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I. ABSTRACT

Currently there exist a great deal of medication to deal wéthous mental disorders. Many of
these medications serve similar purposes though only atdele work for a given individual. It
can take several weeks to assess if any given medicatiorisvearking effectively. The purpose
of this project is to develop an objective approach to diagrgp and more accurately treating
various mental disorders with medications. To accompligl bne can observe relationships
between surface currents of the brain and the patients hdistader through statistical pattern
recognition methods and appropriately assign a specifatnvent using data a psychologist
could not observe. The task has high computational reqeinésrand made use of the McMaster
electrical engineering grid. A framework to manipulateaiigtes of EEG data was established.
A method to obtain features necessary was coded into theetvank. Conducting a literary
review of the field showed many similar depression calcoeti Based on these depression
feature calculations, an EEG analysis framework was ashaa to easily obtain a number of
studied features. Feature selection was used to find featvhieh discriminate between classes.
These features were then input into an support vector maatrigating a classifier specifically
designed for depression separation. A test data set of t@weas used to perform relevant
depression calculations including band powers, interigghneric power ratios and coherences
between all channel among other prominent calculationswomthroughout the EEG depression

field. Results of the system were then analyzed to ensureaxcand meaningfulness.
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1. INTRODUCTION

Manic depressive disorder (MDD)
among other mental disorders is
a prevalent issue in our society.
MDD specifically affects 7-12 per-
cent of men and 20-25 percent
of women [1] during the course
their lives. Modern antidepressant
drugs typically have 65 percent suc-

cess rates requiring 2-6 week to

identify a response [5]. There is

/ dendrite
Spnapse

currently an abundance of medi-
cal treatments available for major presynapic
depression disorder (MDD). Many
of these treatments such as electro-
convulsive therapy and certain medI-:ig. 1. The ion fluxes in the extracellular space are of paramount sigméic
ications cause a great deal of collain the generation of field potentials [7]..

eral damage and have low success

rates. Electroencephalography (EEG) is a method that Usesagles placed in an a specific
orientation on the patients head to determine the changiotgnpals transversing the surface
of the brain. These potentials show show the joint eledtrézivity of many neurons. The
electroencephalographer correlates the central neryaisrs (CNS) functions or dysfunctions
with certain patterns in the EEG using an empirical approddtese extracellular potentials
are field potentials. The extracellular potentials areteelato intracellular neurons and glia
cells which are located between the neurons and can be sete inl. The soma nucleus
of the neuron serves several purposes. Many branches ofidsndnd axons stem from the
nucleus and branch into organs and other cells from in theorkt These form inter-neuronal
connections that contact by thousands of synapses [7]. Wiheals are sent between neurons
there is depolarization of the subsynaptic membrane as isetire figure below. If an action

potentials run along nerve fibres which ends in an excitatgnapse, an excitatory postsynaptic



potential (EPSP is created. Hyperpolorization will océuhe action potential ends in a inhibitory
synapse, causing an inhibitory postsynaptic potentigbPIP These can both be seen in Figure
2 [7]. If two neurons travel in the same direction in a shontiqge of time summation of EPSP
triggering can cause an action potential on the postsymaptiron after reaching the membrane
threshold. The potential gradient caused by an EPSP a flovatodns from the subsynaptic
region to the extracellular space. The fields these graglierdgate are then measured by the
EEG.

The potentials from the brain are
sampled and stored on a computer

for analysis by modalities of in-
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terest. Using Support Vector Ma-

chines (SVMs) classifiers can be
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learning task, with a given finite
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amount of training data in this case
being 22 patients each with 6 trials
the SVM defines a classifier. The

best SVM performance is achieved:ig' 2. During EPSP and IPSP, ionic current flows occur through dsase

) . along the neuronal membrane, as shown by arrows. The density ofl + a
by right balancing the accuracy at-

signs indicate the polarization of the subsynaptic (dark area) as well as tha
tained on the training set, and capaf the postsynaptic membrane during synaptic activation [7].

bilities of the hardware. Only under

these circumstances can the the machine learn a trainingitbeut error. Burges describes this
challenge elegantly A machine with too much capacity is Bkéotanist with a photographic
memory who, when presented with a new tree, concludes thatniot a tree because it has a
different number of leaves from anything she has seen bedarechine with too little capacity is
like the botanists lazy brother, who declares that if itsegréts a tree [3]. This remark describes
how an SVM can actually be over-trained to the determent a$sification. To classify, the
SVM creates a hyperplane between the classes which opfiseiarates the classes by a gap,
preferably as large as possible. When the classifer is giveawatest data set, it is mapped out

in the same feature space and will belong to a particulagoagebased on which side of the



gap the are on. Another key factor is the selection of theufeatthemselves that make up the
mapping. Every feature cannot be selected, the mappingeotitiia to the feature space with
massive dimensions would result in a machine with poor perémce. This is because a set of
hyperplanes for a given SVM are parameterized by the dirnessof the feature matrix [3].
Feature selection can be decomposed into two steps. The&rdeadnstruction aspect, and the
feature selection. The goal of this is ultimately data réiduncto limit storage requirements and
increase algorithm speed. The EEG data is the general ddt& amot within the scope of the
project to be retrieve or alter the given general data set.
What can be significantly re-
duced is the feature sets, which can
intern alter the following rounds of

data collection to minimize the size

of the general data set. For instance, : o VI

J r

if there are no significant features o 08?0:.35
i IR,

beyond 50 Hz, why sample at 205 e
X T Pt 1}

>

Hz when the general data set could
be halved with little information
loss by changing the sampling rate

. ig. 3. Features x1 and x2 contain little information of class separation.
to 100 Hz. The main component of P

Feature x3 shows clear separation of the classes [6].
feature reduction is to obtain higher
accuracy and ensure the system is
not over-trained. After prominent features have been fothel can be assessed used for
visualization and further understanding of the generah dat. There are three main approaches
to feature extraction, filters, wrappers and embedded rdstf@]. To visualize how a feature
could be removed the Figure 3 shows a 3 feature space mapiegteatures x1 ans x2 are
evidently not discerning. The feature selection algorithould notice the separation that occurs
on the x3 feature axis and extract this feature with highekiray ideally. Given 24, each having
around 43000 samples at 205 Hz there is an infinite amountadfifes one could extract. Such
a wide range of data would require massive computationalirepents to sift through every
possible feature. Features had to be selected by carefwdliyiating EEG papers on various

subjects to find the most discerning features for the projexfind the appropriate features the
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brain must first be examined from a psychologist’s standp@mne of the pioneers in the EEG
depression field, Davidson [4] found that brain asymmetryelated to depression. Davidson’s
finding showed a relationship depression and less activaaver in the left frontal cortex when
compared to the right frontal cortex. People found with degmmetry were more likely to show
signs of depression which was especially apparent in theaghower band. Asymmetry studies
are a common theme throughout depression papers, as suchfanetions were developed in
Matlab to distinguish power ratios of given frequency bardispression features are now being
insistently researched because of the prevalence of depneis society and is detailed in the

literature review.
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2. OBJECTIVES

The original objective outlined my proposal at the begignarf the year was to use EEG data
to achieve a more accurate and objective description of iargatdepression status. In order to
accomplish this, many software components had to be deselop selected to deal with the
shear magnitude of data. The primary objective of the ptagquite broad and sub-objectives

were developed throughout the course of the term as a refsuftforeseeable circumstances.

A. Handling the Data

Development of a framework to handle the data, allowing anegen and manipulate EEG
data with relative ease was the first objective after litmeateview had been conducted. There
are twenty-two patients, each having six trials with 24 ctes sampled at 205 Hz with 43000
data points per channel. Functions needed to be createdily aacess the data. For example
a function had to be created to retrieve patient 12, trial mem8, channel number 5, etc. This
component objective was vital for analysis of the EEG dafterAhis task was complete, analysis

of the data was to be considered.

B. Storing the Data

After performing some analysis trials on the data, such &$ Faurier Transforms and corre-
lations the required computational requirements becaea @nd a new objective was created.
It would be impossible to perform analysis in the desiredetifame constantly performing
FFTs and correlations because there were simply to manylatitns. The next objective was
deciding the most meaningful data to store to maximize cdatfmnal speeds but not taking up

ridiculous amounts of disk space at the same time. A balareded to be established.

C. Functions

While sifting through the papers in the field, many calculadi@and measurements for depres-
sion and other EEG relationships were found. There were negoyations describing similar
attributes such as asymmetry. A base of functions had tomajed to implement the equations

and allow for future additions was necessary.
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D. Learning Machines

Once all the appropriate numbers were established from nlé/sis, the objective was to
implement a learning machine. There are a great deal ofsstali pattern recognition and
learning machines available, many of which are open soulResearch was conducted to find
the learning machine most suitable for this project. Codepfoper formatting had to be done

on the data to be created for inputing to the learning mashine

E. Analysis

The task of analyzing the output of the learning machine &edanalysis equations were the
next concern. Individually evaluating which equationsateel the features that were optimal for

classification. Selection of the correct features can uhaht change the accuracy and speed.
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3. LITERATURE REVIEW

Another measure that was found to be a prominent indicatfashepression was the Frontal

Brain Asymmetry (FBA) ratio . The formula is as follows [8]:

1 |

FBAz L rIR:Pr:rR_ cxl
|

+ ] Pr:rfr? +Pr:r£
Pm’_ Pr:rR

Where PL is the left alpha power PR is the right alpha power. ddrévation of this formula
is based on the results from a number of studies. The alphampowthe brain is inversely
proportional to mental activity (Davidson, 1988). Thus,aifperson is doing intense mental
arithmetic a small alpha power is observed in that regionhef lirain, whereas if someone is
mentally inactive in a given region, that region will tendhave higher alpha power. Thus, the
formula is basically normalizing the left-right differemin brain activity for given left and right
channels. A function was created to obtain this featurevior given channels. Inter-hemispheric
coherence between FP1-FP2, T3-T4, P3-T4, and O1 and OZtiaytarly alpha and theta bands
were a common indicator of depression being studied in abpapers. The formula used is for
inter-hemispheric coherence was as follows:

2

e S
f2 2 |
> s su(f) - 2 sw(f)

Sxy is the cross-spectral density of the two signals. Sxx>@ndare the power spectral density
of each signal by itself. The spectral asymmetry index (§AShnother key calculation and is

the relative difference in power of two EEG special frequebands. It is calculated as follows:

C‘l’j‘ {fl 1f:’.) —
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F2 F4

Wmm — E Smn s Whmu — E Smn

f=F1 f=F3

WImn corresponds to the lower frequency density of channesndh n from frequency F1
to F2. Whmn are the higher frequency densities of channelsamanom frequency F3 to F4.

Finally, these are used to calculate the SASI:

mem — W!mn
mem T men

S ASIHHI —

Evidently, the power asymmetry between two channels m ane megpresented by the SASI
[?]. To obtain a frequency bands ratio with respect to the eritequency band, the following

calculation is used:

48 Hz
Ii PR
Lmn — E :';-’-J”H/‘ E SEmn
f—ﬁ f=0.5Hz
48 Hz
/
Rmn — E :TH-‘HH/ E SRmn s
=h f=0.5 Hz

interest with respect to the entire band of measured bragufncy. The normalized densities

can then be used to calculate the inter-hemispheric asymrigt
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w’hm: — .'

Rmn
Amu(fl a,fﬁ) — ; W - 100.
Linn T Rmn

This is quite similar to the Frontal Brain Asymmetry calcidat except the inverse of the
power is not taken and this asymmetry is reflective only of @odifferences and not cognitive
function at the time of measurement as in FBA. Several papddsess the There are many
methods currently being implemented to analyze EEG datanyMmpers implement analyze
data specifically for EEG purposes. Another segment of gadealt with detection of early
response to medications. The literature review revealedbtivadness of the EEG depression
field.
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4. DESIGN AND EXPERIMENTAL PROCEDURE

The basis of the overall design are the functions createchtuipulate the data. After comple-
tion of each function several tests were performed to ensuas functional and had meaningful
output. The EEG data itself with no modifications is shown in This shows figure basically
a few arbitrary channels from the occipital, frontal and penal lobes. This only displaying a
few thousand samples of the 43000 at 205 Hz.

! W‘A n i i

P

Fig. 4. Raw Data: Raw EEG data from channels O1, F1, and T1. Showifg 4amples of 43000 sampled at 205 Hz.

The potentials are on the order of microvolts which is expeédbr EEG signals. The temporal
and frontal lobe can be seen to follow each other more clagegn their proximity. The occipital
lobe at the back of the heads potential is quite differents Ththe raw data the design of the

project is based on. The main functions designed to martgptiee EEG data are now listed.

A. Coherence

function [Xcoh freq] = getCoherence(x1,x2) Inputs: 2 1xN wuoh vectors of EEG data

Outputs: Normalized correlation of channels with size A(Nand corresponding frequencies
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Method: Firstly, the cross correlation of the channels lgetausing the function xcorr. The
cross correlation is then normalized so the maximum valuens. The size of the FFT is
zero padded to the next value that can be taken derived froexponential with base of two
to speed up the FFT process. The frequencies are determigaden the sampling frequency
of the EEG acquisition system of 200 Hz. The crosse cormglatietween highly positionally

proximal channels is shown in 4-A.

Example Cross-Coarrelation Frontal-Tempoaral

1 I I I I I I I I

D2 =

-02F 7

-04 - 7

—DEi 1 1 1 1 1 1 1 1

Fig. 5. Cross-Correlation: Cross-correlation of proximal EEG ckémshows near 1 correlation at tau equals O.

The frontal and temporal lobes show almost a perfect cdioelat time is zero. This quickly
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drops off steeply after. The correlation is normalized.ifigkthe FFT of the normalized corre-

lation using this function yielded the following output:

Coherence of Channels Fz ard F1

ooz

vl

o0l

0.005 —

Fig. 6. Coherence: Coherence calculations between proixmal dsafnend F1 share delta and alpha power.

Image 4-A shows the coherence between proximal channelsidF4. The FFT can show
data up to around 100 Hz, half the sampling frequency. Thiee@nce shows only the first 20
or so hertz. A strong delta power can be seen between 0.5-dnHaldition to this alpha band
activity can be seen in the 8-14 Hz range. Beta and theta bamasmarelatively inactive in this
segment. The fact that there was a physiological meaningpeofdaita indicated the coherence

was working properly.

B. Coherence Averaging

function [AVGcoh freq] = getAveragedCoherence(patienk®) Inputs: The number corre-

sponding to the patients of interest and channels coniBIEG data Outputs: Averaged cor-
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relation size 1x(N-1) and corresponding frequencies. Wi@ttOpens all six EEG data files
including EO/EC and retrieves desired channels x1 and x@alls function (1) six times and
averages the results. Purpose: This is an important stepnimine error. Notes: There was also
a similar function with similar output created except it sithe saved average frequencies as

the input to decrease computational time.

C. Power Averaging

function AvgPow = getSavedAvgPower(patient,x1,x2,fré@@1) Inputs: The patient number
from 1-22 and the channels of interest. Freq0 and freql septethe upper and lower bounds
of the frequencies that average power is calculated ovethdde Opens the saved coherence
data which can be also interpreted as the power spectraitgdémsctions (PSDs) between the
two channels. The power is then just the integral from freg@eqgl. Since the data points are
discrete an approximation had to be made to calculate tree wrder the curve. A fast way to
solve for the area was to take each discrete data points todgnwithin the range freqO to
freql and multiple it by on frequency interval and sum thaultedJsing this method there will
clearly be some overlap over the boundaries by half a frequérterval on each side in the
band, but the size of a frequency increment negligible coath#o the range between freq0 and
freql. This yields a relatively accurate method of effidgmtlculating the power. After using
this estimate it became apparent that one could just as wellal the data points and multiply
it by one frequency interval which could simplify the prose#nother realization was then
made that multiplying by some arbitrary constant every tivas also useless because it does
not change the relative relationship between the valuesgtanteature selection algorithm would
treat it the same without multiplying the discrete pointsthy frequency interval. Finally, it was
decided just to sum the magnitude of the data points becautetsupport vector machine it
is all the same so long as all eigenvalue values are propatti®urpose: Power was shown to
be an important feature in many applications during thedttee review. It can be used to find
powers of the alpha, beta, theta and gamma brain waves. lalsanbe used in calculation of

power ratios.
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D. Power Ratios

function PowRatio = getPowRatio(patient,x1,x2,bands) tepilihe patient and channels of
interest in addition to a 2x2 bands matrix containing theasnpnd lower bounds of the powers
necessary. Outputs: The power of band 1 found in column onteofbands matrix over the
power of band 2 in column 2 of the bands matrix. Purpose: larzd in power ratios in certain
bands have been linked to depression making power ratiasporiant feature to be considered.
The Average power was tested over several coherences.

TABLE |

FREQUENCYBAND AVERAGE POWERS

Frequency Range (Hz) Average Power
Delta 0.5-4 1.62E-001
Theta 4-8 4.82E-002
Alpha 4-14 9.09E-002
Beta 14-30 3.70E-002

Example outputs for the coherence shown in Figure 4-A. Loglat the plot, these values
seem proportional to the observed powers. The delta bamdlclehows the most power in the

plot, followed by the alpha bands. Smaller powers are see¢herheta and beta because of the

EEG conditions.

E. Coherence Storage

saveCoherences.m Inputs: All EEG data. Outputs: 20x20 EE@aged coherence compressed
matrices Method: Loops through two loops of 20 channelsntakhe averaged autocorrela-
tion/cross correlation across every possible channel gmatibn. Matrices are saved in com-
pressed format. This is done by repeatedly calling funct®)n Purpose: Calling function (2) is
computationally expensive. Averaged coherence is used faide variety of features and needs
to be accessed constantly. Thus, to minimize computatiexadnse the matrices were saved so
they could be acquired quickly. This was at the cost of apprately 8 gigabytes of storage.
This function took several days to run and the output wasedtan the McMaster ECE grid
taking up about 10 gigabytes of space in a compressed fovat. 6000 coherence matrices

were stored.
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F. Frequency Feature Matrix

function m = freqFeatMat(x1,x2,fregs) Inputs: Arrays ofaohels and frequencies of inter-
est. Outputs: A coherence frequency feature matrix withsr@zed number of size nChan-
nels*nFrequencies of interest and 22 columns, one for eatient. Method: Loops through
each channel combination in arrays x1 and x2. Select fremeenn the freqs array are taken
from the coherence of each channel combination and storddruhe patients column. Each
patient is looped until all 22 columns are filled with cohererfrequency data. Purpose: Creates
a feature matrix of selected frequencies and channels tophg into a feature matrix or feature
selection algorithm. Certain brain frequencies can be taige to depression among other things.
This function was the basis of creating other feature medriout was not used itself in practice
because at each discrete frequency point is subject to tadh maise. Averaging over large
frequencies tends to be a more accurate representatiorddition, with 43000 data points
each with an individual frequency feature per channel, gueacy feature matrix containing all
possible frequencies could not be implemented giving tHame of data. The feature matrix
would be to massive for practical use though it would be pmssiith more computational
power. With infinite computational power this would likelyvg the most discerning features
but because computational power is limited other forms afuiee matrices must be designed to

meet the requirements.

G. Power Feature Matrix

function m = powFeatMat(x1,x2) Inputs: Arrays of channeisnterest. The frequency band
input was restricted to alpha, beta, theta and gamma bravwermpcalculations. Outputs: A power
feature matrix with rows sized number of size nChannels*4 2Adaolumns. Four brain wave
bands are considered. Method: Goes through each chanagl @ening the saved coherence
values. Calculates the power in the brain wave bands for denimel and saves it into the patients
column and corresponding feature row. This process is tefdar each patient. Purpose: Creates
a feature matrix of brain wave powers. These have shown taniperiant features to analyze

throughout the literature review.
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H. Power Ratio Feature Matrix

function m = powRatioFeatMat(x1,x2, bands) Inputs: Arrayleannels of interest. In this
case frequencies bands can be modified by the user. Only tadslzan be input in the bands
array which is a 2x2 matrix containing the upper and lowernasuof the bands. Outputs: A
matrix of size nChannels x nPatients. A the power for each lsmdlculated an the power of
first band in column 1 of the input band matrix is divided by gmver in the column 2 band.
Method: Opens saved coherence values and calls the getFHowattion to obtain the values

of the feature matrix. Purpose: Power ratios features haes Ishown to relate to depression.
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5. RESULTS ANDDISCUSSION

Previously in Figure 4-A the coherence between proximahok& were shown. The alpha
and delta powers were most prominent in this scenario. Tthdurtest the system and the
accuracy of the data distant coherences were also measiwhdrence between F1 and O2 are

shown in the Figure 5.

o =

.
[ e | " “mdmu_ .

o z 1 L] & o 1’ "
Fraaianey jHIy

Fig. 7. Distant Coherence: Coherence calculations between distameatha

Far less activation in the delta bands is apparent. Som#oredaip can still be seen in the
alpha band however. This may be an indication that alpha svareebeing transmitted throughout
the brain to a greater extent than the delta waves. Once #Hgaiother theta and beta bands are
not active at all. Running a few more trials the coherence det@mce function was working
for all patients and channels with an exception in patienivb@re there was a data fault that
caused the program to crash.

The average coherence function was also tested for itdilelya The output of this function
for proximal channels Fz and F1 are can be seen below in Figure

As one might expect. Averaging reduces the magnitude to asiderable degree. This is as
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LdMWH.M- o ] i b, . |
o 2 12

Fig. 8. Average Coherence: Coherence calculations between pioofimanels Fz and F1. The coherence is averaged over 6

trials, three eyes open and three eyes closed.

a result of the high frequencies components being averageerosmoothed. The averaging
appears to have a similar effect to a lowpass filter that remdwigh frequency components to
some degree. The averaging is done across six trials wigle ttamples of eyes open and three
eyes closed. There is no discrimination between these aasles software framework currently
because no papers regarding depression covered the tapit\was assumed not significant. If
a paper was published that found differences in classibicati depressed patients when their
eyes are open versus when their eyes are closed this wouttadse considered and would
require minor changes to the coding. The output of this foncappears to make physiological
sense and after several trial appeared to be working snyoothl

To test the system several calculations seen commonly ghmu the papers were imple-
mented with the software framework established. First pswe the left hemisphere were
measured. These are seen below in Fig@f Nine channels were measured in four frequency
bands. The last two bands of the last channel are not shown.

The powers all appear around the E-4 and E-5 level which ighiyuspeaking the order of
magnitude to be expected. The first row measuring channeleéins to be similar across all

11 patients in terms of magnitude. Many other rows show a watéty of values containing



25

1 | 2z | 3 4 5 8 7 8 | a 10

i ~04 2,1503e-04|2.034%¢-04| 2.1141e-0 04 1.3047€-04 2.
05 1,3244e05]1.0349e—05| 2.27730-0 | §) 1.1473e-05| 1.27
0a40e 0F 2.3659 - CE 3.0562e-08 5154 1a— Oo_ 3,13082_0¢

—05| 4.8295e-
OI:| £.1303a-08

4 .iggz.__n:

—06|2.3252¢-06
2221906 5.4030e-06 7 6315e-06
13 04[8.1543e-05 | 7.3572e-05 31343e-_p_5
4] 1

[ R [ [ o =

2.44952-05 2 1064=-05| 8.7

c.7551le—05 1.5450=-05| 7

5, 02432-08] 1.1280=-05]
1.55826-04| 1.70426-04
5|1.5678e-05

6.83122-06
733105

5.1462e-06 4, 6| 6.3216e-06)
L5548a-04 1,1946e-04] 1.3407e-04
5| 54436205 1.

7 -06|8.7389-06| 2.8130-08) 6,
25| 7.6EE2e-0 5472-05| 1.5028e a7 04|8.4542e-0%) 1.2788e-04] 8.8
4.81%4e-05

1.07632-04
2.6284e~ ‘13

1.13F4e-04|
2.6500e-05|

05|2.3853e-05 i 351535_u-
1.9736=-05| 5| 7.7173e-05)
£ 1.0840e-05] 5 4.'335‘&—["* 3 . 6 1.6247e-05| 5.5468-06]
1.0308e-04 'I 13EFa-04 £ 9457=-05 82052 0'5 CEEE4e-05 44211e-05 2. 24352-05)
S 1,9224e-0E| 2.6340e-05| 3.F585=-05 3.0410=-05| 2.40172-05] 1,50892-05 25306e-05| 5 9191e-05

Fig. 9. Left Hemispheric Power: Left hemisphere channel powerdeita, theta, alpha and beta bands. Four rows contains
one channel of information. The last two bands of the last channef 83iand 36 are not shown. The first 11 patients can be
seen. Power spectral densities of channels X1, T3, F7, T5, F3, 3@ O1 are shown.

desired features that could potentially seperate deptgssents from normals. There appears
to be no large sources of high magnitude noise anywhere ghout the power feature matrix
indicating the general data set was accurately obtaine. flatrix can now be compared to
the same bands and channels on the right side of the heméspien in Figure 5.

Comparing the values between the charts some relationstepsanediately apparent. Mag-
nitudes in differing rows tend to vary to a similar degreeatidition, the variances on the rows
appear similar in both hemispheres which makes physichbgense. For example, comparing
the first rows of left and right hemispheres, the first rows nitagle slightly changes overall
between hemispheres, showing more power generally in theTleese are normal patients, yet
the magnitudes in the left hemisphere appears slightlytgreadicating asymmetry in normal
patients. It is a possibility that the left side of the branows slightly more activity even in normal
patients on average. In creating a system that identifiesedsion such natural asymmetries

would need to be accounted for. This magnitude differencag have also been introduced in
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Fig. 10. Right Hemispheric Power: Right hemisphere channel powetslta, theta, alpha and beta bands. Four rows contains
one channel of information. The last two bands of the last channef 83aand 36 are not shown. The first 11 patients can be
seen. Power spectral densities of channels X1, T3, F7, T5, F3, 3@ O1 are shown.

the measuring phase of the general EEG data. Plotting therésaclearly shows relationships
between channels and can be seen in Figure 5.

Interestingly, the features of each patient seem to foll®inalar but not exact pattern. Power
spikes are generally seen in the same regions for all pati8ntall differences in the magnitudes
and phase of these spikes can be noticed and an the supptant rexchine will classify based
on these types of differences. As part of the framework, cede created to concatenate these
feature matrices and to be input into a support vector machihe SVM used for this project
was SVMlight which requires a particular input format. Theneersion from a feature matrix to
an SVMIlight input matrix code can be seen in the appendicegai@tion was performed based
on gender, and the SVMIlight was able to distinguish gendér leiv accuracy. More details on
this separation was excluded because it is not in the veiheféport concerning depression.
Seperation by gender is a topic of a different nature. Gesdperation was done only to show

the system working and the conversions had been done dgrrédter this seperation was
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Fig. 11. Cross Coherence: Cross coherence across hemispBeves Power spectral densities of channels X, T, F, T, F, C,
P, and O are shown.

completed and the SVM was shown to be working, the system eadyrfor inputing massive
feature matrices from depressed patients.
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6. CONCLUSIONS

In conclusion, the software framework appears to be worlddgquately. The system can
easily implement features discussed in the papers with gligitt modifications to the code. The
storage of coherences across all possible channel condrigatrastically speeds up the process
of analyzing the data at the cost of roughly 10 gigabytes atepThe shear volume of the data
requires usage of a computational grid and cannot possilgdmpleted on a home desktop
computer in a reasonable time frame. The initial coherena&silated on individual trials show
large amounts of high frequency content and are not suitablfirect usage. Averaging functions
across the six trials were made to deal with this issue aravallage coherences were calculated
and saved with the usage of the McMaster ECE grid. The averagesshown to work similar
to lowpass filters, reducing the magnitudes of the signalsnaueasing the signal to noise ratio.
All functions were tested through creation of the final featmatrices to be input into the SVM.
These included frequency, power, and power ratio featuteaeea. A variety of of functions were
assembled to create these feature matrices. These funetisily implemented inter-hemispheric
related features such as brain asymmetries which were eveanad in normal patients on
several channels. Finally, conversion functions weretereto transfer the feature matrices into
SVMlight. The system is essentially ready for implememiaton depressed patients. The wide
variation of readings in normal patients shows depressgpemtion would be a difficult task.
With further research, data and optimization of machinesstiperation of depressed individuals

seems promising.

A. Recommendations

Recommendations for further work would be in the area of argat custom feature selection
and support vector machine specifically for the purposedepiression. The parameters of the
SVM can also be tweaked along with the number of featurestifgpuncrease accuracy. The
framework potentially could include a method by which it@uttically increases or decreases
parameters until maximum separation in the feature spacere&cComputational requirements
would be quite high for such an algorithm and methods suchhasMonte Carlo algorithm
would need to be used to find the most suitable parametersdditian to this, more papers

could be researched and their features tested to increassctiuracy of the system.



7. APPENDICES
A. Coherence Function

function [Xcoh,freq] = getCoherence(x1,x2)
X= xcorr(x1,x2,coeff’); //normalized cross-correlatio
Ts = 0.0049;
Fs = 1/Ts; //pre-definded, 205 Hz
L = size(X);
L = L(2);
NFFT = 2nextpow2(L); // Next power of 2 from length of y
Xcoh = abs(fft(X,NFFT)/L);
freq = Fs/2*linspace(0,1,NFFT/2+1); // f size is around @27
[[Xcoh = Xcoh(1:30000);
freq = freq(1:30000);//only considering to 30000 point.#61z)
end

B. Average Coherence Function

function [AVGcoh freq] = getAveragedCoherence(patieng2)y
/lchannels only from 1 to 24
root = '’home/oreillj/dropbox/HamNorms0/’;

load('patients.mat’);

/lopen raw data files
datal = dimread(strcat(root,patients(patient).naf@¥01R01.txt"),",2,3);
data2 = dimread(strcat(root,patients(patient).na&Y01R02.txt),",2,3);
data3 = dimread(strcat(root,patients(patient).naf@Y/01R03.txt"),",2,3);
data4 = dimread(strcat(root,patients(patient).naf@Y01R04.txt"),",2,3);
data5 = dimread(strcat(root,patients(patient).naB@Y01R05.txt"),",2,3);
data6 = dimread(strcat(root,patients(patient).na@Y01R06.txt’),",2,3);

/ltake desired columns
x1 = datal.data(:,el);
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x11 = datal.data(:,e2);
x2 = data2.data(;,el);
x22 = data2.data(:,e2);
x3 = data3.data(:,el);
x33 = data3.data(:,e2);
x4 = data4.data(:,el);
x44 = datad.data(:,e2);
x5 = data5.data(:,el);
x55 = data5.data(:,e2);
X6 = data6.data(:,el);
X66 = data6.data(:,e2);

/lobtain coherences
[X1 freq] = getCoherence(x1,x11);
[X2 freq] = getCoherence(x2,x22);
[X3 freq] = getCoherence(x3,x33);
[X4 freq] = getCoherence(x4,x44);
[X5 freq] = getCoherence(x5,x55);
[X6 freq] = getCoherence(x6,x66);

/laveraging
AVGcoh = (X1+X2+X3+X4+X5+X6)/6;
f = freq;

end

C. Stored Coherence Function

function AvgCoh = getSavedAvgCoh(patient,el,e2)
cd(’/home/surf/Documents/School/4BI6/HamNorms0/’);
filename = [ 'TAvgCoh ' num2str(patient) * * num2str(el) '’ nurs(e2) .mat’ |;

AvgCoh = load(filename);
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AvgCoh = AvgCoh.m;

end

D. Stored Power Function

function AvgPow = getSavedAvgPower(patient,el,e2,fiiegql)
m = getSavedAvgCoh(patient,el,e2);
onef = 642.2826; //one step in Hz
nO = round(freqO0*onef);
nl = round(freql*onef);
N = nl1-n0;
Power = 0;cohfunctionAp
for k=n0:n1
Power = Power + m(k);
end
AvgPow = Power,

end

E. Power Ratio Function

function PowRatio = getPowRatio(patient,el,e2,bands)
/I average pow el over e2
freq0 = bands(1,1);
freql = bands(2,1);
freq2 = bands(1,2);
freq3 = bands(2,2);

pow0 = getSavedAvgPower(patient,el,el,freq0,freql);
powl = getSavedAvgPower(patient,e2,e2,freq2,freq3);

PowRatio = pow0/pow1;

end



F. Save Coherences Function

for k = 1:22 //pateints

for h = 1:24 //all cross-channel relations

fort=1:24
if(k == 13)
continue;
end
if(t==h)
continue;
end

m = getAveragedCoherence(k,h,t);

cd(’/home/oreillj/Coherence’);

if(t¢e,h)

filename = [ "AvgCoh ’ num2str(k) * * num2str(h) * * num2str(t)rhat’ |;
end

if(tjh)

filename = [ "AvgCoh * num2str(k) * * numz2str(t) * * num2str(h)rhat’ |;
end

save(filename, 'm’);

end

end

end

G. Frequency Feature Matrix

function m = freqFeatMat(el,e2,freqs)
nChannels = length(el);
nPatients = 22;

nFregs = length(freqgs);

32



nRows = nFreqgs*nChannels;
nCol = nPatients;

m = zeros(nRows,nPatients);// 13 col will need removal

for k = 1:nPatients
if(k == 13) // 13 is useless for now
continue;
end
for s = 1:nChannels
for g = 1:nFreqgs
ell = el(s);
e22 = e2(s);
freq = freqs(q);
cRow = s*q; //current channel times freq of interest
cCol = k; /I current column is current patient
val = getSavedAvgCohatF(k,el11,e22,freq);
m(cRow,cCol) = val;
end
end
end

end

H. Power Feature Matrix

function m = powFeatMat(el,e2)
bands = [.5 4 8 14; 4 8 14 30]; // the delta theta alpha beta bands
nBands = 4;// for now the bands are locked as these
nChannels = length(el);
nPatients = 22;
nRows = nBands*nChannels;

nCol = nPatients;



m = zeros(nRows,nPatients);// 13 col will need removal

for k = 1:nPatients
cRow = 1;
cCol = k; /I current column is current patient
for s = 1:nChannels
for g = 1:nBands
ell = el(s);
e22 = e2(s);
lowFreq = bands(1,q);
highFreq = bands(2,q);
val = getSavedAvgPower(k,ell,e22,lowFreq,highFreq);
m(cRow,cCol) = val;
cRow = cRow +1;
end
end
end

end

|. Power Ratio Feature Matrix

function m = powRatioFeatMat(el,e2, bands)
nChannels = length(el);
nPatients = 22;
nCol = nPatients;
nRows = nChannels;
m = zeros(nRows,nPatients);// 13 col will need removal
for k = 1:nPatients
if(k == 13) // 13 is useless for now
continue;

end
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for s = 1:nChannels

ell = el(s);
e22 = e2(s);
cCol = k;
cRow = s;

val = getPowRatio(k,e11,e22,bands);
m(cRow,cCol) = val;

end

end

end

J. SVMlight Conversion M File

nm = size(m); //create feature matrix m prior to running ttasle
nClasses = nm(2);
nFeatures = nm(1);
classifier = ones(1,nClasses); // this matrix will be input
for r=1:10
classifier(r) = -1;

end

filel = fopen(test.dat’,w’);

for k=1:nClasses
class = num2str(classifier(k));
if(classifier(k)¢,0)
fprintf(filel,+");
end
fprintf(file1,class);
fprintf(filel, ’); v for g=1:nFeatures

feature = num2str(q);



value = num2str(m(q,k),’10.18f");
fprintf(filel, ’);
fprintf(file1,strcat(feature,:’,value));
end

if(k =nClasses)

fprintf(file1,”);

end

end

fclose(filel);
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