

Manual Wheelchair Automator:

Design of Front-end Process for a Speech

Recognition System

By

Ling Tsou

Electrical and Biomedical Engineering Project Report (4BI6)
Department of Electrical and Computer Engineering

McMaster University
Hamilton, Ontario, Canada

Manual Wheelchair Automator:

Design of Front-end Process for a Speech

Recognition System

By

Ling Tsou

Electrical and Computer Engineering
Faculty Advisor: Dr. Thomas Doyle

Electrical and Biomedical Engineering Project Report
Submitted in partial fulfillment of the degree of

Bachelor of Engineering

McMaster University
Hamilton, Ontario, Canada

April 27, 2009

Copyright ©April 2009 by Ling Tsou

- ii -

Abstract
A typical electric powered wheelchair is normally buttons or joystick operated which
requires some degrees of hand movements. However, for severely physically disabled
patients such as patients with high level spinal injury, their hand motions can be
restricted. One of the alternative wheelchair control methods is to use speech control
instead of joystick control. A speech control system would allow the user to operate
the wheelchair with speech commands instead of hand movements. In order to
perform speech recognition on the given commands, a front-end process on speech
signals is implemented. Some of the major components include data acquisition,
feature extraction, and data quantization. An endpoint detection algorithm based on
energy analysis is used to isolate individual words. Linear predictive coding (LPC)
and cepstral analysis are chosen to characterize speech signals. For data compression
and classification, fast vector quantization (VQ) codebook design and search
algorithms are implemented based on partial distortion theorem. For each isolated
words, this front-end process would provide a speech recognition system with a
sequence of indexes which is a compressed representation of the characteristics of the
original speech. The basic algorithms, hardware and software design, the results are
presented.

Keywords: speech recognition, feature extraction, speech encoding, voice sampling,
endpoint detection, linear predictive coding (LPC), cepstral coefficient, vector
quantization (VQ), codebook design.

- iii -

Acknowledgments
I wish to thank our course supervisor and faculty advisor Dr. Thomas E. Doyle for

pushing this project forward and for his support. Thanks to Jason Thong, the teaching

assistant, for his valuable comments and Thu Zar Kyaw for lending us her knowledge

on microcontroller. Special thanks to Diane Tait from St. Peters Hospital for lending

us the wheelchair for prototyping. Last but not least, I want to thank my project

partners, Hailun Huang and Erika Schimek, for keeping up the good work to the end.

- iv -

Table of Contents
ABSTRACT ... ii

ACKNOWLEDGMENTS .. iii

TABLE OF CONTENTS.. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

NOMENCLATURE..x

CHAPTER 1 INTRODUCTION...1

1.1 BACKGROUND..1

1.2 OBJECTIVES ...2

1.3 METHODOLOGY ...2

1.4 SCOPE..4

CHAPTER 2 LITERATURE REVIEW ...6

CHAPTER 3 STATEMENT OF PROBLEM AND METHODOLOGY OF

SOLUTION...8

CHAPTER 4 EXPERIMENTAL/DESIGN PROCEDURES................................11

4.1 HARDWARE DESIGN ...11

4.1.1 Data Acquisition...11

4.1.1.1 Choice of Microphone ...12

4.1.1.2 Microphone preamplifier and filter circuit design14

4.1.2 Processor Board Selection..19

4.1.3 Overall Hardware Design...23

- v -

4.2 SOFTWARE DESIGN...24

4.2.1 Digital Signal Process Overview ..25

4.2.2 Speech Sampling and Windowing ...26

4.2.3 Endpoint Detection...31

4.2.4 Feature Extraction ...34

4.2.4.1 Pre-emphasis ...35

4.2.4.2 Linear Predictive Coding ...36

4.2.4.3 Linear Predictive Cepstral Coefficient ...39

4.2.5 Vector Quantization..40

4.2.5.1 Vector Quantization Encoding ...41

4.2.5.2 Vector Quantization Codebook Design...44

4.3 OVERALL MANUAL WHEELCHAIR AUTOMATOR CONTROL MECHANISM.............49

CHAPTER 5 RESULTS AND DISCUSSION...51

5.1 EXPERIMENTAL DATA OF THE FRONT-END PROCESS ..51

5.1.1 Speech Sampling and Endpoint detection ...51

5.1.2 Vector Quantization Results..52

5.1.3 Data Compression Performance...54

5.2 AUTOMATIC SPEECH RECOGNITION SYSTEM PERFORMANCE..............................56

5.3 COSTS..57

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS58

APPENDIX ...59

A.1 FRONT-END FLOW ...59

A.2 AUTOMATIC SPEECH RECOGNITION FLOW ..60

A.3 SYSTEM FLOW ..61

- vi -

A. 4 COST LIST ..62

A.5 SPEECH FEATURE PARAMETERS [9] ..63

A.6 FILTER CHARACTERISTICS [13]...64

A.7 LPC SPECTRAL ENVELOPES..65

REFERENCES ...66

VITAE ...70

 - vii -

List of Tables

TABLE 1: VQ RECOGNITION TABLE FROM [5]...6

TABLE 2: TABLE 2: PROTOTYPE PERFORMANCE FROM [5] ..7

TABLE 3: RESULTS FROM [7] ..7

TABLE 4: BESSEL FILTER TABLE [14] ..17

TABLE 5: ASR RECOGNITION RATE ...56

 - viii -

List of Figures
FIGURE 1: BLOCK DIAGRAM OF THE MWA DESIGN..3

FIGURE 2: CONCEPTUAL BLOCK DIAGRAM OF AN ASR SYSTEM......................................3

FIGURE 3: AUTOMATIC SPEECH RECOGNITION SYSTEM ...8

FIGURE 4: FRONT-END PROCESS OF THE ASR SYSTEM ...8

FIGURE 5: FRONT-END PROCESS FLOW ..9

FIGURE 6: CONCEPTUAL BLOCK DIAGRAM OF THE DATA ACQUISITION MECHANISM.......12

FIGURE 7: BASIC SETUP FOR A CONDENSER MICROPHONE [12]13

FIGURE 8: SCHEMATIC OF THE MICROPHONE PREAMPLIFIER...15

FIGURE 9: FREQUENCY RESPONSE OF THE MICROPHONE PREAMPLIFIER15

FIGURE 10: 2ND ORDER BESSEL FILTER FREQUENCY RESPONSE [14].............................17

FIGURE 11: LOW-PASS MFB ARCHITECTURE [15] ...17

FIGURE 12: BESSEL LOW-PASS FILTER FREQUENCY RESPONSE18

FIGURE 13: COMPLETE MICROPHONE CIRCUIT SCHEMATIC...19

FIGURE 14: OVERALL FREQUENCY RESPONSE OF THE MICROPHONE CIRCUIT19

FIGURE 15: PIC32 STARTER KIT [16] ...21

FIGURE 16: PIC32 I/O EXPANSION BOARD [19] ..23

FIGURE 17: OVERALL FIRMWARE IMPLEMENTATION FOR THE ASR SYSTEM24

FIGURE 18: MICROPHONE CIRCUIT IMPLEMENTATION ..24

FIGURE 19: FRONT-END PROCESS OVERVIEW...25

FIGURE 20: SECTION OF SPEECH WAVEFORM WITH SHORT-TIME ANALYSIS WINDOWS.....28

FIGURE 21: ADC SAMPLING ..30

FIGURE 22: VOICED AND UNVOICED SPEECH [24] ..31

FIGURE 23: ENDPOINT DETECTION USING STE..32

FIGURE 24: BLOCK DIAGRAM FOR FEATURE EXTRACTION ..35

 - ix -

FIGURE 25: IMPULSE RESPONSE OF THE PRE-EMPHASIS FILTER WITH Α = 0.94 [26]36

FIGURE 26: VQ ENCODER ..40

FIGURE 27: VECTOR QUANTIZATION [31]..41

FIGURE 28: OVERALL FLOW OF THE FRONT-END PROCESS..49

FIGURE 29: SPEECH SAMPLED, COMMAND WORD “BACK” FOLLOWED BY ANOTHER WORD.

...51

FIGURE 30: ISOLATED SPEECH SIGNAL, COMMAND WORD “BACK.52

FIGURE 31: TRAINING VECTOR SET ...53

FIGURE 32: RESULT FROM VQ CODEBOOK GENERATION ..53

FIGURE 33: TEST VECTORS ...53

FIGURE 34: RESULT FORM VQ ENCODING ...54

FIGURE 35: VECTOR QUANTIZATION RATE..55

FIGURE 36: DATA COMPRESSION EXAMPLE..55

 - x -

Nomenclature

ADC Analog-to-Digital Converter

ASR Automatic Speech Recognition

CSR Continuous Speech Recognition

EPD Endpoint Detection

FSF Frequency Scaling Factor

HMM Hidden Markov Model

LBG Linde-Buzo-Gray Algorithm

LPC Linear Predictive Coding

LPCC Linear Predictive Cepstral Coefficient

MFCC Mel frequency cepstrum computation

MFB Multiple-Feedback Architecture

MWA Manual Wheelchair Automator

PWM Pulse Width Modulation

Q Quality factor

STE Short-Time Energy

VQ Vector Quantization

ZCR Zero Crossing Rate

1

Chapter 1
Introduction

1.1 Background
The history of wheelchairs can be traced way back to the time before Christ when

both chair and wheel were invented [1]. However, the first self-controllable wheeled

chair ever build was invented by Stephan Farfler in 1665 [2]. Over the next few

thousands of years, many types of wheelchair have been developed, but it was not

until the 20th century that the first electric-powered wheelchair was invented by

George J. Klein for quadriplegics [3].

Power wheelchairs are mainly designed for those people who are physically unable to

propel a manual wheelchair. Generally, they use electric motors as the source of

propulsion. The most typical way of controlling speed and direction is by operating a

joystick controller. Other control mechanisms are also available on the market for

patients with specific needs. Especially for severely physically disabled patients such

as patients with high level spinal injury, their hand motions can be restricted. Thus,

alternative control methods are desirable.

Currently, the price of a manual wheelchair can range as low as $100 to as high as

$3000 depend on the weight and its features. Standard manual wheelchairs usually

cost around few hundred dollars whereas ultra lightweight wheelchairs that were made

from titanium with adjustable seats can cost up to $3000. On the other hand, the price

for a power wheelchair is generally between $1600 and $3500 [4], but it can go as

high as $14,000 for a fancy terrain wheelchair [4]. One way to decrease the cost of a

power wheelchair is to use an attachment such as hub motors on a manual wheelchair.

2

This allows a manual wheelchair to be motorized and be capable to performing

similarly as a commercial power wheelchair. Today, there are a number of such

attachable devices available on the market. This paper focus on the design of a speech

control system for such a system.

1.2 Objectives
The ultimate goal of this entire project is to lower the cost of a motorized wheelchair

unit by designing an attachable device that translates a manual wheelchair into a

powered one. The attachment device should be portable and powerful enough to

propel a person setting on a standard manual wheelchair. The primary focus is

affordability. The end solution of the project should provide an inexpensive solution to

the people are in need of a motorized wheelchair but can not manage to pay for a

power wheelchair on the market. The project definition includes the design of an

alternative control mechanism that is different from joystick control to provide an

easier way of operating the wheelchair. Speech control is the selected control method.

A speech controller is essentially an automatic speech recognition (ASR) system.

Since the purpose of this ASR system is only for operating a wheelchair, it can be

speaker dependant and contain only a small amount of short vocabularies in its

dictionary.

1.3 Methodology
The proposed manual wheelchair automator (MWA) design contains three main

components: speech controller, joystick controller and the propulsion system; see

Figure 1.

3

Figure 1: Block diagram of the MWA design

The joystick controller is basically a backup control method when the user does not

want to use speech commands to operate the wheelchair. The propulsion unit

represents the mechanical design of MWN which includes motor/battery placements

and the design for portability/flexibility as well as the motor control mechanism. The

speech controller itself is an ASR system as mentioned earlier. It is generally

implemented with a series of signal processing modules and search algorithms based

on a selected speech pattern modeling technique; see Figure 2. A statistical modeling

technique: Hidden Markov Model (HMM) is selected for modeling speech signals in

this project.

Figure 2: Conceptual block diagram of an ASR system

4

In order for a speech wave to be used by a HMM based ASR system, the pressure

wave must first be processed, compressed and convert into a characteristic sequence

(also know as the observation sequence in HMM). It is done by a series of signal

processing includes short time energy analysis, linear predictive coding, and vector

quantization. They are represented by the “Front-end Process” block in Figure 2. A

recognition phase is then followed to identify whether the given observation sequence

can be matched to any vocabulary model in the database base on probability

calculations. Once a speech is identified as a command word, the command is then

passed to the propulsion unit to carry out the desired task. Note the two blocks

“Codebook Training” and “Model Training” below the blue dashed line in Figure 2,

they are the preparation components that have to be performed offline before the ASR

system operate as a speech controller for the wheelchair. Model training is the phase

that builds the vocabulary database for command words. One HMM model is

generated for each word, and therefore, those models can be used in the recognition

phase at run time. Codebook training is the phase that designs the VQ encoder used by

the front-end process. More details will be provided in the later chapter.

1.4 Scope
The scope of the entire project is the design of an automatic wheelchair automator. As

mentioned before, the system consists of a speech controller, a joystick controller and

a propulsion unit. This project is divided into three sub-projects: the design of the

front-end process for the ASR system, the design of the back-end process for the ASR

system as well as the design of joystick steering control, and the design of the

propulsion system. The back-end process design of ASR system is done by a project

partner: Hailun Huang, and the propulsion unit design is done by another project

5

partner: Erika Schimek. This report focuses on the design of the front-end process for

ASR system.

6

Chapter 2
Literature Review
There are many researches done in the field of speech recognition as well as speech

signal processing in general. Due to sophisticated signal processing algorithms and

powerful computers available, computer based speech processing system nowadays

have reached complex structure and high accuracy [5]. With the rapid development of

handheld devices and other portable devices, embedded speech recognition system has

become more important in the recent years. The challenge is to maintain acceptable

performance while using limited computation and memory resources. In [6], a speech

recognition system was implemented on 8-bit MCU core. Other than the fact it is

speaker independent, the system has similar features as what are required for this

project: small vocabulary, discrete word, and low system requirements. This ASR

system is based on Hidden Markov Model (HMM) and uses LPCC, its first order delta

component (⊿LPCC), energy E, its first and second order delta (⊿E and ⊿⊿E) as

input features. In the paper, it says that “though Mel-Frequency Cepstral Coefficient

(MFCC) is more powerful and robust to noisy conditions, it is computational

formidable [6].” It uses vector quantization due to computation cost and limited RAM

resource. Their results show that the use of VQ encoding notably reduces the

recognition rate and different VQ methods affect the recognition rate; see Table 1.

Table 1: VQ recognition table from [5]

Another study implemented the ASR system on a 16-bit core uses Learning Vector

7

Quantization for pattern classification instead of HMM; see [5]. FFT and filter bank

are the techniques used in this paper for feature extraction instead of LPCC. The ASR

performance is not as outstanding compare to the last paper; see Table 2. Also,

recognition performance degrades for different speakers. However, with a recognition

rate of 92%, it still proofs to be a sufficient ASR system.

Table 2: Table 2: Prototype performance from [5]

Another paper that studies isolated word recognition using LPC, VQ and HMM

provides results in Table 3. This paper uses similar methods as [5]. However, it was

not implemented on a microcontroller.

Table 3: Results from [7]

8

Chapter 3
Statement of Problem and
Methodology of Solution
As shown in Figure 3, an ASR system can be broken down into two components. The

front-end process takes an input pressure waveform and outputs a sequence of

characteristic parameters. Where as the back-end process, which is the recognition

component, takes the characteristic sequence and outputs an index of the recognized

command.

Figure 3: Automatic Speech Recognition System

The main objective of the front-end process is to convert an input speech pressure

wave into a sequence of parameters that contains the characteristic of the given speech.

In order to do so, the system first has to convert the pressure wave into an electrical

signal. Digitalization is also required so discrete signal processing can be performed

using a microcontroller. See Figure 4 for a simplified conceptual diagram for the

front-end process.

Figure 4: Front-end process of the ASR system

There are two main problems for designing the front-end process. First being how to

acquire clean speech signals from acoustic waves while not being influenced by

9

background noise. Second, how to represent the characteristics of a speech signal with

a set of parameters that can be used in HMM. A proposed front-end process is shown

below in Figure 5.

Figure 5: Front-end process flow

The method of speech signal acquisition largely depends on the nature of human

speech. Human speech signal have about 16 KHz of frequency bandwidth with most

of speech energy under 7 KHz [8]. During recording, speech bandwidth is normally

reduced. A telephonic lower quality signal, which is generally used in

telecommunication, has a frequency band of 300-3400 Hz. Although contain less

information, telephonic speech signals are sufficient for the purpose of speech

recognition in this project. Corresponds to a bandwidth of around 4 KHz, the sampling

frequency of 8000 samples/sec has to be used. To isolate the signals from this

frequency band for aliasing prevention during digitalization, a band-pass filter needs

10

to be incorporated in this design. Therefore, the design of Data Acquisition

methodology includes a microphone, a band-pass filter circuit, and an

analog-to-digital converter.

To solve the second design problem mentioned above, a feature extraction flow has to

be implemented. The different features of the speech signal contain varying amount of

information about the speech waveform. Each feature requires a different

methodology and a different level of computation complexity to extract it. Feature

extraction is a fundamental step of any recognition system. Appendix 5 shows both

time domain and frequency domain parameters that can be used in speech recognition

system. Within those features of speech, MFCC and LPC are the popular choices for

ASR systems [8] [10]. LPC is selected as the core component to characterize speech

signals in this project for its computation simplicity and many other advantages

compare to other feature parameters. Before extracting the LPC parameters, the signal

must first undergo a series of pre-processing. The most important one is endpoint

detection. Energy analysis is used in this ASR system to isolate speech from silence.

Accuracy is often higher for an isolated word system compares to continuous speech

recognition (CSR) system, pauses between words are often mandatory in commercial

products [11].

The front-end process ends with vector quantization (VQ) encoding stage. VQ a

technique used to quantize feature vectors from the feature extraction stage into

sequences of symbols. It is potentially an extremely efficient representation of spectral

information in the speech signal especially when the ASR system is implemented on

hardware with limited computation memory resources. More details on the overall

front-end process and the individual components are presented in Chapter 4.

11

Chapter 4
Experimental/Design Procedures
4.1 Hardware Design
Excluding the wheelchair propulsion unit, there are not many hardware components

required for the manual wheelchair automator design. The major component of

hardware design for the speech recognition system is mainly for data acquisition. The

quality of obtained speech samples significantly affects the performance of the

recognition system. Therefore, it is crucial to design a well suited audio sampling

system. Another firmware design component would be to choose an appropriate

processor board that satisfy all the criteria for not only the speech controller

component but as well as for the joystick controller and wheelchair propulsion

components.

4.1.1 Data Acquisition
In order to process the speech signal, it is first needed to acquire the voice pressure

waves as electrical signals using a microphone circuit. As mentioned before, 300 kHz

to 3.4 kHz is the frequency band that contains the desired speech signal. Most

microphones in the market are capable to operate not only within this band but also at

much higher frequencies. To eliminate undesired high frequency noise and low

frequency offset, a band-pass filter circuit must be designed in order to obtain a clean

signal. The speech signal then needs to be digitalized so it can be processed using

digital signal processing techniques in the later phase of the speech recognition system.

A conceptual block diagram that describes the basic components of this data

acquisition mechanism is shown blow in Figure 6.

12

Figure 6: Conceptual block diagram of the data acquisition mechanism

4.1.1.1 Choice of Microphone
The purpose of a microphone transducer is to convert acoustic waves into electrical

signals. There are many different types of microphones which satisfy the goal of

detecting sound waves within the require frequency range of human voice. The type

chose is electret microphones. Electret microphones belong to the category of

condenser microphone, also know as capacitor microphone. Condenser microphones

contain a diaphragm which forms one of the plates of a capacitor. The other plate is

the perforated back-plate which is parallel to the diaphragm [12]. Both the diaphragm

and back-plate are charged by a supply voltage. The diaphragm vibrates as the sound

pressure wave comes in, and the distance between the two plates varies with respect to

the pressure applied by the acoustic wave. Since V = Q/C, the voltage changes

inversely in proportion to the capacitance change. Figure 7 shows the basic setup of a

condenser microphone. An electret microphone uses an electret film as the diaphragm

or the back-plate which is permanently charged to avoid the need for a power supply.

An electret material is a stable dielectric material with a permanently-embedded static

electric charge. Although electret microphones do not require polarizing voltage

supply, a preamplifier that does require a power supply is generally integrated.

13

However, the voltage requirement is often small compares to regular condenser

microphones.

Figure 7: Basic setup for a condenser microphone [12]

Other categories of microphones include dynamic microphones which use the

principle of electromagnetic induction, carbon microphones which contain carbon

granules pressed between two metal plates, piezoelectric microphones which use the

piezoelectric effect of piezoelectric crystals, and many others. Other than the operating

principle, microphones can further be categorized according to their directions that

they are able to receive vibrations from outside sources. Mainly, there are three types:

omnidirectional, unidirectional and noise cancelling. Omnidirectional microphones

are capable of receiving sounds from virtually any direction. On the other hand,

unidirectional microphones can only pick up sounds aimed directly into their centres.

Noise cancelling microphones use a differential microphone topology to exterminate

ambient noise. A typical noise cancelling microphone will contain two ports, a front

and a back port, for the sound to enter and a difference between the two received

acoustic waves are used to produce the output. For the purpose of this project, the

14

speech will come in a straight line to the microphone. Therefore, only unidirectional

and noise cancelling microphones were considered. A unidirectional microphone that

operates within 16 Hz to 29 kHz and a noise cancelling microphone that operates

within 100 Hz to 10 kHz were experimented. The noise cancelling microphone

provided a cleaner signal compares to the unidirectional microphone; however, a

larger dc spike were occasionally observed at the beginning of a speech sample. Any

dc offset is extremely undesirable when dealing with speech signal processing. This is

because the characteristics of speech signals are primarily stochastic. The

unidirectional microphone provided a slightly noisier result compare to the noise

cancelling microphone; nonetheless, the signal can be cleaned up afterward using

appropriate filters. Although it is more susceptible ambient noise, the unidirectional

electret microphone is selected based on the experimental results.

4.1.1.2 Microphone preamplifier and filter circuit

design
The typical operation voltage for an electret microphone is around 1.5 V with a

maximum operation voltage of 10 V. Due to the choice of processor which will be

discussed in detail in the later section of this report, the operation voltage is set to 5 V.

After the microphone transducer produced an electrical signal based on the applied

acoustic wave, the signal must first be amplified to an acceptable range. A

preamplifier circuit which also act as a band-pass filter is designed; see Figure 8 for

the circuit schematic. Note that the circuit is biased so the output signal would provide

a dc offset of 2.5 V. This is because only a single voltage power supply (5 V) is used,

consequently it is desired that the speech signal can be centered at the middle of the

voltage supply which would be 2.5 V.

15

Figure 8: Schematic of the microphone preamplifier

This circuit has a centre frequency of 2.5 kHz and a gain of 26.5 dB at this frequency.

The reason for setting a centre frequency at the high regain of the voice spectrum is

that speech itself has low energy level for its higher frequency components. To

compensate this, the circuit amplifies the low frequency components less compare to

the high frequency components. See Figure 9 for the frequency response (gain in dB

versus frequency) of this preamplifier.

Figure 9: Frequency response of the microphone preamplifier

16

The pre-amplified signal then must be filtered to isolate the speech components. A 4th

order low-pass Bessel filter is chosen to attenuate all unwanted high frequency noises.

The reason to choose the Bessel filter instead of Butterworth, Chebyshev or other

types of filter is that it maximizes the flatness of time delay. Compare to other filters,

Bessel filters have liner phase response with respect of different frequencies. This is

very valuable to speech signal processing since it is necessary to remove out of band

noise without distorting the phase relationship of a multi-frequency in-band signal. In

addition, Bessel filters approximate a smooth pass-band response which avoids

overshoot or ringing same as Butterworth filters do. See Appendix 6 for a comparison

between the filters’ frequency response and group delay. For the same filter order, the

stop-band attenuation of the Bessel filter is much lower than that of the Butterworth

filter’s stop-band attenuation. As shown in the figure, there is no ripple in the

pass-band of the Bessel filter and the stop-band rejection is much less compare to the

other two filters. In order to obtain better stop-band attenuation, this design used a

4-pole Bessel filter. Bessel filter can be implemented using Sallen-Key or

Multiple-Feedback (MFB) architecture. The two architectures provide fairly much

identical frequency response from 10 Hz to about 50 kHz; see Figure 10. Above 50

kHz, the Multiple-Feedback architecture appears to have a superior performance.

Therefore, the Multiple-Feedback topology is used to design the Bessel low-filter. The

basic low-pass Multiple-Feedback architecture and its transfer function are shown in

Figure 11.

17

Figure 10: 2nd order Bessel filter frequency response [14]

Figure 11: Low-Pass MFB Architecture [15]

Table 4: Bessel Filter Table [14]

The circuit is designed based on Bessel polynomial coefficients; see Table 4. To use

this table, the values for the frequency scaling factor (FSF) and the quality factor (Q)

are substituted to the following equation:

18

Since the filter is 4th order, it is required to use 2 stages of Multiple-Feedback circuit.

Each stage’s resistor and capacitor values are calculated using the following

equations:

The capacitor values are first chosen to be standard values, and then the resistor values

are calculated according. The gains of both stages (K) are set to be 1. The cut-off

frequency is set to 3.5 kHz. See Figure 12 for the filter frequency response.

Figure 12: Bessel low-pass filter frequency response

Along with the preamplifier circuit, the complete circuit schematic is shown in Figure

13 below. Note that all the filters are biased to provide an output centered at 2.5 V for

the same reason mentioned earlier. Also, see Figure 14 for the overall frequency

response.

19

Figure 13: Complete microphone circuit schematic

Figure 14: Overall frequency response of the microphone circuit

4.1.2 Processor Board Selection
In order sample and perform digital signal processing for the automatic speech

recognition system, a processor and an analog-to-digital converter is required. Due to

the wheelchair control methodologies, the processor of selection must be capable of

handling numerical computations up to a certain degree of complexities as well as

20

providing an output signal format that is feasible to act as the control signal for the

motors. Non-volatile memory storage is also essential to hold the information for each

speech model. There are many electronic devices can be used in combination to

satisfy the above constrains. One can either select a FPGA, a microprocessor or a

microcontroller as the processor. The primary advantage of a FPGA over a

microprocessor/controller is that it allows parallel processing. Regardless of how fast

the microprocessor/controller is, it runs sequentially. The speed is usually enhanced by

increasing the pipelining to certain level of parallel instruction processing. On the

other hand, FPGA is entirely hardware based programmable. It does not rely on

pipelining. Alternatively, a hardware based parallel architecture can be implemented.

However, parallel processing is not crucial for a speech recognition system since

speech signal is sampled consecutively. Furthermore, there are many downsides for

using a FPGA as opposed to microprocessor/controller. First being microprocessor

and microcontroller are easier to program and debug since programming can be done

with a higher level programming language such as C instead of VHDL. Second, the

cost of a FPGA is often higher [15]. The power consumption for a FPGA is also

relatively high [15]. Although micro sometimes contain more features than required

(or sometimes do not contain certain desired features), they are more suitable for the

purpose of speech signal processing. Due to the scope of this project, the processor is

only needed for performing a small set of specific functions. Since there are also

requirements for memory storage, I/O interfacing and analog-to-digital converter, a

microcontroller seems to be a more logical choice.

Off the shelf microcontroller boards are widely available. There are numerous of

microcontrollers are designed for different purposes such as USB applications, digital

signal processing, motor control, and much more. DSP specific microcontroller boards

would fulfill the speech recognition system requirements exceptionally well.

21

Nevertheless, the foremost responsibility of the microcontroller board for this project

is to act as a motor controller for the wheelchair propulsion unit. The same board also

has to be used for the joystick control mechanism. As for the above reasons, a general

purpose microcontroller board is chosen. Another reason for choosing a general

purpose microcontroller is that one of the project goals is to minimize cost. As the

speech controller system is implemented, the system can later be adopted to common

standard microcontroller with minimal amount of adjustments. The board of selection

is the PIC32 starter kit as shown in Figure 15.

Figure 15: PIC32 Starter Kit [16]

The microcontroller itself contains a 10-bit analog-to-digital converter which is

sufficient to characterize voice signals. The ADC is capable of a conversion speed up

to 500 kilo samples per second (ksps) [17] which is far more than what is necessary

for speech signal sampling. The board uses an 8 MHz on-board crystal oscillator

which allows microcontroller to be operated at a maximum frequency of 80 MHz [18].

For the speech controller to provide a reasonable response time which is the time the

system takes from receiving the speech command to the motor response, this

operating frequency is fairly appropriate.

One of the major requirements for the microcontroller is that it must contain a

significant amount of RAM on board so it is capable of handling all the complex

22

computation for the automatic speech recognition system. Also, a considerable

quantity of non-volatile memory space must also be in attendance to store large sets of

data for the voice encoder and command word models. This starter board provides a

32 Kbytes of SRAM data memory and 512 Kbytes of non-volatile Flash program

memory [17]. The Flash program memory is also self-programmable which means it

can be programmed by software executing from either Flash or RAM memory at

run-time [17]. This feature is considered in this project for run-time speech model

training (speech model training is a component of the speech recognition system

which is responsible by a project partner, Hailun Huang). It is then later discarded due

to various reasons. The primary reason being the complex and time consuming

algorithm for speech model training requires a lot of enhancement for it to be able to

operate on a microcontroller. There are many other reasons such as non-volatile

memory access efficiency during run-time, accidental memory overwrite protection,

and speech sample storage. However, the feature is listed as a future improvement

option in the later chapter. Since the model training and voice encoder training are

done offline, the amount of memory offered by this microcontroller is sufficient. The

detail memory usage of the automatic speech recognition system would be discussed

in a later chapter.

As stated earlier, this board is also used to output motor control signal. Based on the

selection of motor (a component that belongs to a project partner: Erika Schimek), this

microcontroller is equipped with pulse width modulation (PWM) feature that can

control the DC motor speed by generating output pulses with different frequencies and

duty cycles. Last but not the least, this board can operate on a 9-15 volt DC power

source and able to provides 3.3/5 V voltages which can be used to power the

microphone circuit. This means the entire system can operate on a single battery

source. Based on all above features, the PIC32 starter board proofed to be suitable for

23

the purpose of this project. An expansion board was also purchased for I/O accessing;

see Figure 16

Figure 16: PIC32 I/O Expansion Board [19]

4.1.3 Overall Hardware Design
The overall firmware implementation for the automatic speech recognition system is

shown in Figure 17 below. The system is made portable by using a 9 V battery source.

The breadboard contains all the microphone circuit components mentioned in the

earlier section (the left part of the breadboard, see Figure 18 for a closer view) along

with the joystick circuit (the right part of the breadboard). The electret microphone is

shown in the bottom right of Figure 17. Only one single pin is required for the system

to receive the speech signal. Two other input pins are needed for the joystick control

unit. Three output pins are used to provide control signal for the motor unit: one DC

pin for direction control (forward/backward) and two PWM pins for speech control of

each wheel. Note that those output pins is not connected in the picture.

24

Figure 17: Overall firmware implementation for the ASR system

Figure 18: Microphone circuit implementation

4.2 Software Design
The digital signal processing is the one of the core components of the ASR system. As

stated in the Introduction, the scope of this paper is to design a front-end process with

25

an ability of taking a speech command and output a set of parameters that characterize

the given acoustic wave as shown in Figure 4. The entire front-end process can be

broken down into several components which are mostly software based; see Figure 19.

In this block diagram, all components other than the Data Acquisition block are

entirely software based. All of those software components are implemented in the

microcontroller using C. The entire process flow and the algorithms used for each of

these blocks will be explained in detail in the following sections.

Figure 19: Front-end process overview

4.2.1 Digital Signal Process Overview
As shown in Figure 19, there are four major components (square boxes) to the

front-end process program excluding the training part. The whole process starts with

getting the data into the microcontroller. Sampling the speech signal is the last part of

the Data Acquisition module which was discussed in the Hardware Design section.

The reason for including speech sampling in the Software Design section is to give

details about how the ADC has to be setup for the microcontroller to acquire signals in

26

an appropriate fashion. Once the speech signal is digitalized, the program must then

window the samples in order to perform short-time signal processing. Following the

windowing stage, an endpoint detection phase is used to isolate the word from silence

and/or consecutive speech. This is because the speech models are word based (one

model per word) and the ASR system is designed to operate on isolated words. The

next stage is to extract the feature of the sampled word. Out of many different

methods, Linear Predictive Cepstral Coefficient (LPCC) is chosen to characterize

speech signals for this project. Last but not the least; the coefficients will be classified

and compressed by a Vector Quantization (VQ) encoder. In order to use the VQ

encoder, a VQ codebook (database) must first be generated. Due to the complexity

and system requirements, the VQ codebook training is done offline. More details will

be elucidated in the Vector Quantization section.

4.2.2 Speech Sampling and Windowing
As stated, human speech frequency range the ASR system needs to pick up is within

80 Hz and 3.4 KHz. It is necessary to sample the speech signal at an appropriate rate

to avoid aliasing. According to Nyquist sampling theorem, the sampling frequency

needs to be at least twice the highest frequency in the original signal. The sampling

rate of the ADC is set to 8 KHz. This is the standard sampling frequency used in

telecommunications.

Traditional methods for spectral evaluation are only reliable in case of a stationary

signal which is not the case for speech [8]. However, due to the slowly varying nature

of voice, the speech signal holds articulatory stability within a short time interval

during which analysis can be performed by “windowing” a signal into a succession of

windowed sequences, called “frames” [8][20]. Those frames can then be individually

27

processed. The basic principle of short-time analysis can be represented in a general

form by the following equation:

where Xñ represents the short-time analysis parameters, T{} operator defines the

short-time analysis function, and w[ñ-m] represents a time-shifted window sequence,

whose purpose is to select a segment of the original signal x[m] in the neighbourhood

of sample m = ñ. Commonly used windows are the rectangular and the Hamming

window. Rectangular window which as the simplest shape provokes a distortion on

the frequency spectrum of the result frames. The performance of how good the

window is depends on the shape of its Fourier Transform, W(jω). The Fourier

Transform of the rectangular window has a higher energy main lobe centered at zero

and lower energy side lobes centered at higher frequencies. This reduces the local

frequency resolution [8]. Also, the side lobes of W(jω) swap energy from different and

distant frequencies which create a problem called leakage [8]. Another window choice

is the Hamming window. It is the most-used window shape in ASR systems [8]. It is

used in most of the research projects mentioned in the Literature Review section of

this report. The window is described by an impulse response of a raised cosine that is

defined by the following equation:

when n = 0, …, N-1 or otherwise w(n) = 0. The leakage effect is reduced since the

side lobes of this window are much lower compare to the rectangular window [8]. The

resolution is substantially reduced because the wider main lobe. Considering that the

next frame in the processing chain integrates all the closest frequency lines, high

resolution is not required in speech recognition [8]. Furthermore, the parameters chose

28

for feature extraction method is cepstral coefficients which represent the log

magnitude spectrum using a predetermined number of coefficients. This method itself

compresses the spectral resolution of the signal. Therefore, the Hamming window is

selected for windowing speech.

With a fixed sampling frequency, the spectral resolution is inversely proportional to

the sequence length N (frame size). As a result, larger windows have higher frequency

resolution. Conversely, long sequences loss the stationarity of the signal. There is a

trade-off between these two criteria. Narrow windows have been proposed to estimate

the fast varying parameters of the vocal tract while large window are used to estimate

the fundamental frequency [8]. A speech signal has a relevant variation each 80-200

ms [8]. This is because voice is produced by the phonatory mechanism articulators,

which are in a stable position for a very short time during the production of a phoneme

[8]. There the window that is used to frame speech signals should not excess 80 ms (or

even 40 ms) for keeping a close assumption of stationarity. Commonly used window

size ranges from 10 ms to 40 ms. A window size of 32 ms which consists of 256

samples at 8 KHz sampling frequency is picked for the ASR system; see Figure 20.

Figure 20: Section of speech waveform with short-time analysis windows

29

Based on the settings above, the ADC is configured to operate in trigger mode using a

timer. One sample per conversion and 10 bits per sample, the samples are then stored

in predefined buffers with the format of unsigned short (16 bits). The internal sources:

GND and 5 V are used as reference voltages (AVSS and AVDD) for analog to digital

conversion. This is the reason that the microphone circuit offsets the speech signal to

the 2.5 centre voltage. Based on the following equation, the analog speech signal is

converted to discrete unsigned shorts:

 )(
5

10242)(][10 tx
AVSSAVDD

txnx 




To perform speech recognition in real time, three buffers are setup to continuously

sample speech. The buffers separate the signal into frames. Each buffer is multiplied

by the Hamming window once it’s filled. Since overlap between frames is necessary

to accomplish fine speech recognition performance, two buffers are being filled at any

given time during sampling. Hence, three buffers are compulsory so that when one is

being processed, the other two are still being filled to keep the continuity of the signal.

The following diagrams demonstrate the working mechanism; see Figure 21. In the

section N is the frame length, M is the frame shift. In this project, the frame shift is

chosen to be half of the frame size which makes the frames overlap with each other

have of the time. As shown in Figure 21 (a), buffer 2 and 3 are being written while

buffer 1 is being processed. Once the process is done and buffer 2 is completely full,

the program starts to read from buffer 2 and write to buffer 3 and 1; see Figure 21 (b).

The same thing happens to buffer 3 as it gets full, Figure 21 (c). The program loops

back to read from buffer 1 again and the whole process cycles over and over.

30

(a)

(b)

(c)

Figure 21: ADC Sampling

31

4.2.3 Endpoint Detection
Silence portion removal along with endpoint detection is the fundamental step for

applications like speech recognition. The purpose is to detect speech signal from

background noise and to isolate each word. Some of the ways that can achieve word

isolation include the conventional short-time energy (STE) and zero crossing rate

(ZCR) analysis [21], Linear Pattern Classifier along with probability density function

[22], and likelihood ratio-based voice activity detection [23].

The simple energy analysis methodology is selected. As the name suggests, this

algorithm identifies speech according to the energy contained in the signal. Frequently,

the STE method is used in conjunction with ZCR. The short-term energy discriminates

speech from “silence” and zero-crossing rate differentiates “voiced” and “unvoiced”

speech for phoneme detection; see Figure 22 for example. Since the requirement for

the endpoint detection algorithm of this ASR system is only on whole word isolation,

there is need to distinguish phonemes using ZCR.

Figure 22: Voiced and unvoiced speech [24]

The definition for STE is given by the following equations:

32


N

nsE
0

2][







m

mnwmxns][][][

where E represents the STE and s[n] represents the windowed signal. An example that

demonstrates a typical energy wave form is shown in Figure 23. In the top graph, the

blue waveform shows the original speech signal and the red line indicate what regains

are identified by this STE endpoint detection algorithm. In the bottom graph, the

energy waveform is in blue and the thresholds are indicated by the dashed read lines.

Two levels of thresholds are used to properly detect the start and finishing of a word.

Note that the energy is plotted on a logarithmic scale.

Figure 23: Endpoint detection using STE

Program Implementation

The endpoint detection algorithm controls how the whole front-end process interfaces

with the speech recognition module. Therefore, it has been implemented on the very

top level of the ASR program (in the main function). Speech endpoint detection using

33

energy analysis has a fairly simple structure. However, there are certain constrains,

such as minimum/maximum word length, that must be checked before the system can

identify a given set of samples as a word. This component has work closely with the

ADC to ensure smooth operation at the run time. The microcontroller is programmed

to follow the procedures below.

 Parameters and Assumptions

1. epdFlag = identify the stage of endpoint detection, ranges from 0 to 4.

2. wordFlag = a variable that triggers the speech recognition system, is set

to 1 when a word is detected

3. DCoffset = since the signal centered at 2.5 V, there is also an offset for

the converted samples. It needs to be removed when performing energy

analysis.

4. energyLower = a preset lower threshold for energy level

5. energyUpper = a preset upper threshold for energy level

 Steps

1. Initialization: epdFlag = 0, wordFlag = 0

2. Read a framed signal from the buffer

3. Subtract each element in the buffer by the DCoffset

4. Compute the energy of the signal

5. Act according to the conditions:

a. if epdFlag == 0 && E > energyLower

  epdFlag = 1, wordLength = 0

b. if epdFlag == 1 && wordLength == maxWordLength

  epdFlag = 0

c. if epdFlag == 1 && energy > energyUpeer

  epdFlag = 2

34

d. if epdFlag == 2 && energy < energyUpper

  epdFlag = 3

e. if epdFlag == 3 && energy < energyLower

  epdFlag = 0, wordFlag = 1

f. if epdFlag == 2 && wordLength == maxWordLength

  epdFlag = 0, wordFlag = 1

6. If epdFlag !=0, perform all the front-end process on that frame and

wordLength++

7. If a word is identified, wordFlag == 1 and go to step 8, else go back to

step 2.

8. Invoke the speech recognition module

Note that the above are only a partial component of the much larger program. The

complete flow of how a speech is sampled and processed and how each individual

front-end process components are intergraded together will be explained in the Overall

Manual Wheelchair Automator Control Mechanism section at the end of this chapter.

4.2.4 Feature Extraction
The method of doing feature extraction is chose to be linear predictive coding. The

principle of LPC is based on an all-pole model for speech signal representation, and

this technique has a number of advantages over other methodologies. It is selected as

the core component to characterize speech signals in this project. The overall feature

extraction process is shown in Figure 24. It consists of three sub-components:

pre-emphasis, LPC and LPCC. The process outputs a set of vectors which represents

the feature characteristics of the given speech. All of the original speech data will be

discarded once the feature vectors are computed to avoid unnecessary memory usage.

35

Figure 24: Block diagram for feature extraction

4.2.4.1 Pre-emphasis
Prior to the core feature extraction component, there is one more stage of

pre-processing that is necessary to be carried out. This pre-emphasis phase is basically

a high-pass filter that increases the relative energy of the high frequency spectrum [25].

The characteristics of the vocal tract define the properties of speech. Although

possessing relevant information, how frequency formants contain high concentrations

of energy relative to high frequency formants [8] [26]. Typically, this problem can be

overcome by using a single-zero filter whose transfer function in the z-domain is:

11)( zzH 

where α is the pre-emphasis parameter. The pre-emphasised signal in time domain is

given by:

]1[][][ nsnsny 

The constant α, which has the range 0.19.0  [25], determines the cut-off

frequency of this single-zero filter. The impulse response of the pre-emphasis filter

with α = 0.94 is shown in Figure 25. The value used for this project is 0.95. The

resulting output shows a more balanced spectrum. One drawback of this technique is

that it can drastically increase the noise energy at high frequencies predominantly for

vowels [26]. That is why some ASR designs avoid the use of a pre-emphasis filter.

36

Figure 25: Impulse response of the pre-emphasis filter with α = 0.94 [26]

4.2.4.2 Linear Predictive Coding

Basic Principle

Once all pre-processing are done, the speech signal then can be processed to extract its

features using LPC. The basic idea of LPC is to approximate the current speech

sample as a linear combination of past samples as shown in the following equation:

Based on this equation, the original speech spectrum can be modelled using this

pole-only transfer function listed below:





 P

k

k
k

n

za
zH

1

1

1)(

The goal of this methodology is to calculate those prediction coefficients ak for each

frame. The order of LPC, which is the number of coefficients (p), determines how

37

closely the prediction coefficients can approximate the original spectrum. As the order

increases, the accuracy of LPC also increases, see Appendix 7. This means the

distortion decrease. Distortion is defined by the squared sum of predication errors:







1

0

2][
N

n
neD

In exchange, memory requirement and amount of computation grow as the order

increases. The ARS system of this project is implemented base on 8th order LPC. The

main advantage of LPC is usually attributed to the all-pole characteristics of vowel

spectra. Besides, the ear is also more sensitive to spectral poles than zeros [27]. In

comparison to non-parametric spectral modeling techniques such as filterbanks, LPC

is more powerful in compressing the spectral information into few filter coefficients

[27].

Program Implementation

There are mainly two ways of estimating linear predictive coefficients:

Autocorrelation and Covariance methods. Both methods approximate the LPC

coefficients, {ak}, by minimizing the residual energy [28], which is given by the

distortion, D, equation. The basic difference between the two is that the covariance

method windows the error signal where as the autocorrelation method windows the

original speech signal [28]. The autocorrelation method is used in this project.

Essentially, the residual energy E can be written in the following from:

The values of {ak} that minimize E can be found by taking the partial derivatives of E

with respect to {ak} and setting them to zeros:

38

By rearranging these two equations, a new set of equations can be obtained:

where sw[n] is the windowed speech signal. Since sw[n] is zero outside of the window

w[n], the above equation can be expressed with the autocorrelation function defined

as:

and therefore

This set of linear equations (p equations) can be represented in the matrix form:

or

The coefficients {ak} can then be solved using Gaussian elimination. However, since

the matrix R is a Toeplitz matrix, Levinson-Durbin recursion is used instead of

Gaussian to improve the program efficiency. Levinson-Durbin algorithm solves Ax =

b, where A is a Toeplitz matrix, symmetric and positive definite, and b is a vector

consists of some elements of A. The autocorrelation equations satisfy both conditions.

The detail implementations are the following:

 Parameters and Assumptions

39

1. m = recursion parameter (1, 2, …, p)

2. p = LPC order

3. K(m) = reflection coefficients

4. E = error

 Steps

1. Initialization:

1

)0()0(



m

RE

2.
)1(

)()(
)(

1

1

1













mE

jmRamR
mK

m

i

m
i

3.)(mKam
m 

4.  )1()(1)(2  mEmKmE

5. m
im

m
i

m
i amKaa 

 )(1 for 11  mi

6. m++

7. If m<p, go to step 2, else go to step 8.

8. p
kk aa  for k = 1, 2, …, p

9. Output {ak} and exit.

This algorithm is adopted from [28] and [29]. More detailed description can be found

there.

4.2.4.3 Linear Predictive Cepstral Coefficient
According to studies, cepstral coefficients are more robust and reliable than the LPC

coefficients [7] and [29]. They are coefficients of the Fourier transform representation

of the log magnitude spectrum [7]. More information on cepstrum analysis can be

found in [11] and [8]. LPC-based cepstral coefficients can be directly calculated from

40

the LPC coefficients using the following equation:

where i is the order of LPC.

4.2.5 Vector Quantization
Basic principle

Vector quantization is a lossy data compression and classification technique. In

comparison to scalar quantization, VQ encodes a set of scalars as a vector rather than

individually [30]. It is essential in achieving low bit rates in model-based and hybrid

coders. A VQ encoder takes a feature vector outputted from the feature extraction

stage and maps the p-dimensional vector in space Rp to a symbol which is just an

index ranging from 0 to the size of codebook; see Figure 26. p represents the LPC

order.

Figure 26: VQ encoder

The basic idea can be illustrated easily by using a 2-dimensional vector space; see

Figure 27. A VQ codebook contains a set of codewords which are vectors that belong

to the same vector space as input feature vectors. They are represented by the red dots

in the figure. According to the location of the codewords, every input vector (black

crosses) can be assigned to a codeword that it has the smallest distance in between. As

a result, neighbouring vectors are mapped to the same codeword and assigned with a

symbol, which is the index of the codeword.

There are two main components to this VQ encoder. One is the encoding part which is

41

just an algorithm used to search the closest codeword. Another part is codebook

generation. Codebook training uses a computationally expensive algorithm and

requires a large set of speech samples. No matter how well the algorithm is enhanced,

the system still needs to access and process a huge amount data during codebook

creation. For this reason, the training phase is chosen to operate offline using a

computer rather than the microcontroller. Although the codebook can be trained

offline, an inefficient encoding mechanism can still limit its applications.

Figure 27: Vector quantization [31]

Program implementation

4.2.5.1 Vector Quantization Encoding
VQ encoder consists of a mechanism that identifies one of the codeword from the

codebook that has a Voronoi regain the input vector belongs to. The simplest and most

computational heavy algorithm is to perform a full codebook search to find the

codeword which is the nearest neighbour to the input vector. The distortion between

the vector and the target codeword is measured using the Euclidean distance:

2
1

1
),(








 



p

i
ii vuvud 

42

In a full search, the distortion between the input and each codeword needs to be

calculated. To decrease the computational burden in codebook search, the key is to

reduce the number of distance calculations. The Inequality between the distortion and

the means of two vectors can be utilized to solve this problem. A fast codebook

training algorithm based on this technique is described in detail in [32]. The principle

can be described as follows:

 Let x = { x1, x2, …, xp } be a vector and y = { y1, y2, …, yp } be a codeword.

 If the distortion d(x,y) is the Euclidean distance, then

yx mmpyxd ),(

 where p is the vector dimension and ma is the mean of the vector a given by:





p

i
ia a

p
m

1

1

 Therefore, for any vector y,

if   min
2 dmmp yx  , then min),(dyxd 

where dmin is a current minimum distance of x represented by a certain codeword.

In other words, codeword y can not be the nearest codeword to x when p(mx-my)2

is smaller than or equal to dmin,, and therefore, it is unnecessary to calculate the

distance between x and y, d(x,y) [32].

During the codebook search, if a minimum distance is found and set to dmin,,

distance d(x, w) from any other codeword w to x need not to be calculated if

min),(mwxd  or max),(mwxd 

where

p
dmm x

min
min  and

p
dmm x

min
max 

The means of all the codewords only need to be calculated once, which implies they

can be computed during the codebook training phase offline to enhance the VQ

43

encoder runtime performance. In exchange of superior performance, the system

sacrifices an additional memory of size N, number of codewords. Also, the mean of

the input vector only needs to be calculated once at the beginning of the VQ search

flow. A number of operations can be significantly reduced with the above theories

since they avoid a large number of unnecessary distance calculations. These

techniques are implemented in C with the following algorithm:

 Parameters and Assumptions

9. x = input feature vector

10. yi = codeword, i = 0, …, N-1.

11. The codebook is sorted in an ascending order according to means of

codewords.

12. N is the size of codebook.

13. symbol = the index of the identified codeword

 Steps

1. Compute mx

2. Initialization:

N
dmm

N
dmm

yxdd
i

x

x

i

min
max

min
min

min),(
0








3. Increment i: i

4. If min),(mwxd  and max),(mwxd  go to step 5, else go to step 3

5. Compute),(iyxd

6. If min),(dyxd i  ,

44

isymbol
N

dmm

N
dmm

yxdd

x

x

i









min
max

min
min

min),(

7. If 1 Ni , go to step 3, else exit.

4.2.5.2 Vector Quantization Codebook Design
A well designed codebook is the key to superior ASR performance. Since feature

vectors of speech samples with similar characteristics would locate within the same

regain, vectors from a set of speech samples (for example, 20 samples for the

command “go”) would from clusters throughout the vector space. The fundamental

codebook design strategy is to place the codewords at the centre of those clusters in

order to classify similar speeches. A VQ codebook design procedure generally with an

initial codebook generation and is followed by a codebook optimization algorithm.

The purpose of initial codebook design is to come up with a predefined defined

number of codewords that can later be optimized based on an iterative algorithm.

Binary Codeword Splitting

A simple and commonly used method is for codebook initialization is Binary

Codeword Splitting. This is an iterative splitting algorithm that starts with a codebook

of size 1 and iteratively doubles the size of the codebook by splitting each codeword

into two until it reach a desired size N [32] [33]. The benefit of binary splitting over

other splitting algorithm such as the M M+1 splitting presented in [33] is that the

resulting codebook is generally well balanced. There are also other more advanced

techniques that can be used for initial codebook design such as [33] and [34].

45

However, the most basic binary splitting technique is used in this project due to its

simplicity. As mentioned earlier, the goal of initial codebook generation is to create a

codebook of size N. Binary splitting technique accomplish this by repeating the three

basic steps: centroid calculation, binary codeword split and training set partitioning.

Given a set of training vectors S = {Xi, j=1,2,…,j}, the algorithm starts initial

codebook size of j = 1 and initial partition of the entire training set, P1 = {S}. The

codewords are calculated by finding the centroid of the partition set with the following

equation:





mL

m
mm X

L
C

1

1 for m = 1,2,…,j

where Lm is the number of vector in the partition Pm
j and Xi are vectors belongs to Pm

j.

Each centroid Cm is then split into two by:

and

where δ is the perturbation vector to separate the vectors. Note that the above

calculations are all element-by-element operations. By now, the intermediate

codebook size j doubled. Training vectors originally belong to Cm must then be

assigned to the intermediate codeword B2m or B2m-1. To optimize the codebook, other

intermediate codewords B2n and B2n-1, where n != m, also needs to be compared to

find the closest codeword for each of the training vectors. It is done with the same

search algorithm used for Vector Quantization Encoding. After all the vectors are

indexed, a new partition is obtained. The program then use this partition to repeat the

process starts from centroid calculation. After this process iterate several times when j

finally equals to the desired codebook size N, the initial codebook that can be used by

a VQ codebook optimization algorithm is generated and the binary splitting process is

46

terminated. Every the program iterates, the size of codebook doubles. Therefore, the

desired codebook size N has to be set to a number that can take a form of 2k where k is

the number of iterations. Detail steps of the implemented C program are shown below:

 Parameters and Assumptions

1. Given a set of training vectors S={X i, j=1,2,…,L}

2. N = desired codebook size

3. j = intermediate codebook size

4. δ = perturbation vector

5. j
mP {train vector partition}

 Steps

1. Initialization:

}{

1
1 SP

j




2. Calculate centroids Cm of all jj
m PP  for m= 1,2,…,j

a. If there is an empty partition set {}j
emptyP , go to step 2.b, else go

to step 3.

b. Loop to find the largest partition set j
estlP arg

c. Compute the centroid of j
estlP arg  estlC arg

d. Perform binary split and training partitioning on estlC arg and

j
estlP arg

e. Assign the partition set of B2*largest to j
estlP arg and the partition set

of B2*largest+1 to
j

emptyP

f. Compute the new centroids estlC arg' and emptyC '

47

3. Split each Cm into intermediate codewords B2m and B2m-1

4. Compute the mean of B2m and B2m+1

5. Sort the intermediate codebook according to vector means.

6. Training set partitioning: assign each training vector to its closest

intermediate codeword using the steps stated in Section: Vector

Quantization Encoding.

7. jj  2

8. If Nj  go to step 2, else go to step 9.

9. Recalculate centroids Cm from the jj
m PP  (for m = 1, 2, …, N) to

obtain the result codebook. If there is an empty partition set, perform

the same procedures as in steps 2.b to 2.f.

10. Output the codebook { C1, C2, …, CN } and a vector partition set { P1,

P2, …, PN } for each codeword.

Fast Codebook Design Algorithm

Once an initial codebook is obtained, it must then be optimized to enhance the ASR

system performance. The Linde-Buzo-Gray (LBG) algorithm is the most popular

codebook training method and is also known as Generalized Lloyd Algorithm [35]

[36]. Fast Codebook Generation Algorithm is presented in [32] and [35] as a modified

version of the LBG algorithm. It makes use of the partial distortion theorem and

utilizes similar techniques as in the VQ encoding and initial codebook design

discussed in the earlier sections. “This algorithm eliminates about 90% unnecessary

distortion calculations and can produce the same codebook as the LBG algorithm and

needs only a few additional memories,” as stated in [32]. It is implemented with the

following details:

48

Parameters and Assumptions

1. Initial codebook  00
1

0
0

0 ,...,, NCCCC 

2. Codewords are represented by j
mC

3. Initial partition  00
1

0
0

0 ,...,, NPPPP 

4. Vector partition sets are represented by j
mP

5. N = codebook size

6. j = number of iterations

7. m = codeword index (symbol).

8. L = number of training vectors

9. j
totalD the total distortion of the current iteration j

10. ε = a predetermined threshold for distortion rate convergence checking

Steps

1. Calculate the mean Cm for every codeword C

2. Sort the codebook according to their means

3. Let j=0

4. Training set partitioning for every training vector Xi:

a. Initialize:

isymbol
N

Dmm

N
Dmm

CXdD

i

x
i

i

x
i

mi
i









min
max

min
min

min),(

b. Search for the closest codeword Cn for Xi using the Vector Quantization

encoding method.

c.),(min ni
i CXdD 

49

d. ij
total DD min

5. j++

6. Calculate centroids j
mC for the new partitioned sets obtained from step 4

7. Convergence checking

a. calculate the decreasing rate of distortion by
L

DDD
j

total
j

total)(1 




b. if D , go to step 1, else go to step 8

8. Output  j
N

jj CCC ,...,, 10 as the final codebook

Note that all the sorting components mentioned in the Vector Quantization section are

implemented using insertion sort.

4.3 Overall Manual Wheelchair
Automator Control Mechanism
All individual components of the design were discussed. Now, it’s important to merge

each of them into a front-end process. Figure 28 shows the block diagram of the

overall front-end process.

Figure 28: Overall flow of the front-end process

50

It then has to be integrated with the recognition/training and the motor control

modules to form the entire ASR motor control system. The challenge is to come up

with a way so each module can interface with each other smoothly. Not to forget the

same system also contains a mechanism for joystick control. An interface that allows

the user to choice the operating control mode must be implemented. The final

front-end process flow, ASR flow, and the overall system flow are illustrated in

flowcharts in Appendix 1, 2, and 3. Note that of those flowcharts, the ADC

continuously sampling in the background.

51

Chapter 5
Results and Discussion
The experiment results from some intermediate stages of the front-end process as well

as the final results of the automatic speech recognition system are presented in this

chapter.

5.1 Experimental data of the
front-end process
5.1.1 Speech Sampling and Endpoint detection
To demonstrate the sampling and endpoint detection algorithm’s performance, a

speech signal sampled by the ADC into the microcontroller is shown in Figure 29 and

a speech signal isolated by the endpoint detection algorithm is shown in Figure 30. As

the results shown, the endpoint detection algorithm separates each word quite

effectively.

Figure 29: Speech sampled, command word “back” followed by another word.

52

Figure 30: Isolated speech signal, command word “back.

5.1.2 Vector Quantization Results
VQ algorithm is hard to verify when the vector dimension is high. The dimension is

defined by the order of LPC which is chosen to be 8. With the purpose of confirming

whether the program works correctly, the LPC order is set to 2 for the results shown in

this section. A training vector set, see Figure 31, is used to test the VQ codebook

generation algorithm. The corresponding results are shown in Figure 32 where the

result codewords are shown with white colour filled markers. The partition vector set

for each codewords is displayed with different colour markers. This codebook used to

test the VQ encoding algorithm with another set of feature vectors shown in Figure 33.

Figure 34 shows the corresponding results. As appears, the vector quantization

algorithms, both training and encoding, work according to expectation.

53

Figure 31: Training vector set

Figure 32: Result from VQ codebook generation

Figure 33: Test vectors

54

Figure 34: Result form VQ encoding

5.1.3 Data Compression Performance
As the raw speech signal gets processed by the feature extraction and VQ algorithm,

the number of information bits decreases. At the feature extraction stage, the raw

signal is windowed and converted into LPCC parameters. The program translates a

raw speech signal of length k into a set of vectors where the number of vector is m and

the length of the vector is the order of LPC, n. The compression rate for feature

extraction can then be written as:

  1:
2

12:132:16 frameShift
m

mnmframeShiftmbitsnmbitsk 


The VQ algorithm further compresses those feature vectors into a single sequence of

length m. Note that the format used to store raw speech signal and VQ sequences is

unsigned short (16 bits). However, feature vectors are stored as float points (32 bits).

As illustrated in Figure 35, the compression rate of the VQ encoder is 2n to 1.

55

Figure 35: Vector Quantization Rate

The overall compression rate can be calculated as

 

1:2:1
:2:1

16:32:16

nframeShift
m

m
mnmframeShiftm

bitsmbitsnmbitsk







Figure 36 gives an example to demonstrate how a speech signal can be compressed.

The top half of the figure shows the memory requirement at each of the stages, and the

lower half of the figure shows how the data looks like. As shown, for a 176 ms speech,

the overall compression rate is about 140 to 1.

Figure 36: Data compression example

56

5.2 Automatic Speech Recognition
System Performance
The overall ASR system performance is evaluated by the recognition rate and the

results are shown in Table 5. The experiment was done under the following settings:

1. Sampling frequency: 8 KHz

2. Pre-emphasis coefficient: 0.95

3. Frame length: 32 ms

4. Frame shift: 16 ms

5. LPC order: 8

6. VQ codebook size: 128

7. VQ distortion threshold: 0.005

8. VQ codebook training data: 20 samples per command, 6 commands

9. Environment: quiet, indoor

Table 5: ASR recognition rate

57

The above figure shows an overall recognition rate of 75.8%. The first column results

were obtained using a VQ codebook that was trained using samples of 12 command

words: “one”, “two”, …, “six”, and “stop”, “left”, “back”, “slow”, “go”, “right.” The

second column results were using a VQ codebook that was trained using only samples

of the 6 command words. The third column results were using a VQ codebook that

was trained using samples of the 6 command words and some samples of noise. As the

results have shown, a direct relationship between what samples were used to train the

codebook and the recognition rate can not be observed. Also, different command

words have significantly different recognition rate. This is due to the property of

HMM and the recognition algorithm (Viterbi). The result probability calculated by the

Viterbi algorithm is a function of the signal length. Therefore, the recognition rate can

be affected by the command word length. Note that same results subtract a number,

such as the recognition rate of “slow” in the first column: (16-1)/20, this subtracted

value represents the number of false recognition, so there was 1 false recognition out

of the 20 trials for “slow.” Many different settings of the ASR system can be

experimented for optimizing the recognition rate. Some studies have shown that the

size of codebook has significant effect on the performance of an ASR system.

5.3 Costs
The detail list of costs for the entire Manual Wheelchair Automator can be found in

Appendix. 4. The total cost of the MWA system is $368.73. Considering a typical

power wheelchair can cost several thousands of dollars, this design is quite

economical. Note that all the prices do not include tax.

58

Chapter 6
Conclusions and
Recommendations
The front-end process for an isolated word, speaker dependent, small vocabulary

automatic speech recognition based on Hidden Markov Model is designed and

implemented on a 32 bit microcontroller. The designed process is integrated with the

recognition component and a complete ASR system for wheelchair control is

successfully implemented. Considering only a small number of training data were

used and a small set of experiments were done, the results were found to be

satisfactory. An attachable propulsion device is designed and built as the final product

of this MWA project. As the entire system costs only $368.73, it satisfies the primary

goal which is cost effective.

As mentioned, the accuracy of the ASR system can be optimized by experimenting

with different system settings. Further improvement can be achieved using a larger set

of training data for both the VQ codebook design and HMM training. Since both VQ

codebook and HMM training are done offline using a computer, an option for future

improvement will be to make them real-time and be able to run on a microcontroller.

External memory will need to be incorporated and the efficiency of the training

algorithm will have to be enhanced. Also, off the shelf microcontroller board was

purchased for this project. However, board can be put together by oneself to greatly

reduce the cost of the design.

59

Appendix
A.1 Front-end Flow

Start

Read from bufferi

sw[n] = x[n]*w[n]

Is bufferi

filled?

E = Energy(sw[n])

E >
Ethreshold?

Pre-emphasis

LPC and LPCC

wordLength ++
i++

epdFlag = 1

epdFlag
!= 0?

lengthmin <
wordLength
< lengthmax?

xwordLength =

{LPCC1,…, LPCCp}
Next stage:
Recognition

uss {x1, x2, …, xwordLength}

yes no

yes

no

no

yes

yes

epdFlag = 0

no

ADC continuously
sampling

60

A.2

Automatic Speech Recognition Flow

Start

Read from bufferi

sw[n] = x[n]*w[n]

Is bufferi

filled?

E = Energy(sw[n])

Endpoint
detection

wordLength ++
i++

yes no

In speech

ADC continuously
sampling

Feature Extraction

In silence Finish speech

Recognition

Next stage:
Motor Control

Command
recognized?

61

A.3 System Flow

Start

Operating

mode?

Configure ADC for
ASR system

Configure ADC for
Joystick system

ASR system

Command

recognized?

Change

operating mode?

Joystick
system

Command

inputted?

Motor control
system

Propulsion unit

no no

no no

yes

yes yes

ASR Joystick

62

A. 4 Cost List
Item Price/unit Quantity Price

Motor $45.00 2 $90.00

8.5” Wheel $10.25 2 20.50

Lumber $3.00 1 $3.00

BC40 bracket 2 $6.81

Right angle bracket $7.97 2 $15.94

Plastic Clamps $1.13 1 $1.13

Relay $2.04 7 $14.28

MOSFET 2 $2.95

BJT 7 $9.16

Resistors - $2.00

Capacitor - $2.00

Amplifier 2 $1.00

Wire - $3.00

Microphone $3.68 1 $3.68

PIC32 Starter Kit $64.73 1 $64.73

PIC32 Expansion

board

$95.56 1 $95.56

Breadboard $7.99 1 $7.99

Milled Board $12.50 2 $25.00

Total $368.73

63

A.5 Speech Feature Parameters [9]

64

A.6 Filter characteristics [13]

Filter characteristics of a Bessel low-pass (top), Chebyshev group delay (middle), and
Butterworth (bottom) filter

65

A.7 LPC spectral envelopes

Example of LPC spectral envelopes for different orders [11]

66

References
[1] Emmanuel Aubrey, “The Lost History Of The Wheelchair”

http://ezinearticles.com/?The-Lost-History-Of-The-Wheelchair&id=518882 ,

April 8, 2007.

[2] Gene Emmer, “Custom Wheelchairs: The Trend from Functionality to

Individuality” http://www.articleset.com/Health_articles_en_Custom-Wheelchairs-

The-Trend-from-Functionality-to-Individuality.htm, Feb. 15, 2006.

[3] Canada Science and Technology Museum, “George J. Klein 1904-1992”

http://www.sciencetech.technomuses.ca/english/about/hallfame/u_i19_e.cfm

[4] The Wheelchair Site, “Wheelchair Price Comparisons”

http://www.thewheelchairsite.com/price-comparisons.aspx

[5] Carlos Bernal-Ruiz, Francisco E. Garcia-Tapias, et al, “Microcontroller

Implementation of a Voice Command Recognition System For Human-Machine

Interface in Embedded System,” IEEE Conference on Emerging Technologies and

Factory Automation ’05, Vol. 1, Sept. 2005.

[6] Dong Wang, et al. “Embedded Speech Recognition System On 8-Bit MCU Core,”

Proc ICASSP ’04, Vol.5, pp. 301-4, May 2004.

[7] Mayukh Bhaowal and Kunal Chawla, “Isolated Word Recognition for English

Language Using LPC, VQ and HMM,” IFIP WCC ’04, pp. 343-352, August 2004.

[8] Claudio Becchetti and Lucio Prina Ricotti, Speech Recognition: Theory and C++

Implementation, John Wiley & Sons, Inc, Chichester, 1999.

[9] Geoff Bristow, Electronic Speech Recognition, Collins, London, 1986.

[10] David Gerard Reed, “Speaker-dependent Isolated Word Recognition,” M.S. thesis,

McMaster University, Hamilton, ON, Canada, 1987.

[11] Ben Gold and Nelson Morgan, Speech and Audio Signal Processing, John Wiley

67

& Sons, Inc, New York, 1999.

[12] “The principle of operation of a capacitor (condenser) microphone,”

http://www.audiomasterclass.com/arc.cfm?a=the-principle-of-operation-of-a-capacitor

-condenser-microphone, July 2006.

[13] John Battison, “RF filters,” http://radiomagonline.com/transmission/rf_filters/,

Nov. 2007.

[14] Jim Karki, “Active Low-Pass Filter Design,” Texas Instruments Application

Report, Oct. 2000.

[15] Subra Ganesan, “Introduction to FPGA,”

http://www.secs.oakland.edu/~ganesan/courses/CSE%20576%20W08/Introduction%2

0to%20FPGA%20by%20SG%201808.pdf, 2008

[16] http://www.tme.eu/en/katalog/?art=PICKIT-3#id_category%3D100636%26,

Electronic Components®

[17] “PIC32MX3XX/4XX Family Data Sheet,” Microchip, 2008

[18] “PIC32 Starter Kit User’s Guide,” Microchip, 2008

[19] http://www.microchip.com, Microchip.

[20] Lawrence R. Rabiner and Ronald W. Schafer, “Introduction to Digital Speech

Processing,” Foundations and Trends® in Signal Processing, Vol. 1, 2007.

[21] Bachu R.G., et al. “Separation of Voiced and Unvoiced using Zero crossing rate

and Energy of the Speech Signal”. Student Proc ASEE ’08, 2008.

[22] G. Saha, Sandipan Chakroborty and Suman Senapati, “A New Silence Removal

and Endpoint Detection Algorithm for Speech and Speaker Recognition Applications,”

Proc NCC ’05, January 2005.

[23] Koichi Yamamoto, Firas Jabloun, Klaus Reinhard and Akinori Kawamura,

“Robust Endpoint Detection For Speech Recognition Based On discriminative Feature

Extraction,” Proc ICASSP ’06 Acoustics, Speech, and Signal Processing, Vol.1, May

68

2006.

[24] http://neural.cs.nthu.edu.tw/jang/books/audioSignalProcessing/image/six.gif

[25] John R. Deller Jr., John H.L Hansen, and John G. Proakis, Discrete-Time

Processing of Speech Signals, John Wiley & Sons, Inc, New York, 2000.

[26] R. Vergin and D. O’Shaughnessy, “Pre-Emphasis and Speech Recognition,” Proc.

Canadian Conference ’95 Electrical and Computer Engineering, Vol.2, pp. 1062-1065,

Sept. 1995.

[27] Aki Harma and Unto K. Laine, “A comparison of warped and conventional linear

predictive coding,” IEEE Transactions on Speech and Audio Processing, Vol. 9, No. 5,

July 2001

[28] Tamanna Islam, “Interpolation of Linear Prediction Coefficients for Speech

Coding,” MASc. Thesis, Department of Electrical and Computer Engineering, McGill

University April 2000.

[29] Gin-Der Wu and Zhen-Wei Zhu, “Chip Design of LPC-cepstrum for Speech

Recognition,” 6th IEEE/ACIS ICIS ’07, pp. 43-47, July, 2007.

[30] Thomas F. Quatieri, Discrete-Time Speech Signal Processing, Prentice Hall PTR,

Upper Saddle River, NJ, 2001.

[31] Mohamed Qasem. “Vector Quantization,”

http://www.geocities.com/mohamedqasem/vectorquantization/vq.html

[32] Tian Bin, Tian Hong-Xin and Yi Ke-chu, “A Fast Codebook Design Algorithm

for Vector Quantization,” WCCC-ICSP2000 Proceedings, Vol. 3, pp. 2004-2007, 2000

[33] Pasi Franti and Timo Kaukoranta, “On the splitting method for vector

quantization codebook generation,” Opt. Eng., Vol. 36, 1997.

[34] C.-M. Huang and R. W. Harris, “A Comparison of Several Vector Quantization

Codebook Generation Approaches,” IEEE Trans. On Image Processing, Vol. 2, Issue 1,

Jan. 1993.

69

[35] Sin-Horng Chen and W.M. Hsieh, “Fast Algorithm for VQ codebook design,”

IEE Proceedings, Vol. 138, No. 5, October 1991.

[36] Chin-Chen Chang and Yu-Chen Hu, “A Fast LBG Codebook Training Algorithm

for Vector Quantization,” IEEE Trans. On Consumer Electronics, Vol. 44, November

1998.

70

Vitae
NAME: Ling Tsou

PLACE OF BIRTH: Taipei, Taiwan

YEAR OF BIRTH: 1986

SECONDARY EDUCATION R.E. Mountain Secondary (2000-2004)

HONOURS and AWARDS McMaster Entrance Scholarship

 Dean’s Honour List 2005, 2007

