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ABSTRACT 

Laparoscopic surgery has brought about radical change in how surgery is performed 

today. The advantages of using tiny incisions to perform surgery are marred by very 

difficult and delicate techniques which must be applied by the surgeon. The need to track 

laparoscopic instruments results from the significant learning curve required to perform 

safe laparoscopic techniques, and the need to provide an objective assessment of the 

surgeon’s skills. The idea is that through recording the instrument’s trajectory, the 

surgeon can compare his or her movements with that of an expert. This provides an 

objective evaluation, in which the student can reassess and correct their movement as 

necessary. By attaching an inertial measuring unit (IMU) to the laparoscopic tool, relative 

positions and orientations can be calculated, and its path in 3-D can be approximated over 

time. The IMU data can be streamed to a PC where positions are written to an output file. 

Using graphing software (MATLAB used in this case) positions are plotted and the 

created trajectory is subsequently analysed for an objective assessment for comparison 

evaluations. The following report describes the process of acquiring the tool’s trajectory 

by using inertial sensors, namely accelerometers and gyroscopes. Explanation of 

hardware and software design used to obtain position, orientation, and ultimately 

trajectory, along with experimental results are presented. 

 

 

Keywords: laparoscopic surgery, minimally invasive surgery, inertial measuring unit 

(IMU), accelerometer, gyroscope, trajectory 
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NOMENCALTURE 

Accelerometer: Sensor that outputs a signal (analog or digital) proportional to object’s 

acceleration. 

ADC: Analog to Digital Converter. 

Angular Velocity: The rate of change of angular displacement with respect to time. 

Drift: The ever-increasing difference between calculated locations from an inertial sensor 

to the actual location. 

Gyroscope: Sensor that outputs signals (analog or digital) proportional to object’s 

angular velocity. 

IMU: Inertial Measuring Unit; device that measures an object’s velocity (and position), 

and orientation, generally consisting of accelerometers and gyroscopes. 

Inertial Sensors: Sensors that measure a change in motion such as acceleration or 

(angular) velocity. 

Laparoscope: Key instrument used in laparoscopic surgery; camera is embedded at the 

tip where images are displayed on a monitor in the operating room. 

PC: Personal Computer 

Rotation: Angular motion about some axis. 

Trajectory: Geometric path with time information. 

Translation: Ability to move (change position) without rotating. 
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1 Introduction 

 

1.1 Background 

Laparoscopic surgery is a type of endoscopy, whereby the surgeon uses a specialized 

endoscope (called a laparoscope) and special laparoscopic tools to perform surgery 

through tiny (5-10mm diameter) incisions. This type of surgery is generally performed 

within the abdominal or pelvic cavity; inflexible instruments are most effective in this 

area and can reach organs of interest (e.g. gallbladder) fairly easily. Laparoscopic surgery 

(also known as minimally invasive surgery) provides a safe and successful surgical 

technique comparable to that of traditional surgical procedures. In some cases, for 

example in treatment of chronic cholecystitis, laparoscopic surgery is the preferred 

method [1], [3] due the advantages of using few small incisions. Many outcomes such as 

quick recovery, less scarring, and fewer post-operative complications result from 

laparoscopic techniques. In addition, this method can be applied for diagnoses as well as 

treatment, and as such, laparoscopic surgery is growing in frequency and importance. 

Laparoscopic surgery requires skills very different from those used in open surgery [2]. It 

requires precise hand-eye coordination, and because operations are done through a pivot 

point, motion is inverted (this is known as the “fulcrum effect”). Further, the operative 

field is displayed on 2D monitors via a laparoscope, which contribute to both reduced 

workspace and loss of depth perception. These complications are what make minimally 

invasive surgery such a difficult technique to master. 

 

Owing to an increase in procedures, the degree of difficulty involved, and overall lack of 

experience, laparoscopic surgical accidents or malpractices have been increasing in 

number [3]. Shortage of experience or skills for laparoscopic surgery could stem from the 

fact that current methods of training do not include proper assessment of the surgeons’ 

ability. Typically, resident surgeons begin their surgical education by observing their 

experienced counterparts in the operating room. They then contribute to the operation by 

performing basic techniques and/or diagnostic laparoscopy, where chances of causing 

damage to the patient are significantly reduced. Upon being certified as primary 
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surgeons, they can then perform a wide range of advanced laparoscopy. Throughout this 

process however, the skill of the surgeon is not precisely known. Evaluation (by an 

experienced surgeon for example) will contain subjective factors, and may be why 

current methods of training are potentially unsafe for the patient [4]. To improve on 

existing training procedures, it is necessary to develop some sort of objective, 

quantifiable assessment of manual skills in basic laparoscopic surgery.  

 

For this design project, motion analysis is used to provide the objective assessment 

discussed. This requires tracking and recording motions of laparoscopic tools, where the 

data can be further analyzed. These recorded trajectories can be used in a variety of ways. 

For example, by comparing the motion acquired from an expert to that acquired from a 

novice (in a controlled trial), obvious differences should be seen; the novice can then 

make appropriate changes to his or her technique, resulting in a closer match between the 

two trajectories (and more skillful technique). The focus of this report will include the 

design of the tracking system itself. 

 

1.2 Objectives 

The objective of this project is to design an inertial tracking system aimed for 

laparoscopic instruments. While the surgeon moves the tool, the system will track and 

record 3-D positions in time, providing a means for objective assessment. The system 

should be lightweight and compact enough to be mounted on the surgical tool so it does 

not impede the normal operation of the surgeon. Such a system can be visualized in 

Figure 1, where the sensors are placed close to where the surgeon’s hand would be. To 

provide some visual feedback and to get an idea of the performance of our tracking 

system, positions in all three-dimensions (one for each orthogonal axis) will be saved and 

plotted. As will be shown in experimental results, decent results are obtained for simple 

movements.  

 

Accuracy when obtaining position and orientation through accelerometer and gyroscope 

sensors is, by nature, erroneous with time. This fact will be brought up later in the report, 
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and we shall see why inertial data is often complemented with other methods of tracking. 

The tracking system implemented (which is based only on inertial sensors) will be 

sufficient to show the general path of the user’s motion, but cannot be 100% accurate. 

For this reason, a measure of accuracy (within 2mm for example) was not within our 

objectives. Rather, a measure of resolution was defined to be at 1ksamples/second. By 

increasing data points, a smoother trajectory (higher resolution) can be created which 

results in the original signal (motion) being reproduced as closely as possible. A drop in 

sampling rate on the other hand, may result in aliasing and the trajectory may look 

nothing like the surgeon’s movement at all.  

 

 

Figure 1: Laparoscopic instrument with mounted sensor
1
 

 

 

1.3 General Approach to the Problem 

The block diagram of the proposed tracking system is outlined in Figure 1.2. This 

approach consists of four components: the inertial measuring unit (IMU), 

microcontroller, USB controller, and PC. 

                                                 
1
 Image taken from [3] 
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IMU
Microcontroller

/ ADC
USB controller PC

Attached to laparoscopic instrument

Figure 2: Block diagram of tracking system 

 

The IMU consists of a set of analog sensors: a triple-axis accelerometer, a dual-axis 

gyroscope, and a single-axis gyroscope. Together, the three sensors allow us to measure 

six degrees of freedom (DOF). Analog outputs (six of them) from the inertial measuring 

unit (IMU) are fed into a microcontroller where the data is converted to a digital signal 

via the on board ADC.  Depending on the signals produced by the sensors, or the voltage 

reference of the ADC, an amplification stage may be required to improve ADC 

performance and resolution. In developing stages, an amplification stage was used to 

slightly increase ADC performance; however this amplification system won’t be used in 

the final product. See Appendix A for design details. Once digitized, the data is processed 

to calculate position and orientation, which is also done at the microcontroller stage.  

 

Very briefly, the process of estimating positions and orientations are as follows: Through 

integration (over time) of angular velocity provided by the gyroscopes, we are able to 

obtain the relative angles 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧  about each axis X, Y and Z respectively. Through 

double integration of acceleration provided by the accelerometer, we obtain the relative 

distance moved by each axis (X, Y and Z), and hence acquire position. It is important to 

realize the IMU, being mounted on the laparoscopic tool, will provide data in a moving 

frame, but what we really need are positions in a base, or global frame of reference. 

Through linear algebra (robotics), transformation via rotation matrices will resolve this 

issue. This can be visualized in Figure 1.3. More detail is provided in later sections. 

 

Lastly (going back to Figure 1.2), because the IMU is intended to be mounted on the 

laparoscopic instrument, data must be streamed over to the PC in order to be recorded, 
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saved, and analyzed. This is done through a USB controller, detached from the 

laparoscopic tool. 

 

 

Figure 3: Rotation applied to moving frame in order to achieve coordinates with 

respect to a base frame 

 

1.4 Scope of the Project 

The scope of this project is to implement a motion tracking system using an IMU 

consisting of accelerometer and gyroscope sensors. The resulting data is then sent to a PC 

via USB controller for analysis. This report encompasses the design of IMU and 

processing the raw data (i.e. the first two blocks shown in Figure 1.2); it will not discuss 

implementing the USB controller or the comparative analysis done at the computer 

stages. As stated previously, the application of a tracking system can be used to provide 

objective assessment during laparoscopic training, as well as reduce the steep learning 

curve associated with this type of surgery.  

 

The extent of this project is mainly limited by the accuracy of trajectory produced. As 

brought up earlier, strictly using inertial sensors cannot guarantee a quantity of accuracy 

or error at any point in time. In order to approximate position (X, Y, and Z coordinates) 

and orientation (𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧  - or roll, pitch, yaw), discrete integration needs to be applied. 

For each integration interval, error terms (or constants) are introduced and accumulated, 
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thereby decreasing accuracy as the integration interval (time) increases. This effect is 

even more prevalent when calculating positions from acceleration. Within seconds the 

data may be full of errors, rendering it unusable. It is for this reason that this project is 

intended to obtain the general trajectory within a certain period of time (seconds rather 

than minutes/hours). 

 

Increasing accuracy chiefly depends on the integration method, sampling rate, and ADC 

resolution. Also, to account for the inherent errors present in inertial sensors, methods to 

drastically reduce inaccuracies will be discussed (such as combining with additional 

tracking systems).  
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2 Literature Review 

 

2.1 Current Systems for Tracking Laparoscopic Instruments 

Many laparoscopic tracking systems have been designed for reasons explained earlier; 

that is, by analyzing motions of the instrument, laparoscopic skills can be assessed. There 

are several devices commercially available or are under development that aims to track 

movements of laparoscopic instruments. These systems employ a variety of tracking 

methods which include optical, mechanical, acoustic, or electromagnetic technology.  

Before discussing about current tracking systems, said methods will be summarized and 

compared.  

 

2.1.1 Methods 

Optical tracking uses cameras or position-sensitive optical devices to track IRED 

(infrared emitting diode) signals. This type of position tracker works by placing cameras 

at fixed points which detect a set of IREDs mounted on the object. Mechanical tracking 

systems rely on a direct mechanical connection between a reference point and the object. 

The connection is usually the form of an arm, and the system detects movements through 

the arm. Acoustic devices emit and sense ultrasonic sound waves to determine the 

position and orientation of the object. The sensors may be stationary, while the ultrasonic 

emitters are mounted on the object. The system measures the length of time it takes for 

the sound to travel from the object to the sensors, thereby calculating its distance. Lastly, 

electromagnetic tracking systems function by measuring the magnetic field strength 

generated by three mutually orthogonal coiled wires. When current is applied through the 

wires (which are attached to object), magnetic fields are generated and can be measured 

by a sensor at some fixed location. Position and orientation of the object can therefore be 

determined. 

 

 

Table 2.1 below compares the advantages and disadvantages of each method described. 
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Table 1: Comparing common tracking system methods 

Technology Advantages Disadvantages 

Optical Reasonable range, 

accuracy, and resolution 

Suffers from line-of-sight problems 

(i.e. camera needs to be able to “see” 

IREDs at all times) 

Mechanical Very good accuracy, 

resolution; interference 

immunity 

Extremely limited range; constrained 

motion due to physical connection 

Acoustic Large range at low cost Slow update rates (speed of sound 

relatively slow); speed of sound affected 

by environment (i.e. temperature, 

humidity, etc.) 

Electromagnetic Low latency; no line of 

sight problems 

Affected by distortions in magnetic field 

caused by metal objects; rapid decrease 

in accuracy/resolution with distance 

 

2.1.2 Tracking Systems 

A number of important aspects are considered when designing laparoscopic tracking 

systems. Some issues are portability, available haptic feedback, and accuracy. In addition, 

there are as many as three environments in which tracking may occur:  in a virtual reality 

trainer, a box trainer, or in the operating room. The following paragraphs will briefly 

discuss some tracking systems, while covering each environment mentioned. The 

technology employed in each system and advantages and disadvantages will also be 

highlighted.  

 

The Xitact IHP – Instrument Haptic Port is a portable virtual reality (VR) system 

designed to track the motion of a surgical instrument. Produced by Xitact S.A (Xitact 

S.A. Morges, Switzerland, http://www.xitact.com), this tracking system provides force 

feedback and allows the use of real surgical instruments with handles and graspers (see 

Figure 4 below). To measure position and orientation, optical encoders are placed on both 

the Lin/Rot (linear and rotational drive), which is attached to the instrument, and the 

http://www.xitact.com/
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pantoscope, which is attached to the base of the system. Connection to PC via USB 

permits simulation through software. Although VR systems provide a means of 

accurately tracking instruments, current issues include the realistic (or unrealistic) 

behavior of haptic feedback offered. Studies suggest that force feedback provided in VR 

trainers is far from that by real laparoscopic instruments experienced in an operating 

room or a box trainer [4]. 

 

 

Figure 4: Xitact IHP Tracking and Haptic System
2
 

 

An ultrasound wireless positioning system developed at Delft University of Technology 

in The Netherlands, gives the exact 3-D location and orientation of the instruments in the 

patient by using acoustic tracking. Mounting ultrasound transmitters onto the instrument 

and placing ultrasound receivers above the patient (as seen in Figure 5) create an 

interference-free environment. That is, the surgeon is not hindered by any wires or 

mechanical devices, and the line-of-sight from marker to transmitters is not obstructed.  

The design of this system allows it to be used in the operating room, which encompasses 

patient safety (i.e. no nearby electrical wires) and ergonomics (how surgery will be 

actually performed). Additional advantages of operating room tracking systems include 

the use of real laparoscopic tools and the sense of true force feedback (not a virtual 

feedback). Like all acoustic systems, the ultrasound wireless positioning system suffers 

                                                 
2
 http://www.xitact.com 

http://www.xitact.com/
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from environmental effects; however, if operating room conditions are kept fairly 

constant, this weakness will have little effect.  

 

Figure 5: Ultrasonic tracking system: receivers situated above the surgical table and 

transmitters on surgical instruments [7] 

 

The final tracking system discussed will be the BlueDRAGON tracking system. Two 

four-bar passive mechanisms attached to the laparoscopic tool, and position sensors 

integrated into the mechanisms’ joint measure position and orientation (see Figure 6). 

Additionally, force/torque and contact sensors are implemented into the system such that 

grasping forces and tool/tissue contact forces can be measured. Real laparoscopic tools 

are used, thus providing natural haptic feedback. This mechanical tracking system is 

bulky, and while it can be used in the operating room, the BlueDRAGON can also be 

used in a box trainer environment. In a box trainer environment, a realistic environment is 

also presented where resident surgeons can further develop their techniques before 

moving on to operate on real patients. 

 

For now, it seems the majority of trackers occupy the realm of virtual reality. Through 

research we found an additional 13 systems (to the three mentioned above), most of 

which can be used in the virtual environment. Despite lack of “real” haptic feedback, VR 

systems provide very accurate measurements, and can implement ways of tracking 

grasping techniques (i.e. closing and opening of instrument handles). Methods such as 
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acoustic or inertial systems have no way of tracking this additional degree of freedom. So 

far, not many laparoscopic tracking systems make use of inertial sensors. This is probably 

due to accumulated errors and other inherent factors. However, in the next section we’ll 

see how inertial measuring units can play key roles in navigational systems and why we 

believe it is worth tracking with inertial sensors. 

 

 

Figure 6: CAD drawing of the BlueDRAGON system [8] 

 

2.2 Methods and Limitations of Inertial Measurement Systems 

Inertial systems are a different type of mechanical tracking system (electromechanical), 

which rely on the principle of conservation of angular momentum. Gyroscopes are used 

to directly measure angular velocity, which can be integrated to achieve orientation 

(angles). Coupled with accelerometers (a position tracking device), the system has the 

ability to tack up to six degrees of freedom. The use of inertial sensors implemented in 

our design is to accomplish exactly this. Motivation for using IMUs include: fast data 

rates, low power consumption, light in weight, small packaging, no line-of-sight 

problems, and their relatively cheap cost. As stated before, inertial sensors are prone to 

errors resulting from drift and noise, and within seconds data can become useless. 

Despite these shortcomings, inertial sensors play a key part in navigational systems on 

many vehicles like aircrafts and submarines. In some cases, IMUs are implemented 

within HMD (head-mounted displays) for use in simulators or helmet tracking. Inertial 
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sensors are able to track for long periods of time with great accuracies in these cases 

because they are complemented with another form of tracking device.  

 

In regards to aircraft navigation, inertial sensors are often tied with GPS or satellite 

positioning systems. Short term data is supplied by the inertial system, while accumulated 

errors are corrected by the satellite positioning system. An example of an HMD which 

implements inertial sensors is the Ascension Hy-BIRD (Figure 7). This design fuses 

optical and inertial technologies, providing (seamlessly) continuous tracking. The IMU in 

this case provides data in between optical frames and/or when the optical scanner is 

obstructed. In turn, the optical system must supply updated positions/orientation to the 

IMU because of the constant drift that occurs.  

 

 

Figure 7: Ascension Hy-BIRD from Inition
3
 

 

As discussed, an inertial system in the absence of another tracking system is subject to 

many factors that jeopardize accuracy. It is usually required that some form of feedback 

and update system is also incorporated into the overall tracking system. The purpose of 

this project is to track purely on inertial sensors, in hopes to later incorporate the system 

with another tracking method. 

                                                 
3
 http://www.inition.co.uk/ 
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3 Statement of Problem and Methodology of Solution 

 

3.1 Statement of Problem 

In this project, we implement the IMU’s ability to (indirectly) acquire position and 

orientation for use in a tracking system. The IMU, consisting of an accelerometer and 

gyroscopes, has low power consumption, and is very compact. This is ideal for mounting 

it, say to a laparoscopic tool (cf. Figure 1 on page 3) for tracking purposes. What remains 

is to compute desirable values in order to recreate the user’s motions. This data can 

subsequently be used for comparative analysis or for assessment purposes.  

 

3.2 Linear Accelerometers and Gyroscopes 

An accelerometer is a device that measures acceleration forces. These forces could be 

static (gravity) or dynamic (movement and vibrations). Technically, there are two types 

of accelerometers: linear and angular accelerometers
4
; generally, when we talk about 

accelerometers, we refer to those that measure linear acceleration. Since the scope of this 

project only surrounds linear accelerometers, this will be our focus.  

 

Different types of accelerometers exist. One method to create accelerometers is through 

the piezoelectric effect, whereby microscopic crystal structures produce a voltage upon 

being stressed due to acceleration forces. An alternative way includes measuring changes 

in electrical capacitance (see Figure 8 page 14). Acceleration deflects the moving mass 

and unbalances the differential capacitor resulting in a sensor output whose amplitude is 

proportional to acceleration.  

 

In addition to the way they are created, accelerometers can differ by their output signal. 

Digital and analog accelerometers exist, where the former provides a discrete binary code 

proportional to its input (acceleration), and the latter provides a voltage that is 

proportional to its input (acceleration).  

                                                 
4
 Angular accelerometers measure the rate of change of angular rotation/velocity. These types of 

accelerometers are rarely used. 
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Figure 8: Differential capacitive accelerometer 

 

Gyroscope sensors are also called angular rate sensors, as they measure the rate of 

rotation (rotational speed). As the case with accelerometers, various types of gyroscopes 

exist. Theoretical details will not be of concern here, but basically there are two main 

types: The MEMS (micro electro-mechanical) rate sensors are designed to measure 

angular rate via the Coriolis force, and FOG (fibre optic gyro) rate sensors operate using 

a fibre optic ring and a solid-state laser to measure rotation rates using the Sagnac effect
5
. 

The gyroscopes chosen for our system is of the “Coriolis principle” type.  

 

Gyroscope sensors can also be analog or digital; and, depending on the type of 

microcontroller you are interfacing with, you may or may not have a choice. 

 

In addition, there are options for single, dual, or triple-axis sensors. You can always form 

dual or triple-axis sensors by combining two or three single-axis sensors by positioning 

them so their axis directions are mutually orthogonal.  

 

3.3 Methodology of Solution 

The selection of microcontroller and inertial measuring unit (IMU) will be discussed in 

the next chapter (i.e. Experimental & Design Procedures). For now, assume we have an 

IMU consisting of a three-axis accelerometer and three-axis gyroscope, and a 

microcontroller to do the processing. Output data from the IMU are collected as 

                                                 
5
  http://www.xbow.com/support/Support_pdf_files/RateSensorAppNote.pdf 
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proportional acceleration values and proportional angular velocity values as described 

previously. Figure 9 and Figure 10 below shows the gyroscope and accelerometer sensor 

values after they’ve been digitized. As seen, every axis starts off with some sort of offset, 

known as the “bias”. This bias value can cause incorrect readings if uncompensated for, 

as we’ll see shortly. 

 

In Figure 9, rotations about the Z, Y, and X axis can be seen by their variations along the 

bias value. What’s seen here, is that by only rotating along the IMU’s (the gyroscope’s, 

specifically) Z-axis, the X and Y output are unaffected. Similarly, rotation about X or Y 

does not affect other axes. This shows that each axis is placed orthogonal to each other, 

as desired. Also, because only rotation was applied, variations in accelerometer values 

should be fairly constant, as reflected in Figure 10. 

 

 

Figure 9: Raw gyroscope output 
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Figure 10: Raw accelerometer outputs 

 

Now that we have proportional accelerations and angular velocities, integrating these 

values will achieve position and angles. However, in order to obtain negative values, it is 

clear we must subtract the correct bias values from each axis. The result of doing so with 

the gyroscope outputs is seen in Figure 11. 

 

Figure 11: Raw gyroscope output post subtraction 
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Only after subtraction of this bias value, can we get negative and positive readings, which 

we then perform integration on. It is clear that if incorrect subtraction occurs, the “area 

under the curve” will be affected, producing undesirable values. Also, because integration 

is discrete, choice of integration method will also affect overall results. The fact that we 

employ discrete integration results in the accumulated errors discussed before. 

 

One last issue will be brought up in this section. That is the notion of the IMU being in a 

moving frame. Because the IMU itself is moving, position updates are given with respect 

to this frame, but we need them defined in a universal or global frame of reference. 

Calculating a new rotation matrix after every interval creates the transformation which 

solves this issue. The rotation matrix can be thought of as an operator, where if multiplied 

by a vector, will transform the vector to a desired reference frame. 
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4 Experimental & Design Procedures 

4.1 Hardware 

To fully describe the 3-D motion of laparoscopic instrument movement, we require six 

measurements: 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧  and X, Y, Z. From this specification, it is required to obtain an 

IMU able to measure six degrees of freedom (DOF). Before we attempt this step, it is 

first important to select the microcontroller with which we are interfacing with. As 

mentioned last section, should our choice of microcontroller not have on board ADC 

modules to accept analog inputs, then digital sensors are required. The microcontroller 

we went with was the ATmega328, mainly because the Arduino Duemilanove is based on 

this chip. The Arduino Duemilanove is a microcontroller board which allows 

programming of the Atmega328 microcontroller through a USB interface. Available from 

this board are six analog input pins, 14 digital I/O pins, supply voltages 3.3V and 5V, and 

of course GND (0V). A diagram of the Arduino Duemilanove is shown below (Figure 

12). 

 

Figure 12: Arduino Duemilanove (“2009”)
6
 

 

When selecting the IMU, it was imperative to get a three-axis accelerometer and three-

axis gyroscope as discussed earlier. An IMU produced by Sparkfun provided a very 

compact three-axis analog accelerometer along with two analog gyroscopes. Together, 

                                                 
6
 http://www.arduino.cc/en/Main/ArduinoBoardDuemilanove 
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the single-axis gyroscope and dual-axis gyroscope allowed for measurements about all 

three X, Y, Z axes. The unit can be seen in Figure 13, where the gyroscopes are the two 

larger packages neighboring (dual-axis gyro providing pitch and roll on the left; single-

axis providing yaw on the right) the central three-axis accelerometer in the bottom view. 

 

 

Figure 13: 6 DOF IMU from Sparkfun
7
 

 

Connections from IMU to the Arduino board are shown in Figure 14. Six analog pins are 

used, one for each degree of freedom measured by the inertial unit. Voltage supplied to 

the IMU is 3.3V. No amplification or filtering was necessary, as typical signal outputs 

from the IMU are shown in Table 3 (with Vin=3.3V). 

 

Table 2: IMU sensor measurement range 

Sensors in IMU: 

 

Measurement Range 

(1X) 

Measurement Range 

(4X) 

LPR530AL (pitch and roll gyro) 

 

±1200⁰/s ±300⁰/s 

 ADXL335 (triple-axis accelerometer) ±3g 

LY530ALH (yaw gyro) 

 

±1200⁰/s ±300⁰/s 

Notes:  - Gyroscope has an amplified (4X) and non-amplified (1x) output 

 - Accelerometer only has one output with given measurement range 

 

Table 2 above describes the measurement range for each sensor. These ranges are used to 

calculate the maximum and minimum voltage ranges calculated in Table 3 (page 20). 

 

                                                 
7
 http://www.sparkfun.com/commerce/product_info.php?products_id=9431 
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Figure 14: Arduino Board and IMU connections 

 

Table 3: Accelerometer and Gyroscope output voltages 

 AccXout AccYout AccZout GyroXout GyroYout GyroZout 

V 1.65V 

±330mV/g 

1.65V 

±330mV/g 

1.80V 

±330mV/g 

1.23V 

±3.33mV/⁰/s 

1.23V 

±3.33mV/⁰/s 

1.23V 

±3.33mV/⁰/s 

Vmax 2.65 V 2.65 V 3.78 V 2.229 V 2.229 V 229 V 

Vmin 0.66 V 0.66 V 0.81 V 0.231 V 0.231 V 229 V 

Note: While using IMU, the 4X amplified output was used 

 

The voltages were all reasonable (i.e. not in the mV range) values, and we found no 

reason to amplify signals. To see a potential amplification system to be used if necessary, 

see Appendix A. 

Table 4: IMU power consumption 

 Vdd, Idd P 

LPR530AL (pitch and roll gyro) 3.3 V 6.8 mA 22.44 mW 

 ADXL335 (triple-axis accelerometer) 3.3 V 375 µA 1.24 mW 

LY530ALH (yaw gyro) 

 

3.3 V 5.5 mA 18.15 mW 

Notes: Idd was calculated as a max (i.e. when Vdd = 3.6V) 

           Max power = 41.83 mW consumed 

 

From the Arduino Duemilanove to PC, the Serial Peripheral Interface (SPI) connection 

shall be used. 
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3.2 Software 
 

Now that the general methodology in finding position and orientation from accelerometer 

and gyroscope data has been discussed, this section will provide flow charts and software 

design that helped us complete this project. 

 

Programming of the microcontroller (ATmega328) is done through Arduino software (an 

open-source environment). Programs that use this software are written in the Arduino 

language, which is based on C/C++; as such, it was fairly easy to get familiarized with 

the language. A reason for choosing the Arduino Duemilanove was its user-friendly 

interface, allowing programs to be easily verified and quickly uploaded to the 

ATmega328 microcontroller. 

 

When working with analog signals, the topic of sampling rate and ADC resolution tends 

to surface. The ATmega328 has a 10-bit ADC, and the reference voltage can be adjusted 

through software by sending a desired signal in pin AREF. By varying this voltage as 

necessary, ADC performance increases, and the quantization error present in all analog to 

digital converters is be decreased (but not eliminated). For our project, we provided the 

AREF pin with 3.3 volts. This means each count (ADC value) had a voltage of: 

𝐴𝐷𝐶𝑐𝑜𝑢𝑛𝑡 =
3.3 𝑉

210−1
≅ 3.23𝑚𝑉.  

 

From online references, the sampling rate of reading in one analog input is ~100µs, good 

enough for 10 KHz sample frequency. Though there are ways (e.g. including define 

parameters) to further increase the rate, 10 KHz is sufficient for this project. The 

determining factor occurs when data is written through the USB (serial) port to PC. In 

order to stream data for analysis, at least three position variables must be written. After 

the program was written (which can be seen in Appendix B), each iteration (reading and 

writing six variables) ends up taking 0.04s. This is nowhere near 1ksamples/s like 

intended; nonetheless it should still give passable results – that is, the general trajectory 

of a user’s movement can be recreated.  These results are shown in the next section. 
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Figure 15: Implemented algorithm solving for position and orientation given data 

from accelerometer and gyroscope 

 

 

 



23 

 

 

 

Figure 15 above is a flow chart of the algorithm implemented in developing stages. Some 

explanation to selected stages will be clarified. 

 

To begin with, a calibration function was created which involves averaging samples to 

calculate the bias value. The bias value is important (mentioned in section 3.3) in order to 

achieve correct negative and positive values. The importance of an accurate bias value is 

why averaging (here, 100) a sample was implemented. The calibration is only done once, 

at the very start of the program. 

 

The method of integration used was the trapezoidal method, implemented as follows: 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 = 𝑝𝑟𝑒𝑣. 𝑎𝑛𝑔𝑙𝑒 + (
 𝑝𝑟𝑒𝑣. 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙. +𝑐𝑢𝑟𝑟𝑒𝑛𝑡. 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙.  

2
)𝑑𝑡 

This is applied once to angular velocity, and twice to acceleration. 

 

After calculating angles from the gyroscope output (via integration just mentioned), a 

rotation matrix is formed by the following formula: 

𝑅 = 𝑅𝑥 𝑎𝑛𝑔𝑙𝑒𝑋 𝑅𝑦 𝑎𝑛𝑔𝑙𝑒𝑌 𝑅𝑧(𝑎𝑛𝑔𝑙𝑒𝑍) 

𝑅𝑥 𝛾 =  
1 0 0
0 𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾
0 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾

 , 𝑅𝑦 𝛽 =  
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽

0 1 0
−𝑠𝑖𝑛𝛼 0 𝑐𝑜𝑠𝛽

 , 

𝑅𝑧 𝛼 =  
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 0
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0

0 0 1
   

Here, R (the multiplication of all matrices) is the general rotation matrix which will be 

used to transform the acceleration. 

 

To find acceleration in base frame, that is, to transform the acceleration: 

𝑎𝑏𝑎𝑠𝑒
𝑘 = 𝑅𝑏𝑎𝑠𝑒

𝑡𝑘+1 𝑎𝑚
𝑘   

Where 𝑅𝑏𝑎𝑠𝑒
𝑡𝑘+1 = 𝑅𝑜𝑅𝑡0

𝑡1 ⋯𝑅𝑡𝑘

𝑡𝑘+1
 (post multiplication) 

The super/subscript “t” represents time, equivalent to one pass of the entire flow chart in 

Figure 15 above. To clarify, the “start” is “Sample from ADC”, and the “end” is when 

positions and orientations are calculated and outputted.  
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5 Results and Discussion 

To show results, a program was created to write orientations (𝜃𝑦 , 𝜃𝑥 , 𝜃𝑧) and positions (X, 

Y, and Z) from the microcontroller to the PC via USB (serial connection). Simple 

motions were formed, all within 10-15 seconds to reduce effects of accumulated errors. 

Even then, results were not accurate. The following diagrams were created from 

MATLAB via a text file whose first three columns are gyroscope outputs 𝜃𝑦 , 𝜃𝑥 , 𝜃𝑧  and 

last three columns positional outputs X, Y, Z. An example of the output file is shown in 

Appendix B. Positions are plotted only, which have units of cm. Orientations are not 

plotted, but have units of degrees.   

 

The IMU was not mounted on any sort of instrument; rather, as shown in Figure 14 (page 

20), motions were made by simply moving the breadboard which the IMU is attached to. 

One issue that impeded free movement were the wires connecting the IMU to the 

Arduino board. These wires sort of had a negative effect in whatever direction motion 

was because they were quite stiff. It’s hard to say whether this had an overwhelming 

effect with the resulting trajectories, but movement did feel restricted.  

 

In my implementation of positions, I did not compensate for gravity (besides the initial 

orientation). What this means, is that if the IMU is placed with an initial orientation, and 

after the program starts, is left at that initial orientation, all positions/orientations will 

read zero as expected. However, performing only rotation such that gravity (9.8m/s
2
) 

now affects some other vector, the accelerometer will sense acceleration along that 

vector, and the program will calculate that it’s moving, when it is actually not. So while 

testing, it was important that the IMU be kept at one orientation the entire time (usually 

flat on the surface as in Figure 14 (page 20)).  

 

Following are a few tracking motions created by the method described above. Again, 

simple movements were the key to ensure the system could even track to some degree. 
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Figure 16: Square motion 

 

Figure 16 above shows the recreated path after the user (me) made a square/rectangular 

movement in the X-Y plane with the inertial measuring unit. Note that there should be no 

Z displacement as I did not lift the IMU (and although it may look like there is, there isn’t 

any).  
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Viewing the same data in the X-Y plane is seen in Figure 17 below. The tiny spike at 

around X=-4, Y=1 (below graph) was evidently not intended, yet still shows in the graph. 

The path begins at point (0, 0) and ends around (5, 6.9). 

 

 
Figure 17: Square motion in X-Y plane 
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Figure 18: Path of zigzag motion, followed by an up and downwards motion 

 

The motion here starts at the zigzag area (0, 0, 0). The general movement was a left-right 

repeating motion, then a translation in the positive Z direction. Finally, the IMU was put 

back to the starting point. The tracking system seems to capture the motion with decency. 

The graph actually plots the Y-direction range to be about 30cm. This was not the case in 

the real motion formed, which was about 10cm max. 
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Figure 19: Circular movements 

 

Figure 20: Same circular plotted only in X and Y coordinates 
 

For this movement, two “circles” were created in a clockwise fashion. The first “circle” 

was recreated as an oval shape, and the second circle is incomplete. Also, the recreated 

path above shows the first circle smaller than expected. While moving the IMU, it was 

intended that both circles had roughly the same size. 
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Figure 21: Up down motion 

 

The path recreated above seems fairly accurate. The desired path starting from the point 

(0, 0, 0): straight up, then down and to the left; this was followed by an up-down motion. 

Upon further inspection, the Y-direction range shown above is actually 100cm, while the 

X-direction range is over 150cm. This was definitely not real path (at most, the Y-

direction was 5cm and X-direction 15cm), which leads to believe the orientation was 

changing throughout the motion (as was the case). As described earlier, slight orientation 

changes cause the IMU/program to think it is moving due to gravity when it is actually 

not (it is simply just rotating). The general path outlined is fine, but the ranges are 

completely off. 
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Figure 22: Up right-left motion 

 

The intended path in Figure 22 was: directly up (Z direction), then right-left (staying in 

XY plane), and finally a negative-Z direction. It sort of looks like the path described, but 

errors make it look more like a loop motion. 

 

The current method used to calculate position can be thought of as an open-loop system. 

Without feedback, errors cannot be compensated for (reduced) and these terms will 

subsequently be accumulated. Although it is true the “general” motion has been captured, 

these were for at most a 15 second span. If errors seem prevalent now, there’s no chance 

such a tracking system will have any worth for operations that may take hours. 

Fortunately, there are methods which can be implemented to inertial tracking systems to 

greatly improved performance and handle slight errors. These methods will be briefly 

suggested in the recommendations chapter. 
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6 Conclusions and Recommendations 

It is clear that although tracking is roughly achieved, much improvement can (and 

should) be made. Through this project, it is shown that simple “position from inertial” 

algorithms can achieve some (though limited) success in tracking the broad movements.  

Besides gravity compensation (mentioned in the previous chapter), improvements for 

systems based on purely inertial sensors may include: integration methods with less error, 

faster sampling rates, and implementing filtering methods. 

 

For future considerations, accelerometer and gyroscope data can be incorporated together 

to provide improved results. Using accelerometer’s response to Earth’s gravitational 

field, we can determine tilt. Tilt is the angle displacement, which is identical to the angle 

calculated by integrating gyroscope data. These two measurements can be compared to 

offer more accurate angles.  The angles, in turn, are used to calculate the rotation matrix 

which transforms the positions (in the moving frame) into positions with respect to a 

universal (or global) frame. Thus, implementing the above would yield a much better 

tracking system overall. A similar technique known as Kalman filtering can reduce the 

effect of accelerometer vibrational noise. In addition to these methods, integrating the 

inertial sensor system with another form of tracking system (e.g. optical system) is the 

ideal solution for tracking laparoscopic instruments (if using inertial sensors).  

 

Although studying motion analysis for objective assessment purposes can ultimately lead 

to some form of standard in which the student has to pass, it does not demonstrate the 

actual surgical competence of the individual. There are other skills besides technical ones 

such as anatomical or protocol knowledge that also needs assessment. Consequently, 

tracking laparoscopic instruments should be purely used for objective assessment for 

manual skills. 

 

In conclusion, this project has demonstrated the inertial sensors ability to track 

trajectories, which can ultimately be mounted on laparoscopic instruments to provide an 

objective assessment. It is a cost-effective way for upgrading the resolution for current 

tracking systems, where its small package will not impede surgical performance. 
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Appendix A: Amplification System 

 

:  

Figure 23: Amplification system (top right of Figure) used to increase ADC 

performance 
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Figure 24: Amplify and offset system used with ADC module of reference voltage 

±10V 

 

- Output pins are 14, 8, and 7.  

- Op-amps used were OP491, supplied by Dr. Patriciu. 

  



34 

 

 

 

Appendix B: Arduino Code 
 

 

/* 

 Inertial sensor tracking 

 by Calvin Gan 

 Language: Arduino 

 Created: April 2, 2010  

 */ 

 

/*** GLOBAL VARIABLES ***/ 

double st = 0; //start time 

double dt = 0; //delta time; used to calculate integration intervals 

 

//angular velocity samples from ADC (ints). 

double sample_gyro_X; 

double sample_gyro_Y; 

double sample_gyro_Z; 

 

//acceleration samples from ADC. 

double sample_acc_X; 

double sample_acc_Y; 

double sample_acc_Z; 

 

//counters for move_end_check() functions 

int countx, county, countz; 

int countgx, countgy, countgz; 

//proportional values from accelerometer 

double accX[2], accY[2], accZ[2]; //read from ADC (integers) 

double velX[2], velY[2], velZ[2]; //first integration 

double posX[2], posY[2], posZ[2]; //2nd integration 

 

//proportional values from gyroscope, then converted to radians/s 

double angVelX[2], angVelY[2], angVelZ[2]; 

double angleX[2],angleY[2],angleZ[2]; //first integration 

 

//double sstateX, sstateY, sstateZ; //calibration values 

double sstate_gyro_X, sstate_gyro_Y, sstate_gyro_Z; 

double sstate_acc_X, sstate_acc_Y, sstate_acc_Z; 

 

double R_base[3][3] = {{0}}; 

 

/*** FUNCTION PROTOTYPES ***/ 

void Calibrate(void); 

void init_globalVar(void); //initializes global variables 

void angularVelIntegrate(void); 

void accelerationIntegrate(void); 

void movementEndCheck(); 

//void movement_end_check_gyro(); 

void multiplyMatrices(double a[][3], double b[][3], double result[][3]); 

void calculateRotation(double angleX, double angleY, double angleZ,double R_curr[][3]); 

void matrixByVector(double a[], double result[]); 

 

double convertToRadiansPerSec(double anglularVelADC); 

double convertToMetersPerSecSq(double posADC); 
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double PosX=0,PosY=0,PosZ=0; 

double AngleX=0,AngleY=0,AngleZ=0; //easier way to serial.print 

 

/*** BEGIN SETUP AND LOOP ***/ 

void setup() { 

  analogReference(EXTERNAL); //use external reference voltage for AD 

  //Initialize the serial port 

  Serial.begin(9600); 

   //calibrate 

  Calibrate(); 

  st= millis(); 

} 

 

void loop() { 

  dt = (millis()-st)/1000; //to calculate seconds 

  st = millis(); //start time is the number of ms since the Arduino board began running the current program 

 

  sample_gyro_X = convertToRadiansPerSec(analogRead(1)); 

  sample_gyro_Y = convertToRadiansPerSec(analogRead(0)); 

  sample_gyro_Z = convertToRadiansPerSec(analogRead(2)); 

 

  sample_acc_X = convertToMetersPerSecSq(analogRead(5)); 

  sample_acc_Y = convertToMetersPerSecSq(analogRead(4)); 

  sample_acc_Z = convertToMetersPerSecSq(analogRead(3)); 

 

   angularVelIntegrate(); 

   accelerationIntegrate(); 

   

  // Output values to serial port as an ASCII numeric string 

  Serial.print(AngleX); 

  Serial.print(","); 

  Serial.print(AngleY); 

  Serial.print(","); 

  Serial.print(AngleZ); 

  Serial.print(","); 

  Serial.print(PosX); 

  Serial.print(","); 

  Serial.print(PosY); 

  Serial.print(","); 

  Serial.print(PosZ); 

 // Serial.print(",");  

  //Serial.print(dt); 

  Serial.println(); 

  //Print a newline and carriage return in the end 

 } 

 

/*** CALIBRATE AND INIT GLOBALVAR ***/ 

void Calibrate(void) { 

  init_globalVar(); 

  unsigned int count1; 

  count1 = 0; 

  do { 

    double dt; 

    //    sample_gyro_X = analogRead(1); 

    //    sample_gyro_Y = analogRead(0); //x gyro corresponds to -y acc axis 
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    //    sample_gyro_Z = analogRead(2); //y gyro corresponds to -x acc axis 

    //    sample_acc_X = analogRead(5); 

    //    sample_acc_Y = analogRead(4); 

    //    sample_acc_Z = analogRead(3); 

 

    sstate_gyro_X = sstate_gyro_X + analogRead(1); //accumulate samples 

    sstate_gyro_Y = sstate_gyro_Y + analogRead(0); 

    sstate_gyro_Z = sstate_gyro_Z + analogRead(2); 

    sstate_acc_X = sstate_acc_X + analogRead(5); //accumulate samples 

    sstate_acc_Y = sstate_acc_Y + analogRead(4); 

    sstate_acc_Z = sstate_acc_Z + analogRead(3); 

    count1++; 

  } 

  while (count1 != 100); //100 samples 

 

  //zero-state level accelerometer 

  sstate_acc_X = sstate_acc_X / count1; //divide by 100 

  sstate_acc_Y = sstate_acc_Y / count1; 

  sstate_acc_Z = sstate_acc_Z / count1; 

 

  //zero-state level gyroscope 

  sstate_gyro_X = sstate_gyro_X / count1; //divide by 100 

  sstate_gyro_Y = sstate_gyro_Y / count1; 

  sstate_gyro_Z = sstate_gyro_Z / count1; 

 

  // build the current rotation matrix 

  calculateRotation(0.0, 0.0, 0.0, R_base); 

}//calibrate 

 

/*** INIT GLOBAL VARIABLES: *** 

 * note: may be faster to initialize when first declared 

 */ 

void init_globalVar() { 

  sample_gyro_X = 0, sample_gyro_Y = 0,  sample_gyro_Z = 0; 

  sample_acc_X = 0,  sample_acc_Y = 0,  sample_acc_Z = 0; 

  //counters for move_end_check() functions 

  countx = 0, county = 0, countz = 0; 

  countgx = 0, countgy = 0, countgz = 0; 

  //accelerometer values 

  accX[0] = 0, accY[0] = 0, accZ[0] = 0; 

  velX[0] = 0, velY[0] = 0, velZ[0] = 0; 

  posX[0] = 0, posY[0] = 0, posZ[0] = 0; 

  accX[1] = 0, accY[1] = 0, accZ[1] = 0; 

  velX[1] = 0, velY[1] = 0, velZ[1] = 0; 

  posX[1] = 0, posY[1] = 0, posZ[1] = 0; 

 

  //gyroscope values 

  angVelX[0] = 0, angVelY[0] = 0, angVelZ[0] = 0; 

  angVelX[1] = 0, angVelY[1] = 0, angVelZ[1] = 0; 

  angleX[0]=0, angleY[0]=0, angleZ[0]=0; 

  angleX[1]=0, angleY[1]=0, angleZ[1]=0; 

 

  //calibration values 

  sstate_gyro_X = 0, sstate_gyro_Y = 0, sstate_gyro_Z = 0; 

  sstate_acc_X = 0, sstate_acc_Y = 0, sstate_acc_Z = 0; 

  return; 
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}//init 

 

 

void angularVelIntegrate() { 

 

  double dw =0; //discrimination window 

  double dThetaX = 0, dThetaY = 0, dThetaZ = 0; 

  double R_curr[3][3] = {{0}}; 

  double R_baseTemp[3][3] = {{0}}; 

 

  //memcpy(R_baseTemp, R_base, 8 * 9); 

  int a=0,b=0; 

  for (a=0;a<3;a++){ 

    for (b=0;b<3;b++){ 

      R_baseTemp[a][b]=R_base[a][b]; 

    } 

  } 

 

  //analogRead for Gyroscope: 0 -> Y, 1 -> X, 2 -> Z 

  angVelX[1] = -sample_gyro_Y + convertToRadiansPerSec(sstate_gyro_Y); //to acheive RH frame 

  angVelY[1] = sample_gyro_X - convertToRadiansPerSec(sstate_gyro_X); 

  angVelZ[1] = sample_gyro_Z - convertToRadiansPerSec(sstate_gyro_Z); 

  //angular velocity now in SI units. 

 

  //apply discrimination window 

  dw = 0.3; 

  if ((angVelX[1] <= dw) && (angVelX[1] >= -dw)) { 

    angVelX[1] = 0; 

  } 

  if ((angVelY[1] <= dw) && (angVelY[1] >= -dw)) { 

    angVelY[1] = 0; 

  } 

  if ((angVelZ[1] <= dw) && (angVelZ[1] >= -dw)) { 

    angVelZ[1] = 0; 

  } 

 

  //integrate 

  dThetaX = ((angVelX[1] + angVelX[0]) * 0.5) * dt; 

  dThetaY = ((angVelY[1] + angVelY[0]) * 0.5) * dt; 

  dThetaZ = ((angVelZ[1] + angVelZ[0]) * 0.5) * dt; 

 

  angleX[1]=angleX[0]+dThetaX; 

  angleY[1]=angleY[0]+dThetaY; 

  angleZ[1]=angleZ[0]+dThetaZ; 

 

  //current velocity sent to previous velocity 

  angVelX[0] = angVelX[1]; //radians/s 

  angVelY[0] = angVelY[1]; 

  angVelZ[0] = angVelZ[1]; 

 

  angleX[0] = angleX[1]; 

  angleY[0] = angleY[1]; 

  angleZ[0] = angleZ[1]; 

 

  calculateRotation(dThetaX, dThetaY, dThetaZ, R_curr); 

  multiplyMatrices(R_baseTemp, R_curr, R_base); 
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  AngleX = degrees(angleX[1]); 

  AngleY = degrees(angleY[1]); 

  AngleZ = degrees(angleZ[1]); 

 

}//angularVelIntegrate 

 

 

void accelerationIntegrate() { 

 

  double dw=0; //discrimination window 

  double dwMax = 5; //max speed of 5 m/s^2 

  double accVector[3]={0,0,0}; 

  double accAfterTransform[3] = {0,0,0}; 

  double dPosX=0, dPosY=0, dPosZ=0; 

 

  double zeroLevelX = convertToMetersPerSecSq(sstate_acc_X); 

  double zeroLevelY = convertToMetersPerSecSq(sstate_acc_Y); 

  double zeroLevelZ = convertToMetersPerSecSq(sstate_acc_Z); 

  //subtract calibration level (obtain positive/negative velocity) 

  accX[1] = sample_acc_X - zeroLevelX; 

  accY[1] = sample_acc_Y - zeroLevelY; 

  accZ[1] = sample_acc_Z - zeroLevelZ; 

 

  //discrimination window: used for no-movement condition 

  //related to accelerometer noise 

  dw = 0.3; 

  if ((accX[1] <= dw) && (accX[1] >= -dw)) { 

    accX[1] = 0; 

  } 

  if ((accY[1] <= dw) && (accY[1] >= -dw)) { 

    accY[1] = 0; 

  } 

  if ((accZ[1] <= dw) && (accZ[1] >= -dw)) { 

    accZ[1] = 0; 

  } 

 

  //if acceleration is very fast, its likely due to an unwanted gravity component, so ignore it 

  if ((accX[1]>=dwMax)||(accX[1]<=-dwMax)) { 

    accX[1]=0; 

  } 

  if ((accY[1]>=dwMax)||(accY[1]<=-dwMax)) { 

    accY[1]=0; 

  } 

  if ((accZ[1]>=dwMax)||(accZ[1]<=-dwMax)) { 

    accZ[1]=0; 

  } 

 

  //transform acceleration from moving frame to base frame 

  //R_base*acc:: 3x3 matrix * vector 

  accVector[0] = accX[1]; 

  accVector[1] = accY[1]; 

  accVector[2] = accZ[1]; 

 

  //transform acceleration to base frame by multiplying by R_base 

  matrixByVector(accVector, accAfterTransform); 
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  //do subtraction 

  accX[1] = accAfterTransform[0];  //-gVector[0]; 

  accY[1] = accAfterTransform[1];  //-gVector[1]; 

  accZ[1] = accAfterTransform[2];  //-gVector[2]; 

 

  /********** integrate ********/ 

  velX[1] = velX[0] + ((accX[1] + accX[0]) * 0.5) * dt; //velocity (m/s) 

  velY[1] = velY[0] + ((accY[1] + accY[0]) * 0.5) * dt; 

  velZ[1] = velZ[0] + ((accZ[1] + accZ[0]) * 0.5) * dt; 

 

  dPosX = ((velX[1] + velX[0]) * 0.5) * dt;//deltaPosition in meters 

  dPosY = ((velY[1] + velY[0]) * 0.5) * dt; 

  dPosZ = ((velZ[1] + velZ[0]) * 0.5) * dt; 

 

  posX[1] = posX[0] + dPosX; //meters 

  posY[1] = posY[0] + dPosY; 

  posZ[1] = posZ[0] + dPosZ; 

 

  movementEndCheck(); 

 

  //current value must be sent to previous value 

  accX[0] = accX[1]; 

  accY[0] = accY[1]; 

  accZ[0] = accZ[1]; 

 

  velX[0] = velX[1]; 

  velY[0] = velY[1]; 

  velZ[0] = velZ[1]; 

 

  //in meters 

  posX[0] = posX[1]; 

  posY[0] = posY[1]; 

  posZ[0] = posZ[1]; 

 

  PosX = posY[1]*100; 

  PosY = posX[1]*100; 

  PosZ = posZ[1]*100; 

 

}//accIntegrate 

 

void movementEndCheck(){ 

 

  if (accX[1] == 0) { 

    countx++; 

  }//we count the number of velocity samples that equals zero 

  else { 

    countx = 0; 

  } 

  if (countx >= 4) { //if this number exceeds 25, we can assume that velocity is zero 

    velX[1] = 0; 

    velX[0] = 0; 

  } 

 

  if (accY[1] == 0) { 

    county++; 
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  }//we count the number of velocity samples that equals zero 

  else { 

    county = 0; 

  } 

  if (county >= 4) { 

    velY[1] = 0; 

    velY[0] = 0; 

  } 

 

  if (accZ[1] == 0) { 

    countz++; 

  }//we count the number of velocity samples that equals zero 

  else { 

    countz = 0; 

  } 

  if (countz >= 4) { 

    velZ[1] = 0; 

    velZ[0] = 0; 

  } 

  return; 

 

}//movementEndCheck 

 

void multiplyMatrices(double a[][3], double b[][3], double result[][3]) { 

  double sum; 

  int i, j, k; 

  for (i = 0; i < 3; i++) 

    for (j = 0; j < 3; j++) { 

      sum = 0; 

      for (k = 0; k < 3; k++) 

        sum += a[i][k] * b[k][j]; 

      result[i][j] = sum; 

    } 

} 

void calculateRotation(double angleX, double angleY, double angleZ,double R_curr[][3]) { 

 

  //Rx(angleX) 

 // if (angleX!=0 && angleY!=0 && angleZ!=0){ 

  double Rx[3][3] = {{ 1, 0, 0} , {0, cos(angleX), -sin(angleX)}, {0,sin(angleX), cos(angleX)}}; 

  double Ry[3][3] = {{cos(angleY),0, sin(angleY)},{0, 1, 0},{-sin(angleY),0,cos(angleY)}}; 

  double Rz[3][3] = {{cos(angleZ), -sin(angleZ),0},{sin(angleZ),cos(angleZ),0},{0, 0, 1}}; 

  double Rxy[3][3] = {{0}}; 

  multiplyMatrices(Rx, Ry, Rxy); 

  multiplyMatrices(Rxy, Rz, R_curr); 

  //} 

} 

//multiply matrix (3x3) by a vector (3x1) 

void matrixByVector(double a[], double result[]) { 

  int i = 0, j = 0; 

  for (i = 0; i < 3; i++) { 

    for (j = 0; j < 3; j++) { 

      result[i] = result[i] + R_base[i][j] * a[j]; 

    } 

  } 

} 
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double convertToRadiansPerSec(double anglularVelADC) { 

  //angularVel is ADC reading (proportional value) 

  //degrees = (angle * Vref / 1023 - VzeroRate) / Sensitivity 

  //already subtract zero rate 

  int vref = 3.3; //ADC module ref. voltage 

  double sensGyro = 0.00333; //* 2.7; //gyro sensitivity in V/degree/s 

  double degrees1 = ((anglularVelADC * vref / 1023) / sensGyro); 

  return radians(degrees1); 

} 

double convertToMetersPerSecSq(double posADC) { 

  int vref = 3.3; //20? 

  double sensAcc = 0.33;// * 3.92; //in v/g 

  double accInMeters = ((posADC * vref / 1023) / sensAcc); //will get acceleration in g's 

  return accInMeters * 9.8; 

} 
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Appendix C: Tables for Graphs  

The graph created in Figure 16 and 17 in the results section were generated from the 

following table: 

 

Please note that while graphing the following values, the Ax and Az values were negated 

(created negative). This was for visual purposes only; the initial orientation of the IMU 

was such that an “up” (z-direction) movement would result in a negative z-direction, and 

a “right” (x-direction) movement would result in a negative x-direction. Therefore, for 

the graphs to mimic the intended motions (i.e. a “right” motion displaying as “right” on 

the graph), the Ax and Ay values should be negative the values shown below. 

 

Table 5: Table used to create Figure 16 and 17. 

Gx Gy Gz Ax Ay Az 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 -0.01 0 

0 0 0 -0.03 -0.02 0 

0 0 0 -0.1 0.01 0 

0 0 0 -0.21 0.07 0 

0 0 0 -0.31 0.13 0 

0 0 0 -0.42 0.19 0 

0 0 0 -0.42 0.19 0 

0 0 0 -0.42 0.19 0 

0 0 0 -0.42 0.19 0 

0 0 0 -0.42 0.19 0 

0 0 0 -0.42 0.19 0 

0 0 0 -0.42 0.22 0 

0 0 0 -0.42 0.38 0 

0 0 0 -0.4 0.73 0 

0 0 0 -0.38 1.26 0 

0 0 0 -0.37 1.9 0 

0 0 0 -0.36 2.54 0 

0 0 0 -0.32 3.1 0 

0 0 0 -0.27 3.58 0 

0 0 0 -0.24 3.99 0 

0 0 0 -0.23 4.35 0 

0 0 0 -0.26 4.68 0 
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0 0 0 -0.31 4.95 0 

0 0 0 -0.35 5.12 0 

0 0 0 -0.36 5.19 0 

0 0 0 -0.37 5.22 0 

0 0 0 -0.37 5.26 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.37 5.29 0 

0 0 0 -0.34 5.29 0 

0 0 0 -0.21 5.29 0 

0 0 0 0.03 5.29 0 

0 0 0 0.38 5.29 0 

0 0 0 0.82 5.29 0 

0 0 0 1.31 5.29 0 

0 0 0 1.79 5.29 0 

0 0 0 2.28 5.29 0 

0 0 0 2.8 5.29 0 

0 0 0 3.3 5.29 0 

0 0 0 3.78 5.29 0 

0 0 0 4.22 5.29 0 

0 0 0 4.58 5.29 0 

0 0 0 4.85 5.29 0 

0 0 0 5.01 5.29 0 

0 0 0 5.07 5.29 0 

0 0 0 5.07 5.29 0 

0 0 0 5.06 5.29 0 

0 0 0 5.05 5.29 0 

0 0 0 5.03 5.29 0 

0 0 0 5.03 5.29 0 

0 0 0 5.03 5.29 0 
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0 0 0 5.03 5.29 0 

0 0 0 5.03 5.29 0 

0 0 0 5.03 5.29 0 

0 0 0 5.03 5.29 0 

0 0 0 5.03 5.29 0 

0 0 0 5.03 5.29 0 

0 0 0 5.03 5.29 0 

0 0 0 5.02 5.28 0 

0 0 0 4.98 5.21 0 

0 0 0 4.92 5.04 0 

0 0 0 4.87 4.74 0 

0 0 0 4.81 4.36 0 

0 0 0 4.8 3.94 0 

0 0 0 4.76 3.51 0 

0 0 0 4.69 3.07 0 

0 0 0 4.61 2.65 0 

0 0 0 4.53 2.25 0 

0 0 0 4.46 1.84 0 

0 0 0 4.41 1.45 0 

0 0 0 4.37 1.07 0 

0 0 0 4.34 1.07 0 

0 0 0 4.3 1.09 0 

0 0 0 4.3 1.18 0 

0 0 0 4.3 1.36 0 

0 0 0 4.3 1.6 0 

0 0 0 4.3 1.89 0 

0 0 0 4.3 2.16 0 

0 0 0 4.3 2.44 0 

0 0 0 4.3 2.44 0 

0 0 0 4.3 2.44 0 

0 0 0 4.3 2.44 0 

0 0 0 4.3 2.44 0 

0 0 0 4.3 2.44 0 

0 0 0 4.29 2.44 0 

0 0 0 4.23 2.43 0 

0 0 0 4.1 2.39 0 

0 0 0 3.85 2.32 0 

0 0 0 3.5 2.24 0 

0 0 0 3.07 2.17 0 

0 0 0 2.6 2.09 0 
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0 0 0 2.04 2.09 0 

0 0 0 1.45 2.09 0 

0 0 0 0.86 2.09 0 

0 0 0 0.27 2.09 0 

0 0 0 -0.31 2.09 0 

0 0 0 -0.88 2.09 0 

0 0 0 -1.42 2.09 0 

0 0 0 -1.92 2.09 0 

0 0 0 -2.3 2.09 0 

0 0 0 -2.54 2.09 0 

0 0 0 -2.68 2.09 0 

0 0 0 -2.8 2.09 0 

0 0 0 -2.91 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.03 2.09 0 

0 0 0 -3.04 2.13 0 
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0 0 0 -3.09 2.26 0 

0 0 0 -3.17 2.54 0 

0 0 -0.32 -3.27 2.91 0 

0 0 -0.65 -3.39 3.39 0 

0 0 -1.04 -3.55 3.97 0 

0 0 -1.8 -3.73 4.61 0 

0 0 -2.52 -3.91 5.27 0 

0 0 -3.21 -4.09 5.88 0 

0 0 -3.89 -4.26 6.4 0 

0 0 -4.23 -4.42 6.81 0 

0 0 -4.23 -4.57 7.05 0 

0 0 -4.23 -4.71 7.14 0 

0 0 -4.23 -4.84 7.11 0 

0 0 -4.23 -4.97 7.04 0 

0 0 -4.55 -5.1 6.96 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 
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0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 

0 0 -4.86 -5.23 6.89 0 
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