angles

(primary goal), which was then modelled graphically in LabVIEW (secondary goal). In addition,

a wireless link was established between the hardware and software components (secondary goal).

Overall, the design and implementation of the novel, wearable posture sensing device is

successful.

 In the future, the LabVIEW module should be updated to be more efficient. During the

process of the project, the LabVIEW module was the preliminary source for tilt testing. As a

result, a function was written in LabVIEW to calculate the tilt angles, using the accelerometry

information. Later on, Microcontroller #1 was used to calculate tilt angles as well, as it was

required for the hardware component. Unfortunately, this means that the tilt angles were

calculated twice: once on the microcontroller, and once in LabVIEW. Although this extra

calculation time is not noticeable by the user, it is not efficient. Future prototypes should transfer

the calculated angles directly to the LabVIEW program. In addition, the LabVIEW program can

be made to be more user-friendly. Currently, the program allows the user to input two fields:

31

left/right tilt angle tolerance, and forward/backward tilt angle tolerance. The fields can be

expanded to four: left, right, forward, backward tilt angle tolerance.

 The overall packaging of the system can be scaled down. Since the prototype created is

the first prototype, aesthetics was not placed of higher importance. For future prototypes, a more

compact packaging system should be used, as well as giving considerations for female and male

body types.

32

7. APPENDIX A: MATLAB CODE FOR TILT ANALYSIS

function [x, y, time] = tilt_analy (filename, initialPos, axis)

% Finds the tilt position coordinates given acceleration in 1D

% filename: name of file, with time interval and acceleration recorded,

% from Labview

% initialPos: coordinate of the initial position

% result: coordinate vector of the diplacement coordinates per time

% interval (same time interval as the input)

% Open file to read

fid = fopen(filename);

result= textscan(fid, '%f %f %f %f');

fclose(fid);

time = result{1,1};

Vx = result{1, axis+2}; %offset axis by 1 b/c 'time' is in the first column

% Adjust for acceleration

% From datasheet: 300mV/g sensitivity

g = 9.80665; %m/s^2

sens = .3;

% Calibration

zero_g = mean(voltage(1:100));

33

for i=1:length(voltage)

 accele(i) = (voltage(i) - zero_g)/sens*g;

end

% Tilt Calculations

theta = asin((Vx - V_offset)/sens);

Xo = 600;

Yo = 300;

Length_arm = 200;

[x y theta] = moving_avg(Vx);

x = zeros(1, length(theta));

y = zeros(1, length(theta));

for i=1:length(theta)

 if (theta<0)

 x(i) = Xo-Length_arm*cos(theta(i));

 else

 x(i) = Xo+Length_arm*cos(theta(i));

 end

 y(i) = Yo-Length_arm*sin(theta(i));

end

time = time(1:length(y));

34

8. APPENDIX B: TEST CODE FOR THE NRF24L01 TRANSCEIVERS

8.1 Transmission side

#include <Spi.h>

#include <mirf.h>

#include <nRF24L01.h>

void setup(){

 Serial.begin(9600);

 Mirf.init();

 Mirf.setRADDR((byte *)"clie1");

 Mirf.payload = sizeof(unsigned long);

 Mirf.config();

 Serial.println("Beginning ... ");

}

void loop(){

 //Variable sent = time

 unsigned long time = 4;

 Mirf.setTADDR((byte *)"serv1");

 //Send data

 Mirf.send((byte *)&time);

 //Waits until the program finishes sending

 while(Mirf.isSending()){

 }

 Serial.println("Finished sending");

 delay(1000);

}

35

8.2 Receiver Side

#include <Spi.h>

#include <mirf.h>

#include <nRF24L01.h>

void setup(){

 Serial.begin(9600);

 Mirf.init();

 Mirf.setRADDR((byte *)"clie1");

 Mirf.payload = sizeof(unsigned long);

 Mirf.config();

 Serial.println("Beginning ... ");

}

void loop(){

 unsigned long time ;

 Mirf.setTADDR((byte *)"serv1");

 //Loop until data is present

 while(!Mirf.dataReady()){

 Serial.println("Waiting");

 }

 //Receive the data

 Mirf.getData((byte *) &time);

36

 Serial.println((time));

 delay(1000);

}

37

9. APPENDIX C: WIRELESS LINK PROGRAM FOR TRANSMITTING ACCELEROMETER

DATA

9.1 Transmission Side

#include <Spi.h>

#include <mirf.h>

#include <nRF24L01.h>

const int xpin = 1;

const int ypin = 2;

const int zpin = 3;

void setup(){

 // Configuration of the nRF24L01 transceiver

 Serial.begin(9600);

 // Initialization of chip

 Mirf.init();

 // Set receiving address

 Mirf.setRADDR((byte *)"clie1");

 // Set payload size to transmit three integers

 Mirf.payload = sizeof(int)*3;

 Mirf.config();

}

void loop(){

38

 // Read in the accelerometer data

 int t1 = analogRead(ypin);

 int t2 = analogRead(zpin);

 int t3 = analogRead(xpin);

 // Set transmitting address

 Mirf.setTADDR((byte *)"serv1");

 // Initialize byte array to store data

 byte transmit [sizeof(int)*3];

 // Convert all integer data to bytes

 byte* temp_x = (byte*)&t1;

 byte* temp_y = (byte*)&t2;

 byte* temp_z = (byte*)&t3;

 // Convert the three byte arrays into one 1D array for transmitting

 for (int i=0; i<sizeof(int); i++)

 {

 // Store the first data in the first slot of the byte array

 transmit[i] = temp_x[i];

 // Store the second data in the second slot of the byte array

 transmit[i+sizeof(int)] = temp_y[i];

 // Store the third data in the third slot of the byte array

 transmit[i+2*sizeof(int)] = temp_z[i];

39

 }

 // Send the data

 Mirf.send(transmit);

 // Program pauses until sending is complete

 while(Mirf.isSending()){

 }

 Serial.println("Transmit Succeded.");

 delay(1000);

}

9.2 Receiving Side

#include <Spi.h>

#include <mirf.h>

#include <nRF24L01.h>

void setup(){

 // Configuration of the nRF24L01 transceiver

 Serial.begin(9600);

 // Initialization of chip

 Mirf.init();

40

 // Set receiving address

 Mirf.setRADDR((byte *)"clie1");

 // Set payload size to transmit three integers

 Mirf.payload = sizeof(int)*3;

 Mirf.config();

}

void loop(){

 // Initialize receving byte array

 byte receive[sizeof(int)*3];

 // Set transmitting address

 Mirf.setTADDR((byte *)"serv1");

 // Wait until there is data to be received

 while(!Mirf.dataReady()){

 }

 // Obtain the data

 Mirf.getData(receive);

 // Initialize the data variables

 float x_data=0;

 float y_data=0;

 float z_data=0;

41

 // Extract the data from the 1D byte array

 for (int i=0; i<sizeof(int); i++)

 {

 x_data = x_data + int(receive[i])*pow(256, i);

 y_data = y_data + int(receive[i+sizeof(int)])*pow(256, i);

 z_data = z_data + int(receive[i+2*sizeof(int)])*pow(256,i);

 }

 // Print the data

 Serial.print((int)x_data + "\t");

 Serial.print((int)y_data + "\t");

 Serial.print((int)z_data + "\t");

 delay(1000);

}

42

10. APPENDIX D: FINAL MICROCONTROLLER CODE

10.1 Microcontroller #1

#include <math.h>

#include <float.h>

#include <Spi.h>

#include <mirf.h>

#include <nRF24L01.h>

int ledPin = 6;

int pin9 = 9;

//set up vibration outputs

int leftVib = 2;

int rightVib =3;

int frontVib =4;

int backVib =5;

//set input analog channels

const int xpin = 3;

const int ypin = 2;

const int zpin = 1;

//set variables to hold analog inputs

float Xval=0;

float Yval=0;

float Zval=0;

43

//set offsets and calibration stuff

float offx=1.5;

float offy=1.5;

float offz=1.5;

int i;

volatile int CalibrateFlag=0; //variable to indicate whether interrupt has occured

//set accelerations

float ax;

float ay;

float az;

//angles

float alpha=0;

float beta = 0;

float delta = 0;

//accelerometer device sensitivities

float sensitivity=.22;

//flags to determine direction of tilt

int FlagLR=0; //flag to determine left and right tilt

int FlagFB=0; //flag to determine forward and backward tilt

44

//thresholds on angles that indicate tilt adjustment is required

float alphaThresh=20;

float betaThresh=20;

float deltaThresh=20;

void setup(){

 Serial.begin(9600);

 Mirf.init();

 Mirf.setRADDR((byte *)"clie1");

 Mirf.payload = sizeof(int)*3;

 Mirf.config();

 pinMode(leftVib, OUTPUT);

 pinMode(rightVib, OUTPUT);

 pinMode(frontVib, OUTPUT);

 pinMode(backVib, OUTPUT);

 pinMode(ledPin, OUTPUT);

 //initialize pin0 as input

 pinMode(pin9, INPUT);

}

void loop()

{

 if(digitalRead(pin9)==0){ //calibration switch is pressed

 offx = 0;

45

 offy = 0;

 offz = 0;

for(i=0;i<10;i++){ //find average value of offset for calibration

 offx = offx + analogRead(xpin);

offy = offy + analogRead(ypin);

offz = offz + analogRead(zpin);

delay(50);

 }

offx = offx/10 *3.3/1023 - sensitivity; //special case for X axis sensitivity

offy = offy/10 *3.3/1023;

offz= offz/10*3.3/1023;

 }

//read in values from accelerometer

 Xval = analogRead(xpin);

 Yval = analogRead(ypin);

 Zval = analogRead(zpin);

// find accelerations

ax = (Xval*3.3/1023-offx)/sensitivity;

ay = (Yval*3.3/1023-offy)/sensitivity;

az = (Zval*3.3/1023-offz)/sensitivity;

//find the angles and convert to degrees

 alpha = atan(az/sqrt(pow(ay,2)+pow(ax,2)))*(180/3.14592);

46

 beta = atan(ay/sqrt(pow(az,2)+pow(ax,2)))* (180/3.14592);

 delta = atan(sqrt(pow(ay,2)+pow(az,2))/ax)* (180/3.14592);

 if(delta>=deltaThresh){

 if(beta>betaThresh) FlagLR = 1; //tilting left

 else if (beta<-betaThresh) FlagLR=-1;//tilting right

 if(alpha>alphaThresh-10) FlagFB= -1; //tilting backward

 else if (alpha<-alphaThresh) FlagFB = 1; //tilting forward

 }

else{

 FlagLR=0;

 FlagFB=0;

}

if(FlagFB!=0 || FlagLR!=0)

digitalWrite(ledPin,HIGH);

else

digitalWrite(ledPin,LOW);

//set front and back vibration

 if(FlagFB==1)

 {

 digitalWrite(frontVib, HIGH); // set actuator motor on

47

 }

 else if(FlagFB==-1)

 {

 digitalWrite(backVib, HIGH);

 }

 else

 {

 digitalWrite(frontVib, LOW);

 digitalWrite(backVib, LOW);

 }

//set left and right vibration

if(FlagLR==1)

{

 digitalWrite(leftVib, HIGH); // set actuator motor on

}

else if(FlagLR==-1)

{

 digitalWrite(rightVib, HIGH);

}

else

{

 digitalWrite(leftVib, LOW);

 digitalWrite(rightVib, LOW);

48

}

//Transmit data wirelessly

 int t1 = analogRead(ypin);

 int t2 = analogRead(zpin);

 int t3 = analogRead(xpin);

 Mirf.setTADDR((byte *)"serv1");

 byte test [sizeof(int)*3];

 byte* temp1 = (byte*)&t1;

 byte* temp2 = (byte*)&t2;

 byte* temp3 = (byte*)&t3;

 for (int i=0; i<sizeof(int); i++)

 {

 test[i] = temp1[i];

 test[i+sizeof(int)] = temp2[i];

 test[i+2*sizeof(int)] = temp3[i];

 }

 Mirf.send(test);

 while(Mirf.isSending()){

 }

49

}

10.2 Microcontroller #2

#include <Spi.h>

#include <mirf.h>

#include <nRF24L01.h>

void setup(){

 Serial.begin(9600);

 Mirf.init();

 Mirf.setRADDR((byte *)"clie1");

 Mirf.payload = sizeof(int)*3;

 Mirf.config();

}

int check=0;

void loop(){

 byte test[sizeof(int)*3];

 int time;

 Mirf.setTADDR((byte *)"serv1");

 while(!Mirf.dataReady()){

 }

 Mirf.getData(test);

50

 float time1=0;

 float time2=0;

 float time3=0;

 for (int i=0; i<sizeof(int); i++)

 {

 time1 = time1+int(test[i])*pow(256, i);

 time2 = time2 + int(test[i+sizeof(int)])*pow(256, i);

 time3 = time3 + int(test[i+2*sizeof(int)])*pow(256,i);

 }

 Serial.print((int)time1);

 Serial.print("\t");

 Serial.print((int)time2);

 Serial.print("\t");

 Serial.print((int)time3);

 Serial.print("\n");

 check=1;

}

51

11. APPENDIX E: LABVIEW FINALIZED PROGRAM

11.1 Front Panel

The front panel is the user interface.

The right side bar allows the user to select the USB port where the wireless transceiver is

connected to (via Microcontroller #2). He/she can also specify the tilt tolerance in degrees. The

posture correction instructions also appear here.

 On the bottom panel, the user can specify to render via the “Scene Window”, which

opens up a pop-up window, or the “Scene Display”, which displays the graphic on the current

screen. The user can also specify a camera controller type (used to rotate the graphical region).

There is also a “Stop” button to end the program.

52

11.2 Top Left of Block Diagram

11.3 Bottom Left of Block Diagram

53

11.4 Top Right of Block Diagram

11.5 Bottom Right of Block Diagram

54

11.6 Overall Block Diagram

11.7 SubVI for Angle Calculation

55

12. VITAE

NAME: Nanxi Zha

PLACE OF BIRTH: Chengdu, Sichuan, China

YEAR OF BIRTH: 1988

SECONDARY EDUCATION: Nelson High School (2002 – 2006)

HONOURS and AWARDS: Honour Roll Student (2002 – 2006)

 Governor General’s Bronze Medal (2006)

The Nortel Network scholarship (2006)

The Miller Thompson National Scholarship (2006)

The McMaster University President Entrance

Scholarship (2006)

The University Senate Scholarship (2007, 2008)

The Ontario Professional Engineers Foundation for

Education Undergraduate Scholarship (2009)

56

13. BIBLIOGRAPHY

Fahrenberg, J., Foerster, F., Smeja, M. & Muller, W. (1997), "Assessment of posture and motion

by multichannel piezoresistive accelerometer recordings", Psychophysiology, vol. 34, no. 5,

pp. 607-612.

Giansanti, D., Macellari, V., Maccioni, G. & Cappozzo, A. (2003), "Is it feasible to reconstruct

body segment 3-D position and orientation using accelerometric data?", IEEE transactions

on bio-medical engineering, vol. 50, no. 4, pp. 476-483.

Godfrey, A., Conway, R., Meagher, D. & OLaighin, G. (2008), "Direct measurement of human

movement by accelerometry", Medical engineering & physics, vol. 30, no. 10, pp. 1364-

1386.

Hyde, R.A., Ketteringham, L.P., Neild, S.A. & Jones, R.S. (2008), "Estimation of upper-limb

orientation based on accelerometer and gyroscope measurements", IEEE transactions on

bio-medical engineering, vol. 55, no. 2 Pt 1, pp. 746-754.

Kavanagh, J.J. & Menz, H.B. (2008), "Accelerometry: a technique for quantifying movement

patterns during walking", Gait & posture, vol. 28, no. 1, pp. 1-15.

Mizuike, C., Ohgi, S. & Morita, S. (2009), "Analysis of stroke patient walking dynamics using a

tri-axial accelerometer", Gait & posture, vol. 30, no. 1, pp. 60-64.

Morris, J.R. (1973), "Accelerometry--a technique for the measurement of human body

movements", Journal of Biomechanics, vol. 6, no. 6, pp. 729-736.

Punt, T.D. & Riddoch, M.J. (2006), "Motor neglect: implications for movement and

rehabilitation following stroke", Disability and rehabilitation, vol. 28, no. 13-14, pp. 857-

864.

Tuck, K. (2007), "Tilt sensing using linear accelerometers", Freescale semiconductor,

Application notes, pp. 1-8

