

Design of Inertial Tracking System for

Laparoscopic Instrument Trajectory Analysis

by

Calvin Gan

Electrical and Biomedical Engineering Design Project (4BI6)

Department of Electrical and Computer Engineering

McMaster University

Hamilton, Ontario, Canada

Design of Inertial Tracking System for

Laparoscopic Instrument Trajectory Analysis

by

Calvin Gan

Electrical and Biomedical Engineering

Faculty Advisor: Dr. Alexandru Patriciu

Electrical and Biomedical Engineering Project Report

submitted in partial fulfillment of the degree of

Bachelor of Engineering

McMaster University

Hamilton, Ontario, Canada

March 23, 2010

Copyright ©April 2010 by Calvin Gan

ii

ABSTRACT

Laparoscopic surgery has brought about radical change in how surgery is performed

today. The advantages of using tiny incisions to perform surgery are marred by very

difficult and delicate techniques which must be applied by the surgeon. The need to track

laparoscopic instruments results from the significant learning curve required to perform

safe laparoscopic techniques, and the need to provide an objective assessment of the

surgeon’s skills. The idea is that through recording the instrument’s trajectory, the

surgeon can compare his or her movements with that of an expert. This provides an

objective evaluation, in which the student can reassess and correct their movement as

necessary. By attaching an inertial measuring unit (IMU) to the laparoscopic tool, relative

positions and orientations can be calculated, and its path in 3-D can be approximated over

time. The IMU data can be streamed to a PC where positions are written to an output file.

Using graphing software (MATLAB used in this case) positions are plotted and the

created trajectory is subsequently analysed for an objective assessment for comparison

evaluations. The following report describes the process of acquiring the tool’s trajectory

by using inertial sensors, namely accelerometers and gyroscopes. Explanation of

hardware and software design used to obtain position, orientation, and ultimately

trajectory, along with experimental results are presented.

Keywords: laparoscopic surgery, minimally invasive surgery, inertial measuring unit

(IMU), accelerometer, gyroscope, trajectory

iii

ACKNOWLEDGEMENTS

The author would like to acknowledge and extend his gratitude to the following persons

who have made the completion of this project possible:

Dr. Thomas Doyle, who served as project coordinator, for his continual advice

throughout the entire 4BI6 course.

Jiten Mistry, the author’s colleague and project member, for his effort and contributions

put towards the project, and for his support and encouragement.

Dr. Alexandru Patriciu, who served as the author’s faculty advisor, for his expertise in

robotic applications. In addition to funding this project, Dr. Patriciu offered excellent

guidance and feedback with many arising issues; without him this project would not be

possible.

Once again, the author would like to thank all those who have helped him in any way

over the course of completing the design project.

iv

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF TABLES .. v

LIST OF FIGURES ... vi

NOMENCALTURE .. vii

1 Introduction .. 1

1.1 Background ... 1

1.2 Objectives .. 2

1.3 General Approach to the Problem ... 3

1.4 Scope of the Project... 5

2 Literature Review .. 7

2.1 Current Systems for Tracking Laparoscopic Instruments ... 7

2.1.1 Methods .. 7

2.1.2 Tracking Systems ... 8

2.2 Methods and Limitations of Inertial Measurement Systems 11

3 Statement of Problem and Methodology of Solution .. 13

3.1 Statement of Problem .. 13

3.2 Linear Accelerometers and Gyroscopes .. 13

3.3 Methodology of Solution .. 14

4 Experimental & Design Procedures ... 18

4.1 Hardware ... 18

3.2 Software .. 21

5 Results and Discussion ... 24

6 Conclusions and Recommendations ... 31

Appendix A: Amplification System ... 32

Appendix B: Arduino Code.. 34

Appendix C: Tables for Graphs .. 42

REFERENCES .. 48

Vitae ... 50

v

LIST OF TABLES

Table 1: Comparing common tracking system methods... 8

Table 2: IMU sensor measurement range ... 19

Table 3: Accelerometer and Gyroscope output voltages .. 20

Table 4: IMU power consumption .. 20

Table 5: Table used to create Figure 16 and 17. ... 42

vi

LIST OF FIGURES

Figure 1: Laparoscopic instrument with mounted sensor ... 3

Figure 2: Block diagram of tracking system ... 4

Figure 3: Rotation applied to moving frame in order to achieve coordinates with respect

to a base frame .. 5

Figure 4: Xitact IHP Tracking and Haptic System ... 9

Figure 5: Ultrasonic tracking system: receivers situated above the surgical table and

transmitters on surgical instruments [7] .. 10

Figure 6: CAD drawing of the BlueDRAGON system [8] ... 11

Figure 7: Ascension Hy-BIRD from Inition ... 12

Figure 8: Differential capacitive accelerometer .. 14

Figure 9: Raw gyroscope output ... 15

Figure 10: Raw accelerometer outputs ... 16

Figure 11: Raw gyroscope output post subtraction... 16

Figure 12: Arduino Duemilanove (“2009”) .. 18

Figure 13: 6 DOF IMU from Sparkfun ... 19

Figure 14: Arduino Board and IMU connections ... 20

Figure 15: Implemented algorithm solving for position and ... 22

Figure 16: Square motion.. 25

Figure 17: Square motion in X-Y plane .. 26

Figure 18: Path of zigzag motion, followed by an up and downwards motion 27

Figure 19: Circular movements .. 28

Figure 20: Same circular plotted only in X and Y coordinates... 28

Figure 21: Up down motion .. 29

Figure 22: Up right-left motion... 30

Figure 23: Amplification system (top right of Figure) used to ... 32

Figure 24: Amplify and offset system used with ADC module.. 33

vii

NOMENCALTURE

Accelerometer: Sensor that outputs a signal (analog or digital) proportional to object’s

acceleration.

ADC: Analog to Digital Converter.

Angular Velocity: The rate of change of angular displacement with respect to time.

Drift: The ever-increasing difference between calculated locations from an inertial sensor

to the actual location.

Gyroscope: Sensor that outputs signals (analog or digital) proportional to object’s

angular velocity.

IMU: Inertial Measuring Unit; device that measures an object’s velocity (and position),

and orientation, generally consisting of accelerometers and gyroscopes.

Inertial Sensors: Sensors that measure a change in motion such as acceleration or

(angular) velocity.

Laparoscope: Key instrument used in laparoscopic surgery; camera is embedded at the

tip where images are displayed on a monitor in the operating room.

PC: Personal Computer

Rotation: Angular motion about some axis.

Trajectory: Geometric path with time information.

Translation: Ability to move (change position) without rotating.

1

1 Introduction

1.1 Background

Laparoscopic surgery is a type of endoscopy, whereby the surgeon uses a specialized

endoscope (called a laparoscope) and special laparoscopic tools to perform surgery

through tiny (5-10mm diameter) incisions. This type of surgery is generally performed

within the abdominal or pelvic cavity; inflexible instruments are most effective in this

area and can reach organs of interest (e.g. gallbladder) fairly easily. Laparoscopic surgery

(also known as minimally invasive surgery) provides a safe and successful surgical

technique comparable to that of traditional surgical procedures. In some cases, for

example in treatment of chronic cholecystitis, laparoscopic surgery is the preferred

method [1], [3] due the advantages of using few small incisions. Many outcomes such as

quick recovery, less scarring, and fewer post-operative complications result from

laparoscopic techniques. In addition, this method can be applied for diagnoses as well as

treatment, and as such, laparoscopic surgery is growing in frequency and importance.

Laparoscopic surgery requires skills very different from those used in open surgery [2]. It

requires precise hand-eye coordination, and because operations are done through a pivot

point, motion is inverted (this is known as the “fulcrum effect”). Further, the operative

field is displayed on 2D monitors via a laparoscope, which contribute to both reduced

workspace and loss of depth perception. These complications are what make minimally

invasive surgery such a difficult technique to master.

Owing to an increase in procedures, the degree of difficulty involved, and overall lack of

experience, laparoscopic surgical accidents or malpractices have been increasing in

number [3]. Shortage of experience or skills for laparoscopic surgery could stem from the

fact that current methods of training do not include proper assessment of the surgeons’

ability. Typically, resident surgeons begin their surgical education by observing their

experienced counterparts in the operating room. They then contribute to the operation by

performing basic techniques and/or diagnostic laparoscopy, where chances of causing

damage to the patient are significantly reduced. Upon being certified as primary

2

surgeons, they can then perform a wide range of advanced laparoscopy. Throughout this

process however, the skill of the surgeon is not precisely known. Evaluation (by an

experienced surgeon for example) will contain subjective factors, and may be why

current methods of training are potentially unsafe for the patient [4]. To improve on

existing training procedures, it is necessary to develop some sort of objective,

quantifiable assessment of manual skills in basic laparoscopic surgery.

For this design project, motion analysis is used to provide the objective assessment

discussed. This requires tracking and recording motions of laparoscopic tools, where the

data can be further analyzed. These recorded trajectories can be used in a variety of ways.

For example, by comparing the motion acquired from an expert to that acquired from a

novice (in a controlled trial), obvious differences should be seen; the novice can then

make appropriate changes to his or her technique, resulting in a closer match between the

two trajectories (and more skillful technique). The focus of this report will include the

design of the tracking system itself.

1.2 Objectives

The objective of this project is to design an inertial tracking system aimed for

laparoscopic instruments. While the surgeon moves the tool, the system will track and

record 3-D positions in time, providing a means for objective assessment. The system

should be lightweight and compact enough to be mounted on the surgical tool so it does

not impede the normal operation of the surgeon. Such a system can be visualized in

Figure 1, where the sensors are placed close to where the surgeon’s hand would be. To

provide some visual feedback and to get an idea of the performance of our tracking

system, positions in all three-dimensions (one for each orthogonal axis) will be saved and

plotted. As will be shown in experimental results, decent results are obtained for simple

movements.

Accuracy when obtaining position and orientation through accelerometer and gyroscope

sensors is, by nature, erroneous with time. This fact will be brought up later in the report,

3

and we shall see why inertial data is often complemented with other methods of tracking.

The tracking system implemented (which is based only on inertial sensors) will be

sufficient to show the general path of the user’s motion, but cannot be 100% accurate.

For this reason, a measure of accuracy (within 2mm for example) was not within our

objectives. Rather, a measure of resolution was defined to be at 1ksamples/second. By

increasing data points, a smoother trajectory (higher resolution) can be created which

results in the original signal (motion) being reproduced as closely as possible. A drop in

sampling rate on the other hand, may result in aliasing and the trajectory may look

nothing like the surgeon’s movement at all.

Figure 1: Laparoscopic instrument with mounted sensor
1

1.3 General Approach to the Problem

The block diagram of the proposed tracking system is outlined in Figure 1.2. This

approach consists of four components: the inertial measuring unit (IMU),

microcontroller, USB controller, and PC.

1
 Image taken from [3]

4

IMU
Microcontroller

/ ADC
USB controller PC

Attached to laparoscopic instrument

Figure 2: Block diagram of tracking system

The IMU consists of a set of analog sensors: a triple-axis accelerometer, a dual-axis

gyroscope, and a single-axis gyroscope. Together, the three sensors allow us to measure

six degrees of freedom (DOF). Analog outputs (six of them) from the inertial measuring

unit (IMU) are fed into a microcontroller where the data is converted to a digital signal

via the on board ADC. Depending on the signals produced by the sensors, or the voltage

reference of the ADC, an amplification stage may be required to improve ADC

performance and resolution. In developing stages, an amplification stage was used to

slightly increase ADC performance; however this amplification system won’t be used in

the final product. See Appendix A for design details. Once digitized, the data is processed

to calculate position and orientation, which is also done at the microcontroller stage.

Very briefly, the process of estimating positions and orientations are as follows: Through

integration (over time) of angular velocity provided by the gyroscopes, we are able to

obtain the relative angles 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧 about each axis X, Y and Z respectively. Through

double integration of acceleration provided by the accelerometer, we obtain the relative

distance moved by each axis (X, Y and Z), and hence acquire position. It is important to

realize the IMU, being mounted on the laparoscopic tool, will provide data in a moving

frame, but what we really need are positions in a base, or global frame of reference.

Through linear algebra (robotics), transformation via rotation matrices will resolve this

issue. This can be visualized in Figure 1.3. More detail is provided in later sections.

Lastly (going back to Figure 1.2), because the IMU is intended to be mounted on the

laparoscopic instrument, data must be streamed over to the PC in order to be recorded,

5

saved, and analyzed. This is done through a USB controller, detached from the

laparoscopic tool.

Figure 3: Rotation applied to moving frame in order to achieve coordinates with

respect to a base frame

1.4 Scope of the Project

The scope of this project is to implement a motion tracking system using an IMU

consisting of accelerometer and gyroscope sensors. The resulting data is then sent to a PC

via USB controller for analysis. This report encompasses the design of IMU and

processing the raw data (i.e. the first two blocks shown in Figure 1.2); it will not discuss

implementing the USB controller or the comparative analysis done at the computer

stages. As stated previously, the application of a tracking system can be used to provide

objective assessment during laparoscopic training, as well as reduce the steep learning

curve associated with this type of surgery.

The extent of this project is mainly limited by the accuracy of trajectory produced. As

brought up earlier, strictly using inertial sensors cannot guarantee a quantity of accuracy

or error at any point in time. In order to approximate position (X, Y, and Z coordinates)

and orientation (𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧 - or roll, pitch, yaw), discrete integration needs to be applied.

For each integration interval, error terms (or constants) are introduced and accumulated,

6

thereby decreasing accuracy as the integration interval (time) increases. This effect is

even more prevalent when calculating positions from acceleration. Within seconds the

data may be full of errors, rendering it unusable. It is for this reason that this project is

intended to obtain the general trajectory within a certain period of time (seconds rather

than minutes/hours).

Increasing accuracy chiefly depends on the integration method, sampling rate, and ADC

resolution. Also, to account for the inherent errors present in inertial sensors, methods to

drastically reduce inaccuracies will be discussed (such as combining with additional

tracking systems).

7

2 Literature Review

2.1 Current Systems for Tracking Laparoscopic Instruments

Many laparoscopic tracking systems have been designed for reasons explained earlier;

that is, by analyzing motions of the instrument, laparoscopic skills can be assessed. There

are several devices commercially available or are under development that aims to track

movements of laparoscopic instruments. These systems employ a variety of tracking

methods which include optical, mechanical, acoustic, or electromagnetic technology.

Before discussing about current tracking systems, said methods will be summarized and

compared.

2.1.1 Methods

Optical tracking uses cameras or position-sensitive optical devices to track IRED

(infrared emitting diode) signals. This type of position tracker works by placing cameras

at fixed points which detect a set of IREDs mounted on the object. Mechanical tracking

systems rely on a direct mechanical connection between a reference point and the object.

The connection is usually the form of an arm, and the system detects movements through

the arm. Acoustic devices emit and sense ultrasonic sound waves to determine the

position and orientation of the object. The sensors may be stationary, while the ultrasonic

emitters are mounted on the object. The system measures the length of time it takes for

the sound to travel from the object to the sensors, thereby calculating its distance. Lastly,

electromagnetic tracking systems function by measuring the magnetic field strength

generated by three mutually orthogonal coiled wires. When current is applied through the

wires (which are attached to object), magnetic fields are generated and can be measured

by a sensor at some fixed location. Position and orientation of the object can therefore be

determined.

Table 2.1 below compares the advantages and disadvantages of each method described.

8

Table 1: Comparing common tracking system methods

Technology Advantages Disadvantages

Optical Reasonable range,

accuracy, and resolution

Suffers from line-of-sight problems

(i.e. camera needs to be able to “see”

IREDs at all times)

Mechanical Very good accuracy,

resolution; interference

immunity

Extremely limited range; constrained

motion due to physical connection

Acoustic Large range at low cost Slow update rates (speed of sound

relatively slow); speed of sound affected

by environment (i.e. temperature,

humidity, etc.)

Electromagnetic Low latency; no line of

sight problems

Affected by distortions in magnetic field

caused by metal objects; rapid decrease

in accuracy/resolution with distance

2.1.2 Tracking Systems

A number of important aspects are considered when designing laparoscopic tracking

systems. Some issues are portability, available haptic feedback, and accuracy. In addition,

there are as many as three environments in which tracking may occur: in a virtual reality

trainer, a box trainer, or in the operating room. The following paragraphs will briefly

discuss some tracking systems, while covering each environment mentioned. The

technology employed in each system and advantages and disadvantages will also be

highlighted.

The Xitact IHP – Instrument Haptic Port is a portable virtual reality (VR) system

designed to track the motion of a surgical instrument. Produced by Xitact S.A (Xitact

S.A. Morges, Switzerland, http://www.xitact.com), this tracking system provides force

feedback and allows the use of real surgical instruments with handles and graspers (see

Figure 4 below). To measure position and orientation, optical encoders are placed on both

the Lin/Rot (linear and rotational drive), which is attached to the instrument, and the

http://www.xitact.com/

9

pantoscope, which is attached to the base of the system. Connection to PC via USB

permits simulation through software. Although VR systems provide a means of

accurately tracking instruments, current issues include the realistic (or unrealistic)

behavior of haptic feedback offered. Studies suggest that force feedback provided in VR

trainers is far from that by real laparoscopic instruments experienced in an operating

room or a box trainer [4].

Figure 4: Xitact IHP Tracking and Haptic System
2

An ultrasound wireless positioning system developed at Delft University of Technology

in The Netherlands, gives the exact 3-D location and orientation of the instruments in the

patient by using acoustic tracking. Mounting ultrasound transmitters onto the instrument

and placing ultrasound receivers above the patient (as seen in Figure 5) create an

interference-free environment. That is, the surgeon is not hindered by any wires or

mechanical devices, and the line-of-sight from marker to transmitters is not obstructed.

The design of this system allows it to be used in the operating room, which encompasses

patient safety (i.e. no nearby electrical wires) and ergonomics (how surgery will be

actually performed). Additional advantages of operating room tracking systems include

the use of real laparoscopic tools and the sense of true force feedback (not a virtual

feedback). Like all acoustic systems, the ultrasound wireless positioning system suffers

2
 http://www.xitact.com

http://www.xitact.com/

10

from environmental effects; however, if operating room conditions are kept fairly

constant, this weakness will have little effect.

Figure 5: Ultrasonic tracking system: receivers situated above the surgical table and

transmitters on surgical instruments [7]

The final tracking system discussed will be the BlueDRAGON tracking system. Two

four-bar passive mechanisms attached to the laparoscopic tool, and position sensors

integrated into the mechanisms’ joint measure position and orientation (see Figure 6).

Additionally, force/torque and contact sensors are implemented into the system such that

grasping forces and tool/tissue contact forces can be measured. Real laparoscopic tools

are used, thus providing natural haptic feedback. This mechanical tracking system is

bulky, and while it can be used in the operating room, the BlueDRAGON can also be

used in a box trainer environment. In a box trainer environment, a realistic environment is

also presented where resident surgeons can further develop their techniques before

moving on to operate on real patients.

For now, it seems the majority of trackers occupy the realm of virtual reality. Through

research we found an additional 13 systems (to the three mentioned above), most of

which can be used in the virtual environment. Despite lack of “real” haptic feedback, VR

systems provide very accurate measurements, and can implement ways of tracking

grasping techniques (i.e. closing and opening of instrument handles). Methods such as

11

acoustic or inertial systems have no way of tracking this additional degree of freedom. So

far, not many laparoscopic tracking systems make use of inertial sensors. This is probably

due to accumulated errors and other inherent factors. However, in the next section we’ll

see how inertial measuring units can play key roles in navigational systems and why we

believe it is worth tracking with inertial sensors.

Figure 6: CAD drawing of the BlueDRAGON system [8]

2.2 Methods and Limitations of Inertial Measurement Systems

Inertial systems are a different type of mechanical tracking system (electromechanical),

which rely on the principle of conservation of angular momentum. Gyroscopes are used

to directly measure angular velocity, which can be integrated to achieve orientation

(angles). Coupled with accelerometers (a position tracking device), the system has the

ability to tack up to six degrees of freedom. The use of inertial sensors implemented in

our design is to accomplish exactly this. Motivation for using IMUs include: fast data

rates, low power consumption, light in weight, small packaging, no line-of-sight

problems, and their relatively cheap cost. As stated before, inertial sensors are prone to

errors resulting from drift and noise, and within seconds data can become useless.

Despite these shortcomings, inertial sensors play a key part in navigational systems on

many vehicles like aircrafts and submarines. In some cases, IMUs are implemented

within HMD (head-mounted displays) for use in simulators or helmet tracking. Inertial

12

sensors are able to track for long periods of time with great accuracies in these cases

because they are complemented with another form of tracking device.

In regards to aircraft navigation, inertial sensors are often tied with GPS or satellite

positioning systems. Short term data is supplied by the inertial system, while accumulated

errors are corrected by the satellite positioning system. An example of an HMD which

implements inertial sensors is the Ascension Hy-BIRD (Figure 7). This design fuses

optical and inertial technologies, providing (seamlessly) continuous tracking. The IMU in

this case provides data in between optical frames and/or when the optical scanner is

obstructed. In turn, the optical system must supply updated positions/orientation to the

IMU because of the constant drift that occurs.

Figure 7: Ascension Hy-BIRD from Inition
3

As discussed, an inertial system in the absence of another tracking system is subject to

many factors that jeopardize accuracy. It is usually required that some form of feedback

and update system is also incorporated into the overall tracking system. The purpose of

this project is to track purely on inertial sensors, in hopes to later incorporate the system

with another tracking method.

3
 http://www.inition.co.uk/

13

3 Statement of Problem and Methodology of Solution

3.1 Statement of Problem

In this project, we implement the IMU’s ability to (indirectly) acquire position and

orientation for use in a tracking system. The IMU, consisting of an accelerometer and

gyroscopes, has low power consumption, and is very compact. This is ideal for mounting

it, say to a laparoscopic tool (cf. Figure 1 on page 3) for tracking purposes. What remains

is to compute desirable values in order to recreate the user’s motions. This data can

subsequently be used for comparative analysis or for assessment purposes.

3.2 Linear Accelerometers and Gyroscopes

An accelerometer is a device that measures acceleration forces. These forces could be

static (gravity) or dynamic (movement and vibrations). Technically, there are two types

of accelerometers: linear and angular accelerometers
4
; generally, when we talk about

accelerometers, we refer to those that measure linear acceleration. Since the scope of this

project only surrounds linear accelerometers, this will be our focus.

Different types of accelerometers exist. One method to create accelerometers is through

the piezoelectric effect, whereby microscopic crystal structures produce a voltage upon

being stressed due to acceleration forces. An alternative way includes measuring changes

in electrical capacitance (see Figure 8 page 14). Acceleration deflects the moving mass

and unbalances the differential capacitor resulting in a sensor output whose amplitude is

proportional to acceleration.

In addition to the way they are created, accelerometers can differ by their output signal.

Digital and analog accelerometers exist, where the former provides a discrete binary code

proportional to its input (acceleration), and the latter provides a voltage that is

proportional to its input (acceleration).

4
 Angular accelerometers measure the rate of change of angular rotation/velocity. These types of

accelerometers are rarely used.

14

Figure 8: Differential capacitive accelerometer

Gyroscope sensors are also called angular rate sensors, as they measure the rate of

rotation (rotational speed). As the case with accelerometers, various types of gyroscopes

exist. Theoretical details will not be of concern here, but basically there are two main

types: The MEMS (micro electro-mechanical) rate sensors are designed to measure

angular rate via the Coriolis force, and FOG (fibre optic gyro) rate sensors operate using

a fibre optic ring and a solid-state laser to measure rotation rates using the Sagnac effect
5
.

The gyroscopes chosen for our system is of the “Coriolis principle” type.

Gyroscope sensors can also be analog or digital; and, depending on the type of

microcontroller you are interfacing with, you may or may not have a choice.

In addition, there are options for single, dual, or triple-axis sensors. You can always form

dual or triple-axis sensors by combining two or three single-axis sensors by positioning

them so their axis directions are mutually orthogonal.

3.3 Methodology of Solution

The selection of microcontroller and inertial measuring unit (IMU) will be discussed in

the next chapter (i.e. Experimental & Design Procedures). For now, assume we have an

IMU consisting of a three-axis accelerometer and three-axis gyroscope, and a

microcontroller to do the processing. Output data from the IMU are collected as

5
 http://www.xbow.com/support/Support_pdf_files/RateSensorAppNote.pdf

15

proportional acceleration values and proportional angular velocity values as described

previously. Figure 9 and Figure 10 below shows the gyroscope and accelerometer sensor

values after they’ve been digitized. As seen, every axis starts off with some sort of offset,

known as the “bias”. This bias value can cause incorrect readings if uncompensated for,

as we’ll see shortly.

In Figure 9, rotations about the Z, Y, and X axis can be seen by their variations along the

bias value. What’s seen here, is that by only rotating along the IMU’s (the gyroscope’s,

specifically) Z-axis, the X and Y output are unaffected. Similarly, rotation about X or Y

does not affect other axes. This shows that each axis is placed orthogonal to each other,

as desired. Also, because only rotation was applied, variations in accelerometer values

should be fairly constant, as reflected in Figure 10.

Figure 9: Raw gyroscope output

0 50 100 150 200 250 300 350
0

500
Gyroscope output X

0 50 100 150 200 250 300 350
0

500

1000
Gyroscope output Y

A
D

C
 V

a
lu

e
s

0 50 100 150 200 250 300 350
0

500

1000
Gyroscope output Z

Time

16

Figure 10: Raw accelerometer outputs

Now that we have proportional accelerations and angular velocities, integrating these

values will achieve position and angles. However, in order to obtain negative values, it is

clear we must subtract the correct bias values from each axis. The result of doing so with

the gyroscope outputs is seen in Figure 11.

Figure 11: Raw gyroscope output post subtraction

0 50 100 150 200 250 300 350
0

500

1000
Accelerometer output X

0 50 100 150 200 250 300 350
0

500

1000
Accelerometer output Y

A
D

C
 v

a
lu

e
s

0 50 100 150 200 250 300 350
0

500
Accelerometer output Z

Time

0 50 100 150 200 250 300 350
-500

0

500
Gyroscope output X

0 50 100 150 200 250 300 350
-500

0

500
Gyroscope output Y

A
D

C
 V

a
lu

e
s

0 50 100 150 200 250 300 350
-500

0

500
Gyroscope output Z

Time

17

Only after subtraction of this bias value, can we get negative and positive readings, which

we then perform integration on. It is clear that if incorrect subtraction occurs, the “area

under the curve” will be affected, producing undesirable values. Also, because integration

is discrete, choice of integration method will also affect overall results. The fact that we

employ discrete integration results in the accumulated errors discussed before.

One last issue will be brought up in this section. That is the notion of the IMU being in a

moving frame. Because the IMU itself is moving, position updates are given with respect

to this frame, but we need them defined in a universal or global frame of reference.

Calculating a new rotation matrix after every interval creates the transformation which

solves this issue. The rotation matrix can be thought of as an operator, where if multiplied

by a vector, will transform the vector to a desired reference frame.

18

4 Experimental & Design Procedures

4.1 Hardware

To fully describe the 3-D motion of laparoscopic instrument movement, we require six

measurements: 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧 and X, Y, Z. From this specification, it is required to obtain an

IMU able to measure six degrees of freedom (DOF). Before we attempt this step, it is

first important to select the microcontroller with which we are interfacing with. As

mentioned last section, should our choice of microcontroller not have on board ADC

modules to accept analog inputs, then digital sensors are required. The microcontroller

we went with was the ATmega328, mainly because the Arduino Duemilanove is based on

this chip. The Arduino Duemilanove is a microcontroller board which allows

programming of the Atmega328 microcontroller through a USB interface. Available from

this board are six analog input pins, 14 digital I/O pins, supply voltages 3.3V and 5V, and

of course GND (0V). A diagram of the Arduino Duemilanove is shown below (Figure

12).

Figure 12: Arduino Duemilanove (“2009”)
6

When selecting the IMU, it was imperative to get a three-axis accelerometer and three-

axis gyroscope as discussed earlier. An IMU produced by Sparkfun provided a very

compact three-axis analog accelerometer along with two analog gyroscopes. Together,

6
 http://www.arduino.cc/en/Main/ArduinoBoardDuemilanove

19

the single-axis gyroscope and dual-axis gyroscope allowed for measurements about all

three X, Y, Z axes. The unit can be seen in Figure 13, where the gyroscopes are the two

larger packages neighboring (dual-axis gyro providing pitch and roll on the left; single-

axis providing yaw on the right) the central three-axis accelerometer in the bottom view.

Figure 13: 6 DOF IMU from Sparkfun
7

Connections from IMU to the Arduino board are shown in Figure 14. Six analog pins are

used, one for each degree of freedom measured by the inertial unit. Voltage supplied to

the IMU is 3.3V. No amplification or filtering was necessary, as typical signal outputs

from the IMU are shown in Table 3 (with Vin=3.3V).

Table 2: IMU sensor measurement range

Sensors in IMU:

Measurement Range

(1X)

Measurement Range

(4X)

LPR530AL (pitch and roll gyro)

±1200⁰/s ±300⁰/s

 ADXL335 (triple-axis accelerometer) ±3g

LY530ALH (yaw gyro)

±1200⁰/s ±300⁰/s

Notes: - Gyroscope has an amplified (4X) and non-amplified (1x) output

 - Accelerometer only has one output with given measurement range

Table 2 above describes the measurement range for each sensor. These ranges are used to

calculate the maximum and minimum voltage ranges calculated in Table 3 (page 20).

7
 http://www.sparkfun.com/commerce/product_info.php?products_id=9431

20

Figure 14: Arduino Board and IMU connections

Table 3: Accelerometer and Gyroscope output voltages

 AccXout AccYout AccZout GyroXout GyroYout GyroZout

V 1.65V

±330mV/g

1.65V

±330mV/g

1.80V

±330mV/g

1.23V

±3.33mV/⁰/s

1.23V

±3.33mV/⁰/s

1.23V

±3.33mV/⁰/s

Vmax 2.65 V 2.65 V 3.78 V 2.229 V 2.229 V 229 V

Vmin 0.66 V 0.66 V 0.81 V 0.231 V 0.231 V 229 V

Note: While using IMU, the 4X amplified output was used

The voltages were all reasonable (i.e. not in the mV range) values, and we found no

reason to amplify signals. To see a potential amplification system to be used if necessary,

see Appendix A.

Table 4: IMU power consumption

 Vdd, Idd P

LPR530AL (pitch and roll gyro) 3.3 V 6.8 mA 22.44 mW

 ADXL335 (triple-axis accelerometer) 3.3 V 375 µA 1.24 mW

LY530ALH (yaw gyro)

3.3 V 5.5 mA 18.15 mW

Notes: Idd was calculated as a max (i.e. when Vdd = 3.6V)

 Max power = 41.83 mW consumed

From the Arduino Duemilanove to PC, the Serial Peripheral Interface (SPI) connection

shall be used.

21

3.2 Software

Now that the general methodology in finding position and orientation from accelerometer

and gyroscope data has been discussed, this section will provide flow charts and software

design that helped us complete this project.

Programming of the microcontroller (ATmega328) is done through Arduino software (an

open-source environment). Programs that use this software are written in the Arduino

language, which is based on C/C++; as such, it was fairly easy to get familiarized with

the language. A reason for choosing the Arduino Duemilanove was its user-friendly

interface, allowing programs to be easily verified and quickly uploaded to the

ATmega328 microcontroller.

When working with analog signals, the topic of sampling rate and ADC resolution tends

to surface. The ATmega328 has a 10-bit ADC, and the reference voltage can be adjusted

through software by sending a desired signal in pin AREF. By varying this voltage as

necessary, ADC performance increases, and the quantization error present in all analog to

digital converters is be decreased (but not eliminated). For our project, we provided the

AREF pin with 3.3 volts. This means each count (ADC value) had a voltage of:

𝐴𝐷𝐶𝑐𝑜𝑢𝑛𝑡 =
3.3 𝑉

210−1
≅ 3.23𝑚𝑉.

From online references, the sampling rate of reading in one analog input is ~100µs, good

enough for 10 KHz sample frequency. Though there are ways (e.g. including define

parameters) to further increase the rate, 10 KHz is sufficient for this project. The

determining factor occurs when data is written through the USB (serial) port to PC. In

order to stream data for analysis, at least three position variables must be written. After

the program was written (which can be seen in Appendix B), each iteration (reading and

writing six variables) ends up taking 0.04s. This is nowhere near 1ksamples/s like

intended; nonetheless it should still give passable results – that is, the general trajectory

of a user’s movement can be recreated. These results are shown in the next section.

22

Figure 15: Implemented algorithm solving for position and orientation given data

from accelerometer and gyroscope

23

Figure 15 above is a flow chart of the algorithm implemented in developing stages. Some

explanation to selected stages will be clarified.

To begin with, a calibration function was created which involves averaging samples to

calculate the bias value. The bias value is important (mentioned in section 3.3) in order to

achieve correct negative and positive values. The importance of an accurate bias value is

why averaging (here, 100) a sample was implemented. The calibration is only done once,

at the very start of the program.

The method of integration used was the trapezoidal method, implemented as follows:

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 = 𝑝𝑟𝑒𝑣. 𝑎𝑛𝑔𝑙𝑒 + (
 𝑝𝑟𝑒𝑣. 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙. +𝑐𝑢𝑟𝑟𝑒𝑛𝑡. 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙.

2
)𝑑𝑡

This is applied once to angular velocity, and twice to acceleration.

After calculating angles from the gyroscope output (via integration just mentioned), a

rotation matrix is formed by the following formula:

𝑅 = 𝑅𝑥 𝑎𝑛𝑔𝑙𝑒𝑋 𝑅𝑦 𝑎𝑛𝑔𝑙𝑒𝑌 𝑅𝑧(𝑎𝑛𝑔𝑙𝑒𝑍)

𝑅𝑥 𝛾 =
1 0 0
0 𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾
0 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾

 , 𝑅𝑦 𝛽 =
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽

0 1 0
−𝑠𝑖𝑛𝛼 0 𝑐𝑜𝑠𝛽

 ,

𝑅𝑧 𝛼 =
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 0
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0

0 0 1

Here, R (the multiplication of all matrices) is the general rotation matrix which will be

used to transform the acceleration.

To find acceleration in base frame, that is, to transform the acceleration:

𝑎𝑏𝑎𝑠𝑒
𝑘 = 𝑅𝑏𝑎𝑠𝑒

𝑡𝑘+1 𝑎𝑚
𝑘

Where 𝑅𝑏𝑎𝑠𝑒
𝑡𝑘+1 = 𝑅𝑜𝑅𝑡0

𝑡1 ⋯𝑅𝑡𝑘

𝑡𝑘+1
 (post multiplication)

The super/subscript “t” represents time, equivalent to one pass of the entire flow chart in

Figure 15 above. To clarify, the “start” is “Sample from ADC”, and the “end” is when

positions and orientations are calculated and outputted.

24

5 Results and Discussion

To show results, a program was created to write orientations (𝜃𝑦 , 𝜃𝑥 , 𝜃𝑧) and positions (X,

Y, and Z) from the microcontroller to the PC via USB (serial connection). Simple

motions were formed, all within 10-15 seconds to reduce effects of accumulated errors.

Even then, results were not accurate. The following diagrams were created from

MATLAB via a text file whose first three columns are gyroscope outputs 𝜃𝑦 , 𝜃𝑥 , 𝜃𝑧 and

last three columns positional outputs X, Y, Z. An example of the output file is shown in

Appendix B. Positions are plotted only, which have units of cm. Orientations are not

plotted, but have units of degrees.

The IMU was not mounted on any sort of instrument; rather, as shown in Figure 14 (page

20), motions were made by simply moving the breadboard which the IMU is attached to.

One issue that impeded free movement were the wires connecting the IMU to the

Arduino board. These wires sort of had a negative effect in whatever direction motion

was because they were quite stiff. It’s hard to say whether this had an overwhelming

effect with the resulting trajectories, but movement did feel restricted.

In my implementation of positions, I did not compensate for gravity (besides the initial

orientation). What this means, is that if the IMU is placed with an initial orientation, and

after the program starts, is left at that initial orientation, all positions/orientations will

read zero as expected. However, performing only rotation such that gravity (9.8m/s
2
)

now affects some other vector, the accelerometer will sense acceleration along that

vector, and the program will calculate that it’s moving, when it is actually not. So while

testing, it was important that the IMU be kept at one orientation the entire time (usually

flat on the surface as in Figure 14 (page 20)).

Following are a few tracking motions created by the method described above. Again,

simple movements were the key to ensure the system could even track to some degree.

25

Figure 16: Square motion

Figure 16 above shows the recreated path after the user (me) made a square/rectangular

movement in the X-Y plane with the inertial measuring unit. Note that there should be no

Z displacement as I did not lift the IMU (and although it may look like there is, there isn’t

any).

-10

-5

0

5

10

-5

0

5

10

-1

-0.5

0

0.5

1

Z
 a

x
is

Square motion

X axisY axis

26

Viewing the same data in the X-Y plane is seen in Figure 17 below. The tiny spike at

around X=-4, Y=1 (below graph) was evidently not intended, yet still shows in the graph.

The path begins at point (0, 0) and ends around (5, 6.9).

Figure 17: Square motion in X-Y plane

-6 -4 -2 0 2 4 6
-1

0

1

2

3

4

5

6

7

8
Square motion

X axis

Y
 a

x
is

27

Figure 18: Path of zigzag motion, followed by an up and downwards motion

The motion here starts at the zigzag area (0, 0, 0). The general movement was a left-right

repeating motion, then a translation in the positive Z direction. Finally, the IMU was put

back to the starting point. The tracking system seems to capture the motion with decency.

The graph actually plots the Y-direction range to be about 30cm. This was not the case in

the real motion formed, which was about 10cm max.

-4

-2

0

2

4

-20

0

20

40

-2

0

2

4

6

8

10

X axis

Zig-Zag and Up motion

Y axis

Z
 a

x
is

28

Figure 19: Circular movements

Figure 20: Same circular plotted only in X and Y coordinates

For this movement, two “circles” were created in a clockwise fashion. The first “circle”

was recreated as an oval shape, and the second circle is incomplete. Also, the recreated

path above shows the first circle smaller than expected. While moving the IMU, it was

intended that both circles had roughly the same size.

-6

-4

-2

0

2

-20

-10

0

10

-1

-0.5

0

0.5

1

Z
 a

x
is

Circle motions in X-Y plane

X axisY axis

-6 -5 -4 -3 -2 -1 0 1 2
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2
Circle motions in X-Y plane

X axis

Y
 a

x
is

29

Figure 21: Up down motion

The path recreated above seems fairly accurate. The desired path starting from the point

(0, 0, 0): straight up, then down and to the left; this was followed by an up-down motion.

Upon further inspection, the Y-direction range shown above is actually 100cm, while the

X-direction range is over 150cm. This was definitely not real path (at most, the Y-

direction was 5cm and X-direction 15cm), which leads to believe the orientation was

changing throughout the motion (as was the case). As described earlier, slight orientation

changes cause the IMU/program to think it is moving due to gravity when it is actually

not (it is simply just rotating). The general path outlined is fine, but the ranges are

completely off.

-200

-150

-100

-50

0

-150

-100

-50

0

50

0

2

4

6

8

10

X axis

Z translation movements

Y axis

Z
 a

x
is

30

Figure 22: Up right-left motion

The intended path in Figure 22 was: directly up (Z direction), then right-left (staying in

XY plane), and finally a negative-Z direction. It sort of looks like the path described, but

errors make it look more like a loop motion.

The current method used to calculate position can be thought of as an open-loop system.

Without feedback, errors cannot be compensated for (reduced) and these terms will

subsequently be accumulated. Although it is true the “general” motion has been captured,

these were for at most a 15 second span. If errors seem prevalent now, there’s no chance

such a tracking system will have any worth for operations that may take hours.

Fortunately, there are methods which can be implemented to inertial tracking systems to

greatly improved performance and handle slight errors. These methods will be briefly

suggested in the recommendations chapter.

0

1

2

3

0

5

10

15

20

-4

-2

0

2

4

6

X axis

up right-left motion

Y axis

Z
 a

x
is

31

6 Conclusions and Recommendations

It is clear that although tracking is roughly achieved, much improvement can (and

should) be made. Through this project, it is shown that simple “position from inertial”

algorithms can achieve some (though limited) success in tracking the broad movements.

Besides gravity compensation (mentioned in the previous chapter), improvements for

systems based on purely inertial sensors may include: integration methods with less error,

faster sampling rates, and implementing filtering methods.

For future considerations, accelerometer and gyroscope data can be incorporated together

to provide improved results. Using accelerometer’s response to Earth’s gravitational

field, we can determine tilt. Tilt is the angle displacement, which is identical to the angle

calculated by integrating gyroscope data. These two measurements can be compared to

offer more accurate angles. The angles, in turn, are used to calculate the rotation matrix

which transforms the positions (in the moving frame) into positions with respect to a

universal (or global) frame. Thus, implementing the above would yield a much better

tracking system overall. A similar technique known as Kalman filtering can reduce the

effect of accelerometer vibrational noise. In addition to these methods, integrating the

inertial sensor system with another form of tracking system (e.g. optical system) is the

ideal solution for tracking laparoscopic instruments (if using inertial sensors).

Although studying motion analysis for objective assessment purposes can ultimately lead

to some form of standard in which the student has to pass, it does not demonstrate the

actual surgical competence of the individual. There are other skills besides technical ones

such as anatomical or protocol knowledge that also needs assessment. Consequently,

tracking laparoscopic instruments should be purely used for objective assessment for

manual skills.

In conclusion, this project has demonstrated the inertial sensors ability to track

trajectories, which can ultimately be mounted on laparoscopic instruments to provide an

objective assessment. It is a cost-effective way for upgrading the resolution for current

tracking systems, where its small package will not impede surgical performance.

32

Appendix A: Amplification System

:

Figure 23: Amplification system (top right of Figure) used to increase ADC

performance

33

Figure 24: Amplify and offset system used with ADC module of reference voltage

±10V

- Output pins are 14, 8, and 7.

- Op-amps used were OP491, supplied by Dr. Patriciu.

34

Appendix B: Arduino Code

/*

 Inertial sensor tracking

 by Calvin Gan

 Language: Arduino

 Created: April 2, 2010

 */

/*** GLOBAL VARIABLES ***/

double st = 0; //start time

double dt = 0; //delta time; used to calculate integration intervals

//angular velocity samples from ADC (ints).

double sample_gyro_X;

double sample_gyro_Y;

double sample_gyro_Z;

//acceleration samples from ADC.

double sample_acc_X;

double sample_acc_Y;

double sample_acc_Z;

//counters for move_end_check() functions

int countx, county, countz;

int countgx, countgy, countgz;

//proportional values from accelerometer

double accX[2], accY[2], accZ[2]; //read from ADC (integers)

double velX[2], velY[2], velZ[2]; //first integration

double posX[2], posY[2], posZ[2]; //2nd integration

//proportional values from gyroscope, then converted to radians/s

double angVelX[2], angVelY[2], angVelZ[2];

double angleX[2],angleY[2],angleZ[2]; //first integration

//double sstateX, sstateY, sstateZ; //calibration values

double sstate_gyro_X, sstate_gyro_Y, sstate_gyro_Z;

double sstate_acc_X, sstate_acc_Y, sstate_acc_Z;

double R_base[3][3] = {{0}};

/*** FUNCTION PROTOTYPES ***/

void Calibrate(void);

void init_globalVar(void); //initializes global variables

void angularVelIntegrate(void);

void accelerationIntegrate(void);

void movementEndCheck();

//void movement_end_check_gyro();

void multiplyMatrices(double a[][3], double b[][3], double result[][3]);

void calculateRotation(double angleX, double angleY, double angleZ,double R_curr[][3]);

void matrixByVector(double a[], double result[]);

double convertToRadiansPerSec(double anglularVelADC);

double convertToMetersPerSecSq(double posADC);

35

double PosX=0,PosY=0,PosZ=0;

double AngleX=0,AngleY=0,AngleZ=0; //easier way to serial.print

/*** BEGIN SETUP AND LOOP ***/

void setup() {

 analogReference(EXTERNAL); //use external reference voltage for AD

 //Initialize the serial port

 Serial.begin(9600);

 //calibrate

 Calibrate();

 st= millis();

}

void loop() {

 dt = (millis()-st)/1000; //to calculate seconds

 st = millis(); //start time is the number of ms since the Arduino board began running the current program

 sample_gyro_X = convertToRadiansPerSec(analogRead(1));

 sample_gyro_Y = convertToRadiansPerSec(analogRead(0));

 sample_gyro_Z = convertToRadiansPerSec(analogRead(2));

 sample_acc_X = convertToMetersPerSecSq(analogRead(5));

 sample_acc_Y = convertToMetersPerSecSq(analogRead(4));

 sample_acc_Z = convertToMetersPerSecSq(analogRead(3));

 angularVelIntegrate();

 accelerationIntegrate();

 // Output values to serial port as an ASCII numeric string

 Serial.print(AngleX);

 Serial.print(",");

 Serial.print(AngleY);

 Serial.print(",");

 Serial.print(AngleZ);

 Serial.print(",");

 Serial.print(PosX);

 Serial.print(",");

 Serial.print(PosY);

 Serial.print(",");

 Serial.print(PosZ);

 // Serial.print(",");

 //Serial.print(dt);

 Serial.println();

 //Print a newline and carriage return in the end

 }

/*** CALIBRATE AND INIT GLOBALVAR ***/

void Calibrate(void) {

 init_globalVar();

 unsigned int count1;

 count1 = 0;

 do {

 double dt;

 // sample_gyro_X = analogRead(1);

 // sample_gyro_Y = analogRead(0); //x gyro corresponds to -y acc axis

36

 // sample_gyro_Z = analogRead(2); //y gyro corresponds to -x acc axis

 // sample_acc_X = analogRead(5);

 // sample_acc_Y = analogRead(4);

 // sample_acc_Z = analogRead(3);

 sstate_gyro_X = sstate_gyro_X + analogRead(1); //accumulate samples

 sstate_gyro_Y = sstate_gyro_Y + analogRead(0);

 sstate_gyro_Z = sstate_gyro_Z + analogRead(2);

 sstate_acc_X = sstate_acc_X + analogRead(5); //accumulate samples

 sstate_acc_Y = sstate_acc_Y + analogRead(4);

 sstate_acc_Z = sstate_acc_Z + analogRead(3);

 count1++;

 }

 while (count1 != 100); //100 samples

 //zero-state level accelerometer

 sstate_acc_X = sstate_acc_X / count1; //divide by 100

 sstate_acc_Y = sstate_acc_Y / count1;

 sstate_acc_Z = sstate_acc_Z / count1;

 //zero-state level gyroscope

 sstate_gyro_X = sstate_gyro_X / count1; //divide by 100

 sstate_gyro_Y = sstate_gyro_Y / count1;

 sstate_gyro_Z = sstate_gyro_Z / count1;

 // build the current rotation matrix

 calculateRotation(0.0, 0.0, 0.0, R_base);

}//calibrate

/*** INIT GLOBAL VARIABLES: ***

 * note: may be faster to initialize when first declared

 */

void init_globalVar() {

 sample_gyro_X = 0, sample_gyro_Y = 0, sample_gyro_Z = 0;

 sample_acc_X = 0, sample_acc_Y = 0, sample_acc_Z = 0;

 //counters for move_end_check() functions

 countx = 0, county = 0, countz = 0;

 countgx = 0, countgy = 0, countgz = 0;

 //accelerometer values

 accX[0] = 0, accY[0] = 0, accZ[0] = 0;

 velX[0] = 0, velY[0] = 0, velZ[0] = 0;

 posX[0] = 0, posY[0] = 0, posZ[0] = 0;

 accX[1] = 0, accY[1] = 0, accZ[1] = 0;

 velX[1] = 0, velY[1] = 0, velZ[1] = 0;

 posX[1] = 0, posY[1] = 0, posZ[1] = 0;

 //gyroscope values

 angVelX[0] = 0, angVelY[0] = 0, angVelZ[0] = 0;

 angVelX[1] = 0, angVelY[1] = 0, angVelZ[1] = 0;

 angleX[0]=0, angleY[0]=0, angleZ[0]=0;

 angleX[1]=0, angleY[1]=0, angleZ[1]=0;

 //calibration values

 sstate_gyro_X = 0, sstate_gyro_Y = 0, sstate_gyro_Z = 0;

 sstate_acc_X = 0, sstate_acc_Y = 0, sstate_acc_Z = 0;

 return;

37

}//init

void angularVelIntegrate() {

 double dw =0; //discrimination window

 double dThetaX = 0, dThetaY = 0, dThetaZ = 0;

 double R_curr[3][3] = {{0}};

 double R_baseTemp[3][3] = {{0}};

 //memcpy(R_baseTemp, R_base, 8 * 9);

 int a=0,b=0;

 for (a=0;a<3;a++){

 for (b=0;b<3;b++){

 R_baseTemp[a][b]=R_base[a][b];

 }

 }

 //analogRead for Gyroscope: 0 -> Y, 1 -> X, 2 -> Z

 angVelX[1] = -sample_gyro_Y + convertToRadiansPerSec(sstate_gyro_Y); //to acheive RH frame

 angVelY[1] = sample_gyro_X - convertToRadiansPerSec(sstate_gyro_X);

 angVelZ[1] = sample_gyro_Z - convertToRadiansPerSec(sstate_gyro_Z);

 //angular velocity now in SI units.

 //apply discrimination window

 dw = 0.3;

 if ((angVelX[1] <= dw) && (angVelX[1] >= -dw)) {

 angVelX[1] = 0;

 }

 if ((angVelY[1] <= dw) && (angVelY[1] >= -dw)) {

 angVelY[1] = 0;

 }

 if ((angVelZ[1] <= dw) && (angVelZ[1] >= -dw)) {

 angVelZ[1] = 0;

 }

 //integrate

 dThetaX = ((angVelX[1] + angVelX[0]) * 0.5) * dt;

 dThetaY = ((angVelY[1] + angVelY[0]) * 0.5) * dt;

 dThetaZ = ((angVelZ[1] + angVelZ[0]) * 0.5) * dt;

 angleX[1]=angleX[0]+dThetaX;

 angleY[1]=angleY[0]+dThetaY;

 angleZ[1]=angleZ[0]+dThetaZ;

 //current velocity sent to previous velocity

 angVelX[0] = angVelX[1]; //radians/s

 angVelY[0] = angVelY[1];

 angVelZ[0] = angVelZ[1];

 angleX[0] = angleX[1];

 angleY[0] = angleY[1];

 angleZ[0] = angleZ[1];

 calculateRotation(dThetaX, dThetaY, dThetaZ, R_curr);

 multiplyMatrices(R_baseTemp, R_curr, R_base);

38

 AngleX = degrees(angleX[1]);

 AngleY = degrees(angleY[1]);

 AngleZ = degrees(angleZ[1]);

}//angularVelIntegrate

void accelerationIntegrate() {

 double dw=0; //discrimination window

 double dwMax = 5; //max speed of 5 m/s^2

 double accVector[3]={0,0,0};

 double accAfterTransform[3] = {0,0,0};

 double dPosX=0, dPosY=0, dPosZ=0;

 double zeroLevelX = convertToMetersPerSecSq(sstate_acc_X);

 double zeroLevelY = convertToMetersPerSecSq(sstate_acc_Y);

 double zeroLevelZ = convertToMetersPerSecSq(sstate_acc_Z);

 //subtract calibration level (obtain positive/negative velocity)

 accX[1] = sample_acc_X - zeroLevelX;

 accY[1] = sample_acc_Y - zeroLevelY;

 accZ[1] = sample_acc_Z - zeroLevelZ;

 //discrimination window: used for no-movement condition

 //related to accelerometer noise

 dw = 0.3;

 if ((accX[1] <= dw) && (accX[1] >= -dw)) {

 accX[1] = 0;

 }

 if ((accY[1] <= dw) && (accY[1] >= -dw)) {

 accY[1] = 0;

 }

 if ((accZ[1] <= dw) && (accZ[1] >= -dw)) {

 accZ[1] = 0;

 }

 //if acceleration is very fast, its likely due to an unwanted gravity component, so ignore it

 if ((accX[1]>=dwMax)||(accX[1]<=-dwMax)) {

 accX[1]=0;

 }

 if ((accY[1]>=dwMax)||(accY[1]<=-dwMax)) {

 accY[1]=0;

 }

 if ((accZ[1]>=dwMax)||(accZ[1]<=-dwMax)) {

 accZ[1]=0;

 }

 //transform acceleration from moving frame to base frame

 //R_base*acc:: 3x3 matrix * vector

 accVector[0] = accX[1];

 accVector[1] = accY[1];

 accVector[2] = accZ[1];

 //transform acceleration to base frame by multiplying by R_base

 matrixByVector(accVector, accAfterTransform);

39

 //do subtraction

 accX[1] = accAfterTransform[0]; //-gVector[0];

 accY[1] = accAfterTransform[1]; //-gVector[1];

 accZ[1] = accAfterTransform[2]; //-gVector[2];

 /********** integrate ********/

 velX[1] = velX[0] + ((accX[1] + accX[0]) * 0.5) * dt; //velocity (m/s)

 velY[1] = velY[0] + ((accY[1] + accY[0]) * 0.5) * dt;

 velZ[1] = velZ[0] + ((accZ[1] + accZ[0]) * 0.5) * dt;

 dPosX = ((velX[1] + velX[0]) * 0.5) * dt;//deltaPosition in meters

 dPosY = ((velY[1] + velY[0]) * 0.5) * dt;

 dPosZ = ((velZ[1] + velZ[0]) * 0.5) * dt;

 posX[1] = posX[0] + dPosX; //meters

 posY[1] = posY[0] + dPosY;

 posZ[1] = posZ[0] + dPosZ;

 movementEndCheck();

 //current value must be sent to previous value

 accX[0] = accX[1];

 accY[0] = accY[1];

 accZ[0] = accZ[1];

 velX[0] = velX[1];

 velY[0] = velY[1];

 velZ[0] = velZ[1];

 //in meters

 posX[0] = posX[1];

 posY[0] = posY[1];

 posZ[0] = posZ[1];

 PosX = posY[1]*100;

 PosY = posX[1]*100;

 PosZ = posZ[1]*100;

}//accIntegrate

void movementEndCheck(){

 if (accX[1] == 0) {

 countx++;

 }//we count the number of velocity samples that equals zero

 else {

 countx = 0;

 }

 if (countx >= 4) { //if this number exceeds 25, we can assume that velocity is zero

 velX[1] = 0;

 velX[0] = 0;

 }

 if (accY[1] == 0) {

 county++;

40

 }//we count the number of velocity samples that equals zero

 else {

 county = 0;

 }

 if (county >= 4) {

 velY[1] = 0;

 velY[0] = 0;

 }

 if (accZ[1] == 0) {

 countz++;

 }//we count the number of velocity samples that equals zero

 else {

 countz = 0;

 }

 if (countz >= 4) {

 velZ[1] = 0;

 velZ[0] = 0;

 }

 return;

}//movementEndCheck

void multiplyMatrices(double a[][3], double b[][3], double result[][3]) {

 double sum;

 int i, j, k;

 for (i = 0; i < 3; i++)

 for (j = 0; j < 3; j++) {

 sum = 0;

 for (k = 0; k < 3; k++)

 sum += a[i][k] * b[k][j];

 result[i][j] = sum;

 }

}

void calculateRotation(double angleX, double angleY, double angleZ,double R_curr[][3]) {

 //Rx(angleX)

 // if (angleX!=0 && angleY!=0 && angleZ!=0){

 double Rx[3][3] = {{ 1, 0, 0} , {0, cos(angleX), -sin(angleX)}, {0,sin(angleX), cos(angleX)}};

 double Ry[3][3] = {{cos(angleY),0, sin(angleY)},{0, 1, 0},{-sin(angleY),0,cos(angleY)}};

 double Rz[3][3] = {{cos(angleZ), -sin(angleZ),0},{sin(angleZ),cos(angleZ),0},{0, 0, 1}};

 double Rxy[3][3] = {{0}};

 multiplyMatrices(Rx, Ry, Rxy);

 multiplyMatrices(Rxy, Rz, R_curr);

 //}

}

//multiply matrix (3x3) by a vector (3x1)

void matrixByVector(double a[], double result[]) {

 int i = 0, j = 0;

 for (i = 0; i < 3; i++) {

 for (j = 0; j < 3; j++) {

 result[i] = result[i] + R_base[i][j] * a[j];

 }

 }

}

41

double convertToRadiansPerSec(double anglularVelADC) {

 //angularVel is ADC reading (proportional value)

 //degrees = (angle * Vref / 1023 - VzeroRate) / Sensitivity

 //already subtract zero rate

 int vref = 3.3; //ADC module ref. voltage

 double sensGyro = 0.00333; //* 2.7; //gyro sensitivity in V/degree/s

 double degrees1 = ((anglularVelADC * vref / 1023) / sensGyro);

 return radians(degrees1);

}

double convertToMetersPerSecSq(double posADC) {

 int vref = 3.3; //20?

 double sensAcc = 0.33;// * 3.92; //in v/g

 double accInMeters = ((posADC * vref / 1023) / sensAcc); //will get acceleration in g's

 return accInMeters * 9.8;

}

42

Appendix C: Tables for Graphs

The graph created in Figure 16 and 17 in the results section were generated from the

following table:

Please note that while graphing the following values, the Ax and Az values were negated

(created negative). This was for visual purposes only; the initial orientation of the IMU

was such that an “up” (z-direction) movement would result in a negative z-direction, and

a “right” (x-direction) movement would result in a negative x-direction. Therefore, for

the graphs to mimic the intended motions (i.e. a “right” motion displaying as “right” on

the graph), the Ax and Ay values should be negative the values shown below.

Table 5: Table used to create Figure 16 and 17.

Gx Gy Gz Ax Ay Az

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 -0.01 0

0 0 0 -0.03 -0.02 0

0 0 0 -0.1 0.01 0

0 0 0 -0.21 0.07 0

0 0 0 -0.31 0.13 0

0 0 0 -0.42 0.19 0

0 0 0 -0.42 0.19 0

0 0 0 -0.42 0.19 0

0 0 0 -0.42 0.19 0

0 0 0 -0.42 0.19 0

0 0 0 -0.42 0.19 0

0 0 0 -0.42 0.22 0

0 0 0 -0.42 0.38 0

0 0 0 -0.4 0.73 0

0 0 0 -0.38 1.26 0

0 0 0 -0.37 1.9 0

0 0 0 -0.36 2.54 0

0 0 0 -0.32 3.1 0

0 0 0 -0.27 3.58 0

0 0 0 -0.24 3.99 0

0 0 0 -0.23 4.35 0

0 0 0 -0.26 4.68 0

43

0 0 0 -0.31 4.95 0

0 0 0 -0.35 5.12 0

0 0 0 -0.36 5.19 0

0 0 0 -0.37 5.22 0

0 0 0 -0.37 5.26 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.37 5.29 0

0 0 0 -0.34 5.29 0

0 0 0 -0.21 5.29 0

0 0 0 0.03 5.29 0

0 0 0 0.38 5.29 0

0 0 0 0.82 5.29 0

0 0 0 1.31 5.29 0

0 0 0 1.79 5.29 0

0 0 0 2.28 5.29 0

0 0 0 2.8 5.29 0

0 0 0 3.3 5.29 0

0 0 0 3.78 5.29 0

0 0 0 4.22 5.29 0

0 0 0 4.58 5.29 0

0 0 0 4.85 5.29 0

0 0 0 5.01 5.29 0

0 0 0 5.07 5.29 0

0 0 0 5.07 5.29 0

0 0 0 5.06 5.29 0

0 0 0 5.05 5.29 0

0 0 0 5.03 5.29 0

0 0 0 5.03 5.29 0

0 0 0 5.03 5.29 0

44

0 0 0 5.03 5.29 0

0 0 0 5.03 5.29 0

0 0 0 5.03 5.29 0

0 0 0 5.03 5.29 0

0 0 0 5.03 5.29 0

0 0 0 5.03 5.29 0

0 0 0 5.03 5.29 0

0 0 0 5.02 5.28 0

0 0 0 4.98 5.21 0

0 0 0 4.92 5.04 0

0 0 0 4.87 4.74 0

0 0 0 4.81 4.36 0

0 0 0 4.8 3.94 0

0 0 0 4.76 3.51 0

0 0 0 4.69 3.07 0

0 0 0 4.61 2.65 0

0 0 0 4.53 2.25 0

0 0 0 4.46 1.84 0

0 0 0 4.41 1.45 0

0 0 0 4.37 1.07 0

0 0 0 4.34 1.07 0

0 0 0 4.3 1.09 0

0 0 0 4.3 1.18 0

0 0 0 4.3 1.36 0

0 0 0 4.3 1.6 0

0 0 0 4.3 1.89 0

0 0 0 4.3 2.16 0

0 0 0 4.3 2.44 0

0 0 0 4.3 2.44 0

0 0 0 4.3 2.44 0

0 0 0 4.3 2.44 0

0 0 0 4.3 2.44 0

0 0 0 4.3 2.44 0

0 0 0 4.29 2.44 0

0 0 0 4.23 2.43 0

0 0 0 4.1 2.39 0

0 0 0 3.85 2.32 0

0 0 0 3.5 2.24 0

0 0 0 3.07 2.17 0

0 0 0 2.6 2.09 0

45

0 0 0 2.04 2.09 0

0 0 0 1.45 2.09 0

0 0 0 0.86 2.09 0

0 0 0 0.27 2.09 0

0 0 0 -0.31 2.09 0

0 0 0 -0.88 2.09 0

0 0 0 -1.42 2.09 0

0 0 0 -1.92 2.09 0

0 0 0 -2.3 2.09 0

0 0 0 -2.54 2.09 0

0 0 0 -2.68 2.09 0

0 0 0 -2.8 2.09 0

0 0 0 -2.91 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.03 2.09 0

0 0 0 -3.04 2.13 0

46

0 0 0 -3.09 2.26 0

0 0 0 -3.17 2.54 0

0 0 -0.32 -3.27 2.91 0

0 0 -0.65 -3.39 3.39 0

0 0 -1.04 -3.55 3.97 0

0 0 -1.8 -3.73 4.61 0

0 0 -2.52 -3.91 5.27 0

0 0 -3.21 -4.09 5.88 0

0 0 -3.89 -4.26 6.4 0

0 0 -4.23 -4.42 6.81 0

0 0 -4.23 -4.57 7.05 0

0 0 -4.23 -4.71 7.14 0

0 0 -4.23 -4.84 7.11 0

0 0 -4.23 -4.97 7.04 0

0 0 -4.55 -5.1 6.96 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

47

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

0 0 -4.86 -5.23 6.89 0

48

REFERENCES

[1] Rattner DW, Ferguson C, Warshaw AL. Factors associated with successful

laparoscopic cholecystectomy for acute cholecystitis. Ann Surg. 1993 Mar;217(3):233–

236

[2] Learn About Laparoscopy. Previous experience of open surgery does not affect the

outcome of developing laparoscopic skill. [Online] Available:

http://laparoscopytraining.com [Accessed: Oct 8, 2009]

[3] Ikuta, K., Kato, T., Ooe, H., & Shinohara, K. (2008). Surgery recorder system

acquiring position/force information of surgical forceps. Paper presented at the

Automation Congress, 2008. WAC 2008. World, 1-6.

[4] Chmarra, M.K., Gimbergen, C. A. and Dankelman, J.(2007). Systems for tracking

minimally invasive surgical instruments. Minimally Invasive Therapy and Allied

Technologies, 2007, 16:6,320 – 340

[5] E. Foxlin, M. Harrington, and Y. Altshuler. Miniature 6- DOF Inertial System for

Tracking HMDs. In Proc. SPIE Helmet and Head-Mounted Displays III, vol. 3362,

Orlando, April, 1998.

[6] Gregory Baratoff and Scott Blanksteen, “Tracking Devices” [Online] Available:

http://www.hitl.washington.edu/scivw/EVE/I.D.1.b.TrackingDevices.html [Accessed:

April 7, 2010]

[7] Tatar, F.; Mollinger, J.; Bossche, A.; , "Ultrasound system for measuring position and

orientation of laparoscopic surgery tools," Sensors, 2003. Proceedings of IEEE , vol.2,

no., pp. 987- 990 Vol.2, 22-24 Oct. 2003

49

[8] Rosen, J.; Brown, J.D.; Chang, L.; Barreca, M.; Sinanan, M.; Hannaford, B.; , "The

BlueDRAGON - a system for measuring the kinematics and dynamics of minimally

invasive surgical tools in-vivo," Robotics and Automation, 2002. Proceedings. ICRA '02.

IEEE International Conference on , vol.2, no., pp. 1876- 1881 vol.2, 2002

[9] Ji-Hwan Kim, Nguyen Duc Thang, Hyun Sang Suh, Rasheed, T. and Tae-Seong Kim.

Forearm Motion Tracking with Estimating Joint Angles from Inertial Sensor Signals

2009

[10] Kim, A., Golnaraghi, M. F. Initial calibration of an inertial measurement unit using

an optical position tracking system 2004

[11] Lamata, P., Gomez, E. J., Hernandez, F. L., Pastor, A. O., Sanchez-Margallo, F. M.

and del Pozo Guerrero, F. Understanding Perceptual Boundaries in Laparoscopic Surgery

2008

[12] Speidel, S., Delles, M., Gutt, C. and Dillmann, R. Tracking of instruments in

minimally invasive surgery for surgical skill analysis 2006

50

Vitae

 Name: Calvin Gan

 Date of Birth: January 2, 1987

 Secondary Education: Clarkson Secondary School (2005)

 Post Secondary Education: Electrical & Biomedical Engineering, McMaster

University (2010)

