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Abstract 
A typical electric powered wheelchair is normally buttons or joystick operated which 
requires some degrees of hand movements. However, for severely physically disabled 
patients such as patients with high level spinal injury, their hand motions can be 
restricted. One of the alternative wheelchair control methods is to use speech control 
instead of joystick control. A speech control system would allow the user to operate 
the wheelchair with speech commands instead of hand movements. In order to 
perform speech recognition on the given commands, a front-end process on speech 
signals is implemented. Some of the major components include data acquisition, 
feature extraction, and data quantization. An endpoint detection algorithm based on 
energy analysis is used to isolate individual words. Linear predictive coding (LPC) 
and cepstral analysis are chosen to characterize speech signals. For data compression 
and classification, fast vector quantization (VQ) codebook design and search 
algorithms are implemented based on partial distortion theorem. For each isolated 
words, this front-end process would provide a speech recognition system with a 
sequence of indexes which is a compressed representation of the characteristics of the 
original speech. The basic algorithms, hardware and software design, the results are 
presented. 
 
 
Keywords: speech recognition, feature extraction, speech encoding, voice sampling, 
endpoint detection, linear predictive coding (LPC), cepstral coefficient, vector 
quantization (VQ), codebook design. 
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Chapter 1  
Introduction 
 

1.1 Background 
The history of wheelchairs can be traced way back to the time before Christ when 

both chair and wheel were invented [1]. However, the first self-controllable wheeled 

chair ever build was invented by Stephan Farfler in 1665 [2]. Over the next few 

thousands of years, many types of wheelchair have been developed, but it was not 

until the 20th century that the first electric-powered wheelchair was invented by 

George J. Klein for quadriplegics [3]. 

Power wheelchairs are mainly designed for those people who are physically unable to 

propel a manual wheelchair. Generally, they use electric motors as the source of 

propulsion. The most typical way of controlling speed and direction is by operating a 

joystick controller. Other control mechanisms are also available on the market for 

patients with specific needs. Especially for severely physically disabled patients such 

as patients with high level spinal injury, their hand motions can be restricted. Thus, 

alternative control methods are desirable. 

Currently, the price of a manual wheelchair can range as low as $100 to as high as 

$3000 depend on the weight and its features. Standard manual wheelchairs usually 

cost around few hundred dollars whereas ultra lightweight wheelchairs that were made 

from titanium with adjustable seats can cost up to $3000. On the other hand, the price 

for a power wheelchair is generally between $1600 and $3500 [4], but it can go as 

high as $14,000 for a fancy terrain wheelchair [4]. One way to decrease the cost of a 

power wheelchair is to use an attachment such as hub motors on a manual wheelchair. 
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This allows a manual wheelchair to be motorized and be capable to performing 

similarly as a commercial power wheelchair. Today, there are a number of such 

attachable devices available on the market. This paper focus on the design of a speech 

control system for such a system. 

 

1.2 Objectives 
The ultimate goal of this entire project is to lower the cost of a motorized wheelchair 

unit by designing an attachable device that translates a manual wheelchair into a 

powered one. The attachment device should be portable and powerful enough to 

propel a person setting on a standard manual wheelchair. The primary focus is 

affordability. The end solution of the project should provide an inexpensive solution to 

the people are in need of a motorized wheelchair but can not manage to pay for a 

power wheelchair on the market. The project definition includes the design of an 

alternative control mechanism that is different from joystick control to provide an 

easier way of operating the wheelchair. Speech control is the selected control method. 

A speech controller is essentially an automatic speech recognition (ASR) system. 

Since the purpose of this ASR system is only for operating a wheelchair, it can be 

speaker dependant and contain only a small amount of short vocabularies in its 

dictionary. 

 

1.3 Methodology 
The proposed manual wheelchair automator (MWA) design contains three main 

components: speech controller, joystick controller and the propulsion system; see 

Figure 1. 
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Figure 1: Block diagram of the MWA design 

The joystick controller is basically a backup control method when the user does not 

want to use speech commands to operate the wheelchair. The propulsion unit 

represents the mechanical design of MWN which includes motor/battery placements 

and the design for portability/flexibility as well as the motor control mechanism. The 

speech controller itself is an ASR system as mentioned earlier. It is generally 

implemented with a series of signal processing modules and search algorithms based 

on a selected speech pattern modeling technique; see Figure 2. A statistical modeling 

technique: Hidden Markov Model (HMM) is selected for modeling speech signals in 

this project. 

 

Figure 2: Conceptual block diagram of an ASR system 
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In order for a speech wave to be used by a HMM based ASR system, the pressure 

wave must first be processed, compressed and convert into a characteristic sequence 

(also know as the observation sequence in HMM). It is done by a series of signal 

processing includes short time energy analysis, linear predictive coding, and vector 

quantization. They are represented by the “Front-end Process” block in Figure 2. A 

recognition phase is then followed to identify whether the given observation sequence 

can be matched to any vocabulary model in the database base on probability 

calculations. Once a speech is identified as a command word, the command is then 

passed to the propulsion unit to carry out the desired task. Note the two blocks 

“Codebook Training” and “Model Training” below the blue dashed line in Figure 2, 

they are the preparation components that have to be performed offline before the ASR 

system operate as a speech controller for the wheelchair. Model training is the phase 

that builds the vocabulary database for command words. One HMM model is 

generated for each word, and therefore, those models can be used in the recognition 

phase at run time. Codebook training is the phase that designs the VQ encoder used by 

the front-end process. More details will be provided in the later chapter. 

 

1.4 Scope 
The scope of the entire project is the design of an automatic wheelchair automator. As 

mentioned before, the system consists of a speech controller, a joystick controller and 

a propulsion unit. This project is divided into three sub-projects: the design of the 

front-end process for the ASR system, the design of the back-end process for the ASR 

system as well as the design of joystick steering control, and the design of the 

propulsion system. The back-end process design of ASR system is done by a project 

partner: Hailun Huang, and the propulsion unit design is done by another project 
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partner: Erika Schimek. This report focuses on the design of the front-end process for 

ASR system. 

 



 

 

6 

Chapter 2  
Literature Review 
There are many researches done in the field of speech recognition as well as speech 

signal processing in general. Due to sophisticated signal processing algorithms and 

powerful computers available, computer based speech processing system nowadays 

have reached complex structure and high accuracy [5]. With the rapid development of 

handheld devices and other portable devices, embedded speech recognition system has 

become more important in the recent years. The challenge is to maintain acceptable 

performance while using limited computation and memory resources. In [6], a speech 

recognition system was implemented on 8-bit MCU core. Other than the fact it is 

speaker independent, the system has similar features as what are required for this 

project: small vocabulary, discrete word, and low system requirements. This ASR 

system is based on Hidden Markov Model (HMM) and uses LPCC, its first order delta 

component (⊿LPCC), energy E, its first and second order delta (⊿E and ⊿⊿E) as 

input features. In the paper, it says that “though Mel-Frequency Cepstral Coefficient 

(MFCC) is more powerful and robust to noisy conditions, it is computational 

formidable [6].” It uses vector quantization due to computation cost and limited RAM 

resource. Their results show that the use of VQ encoding notably reduces the 

recognition rate and different VQ methods affect the recognition rate; see Table 1. 

Table 1: VQ recognition table from [5] 

 
Another study implemented the ASR system on a 16-bit core uses Learning Vector 
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Quantization for pattern classification instead of HMM; see [5]. FFT and filter bank 

are the techniques used in this paper for feature extraction instead of LPCC. The ASR 

performance is not as outstanding compare to the last paper; see Table 2. Also, 

recognition performance degrades for different speakers. However, with a recognition 

rate of 92%, it still proofs to be a sufficient ASR system. 

Table 2: Table 2: Prototype performance from [5] 

 

Another paper that studies isolated word recognition using LPC, VQ and HMM 

provides results in Table 3. This paper uses similar methods as [5]. However, it was 

not implemented on a microcontroller. 

Table 3: Results from [7] 
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Chapter 3  
Statement of Problem and 
Methodology of Solution 
As shown in Figure 3, an ASR system can be broken down into two components. The 

front-end process takes an input pressure waveform and outputs a sequence of 

characteristic parameters. Where as the back-end process, which is the recognition 

component, takes the characteristic sequence and outputs an index of the recognized 

command. 

 

Figure 3: Automatic Speech Recognition System 

The main objective of the front-end process is to convert an input speech pressure 

wave into a sequence of parameters that contains the characteristic of the given speech. 

In order to do so, the system first has to convert the pressure wave into an electrical 

signal. Digitalization is also required so discrete signal processing can be performed 

using a microcontroller. See Figure 4 for a simplified conceptual diagram for the 

front-end process. 

 

Figure 4: Front-end process of the ASR system 

There are two main problems for designing the front-end process. First being how to 

acquire clean speech signals from acoustic waves while not being influenced by 
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background noise. Second, how to represent the characteristics of a speech signal with 

a set of parameters that can be used in HMM. A proposed front-end process is shown 

below in Figure 5. 

 

Figure 5: Front-end process flow 

The method of speech signal acquisition largely depends on the nature of human 

speech. Human speech signal have about 16 KHz of frequency bandwidth with most 

of speech energy under 7 KHz [8]. During recording, speech bandwidth is normally 

reduced. A telephonic lower quality signal, which is generally used in 

telecommunication, has a frequency band of 300-3400 Hz. Although contain less 

information, telephonic speech signals are sufficient for the purpose of speech 

recognition in this project. Corresponds to a bandwidth of around 4 KHz, the sampling 

frequency of 8000 samples/sec has to be used. To isolate the signals from this 

frequency band for aliasing prevention during digitalization, a band-pass filter needs 
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to be incorporated in this design. Therefore, the design of Data Acquisition 

methodology includes a microphone, a band-pass filter circuit, and an 

analog-to-digital converter. 

To solve the second design problem mentioned above, a feature extraction flow has to 

be implemented. The different features of the speech signal contain varying amount of 

information about the speech waveform. Each feature requires a different 

methodology and a different level of computation complexity to extract it. Feature 

extraction is a fundamental step of any recognition system. Appendix 5 shows both 

time domain and frequency domain parameters that can be used in speech recognition 

system. Within those features of speech, MFCC and LPC are the popular choices for 

ASR systems [8] [10]. LPC is selected as the core component to characterize speech 

signals in this project for its computation simplicity and many other advantages 

compare to other feature parameters. Before extracting the LPC parameters, the signal 

must first undergo a series of pre-processing. The most important one is endpoint 

detection. Energy analysis is used in this ASR system to isolate speech from silence. 

Accuracy is often higher for an isolated word system compares to continuous speech 

recognition (CSR) system, pauses between words are often mandatory in commercial 

products [11]. 

The front-end process ends with vector quantization (VQ) encoding stage. VQ a 

technique used to quantize feature vectors from the feature extraction stage into 

sequences of symbols. It is potentially an extremely efficient representation of spectral 

information in the speech signal especially when the ASR system is implemented on 

hardware with limited computation memory resources. More details on the overall 

front-end process and the individual components are presented in Chapter 4.
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Chapter 4 
Experimental/Design Procedures 
4.1 Hardware Design 
Excluding the wheelchair propulsion unit, there are not many hardware components 

required for the manual wheelchair automator design. The major component of 

hardware design for the speech recognition system is mainly for data acquisition. The 

quality of obtained speech samples significantly affects the performance of the 

recognition system. Therefore, it is crucial to design a well suited audio sampling 

system. Another firmware design component would be to choose an appropriate 

processor board that satisfy all the criteria for not only the speech controller 

component but as well as for the joystick controller and wheelchair propulsion 

components. 

 

4.1.1 Data Acquisition 
In order to process the speech signal, it is first needed to acquire the voice pressure 

waves as electrical signals using a microphone circuit. As mentioned before, 300 kHz 

to 3.4 kHz is the frequency band that contains the desired speech signal. Most 

microphones in the market are capable to operate not only within this band but also at 

much higher frequencies. To eliminate undesired high frequency noise and low 

frequency offset, a band-pass filter circuit must be designed in order to obtain a clean 

signal. The speech signal then needs to be digitalized so it can be processed using 

digital signal processing techniques in the later phase of the speech recognition system. 

A conceptual block diagram that describes the basic components of this data 

acquisition mechanism is shown blow in Figure 6. 
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Figure 6: Conceptual block diagram of the data acquisition mechanism 

 

4.1.1.1 Choice of Microphone 
The purpose of a microphone transducer is to convert acoustic waves into electrical 

signals. There are many different types of microphones which satisfy the goal of 

detecting sound waves within the require frequency range of human voice. The type 

chose is electret microphones. Electret microphones belong to the category of 

condenser microphone, also know as capacitor microphone. Condenser microphones 

contain a diaphragm which forms one of the plates of a capacitor. The other plate is 

the perforated back-plate which is parallel to the diaphragm [12]. Both the diaphragm 

and back-plate are charged by a supply voltage. The diaphragm vibrates as the sound 

pressure wave comes in, and the distance between the two plates varies with respect to 

the pressure applied by the acoustic wave. Since V = Q/C, the voltage changes 

inversely in proportion to the capacitance change. Figure 7 shows the basic setup of a 

condenser microphone. An electret microphone uses an electret film as the diaphragm 

or the back-plate which is permanently charged to avoid the need for a power supply. 

An electret material is a stable dielectric material with a permanently-embedded static 

electric charge. Although electret microphones do not require polarizing voltage 

supply, a preamplifier that does require a power supply is generally integrated. 
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However, the voltage requirement is often small compares to regular condenser 

microphones. 

 

Figure 7: Basic setup for a condenser microphone [12] 

Other categories of microphones include dynamic microphones which use the 

principle of electromagnetic induction, carbon microphones which contain carbon 

granules pressed between two metal plates, piezoelectric microphones which use the 

piezoelectric effect of piezoelectric crystals, and many others. Other than the operating 

principle, microphones can further be categorized according to their directions that 

they are able to receive vibrations from outside sources. Mainly, there are three types: 

omnidirectional, unidirectional and noise cancelling. Omnidirectional microphones 

are capable of receiving sounds from virtually any direction. On the other hand, 

unidirectional microphones can only pick up sounds aimed directly into their centres. 

Noise cancelling microphones use a differential microphone topology to exterminate 

ambient noise. A typical noise cancelling microphone will contain two ports, a front 

and a back port, for the sound to enter and a difference between the two received 

acoustic waves are used to produce the output. For the purpose of this project, the 
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speech will come in a straight line to the microphone. Therefore, only unidirectional 

and noise cancelling microphones were considered. A unidirectional microphone that 

operates within 16 Hz to 29 kHz and a noise cancelling microphone that operates 

within 100 Hz to 10 kHz were experimented. The noise cancelling microphone 

provided a cleaner signal compares to the unidirectional microphone; however, a 

larger dc spike were occasionally observed at the beginning of a speech sample. Any 

dc offset is extremely undesirable when dealing with speech signal processing. This is 

because the characteristics of speech signals are primarily stochastic. The 

unidirectional microphone provided a slightly noisier result compare to the noise 

cancelling microphone; nonetheless, the signal can be cleaned up afterward using 

appropriate filters. Although it is more susceptible ambient noise, the unidirectional 

electret microphone is selected based on the experimental results. 

 

4.1.1.2 Microphone preamplifier and filter circuit 

design 
The typical operation voltage for an electret microphone is around 1.5 V with a 

maximum operation voltage of 10 V. Due to the choice of processor which will be 

discussed in detail in the later section of this report, the operation voltage is set to 5 V. 

After the microphone transducer produced an electrical signal based on the applied 

acoustic wave, the signal must first be amplified to an acceptable range. A 

preamplifier circuit which also act as a band-pass filter is designed; see Figure 8 for 

the circuit schematic. Note that the circuit is biased so the output signal would provide 

a dc offset of 2.5 V. This is because only a single voltage power supply (5 V) is used, 

consequently it is desired that the speech signal can be centered at the middle of the 

voltage supply which would be 2.5 V. 
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Figure 8: Schematic of the microphone preamplifier 

This circuit has a centre frequency of 2.5 kHz and a gain of 26.5 dB at this frequency. 

The reason for setting a centre frequency at the high regain of the voice spectrum is 

that speech itself has low energy level for its higher frequency components. To 

compensate this, the circuit amplifies the low frequency components less compare to 

the high frequency components. See Figure 9 for the frequency response (gain in dB 

versus frequency) of this preamplifier. 

 
Figure 9: Frequency response of the microphone preamplifier 
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The pre-amplified signal then must be filtered to isolate the speech components. A 4th 

order low-pass Bessel filter is chosen to attenuate all unwanted high frequency noises. 

The reason to choose the Bessel filter instead of Butterworth, Chebyshev or other 

types of filter is that it maximizes the flatness of time delay. Compare to other filters, 

Bessel filters have liner phase response with respect of different frequencies. This is 

very valuable to speech signal processing since it is necessary to remove out of band 

noise without distorting the phase relationship of a multi-frequency in-band signal. In 

addition, Bessel filters approximate a smooth pass-band response which avoids 

overshoot or ringing same as Butterworth filters do. See Appendix 6 for a comparison 

between the filters’ frequency response and group delay. For the same filter order, the 

stop-band attenuation of the Bessel filter is much lower than that of the Butterworth 

filter’s stop-band attenuation. As shown in the figure, there is no ripple in the 

pass-band of the Bessel filter and the stop-band rejection is much less compare to the 

other two filters. In order to obtain better stop-band attenuation, this design used a 

4-pole Bessel filter. Bessel filter can be implemented using Sallen-Key or 

Multiple-Feedback (MFB) architecture. The two architectures provide fairly much 

identical frequency response from 10 Hz to about 50 kHz; see Figure 10. Above 50 

kHz, the Multiple-Feedback architecture appears to have a superior performance. 

Therefore, the Multiple-Feedback topology is used to design the Bessel low-filter. The 

basic low-pass Multiple-Feedback architecture and its transfer function are shown in 

Figure 11. 
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Figure 10: 2nd order Bessel filter frequency response [14] 

 
Figure 11: Low-Pass MFB Architecture [15] 

Table 4: Bessel Filter Table [14] 

 

The circuit is designed based on Bessel polynomial coefficients; see Table 4. To use 

this table, the values for the frequency scaling factor (FSF) and the quality factor (Q) 

are substituted to the following equation: 
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Since the filter is 4th order, it is required to use 2 stages of Multiple-Feedback circuit. 

Each stage’s resistor and capacitor values are calculated using the following 

equations: 

  

The capacitor values are first chosen to be standard values, and then the resistor values 

are calculated according. The gains of both stages (K) are set to be 1. The cut-off 

frequency is set to 3.5 kHz. See Figure 12 for the filter frequency response. 

 

Figure 12: Bessel low-pass filter frequency response 

Along with the preamplifier circuit, the complete circuit schematic is shown in Figure 

13 below. Note that all the filters are biased to provide an output centered at 2.5 V for 

the same reason mentioned earlier. Also, see Figure 14 for the overall frequency 

response. 
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Figure 13: Complete microphone circuit schematic 

 

Figure 14: Overall frequency response of the microphone circuit 

 

4.1.2 Processor Board Selection 
In order sample and perform digital signal processing for the automatic speech 

recognition system, a processor and an analog-to-digital converter is required. Due to 

the wheelchair control methodologies, the processor of selection must be capable of 

handling numerical computations up to a certain degree of complexities as well as 
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providing an output signal format that is feasible to act as the control signal for the 

motors. Non-volatile memory storage is also essential to hold the information for each 

speech model. There are many electronic devices can be used in combination to 

satisfy the above constrains. One can either select a FPGA, a microprocessor or a 

microcontroller as the processor. The primary advantage of a FPGA over a 

microprocessor/controller is that it allows parallel processing. Regardless of how fast 

the microprocessor/controller is, it runs sequentially. The speed is usually enhanced by 

increasing the pipelining to certain level of parallel instruction processing. On the 

other hand, FPGA is entirely hardware based programmable. It does not rely on 

pipelining. Alternatively, a hardware based parallel architecture can be implemented. 

However, parallel processing is not crucial for a speech recognition system since 

speech signal is sampled consecutively. Furthermore, there are many downsides for 

using a FPGA as opposed to microprocessor/controller. First being microprocessor 

and microcontroller are easier to program and debug since programming can be done 

with a higher level programming language such as C instead of VHDL. Second, the 

cost of a FPGA is often higher [15]. The power consumption for a FPGA is also 

relatively high [15]. Although micro sometimes contain more features than required 

(or sometimes do not contain certain desired features), they are more suitable for the 

purpose of speech signal processing. Due to the scope of this project, the processor is 

only needed for performing a small set of specific functions. Since there are also 

requirements for memory storage, I/O interfacing and analog-to-digital converter, a 

microcontroller seems to be a more logical choice. 

Off the shelf microcontroller boards are widely available. There are numerous of 

microcontrollers are designed for different purposes such as USB applications, digital 

signal processing, motor control, and much more. DSP specific microcontroller boards 

would fulfill the speech recognition system requirements exceptionally well. 
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Nevertheless, the foremost responsibility of the microcontroller board for this project 

is to act as a motor controller for the wheelchair propulsion unit. The same board also 

has to be used for the joystick control mechanism. As for the above reasons, a general 

purpose microcontroller board is chosen. Another reason for choosing a general 

purpose microcontroller is that one of the project goals is to minimize cost. As the 

speech controller system is implemented, the system can later be adopted to common 

standard microcontroller with minimal amount of adjustments. The board of selection 

is the PIC32 starter kit as shown in Figure 15. 

 

Figure 15: PIC32 Starter Kit [16] 

The microcontroller itself contains a 10-bit analog-to-digital converter which is 

sufficient to characterize voice signals. The ADC is capable of a conversion speed up 

to 500 kilo samples per second (ksps) [17] which is far more than what is necessary 

for speech signal sampling. The board uses an 8 MHz on-board crystal oscillator 

which allows microcontroller to be operated at a maximum frequency of 80 MHz [18]. 

For the speech controller to provide a reasonable response time which is the time the 

system takes from receiving the speech command to the motor response, this 

operating frequency is fairly appropriate. 

One of the major requirements for the microcontroller is that it must contain a 

significant amount of RAM on board so it is capable of handling all the complex 
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computation for the automatic speech recognition system. Also, a considerable 

quantity of non-volatile memory space must also be in attendance to store large sets of 

data for the voice encoder and command word models. This starter board provides a 

32 Kbytes of SRAM data memory and 512 Kbytes of non-volatile Flash program 

memory [17]. The Flash program memory is also self-programmable which means it 

can be programmed by software executing from either Flash or RAM memory at 

run-time [17]. This feature is considered in this project for run-time speech model 

training (speech model training is a component of the speech recognition system 

which is responsible by a project partner, Hailun Huang). It is then later discarded due 

to various reasons. The primary reason being the complex and time consuming 

algorithm for speech model training requires a lot of enhancement for it to be able to 

operate on a microcontroller. There are many other reasons such as non-volatile 

memory access efficiency during run-time, accidental memory overwrite protection, 

and speech sample storage. However, the feature is listed as a future improvement 

option in the later chapter. Since the model training and voice encoder training are 

done offline, the amount of memory offered by this microcontroller is sufficient. The 

detail memory usage of the automatic speech recognition system would be discussed 

in a later chapter. 

As stated earlier, this board is also used to output motor control signal. Based on the 

selection of motor (a component that belongs to a project partner: Erika Schimek), this 

microcontroller is equipped with pulse width modulation (PWM) feature that can 

control the DC motor speed by generating output pulses with different frequencies and 

duty cycles. Last but not the least, this board can operate on a 9-15 volt DC power 

source and able to provides 3.3/5 V voltages which can be used to power the 

microphone circuit. This means the entire system can operate on a single battery 

source. Based on all above features, the PIC32 starter board proofed to be suitable for 
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the purpose of this project. An expansion board was also purchased for I/O accessing; 

see Figure 16 

 
Figure 16: PIC32 I/O Expansion Board [19] 

 

4.1.3 Overall Hardware Design 
The overall firmware implementation for the automatic speech recognition system is 

shown in Figure 17 below. The system is made portable by using a 9 V battery source. 

The breadboard contains all the microphone circuit components mentioned in the 

earlier section (the left part of the breadboard, see Figure 18 for a closer view) along 

with the joystick circuit (the right part of the breadboard). The electret microphone is 

shown in the bottom right of Figure 17. Only one single pin is required for the system 

to receive the speech signal. Two other input pins are needed for the joystick control 

unit. Three output pins are used to provide control signal for the motor unit: one DC 

pin for direction control (forward/backward) and two PWM pins for speech control of 

each wheel. Note that those output pins is not connected in the picture. 
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Figure 17: Overall firmware implementation for the ASR system 

 

Figure 18: Microphone circuit implementation 

 

4.2 Software Design 
The digital signal processing is the one of the core components of the ASR system. As 

stated in the Introduction, the scope of this paper is to design a front-end process with 
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an ability of taking a speech command and output a set of parameters that characterize 

the given acoustic wave as shown in Figure 4. The entire front-end process can be 

broken down into several components which are mostly software based; see Figure 19. 

In this block diagram, all components other than the Data Acquisition block are 

entirely software based. All of those software components are implemented in the 

microcontroller using C. The entire process flow and the algorithms used for each of 

these blocks will be explained in detail in the following sections. 

 

Figure 19: Front-end process overview 

 

4.2.1 Digital Signal Process Overview 
As shown in Figure 19, there are four major components (square boxes) to the 

front-end process program excluding the training part. The whole process starts with 

getting the data into the microcontroller. Sampling the speech signal is the last part of 

the Data Acquisition module which was discussed in the Hardware Design section. 

The reason for including speech sampling in the Software Design section is to give 

details about how the ADC has to be setup for the microcontroller to acquire signals in 
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an appropriate fashion. Once the speech signal is digitalized, the program must then 

window the samples in order to perform short-time signal processing. Following the 

windowing stage, an endpoint detection phase is used to isolate the word from silence 

and/or consecutive speech. This is because the speech models are word based (one 

model per word) and the ASR system is designed to operate on isolated words. The 

next stage is to extract the feature of the sampled word. Out of many different 

methods, Linear Predictive Cepstral Coefficient (LPCC) is chosen to characterize 

speech signals for this project. Last but not the least; the coefficients will be classified 

and compressed by a Vector Quantization (VQ) encoder. In order to use the VQ 

encoder, a VQ codebook (database) must first be generated. Due to the complexity 

and system requirements, the VQ codebook training is done offline. More details will 

be elucidated in the Vector Quantization section. 

 

4.2.2 Speech Sampling and Windowing 
As stated, human speech frequency range the ASR system needs to pick up is within 

80 Hz and 3.4 KHz. It is necessary to sample the speech signal at an appropriate rate 

to avoid aliasing. According to Nyquist sampling theorem, the sampling frequency 

needs to be at least twice the highest frequency in the original signal. The sampling 

rate of the ADC is set to 8 KHz. This is the standard sampling frequency used in 

telecommunications. 

Traditional methods for spectral evaluation are only reliable in case of a stationary 

signal which is not the case for speech [8]. However, due to the slowly varying nature 

of voice, the speech signal holds articulatory stability within a short time interval 

during which analysis can be performed by “windowing” a signal into a succession of 

windowed sequences, called “frames” [8][20]. Those frames can then be individually 
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processed. The basic principle of short-time analysis can be represented in a general 

form by the following equation: 

 

where Xñ represents the short-time analysis parameters, T{} operator defines the 

short-time analysis function, and w[ñ-m] represents a time-shifted window sequence, 

whose purpose is to select a segment of the original signal x[m] in the neighbourhood 

of sample m = ñ. Commonly used windows are the rectangular and the Hamming 

window. Rectangular window which as the simplest shape provokes a distortion on 

the frequency spectrum of the result frames. The performance of how good the 

window is depends on the shape of its Fourier Transform, W(jω). The Fourier 

Transform of the rectangular window has a higher energy main lobe centered at zero 

and lower energy side lobes centered at higher frequencies. This reduces the local 

frequency resolution [8]. Also, the side lobes of W(jω) swap energy from different and 

distant frequencies which create a problem called leakage [8]. Another window choice 

is the Hamming window. It is the most-used window shape in ASR systems [8]. It is 

used in most of the research projects mentioned in the Literature Review section of 

this report. The window is described by an impulse response of a raised cosine that is 

defined by the following equation: 

 

when n = 0, …, N-1 or otherwise w(n) = 0. The leakage effect is reduced since the 

side lobes of this window are much lower compare to the rectangular window [8]. The 

resolution is substantially reduced because the wider main lobe. Considering that the 

next frame in the processing chain integrates all the closest frequency lines, high 

resolution is not required in speech recognition [8]. Furthermore, the parameters chose 
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for feature extraction method is cepstral coefficients which represent the log 

magnitude spectrum using a predetermined number of coefficients. This method itself 

compresses the spectral resolution of the signal. Therefore, the Hamming window is 

selected for windowing speech. 

With a fixed sampling frequency, the spectral resolution is inversely proportional to 

the sequence length N (frame size). As a result, larger windows have higher frequency 

resolution. Conversely, long sequences loss the stationarity of the signal. There is a 

trade-off between these two criteria. Narrow windows have been proposed to estimate 

the fast varying parameters of the vocal tract while large window are used to estimate 

the fundamental frequency [8]. A speech signal has a relevant variation each 80-200 

ms [8]. This is because voice is produced by the phonatory mechanism articulators, 

which are in a stable position for a very short time during the production of a phoneme 

[8]. There the window that is used to frame speech signals should not excess 80 ms (or 

even 40 ms) for keeping a close assumption of stationarity. Commonly used window 

size ranges from 10 ms to 40 ms. A window size of 32 ms which consists of 256 

samples at 8 KHz sampling frequency is picked for the ASR system; see Figure 20. 

 

Figure 20: Section of speech waveform with short-time analysis windows 
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Based on the settings above, the ADC is configured to operate in trigger mode using a 

timer. One sample per conversion and 10 bits per sample, the samples are then stored 

in predefined buffers with the format of unsigned short (16 bits). The internal sources: 

GND and 5 V are used as reference voltages (AVSS and AVDD) for analog to digital 

conversion. This is the reason that the microphone circuit offsets the speech signal to 

the 2.5 centre voltage. Based on the following equation, the analog speech signal is 

converted to discrete unsigned shorts: 

  )(
5

10242)(][ 10 tx
AVSSAVDD

txnx 


  

To perform speech recognition in real time, three buffers are setup to continuously 

sample speech. The buffers separate the signal into frames. Each buffer is multiplied 

by the Hamming window once it’s filled. Since overlap between frames is necessary 

to accomplish fine speech recognition performance, two buffers are being filled at any 

given time during sampling. Hence, three buffers are compulsory so that when one is 

being processed, the other two are still being filled to keep the continuity of the signal. 

The following diagrams demonstrate the working mechanism; see Figure 21. In the 

section N is the frame length, M is the frame shift. In this project, the frame shift is 

chosen to be half of the frame size which makes the frames overlap with each other 

have of the time. As shown in Figure 21 (a), buffer 2 and 3 are being written while 

buffer 1 is being processed. Once the process is done and buffer 2 is completely full, 

the program starts to read from buffer 2 and write to buffer 3 and 1; see Figure 21 (b). 

The same thing happens to buffer 3 as it gets full, Figure 21 (c). The program loops 

back to read from buffer 1 again and the whole process cycles over and over. 
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(a) 

 

(b) 

 

(c) 

Figure 21: ADC Sampling 
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4.2.3 Endpoint Detection 
Silence portion removal along with endpoint detection is the fundamental step for 

applications like speech recognition. The purpose is to detect speech signal from 

background noise and to isolate each word. Some of the ways that can achieve word 

isolation include the conventional short-time energy (STE) and zero crossing rate 

(ZCR) analysis [21], Linear Pattern Classifier along with probability density function 

[22], and likelihood ratio-based voice activity detection [23]. 

The simple energy analysis methodology is selected. As the name suggests, this 

algorithm identifies speech according to the energy contained in the signal. Frequently, 

the STE method is used in conjunction with ZCR. The short-term energy discriminates 

speech from “silence” and zero-crossing rate differentiates “voiced” and “unvoiced” 

speech for phoneme detection; see Figure 22 for example. Since the requirement for 

the endpoint detection algorithm of this ASR system is only on whole word isolation, 

there is need to distinguish phonemes using ZCR. 

 

Figure 22: Voiced and unvoiced speech [24] 

The definition for STE is given by the following equations: 
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where E represents the STE and s[n] represents the windowed signal. An example that 

demonstrates a typical energy wave form is shown in Figure 23. In the top graph, the 

blue waveform shows the original speech signal and the red line indicate what regains 

are identified by this STE endpoint detection algorithm. In the bottom graph, the 

energy waveform is in blue and the thresholds are indicated by the dashed read lines. 

Two levels of thresholds are used to properly detect the start and finishing of a word. 

Note that the energy is plotted on a logarithmic scale. 

 

Figure 23: Endpoint detection using STE 

Program Implementation 

The endpoint detection algorithm controls how the whole front-end process interfaces 

with the speech recognition module. Therefore, it has been implemented on the very 

top level of the ASR program (in the main function). Speech endpoint detection using 
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energy analysis has a fairly simple structure. However, there are certain constrains, 

such as minimum/maximum word length, that must be checked before the system can 

identify a given set of samples as a word. This component has work closely with the 

ADC to ensure smooth operation at the run time. The microcontroller is programmed 

to follow the procedures below. 

 Parameters and Assumptions 

1. epdFlag = identify the stage of endpoint detection, ranges from 0 to 4. 

2. wordFlag = a variable that triggers the speech recognition system, is set 

to 1 when a word is detected 

3. DCoffset = since the signal centered at 2.5 V, there is also an offset for 

the converted samples. It needs to be removed when performing energy 

analysis. 

4. energyLower = a preset lower threshold for energy level 

5. energyUpper = a preset upper threshold for energy level 

 Steps 

1. Initialization: epdFlag = 0, wordFlag = 0 

2. Read a framed signal from the buffer 

3. Subtract each element in the buffer by the DCoffset 

4. Compute the energy of the signal 

5. Act according to the conditions: 

a. if epdFlag == 0 && E > energyLower 

  epdFlag = 1, wordLength = 0 

b. if epdFlag == 1 && wordLength == maxWordLength 

     epdFlag = 0 

c. if epdFlag == 1 && energy > energyUpeer 

     epdFlag = 2 
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d. if epdFlag == 2 && energy < energyUpper 

     epdFlag = 3 

e. if epdFlag == 3 && energy < energyLower 

     epdFlag = 0, wordFlag = 1 

f. if epdFlag == 2 && wordLength == maxWordLength 

  epdFlag = 0, wordFlag = 1 

6. If epdFlag !=0, perform all the front-end process on that frame and 

wordLength++ 

7. If a word is identified, wordFlag == 1 and go to step 8, else go back to 

step 2. 

8. Invoke the speech recognition module 

Note that the above are only a partial component of the much larger program. The 

complete flow of how a speech is sampled and processed and how each individual 

front-end process components are intergraded together will be explained in the Overall 

Manual Wheelchair Automator Control Mechanism section at the end of this chapter. 

 

4.2.4 Feature Extraction 
The method of doing feature extraction is chose to be linear predictive coding. The 

principle of LPC is based on an all-pole model for speech signal representation, and 

this technique has a number of advantages over other methodologies. It is selected as 

the core component to characterize speech signals in this project. The overall feature 

extraction process is shown in Figure 24. It consists of three sub-components: 

pre-emphasis, LPC and LPCC. The process outputs a set of vectors which represents 

the feature characteristics of the given speech. All of the original speech data will be 

discarded once the feature vectors are computed to avoid unnecessary memory usage. 
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Figure 24: Block diagram for feature extraction 

 

4.2.4.1 Pre-emphasis 
Prior to the core feature extraction component, there is one more stage of 

pre-processing that is necessary to be carried out. This pre-emphasis phase is basically 

a high-pass filter that increases the relative energy of the high frequency spectrum [25]. 

The characteristics of the vocal tract define the properties of speech. Although 

possessing relevant information, how frequency formants contain high concentrations 

of energy relative to high frequency formants [8] [26]. Typically, this problem can be 

overcome by using a single-zero filter whose transfer function in the z-domain is: 

11)(  zzH   

where α is the pre-emphasis parameter. The pre-emphasised signal in time domain is 

given by: 

]1[][][  nsnsny   

The constant α, which has the range 0.19.0  [25], determines the cut-off 

frequency of this single-zero filter. The impulse response of the pre-emphasis filter 

with α = 0.94 is shown in Figure 25. The value used for this project is 0.95. The 

resulting output shows a more balanced spectrum. One drawback of this technique is 

that it can drastically increase the noise energy at high frequencies predominantly for 

vowels [26]. That is why some ASR designs avoid the use of a pre-emphasis filter. 
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Figure 25: Impulse response of the pre-emphasis filter with α = 0.94 [26] 

 

4.2.4.2 Linear Predictive Coding 

Basic Principle 

Once all pre-processing are done, the speech signal then can be processed to extract its 

features using LPC. The basic idea of LPC is to approximate the current speech 

sample as a linear combination of past samples as shown in the following equation: 

 

 
Based on this equation, the original speech spectrum can be modelled using this 

pole-only transfer function listed below: 
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The goal of this methodology is to calculate those prediction coefficients ak for each 

frame. The order of LPC, which is the number of coefficients (p), determines how 
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closely the prediction coefficients can approximate the original spectrum. As the order 

increases, the accuracy of LPC also increases, see Appendix 7. This means the 

distortion decrease. Distortion is defined by the squared sum of predication errors: 
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In exchange, memory requirement and amount of computation grow as the order 

increases. The ARS system of this project is implemented base on 8th order LPC. The 

main advantage of LPC is usually attributed to the all-pole characteristics of vowel 

spectra. Besides, the ear is also more sensitive to spectral poles than zeros [27]. In 

comparison to non-parametric spectral modeling techniques such as filterbanks, LPC 

is more powerful in compressing the spectral information into few filter coefficients 

[27]. 

 

Program Implementation 

There are mainly two ways of estimating linear predictive coefficients: 

Autocorrelation and Covariance methods. Both methods approximate the LPC 

coefficients, {ak}, by minimizing the residual energy [28], which is given by the 

distortion, D, equation. The basic difference between the two is that the covariance 

method windows the error signal where as the autocorrelation method windows the 

original speech signal [28]. The autocorrelation method is used in this project. 

Essentially, the residual energy E can be written in the following from: 

 

The values of {ak} that minimize E can be found by taking the partial derivatives of E 

with respect to {ak} and setting them to zeros: 
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By rearranging these two equations, a new set of equations can be obtained: 

 

where sw[n] is the windowed speech signal. Since sw[n] is zero outside of the window 

w[n], the above equation can be expressed with the autocorrelation function defined 

as: 

 

and therefore 

 

This set of linear equations (p equations) can be represented in the matrix form: 

 

or 

 

The coefficients {ak} can then be solved using Gaussian elimination. However, since 

the matrix R is a Toeplitz matrix, Levinson-Durbin recursion is used instead of 

Gaussian to improve the program efficiency. Levinson-Durbin algorithm solves Ax = 

b, where A is a Toeplitz matrix, symmetric and positive definite, and b is a vector 

consists of some elements of A. The autocorrelation equations satisfy both conditions. 

The detail implementations are the following: 

 Parameters and Assumptions 
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1. m = recursion parameter (1, 2, …, p) 

2. p = LPC order 

3. K(m) = reflection coefficients 

4. E = error 

 Steps 

1. Initialization: 
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6. m++ 

7. If m<p, go to step 2, else go to step 8. 

8. p
kk aa   for k = 1, 2, …, p 

9. Output {ak} and exit. 

This algorithm is adopted from [28] and [29]. More detailed description can be found 

there. 

 

4.2.4.3 Linear Predictive Cepstral Coefficient 
According to studies, cepstral coefficients are more robust and reliable than the LPC 

coefficients [7] and [29]. They are coefficients of the Fourier transform representation 

of the log magnitude spectrum [7]. More information on cepstrum analysis can be 

found in [11] and [8]. LPC-based cepstral coefficients can be directly calculated from 



 

 

40 

the LPC coefficients using the following equation: 

 
where i is the order of LPC. 

 

4.2.5 Vector Quantization 
Basic principle 

Vector quantization is a lossy data compression and classification technique. In 

comparison to scalar quantization, VQ encodes a set of scalars as a vector rather than 

individually [30]. It is essential in achieving low bit rates in model-based and hybrid 

coders. A VQ encoder takes a feature vector outputted from the feature extraction 

stage and maps the p-dimensional vector in space Rp to a symbol which is just an 

index ranging from 0 to the size of codebook; see Figure 26. p represents the LPC 

order. 

 

Figure 26: VQ encoder 

The basic idea can be illustrated easily by using a 2-dimensional vector space; see 

Figure 27. A VQ codebook contains a set of codewords which are vectors that belong 

to the same vector space as input feature vectors. They are represented by the red dots 

in the figure. According to the location of the codewords, every input vector (black 

crosses) can be assigned to a codeword that it has the smallest distance in between. As 

a result, neighbouring vectors are mapped to the same codeword and assigned with a 

symbol, which is the index of the codeword. 

There are two main components to this VQ encoder. One is the encoding part which is 
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just an algorithm used to search the closest codeword. Another part is codebook 

generation. Codebook training uses a computationally expensive algorithm and 

requires a large set of speech samples. No matter how well the algorithm is enhanced, 

the system still needs to access and process a huge amount data during codebook 

creation. For this reason, the training phase is chosen to operate offline using a 

computer rather than the microcontroller. Although the codebook can be trained 

offline, an inefficient encoding mechanism can still limit its applications. 

 

Figure 27: Vector quantization [31] 

 

Program implementation 

4.2.5.1 Vector Quantization Encoding 
VQ encoder consists of a mechanism that identifies one of the codeword from the 

codebook that has a Voronoi regain the input vector belongs to. The simplest and most 

computational heavy algorithm is to perform a full codebook search to find the 

codeword which is the nearest neighbour to the input vector. The distortion between 

the vector and the target codeword is measured using the Euclidean distance: 
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In a full search, the distortion between the input and each codeword needs to be 

calculated. To decrease the computational burden in codebook search, the key is to 

reduce the number of distance calculations. The Inequality between the distortion and 

the means of two vectors can be utilized to solve this problem. A fast codebook 

training algorithm based on this technique is described in detail in [32]. The principle 

can be described as follows: 

 Let x = { x1, x2, …, xp } be a vector and y = { y1, y2, …, yp } be a codeword. 

 If the distortion d(x,y) is the Euclidean distance, then 

yx mmpyxd ),(  

 where p is the vector dimension and ma is the mean of the vector a given by: 
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 Therefore, for any vector y, 

if   min
2 dmmp yx  , then min),( dyxd   

where dmin is a current minimum distance of x represented by a certain codeword. 

In other words, codeword y can not be the nearest codeword to x when p(mx-my)2 

is smaller than or equal to dmin,, and therefore, it is unnecessary to calculate the 

distance between x and y, d(x,y) [32]. 

During the codebook search, if a minimum distance is found and set to dmin,, 

distance d(x, w) from any other codeword w to x need not to be calculated if 

min),( mwxd   or max),( mwxd   
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The means of all the codewords only need to be calculated once, which implies they 

can be computed during the codebook training phase offline to enhance the VQ 
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encoder runtime performance. In exchange of superior performance, the system 

sacrifices an additional memory of size N, number of codewords. Also, the mean of 

the input vector only needs to be calculated once at the beginning of the VQ search 

flow. A number of operations can be significantly reduced with the above theories 

since they avoid a large number of unnecessary distance calculations. These 

techniques are implemented in C with the following algorithm: 

 Parameters and Assumptions 

9. x = input feature vector 

10. yi = codeword, i = 0, …, N-1. 

11. The codebook is sorted in an ascending order according to means of 

codewords. 

12. N is the size of codebook. 

13. symbol = the index of the identified codeword 

 Steps 

1. Compute mx 

2. Initialization: 
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3. Increment i: i  

4. If min),( mwxd   and max),( mwxd   go to step 5, else go to step 3 

5. Compute ),( iyxd  

6. If min),( dyxd i  , 
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7. If 1 Ni , go to step 3, else exit. 

 

4.2.5.2 Vector Quantization Codebook Design 
A well designed codebook is the key to superior ASR performance. Since feature 

vectors of speech samples with similar characteristics would locate within the same 

regain, vectors from a set of speech samples (for example, 20 samples for the 

command “go”) would from clusters throughout the vector space. The fundamental 

codebook design strategy is to place the codewords at the centre of those clusters in 

order to classify similar speeches. A VQ codebook design procedure generally with an 

initial codebook generation and is followed by a codebook optimization algorithm. 

The purpose of initial codebook design is to come up with a predefined defined 

number of codewords that can later be optimized based on an iterative algorithm. 

 

Binary Codeword Splitting 

A simple and commonly used method is for codebook initialization is Binary 

Codeword Splitting. This is an iterative splitting algorithm that starts with a codebook 

of size 1 and iteratively doubles the size of the codebook by splitting each codeword 

into two until it reach a desired size N [32] [33]. The benefit of binary splitting over 

other splitting algorithm such as the M M+1 splitting presented in [33] is that the 

resulting codebook is generally well balanced. There are also other more advanced 

techniques that can be used for initial codebook design such as [33] and [34]. 
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However, the most basic binary splitting technique is used in this project due to its 

simplicity. As mentioned earlier, the goal of initial codebook generation is to create a 

codebook of size N. Binary splitting technique accomplish this by repeating the three 

basic steps: centroid calculation, binary codeword split and training set partitioning. 

Given a set of training vectors S = {Xi, j=1,2,…,j}, the algorithm starts initial 

codebook size of j = 1 and initial partition of the entire training set, P1 = {S}. The 

codewords are calculated by finding the centroid of the partition set with the following 

equation: 





mL

m
mm X

L
C

1

1  for m = 1,2,…,j 

where Lm is the number of vector in the partition Pm
j and Xi are vectors belongs to Pm

j. 

Each centroid Cm is then split into two by: 

 

and 

 

where δ is the perturbation vector to separate the vectors. Note that the above 

calculations are all element-by-element operations. By now, the intermediate 

codebook size j doubled. Training vectors originally belong to Cm must then be 

assigned to the intermediate codeword B2m or B2m-1. To optimize the codebook, other 

intermediate codewords B2n and B2n-1, where n != m, also needs to be compared to 

find the closest codeword for each of the training vectors. It is done with the same 

search algorithm used for Vector Quantization Encoding. After all the vectors are 

indexed, a new partition is obtained. The program then use this partition to repeat the 

process starts from centroid calculation. After this process iterate several times when j 

finally equals to the desired codebook size N, the initial codebook that can be used by 

a VQ codebook optimization algorithm is generated and the binary splitting process is 
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terminated. Every the program iterates, the size of codebook doubles. Therefore, the 

desired codebook size N has to be set to a number that can take a form of 2k where k is 

the number of iterations. Detail steps of the implemented C program are shown below: 

 Parameters and Assumptions 

1. Given a set of training vectors S={X i, j=1,2,…,L} 

2. N = desired codebook size 

3. j = intermediate codebook size 

4. δ = perturbation vector 

5. j
mP {train vector partition} 

 Steps 

1. Initialization: 

   
}{

1
1 SP

j



 

2. Calculate centroids Cm of all jj
m PP   for m= 1,2,…,j 

a. If there is an empty partition set {}j
emptyP , go to step 2.b, else go 

to step 3. 

b. Loop to find the largest partition set j
estlP arg  

c. Compute the centroid of j
estlP arg   estlC arg  

d. Perform binary split and training partitioning on estlC arg  and 

j
estlP arg  

e. Assign the partition set of B2*largest to j
estlP arg  and the partition set 

of B2*largest+1 to 
j

emptyP  

f. Compute the new centroids estlC arg'  and emptyC '  
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3. Split each Cm into intermediate codewords B2m and B2m-1 

4. Compute the mean of B2m and B2m+1 

5. Sort the intermediate codebook according to vector means. 

6. Training set partitioning: assign each training vector to its closest 

intermediate codeword using the steps stated in Section: Vector 

Quantization Encoding. 

7. jj  2  

8. If Nj   go to step 2, else go to step 9. 

9. Recalculate centroids Cm from the jj
m PP   (for m = 1, 2, …, N) to 

obtain the result codebook. If there is an empty partition set, perform 

the same procedures as in steps 2.b to 2.f. 

10. Output the codebook { C1, C2, …, CN } and a vector partition set { P1, 

P2, …, PN } for each codeword. 

 

Fast Codebook Design Algorithm 

Once an initial codebook is obtained, it must then be optimized to enhance the ASR 

system performance. The Linde-Buzo-Gray (LBG) algorithm is the most popular 

codebook training method and is also known as Generalized Lloyd Algorithm [35] 

[36]. Fast Codebook Generation Algorithm is presented in [32] and [35] as a modified 

version of the LBG algorithm. It makes use of the partial distortion theorem and 

utilizes similar techniques as in the VQ encoding and initial codebook design 

discussed in the earlier sections. “This algorithm eliminates about 90% unnecessary 

distortion calculations and can produce the same codebook as the LBG algorithm and 

needs only a few additional memories,” as stated in [32]. It is implemented with the 

following details: 
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Parameters and Assumptions 

1. Initial codebook  00
1

0
0

0 ,...,, NCCCC   

2. Codewords are represented by j
mC  

3. Initial partition  00
1

0
0

0 ,...,, NPPPP   

4. Vector partition sets are represented by j
mP  

5. N = codebook size 

6. j = number of iterations 

7. m = codeword index (symbol). 

8. L = number of training vectors 

9. j
totalD  the total distortion of the current iteration j 

10. ε = a predetermined threshold for distortion rate convergence checking 

Steps 

1. Calculate the mean Cm  for every codeword C 

2. Sort the codebook according to their means 

3. Let j=0 

4. Training set partitioning for every training vector Xi: 

a. Initialize: 

    

isymbol
N

Dmm

N
Dmm

CXdD

i

x
i

i

x
i

mi
i









min
max

min
min

min ),(

 

b. Search for the closest codeword Cn for Xi using the Vector Quantization 

encoding method. 

c. ),(min ni
i CXdD   
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d. ij
total DD min  

5. j++ 

6. Calculate centroids j
mC  for the new partitioned sets obtained from step 4 

7. Convergence checking 

a. calculate the decreasing rate of distortion by 
L

DDD
j

total
j

total )( 1 




 

b. if D , go to step 1, else go to step 8 

8. Output  j
N

jj CCC ,...,, 10  as the final codebook 

Note that all the sorting components mentioned in the Vector Quantization section are 

implemented using insertion sort. 

 

4.3 Overall Manual Wheelchair 
Automator Control Mechanism 
All individual components of the design were discussed. Now, it’s important to merge 

each of them into a front-end process. Figure 28 shows the block diagram of the 

overall front-end process. 

 

Figure 28: Overall flow of the front-end process 
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It then has to be integrated with the recognition/training and the motor control 

modules to form the entire ASR motor control system. The challenge is to come up 

with a way so each module can interface with each other smoothly. Not to forget the 

same system also contains a mechanism for joystick control. An interface that allows 

the user to choice the operating control mode must be implemented. The final 

front-end process flow, ASR flow, and the overall system flow are illustrated in 

flowcharts in Appendix 1, 2, and 3. Note that of those flowcharts, the ADC 

continuously sampling in the background.
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Chapter 5  
Results and Discussion 
The experiment results from some intermediate stages of the front-end process as well 

as the final results of the automatic speech recognition system are presented in this 

chapter. 

5.1 Experimental data of the 
front-end process 
5.1.1 Speech Sampling and Endpoint detection 
To demonstrate the sampling and endpoint detection algorithm’s performance, a 

speech signal sampled by the ADC into the microcontroller is shown in Figure 29 and 

a speech signal isolated by the endpoint detection algorithm is shown in Figure 30. As 

the results shown, the endpoint detection algorithm separates each word quite 

effectively. 

 

Figure 29: Speech sampled, command word “back” followed by another word. 
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Figure 30: Isolated speech signal, command word “back. 

 

5.1.2 Vector Quantization Results 
VQ algorithm is hard to verify when the vector dimension is high. The dimension is 

defined by the order of LPC which is chosen to be 8. With the purpose of confirming 

whether the program works correctly, the LPC order is set to 2 for the results shown in 

this section. A training vector set, see Figure 31, is used to test the VQ codebook 

generation algorithm. The corresponding results are shown in Figure 32 where the 

result codewords are shown with white colour filled markers. The partition vector set 

for each codewords is displayed with different colour markers. This codebook used to 

test the VQ encoding algorithm with another set of feature vectors shown in Figure 33. 

Figure 34 shows the corresponding results. As appears, the vector quantization 

algorithms, both training and encoding, work according to expectation. 
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Figure 31: Training vector set 

 

Figure 32: Result from VQ codebook generation 

 

Figure 33: Test vectors 
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Figure 34: Result form VQ encoding 

 

5.1.3 Data Compression Performance 
As the raw speech signal gets processed by the feature extraction and VQ algorithm, 

the number of information bits decreases. At the feature extraction stage, the raw 

signal is windowed and converted into LPCC parameters. The program translates a 

raw speech signal of length k into a set of vectors where the number of vector is m and 

the length of the vector is the order of LPC, n. The compression rate for feature 

extraction can then be written as: 

  1:
2

12:132:16 frameShift
m

mnmframeShiftmbitsnmbitsk 
  

The VQ algorithm further compresses those feature vectors into a single sequence of 

length m. Note that the format used to store raw speech signal and VQ sequences is 

unsigned short (16 bits). However, feature vectors are stored as float points (32 bits). 

As illustrated in Figure 35, the compression rate of the VQ encoder is 2n to 1. 
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Figure 35: Vector Quantization Rate 

The overall compression rate can be calculated as 

 

1:2:1
:2:1

16:32:16

nframeShift
m

m
mnmframeShiftm

bitsmbitsnmbitsk







 

Figure 36 gives an example to demonstrate how a speech signal can be compressed. 

The top half of the figure shows the memory requirement at each of the stages, and the 

lower half of the figure shows how the data looks like. As shown, for a 176 ms speech, 

the overall compression rate is about 140 to 1. 

 
Figure 36: Data compression example 
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5.2 Automatic Speech Recognition 
System Performance 
The overall ASR system performance is evaluated by the recognition rate and the 

results are shown in Table 5. The experiment was done under the following settings: 

1. Sampling frequency: 8 KHz 

2. Pre-emphasis coefficient: 0.95 

3. Frame length: 32 ms 

4. Frame shift: 16 ms 

5. LPC order: 8 

6. VQ codebook size: 128 

7. VQ distortion threshold: 0.005 

8. VQ codebook training data: 20 samples per command, 6 commands 

9. Environment: quiet, indoor 

Table 5: ASR recognition rate 
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The above figure shows an overall recognition rate of 75.8%. The first column results 

were obtained using a VQ codebook that was trained using samples of 12 command 

words: “one”, “two”, …, “six”, and “stop”, “left”, “back”, “slow”, “go”, “right.” The 

second column results were using a VQ codebook that was trained using only samples 

of the 6 command words. The third column results were using a VQ codebook that 

was trained using samples of the 6 command words and some samples of noise. As the 

results have shown, a direct relationship between what samples were used to train the 

codebook and the recognition rate can not be observed. Also, different command 

words have significantly different recognition rate. This is due to the property of 

HMM and the recognition algorithm (Viterbi). The result probability calculated by the 

Viterbi algorithm is a function of the signal length. Therefore, the recognition rate can 

be affected by the command word length. Note that same results subtract a number, 

such as the recognition rate of “slow” in the first column: (16-1)/20, this subtracted 

value represents the number of false recognition, so there was 1 false recognition out 

of the 20 trials for “slow.” Many different settings of the ASR system can be 

experimented for optimizing the recognition rate. Some studies have shown that the 

size of codebook has significant effect on the performance of an ASR system. 

 

5.3 Costs 
The detail list of costs for the entire Manual Wheelchair Automator can be found in 

Appendix. 4. The total cost of the MWA system is $368.73. Considering a typical 

power wheelchair can cost several thousands of dollars, this design is quite 

economical. Note that all the prices do not include tax. 
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Chapter 6 
Conclusions and 
Recommendations 
The front-end process for an isolated word, speaker dependent, small vocabulary 

automatic speech recognition based on Hidden Markov Model is designed and 

implemented on a 32 bit microcontroller. The designed process is integrated with the 

recognition component and a complete ASR system for wheelchair control is 

successfully implemented. Considering only a small number of training data were 

used and a small set of experiments were done, the results were found to be 

satisfactory. An attachable propulsion device is designed and built as the final product 

of this MWA project. As the entire system costs only $368.73, it satisfies the primary 

goal which is cost effective. 

As mentioned, the accuracy of the ASR system can be optimized by experimenting 

with different system settings. Further improvement can be achieved using a larger set 

of training data for both the VQ codebook design and HMM training. Since both VQ 

codebook and HMM training are done offline using a computer, an option for future 

improvement will be to make them real-time and be able to run on a microcontroller. 

External memory will need to be incorporated and the efficiency of the training 

algorithm will have to be enhanced. Also, off the shelf microcontroller board was 

purchased for this project. However, board can be put together by oneself to greatly 

reduce the cost of the design. 
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Appendix 
A.1 Front-end Flow 

Start 

Read from bufferi 

sw[n] = x[n]*w[n] 

Is bufferi 

filled? 

E = Energy(sw[n])  

E > 
Ethreshold? 

Pre-emphasis 

LPC and LPCC 

wordLength ++ 
i++ 

epdFlag = 1 

epdFlag 
!= 0? 

lengthmin < 
wordLength 
< lengthmax? 

xwordLength =  

{LPCC1,…, LPCCp} 
Next stage: 
Recognition 

uss {x1, x2, …, xwordLength} 

yes no 

yes 

no 

no 

yes 

yes 

epdFlag = 0 

no 

ADC continuously 
sampling  
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A.2 

Automatic Speech Recognition Flow 

 

Start 

Read from bufferi 

sw[n] = x[n]*w[n] 

Is bufferi 

filled? 

E = Energy(sw[n])  

Endpoint 
detection 

wordLength ++ 
i++ 

yes no 

In speech 

ADC continuously 
sampling  

 
Feature Extraction 

In silence Finish speech 
 

Recognition 

Next stage: 
Motor Control 

Command 
recognized? 
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A.3 System Flow 

Start 

Operating 

mode? 

Configure ADC for 
ASR system 

Configure ADC for 
Joystick system 

 
ASR system 

Command 
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Change 
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Joystick 
system 

Command 
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system 
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no no 

yes 

yes yes 

ASR Joystick 
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A. 4 Cost List 
Item Price/unit Quantity Price 

Motor $45.00 2 $90.00 

8.5” Wheel $10.25 2 20.50 

Lumber $3.00 1 $3.00 

BC40 bracket  2 $6.81 

Right angle bracket $7.97 2 $15.94 

Plastic Clamps $1.13 1 $1.13 

Relay $2.04 7 $14.28 

MOSFET  2 $2.95 

BJT  7 $9.16 

Resistors  - $2.00 

Capacitor  - $2.00 

Amplifier  2 $1.00 

Wire  - $3.00 

Microphone $3.68 1 $3.68 

PIC32 Starter Kit $64.73 1 $64.73 

PIC32 Expansion 

board 

$95.56 1 $95.56 

Breadboard $7.99 1 $7.99 

Milled Board $12.50 2 $25.00 

Total   $368.73 
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A.5 Speech Feature Parameters [9] 
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A.6 Filter characteristics [13] 
 

 

Filter characteristics of a Bessel low-pass (top), Chebyshev group delay (middle), and 
Butterworth (bottom) filter 
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A.7 LPC spectral envelopes 
 

 
Example of LPC spectral envelopes for different orders [11]
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