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ABSTRACT

In frame structures, the multi-directional motion of an earthquake has a
significant effect on the structure response. The columns, especially those at the building
corners, are subjected to biaxial bending from combined longitudinal, transverse, and
torsional motion of the structure, with added axial loads due to overturning. Moreover,
the variation of the axial forces may be independent of the variation of the other lateral
forces.

The non-ductile response of structural elements, particularly columns, has been
the cause of numerous failures during earthquakes. The non-ductile behaviour of
reinforced concrete columns arises from different causes such as insufficient anchorage
length and bond for the longitudinal steel bars with concrete, insufficient confinement, or
inadequate shear strength.

The objective of this research program is to analytically and experimentally
evaluate the non-linear behaviour of non-ductile reinforced concrete columns under
lateral cyclic deformations. The experimental data was used to verify the analytical
predictions.

The analytical phase of this study included the development of an upgraded 3D
beam-column element based on lumped plasticity modelling. The model accommodates
flexural response by quadrilinear force-deformation relationship, and shear response by
strength and stiffness degrading relationship. The model takes into account the effect of
axial load variation on lateral deformation and its interaction with biaxial moments and

shear, which is an important contribution.
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The 3D model was validated using experimental data available in the literature
by several independent researchers for reinforced concrete columns. The calculated and
experimental results were encouragingly close, especially considering the complexity of
the response. The effect of different axial load variation paths on the response of
cyclically loaded columns was studied.

A new analytical procedure to obtain the moment-rotation and force-deflection
relationships for reinforced concrete columns was developed. These relationships were
used as input data for the 3D element. This procedure uses the basic mechanical and
geometrical properties of the element. It takes into consideration the effect of bond-slip of
tensile bars, buckling of compression bars as well as flexure and shear deformations. This
procedure was verified using available experimental data. The comparison showed good
agreement. A parametric study to evaluate the effect of variation in section and material
properties was also conducted.

The experimental phase of this study included testing three reinforced concrete
short columns under cyclic lateral loads and constant axial load. The first specimen,
which represents columns designed according to current code (CSA A23.3-94), failed in
a non-ductile shear manner. The second specimen was identical to the first one but
rehabilitated using anchored carbon fibre reinforced polymers (CFRP). A significant
increase in the displacement ductility of the column was achieved. The third specimen
represents a non-ductile short column designed according to pre-1970 codes and
rehabilitated using anchored CFRP wraps. Increased ductility was achieved. Two
different techniques to reduce concrete bulging at column sides were evaluated in the two
rehabilitated specimens; namely, by using through steel rods and fibre anchors. Both

techniques proved to be effective.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 INTRODUCTION

Reinforced concrete (RC) buildings designed to pre-1970’s code provisions were
found to be vulnerable to damage during earthquakes. Where current code regulations
have reinforcement detailing requirements to ensure ductile behaviour, previous
regulations were primarily strength based. It is not uncommon to find poor detailing,
from a ductility point of view, in existing pre-1970's construction. The longitudinal and
transverse reinforcement distribution and splicing details in beams, columns and beam-
column joints, govern the ductility and control the failure mode in existing structures.

When ductile reinforced concrete frame structures are subjected to severe
earthquake ground motion they are expected to deform well into the inelastic range and
dissipate the seismic energy through large, but controllable, inelastic deformations at the
critical regions. In frame structures, the multi-directional motion of an earthquake has a
significant effect on the structural response. The columns, especially those at the building
corners, are subjected to biaxial bending from combined longitudinal, transverse, and
torsional motion of the structure. In addition, the columns are subjected to variable axial
loads due to the structural response to lateral inertia forces as well as the vertical

component of the ground motion. In order to predict the distribution of forces and



deformations in these structures under an earthquake ground motion, accurate models for
the hysteretic behaviour of the different critical regions of the structure are necessary.
Planar models and analysis may oversimplify the complex multi-directional
behaviour of the structure. In two-dimensional analysis it is assumed that it is sufficient
to analyze the structure along its principal axes of resistance with horizontal ground
motion acting in each direction at a time. In the analysis of irregular structures, there is a

strong need for simple yet powerful spatial analytical models.

1.2 LITERATURE SURVEY

1.2.1 Theoretical models

Several analytical models for the non-linear analysis of reinforced concrete
structural components have been proposed. These range from very refined and complex
finite element models (Ngo and Scordelis, 1967) to simplified global models (Chen and
Powell, 1982; Lai et al., 1984; Powell and Campbell, 1994; Petrangeli et al., 1999).
Refined analytical models are typically used in predicting the response of small structures
or structural subassemblies. Simplified global models have been typically used in the
dynamic response analysis of large structures. Simple component global models may be
unreliable and incapable of simulating the local behaviour of critical inelastic regions in
the structure and may not yield accurate estimates of strain or curvature ductilities. On
the other hand, the use of refined finite element models in non-linear static, cyclic and
dynamic response of reinforced concrete frames is complex, time consuming and may not

be practical.



The refined and detailed analysis of critical regions in the structure is impractical
without the use of global models that predict the loading history of the particular region.
Similarly, the global analysis of structures is unreliable without the use of more refined
local models to estimate the parameters of the simple component models. A hybrid
approach that uses the results of refined local (finite element) models suitable for detailed
analysis of small regions and more simplified component (global) models suitable for
global response analysis of multi-storey structures provides a powerful tool in the study
of seismic response of reinforced concrete structures.

The major causes of deformation in reinforced concrete frame structures are
axial/biaxial flexural deformations, shear deformations including shear sliding and bond-
slip. The hysteretic load-deformation behaviour of frame members is a combination of
these deformation mechanisms. A rational analysis of the hysteretic behaviour of
reinforced concrete members needs to be based on the representation of all deformation
components and on the interactions between the different mechanisms. This approach
permits the determination of the relative contribution of each source of inelastic
behaviour to the local and global response of reinforced concrete frames.

Global inelastic models for beams and columns can be categorized into three
main categories, namely: Fibre (Filament) models, Multi-Spring models and Yield
Surface (Section) models. In the following sections, each modeling approach will be

discussed separately.



1.2.1.1 Fibre (Filament) models:

In the “fibre” type model (Powell and Campbell, 1994), the member cross
section is divided into a number of small areas (fibres). Each area is assumed to be
uniaxially stressed and to have behaviour governed by the hysteretic stress-strain
characteristics of the material it simulates (steel or concrete). Figure 1.1 shows the
discretization of a cross section incorporating two different fibre elements. In a fibre
filament reinforced concrete element, the element has six degrees of freedom at each end.
The element can have arbitrary cross section defined by special cross section shape
matrix consisting of individual concrete and reinforcement fibres. Each concrete and steel
fibre is considered to be subjected to a uniaxial state of stress. It is assumed that the
displacements are small and plane section remains plane. Perfect bond between concrete
and steel is assumed. Material constitutive models provide the resistance and tangent
stiffness of the individual fibres. The non-linear nature of the element is derived from the
fibre non-linear force-deformation relationship. Strength deterioration and stiffness
degradation can be generated from the combination of concrete and steel longitudinal
fibres whose behaviour is described by the uniaxial stress-strain characteristics of the
steel and concrete materials.

Petrangeli at al. (1999) proposed a modification to a fibre model beam element to
account for the shear behaviour. The element, which is based on the fibre section
discretization, shares many features with the traditional fibre beam element. When the
shear forces are negligible the element reduces to the traditional fibre element. The

element basic concept was to model the shear mechanism for each concrete fibre,



assuming the strain field of the section as given by the superposition of the classical plane
section hypothesis for the longitudinal strain field with an assigned distribution over the
cross section for the shear strain field. Transverse strains are determined by imposing the
equilibrium between the concrete and transverse steel reinforcement. The resulting
model, although computationally more demanding than the traditional fibre element, was
able to model shear sensitive RC elements with good efficiency (Petrangeli, 1999).
Although it was primarily intended to create an element which could capture the
overall inelastic behaviour in addition to the localized plastic hinge deformation (bar pull-
out and concrete crushing), the fibre model element is very sensitive to input data. The
number of fibres in the cross section, and the number and location of the segments along
the member length, in addition to the need to estimate the exact length and location of the
expected plastic hinges, makes it difficult to predict the structure response without the
need for tuning the different parameters. Another major disadvantage is that the required
computational effort, which although may be less than that required for finite elements

model, is still more than that for global models (Fischniger et al., 1999).

1.2.1.2 Multi-Spring models:

Lai et al. (1984) considered two inelastic elements at the two ends of an elastic
member (figure 1.2.a). The region undergoing inelastic yielding is modeled by a set of
springs representing concrete and reinforcing steel (figure 1.2.b). A yield surface is not
required since the inelastic behaviour is controlled by the stress-strain properties of steel

and concrete springs. The model is called a nine-spring model, and each element



comprises four effective steel spring elements (4;;, As2, 453, and Ayq) and five effective
concrete spring elements (4c;, Acs, Acs, Acs, and A.s5). The hysteretic behaviour of the
springs is determined from concrete and steel hysteretic loops. Good correlation with
biaxial cyclic loading experimental results has been reported by Li et al. (1988) using this
model.

A refinement of Lai’s model was provided by Saiidi et al. (1986) by considering
four corner composite springs 1 to 4 as shown in figure 1.2c, instead of separating them
into steel and concrete and one concrete spring 5 at the center of the member. Thus, the
nine-spring model was reduced to a five-spring model. When the composite springs are
subjected to tension, a steel member representing the longitudinal reinforcement will
resist the force. A compression force on these springs, however, is resisted by the
composite action of concrete and steel. Due to the difference between the tensile and
compressive behaviour, the stress-strain curve for the composite springs is
unsymmetrical.

Jiang and Saiidi (1990) further improved the model by using only four comer
spring elements 1 to 4 as shown in figure 1.2d, and compared the results with biaxially
loaded columns with constant or variable axial force. Compared with the five-spring
model, the major advantage of this model is that only one type of spring is used, namely
the composite spring. Even though the number of springs has been reduced, the
comparison between analytical results and experimental data is still good and the
computation is more efficient. It was shown that this model could simulate the stiffness

degradation behaviour. Compared with the fibre model discussed above, the multispring



model is a simplified fibre model with more efficient computation. Shear effects in this

model were 1gnored.

1.2.1.3 Yield Surface (Section) models:

In the “Section” type models, it is assumed that inelastic behaviour is defined for
the cross section as a whole. The force-deformation relationship for the cross section is
specified as a function of the cross section dimensions and the hysteretic force-
deformation characteristics of the member material. An important advantage of this type
of element is that it is controlled by only a few parameters (yield force, yield
displacement, hardening parameter, unloading parameter) with clear physical meaning.

There are two basic approaches used in modeling the inelastic behaviour of a
structural element using a "Section" model:

(a) Distributed Plasticity Approach

In this approach, it is assumed that yielding is distributed over the element
length. The structural characteristics of the element are calculated by assuming a
displaced shape for the element axis. From the resulting curvatures and axial strains, the
internal forces are calculated at various sections. The element stiffness is then determined
by integrating the curvature along the element. Mutli-dimensional action-deformation
relationships must be specified for the cross sections, so that the effects of interaction
between the various actions such as the bending moment, axial force, and shear force can
be taken into account. These relationships will be in terms of action quantities, such as

moment and axial force, and deformation quantities, such as curvature and axial strain.



The distributed plasticity approach tends to be preferable for structures in which the
plastic zone locations are not known in advance.
(b) Lumped Plasticity (Plastic Hinge) Approach

Yield is assumed to take place only at generalized plastic hinges of zero length,
and the structural member between hinges is assumed to remain linearly elastic. In this
approach, multi-dimensional action-deformation relationships must be specified for the
hinges, in terms of moment and axial force, as before, but related to deformations such as
hinge rotations and axial extensions. Lumped plasticity models are particularly suitable
for the analysis of building frames under seismic loads, since plastic behaviour in such
structures is usually confined to small regions at the beam and column ends.

Several studies of the inelastic behaviour of frames under earthquake forces were
conducted in the early seventies. Kannan and Powell (1973) and Otani and Sozen (1972)
provided comprehensive surveys of early investigations of plane frames. The force-
deformation or moment-rotation relationships assigned to a member can have a
significant influence on the calculated response. As a result, non-linear analysis has
concentrated on modeling stiffness changes in the members and the establishment of
realistic hysteretic behaviour rules.

Hidalgo and Clough (1974) investigated a number of analytical models for the
response prediction of a two-storey, single-bay frame, which they also tested on a shake
table. Starting with a two-component elasto-plastic element, they attempted to improve
the correlation between analysis results and experimental data by adding degradation

effects to the model. One method of including degradation effects was to impose



empirical changes on the value of the elastic modulus at specified times during the
excitation. A second technique was based on degradation of the generalized stiffness of
the first mode of vibration of the structure. Although these techniques can provide
accurate results for specific frames, they are not convenient for general purpose
application.

Takeda et al. (1970) examined the experimental results from cyclic loading of a
series of reinforced concrete connections, and proposed a hysteresis model that was in
agreement with these results. Several investigators (Takizawa and Aoyama, 1976; and
Otani et al., 1979) used this model, in both its original and modified forms.

Litton (1975) adopted a modified Takeda model for a reinforced concrete beam
element for the DRAIN-2D computer program. This element consisted of an elastic beam
element with inelastic rotational springs at each end. A similar type of element was
suggested earlier by Otani and Sozen (1972). This element consisted of a bilinear beam
element with an inelastic rotational spring and a rigid link at each end. Neither of these
models considered biaxial interaction effects.

In 1976, Takizawa and Aoyama first introduced a biaxial trilinear degrading
model, using plasticity theory. The model was developed based on a trilinear relationship
between member end-moment M, and end-rotation 6. The M-0 relationship was derived
from sectional analysis and characterized by crack and yield points. The crack and yield
conditions were postulated to be ellipses in the moment space. In the biaxial moment
space, there were two yield surfaces, one inner cracking surface and one outer yield

surface. Fig 1.3 shows the yield surfaces in the stress space and the related trilinear
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curves for uniaxial flexure in the principal directions X and Y. Two yield functions were
established to check the state of generalized stress:

For the cracking surface,

1
M. M2 M
f=|_7~ Cx 1 i (1.1)
M, 0 : M,
Mg,
For the yield surface,
1
— 0
YEREYE [M jl
g= o " (1.2)
[MY] 0 12 M,
My,

where M,, M, = current bending moments about X and Y axes;
Mcx, Mcy = cracking moments about X and Y axes; and

Myx, Myy = yield moments about X and Y axes.

The following criteria of three-part plasticity were used for loading under biaxial flexure:

f<1 elastic range
f>1 and g <1 cracked and unyielded range
f>1 and g = 1 yielded range

Here, the elastic stiffness is modified once the cracking surface is reached,
beyond which the cracking surface translates without changing shape. Upon reaching the
yield surface, both cracking and yielding surfaces are allowed to expand along the
direction of yielding. Ziegler’s hardening rule was used for the translation of the crack
surface and expansion for the crack and yield surfaces. Degradation was achieved by

factoring the unloading stiffness using a degradation factor.
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Riahi et al. (1979) described a 3-dimentional beam-column element and
incorporated it into the ANSR computer program. The element was assumed to be made
up of three parallel components, two elasto-plastic components to represent yielding and
one elastic component to model strain hardening. Interaction for biaxial bending and
axial force was considered, but the element did not have stiffness degrading
characteristics.

Using experimental data, Takizawa and Aoyama (1976) as well as Chen and
Powell (1982) verified the lumped plasticity analysis. The tests included uniaxial and
biaxial bending. It was shown that the lumped plasticity model was able to capture the
three-dimensional flexural behaviour of reinforced concrete columns. In addition to the
lumped plasticity model, Chen and Powell checked the model of distributed plasticity
against experimental results conducted by Zayas et al. (1980). Even though the overall
response was similar, it was found that the analysis predicted substantially less stiffness
and strength degradation.

In a recent study, Ricles et al. (1998) developed a new shear-flexural element for
modeling the response of non-ductile reinforced concrete bridge columns subjected to
biaxial seismic loading. The effect of column behaviour on the seismic response of
bridges and the reliability of retrofitting were examined. In the element development, a
conceptual model was adopted to accommodate the non-linear reinforced concrete
behaviour. The biaxial flexural behaviour was simulated using member end moment-

rotation relationships. A biaxial failure surface model was proposed for non-ductile shear
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failure behaviour. The model was implemented in the ANSR-1 general-purpose program
and verified using experimental data.

Abou-Elfath et al. (1998) developed a planar beam-column lumped plasticity
model to represent the seismic response of non-ductile structures. The developed model
accounted for the strength softening behaviour of non-ductile RC members. It also
included the interaction between the axial force and the moment capacity of the RC
members. The model was verified using the available experimental data as shown in
figure 1.4. The analytical approach provided a practical and reliable tool to represent the

behaviour of non-ductile RC buildings beyond their ultimate strength and up to failure.

1.2.2 EXPERIMENTAL STUDIES

1.2.2.1 Flexural behaviour

Numerous research projects were conducted to study the flexural characteristics
of hysteresis loops of reinforced concrete members (Takizawa and Aoyama, 1976; Lai et
al.,, 1984; and Wong et al, 1990). The flexural mechanism is a well-understood
phenomenon, and current reinforced concrete design codes provide a satisfactory

approach for design to ensure a ductile response under seismic loads.

1.2.2.2 Shear behaviour
The study of shear behaviour was traditionally concerned only with uniaxial
loading. Experimental assessment of shear dominated behaviour of biaxially cyclically

loaded short square reinforced concrete columns were conducted by Umehara and Jirsa
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(1984), Maruyama et al. (1984), and Woodward and Jirsa (1984). The parameters studied
in this project included loading history, axial load, and reinforcement content. The results
showed that previous loading in either direction did not significantly affect the ultimate
shear strength of the columns unless the maximum deflection of any previous loading
exceeded the deflection corresponding to the ultimate shear strength of columns under
monotonic loading. It was also shown that the diagonal unidirectional loading could be
estimated using an interaction ellipse connecting the maximum capacities of the column
under unidirectional loading along the principal axis.

More recent experimental work (Ghee et al., 1989) involved the seismic shear
strength of 25 cantilever squat circular reinforced concrete columns. The main parameters
studied were the aspect ratio (1.5, 1.75, 2 and 2.5), axial load ratio (0,0.1, 0.175, and 0.2),
and transverse reinforcement amount. The response of columns were classified into four
categories, 1) ductile flexural, 2) moderately ductile with shear failure, 3) limited
ductility with shear failure, and 4) brittle shear failure. The tests showed that the shear
strength was a function of displacement (flexural ductility), which was not accounted for
by most design codes. A design model for shear strength degradation with increasing
flexural ductility was suggested (figure 1.5). The initial shear strength ¥; is assumed to

apply for displacement ductility p < 2. At higher ductility, the shear strength degrades to

a final value 7} at flexural displacement ductility capacity ps, which is defined as the

displacement ductility capacity if the shear failure can be avoided.

V.(kN)=V, +V, =0.37a(l +3}—],))\/7: (4,)+7, f,, % (1.3)

where V. = Initial shear strength from concrete mechanism;
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Vs = Initial shear strength from steel mechanism,

a =2/(M/VD) > 1, M= moment, V= shear force, D= column diameter;
P = axial load (kN);

fe” = compressive strength of concrete (kPa);

A, = gross sectional area (mm?);

A, = area of transverse reinforcement (mm?);

S =Yyleld strength of transverse reinforcement (kPa);

s = spacing of spiral or hoop reinforcement (mm); and

D’ = diameter of confined core (mm).

V,(kN)=V, +V, =18.5p,,/f.(0.84,)+ 74, f,,D cotf,,,, | 2s (1.4)
where Vi = Final shear strength from concrete mechanism;

Vs = Final shear strength from steel mechanism;
ps = Volumetric ratio of transverse reinforcement; and

6 = The inclination of diagonal strut.

The value of Gy, has a lower design limit of 25-degrees, which was the value
suggested based on lower bound plasticity theory. If the shear force corresponding to
development of the real flexural strength is less than 7 as shown in figure 1.5 by line 1,
then full flexural response is assured. Line 2 corresponds to the case when the shear
corresponding to real flexural strength exceeds V; but is less than V;. The ductility p.
achieved is defined by the intersection of line 2 with the shear strength degradation curve.
Line 3 represents the case when shear force corresponding to real flexural strength
exceeds V.. In this case, a brittle failure will occur at p < 2. Tests were conducted on 8
single columns and 2 twin-column units subjected to shake-table testing under sinusoidal

or simulated earthquake ground motion. It was reported that the single column response
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was compatible with static test, while two twin-column units gave a more realistic
simulation for the varying column axial load during an earthquake.

Saatcioglu and Ozcebec (1989) studied 14 square columns under bi-directional
loading. The main parameters studied were axial load, transverse reinforcement, and bi-
directional loading on column ductility. It was found that the ductility of columns was
improved significantly with the use of proper confinement configuration. The level of
damage in one direction adversely affected the column in the other direction.

Wong et al. (1990) tested 16 squat circular bridge columns with aspect ratio of 2
under multi-directional seismic loading. This study was a continuation of the testing
program of Ghee et al. (1989). The parameters studied were axial compression load,
spiral reinforcement content, and displacement patterns. The sensitivity of the strength
and stiffness of shear resisting mechanisms to various displacement pattern and axial
loads were investigated. It was concluded that compared with uniaxial loading, biaxial
displacement led to more severe degradation of stiffness and strength. Wong et al. (1990)
suggested a new design procedure for squat circular columns under multi-directional
seismic demands. The new approach enabled the strength and the associated dependable
displacement ductility to be determined, while also taking horizontal displacement
history into account. Other observations confirmed the conclusions and recommendations
of Ghee et al. (1989).

Watanabe and Ichinose (1991) proposed a design method for rectangular sections
based on superposition of arch and truss actions using a lower bound plasticity approach.

The method is based on limiting the diagonal compression stress resulting from the
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combined arch and truss action. For ductile members, the permissible diagonal
compressive stress is progressively reduced as the plastic rotation increases, thus
indicating behaviour similar to that of figure 1.5. In this approach, the shear strength ¥, is
considered to be the sum of contributions from arch and truss mechanisms, illustrated in
figure 1.6:

V.=V, +V, (1.6)

where the truss contribution ¥, is given as

14

t

=Mcot¢ (1.7)
S

and the arch contribution ¥, is given by

V. =b-§—(l—,3)vofc’ tan @ (1.8)

where jt = the distance between upper and lower chords of the analogous truss, ¢ = the
inclination of diagonal compression stress with member axis in truss mechanism (cotg
decreases with the increase of inelastic plastic hinge rotation), € = the inclination of
diagonal compressive struts to column axis, and v, f, = effective compressive strength of
concrete (degrades with the increase of inelastic plastic hinge rotation).

The shear force V, carried by arch action is based on an assumed compressive

zone depth of half the member depth, as shown in figure 1.6. This approach has been
adopted in the recommendation of the Architectural Institute of Japan (AlJ, 1988).

Priestley et al. (1994) studied shear retrofit of rectangular and circular reinforced
concrete bridge columns by steel jacketing. A shear design equation was proposed:
V,=V.+V +V, (1.9)

where V,=nominal shear strength;

V. = shear strength from concrete mechanism;
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V; = shear strength from steel mechanism; and
V, = shear strength from axial force mechanism.
In which

V. =k\/7;Ae (1.10)

A. is 0.8 of the section gross area for both circular and rectangular cross sections,
and k is a factor that depends on displacement ductility and shear environment (figure

1.7). The shear carried by reinforcement in a rectangular column is:

A f,D
v, =—if-y’——cot9m, (1.11)

S

and for a circular column:

g _m A Il o (1.12)
2 S
in which 4, = transverse reinforcement area for rectangular column,;
Ajp = transverse reinforcement area for circular column;
fon = yield stress of transverse reinforcement;
D’ = the distance between centre of hoop on opposite sides of the section;
s = spacing of transverse reinforcement; and

. = angle between column vertical axis and compression strut (30°)

The contribution of axial force to the shear resistance of an element is (figure 1.8):
k P(D-
) kPO
H

where P = axial load;

(1.13)

k=1 for double curvature and =0.5 for single curvature;
D= overall section depth or diameter;
¢ = the depth of the compression zone; and

H = the column height.
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It was reported by Priestley et al. (1994) that the new proposed design equation
reduces the conservatism inherent in previous shear design approaches, and provided
excellent prediction of the shear strength of test columns.

Vecchio and Collins (1986) conducted experiments and theoretical work that
yielded the “Modified compression-field theory”. They tested 30 specimens to study the
response of rectangular reinforced concrete elements subjected to in-plane shear and axial
stresses. In their program, four specimens with nearly identical properties, were loaded at
different ratios of shear stress to axial stress. Figure 1.9 shows the predicted cracking
loads and the predicted failure loads using the modified compression-field theory. On the
same figure, the observed cracking loads (hollow circles) and the observed failure loads
(solid circles) for the four tested specimens are plotted. The predicted loads are shown to
be in good agreement with the observed ones.

The behaviour shown in figure 1.9 indicates that there are three rather distinct
regions in the shear strength-axial strength interaction diagram: 1) at high biaxial tension,
yielding of the reinforcement at the cracks control failure; 2) concrete shear failure
governs in the middle region, with concrete failing at compressive stresses considerably

less than fc/; and 3) at high biaxial compression levels, failure is controlled by f;, reaching

1o

1.2.3 SUMMARY

Most biaxial test results (Takizawa and Aoyama, 1976; Otani et al., 1979) were

limited to constant axial load and to imposed deflection paths that followed diagonal,
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square, clover leaf, circular, or elliptical patterns. Few researchers conducted tests
studying the variation of axial load effect on columns under uniaxial bending (Abrams,
1987) and biaxial bending (Bousias et al., 1995; and Saatcioglu and Ozcebe, 1989).
Inspite of the importance of the effect of axial load variation on columns during an actual
earthquake on the response and failure of the columns, the attempts to evaluate this effect
analytically were rare. Perdomo et al. (1999) developed a finite element model that takes
the variation of axial load into account and implemented the developed model in a
commercial finite element program. No other models that use lumped plasticity global
models and take the variation of axial load in the general three-dimensional deformation

were reported in the literature.

1.3 OBJECTIVES

The main objectives of this research program are to analytically and
experimentally evaluate the behaviour of non-ductile reinforced concrete columns under

lateral cyclic deformations.

1.4 SCOPE

In order to achieve the study objectives, the scope of research is as follows:
1- Develop a bond-slip model that can be used in analyzing RC structures.

2- Develop an analytical procedure that uses the basic geometrical properties of beam-

column elements and material properties of confined concrete and reinforcing steel
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with the developed bond-slip model to obtain the moment-rotation and force-
displacement relationships of beam-column elements to be used as input data for the

three-dimensional element.

Examine the validity of the proposed procedure by comparing its results to the

available experimental data.

Develop a three-dimensional lumped plasticity model to account for the combined
interaction effects for flexure, variable axial load and shear in a beam-column

element.

Validate the proposed model using available experimental data for reinforced

concrete columns.

Conduct a testing program on three fixed-fixed reinforced concrete short column
specimens to study the effect of confinement on their response when subjected to

cyclic lateral excitation.

Experimentally compare the efficiency of two rehabilitation techniques for the tested

columns using carbon-fibre-reinforced-polymer (CFRP).
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CHAPTER 2

3D BEAM-COLUMN ELEMENT
WITH FLEXURAL AND SHEAR FAILURE CRITERIA

2.1 GENERAL

Reinforced concrete members, especially those of non-ductile frames, have
experienced both flexural and shear failures during recent earthquakes. Post-earthquake
observations indicated that a brittle shear mode of failure might have been the cause of
total collapse. During earthquakes, structures are subjected to lateral loads that impose
biaxial flexural and shear forces on the columns. Analysis of such columns requires
taking into consideration the effects of biaxial loading on the yielding, capacity, inelastic
deformation, and degradation of strength and stiffness of the member in order to achieve
realistic predictions of the seismic response of framed structures. Therefore, both shear
and flexural effects must be included in the analysis of non-ductile frames, and in cases
where shear failures are possible.

Shear is resisted primarily by concrete before cracking. After the shear cracks
develop, the components of shear resistance are aggregate interlock, transverse
reinforcement and dowel shear forces across the longitudinal reinforcement. The
mathematical modeling of the member’s behaviour after the initiation of the shear crack
remains a challenging problem. While numerous analytical and experimental studies have
been conducted on the flexural behaviour of reinforced concrete members under seismic
loading, few studies have addressed the shear mode of failure of reinforced concrete

structural members under seismic excitation.

28
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The model developed in this chapter is based on the biaxial flexural model of
Takizawa and Aoyama (1976) and Chen and Powell (1982) with improvements. The
element is intended to model inelastic effects in reinforced concrete beams and columns
under general cyclic loading. Particular emphasis is placed on accounting for axial force-
biaxial bending moment interaction and torsional moment-biaxial shear force interaction,
with shear strength degradation. The improvements involve accounting for the biaxial
shear failure, post shear failure and shear pinching response and its interaction with axial

load as well as the variation in axial load.

2.2 ELEMENT DESCRIPTION

The three-dimensional beam-column element is formulated to model inelastic
hysteretic behaviour of reinforced concrete beams and columns, with particular emphasis
on axial force-biaxial moment interaction, stiffness degradation under cyclic loading,
shear failure and post shear failure response.

In the three dimensional space, the element may be arbitrarily oriented in a
global XYZ coordinate system (figure 2.1), where the nodes /, J, and K define the element
position and the local xyz coordinate. Nodes I and J define the x-axis, whereas node K
together with nodes 7 and J define the local x-y plane. The element is selected to be
straight. Eccentric end connections and slaving may be specified to model rigid joint
regions and rigid diaphragms, respectively, as will be explained in the next section. Initial
elastic flexural, torsional, axial and shear stiffnesses must be specified. The inelastic

behaviour is assumed to be concentrated in the plastic hinge regions at each end of the
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element (figure 2.2). For the case of constant torsion and axial loads, torsional and axial
deformations are assumed to remain elastic throughout the analysis; however, interaction
between different forces and moments is taken into consideration. For variable torsional
moment and axial loads, the current level of these loads will continuously affect the
plastic deformation. Each hinge is assigned an individual yield strength. The hinges are
assumed to have elastic-plastic strain hardening characteristics when subjected to biaxial
flexure, and strength degradation in shear. A set of three yield surfaces exists for bending
moments, with one failure surface defined for shear. The flexural yield surfaces and shear
failure surface are assumed to be independent, and the bending moment and shear force
resultant are coupled only through equilibrium.

Each hinge is considered to have three subhinges for flexure, and one subhinge
for shear (figure 2.3). Each subhinge has a rigid-plastic force-deformation response.
Consequently, the axial and flexure force (P, M) - deformation (3, 0) relationship is
quadri-linear where M; and P; are the capacities for each subhinge (figure 2.4). Post-yield
behaviour of the hinge follows kinematic hardening and stiffness degradation in flexure.
The yield surface properties of each subhinge, in terms of flexural strength, elastic and
post elastic stiffness, can be determined from moment curvature analysis for each
principal axis. This relationship takes into consideration the bond-slip, as will be
explained in Chapter 3.

The behaviour of the shear subhinge is based on the assumption that before the
concrete cracks the subhinge remains rigid, where the shear resistance is provided by

concrete. After the concrete develops shear cracks and reaches the member shear
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capacity, the subhinge develops plastic shear deformations. Consequently, with further
imposed deformation, the shear strength decreases and finally reaches the residual
capacity provided by reinforcement alone. Upon load reversal, the shear subhinge
unloads with a reduced pinching stiffness until the shear cracks are closed. When this 1s
achieved, the subhinge becomes rigid until the shear capacity is reached in the opposite

direction. The cyclic hysteretic envelope for the shear subhinge is shown in figure 2.5.

2.3 DEGREES OF FREEDOM

The element has two external nodes, I and J, as shown in figure 2.2. Each node
has six degrees of freedom (DOF), namely three translations and three rotations along the
global XYZ axes (figure 2.6). In the local element coordinate system, there exist six
deformation degrees of freedom, as shown in figure 2.7. The transformation from global
displacements to local deformations is determined by

dv=a,-dr 2.1
where gr= displacement transformation matrix;

dr = global displacement increment ; and

dv = local element deformation increment.

The element deformations include elastic beam deformations and plastic hinge
deformations, hence
dy=dq+dw, 2.2)

where dg = elastic beam deformation increments; and

dw, = plastic hinge deformation increments.
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The displacement transformation matrix gy is determined from the coordinate
transformation, end eccentricity, rigid diaphragm slaving, and deformation

transformation. The following shows how to properly account for these properties.

2.3.1 Coordinate transformation

Figure 2.1 shows the global and local coordinate system for the element. The unit

vector along the x-axis (longitudinal axis of member) is:
- 1
l="L"[(Xj'X1),(YJ—Y1)=(ZJ—ZI)] (2.3)

where L is the length of the element and X;, Y;, and Z; are the global coordinates of node
I, with X, Y, and Z, are the global coordinates of node J. The 7, J, and K nodes define the
x-y plane for the local coordinate system. The relationship between the global and local

coordinates can then be written as:

X X
yi=[aNY (2.4)
z Z

where A is 2 matrix of directional cosines for the local element coordinate system.

2.3.2 End eccentricity

Plastic hinges in frames and coupled frame-shear wall structures will form near
the faces of the joints rather than at the theoretical joint centerlines. This effect can be
approximated by postulating rigid, infinitely strong connecting links between the nodes

and the element ends. Thus rigid offsets at the ends of the element are used to model the
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effects of joint size, as shown in figure 2.8. The displacements at the ends of the element

can be determined from nodal displacements, by considering the rigid offset to be an
eccentricity, where:

dr,=a,-dr (2.5)

in which dr are the global nodal displacements, dr, are the element’s end

displacements in the global coordinate system, and a. is the transformation matrix related

to the end eccentricity. The transformation matrix g. is defined as:

100 0 e -e 000 0 0 O
010 -¢ 0 ¢ 000 0 0 0
001 e -¢ 0 000 0 0 0
000 1 0 0 000 O 0 O
0000 0 1 0 000 O 0 0

ge=ooo 0O 0 1 000 O 0 0 26
000 0 0 0 100 0 e -e
000 0 0 0O 010 -¢ 0 e
000 0O 0 O 0071 e -e O
000 0O O 0 000 1 0 0
000 0O 0 O 000 O 0
000 0 0 0 000 O 0 1|

where e, €3, s = end eccentricity at node /in X, ¥, and Z directions, respectively; and
e,, €4, €6 = end eccentricity at node J in X, Y, and Z directions, respectively.
It’s worth mentioning that the rigid joint assumption precludes consideration of
joint shear failure in the model.

2.3.3 Rigid floor diaphragms

A frequently made assumption in the analysis of tall buildings is that each floor

diaphragm is rigid in its own plane. To introduce this assumption, a master node at the
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center of mass of each floor may be specified, as shown in figure 2.9. Each master node
has only three degrees of freedom as shown, which are the displacements of the
diaphragm horizontally as a rigid body. If any beam-column member is connected to
these master displacements, its behaviour depends partly on these displacements and
partly on the displacements that are not affected by the rigid diaphragm assumption. The
displacement transformation relating the master (diaphragm) displacements, dr,,, to the

displacement at a slaved node, dr, is as follows:

(dr,] [1 0 0 0 dz 0]far, ]
dr,, 0100 0 O0fdr,
dr,, 0 01 0 —dx 0}dr,
< = < > 2.7
dr,, 0001 0 o0}{ds,
dr. 0000 1 0}ldb,
dare] |0 0 0 0 0 1]{db,)]
ie., dr,=a,-dr,

where dr; = slaved displacement increment of slaved node;
dr» = master nodal displacement increment (see figure 2.9);
a; = master-slave displacement deformation matrix;
Al mx, AVmz, d0my = master nodal displacement increment; and

drs, dls,, dbs, = independent displacements of slaved node.

2.3.4 Deformation transformation

The relationship between the element end displacements in the local coordinate

system (figure 2.10) to the element deformations shown in figure 2.7 is:
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)
dr,
dr,
(dv,] O 0 =-1/L 0 1 0 0 O 1/L 0 0 0l|dr,
v, 0O 0 -1/L 0 00 0 0 1/L 1 1 Ofldr
d,|_|0 /L 0 0 010 -I/L 0 00 0jdr
J = < > (2.8)
dv, 0O 1I/L 0 0 00 0 -1/L 0 0 0 1|ldn
dv, 0 0 0 -1 000 0 1 0 0 0|ldn
) |-1 0 0 0 001 0 0 0 0 0f|ldn
dr
dn,
ar,
i.e. dv=a, -dr*

where dy = element deformation;
dr* = element end displacements in local coordinates; and

a; = deformation transformation matrix.

2.3.5 Total displacement transformation matrix

Thus, it can be shown that the transformation matrix gy is the matrix product of

the transformations described above, where

a,=a,-I-a,- 4 (2.9)
with
A 0 00
r. -|2409¢0 (2.10a)
£ 6x6 T 9 Q -/1_ (_) .
00 0 4

and
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“v o~

A = {90 a% } (2.10b)

The master-slaved displacement transformation matrices gi,gf correspond to nodes I

and J, respectively.

2.4 ELEMENT STIFFNESS

The element stiffness includes the contribution of the elastic beam and the two
end hinges where the plastic behaviour of the element is concentrated. Before the element
develops plastic deformations, the hinges are assumed to be infinitely rigid, and the
stiffness of the element consists of only the elastic beam stiffness. After the hinge yields,
the element flexibility will be the summation of the elastic beam’s flexibility and plastic
hinges' flexibility. The element stiffness is obtained from the inverse of the element

flexibility.

2.4.1 Elastic beam flexibility
The local y and z axes are assumed to be the principal axes of the element cross
section, with the local x-axis assumed to correspond to the centroidal axis and the axis of
torsional twist.
The beam-column element stiffness relationships can be written as follows:

{dMyi}zEIy {K,-,-y KWHM} (2.11a)
dM L | K, K, |ldw,

gy

szi EI Kiiz Ki‘z d
_EL iz () 4V (2.11b)
am ,, L | K, K, |ldw,
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dM == dw, 2.11c)

dP. === dw, (2.11d)

in which
K, Ky, Kj; = flexural stiffness factors;
EI, EI = effective flexural rigidities;
M, M, =bending moments;
wh =[w,,wy,..,ws] = vector of degrees of freedom for the elastic element;
I J = element ends;
M, = torsional moment;
P, = axial force;
L = element length;
EA = effective axial rigidity; and,
GJ = effective torsional rigidity.

Flexural stiffness factors can be used to account for non-uniform elements. For a uniform
element, K;; = Kj; = 4.0 and Kj; = 2.0.

The shear flexibility of the elastic beam is taken into account, where

L=GaT|1 1 12)

in which G4'is the effective shear rigidity. Combining the six components of forces,

moments and deformations including the transverse shear effects, results in:
dg=1  -ds (2.13)

where dS = forces or moment increments;
dg = elastic beam deformation increments

and £, is the elastic beam flexibility matrix, defined as:
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2R S N i 0 0 0 0
El, G4,L EI, ¥ GAL
£ F, + ! L F + ! 0 0 0 0
EI, GA,L EI, G4, L
0 0 ——]i-E,.z+——l,— —LE.J.Z+L, 0 0
[, = EI, GAL EI, GAL
0 0 ———E—F,.jz+—l— —L—Fb:+—l- 0 0
EI, GAL EI, GAL
0 0 0 0 L 0
GJ
0 0 0 0 0 =
L EA
(2.14)

2.4.2 Plastic hinge flexibility

The plastic deformation increment of a hinge is the sum of the deformations of

its yielded subhinges. i.e.,
dw, =Y dw,, (2.15)
where dw,, is the plastic deformation increment of subhinge i. On the other hand, the

force increment dS in a hinge, consisting of two bending moments, two shear forces,
torsion, and axial force is given by
dsT=[dM, dM, dV, dV, dM, dF;] (2.16)
with dV, and dV, representing the shear force increments acting along the y- and z- axes,
respectively.
For the case of constant axial and torsional loads, dM, and dF, are zero. While
for the case of variable axial and torsional loads, appropriate values for dM, and dF; are

calculated to maintain an equilibrium state as explained in section 2.7. The plastic
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deformation in each subhinge is therefore due to flexural and torsional moments; and

axial and shear forces. The plastic hinge flexibility relationship is thus:
dw,=f -dS=3 f -dS 2.17)

where Z_ = plastic hinge flexibility matrix; and

[ ;= subhinge i plastic flexibility

For the hinge at node 7, the plastic deformation increment is:

(d6! (am!) [ aml )
de! am! am!
7 . ! ~ 1 J /L
d@;=<dyy, L=f1<dVy ‘=f1<(sz,+szJ) \ (2.182)
dyl{ =Ff|av]| =7 |(dM,+dM;)/L
dy! am! am;
| dé; | | dF, | | dF;
whereas for hinge at node J: the plastic deformation increment is:
- w e j\ s J T
do; am, am’;
deo; am’ am;
dy! ~ J ~t|(@M! +dM])/ L
dwl =17 >=fJﬁdVyJ>=fJ<(MZI+ M’j) ! (2.18b)
dy! | =Fidv, =Fi(dM, +dM;)/ L
dy! am’! am’;
\dé‘;’, J \ dFXJ J L dFXJ J

where 7, J identify the node;
df = incremental rotation due to flexural deformation;
dy= incremental rotation due to shear deformation;
dy = incremental twist rotation due to torque; and

dd = incremental extension due to axial force.

The total hinge deformation increment is the sum of its flexural rotational d6 and

shear deformations dyin each direction;



40

i.e. atnode I do, =d6) +dy, (2.192)
do! =de’ +dy! (2.19b)
and at node J do; =d6] +dy, (2.202)
do? =d6! +dy’ (2.20b)

Expressing the plastic deformation increments in terms of local deformation
degrees-of-freedom of the elastic beam and the external nodes, the incremental plastic

force-deformation relationship at node I is:

’dM; \
dv, —dgq, sz’
dv, —dg M’
I _ 3 3 - I y
dwp = i, —dg, 1P< M’ > (2.21a)
dvg —dg, de
G/
and at node J:
fdM}I} 3\
dv, —dq, sz’
dv, —dq am’?’
J _ 4 4 o y
dHP - dv5 —dq5 _I_Pﬁ dM: ’ (221b)
dv, —dg, am’;
\dF;

The matrices f L and f i are 4x6 matrices, which represent coefficients of hinge

flexibility matrices Z; and z; These plastic hinge flexibility matrices can be simply

added to the appropriate coefficients of the elastic beam flexibility matrix, to obtain the

element’s complete flexibility matrix.
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2.4.2.1 Flexural subhinge flexibility

Let us now consider the flexural behaviour of a subhinge. The incremental force-

deformation relationship can be written as:

d_w:pm = f . d.‘gm (2'22)

Z_spm

where dw,» = subhinge flexural, torsional and axial plastic deformation increment;
f:pm = subhinge flexural, torsional and axial plastic flexibility (4x4); and

ds,, = bending moment, torsional moment and axial load.

and [dwom]" = [ db) db, ay db] (2.23a)
[dS,]" = [ dM, dM, dM, dP;] (2.23b)

To derive the flexibility matrix, three assumptions are made:

(1) ®(S,) is the yield function in the force-moment space, where:

M 2 M 2 M 2 P 2
O=| 2| 4| Ze| 4| ] 4] (2:24)
M) M) M) P

and M, M,= bending moment about y- and z- axes;

M}, M} =yield strength about y- and z- axes;
M,, M} = torsional moment and yield strength about x-axis;

P,, P’ = axial force and yield strength along x-axis;

X

As an element develops plastic deformations, the yield surface is assumed to translate,
such that the yield function becomes ®(S,, —a), where o is the new location of the yield

surface’s origin in two-dimensijonal stress space (figure 2.11).
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(2) Drucker’s postulate applies (Drucker and Palgen, 1981), implying that the plastic
deformation increment is perpendicular to the yield surface and the yield function serves
as a plastic potential.

(3) Translation of the yield surface is governed by Mroz strain hardening rule (Mroz,
1969).

Consequently, the unit vector n normal to the yield surface is:

o
p =S (2.25)

J@% @)

00 oD o0 8D
oM, oM, oM, OF,

where () TS = [

Applying Drucker’s postulate, the plastic deformation increments will be in the direction

of the unit normal vector n, where
dw__=n-dA (2.26)

where d\is the magnitude of plastic deformation of the subhinge.

The incremental force or moment in the direction parallel to the normal vector is

ds,, =n (' -ds,) (2.27)
The relationship between force or moment increments in the normal vector direction
(dS,m) and plastic deformation (dwsyn) increments is assumed to be

ASnm = Kspm - dWspm (2.28)
where Kipm = diag [ Komy Komz Komx Kprx ], and is a diagonal plastic stiffness matrix in

which the individual stiffness terms are related to individual axis force-deformation

relationships. Substituting eqns. 2.27 and 2.28 into 2.26 and premultiply by n' results in:
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n'-dS, =n"-K_,  n-dA (2.29)
From equation 2.29, d\is obtained as:

T
di = —f—‘f-&— (2.30)
[.’2 'Kspm 'n]

Thereby, from eqn. 2.26

T
dw =—22  4s¢ (2.31)

Zspm T 2m
[ﬂ ' Kspm ' ﬂ]

From eqn. 2.31 the flexibility matrix for each flexural subhinge can be written as:

T
nn
d.‘[_spm - [HT K

2 spm ” E]

(2.32)

2.4.2.2 Shear subhinge flexibility

Based on the experimental tests and the theoretical verifications of Vecchio and
Collins (1986) (see Chapter 1, figure 1.9), a simpliﬁed shear strength-axial strength
interaction diagram is proposed in the current research, as shown in figure 2.12. The
interaction curve is approximated to an ellipse with its peak axial loads are P and Ty,
while its peak shear capacity is V +Vt+V, with a shear capacity equal to V.+V; at zero
axial load.

Where V. = shear strength due to concrete mechanism;
Vs = shear strength due to steel mechanism; and

V, = shear strength due to axial force mechanism.
When the shear cracks develop in a reinforced concrete member, inelastic shear
deformation commences. The shear transferred by aggregate interlock and dowel action

across the shear cracks will be reduced as the crack widens, therefore the element’s shear
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strength decreases. If large deformation is imposed, the shear will be resisted primarily
by transverse steel reinforcement.

Based on the above physical behaviour and the postulated assumptions, the shear
force-deformation V-A for the element in each direction, as well as the failure surface for
shear in space are shown in figure 2.13. The failure surface for shear is assumed to be
coupled in y and z axes. During post shear failure involving concrete cracking and steel
yielding, the failure surface contracts. The incremental force-deformation relationship for

the shear subhinge is:

dw,,, = isps as, (2.33)
where dwsps = shear subhinge plastic deformation increment;

fips = shear subhinge flexibility matrix [2x2]; and
ds,"=[dV,, dV,] (2.34)

The shear force flexibility matrix is uncoupled during shear failure, but remains
coupled with flexural forces through equilibrium, with the fi,c matrix in the form of 2x2

diagonal matrix:

— 0
K
T A (2.35)
0 -
K

where K, and K,; represent post shear failure plastic stiffness for shear subhinge about y
and z axes, respectively. The values of K,,, K., are determined according to the approach

explained in Chapter 3, section 3.6.
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There are minimum limiting values for X,, and K,; and are both equal to Kypin.
The value for K., is established by having the shear resistance decrease abruptly
without any change in deformation. This condition occurs when the element’s flexibility
matrix has a zero determinant. On this basis, K,, and K, should be chosen with a higher
value than K,:», where:

1
K, =- .
7 1 (2.36)

-+
(K.K;-K;)EI GAL

2.4.3 Complete stiffness

All the plastic subhinges are initially rigid, thus the initial stiffness will be the
stiffness of the elastic element. Under the action of flexural and shear forces, the

subhinges experience some flexibility, therefore a reduction in the element stiffness

occurs. The flexibility of the flexure subhinges is divided into elastic, f :em , (recoverable)

and plastic, f ipm , (non-recoverable upon load reversal) flexibilities. An isotropic

contraction of the shear yield surface (shear failure) towards a residual shear surface

(shear capacity of transverse reinforcement), which follows the shear subhinge

flexibility f s is assumed.

The flexibility matrix for the entire element, F,, can be obtained by the

>’

appropriate addition of the elastic element, f .7 and the end hinges' tangent flexibility

matrices f ; and f j) at nodes 7 and J, respectively.
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le:F,=f +f +7’ (2.37)

e —p =—p
After which, F, can be inverted to obtain the element’s total tangent stiffness matrix,

K, such that:
K, =F (2.38)
Each end hinge tangent flexibility matrices f ; and f ; are calculated by appropriate

summation of the flexibility of their constituting subhinges, such that:

3
I 1 ! .
ip - ;([sem,i +z.spm,i)+ :isp: ’ and (2393)
J 2 (1.] J )
ip = ; sem,i + —]ispm,i + i;ps (239b)
L 9 0 00
K, K,
1 5 0 0o
K, K,
1 1
he =0 0 — — 00 2.40
winere isps sz .sz ( )
o o - L oo
sz sz
0 0 0 0 00
0 0 0 0 0 0

The complete element degree of freedom force-deformation relationship can be

expressed as:
dS=K,.dy (2.41)

where d_\gT=[dv1 dvy dvs dvy dvs dvs )
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dS" =[ dMy, dM,, dM;, dM,, dM; dP;]

I J
av) =av; =f1-A-4-£—Z@—4—2— (2.422)
aMm’ +dM?
av! =av’ =—%—y (2.42b)
2.5 HARDENING RULE

2.5.1 Flexural subhinge hardening rule

The original yield surfaces of a hinge are shown in figure 2.15 consisting of three
concentric subhinge yield surfaces. After initial yield develops, the behaviour of a
subhinge follows the Mroz theory, (Mroz, 1969), strain hardening rule for yielding of
metals.

Assuming that the current state has reached point S1 on yield surface YS1, and
loading continues, yield surface YS1 will translate towards yield surface YS2 (figure
2.15a) where point S; is assumed to move towards the corresponding point S, on yield
surface YS2. The relationship between stress state S;, and S, can be written as:

S,=8,,08, —a)+a, (2.43)

where «,, a, is the location of origins of yield surfaces YS1 and YS2; and

S, 1is the square diagonal matrix, representing the relative size of yield surface

YS2 to YS1 on the y and z axes for example:

My, M, M3 Fa,

S, = diag[—2 e (2.44)

where M?

y2o

M}, M],, F}, =yield strength of yield surface YS2; and
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M}'

o> M2, M}, FJ = yield strength of yield surface YSI.

The translation of yield surface YS1 is assumed to be parallel to vector (S) — $2), that
1s,
doy = (8> - 8)) doy* (2.45)

where do; = vector defining the direction of YS1 translation; and
doy* = scalar defining the magnitude of YS1 translation.

Substituting eqn. 2.43 into eqn. 2.45 leads to:

doy =[ (Surz—D Si — (Surz . u— ) 1 doy™* (2.46)
with [ being the identity matrix.

Point S; lies on the yield surface YS1 when:
oS, ~2,)=1 (2.47)

in which @ is the yield function, as defined in equation 2.24.

To satisfy loading, point S; must remain on yield surface YS1 during its

translation, hence

dd=0=d".dS, -0’ -da, (2.48)
Upon substituting eqn. 2.40 into eqn. 2.42, one obtains:

@ dS, -0 [(S,, - DS, ~ (S, -2, —@,)] da; =0 (2.49)
which leads to

da, =— 45, (2.50)
O[Sy DS, ~ Sy @, — )]

Hence the translation of the yield surface YS1 is determined by substituting eqn. 2.50 and

eqn. 2.43 into eqn. 2.45 which give:
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_ [(§.u12 =S, -8, —22)19,75 -dS,
- QTS [(§u12 _l)ig_l _(.‘S_uIZ s _Q‘.z)]

(2.51)

In the current state, ¢, o, and S; are known. Once the increment of force dS; is
computed, the yield surface YS1 translation can be determined from eqn. 2.51. The
translation of yield surface YS1 continues according to eqn. 2.51 until yield surface YS2
is reached. Yield surfaces YS1 and YS2 will then both translate together to the
corresponding point S3 on yield surface YS3 (figure 2.15b), where the translation
increment of both surfaces is determined from the general form of eqn. 2.50. This general

form for the translation increment is written as:

6y -DS, -6, -2 Y-S,
' QTS [(§_uy -DS, -8y —-¢; )]

(2.52)

Where subscript i implies the yield surface YSi has been reached and subscript j is to
indicate that yield surface YSj is the target surface.

The Mroz strain hardening rule is applied as described above, before the
outermost yield surface (YS3) is reached. If the current state lies on the yield surface
YS3, the translation increment of the yield surfaces is determined by assuming an
infinitely large yield surface which surrounds the three subhinge yield surfaces and
applying the Mroz theory. This leads to the translation of yield surface YS3 based on

Ziegler’s hardening rule (Zeigler, 1959), where the direction of translation dos is in the

radial direction:

(S, "9_3)92 -dS,
ngS (§3 —Qs)

(2.53)

&5 =
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In which o5 = origin of yield surface YS3;

S3 = stress state on yield surface YS3; and

dS; = force vector increment.
2.5.2 Shear subhinge failure surface contraction rule

The post shear failure force-deformation response follows a softening branch as

the concrete shear failure surface contracts gradually. The rate of softening is specified by
K., and K,,. After contraction of the failure surface, it is required that the shear force state
remains on the failure surface. Considering a current state at the beginning of a load step,
the following must hold:

2 2 2

14 14 P-P

@S(Vy,Vz,P,Vyf,sz)=(Vny {sz) +( ) =1 (2.54)
y z v

wt ~ *a
where P., and P, are shown in figure 2.12.

While after loading:

2
=1 2.55
V. v/ V. VS P,~P, J (2.9

Jue Ty fuac ult

2 2
o _[Vy+FACS-dVyj +(VZ+FACS-dVZ] +(P+FACS-dP—Pav

Where FACS = event factor for shear subhinge failure (as explained in section 2.10);
Vs = contraction factor for shear subhinge shear forces capacity (figure 2.16);
¥, , V. = shear force along the y and z axes;

dV, , dV, = shear force decrease along y and z axes;
dP = increment of variation in axial force;
Vyf , V{ = shear capacity along y and z axes; and

d Vyf , dV{ = increment of shear capacity deterioration along y and z axes.
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An isotropic contraction model is adopted, where the failure surface is assumed
to uniformly contract from the original failure surface to the residual shear capacity along
axes y and z (figure 2.16). After the initial shear failure occurs, the new shear failure
surface 1s a linearly contracted surface according the coefficient Vi, in equation 2.55.
This model has an influence on the reduction in shear capacity in the opposite loading
direction of each axis. The transition failure surface depends on the current stress state in
the stress space. The contraction of the failure surface is determined by solving for Vg, in
equation 2.55.

Upon reversal of loading, the stiffness of the shear subhinge reduces when the
shear force reaches a zero value and resumes when the element total deformation reaches
zero. This is done to model the pinching behaviour in the moment-rotation hysteresis

response. The shear subhinge flexibility matrix during pinching is defined as:

[ o=a,f (2.56)

sps
where a, = arbitrary coefficient (from 0 — 1 where 0 indicates no pinching) with a

practical range from 0.01 to 0.025; and

f =1nitial shear flexibility matrix

2.6 LOADING / UNLOADING CRITERION

The loading/unloading criterion enables continuous plastic flow at a subhinge to

be distinguished from elastic unloading for any plastic state for any specified deformation
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increment. The procedure used here was based on the criterion that the elastic load

increment, dS,, must point outwards from the yield surface during continuous loading:

ds! -n>0 (2.57)
where the given state must be on the yield surface:

$(S-o)=1 (2.58)
The elastic loading increment dS, is calculated as

ds, =K, dv (2.59)

where K. = elastic stiffness matrix;
dv = deformation increment;

ds, = elastic force increment.

If the elastic force increment vector, dS. , has positive components in the normal
vector direction of the yield surface (figure 2.17), the force state is moving outside the
yield surface and the elastic assumption is correct, the hinge thereby continues to develop
plastic flow. Otherwise, if the elastic action increment has negative components in the
direction of the yield surface normal vector, then the elastic assumption is incorrect and
the element unloads. Flexural and shear elastic unloading must be checked
independently.

In general, the flexural behaviour of each hinge should be checked. Generally,
due to translation, the flexural subhinges’ yield surface are not concentric, hence the
subhinges do not have the same normal vector at their corresponding points. Under this
circumstance the yield surfaces can overlap, where it is possible that some subhinges

satisfy the loading criterion while others do not. In the element formulation elastic



53

unloading is controlled by the outermost subhinge’s yield surface that the force state has

reached, as shown in fig 2.18.

2.7 STIFFNESS DEGRADATION

2.7.1 Flexural stiffness degradation

As mentioned in section 2.4.3, a flexure subhinge flexibility is divided into two parts;
elastic and plastic flexibilities. Both flexibilities are initially zero. Continuous loading
follows kinematic strain hardening, where a triggered yield surface (in case of occurrence
of certain event such as crack, yield or ultimate) translates in the force space till it reaches
the following yield surface. Both yield surfaces move without change of size or shape till

they reach the following yield surface, and so on. The process of occurrence of a certain

event (reaching a yield surface) results in a finite plastic flexibility, f :;::i, of such

subhinge. Upon load reversal, a finite elastic flexibility, f j:::l , is assigned to a triggered

flexure subhinge (in addition to the plastic flexibility). Having both, elastic and plastic
flexure subhinge flexibilities, gives the advantage of having elastic stiffness degradation
which results in a reduced overall element stiffness (and consequently strength) when

subjected to reversed loading at the same displacement level.
The plastic flexibility matrix f i of a yielded flexure subhinge was derived before

in section 2.4.2.1, and was shown to be equal to:

n- i'lT
__nn (2.60)

= { T
spm,i n K ‘n

spm,i 2=
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where 7 is the outward normal vector to the yield surface at the action point; and X, is

=2 spm,i
the diagonal plastic stiffness matrix from the individual flexural action-deformation

relationships for each force component, defined as:

K, . =diag] K

My,i

KP

My,i

KP

My,i

spm,i K!CIy,i ] (261)

in which the plastic stiffness after yield for each force component is given by:

Kp - Ki 'Ki+1

=i & 2.62
l Ki ’Km ( )

in which the stiffnesses K, are the initial (elastic beam, input data) stiffnesses.

A typical force-deformation relationship of a tested cantilever column (Ghobarah et
al., 1997) is shown in figure 2.19. From the shown relationship, it is observed that the
level of degradation in stiffness increases as the ductility of the element increase or in
case of repeated cycles at the same level of ductility. The effect of ignoring the stiffness
degradation on the force-displacement relationship is shown in figure 2.20. Stiffness
degradation is introduced in the model when reversed loading is applied. In the
formulation of the 3D element, it is assumed that the stiffness degrades independently for
each moment or force component for each subhinge. The degraded stiffness is inversely

proportional to the previous hinge secant stiffness, X, .

Thus the elastic subhinge flexibility after unloading for each force component are

shown in figure 2.21 and are given by:

f;em,i =0n| W (263)
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where K| is the secant stiffness of the previous cycle and a, is an arbitrary

degradation coefficient that ranges from 0 to 1 where 0 indicates no stiffness degradation.
A practical range for a,, was found to be in the rage from 0.03 to 0.1. The technique of
assigning each plastic subhinge elastic and plastic flexibilities, will allow for the
decrease in the total element’s strength for repeated cycles at the same displacement
level. The strength degradation depends on the plastic deformation of each subhinge in
proportion to the total plastic deformation of all subhinges at the previous cycle. It is
possible to assign different degradation coefficients o, and o, in each loading
direction. The model can be extended to have a different coefficient o/, for each
subhinge; this means that the degradation level for each subhinge can be different. This
feature was not used in the current applications in order not to increase the number of
parameters that need to be defined. It should be mentioned that Bauschinger effect is
implicitly taken int§ consideration when using the aforementioned quadri-linear

degrading force-displacement relationship.

2.7.2 Shear stiffness degradation

Shear stiffness degradation is introduced after unloading. A reduced initial shear

stiffness f : according to the following equation was used:
fi=a, x— (2.64)

where f*“ =unloading shear stiffness matrix; and
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a, = arbitrary coefficient (from 0 — 1 where 0 indicates no elastic shear stiffness

degradation) with a practical ranges from 0.025 to 0.09.

and the secant stiffness is shown in figure 2.21.

2.8 VARIATION IN AXTAL LOAD

There are two ways to incorporate the effect of variation of axial load on the state
of the yield surfaces of a hinge. First approach is to consider the variation in axial
deformation (elongation/shortening), while the second approach is to consider the
variation of axial force as the control input, as shown in figure 2.22. It is more convenient
to use the first approach when there are considerable differences in the force-extension
stiffnesses of each subhinge, thus keeping track of the appropriate axial force
corresponding to a certain level of axial deformation. Figure 2.23 shows the axial load
deformation relationship for tied and spiral columns. From that figure it can be postulated
that the force-deformation relationship is almost linear (i.e. with a constant initial
stiffness) up to the point of failure. From the aforementioned assumption and from the
fact that the variation in axial load is experimentally conducted using a force mode
control (therefore allowing the element’s end to elongate or shorten while applying the
planned axial force path), the second approach was adopted.

2.8.1 Effect of variation of axial load on flexure subhinges

Since the “event to event” solving technique rather than the “iterative” technique

is used (on the element level), thus the factor “FACM” which will cause a certain flexure

event occurrence (reaching a yield surface and change in stiffness) is calculated assuming
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a linear interpolation along the axial load path, as shown in figure 2.24. A curved path
can be achieved (if required) by subdividing the axial force variation increment into
several linear sub-increments.

2.8.2 Effect of variation of axial load on shear subhinge

Figure 2.16 shows the effect of variation of axial load on the force state
determination on the contracting shear subhinge yield surface (i.e. post shear failure
response). In that figure, the element is assumed to be subjected to cyclic lateral
displacement from point 0 to 9 (loading 0—2, unloading 2—6, reloading 6—9). The
shear subhinge failure event “FACS” is dependent on the contraction factor Vg as
explained in section 2.5.2.

Figure 2.16a shows the determination of the factor Vg, in case of constant axial
load, while figure 2.16b shows the change in the force state (and consequently Vi) in
case of variable axial force as shown in the same figure where the axial force is varying
through the points 0 to 9 (increasing 0—2, decreasing 2—>6, increasing 6—9).

It is worth mentioning that in addition to the influence of axial load variation on
the force state on the yield surfaces of the subhinges, it affects the flexibility matrix for

the active flexural subhinges (consequently affects the element’s total flexibility and

stiffness matrices) as well. Equation 2.60 shows that the plastic flexibility matrix f i

of a yielded flexure subhinge is dependent on the outward normal vector to the yield

surface, n, which in turn depends on the current force state.
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2.9 YIELD SURFACE TOLERANCE

The amount of yield surface translation is only affected by the load increments
that are parallel to the yield surface normal vector. Consequently, the amount of yield
surface translation dg is not the same as the load increments dS (figure 2.25). It is
possible that the new action point Q will lie outside the new yield surface.

To deal with this, if the yield function exceeds the allowable tolerance, it is
assumed that the error varies linearly with the element deformation. A scale-back factor
is determined to subdivide the load step to satisfy a tolerance for which the yield function
is close to 1.0. Once the tolerance is satisfied, the new force point is scaled back to the
yield surface. A tolerance value of about 1-2% of the yield surface size is recommended.
After the point is moved to the yield surface, the tangent stiffness is recalculated, and the

determination for the remaining element deformation is performed.

2.10 STATE DETERMINATION

In an inelastic analysis, once the increment of global displacement is computed,
it is necessary to evaluate the unbalanced global nodal forces R" based on updated
internal resisting force R'. This procedure is called state determination. The unbalanced
global forces are

R”=R"-R' (2.66)
Here, RF is the external applied loads. If the unbalanced nodal forces are less than the

allowable tolerance, then it is assumed that equilibrium is satisfied. Otherwise, iterations
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are required, which involve imposing the unbalanced load on the structure and
determining the resulting increment of global displacements.

Two well-known procedures are the Newton Raphson iteration (e.g. tangent
stiffness iteration) and the Modified Newton Raphson iteration (e.g. constant stiffness
iteration) as illustrated in figure 2.26.

The procedure for the state determination to update global resisting force is as
follows:

(1) Calculate the element deformation increment from the given nodal displacement

increment:
dv=a,-dr

where dv = element deformation increment;
ar= displacement transformation matrix; and
dr = nodal displacement increment.

(2) Calculate linear loading increment for the element:
d_S_ = Et ’ d‘_)

and determine hinge force increment:

ds,=b-dS
where  dS = linear force increment for the element based on given deformation

increment dv;

K, = element tangent stiffness matrix;
dS, = linear action increment for hinges; and
b = force transformation matrix from dS to d3;.

(3) Check for an “event” in the given deformation increment, and calculate the event

factor FACi (and FACj) for each hinge. Possible events are:
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Flexure

(a) Reaching a flexural yield surface of a subhinge:

If the proportion of deformation increment to reach this surface is greater than
1.0, then the event factor FACMIi (or FACMj) is 1.0. Otherwise, the event
changes the status, and event factor is set equal to the calculated proportion.

(b) If unloading occurs, the elastic degrading flexural stiffness is calculated. The
stiffness matrix is reconstructed, and the event factor is set to 0.0. The
calculation proceeds to step (2) above.

Shear

2 2 2
v, 14 P-P
a) Check ® (V. ,V.,P)=| | +| =% | +| —2
() s( y z ) (VfJ (ij (Pull—Pav]

y

If less than 1, then FACS = 1.
If greater than 1, calculate FACS such that the above equation equal to 1.
(b) If unloading, then elastic degraded shear stiffness is calculated.

(4) Calculate plastic deformation increment, and the translation of yield surfaces.

(5) Choose the smallest event factor for the whole element, FAC, from the two hinges'’
factors. (i.e. for hinge I: FACi=smaller(FACMi, FACS), similarly FACj=
smaller(FACMj, FACS). Therefore, FAC=smaller(FACi, FACj)).

(6) Update the new hinge forces, new subhinge plastic deformation, new origin of
subhinges.

Sy =8, +FAC. dS;

o =0+ FAC . do;
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Wepi = Wepi + FAC. dﬂspi

where  w,; = flexural subhinge i plastic deformation;
dwspy: = flexural subhinge i plastic deformation increment;
o; = flexural subhinge 1 origin; and
da; = flexural subhinge i origin translation.

(7) Calculate the complement of event factor, SS:
SS=1.0-FAC
(8) If the element event status has changed, reconstruct the element tangent stiffness
matrix.
(9) If the displacement increment has been completely developed (i.e. SS=0.0), go to
step (11)

(10) Calculate remaining element displacement increment:

dv=SS .dy
go to step (2)
(11) Obtain element actions S: S=b".8,

(12) Compute the internal forceR: R’ =aj-S

2.11 ELEMENT LIMITATIONS

It is important to recognize that the element development is based on several
simplifying assumptions, and that the element does not capture a number of potentially
important aspects of beam-column behaviour. The main assumptions and limitations are

as follows:

1. All inelastic behaviour is considered to be lumped into end hinges.



62

2. Shear deformations are included but moment-shear interaction is ignored.
3. There are currently no provisions for element loads, pre-stressing, or initial stresses.

4. Induced membrane forces due to end restraint are not considered.

2.12 SUMMARY

A mathematical description of the force-deformation response of inelastic biaxial
beam-column element has been presented in a form suitable for incorporation in 3D
inelastic analysis programs. The element is based on the lumped plasticity modeling,
which is particularly suitable for the analysis of building frames under seismic loads. The
model represents flexural response by quadrilinear force-deformation relationship, and
shear response by strength and stiffness degrading relationship. The model takes into
account the effect of axial load variation on lateral deformation and its interaction with
biaxial moments and shear.

The yield surface properties for each subhinge in terms of flexural strength and
elastic and post elastic stiffness (which is needed as an input data), can be determined
from the moment-rotation analysis about each principal axis. This analysis should
account for the major components of deformation such as flexure, shear and bond slip of
tensile reinforcement. The following chapter explains the procedure for developing
moment-rotation and force-deflection relationships from the basic mechanical and
geometrical properties.

The model described above, which is presented in Appendix C, has been coded

using the MATLAB® V5.3 programming language.
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CHAPTER 3

LATERAL RESPONSE ANALYSIS OF RC MEMBERS

3.1 INTRODUCTION

The proposed 3D beam-column model is based mainly on the backbone envelope
of the moment-rotation relationships (M-6) in two directions perpendicular to the element
longitudinal axis, and their interaction with the applied axial load. Thus it is important to
develop efficient analytical tools, as well as evaluate their sensitivity to various
parameters.

The principal sources of deformation in reinforced concrete structures are axial,
biaxial flexural, shear deformations including shear sliding, and bond-slip. The hysteretic
load-deformation behaviour of frame members arises from the combination of these
deformation mechanisms. A rational analysis of the hysteretic behaviour of reinforced
concrete members needs to be based on the representation of all deformation sources and
the interactions between the different mechanisms.

In this chapter, an analytical technique to obtain the moment-rotation and force-
deflection relationships for reinforced concrete columns is presented. The main
advantage of this procedure is that it uses the basic mechanical properties of the
constitutive materials, i.e. concrete and steel, along with the geometric properties of the

cross section and the element. From this basic data, and without making many
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assumptions, the force-deformation response of the element is developed taking into
consideration the effect of bond-slip of tensile bars, buckling of compression bars as well
as flexure and shear deformations. The elementary, yet efficient, technique was verified
using available experimental data. The comparison showed good agreement. A
parametric study to evaluate the effect of variation in section and matenal properties was

also conducted.

Otani and Cheung (1981) calculated the theoretical response of axially loaded
columns under monotonically increasing load. They did not consider the contribution of
bond slip of tensile steel bars to the rotation and deflection of the column. Moreover, a
predetermined plastic hinge length based on experimental observation was used. Priestley
and Park (1987) adopted a simple method for analytically predicting the plastic hinge
length. The formula is based on the results of 100 tests on columns with different aspect
ratios and vertical steel bar diameters. The plastic hinge length appeared to be a function
of the column height and the diameter of the vertical reinforcement bar.

Soroushian et al. (1991) conducted section analysis and parametric study on
chosen beam and column cross sections. Their analysis included the moment-curvature,
axial load-axial strain and axial load-moment relationships. The analysis did not include
prediction of the moment-rotation or the force-displacement relationships.

The available models have the disadvantages of either ignoring or
oversimplifying one or more of the major components of lateral deformations, namely;

flexure, bond-slip, and shear.
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The objective of this chapter is to develop a simple technique to predict reliable
moment-rotation and the force-deflection relationships for axially loaded columns using
the available mechanical properties of concrete and steel and the geometrical properties
of the element. The developed reliable simple analytical constitutive model has the
advantage of accounting for all components of deformation. The predicted response of
the column using this analytical method is compared to the predictions of available

methods as well as test results.

3.2 PARAMETERS AFFECTING DEFORMATION AND STIFFNESS

The lateral deformation of a reinforced concrete column is a combination of
flexure, bond-slip, and shear deformations. Figure 3.1 shows typical inelastic column
behaviour. Failure of reinforced concrete elements may be due to any of these
mechanisms, either individually or combined. Park and Ang (1985) defined the ultimate
state of monotonically loaded columns and beams by categorizing them into four groups
according to their ultimate failure mode, as defied in figure 3.2. Some of the parameters
that affect the force-deformation relationship (i.e. stiffness, strength and ductility) of a
reinforced concrete column are:

e Longitudinal steel area, yield and ultimate strength.
¢ Concrete compressive strength and ultimate strain.
¢ Transverse reinforcement content and its yield strength.

e Embedded length of the longitudinal reinforcement.
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. M . ) . .
e Shear span ratio (V—); where M is the maximum moment in a region of
-t

constant shear V along the element length; and t is the total depth of the section.

e Level of axial load.

In the global macromodels, the flexural plasticity is separated from the shear
plasticity, yet the final total behaviour is due to both plasticities. The most important
input property for the flexure plasticity is the envelope of the force-deformation

\

relationship for the element.

3.3 STRATEGY OF ANALYSIS

The procedure for developing moment-rotation and force-deflection relationships
for the column involve the following steps:

Step 1: Use the mechanical properties of concrete and steel as well as the length
of embedment of steel bars in concrete, along with the definition of local bond-slip
relationship, to obtain the force-displacement relationship of embedded bars. The
mechanical properties of concrete are f, and eemx; Where f; is the concrete cylinder
compressive strength and ecmax is the maximum concrete strain. The properties of steel
are: €y, Esh, €y, Iy, and fy;;; Where €, is the steel yield strain, &g, is the steel strain hardening,
g, 1s the ultimate steel strain, f, is the steel yield strength and fy;; is the ultimate steel
strength. This relationship is developed using an imposed incrementally increasing strain
at the end of the bar under tension. An idealized stress-strain relationship of embedded

bars is thus obtained.
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Step 2: Use the cross section geometrical properties along with the stress-strain
curve of confined concrete and the idealized stress-strain relationship of the tensile steel
(defined from the outcome of step 1) as well as the stress-strain of compression steel
(considering bar buckling), to obtain the moment-curvature relationship of the critical
section. The section properties include: b, t, d, A, As, ps, and s; where b, t, and d are the
width, total depth and the depth to tensile reinforcement of the section, A, A, are the
steel areas in tension and compression, ps is the ratio of transverse steel volume to
volume of concrete core and s is the spacing between ties.

Step 3: The approximated 6-points moment-curvature relationship of the critical
cross section and the bond-slip properties of the tensile reinforcing bars as well as the
shear stiffness of the element are then used to obtain the moment-rotation and the force-
displacement relationships of the column through a procedure that takes into
consideration the different stages of loading and response of an axially and laterally

loaded RC column. ;

3.4 MODELING OF BOND-SLIP

One of the components of inelastic deformation in reinforced concrete is
anchorage slip (Alsiwat and Saatcioglu, 1992). Anchorage slip occurs when the critical
section of a member for flexure is located near its ends, which is the main assumption in
lumped plasticity type of modeling. Formation of a flexural crack at the interface of two
members strains the reinforcement crossing the crack. Widening of the crack may

produce inelastic strains in the reinforcement. This results in penetration of yielding into
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the anchorage zone for the reinforcement, causing extension of reinforcement. Additional
rigid-body deformations may also occur due to slippage of reinforcement. The combined
effect of reinforcement extension and slip in the anchorage zone may be referred to as
bond-slip. Bond-slip contributes to the member end rotations. Neglecting the contribution
of bond-slip in computing inelastic deformations may lead to erroneous results, especially
when significant yielding of longitudinal tensile reinforcement is expected under low
levels of axial compression (Razvi and Saatcioglu, 1999).
3.4.1 Anchorage slip relationships for bars subjected to pull only

Evaluation of the inelastic force-deformation relationship of reinforcement
embedded in concrete requires consideration of extension and slip of reinforcement in
concrete. The extension of reinforcement is the result of accumulation of strains along the
length of the embedded bar. A steel bar embedded in concrete develops elastic and plastic
regions. This behaviour was investigated experimentally (Viwathanatepa et al., 1979) and
analytically (Filippou, 1985). The plastic region includes three sub-regions, namely, the
yield plateau, strain-hardening and pullout cone sub-regions as shown in figure 3.3. In a
reinforced concrete assemblage (beam-column or column-footing), it was shown
experimentally that the yield plateau and the pullout cone sub-regions do not contribute
much to the bar extension due to their small length (observed from test results of
Viwathanatepa et al., 1979, and Ueda et al., 1984).

Slippage of reinforcement in concrete may occur if the bar is stressed up to the
cutoff point. This takes place when the embedment length of the bar is not sufficiently

long or when the bar pulled end is strained beyond the yield strain. Bar slip can be
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obtained from a local bond-slip relationship. The bond stress at the far end of the bar g,
can be used to determine the corresponding slip. The characteristic bond stress and slip
values in this local bond slip model (q1, qQ2, g3, 61, 62, 63) shown in figure 3.4 depend on
the bar diameter, the concrete strength, the clear distance between lugs of the reinforcing
bars and the local confinement. The local confining action varies depending on both
concrete mechanical properties and geometrical characteristics of the specimen.

A simple approach with reasonable accuracy and generality was proposed by
Alsiwat and Saatcioglu (1992) to establish the monotonic force-deformation relationship
of reinforcement embedded in concrete. This model was found to correlate well with
experimental results. After some refinements, it was utilized in the present model to
determine the force bond-slip relationship. This relationship will be used to evaluate the
idealized stress-strain curve of an embedded bar, taking bond-slip into consideration. The
introduced refinements include accounting for the post-peak (falling branch) effects in
the local bond stress-slip relationship through an incrementally increasing slip-
displacement controlled procedure. Also, the extension plateau along the embedded
tensile bar was limited to the elastic and strain-hardening regions only.

The first part of the solution scheme is based on applying an incrementally
increasing strain at the pull side of the bar until first slippage at the cutoff side occurs.
The corresponding length of each region is calculated giving the strain distribution at
each increment. Once the strain distribution is known, the extension of the bar, ., can
be computed by integrating the strains. The integration of strains can be expressed in

terms of the area under the strain diagram shown in figure 3.5.
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5ext =1 & le + 7 (gs + Esh) lpl (3.1)
where &, is the steel yield strain;

[, is the length of the tensile bar elastically stressed;
& 1s the steel strain at the pull side of the bar;

&n 1s the steel strain hardening; and

Iy is the length of the tensile bar inelastically stressed.

The second part of the solution scheme is based on applying incrementally
increasing slip displacement Adg;,, at the cutoff end (from 0.,=0 to 6s;,=03). The bond
stress at the cutoff end will obey the predefined local bond slip relationship (figure 3.4).
Again, the corresponding length and strain at each region can be calculated and Oy 1s
given by equation 3.1. Appendix A contains a detailed explanation of the solution
scheme.

Therefore, the total bar displacement & is the sum of the bar extension .. and

the bar slip &ip.

In the development of the idealized stress-strain relationship of an embedded bar
taking bond-slip into consideration, the following assumptions were made:

o

i (3.3a)

bar

Epy =& +

Jo=Js (3.3b)
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where &y and fy) are the embedded steel bar strain and stress at the pull side ofthe
bar at increment step i;
& 1s the steel bar strain at the pull end;

Ss1ip 1s the bar displacement due to slip; and

f; is the steel stress associated with strain &

This idealized stress-strain relationship can be used to calculate the moment-
curvature (and then the moment-rotation) relationships for the critical cross section,
taking bond slip into consideration.

Figure 3.6 shows the idealized stress-strain relationship for tensile steel, taking
bond-slip into consideration. In case of perfect bond between concrete and steel bar with
a sufficient anchorage bar length, the stress-strain curve is identical to the conventional
tensile coupon test stress-strain relationship. On the other hand, insufficient anchorage
length will result in reduced stiffness (this agrees with the findings of Spacone et al,,
1996) and strength, which might not reach the yield strength of the bar (this agrees with
the findings of Monti and Spacone, 2000). In this case, the whole bar pulls out as a one

unit, and the residual strength is that resisted only by friction along the bar surface.

3.4.2 Anchorage slip relationships for bars subjected to pull and push
To simulate the simultaneous push-pull conditions of a beam bar in an interior
joint, excluding the complexities of dowel action which is generated by the presence of

shear at the column faces and an interaction from the adjacent bars, a simplified model
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was derived. The combined effect of pull and push occurs when development lengths in
tension and compression overlap inside the joint. In this case, the compression force
contributes to the slippage of the bar. The slip can be computed as before, by assuming a
constant bond stress over the elastic region. The elastic region has parts in tension and
compression.

Tests conducted by Viwathanatepa at al. (1979) indicate that yield penetration on
the compression side is very small. This implies that the bond at the pushed end increases
significantly at the onset of compression yielding. This observation may be used to limit
the maximum compressive stress to yield stress (i.e. fic < f, ; where f;. is the steel stress at
the push side), resulting in linear strain distribution in compression. The compressive

stress distribution only affects the slip component as shown in figure 3.7.

3.4.3 Verification of the anchorage slip model

Analytical results for the two cases; monotonic pull only, monotonic pull and
push are compared with available experimental data from Viwathanatepa at al. (1979) in
figure 3.8 and from Ueda et al. (1986) in figure 3.9. Table 3.1 shows the properties and
type of failure of each test. The comparison shows good correlation prior to the peak
stress. For some specimens, the experimental data were not available for the post-peak
point. The analytical method predicted the post-peak behaviour through an incremental
displacement technique, which was not used in the tests.

Comparisons between the proposed model and the available different analytical

models are shown in figures 3.10 and 3.11. These comparisons show that the proposed
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model can be used efficiently to predict the pre- and post-peak force-displacement

relationship for reinforcement bars embedded in concrete.

3.5 M-¢ RELATIONSHIP

To develop the moment-curvature relationship of a reinforced concrete member,
a section analysis needs to be conducted. Such analysis requires material models,
incorporating concrete confinement and steel strain hardening. Furthermore,
deformations due to yield penetration into adjoining members and resulting anchorage
slip have to be considered.

To establish the ascending and descending parts of the moment-curvature
relationship, an incremental curvature control (i.e. increasing curvature ¢ from O to
failure), rather than a moment control should be conducted. Force equilibrium and strain
compatibility must be maintained at each increment. Figure 3.12 shows the strain
distribution over the cross section at various stages of loading. The following equations
constitute the section equilibrium and the compatibility conditions:

Force equilibrium:
P=C.+C,-T (3.4)
where P 1s the external axial load on the column;
C. is the compressive force in the compression zone of the section;
C; 1s the compressive force in the compression steel bars; and

T is the tensile force in the tension steel bars.
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Strain distribution

Linear strain distribution is assumed throughout all incremental loading stages.

ZeoZs o s (3.5)

where ¢ is the depth of the concrete compression zone;
d is the depth to tensile reinforcement of the section;
d’is the depth to compressive reinforcement of the section; and
&, & and & ’are the strains in concrete, tensile and compressive steel bars,

respectively.

Thus the moment resisted by the critical cross section at any loading increment is

calculated as the sum of moments of all the forces about any arbitrary axis.

Definition of concrete stress-strain relationship

Several investigators proposed stress-strain relationships for concrete confined
by rectangular hoops. Some of the proposed curves may have parabolic, tri-linear or even
linear approximation for the actual stress-strain relationship. In this study, the modified
Kent and Park model (Park et al., 1982) shown in figure 3.13 was used. In this model, the
maximum concrete stress reached (at point B) and its corresponding strain are assumed to
be dependent on the degree of confinement provided by the lateral hoops through the
multiplier factor K. The maximum confined concrete compressive strain &gmax, Was

determined using the following equation proposed by Corley (1966) in MPa units:
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2
€ max =0.003+o.02£-]3j+[p /. yJ (3.6)

z 140

where z is the distance along the span from section of maximum moment to adjacent
section of zero moment, and ps is the ratio of transverse steel volume to volume of

concrete core.

Definition of compression steel stress-strain relationship

The stress-strain relationship of compression steel will be the same as that of a
tensile coupon test, provided that the bar stability is maintained under compression.
Stability of compression reinforcement can be expressed in terms of the bar slendemness
ratio, where slenderness ratio is defined as the ratio of unsupported bar length between
two ties, s, to its diameter, d,. If the slenderness ratio of rebar is high, the stress-strain
relationship may show unloading immediately after yielding.

Experimental and analytical verification were done by several researchers to
investigate the buckling of reinforcing bars in compression (Mau and El-Mabsout, 1989;
Mau, 1990; Yalcin and Saatcioglu, 2000; Bayrak and Sheikh, 2001). The empirical
relationships suggested by Yalcin and Saatcioglu (2000) were adopted in the current

analysis. Figure 3.14 illustrates the stress-strain relationship for compression

} ) .S
reinforcement as a function of bar slendemess ratio —.
b
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Figure 3.15 shows a general moment-curvature relationship. A simplified six
point M-¢ diagram is developed to approximate the curve. The six points are chosen such
that they represent different stages of behaviour of a reinforced concrete section subjected
to axial load and increasing curvature, such that:

Point (1); M cracking moment, when the principal tensile stress reaches the
concrete tensile strength taken to be 0.3 3\/]’—(' (MPa).

Point (2); M,: moment at the first yield of the tension steel.

Point (3); ¢3: intermediate ¢ between ¢y and oyt

Point (4); My: maximum moment with corresponding curvature ¢uy.

Point (5); ¢s: intermediate ¢ between ¢y and dsil.

Point (6); ¢gi: maximum curvature with corresponding moment M.

3.6 MODELING OF SHEAR STIFFNESS AND STRENGTH

The shear deflections were calculated using the elastic shear stiffness expression
derived by Park and Paulay (1975). The shear stiffness per unit length of the element, X,

was defined by the following expression:

p, sin® acos’ a

K, E bd (3.72)

s

sin* a+np,
where E; is the elastic modulus of shear reinforcement, n is the modular ratio EJ/E,, E. is
the elastic modulus of concrete taken to be 4500,/ f, (MPa) and « is the inclination of

diagonal shear cracks.

In the case of assumed 45° diagonal cracks, the previous equation reduces to:
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o,
=——2—F bd 3.7b
v,45 1+ 4nps s ( )

In the presence of axial compression, the diagonal cracks tend to be flatter than
45°, therefore equation 3.7b, which is based on the truss analogy with 45° struts, is
conservative.

Figure 3.16 shows the combined flexure and shear response of axially and
laterally loaded reinforced concrete column. Curves denoted cases 1, 2 and 3 represent
the column’s total flexural response calculated using the aforementioned procedures and
section 3.7. The broken line represents the shear strength envelope calculated using the
equations proposed by Priestley et al. (1994) and explained in Chapter 1. Three cases of
combined responses might arise, namely: (1) Ductile behaviour where the total flexure
response is less than V}; (2) Moderate ductility behaviour with shear failure when the total
flexure response is in between 7y and ¥;; and (3) Limited ductility behaviour with brittle
shear failure when the total flexure response is higher than V;.

For cases 2 and 3 a shear failure is expected. The determination of the unloading
stiffness in case of shear failure (post-peak failure response) has been explored by few
researchers. Ricles et al. (1998) proposed an unloading stiffness for a moderate ductility
failure (case 2) with a negative value of the element’s initial elastic shear stiffness. In
case of brittle shear failure (case 3), a negative unloading shear stiffness in the range of
25 to 50% of the elastic shear strength was adopted. More recently, Aschheim (2000),

used the degrading Mohr-Coulomb failure surface in an attempt to analytically model the
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shear strength degradation in RC members. The tentative model was verified using seven
specimens. More refinement to the model was recommended.

In the current analysis, a simple approach was adopted for the determination of
the unloading post-shear stiffness. It is assumed that the column will undergo post-shear
stiffness degradation, X,,, which is equivalent to the loss of strength from ¥; to ¥, through
a lateral displacement equivalent to twice the yield displacement. This postulate is valid
for a moderate ductility type of response (case 2). On the other hand, a limited ductility
response (case 3) will be accompanied by brittle shear failure with a higher unloading
stiffness, which is equivalent to the loss of strength from V; to V, through a lateral

displacement equivalent to the yield displacement.

V.-V
ie. K =—-—— for moderate ductility (3.82)
” 24,
V.-V .. o
K, =- IA - for limited ductility (3.8b)

3.7 M-6 AND M-A RELATIONSHIPS

The rotation 0 and deflection A of a reinforced concrete member at any point
along its length is due to the distributed curvature of the member along its length and the
lumped rotation near the fixed end due to the slippage of steel bars at the tension side of
the member as well as the member shear deformation. The total rotation and deflection at
any point along the RC member is the algebraic sum of these three components as

illustrated in figure 3.17.
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ie. A

tot

=A,+A +A, (3.9a)
O =0, +6,+7, (3.9b)
where A4, 1s the total lateral tip displacement corresponding to the total rotation G
Arand 6 are the lateral deflection and rotation due to flexure;
A and 6, are the lateral deflection and rotation due to reinforcement bond-slip;

A, and ¥, are the lateral deflection and rotation due to shear.

The rotation 6, and deflection As of a member may be calculated by integrating
the distributed curvatures along the member. Since the curvature is defined as the rotation
per unit length of member, the rotation between any two points A and B of the member as

shown in figure 3.17 is given by:
B
0% = [¢ dx (3.102)
A

The transverse deflection of point B from the tangent to the axis of the member
at point A due to curvature along the whole length of member between those points is

given by:
B
AP = [x¢ dx (3.10b)
A

Equations 3.10a and 3.10b are generalizations of the moment-area theorems, and

they apply whether elastic or plastic curvatures are involved.

The lumped rotation at the fixed end point, &, due to tensile reinforcement bond-

slip can be defined as:
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0, = —= (3.11a)

The corresponding deflection at any point at distance x from support will be

equal to G;-x and the maximum tip deflection will be:

L
-c

A, =0,L=56, (3.11b)
The value of & is determined through the bond-slip analysis of the embedded
reinforcement bar under monotonic pull, as explained in section 3.4.
The shear deformation y, and shear deflection 4, can be calculated from the

element’s shear stiffness assuming 45° cracks, K, 45. Thus:

6, = 4 (3.122)
v,45

A, =L (3.12b)
Kv,45

where V is the lateral force on the column tip.

Thus at each stage of loading, the following holds:

L
9,o,=f¢ o2 Y (3.13a)
0

d—C Kv,45

L

5

Ay = [xp dx+——L+ L (3.13b)
0 d-c K, 4
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The following subsections explain the behaviour at each stage of loading.
Stages of M-¢ relationship
Stage 1; M=0 to M,

At this stage the member is not cracked and it resists the applied forces with its
gross inertia. Figure 3.18a shows the external moment distribution as well as the
corresponding curvature along the member length.

Stage 2; M., to M,

The top bars are stressed to the yield point. A vertical crack at the section with
maximum moment will appear. Other vertical cracks will be initiated and start to open at
the location of the maximum tensile stress at the fixed end. Although the distribution of
the external moments is linear, the distribution of the curvature will be bilinear along the
member length as shown in figure 3.18b.

Stage 3; M, to M3 and Stage 4; M; to M,

At these two stages, vertical cracks will widen and inclined cracks will open and
widen. Figures 3.18¢ and 3.18d illustrate that at the vicinity of the fixed end (maximum
moment), the diagonal cracks, instead of being parallel will tend to radiate from the
compression zone at the load point. When the flexural reinforcement has yielded, these
cracks increase in width. At this stage, it is prudent to assume that little shear can be
transferred by either aggregate interlock or dowel action. Consequently, nearly the whole
shear force will have to be transferred across the compression zone of the vertical section

adjacent to the support.



95

After the yielding of tensile steel, a plastic hinge starts to develop at the vicinity
of the critical section. Flexural plastic rotation due to the formation of the plastic hinge
starts to develop (Park and Paulay, 1975). An idealized constant curvature along a plastic
hinge length to account for the flexural plastic rotation, is adopted as shown in figures
3.18c and 3.18d.

Various empirical expressions have been proposed by researchers for the

equivalent length of plastic hinge L. These are reviewed below.
L
Baker (1956): L, =0.8kk, (E)C (3.14a)

Where c is the neutral axis depth at ultimate moment;
L is the distance of the critical section to the point of contraflexure;
D is the effective depth of the member; and
K, and k3 are factors depending on the steel and concrete strengths.

Sawyer (1964): L,=025d+0.075L (3.14b)

Corley (1966): L, =0.5d+02Vd (-j—) (3.14c)

Mattock (1967): L, =0.5d +0.05L (3.14d)

Priestley and Park (1987): L, =0.08L+0.02d, (MPa) (3.14e)

Xiao et al. (1998): L, = O.OSL[—;L} +0.02d, f, (MPa) (3.14f)
y

Where d, is the longitudinal bar diameter;

f; is the stress in extreme tensile longitudinal bar; and
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f 1s the yield strength of longitudinal reinforcement.

The second term in the last two equations accounts for the strain penetration of
longitudinal bars into the foundation. The length of the hinge in the last equation varies
according to the stress in the extreme tensile longitudinal bars.

In the current analytical procedure, the strain penetration of the longitudinal bars
into the foundation 1s explicitly accounted for through the bond-slip modeling, thus the
last two equations should not be used herein. Mattock’s equation 3.14d was used to
model the equivalent length of plastic hinge L, to be used in estimating ultimate curvature
requirements.

A linear variation of the plastic hinge length from zero to L, at yield and ultimate
stages, respectively was assumed. A full equivalent plastic hinge length, L,, is assumed to
form at ultimate stage as shown in figure 3.15.

Stage 5; M, to M5 and Stage 6; Ms to Mg,;

Although the moment capacity of the member decreases after its ultimate
moment value M,, the curvature, rotation and tip-deflection of the member increases.
Figures 3.18e and 3.18f show the external moment distribution and the corresponding

idealized curvature distribution.

3.8 COMPARISONS WITH EXPERIMENTAL RESULTS
Comparisons between the proposed analysis procedure and available measured
experimental curves for force-deformation relationship and its components are shown in

figure 3.19. The specimens used for comparison were chosen to emphasis the
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contribution of different sources of deformations (flexure, bond-slip and shear) to the
total column’s response. Specimens U6 and U4 have a significant bond-slip deformation

(due to the reduced anchorage length 7, /d, =20), while specimen R3A failed by brittle

shear (due to the reduced shear capacity). The comparisons indicate that the inelastic
force-deformation relationships for reinforced concrete columns can be computed with a
reasonable degree of accuracy using the analytical models and the procedure employed in
this study. It can be also seen that results from the presented analytical procedure showed

closer agreement to the experimental results as compared to other analytical models.

3.9 EFFECT OF VARIATION IN SECTION AND MATERIAL
PROPERTIES

In order to verify the results of the proposed procedures and to demonstrate its
applicability, some of the parameters that affect the force-deformation behaviour of
reinforced concrete columns were examined for their influence on such behaviour. A
typical column as shown in figure 3.20 was selected as a control column. The influence
of variations in concrete strength, steel yield stress, vertical steel ratio, horizontal
confinement, tensile bars embedded length, and the axial load level was investigated.

Figure 3.21 shows the influence of these variables on the force-tip displacement
relationship of a fixed-fixed reinforced concrete column. The results of the numerical
study indicated that:

1- Variations in concrete compressive strength have relatively small effect on lateral load

carrying capacity and lateral stiffness (15% change in the range from f=20MPa to
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40MPa). These variations have significant effects on drift ratio (*40% change in the
range from f, =20MPa to 40MPa) as shown in figure 3.21a. The drift ratio is taken to be

ratio of the total lateral displacement to the column height.

2- Variations in steel yield strength have considerable effect on the lateral load carrying
capacity. A decrease in the steel yield strength of 25% results in a decrease in the lateral
load capacity by 20%, while an increase of steel yield strength of 25% results in an
increase in the lateral load capacity by 10%. However, variations in steel strength have
almost no effect on lateral stiffness and drift (figure 3.21b).

3- Variations in the area of longitudinal steel strongly influence the lateral load carrying
capacity and stiffness of a reinforced concrete column, while having almost no effect on
the lateral drift ratio. Decreasing the vertical steel content to its half decreases the lateral
load capacity and stiffness by 25%, while increasing the vertical steel content to double
its value increases the lateral load capacity and stiffness by 50% as shown in figure 3.21c.
4- Variations in lateral confinement have a substantial influence on the lateral drift ratio,
while having little influence on the lateral load carrying capacity or stiffness. A 300%
increase in the lateral steel ratio (by reducing the tie spacing to its third) will result in a
200% increase in the lateral drift ratio as shown in figure 3.21d.

5- Decreasing the embedded length of the tensile bars of a reinforced concrete column
below 25 d), decreases the lateral load capacity and stiffness by approximately 25% (due
to the increase in the contribution of bond-slip deformation at the fixed end to the
column’s total deformation), while increasing the lateral drift ratio by approximately 75%

as shown in figure 3.21e.
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6- The level of applied axial load changes the behaviour of the RC columns lateral
response noticeably. For axial load levels below the balanced load (~0.4P, where P, is the
axial load capacity of the column), increasing the axial load decreases the lateral load
drift ratio while increasing the lateral load capacity. However, increasing the axial load

level higher than the balanced load decreases the lateral load capacity as shown in figure

3.211f

3.10 SUMMARY

In this chapter, a rational analytical procedure that depends on the basic
properties of a reinforced concrete member to achieve the force-deflection envelope of
axially and laterally loaded columns, was developed. This method takes the effect of
bond-slip of tensile bars, buckling of compression bars as well as flexure and shear
deformations into account. The effect of concrete tension stiffening was not considered.
The procedure showed good correlation with experimentally measured force-
displacement relationships for RC columns and its corresponding deformation
components.

As an example of the application of the procedure, a numerical study was
performed on the sensitivity of the reinforced concrete columns’ lateral response
characteristics to the changes in concrete and steel strength, vertical and horizontal steel
ratios, embedment length of tensile steel, and the level of axial load.

It is concluded that the described analytical procedure can be used to predict the

backbone relationships for cyclically loaded columns.
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Figure 3.3 (a) Reinforcing bar embedded in concrete; (b) Stress distribution;
(c) Strain distribution; (d) Bond stress between concrete and steel
(Alsiwat and Saatcioglu, 1992)
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Figure 3.4 Local bond stress-slip model (Ciampi et al., 1982,
and Eligehausen et al., 1983)
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Figure 3.8 Force-displacement and stress-strain relationships for embedded

bars tested under monotonic pull, and monotonic pull and push

(Viwathanatepa et al., 1979). (a) Specimen 3, pull only (Continued)
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Figure 3.21 Influence of variables on force-deflection relationship of fixed-fixed
column; (¢) Embedded length of tensile bars; (f) Axial load. (Continued)
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CHAPTER 4

VERIFICATION AND APPLICATION OF THE 3D MODEL

4.1 INTRODUCTION

The model developed in Chapter 2 to represent the behaviour of reinforced
concrete members subjected to three-dimensional shear, flexure and variable axial loads
was coded using the MATLAB® V5.3 programming language. To illustrate the use of
this element and to verify the algorithm, five examples were analyzed. These examples
were chosen to cover a wide range of cases involving different lateral deformations and
various axial load paths. The five selected examples of the analysis are:

1- Flexural behaviour of biaxially loaded square cantilever RC column under constant
axial load tested by Takizawa and Aoyama (1976).

2- Flexural behaviour of diagonally loaded square cantilever RC column with variable
axial load tested by Saatcioglu and Ozcebe (1989).

3- Brittle shear failure of ur;iaxially loaded rectangular fixed-fixed RC column under
constant axial load tested by Verma et al. (1993).

4- Limited flexural ductility with biaxial shear failure of biaxially loaded circular
cantilever RC column under constant axial load tested by Wong et al. (1990).

5- Biaxial shear failure of biaxially loaded square fixed-fixed RC column with variable

axial load tested by Ramirez and Jirsa (1980).
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Figure 4.1 shows the general dimensions, details of reinforcement and the
loading history for the analyzed column cases. The flexural yield surfaces and shear
failure surfaces used in these analyses were determined using the analytical procedure

outlined in Chapter 3.

4.2 ANALYZED CASES

4.2.1 Biaxial flexural behaviour:

The first analysis example is a reinforced concrete cantilever column subjected
to biaxial bending, tested by Takizawa and Aoyama (1976) in Japan. Figure 4.2 showsv
the dimensions and the lateral displacement path used for the experiment. Takizawa and
Aoyama (1976) as well as Chen and Powell (1982) have analytically modeled the test
specimen and experimental data using the lumped plasticity method. Zeris and Mahin
(1991) also studied this problem by using a fiber filament model. The specimen response
involved inelastic biaxial flexural behaviour with flexural stiffness deterioration under
non-proportional cyclic loading.

The analytical flexural yield surfaces were provided using the procedure
explained in chapter 3. Table 4.1 contains the data used to evaluate the force-deflection
relationship that was used to define the three flexural yield surfaces and the four flexural
stiffnesses of the element in each direction. Figures 4.3a and 4.3b show the force-
displacement and stress-strain relationship of an embedded bar subjected to incrementally
increasing pulling displacement, respectively. Figure 4.3¢ shows the moment-curvature

relationship of the cross-section while figure 4.3d shows the predicted moment-rotation
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backbone relationship of the column. Table 4.2 lists all the data for the flexure and shear
subhinges.

Comparison between the load-deflection relationships in E-W and N-S directions
from both experimental and analytical models are shown in figure 4.4. The calculated and
experimental results are encouragingly close, especially considering the complexity of
the response. Comparison between the measured and calculated yield and ultimate
moments in E-W and N-S directions is shown in table 4.3. The results show good

agreement between the experimental and the predicted results.

4.2.2 Flexural behaviour with variation in axial load:

This analysis example consists of a RC cantilever column tested by Saatcioglu
and Ozcebe (1989). The geometric details of the test specimen are shown in figure 4.5a.
The lateral deflection and axial load histories are shown in figure 4.5b. The column was
subjected to uniaxial cyclic displacements along the section diagonal as well as variable
axial load. The applied axial load varied linearly between 500 kN (112 kips) tension
when the column was displaced horizontally 6 percent of the column height in one
direction and 500 kN (112 kips) compression when the specimen was displaced the same
amount in the opposite direction. This loading was selected to simulate an axial load
couple counteracting moment resulting from lateral loading. Table 4.1 includes the data
used to evaluate the force-deflection relationship that was used to define the three
flexural yield surfaces and the four flexural stiffnesses of the element in each direction.

Figures 4.6a and 4.6b show the force-displacement and stress-strain relationship of an
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embedded bar subjected to incrementally increasing pulling displacement, respectively.
Figure 4.6c shows the moment-curvature relationship of the cross-section while figure
4.6d shows the predicted moment-rotation backbone relationship of the column. Table
4.2 lists all the data for the flexure and shear subhinges.

Figure 4.7 shows the comparison between the experimental and analytical lateral
load-top deflection hysteretic relationships in the direction of loading. Both the
experimental results and the analytical simulation model indicate that the yield and
ultimate moments are affected by the level of the concurrent axial load. Also, the
analytical model was able to simulate the degradation in stiffness upon reloading. The
stiffness degradation was increasing with the increase of the displacement level. Table
4.3 shows a comparison between the measured and calculated lateral loads and
deflections in the direction of loading at the yield and ultimate stages. Close agreement

between the test results and that of the analysis was demonstrated.

4.2.3 Brittle shear failure:

In order to demonstrate the ability of the analytical model to simulate the brittle
shear failure behaviour in RC columns, the column tested by Verma et al. (1993) was
analyzed. Details of the shear test setup, loading conditions and specimen's cross section
are shown in figure 4.8a, while the applied cyclic loading history is shown in figure 4.8b.
The data used to evaluate the force-deflection relationship is listed in table 4.1. This data
was used to define the three flexural yield surfaces and the four flexural stiffnesses of the

element in each direction. Figures 4.9a and 4.9b show the force-displacement and stress-
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strain relationship of an embedded bar subjected to incrementally increasing pulling
displacement, respectively. Figure 4.9c shows the moment-curvature relationship of the
cross-section while figure 4.9d shows the predicted moment-rotation backbone
relationship of the column.

The column developed flexural cracking and shear failure during the load
application process. The calculated initial shear strength is 828 kN (186 kips). The
predicted shear failure was 688 kN (155 kips), while the experimental shear failure
occurred at 750 kN (169 kips). Tables 4.2a and 4.2b contain the data for the flexure and
shear subhinges. The response of the tested column included a complete shear failure,
where the transverse shear reinforcement contributed the residual shear capacity as
shown in figure 4.10a. Figure 4.10a also shows the brittle shear failure during the loading
to achieve the first peak of the yield displacement 0.67 inches. In addition to the
calculated shear strength and residual strength, the falling branch shows calculated
unloading stiffness of -48 kN/mm (-274 kips/in), for the shear strength degradation.

The analytical load-deflection relationship is shown in figure 4.10b. The results
of the analysis correlate well with the experimental measurements. It is concluded that
the model does capture the uniaxial brittle shear failure by using appropriate shear
strength degradation stiffness and coefficients. Table 4.3 shows the comparison between
the experimental and analytical yield, ultimate lateral loads and deflections. The

comparison indicates that the model predict the column’s response with good accuracy.
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4.2.4 Limited flexural ductility with biaxial shear failure:

This analysis example is a squat circular reinforced concrete cantilever column
tested by Wong et al. (1990) under non-proportional biaxial cyclic loading in conjunction
with a constant axial load of 930 kN (210 kips). The specimen's dimensions and the
loading path for a cycle of displacement imposed on the specimen, are shown in figure
4.11a and 4.11b, respectively. The shown path was followed repeatedly, increasing the
displacement ductility p in each successive pair of loading cycles. Table 4.1 lists the data
used to evaluate the force-deflection relationship that was used to define the three
flexural yield surfaces and the four flexural stiffnesses of the element in each direction.
When analyzing the column for the backbone load-deflection relationship, the circular
cross section was approximated with a square one having the same moment of inertia
about the section's principal axis. An equivalent square section was needed for the
moment-rotation relationship analysis, since the procedure formulation was based on
rectangular cross sections. Figure 4.11c shows the cross section dimensions of the
equivalent square section. Figures 4.12a and 4.12b show the force-displacement and
stress-strain relationship of an embedded bar subjected to incrementally increasing
pulling displacement, respectively. Figure 4.12c shows the moment-curvature
relationship of the cross-section while figure 4.12d shows the predicted moment-rotation
backbone relationship of the column.

The experimental lateral load-displacement hysteretic responses in the North-
South and East-West directions are shown in 4.13a and 4.13c. The column’s response

consists of initial flexural cracking, followed by inelastic flexural deformations as the



124

amplitude of the displacement history was increased. The flexural ductility demand
imposed by the displacement history led to degradation in the shear strength of the
specimen. This caused the onset of a shear failure to occur at an imposed displacement
ductility of u=4.0 in the north direction, and a subsequent reduction in shear capacity to
about 166 kN with continued loading. The displacement ductility of 4.0 corresponds to a
lateral deflection of about 24 mm. All properties for the flexural subhinges and the shear
subhinge are listed in table 4.2. The initial shear strength was 610 kN (137 kips) at
displacement ductility of 2.0, then decreased to 487 kN (109.5 kips) at displacement
ductility of 4.0. The residual shear strength (which is the shear strength from steel
mechanism V) was equal to 178 kN (40 kips). A value of -36 kN/mm (-206 kips/in) was
calculated for coefficients K.y and Ky, to account for shear strength degradation effects.
The effect of flexural ductility demand on the degradation of shear strength in the plastic
hinge zone was accounted for using Priestly's model (figure 1.7). Therefore, the initial
shear strength surface decreases as the displacement ductility demand imposed on the
column increases (for circular column the value used for k in equation 1.10 was based on
the uniaxial case).

The predicted response based on the analysis of the test specimen is shown in
figures 4.13b and 4.13d as well as table 4.3. The comparison between the analytical and
experimental response is shown to be in good agreement, where the analysis predicts
limited lateral strength and displacement ductility before a shear failure occurred at a

displacement ductility of 4.0 in the north direction. After the occurrence of the shear
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failure, the analytical model captured the pinching behaviour and stiffness deterioration
that occurred in the experimental hysteretic response.

The results of this analysis demonstrates that the element formulation is capable
of modeling the hysteretic response of a reinforced concrete column that develops
deterioration in shear capacity in the plastic flexural hinge zone due to excessive flexural

ductility demand.

4.2.5 Biaxial shear failure with variable axial load:

The fifth analysis example is a squat square fixed-fixed RC column tested by
Ramirez and Jirsa (1980) under non-proportional biaxial cyclic loading in conjunction
with an alternating compressive and tensile axial load. Figure 4.14 shows the specimen's
dimensions and details of reinforcement as well as the deflection history in N-S and E-W
directions and the sequence of variation of axial load. The lateral displacement and axial
load paths were designed to simulate the loads induced by an earthquake on an interior
column of a slender reinforced concrete building. In such a case, axial tension alternates
with compression for lateral displacement in one direction and only axial compression for
lateral displacement in the other direction. Table 4.1 contains the data used to evaluate
the force-deflection relationship that was used to define the three flexural yield surfaces
and the four flexural stiffnesses of the element in each direction. Figures 4.15a and 4.15b
show the force-displacement and stress-strain relationship of an embedded bar subjected

to incrementally increasing pulling displacement, respectively. Figure 4.15¢ shows the
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moment-curvature relationship of the cross-section while figure 4.15d shows the
predicted moment-rotation backbone relationship of the column.

The experimental lateral load-displacement hysteretic response in the north-south
and east-west directions, are shown in figures 4.16a and 4.16¢. The specimen experienced
initial flexural cracking followed by inelastic flexural deformations in both NS and EW
directions. Shear failure occurred when displacement first reached 0.6 inches in the NS
direction leading to subsequent reduction in shear strength with a highly pinched
hysteretic behaviour, as seen in figures 4.16a and 4.16¢. All the calculated properties for
the flexural subhinges and the shear subhinge are listed in tables 4.2a and 4.2b. The initial
shear strength was 366 kN (82.1 kips) at displacement ductility of 1.0 and then decreased
to 283 kN (63.4 kips) at displacement ductility of 3.0. The residual shear strength was
equal to 110 kN (25 kips). A value of -22 kN/mm (-126 kips/in) was calculated for
coefficients K.y and K, to account for shear strength degradation effect. However, these
values did not have much effect on the analytical results since the degradation in stiffness
upon reversal of loading combined with variation of axial load dominated the shear
strength capacity. Therefore at each new cycle the reduced stiffness led to a reduced
shear strength capacity.

The predicted response based on the analysis of the test specimen in the N-S and
E-W directions are shown in figures 4.16b and 4.16d. Table 4.3 includes a comparison
between the yield and ultimate forces and displacements for both, the experimental and
analytical results. The analytical and experimental overall responses are shown to be in

good agreement. It should be mentioned that the analytical model did not predict the peak
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response in the south direction at displacement 0.6 inches. This is attributed to the
isotropic contraction modeling for the shear subhinge yield surface, where the first shear
trigger occurred in the east direction at displacement 0.6 inches. An anisotropic
contraction model could have allowed for independent shear capacities in different

directions.

4.3 EFFECT OF DIFFERENT AXIAL LOAD PATTERNS

Having verified the analytical model using experimental results, the next step
was to study the effect of different axial load variation patterns on the response of
laterally loaded columns. Testing of columns under varying axial load patterns is
difficult. In addition to the fact that there are few experimental results available in the
published literature, the axial load variations during severe earthquakes have not been
measured or accurately predicted by a reliable analysis. Thus, an available analytical tool
can achieve results and conclusions that have not yet been verified by experimental work.

In this study, a RC cantilever column with given moment-rotation properties,
was subjected to eight different axial load paths as shown in figure 4.17. The axial load
paths were selected to cover different possibilities of axial load variation with respect to
the lateral deformation.

Path 1 had a constant axial load of -0.5 Py, (P 1s the balanced compressive axial
load). Path 2 had a variable axial load between 0 and -P, (i.e. £0.5 P, from the initially
applied load of -0.5Py). In path 3, the axial load was varied from O to -2 Py,. In path 4, the

axial load was varied between 0 and -0.5 Py. In path 5, the axial load was varied between
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+ 0.5 Py, (i.e. compression and tension). Paths 2 to 5 were ‘in phase’ loading cycles; such
that the axial load was proportional to the lateral load with maximum axial load
coinciding with maximum lateral deflection. Path 6 was an ‘out of phase’ loading case,
with a phase shift of a quarter cycle between the axial load and lateral deformation. In the
‘out of phase’ loading of case 6, the maximum axial load coincided with zero lateral
displacement. Paths 7 and 8 represent an axial load that was varied at twice the number of
cycles with which the lateral load was varied. In the case of path 7, the axial load was
varied such that no axial load was applied at maximum lateral displacement while the
maximum axial load was applied when the lateral displacement was zero. In the case of
path 8, the axial load variation was such that the maximum axial load occurred at
maximum lateral displacement while no axial load was applied at zero lateral
displacement.

The moment-rotation relationships for the eight imposed variable axial load
paths are shown in figure 4.18. The cumulative dissipated energy-displacement ductility
factor relationship for the eight different axial load paths are plotted in figure 4.19. From
the two figures, the following behaviour is observed:

1- Comparing the cases of axial load paths 2, 3 and 4 with path 1, it is observed
that the lateral moment capacity of the column subjected to a variable compressive axial
load corresponds to the force-moment interaction relationship for the column section. In
effect, the maximum moment capacity occurs when the axial load reaches the balanced

compressive axial load.
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2- Comparing the column behaviour when subjected to an axial load varying
according to path 2 (0 to -Py) to the response of path 5 (0.5 Py) loading, it is observed
that the axial load with reversing sign (i.e. compression and tension) causes
approximately a 25% decrease in the lateral moment capacity of the column that is
subjected to axial load that remains compressive. The decrease in the lateral moment
capacity in the case of an axial load with reversing sign is accompanied by an increase in
the unloading stiffness which results in an accumulated energy dissipation capacity
approximately equal to the case of an axial load of the same amplitude but remaining
compressive.

3- Comparing cases of axial load path 6 with path 2, it is observed that ‘out of
phase’ loading (path 6) causes slight decrease in the moment capacity and approximately
15% decrease in the energy dissipating capacity of the RC column as compared to the ‘in
phase’ loading. The ‘in phase’ loading of path 2 refers to the case when the maximum
axial load is applied at the maximum lateral push while the minimum axial load is
applied at the maximum lateral pull. The ‘out of phase’ loading of path 6 represents the
case when the maximum and minimum axial loads coincide with zero lateral
displacement.

4- Comparing the column behaviour with an axial load following paths 7 and 8
with that of an axial load following paths 2 to 6, it is noted that applying two axial load
cycles for every one lateral load cycle will decrease the energy dissipating capacity of the

columns.
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5- Comparing the results of cases of axial load path 7 with that of path 8§, it is
observed that varying the compressive axial load such that the maximum axial load is
applied at maximum lateral displacement and zero axial load is applied at zero lateral
displacement (path 8) will decrease the lateral moment capacity, stiffness and energy
dissipating capacity of RC column as compared to the reverse load pattern (i.e. zero axial
load at maximum lateral displacement and maximum axial load at zero lateral
displacement, path 7). This can be attributed to the fact that increasing the axial load

while increasing the lateral deformation will decrease the lateral stiffness of the column.
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Figure 4.2 Case 1 (Takizawa and Aoyama, 1976): (a) Dimensions of test

specimen; (b) Applied deflection path
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Figure 4.3 Section analysis results: (a) Force-displacement relationship for

embedded bar; (b) Stress-strain relationship for embedded bar;
(c) Moment-curvature relationship for the section; (d) Moment-
rotation relationship for the element
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Figure 4.4 Biaxial load-displacement response for case 1 (Takizawa and
Aoyama, 1976): (a) E-W direction; (b) N-S direction. (Continued)
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Figure 4.4 Biaxial load-displacement response for case 1 (Takizawa and
Aoyama, 1976): (a) E-W direction; (b) N-S direction. (Continued)
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Figure 4.6 Section analysis results: (a) Force-displacement relationship for
embedded bar; (b) Stress-strain relationship for embedded bar;
(c) Moment-curvature relationship for the section; (d) Moment-
rotation relationship for the element
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Figure 4.8 Case 3 (Verma et al., 1993): (a) Dimensions of test
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Figure 4.11 Case 4 (Wong et al., 1990): (a) Dimensions of test specimen;
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for analysis
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Figure 4.13 Biaxial load-displacement response for case 4 (Wong et al., 1990);
(a) Experimental N-S direction; (b) Analytical N-S direction (continued)
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Figure 4.16 Biaxial load-displacement response for case 5 (Ramirez and Jirsa, 1980)
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Figure 4.16 Biaxial load-displacement response for case 5 (Ramirez and Jirsa, 1980)
(a) Experimental E-W direction; (b) Analytical E-W direction (continued)
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Figure 4.19 Cumulative dissipated energy - displacement ductility factor relationship

for different axial load paths



CHAPTER 5

BEHAVIOUR OF NON-DUCTILE AND REHABILITATED
SHORT COLUMNS

5.1 BACKGROUND

One of the observed common reinforced concrete structural failures during recent
earthquakes is column shear failure. The types of columns that are susceptible to shear
failure are those with a reduced height/depth ratio; i.e. short columns. A short column is
defined as a column with clear height to depth ratio of less than 5. Figure 5.1 shows one
of the cases where columns will behave as a short column due to the lateral stiffening
effect of other structural or non-structural elements on a part of the column height.

The shear capacity of short columns is a function of several parameters:

« Longitudinal reinforcement area and strength

« Transverse reinforcement area

« Concrete compressive strength and section confinement

« Bond between main reinforcement and concrete

« Level and vanability of axial load

All columns including short columns, built prior to 1970 were designed

according to a strength capacity perspective. This led to brittle non-ductile behaviour
under moderate to severe earthquake ground motion. Once the strength of the short
column is reached, abrupt non-ductile deterioration follows, which reduce the energy
dissipating capacity of the columns and consequently of the whole structure.

159
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Recently, performance based seismic design methodology is being adopted by
several codes. The ductility of the column past initial steel bar yielding has become the
target for good design. This should decrease the probability of failure of the structure, and
increase its energy dissipating capacity, when subjected to the design ground motions.

There are three different mechanisms of non-ductile failure in a RC short
column; namely, shear capacity mechanism, concrete confinement mechanism and main
rebars-concrete debonding mechanism.

With the shear capacity mechanism, the column fails prematurely without
reaching the yield limit of the main rebars.

The concrete confinement mechanism is more likely to occur either in columns
with flexural-dominant behaviour (high height/depth ratio) that have low transverse
reinforcement ratio, or in columns with shear-dominant behaviour (low height/depth
ratio) having high transverse reinforcement ratio. In both cases, the concrete cover
crushes on the compression side under reversed loading. The spalling of the concrete
cover reduces the column effective cross section and increases the strains on core of the
column, which in turn losses its compressive capacity due to the deterioration and
crushing of the core concrete. Also loss of cover will allow steel reinforcement to buckle.
These types of columns usually do not reach medium to high ductility levels.

The main rebar-concrete debonding mechanism is more likely to occur in
columns with moderate to high amounts of vertical reinforcement along with low to
medium concrete compressive strength. In this type of failure, the bond stress between

the longitudinal reinforcement bars and the surrounding concrete reaches high values due
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to the high capacity of the main rebars and the low strength of the concrete, which leads
to debonding between the two materials at the interface layer.

The use of composites in a wide variety of industrial applications has been
rapidly increasing in recent years. Advanced composite materials are being used to
strengthen and to enhance the performance of various structural elements, particularly RC
columns. Composites are made up of fibres or filaments of glass or carbon, bonded
together with a resin matrix. The fibres provide the composites with their unique
structural properties. The matrix serves as a bonding agent for the fibre filaments and
layers.

Two types of resin-impregnated unidirectional composite fabric are widely used;
namely, glass and carbon fibre materials. Typical stress-strain relationships for both types
of fibres are shown in figure 5.2. The glass fibres have low strength high strain capacity
while the cérbon fibres have high strength low strain capacity. Thus the carbon fibres are
stiffer than the glass fibres, yet both materials fail in a brittle manner. Wrapping a short
column with Carbon Fibre Reinforced Polymer (CFRP) is expected to increase the
concrete confinement and provide additional lateral shear resistance, thus enhancing the
ductility of the column.

Wrapping a circular column with CFRP produces a uniform passive confining
pressure along the column circumference, which reduces the chances of delamination or
debonding between the CFRP wraps and the concrete. When a rectangular column is
wrapped with CFRP high passive confining pressure occurs at the corners and lower

confining pressure is generated along the four edges, with minimum confining pressure at
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the midpoint of each side. In this case delamination between the CFRP wraps and the
concrete will occur. Similarly, the core of the column confined by steel ties has high
confining pressure at the location of each vertical bar and lower confining pressure
between the vertical bars. Two anchoring techniques to prevent debonding of CFRP were
explored.

One technique for anchoring the fibre wrap is to use through rods. These through
rods clamp steel plates on the column sides using hand-tightened nuts. Another technique
is to use fibre ties that are anchored into the confined core at one end while the other end
is sandwiched between the CFRP wraps. Anchored CFRP wrapping is expected to
improve the ductile performance of the short brittle concrete column.

The predictions of the analytical model need to be verified for cases of different
confinement. This is best accomplished by controlled confinement using selective FRP

wrap design for axially loaded brittle short RC columns.

A pilot experimental program was conducted with the following objectives:

1- To evaluate the behaviour of RC short columns with high transverse reinforcement
ratio (designed according to current codes).

2- To evaluate the performance enhancement of such columns when strengthened using
CFRP wraps.

3- To evaluate the performance of CFRP rehabilitated short columns with low transverse

reinforcement ratio (designed according to pre-1970 codes).
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5.2 TEST PROGRAM

Three reinforced concrete short columns were tested to evaluate their behaviour
under constant axial load and cyclic lateral displacements. The tested specimens
represented a column attached to stiff framing members that restrain its end rotations.
The columns were subjected to cyclic displacements applied to the top end while the
bottom end was fixed. The horizontal actuator used to apply the horizontal displacements
and shear forces was centered at the mid height level of the tested columns. The load was
transmitted to the specimen by a stiff L-shaped beam. The moment/shear ratio was
maintained equal to "/, according to the used test setup (where h is the column height).
The dimensions of the columns were taken similar to those tested by Woodward and Jirsa
(1984) in order to have a benchmark for the column’s performance. However, the current
rehabilitation techniques and the studied parameters are new.

5.2.1 Specimen details

The three specimens had similar column overall dimensions. The columns
dimensions were a */3-scale model of a prototype column. One column was designated
the control column while the other two had different transverse reinforcement and were
strengthened using different systems. All columns were of 305 mm (12") square section
with eight #20 (nominal diameter 19.5 mm) longitudinal bars (p,=0.026), and #10
(nominal diameter 11.3 mm) transverse reinforcement bars. The column height was 914
mm (36") and the column height/depth ratio was 3.0. The tested columns were subjected

to double curvature with the point of contraflexure being maintained at the mid-height of

the column, thus the shear span to depth ratio (%) for the tested columns was 1.5. The
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top and bottom ends of the column were fixed to the test setup by means of rigid block of
dimensions 457x914x508 mm (18"x36"x20") and with higher reinforcement content
compared to that of the column. Figures 5.3 to 5.8 show the details of the three specimens
and their construction.

Specimen SC1 had a high transverse reinforcement ratio of p,=2.42% (#10 bars
@ 65 mm) and was not strengthened. The transverse reinforcement was designed
according to the CSA (1994) design practice code so as to resist the maximum shear
force resulting from the flexure capacity of the section. The behaviour of this specimen
should represent the expected behaviour of a reinforced concrete short column designed
according to the current code of practice.

Specimen SC2 had the same shear reinforcement as specimen SC1 (#10 bars @
65 mm with p~=2.42%) but was strengthened using three layers of CFRP. The
enhancement in the behaviour as compared to specimen SC1 was examined. To prevent
the delamination between the CFRP wraps and the concrete, four clamping plates with
hand tightened threaded rods through the column section, were used. The through rods
were 12 mm (%") diameter and the clamping plates were */g" thick.

Specimen SC3 had a low transverse reinforcement ratio of p,=0.5% (#10 @ 305
mm). This low percentage was chosen so as to satisfy the minimum transverse
reinforcement requirement according to the ACI (1968) design practice code, providing
negligible shear capacity. Without strengthening, specimen SC3 would have experienced
non-ductile shear failure due to its low transverse reinforcement ratio. The test specimen

SC3 was strengthened with 3 layers of CFRP wrap. Therefore, the behaviour of specimen
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SC3 represents a pre-1970 designed RC short column rehabilitated using CFRP wrap. In
this specimen, another anchoring technique was used to enhance confinement and reduce
the bulging of the columns sides; five 75mm (3") deep CFRP anchors were used for each
of the two sides of the specimen.
5.2.2 Materials
5.2.2.1 Concrete

The three specimens were cast at the same time. The mix properties proportions

per m’ for a 25 MPa concrete were as follows:

Cement: Type 10 236 kg.
Slag 34.5 kg.
Type CI 15.5 kg.
Water 122.5 kg.
W/C ratio 0.428
Sand 960 kg.
20 mm gravel 1060 kg.
Admixture 900 ml.

The slump of the concrete mix was 80 mm, which provided adequate concrete
workability during the concrete casting in the forms. No segregation or bug holes in the
cast concrete were noticed. Eighteen control cylinders were cast. Three cylinders were
tested at the age of 7 and 28 days. Three cylinders were tested for compressive strength
for each specimen on the day of testing. In addition, three cylinders were tested for the
tensile strength of concrete using the split cylinder test at 28 days. The specimens and the

cylinders were cured for seven days after pouring the concrete using a 100% moistured
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burlap covered by plastic sheet. A summary of the cylinder test results is given in table

5.1.
5.2.2.2 Reinforcement

Deformed bars #20 (19.5 mm nominal diameter) were used for longitudinal
reinforcement and #10 (11.3 mm nominal diameter) deformed bars for transverse
reinforcement. Coupons of the deformed bars were tested to obtain yield stress and
ultimate stress as summarized in table 5.1.
5.2.2.3 Carbon fibre reinforced polymer (CFRP)

The MBrace CF 130 carbon fibre system was used in the rehabilitation of
specimens SC2 and SC3. The MBrace system consists of five components:

o MBrace Primer

« MBrace Putty filler

e MBrace Saturant resin

» MBrace CF 130 carbon fibres
« MBrace Topcoat (not used)

The mechanical properties of the used materials as provided by the supplier (Master

Builders, 2001), are shown in table 5.1.
5.2.3 Loading system

The loading system consisted of a lateral reaction frame supporting the lateral
hydraulic jack and a vertical setup supporting the vertical hydraulic jack and the

‘pantograph’ to restrain the top fixed end of the tested column against rotation. Figures

5.9 and 5.10 show details of the test setup.
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5.2.3.1 Hydraulic jacks

Two MTS hydraulic jacks were used to control the specimens' displacements and
forces. A 1200 kN capacity actuator was used to provide the horizontal lateral load. The
jack was in a force control mode until yield was reached in both push and pull directions
of the specimen. After the initial yield of the steel reinforcement, displacement control
mode was used to provide displacements as a multiplier of the yield displacement.
Another 1000 kN capacity hydraulic jack was used to provide the axial load to the
column. The load was kept constant at 500 kN during the test. The axial load tended to
increase or decrease during the lateral cyclic displacement of the specimen due to the
elongation or shortening of the specimen’s height. Although attempts were made to
maintain the axial load constant, fluctuation in the order of + 3 to 5 % of the required 500
kN load, were measured.
5.2.3.2 Pantograph system

To restrain the top of the column against rotation, so as to represent fixed end
conditions, a pantograph system was used. The system of the pantograph is shown in
figure 5.11. It consisted of four inclined link members supported by a horizontal member
at the mid height of the pantograph. The higher ends of the two top links were attached to
a stiff horizontal beam, which also acted as a reaction beam for the axial load applied to
the column. The lower end of the two bottom links were attached to a stiff L-shaped

beam which translated the horizontal force provided by the horizontal actuator as shear,
V, and moment, M = V% at the top end of the column. The pantograph restrained the top

of the column from rotation (thus applying the required moment) and allowed free lateral
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and vertical displacements. The pantograph also provided an out-of-plane stiffness, thus
preventing any torque or out of plane loading on the specimen.
5.2.4 Instrumentation

During testing, loads, deflections and strains were measured to monitor the
behaviour of the specimen. A 66-channel capacity data acquisition system was used for
recording the readings at 5 seconds intervals. The data were saved after each cycle for
subsequent data analysis.
5.2.4.1 Loads

The lateral loads corresponding to the lateral displacement and the axial load
were measured using load cells that were integral with the loading rams. The load cells
were calibrated more than once prior to conducting the tests and were found to give
consistent measurements.
5.2.4.2 Deflections

Lateral deflections of the specimen, relative rotation of the two end blocks of the
column, as well as the curvature of the column were measured during the test. Each
specimen was instrumented using twenty linear voltage displacement transformers
LVDTs, ranging from £12 mm (*'%") to £125 mm (+5") capacity, depending on the
monitored position. The lateral deflections were measured with respect to an independent
vertical stiffened tubular frame that was fixed to the strong floor. Figure 5.12 shows the
deflection instrumentation for each specimen. The signals from the lateral LVDT
attached to the top block and the lateral load cell were used to produce the load deflection

curves on Xx-y plots during the test.
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5.2.4.3 Strains

Strains in the longitudinal and transverse reinforcement, as well as in the CFRP
wraps, were measured by means of 5 mm electrical strain gauges. The locations of the
strain gauges are shown in figure 5.13. For each specimen, four strain gauges were placed
on each of the four corner longitudinal bars and located at the bottom, 1/3 height, 2/3
height, and the top of each bar. Two strain gauges were placed on three ties for each
specimen. The three ties were chosen to have consistent locations for the three
specimens, thus the position of the three ties of specimen SC3 was measured for the three
specimens. Six strain gauges were placed on the outer surface of the CFRP wraps; three
of them were at the centerline axis of the column while the other three were near the edge
of the column and were located at the bottom, mid height and top end of the column.
5.2.5 Loading history

All specimens were subjected to a 500 kKN constant axial load. The basic lateral
deflection pattern is shown in figure 5.14. For specimen SC1, the lateral load was applied
in increments of 10 kN until cracking of concrete. A cycle at cracking level was then
conducted and the propagation of cracks were observed and marked. For specimens SC2
and SC3 the cracking load was not recorded because the concrete cracking was obscured
by the CFRP wraps. For all specimens, two load cycles at half the yield strain of the
longitudinal bars were applied. The yield deflection A, for each specimen was defined as
the deflection at first yielding of the longitudinal bars. After yield, the lateral
displacement level was increased incrementally as a multiplier of A, applying two cycles

at each displacement level. For specimens SC2 and SC3, the CFRP wrap was removed
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after the test was completed in order to examine the state of the column concrete. Figure
5.15 shows a typical deformed shape and the associated distribution of axial load, shear

and moment in the push and pull directions for the tested columns.



Table 5.1 Material properties
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Concrete
Age (days) f, (MPa)
Control 1 7 28.0
Control 2 28 38.0
Day of test of Specimen SC1 160 394
Day of test of Specimen SC2 205 39.5
Day of test of Specimen SC3 240 39.5
Concrete split cylinder strength = 3.2 MPa (28 days)
Reinforcement
Bar Nominal bar area Yield stress Ultimate strength
(mm?) (MPa) (MPa)
#20 300 432 684
#10 100 421 662

Carbon fibre reinforcemént system MBrace CF 130 as provided by the supplier

(Master Builders, 2001)
Fibre density:

Fibre modulus:

Fibre areal weight density:
Design thickness:

Design tensile strength:
Design tensile modulus:

Ultimate tensile elongation:

18.2 N/mm’
2.35x 10° MPa
3 N/mm?

0.165 mm
3550 MPa
2.35x 10° MPa
1.5%
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(b)
Figure 5.7 (a) Wooden forms; and (b) steel cages before casting concrete
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Figure 5.8 (a) Concrete after casting; and (b) Curing
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Figure 5.10 Test setup
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CHAPTER 6

TEST RESULTS

6.1 GENERAL

The behaviour of the test specimens is described in terms of load-deflection
curves, strains in reinforcing bars and wrapping fibre, lateral displacement and curvature
profile. Comparisons between test results and explanation of the observed behaviour of
specimens are presented.

All specimens were subjected to a 500 kN constant axial load (compression) and
to lateral cyclic displacement in the east-west direction (push cycle is towards west as
shown in figure 6.1). The axial load level was equivalent to 14% of the axial load
capacity of the column (A, ') which is in the range of typical design loads. The lateral
load-deflection relationship was plotted using deflection of the top block (close to the
column top end). The lateral load was adjusted to include the contribution of the
horizontal component of inclined axial load:

Vg =V +Psinf

A
=V +P— 6.1
T (6.1)

P
where Vg4 1s the adjusted lateral load;
V and P are the measured lateral and axial loads, respectively;

0 is the inclination of the axial load with respect to vertical axis;

A is the measured horizontal displacement at the top of the specimen; and

185
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H, is the vertical distance between the hinges of the axial load cell setup.

The horizontal component of the axial load becomes significant at high drift
ratios. Figure 6.1 shows the adjusted lateral load configuration.

For specimen SC1 the crack pattern during the test is discussed, while for
specimens SC2 and SC3 the CFRP wrap was removed after the completion of the test in
order to examine the cracked condition of the column.

For specimen SC2, the last repeated cycle was at displacement level 6A,, after
which a half cycle in push mode reaching 9.5A, (11.5% drift ratio) was conducted.
Although it was believed that the specimen could still carry significant load, the test was
terminated due to the high drift reached and because of the limitation of the horizontal

jack stroke.

6.2 SPECIMEN SC1

The specimen was initially subjected to an increasing lateral load in push mode
applied in 10 kN increments to seek the crack load. The first crack occurred at load of 70
kN at the top west side of the column. A complete cycle was conducted at the same level
of load. There was no sign of change in stiffness in the push and pull loading directions.
The next deflection limit was selected to develop a lateral resistance approximately half
of the calculated yield resistance. For this specimen, the lateral force causing the main
bars to yield was calculated to be 350 kN. The developed 3D model was used to predict
the lateral deformation response for specimen SC1. Figure 6.2 shows the experimental

load-deflection relationship for the specimen. Section 6.6 contains comparison between
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the analytically predicted and experimental load-deflection relationship for specimen
SC1. Two half-yield cycles were conducted at load level £ 170 kN. At that load level,
flexure cracks developed at the top and bottom of column at the connection with the end
blocks. Inclined shear cracks also developed in the push and pull modes. On the east and
west sides of the column, the cracks were horizontal and were closely spaced towards the
top and bottom ends of the column.

The yield of the reinforcement occurred at a lateral displacement of 11 mm and a
lateral load equal to 344 kN. A vertical crack at the centerline of the east side of the
column was observed. This bond crack can be attributed to the decreased cover at the east
side compared to the west side, due to a 12 mm (}2") shift in the steel cage towards the
east during pouring of the concrete. The strain in the longitudinal bars at yield reached
0.0027.

At a displacement level & 2A,, the lateral load capacity of the specimen increased
to = 380 kN. The concrete cover started to crush at the comers of the top and bottom ends
of the column, and spalled at the top east side. The second cycle at the same displacement
ductility level of 2 showed a drop in the lateral load capacity due to the opening of
diagonal shear cracks.

An excessive reduction in the lateral load resistance occurred at 3A,, and the
shape of the hysteretic loops became increasingly pinched near the origin and the strength
and stiffness of the specimen deteriorated rapidly.

Figure 6.3 shows the crack patterns at levels 1A,, 2A,, 3A, and at failure. Several

45° cracks formed at 1A,. The number of cracks increased and cracks from the push and
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pull modes crossed forming a diamond shaped crack pattern at the middle of the column
and zigzag shapes near the edges. Spalling of the concrete as well as the formation of
wide diagonal shear crack at the mid-height of the column decreased the column strength
and were the causes of failure.

Figures 6.4 and 6.5 show the strains in the ties at '/s and '/, the column height,
respectively. From the figures, it is noticed that the strains were close in magnitude with a
maximum in the range of half the yield strain. The strains in the ties were high which
indicates that the shear cracks formed at increasing displacement levels were sufficient to
produce a shear failure. The shear cracks were distributed uniformly in the specimen with
no one large crack of width bigger than 0.5 mm which precludes local yielding of the ties
away from the strain gauge locations. The concrete shear failure significantly decreased
the column strength.

Figures 6.6 and 6.7 show the lateral displacement and curvature distribution
along the column height throughout the loading history at different displacement
ductilities p. From both figures, a double curvature behaviour can be observed. In the late
stages of loading, there were some signs of initiation of rotations at the column ends.
However, there was no evidence of formation of complete flexural plastic hinge at the

column ends.

6.3 SPECIMEN SC2

Specimen SC2 had the same concrete dimensions and reinforcement details as
specimen SC1 (14 #10 ties with p,=2.42%), but wrapped with 3 layers of carbon fibre

sheets. Four side-plates with through tying bars were used to clamp the CFRP to
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eliminate debonding between the fibre wraps and the concrete of the column. Specimen
SC2 was representative of a rehabilitated column that was initially designed according to
recent codes. Figure 6.8 shows the adjusted force-deflection relationship under cyclic
loading. The lateral force is adjusted using equation 6.1 to account for the horizontal
component of the inclined axial load. Two cycles at load + 170 kN were conducted to
represent half the expected yield capacity of the column. The following cycle was to
reach the yield strain of the main longitudinal bars. The yield displacement A, was 11
mm, and the corresponding lateral load was 363 kN. The yield strain of the main
reinforcement was measured at 0.0027.

In subsequent cycles, the specimen showed high load carrying capacity that was
maintained without significant deterioration up to 6A,. There was a decrease in the
loading stiffness that was proportional to the increase in the displacement ductility level
induced. The second cycle conducted at the same displacement level did not show
significant strength deterioration, which indicates that new cracks were not forming and
old cracks were not widening. The areas enclosed by the hysteretic loop of each cycle
showed high energy dissipation. A final half cycle with 9.5A, and drift ratio 11.5% was
conducted. The load carrying capacity decreased by only 12% of the ultimate capacity.
The test was halted because the drift was excessive and the loading actuator was out of
stroke.

Figure 6.9 shows the test column at maximum displacement and after removing
the fibre wrap from the top part of the column. The concrete column under the fibre wrap

had several shear and flexure cracks, yet the crack widths were small (from visual



190

inspection) and the concrete was not severely deteriorated, due to the confining effect of
the CFRP. The high stiffness of the CFRP (compared to that of concrete) provided
substantial lateral confinement of concrete that was generated by the high axial
compressive strain and crack formation in concrete at high ductility levels.

Figures 6.10 and 6.11 show the strains in the steel ties at 1/6 and 1/2 the column
height, respectively. From the figures it can be seen that the strains were close in
magnitude, and were in the range of half the yield strain.

Figures 6.12 to 6.14 show the lateral strains of the CFRP wraps at the top end,
mid-height and the bottom end of the column, respectively. The plots on the left hand
side of figures 6.12 to 6.14 show the strains near the comer of the column, while the plots
on the right hand side show the strains near the centre of the column side. The strain in
the ties at half the height (figure 6.11) and the strain in the CFRP at half height (figure
6.13) are approximately equal. From the figures it can be seen that the CFRP strain was
higher at the column ends than at the column mid-height due to the higher moment at the
column ends. The strains along the comer of the column were higher than those at the
centerline of the column sides. This is due to the increased confining effect of the CFRP
fibres at the column corners as compared to the middle of the column side. The fibre
strains at the corner of the column (at the top and bottom ends) were approximately twice
the strains at the centerline of the column side. At a drift ratio of 11.5% (9.5Ay), the fibre
strains reached approximately 0.004 at the top and bottom ends of the column. A bulge
underneath the wrapping fibre was observed in the compressed side of the column near

the top and bottom ends at high displacement levels. However, there was no sign of
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tensile rupture in the fibre sheet itself. This bulge was due to the sliding and dislocation
of the highly strained concrete in compression along the cracks that formed at the ends of
the column.

Figures 6.15 and 6.16 show the strain in the tie rods (used as anchors for the
CFRP wraps) at mid-height and bottom end of the column, respectively. From the figures
it can be observed that the strains at the mid-height of the column were small and those at
the column end were quite significant at approximately 0.001 at drift ratio of 11.5%. The
high strains in the tie rods near the column’s ends indicate that the rods were effective in
increasing the confinement due to the CFRP wraps, which led to a higher lateral capacity.
The tension force in the rods resisted bulging of the concrete at the middle of the sides.

Figures 6.17 and 6.18 show the lateral displacement and curvature distribution
along the column height throughout the loading history up to displacement ductility
factor u=6. From figure 6.17 and from observation during the test, the column behaved as
a stiff element with two plastic hinges at the top and the bottom. The plastic hinge length
was about 75 mm (3 inches) and it can be identified visually by means of the alternating
bulging of the concrete underneath the CFRP wrap at the compression sides during push
and pull cycles. A lumped curvature localized at the top and the bottom of the column
shown in figure 6.18 is another indication of the elastic element with two end plastic

hinge behaviour of the specimen.
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6.4 SPECIMEN SC3

Specimen SC3 had the same number of CFRP layers as specimen SC2, but was
wrapped by reduced number of steel ties (3#10 ties with p,=0.5%). A different technique
was used to eliminate delamination and improve the concrete confinement. Five three-
inch deep carbon fibre anchors were used at each side of the column. The fibre anchors
were installed after the first layer of CFRP was wrapped. One end of the fibre anchor was
anchored into the column’s confined core in a 80 mm deep hole, while the fibres at the
other‘ end were spread in a fan-blades shape between the first and second layers of CFRP.
The CFRP anchors are shown in figure 6.19. Specimen SC3 was representative of a
rehabilitated column that was designed according to the pre-1970’s codes. Figure 6.20
shows the adjusted force-deflection relationship under lateral cyclic loading and a
constant 500 kN axial load. Two cycles at load + 170 kN were conducted to represent
half the expected yield capacity of the column. The following cycle was to reach the yield
strain of the main longitudinal bars. The yield displacement Ay was 13 mm, and the
corresponding lateral load was 385 kN. The yield strain of the main longitudinal
reinforcement was 0.003. The higher yield displacement and load for specimen SC3 as
compared to specimens SC1 and SC2 was attributed to the higher yield strain of the
longitudinal reinforcement bars and to the higher shear displacement component of the
column due to its reduced transverse reinforcement.

In the following cycles, the specimen showed an increasing load carrying

capacity until 3A, was reached. The second loading cycle at each displacement level up

to 3A, did not show significant loss in the specimen strength. Strength deterioration of the
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specimen started at displacement level of 4A,. Formation of new cracks and widening of
the old cracks was evident from the loss in strength at the same ductility level. The
increasing pinching of the hysteretic loops for loading cycles of 4A, suggest that shear
cracks were developing in the concrete under the CFRP wrapping. The rate of energy
dissipation associated with each cycle decreased after 4A, was reached. A final half cycle
with 8Ay and drift ratio of 11.5% was conducted. In that cycle, rupture of one inch width
of the fibres occurred at the bottom corner of the column. The specimen was still capable
of resisting approximately 70% of its ultimate lateral load.

Figures 6.21 and 6.22 show the specimen at maximum lateral displacement and
after removing the fibre wraps from the bottom part of the column. The fibre anchors
used to improve the CFRP confinement of concrete were successful and there was no
sign of debonding or delamination observed (as can be seen in figure 6.22). The concrete
under the fibre wraps near the plastic hinge location at the two ends of the column was
severely crushed. The absence of ties at the plastic hinge locations coupled with crushing
of concrete cover led to buckling of the longitudinal steel bars in compression. With the
steel bars buckling, the interior concrete of the column failed by crushing. At the plastic
hinge locations, limited confinement of the column was provided by the CFRP wraps
only. For this reason the lateral strain in the CFRP was high and reached its ultimate. The
lateral profile of the column after displacement ductility level 5 (i.e. 5Ay) consisted of
three parts separated by wide cracks. Two 150 mm (6") parts at each end with a middle
600 mm (24") part of the column are shown in figure 6.21b. The wide cracks separating

the three parts were approximately at the locations of the top and bottom ties. As the test
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progressed, it was apparent that most of the rotation of the column was occurring at four
discrete locations: the top and bottom column ends and the locations of two wide cracks.

Figures 6.23 and 6.24 show the measured strain in the steel ties at '/s and '/, the
column height, respectively. The figures show that the strains at '/s (and /) the column
heights are slightly higher than those at the mid-height. This is due to the combined
flexure and shear at '/s and */¢ the column height as compared to shear only at column
mid-height. An increased normal stress due to flexure generates tensile forces in the ties
for confinement.

Although the contribution to the lateral shear strength from the steel mechanism
provided by the ties was low (due to the low transverse reinforcement content p,=0.5%),
the three layers of CFRP wraps provided sufficient additional shear resisting mechanism
to prevent the column from sustaining a brittle shear failure. This emphasizes the dual
action of the CFRP wrapping in increasing the column lateral load carrying capacity due
to its confining effect in addition to increasing the shear strength due to the additional
FRP resisting mechanism.

Figures 6.25 to 6.27 show the lateral strains in the CFRP wraps at the top end,
mid-height and the bottom end of the column, respectively. The left hand plots in figures
6.25 to 6.27 show the strains near the edge of the column, while the right hand side plots
show the strains near the centre of the column side. The figures show that the CFRP
strains were higher at the column ends as compared to the column mid-height due to the
higher flexural stresses. The strains along the corner of the column were higher than

those at the centre of the column side. This is due to the increased confining effect of the
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wrapping CFRP fibres at the column corners as compared to the middle of the column
sides. The fibre strains at the comer of the column (at the top and bottom ends) were
almost twice those at the centre of the column side. At a drift ratio of 11.5% (84y), the
CFRP strains reached approximately 0.007 at the top and bottom ends of the column.
This strain was sufficient to cause rupture of the fibres at the bottom end of the column.
Figures 6.28 and 6.29 show the lateral displacement and curvature distribution
along the column height throughout the loading history until displacement ductility factor
p=>5. From figure 6.28 and from observation during the test, the specimen behaved as a
stiff element with two 75 mm (3") plastic hinges at the top and the bottom ends of the
column until 4A,. At lateral displacement of 5A,, the length of the plastic hinge suddenly
increased to 150 mm (6"). This led to an increase in the curvature of the specimen as
shown in figure 6.29. The middle 600 mm (24") section of the column between the two

plastic hinges behaved elastically.

6.5 COMPARISON OF EXPERIMENTAL RESULTS

6.5.1 Load-deflection relationship

The lateral load-deflection relationships of the three specimens are compared in
figure 6.30. The lateral load capacities of the three specimens for the first and second
loading cycles throughout the loading history at every ductility level are compared in
figure 6.31. From the two figures, the following can be concluded:
1- Using a large number of ties at small spacing as per current code (CSA A23.3-94, see

Appendix B) for a short RC column did not eliminate the shear failure and did not
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improve the limited displacement ductility capacity. A short RC column with
Pp~=2.42% failed in shear at a ductility factor of 3.0 (drift ratio 3.5%).
Rehabilitating a short RC column that contains high percentage of transverse
reinforcement using CFRP wraps significantly improved the displacement ductility. A
short RC column with p,=2.42%, rehabilitated using three wraps of CFRP reached a
displacement ductility factor of 9.5 (drift ratio of 11.5%) without failure and still
maintained 88% of the column’s maximum lateral load carrying capacity.
Rehabilitating a short RC column that contains low percentage of transverse
reinforcement using CFRP wraps increased the lateral load capacity and displacement
ductility. A short RC column with p,=0.5% and rehabilitated using three wraps of
CFRP failed at ductility factor of 8.0 (drift ratio of 11.5%) having 70% of the
column’s maximum lateral load capacity.
Decreasing the lateral reinforcement content of CFRP-rehabilitated short RC columns
from p,=2.42% to p,=0.5% decreased the post-peak lateral load capacity and the
lateral stiffness and increased the pinching behaviour of the column.
CFRP wrapping provided both confinement to the concrete and additional lateral load
resistance mechanism. Thus a proposed total shear design equation is:

V,=V +V +V, +Vip (6.2)

where Vn= nominal shear strength,;
V. = shear strength from concrete mechanism;
V; = shear strength from steel mechanism; and
V, = shear strength from axial force mechanism; and

Vrrp = shear strength from the CFRP mechanism.
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Appendix D includes a detailed explanation of the contribution of different
mechanisms to the column’s total shear strength.

6- Both anchoring techniques used in specimen SC2 (through steel rods) and specimen
SC3 (fibre anchors) were effective in reducing bulging at the column sides.

Table 6.1 shows the calculated and measured yield and ultimate lateral loads for
the three specimens. The comparison shows good correlation between the tested and the
predicted results.

Table 6.2 and figure 6.32 show the peak-to-peak stiffness values for the first and
second cycles for the three specimens. From the table and the figure it can be seen that
specimen SC1 showed higher loss in stiffness upon load reversals at the same ductility
level than specimens SC2 and SC3. It can be also seen that the rate of degradation of
stiffness for the first cycles is higher for specimen SC1 than specimens SC2 and SC3.
This 1s due to the low confinement of specimen SC1, which allowed the formation of new
cracks and widening of the old ones thus reducing the column stiffness.

6.5.2 Energy dissipation

For each specimen, the energy dissipated in each cycle was obtained by
calculating the area enclosed by the corresponding load-displacement hysteretic loop.
The cumulative energy dissipated was obtained by summing the energy dissipated in
consecutive loops throughout the test. Figure 6.33 shows the cumulative dissipated
energy with the displacement ductility factor for the tested specimens. Figure 6.34 shows
the drift ratio-energy absorption capacity relationship, where the “energy absorption
capacity” at each displacement ductility level is defined as the current dissipated energy

divided by the corresponding displacement amplitude (2A). The energy absorption
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capacity gives a measure for the specimen potential to absorb energy with respect to
different drift ratios. From these two figures it can be concluded that the CFRP
rehabilitated RC short columns have higher energy dissipation capacity when compared
to the control column (even with code specified transverse reinforcement). It can be also
concluded that decreasing the lateral reinforcement ratio of CFRP-rehabilitated RC short
columns from p,=2.42% to p,=0.5% will have the same energy content up to drift ratio =
5%, after which the higher lateral reinforcement content column will dissipate larger
amount of energy.

6.5.3 Curvature

Figure 6.35 shows the curvature distribution along the column height for the
three specimens at drift ratios of 3.5% and 7.0% (equivalent to lateral displacement of 33
mm and 66 mm, respectively). From the figure it can be concluded that specimen SC2
has a higher curvature capacity than specimens SC1 and SC3. The curvature capacity of
specimen SC2 is almost twice that of specimen SC3 at its ultimate drift ratio (11.5%).
6.5.4 Longitudinal strain

Figure 6.36 shows the main bars strain distribution along the column height at
the onset of first bar yielding. The longitudinal strain distribution along the column height
follows a typical fixed-fixed double moment pattern.
6.5.5 Lateral strain

Figures 6.37 and 6.38 show the lateral tie and fibre strain distribution along the
height at the onset of yield of the longitudinal steel bars, at maximum lateral load and at

the ultimate lateral displacement for the three specimens. The strain in the ties in all the
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tests remained well below the yield strain. Comparing the strains in the ties of specimen
SC1 to specimen SC2, indicates that the CFRP-rehabilitated RC short columns have
similar tie strain level, which is about half the yield strain. Figure 6.38 shows that the
anchored CFRP wraps did not develop significant strains, and therefore did not provide
high confining pressures and lateral resistance, until large column displacements were
applied. On the other hand, figure 6.37 shows a reduction in the tie strains, which is
proportional to the reduction in the lateral column resistance from the point of maximum
lateral load to the point of ultimate lateral displacement.

Comparing the CFRP strains in specimens SC2 and SC3, it can be concluded that
the strain in the CFRP increases with the increase of the applied displacements at much
higher rate in the column with less transverse reinforcement (specimen SC3). This
indicates that at high displacement ductility levels, the CFRP wraps tend to complement

the column’s shear resistance, which is primarily provided by the steel mechanism.

6.6 ANALYTICAL PREDICTION OF TESTED SPECIMENS'
RESPONSE

The developed 3D model is used to predict the lateral response of the three
tested specimens. Tables 6.3a and 6.3b show the data for the flexure and shear subhinges
for the three specimens. Figures 6.39 to 6.41show the comparison between the analytical
and experimental force-displacement relationship. The comparison shows that the model

was capable of predicting response of specimens with good accuracy.



200

%S 11 JO OIjel JJLIp J8 PUS W0))0q UWN[0J J& PILNOD0 SAIqY Jo ammdny
Ayroedeo peo] [eis1e] Sjewn[n paje[no[ed JurivAcn |,
Ayoedeo peo] [e101e] PIAIK paje[nofed SUILILACD |

omyrey | Ainonp
oN | srexopon STy S8€ | 9Ly | 9Ly | | — | | .uSTY | €L9 | 9Ly | €8 IL | € | ,S9¢ €0S
am[re | Ayrnonp
ON Sy 8TV €oc | ov8 | 9L¥ | -- | 9€€ | 8T | 0SY | Y901 | 9LY | €8 | 9€€ | 691 | ,SLE 708
amjrey | Annonp
189YS MO 08¢ vve | uEor| - | Tk |9ge | ST| ST 11§ | — |€8|9¢c| ¢6 | ,0S¢ DS
"A | THEA A A [CA A | TEAIAL A | CA
ajewnyI(} | PIRIX ANXI 2INXI Y
Jeays xeays
dinqiey | Anoiaeyag udwddg
ey PRIX
paansedAl
paje[na[e)

N3 UI SpeoO[ [eloje] painseaul pue paje[nofe)) [°9 IqeL,




201

Table 6.2 Experimentally measured peak-to-peak stiffnesses (N/mm) at different

displacement ductilities for the three specimens

1A, | 24y | 3A, | 4A, | 5A, | 6A, | 84y | 9.54,
1% cycle | 32000 | 19000 | 10500 | NA
Specimen SC1
2™ cycle | 32000 | 15000 | 6000 | NA
1% cycle | 33000 | 19500 | 13000 | 9500 | 7500 | 6000 | -- | 4000
Specimen SC2
2™ cycle | 32000 | 18000 | 12000 | 9000 | 7000 | 5500 | -- -
1 cycle | 30000 | 16500 | 11000 | 8000 | 5000 | -- | 3000 | NA
Specimen SC3
2™ cycle | 28000 | 15000 | 9500 | 6500 | 4000 | -- - | NA
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Figure 6.2 Lateral force-displacement relationship for specimen SC1
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Figure 6.12 CFRP strain - lateral load relationship (top end of column)
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Figure 6.19 CFRP anchors
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 SUMMARY

The principal objectives of this study are to analytically and experimentally
evaluate the non-linear behaviour of non-ductile reinforced concrete columns under
cyclic deformations.

The analytical phase of the study included the development of a 3D beam-column
element based on the lumped plasticity modeling. The model represents flexural response
by a quadrilinear force-deformation relationship, and shear response by strength and
stiffness degrading relationship. The model takes into account the effect of axial load
variation on lateral deformation and its interaction with biaxial moments and shear.

An analytical procedure to obtain the moment-rotation and force-deflection
relationships for reinforced concrete columns, which are needed as input data for the 3D
element, was developed. This procedure uses the basic mechanical and geometrical
properties of the element. It takes into consideration the effect of bond-slip of tensile
bars, buckling of compression bars as well as flexure and shear deformations. This
procedure was verified using available experimental data. The comparison showed good
agreement. A parametric study to evaluate the effect of variation in section and material

properties was also conducted.
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The performance of the proposed 3D model and the analytical procedure were
assessed by comparing the model’s predicted response versus experimental results. An
analytical study on the effect of several variable axial load paths on the response of

cyclically loaded RC column was conducted.

The experimental phase of the study included testing three reinforced concrete
short columns under cyclic lateral loads and constant axial load. The first specimen
represents columns designed according to current code (CSA A23.3-94). The second
specimen was identical to the first one but rehabilitated using anchored carbon fibre
reinforced polymers (CFRP). The third specimen represents a non-ductile short column
designed according to pre-1970 codes and rehabilitated using anchored CFRP wraps.
Two different anchoring techniques to prevent debonding between the CFRP wraps and
the column were used in the two rehabilitated specimens; namely, by using through steel

rods and fibre anchors.

7.2 CONCLUSIONS

The following conclusions were reached from results of the analytical and
experimental research:

1. A 3D model based on the lumped plasticity was developed. The model accounts
for uniaxial and biaxial flexure and shear behaviours, as well as the variation of
axial load. The model was validated using available experimental results in the
literature by several independent researchers and showed sufficient accuracy in

predicting the columns response and failure mechanism.
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An analytical procedure to evaluate the moment-rotation backbone relationship
for RC members was introduced and tested. This method takes into account the
effect of bond-slip of tensile bars, buckling of compression bars as well as flexure
and shear deformations. The methodology is found to be rational and capable of
estimating the deformation components of RC columns with a reasonable
accuracy.

A complete response analysis for RC columns should include the variation in
axial force component. The level and type of applied varying axial path as well as
its phase shift with respect to the applied lateral displacement path will affect the
hysteretic response of RC columns and its energy dissipation capacity.

A short RC column designed according to the current code (CSA A23.3-94) failed
in shear with a non-ductile behaviour when subjected to lateral cyclic
displacements.

Rehabilitating a short RC column that contains high percentage of transverse
reinforcement (designed according to current code) using anchored CFRP jacket
significantly improves its displacement ductility and energy dissipation capacity.
Rehabilitating a short RC column that contains low percentage of transverse
reinforcement (designed according to pre-1970 codes) using anchored CFRP
jacket improves its displacement ductility and energy dissipation capacity.

Both anchoring techniques used in the current experimental investigation; i.e.
through steel rods and fibre anchors, are effective in eliminating the concrete

bulging at the column sides.
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Rehabilitating RC columns using CFRP jackets provides both confinement to the
concrete and additional shear resistance mechanism. The contribution of the
CFRP jacket to the total shear strength of a RC column increases with the

decrease of the lateral reinforcement content.

Finally, it should be mentioned that the presented results are based on a limited

number of analyses and tests. To establish general conclusions on the spatial behaviour of

non-ductile reinforced concrete columns, a more comprehensive study is needed.

7.3 RECOMMENDATIONS FOR FUTURE RESEARCH

The following recommendations may be considered in future research involving

spatial modeling and rehabilitation of non-ductile RC columns:

1.

The developed element needs to be implemented in a global nonlinear frame
analysis program.

The developed 3D element may be extended to model the effect of rehabilitating
reinforced concrete elements using fibre reinforced polymers (FRP) wraps.

The 3D element may be extended to model the non-ductile behaviour of brick and
masonry columns and walls.

The effect of variation of axial load on rehabilitated non-ductile RC columns
needs to be investigated experimentally.

The effect of diagonal and multi-directional lateral loading on rehabilitated non-

ductile RC columns needs to be investigated experimentally.



APPENDIX A

ANCHORAGE SLIP SOLUTION STRATEGY

The following describes the solution strategy adopted to obtain the stress-strain
relationship of embedded bar subjected to monotonic pull and taking bond slip into
consideration:

A.1 Before bar slip (figure 3.5a): (L + l;) <lpar

o By applying a tension force to the bar at the pull side end, then:

I, = & (A1)
44,
fydb
g, = (A.2)
41,
44
, =—Oi”'—fy— > 300 mm  (MPa units) (A.3)
3d, \/]Tc 400
where: ¢, = The average bond stress proposed by ACI (1985);
ls = Development length (mm);
A, = Tensile bar area (mm?); and
d, = Tensile bar diameter (mm).
-f)d
1, =(_f’_&_)_” (A.4)
4q s
S f.
=(5.5-0.07 =),/ MPa AS
95 =( HL) 27.6 (A3)

where: g = The frictional bond stress proposed by Pochanart and Harmon (1989);
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St = The clear spacing of lugs; and

H; = The clear height of lugs.

grcan be simplified tobe g, =5 ,} 2'?6 MPa for most practical applications.

A.2 After bar slip (figure 3.5b): (0, + 1) = lpay

¢ By increasing the tension force applied to the bar, then:

I =1

e bar

-1

pl

=fydb

e

obtain dy;, (from the local bond stress-slip relationship, figure 3.4)

until 531ip = ¢

e Apply incremental Jy;, at cut off end ( from J; to &; ):

q9=4, =4,
i
‘ 4q,

* Apply incremental dy;, at cut off end ( from 5, to &; ):

L g<4qg,

l- =fydb

e 4q

{ [ [



APPENDIX B

DESIGN OF SHORT COLUMN

This section contains the design steps for a short R.C. column according to CSA
A23.3-94. The column has cross section of 305x305 mm and is reinforced by 8 # 20 mm

bars and is subjected to compressive axial load equal to 500 kN.

B.1 Transverse reinforcement spacing (Clause 21.4.4.3):

Transverse reinforcement shall be spaced at distances not exceeding:

a) One-quarter of the minimum member dimension = t/4 = 305/4 = 76.25 mm
b) 100 mm

¢) 6 times the diameter of the smallest longitudinal bar; i.e. 6x19.5=117 mm

.. The maximum tie spacing = 76.25 mm

B.2 Transverse reinforcement content (Clause 21.4.4.2):

Transverse reinforcement, specified as follows, shall be provided unless a larger amount
is required by clause 21.7:

The total cross sectional area of rectangular hoop reinforcement shall no be less than the
larger of the amounts given by equations 21-3 and 21-4 as follows:

I [ 4,
A, =03sh, 2| £ -1 (B.1) CSA A23.321-3

yh ch

fe

yh

A, =0.09sh,

(B.2) CSA A23.321-4

where s is the tie spacing;
h.  is the length of tie;
f.  is the concrete compressive strength,
238
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S 1s the ylelding stress of the column;
A  1s the gross area of the column; and

Acyn  1s the core area bounded by the ties.

39 (305x305

Equation B.1: Ay, =0.3x65x254x
4301\ 254x254

—-1) =198.5 mm?

Equation B.2: A, = O.O9><65><254><4i39(-)- =134.8 mm’®

- Ag = 198.5 mm? use #10 bars closed ties

B.3 Check shear capacity (Clause 21.7.3):

Members subjected to seismic shear shall be designed such that: V, > V.

Where V, is the resisting shear force, while 7 is the factored design shear force.

1-The factored design shear force:

For a double flexure fixed-fixed column: M =VA/2. Thus V =2M/h. Where h is the

column height.

oM
Ly, M 2A40KN.m _ oo
h 0.9144m

2-The resisting shear force:
v, =V, +V, <V, +0.81d, /1 bd) (B.3)
Where ¥, = 0.1A@, [ f/bd = 0.1x1.0x0.6x~/39x305x260 = 30 kN

D, 4,f4d  0.85x200x430x260

And V, =
S 65

=295 kN

S Ve=30+295=325kN

Thus V, 2 V.



APPENDIX C

3D ELEMENT COMPUTER PROGRAM

This appendix includes the solution algorithm and listing of the main program

subroutines for the beam-column 3D element computer program explained in Chapter 2.

C.1 SOLUTION ALGORITHM

Figure C.1 shows the flow chart of the 3D element. Each subroutine includes a

brief description of its function.
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Main

I
Inputs
Input properties of flexure
and shear subhinges

I

DefoPath
Contains the imposed
deformation path

Initialize
Initialize the variables

[

Next loop in "DefoPath"

Loops
Sweeps all the cyclic loops

241

InitUnld

« Calculate degradation stiffnesses
« Check pinching occurance

Start
« Determine current loading stage
« Calulate current stiffness
« Calculate overshoot force state

Events

« Determine occurance of
flexure events at each node

« Calculate associate factors

SEvent

« Determine occurance of
shear or pinching events

« Calculate associate factors

Iterate
Choose the least of all events

SS+0

factors, FAC

State
Determine current state

®

3

PlasFlex
Updates the total
flexibility matrix

Figure C.1 3D Model flow chart (continued)



Next loop in "DefoPath"
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?

Normals
Calculate normal vectors to the

yield surfaces according to the
current state

Plasdefo PlasFlex
Calculate plastic deformation Updates the total
at subhinges flexibility matrix
|
Update
Calculate new yield surfaces origins

/N

ScaleBack, ScaleBackItr, ScaleCackStt

Check the yield surface tolerence for flexure
subhinges and iterate if tolerence was not met

ChckShrttrggr
Update shear subhinge state

I
ShrSclBack

Check the shear subhinge yield surface tolerance
and iterate if tolerence was not met

ChangeStiff

Update the new normal vectors
and subhinges' plastic deformation

l

Complement
SS=1-FAC

| SS%0

Resp

« Saves the response values DegPara

- Check "SS" value Calculate response values

_ needed for degradation
$5=0 in next logorp

End of loops >

Output, Plots, End
Save output file and plots

Figure C.1 3D Model flow chart (continue)
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APPENDIX D

SHEAR STRENGTH AND CONFINEMENT MODEL FOR
ANCHORED CFRP WRAPS

Wrapping RC columns with CFRP sheets provides both confinement to the
concrete and additional shear resistance mechanism. The column’s total shear resistance
can be written as the sum of various components as:

Vo=V AV, +V, +Vie (D.1H)
where  V,=nominal shear strength;
V. = shear strength from concrete mechanism;
V, = shear strength from steel mechanism;
V, = shear strength from axial force mechanism; and
Verp = shear strength from the CFRP mechanism.

In order to calculate the confinement effectiveness for rectangular concrete
sections confined by rectangular ties in addition to anchored CFRP wraps, an approach
analogous to Mander et al. (1988) model was adopted.

Figure D.1 shows the effectively confined core for sections with rectangular hoop
reinforcement and external anchored FRP wraps. In this figure, arching action is assumed
to occur vertically between levels of transverse hoop bars and horizontally between levels
of longitudinal bars. Thus, the effectively confined area of concrete at hoop level will be
the total area enclosed by the CFRP wraps less the areas of the parabolas containing the

ineffectively confined concrete.

272
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The ineffective area for one parabola is (w})’ / 6 where w; is the ith clear distance

between adjacent longitudinal bars. Thus, the total plan area of ineffectively confined

concrete at the level of the ties when there are n longitudinal bars is
e, (1w,
=3k (D2)
i=1

Considering the influence of the ineffective areas in the elevation, the area of
effectively confined concrete core at midway between levels of transverse ties

reinforcement and FRP anchors is

A =(bd -4, ){1 —%)(1 —;—;J (D.3)

where s, and s, are the least of transverse hoop reinforcement and FRP anchors spacing in
x and y directions, respectively.
The confinement effectiveness coefficient, K,, for rectangular ties similar to that

defined by Mander et al. (1988) is used

Where K, = je and A =4(1-p.)
Such that A, = area of effectively confined concrete core;
A, = areaof concrete section enclosed by the CFRP wraps; and
p., = ratio of area of longitudinal reinforcement to area of concrete
section.
A,/bd

Therefore K =

=740
1—-
i)

(D.4)
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where A, = total area of longitudinal reinforcement.

In case of fibre wrapped RC columns, lateral confinement is provided by two
different materials, transverse steel ties and anchored CFRP. Moreover, it is possible for
rectangular reinforced concrete members to have different quantities of transverse

confining steel in the x and y directions. An equivalent transformed confinement content

in both directions can be estimated as:

A, 4
2, =_ix_+_£_.f_yf_ (D.5a)
sd, d f Jh
A, t
and p, = ——”—+—fy-.fl (D.5b)
sb, b f,
where A, and A, = the total area of transverse bars running in the x and y
directions, respectively (see figure D.1);
tpand 1, = CFRP design thickness in x and y directions, respectively;
Sy = design tensile strength of CFRP; and
Fon = yield strength of transverse reinforcement.

Therefore, the total lateral confining stress on the concrete (total transformed

confinement content multiplied by transverse steel yield strength) is given in the x and y

directions as:
S =P (D.6a)
Iy =Py S (D.6b)
In order to allow for the fact that A4, < A,,, it is considered that the effective lateral

confining pressure in x and y directions are:
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Ju =K. f (D.7a)
fy =K. 1, (D.7b)
To determine the confined concrete compressive strength f, a simplified

constitutive model, which is based on the “five-parameter” multi-axial failure surface
described by William and Wranke (1975) and used by Mander et al. (1988), was adopted.
Figure D.2 shows the confined strength ratio determination from the two lateral confining

stresses of rectangular sections.

Therefore fo.=K_f. (D.8)

Where K.,

1

confined strength ratio from figure D.2; and

fa unconfined concrete compressive strength.

co

Now, the shear strength from the concrete mechanism ¥, can be calculated as follows:

Vc = Kc fclc e MPa (D9)
Where K, is the displacement ductility-concrete shear resistance reduction
factor such that: K, =0.3 - o.os(fﬁf—](y -1) 20.05 (D.10)

where 4 is the displacement ductility factor.
K_is introduced to account for the reduced shear capacity from concrete mechanism

when increasing the displacement ductility level. This concept was first introduced and
verified by Priestley at al. (1991). The current formulation assumes that the rate of the
reduction in concrete shear strength is directly proportional to the confinement strength

ratio K as shown in figure D.3.



276

The shear strength from steel mechanism ¥ in x and y directions is equal to:

ASX d(.‘
v, = Al (D.11a)
S
AS bC
v, = __ng‘y_,,___ (D.11b)

The steel mechanism contribution to the shear strength is stipulated that the tie spacing 1s

less than the column’s depth.

The shear strength from axial force mechanism V), in x and y directions can be

calculated as follows:

P 7
_ 2
V=K, —22 (D.122)
P4/
_ 2
v, =K, —£2 (D.12b)

where P is the axial force on the column;
H is the column height; and
K, is a displacement ductility-axial force shear resistance reduction factor such
that: K, =1-025(u-1) 20 (D.13)
Figure D.4 shows the compression strut in a fixed-fixed column where the strut is
assumed to be the hypotenuse of a triangle with the column height is one side and half the
section depth is the other side of the triangle. The assumption of a compression zone

equal to half the column depth at the critical section was also adopted by Watanabe and

Ichinose (1991). K ,was introduced to account for the reduced contribution from the
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axial force mechanism when increasing the displacement ductility levels which results in

the reduction of the inclination —thus the contribution— of the compression strut.

Note that ¥, should be taken by half the aforementioned values for a cantilever column.
The shear strength from FRP mechanism Vpzp in x and y directions can be

calculated as follows:

Vs =2t 5 f b (D.14a)
Viar, =25 f,yd (D.14b)

Taking ¢, and f  as provided by the supplier may ignore the reduction in the

tensile capacity of FRP wraps due to the resin impregnation. Thus, it is recommended to

use the results of tensile coupon test. In this case, ¢, f,, will be equal to the force per unit

width of a coupon test with the same number of fibre layers that was used to wrap the
specimen.

Figure D.5 along with Table D.1 contain the parameters and values used to
calculate the confinement effectiveness for the three tested specimens using the
aforementioned methodology. Table 6.1 shows the calculated and measured yield and

ultimate lateral load for the three specimens.
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