

Design of a Fall Detection and Prevention

System for the Elderly

by

Jonathan Tomkun

&

Binh Nguyen

Electrical and Biomedical Engineering Design Project (4BI6)

Department of Electrical and Computer Engineering

McMaster University

Hamilton, Ontario, Canada

Design of a Fall Detection and Prevention

System for the Elderly

by

Jonathan Tomkun

&

Binh Nguyen

Electrical and Biomedical Engineering

Faculty Advisor: Prof. Doyle

Electrical and Biomedical Engineering Project Report

submitted in partial fulfillment of the degree of

Bachelor of Engineering

McMaster University

Hamilton, Ontario, Canada

April 23, 2010

Copyright ©April 2010 by Jonathan Tomkun

 ii

ABSTRACT

Falling is a serious health issue among the elderly population; it can result in critical

injuries like hip fractures. Immobilization caused by injury or unconsciousness means

that the victim cannot summon help themselves. With elderly who live alone, not being

found for hours after a fall is quite common and drastically increases the significance of

fall-induced injuries. With an aging Baby Boomer population, the incidence of falls will

only rise in the next few decades. The objective of this project was to design and create a

fall detection and prevention system for the elderly. The system consists of a wearable

monitoring device that links wirelessly with a laptop. The device is able to accurately

distinguish between fall and non-fall. Upon detecting a fall, the device emits a significant

warning from the device and through the laptop, alerting others to the user’s fall. The

device is also able to recognize dangerous tilt indicative of a fall, at which time the

device emits a warning to the user to correct their orientation to minimize the risk of

falling. The focus of this project was developing the most successful algorithm for

detecting falls and distinguishing them from non-falls. Multiple algorithms based on

both accelerometer and gyroscope platforms were examined then combined into hybrid

algorithms concentrating on acceleration magnitude and angle change. The process of

establishing the most successful algorithm involved rigorous testing and data collection.

 Keywords: fall detection, acceleration magnitude, angle change, angular velocity,

algorithm, threshold, fall prevention, elderly, automatic, wireless, Bluetooth, SVM

 iii

ACKNOWLEDGEMENTS

The group would like to thank course-coordinator and faculty advisor Dr. Doyle for

meeting with the group on multiple occasions to keep project progress on track, provide

applicable suggestions, and give instrumental advice on SVM development. Thanks also

goes to Dr. Casey Chan for technical advice and providing the use of a rapid prototyping

machine, and Mike Willand for hardware suggestion and guidance. Finally, the group is

grateful to On Nie (Annie) Cheong and Thilakshan (TK) Kanesalingam for putting their

bodies on the line and providing test fall data.

 iv

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGMENTS . iii

TABLE OF CONTENTS . iv

LIST OF TABLES . vi

LIST OF FIGURES . vii

NOMENCLATURE . viii

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Methodology . 3

1.4 Scope . 4

2 Literature Review 5

2.1 Existing Commercial Devices. 5

2.2 Existing Research & Development . 6

 3 Statement of Problem and Methodology of Solution 9

4 Experimental or Design Procedures 11

4.1 Hardware . 11

 4.1.1 Microcontroller . 11

 4.1.2 Sensors . 12

 4.1.3 Bluetooth . 13

 4.1.4 Peripherals . 13

 4.1.5 Housing . 14

4.2 Software . 17

 4.2.1 Testing/Data Collection . 17

 4.2.2 Fall Algorithms . 18

 4.2.3 Fall Algorithm 1 . 18

 4.2.4 Fall Algorithm 2 . 20

 4.2.5 Fall Algorithm 3 . 22

 4.2.6 Post-Fall Process . 24

 v

5 Results and Discussion 25

6 Conclusions and Recommendations 29

Appendix A: Accelerometer and Gyroscope Calibration Formulas & Tables 30

Appendix B: Testing/Data Collection Arduino Program 32

Appendix C: Testing/Data Collection PC-side Processing Program 34

Appendix D: Testing/Data Collection Matlab Data Graphing Program 35

Appendix E: Algorithm 1 Arduino Program 36

Appendix F: Algorithm 3 Arduino Program 39

Appendix G: Final Prototype Arduino Program 42

Appendix H: Final Prototype PC-side Processing Program 48

References 53

Vitae 55

 vi

LIST OF TABLES

4.1 Arduino Duemilanove Microcontroller Board Specs . 11

5.1 Experimental Results, Sensitivity and Specificity . 28

A.1 Accelerometer Calibration Values . 30

A.2 Gyroscope Calibration Values . 31

 vii

LIST OF FIGURES

2.1 Flow chart for an example fall detection algorithm . 7

4.1 Full device outside of housing; close up of sensors and buttons 14

4.2 Housing Mk. II, SolidWorks design top view; bottom view 15

4.3 Housing Mk. III, SolidWorks design top view; bottom view 16

4.4 Housing Mk. III, with device components . 16

4.5 Flowchart for Fall Detection Algorithm 1 . 19

4.6 Flowchart for Fall Detection Algorithm 2 . 21

4.7 Flowchart for Fall Detection Algorithm 3 . 23

4.8 Flowchart for Post-Fall Process . 24

5.1 Binh falling forward; acceleration magnitude; angular velocity 25

5.2 Annie falling forward; acceleration magnitude; angular velocity 25

5.3 TK walking; acceleration magnitude; angular velocity . 26

5.4 TK sitting down hard; acceleration magnitude; angular velocity 26

5.5 Binh lying down; acceleration magnitude; angular velocity 27

 viii

NOMENCLATURE

• ADC – Analog to Digital Converter. An ADC converts continuous analog signals

(typically voltages) to discrete digital bit numbers.

• Baud rate – The data rate in bits per second (bps) for serial data transmission.

Common values include: 9600, 14400, 115200.

• Flash memory – Program space. In the case of microcontrollers, this is where the

actual program to be executed is stored.

• I2C/I
2
C – Inter-Integrated Circuit. I2C is a type of serial bus and the associated

protocols for communicating between I2C electronic devices.

• g – One equivalent of Earth’s gravity. 1g = 9.8m/s
2
.

• SRAM – Static Random Access Memory. In the case of microcontrollers, this is

where a program creates and manipulates variables when it runs.

• SVM – Support Vector Machine. SVM’s are a set of learning methods used for

classifying data into different categories. Typically they work by projecting data

into a high or infinite dimensional space where a hyperplane can separate the data

in such a way not possible in regular dimensional space.

 1

1 INTRODUCTION

1.1 Background

Every year, one-third to one-half of the population aged 65 and over experience falls [1].

Of these elderly who do fall, half of them do so repeatedly [1]. Falls are the leading

cause of injury in older adults and the leading cause of accidental death in those 75 years

of age and older, accounting for 70% of accidental deaths [2]. More than 90% of hip

fractures occur as a result of falls, with most of these fractures occurring in persons over

70 years of age [3]. Treatment of the injuries and complications associated with falls

costs the U.S. over 20 billion dollars annually [4].

Many elderly live alone either in an apartment or a smaller house after their children have

grown up and left home. It is not uncommon after a fall that an elderly person is unable

to get up by themselves or summon help. There is therefore a need for an automatic fall

detection system in which a patient can summon help even if they are unconscious or

unable to get up after the fall.

There are already several products on the market attempting to address this problem that

have reached commercialization [5,6,7]. However, all of these products require the fall

detection device to connect (via RF) to a stationary base station, which is often a

separately purchased product. This base station, placed centrally in one’s house and

hardwired to a phone line, then phones a call centre for help. The disadvantage of these

products is that they all require an intermediary call service which amounts to a hefty

monthly fee. Also, they are all limited to the range of one’s house because they depend

on the central base station for outside contact.

On the non-commercialized aspect of development, the majority of research in fall

detection is centralized around designing new more successful algorithms for determining

falls from non-falls. The work around fall detection is distinguished by the equipment

used and by the features extracted from sensor data. The first approach is based on

accelerometers. An accelerometer is a device that can detect the magnitude and direction

 2

of acceleration along a certain axis; usually three-axis accelerometers are used.

Accelerometers can also calculate one’s angle in relation to the Earth by detecting the

acceleration due to gravity of the Earth [8]. The second main approach uses gyroscopes,

which measure orientation. A gyroscope consists of a spinning wheel whose axle is free

to take any orientation [9]. Like an accelerometer it can measure the orientation along

one or multiple axes. Using gyroscopes, it is possible to determine one’s orientation and

changes in orientation, which can be used to calculate angular velocity and acceleration

[8].

1.2 Objectives

With an aging population of baby boomers, our device aims to satisfy the growing unmet

need of fall detection and prevention. The objective of this project is to design and create

a Fall Detection System for the elderly. The system is a wearable monitoring device that

can link wirelessly with a pre-programmed laptop computer or Bluetooth-compatible

mobile phone. Upon detecting a fall, the device communicates wirelessly with the

laptop/cell phone to call 911 and/or emergency contacts. The device also detects

abnormal tilt and warns the user to correct their posture to minimize the risk of falling.

Our system is unique from existing commercial devices for several reasons. Our aim was

to eliminate the middle man call centre service and therefore the extra monthly fee. We

accomplished this by incorporating the system with the user’s existing cell

phone/computer, which also minimizes additional setup costs and hardware. This is

dependent on the fact that the next generation of elderly (baby boomers) are relatively

comfortable with technology and most likely already own a cell phone and/or computer.

Our device is also unique in that it offers a manual cancellation button in the event of a

false alarm or minor fall that the user was able to recover from. Another advantage our

system has is that it allows mobility beyond the range of the house. Wireless linking with

a cell phone allows for protection anywhere there is cell service. For more lengthy stays

away from home, say when visiting a relatives’ home, wireless linking with one’s own

laptop provides mobile protection a fixed base station would not allow. Our device also

offers a wide range of selectable alert methods should the user be hearing-impaired,

 3

seeing-impaired or otherwise. In the event of a fall or abnormal tilt, the device is able to

emit visual, auditory, and tactile feedback in the form of flashing LED’s, siren, and

vibrating buzzer, respectively. Looking at the underlying detection process, our Fall

Detection System should improve on previous systems and designs. The incorporation of

hybrid fall detection algorithms derived from existing algorithms would allows us to find

the one with the highest sensitivity and specificity. In addition, we should be able to use

our extensive test data set to design, train, and implement a simple SVM able to examine

data from sensors and determine if a fall has occurred on a yes/no basis.

1.3 Methodology

Using accelerometers, the most common and simple methodology for fall detection is

using a tri-axial accelerometer and applying thresholds [9,10]. This means that any

motion that exceeds some threshold value of acceleration will be considered a fall. More

advanced detection involves taking the dot product or cross product of the axial

accelerations to obtain the cross product magnitude and angle change [11]. With this

information, new algorithms can be formulated like analyzing post-fall orientation in

addition to acceleration threshold. This is important because often when a person falls,

their orientation changes from vertically standing to horizontally lying on the floor.

Researchers using accelerometers give a lot of attention to the optimal sensor placement

on the body; researchers generally agree that optimal fall sensor placement is at the waist

[10,12]. Using gyroscopes, a similarly-placed gyroscope measures pitch and roll angular

velocities. Applying a threshold algorithm to angular change, velocity, and acceleration

can be successful in fall and tilt detection [9].

This project involved testing and devising algorithms for maximum sensitivity and

specificity. We tested existing algorithms while using our own ideas to come up with

new hybrid algorithms. Different from existing fall detection systems, our device uses

both accelerometers and gyroscopes. This opened doors to new algorithms that integrate

both components and essentially allowed us to have two stages of detection whereas

existing devices only have one.

 4

Testing and data collection involved multiple persons simulating falls and non-falls or

Activities of Daily Living (ADL) [10]. We let the device’s algorithm distinguish

between them, followed by algorithm evaluation. Since asking older people to

intentionally fall is unreasonable, the simulated falls were completed by young adults

(aged 20-25) in a monitored environment.

1.4 Scope

This paper will focus on the development of fall detection algorithms and their

implementation in the Arduino programming language for upload onto the Arduino

Duemilanove board (ATmega238 microcontroller). It will also examine the

programming used on the laptop computer end to successfully establish a connection and

communicate with the device, written in the Processing programming language. In

addition, hardware choice and decisions based on which sensor boards, modules, and

peripherals to use in the device will be looked at.

 5

2 LITERATURE REVIEW

Multiple research journals were consulted to find relevant information regarding fall

detection. From these journals, information on how to use the acceleration readings

along multiple axes from an accelerometer to calculate acceleration magnitude, cross

product magnitude, and angle change was found [11]. In addition, information on how to

use the output from our gyroscopes to determine angular change, velocity, and

acceleration was also found [9]. Several journals also included the approximate values of

angle change and acceleration thresholds expected during falls, leading up to falls, and in

ADL [11].

2.1 Existing Commercial Devices

As expected, there exist several commercial devices already on the market that attempt to

address the issue of falling in the elderly. One such device is the iLife™ Fall Detection

Sensor by AlertOne® [5]. It is a self-contained, battery operated, wireless fall sensor

worn on the body with a belt clip. It is designed to detect falls or abnormal body

movements and automatically summon assistance without end-user intervention; it also

has a manually activated button for summoning help. There are several differences

between this device and ours. It uses only accelerometers and thus only acceleration-

based algorithms (no gyroscope). It has only one LED for visual confirmation of

activation; it has no audio or tactile alert for the seeing/hearing-impaired. It also does not

facilitate a cancel feature; once an alert is set off there is no turning it off. Finally, it

requires a base station that it communicates with by RF and a call centre subscription

service (US $27.95/month), both of which are additional costs on top of the wearable

device.

Another fall detection device on the market is the myHalo™ by Halo Monitoring™ [6].

This is more of a full body monitoring system in that it is worn as a chest strap and

detects falls, monitors heart rate, skin temperature, sleep/wake patterns, and activity

levels. Data transfer requires a modem base station, which sends the information to a

central server to be uploaded to a caregiver-accessible webpage. Following a fall or

 6

emergency, the device again goes through a call centre (US $49-59/month) before

alerting authorities/emergency contacts. Because this device offers so many features, it is

quite complicated and hard to access (chest-mounted). It is a system less focused on fall

detection and more on total health monitoring.

One of the more well known commercial devices for fall and emergency detection is the

Life Alert Classic by Life Alert Emergency Response, Inc. [7]. This device is

recognizable from long-running TV commercials starring an elderly woman on the floor

exclaiming, “Help! I’ve fallen and I can’t get up!”. Despite its popularity, this device is

one of the simpler emergency response devices. It consists of a pendant or watch with a

single push button. Pressing this button, it connects with a base station via RF, and

contacts operators at a call centre. It has no automatic features, sensors, or feedback built

into the device; it requires entirely on the user’s ability to manually activate the alert and

does not take into account the immobility or unconsciousness of the wearer, as is often

the case in elderly post-fall.

2.2 Existing Research & Development

With the prospect of commercialization that often surrounds health related issues, there is

substantial research in the academic arena surrounding fall detection for the elderly. The

majority of this research is focused on designing new more successful algorithms for

distinguishing falls from non-falls. Researchers in this area typically use one of two

sensors with which to extract data, develop, and test their algorithms. The first approach

uses accelerometers to detect acceleration along a certain axis. When monitoring for a

large acceleration from a tri-axis accelerometer, it is better to look at the magnitude

vector: 222

zyx aaaAM ++= , rather than at each of the axes separately [13]. To measure

angle change with accelerometer data, the dot product must be calculated:

θcosbaba =⋅ , and rearranging for the angle yields: 











 ⋅
=

−

ba

ba1cosθ , where

b=(bx,by,bz) is a reference acceleration vector that is set by the user when they stand

vertically, and a=(ax,ay,az) is an instantaneous acceleration [13].

 7

The second main approach to fall detection uses gyroscopes to detect angular velocity

and angle change. A typical bi-axial gyroscope outputs pitch (ωp) and roll (ωr) angular

velocities. From these the resultant angular velocity magnitude is calculated:

. From here the resultant angle change and angular acceleration can be

computed:

 [9].

Using these common calculations or calculations similar to these, researchers have

developed many different algorithms for detecting a fall. One example algorithm is as

follows:

Figure 2.1: Flow chart for an example fall detection algorithm [13].

 8

From this flowchart we can see one example of the steps and decisions that a

microcontroller/processor might take in distinguishing everyday activities from a real

fall:

1. Look for an acceleration that exceeds ‘Large Acceleration Threshold’

2. Wait until the acceleration dissipates and returns to relatively ‘Normal

Acceleration’

3. Analyze the user’s angle/orientation

4. If the user has an ‘Orientation Parallel with the Ground’, classify as a fall

This is one of many algorithms that have been developed for fall detection. As the

complexity increases, so often does the sensitivity and specificity. For further examples

of fall-detection algorithms, see [9,13,11,15,16].

 9

3 STATEMENT OF PROBLEM &METHODOLOGY OF SOLUTION

The objective of this project was to design and create a Fall Detection System for the

elderly. The system had to be wearable and capable of wireless communication with a

laptop computer. The device had to be able to detect dangerous tilt and if a fall had

occurred. In the event of a fall or dangerous tilt, the device had to be able to warn the

user and others.

To be able to detect falls, the device first has to be able to sense motion and the different

measurable qualities involved with motion. Sensing in the device begins with a digital

tri-axis accelerometer, which measures acceleration along the three coordinate axes. An

analog bi-axial gyroscope measures the pitch and roll of the device in the form of angular

velocities. To use these sensors to detect falls, the sensor readings have to be outputted to

a microcontroller for processing and application to algorithms. For this to occur, first the

sensor readings are converted from an analog voltage signal to a discretized bit value for

the microcontroller to be able to use them. This is accomplished by passing the sensor

outputs through an Analog to Digital Converter (ADC) before entering the

microcontroller.

The microcontroller has to take the discretized bit data from the ADC and apply different

formulas and conversion factors to calculate the necessary factors (acceleration

magnitude, angle change, angular velocity). Using these factors, the microcontroller

feeds them into an algorithm, comparing the inputs with various threshold values,

initiating triggers when certain thresholds are met or exceeded.

Upon detecting dangerous tilt, the microcontroller has to initiate a brief audible, tactile,

and visual warning to the user to correct their posture. The user is warned via sight,

sound, and touch in case of impairment of one of the senses. Upon identifying a fall, the

device initiates a continuous audible, tactile, and visual warning. The user is then given a

window of time (20 seconds) in which to cancel the alert in the instance that the fall is not

serious and the user is able to regain their composure on their own. If left uncancelled,

the fall is considered serious and an alert is sent out.

 10

Throughout the process of sensor readings, algorithm triggers, fall detection, etc. the

device is continuously synched with a laptop computer. This is done using a Bluetooth

module attached to the microcontroller for output. The synched laptop computer

constantly monitors the status of the device; it receives and stores all sensor data onto its

hard drive and is updated with any algorithm trigger changes or tilt/fall detections. The

laptop is then able to send an alert to the authorities and/or emergency contacts.

 11

4 EXPERIMENTAL OR DESIGN PROCEDURES

4.1 HARDWARE

The following are the design procedures that were involved in determining the

appropriate microcontroller board, sensor boards, peripherals, Bluetooth module, and the

appropriate casing (or housing) to mount all the electronics in.

4.1.1 Microcontroller

To perform all our necessary processing, we chose to use the ATmega328

microcontroller mounted on the Arduino Duemilanove board. Some of the pertinent

specifications for this microcontroller board are seen below in Table 4.1.

Table 4.1: Arduino Duemilanove Microcontroller Board Specs

Component Arduino Duemilanove

Microcontroller ATmega328

Operating Voltage 5V

Input voltage (recommended) 7-12V

Digital I/O Pins 14 (6 PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40mA

DC Current for 3.3V Pin 50mA

Flash Memory 32KB (2kb used by bootloader)

SRAM 2KB

EEPROM 1KB

Clock Speed 16MHz

The Arduino Duemilanove is a very popular board among hobbyists and is the

microcontroller board of choice when building small model projects. Because of this,

there are extensive tutorials and open source examples available to facilitate learning and

familiarizing oneself with the board. In addition to this, we chose this board because of

the following characteristics:

 12

• Operating voltage – The operating voltage of 5V with a 3.3V option is appropriate

because both our sensor boards and Bluetooth module operate under 5 or 3.3V

power and output readings in the range of 0-5V.

• Input voltage – The board has a built-in voltage regulator that allows an input

voltage range of 7-12V, which is suitable because we plan to power the board

with a 9V battery.

• Number of pins – The large number of digital I/O pins (14) is fitting because we

need to interface with several peripherals (2 LEDs, 2 buttons, a buzzer, and a

siren). The number of analog input pins (6) is sufficient because we require

multiple pins to receive input from our sensor boards.

• Memory – The flash memory (32KB) is appropriate because our algorithm

programs can be fairly long and require a decent amount of memory on the

microcontroller to store them. The SRAM (2KB) is a little on the low side, but

the algorithms can work around this by not storing too many variables, so as to

not exhaust the SRAM capacity.

• Specialty pins – The Arduino Duemilanove comes with RX/TX pins, which will

be used for serial communication with our Bluetooth module. The board also

comes with I2C compatible pins, which will be crucial to interface with our

digital accelerometer.

• USB communication and programming environment – The Arduino

communicates and loads programs from a PC via a USB cable; it can also be

powered by USB. This is advantageous and simpler than other microcontrollers

that require serial port or parallel communication. The Arduino programming

language and environment is very user friendly. It uses the Processing, which is

an object-oriented programming language based off C++.

4.1.2 Sensors

For appropriate fall detection, our device required two different types of sensors:

• Accelerometer – We selected the ADXL345 triple axis digital accelerometer to

use in our device. It has a wide settable g range (up to ±16g), which is

appropriate because falls can reach up to 8 g’s. Because it is digital, its resolution

 13

can also be set, there is less voltage noise, and there is less zeroing/calibration

error: a 0 acceleration reading will actually give a 0, as opposed to analog

accelerometers that will give a non-zero voltage even for 0 acceleration. Also, the

ADXL345 requires 3.3V power and is I2C compatible, so our microcontroller

board can interface with it correctly.

• Gyroscope – We selected the LPR530AL dual axis gyroscope to use in our

device. It has a high angular velocity range (±300°/s), which is appropriate for

the conditions experienced when falling. This gyro board also has built-in

filtering and amplification (4x), and requires 3.3V power and outputs in the 0-5V

range, so our microcontroller board can interface with it correctly.

See Appendix A for full Accelerometer and Gyroscope calibration tables and formulas.

4.1.3 Bluetooth

For wireless communication, we chose to use Bluetooth as the modality. This is because

many modern portable devices (laptop computers, mobile phones, GPS, etc.) are readily

compatible with Bluetooth. The Bluetooth modem we chose is the BlueSMiRF gold with

a RN41 Class 1 Bluetooth module and built-in antenna. We chose this modem namely

because its pins and power are 5V compatible. It also supports RX/TX serial

communication from 9600 to 115200bps (bits per second, baud rate), which makes it

fully compatible with our Arduino board.

4.1.4 Peripherals

To provide interface with the user, our device has numerous peripherals:

• Two buttons (red and green) – These two buttons provide input from the user and

allow them to control the device. The chosen buttons were simple 4-pin

pushbuttons compatible with 5V power. We used 10kΩ resistors as pull-down

resistors to ground.

• Two LEDs (red and green) – These two LEDs provide visual feedback to the user.

They are low voltage LEDs, so required resistors to bring down the 5V power

supply appropriately.

 14

• Siren & Buzzer – These devices provide audible and tactile feedback to the user,

respectively. The siren emits a high pitch tone and the buzzer vibrates. Both

were chosen for their compatibility with 5V power.

4.1.5 Housing

Seen below in Figure 4.1 is the full device laid out and wired on a breadboard. This

layout was used for debugging purposes only to make sure all our sensors, Bluetooth, and

peripherals were functioning correctly. To perform actual fall testing and data collection,

a more robust housing solution was needed.

Figure 4.1: Full device outside of housing (left); close up of sensors and buttons (right).

To complete some preliminary fall testing and data collection, we proceeded to use an

off-the-shelf housing box designed for the Arduino. This box was plastic and rectangular

in shape with a metal lid. To house our sensors, we mounted them on a smaller

breadboard and attached it to the metal lid of the box. With this apparatus, Housing Mk.

I, we were able to gather a large amount of fall data. However, this setup was only for

data collection; there was no room for our peripheral alert components and buttons, or a

Bluetooth module. We decided that we needed to construct a custom housing for our

working prototype.

As discussed in Statement of Problem and Methodology of solution, the system had to be

wearable device, capable of wireless communication with a laptop computer. This put

 15

several design constraints on the housing of the device. The device and housing had to

be small enough and light enough to be worn comfortably and not inhibit normal daily

activities. Because we decided to mount the device around the hip and pelvis area, the

device also had to be ergonomic (contoured to the body) and have belt holes. Due to the

purpose of the device, the housing had to be shaped in such a way so as to minimize

injury to the user should they fall on it. Also, the housing material and design had to be

robust enough to absorb impact and endure the user’s weight falling on it. To be

completely wireless, the device also had to have its own power source that was strong

enough to power all the electronic components for a long period of time. We chose to

use a 9V battery because its voltage is compatible with our microcontroller board, it has a

suitably long battery life under these conditions, and it is economic.

Taking these points into consideration, we came up with our second housing, designed in

SolidWorks seen below (Figure 4.2). In this housing, we see bottom is curved to contour

and fit the body line, and a loop hole is aligned along the bottom to slide in a belt. There

are slots so that our microcontroller board and sensor boards can slide in and be held

securely; there are housing holes for the pushbuttons and LEDs positioned for optimal

user accessibility and visibility. The roof slides off for easy access. We had this design

manufactured by a 3-dimensional prototyping machine in a lightweight, strong material

known as ABS (acrylonitrile butadiene styrene); the same material used in Lego bricks.

Figure 4.2: Housing Mk. II, SolidWorks design top view (left); bottom view (right).

 16

After Housing Mk. II was milled, we assembled the device components accordingly; it

functioned fairly well. However, we noticed it was rather large and cumbersome in size;

also, the top of the box was still rectangular and posed a threat should the wearer fall on

it. From these observations we developed Housing Mk. III, seen below in Figure 4.3.

With this housing, the sensor and Bluetooth mounts were positioned above the

microcontroller to minimize unused space. In addition to filleting and chamfering

(rounding) all edges, the top and bottom of the enclosure was curved to match the contour

of the body to maximize comfort for the wearer and minimize injury should the wearer

fall on it.

Figure 4.3: Housing Mk. III, SolidWorks design top view (left); bottom view (right).

Housing Mk. III was milled, and we again assembled the device components (Figure

4.4). This version was much smaller and lighter, and functioned well in fall testing.

Figure 4.4: Housing Mk. III, with device components.

 17

4.2 SOFTWARE

All microcontroller programming was done in the Arduino programming language and

environment. The computer based programs that communicate with the Arduino are

written in the Processing language.

4.2.1 Testing/Data Collecting

For testing and data collection purposes, the device and microcontroller board was

tethered to a laptop computer using a USB cable to ensure consistent data transfer and

avoid the possible complications of wireless communication. On the Arduino end, the

microcontroller had to be programmed to read data from the two sensors and send that

data through serial (USB) to the computer. Reading from the gyroscope was done using

the analogRead function, which takes the voltage at an analog input pin and converts it

into a 10-bit number (0-1023). Reading from the digital accelerometer was a little more

involved; it required using I2C communication protocols to writeTo the device address

and setting registers to put it in the right mode (±16g, 13 bit resolution) before you could

readFrom the device. I2C protocol was used for communicating between the digital

accelerometer and microcontroller instead of SPI because I2C is simpler to implement

and the compatible pins on our microcontroller board are available. In total, there would

be 3 readings from the accelerometer (one for each axis: ax, ay, az) and 2 readings from

the bi-axis gyroscope (gx, gy). Once the data from both sensors was properly read in,

they were converted to Strings, concatenated, then sent to the computer over the serial

connection. A delay of 100ms was inserted to in order to not clog the port. This means

we took readings from the sensors 10 times a second, which proved sufficient. Each set

of readings was ended with a newline character to distinguish between them on the PC

side. The full Arduino data collection program can be seen in Appendix B.

As the Arduino end was running, the PC side had to run a program to receive the data.

This program would open a serial communication port then read in the data as it was sent

by the Arduino. The data Strings would have to be deconcatenated to extract the relevant

data values back into integer form. These values were then written to a text file and

stored. The full PC side data receiving program can be seen in Appendix C.

 18

The values stored in text file format were then read into Matlab and so that they could be

displayed visually. The Matlab program accesses the text files then computes the

acceleration magnitude and angular velocity magnitude from the data, and graphs them

vs. time. The full Matlab graphing program can be seen in Appendix D.

4.2.2 Fall Algorithms

All of the fall algorithms that were developed conceptually had to be converted from a

linear flowchart design to Arduino programming, which runs in a continuously looping

architecture. Because of the limited memory (2KB SRAM) of the microcontroller, data

readings can not be continuously stored in memory and earlier data beyond a certain

extent can not be accessed. To ensure the program knows the ‘previous state’ of the

algorithm or if one of the thresholds has been broken in a previous loop execution, a

‘trigger’ system was used. In other words, when some threshold was broken a boolean

‘trigger’ variable would be set true; in the next loop execution this would lead to

additional decision statements and possible trigger activation/deactivation until all

triggers are set true and a fall is detected or all triggers are turned off.

4.2.3 Fall Algorithm 1

The first fall detection algorithm is based off the concept that during a fall, a person

experiences a momentary freefall or reduction in acceleration, followed by a large spike

in acceleration, then a change in orientation. The flowchart for Algorithm 1 is seen

below in Figure 4.5. We see the algorithm checks to see if the acceleration magnitude

(AM) breaks a set lower threshold. If this lower threshold is broken, the algorithm then

checks to see if AM breaks a set upper threshold within 0.5s. If this upper threshold is

broken, the algorithm then checks to see if the person’s orientation has changed in a set

range within 0.5s, which would indicate a person has fallen or toppled over. If the

person’s orientation has changed, the algorithm then examines to see if that orientation

remains after 10s, which would indicate the person is immobilized in their fallen position

on the ground. If this holds true, the algorithm recognizes this as a fall. A failure of any

of the intermediate decision conditions would reset the triggers and send you back to the

start. The strength of this algorithm is that it requires an activity to break two AM

 19

thresholds and have an orientation change. Ideally this additional lower threshold would

reduce the number of false positives. The weakness of this algorithm is that it requires

the fall to involve an orientation change. Certain falls, like those dropping down on one’s

rear or against a wall, would not elicit the necessary orientation change. The full Arduino

program for Algorithm 1 can be seen in Appendix E.

Figure 4.5: Flowchart for Fall Detection Algorithm 1

 20

4.2.4 Fall Algorithm 2

The second fall detection algorithm is focused on distinguishing and eliminating

repetitive activities like walking and running from falls. The flowchart for Algorithm 2 is

seen below in Figure 4.6. We see the algorithm checks to see if an impact has occurred

(AM breaks a set upper threshold). If an impact occurred, the algorithm stores the

orientation 1s before the first impact. The algorithm then checks if another impact occurs

within 2s and continues to loop through until the chain of impacts stops. The algorithm

then checks whether this chain of impacts exceeded 10s, which would indicate a

repetitive activity like walking or running. If the chain of impacts is less than 10s, the

algorithm stores the orientation 1s after the last impact and compares it to the orientation

1s before the first impact. If a change in orientation has occurred, the person has likely

toppled over during the disturbance and a fall is detected. The strength of this algorithm

is that it can recognize the successive impacts that would be characteristic of normal

activities like walking; it can also recognize and detect complicated falls that would

involve a struggle or stumble down stairs. The weakness of this algorithm is that it

requires the fall to involve an orientation change.

 21

Figure 4.6: Flowchart for Fall Detection Algorithm 2

 22

4.2.5 Fall Algorithm 3

The third fall detection algorithm is based off the idea that during a fall, a person

experiences a large spike in acceleration, then a period of time where they may struggle

to regain composure. The flowchart for Algorithm 3 is seen below in Figure 4.7. We see

the algorithm checks to see if the acceleration magnitude (AM) breaks a set upper

threshold. If this upper threshold is broken, the algorithm then waits up to 20s for the

AM to return to a relatively normal level. If the AM returns to a normal level, this would

indicate the person has potentially stopped struggling and is immobilized. The algorithm

then checks to see if the person’s orientation has changed in a set range, which would

indicate a person is motionless in a fallen position on the ground. If this holds true, the

algorithm recognizes this as a fall. A failure of the intermediate decision conditions

would reset the triggers and send you back to the start. The strength of this algorithm is

that it takes into account post-fall struggle and return to normal acceleration to confirm

the user is immobilized horizontally. The weakness of this algorithm is that it requires

the fall to involve an orientation change. The full Arduino program for Algorithm 3 can

be seen in Appendix F.

 23

Figure 4.7: Flowchart for Fall Detection Algorithm 3

no

yes

 24

4.2.6 Post-Fall Process

Following the detection of a fall by one of the algorithms, the fall detection programs

then go through what is called a post-fall process. The flowchart for the process can be

seen in Figure 4.8. In this process, all falls detected by an algorithm are considered

‘potential falls’. The user is then alerted and given a 20s window to cancel the alert if it

was a false detection or they were able to regain their composure. If the alert is not

cancelled within 20s, the program goes into confirmed fall mode where the user and

emergency contacts are alerted of a confirmed fall incident. See Appendix G for the final

prototype Arduino program that fully implements the sensors, Algorithm 3, buttons, alert

peripherals, and wireless Bluetooth communication with a laptop. See Appendix H for

the final prototype PC-side Processing program that fully implements wireless Bluetooth

data transfer from the device, data storage to text file, onscreen display messages synched

with device modes, and a real time acceleration magnitude plot.

Figure 4.8: Flowchart for Post-Fall Process

 25

5 RESULTS AND DISCUSSION

The following series of graphs represent a handful of the fall and non-fall data that we

collected during our testing phases. They present a comparison between the fall

characteristics of different test subjects and a contrast between the kind of thresholds we

expect to see in a fall and those we expect to see in a non-fall. In Figure 5.1 and Figure

5.2 we see Binh and Annie, respectively, falling forward. We see in both cases their

acceleration magnitude reaches a peak of around 3.5-4 g’s. This data helped us set the

upper AM threshold value for our algorithms around 3g’s to ensure that the acceleration

from all falls will break it.

Figure 5.1: Binh falling forward; acceleration magnitude (left); angular velocity (right).

Figure 5.2: Annie falling forward; acceleration magnitude (left); angular velocity (right).

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5
Acceleration Magnitude over Time

Time (s)

|A
c

c
e

le
ra

ti
o

n
|

(g
`s

)

0 1 2 3 4 5 6 7 8 9
-100

-50

0

50

100

150
X-Axis Angular Velocity over Time

Time (s)

A
n

g
u

la
r

V
e

lo
c

it
y

 (
d

e
g

/s
)

0 1 2 3 4 5 6 7 8 9
-400

-200

0

200
Y-Axis Angular Velocity Magnitude over Time

Time (s)

A
n

g
u

la
r

V
e

lo
c

it
y

 (
d

e
g

/s
)

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4
Acceleration Magnitude over Time

Time (s)

|A
c

c
e

le
ra

ti
o

n
|

(g
`s

)

0 2 4 6 8 10 12 14
-200

0

200

400

600

800
X-Axis Angular Velocity over Time

Time (s)

A
n

g
u

la
r

V
e

lo
c

it
y

 (
d

e
g

/s
)

0 2 4 6 8 10 12 14
-200

-100

0

100
Y-Axis Angular Velocity Magnitude over Time

Time (s)

A
n

g
u

la
r

V
e

lo
c

it
y

 (
d

e
g

/s
)

 26

In the following figures, we see examples of everyday activity that should not be detected

as falls. Figure 5.3 shows TK walking; his acceleration magnitude does not exceed

1.7g’s. Figure 5.4 shows TK sitting down in a chair hard; his acceleration magnitude in

this case does not exceed 1.8g’s. Figure 5.5 shows Binh moving from a standing position

to a lying down position; his acceleration does not exceed 1.4g’s. This data confirms our

decision to make the upper AM threshold value for our algorithms around 3g’s such that

most non-falls do not exceed this value in acceleration.

Figure 5.3: TK walking; acceleration magnitude (left); angular velocity (right).

Figure 5.4: TK sitting down hard; acceleration magnitude (left); angular velocity (right).

0 1 2 3 4 5 6 7 8 9 10
-300

-200

-100

0

100

200
X-Axis Angular Velocity over Time

Time (s)
A

n
g

u
la

r
V

e
lo

c
it

y
 (

d
e

g
/s

)

0 1 2 3 4 5 6 7 8 9 10
-100

0

100

200
Y-Axis Angular Velocity Magnitude over Time

Time (s)

A
n

g
u

la
r

V
e

lo
c

it
y

 (
d

e
g

/s
)

0 1 2 3 4 5 6 7 8 9 10

0.8

1

1.2

1.4

1.6

1.8

2
Acceleration Magnitude over Time

Time (s)

|A
c

c
e

le
ra

ti
o

n
|

(g
`s

)

0 1 2 3 4 5 6 7 8 9 10

0.8

1

1.2

1.4

1.6

1.8

2
Acceleration Magnitude over Time

Time (s)

|A
c
c
e
le

ra
ti
o
n
|
(g

`s
)

0 1 2 3 4 5 6 7 8 9 10
-200

-100

0

100

200
X-Axis Angular Velocity over Time

Time (s)

A
n

g
u

la
r

V
e

lo
c

it
y

 (
d

e
g

/s
)

0 1 2 3 4 5 6 7 8 9 10
-100

-50

0

50

100

150
Y-Axis Angular Velocity Magnitude over Time

Time (s)

A
n

g
u

la
r

V
e

lo
c

it
y

 (
d

e
g

/s
)

 27

Figure 5.5: Binh lying down; acceleration magnitude (left); angular velocity (right).

A similar process to the one involving acceleration magnitude described above was

completed with the other fall-related parameters of angle change, angular velocity and

angular acceleration. For example, using the same test data as above, we also looked at

the orientation change involved before and after both falls and non-falls in order to

determine our orientation change ranges/thresholds.

Using the values we had determined from both research and our own fall/non-fall data

collection and testing above, we established the different thresholds in our algorithms.

After setting the threshold variables in our Arduino programs, we began to test the

different algorithms. For accuracy and realism, the falls/non-falls were performed on

bare ground instead of cushioned mats. Due to the physical demanding nature of the

falls, we limited the number of tests to 20 per algorithm. To perform our testing we

uploaded each algorithm program to the Arduino one at a time and performed 10 true

falls and 10 non-falls and recorded the results. For consistency, only one tester was used

for all algorithms and replicated the same style of fall/non-fall for each algorithm as close

as possible. The experimental results are seen below in Table 5.1.

0 1 2 3 4 5 6 7 8
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Acceleration Magnitude over Time

Time (s)

|A
c
c

e
le

ra
ti

o
n

|
(g

`s
)

0 1 2 3 4 5 6 7 8
-400

-200

0

200

400
X-Axis Angular Velocity over Time

Time (s)

A
n

g
u

la
r

V
e

lo
c

it
y

 (
d

e
g

/s
)

0 1 2 3 4 5 6 7 8
-100

-50

0

50

100

150
Y-Axis Angular Velocity Magnitude over Time

Time (s)

A
n

g
u

la
r

V
e

lo
c

it
y

 (
d

e
g

/s
)

 28

Table 5.1: Experimental Results, Sensitivity and Specificity

 Algorithm 1 Algorithm 2 Algorithm 3 SVM

True Positives 8 7 10 10

False Negatives 2 3 0 0

True Negatives 8 8 8 9

False Positives 2 2 2 1

Total (20) 16/20 15/20 18/20 19/20

Examining these results, we see the SVM designed and trained from test fall data by

partner Binh Nguyen performed the best out of the four algorithms. It was able to

correctly recognize 10/10 of our real falls (true positives) and 9/10 of our non-falls (true

negatives); its only fault was recognizing one non-fall as a fall (false positive). This

performance was closely followed by Algorithm 3, which correctly identified 10/10 falls

and 8/10 non-falls. Algorithm 1 competed respectfully, identifying 8/10 falls and 8/10

non-falls. Algorithm 2 was least effective of the four algorithms, distinguishing 7/10

falls and 8/10 non-falls.

These results are reasonable and expected. The SVM outperformed the algorithms

because it was trained on a wide range of falls and non-falls whereas the regular

algorithms focused simply on recognizing falls. In addition, the SVM was trained on

data that included specific data from the same person who performed the final testing; it

was almost as if the device was customized to the tester’s fall characteristics. Algorithm

3 performed very well as it was quite sensitive to all falls; this is because it calculated

orientation change only after the person returned to normal acceleration: either standing

up or immobilized on the ground. Algorithm 2 performed somewhat poorer than the

others as its primary focus was on repetitive impacts and motions. Algorithm 1 relied too

much on the negative acceleration before a fall: several types of fall produced minimal

freefall effects before impact. Without this initial drop in acceleration, the algorithm did

not pass the first decision statement.

 29

6 CONCLUSIONS AND RECOMMENDATIONS

The objective of this project was to design and create a wearable Fall Detection System

for the elderly that can link wirelessly with a pre-programmed laptop computer or

Bluetooth-compatible mobile phone. By the conclusion of this project, we had achieved

our primary goal of creating a working prototype able to recognize both dangerous

posture and falls from non-falls, while wirelessly synched with a laptop. Looking at the

underlying detection process, our Fall Detection System improves on previous systems

and designs. We incorporated hybrid fall detection algorithms derived from existing

algorithms to find the one with the highest sensitivity and specificity (Algorithm 3). In

addition, we were able to use our extensive test data set to design, train, and implement a

simple SVM able to examine data from sensors and determine if a fall has occurred on a

yes/no basis that outperformed any of the regular algorithms.

With this project, there are several areas for the future development. On the more

commercial aspect of things, improvements would include: having pre-recorded voice

instructions for the user, the addition of a microphone so the user can record their own

personal voice messages to be sent to contacts during emergencies, establishing

emergency contacts though the PC-side by sending text messages, emails, or Voice over

IP (telephoning through the internet), reducing the entire size of the device using custom

fabrication/printed circuit boards and Lithium-ion batteries, and porting the PC-side

programming onto an iPhone/Blackberry/Google Android phone for completely mobile

communication. On the theoretical development side of things, most apparent is the need

for additional testing of our existing algorithms; further tweaking of threshold values and

decision/trigger conditions could produce new, even better algorithms. In addition, more

test subjects from a wider range of physical categories performing more types of fall/non-

fall activities would give a much more complete data set to work from. This would

significantly improve the training of the SVM, and with enough data one could even

implement height/weight/gender-specific SVM lookup tables/algorithms to tailor the

device to each user’s individual needs.

 30

APPENDIX A: ACCELEROMETER AND GYROSCOPE
CALIBRATION FORMULAS & TABLES

Accelerometer: signed 13-bit resolution, range ±16g, bit range -4096 to 4095, 1g=9.8m/s2

Table A.1: Accelerometer Calibration Values

Bit Number Equivalent # of g's

-4096 -16

-3840 -15

-3584 -14

-3328 -13

-3072 -12

-2816 -11

-2560 -10

-2304 -9

-2048 -8

-1792 -7

-1536 -6

-1280 -5

-1024 -4

-768 -3

-512 -2

-256 -1

0 0

256 1

512 2

768 3

1024 4

1280 5

1536 6

1792 7

2048 8

2304 9

2560 10

2816 11

3072 12

3328 13

3584 14

3840 15

4095 16

 31

Gyroscope: max ±300°/sec angular velocity, steady state: 4xOUTX=4xOUTY=1.23V

4xOUTX=4xOUTY=1.23V + SoA×°/sec, SoA=3.33mV/deg/sec

Table A.2: Gyroscope Calibration Values

Bit Number Voltage deg/sec

47 0.231 -300

64 0.31425 -275

81 0.3975 -250

98 0.48075 -225

115 0.564 -200

132 0.64725 -175

149 0.7305 -150

166 0.81375 -125

184 0.897 -100

201 0.98025 -75

218 1.0635 -50

235 1.14675 -25

252 1.23 0

269 1.31325 25

286 1.3965 50

303 1.47975 75

320 1.563 100

337 1.64625 125

354 1.7295 150

371 1.81275 175

388 1.896 200

405 1.97925 225

422 2.0625 250

439 2.14575 275

456 2.229 300

 32

APPENDIX B: TESTING/DATA COLLECTION ARDUINO
PROGRAM

#include <Wire.h>

#define DEVICE (0x53) //ADXL345 device address

#define TO_READ (6) //num of bytes we are going to read each

time (two bytes for each axis)

byte buff[TO_READ] ; //6 bytes buffer for saving data read from the

device

char str[512]; //string buffer to transform data before

sending it to the serial port

const int xpin = 0; // x-axis of the gyroscope

const int ypin = 1; // y-axis of the gyroscope

void setup()

{

 Wire.begin(); // join i2c bus (address optional for master)

 Serial.begin(9600); // start serial for output

 //Turning on the ADXL345

 writeTo(DEVICE, 0x2D, 0); //reset power control register

 writeTo(DEVICE, 0x2D, 16); //put in stanby mode

 writeTo(DEVICE, 0x2D, 8); //put in measure mode

 writeTo(DEVICE, 0x31, 0); //reset data format register

 writeTo(DEVICE, 0x31, 11); //put in +=16g mode -->13bit resolution -

-> 1 sign bit + 12 bit = +-4095 max

}

void loop()

{

 int regAddress = 0x32; //first axis-acceleration-data register on

the ADXL345

 int x, y, z, gx, gy;

 readFrom(DEVICE, regAddress, TO_READ, buff); //read the acceleration

data from the ADXL345

 //each axis reading comes in 13 bit resolution, ie 2 bytes. Least

Significat Byte first

 //thus we are converting both bytes in to one int

 x = (((int)buff[1]) << 8) | buff[0];

 y = (((int)buff[3])<< 8) | buff[2];

 z = (((int)buff[5]) << 8) | buff[4];

 //the gyro sensor values:

 gx=(int)(analogRead(xpin));

 gy=(int)(analogRead(ypin));

 //we send the x y z accel values and x y gyro values as a string to

the serial port

 sprintf(str, "%d %d %d %d %d", x, y, z, gx, gy);

 Serial.print(str);

 33

 Serial.print(10, BYTE);

 //It appears that delay is needed in order not to clog the port

 delay(100);

}

//---------------- Functions

//Writes val to address register on device

void writeTo(int device, byte address, byte val) {

 Wire.beginTransmission(device); //start transmission to device

 Wire.send(address); // send register address

 Wire.send(val); // send value to write

 Wire.endTransmission(); //end transmission

}

//reads num bytes starting from address register on device in to buff

array

void readFrom(int device, byte address, int num, byte buff[]) {

 Wire.beginTransmission(device); //start transmission to device

 Wire.send(address); //sends address to read from

 Wire.endTransmission(); //end transmission

 Wire.beginTransmission(device); //start transmission to device

 Wire.requestFrom(device, num); // request 6 bytes from device

 int i = 0;

 while(Wire.available()) //device may send less than requested

(abnormal)

 {

 buff[i] = Wire.receive(); // receive a byte

 i++;

 }

 Wire.endTransmission(); //end transmission

}

 34

APPENDIX C: TESTING/DATA COLLECTION PC-SIDE
PROCESSING PROGRAM

///import processing.opengl.*;

import processing.serial.*;

Serial sp;

byte[] buff; //buff input String read from serial com port

float[] r;

PrintWriter output; //to output to text file

int OFFSET_X = 0, OFFSET_Y = 0, OFFSET_Z=0, OFFSET_GX=0, OFFSET_GY=0;

//These offsets are chip specific, and vary.

void setup() {

 sp = new Serial(this, "COM8", 9600); //creating new serial

communication port

 buff = new byte[128];

 r = new float[5];

 // Create a new file in the sketch directory

 output = createWriter("elevatordown.txt");

}

void draw() {

 int bytes = sp.readBytesUntil((byte)10, buff); //receiving the

input String from the serial port

 String mystr = (new String(buff, 0, bytes)).trim();

 if(mystr.split(" ").length != 5) {

 println(mystr);

 return;

 }

 setVals(r, mystr); //splitting the String back into individual

sensor readings and changing the Strings back to floats

 float x = r[0], y = r[1], z = r[2], gx=r[3], gy=r[4];

 println(x+ "\t" + y + "\t" + z + "\t" + gx + "\t" + gy); //printing

to screen

 output.println(x+ "\t" + y + "\t" + z + "\t" + gx + "\t" + gy);

//printing to text file

}

void setVals(float[] r, String s) {

 int i = 0;

 r[0] = (float)(Integer.parseInt(s.substring(0, i = s.indexOf(" ")))

+OFFSET_X);

 r[1] = (float)(Integer.parseInt(s.substring(i+1, i = s.indexOf(" ",

i+1))) + OFFSET_Y);

 r[2] = (float)(Integer.parseInt(s.substring(i+1, i = s.indexOf(" ",

i+1))) + OFFSET_Z);

 r[3] = (float)(Integer.parseInt(s.substring(i+1, i = s.indexOf(" ",

i+1))) + OFFSET_GX);

 r[4] = (float)(Integer.parseInt(s.substring(i+1))+OFFSET_GY);

}

void keyPressed() {

 output.flush(); // Writes the remaining data to the file

 output.close(); // Finishes the file

 exit(); // Stops the program

}

 35

APPENDIX D: TESTING/DATA COLLECTION MATLAB DATA
GRAPHING PROGRAM

clear; clc; clf;
sensordata=dlmread('C:\Documents and Settings\Jonathan\My

Documents\Processing\accel_gyro_to_textfile\binhstumblefrontal1.txt','\

t'); %definining text file path
samplingperiod=0.1; %sampling period is 0.1s
accelx=sensordata(1:length(sensordata),1:1); %acceleration x is 1st

column of text file
accely=sensordata(1:length(sensordata),2:2); %acceleration y is 2nd

column of text file
accelz=sensordata(1:length(sensordata),3:3); %acceleration z is 3rd

column of text file
gyrox=sensordata(1:length(sensordata),4:4); %angular velocity x is 4th

column of text file
gyroy=sensordata(1:length(sensordata),5:5); %angular velocity y is 5th

column of text file
time=0:samplingperiod:length(sensordata)*samplingperiod-samplingperiod;

accelmag=zeros(length(sensordata),1);
gyromag=zeros(length(sensordata),1);

bx=5; by=5; bz=256; BM=((bx^2+by^2+bz^2)^0.5); %base/reference vector

for i=1:length(sensordata)
 accelmag(i)=((accelx(i)^2+accely(i)^2+accelz(i)^2)^0.5);

%calculating acceleration magnitude
 gyromag(i)=((gyrox(i)^2+gyroy(i)^2)^0.5); %calculating angular

velocity magnitude

angleChange2(i)=acos((accelx(i)*bx+accely(i)*by+accelz(i)*bz)/accelmag(

i)/BM)*180/pi; %calculating angle change
end

figure(1)
subplot(2,1,1)
plot(time,accelmag/256); %divide by 256 to put y scale in g's
title('Acceleration Magnitude over Time'); xlabel('Time (s)')
ylabel('|Acceleration| (g`s)')
subplot(2,1,2)
plot(time,gyromag);
title('Angular Velocity Magnitude over Time')
xlabel('Time (s)'); ylabel('|Angular Velocity|')

figure(2)
subplot(2,1,1)
plot(time,gyrox); title('gx');
subplot(2,1,2)
plot(time,gyroy); title('gy');

figure(3)
plot (time,angleChange2);
title('Accelerometer Angle Change over Time')
xlabel('Time (s)'); ylabel('Angle Change (degrees)')

 36

APPENDIX E: ALGORITHM 1 ARDUINO PROGRAM

#include <Wire.h>

#define DEVICE (0x53) //ADXL345 device address

#define TO_READ (6) //num of bytes we are going to read each

time (two bytes for each axis)

//#define STORE_SIZE (100) //num of past readings we are going to

store (10 readings/sec * 10 sec = 100 readings)

byte buff[TO_READ]; //6 bytes buffer for saving data read from the

device

char str[512]; //string buffer to transform data before

sending it to the serial port

const int bx=0; const int by=0; const int bz=256; //store reference

upright acceleration

int BM=pow(pow(bx,2)+pow(by,2)+pow(bz,2),0.5);

const byte xpin = 0; // x-axis of the gyroscope

const byte ypin = 1; // y-axis of the gyroscope

//int data[STORE_SIZE][5]; //array for saving past data

//byte currentIndex=0; //stores current data array index (0-255)

boolean fall = false; //stores if a fall has occurred

boolean trigger1=false; //stores if first trigger (lower threshold)

has occurred

boolean trigger2=false; //stores if second trigger (upper threshold)

has occurred

boolean trigger3=false; //stores if third trigger (orientation change)

has occurred

byte trigger1count=0; //stores the counts past since trigger 1 was set

true

byte trigger2count=0; //stores the counts past since trigger 2 was set

true

byte trigger3count=0; //stores the counts past since trigger 3 was set

true

void setup()

{

 Wire.begin(); // join i2c bus (address optional for master)

 Serial.begin(9600); // start serial for output

 //Turning on the ADXL345

 writeTo(DEVICE, 0x2D, 0); //reset power control register

 writeTo(DEVICE, 0x2D, 16); //put in stanby mode

 writeTo(DEVICE, 0x2D, 8); //put in measure mode

 writeTo(DEVICE, 0x31, 0); //reset data format register

 writeTo(DEVICE, 0x31, 11); //put in +=16g mode -->13bit resolution -

-> 1 sign bit + 12 bit = +-4095 max

}

void loop()

{

 int regAddress = 0x32; //first axis-acceleration-data register on

the ADXL345

 int x, y, z, gx, gy;

 int AM; double angleChange=0;

 37

 readFrom(DEVICE, regAddress, TO_READ, buff); //read the acceleration

data from the ADXL345

 //each axis reading comes in 13 bit resolution, ie 2 bytes. Least

Significat Byte first

 //thus we are converting both bytes in to one int

 x = (((int)buff[1]) << 8) | buff[0];

 y = (((int)buff[3])<< 8) | buff[2];

 z = (((int)buff[5]) << 8) | buff[4];

 //the gyro sensor values:

 gx=(int)(analogRead(xpin)); //could be bytes? analogRead returns an

int (0-1023)

 gy=(int)(analogRead(ypin)); //could be bytes?

// data[currentIndex][0]=x;

// data[currentIndex][1]=y;

// data[currentIndex][2]=z;

// data[currentIndex][3]=gx;

// data[currentIndex][4]=gy;

 //we send the x y z accel values and x y gyro values as a string to

the serial port

 sprintf(str, "%d %d %d %d %d", x, y, z, gx, gy);

 Serial.print(str);

 Serial.print(10, BYTE);

 AM=pow(pow(x,2)+pow(y,2)+pow(z,2),0.5);

 if (trigger3==true){

 trigger3count++;

 if (trigger3count>=10){ //*****100******//allow 10 s for user to

regain normal orientation

angleChange=acos(((double)x*(double)bx+(double)y*(double)by+(double)z*(

double)bz)/(double)AM/(double)BM);

 if (angleChange>=1.396 && angleChange<=1.745){ //if orientation

changes remains between 80-100 degrees

 fall=true; trigger3=false; trigger3count=0;

 Serial.println(angleChange);

 }

 else{ //user regained normal orientation

 trigger3=false; trigger3count=0;

 Serial.println("TRIGGER 3 DEACTIVATED");

 }

 }

 }

 if (fall==true){ //in event of a fall detection

 Serial.println("FALL DETECTED");

 fall=false;

 exit(1);

 }

 if (trigger2count>=6){ //allow 0.5s for orientation change

 trigger2=false; trigger2count=0;

 Serial.println("TRIGGER 2 DECACTIVATED");

 }

 if (trigger1count>=6){ //allow 0.5s for AM to break upper threshold

 trigger1=false; trigger1count=0;

 Serial.println("TRIGGER 1 DECACTIVATED");

 }

 38

 if (trigger2==true){

 trigger2count++;

angleChange=acos(((double)x*(double)bx+(double)y*(double)by+(double)z*(

double)bz)/(double)AM/(double)BM);

 if (angleChange>=1.396 && angleChange<=1.745){ //if orientation

changes by between 80-100 degrees

 trigger3=true; trigger2=false; trigger2count=0;

 Serial.println(angleChange);

 Serial.println("TRIGGER 3 ACTIVATED");

 }

 }

 if (trigger1==true){

 trigger1count++;

 if (AM>=768){ //if AM breaks upper threshold (3g)

 trigger2=true;

 Serial.println("TRIGGER 2 ACTIVATED");

 trigger1=false; trigger1count=0;

 }

 }

 if (AM<=103){ //if AM breaks lower threshold (0.4g)

 trigger1=true;

 Serial.println("TRIGGER 1 ACTIVATED");

 }

 //currentIndex++;

// if (currentIndex>=STORE_SIZE){

// currentIndex=0; //cycle back to start of data array (begin

overwriting old data)

// }

 //It appears that delay is needed in order not to clog the port

 delay(100);

}

//---------------- Functions

//Writes val to address register on device

void writeTo(int device, byte address, byte val) {

 Wire.beginTransmission(device); //start transmission to device

 Wire.send(address); // send register address

 Wire.send(val); // send value to write

 Wire.endTransmission(); //end transmission

}

//reads num bytes starting from address register on device in to buff

array

void readFrom(int device, byte address, int num, byte buff[]) {

 Wire.beginTransmission(device); //start transmission to device

 Wire.send(address); //sends address to read from

 Wire.endTransmission(); //end transmission

 Wire.beginTransmission(device); //start transmission to device

 Wire.requestFrom(device, num); // request 6 bytes from device

 int i = 0;

 while(Wire.available()){ //device may send less than requested

(abnormal)

 buff[i] = Wire.receive(); // receive a byte

 i++;

 }

 Wire.endTransmission(); //end transmission

}

 39

APPENDIX F: ALGORITHM 3 ARDUINO PROGRAM

#include <Wire.h>

#define DEVICE (0x53) //ADXL345 device address

#define TO_READ (6) //num of bytes we are going to read each

time (two bytes for each axis)

byte buff[TO_READ] ; //6 bytes buffer for saving data read from the

device

char str[512]; //string buffer to transform data before

sending it to the serial port

const int bx=0; const int by=0; const int bz=256; //store reference

upright acceleration

int BM=pow(pow(bx,2)+pow(by,2)+pow(bz,2),0.5);

const byte xpin = 0; // x-axis of the gyroscope

const byte ypin = 1; // y-axis of the gyroscope

boolean fall = false; //stores if a fall has occurred

boolean trigger1=false; //stores if first trigger (lower threshold)

has occurred

boolean trigger2=false; //stores if second trigger (upper threshold)

has occurred

byte trigger1count=0; //stores the counts past since trigger 1 was set

true

void setup()

{

 Wire.begin(); // join i2c bus (address optional for master)

 Serial.begin(9600); // start serial for output

 //Turning on the ADXL345

 writeTo(DEVICE, 0x2D, 0); //reset power control register

 writeTo(DEVICE, 0x2D, 16); //put in stanby mode

 writeTo(DEVICE, 0x2D, 8); //put in measure mode

 writeTo(DEVICE, 0x31, 0); //reset data format register

 writeTo(DEVICE, 0x31, 11); //put in +=16g mode -->13bit resolution -

-> 1 sign bit + 12 bit = +-4095 max

}

void loop()

{

 int regAddress = 0x32; //first axis-acceleration-data register on

the ADXL345

 int x, y, z, gx, gy;

 int AM; double angleChange=0;

 readFrom(DEVICE, regAddress, TO_READ, buff); //read the acceleration

data from the ADXL345

 //each axis reading comes in 13 bit resolution, ie 2 bytes. Least

Significat Byte first

 //thus we are converting both bytes in to one int

 x = (((int)buff[1]) << 8) | buff[0];

 y = (((int)buff[3])<< 8) | buff[2];

 z = (((int)buff[5]) << 8) | buff[4];

 40

 //the gyro sensor values:

 gx=(int)(analogRead(xpin)); //could be bytes? analogRead returns an

int (0-1023)

 gy=(int)(analogRead(ypin)); //could be bytes?

 //we send the x y z accel values and x y gyro values as a string to

the serial port

 sprintf(str, "%d %d %d %d %d", x, y, z, gx, gy);

 Serial.print(str);

 Serial.print(10, BYTE);

 AM=pow(pow(x,2)+pow(y,2)+pow(z,2),0.5);

 if (trigger2==true){

angleChange=acos(((double)x*(double)bx+(double)y*(double)by+(double)z*(

double)bz)/(double)AM/(double)BM);

 if (angleChange>=1.396 && angleChange<=1.745){ //if orientation

change is between 80-100 degrees

 fall=true; trigger2=false;

 Serial.println(angleChange);

 }

 else{ //user regained normal orientation

 trigger2=false;

 Serial.println("TRIGGER 2 DEACTIVATED");

 }

 }

 if (fall==true){ //in event of a fall detection

 Serial.println("FALL DETECTED");

 fall=false;

 exit(1);

 }

 if (trigger1count>=201){ //allow 20s for AM to return to relatively

normal range

 trigger1=false; trigger1count=0;

 Serial.println("TRIGGER 1 DECACTIVATED");

 }

 if (trigger1==true){

 trigger1count++;

 if (AM>=250 && AM<=260){ //if AM has returned to a relatively

normal range (0.9768g-1.0159g)

 trigger2=true; trigger1=false; trigger1count=0;

 Serial.println("TRIGGER 2 ACTIVATED");

 }

 }

 if (AM>=768){ //if AM breaks upper threshold (3g)

 trigger1=true;

 Serial.println("TRIGGER 1 ACTIVATED");

 }

 //It appears that delay is needed in order not to clog the port

 delay(100);

}

//---------------- Functions

 41

//Writes val to address register on device

void writeTo(int device, byte address, byte val) {

 Wire.beginTransmission(device); //start transmission to device

 Wire.send(address); // send register address

 Wire.send(val); // send value to write

 Wire.endTransmission(); //end transmission

}

//reads num bytes starting from address register on device in to buff

array

void readFrom(int device, byte address, int num, byte buff[]) {

 Wire.beginTransmission(device); //start transmission to device

 Wire.send(address); //sends address to read from

 Wire.endTransmission(); //end transmission

 Wire.beginTransmission(device); //start transmission to device

 Wire.requestFrom(device, num); // request 6 bytes from device

 int i = 0;

 while(Wire.available()){ //device may send less than requested

(abnormal)

 buff[i] = Wire.receive(); // receive a byte

 i++;

 }

 Wire.endTransmission(); //end transmission

}

 42

APPENDIX G: FINAL PROTOTYPE ARDUINO PROGRAM

#include <Wire.h>

#define DEVICE (0x53) //ADXL345 device address

#define TO_READ (6) //num of bytes we are going to read each

time (two bytes for each axis)

byte buff[TO_READ] ; //6 bytes buffer for saving data read from the

device

char str[512]; //string buffer to transform data before

sending it to the serial port

int bx=0; //default reference upright x acceleration

int by=256; //default reference upright y acceleration

int bz=0; //default reference upright z acceleration

int BM=pow(pow(bx,2)+pow(by,2)+pow(bz,2),0.5);

const byte xpin = 0; // x-axis of the gyroscope

const byte ypin = 1; // y-axis of the gyroscope

boolean fallConfirmed = false; //stores if a fall has occurred and

user not responding

boolean trigger1=false; //stores if first trigger (lower threshold)

has occurred

boolean trigger2=false; //stores if second trigger (upper threshold)

has occurred

boolean refSet=false; //stores if the reference vector has been set

boolean potentialFall=false; //stores if a potential fall has occurred

boolean cancel=false; //stores whether a potential fall has been

cancelled

boolean abnormalTilt=false; //stores whether abnormal tilt was detected

int potentialFallCount=0; //stores the counts past a potential fall

byte trigger1count=0; //stores the counts past since trigger 1 was set

true

const int redButton = 12; // the pin that the red pushbutton is

attached to

const int greenButton = 13; // the pin that the green pushbutton is

attached to

const int redLed = 2; // the pin that the red LED is attached to

const int greenLed = 3; // the pin that the green LED is attached

to

const int siren=11; // the pin that the siren is attached to

const int buzzer=10; // the pin that the buzzer is attached to

//int buttonPushCounter = 0; // counter for the number of button

presses

int redButtonState = 0; // current state of the red button

int lastRedButtonState = 0; // previous state of the red button

int greenButtonState = 0; // current state of the green button

int lastGreenButtonState = 0; // previous state of the green button

int lastAlertState=0; //previous state of alert peripherals (LEDs,

siren, buzzer)

// the following variables are long's because the time, measured in

miliseconds,

// will quickly become a bigger number than can be stored in an int.

long lastRedDebounceTime = 0; // the last time the red button was

toggled

 43

long lastGreenDebounceTime = 0; // the last time the green button was

toggled

long debounceDelay = 50; // the debounce time; increase if the

output flickers

void setup()

{

 // initialize the button pins as inputs:

 pinMode(redButton, INPUT);

 pinMode(greenButton, INPUT);

 // initialize the LEDs, buzzer, and siren as outputs:

 pinMode(redLed, OUTPUT);

 pinMode(greenLed, OUTPUT);

 pinMode(buzzer, OUTPUT);

 pinMode(siren, OUTPUT);

 // initialize serial communication:

 Wire.begin(); // join i2c bus (address optional for master)

 Serial.begin(115200); // start serial for output

 //Turning on the ADXL345

 writeTo(DEVICE, 0x2D, 0); //reset power control register

 writeTo(DEVICE, 0x2D, 16); //put in stanby mode

 writeTo(DEVICE, 0x2D, 8); //put in measure mode

 writeTo(DEVICE, 0x31, 0); //reset data format register

 writeTo(DEVICE, 0x31, 11); //put in +=16g mode -->13bit resolution -

-> 1 sign bit + 12 bit = +-4095 max

}

void loop()

{

 int regAddress = 0x32; //first axis-acceleration-data register on

the ADXL345

 int x=0, y=0, z=0, gx=0, gy=0;

 int AM;

 double angleChange=0;

 readFrom(DEVICE, regAddress, TO_READ, buff); //read the acceleration

data from the ADXL345

 //each axis reading comes in 13 bit resolution, ie 2 bytes. Least

Significat Byte first

 //thus we are converting both bytes in to one int

 x = (((int)buff[1]) << 8) | buff[0];

 y = (((int)buff[3])<< 8) | buff[2];

 z = (((int)buff[5]) << 8) | buff[4];

 //the gyro sensor values:

 gx=(int)(analogRead(xpin)); //could be bytes? analogRead returns an

int (0-1023)

 gy=(int)(analogRead(ypin)); //could be bytes?

 // read the state of the buttons into a local variable:

 int redReading = digitalRead(redButton);

 int greenReading = digitalRead(greenButton);

 // check to see if you just pressed either button

 44

 // (i.e. the input went from LOW to HIGH), and you've waited

 // long enough since the last press to ignore any noise:

 // If the switch changed, due to noise or pressing:

 if (redReading != lastRedButtonState) {

 // reset the debouncing timer

 lastRedDebounceTime = millis();

 }

 if (greenReading != lastGreenButtonState) {

 // reset the debouncing timer

 lastGreenDebounceTime = millis();

 }

 if ((millis() - lastRedDebounceTime) >= debounceDelay) {

 // whatever the redReading is at, it's been there for longer

 // than the debounce delay, so take it as the actual current state:

 redButtonState = redReading;

 Serial.print('R');

 Serial.print(10, BYTE);

 potentialFall=true;

 }

 if ((millis() - lastGreenDebounceTime) >= debounceDelay) {

 // whatever the redReading is at, it's been there for longer

 // than the debounce delay, so take it as the actual current state:

 greenButtonState = greenReading;

 Serial.print('G');

 Serial.print(10, BYTE);

 if (refSet==false){

 bx=x;

 by=y;

 bz=z;

 refSet=true;

 Serial.print('S');

 Serial.print(10, BYTE);

 }

 if (potentialFall==true || fallConfirmed==true)

 { //if green button pushed during a fall alert, alert is cancelled

 cancel=true;

 }

 }

 // save the Reading. Next time through the loop,

 // it'll be the lastButtonState:

 lastRedButtonState = redReading;

 lastGreenButtonState = greenReading;

 if(cancel==true) //if user cancels alert, turn off alert peripherals

 {

 Serial.print('C');

 Serial.print(10, BYTE);

 potentialFall=false;

 fallConfirmed=false;

 lastAlertState=0;

 potentialFallCount=0;

 digitalWrite(redLed, LOW);

 digitalWrite(greenLed, LOW);

 digitalWrite(buzzer, LOW);

 digitalWrite(siren, LOW);

 cancel=false;

 45

 }

 if (fallConfirmed==true){ //fall is confirmed

 digitalWrite(greenLed, LOW); //turn off greenLed to save power

 digitalWrite(buzzer, LOW); //turn off buzzer to save power

 digitalWrite(redLed, HIGH); //redLed blinks by itself

 if (potentialFallCount % 5 == 0){ //every 0.5 second, cycle alert

peripherals

 if (lastAlertState==0){

 digitalWrite(siren, HIGH);

 lastAlertState=1;

 }

 else{

 digitalWrite(siren, LOW);

 lastAlertState=0;

 }

 }

 potentialFallCount++;

 }

 if (potentialFall==true){ //in event of a fall detection, allow 20s

for user to cancel fall alert

 if (potentialFallCount>=201){ //user has not responded after 20s

 fallConfirmed=true;

 Serial.print('F');

 Serial.print(10, BYTE);

 potentialFall=false;

 potentialFallCount=0;

 }

 else if (potentialFallCount % 10 == 0){ //user has not responded

yet

 digitalWrite(redLed, HIGH); //redLed blinks itself

 digitalWrite(greenLed, HIGH);//greenLed blinks itself

 if (lastAlertState==0){ //every 1 second, cycle alert peripherals

 digitalWrite(buzzer, HIGH);

 digitalWrite(siren, HIGH);

 lastAlertState=1;

 }

 else{

 digitalWrite(buzzer, LOW);

 digitalWrite(siren, LOW);

 lastAlertState=0;

 }

 }

 potentialFallCount++;

 }

 //we send the x y z accel values and x y gyro values as a string to

the serial port

 sprintf(str, "%d %d %d %d %d", x, y, z, gx, gy);

 Serial.print(str);

 Serial.print(10, BYTE);

 AM=pow(pow(x,2)+pow(y,2)+pow(z,2),0.5);

 if (AM>=250 && AM<=260 && potentialFall==false){ //if AM is in a

relatively normal range (0.9768g-1.0159g) ****CHANGE THIS? x2*****

 46

angleChange=acos(((double)x*(double)bx+(double)y*(double)by+(double)z*(

double)bz)/(double)AM/(double)BM); //check for abnormal posture/tilt

 if (angleChange>=0.524 && angleChange<=1.05){ //if orientation

change is between 30-60 degrees

 abnormalTilt=true;

 Serial.print('T');

 Serial.print(10, BYTE);

 }

 else{ //user has normal orientation

 if(abnormalTilt==true){

 abnormalTilt=false;

 Serial.print('N');

 Serial.print(10, BYTE);

 }

 }

 }

 if (trigger2==true){

angleChange=acos(((double)x*(double)bx+(double)y*(double)by+(double)z*(

double)bz)/(double)AM/(double)BM);

 if (angleChange>=1.396 && angleChange<=1.745){ //if orientation

change is between 80-100 degrees

 potentialFall=true;

 Serial.print('P');

 Serial.print(10, BYTE);

 trigger2=false;

 }

 else{ //user regained normal orientation

 trigger2=false;

 Serial.print("E"); //trigger 2 deactivated

 Serial.print(10, BYTE);

 }

 }

 if (trigger1count>=201){ //allow 20s for AM to return to relatively

normal range

 trigger1=false;

 trigger1count=0;

 Serial.print("B"); //trigger 1 deactivated

 Serial.print(10, BYTE);

 }

 if (trigger1==true){

 trigger1count++;

 if (AM>=250 && AM<=260){ //if AM has returned to a relatively

normal range (0.9768g-1.0159g) ****CHANGE THIS? x2*****

 trigger2=true;

 trigger1=false;

 trigger1count=0;

 Serial.print("D"); //trigger 2 activated

 Serial.print(10, BYTE);

 }

 }

 if (AM>=640){ //if AM breaks upper threshold (2.5g /16*4095=640)

 trigger1=true;

 Serial.print("A"); //trigger 1 activated

 Serial.print(10, BYTE);

 47

 }

 //It appears that delay is needed in order not to clog the port

 delay(100);

}

//---------------- Functions

//Writes val to address register on device

void writeTo(int device, byte address, byte val) {

 Wire.beginTransmission(device); //start transmission to device

 Wire.send(address); // send register address

 Wire.send(val); // send value to write

 Wire.endTransmission(); //end transmission

}

//reads num bytes starting from address register on device in to buff

array

void readFrom(int device, byte address, int num, byte buff[]) {

 Wire.beginTransmission(device); //start transmission to device

 Wire.send(address); //sends address to read from

 Wire.endTransmission(); //end transmission

 Wire.beginTransmission(device); //start transmission to device

 Wire.requestFrom(device, num); // request 6 bytes from device

 int i = 0;

 while(Wire.available()){ //device may send less than requested

(abnormal)

 buff[i] = Wire.receive(); // receive a byte

 i++;

 }

 Wire.endTransmission(); //end transmission

}

 48

APPENDIX H: FINAL PROTOTYPE PC-SIDE PROCESSING
PROGRAM

import processing.serial.*;

Serial sp;

char val=0;

color currentColor;

color baseColor;

byte[] buff; //buff to hold serial input

float[] r; //holds individual sensor readings

PrintWriter output; //output file

int OFFSET_X = 0, OFFSET_Y = 0, OFFSET_Z=0, OFFSET_GX=0, OFFSET_GY=0;

//These offsets are chip specific, and vary. Play with them

PFont font;

boolean gbutton=false; //holds whether green button pressed

boolean rbutton=false;//holds whether red button pressed

boolean setref=false;//holds whether reference vectors are set

boolean potentialfall=false; //holds whether potential fall detected

boolean fallconfirmed=false; //holds whether a fall is confirmed

boolean cancel=false; //holds whether potential/confirmed fall is

cancelled

boolean abtilt=false; //holds whether abnormal tilt was detected

boolean normtilt=false; //holds whether normal tilt was regained after

abnormal tilt

boolean trig1act=false; //holds whether trigger 1 was activated

boolean trig1deact=false; //holds whether trigger 1 was deactivated

after it was activated

boolean trig2act=false; //holds whether trigger 2 was activated

boolean trig2deact=false; //holds whether trigger 2 was deactivated

after it was activated

float x = 0, y = 0, z = 0, gx=0, gy=0; //holds sensor values

int xPos = 1; //holds plot x position

void setup() {

 //set up window

 size(1400, 800);

 baseColor = color(255, 255, 255);//white

 currentColor = baseColor;

 buff = new byte[128];

 r = new float[5];

 // Set the font and its size (in units of pixels)

 font = loadFont("TimesNewRomanPS-BoldMT-48.vlw");

 textFont(font, 50);

 textAlign(CENTER);

 output = createWriter("test.txt");

 sp = new Serial(this, "COM9", 115200); //COM10 bluetooth command

mode, COM9 bluetooth send/receive

}

void draw() {

 int bytes = sp.readBytesUntil((byte)10, buff);

 String mystr = (new String(buff, 0, bytes)).trim();

 49

 if(setref==false){ //device just turned on, reference vector not set

yet

 showrefnotset();

 }

 float AM=pow(pow(x,2)+pow(y,2)+pow(z,2),0.5);

 AM = map(AM, 0, 700, 0, height/2);

 stroke(127,34,255);

 line(xPos, height, xPos, height - AM);

 if (xPos >= width) {

 xPos = 0;

 background(baseColor);

 }

 if(xPos<width) {

 // increment the horizontal position:

 xPos++;

 }

 if(mystr.split(" ").length == 5) { //receiving sensor data

 setVals(r, mystr);

 x = r[0];

 y = r[1];

 z = r[2];

 gx=r[3];

 gy=r[4];

 println(x+ "\t" + y + "\t" + z + "\t" + gx + "\t" + gy);

 output.println(x+ "\t" + y + "\t" + z + "\t" + gx + "\t" + gy);

 }

 else{ //receiving one of 12 single letter commands

(G,R,S,P,F,C,T,N,A,B,D,E)

 println(mystr);

 if (mystr.equals("G")) { //green button pressed

 }

 else if (mystr.equals("R")) {//red button pressed

 potentialfall=true;

 showpotentialfall();

 }

 else if (mystr.equals("S")) {//reference vectors set

 setref=true;

 showsetref();

 }

 else if (mystr.equals("P")) {//potential fall detected

 potentialfall=true;

 showpotentialfall();

 }

 else if (mystr.equals("F")) {//fall confirmed

 potentialfall=false;

 fallconfirmed=true;

 showconfirmedfall();

 }

 else if (mystr.equals("C")) {//potential/confirmed fall cancelled

 if(potentialfall=true){//cancel potential fall

 potentialfall=false;

 showpotentialfallcancel();

 }

 if(fallconfirmed=true){//cancel confirmed fall

 fallconfirmed=false;

 showconfirmedfallcancel();

 }

 50

 }

 else if (mystr.equals("A")) {//trigger 1 activated

 trig1act=true;

 trig1deact=false;

 showtrig1act();

 }

 else if (mystr.equals("B")) {//trigger 1 deactivated

 trig1act=false;

 trig1deact=true;

 showtrig1deact();

 }

 else if (mystr.equals("D")) {//trigger 2 activated

 trig2act=true;

 trig2deact=false;

 showtrig2act();

 }

 else if (mystr.equals("E")) {//trigger 2 deactivated

 trig2act=false;

 trig2deact=true;

 showtrig2deact();

 }

 else if (mystr.equals("N")) {//normal tilt regained

 abtilt=false;

 normtilt=true;

 shownormtilt();

 }

 else if (mystr.equals("N")) {//normal tilt regained

 abtilt=false;

 normtilt=true;

 shownormtilt();

 }

 mystr="";

 }

}

void setVals(float[] r, String s) {

 int i = 0;

 r[0] = (float)(Integer.parseInt(s.substring(0, i = s.indexOf(" ")))

+OFFSET_X);

 r[1] = (float)(Integer.parseInt(s.substring(i+1, i = s.indexOf(" ",

i+1))) + OFFSET_Y);

 r[2] = (float)(Integer.parseInt(s.substring(i+1, i = s.indexOf(" ",

i+1))) + OFFSET_Z);

 r[3] = (float)(Integer.parseInt(s.substring(i+1, i = s.indexOf(" ",

i+1))) + OFFSET_GX);

 r[4] = (float)(Integer.parseInt(s.substring(i+1))+OFFSET_GY);

}

void showrefnotset(){

 background(baseColor);

 // Use fill() to change the value or color of the text

 fill(0,0,0);//black

 String s = "Device Uncalibrated.";

 text(s, 700, 350);

 String s2 = "Please attach device and press the GREEN button.";

 text(s2, 700, 450);

}

void showsetref(){

 background(currentColor);

 51

 // Use fill() to change the value or color of the text

 fill(0,0,0);//black

 String s = "Device Calibrated. Thank you.";

 text(s, 700, 400);

}

void showpotentialfallcancel(){

 background(currentColor);

 // Use fill() to change the value or color of the text

 fill(0,255,0);//green

 String s = "Potential Fall Cancelled.";

 text(s, 700, 400);

}

void showpotentialfall(){

 background(currentColor);

 // Use fill() to change the value or color of the text

 fill(255,0,0);//red

 String s = "POTENTIAL FALL DETECTED.";

 text(s, 700, 400);

}

void showconfirmedfallcancel(){

 background(currentColor);

 // Use fill() to change the value or color of the text

 fill(0,255,0);//green

 String s = "Confirmed Fall Cancelled.";

 text(s, 700, 400);

}

void showconfirmedfall(){

 background(255,0,0);//red

 // Use fill() to change the value or color of the text

 fill(255,255,255);//white

 String s = "FALL CONFIRMED. ALERT EMERGENCY CONTACTS.";

 text(s, 700, 400);

}

void showabtilt(){

 background(currentColor);

 // Use fill() to change the value or color of the text

 fill(255,0,0);//red

 String s = "Abnormal Tilt Detected. Please correct posture.";

 text(s, 700, 400);

}

void shownormtilt(){

 background(currentColor);

 // Use fill() to change the value or color of the text

 fill(0,255,0);//green

 String s = "Normal Tilt Restored.";

 text(s, 700, 400);

}

void showtrig1act(){

 background(currentColor);

 // Use fill() to change the value or color of the text

 fill(0,0,0);//black

 String s = "Trigger 1 Activated.";

 text(s, 700, 400);

}

void showtrig1deact(){

 background(currentColor);

 // Use fill() to change the value or color of the text

 52

 fill(0,255,0);//black

 String s = "Trigger 1 Deactivated.";

 text(s, 700, 400);

}

void showtrig2act(){

 background(currentColor);

 // Use fill() to change the value or color of the text

 fill(0,0,0);//black

 String s = "Trigger 2 Activated.";

 text(s, 700, 400);

}

void showtrig2deact(){

 background(currentColor);

 // Use fill() to change the value or color of the text

 fill(0,0,0);//black

 String s = "Trigger 2 Deactivated.";

 text(s, 700, 400);

}

void keyPressed() {

 output.flush(); // Writes the remaining data to the file

 output.close(); // Finishes the file

 exit(); // Stops the program

}

 53

REFERENCES

[1] M. Tinetti and M. Speechley, “Prevention of falls among the elderly,” N Engl J

Med, vol. 320, no. 16, pp. 1055-1059, 1989.

[2] C. E. Coogler, “Falls and imbalance,” Rehab Management, pp. 53, April/May
1992.

[3] K. M. Pocinki, “Studies aim at reducing risk of falls,” P. T. Bulletin, pp. 13, Feb.
1990.

[4] American Academy of Orthopaedic Surgeons, “Don’t let a fall be your last trip:
Who is at risk?,” Your Orthopaedic Connection, AAOS, July 2007. [Online].
Available: http://orthoinfo.aaos.org/topic.cfm?topic=A00118. [Accessed: Sept.
20, 2009].

[5] “iLifeTM fall detection sensor,” AlertOne Services, Inc., 2004. [Online].
Available: http://www.falldetection.com/iLifeFDS.asp. [Accessed: Sept. 19,
2009].

[6] “myHaloTM,” Halo Monitoring, Inc., 2009. [Online]. Available:
http://www.halomonitoring.com. [Accessed: Sept. 19, 2009].

[7] “Life Alert Classic,” Life Alert Emergency Response, Inc., 2009. [Online].
Available: http://www.lifealert.com/. [Accessed: Sept. 20, 2009].

[8] M. Luštrek and V. Kaluža, “Fall detection and activity recognition with machine
learning,” Informatica, vol. 33, pp. 205-212, 2009.

[9] A. K. Bourke and G. M. Lyons, “A threshold-based fall-detection algorithm using
a bi-axial gyroscope sensor,” Medical Engineering and Physics, vol. 30, no. 1, pp.
84-90, 2006.

[10] M. Kangas, A. Konttila, P. Lindgren, I. Winblad and T. Jämsä, “Comparison of
low-complexity fall detection algorithms for body attached accelerometers,” Gait

Posture, vol. 28, no. 2, pp. 285-291, Aug. 2008.

[11] P. Chao, H. Chan, F. Tang, Y. Chen and M. Wong, “A comparison of automatic
fall detection by the cross-product and magnitude of tri-axial acceleration,”
Physiol. Meas., vol. 30, no. 10, pp. 1027-1037, 2009.

[12] A. K. Bourke, C. N. Scanaill, K. M. Culhane, J. V. O'Brien and G. M. Lyons, “An
optimum accelerometer configuration and simple algorithm for accurately
detecting falls,” Presented at 24th IASTED International Conference on
Biomedical Engineering, 2006.

 54

[13] G. Brown, “An accelerometer based fall detector: development, experimentation,
and analysis,” University of California, Berkeley, 2005.

[14] T. Zhang, J. Wang, P. Liu and J. Hou, “Fall detection by embedding an
accelerometer in cellphone and using KFD algorithm,” IJCSNS, vol. 6, pp. 227-
284, Oct. 2006.

[15] F. Sposaro, G. Tyson, “iFall: An Android Application for Fall Monitoring and
Response,” Presented at 31st Annual International Conference of the IEEE
EMBS, 2009.

[16] J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy, “Wearable Sensors for
Reliable Fall Detection,” Presented at 27th IEEE Engineering in Medicine and
Biology Annual Conference, 2005.

 55

VITAE

NAME: Jonathan Tomkun

PLACE OF BIRTH: Waterloo, Ontario

YEAR OF BIRTH: 1989

SECONDARY EDUCATION: St. John’s Kilmarnock School 2002-2006

HONOURS and AWARDS: Honour Roll/Ontario Scholar 2002-2006

Canada Wide Science Fair Bronze Medal 2006

Canadian Association of Physicists Senior
Physics Prize 2006

McMaster Honour Award, Level 3 2006-2009

Dean’s Honour List 2007-2009

University Senate Scholarship 2007-2009

Electrical Engineering 4BI6 Biomedical
Capstone Design Project Second Place 2010

