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Abstract 
With cardiovascular disease (CVD) being one of the top causes of death in 

Canada, a solution must be developed to help treat patients in the early stages of CVD. In 

addition, with increasing patient waiting times, the demand for a system that can 

diagnose heart disease is also increasing. The ECG Analyzer provides a method of 

monitoring the heart and diagnosing heart disease in real-time using pattern recognition. 

The analyzer incorporates a feature extraction component and a classification component. 

Feature extraction uses QRS detection to acquire disease characterizing information for 

subsequent use in the classification component. The classification component is achieved 

through the use of support vector machines (SVM). Results demonstrated that the QRS 

detection algorithm and SVM classification performed reasonably well with classification 

error rates as low as 19.09%. Different kernel functions were used and the polynomial 

function was found to be the best option. At the conclusion of testing, it was noted that 

classification accuracy could be increased by using a higher dimensional feature vector in 

conjunction with feature selective classification.  
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Chapter 1 
 

Introduction 
 

1.1 Background 
Cardiovascular disease (CVD) such as heart disease and stroke is a serious health concern 

that takes the life of one Canadian every seven minutes [1].  More specifically, in 2005 it 

accounted for 31% of all deaths in Canada and has more deaths than any other disease 

[1].  The high prevalence of these devastating conditions supports the significance of 

early diagnosis in order to identify and aid at-risk individuals.  Currently, there are 

various medical instruments used to record and monitor cardiovascular health in patients.  

However, most of these require a qualified professional to analyze and interpret the 

results in order to diagnose the problem and therefore prescribe the appropriate treatment.  

Possible obstacles such as increasing demand and lack of properly trained medical 

personnel, patients at risk of heart disease or stroke may not be aware of their condition 

nor have the resources to purchase expensive medical equipment in an attempt to monitor 

their own health.  Thus, problems such as these must be addressed in order for emerging 

medical technologies to improve patient care.  

One of the easiest and inexpensive methods of monitoring the heart for CVD is 

the use of an Electrocardiogram (ECG).  ECG machines provide a means of quantifying 

electrical activity of the cardiovascular system, which is represented graphically for 

specialists to analyze.  When an individual complains of chest pain, a series of steps are 

executed to determine the extent and severity of the heart problem.  The first step is a 

general classification of the patient’s symptoms as either a heart or non-heart related 

issue [2].  Upon classification as a heart-related complication, the second step is for the 

patient to undergo laboratory testing for specific blood factors associated with CVD [2].  

Furthermore, along with laboratory tests, another option is to undergo diagnostic imaging 

such as echocardiogram and perfusion scintigraphy [2].  However, as previously 

mentioned these forms of medical assessment may result in prolonged waiting periods 
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and again ultimately require professional analysis in order to determine a conclusive 

diagnosis [2].  Therefore, in order to proactively diagnose cardiovascular complications 

an ECG test should be performed prior to secondary extensive and invasive procedures.  

In summary, ECG’s can be considered the principle method of monitoring the heart in 

real-time and are able to provide medical specialists with quick and reliable information 

regarding a patient’s condition.   

 The waveform of an ECG recording is able to provide vital information regarding 

an individual’s heart condition by observing specific features in combination with the 

known relationship between cardiac contraction and relaxation and electrical activity 

[10].  The heart is a four chambered pump that sends deoxygenated blood to the lungs, 

while simultaneously distributing oxygenated blood to the rest of the body.  As illustrated 

in Figure 1.1, the heart is divided so that two chambers are implicated in the 

deoxygenation process and the remainder are involved in the oxygenation along with all 

the corresponding major arteries and veins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The cardiac cycle functions to distribute blood throughout the body, can be best 

described by two main events: atrial systole and ventricular systole.  In atrial systole, the 

Figure 1.1: The Anatomy of the Heart [3] 

Heart Muscle 
(myocardium) 
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left and right artia contract forcing blood into the left and right ventricles, respectively 

[4].  After blood is pumped into the ventricles, the atria undergo a diastolic phase where 

they would relax.  In ventricular systole, the left and right ventricles contract causing the 

respective closing of the mitral and tricuspid valves in order for pressure to accumulate in 

the ventricles [4].  Upon accumulation of atrial pressure to its threshold, the aortic valve 

opens resulting in blood flow to the aorta.  Similar events occur within the right ventricle 

with the pulmonary valve opening and resulting in blood flow to the pulmonary artery. 

This cyclical pattern continues by coupling ventricular relaxation with atrial filling of 

blood, in preparation for the following cycle. 

 The cardiac cycle is a process that is governed by the electrical activity of the 

myocardium, also referred to as the conduction system.  The conduction system begins 

with the sinoartrial (SA) node (refer to Figure 1.2).  The SA node’s cellular architecture 

is composed of cells that do not have a stable resting potential and as a result, they 

repeatedly depolarize to a specific threshold value in order to trigger an action potential 

[4].  Therefore, the SA node is considered the heart’s pacemaker and generates an action 

potential that triggers a series of contractions throughout the heart.  The action potential 

then propagates throughout both the left and right aria, producing a subsequent 

contraction in the atrial muscle fibers [4].  Next, the action potential reaches the 

atrioventricular (AV) node and propagates to the AV bundle or Bundle of His [4].  The 

Bundle of His is the only site where action potentials initiated by the SA node are able to 

conduct from the artia to the ventricles [4].  Lastly, the action potential eventually spreads 

to the ventricular myocardium, resulting in ventricular systole [4].  In conclusion, the 

conduction system regulates the periodicity of cardiac contractions and relaxations, thus 

serving as a vital element to diagnosing numerous CVD. 

 In order to assess the functioning of the cardiac cycle and conduction, an ECG 

test is conducted to generate quantified readings translating to the electrical activity of the 

heart.  As previously mentioned, the ECG contains information regarding events that 

have occurred in the heart by analyzing the electrical potentials in respect to time [4].  As 

represented in Figure 1.3, this typical ECG waveform consists of 5 main features: the P, 

Q, R, S and T waves [4].  The ECG signal begins with the depolarization of atrial 

contractile fibers (atrial systole), which creates a characteristic  
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wave known as the P wave [4]. Once the P wave has been generated, a slight delay takes 

place as the action potential from the SA node travels to the Bundle of His and 

consequently ventricular myocardium [4].  The ventricular contractile fibers then begin to 

depolarize (ventricular systole), producing the Q, R and S waves that form the QRS  

 

complex [4].  During the time of ventricular systole, the atria repolarize but are difficult 

to detect on an ECG signal due to the QRS complex masking it [4].  The repolarization of 

ventricular contractile fibers then takes place to produce the characteristic T wave shape, 

Figure 1.2: The Conduction System of the Heart [4] 
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ultimately followed by relaxation [4].  Taking into consideration that the ECG signal 

describes electrical activity and the extent of myocardial activity of the heart, thus this 

non-invasive test is able to serve as a representation of the current state of a given heart.   

 In order for an ECG signal to be useful, an interpretative mechanism is required in 

order to describe the events occurring in the heart.  To date, a diagnosis of a heart 

condition is made primarily by trained professionals based on the interpretation of ECG 

patterns [7].  One of the potential problems with ECG interpretation is the chance of 

human error [7].  Some factors contributing to human error include: fatigue (paramedics), 

habituation, and psychological factors (emotion, reaction to stressful situations, etc) [7].  

A promising solution to many of these factors is the implementation of automated ECG 

analyzing machines.  ECG analyzers interpret data by first extracting features, which are 

then used to classify patterns synonymous with cardiac defects [10].  Using pattern 

recognition, ECG analyzing machines are in theory immune to the effect of human error, 

however are limited to the technologies and algorithms provided [10].  Thus, ECG 

analyzers can essentially replace human interpretation and therefore ease, if not 

eliminate, the responsibility of interpretation by medical professionals.  This will further 

increase the probability of detecting heart conditions much earlier. 

 

1.2 Objectives 

The objectives of this project are to provide diagnosis of heart conditions using data 

acquired from an ECG signal in real-time.  By doing so, an individual will be able to not 

only monitor their heart during cardiac cycles, but also have a portable device that is 

efficient and affordable.  One of the advantages to having such a device is that people can 

monitor and diagnose any heart related problem in the comfort of their own home.  Most 

ECG analyzers employed in the healthcare industry are very costly and contain additional 

elements that for the purpose of this project are not useful.  This project contains two 

main components: hardware and software.  The hardware component consists of an ECG 

machine that measures a single-lead ECG signal from an individual, which was the 

responsibility of Michael Chrapala.  In terms of the software components, the 

PIC24HJ32GP202 microcontroller will be used to convert analog ECG signals into 

digital form.  These signals will then undergo feature extraction in order to be classified 
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using a Support Vector Machine (SVM), which is equipped with a library of ECG signals 

from heart condition patients.  Robert Tisma is responsible for this component.  At the 

conclusion of the present project, an affordable, compact, and effective ECG analyzer 

will have been successfully created to measure and classify the ECG signal of an 

individual having some form of heart disease. 

 

1.3 Methodology 

The software component is dissected into the main components that need to be resolved. 

The first problem is the use of the PIC24HJ32GP202. This microcontroller has the ability 

to process information at 40 MIPS as well contains an extensive amount of peripheral 

devices [8]. One of the main features of the PIC24 is the onboard analog-to-digital 

converter (ADC). The ADC can be configured in a variety of operating modes which 

makes it very customizable for almost any application. It also has digital input and output 

ports, which can be useful when trying to display a message to the user. For the project, 

the ADC will be used to sample the analog output of the ECG machine and then digital 

processing will take place on the microcontroller.  

The processing involves the extraction of features from the digital ECG signal. 

Since the processing is a real-time implementation, the time needed to extract features 

and classify them, must take less time than the sample period. This is a major concern as 

the code must be efficient for the processing to keep up with the ADC.  When the 

microcontroller has classified the input data, an external LED would be lit which 

corresponds to one of the heart diseases that trained the SVM. The library that will be 

used to train the SVM will be available ECG recordings of individuals with heart 

conditions.  

  

1.4 Scope 

When processing biological signal, there must be great awareness of the variability in 

data. Since biological signals, such as the ECG, vary in shape and size from beat to beat, 

they require special consideration in terms of processing. The ECG signal obtained from 

the hardware component cannot be completely filtered of all its noise, thus can present 
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some unpredictable results in the software component. The algorithms that will be used 

are geared towards variable biological data, but still a degree of variability exists which 

could result in false positives or false negatives. The software component will work under 

the assumption that all human ECG signal have a characteristic wave form, such as 

Figure 1.3. Although the software will be able to differentiate between healthy and 

diseased ECG signals in general, there will always exist data that does not follow certain 

assumption. The main goal is to maximize the effectiveness of classification following 

the assumptions that ECG signals are variable but consistent in shape and size. 

 As well, the effectiveness of classification is primarily based on the accuracy of 

the extracted ECG features. Since no ECG signal is ideal, there is a probability of false 

positives and false negatives. To overcome problems such as this, extended data sets and 

averages will help to alleviate errors as well as random events. Therefore a threshold or 

tolerance level must be established in order to properly process and classify ECG data.  
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Chapter 2 

 

Literature Review 
The ECG analyzers that are currently available are essentially designed for applications 

in the veterinary [9] and healthcare system [7].  However, due to the strong dependence 

on pattern recognition, ECG analyzers are not prominent in the field of medicine due to 

their poor reliability [7].  In order for an ECG analyzer to classify data, it must be 

equipped with data from individuals who currently have a known heart condition.  In 

other words, the classification of a system is reflected upon the information it is 

programmed with and since only a limited amount of data can be used to train the system, 

it is easily rendered unreliable by users [7].  Additionally, due to the complex and 

variable nature of the ECG signal, research has been conducted to help create efficient 

methods of extracting data from test readouts, along with better methods of training 

learning machines [10]. 

 

2.1 Standard Clinical ECG Features 
When designing a system that analyzes ECG signals, it is important to have an 

understanding of the relationship between signal features and both the anatomical and 

physiological components of the heart.  As previously mentioned, an ECG signal is 

composed of five main features: the P, Q, R, S and T wave (refer to Figure 1.3).  In order 

to identify particular segments, a reference point for each beat must be established.  This 

is called the fiducial point and is normally represented as the peak position of the R wave 

[10].  A key factor of any ECG signal is the RR interval, which is the time between two 

adjacent R waves corresponding to the instantaneous heart rate [10].  The instantaneous 

heart rate can be calculated using Equation 2.1, where ܴܪ௡ represents the ݊௧௛ 

instantaneous heart rate [10]. 



9 
 

 

௡ܴܪ =
60
ܴܴ௡

×
ݏݐܾܽ݁
݉݅݊

 

 

Due to the stochastic nature of the ECG signal, the RR interval varies on a beat-to-beat 

basis.  When the heart rate is of importance to processing, the average heart rate is 

normally calculated to help mask oscillation in the RR interval [10].  

Furthermore, ECG morphology is also correlated with the current RR interval.  A 

common phenomenon that occurs during respiration is the Bainbridge reflex [10].  The 

Bainbridge reflex is characterized by the periodical oscillation of RR n, as a result of the 

expansion and contraction of the lungs [10].  The periodic motion of the lungs results in 

changes to the intrathoracic pressure, which in turn affects the cardiac filling volume 

[10].  During inspiration, the thoracic pressure decreases causing an increase in venous 

return [10].  This results in right atrium expansion and increases the local heart rate [10].  

On the other hand, respiration results in the reverse process and facilitates a decrease in 

local heart rate [10].  Thus, the ECG signal obtained during thoracic expansion and 

contraction results in changes to the amplitude and timing of features.  

Some of the other aspects that must be taken into account are the different noise 

sources in an ECG signal.  Common noise artifacts are: power line interference (60 Hz 

mains noise), loss of contact between the electrode and the skin (contact noise), 

movement of electrodes from the skin contact area (patient-electrode motion artifacts), 

electomyographic noise (muscle motion artifact), artifacts contributed by signal 

processing devices (device noise), quantization noise and aliasing as a result of analog to 

digital conversion, and baseline drift [10].  These types of artifacts affect the overall ECG 

signal and are capable of creating inconsistencies during data analysis.   

 

2.2 Feature Extraction 
The analysis of ECG peak values requires referencing to a specific level called the 

isoelectric level.  The isoelectric level is one of the most important features of the ECG 

signal [10].  ECG signals are prone to some baseline drift where the vertical translation in 

the waveform takes place.  When the waveform translates vertically, the isoelectric level 

(Equation 4.1) 
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follows, and when measurements of the peak values are taken they are adjusted to present 

the true value [10]. If peaks were simply measured from the 0V line, incorrect patterns 

and correlations would be found leading to false results. 

 Along with the other main features of an ECG signal previously described, the 

QRS complex width, local heart rate, R wave peak, P wave peak and T wave peak are all 

fundamental.  To find the value of these features, a QRS detection algorithm must first be 

used to detect the fiducial point.  Once this point is established, the isoelectric level can 

be determined.  Upon doing so, all other features can then be measured using specific 

timing thresholds.  Some examples of these typical values are shown in Table 2.2. 

 

 

Feature Normal Value Normal Limit 

QRS Width 100 ms ±20 ms 

P amplitude 0.15 mV ±0.05 mV 

QRS height 1.5 mV ±0.5 mV 

T amplitude 0.3 mV ±0.2 mV 

 

 

2.3 QRS Detection 
The QRS detection is the initial component to any feature extraction step.  The main 

Table 2.1: Typical ECG features and their normal values at a heart rate of 60 bpm1 

1 Adapted from [10]. 

Raw ECG 
Digital Signal 

 
Differentiation 

Nonlinear 
Transformation: 
Squaring 

Moving Window 
Integration 

Threshold 
Adjustment Peak Detection 

Preprocessing Stage 

Decision Stage Stage 

Bandpass Filter 
F1= 5 Hz 

F2= 11 Hz 

Figure 2.1: The QRS detection algorithm proposed by [11], consisting of a 
Preprocessing stage, and Decision stage. 
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purpose is to determine the location of the QRS complex in order for features to be 

uniquely described on a beat-to-beat basis.  Once the QRS complex has been obtained, 

other features may be extracted using the QRS complex as a fiducial mark for every 

heartbeat.  The algorithm presented by Pan and Tompkins [11], uses a series of 

preprocessing stages followed by a decision stage.  In the preprocessing stage, the signal 

is band pass filtered (BPF) by cascading a low pass filter (LPF) and high pass filter (HPF) 

together.  The filter contains frequency cutoffs of about 5 Hz and 11 Hz, which 

maximizes the QRS energy needed for the detection stage.  The inherent noise due to 

power line interference, muscle noise, baseline wander and T wave interference are all 

reduced with the band pass filter [11].  Next is the differentiation stage where the filtered 

ECG signal undergoes differentiation.  The purpose of this component is to obtain 

information for the next stage.  The nonlinear transformation component is a function that 

squares the output of the differentiation block to make them positive and emphasize high 

slope values.  The next component is the Moving Window Integrator (MWI), which 

calculates an average value for a specific number of previous samples from the nonlinear 

transformation component.  At the conclusion of this stage, the raw ECG data will be 

represented in a time-averaged form that will aid in the decision process of the next stage 

(refer to Figure 2.1, [11]).  Lastly, the main components of the decision stage are the 

threshold adjustment and the peak detection.  The threshold adjustment component 

consists of adaptive thresholds that are automatically adjusted to float over the noise.  

There are two sets of thresholds: one for the MWI and the other for the filtered ECG 

signal that are used to distinguish true and false QRS detection in the subsequent 

component.  The peak detection component obtains information from the MWI and 

compares it with the current thresholds.  Essentially, if the input signal is greater than the 

upper threshold of both sets of thresholds within a certain time period, then a QRS 

candidate has been detected.  As well, if a QRS peak has not been identified in a certain 

time frame, then a search-back routine is performed to find the missed peak [11].  The 

decision component also incorporates an average and instantaneous heart rate calculation 

that helps reduce false detection [11].  Furthermore, the T wave may also be detected 

along with the QRS complex by identifying peaks between two successive QRS 

complexes but below a certain threshold and time period.  This algorithm allows for 
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unique identification of QRS complexes, thus providing a fiducial mark for further 

analysis.  

 

2.4 Support Vector Machines 
The learning regime that will be used in the project is called Support Vector 

Machines (SVM).  This technique is a linear classifier that uses a p-dimensional feature 

vector and separates the classes using a p-1 dimensional hyperplane [12].  An illustration 

is provided in Figure 2.2. 

 

The whole purpose is to create a classification by separating data points with a 

maximal margin using a hyperplane.  In the training phase, the margin separating the two 

classes continually adjusts with increasing data points until a definitive pattern is 

established [12].  In the execution phase, data points are classified based on their position 

relative to the defined hyperplane [12]. 

The SVM that will be incorporated in this project is a library of SVM functions 

called LIBSVM [13].  LIBSVM is an easy to use tool that is very well documented and is 

available for more than one programming language [13].  The library consists of the 

following SVM implementations: C-Support Vector Classification (C-SVC), υ-Support 
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Vector Classification (υ-SVC), ε-Support Vector Regression (ε -SVR) and υ-Support 

Vector Regression (υ-SVR). C-SVC and υ-SVC use a set of training data called a training 

vector with corresponding class labels in order to create an optimal separating hyperplane 

[13].  The data points that define the maximal width of the margin and ultimately the 

optimal hyperplane, are labeled as support vectors [13].  The training data is used to 

create Lagrangian coefficients that define the hyperplane, which are then used in the 

execution phase [13].  Once an SVM model has been created, the system is then ready to 

classify input data into appropriate classes [13].  C-SVC has a restriction on the range of 

values available for the Lagrangian coefficients, while υ-SVC uses a parameter, υ, which 

has an upper bound on the fraction of training errors and a lower bound on the fraction of 

support vectors [13].  ε-SVR is similar to SVC except that a function or model is created 

with a maximum of ε deviation from obtained targets of training data and at the same 

time be as flat as possible [13].  The last SVM implementation, υ-SVR, uses the 

parameter υ to control the number of support vectors in the regression [13]. 
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Chapter 3 

 

Statement of Problem 
 In this chapter, a greater understanding of the issues concerning the design and 

development of an ECG analyzer as an improved alternative to current diagnostic 

procedures will be presented.  More specifically, it will describe the problems regarding 

feature extraction, microcontroller interface and classification stages.  When considering 

the feature extraction step, the expectations and minimum requirements will be addressed 

followed by the respective reasoning.  The problems regarding the microcontroller 

interface will discuss what is expected of the microcontroller component and the 

challenges that must be overcome.  Finally, the classification stage will focus on 

determining the appropriate categorization and translation of data in order to make 

accurate diagnosis.  Upon reading these sections, there will be a strong conception of the 

underlying theory that is required to grasp the methodology and assumptions associated 

with it, along with the reasoning behind the implementation of an ECG analyzer.  

 

3.1 Overview 
The ECG Analyzer is portable device that uses a microcontroller to analyze patient ECG 

data, and provide a probability based diagnosis based on CVD ECG data stored in a 

library. The analyzer extracts features from an ECG signal which are sent to the SVM, 

where a diagnosis is made based on probability. The feature extraction stage uses a QRS 

detection algorithm to extract data from ECG signals. These features are then input to an 

SVM, which separates data by finding the optimal separating hyperplane. Overall, the 

expectations at the conclusion of the project are that QRS detection operates with 

minimal error, and that a diagnosis is made with the smallest error using SVM 

classification. 
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3.2 Feature Extraction 
 The feature extraction step is the method of acquiring specific useful 

information regarding an ECG signal. The objective of this step is not only to obtain data 

that define CVD, but to implement the procedure in an efficient and real-time manner. 

The goal of any ECG analyzer is online analysis, and therefore efficient implementation 

is required to ensure patient data is quick and accessible. Therefore the idea of this 

component is to extract features from patient ECG data that define patterns associated 

with heart disease using an efficient real-time implementation. 

With the use of QRS detection, the aforementioned problems can be addressed 

given specific conditions and limits. The detection essentially consists of processing raw 

ECG data into a form that represents features associated with the QRS complex more 

easily. In addition, the assumptions are that human ECG data carry the same 

characterizing elements that are only distinctive in magnitude. This implies that CVD 

ECG data can be characterized by the same elements that define normal healthy ECG 

data, and have unique values. Features such as QRS width, R wave height, P wave height, 

P wave width, T wave height, T wave width and local heart rate are all examples of what 

QRS detection can output.  

For the purpose of this project, the features of interest are the QRS width, the R 

wave peak value, and the local heart rate. These 3 features were chosen as the most 

relevant since they can be easily detected and be used to classify many diseases [10]. The 

assumption was that the data extracted by the QRS detector would be sufficient to 

provide insight to patterns in ECG signals. One of the challenges that must be overcome, 

are extracting information in the presence of variations in ECG morphology. With 

diseases such as atrial flutter which differ considerably in morphology in comparison to 

normal ECGs, special consideration must be made in the implementation of the detector 

[10]. As side from attribute related differences, QRS detection also faces the challenge of 

noise. Due to the stochastic nature of the ECG signal, procedures must be developed to 

avoid the effects of noise contaminated signals. The feature extraction step is an 

important aspect to the classification of heart-disease related ECG signals since it 

depends on the quality and speed of the obtained information. 
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3.3 Microcontroller Interface 
 The second component to the project is the microcontroller interface, which will 

execute the program for the ECG analyzer. The objective is to use the microcontroller to 

process the input data from the ECG machine. The microcontroller will convert the 

analog signal to a digital signal, where information can be easily extracted as well as 

output a diagnosis based on a percentage match between the input data and the stored 

library of CVD ECG data. The main challenge is implementing the processing elements 

in an efficient manner, as to minimize the time required for diagnosis and maximize the 

amount of available on-board memory. In addition, the ECG analyzer will be a portable 

device which provides the advantage of not only being used in medical centers, but in 

households also. 

 In the medical field, the speed by which a patient is diagnosed and emitted from 

the medical center is an important factor. With a many patients requiring medical 

attention, the hospital must be able to provide effective diagnosis and subsequent 

treatment in order decrease patient waiting times. With that being said, an ECG analyzer 

that can diagnosis a patient’s heart condition much faster than a human, would be 

beneficial in reducing patient line-ups and concentrating medical attention to those of 

more severe symptoms. For this reason, the ECG analyzer must be programmed to run 

efficiently and reliably, in order to diagnose patient heart symptoms in a short time.   

   

3.4 Classification 
 The classification stage represents the process of using the extracted features from 

QRS detection to match patterns found in a patient’s ECG signal, to patterns associated 

with CVD. The system will be realized using a SVM to recognize patterns linked to heart 

disease. The SVM model will be trained using a library of heart disease related ECGs. 

Once the model is developed, a patient’s ECG signal will be classified according to the 

percentage match with each disease in the library. By using LIBSVM, the pattern 

recognition task can be easily and efficiently incorporated onto the microcontroller, 

which supports the notion of a portable ECG analyzer. 
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 In order to employ this component, the challenges involved must be taken into 

consideration. In this project, the SVM will use the extracted features from the QRS 

detector to classify and therefore diagnose input ECG data. In terms of errors in 

classification, the quality of QRS detection and limitations to SVM implementation are of 

great concern. One cause of misclassified data, can be attributed to errors in QRS 

detection. Since it provides the SVM with extracted features for classification, the errors 

from incorrectly detected features translates to incorrectly classified data. The other 

challenge is that errors in classification can result from inseparable data. Since the SVM 

attempts to find an optimal hyperplane that separates the CVD ECG data from patient 

data (which is stochastic in nature), errors are inevitably produced as a result of data 

being inseparable. Therefore, errors in classification are a product of incorrectly extracted 

features and inseparable data. Therefore the objective of the classification stage, is to 

choose the SVM model that provides the least error in diagnosing patient ECG data. 
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Chapter 4 

 

Experimental and Design Procedures 
In this chapter, the design and experimental procedures will be discussed and 

ultimately address how the problems presented in Chapter 3 will be resolved.  The 

experimental procedures presented will discuss the design of the QRS detector and the 

SVM.  These will be used to classify ECG signals from at-risk individuals for CVD 

related patterns.  As well, the steps involved in testing the systems ability to analyze and 

classify ECG data will be presented.  Furthermore, the SVM component will be 

mathematically derived to provide a concrete understanding of the elements involved 

with classification.  At the conclusion of this chapter, one should have a clear 

understanding of how the QRS detector and SVM were presently implemented and 

tested. 

 

4.1 Introduction 
 In order to develop an understanding of the processes involved, an overview of 

the design and experimental procedure is required.  The design of the project can be best 

described by understanding Schematic 4.1.  The project is composed of three phases.  

The first phase describes the acquisition of ECG data from the hardware and analog-to-

digital conversion.  The ECG signal (hardware component) was obtained by the ADC in 

the laboratory and due to technical difficulties with the PIC24 microcontroller, eliminated 

the option of real-time processing.  The information was then converted to a format 

compatible with MATLAB and used for all subsequent phases. Although the program 

used was constructed for real-time application, it was still able to operate offline or by 

using stored ECG data.  Phase two is composed of the detection of the QRS complex, 

which is then outputted to the third phase.  The last phase is better known as diagnosis 

and is where the information is classified.  A problem that occurred during the design 

procedure was that the test data obtained from MIT/BIH arrhythmia database could not 
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be properly calibrated to fit the systems requirements.  Also, taking into account that 

ECG data could not be obtained from individuals with heart conditions, therefore the 

design of the project was slightly modified.  Instead of diagnosing patient ECG with a 

particular disease, the system was changed to output the identity of the patient (Phase 3), 

using their inputted ECG signal.  The assumption was that if the system could distinguish 

the identity based on two sets of data, then the system would be able to diagnosis ECG 

data since the method of classification is based on the same underlying principles.  In this 

chapter, Phase 2 and Phase 3 are discussed in detail followed by a discussion of the 

experimental procedures.  

4.2 Design of QRS Detector 

 As previously mentioned, the QRS detector extracts information regarding the 

QRS complex of an ECG signal on a beat-to-beat basis.  Referring to Figure 2.1, the 

preprocessing phase modifies the input signal into a form that can provide useful 

information about the current health of a patient’s heart.  The decision stage then creates 

an adaptive threshold that is used for peak detection and feature extraction.  In this 

section, a peak is a local maximum observed when the signal changes direction whereas a 

feature is a common or characteristic component of a signal that can be used to identify 

underlying patterns [11].   

 

i) Data acquisition and analog-to-digital conversion 
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The first step digitized the acquired ECG data and stored it into memory for 

further processing.  Since all the data obtained from the ADC was stored on disk, the 

program was modified to obtain information from memory.  Samples were taken one at a 

time, much like an ADC would.  As time progresses, the system adds each sample to a 

buffer array that is capable of holding a short length of data.  This short length is 

necessary due to memory on a microcontroller having to be conserved as much as 

possible.  Based on the preprocessing components outlined in Figure 2.1, the length of 

the buffer was determined to have a minimum length of 32 samples.  In addition, the 

buffer array was implemented using a circular array.  The circular array avoided the need 

to shift data for incoming data.  By doing so, this method simply overwrites the oldest 

sample in the buffer with the incoming sample.  All other preprocessing components that 

required memory, implemented a circular array to avoid array shifting, thus increasing 

the speed of QRS detection, and reserving memory for other important components. 

 

ii) Band Pass Filter 

The second step was the design of filters.  A band pass filter (BPF) was implemented to 

reduce the interference of muscular noise (60 Hz), baseline wander and T wave 

interference [11].  The BPF is the result of cascading a high pass filter (HPF) with a low 

pass filter (LPF).  The transfer function of the second-order LPF is described in Equation 

4.1. 

(ݖ)௅௉ிܪ =
1

36
ቆ

1 − ଺ିݖ

1 − ଵିݖ
ቇ
ଶ

 

 

In order to implement the LPF, the inverse Z-transform of Equation 4.1 must be done to 

obtain the difference equation (refer to Equation 4.2).  By doing so, x[n] represents the 

input sample at time tn= nTs with Ts being the sample period (Ts = 5ms) and y[n] 

represents the output of the filter. 

[݊]ݕ =
1

36
[݊]ݔ) − ݊]ݔ2  − 6] + ݊]ݔ − 12]) + ݊]ݕ2 − 1] − ݊]ݕ − 2] 

 

The LPF has a 3-dB cutoff frequency of about 11 Hz and produces a delay of 5 samples 

at the output [11].  In addition, the filters were cascaded together by providing the input 

(Equation 4.1) 
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(Equation 4.3) 

of the HPF with the output of the LPF [11].  The transfer function of the HPF is shown in 

Equation 4.3 followed by its difference equation in Equation 4.4 [11]. 

 

(ݖ)ு௉ிܪ =
−1 + ଵ଺ିݖ32 + ଷଶିݖ

32(1 − (ଵିݖ  

 

[݊]ݕ =
1

32
݊]ݔ32) − 16] − [݊]ݔ + ݊]ݔ − 32]) − ݊]ݕ − 1] 

 

The HPF has a 3-dB cutoff frequency of about 5 Hz with a total delay of 16 samples [11]. 

In order to correct the delay caused by the HPF and LPF, every sample of the output is 

shifted by 21 samples to match the input and filtered signals.  This was a critical step in 

the design procedure since the slightest misalignment would result in false timings of 

extracted features.  Therefore, bearing in mind the objective of the present project was to 

operate in real-time, it is vital that delays in data must be accounted for and corrected.  

 The entire process requires the most recent 32 samples, and calculates the output 

with a maximum of 5 terms [11].  Since the sample rate of the ADC was 200 Hz and the 

calculation size was small, the filter would perform very well in real-time without 

requiring excessive computing power [11]. 

 The amplitude response of the digital BPF is displayed in Figure 4.1.  The filter is 

seen to attenuate lower frequencies (below 5 Hz) steadily to -60 dB, which is a result of 

the HPF and the high frequencies (above 11 Hz) with a sharp transition band. Therefore, 

the filter created by Pan and Tompkins [11] was used due to the filters amplitude 

response showing good performance.  

 

(Equation 4.4) 
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iii) Derivative Function 

 After the raw input data was filtered, it then underwent differentiation.  Equation 

4.5a shows the difference equation that was used to differentiate the filtered data.  Since 

the delay was one sample, output samples were shifted to lineup corresponding to the 

input waveform.  Since derivatives provide information regarding local minima, local 

maxima and the rate of change (the slope), they were used to obtain critical information 

for recognizing patterns associated with the QRS complex. 

 

[݊]ݕ =
[݊]ݔ − ݊]ݔ − 1]

௦ܶ
 

 

 

iv) Non Linear Transformation: Squaring 

 In the fourth step, the output from the differentiator underwent a non-linear 

transformation; squaring.  The purpose of the transformation was to emphasize large 

slopes from smaller ones [11].  Since frequencies can be described using slope values, 

this step emphasizes high frequency components from the signal [11].  This allows future 

steps to locate areas of increased activity, such as the QRS complex.  The squaring 

function is shown in Equation 4.5b.   

 

[݊]ݕ =  ଶ([݊]ݔ)
 

v) MWI 

(Equation 4.5a) 

(Equation 4.5b) 
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(Equation 4.6) 

 In the final processing step, the MWI was calculated using the output from the 

squaring function.  The purpose of the MWI was to extract feature information from the 

input ECG data along with the slope of the R wave, so that the time average of a specific 

window size can be determined [11].  This was calculated using Equation 4.6, where ߬ 

represents the window of integration size (MWI window size). 

 

[݊]ݕ =
1
߬
෍ݔ[݊ − ݇]
ఛ

௞ୀ଴

 

 

One specific relationship that the MWI has with an ECG signal is the width of the QRS 

complex.  For every heartbeat, the QRS width corresponds to the rising edge of the MWI 

and is therefore calculated by finding the time duration of the rising edge [11].  Figure 4.2 

illustrates the relationship between the QRS width and the MWI.  Using this property, the 

width of the QRS complex was determined by finding the time duration from the local 

minimum prior to the R wave peak to the local maximum after the R wave peak.  The use 

of the MWI allowed other features of the ECG signal to be extracted as well. 



24 
 

 

vi) Threshold Adjustment 

 Once the MWI was calculated, the data continued into the decision stage.  The 

first step was the threshold adjustment.  The purpose of the thresholds was to provide 

specific limits for finding the R wave peak and QRS width.  Using the MWI, two 

thresholds were set and were automatically adjusted with every input sample.  The first 

threshold, called THR_NOISE was automatically adjusted to float above the noise [11].  

Since the signal-to-noise ratio (SNR) was improved by the BPF, a low threshold was 

possible.  Any MWI value that was found below THR_NOISE was considered to be a 

result of noise and therefore anything above the THR_NOISE was considered useful 

information.  The second threshold, THR_SIGNAL was used for detecting QRS 

candidates.  This threshold was also automatically updated to represent the decision 

boundary for QRS complexes and non-QRS complexes.  

The thresholds were adjusted based on local minima and maxima found in the 

MWI waveform.  Once the QRS detection was initiated, a brief diagnostic period of 1000 

samples (5 seconds) was allowed for finding the largest peaks and lowest minimums.  

Once the diagnostic period ended, the program used the results from the diagnostic period 

as running estimates of signal and noise peaks, and continued for 30 to 50 seconds to 

establish THR_NOISE and THR_SIGNAL.  Algorithm 4.1 describes the process 

involved in automatically adjusting the two thresholds [11]. 

  

In Algorithm 4.1, CURRENTPK represents the current peak detected in the MWI 

waveform, SPKI is the running estimate of the signal peak, and NPKI is the running 

estimate of the noise peak [11].  Using this algorithm, the threshold constantly adapted to 

if (CURRENTPK > THR_SIGNAL) 
 
 SPKI = SPKI = 0.125*CURRENTPK + 0.875*SPKI; 
 
elseif(CURRENTPK > THR_NOISE && CURRENTPK < THR_SIGNAL) 
 
 NPKI = 0.125*CURRENTPK + 0.875*NPKI; 
 
end 
 
THR_SIGNAL = NPKI + 0.25*(SPKI - NPKI); 
THR_NOISE = 0.5*THR_SIG; 

(Algorithm 4.1) 
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the MWI for every heartbeat, but by the time the diagnostic period passed, the thresholds 

already stabilized.  The use of thresholds was an essential component as they provided 

the QRS detection step with appropriate information to extract features. 

 In the final step, the system used the calculated thresholds to determine whether 

or not a QRS complex occurred. The main goal from this step was to extract the start and 

end of the QRS complex as well as the position and height of the R wave peak, as 

depicted in Figure 4.3. 

 To detect the start position of the QRS complex, local minima must be analyzed, 

which is shown by the first purple horizontal line in Figure 4.3.  The local minimum or 

CURRENTMIN, was found by analyzing the change in MWI or MWI_D[n] slope from a 

negative value to a positive one.  Since the start of the QRS complex corresponds to the 

beginning of the rising edge in the MWI waveform (refer to Figure 4.2), the 

CURRENTMIN closest to n where MWI[n] = THR_NOISE is considered the beginning 

of the QRS complex.  In addition, the QRS start was assumed to represent the isoelectric 

level.  Algorithm 4.2 describes in detail the code designed for detecting the start of the 
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QRS complex.  In this algorithm, window represents the size of the circular buffer array, 

count represents the time (in samples) elapsed, n represents the current new position in 

the circular buffer, beat_num represents the current beat number, MWI_D represents the 

derivative of MWI[n], CURRENT_R represents the peak of the most recent R wave, x[n] 

represents the raw ECG data, D[n] represents the derivative of x[n] and 

CURRENT_R_pos represents the position of the most recent R wave peak. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n = mod(count,window);     
 
if (MWI[n] <= THR_NOISE && MWI_D <=0) 

QRS_width = 1000*(QRS_end_pos-QRS_start_pos)/Fs; 
                         
if (found_QRS_end == 1) 
    QRS_width_memory[beat_num] =  QRS_width; 

      end 
                         
      CURRENTMIN = MWI[n]; 
      CURRENTMIN_pos = n; 
      QRS_start_pos = count; 
                         
      CURRENT_R = 0; 
      R_found = 0; 
      found_QRS_end = 0;                       
                         
elseif (MWI[n] > THR_NOISE) 

if (x[n] >= CURRENT_R && D[n] >= 0)  
       CURRENT_R = x[n]; 
            CURRENT_R_pos = count; 
  CURRENT_R_index = n;                            
      else 
            if (R_found == 1) 

%This assignment is so that R_found > 0, 
so that a peak does not need to be 
searched for any longer, until, MWI falls 
below THR_NOISE, in which case R_found 
resets to 0. 

             
R_found = 2;  

                             
            elseif (R_found == 0)                          
                  R_found = 1;                                    
            end                        
      end 
 

(Algorithm 4.2) 
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 The position of the R wave peak was found by determining the maximum value of 

x[n], when MWI[n] > THR_NOISE and when D[n] >=0.  Since the R wave cannot occur 

when MWI[n] is below THR_NOISE, it was found by observing the derivative, D[n] of 

x[n], when MWI[n] >THR_NOISE.  As well, since the R wave peak is characterized by a 

zero crossing in D[n], the maximum value of x[n] before D[n] = 0 (under the condition 

MWI[n] > THR_NOISE), was determined to be the R wave peak and position.  Once the 

R wave peak was found, it was subtracted by the QRS start value to provide a 

comparable value relative to the isoelectric level. 

 With the R wave peak position and QRS start established, the last piece of 

information that was found was the QRS end using Algorithm 4.3. This was found by 

determining the peak in the MWI waveform, for MWI[n] > THR_SIGNAL and after a 

certain time interval.  In Figure 4.3, this peak is shown as the purple horizontal line above 

THR_SIGNAL.  In the Algorithm 4.3, CURRENT_R_index represents the R wave peak 

position in the circular buffer and time_thresh represents the extra time after 

if (MWI_D >= 0 && MWI[n] >= CURRENTPK) 
 

CURRENTPK = MWI[n]; 
 
elseif (MWI_D < 0 && CURRENTPK > 0 ) 
                       

if (found_QRS_end == 0 && CURRENTPK > THR_SIGNAL 
&& new_D >mod(CURRENT_R_index + 
time_thresh,window)) 

                           
       SPKI = 0.125* CURRENTPK + 0.875*SPKI; 
            QRS_end_pos = count;                                
            found_QRS_end = 1;                          
                               
      elseif (CURRENTPK > THR_NOISE && CURRENTPK <  

THR_SIGNAL) 
       
  NPKI = 0.125* CURRENTPK + 0.875*NPKI; 
       

end 
       

THR_SIGNAL = NPKI + 0.25*(SPKI - NPKI); 
      THR_NOISE = 0.5*THR_SIG; 
                       

CURRENTPK = 0; %reset currentpeak so that can 
find a new peak, even if lower than previous                 

end  
 

(Algorithm 4.3) 
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CURRENT_R_index in which peaks may be considered.  This variable prevented peaks 

from being detected before the occurrence of the QRS end.  With the QRS end position 

determined, the QRS width may be calculated by subtracting the QRS end by the QRS 

start. 

With the R wave peak position and height detected, heart rate calculations were 

performed, using Equation 2.1.  At the end of the analysis, the QRS detector outputted a 

feature vector described by Equation 4.7 under the conditions presented in Equations 4.8-

4.10.  In Equation 4.7, ܴோ௣௘௔௞ is the R wave peak value in volts (V), ܴூுோ is the 

instantaneous heartrate in beats/min and ܴொௐ is the QRS width in milliseconds (ms).   

ࡾ = ൣܴோ௣௘௔௞ , ܴூுோ , ܴொௐ൧ 
 

ܴோ௣௘௔௞ > 0.2 ܸ 
               

݊݅݉/ݏݐܾܽ݁ 40 < ܴூுோ <  ݊݅݉/ݏݐܾܽ݁ 200
 

ݏ݉ 80 < ܴொௐ <  ݏ݉ 200

 As mentioned above, patient identity and therefore heart disease, can be characterized by 

these features extracted from a particular ECG signal and will therefore be used in Phase 

3 of Schematic 4.1 to classify the data. 

 

4.3 Design of Support Vector Machine 
In the final phase of the project, the extracted features from Phase 2 were used to 

build a SVM model.  The goal of SVM was to use available examples to produce a model 

or function that can classify unseen examples with little error [16].  As described in 

Chapter 2.4, a (p-1)-dimensional hyperplane is used to separate 2 p-dimensional classes, 

by finding its optimal position and orientation that maximizes the distance to the nearest 

data point of each class (refer to Figure 2.2) [16].  In order to understand the 

classification system that was used, a detailed derivation and explanation of SVM is 

necessary.  

 In order to generate a model, an SVM must first be trained using data with known 

labels.  The idea is to separate a feature vector; D, with data; ࢞, and class or label; y, as 

shown in Equation 4.11a [16]. 

(Equation 4.7) 

(Equation 4.8) 

(Equation 4.9) 

(Equation 4.10) 
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(Equation 4.12) 

ܦ  = ,ଵ࢞)} ,(ଵݕ ,ଶ࢞) ,(ଶݕ ,ଷ࢞) ,(ଷݕ … , ,௠࢞) ݔ  ,{(௠ݕ ∈ ℝ௣, ݕ ∈ {−1, +1} 

 

In the above equation, where ݉ is the number of training samples in the data set, ݌ is the 

number of dimensions, y is either positive or negative and corresponds to the positive or 

negative class [16]. The two classes are then separated with the hyperplane defined in 

Equation 4.11b, where ࢝ is normal to the hyperplane and |b|/||࢝|| is the perpendicular 

distance to the origin [16][17]. 

,࢝〉 〈࢞ +  ܾ = 0 

 

As well 〈࢝,  In order to find the optimal .[16] ࢞ with ࢝ represents the dot product of 〈࢞

hyperplane with the largest margin, training data from the positive class (1+ = ݕ) must 

satisfy the inequality in Equation 4.12 and the negative class (1- = ݕ) must satisfy 

Equation 4.13, where ࢞௜ represents the ݅th input training data sample [17]. 

,࢝〉 〈௜࢞ +  ܾ ≥ +1, ௜ݕ         = +1

,࢝〉 〈௜࢞ +  ܾ ≤ −1, ௜ݕ         = −1
 

Equations 4.12 and 4.13 can be combined to form Equation 4.14 [17]. 

,࢝〉)௜ݕ 〈௜࢞ +  ܾ) − 1 ≥ 0 

 

Thus, data points that satisfy the equality of the Equation 4.12 (positive class), can be 

described by the hyperplane ܪଵ in Equation 4.15, with the perpendicular distance from 

the origin,|1 −  ଶ in Equation 4.16, can beܪ Similarly, the hyperplane .[17]  ‖࢝‖/|ܾ

described by the equality of Equation 4.13 (negative class), with perpendicular distance 

from the origin,| − 1 −  ଵ, ݀ଵ, isܪ ଴ toܪ Therefore, the distance from .[17]  ‖࢝‖/|ܾ

equivalent to the distance from  ܪ଴ to ܪଶ, ݀ଶ, as shown in Equation 4.17 [17]. The 

purpose is to maximize the margin, defined by Equation 4.18, by determining a 

hyperplane ܪ଴ that minimizes Ψ(࢝) in Equation 4.19 [16]. Figure 4.3 illustrates the 

optimization problem where solid circles refer to the negative class, and hollow circles 

refer to the positive class [17]. It can be seen in Figure 4.4, that the support vectors 

(circled) define the optimal separating hyperplane, and that if the non-circled data point 

were removed, there would be no change.  

(Equation 4.11a) 

(Equation 4.13) 

(Equation 4.14) 

(Equation 4.11b) 
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,࢝〉 :ଵܪ 〈௜࢞ +  ܾ = 1  

,࢝〉 :ଶܪ 〈௜࢞ +  ܾ = −1 

݀ଶ = ݀ଵ =
1

‖࢝‖
 

݀ଵଶ = ݀ଵ + ݀ଶ =
2

‖࢝‖
 

Ψ(ܟ) =
1
2
 ଶ‖࢝‖

  

 

In order to minimize Equation 4.19 under the constraints of Equation 4.14, the 

Lagrangian, shown in Equation 4.20, must be minimized with respect to ࢝, ܾ and 

maximized with respect to ߙ௜ ≥ 0, where ߙ௜ are the positive Lagrange multipliers 

[16][17].  

 

(Equation 4.15) 

(Equation 4.16) 

(Equation 4.17) 

(Equation 4.18) 

(Equation 4.19) 
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Ψ(࢝, ܾ, (ߙ ≡
1
2
૛‖࢝‖ −෍ߙ௜ݕ௜(〈࢝, 〈௜࢞ +  ܾ) + ෍ߙ௜

௠

௜ୀଵ

 
௠

௜ୀଵ

 

To make the optimization easier, the primal problem in Equation 4.20 can be transformed 

to the dual problem by maximizing Ψ(࢝, ܾ,  subject to the constraints of Equation 4.21 (ߙ

and 4.22a [17]. This particular formulation is called the Wolfe dual, and has the property 

that the maximum of Ψ(࢝, ܾ,  ,subject to the constraints in Equation 4.21 and 4.22a (ߙ

occurs at the same values of ࢝, ܾand ߙ, as the minimum of Ψ(࢝, ܾ,  subject to the (ߙ

constraint of Equation 4.22b [16][17]. 

 
߲ Ψ
߲࢝

= 0       ⇒ ࢝        = ෍ߙ௜ݕ௜
௜

 ௜࢞

 
߲ Ψ
߲ܾ

= 0        ⇒            ෍ߙ௜ݕ௜
௜

= 0  

 

߲ Ψ
ߙ߲

= 0   ⇒    ෍ݕ௜(〈࢝, 〈௜࢞ +  ܾ) = ෍1
௠

௜ୀଵ

= ݉ 
௠

௜ୀଵ

 

The dual of Equation 4.20 can be formulated by substituting the constraints from 

Equation 4.21 and 4.22a into Equation 4.20, to give Equation 4.23 [16][17]. 

 

(ߙ)ܹ  = ෍ߙ௜
௜

−
1
2
෍෍ߙ௜ߙ௝ݕ௜ݕ௝

௝௜

௜࢞〉 ,  〈௝࢞

The problem is then to minimize Equation 4.23, subject to the constraints in Equation 

4.22a and 0 ≤ ௜ߙ ≤ C, where C is a constant [18]. This step is a quadratic programming 

problem, and can be solved using developed techniques, such as the Sequential Minimal 

Optimization method, which will output ߙ௜ corresponding to training samples and as a 

result, provide the optimal hyperplane as described in Equation 4.24 [18].  

 

∗࢝ = ෍ߙ௜ݕ௜࢞௜

௠

௜ୀଵ

  

 

(Equation 4.20) 

(Equation 4.21) 

(Equation 4.22a) 

(Equation 4.22b) 

(Equation 4.23) 

(Equation 4.24) 
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Using Equation 4.24, the bias,ܾ, can be found, by using Equation 4.25, where ࢞ௌ௏ା  and 

ௌ௏ି࢞  are the positive and negative support vectors, respectively [18]. 

 

ܾ = −
1
2

,∗࢝〉) ௌ௏ା࢞ 〉 + ,∗࢝〉 ௌ௏ି࢞ 〉) 

In addition, the output ߙ௜ values will only be non-zero for support vectors as described in 

Equation 4.26 where solutions are either ߙ௜ = 0 or the equality of Equation 4.14 [18]. 

 

,∗࢝〉]௜ݕ)௜ߙ 〈௜࢞ +  ܾ] − 1) = 0 

 

The classifier may then be described by Equation 4.27 where ݊݃ݏ is the function 

described in Equation 4.28, and R is the input data to be classified (test data) [18]. 

 

(ࡾ)݂ = ,∗࢝〉)݊݃ݏ 〈ࡾ + ܾ) 

(ݔ)݊݃ݏ = ൝
−1, ݔ < 0
0, ݔ = 0
1, ݔ > 0

 

Equation 4.27 takes an test input data, R, and classifies it as the positive class if 

,∗࢝〉 〈ࡾ + ܾ > 0, and the negative class if 〈࢝∗, 〈ࡾ + ܾ < 0. Therefore a binary classifier 

has been produced, using the ߙ௜ values from the training phase, the training vectors ࢞௜ 

with corresponding labels ݕ௜, and R,  as shown in Equation 4.29.  

 

(ࡾ)݂ = ෍ߙ௜ݕ௜〈࢞௜ , 〈ࡾ
௠

௜ୀଵ

+ ܾ 

  

For the purpose of the project, the input feature vector to the classifier is 

described in Equation 4.7. A network map of the SVM that was implemented is 

illustrated in Figure 4.5. The map indicates that every components of the input data, was 

multiplied with the corresponding component for each training data sample, then 

multiplied by the Lagrange coefficient, ߙ௜ and the label, ݕ௜ corresponding to the ith 

training data sample, and finally summed (along with ܾ) to output -1 for a negative 

(Equation 4.25) 

(Equation 4.26) 

(Equation 4.27) 

(Equation 4.28) 

(Equation 4.29) 
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classification or 1 for a positive classification. In addition, Figure 4.5 displays the SVM 

model assuming the input data was linearly separable.  

 Since the extracted ECG features were not linearly separable, an alternative 

solution was found that transformed the data into a higher dimensional space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.5: The SVM network map used for classification of ECG data. The 
feature vectors are: R wave peak (RA), instantaneous heart rate (RB) and the 
QRS width (RC).  
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The solution consisted of mapping input data to a new features space, where data was 

successfully separated and classified. Figure 4.6 illustrates the how the linearly 

inseparable data can be mapped to a higher dimension to produce separable data. 

The input data from Figure 4.5 was mapped using the transformation in Equation 4.30 

[18]. If a kernel function is defined as ࢞)ܭ௔, (௕࢞ = 〈Φ(࢞௔), Φ(࢞௕)〉, then Equation 4.29 

can be expressed as Equation 4.31 [18].    

 

⟶ࡾ Φ(ࡾ) 

 

(ࡾ)݂ = ෍ߙ௜ݕ௜࢞)ܭ௜ , (ࡾ
௠

௜ୀଵ

+ ܾ 

Examples of the kernel functions are the linear, quadratic, Gaussian Radial Basis 

Function (RBF) and polynomial kernels, as shown in Equations 4.32-4.35 [19]. 

 

:ݎܽ݁݊݅ܮ ,௔࢞)ܭ (௕࢞ = ,௔࢞〉 〈௕࢞ + ܿ

:ܿ݅ݐܽݎ݀ܽݑܳ ,௔࢞)ܭ (௕࢞ = 1 −
௔࢞‖ − ‖௕࢞

௔࢞‖ − ‖௕࢞ + ߠ

:ܨܤܴ ,௔࢞)ܭ (௕࢞ = exp ቆ−
௔࢞‖ − ௕‖ଶ࢞

ଶߪ2
ቇ

:݈ܽ݅݉݋݊ݕ݈݋ܲ ,௔࢞)ܭ (௕࢞ = ,௔࢞〉ߛ) 〈௕࢞ + ܿ)ௗ

 

 

By using these kernels, the classification system transformed the problem into a new 

feature space in efforts to improve the effectiveness of the SVM. 

 

(Equation 4.30) 

(Equation 4.31) 

(Equation 4.32) 

(Equation 4.33) 

(Equation 4.34) 

(Equation 4.35) 
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4.3 Experimental Procedures 
 The experimental procedures consisted of testing the QRS detector and the SVM 

using several kernel functions. As previously mentioned, the QRS detector from Chapter 

4.2 used raw ECG data to output a vector defined by Equation 4.7. To test the 

effectiveness of QRS detection, 4 sets of data were presented to the system which was 

Rob and Mike’s training and testing data. The outputs were then analyzed qualitatively 

by observing heart beats for incorrect QRS detection. The training data was then used to 

train the SVM to identify Mike’s ECG as the positive class and any other ECG (i.e Rob’s 

data) as Not-Mike’s ECG. To test the SVM, a data set containing labeled test ECG data 

from Rob and Mike, was input. The output of the classification stage was then compared 

to the input for true positives, true negatives, false positives and false negatives, which 

were then used to calculate the relative error in classification for each kernel function. As 

well, the efficiency if the QRS detector was assessed by analyzing the classification error 

before and after the elimination of outliers.  
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Chapter 5 

 

Results and Discussion 
 

As previously mentioned (refer to Schematic 4.1), the first component of the 

overall system is the QRS detector or feature extraction stage.  This element analyzed the 

data and would output features necessary for the classification stage.  The SVM is the 

classification stage that uses the input feature vector to train the SVM and then execute 

classification on non-training data.  In this implementation of the ECG analyzer, the 

signal from human test subjects was used to train the SVM, and then non-training data 

from the subjects was used to distinguish between them.  

 

5.1 Results of QRS Detector 
This component of the ECG analyzer represents the feature extraction stage. To 

test the feature extraction stage, experimental ECG data obtained from the hardware 

component of the project was used and analyzed to output information regarding desired 

features that were then classified.  

 

i) Filtering 
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In this component of QRS detection, test ECG data obtained from the hardware 

component was filtered with a BPF. The output of the filter is shown in Figure 5.1. 

 

 

As represented in Figure 5.1 above, the filtered waveform is a smoother version of the 

raw ECG data.  Furthermore, there exists a slight manipulation in the shape of the filtered 

output taking into consideration the high frequency components that were attenuated.  

The slight difference in the shape of the filtered ECG signal indicates that higher 

frequency components contribute to the characteristic shape of the ECG signal. 
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In addition to the time domain, a signal may also be represented in the frequency domain 

to provide information regarding a filters performance (refer to Figure 5.2, a 

representative spectrum of Figure 5.1).  As the Figure 5.2 depicts, the frequencies above 

11 Hz are attenuated, which is consistent with the notion that the LPF is operational.  

However, due to the lack of low frequency attenuation, the filter created a perfect overlap 
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for frequencies below 5 Hz.  Thus, this suggests that the HPF component was not 

working properly.   

 Another method of analyzing a filters performance is to analyze the power density 

of the signals.  In Figure 5.3, the power spectral density (PSD) was calculated from data 

used in Figure 5.1 and plotted in an overlapping manner to provide qualitative assessment 

of the filters performance.  Based on the findings in Figure 5.3, it is evident that power 

from the QRS complex is conserved from raw to filtered data.  This is an important 

feature due to all relevant information being derived from the position of the QRS 
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complex.  In addition, the absence of the HPF component can also be noted since there is 

no decrease in power density for frequencies below 5 Hz.  When considering the time 

domain, frequency domain and PSD signals, the BPF was regarded as operational only 

for frequencies above 11 Hz.  However, the lack of attenuation for frequencies below 5 

Hz is a result of the non-operational HPF.  Although the filter component did not operate 

as originally designed, there were very few errors in the classification component and 

thus demonstrating the system can successfully run even in the absence of a HPF. 

 

ii) Differentiation 

Upon completion of the filtering stage, the differentiation stage was used to 

distinguish filtered data with respect to time and outputted to the subsequent stages.  
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The results of differentiating Figure 5.1 data are shown in Figure 5.4.  The data 

demonstrates that for values that change rapidly, the output of the derivative component 

is a high value.  This was confirmed by matching the location of positive peak in the 

differentiated waveform with the filtered waveform, and observing the slope.  On the 

other hand, values that change gradually over time are represented by less prominent 

maxima and minima in the differentiated waveform.  This can be seen at t ≈ 14.9 s 

(Figure 5.4a), where the differentiated waveform has a small value and the slope of the 
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filtered data is smaller in magnitude than the QRS data.  The maxima and minima of the 

ECG signals were seen to occur when the output of the differentiating function was zero 

and therefore used as a time marker for any peaks or minimums.  An example of this is at 

t ≈ 14.35 s (Figure 5.4b), where the peak in the filtered ECG waveform resulted in a zero 

crossing in the differentiated waveform.   

The relationship between the filtered signal and its derivative can describe 

locations of features, while providing insight on these occurring events.  An example of 

this is the P wave which can be described by smaller minima and maxima due to the 

relatively slow depolarizing nature of the atria.  On the other hand, by observing the large 

values in minima and maxima from the differentiated waveform, the QRS complex can 

be identified, which indicate that ventricular depolarization occurred incredibly fast. The 

T wave was seen to have values greater than the P wave, however insignificant in 

comparison to the QRS complex. These results show that the relationship between a 

signal and its derivative provide useful information needed to describe occurring events. 

 

iii) Nonlinear Transformation: Squaring 

This component squares the output of the differentiation block, as shown in 

Figure 5.5.  One can observe that the output of the squaring function creates positive 

values of the derivative function and emphasizes steep slopes of the filtered output much 

more than flatter slopes.  Since peak values in the squared output represent the steepest 

slope, the fast changing profile of the QRS complex can be related.   An example is 

shown by the peaks of the squared output, in the time interval [14.6, 14.7] (refer to Figure 

5.5a).  The P and T wave cannot be properly recognized since the values of their peaks 

(squared function) are far less in comparison with QRS peaks.  Since rapidly changing 

events are emphasized much more than slower ones, the squaring function emphasizes 

the QRS complex the most and thus makes the output of the nonlinear transformation 

stage an essential step in the analysis of QRS complexes. 
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iv) Moving Window Integrator (MWI) 

The results from the MWI showed considerable impact on the outcome of the 

preprocessing stage, described in Figure 2.1.  The MWI function obtained a time average 

of the squaring function, which consisted of calculating the mean for τ samples for every 

point in time, and resulted in a shape described in Figure 5.6. 
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In Figure 5.6, the MWI resulting from the data in Figure 5.5, demonstrates the differences 

between the two data sets.  By comparing (a) and (b) of Figure 5.6, the MWI waveform 

can be seen to differ in both shape and magnitude, demonstrating that ECG signals are 

unique to every individual.  In addition, the shape of the MWI output is also 

characterized by the window size, τ.  Figure 5.7 demonstrates the effect of varying τ for 

the given sample rate of 200 Hz.  It can be seen that if τ is too large, the MWI function 

merges QRS complexes and T waves together.  As well, if τ is too small, the MWI 

function has several peaks and its rising edge does not represent the QRS width 

appropriately.  As a result, the features extracted from the MWI are a combination of 

unique ECG data and window size.  Taking into account the best window size was 

determined empirically to be 150 ms [11], the value for τ used was 30 samples.  The use 

of this value resulted in non-merged MWI data as evidenced by Figure 5.7 at τ = 30 

samples.  With this window size, the MWI data can be used for determining information 

relevant to patterns in ECG signal.  

 

Due to the MWI output, some features may be extracted for use in the 

classification stage.  As described in Chapter 4.2, one of the most important purposes of 
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the MWI waveform is its relation to the QRS complex (refer to Figure 4.2).  In this 

figure, the width of the QRS complex corresponds to the width of the rising edge of the 

MWI waveform.  This can be observed using the test data in Figure 5.6, by comparing 

the width of the rising edge of the MWI waveform to the width of the QRS complex. The 

features that were extracted using the components of the QRS detector are illustrated in 

Figure 5.9.  This figure shows the final output of the QRS detector using the training data 

from Figure 5.1.   
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As observed in the illustration, the QRS detector detected the start and end of the QRS 

complex along with the position of the R wave peak, for Rob and Mike’s ECG signals.  

The results from this figure demonstrate that the QRS detector can function properly, 

regardless of the difference in ECG shape and amplitude. 

 

5.2 Results of Support Vector Machine 
As previously described, the pattern recognition component is comprised of the training 

and classification phase.  That being said, analyzing error associated with the 

classification system is strongly dependant on the error associated with the inputs.  As 

shown in Figure 5.10, the QRS readings of Mike and Rob’s test data supports the notion 

that the algorithm is in fact working, which is expressed by the detected features.  Also, 
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although the ECG morphology is different, the QRS detector is still able to extract the 

relevant features.  When analyzing these diagrams, the presence of more than one cluster 

of data is evident, as shown in Figure 5.11.  Under ideal circumstances, there would be 

only one present.  However, due to errors in QRS detection there was more than one 

observed.  These clusters of data (red ellipses) represent data points that are numerically 

distant from the remaining values and are better known as outliers [15].  Although a 

restriction was placed on the extracted features, not all outliers were eliminated.  These 

clusters of data are a result of errors associated with the QRS detection algorithm.  Since 

the outliers of Figure 5.11 were common for very wide QRS complexes (greater than 

200ms), they were eliminated from the training data.  By outliers being reduced from the 

feature vector, the SVM model was able to properly train and execute to find the optimal 

separating hyperplane required for classification.  As shown in Figure 5.12, using the 

testing ECG data from Figure 5.9, SVM classification results were obtained for a variety 

of kernel functions.  In order to display the effectiveness of the different SVM’s, 2-

Dimensional feature vectors were used due to the graphic ease in expressing such plots.  

Looking at Figure 5.12a, it represents the classification of an SVM model trained with a 
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linear kernel.  Since the data was not completely separable using a linear hyperplane, the 

overall error for the linear kernel was 36.1%.  When considering Figure 5.12b, using a 

quadratic kernel for training the SVM model had an overall error of 17.43%.  The SVM 

shown in Figure 5.12c was trained using the Gaussian Radial Basis Function (RBF) 

kernel, which had an overall error of 19.92%.  The last variation found on Figure 5.12d, 

represents the output of classification when the SVM was trained using the polynomial 

kernel.  The overall error of the polynomial kernel was 19.09%, which was the lowest of 

all kernels tested.  A summary of the classification test is displayed in Table 5.1 and 

Table 5.2 (note: values are measured in number of heart beats).  

The results seen in Table 5.1 and Figure 5.12 indicate that the classification 

system performed reasonably well if outliers (features with QRS widths greater than 

200ms) were eliminated.  Table 5.2 demonstrates the results when the outliers were not 

removed.  When comparing the error terms for each kernel in Table 5.1 and Table 5.2, it 

is clear that the outliers present a significant error to the classification system.  Due to the 
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outliers arising as a result of incorrect QRS detection, the overall operation of the QRS 

detector can be described by the error terms presented in Tables 5.1 and 5.2. In addition, 

since patterns in both test ECG and labeled disease ECG data, are characterized with the 

same feature vectors, the results from successful patient identity translate to successful 

diagnosis.  Furthermore, both show that the detector performs moderately well for the 

quadratic, RBF and polynomial kernels.  
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5.3 Overall Performance 
The overall performance of the system was considered acceptable given the fact 

components of the QRS detector were not operating properly. As mentioned earlier, the 

HPF in the filter stage was not operation, and results from the classification stage provide 

a higher bound for error associated with classification. Therefore, correction of the HPF 

could result decrease the error in classification. Another restricting aspect was the 

dimension of the feature vector in Equation 4.7. Since the feature vector used to generate 

the statistics in Table 5.1 and Table 5.2 were 3-dimensional, the ability for the SVM to 

classify testing data was restricted to 3 features. A better ECG analyzer would include 

many more features in defining patterns associated with heart-disease. Given the scope of 

the project, the use of 3 features was enough to prove the functionality of an ECG 

analyzer using fundamental concepts.   
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Chapter 6 

 

Conclusion 

 

6.1 Conclusion of the Design Procedure 
 The purpose of the project was to design an ECG Analyzer that takes human ECG 

data, and provides a diagnosis for the state of the heart. The project was composed of two 

main components: QRS detection and SVM classification.  

The QRS detection component was successful as it was able to analyze various 

types of ECG data and identify the QRS start, QRS end and R wave peak and position.  

Since the detector was able to extract features from different ECG data (i.e Rob and 

Mike’s data), the detector could therefore be applied to any normal ECG waveform.   

Although the majority of heart beats that were detected in Rob and Mike’s training and 

testing ECG data, were correctly identified, there existed some error. The error could be 

the result of the malfunctioning HPF or the detection ability, as evidenced by the outliers 

in Figure 5.11. The effects of error are shown in Table 5.1 and Table 5.2, where the 

elimination of outliers resulted in more accurate detections. 

On the other hand, the classification system performed considerably well. Since 

the feature vector was 3-dimensional, the classification was restricted to patterns found in 

only 3 features. The results in Table 5.1 and Table 5.2 indicated that the SVM was 

capable of distinguishing between Mike’s data and Not-Mike’s data with about 19% to 

35% error. The error is the result of incorrectly detected peaks from the feature extraction 

stage. This was evidenced by the increase in classification error when outliers were 

included in the test data. Therefore the performance of the feature extraction stage is 

reflected by the classification errors, which indicates that the QRS detector had some 

errors. In addition, the SVM classifier operated with the least error when the polynomial 

kernel was used, and the most error when the linear error was used (refer to Table 5.1 and 

Table 5.2). 
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Overall, the ECG analyzer was able to distinguish the identity for any input ECG 

data, as either Mike or Not-Mike with reasonable accuracy. Since the ECG analyzer was 

capable of determining the identity of input data using only 3 features, the system could 

therefore be capable of diagnosing patients using probability. With that being said, the 

project fulfilled its requirements of detecting QRS complexes and identifying ECG 

origin, inferring patient diagnosis. 

 

6.2 Future Recommendations  
Although the ECG analyzer operated with moderate results, there was still room 

for improvement. One source of improvement would be the size of the feature vector. By 

using more features, patterns could be defined better for specific CVDs. This would 

result in decreased classification errors, but the use of too many features could result in 

decreased generalization. To combat this problem, a feature selection component would 

be incorporated where only certain features are used to classify particular heart diseases. 

Additionally, the selection of a kernel function that provides the best generalization 

would have to be determined to further increase classification accuracy. One other 

improvement would be to implement the software onto to a microcontroller to provide 

portability. 
 

 

 

 

 

 



56 
 

 

Appendix A – Computer Programs Used 
MATLAB R2008b 

Microsoft Word 2007 

Microsoft PowerPoint 2007 

Paint 
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