Functional Programming Workout
Code4Lib North, May 2011
William J. Turkel

william.j.turkel@gmail.com
http://williamjturkel.net

Fri 13 May 2011 15:52:39 (GMT —4.)

2| coded4libnorth-2011.nb

Three audiences

1. Non-programmers

You can accomplish difficult things with a few commands
2. Programmers who aren't familiar with functional programming

Why you might be interested in exploring these techniques
3. Functional programmers

Some possibilities in Mathematica

code4libnorth-2011.nb |3

Imperative programming

Give the computer a sequence of commands that change state

var =1

1

exanpl eLi st = {a, b, ¢, d}
{a, b, c, d}

Can refer to pieces of a list using an index (in Mathematica count begins with 1)
exanpl eLi st [2]
b
The For loop is a classic imperative statement
For[i =1, 1 <4, i ++,
Print [exanpl eList[i]]]
a
b
Cc

4| code4libnorth-2011.nb

Imperative programming versus functional programming
Imperative programs change state and thus have side effects. The variable i, which we used in our For loop,
still has a value...
[
4
Functional programming avoids changing state, and treats computation as the evaluation of functions

Simon Peyton-Jones: functional programming is "a radical attack on the whole business of writing
programs”

code4libnorth-2011.nb |5

Map
One functional idiom for replacing the For statement is to use Map
exanpl eLi st
{a, b, c, d}
Map [Pri nt, exanpl eLi st]
a
b
C
d
{Nul I, Null, Null, Null}

Note that functions are first-class objects. You can pass them to other functions as arguments and return
them as values.

Note that each time the print statement is evaluated it creates a side effect and returns a null value. The
map function collects these values in a list and returns that.

6 | coded4libnorth-2011.nb

Another example of Map

exanpl eLi st
{a, b, c, d}
Framed [exanpl eLi st]

{a, b, c, d}

Map [Fr aned, exanpl eLi st]

{[a} &} [c] [a]

code4libnorth-2011.nb |7

Functions can be named or anonymous

plus2[x_]: =
Return[x + 2]

Map [pl us2, {1, 2, 3}]

{3, 4, 5}
One way of writing an anonymous function in Mathematica is to use a slot in place of a variable
#+2&

So we don't have to define our function in advance, we can just write it where we need it
Map[a+2 & {1, 2, 3}]

{3, 4, 5}

We can apply an anonymous function to an argument like this

(#+2 &) [40]

42

A named function like plus2 is still sitting there when we're done with it. An anonymous function disap-
pears after use.

8| code4libnorth-2011.nb

A sample text

As a sample text, we will use the US Declaration of Independence

sanpl e = Exanpl eData[{" Text", "Decl arati onCO | ndependence" }1;
Short [sanpl e, 2]
When in the Course of hunman
events, it becones necessary for one
..el Huntington; WlliamWIIlians; Qiver
Wbl cott; Matthew Thornt on

We convert a string into a list with the StringSplit command. In this case | am saying | want to get rid of
anything that is not a word character (to eliminate punctuation)

sanpl eLi st =StringSplit [sanple, Except [WordCharacter]..1;
Short [sanpl eLi st, 2]

{When, in, the, Course, of, human,

events, <<1431>-, Huntington, WIlIliam

Wllians, Aiver, Wlcott, Matthew, Thornton}

code4libnorth-2011.nb |9

Selecting pieces of lists

short Sanpl eLi st = Take[sanpl eLi st, 40]

{When, in, the, Course, of, hunman, events, it, becones,
necessary, for, one, people, to, dissolve, the,
political, bands, which, have, connected, them wth,
anot her, and, to, assune, anong, the, Powers, of, the,
earth, the, separate, and, equal, station, to, which}

Fi rst [short Sanpl eLi st]

When

Last [short Sanpl eLi st]

whi ch

Rest [short Sanpl eLi st]

{in, the, Course, of, hunan, events, it, becones,
necessary, for, one, people, to, dissolve, the,
political, bands, which, have, connected, them with,
anot her, and, to, assune, anong, the, Powers, of, the,
earth, the, separate, and, equal, station, to, which}

We can also use an index to pull out list elements
short Sanpl eLi st [4]

Cour se

We test membership in a list with MemberQ

Menber Q[short Sanpl eLi st, "human"]
True

Menber Q[short Sanpl eLi st, "alien"]
Fal se

10| code4libnorth-2011.nb

Map lets us process each element of our list

Map [ToUpper Case, short Sanpl eLi st]

{WHEN, I N, THE, COURSE, OF, HUMAN, EVENTS, | T, BECQOMES,
NECESSARY, FOR, ONE, PEOPLE, TO, DI SSOLVE, THE,

PCLI TI CAL, BANDS, WH CH, HAVE, CONNECTED, THEM W TH,
ANOTHER, AND, TO, ASSUME, AMONG, THE, POWNERS, OF, THE,
EARTH, THE, SEPARATE, AND, EQUAL, STATION, TO, WH CH}

Map [ToLower Case, short Sanpl eLi st]

{when, in, the, course, of, hunman, events, it, becones,
necessary, for, one, people, to, dissolve, the,
political, bands, which, have, connected, them with,
anot her, and, to, assune, anong, the, powers, of, the,

earth, the, separate, and, equal, station, to, which}
Map [Stri ngLengt h, short Sanpl eLi st]

{4’ 21 3’ 6’ 21 5’ 6’ 21 7’ 91 3’ 3’ 61 2’ 8’ 31 9’ 5’ 51 4’
9, 4, 4, 7, 3, 2, 6,5, 3,6, 2,3,5, 3,8, 3,5, 7 2,5}

code4libnorth-2011.nb |11

Computing word frequencies
| ower Sanpl eLi st = Map[ToLower Case, sanpl eLi st];

Sort does what you'd expect
sort edSanpl eLi st = Sort [I ower Sanpl eLi st];
Short [sortedSanpl eLi st]

{a, a, a, a, a, a, <<1433>,
wor |l d, world, world, woul d, woul d, wyt he}

Tally lets us count how often each element appears
wor dFreq = Tal | y[sort edSanpl eLi st];
Short [wor dFr eq]

{{a, 16}, {abdicated, 1}, {abolish, 1},
«<613>, {world, 3}, {would, 2}, {wthe, 1}}

We can sort the list by the frequency. We have to pass an anonymous function to Sort to get the order right
sort edFrequencylLi st = Sort [wordFreq, #1[2] > #2[2] &];
Short [sortedFrequencylLi st]

{{of, 79}, {the, 77}, {to, 65}, «<613>,
{abraham 13}, {abolish, 1}, {abdicated, 1}}

12| code4libnorth-2011.nb

Getting word frequencies

The twenty most frequent words

Take[sort edFrequencylLi st, 20]

{{of, 79}, {the, 77}, {to, 65}, {and, 56}, {for, 28},
{our, 26}, {their, 20}, {has, 20}, {in, 19}, {he, 19},
{a, 16}, {them 15}, {these, 13}, {that, 13}, {by, 13},
{we, 113}, {us, 11}, {have, 11}, {which, 10}, {people, 10}}

The Cases statement pulls every item from a list that matches a pattern. In this case, we are looking to see
how often the word "powers" appears

Cases [wordFreq, {"powers", _}]
{{powers, 5}}

code4libnorth-2011.nb |13

nGrams

The Partition command can be used to create n-grams. This tells Mathematica to give us all of the parti-
tions of a list that are two elements long and that are offset by 1

bi granms = Partition[l ower Sanpl eLi st, 2, 17;

Short [bi grans, 3]

{{when, in}, {in, the}, {the, course}, {course, of },
{of , human}, <<1434>, {(william wllians},
(williams, oliver}, {oliver, wolcott},

{wol cott, matt hew}, {matthew, thornton}}

We can tally those, too. Here we pass an anonymous function to Sort again so the most frequent bigrams
are listed first

sortedBi grans = Sort [Tal | y[bigrans], #1[2] > #2[2] &];
Short [sortedBi grans, 5]

{{{he, has}, 18}, {{of, the}, 12}, {{of, our}, 7},
{{to, the}, 7}, {{in, the}, 7}, {{for, the}, 6},
{{of, these}, 6}, {{to, be}, 6}, <<1245>>,
{{becones, necessary}, 1}, {{it, becones}, 1},
{{events, it}, 1}, {{human, events}, 1}, {{of, human}, 1},
{{course, of }, 1}, {{the, course}, 1}, {{when, in}, 1}}

14| code4libnorth-2011.nb

Concordance

A concordance shows keywords in the context of surrounding words. We can make one of these quite easily
if we starting by generating n-grams.

sevengrans = Partition[l ower Sanpl eList, 7, 17;
Here we use Cases to pull out all of the 7-grams that have "powers" as the middle word

The TableForm command formats things nicely

Tabl eFor m[Cases [sevengrans, { , , _, "powers", , ., }1]
assune anong t he power s of

derivi ng their j ust power s from

and or gani zi ng its power s i n

wher eby t he | egi sl ative power s I ncapabl €

for est abl i shing judiciary power s he

code4libnorth-2011.nb |15

Removing stop words

Mathematica has access to a lot of built-in, curated data. Here we grab a list of English stopwords.
stopWwrds = WrdData[Al |, " Stopwords”];

Short [st opWords, 2]

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, A about, «<237>,

w t hout, would, x, X, y, Y, yet, you, your, yours, z, Z}
The Select command allows us to use a function to pull items from a list. We want everything that is not a
member of the list of stop words.

Short [I ower Sanpl eLi st, 3]
{when, in, the, course, of, hunman, events,

it, becones, necessary, for, <«<1423>, ellery,

roger, sherman, sanuel, huntington, william

w llians, oliver, wolcott, natthew, thornton}

| ower Sanpl eNoSt opwor ds =
Sel ect [I ower Sanpl eLi st, Not [Menber Q[st opWords, #]] &];

Short [I ower Sanpl eNoSt opwor ds, 3]

{course, human, events, necessary, peopl e,

di ssol ve, political, bands, connected, assune,
<«<700>>, sherman, sanuel, huntington, wlliam
w llians, oliver, wolcott, natthew, thornton}

16 | code4libnorth-2011.nb

Bigrams containing most frequent words

A more complicated example built mostly from functions we've already seen.
Find the most fregently occuring words

fregWordCount s =

Take[Sort [Tal | y[Take [| ower Sanpl eNoSt opwor ds, {1, -120}1],
#1[2] > #2[2] &], 26]

{{peopl e, 10}, {laws, 9}, {states, 7}, {right, 7},

{governnent, 6}, {tine, 5}, {powers, 5}, {free, 4},

{i ndependent, 43}, {large, 4}, {assent, 4},

{col onies, 4}, {new, 4}, {war, 3}, {seas, 3},

{power, 3}, {peace, 3}, {justice, 3}, {pass, 3},

{refused, 3}, {world, 3}, {repeated, 3}, {absolute, 3},

{usur pations, 3}, {abolishing, 3}, {thenselves, 3}}

fregWrds = Map [First, freqgWrdCounts];

Rewrite bigrams as list of graph edges
edgelLi st = Map [#[1] - #[2] &,

Partition[l ower Sanpl eNoSt opwords, 2, 117;
Short [edgelLi st]

{cour se - human, human - events,
<«<714>, wol cott —» matt hew, matt hew -t hornton}

Grab the most frequent ones
fregBi grans =
Uni on[Sel ect [edgeLi st, Menber Q[f reqWords, #[1]] &],
Sel ect [edgelLi st, Menber Q[f reqWords, #[2]] &11;
Short [freqgBi grans]

{abdi cat ed - gover nnent, abol i shing - forns,
<«<188>>, world —>rectitude, world — refused}

code4libnorth-2011.nb |17

Visualize bigrams of frequent words as a network

Pane [G aphPI ot [freqBi grans,
Met hod -» {" Spri ngEl ectri cal Enbeddi ng",
“"Inferential Di stance" » .25}, VertexlLabeling - True,
D rect edEdges -» True, | mageSi ze » {1200, 800}1,
{Ful'l, 600}, Scrollbars - True]

A
(/200 high
seas
\:L\ beer ——
tried judges incapable
waging
N
N\ plundered p—
imity - conclude (\
enemies
T, times - ’
\ / Just — e powers _|
—— voice
friends / \
\ multitude judiciary |
ruler standing contract institute
wstem appropriations offices
till /
offences k
forms
- supenor quards < .
/ dlssolved charters combined \
military / \
——) abollshlng th|ngs conditions A
valuable r provide »
quartenng e \) mdependent NS - aivil prove arbltra’y ‘/ enlarging
g liress declaring —-f— vernment /
iatlon rights raurned taklnc = wstems > |aying
themsstves absolved legisiate ¥ / *\
fall /”T
Iarge B districts 'Ky/ at N \s} atc-s/ cutting destructlve
‘ o neople " &r ought B hands | niteq ! S~ terms
nor [\ purpose i cat
relinquish : —
end / I“ﬂ \k 7 representation america throw h|story \
mean haras's — ey =
Iong \ colonies t . repq
unless . SUPPOIT ipnahitants population
= rlght solemnly \ /
transporting / - necessity ™ ~ despotiam =
did > Ve ends tyranny injury
candi N s ™~ 7
ti
ime \) inestimable legisiature ‘ aferae
warned / ' \ duty rule | v
~
< | | | > /
7

18| code4libnorth-2011.nb

Import can be used to scrape webpages

I mport ["http: //willianturkel.net", "Hyperlinks"]

{http: //willianturkel.net/,

http: //w I lianjturkel.net /updates/,

http: //willianjturkel.net /fabrication/,

http: //wi I lianjturkel.net/how-to/,

http: //wi | lianjturkel.net/,

http: //wllianjturkel.files.wordpress.cony2011/02/0b033-
hi st ogranB8d-I og-I og. png,

http: //willianjturkel.net/2011/02/21/steal t h-node/,

http: //reference. wol fram com/mat hemat i ca/gui de/Mat hemati ca
.htm, http: //crimnalintent.org/,

http: //di gi tal hi st oryhacks. bl ogspot. conv,

https: //gi thub. comywi I | i anj turkel,

http: //ni che-canada. org/,

http: //ni che-canada. or g/pr ogr anm ng-hi stori an,

http: //hi story. uwo. ca/facul ty/turkel

http: //creati vecommons. org/l i censes/by-nc-sa/3.0/,

http: //wi |l lianjturkel.net/2011/05/03/what -i s-t he-new-
manuf act ory/,

http: //willianjturkel.net/2011/04/19/bits-from-bytes-
darwi n-reprap/,

http: //willianjturkel.net/2011/04/18/bui |l di ng-maker bot -
00018/,

http: //willianjturkel.net/2011/04/05/nmeasure-refactor/,

http: //willianjturkel.net/2011/04/04/wite-and-cl uster/,

http: //willianjturkel.net/2011/03/27/burst -docunents/,

http: //willianjturkel.net /2011/03/22/spi der -to-col | ect -
sources/,

http: //wllianjturkel.net/2011/03/15/goi ng-digital /,

http: //willianjturkel.net /category/nmaking/,

http: //willianjturkel.net /category/nethody/,

htt p: //wor dpress. com/?r ef =f oot er,

http: //t hene. wor dpr ess. convt henmes /wu-wei /,

http: //equi vocal ity. com}

code4libnorth-2011.nb |19

Web crawler in a few lines of code

This example comes from Mathematica 8 documentation
http://www.wolfram.com/mathematica/new-in-8/graph-and-network-modeling/structure-of-the-web.html
webcraw er [rooturl , depth_]: =

Fl atten[Rest [NestLi st [Union[Flatten]

Map [Thread[# - | mport [#, "Hyperlinks"]] &,
Map [Last, #]11] & {"" -»rooturl}, depth]]l;

http://www.wolfram.com/mathematica/new-in-8/graph-and-network-modeling/structure-of-the-web.html

20| code4libnorth-2011.nb

Visualize the network

G aph[webcrawl er ["http: //wi |l ianjturkel.net", 27,
| mgeSi ze » Ful |]

Import::noelem:
The Import element "Hyperlinks" is not present when importing as PNG. >

lx

iy

\ 280 W\
//.f.? , k‘»v

—

code4libnorth-2011.nb |21

Learn more about functional programming

Learn more about Mathematica
http://wolfram.com

Haskell is a free functional programming language
http://haskell.org

Scheme and LISP support functional programming
http://schemers.org

Other languages have some functional programming constructs

Perl http://perl.org
Python http://python.org
R http://r-project.org

http://wolfram.com
http://wolfram.com
http://haskell.org
http://haskell.org
http://schemers.org
http://schemers.org
http://perl.org
http://python.org
http://r-project.org

