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Abstract

The Analytical Class Number Formula, a classical result of Dirichlet, asserts that two
important transcendental invariants associated to a number field F', namely the first
non-zero Taylor coefficient of the Dedekind zeta-function, {r, at 0 and the regulator
of the group of units of F' differ by a rational number. Moreover, this rational number
is the quotient of two algebraic invariants of F', namely the ideal class number and the
order of the group of the roots of unity in F. The Lichtenbaum Conjecture attempts
to exhibit the same type of relation between the first non-zero Taylor coefficient of (F
at 1 —m for m > 2 and the Borel regulator in K-theory. They differ by the quotient
of the orders of the torsion parts of consecutive higher K-groups (the even K-groups
appear as generalizing the ideal class group, while the odd ones appear as generalizing
the group of units).

The study of this conjecture is done at each prime p using p-adic Chern charac-
ters from K-theory to étale cohomology and an interplay between étale cohomology
duality results and Iwasawa theory results. Using a diflerent regulator the Lichten-
baum Conjecture has been proved at all odd primes for all abelian number fields by
Kolster, Nguyen Quang Do and Fleckinger. We develop similar methods and succeed
to obtain a description of the 2-powers appearing in the formula for the case when
m is odd. We also note that a motivic context is possible for the formulation of the

Lichtenbaum Conjecture.
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Chapter 1
Introduction

The Riemann zeta-function has been in the attention of mathematicians for a long
time. In the beginning it was cleverly manipulated as a formal infinite series by Euler.

With the work of Riemann many of its properties were revealed. It is defined by
1
((s) = Z s
n>1

for all s € C, Re(s) > 1. It has a meromorphic continuation to the whole complex

plane C with a unique simple pole at s = 1 and residue

lm(s — 1)¢(s) = 1.

Moreover, there is a functional equation relating its values at s and 1 — s :

1—-s

n—%r(-;->g(s) - w—l—'&"’r( )4(1 — %)

(where I'(s) is the ['-function, a non-zero meromorphic function with simple poles at
all negative integers). The values of the zeta-function at even positive integers can
be given in terms of Bernoulli numbers (Euler), the coefficients of the power series
of z/(e” — 1) around 0. Using the functional equation we obtain the values of zeta-
function at odd negative integers in terms of Bernoulli numbers too. The values at

odd positive integers are more mysterious. Regarding their rational/irrational nature,



few facts are known: for example, we know that ((3) is irrational (Apéry) and that
there are infinitely many irrationals in the set {¢(2n +1) | n > 1}. But one has that:
22n+1

¢(1+2n)=(-1)"- @)

i 7T2n . C*(_2n)

for n > 1, where (*(—2n) denotes the first non-vanishing coefficient in the Taylor
expansion around —2n, called the special value of the zeta-function at this integer.
This is a consequence of the functional equation, and of the fact that the I'-function
has a simple pole at —n which is compensated by the simple zero of the zeta-function
at —2n.

This points out the need to study the special values of the zeta-function at non-
positive integers.

We can see easily that ¢((0) = ~—%. But the algebraic interpretation of such a
computation can be grasped only if we work over general algebraic number fields
(finite field extensions of Q). Let F be an algebraic number field having r; real
embeddings and r; pairs of complex conjugate embeddings. Let O denote the ring
of integers in F' (the ring of the roots of monic polynomials with integer coefficients
which belong to F'), and for any non-trivial ideal I of O define N(I) := |Or/I|. The
Dedekind zeta-function of F is then defined by:

1
()= Y
9= 270

with I running over all non-trivial ideals of Op. This is again convergent for Re (s) >
1, can be extended to a meromorphic function on C, and satisfies a functional equation
relating {r(s) and (#(1 — s). It also has a simple pole at s = 1 that corresponds, this

time, to a zero of order 7; + r; — 1 at s = 0. The special value (}(0) is given by:

Theorem(Analytic Class Number Formula of Dirichlet) 1.1

(r(0) = —— Rp,

Wr
where hp is the class number of F (defined as the order of the class group of F,
i.e. the group of fractional ideals of O modulo principal ideals), wp = |u(F)| (the
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number of roots of unity of F), and Rp is the Dirichlet requlator (the covolume of
the image lattice of the logarithmic embedding of O%/u(F) into the real vector space
er+r2—1).

Now the special value {(0) = —% tells us that the class group of Z is trivial, that Z
contains only 2 roots of unity (1 and —1), and that the regulator of Q is trivial.
We consider from now on the special values at 1 —n for n 2> 2. The order of

vanishing d, of (r(s) at s =1—n, determined using the functional equation, is:

¥ _{r1+r2 if n > 3is odd

T if n > 21is even.

Once the K-groups (see chapter 3) were introduced it became clear that one could
try to interpret algebraically the special values of zeta-functions at 1 —n for n > 2.

Firstly, it is known that
Ko(Or) 2 Z @ CI(F), Ki(OF) = O

Hence Dirichlet’s result can be rewritten as follows:

3 |torsz Ko(OrF)| Ry
|torsz K1(OF)] '

¢r(0) =
Moreover, by defining higher regulator maps
pn(l?) : KZn—l(OF) — Rd")

and proving that their kernels are finite, and that their images are lattices of rank dn,
Borel obtained that the rank of Kap—1(OF) is exactly the order of vanishing of (r at

1 — n. In addition, one obtains

(r(1— n)=gn- R.(F),

where R, (F) is the covolume of the image lattice of pn(F), called the Borel regulator

(see Chapter 4), and gn Is a non-zero rational number. Also, Borel proved that



K2.(OF) is finite, completing the study of the abstract structure of Quillen’s K-
groups.

Another indication of a possible generalization of Dirichlet’s result comes from the
computation of the K-theory of finite fields done by Quillen, which can be formulated

in terms of Galois cohomology too:
Kon(F,) & H*(F,,Z(n)) = 0,and

K1 (F,) = H'(Fy, Z(n)) = H°(F,,Q/Z(n)) = Z/(¢" - 1)Z.

On the other hand, the zeta-function associated to the finite field F, is

1
g]Fq(S) = 1_q__3'
Thus we obtain for n > 1 the following:
! | K2n-1(Fy )| |HY(F,y, Z(n))|

Influenced by these results, Lichtenbaum (1971) came up with a conjectural gen-

eralization of the class number formula:

Lichtenbaum Conjecture 1.2 For all n > 2 and all number fields F we have:

IK2n-—2(0F)’ .
|torSZI{zn-1(0F)|

(1 —n) = £2°. Rp

for some t € Z.

A special case was already formulated at that time:

Birch-Tate Conjecture 1.3 For a totally real field F we have

K>(OF)
CF(-—l) = i—{v—z-(—F—)—

Here for any n > 1 we denote by w,(F') the largest m such that the diagonal action

of Gal(F/F) on p®" is trivial, i.e.

m

wa(F) = |H(F,Q/Z(n))|.
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The motivation for the Birch-Tate conjecture was Tate’s proof of an analogous
formula in the function field case. The short account which follows is due to Kolster
[44]. Let X be a smooth projective connected curve over a finite field F, of charac-
teristic p. Denote by N, the number of rational points of X := X XF, F, over F,-.

We associate to X the zeta-function
o0 Tr
Zx(T) = exp(; N, - 7—)
viewed as a formal power series in Q[[T’]}, and define

(x(s) :=Zx(q™")

for all s € C. Weil proved that

A (T)
(1-T)(1-qT)

Zx(T) =

where Py(T) := [[%,(1 — o;T), g being the genus of X and the o; are the eigenvalues
of the Frobenius automorphism acting on the Jacobian variety J of X, all of them
having absolute value ¢'/2. Denote by F the function field of X. Let O be the
integral closure of F,[T] in F. It is known that

1
(x(s) = IpI‘f:‘jV—(p—)::v

where p runs over all primes in F'. To obtain an analogue of the Dedekind zeta-

function we also consider the product over only the finite primes:

1
Cop(s) =[] TN

p finite

This differs from the previous one by the product of the Euler factors at the infinite

places:

Corls) = Cx(s) - [T(1 = N(w)™).

vloo
The main tool to be used is étale cohomology, which was invented by Grothendieck

and other authors to prove the Weil Conjectures for smooth projective varieties over
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Fo. It appears also as a generalization of Galois cohomology, and we will view
Hi (X, Qu/Zy(n)) for a fixed prime [ # p as the Galois cohomology of the Galois
group of the maximal unramified extension of F. To simplify the presentation we
will assume that p; C F,, and let F,, := F(u). This way we obtain a Zr-extension
Foo/F', which means that I' := Gal(F/F') is isomorphic to Z;, and is generated by
the Frobenius automorphism . Let G, be the Galois group of the maximal abelian
unramified pro-l-extension of Fi,. It has a A-module structure, where A := Z,[[T]]
is the Iwasawa algebra. Using the Hochschild-Serre spectral sequence and Kummer

duality we obtain:
Hy(X, Qu/Zi(n)) = Hi(X,Q/Zi(n))F = Hom(Goo, Q1/Zi(n))T = Ji(n — 1),

where J; is the [-primary part of the Jacobian of X. But the order of Ji(n — DY is
equal to the order of the kernel of 1—¢"'y acting on J;, that is the [-part of P, (™).

So:

|Hey(X, Qi/Z(n))|

(1 —gr1)(1 ~g~)’

with ~, denoting the equality of the [-adic valuation of the two terms. Now, using

(x(1 —n) ~

the computations
|H (X, Q/Zu(n)| = ¢" = 1, |HE(X,Q/Zi(n))| = ¢"* — 1,
and the isomorphisms
Hey (X, Qi/Zi(n)) = HH (X, Zi(n))
for all 7 > 0, we obtain:

Theorem 1.4 Let X be a smooth projective connected curve over F,, char(F,) = p.
Then for all n > 2, and all primes | # p we have:

|HZ(X, Zi(n))|
Hy (X, Zu(n)| - |HE(X, Zo(n))|

(x(1=n)~ i|



Finally, using the exact localization sequence in étale cohomology
0 — HL(X,Q/Z(n)) — HYOr, Qi/Zi(n)) — Dujoo H(Fo, Qt/Zi(n — 1))
— HZ(X,Qi/Z(n)) — 0,
and the computations
HZ(X,Q/Zi(n)) = 0, |HE(F,, Qu/Zi(n — 1) = N(v)* ™" — 1,
we obtain:

Theorem 1.5 Let F' be a global field of characteristic p > 0. For all n > 2, and all
primes [ # p, we have:

N |HE(Or, Zi(n))|

COF(l - n) ~ wn(F)

This represents a cohomological analog of the Lichtenbaum Conjecture.

Let us refocus on the number field situation. Iwasawa’s work on Z,-extensions,
the creation of certain Z,[[T]}-modules (analogous of the previous Jacobians), whose
characteristic polynomials are closely related to p-adic L-functions via the Main Con-
jecture (proved by Wiles for p odd and any totally real field, and for p = 2 and Q)
led to important progress in the study of the Lichtenbaum Conjecture. Let

ha(F) = [ [1HE(OF, Zp(n))]-

The state of the Lichtenbaum conjecture and related results are comprised in the next

theorem (refer to the comments that follow for clarifying concepts and notations):

Theorem 1.6 (1) (Wiles [82]) Let F be a totally real number field, and n > 2 an

even integer. Then:

hu(F)
wn(F)

up to powers of 2. If F is abelian over Q, then the formula also gives the correct

(r(l—n) ==

powers of 2.



(2) (Kolster [{1]) Let E/F be a C M-extension with E an abelian number field and
n > 3 an odd integer. Let x be the non-trivial Artin character of Gal(E/F). Then:
2t
Qn wa(E)
For general C M -extensions the result holds up to powers of 2.

(3) (Kolster, Nguyen Quang Do, Fleckinger [46]) Let F be an abelian number field,
and n > 2. Then:

L(E/F’Xal'—n)::t

ha(F)
wa(F)

G-n)=1 . RE%(F)

up to powers of 2.

Statement (1) follows essentially from the work of Wiles in [82]. Note that no regula-
tors are involved, and the zeta-function does not vanish at 1 —n (n even, and F totally
real). The analogous relative situation that does not include regulators is presented
in (2). Here x is the non-trivial Artin character of Gal(E/F), and L(E/F, x, s) is the

Artin L-function. Then we have

CE(S) = CF(S) ) L(E/F7Xa'3)

For n > 1 an odd integer the order of vanishing of (r(s) and (g(s) at 1 — n is the
same, so that L(E/F, x,1 — n) must be a non-zero rational number. For n = 1 we

have the relative class number formula:

L(E/Fx,0) = 2 Lo
2 2 Q w(E) bl
where h™ = hg/hFp is the relative class number, and @ is the Q-index defined as

Q@ = [Of : OF - u(E)], and can be 1 or 2. Statement (2) takes care of odd values
n > 3. Finally, statement (3) treats the abelian case at all negative integers. It
uses a different regulator, the so-called Beilinson regulator RE(F') (see definitions
of regulators in Chapter 4). To obtain Lichtenbaum’s K-theoretical formulation, one
needs to study the p-adic Chern characters between K-theory and étale cohomology
(see Chapter 3).

In this thesis we compute the missing power of 2 for abelian number fields F' and

odd n > 3. Our main result is comprised in the following theorem (Theorem 10.12):
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Theorem 1.7 For a complex abelian number field F and n > 3 odd, we have

(p(1—n) = £2*. ————Z:((?)) - RBe(F).

Here p := pu(Uso g+ [Coop+), where F* is the mazimal real subfield of F (refer to
Chapter 10 for the presentation of the objects involved).

Note that the sign can be easily determined from the functional equation. Also, it is
believed that g = 0 for p = 2 (in the case p odd this is true - refer to Tsuji {78} and
Burns and Greither [11]). Here U, p+ is the projective limit (with respect to norms)
of unit groups U(Ft), where F%/F* is the cyclotomic Zyextension of F* and Ff
are the finite levels (r > 1). The group C,, p+ is obtained by the same construction
for the subgroups of circular units.

Using the comparison of the motivic groups with the K-groups, and the com-
parison of the motivic regulator with the Beilinson regulator, we show that one can
formulate this result in motivic terms (its 2-adic part is discussed in detail, refer to

Chapter 4). The motivic formulation provides a clean formula for real abelian fields

too (refer to Theorem 10.13).

Theorem 1.8 For an abelian number field F' and n > 3 odd, we have

(r(l—n) =£2*. gi-((% - RM(F).

Here pi := (U pt [Coop+ ), where FY is the mazimal real subfield of F.



Chapter 2
Galois and Etale cohomology

In this chapter we introduce Galois and continuous Galois cohomology, and their
generalizations étale and continuous étale cohomology. The Galois cohomology appa-
ratus would suffice for our future needs, but essential results like Poitou-Tate duality
are better formulated in the context of étale cohomology.

Given a topological group G, and a topological G-module M, let us set D'(G, M) =
{f : G** - M|f continuous}. By introducing on D*(G, M) the following differen-
tials i

(BF)(Gor- - 9et1) = S (=LY FGos- s Gor- -+ Giv)s

5=0
where g, means the omission of g,, D*(G, M) becomes a complex. We let G act on

this complex by:
(9f)(gos---+9) =9~ (g7 90, -, 97" 90),

where the dot on the right hand side represents the action of G on M. Now the
subcomplex of G-invariants C*(G, M) := D*(G, M)® is by definition the standard
complex of (continuous) cochains on G with values in M. This allows us to
define H'(G, M) := H'(C*(G, M)), the usual cohomology of the standard complex.
If Fis a field, F'**? is a separable closure of F', G = Gy := Gal(F*?/F), and M is
a continuous Gp-module with discrete topology, then H'(Gr, M) is just H'(F, M),
the classical Galois cohomology group. If M is a finitely generated Z,module
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with its p-adic topology, and M is also a continuous G-module, then we obtain the
continuous (p-adic) cohomology groups (see Tate [77]). We describe here some
properties:

(1) If G is a topological group, and
0—M-5NLp—o

is an exact sequence of continuous G-modules such that M inherits the subspace
topology, and [ has a continuous section, then there is a long exact sequence with

connecting morphisms 4,
. — HY(G, M) 22 HY(G,N) 25 HI(G, P) 25 HYY (G, M) — ...

(2) If M is a finitely generated Z,module with its p-adic topology, and G a
topological group acting continuously on M through Z,linear automorphisms, then

we have an exact sequence

0— 1<i_r_{11H""1(G, M/p" M)~ H' (G, M)— lir_nH‘(G, M/p M) — 0.

fr-—l

Here, if ... — G, ELN Grog = ... ELN (G is an inverse system of abelian groups,

and we define ¢ : ]2, Gr = 12, Gr by $((gr)r21) = (9 — Fr41(grs1))r1, then we
set

Im@G, := ker ¢, and
(_——
lim'G, := coker ¢,
—

which is the first derived functor of the projective limit. If all G, are finite or if, for

each 7, im{G,y; — G,) is independent of s for all large enough s (these are the
Mittag-Leffler conditions), then

Lm'G, = 0.
—

(3) Let M be a torsion free G-module. We tensor with M the exact sequence 0 —

Z, — Q, — Q,/Z, — 0 and we obtain the exact sequence 0 — M — V —

11



W — 0 where V is a finite dimensional Q,-vector space, M is an open compact
subgroup, and W is a discrete divisible p-primary torsion group. Let G be a compact
group. Then the kernel of the connecting morphism H'™ (G, W) N HY(G,M) is
the maximal divisible subgroup of H*~!}(G,W) and its image is the torsion subgroup
of HY(G, M).

(4) There is a continuous analog of the Hochschild-Serre spectral sequence that
provides us with a five term exact sequence. Let G be a compact topological group,
H C G a closed normal subgroup such that G — G/H has a continuous section.

For any topological G-module M, we have a five term exact sequence
0 — HY(G/H,M"—HY(G,M)—M — H*G/H,M¥)— H?*(G, M)
where M is a certain subgroup of H'(H, M)¢/H.

Remarks 2.1 A refinement of the lower cohomology groups is provided by the (mod-
ified) Tate cohomology, which we will present shortly for the discrete case: G a
finite group, M a G-module. The original reason for introducing it was to unify the

homology and cohomology theories. (We will not use the homology.) Let

N(;:M———>M,m+—>20m,

o€eG

be the norm map, and

be the augmentation map. Let I := ker(Z[G] — Z) = the Z-submodule of Z|G]
generated by the elements o — 1, 0 € G, the augmentation ideal. It is clear that

IeM C ker Ng, and imNg C MY. Consequently, Ng induces the map
N*: Ho(G,M)(= M/IcM =: Mg) — H°(G, M)(= M%).
The unifying definition of Tate is then:
H°(G, M) := cokerN* = M®/NgM, H™'(G, M) := ker N* = ker Ng/IgM,

12



fI’(G, M):= H"(G,M) forr > 1, ﬁ_r(G, M) := H, (G,M)forr > 2,

the left hand side being the homology of G with coefficients in M. If G is cyclic of
finite order, generated by o € G, then we obtain periodicity modulo 2: H (G, M) =
Hr+2(G, M) for all r € Z, and

H(G, M) = HG, M) = ker(s — 1)/imNg,

HY(G, M) = HY(G, M) = ker Ng/im(o — 1).
The Herbrand quotient is then defined as follows:

_ BG, M) _ |HYG, M)|
M) = s e ) T G, M)

and il is easy to see that it is multiplicative on short ezact sequences, and that it is 1

if M 1is finite.

Remarks 2.2 It is well known from classical Galois cohomology theory that

HO(F, Feerx) = Fx HY(F, F*?*) = 0 (Hilbert’s 90), and that

H?(F, Fse»*) = Br(F), the Brauer group of F. Also if m > 1, and m is prime to
char(F), then taking the long ezact sequence of the Kummer sequence of Galois

modules

Xm

0 — py — FP% =5 FoP% —5 0
we obtain
0 — pm(F) —» Feer* Z0 pser* —y HY(F, p) — 0,and
0 — H*(F, pi,) — Br(F) =5 Br(F).

Remarks 2.3 The important modules M we are going to deal with are: finite mod-
ules, Qp/Z,(m), and Zy(m), where m € Z. We present shortly the m-th Tate twist.
Let F be a field, and Eo, := F(ppe) (attach all p-power roots of unity). The Galois
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group G, := Gal(Ew [/ F') acts naturally on pye giving rise to the cyclotomic char-
acter p: Gy — Zj defined by (7 = ¢?9) for all 0 € Go, and all ¢ € pipee. Now, the
module
T = 1+i£_nupr

is called the Tate-module. As a Z,-module T is isomorphic to Z,, but G, acts by
t7 1= p(o) -t for 0 € G. In general, let M be a Z,-module with a (continuous)
Geo-action, represented by m — m®. Let m € Z. The m-th Tate twist M(m) of M
is defined to be the Z,~module M with the new Go-action o *(m)y z := p(0)™ - z7. For
example, pir = Z[p"Z(1), T = Zy(1), and ppo = Q,/Z,(1). Given two Z,-modules
M and N with G-actions, we make Homg (M, N) into a G -module as follows: for
f € Homz (M, N) and 0 € Go we define f7(z) := (f(m®™))?. For example, it is
not hard to see that

Homzp(M(m)7 QP/ZP) = HomZP(M') QP/ZP)(“‘m) = HomzP(M, QP/ZP(“m))

(as G -modules). On the tensor product we have a diagonal action, so that we can

define Z,(m) as:

Tem ifm>0
Zy(m) =< Z, ifm=0
Homg (T¢™,Z,) if m <0,
Generally, M(m) = M Qg, Zy(m). See below the computations of some cohomology

groups with coefficients in these modules.

We present now some of the functorial properties of the cohomology groups. Let
M be a (continuous) G-module, M" a (continuous) G'-module, and o : G' — G,
B: M — M’ two morphisms. a and  are compatible if F(a(g)z) = gf(z) for all

g € G'and z € M. In this context we obtain a morphism of complexes
D(G, M) — DG, M), [+ Bofea,
as well as homomorphisms
HY(G,M) — HY(G', M").

14



(1) Let H be a closed subgroup of G, M a (continuous) H-module, and Ind$(M) =
{¢: G — M| ¢ (continuous) map such that $(hg) = he(g) for all h € H}, the
induced G-module. The map 8 : Ind$(M) — M, B(¢) = ¢(1), and the inclusion

H < G are compatible, so we obtain homomorphisms
HYG,Ind$(M)) — HY(H, M),

which are isomorphisms by Shapiro’s Lemma.
(2) Let H be a normal closed subgroup of G and M a (continuous) G-module. Then
M¥ is a G/H-module. The projection G — G/H and the injection MY < M are

compatible. We obtain a homomorphism
inf" . HY(G/H,M") — H(G, M),

named inflation.

(3) Let H be a closed subgroup of G and M a (continuous) G-module. The inclu-
sion H < G and the identity map M 4y M are compatible. We obtain then a

homomorphism in cchomology
resy : HY(G,M) — H'(H, M),

named restriction.

(4) Let H be an open subgroup of G (closed of finite index), and S be a set of left
coset representatives for H in G, G = U,essH. Let M be a (continuous) G-module.
We define

Normgp(z) := Z ST

sES
for each « € M. This definition is independent of S, and G fixes Normg g (z). Thus

we have a homomorphism
Normg/ g : MHE — MC.
We obtain then a corestriction homomorphism
cord : HY(H,M) — H(G, M),

15



for all ¢. Namely: for any G-module M, there is a canonical homomorphism of

G-modules

¢ st)(s”l) :Ind$(M) — M.

SES

It induces naturally a map in cohomology which we can compose with the Shapiro

isomorphism to obtain corZ:

HY(H, M) = H(@G,Ind$(M)) — H(G, M).

Let X be a scheme, and X the (small) étale site on X. A presheaf P of abelian
groups on Xg is a contravariant functor P : X, —> Ab (Ab is the category of
abelian groups), and all presheaves form an abelian category P(Xs) which has enough
injectives. The sheaves on X, i. e. presheaves with sections determined by local
data, form a full subcategory denoted S(X¢). Grothendieck proved that the natural
functor ¢ : S(X&) — P(Xe) has a left adjoint a : P(Xg) — S(Xe). This implies
that S(X«) is an abelian category with generators and has enough injectives. This
allows us to define for a sheaf § € S(X¢) the group H. (X, S) := R'I(X,S) called
the i-th étale cohomology group of X with coeflicients in S, where I'(X,-) :
S{(Xe¢) —> Ab is the section functor and R’ denotes the i-th right derived functor.

Remarks 2.4 (1) Let X be a scheme, and G, x a sheaf on X¢ defined by G x (Y —
X) := (Y, Oy)*, the group of units of the ring of sections of the structure sheaf Oy,
for all Y — X in Xg. If d is an integer invertible in T'(X,Ox), t.e. X is a scheme

over Z[1/d], we have the Kummer ezact sequence of étale sheaves
0 — pax — Gm,x 2 Gx — 0,
where wq x is the kernel of the multiplication by d. Then:
H(X, Gm,x ) = Pic(X),

where Pic(X) is the group of isomorphism classes of locally free, rank one Ox-modules
(see Hartshorne [31]).
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(2) We will be interested mostly in affine schemes X = Spec(0%). Here OF is the
ring of S-integers in the number field F', where S is the union of the set of places of
F which are above the rational prime p and the set of the real infinite places of F'. In
this case we denote Hy(Spec(O0%), —) by H;(OF,—), or even H*(03,—). We have:

H{(07,Gn) = OF =i UE,
the group of units of O%. Also, as seen in (1), we have:
H}(OF,Gn) = CL(OF),

the S-ideal class group of F'. Taking the long ezact sequence of the Kummer sequence

just presented, we obtain the exact sequence:
0— Ug/pu — Hét(of?a/‘p") - p"C1(OIS?) — 0,

where pyv is the group of p”-th roots of unity regarded as a sheaf in the étale topology,
Z.[p*Z(1) := ppw. Passing to the injective limit (the étale cohomology commutes with

it), we obtain:
0— U; ® Qp/Zp(l) — Hét(C’)SF, Qp/Zp(l)) — pCl(OIS;) — 0.

This is one hint that étale cohomology plays an important role in the study af algebraic
number fields. Some of these results hold for any commutative ring R: HL(R,Gn) =
Pic(R), and HZ(R,Gn) = Br(R), where the Picard group is defined in terms of rank
one projective R-modules, and the Brauer group in terms of Azumaya R-algebras (see
Milne [57]). If F is a field then by Hilbert’s Theorem 90, Pic(F) = H(F,Gy) = 0.

Moreover, using the same Kummer sequence one obtains:
HY(R,Z/p"Z(1)) = pp(R), HL(R,Z/p"Z(1)) = R* » tor,Pic(R),
HZ(R,Z/p"Z(1)) = Pic(R)/p” x tors,Br(R)

(semidirect products).
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As mentioned earlier, étale cohomology generalizes Galois cohomology. Let F' be
a field, X = Spec(F'), and fix a separable algebraic closure F**? with Galois group
Gr = Gal(F*?/F). In other words, we choose a geometric point Z — X = Spec(F**?)
and set G = m1(X,Z) (see Milne [57]). For P € P(X.,), we define the stalk at z by

Pi- = II_IBP(SPGC(I{))a

with the direct limit running over all fields K, [K : F] < co. P; is a discrete Gp-

module via 0* : Spec(F'7) — Spec(F'), 0 € Gp. On the other hand, given a discrete
Gr-module M, we define

Syt Xer — Ab, (Y = X) v Homg (H(Y), M)

where H : FinE't/X — Gp-Sets is the functor defined by H(Y) := Homy(z,Y),
and FinEt /X is the category of étale schemes of finite type over X. Then Sy is in fact
a sheaf (Milne [57]), and the correspondence we just defined induces an equivalence

of categories S(X¢) ~ Gp-Mod. Since I'(X,S) = SEF we obtain
H;,(Spec(F), S) & H'(F, Ss)

for1 >0, and S € S(Xa).

The continuous étale cohomology theory of Jannsen [35] brings better context
and tools (for example, spectral sequences). For a scheme X, S(X,;) is an abelian
category with enough injectives, and hence the same is true for the category of inverse
systems S(Xe¢)Y. Then for (S,, ¢) € S(X&)V, and i > 0, we set H' (X, (Sy, éa)) 1=
RTN(X,(Sn, ¢n)), where PN(X, —) is induced by I'(X, —). If p is invertible in X, and
S = (Sp) is an p-adic sheaf (for example, Z,), then for : > 0 the i-th continuous
étale cohomology group of X with coeflicients in S is defined by:

1
H cont

(X,8) := H(X,(5w)).

In this thesis we use the description of étale cohomology in terms of Galois co-

homology. Let F' be a number field, p be a rational prime, and let O3 be the ring
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of S-integers of F', where S is the set of all primes above p and all infinite primes.
Let Gs(F) denote the Galois group of the maximal algebraic extension of F' that is
unramified outside S. Then we have the identification (Milne [57]):

Hy, (Spec(OF), w3 = H*(Gs(F), u5")

(Gs(F) acts diagonally on u3"). We will drop Spec from the notation when there
is no danger of confusion. Because the Mittag-Leffler conditions are satisfied we will

have:
H;,(Spec(OF), Zy(n)) = lim H;,(Spec(OF), ugh) = lim H*(Gs(F), p3").
Also, naturally:
H;,(Spec(OF), Qu/Zy(n)) = lim H,(Spec(OF), ug") = lim H*(Gs(F), 157
A very important tool in étale cohomology is the localization sequence:

Theorem(Soulé [72]) 2.5 Let R be a Dedekind domain, F = Quot(R) be its quo-

tient field, p be a prime number invertible in R, and i a positive integer. Then:

Hgt(Ra N®i) = Hgt(F, :u?’})»

pV
and there is a long exzact sequence:
0 — HAL(R,uZ) = HY(F,p2) — ®,HS (k(F,), u8 )
e Hfl:t(Rﬁ M?”I) - H}:t(F‘) ,LL;?:) - @vH}:t“l(Kl(Fv), H?l/(i_l))
= HiP (R, uZ) — ...

(here k(F,) is the residue field at the place v of F).

Also, if E/F is a Galois extension of number fields, G = Gal(E/F), for M an étale
coefficient sheaf on 0% (for example: Zy(n)), we have a first quadrant Hochschild-

Serre spectral sequence
Ey* = H*(G, H'(Og, M)) = H"(OF, M),
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and for M a discrete coefficient sheaf (for example: Q,/Z,(n)) such that cd(G, M) <

oo (see Kahn [38]), we have a second quadrant Tate spectral sequence:
E;*" = H,(G, H'(03,M)) = H™"*(03, M),

These are very useful in the study of descent and codescent for number fields. We

mention here only one result to be used in chapter 10 (see Kolster [43]) for the prime

p=2.

Proposition 2.6 Let E/F be a Galois 2-eztension, A = Gal(E/F), and n > 2 an
integer. Then:

Hyy(Og, Za(n))* = Hy(OF, Zy(n)).

Our first concrete example is the computation of H°(F,Q,/Z,(n)) for a prime p,

and a field . Let us introduce the number
w{P)(F) := max {p” | Gal(F'(ppv )/ F) has exponent dividing n}.

If there is no maximum, then wgp)(F) = p*°, and Z/p®Z := Q,/Z,. Note also that
for each n we have w®)(F) = w{P(F). '

-1

Proposition 2.7
HO(F, Qp/Zy(n)) = Z/wf’bp)(F)Z'

Proof: (2" is invariant under ¢ € Gal(F/F) when ¢"(,» = (. This means that
¢&" is invariant under all of Gal(F'/F) exactly when the group Gal(F(u,)/F) has

exponent n.l]

Proposition 2.8 Let p =2, F a field with char(F) # 2, let a be the mazimal positive
integer such that pze C F({4), and let n be an integer, and b be the mazimal power of
2 dividing n. Then we have:

(1) If (4 € F, then wD (F) = 20+t

(2) If (4 & F and n is odd, then w,(lz)(F) = 2.
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(8) If (s & F, F is non-exceptional (i.e. (35— (oi € F for some j > 3), and n is even,
then w (F) = 29+b=1,
(4) If {4 & F, F is exceptional, and n is even, then w? (F) = 20+,

We note that if F' is a totally real field, then w,(f)(F) = ws—,,Z)(F(Cz;)) for an even n.

Proposition 2.9 Let p be an odd prime, F be a field, d := [F(pap) : F), a be the
mazimal positive integer such that pye C F((op), but ppetr € F((2p) and let n be an

integer, and b be the mazimal power of p dividing n. Then:

wP(F) = 1 1f n £ 0modd
p**t ifn =0 modd.

The following facts are known about the finitely generated p-adic étale cohomology
groups for rings of integers in number fields F' (due to Soulé [72]):
(1) H*(Op,Zy(n)) = 0 for n € Z\ {0} (see Lemma 9.1).
(2) For i > 3 and p odd : H'(Op,Z,(n)) = 0.
(3) Fori >3:

0 for i1+ n odd

Hi OF7Z n)) =
( 2( )) { (Z/QZ)TI(F) for 1/ + n even.

The central tools in our computations are the local and global Poitou-Tate duali-
ties. The main reference for this subject is Neukirch, Schmidt, Wingberg [61].

Let K be a p-local field (a finite field extension of Q,), Gk = Gal(K/K), where
K is a fixed algebraic closure of K. Since cd(Gk) = 2, there is a dualizing module
of Gk, namely, u(K) = p. Let M be a finite Gx-module. Then H'(K, M) is finite
for any ¢. Let M’ denote Hom(M, p) or Hom(M,G,,). Gk acts on M’ according to:
(96)(z) := g($(¢g7'2)), g € Gk, p € M', z € M. We have for example: Z/I"Z(n) =
ZIZ(1 —n), Q/ZAn) = Z(1 —n), Zi(n) = Qi/Z(1 — n), where | is a rational
prime. The pairing M x M’ — u induces a pairing

Hi(K,M) x H(K,M'") — H*K,M) = Q/Z.
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Theorem (Poitou-Tate local duality) 2.10 Let K be a p-local field, and M a
finite coefficient module. Then for all i the pairing defined above

H(K, M) x H= (K, M) — Q/Z.

is a perfect pairing of finite groups, functorial in K and M. In particular, H'(K, M) =
0 forie Z\ {0,1,2}.

Corollary 2.11 Let K be a p-local field. Each H'(K,Q;/Z/n)) is a discrete torsion
group, each H'(K,Z{n)) is a profinite group, and there is a perfect pairing

H{(K,Q/Zyn)) x H* (K, Z(1 — n)) — Q/Z

for all i and n. In particular, H'(K,Q;/Z)(n)) = 0 and H'(K,Zin)) = 0 for all
1 € Z \ {0,1,2}. Also, H2(1{,Q1/Zz(1)) = QI/Zl and Hz(K, Q[/Z[(n)) =0 fO’I‘ all
n # 1.

If K is a local field, then H*(K, M) = Hi(K, M) for 1 > 1. For i = 0 the same is

true only if K is non-archimedean. In the archimedean case we have:

HO(R, M) = H°(Gal(C/R), M) = M®TR)/(1 4+ J)M, and H°(C, M) = 0.
For p = 2 the following is known:
Proposition 2.12 (1) (Q2/Zo(n)-coefficients) For n € Z we have

for n even

R 0
HYR,Q./Z =
(R, Q2/Zy(n)) { Z[2Z for n odd, and

HYR,Z/2Z) = 7./2Z.
Also, fori > 1 and n € Z we have

0 for 14+ n even

H' (R, Qz/Zo(n)) =
(R, Q2/Zs(n)) {Z/ZZ for i 4 n odd, and

H{(R,Z/2Z) = Z./2Z.
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If K is a 2-local field, then H'(K,Qq/Zs(n)) is the Portryagin dual of a finitely
generated Zy-module for all i and n. Forn € Z\ {0,1} we have

Z/wg)(K)Z fori=20
H (K, Qu/Zo(n)) 2§ (Qu/Z2) & ZJw\(K)Z  fori=1
0 otherw:ise.

(2) (Zo(n)-coefficients) For n even we have
HO(R, Zy(n)) = Z./27.

For n odd we have
HO(R, Zsy(n)) = 0.

For K a 2-local field, and n € Z \ {0} we have
H°(K,Zy(n)) = 0.
Proof: Refer to Rognes, Weibel [66].00

Remark 2.13 For p odd, and K a p-local field we will be using only the fact
H2(K’ Qp/Zy(n)) =0

for alln € Z\ {1}. The cohomology for archimedean local fields plays no role in this

case.

Now, let F' be a number field with r; real embeddings and ry pairs of complex
embeddings, [F : Q] = r; + 2ry, and OF the ring of S-integers in F', where S is the
set of all finite primes of F' above p and of all infinite primes of I'. For each place v
of F let F, denote the v-completion of F, and x(F,) the residue field at v. By local
duality, we have:

Hi(F,, M) = H*(F,, M")
for all i, and M, M = Q,/Z,(n) or M = Zy(n). Let

B0, M) : H (O3, M) — ®uesH (F,, M)
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be the sum of the homomorphisms induced by the completion maps
O = F = F,

for all v € S. Let also
71:(01541'5 M) : @vesfli(Fm M) 2 Hg_i(og‘a M’)#

be the direct sum of the local Poitou-Tate duality isomorphisms composed with the
Pontryagin dual of the map §27¢(O%, M").
Definition 2.14

I'(OF, M) := ker B(OF, M).

When 1 = 1 this is the Tate-Shafarevich group.

Theorem (Poitou-Tate global duality) 2.15 There is a natural perfect pairing
[IF(OF, M) x |IP(OF, M) —» Q/Z

fori=1,2 and for M finite, M = Q,/Zy(n) or M = Z,(n).
These groups are finite when M is finite, discrete torsion when M = Q,/Z,(n),
and profinite when M = Z,(n).

There is also a natural 9-term eract sequence
0 B8, M) B P __H(F, M) L HYOF, MY
s B, 1 Yo gi(S anF
- 007, M) = D, _H'(F,, M) 5 H'(OF, M)

- B (05, M) 5 @D HA(Foy M) % goo8, M 0.

Hence for each 1 = 0,1,2, H'(O%, M) is finite when M is finite, discrete torsion when
M = Q,/Z,(n), and profinite when M = Z,(n).

Moreover, in certain situations the Tate’s 9-term exact sequence breaks up into an

exact 6-term sequence and a short exact sequence, as the following theorem proves.
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Theorem([7], [66]) 2.16 Let F' be a number field, and n > 2 (or F a totally real
number field, and n < —1 odd). Then: m2(0fp,Qp/Zp(n)) =0, so 84 0%,Q,/Z4(n))
is injective, and vH(O%, Qp/Z,(n)) is surjective.

For p = 2, Rognes and Weibel proved also the following facts about the structure
of lower cohomology groups (in [66]).

Proposition 2.17 Let p = 2. The group H(O3%,Q,/Zs(n)) is the Pontryagin dual
of a finitely generated Zy-module, and H'(O%F, Zy(n)) is a finitely generated Zy-module
for any i and n. Forn > 2 the groups HY(O3, Qy/Zs(n)) = Z /wiP(F) and
H?*(0%,Zy(n)) are finite, and

HY (07, Zy(n)) 2 L& 2w (F),

H' (0%, Q2/Zs(n)) = (Q2/ L) & H*(OF, Za(n)),

where v = 19 if n is even, and r =7y + 15 if n is odd.
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Chapter 3

Background in Algebraic K-theory.

Etale Chern characters.

The "classical” K-theory (refer to [59]) introduced three important functors whose
relations with algebraic number theory were fruitful from the beginning.

Let A be an associative ring with unity (we will be interested only in commutative
rings), and let P(A) denote the category of finitely generated projective A-modules.
The Grothendieck group Ky(A) is defined as the quotient F/R, where F := the
free abelian group on the isomorphism classes of projective modules in P(A), and R :=
the subgroup generated by the elements [P + @] — [P] — (@], for all P, @ € P(A)).
For a local ring A, Ko(A) = Z, and for a Dedekind domain A, Ko(A) &£ Z & CI(A),
where Cl{A) is the ideal class group of A (i.e. the group of isomorphism classes of
invertible ideals). Particularly, for the ring of algebraic integers O in a number field
F,

Ko(Op) 2 Z & Cl(Op).

Next, K1(A) is defined as GL(A)®, the abelianization of GL(A), where GL(A) :=
U.GL.(A), the embeddings being GL,.(A) « GL,+1(A),

M 0
M .
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Of course, one can see it as Hi(GL(A),Z). More important, it turns out that the
commutator subgroup of GL({A) is exactly the subgroup of elementary matrices
E(A) := U,E.(A), where E,.(A) is generated by the matrices e};(A), the matrices
whose only non-trivial off-diagonal entry is A in the (i, j)th position, 1 < ¢ # j <7,
X € A, and whose diagonal entries are 1. For a commutative ring A, the determinant
gives a surjection GL{A) — A* split by GL{(A) — GL(A). Let SL(A) be the group
of matrices of determinant 1. One can prove that the commutator subgroup of SL(A)
is exactly E(A), and that the group SK;(A) := SL(A)* = SL(A)/E(A) sits in the
following split exact sequence: 0 — SK;(A) — K;(A) - A* — 0. If A is a local
ring, then SK;(A) = 0. The same is true for the ring of algebraic integers Op in a

number field F,
SKi(OF)=0

(this is a profound result of Bass, Milnor, and Serre).

In order to define the last ”classical” K-group, we need to introduce the Steinberg
group, St(A). The r-th Steinberg group St.(A) is defined as the quotient of the free
group on symbols z7;(A) for 1 < i # j < r, and for all A € A, modulo the normal
subgroup generated by the words:

(1) z5;(A) - af;(p) - 2 (A + p) ™t forall 4, 7, and A, p € A

(2) [z;(A), e for s #£ Lk # j,and all \,p € A

(3) [27;(A), 2 ()] - 2l (Ap) ™ for i # k, for all A\, p € A
(the brackets signify the commutator operator). There are natural homomorphisms
St.(A) ~ St.;1(A), and natural surjections ¢, : St.(A) — E,.(A), given by
¢-(z5;(A)) = ef;(A), because for the elementary generators e[;()) the previous ex-
pressions are all equal to unity. Passing to the injective limit we obtain the sur-
jection ¢ : St(A) — E(A), and we define K3(A) := ker¢. It turns out that
Ko(A) = Hy(E(A),Z) (in fact, even more is true, namely the extension 0 — K3(A) —
St(A) — E(A) — 0 is a universal central extension - see Milnor [59]). It is much more
difficult to understand this group. Nevertheless, if F' is a field there is a presentation

of Ky(F) as the free abelian group on the symbols {a,b} with a,b € F subject to the
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relations

{a1a3,b} = {a1,b}{a,,b} for all a;,ay,b € F*

{a,b} = {b,a}™* for all a,b € F*

{a,1—a}=1foralla€ F* a#1
(important result due to Matsumoto). There are many homomorphisms from K,(F)
to different groups arising in the theory of fields with valuations (the tame symbol),
fields containing roots of unity (the Galois symbol), local fields (the norm-residue

symbol). Also, Matsumoto’s result led to the definition of the Milnor K-groups,
K;M(F) =F®/ <u; ®... 0 us|u; + uigy = 1 for some s > .

See below their relation with Galois cohomology groups.

The work of Quillen [62] introduced the higher analogs of classical K-groups,
improved the understanding of their functorial properties, and allowed the creation
of very interesting conjectures. The topological and categorical background necessary
for presenting these theories can be found in Srinivas [76], as well as complete proofs
of many results stated below.

Let BGL(A) be the classifying space of GL(A), i.e the connected space - all spaces
considered are CW-complexes - with m(BGL(A)) & GL(A), n.(BGL(A)) = 0 for
all » > 2, unique up to homotopy equivalence. Applying Quillen’s plus construction
to the pair (BGL(A), E(A)) (E(A) is a perfect normal subgroup of m;(BGL(A)) =
G L(A)), which consists in attaching 2-cells and 3-cells to BGL(A), we obtain a space
BGL(A)* and an inclusion i : BGL(A) — BGL(A)* such that

(1) i, : m(BGL(A)) - m(BGL(A)T) is the natural quotient map GL(A) —
GL(A)*® = GL(A)/E(A), and

(2) for any local coefficient system L on BGL(A)™,

in : H.(BGL(A),i*L) — H,(BGL(A)*, L)

is an isomorphism for all » > 0.

These properties characterize BGL(A)* up to homotopy equivalence. Quillen then
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defined the higher K-groups as follows:
K.(A) := n.(BGL(A)"), forr > 1.
Of course, we have Hurewicz homomorphisms:
K.(A) = n.(BGL(A)") - H.(BGL(A)*,Z) = H,(BGL(A),Z), forr > 1.

Let F(A) be the homotopy fiber of BGL(A) < BGL(A)* . For a continuous map
of pointed spaces f : (X,z0) — (Y, yo), the homotopy fiber F is the set of all pairs
(z,w) where z € X and w : [0,1] = Y is a path with w(0) = f(z) and w(1) = yo -

this construction does not depend on the base points. There is a long exact sequence
coe = (F) = (X)) = 1 (Y) = mni(F) — .

The study of F(A) provides a proof for the fact that the lower Quillen K-groups are
isomorphic with the classical ones, and, moreover, that K5(A) = H3(St(A),Z).
There is a natural H-space structure on BGL(A)" (i.e. there is a composition law

on it that satisfies the group axioms up to homotopy), induced by the direct sum

M 0
(M,N)H( . N>'

This allowed Loday [54] to define natural products
K.(A) ® K (A) = Kr15(A)

for all r,s > 1, with explicit definitions for the case r = s = 1. (Moreover, Milnor and
Moore proved that the Hurewicz maps are injective up to torsion, and that the Q-
space K, (A)®zQ C H.(BGL(A),Q) = H,(GL(A),Q) is identified with the subspace
of primitive elements for the comultiplication of the natural Hopf algebra structure
on H.(GL(A),Q).)

Let f: A — B be a homomorphism of commutative rings. This induces immedi-

ately a natural homomorphism of groups f* : K.(A) — K,.(B). If we suppose that
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B is a free A-module of rank d, then the isomorphisms GL,(B) & GL,4(A) induce
maps BGL(B)* — BGL(A)*, and then the norm (also called trace) homomorphisms
N : K.(B) = K,.(A) for all r > 1. For r = 1, we obtain the natural norm B* — AX.
The construction extends to r = 0 too. The homomorphism f* is multiplicative, ie.
f(zy) = f(z)f*(y) for z € K,(A), and y € K,(A). We have also the projection
formula: N(zf*(y)) = N(z)y for z € K,(B), and y € K,(A). We can deduce from
here that the composition N o f* is exactly the multiplication by d in K,(A), r > 0.

The introduction of K-theory with coefficients by Browder [12] has enriched con-
siderably the perspectives. Generally, if X is a connected H-space and g is an integer,

q 2 2, we denote by X/q the homotopy fibre of the multiplication by g on X, and we
define:

(X, Z[qZ) := m,_1(X/q), for r > 3.

As mentioned before, we obtain then a long exact sequence
oo (X)) B (X)) = 1 (X,Z/qZ) — T (X) 2.
Also, we have natural mod ¢ Hurewicz homomorphisms:
hy : 7 (X,Z/qZ) — H.(X,Z/qZ).

For r > 2 we set
K.(A,Z/qZ) := n,(BGL(A)*, Z/qZ),

and we have short exact sequences
0— K.(A)/q = K.(A,Z/qZ) — K,_,(A)(q) — 0.
Moreover, we have a product structure:
K AA,Z/qZ)® K(A,Z/qZ) — K,1(A,Z/qZ),r,s > 2

(if ¢ is a power of 2, there are two different product structures, and if ¢ is odd, the

product structure is unique).

30



If p is a prime number, using reduction homomorphisms we then define:

K.(A,Zy) :=lim K,(A,Z[p'Z).

7

If A is the ring of integers of a number field, then we have:
K.(A,Z,) = K, (A) ® Zy

as K,(A) is finitely generated in this case (see below the results of Borel, and refer
to Soulé [75}).

Let us present shortly the second definition of K-theory given by Quillen. Let C
be a small exact category. Quillen defines a new category Q)C which has the same
objects as C, but a morphism X — Y in QC is defined as an isomorphism class of
diagrams

x&zly
where 7 is an admissible monomorphism in C, i.e. there is an exact sequence 0 —
Z5Y Y —0inC,and j is an admissible epimorphism in C, i.e. there is an
exact sequence 0 — X' —7 3 X = 0in C. Then for all r 2> 0 we define:

K. (C) = m11(BQC, {0}).

(refer to [76] for the definition of the classifying space of a small category). Now, if
A is a commutative ring, and P(A) is the category of finitely generated projective A-
modules, it turns out that K,.(P(A)) & n.(BGL(A)*) for all » > 1. Also, this version
allows the definition of K-theory of schemes. If X is an arbitrary scheme, let P(X)
be the category of locally free sheaves of finite rank. We define K,.(X) := K.(P(X)).
Of course, if X = Spec(A) then we have a natural equivalence of categories P(X) ~
P(A).

The following facts are known (refer to [76] for proofs):

(Resolution Theorem) Let M be an exact category, P C M a full additive sub-
category, closed under extensions in M, and assume that

(1)if0 > M = M - M" —0isexactin Mand M',M" € P, then M € P
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(2) for any object M € M, there is a finite resolution 0 — P, — Pai—> ... P —
M — 0, with P; € P.

Then BQP — BQM is a homotopy equivalence, and hence K,(P) = K. (M) for all
r.

(Dévissage Theorem) Let A be an abelian category, B a full abelian subcategory
that is closed under taking subobjects, quotients and finite products in A. Let us
assume that each object M € A has a finite filtration in 4,0 = My C My C ... C
M, = M with M;/M;_, € B for all 1 > 1.

Then B@B — BQA is a homotopy equivalence, and hence K, (B) K. (A) for all r.

(Localization Theorem) Let A be an abelian category, B a full abelian subcategory
that is closed under taking subobjects, quotients and extensions in A (so-called Serre

subcategory), and let C be the quotient abelian category .A/B. Then there is a long

exact sequence
oo = Kq(C) = Ko (B) = K (A) = K. (C)... = Ko(A) = Ko(C) — 0.

A direct application of the Localization Theorem and Resolution Theorem is the

following result:

Theorem 3.1 Let A be a Dedekind domain with quotient field Q(A) = F. There is

a long exact sequence

coo = K1 (F) = On K (A/m) = K (A) = K (F)... = Kyo(A) — Ko(F) =0
where m runs over the mazimal ideals of A.

Proof: Let M(A) be the category of finitely generated A-modules, and T(A)
its full subcategory of torsion A-modules. Then M(A)/T(A) is equivalent to the
category P(F) of finite dimensional F-vector spaces. Also, since A is a Dedekind
domain, any M € M(A) has projective dimension over A < 1. Therefore, using the
Resolution Theorem, we obtain K,(M(A)) & K,(P(A)) = K,(A). Finally, note that
{A/m | m maximal in A} is a set of representatives for the isomorphism classes of

simple objects in 7(A). Because K, commutes with finite products and filtered direct
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limits, it suffices to consider only the case when A is a discrete valuation ring. Then
M +— Homg4)(A/m, M) is an equivalence of T(A) with P(Endy4)(A/m)). This
proves that for a Dedekind ring K,(7(A)) & ®mK,(A/m). Our sequence is provided
now directly by the Localization Theorem.[]

The complete computation of K-theory of finite fields was done by Quillen in [62]:

Theorem 3.2 IfF, is the field with g elements, then
Ko(F,)=Z,
Kon(Fy) =0,
Kom-1(F,) 2 Z/(¢™ - D)Z form > 1.

Let F be an algebraic number field, and OF its ring of integers. In [63] Quillen
proved that

K, (Or) is finitely generated for all » > 0.

Applying Theorems 3.1 and 3.2 we obtain:
Kom-1(OF) & Koy (F) for all m > 2
(Soulé [74]), and the fact that
0 = Kom(OF) = Kom(F) = OmKam-1(5(Fg)) = 0

Is an exact sequence for all m > 1 (k(F,) denotes as usual the residue field of F at

m). For m =1 we obtain the kernel of the above mentioned tame symbol A:
0~ K3(OF) = Ky(F) S @nkK)(5(Fa)) = 0

where the tame symbol A is given component-wise by :

?

Am - I\’g(F) -3 ]{1(K(Fm)) = K(Fm)x

vm (v)

Am({y,v}) = (=1)vm@wm) . L22 mod m. This is why K3(OF) is called the tame

v

kernel. Its properties have very interesting arithmetic implications.
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Another application of the localization sequence is that
Kom-1(O3) ® Zp = Koy (OF) @ Z, for all m > 2,

where p is a prime number and S is a finite set of primes of F containing all infinite

and p-adic primes.

Moreover, Borel [7] proved that K;,(Op) is finite for all m > 1. Borel also

computed the rank of K-groups:

ro(F) if m is even

ra,nkZKZm-I((’)F) ==
ri(F) 4+ ro(F) if mis odd

for all m > 2. Dirichlet’s Theorem gives us the rank of K1(Or) & O}
rankz K (Op) = ri(F) + ro( F) — 1.

For finite fields we note that K-theory groups are equal to the Galois cohomology
groups:

Kom(F,) = H*(F,,Z(m)) = 0, and
Kom-1(Fy) = H'(Fy, Z(m)) = H(F,,Q/Z(m)) = Z/(q™ ~ 1)Z.

This is one of the computations that suggested the close relation between K -groups
and étale cohomology groups. We will present here Soulé’s construction of étale Chern
classes and characters. For general constructions of Chern characters from K-theory
to various cohomology theories Gillet’s article [25], and Schneider’s survey article [65]
should be consulted.

Let p be a prime number, F' an algebraic number field, S a finite set of primes of
F containing all infinite and p-adic primes, and A := Of the ring of S integers in F.

Let P be a finitely generated projective A-module having bounded rank over all
residue fields «(F, )}, and p : G — Aut(P) a representation of a discrete group G over
P. In [29] Grothendieck defined the Chern classes

ch.(p) € HY (A, G;Z/p"Z)
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for all r > 0, v > 1, where on the right side we have the étale equivariant co-
homology with trivial G-action on A. Among the properties of these classes we
mention their functoriality, i.e. if f is a compatible system of morphisms, then
ch-(f*(p)) = f*(ch.(p)), and their additivity, i.e. if 0 = P, =+ P, = P3 = 0 is
an exact sequence of A[G]-modules as above, and py, p2, p3 the corresponding repre-

sentations, then ch.(p2) = ch.(p1) U ch,.(ps) (we are using here the cup product on

the étale equivariant cohomology).

We apply this construction to the canonical representation of the general lin-
ear group over A, id, : GL,(A) — Aut(A"), for every n > 1. We obtain classes
ch,(id,) € H¥(A,GL,(A);Z[/p"Z(r)), and it turns out that the system (ch,(id,)),
is well behaved with respect to the natural inclusions j, : GL,(A) — GLp41(A),
namely ji(ch,(id,)) = chy(idn41). This allows us to pass to the injective limit and
to obtain classes ch,(id) € HZ (A, GL(A); Z/p*Z(r)). On the other hand, Kiinneth

formula induces a map
HE (A, GL(A); Z/p"Z(r)) — &= Hom( Har(GL(A), Z/p"Z), H} (A, Z[p"2(r))),
which in turn gives the maps
ch;(id) : Ho_;(GL(A),Z/p"Z) — Hi(A,Z/p"Z(r))

for 0 < 5 < 2r. Composing this map with the mod p” Hurewicz map hp», we obtain

functorial homomorphisms, called étale Chern characters
chjr : Kor_j (O3, Z/p"Z) — HL,(OF,Z/p"Z(r))

for r > 1, 7 = 1,2. Passing to the projective limit we obtain the morphisms:

Chg‘j;) ; I{2r—j(0f«“aZp) - Hgt((f)}s;,Zp(r))
forr>1,73=1,2.
Theorem(Soulé [72], Dwyer-Friedlander [20]) 3.3 The étale Chern characters

chfy, : Kam-3(OF,2;) = Hi(OF, Zy(m))

are surjective for odd primesp, m>1, 7 =1,2,2m -5 > 1.
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This is an essential step in the study of the Quillen-Lichtenbaum Conjecture
which predicts that for odd primes p these maps are isomorphisms. For 2m — 7 < 3
this is true, as a consequence of the work of Merkurjev and Suslin [55], [56] on K,
and K3 of fields. For higher K-groups Kahn [38] has shown that these maps are in
fact canonically split.

As an important immediate consequence of the previous result and Borel’s compu-
tations in {7] we obtain new information about the structure of the étale cohomology

groups Hgt(Ofp, Zy(m)) for = 1,2 and m > 2.

Corollary 3.4 The group HZ(O%,Z,(m)) is finite and trivial for almost all primes
p.

ro( F) if m is even

r1(F) +ro(F) if misodd > 2.

Also, Hé(ofw Qp/Zy(m)) = Hézt(Fv Qp/Zy(m)) =0 for m > 2.

rankg (O3, 7 (m) = {

A profound impact on Quillen-Lichtenbaum Conjectures has the Kato Conjec-

ture which asserts that the Galois symbols
9nq : KN(F)/q — H(F,Z/qZ(n))

for g prime to the characteristic of F' are isomorphisms. For q = 2 the conjecture is
called Milnor Conjecture, because it appeared in relation with Milnor’s work on
quadratic forms. This conjecture is true for ¢ = 2 and for global fields by the work
of Tate [77] who described K3 in terms of continuous Galois cohomology, and by the
work of Bass and Tate [3] who proved that KM(F) = (Z/2Z)\F). 1t is true also
for n = 2 and any field F', by the work of Merkurjev and Suslin [55]. Voevodsky
[80} proved the complete Milnor Conjecture for arbitrary fields of characteristic 0, by
using motivic (co)homologies. Finally, what is relevant for us is the fact that if for
an odd prime p Kato Conjecture holds for all ¢ = p* and all fields of characteristic
zero, then the Quillen-Lichtenbaum Conjectures hold for the prime p (refer to [44]
and [66]).
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For the prime 2 we have the following result obtained separately by Rognes and
Weibel in [66], and by Kahn in [39]:

Theorem 3.5 For j = 1,2 and 2m — j > 2 the 2-adic Chern character
b)) : Kom-j(0F) ® Ly — Hi(OF, Zy(m))

is an isomorphism if 2m — 7 = 0,1,2,7 mod 8,

surjective with kernel = (Z/2Z)"™F) if 2m — j = 3 mod 8,

injective with cokernel = (Z/2Z)"*F) if 2m — j = 6 mod 8.

In the case m = 3 mod 4, there is an exact sequence

0 — Kom 1(0F) @ Zy = HL(OF, Za(m)) — (Z/22)P)

— Kom—2(03) ® Zy — HZ(O%,Za(m)) — 0.

The map HL(O3F, Zy(m)) — (Z/2Z)1(F) is called the signature map. The kernel
of this map can be interpreted as a subgroup of a totally positive étale cohomology
group (refer to [15]). The order 2°F of the cokernel of this map is called the signature
defect.

Let

hn(F) = [T 1HE(OF, Zo(m))|, KR (F) := |HE(OF, Zy(m)))], and

wn(F) = [ 1HO(F, Qp/Zp(m))|, wE(F) := |H(F,Qp/Zy(m))].

Corollary 3.6 The 2-powers in the factorization of the K-theory groups are:
W (F) if m =0,1 mod4or F is totally complex
[tors Kom-1(F)| ~2 ¢ 2F)w, (F) if m =2 mod 4
3'12(—Fl~21 if m =3 mod4andr(F)>0
and
hm(F) if m =0,1mod 4 or F is totally complex
[ Kam_2(O3) ~2 ¢ 271 Ep (F) if m =2 mod 4
257 b (F) if m =3 mod4andri(F)>0.
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Corollary 3.7 The 2-adic Chern character induces an injection:
chiy : Komer(F) @ L Hi(OF, Zo(m)),

where ”~ denotes the torsion-free part of the corresponding finitely generated abelian
groups. We also have: [HL(O3%,Zy(m)) : Kom_1(F) ® Z4 is equal to 1 if m =

0,1,2 mod 4 or F is totally complex, and it is equal to 27'(F)=1-%%  otherwise.

Proof: Indeed, from the previous theorem the case m = 0,1,2 mod 4 or F is
totally complex is clear. We are using here the following fact: If A is a subgroup of an
abelian group B and A and B have equal finite ranks, then [B : A] = [B : A-tors B].
Let us suppose now that ry(F) > 0 and m = 3 mod 4. Then tors H},(O%, Zy(m)) =
pa2, Kom—1(F) ® Zy is torsion free and it is the kernel of the signature map. This gives
us: [HL(OF,Zo(m)) : Kom_1(F) @ Z) = 21 (F)-4r-1
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Chapter 4

Higher regulators for algebraic

number fields

Let F' be an algebraic number field, let O be its ring of integers and denote X =
Spec(F).
We show here the construction (following Neukirch [65]) of a canonical homomor-

phism, called the Borel n-th regulator map,
pr : Kon1(OF) = [R(n — 1)* (O],

which is defined for each n > 1, where R(n — 1) = (271)" 'R, X(C) = Hom(F,C)
(on which complex conjugation, J or ~, acts naturally, + meaning as usual the fixed
points under J).

We start with the following homomorphism:
rnt Kone1(C) = R(n—1).
For n =1, K;(C) = C, ry is in fact the map given by
ry 2 C° = R, r(z) = log|z|.

For n > 2 the construction of the map r, is based on three essential facts (refer to

Rapoport [65]):
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(1) There is a canonical map (Hurewicz map):
K,(C) = my( BGL*(C)) — H,(BGL*(C)) = H,(GL(C),Z)
(2) There is a canonical pairing;
HYGL(CT),R(n — 1)) x Hy(GL(C),Z) <3 R(n— 1).
(3) There are the "Borel regulator elements” in the continuous cohomology of the
topological group GL(C) with coefficients in R(n — 1), invariant under the involution
induced by complex conjugation on GL(C) and R(n — 1):
ban-1 € HI* 1 (GL(C),R(n — 1)).
(These elements allow one to see H*(GL(C),R(n — 1)) as the free exterior algebra
generated by the classes (#i—)ﬁbgn_l of degree 2n — 1 - see Rapoport [65] for details.)

Their images under the canonical maps
H Y GL(C),R(n — 1)) » H™ YGL(C),R(n — 1)),
denoted also by by,_1, are then used to define r, as the following composite of maps
Kon1(C) — Hy 1 (GL(C), Z) <23 R(n — 1).

The map r, is called Borel regulator map.

Having dealt with the field 0f> complex numbers, we can address the general case
of number fields by using embeddings. Namely, each complex embedding o : F — C
induces, due to functoriality reasons, a map o, : Kz,-1(F) — Kj,_1(C). So we obtain

a homomorphism
Kan1(F) = K3n1(©) 9,0 5 (04)ex(0»
functorial in F'. Next we consider the following composition of maps:
Kan_1(F) — Kpu i (C)F© 2 R(n— 1)XO,

Because it acts on X(C), on K,,_1(C), and on R(n — 1), complex conjugation acts
also on the last two groups in the previous sequence. Moreover, r, is compatible with

these actions.
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Definition 4.1 The Borel n-th regulator map, p,, is defined as the composite
pr : Kan-1(OF) = Kon1(F) = [R(n — 1)X(Q]+,

where the first homomorphism comes from the K-theory functoriality, and the second

has just been presented.

The basic properties about these regulator maps are:

Theorem 4.2 (1)(Dirichlet’s Unit Theorem)

For n = 1, the map p; induces an isomorphism
(K1(OF) ® Z) @ R = [R¥O]*,

where 7 is embedded diagonally in RX(O,

(2) (Borel) For n > 2 we have:
(2.1) ker p,, is finite, equal to torszKon_1(OF).
(2.2) im p,, is a lattice in R(n — 1)*©,

(2.8) The map p, induces an isomorphism
Kan-1(OF) @ R 2 [R(n — 1)* O,

(2.4) The covolume R, = R.(F) of the lattice im p,,, called the Borel regulator,

satisfies
(3(1 —=n) =R, (mod Q).

Next we give the definition of the Beilinson regulator map. In order to do this,
we need the definitions of absolute cohomology and Deligne cohomology. Following
closely Schneider’s survey [65], we present them for a general smooth projective variety
X over Q.

In the context of Quillen’s plus construction one can define Adams operations

{¢*}x>1 on the groups K;(A) on any affine scheme Spec(A), A a commutative ring.

These operations induce the following decomposition:
Ki(A) ® Q = @nz0K”(A)
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where

Ka'(n)(A) ={z€ K;(A)@Q| ¢ (z)=r"zforallr > 1}.

Quillen [64] and Jouanolou [37] generalized this decomposition to the K-groups of a
smooth projective variety X. The absolute cohomology of X is then defined by

HY(X,Q(n)) == Ky (X).

2n—1

Let us prepare now the necessary context for defining the Deligne cohomology.
The de Rham cohomology H}r(X(C)) is the cohomology of the complex of sheaves

of holomorphic differential forms
Q OX(C) S 502

on X(C) and the de Rham filtration F'"H}p is induced by the naive filtration of this

complex:
FPHLR(X(0)) = im(H'(Qy,) = H'(Q)),

where the right hand side is derived from the first arrow of the natural short exact

sequence of complexes
Qs, — O — Q,
where
05, 0 —» Q= Qrtt ..
Q:0x0g = ... 5050 o
O, :Oxg 2> = ... =0
Recall that we have the Hodge decomposition on the singular cohomology

H{(X(C),C) as follows:

H(X(),C)= & "™

p+g=1,p,420

The complex conjugation on X(C) induces a C-linear involution Jo, on H*(X(C),C)

and we have Jo(H??) = H%. Moreover, there is a canonical isomorphism between
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singular cohomology and de Rham cohomology:
H'(X(C),C) = Hpp(X(C)).

The de Rham filtration defined previously is related to the Hodge decomposition as

follows:

FPH,Ha(X(0) = €D H™".
P29
From the existence of the Hodge decomposition we know that the hypercohomol-

ogy spectral sequence H(X(C),¥) = Hi2(X(C)) degenerates, so that the map
H(Q,) — H*(2) is injective and we have that H(Q ) = Hpp(X(C))/F?.
Now, we define the real Deligne cohomology H%(X¢, R(p)) of X¢ as the coho-

mology of the following complex
R(p)D : R(p) - Ox(c) — 0t - Qp—l - 0’

where the first arrow is the inclusion R(p) := (2n+/—1)’R C C C Ox(q. From the

following short exact sequence of complexes
0— Q-1 = R{p)p = R(p) = 0
we obtain the long exact cohomology sequence
... = H(X(O),R(p)) = Hpp(X(C))/F* - Hi (X, R(p)) =
— HY(X(C),R(p)) = ...
On the singular cohémology we have a real structure, namely
H(X(C),R) ®: C = H'(X(C),C)

given by the R-linear involution ~ on the right hand side which is induced by the
complex conjugation on the coeflicients. Also, on the analytic de Rham cohomology

we have a real structure
Hpp(Xr) ®& C = Hpr(X(0))
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defined by GAGA, the algebraic de Rham cohomology Hiz(Xg) of Xg. The DR-
conjugation acting on the right hand side is induced by the complex conjugation on
(X(C), ). Because (by Deligne [17], Prop. 1.4) HP? = H%, the de Rham filtration is
defined over R, and under the canonical identification H5 (X (C)) = H*(X(C),C) the
DR-conjugation corresponds to J,,, we are led to define the real Deligne cohomology

of Xg as follows
H'iD(XRa R(p)) = H}D(Xc’ R(p))DR—conj,
the subspace of elements invariant under the DR-conjugation.

Note that for p > dimX, as
C=R(p-1)®R(p),
we obtain the following computation:
Hp(Xg,R(p)) = H(X(C),C/R(p))*

= H(X(C),R(p— 1))t = [R(p— 1)* O},

the + meaning fixed elements under complex conjugation.

Note also that the complex R(n)p on Spec(C) reduces for n > 0 to degrees 0
and 1, R(rn) — C, and via the projection m,—; : C - R(n — 1) it is isomorphic to
R(n — 1)[—1]. We obtain the following computation:

Rn—-1) ¢g=1
0 qg# 1.
Let us turn to the main subject. The Beilinson construction is based on the

existence of the n-th Chern class ¢, € HF(B.GLy,Q(n)) (see Esnault, Viehweg
[5]) which in turn defines an element ¢, € HZ(B.GLy,R(n)). Consider also the

H%(SpecC,R(n)) = {

evaluation morphism of simplicial schemes

e: SpecC x B.GLN(C) — B.GLn
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(on the left side the simplicial set B.GLn(C) is viewed as a scheme, namely disjoint
union of points). Finally, using Kiinneth formula (the coefficient system R(n) is a

R-vector space), we obtain:
e*(cn) € HY(SpecC x B.GLNn(C),R(n))

>~ H1(SpecC,R(n)) ® H** (B.GLn(C),R)
&' g*-1(B.GLN(C),R(n — 1)) = H*» Y(GLy(C),R(n — 1))

s

The element produced is invariant under both actions of Gal(C/R) on the discrete
group GLn(C) and on R(n —1). The construction is compatible with increasing N

which is taken large enough. It is also known that
H* Y (GLN(C),R(n — 1)) = Hom(Hz,-1(GLN(C),Z),R(n — 1)).
Using again the Hurewicz map we obtain the following composite:

1{2,,1..1(@) = Wzn_l(BGL(C)+) -~ Hzn_1(GL(C),Z)
-+ R(n—1) = Hp(SpecC,R(n)). (4.1)

One last computation shows that, writing

Xc=SpecFQC= H C,
o:F—=C

we obtain:

HL(Xg,R(n)) = [ @ H;,(Spec(C,lR(n))}+
a:F=C

Definition 4.3 The Beilinson n-th regulator map, denoted pB%, is defined as

n )

the composite of maps
pECi . I(?n—-l(OF) - I\"Zn—l(C)X(C) - H'ID(XR’R(n))’

the latter map having each component the map (4.1). We then define the Beilinson

regulator, RP¢ as the covolume of the lattice pB*(K,,_,(Or)).

n
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The relation between the two regulator maps and the corresponding regulators is

expressed in the next result (refer to Rapoport’s article in [65] and Burgos Gil [14}):

Theorem 4.4 (1) The Borel regulator map is equal to 2 times the Beilinson regulator
map. |

(2) The functorial properties of both regulators are the same, and they differ by a
power of 2. '

Remark 4.5 (1) We note first that, based on the localization sequence and on the
fact that the higher even K-groups of a finite field are finite, we have for n > 1:

Kon-1(Or) @ Q = K 1 (F) 9 Q

(in fact, the two groups are isomorphic without the tensoring by Q as we saw earlier.)
We also saw that for n > 1 the homomorphism p, ® Q is injective, defining a Q-
structure on H5(Xr,R(n)) and that the covolume of its image is equal (modulo Q)
to (5(1 —n). Beilinson’s conjecture predicts the analogous facts for Hy(X,Q(n)).
(2) From the compatibility of the Chern character (equal to the regulator up to some

constant in Q% ) with the Adams operations, the preceding observation implies:
Kon1(F) ® Q = Hy(X,Q(n)).

In this final part we introduce a new regulator using motivic cohomology.

Let Hi (F,Z(n)) denote Voevodsky’s motivic cohomology groups for SpecF" (refer
to [80] for the complicated machinery behind their definition - we will be using only
important properties of them). They are related to the algebraic K-theory groups of
F via the following motivic version of the third-quadrant Bloch-Lichtenbaum spectral

sequence (refer to (8], [38]):
E3' = H ' (F,Z(—t)) = K_o—i(F), s,t <0,

We have:
rank H},(F,Z(n)) = rank K,,_;(F),
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as Kahn [38] and Voevodsky [80] have shown that
Hj(F,Z(n)) ® Zy = Hy(F,Zo(n))

and we then use Theorem 3.5. Moreover, for a finite Galois extension of number fields,

E/F, such that the Galois group G is a 2-group (in particular, a C M-extension), we

have Galois descent:
H),(E,Z(n))° & Hy,(F,Z(n)).

Indeed, the kernel and the cokernel of the map
Hiu(F,Z(n)) — Hi(E,Z(n))°

are annihilated by |G|. As |G| is a 2-power, we can detect them by tensoring with
Z,. But, using Kahn’s result, we obtain the corresponding map in étale cohomology
where it is known that the Galois descent holds (refer to chapter 2). Finally, the
2-torsion of H},(F,Z(n)) is the 2-torsion of H(O%,Zy(n)), whose order is w (F)
(refer to chapter 2).

Much less it is known about H2(O%,Z(n)). Nevertheless, we will define it here

as follows:

H(03,Z II (0%, Zy(n))

and its order will be h,(F'), where
ha(F) H |HZ(OF, Zg(n))].

Thus, in our Lichtenbaum formulas, we can think of A,(F") and w,(F') as orders

of motivic cohomology groups.

Definition 4.6 We define for n > 2 the n** motivic regulator R} (F) of F' as the
covolume of the lattice pB<(H},(F,Z(n)).

Let E/F be a CM-extension of number fields and let n > 3 be odd. Then, as
we have just seen, Hy(F,Z(n)) and H},(E,Z(n)) have the same rank r,(F), and
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H}(F,Z(n)) injects into Hi,(E,Z(n)). Let us denote by A the torsion free quotient
Af/tors A of an abelian group A. Kolster defines in [43] the higher Q-indices in terms
of étale cohomology groups (2-adically):

Qn = [Hi(E, Zo(n)) : Hi(F,Zso(n))).
These @-indices have the following motivic interpretation:
Proposition 4.7 Let E/F be a C M -extension of number fields and n > 3 odd. Then
Qn = [H)(E,Z(n)) : Hi(F,Z(n))].
Proof: We have the following equality of finite indices:
[H3(B,Z(n)) : H)(F, Z(n))] = (Hj(E, Z(n)) : Hi,(F,Z(n))- tors Hy,(E, Z(n))].

Let o be a generator of G := Gal(E/F'), and let z € H},(E,Z(n)). Then z/z7 is
torsion, as H)(E,Z(n))¢ = H},(F,Z(n)) has finite index in H}(E,Z(n)). Also,
zz? belongs to H,(F,Z(n)). We obtain:

2? = 227 - (z/2°) € H),(F,Z(n))- tors Hy((E, Z(n)).

Hence the index [H},(E,Z(n)) : H. (F,Z(n))] can be computed by tesoring with Z,

as it is 1 or 2. It follows:
(B, Z(n)) + Hjg(F, Z(n))] = [H3g(E, Z(n)) © Za : Hiy(F, Z(n)) ® Z4]
= [Hi(E, Zy(n)) : HY(F,Zs(n))] = Q.0
In the same context, we can compare the motivic regulators of F' and E.

Proposition 4.8 Let E/F be a C M -extension of number fields and let n > 3 be odd.
Letry = [F : Q|. Then:




Also,
Rfei(E) 25F+1

RE<(F)  Qa

if n = 1 mod4, and _
RJ(E) 2
RE(F) — Qn

if n = 3mod4.
Proof: It is enough to prove that:
Pus(H(F, Z(n))) = 2 - RY(F).

Once we have this, using the previous result we obtain:

RM(E) _ Pus(HME Z(n) _ pals(Hu(F,2(n)))/@n _ 20

RY(F) RM(F) RM(F) = o
The functorial properties of the regulator maps imply the following commutative
diagram:
Kon1(E)®Q i [R(n — 1)Hom(E:0)+
4 !

M

Kp 1 (F)®Q 25 [R(n— 1)Hom(FO+

The first vertical arrow is the trace in K-theory, Trg/r, and the second vertical
arrow is defined as follows: for each pair (0,5) of conjugate complex embeddings
of £ in C the corresponding component (R(n — 1),R(n — 1))* is mapped to the
component R(n—1} corresponding to o|r via (z, z) > 2z. It follows that the covolume
of pMy(H}(F,Z(n))) is equal to the covolume of pAR(2H},(F,Z(n))), that is 2 -
RM(F). For the Beilinson regulators one considers the analogous index in K-theory
and uses theorem 3.7.0J

We would like to compare the Beilinson regulator and the motivic regulator.
We have seen that 2-adically we can compare the two types of cohomology groups

and the K-groups. Unfortunately, a direct map between the integral K-groups and

49



the integral motivic groups it is not known, unless one assumes that the Beilinson-
Soulé Conjecture, Hi(F,Z(n)) = 0 for all i < 0 and all n > 1, is valid. If this is

true, then there is an edge morphism in the Bloch-Lichtenbaum spectral sequence
Kon_1(F) — H,(F,Z(n)).
Assuming that the Beilinson-Soulé Conjecture holds for F, then for all n > 2:
R7%(F) = BY\(F)
if n=0,1,2 mod 4 or F is totally complex, and

Ry%(F) =217 . RA(F),

otherwise (JF is the signature defect introduced in chapter 3) .
The existence of this motivic regulator and the conjectural relation between mo-

tivic cohomology groups and K-groups suggest a motivic formulation of the Lichten-

baum Conjecture.
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Chapter 5

Class field theory for abelian pro-p

extensions of number fields

In order to deal with abelian pro-p extensions of number fields Jaulent (refer to [36])
introduced the p-adification of classical class field theory. For any number field F' we
denote by F'®® the maximal abelian extension of F' and by F' (?) the maximal abelian
pro-p extension of F.

We start with the local case. Let F be an l-adic local field (i.e. a finite extension

of ;). There is a map, the local Artin map,
F* — Gal(F*/F)

which is injective, but not surjective. Let 7, = 11 o Lq denote the completion of Z with
respect to the subgroup topology. The pro-finite completion of F* is

lim F*/H = Z x U,
H

where H ranges over a cofinal sequence of open, subgroups of finite index, and Ur
denotes as usual the unit group of F. The local Artin map extends to a topological
isomorphism

7 x Up = Gal(F®/F).
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Now, let ' := F* @ Z, denote the p-adic completion of F'. Restricting the previous

isomorphism to p-primary parts we obtain the following topological isomorphism

F = Gal(F® /).

A

Denote also Up := Up ® Z,. This is equal to Up;, the group of principal units, if
| = p, and is equal to u(F)(p), if | # p. Under this isomorphism Uz is mapped onto
the inertia group Tr. In particular, we note that the inertia group T’ is finite when
[ # p.

Moreover, the closed subgroups of F' are precisely the norm groups N, L/F(i,) of
abelian subextensions L/F of F()/F (here, Ny, #(L) denotes the intersection of all
norm groups N E/F(E') with E/F running through the finite subextensions of L/F').

We obtain the following canonical isomorphisms
F/Npp(L) = Gal(L/F), and

Ur/Nyyp(Up) = T(L/F),
where T'(L/F) is the inertia subgroup of Gal(L/F).

Because F'* is a finitely generated abelian group if F' is an [-adic local field, we

have

FUmF*[(F*)".

n

This is why we are defining

F= lg_an/(Fx)pn, and

n

”

0 F = F
for F = R or F = C. These groups are trivial except in the situation p = 2 and
F = R when they are equal to Z/2Z.

We continue with the global case. Now, let F' be a finite extension of Q and v a

finite or infinite prime of F'. Let F, and Uy, denote the completion of F' at v and the

local units of F,, respectively. If v is infinite, we put Up, := FX. Let Jp denote the
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idéle group of F and CF the idéle class group of F. The global Artin map provides
a topological epimorphism

Jr — Gal(F*/F),

factoring through Cr. The kernel of the induced map Cr — Gal(F ab/F') - called the
subgroup of universal norms of Cr - is the connected component of the identity of CF,
which in turn is the maximal divisible subgroup of Cr ( see Artin-Tate [2], Chap 14,
Prop. 10). The p-adification Jr of Jg is defined as the restricted topological product
of all F, with respect to the local units U r,. Because the kernel of the natural map
Jr — Jr vanishes under the Artin map (it is the maximal p-divisible subgroup of

Jr), we obtain a continuous epimorphism
Jp — Gal(F®)/F).
Put
Fri= F* @ %, im F*/(F*)".
It is known that
FXJ(F*P" — [T ES ()
has kernel of exponent 2, so that it vanishes in the projective limit. The natural map
F —_ jp

is injective, and continuous, and F is closed in Jp. This allows us to define

the p-adification of the idéle class group Cr. Since the passage from Jr to Jr elimi-

nates the p-divisible part of Jr, we obtain a topological isomorphism
Cr = Gal(F?)[F).

Moreover, the class field theory of abelian pro-p extensions of F' can be described as

follows: There is a one-to-one correspondence between closed subgroups of Cr and
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abelian pro-p extensions of F'. If L/F is an abelian pro-p extension of F', then there

are canonical isomorphisms
Jr/Niyr(JL)F = Cp/Nyp(CL) = Gal(L/F),

Ur, [Nyyp(JL)F N Up, 2 T,(L/F), and

E,/Np(JL)F N B, = D(L/F),
where T,(L/F) is the inertia subgroup and D,(L/F) is the decomposition subgroup
of Gal(L/F) at the prime v.

We are ready now to study Galois groups of important abelian pro-p extensions
of a number field F'.

Let S be a finite set of primes of F' (it could contain both finite and infinite
primes). Let S, be the set of finite primes of F' above p, and S,, the set of infinite

primes of F'.

Let Mg(F) denote the maximal abelian S-ramified pro-p extension of F (that
is, the maximal abelian pro-p extension, which is unramified outside primes in 5).
Let Hs(F') be the Hilbert S-class field of F', that is the maximal abelian unramified

p-extension of F' in which all primes in S decompose (so-called S-decomposed). We

have then:

Proposition 5.1 There are canonical four term ezact sequences

U — [[ Ur, — Gal(Ms(F)/F) — Gal(H(F)/F) — 0, and
vES

Uf — [[ £v — Gal(Ms(F)/F) — Gal(Hs(F)/F) — 0.

vES

Proof: Class field theory provides us with the following canonical isomorphisms

Jr/ ] Ur. - F = Gal(Ms(F)/F),

vgS

Jp/ [[ Uk, - F = Gal(H(F)/F), and
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Je/ [1 £ - 1] U, - F = Gal(Hs(F)/F).

vES vgS
By taking quotients we obtain

Gal(Ms(F)/H(F) = HUR FIT] Ok - F 2] 0r/(]0r)n (10 - #)

vgS vES veES vgS
= coker(Up — H Ur,)
vES

and

Cal(Ms(F)/Hs(F) = [ /(] &) 0 (J] U, - F) 2 coker(UF — [I#)D

veS vES vgS veS

Definition 5.2 The kernel ker(Up — oes, Ug,) is called the Leopoldt kernel. It

is a free Z-module.

Leopoldt conjectured that this kernel is trivial. Brumer [13] proved this assertion in

the following abelian cases:

Theorem(Leopoldt’s Conjecture) 5.3 If F is abelian over Q or Q(v—d), d > 0,
then the Leopoldt kernel is trivial.

Remark 5.4 A simple diagram chase on the sequences of Proposition 5.1 shows that
ker(Tr = Tloes Ur,) = ker(U$ — Hoes F,)). This gives us an alternative description
of the Leopoldt kernel, namely, ker(UF — Hues ). So, they are both trivial if F

is abelian. Also, in the abelian case, we have that ker(Ur — [oes,us., Ur,) is trivial.

Remark 5.5 The group Gal(Ms(F)/F) is a finitely generated Z,-module, because
the groups of local units are finitely generated and the Hilbert class field is a finite
extension of F. Moreover, from Proposition 5.1 and the finiteness of Hilbert fields,

we obtain

rkz,Gal(Ms(F)/F) = (ri(F) + 2ry(F)) — (ri(F) + ro(F) -1 = ép) = 1 + ro(F) — ép.

This is also the number of independent Z,-extensions of F' (see next chapter).
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Chapter 6

Iwasawa theory of number fields.

Galois groups as A-modules.

Definition 6.1 Let p be a prime number, and let F' be a number field or a completion

of a number field at one of its places. An extension F[F is called a Z~extension

if Gal(Foo/F) 2 Z,,,.

Using the bijective correspondence between the closed subgroups of Z,, namely 0,
p"Z, for all » > 0, and finite normal subextensions of F,/F, we obtain a unique

tower

Fg:chFlchc...cFm:—UFr

r>0
such that [F, : F] = p" and Gal(F,/F) = Z/p"Z. The most important example of a
Zextension of F is the cyclotomic Z -extension of F. It is defined as the unique
Z-extension of F' inside Eoo = |J,5q Er, where E; := F(Cyr+s), corresponding to the
subgroup of the Galois group Gal(Es/F) =2 Zp x A (A = Gal(Fo/F) is finite) that
is isomorphic to Z,. Here 6 =0 if pisodd,and § =1if p=2.

We summarize now the ramification properties of Z,-extensions of number fields.
Let F be a number field. Let S, be the set of primes of F' above p. For a Z,-extension
of F, F,/F, there is at least one prime which ramifies in Foo/F. Also, Fio/F is p-

ramified, i.e. it is unramified at all primes not belonging to S,, and thereisan e > 0
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such that each ramified prime in F /F, is totally ramified. Moreover, if F,,/F is the
cyclotomic Zg-extension, then all primes in S, are ramified in F/F. We put R as
the only Z ,-extension of R.

For a number field or a completion of it, F', and a Zextension of F, F/F,
consider an abelian pro-p-extension of F,,, say K, such that K. /F is still Galois
and denote G := Gal{K./F). The study of the Galois group X := Gal(K/Fs) is
of great importance (especially when some ramification restrictions apply to K ). It
acquires immediately a Gal(F,/F)-module structure, because of the exact sequence
of Z,modules 0 - X — G — I' = 0, where from now on I' & Gal(F,/ F') denotes a
multiplicative version of Z,, with a fixed topological generator y. Namely, for z € X
we define the action of 4 as follows: z” := 231, where 7 is a lift of v to G. The
action is well defined because X is abelian.

We introduce now important facts from the theory of compact I'-modules or, more

accurately, compact A-modules, where A is defined below.
Definition 6.2 The Iwasawa algebra of I', denoted Z,[[I']], is defined as follows:
Z,[[I]] := lim Z,[T/T""].

Let o, = (1 +T) —1, r > 1, and wg = T. Note that w4y = (w, +1)? — 1. It is
easily proved that the map v mod I'*" ~ 1+ T mod (w,) provides an isomorphism

Z,T/T?"] & Z,[T]/(w,) compatible with the projective limits. Thus we obtain the

following description of the Iwasawa-algebra
Z,|[T]] = Lim Z,[T]/(wr)-

On the other hand, we have the ring of formal power series A := Z,[[T]], which
is a noetherian local Krull domain, with Krull dimension 2. The lattice of prime
ideals consists (0), (p), (p,T) and all prime ideals (P(T")) with P(T') irreducible and
distinguished (i.e. a monic polynomial having all other coefficients divisible by p).
Moreover, for this ring one has an Euclidean Algorithm (given f = ¥ oja;T" € A

such that p|a;, for0 <:<n—1, pt a,, and g € A, there is a unique presentation
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g =gq-f+r, where ¢ € A, and r € Z,[T], deg r < n — 1), and a Weierstrass
Preparation Theorem (given f = Y o) a;T* € A such that p | a;, for 0 <1 < n—1,
p1 an, it has a unique presentation f(T) = P(T)-U(T) where P(T) is a distinguished
polynomial of degree n, and U(T) € A%, i.e. it is an invertible power series; a general
f can by presented uniquely as f(T) = p* - P(T")- U(T), where y > 0).

Using the Euclidean Algorithm we obtain a well-defined morphism of rings A —
Z,|T)/(wy), which is surjective because A is complete with respect to the (p, T')-adic
topology, and it is injective because of the Krull Intersection theorem: N5 (p, T)" =

0. We are ready to conclude that
Z,|[T]] = A.

The structure of compact A-modules is known up to pseudo-isomorphisms. Gen-
erally, let R be a noetherian Krull domain and M a compact A-module. M is called
pseudo-null if M, = (0) for all p prime with height(p) < 1 (let us denote by Spec'(R)
the set of these primes). In the case R = A this amounts to M being finite. A mor-
phism of R-modules f: M — N is called pseudo-isomorphism if ker f and cokerf
are pseudo-null. The notation is M ~ N. For R = A the kernel and cokernel should

be finite. The relation ” ~ ” is an equivalence relation on R-torsion modules.

Theorem(the structure of A-modules) 6.3 Let M be a finitely generated A-module.
Then there are integers d > 0, m > 0 and n; > 1, 1 < ¢ < m, such that

M~ A P A/}
1=x1
where p; € Spec'(A). The integers d, m, n; and the prime ideals p; are unique up to

a permutation of indices.

This theorem allows us to associate to M the following invariants:

Definition 6.4 Let M be a finitely generated A-module. Suppose that

M NAd@éA/p?‘-

=1
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(1) A -modules of the form
E(d;pyr,- -, pm) = A% @ €D A/p}
1=1

are called elementary A -modules.
(2) The divisor of M is defined as

div(M) = div(E(d; g}, -+, pr) o= D naps.
i=1

(3)The product of ideals [~ pi* is called the characteristic ideal of M and any
generator of it, say G(T), is called a characteristic power series of M. Moreover,
using the Weierstrass Preparation Theorem, we have uniquely G(T) = p* - F(T) -
U(T), where F(T) is a distinguished polynomial and U(T) € A*. The polynomial
p*-F(T) is called the characteristic polynomial of M and it is denoted by char(M).
The exponent u is called the p-invariant of M, and A\ = deg F(T) is called the \-

invariant of M.
The following results are proved by Iwasawa in [34].

Lemma 6.5 Let M be a finitely generated A-torsion module. Then the following
assertions are equivalent:
(a) MT is finite.
(b) Mr is finite.
(c) char(M)(0) # 0.
If any of these is true, then we have:
I

] = leBer(M)(O)] =y

If we replace Z, by the integral closure of Z, in a finite extension of Qy, the previous
result remains true as do most of the results in Iwasawa theory.

Regarding A-rank and A-freeness of a A-module, we have:
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Lemma 6.6 Let M be a finitely generated A-module. We have:

(1) tkaM = rkg M — rkg , MT.

(2) If M" = 0 and My is Z,-torsion free, then M is a free A-module and tkyM =
rkz , Mp.

Lemma 6.7 Let 0 - M — N — P — 0 be an ezact sequence of finitely generated
A-modules. We have:

(1) If N is a free A-module and P is Z,-torsion free, then M is a free A-module.
(2) If P is a free A-module and M is Z,-torsion free, then N is a free A-module.

Another important characteristic of finitely generated A-torsion modules is the
asymptotic behavior of the orders of the groups of coinvariants Mpy» which can be
thought as the quotients M/w, M. Let us denote Ungm i= Wwp Jwy, for all m > n > 0,

and §, i= vy forn>1, & i=wy =T.

Theorem(Iwasawa [34]) 6.8 Let M be a finitely generated A-torsion module with
Twasewa invariants p and X.

(a) There exists ng, such that M/v,, , M is finite for all n > n,.

(8) If no is chosen as in (a), then for some constant v depending only on M we

have

M [Vno M| = p*P" 27+ for ol n > 0.

Corollary 6.9 (a) Let E be a non-trivial elementary A-torsion module, and let us
assume that the Zy-torsion in E/w,E is bounded independent of n. Then E =
@iy A/ (&n;)- In particular, Efw,E is Z,-torsion free for large n.

(b) Let M be a finitely generated A-module such that it is fired by [7™° for some
ne > 0. Then M ~ &!_ A/(£)).

The next result is crucial for our computations in chapter 10. It is a generalization
of Lemma 5.3 in [46].
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Lemma 6.10 Let F../F be an arbitrary Z ,-extension with Galois group T', and let
0A=+MBNBo0O

be an exact sequence of A-modules, such that char(M)(T) = h(T')- char(N)(T'), where
h(T) € Z[T), h(0) # 0. Let fi : M" — N* and fo : My — Nr be the induced maps
in cohomology.

If any of the four groups A*, Ar, BY, Br is finite, the same is valid for the kernels
and cokernels of f, and f, and we have

|ker(f1)] __:p-u,,(h(o))_ ker(f2)|
|coker(f1)] |coker(f2)|

Proof: We have immediately that:
char(A)(T) = char(B)(T) - h(T).

It follows that the finiteness of the groups A", Ar, BY, Br are equivalent statements,

and, if they are finite, their Herbrant quotients are related as follows:

AT BT o,
|Ar| | Br|

Taking kernels and cokernels along the following natural diagram:

0 - (M) - N' - BY - (¥), - Nr - Br = 0

Ta T fi 18 T f2
MY = MT My = Mr
we obtain:
ker(e)] 1 |ker(fo)] _ [ker(fi)]  |ker(B)] 1

[coker(a)| BT |coker(f)|  |coker(f1)| |coker(8)] Br-
But ker(a) = AT , the short sequence

0 — coker(a) — Ar — ker(8) — 0

is exact, and coker(3) = 0. The result is now immediate.]
We go back now to our Galois groups. Two of these Galois groups are defined as

follows:
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Definition 6.11 Let F be a number field and let S be a finite set of primes of F.
We denote by L3  the maximal abelian, unramified and S-decomposed (.e.
all primes lying above primes in S are totally decomposed) pro-p-extension of F,
and we set X3 p = Gal(LS /F.) (the extension LS ¢/ F is Galois because of the
mazimality). Because the infinite primes are automatically decomposed in unramified
extensions, they play no role in the previous definition. If § = , then the indez S
is dropped from the notation. We use also the notation X;O,F when S = S, the set
of all primes of F above p. Next, if S = SpU S, i.e. the union of the set of all
primes above p and the set of all infinite primes, we denote by M., r the maximal
abelian S-ramified pro-p-extension of F.,, and we set Koo, F 1= Gal(Meo,r/ Fo).
When S = Sy, we denote the corresponding objects M{foF and Xi’F (this is relevant

only in the case p=2). X is called the standard Iwasawa module.

Let us focus on X7 5, where S is a finite set of primes. Let H # be the maximal
unramified S-decomposed p-extension of F,. (so-called Hilbert S-class field of F.). Let
A, denote the p-Sylow subgroup of the S-ideal class group of F,.. By class field theory
we have Gal(Hp, /F,) A%, and these isomorphisms are compatible with restriction

maps and norms. From here we can obtain another description of X OSO F, Damely
S ~ Y S
Xoo,F - l{_l_I_nAFr’
and we see that X fo r is a finitely generated A-torsion module. Moreover, we have
Ay, = Gal(HE [ F) = X2 /v, Y5 5

for all » > ng, where ng is chosen such that all ramified primes in Fy,/F,, are

totally ramified (it exists for any Z,-extension), and VS pi= Gal(Lfo,F/Hﬁno Fy). The
s
first isomorphism is defined by the Artin symbol [2] — ({{ﬂ%i), and the inverse
of the second one is given by restriction. It follows that the isomorphism Af =
S
X5 plVnor Y3 o is given by [%] = zmod Vnow Yo i Where Ty = (E%—/ﬁ) The

isomorphisms are compatible with norms and projections, and with inclusions and
multiplications by v,,. Observing that Y3 . ~ X5 ., because their quotient is A;@no,
hence finite, and applying Theorem 6.8 we obtain:
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Theorem 6.12 Let ps = u(X3 p) and s = MXZ ) be the Jwasawa invariants of

XOSO’F. Then there is a constant vs, such that for r > 0,
|AZ, | = proPHromvs,
This shows among other things that in order to have ug = 0 it is necessarily and

sufficient to have ranky, Af, bounded independent of r. It is known much more in the

abelian case:

Theorem(Ferrero-Washington) 6.13 Let F' be an abelian number field, and let 5
be a finite set of primes. Then ps = 0.

Moreover, Greenberg conjectured that for a real abelian field X, fo 7 is even finite, i.e.
As = 0.

An approximation of A-structure of Gal(Leo(F)/Lo,(F')) is known in the case of
the cyclotomic Z-extension (more generally for a Z,-extension in which no p-adic

prime is infinitely decomposed).

Proposition 6.14
Gal(Loo(F)/Leo(F)) ~ @iy A (€ni)
with Z:zl degé,. < s, where sp, the number of primes above p is assumed finite.

Proof:(Iwasawa [34], Th.9) Using directly Corollary 6.9 or using the class field
theory sequences provided in the next chapter (see the proof of Proposition 8.1) one

can obtain the short exact sequence:

0 — coker(Ueo p — 00’0,1«“) - coker(@uesp(_fm,ﬂ — Bues,Foo,Fy)
— Gal(Loo(F)/L(F)) =0

and study the two cokernels.O]

Corollary 6.15 Let m be an integer, m > 2. Then Xeo.r(m)F is finite if and only if
Xoo p(m)T is finite.
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Proof: We have the folloWing short exact sequence
0 = Gal(Loo(F)/Loy(F)) = Xeop 2 X o — 0.

Then, m-twisting and using the previous Proposition, we obtain that (ker ¢)(m)"
and (ker ¢)(m)r are finite. The invariant-coinvariant long exact sequence associated
to the short exact sequence above (or the multiplicative behavior of the characteristic

polynomial with respect to exact sequences together with Lemma 6.5) finishes the

proof.(]

Remark 6.16 The Corollary 6.15 is still true for F, and I'? -invariants, wherer > 0.

Note that X = Xoo,p,. The same for the '-version. Therefore we can state:

Xoo'p(m)rpr is finite if and only if XO'O,F(m)FPT is finite.
We prove here that Gal(Loo(E)/L(E)) is finite, where E = F(uy,).

Theorem 6.17 Let m > 2. Then XOO,E(m)PPT and Xo;E(m)pr are finite for all
r > 0.

Proof: It is known that X_ ; (m)pyr can be seen as a subgroup of HYOg ,Zy(m—
1)) (see chapter 8). But this group is finite, because the group Kzm-1)-2(Og ) ® Zy
is finite, and the Chern character that links them has finite kernel and co-kernel
(see chapter 3). It follows that X ;o g, (m)re is finite, and finally, using the previous

remarks, XOO'E(m)FPT will be finite.[]
Theorem 6.18 With the previous notations, we have Xeo.5 ~ X, -

Proof: Let m > 2. Then Theorem 6.17 implies that char((ker ¢)(m)) is relatively
prime to w.(T') for all r > 0 (here v acts on X g(m) as multiplication by 1 + T,
which is multiplication by %(y)~™ - (1 + T) on the original Xeo g, and Xeo g(m)> =
ker(Xoo £(m) 25 (Xo0,£(m))). It follows that char((ker ¢)(m)) is relatively prime to
(-(T) for all » > 0. Using Proposition 6.14 to which we apply first the m-twist, we
conclude that (ker ¢)(m) is finite. The underlying abelian group ker ¢ is then finite.[J
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We move our attention to the other important Galois group Xe F, the standard
Iwasawa module. It is known that rankz, Xeo r/woXeo,r = r2(F') + 0(F) (see chapter
5). Using similar formulas for coinvariants at each finite level, and passing to the
projective limit, we obtain that ranksXe r > 7o(F'), with equality if and only if
§(Fy,) are bounded independent of n.

Definition 6.19 The difference §oo(F) := rankpaXo g — 72(F') is called the Weak
Leopoldt defect and the Z,-extension Fo/F is said to satisfy the weak Leopoldt
Conjecture if 6o, = 0.

The Weak Leopoldt Conjecture is implied be the Leopoldt Conjecture.

The Weak Leopoldt Conjecture has a cohomological characterization, which leads
further to significant progress in the study of the A-module structure of X r. Let
Qs(F) denote the maximal algebraic S-ramified pro-p-extension of F, Gg(F) =
Gal(Qs(F)/F), and Gs(Fy) 1= Gal(Qs(F)/ Fy).

Theorem 6.20 (a) There is an ezact sequence
0 = (HY(Gs(Fx), Qp/Zp)")* — Dp — XL p = 0.
(b) The Weak Leopoldt Conjecture holds if and only if
H*(Gs(Fw), Qp/Zy) = 0.
Proof: Consider the following Hochschild-Serre spectral sequence:
Ey’ = H'(T, H*(Gs(Fw), Qu/Zp) = E™"* = H'*(Gs(F), Qu/Zy).

Because the cohomological p-dimension of I'is 1, 3 = 0 for all r > 2, s > 0 and we

obtain the following exact sequences:
1= By 5 E' 5 EJ* — 1
for all r > 1. Taking ¢ = 2 we obtain:
0 = HYL, H(Gs(Fw), Qu/Zp) = H*(Gs(F), Qp/Zy)
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- (HY(Gs(Fu),Qp/Z,)F) — 0.

Now, since Gg(F,) acts trivially on Q,/Z,, and since X, r is actually the abelian-

ization of Gs(F,) we have
HI(GS(FOO)’ QP/ZP) = HomZp(GS(FOO)’ QP/ZP) = HomZp(XOO,F) Qp/Zp)

which is exactly the Pontrjagin-dual of X , denoted X, o'*li >, and on which I' acts by
() = f(z7) for all z € X p. It follows easily that

Hl(ra HI(GS(Foo)v QP/ZP)) = (X#,F)I‘ = (X(EO,F)#'

o0

The middle term H*(Gs(F),Q,/Z,) is isomorphic with the Leopoldt kernel Dy (see
Kolster [45] for a proof). Thus the assertion (a) is proved.

The action of I on a non-trivial discrete I'-module has necessarily fixed points. It
follows that: H?*(Gs(Fw), Qp/Z,) = 0 & H*(Gs(Fw),Q,/Z,)" = 0.
But (H*(Gs(Fw), Qp/Z,)F)* is Z-torsion free being a submodule of D, and

rankz,(H*(Gs(Fw), Qp/Z,)" )# = rankg, Dy — rankg XL &

= ép — (rankg (Xo, 7)r — rankaXeo,r) = 65 — (r2(F) + 65 — rankaXoo F) = boo-
This finishes the proof of (b).03

Proposition 6.21 The weak Leopoldt Conjecture holds for the cyclotomic Zp-extension.

Proof: If F' contains a primitive 2p-th root of unity, then Fo, = F(ppo). By
Serre [70], the cohomological p-dimension of Gg(Fy,) is 1; it follows immediately that
H*(G5(Fw),Qp/Z,) = 0. Thus all we need is a kind of "going-down” property for
the Weak Leopoldt Conjecture. Let E/F be a finite extension of number fields. Let
F./F be a Z,extension of F'. Then E, := EF/E is a Z,extensionof E. If E,/FE
satisfies the Weak Leopoldt Conjecture, then 6( E,) are bounded independent of r.
But it is clear that §(F,) < 6(E,). We can conclude: é,,(E) =0 = §(F) = 0.0

We are ready to study the structure of X F in the case of a Z,extension that

satisfies the Weak Leopoldt Conjecture.
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Theorem 6.22 If a Z-extension Fy,/F satisfies the Weak Leopoldt Conjecture, then
Xeo,F contains no non-trivial finite A-submodule. Moreover, there is an injection

Koo, F > A=) g torspXeo,pr with finite cokernel.

Proof: We have H*(Gs(Fy),Qp/Z,) = 0. We obtain immediately that
H*(Gs(Fy),Qp/ Zp)rpr = 0 for all r. Writing the exact sequence from Theorem 6.20
(a) for F, and I'”" we obtain Dy = XOI;P;« for all r (note that Xeop = Xoo ). Let
N be a finite A-submodule of X, r. It follows that N is fixed under I'** for some
s. This means that N is included in Xol;p;; But this module is Z,-torsion free being
isomorphic to Dg,. We conclude that N = 0.0J

As mentioned before, when p = 2, X, r and XJO’F differ. In fact, there is a

surjection (Galois restriction) Xoo p —» X;’O’F whose kernel we are going to study

below.

Theorem 6.23 The module ker( X, —» X;’F) is a finitely generated A-torsion mod-
ule with trivial A-invariant. Its p-invariant is less or equal than r3(F), with equality
if Foo/ F' satisfies the Weak Leopoldt Conjecture.

Proof: From Class Field Theory (see Chapter 5) we have the following commu-

tative diagram:

0 — Dp — UF — [ F. — Gal(Ms(F)/Hs(F)) — 0
vES

0— Dp — Uf — [[ F — Gal(Ms,(F))/Hs(F)) — 0
vES,

Here, S = S3 U Seo, Hs(F) = Hg,(F), and D}, is the notation for the kernel in the
second row. Because F, is Z/2Z for a real infinite prime and null for a complex

infinite prime, we obtain an exact sequence
0 — Dp — Dp — (Z/2Z)™F) — Gal(Ms(F)/Ms,(F)) — 0.
Similarly, for all s we have
0 — Dp, — D, —> (Z/22)*"F) — Gal(Ms(F,)/Ms, (F,)) — 0
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(note that the real infinite primes do not ramify in Fi,/F, so that we obtain ri(F;) =

25r1(F)). For a real infinite prime v of F' one can see that the projective systems
{IL....Z/2Z} and {Z/2Z]T)/T*} are isomorphic, so that we obtain:

. ~ 1 2° ~v
1+n_nH Z/2Z = limZ2Z[T)/T* = A/2A.

vl

This provides us with a surjection
(A/28)F) 5 ker(Xoop — X2 7).

The assertions follow immediately. If the Weak Leopoldt Conjecture holds, then
coker(Dp, — D'Fs) are finite elementary 2-groups of order bounded independent of
s. Their projective limit lives in A/2A. But A/2A contains no non-trivial finite
A-submodule, hence the previous surjection is an isomorphism. [

For a local field the structure of the two modules is completely understood. Let
v be a finite prime of F. Let F, .. /F, be a Z,extension of F,, My, F, the maximal
abelian pro-p-extension of F, . and Xe r, := Gal(Me,F, /Fue). For r 2> 0 let F®)
denote the maximal abelian pro-p-extension of F, .. By Class Field Theory, we have
that Gal(FP/F,) = u(F,)(p) ® Z, if v { p, and Gal(F{/F,) = u(F,)(p) & Z} &+
if v | p (as usual, for an abelian group A, A(p) denotes the p-primary part). This
tells us that F, has exactly one Z,extension if v { p, and it has [F : Q] + 1 if
v | p. The maximal abelian unramified pro-p-extension F,, denoted F, .., is one of
the Z-extensions of F,,.

Let Lo, r, be the maximal abelian unramified pro-p-extension of F, ., and we set

Xoor, = Gal{Loo 5,/ Fuc0). We note that Lo, F, = Fe0Fyur. Therefore we obtain:

Proposition 6.24 X r, is trivial if F, oo = Fyur and it is isomorphic to Z, other-

wise.

Now, X F, is a finitely generated A-module, because of Nakayama Lemma. In-
deed, Xoo F, /Moo, F, = Gal(Flfp) / Fs) is a finitely dimensional I, -vector space as seen

previously (here, as usual, m := (p,T')). Denote by Q) the maximal pro-p-extension of
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F, and let G, := Gal(f2/F,). Using the same technique as in the global case, we see
that XL . is a quotient of H*(G,,Q,/Z,)*. But, by the local Poitou-Tate duality

theorem (see chapter 2) we obtain
H*(Gy, Qp/Zp)* = H(G, Zy(1)) = lim HY (G, pipr) = lim p(F)(p) = 0.

Proposition 6.25 (a) When vt p, Xoo 5, is trivial if pp, ¢ F,, and it is isomorphic
to T otherwise.
(b) When v | p, Xoor, = AP @ T if u(Fy00)(p) = ppeo, and it is described by the
ezact sequence

0 — Xoo i, — AFQU 5 j(F, )(p) — 0

if u(Fo00)(p) ts finite.

Proof: The discussion just before the proposition shows that
Xo g =0.

It follows that X;‘j;;u = 0 for all r, so that X r, contains no non-trivial finite A-
submodule and multiplication by w, is injective for all r > 0. Using these facts and
knowing the structure of the co-invariants, namely Xoo r, /wr Xoo, 7, = Gal(F® [ Fyoo) =
p(Fur)(p) ® Zﬁr[F:Q"] if v | p, and it is isomorphic to u(F, . )(p) otherwise, we can con-
clude that rankaXoo F, is [F': Q,] if v | p, and it is 0 if v { p. Let us denote

T = lim p( Py, ) (p).

If u(F,e0)(p) is finite, then 7 is null, since X r, contains no non-trivial finite A-
submodule. If u(F, . )(p) is infinite, then 7 is a direct summand of X r,. So, in
the case v { p, Xoo F, 18 A-torsion, hence null if u(F, )(p) is finite, i.e. p, ¢ Fi,
and it is isomorphic to 7 otherwise. In the case v | p, X F, is A-torsion free, hence
the sequence above is exact if u(F, «)(p) is finite. If pu(F, o )(p) is infinite, then the

torsion is exactly 7 and this is direct summand. This finishes the proof. U
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Chapter 7

Semi-local units modulo cyclotomic

units

Let us introduce new important A-modules, obtained by taking the projective limit
of the corresponding objects at finite levels in a Z,-extension of a number field F' with

respect to norms:

7 1 3 7S o Ven TTS
Uso,p :=limUp,, Ug p := limUg,,
r

-

UOO,Fv = 1‘1__I_n UFr,v’ UPyOOyF = @’UGSUOOyFu’
r

Foorr, :=limF,, forve S.
r

Here S := S, U So, where S, is the set of the primes of F' above p and S, is the set
of the archimedean places We use also the ' notation for S,-numbers, S,-units and

the corresponding A-modules. There are diagonal maps:
[700,1: — ®v€SUm,Fv, and Ui’p — @uesfoo,F,,-

Let us define also
Coor := imC(F,) ® Zy,

r
which we can see embedded either in U, o, or in Uz{,oo,F = @uengm,F”. Here, C(F)

denotes the group of circular units. The next lemma comprises all necessary facts
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used for introducing circular numbers and for recognizing norm-compatible projective

sequences which appear later in the presentation.

Lemma 7.1 Let Q(;) denote the d-th cyclotomic field, where (3 is a primitive d-th
root of unity, d > 1. Let pg = p(Q(Ca)) =< (a >= the group of all d-th roots of unity

prim

and p"*™ = the set of all primitive d-th roots of unity. We have:
(1) If¢a € usrim then

p if d=p*, pprime
Noy/oll — Ca) = {

1 1f disnot a prime power
(2) Suppose d = p-d', where p is a rational prime.
(2.1) Ifp t &, w € pa~A{1}, (4 € u™™ then

Noa/Qen)(l —w) = (1 —w)*™!, and

NQ(Cd)/Q(CdI)(l _—w Cd) = (1 — wp)(l — w)‘l.
(2.2) Ifp | d, w€ pa~ {1} then
(1-w)? ifwé€ pa
1—wP wa ¢ Hd'.

Definition 7.2 Let F be an abelian number field. We define the the group of

No(cy /o)l —w) = {

circular numbers of F' as the subgroup of F* generated by the set of elements
{=1, No(um)/Fr@um)(l = Co) | m € Z,m > 2,a € Z,m{ a} (um denotes the group of
m-th roots of unity as usual, and (,, denotes a primitive m-th root of unity), and we

denote it by D(F'). The group of circular units is defined as C(F') :== D(F)NU(F).

Note that D(F) and C(F) are Gal(F'/Q)-modules. Also:

(1) Q% € D(F), and u(F) C C(F).

We see that —1 is in D(F') by definition, and any rational prime p is in D(F) too
because it can be written as p = Nrn@(up)/Q(NQ(up)/FrQ(up) (1 — (p))- 1f 1 is the order of
u(F), then Q(u:) C F,and { = (—1)-(1={)'"7 € D(F)NU(F). Thus u(F) C C(F).
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(2) D(F)™ == {a € D(F) | &’ =1} = u(F).

For any root of unity w # 1 we have (1 — w)'™/ = ~w. Thus for any o € D(F) we
have o' € w(F). Hence if a € D(F)~, then o = o'/ - o'/ = o'/ € w(F). It
follows a € u(F). The other inclusion is obvious.

(3) C(F) = {a € D(F) | Nijofa) = %1},

For any root of unity w and any integer s relatively prime to the order of w we have
(1 —=w)/(1 — w®) is a unit. Therefore for any o € D(F) and any o € Gal(F/Q) we
have o'~? € U(F). It follows that

Npgla) = aXe? = olCFOl mod C(F),

with o running through all elements in Gal(F/Q). Thus, if Nr/g(e) is a unit, then

« is a unit. The other inclusion is clear.

If F is a full cyclotomic field, then C(F') is the usual group of cyclotomic units
(see Washington [81]).

Proposition 7.3 For a number field F' and any Z,-eztension Fo./F we have ezact

sequences
0— Uoo,F/C’oo,F - (@uESUoo,Fv\)/Coo,F - Xofo,F - Xoo,F - 07 and

0 US p/Coor = (®uesFeorr)/Coop = XL p = X3 p = 0
when S = 5p, and similar exact sequences when S = S, U Sy with XC{O,F replaced by

Koo F-

Proof: Because the Weak Leopoldt Conjecture is true for the cyclotomic Z,
extension, the first map in the first sequence of Proposition 5.1 is injective. Taking
the projective limit (all groups are finitely generated), we obtain the following exact
sequence:

¥ 7 S
0— Uoo,F s @‘UESUOO,F., - Xoo,F - XOO,F 0.

On the other hand we have a tautological exact sequence:
0— Uoo,F/C.'oo,F - @UESUw,FU/Ow,F — (@vesﬁoo,Fu)/ﬁoo,F — 0.
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The first exact sequence in our proposition is now immediate.
The second exact sequence follows in the same manner using the second exact

sequence of Proposition 5.1 and Remark 5.4.0

Remark 7.4 This Proposition shows that U 7/ Coor ~ Xoor if and only if
(BvesUco,F, )/ Coor ~ Xoop (and similar equivalences for the other cases). We note
that Coo,r can be replaced by C2 . if F/F* is a CM-estension (A := Gal(F/F*))
and the result still holds.

In order to relate the characteristic polynomial of the above A-modules to the
power series giving the p-adic L-functions, we need to work characterwise. A short

account of this technique follows (refer to [28]).

Definition 7.5 Let G be a finite group, M a Z,[G]-module, and x a character of
G. We define the ring Zy[x] := Z,[x(g)lg € G]. This ring is Z,|G]-module, with the

action being g - = = x(g)z where g € G and z € M. The x-part of M, denoted M,,
is defined as

My = M ®z4c) Zplx] = {z € M ®2,Z,[x]lg- = = x(g)z for all g € G}

The following facts are well known:

(1) The functor M —— M, is right exact.

(2) In the case p f |G| the previous functor is even exact, since the ring Z,[G] is a direct
product of complete discrete valuation rings, and the canonical surjection M —
1 M, is an isomorphism (the product is taken over all irreducible Q,-characters x of
G).

(3) For any A[G}-module M which is finitely generated over Z, (as A-module it is

automatically A-torsion) we have:

char(M) = H char(M,)

X

(product over all irreducible Q,-characters of G).
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Now, we are preparing the necessary context for stating the Main Conjecture

of Iwasawa Theory for all primes p.

Let F be a totally real number field, and E = F((3,). Let A := Gal(E/F) (for
p = 2 this is {id, J}, with J induced by the complex conjugation). Let F, and Fo
the corresponding cyclotomic Z-extensions. Denote I' = Gal( Es/ E) & Gal(Fo/F).
Also, Gal(E/F) = I' x A. This group is pro-cyclic for p odd. For p = 2, it is
procyclic if and only if (o — (ox € F for some k >3 or (4 € F.

Since E, contains all p-power roots of unity, the Galois group Gal(E/F') acts
on ppe and we obtain the cyclotomic character p : Gal(E./F) — Z) defined by
o-¢:= (P for all 0 € Gal(Ex/F) and ¢ € ppe. The restriction of p to A is the
Teichmuller character w, and the restriction to I' is denoted by x.

Let x be a real one-dimensional p-adic Artin character of F, meaning that the
field extension of F' associated to x, denoted usually by F), is real and abelian over
F. Artin associated to x a L-function (for an introduction to Artin L-functions see
Koch [40], and for Dirichlet L-functions see Washington [81]). Moreover, there is a
p-adic meromorphic (even analytic if x # 1) function L,(s, x) which interpolates the

values of L-functions:

Ly(1 —m,x) = L(1 = m, xo™ ) [](1 = xo ™ ()N (p)™)
plp

for m > 1. The construction is due to Kubota and Leopoldt for F' = Q (see Wash-
ington [81], page 57), and to Barsky, Cassou-Nogues, and Deligne and Ribet [19] for

any totally real number field. For m > 2 the previous equality gives
LP(l —m, X) ~p L(l - m’Xw_m)

(where ~, means that they have the same p-adic valuation). If F, N F, = F, then
x is said to be of type S, and if Fy C Fy, it is said to be of type W. L,(s,x) is
essentially given by a unique power series Gy (T') € Z,[x][[T]}:

Ly(1 = 8,x) = Gx(x(v)’ = 1)/ Hx(x(7)* — 1),
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where H (T) = x(7)(1 + T) — 1 if x is of type W, and Hy(T) = 1 otherwise. Let
Gy (T) = 7G5 (T)U(T) be the unique decomposition of this power series, where 7
is a uniformizing parameter of Z,[x], G%(T) is a distinguished polynomial and U(T')

is a unit power series. We know that X, r is a noetherian torsion A-module.

Main Conjecture 7.6 Let F be a totally real number field, p a prime and x a real
one-dimensional p-adic Artin character of F' of type S. Then:

char((Xeo,5)x)"(T) = GY(T).

It was proved for odd primes and all totally real number fields and for p = 2 and all
abelian real number fields by Wiles in [82] and, using Euler systems, by Rubin in [67]
(for odd primes) and by Greither in [28] (for all primes). Instead of Fy one could take
any totally real finite extension of F' containing Fy, say K, such that K N F, = F.
The polynomial char((Xo,r, )x)*(T') is independent of the field K. In particular, one
could take K = E*, the maximal real subfield of E. Moreover, if p is odd and the
character is of order prime to p, then (X 5, ) = u(Gx). In general, this relation
between p-invariants is conjectural (see Greenberg [27}]): for p odd both should be 0
- suggested by the abelian case in which it is proved that u(Gy) = u(Xe,r) = 0, and
for p = 2 both are non-trivial and should be equal (if x = 1 then they are equal as it
was proved by Federer [22] and by Greenberg [27]). Let us state the Main Conjecture

as a theorem only in the case we will be using:

Theorem 7.7 Let F be a real abelian field, p a prime and x a character of F' of type
S. Then

char((Xeo,r)x)"(T) = G3(T)

and the p-invariants are trivial.

Theorem(Greither [28]) 7.8 Let p be a prime, F' a real abelian number field, E =
F((4) and x an even non-trivial character of E. Then the A,-modules (Uso,5/Co0,5)x

and (Xoo.p)y have the same characteristic polynomials.
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This is essentially a corollary of the Main Conjecture and of the important fact
that char(Up,co,7/Coo,r)(T) divides Gy (T) (proved using Coleman operator theory
by Gillard [24], Greither [28], and Tsuji [78]). For the trivial character the two

characteristic polynomials are 1.

Corollary 7.9 Let p=2 and let F be a real abelian number field as above. Then
char(Ueo, 7/ Coo p)(T) = 2* - char(Xeo 7 )(T).

and
char(Uy 0,7/ Coo,p J(T) = 2% - char(Xo r)(T),

where p := p(U,7/Coo.r)-

This consequence is obtained by using property 3 of the x-parts (see above) and the

fact that p(Xe,r) = 0 for all abelian fields F.

For the case p = 2 and full cyclotomic fields we have also results of Kuz’min [51].

Of course these results are valid for all primes p.

Theorem 7.10 Let F' = Q({4,(s) withd > 3 odd, and A := Gal(F/F*) = Gal(F/F}),

where Foo [|F and FE/Ft are the cyclotomic Zy-extensions. Then:
[700,F/C~’00,F ~ Xoo,F+ 3
i.e. these A-modules have the same characteristic polynomials.

(refer to Kuz’min [51] Th. 3.1, page 714.) Note that we have used the following

pseudo-isomorphisms:
XOO’F ~ .XOA(;’F, and XOO,F ~ X;O,F

Here, the modules [700,1: and C’oo,p are the A-torsion-free part of 000,17 and Coor
(obtained by working modulo torsion at each finite level). Note also, that CN'OAOF =
C’oo, r+ (cyclotomic units are invariant under J modulo the subgroup of roots of unity).
The same is true for 000,}:.

In Kuz’min’s setting a few interesting facts can be proved. Unfortunately, they

do not seem to be true in general.

76



Corollary 7.11 Let F = Q((y, C4) with d > 3 odd, and A := Gal(F/F*). Then:
UOO,F'\L/C’;‘O,F ~ ~m,F/ém,F ~ Xoo,F+ .

Proof: Only the first pseudo-isomorphism needs some explaining, the latter

following directly from the previous theorem. At finite levels we have:
1 = u(F.)* = C(F)A - C(F,) = H' (A&, u(F)) = H'(A,C(E,)) and

Lo p(F)2 = U(F)A = U(F) = BY(A, u(F) = HY(A,U(E,))

for all r > 1. Now, u(F.)® = {-1,1}; in the norm-compatible projective limit
we obtain 0. Also, H'(A, u(F.)) = p(F,)/u(F,)?, which in the norm-compatible
projective limit gives Z/2Z. Finally, u(F,)/(1 — J)C(F;) = 0, because —(n = (1 —
(n)'~7, where N = 27d, d odd, and, for the same reason, u(F:)/(1 — J)U(F;) = 0.

Therefore we obtain the following short exact sequences for all r:
1 = u(F)* = C(F)* = C(F.) = Z/2Z — 0
1= w(F)? = U(F)* = U(F,) = Z[2Z — 0.
Tensoring with Z,, and passing to the projective limit with respect to r, we have:

0= C2 ¢ — Coor = Z/2Z — 0, and

0— U85 = U — Z[2Z— 0.
So:
U;AO,F/CO%,F ~ ~oe,F/é'oo,F
(they are in fact isomorphic!). Moreover,
f]OAQ,F = UOO,F+'D
We present now the proof of the A-freeness of Coor in Kuz’'min’s setting (see

[51)).
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Definition 7.12 The universal distribution on the group +Z|Z for some natural
number N is the abelian group Ly generated by the symbols [&] for all % € Z/Z

and the relations

forall &£ € $Z|Z, t| N

Kubert [49] proved that Ly is a free abelian group by exhibiting a basis for it (see
Kolster, Nguyen Quang Do [48] and Chapter 9 for the weighted version of universal
distributions). Also, we have a natural action of (Z/NZ)* = Gal(Q(un)/Q) on Ly,
and an isomorphism Ly ® Q = Q[(Z/NZ)*]. If N | M then the natural inclusion
%Z/Z > 377, and the multiplication by % induce natural maps iy : Ly — Ly
and Nyar: Ly — Ly,

Now, let p be a fixed prime and let d be a natural number relatively prime to P,

and d Z2mod 4. Let § = 0if pis odd, and § = 1 if p = 2. We define
Lpood = ].(%I_nﬁpv-#&d ® Zp,

the projective limit being taken with respect to the maps Npv11s4 purs4. We obtain
also a natural action of A and of A := {—id,id}(= {1,J}). Two important results

are proven by Kuz'min [51]:
Lped is a A—free module of rank ¢(p'*d),

and forany z > 0
Hi(A, Lo0og) = 0.

Let p be a fixed prime and d be a natural number relatively prime to p, and
d # 2 mod 4. Let ((,v+¢),>1 be a system of primitive p**®-roots of unity in Q such
that C;’,,““ = (s forall v > 1. Here § = 0if pisodd, and § = 1 if p = 2. Let
F = Qua, (e )(=: F1), and F, := Q(ua,(p+s) for all v > 1. Denoting F., :=
Uy>1F, we obtain the cyclotomic Z-extension of F, F,,/F. Also, working with the
maximal real subfields we obtain the Z,extension Ft/F*. Let [' := Gal(F../F),
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[ = Gal(FX/F*), A := Gal(F/F*) and A" := Gal(Fw/FJ;). Now, D(F,) is the
subgroup of F* generated by all numbers of the form 1 — ', ' € u(F,), and this set
of generators can be written as {1 — wC:,VM |w € pg,7=0,...,p}. Consider the

projective limits
Doop = im D(F,)/W(F,) @ Ly, Coop :=1im C(F,)[u(F)) @ Ty

(of course in our case p(F,) = pgp+s.) They are naturally A-modules. Their main
property is that they are A-free modules (see Kuz’min [51]).

First we study the relation between the two modules. Define

—y &

va+ é )

( — kI — P
() =lim (1 - w

for all v > 1. The sequence is compatible with norms, namely:

—p=1-§ v—8§

NF,,H/F.,(l - w” Cpu+l+6) =1 w”" <pu+6

(see Lemma 7.1). Let B, be the Galois submodule of D(F,)/u(F,) generated by
all elements 1 — w?™" (s for all w € pg = pa(F,). Thus D(F,)/u(F,) = B, -

D(Q(p4))/ pa. Hence:

~

Door = li_r{lBV ® Zp.
We see this way that D i is generated by the set of elements {#(w) | w € pg} as an
A[Gal(F/Q)}-module.

We can note that an element z € D(F,)/u(F,) ® Z, belongs to the image of the
natural projection Do p — D(F,)/u(F,)®Z, if and only if = belongs to Ug,, where
S consists of all primes above p and all infinite primes. Also, it is a well known fact
that if w,, is a primitive m-th root of unity, then 1 — wy, is a unit if and only if m is
composite. If m = p”, then 1 — wy is a prime element in the local field Qp(wy). We

obtain this way the following exact sequence:
0 — Coop — Doop — Zp — 0,
where Z,, is generated by the element 6(1).
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Theorem 7.13 Let F' = Q(pa, (pi+¢), where p is a prime, d be a natural number
relatively prime to p, and d #2 mod 4, and § = 0 if p is odd, and § = 1 if p = 2.
Then Door and Co i are free A-modules of rank [F:Q]/2.

Proof: For each v > 1, define the map
b :£pv+6d — D(F,,)/N(F,,)

as follows:

R (e

where w is a fixed primitive d-th root of unity, and ¢t € Z. This map is an even

distribution in the sense of Kubert [49], i.e. satisfies the following relations:

> ao[wl) =2 ([)

for any @ € Z, and t | p***d, and

#([7sal) = o([==a)):

After tensoring with Z, we obtain natural epimorphisms compatible with the actions
of the groups Gal(F,/Q) = (Z/p**°dZ)* and with norms. Passing to the projective

limit with respect to norms, we get an A-module epimorphism:

qS . ;Cpood/lc;ood — Doo,F

(if A = {1,J}, for a A-module A, we define A~ := ker(1+ J) and A* := ker(1 — J)).

By construction f)oo,p is A-torsion-free. Also, because Lp~q is A-free, it follows
that Lpeoa/ Ly and L], are A-torsion-free, and their A-ranks are equal: rank, Ly =
ranky Lowy = r3(F) = [F 1 Q]/2. Moreover, L., is in fact A-free module because
it is a submodule of the A-free module Lywg and Lpewa/L)s, is Zytorsion-free (see
Lemma 6.7). Now, for any v there is a natural projection Doy r — B, ® Z, (see
the previous discussions.) By Sinnott [71], C(F,) has finite index in U(F}). It follows
that:

rankz, B, ® Z, > rankg, U(F,) ® Z, — rankz, (D(Q(pa))/pa) ® Z,
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for any v > 1, i.e. rankz, B, @ Z, > [F, : Q]/2 — k, where k does not depend on
v. This implies that De, r has A-rank equal to [F : Q]/2. We conclude that ¢ is an

isomorphism.
If pis 0dd, then Lpeq = Ly @ Loy, 30 that Ly = Do, hence Do is A-free
module.
If p= 2, we have
D<><>yF = ‘Cp“d/ﬁ;wd = NA(‘Cp“’d)’

where Na denotes the norm relative to A. But we know that HOA, Lyeg) = 0, ie.
Na(Lpoa) = L3y Hence Do, r is A-free module in this case too.

Finally, the exact sequence
00— éoo,p —_— boo,F —_— Zp - 0>

together with the fact that Doo, r is A-free module imply that éoo, F 1s a A-free module
too (see Lemma 6.7). O

Proposition 7.14 Let F = Q((s,Cq)/F* with d > 3 odd, and A := Gal(F/F*).
Then:

(éfo’,F)F 2 ((Coo,r)r)®

Proof: The isomorphism is obtained by a simple analysis of the five term exact
sequences of the two Hochschild-Serre spectral sequences associated to the two pairs

of groups, and by using the previous result.l]
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Chapter 8

Iwasawa modules versus étale

cohomology groups

Let p be a prime, K be a number field, and S := S, U S, where S, is the set of the
primes of K above p and S, is the set of the archimedean places of K.

Let K. /K be the cyclotomic Zextension of K. As we know, this is defined
as the unique Zy-extension of K inside K(ppw) := {50 K (ppr+s). Here § = 0 if
pisodd, and § = 1 if p = 2. Let G = Gal(K(pp)/K), ' := Gal(Ko/K),
[ = Gal(K (ppeo )/ K (ppi+s)), A := Gal(K (ppi+s)/K), and A’ 1= Gal(K (pipeo)/Koo)-
We denote the intermediate fields of Ko/K by K, for all r > 0 (Ko = K; = K).
Clearly, K, is the fixed subfield of K{u,r+s) under the Galois group A’. Let v denote
a fixed topological generator of T, and 7 a fixed topological generator of T

If the prime p is odd then G is pro-cyclic, as Goo = I' x A and the order of A
is relatively prime to p. One works with G, in this case. If p = 2, (G, is not always
pro-cyclic. The group G, is pro-cyclic if and only if either (4 € K or (o — C,;kl €K
for some k > 3. In this case, Go, = I' and we work with I'. A number field K with
this property is called 2 non-exceptional number field. If G is not pro-cyclic, i.e.
K does not have the previous property, then K is called an exceptional number
field. This situation occurs always if p = 2 and K is totally real. In the exceptional

case we work with T, not Go, (Goo is not pro-cyclic in this case).
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It is clear that I acts on Zy(n) and Q;/Zy(n) for any integer n if K is a non-
exceptional field. In the exceptional case, ' acts on Zy(n) and Q2 /Zo(n) only if
n is an even integer, because in this case A’ acts trivially on these twisted modules.
We are going to state and prove facts only for the case p = 2 mentioning in remarks
the corresponding formulations and results for odd primes p (the latter case being
treated by Schneider in [68]).

We prove first Soulé’s and Tate’s fundamental results in the previous context for

p=2.

Lemma 8.1 Let p =2 and n # 0. Assume either K is non-ezceptional or n is even.

Then we have:

(1) Let f(T) be the characteristic polynomial of a T-torsion module M. Then
char(M(n)) = f(x(7)™"(1+T) - 1).

Consequently, for all n € Z, char(Zy(n)) = s(y)™(1+T) - 1.
(2) (Soulé) Zo(n)' =0, and Zy(n)r has finite order |Za(n)r| = pre(sM ™ =1)
(3) (Tate) Let M be a discrete I'-module. Then

HYT,M @ Q;/Zy(n)) = 0.

Proof: For (1), let g(T) denote the characteristic polynomial of M(n). The
generator of I' acts on M(n) as multiplication by 1+ 7, y*,z = (1 +T)-z,z € M. Let
multiplication by 1+ correspond to the action of v on M. Then y*,z = k(y) -z =
k(y)" - (1 + S) - z. This gives us S = w(y)™(1 +T) — 1. Taking M = Z, = AT
whose characteristic polynomial is T, we obtain the consequence. To prove (2), let
us consider first the case when K is a non-exceptional number field. Then v cannot
act of finite order on all p-power roots of unity, hence we have k()™ # 1. It follows
that the characteristic polynomial of Zq(n), £(y)™™(1 + T') — 1, does not vanish at
T = 0. By Theorem 6.5, we obtain that Zy(n)' and Zy(n)r are both finite. But

Zo(n)F cannot be finite unless it is trivial, and the order of Zy(n)r is given again

83



by Theorem 6.5. Now let K be an exceptional number field, and n an even integer,

n #+ 0. Because Zy(n)T = 0, we obtain Zy(n)®> = 0. The short exact sequence
0 —> A —Gs—T—0
induces in cohomology the following exact sequence:
0 = Zo(n)ar = Za(n)9° — Zy(n)' = HY(A, Zy(n)).

But Zy(n)% =0, and H*(A',Zs(n)) = 0. Therefore Zy(n)F = 0.
For (3), since M is a discrete I'-module, we may assume it is finitely generated.

Since tensoring with Q,/Z, removes the p-torsion part, we only have to consider the

case M = Z,. Using (2) we obtain:
HY(T,Zy ® Qz/Zs(n)) = H'(T, Qo/Zs(n)) = Qz/ Zo(n)r = (Zo(~n)")* = 0
(see the action of v on Hom([', M) in chapter 2). O

Remark 8.2 We can make a detailed study of the case when K is an ezceptional

number field, and n is an even integer, n # 0, as follows. The short ezact sequences
0 —T — Geo — A — 0, and

0 — A —Go —T —0

induce the following first-quadrant convergent Hochschild-Serre spectral sequences:
Egt = H*(A, HY(T,Qz/Zs(n))) = EY' = H*** (G, Q2/Zo(n)), and

Est = H*(T, H' (&', Qo[ Zo(n))) = B+ = H**(Goo, Qa/Zo(n))-

The five-term ezact sequence theorem for the first spectral sequence gives the following

exact sequence:
0 — H' (A, H(T,Q2/Zs(n))) — H'(Goo, Qa/Za(n))
— H°(A, HY(T,Q3/Z4(n))).
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But we just proved that H*(T',Qy/Zy(n)) = 0, so:
H'(Goo, Qa/Zo(n)) = H' (A, HY(T, Qz/Zo(n))) = H' (A, pf") = u3"™ = Z/2Z.
Also, from the second spectral sequence we obtain the following eract sequence:
0 — HY(T, H(A',Q2/Zo(n))) — H'(Goo, Q2/Zs(n))

—s HO(T, HY(A, Q) Zo(n))) — .

The cosource of the last arrow is 0 because cd,I' = 1. We note that
HO(A, Qz/Zs(n)) = Qu/Zsg(n), H(A',Qz/Zo(n)) = p§" = Z/2Z, and HO(T', uf") =
pud™ = Z/27. So:

0 —s HY(T,Qs/Zs(n)) —> Z/2Z — Z./2Z — 0.
It follows: HY(T',Qq/Zy(n)) = 0.

Remark 8.3 The same result holds for all odd prime p, all abelian number fields,

and all non-zero twists, but working with G, as defined previously.

Theorem 8.4 Let p = 2 and n # 0. Assume either K is non-exceptional or n is

even. Then we have:

HY(OF, Qs Zo(—n)) = oo (),

HY Ky, Qo) Za(—n))* = Xoo i (0)ps

HY(0%, Qy/Zo(—n))* = Koo x(n)

HY(Ky, Qo /Zo(—n))* 2 Koo i, (n)
where v € S,.

Also, if n € Z\{0,1} and K non-ezceptional we have:

I*(O%, Za(n)) 2= X o, (= Lr.
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Proof: Consider the following Hochschild-Serre spectral sequence:
Ey' = H (D, H(Gs(Kw), Q) Zo(n)) = E* = H(Gs(K), Qs/Zs(n)).

Because the cohomological p-dimension of ' is 1, E5* = 0 for all s > 2, ¢ > 0 and we

obtain the following exact sequences:
1 BV BT By =1

for all » > 1. Particularly,
1 — H'(T, H'(Gs(Kw), Qe/Zso(n))) = H*(G5(K),Qe/Zs(n))

— HY(Gs(Ky), Qa/Zy(n))' = 1,
and

1= HY(T, H(Gs(Ko ), Q2/Zs(n))) = H(Gs(K),Qy/Zo(n))
— HI(GS(I{OO),Qz/ZQ(n))F -3 1.

The hypotheses on K assure that the Galois group G's( Ko ) acts trivially on Qo /Zo(n).
We obtain H*(Gs(Kw),Q2/Zo(n)) = 0, because the Weak Leopoldt Conjecture
holds for the cyclotomic Zq-extension of K (see Theorem 6.20 and Proposition 6.21).

Moreover,

HY(T, HY(Gs(Kw), Qz/Z(n))) = Homg,(Xeo k., Qa/Z2(n))p

& (Koo k(—1)F)r 2 (Koo ie(—1)0)*.

Thus we obtain the second assertion on global fields:
HQ(GS(IX’), QQ/Zz(n))# = wah(—n)r
Next, we note that:

HY(T, H*(Gs(Ko), Qa/Zs(n))) = H'(T,Qa/Zy(n)) = 0,
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by Tate’s Lemma (n # 0). The first global assertion follows:
H'(Gs(K), Qu/Za(n)}* = (H'(Gs(Koo) Qa/Za(n)) )*

2 (Homyz,(Xoo, ', Q2/Za(n))")* & Xoo k(=1
The local versions of the statements can be derived in exactly the same way.
In order to prove the last result, we demonstrate that:

(0%, Qe/Z(1 = n)) = (Xgo k(n — L)r)¥,

and then take the duals and use Poitou-Tate global duality. In the following diagram
the vertical sequences are inflation-restriction exact sequences, while horizontally we

have localization maps. All squares are naturally commutative.

HY(T, Qa/Zo(1 — 1) o BoesH (Gal(Koow/Ko), Qa/Zo(l — )
) )
Hl(Gs(IX’), Qg/Zg(l - TL)) — @uesﬂl(Kv,Qz/ZQ(l — Tl))
} 2
HO(T, HY(Gs(Kw), Q2/Z3(1 — n))) — Bwes HY (Koo, Qa/Z2(1 — n))
I

HA(I', Qz/Z5(1 — 1))
Using the fact that the cohomological p-dimension of I' is 1, and using again Tate’s
Lemma (n # 1), we obtain:

HY(,Q,/Zy(1 —n)) =0, H'(T,Qz/Z5(1 —n)) =0,

and H'(Gal(Keop/Ky), Q2/Zo(1 — n)) = 0.

(here w is a fixed place of Ko, above v).

It follows:
(0%, Q2/Zs(1 — 1)) =

= ker(H(T, H'(Gs(Koo), Q2/Zo1 — 1)) = BuesH (Koo,uwr Q2/Z2(1 — n)))
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= H°(T, ker(H'(Gs(Kw), Qa/Zo(1 — n)) — Buwes H' (Koo, Q2/Zo(1 — 1))
= HO(T, ker(H'(Gs(Kow), Qa/Z3) = Bues H' (Koo, Qa/Z2))(1 = n))

= (X x)*(1 = n))' = (Xg k(n — r)*.0

Remark 8.5 The same result holds if p is odd for all number fields, and all non-zero

twists. Again one works with G, in this case.
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Chapter 9

Soulé’s and Beilinson’s elements in

the K-theory of cyclotomic fields

Let p be a prime, n > 1, E = Q(un), N > 3, 0} = Z[;LN][%], and X = Spec(E)
(S is the set of all primes above p and all infinite primes). It is quite difficult to
exhibit concrete elements in K-groups and to compute the index of the subgroup
generated by them one needs to look at their images via Chern characters. In this
chapter we introduce the Soulé’s and Beilinson ’s elements in odd K-groups. It turns
out that they agree in Ky,—1(E) ® Z,. Moreover, the Chern character maps them
to the modified Soulé-Deligne cyclotomic elements in (continuous) étale cohomology.
Finally, the computation of the index of the subgroup generated by these last elements
in étale cohomology amounts to computing the index of subgroup generated by the
images of circular units in étale cohomology. This leads us to a computation of the
index of the Beilinson subgroup in Kj,-1(E) ® Z,. The following diagram contains

the main groups:

f\"Zn—l(E) QZLp, — ﬁét(Of«:’Zp(n)) = ~gt(0f?7zp("))
T T t
Bri™(E)®@Z, —  Du(B) = CLgn—1)r

The maps will be defined and studied below.
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As we mentioned previously there is a projective system of regular product struc-
tures on the K.(Oj,Z,) spectrum, which is unique if p is odd, and there are two

product structures if p = 2. Soulé constructed in [73] the following maps:
d)ﬁ : :uf\'f-im - K2n—1(olsivzp) = I(Zn—l(oi) ® va
given by
¢h(Cn) = (N (1 = @) U (6,)°07)),
called the Soulé’s elements in K-theory. Here (y is a primitive N-th root of unity,
(ar)r € impnyr
(———

is a projective system such that of = (x, and

(8, € lim K>(OF,,2/p')

is the projective system of Bott elements such that det o j,~(3,) = «, - the maps are
defined below (the domain of these maps can be extended to all non-trivial roots of

unity). Note that the composition of morphisms
K03, 219 Z) 5 Ki(O5)(7) = pyr (0F,)
has a natural section defined as the composition of the following maps:
pr (OF,) 2 m2( BUE, Z/p'Z)

= 1,(BGL:\(0%,), Z/pZ) — m( BGL(O3 ), Z/p'Z).

Using Soulé’s formalism of norm(trace) compatible systems of units presented in {73],
we obtain the construction. For p = 2 one has to use the modification of the Bott
elements introduced by Arlettaz, Banaszak and Gajda in [1].

Soulé’s elements map to the Soulé-Deligne cyclotomic elements (described below)
in étale cohomology via Chern characters.

Now let w be a fixed N-th root of unity, w # 1. We consider a rational function

f = fap(w) € E(t1,...,tn-1), where a = (ai;), b = (b;;) are matrices of integers of
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size (n — 1) x 2"~% having certain properties described in Neukirch [65], Lemma 3.1,

and we set

fote) = [T {2 0 and

ab—Z(H Hb")

Let A?f)l denote the complement of zeroes and poles of f on A%™! = Spec(E[t1, ..., tn-1]),
T= {1—_[z t,‘(t,‘—l) ‘—‘0}, and T(f) TﬂAFB
Following Neukirch [65] we can form the following Loday symbol in the relative

absolute cohomology (Deligne [17]):

losl) = CZ1 - Ufunl@hs b1,y toi ba € HI(AT, Ty Q).

By Neukirch [65], Lemma 4.3 and Lemma 4.2, this symbol (in fact its inverse image
in H, A(A?f)l,T( )+ Q(n)), where the simplicial scheme T, over A%! is obtained "by
resolution of singularities of the divisor with normal crossings” T' in A} ™'; similarly

for T{y).) has a unique preimage

lap(w) € H)(Spec(E), Q(n)) = Kzn-1(E) ® Q,

called Beilinson’s elements in K-theory. Moreover, under Beilinson regulator

map it maps to the n-th polylogarithm. Let Li,(2) denote the n-th polylogarithm
defined by:

Lln Z kn’

k=1
and analytically continued to C\ [1,00).

Theorem(Neukirch [65], Th. 1.1; Huber, Wildeshaus [33], Cor. 9.6) 9.1 For
every n > 2 we have a map of Gal(E/Q)-sets

€n : iy — Hy(Spec(E),Q(n)) = Kan1(E) ®

such thal, for w € uy,
pr% (en(w)) = Lin(w).
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Proof: Define ¢,(w) = I, 4(w), and apply Main Lemma 4.1, and Lemma 4.3 from
Neukirch [65]. For a different approach see Huber, Wildeshaus [33].00

The two types of elements in K-theory have the same image in p-adic étale coho-

mology.

Theorem(Huber, Wildeshaus [33]) 9.2 Let w denote a fized N-th root of unity,
N > 3, and n be an integer, n > 2. The p-adic regulator

prp;. : I(2n—1(E) ® QP — Hclont(Ev Qp(n))

takes ¢? (w) and N™1-nl-¢,(w) to the modified Soulé-Deligne (Deligne [18]) cyclotomic

elements in (continuous) étale cohomology.

These results lead actually to a proof of the existence of integral Beilinson ele-

ments, as in the articles [33] and [32]. Summing up we have:

Theorem 9.3 Let w denote a fized N-th root of unity, N > 3, and n be an integer,
n > 2. There is an element in K,, 1(E), Bp(w), whose image in Kan_1(E) @ Zy
agrees with Soulé’s cyclotomic elements. Hence its image in étale cohomology via the
Chern character is the modified Soulé-Deligne cyclotomic element ¢,((n) (described
below). Moreover the Beilinson regulator of this element in Deligne cohomology can

be computed and is given by polylogarithm functions.

Let BP"™(E) denote the subgroup of Ky,_;(E) generated by B,(w) and its Galois
conjugates for all w € p&7"™. Here K,,_;(E) denotes the torsion-free part of Kan_1(E).
For an arbitrary abelian field F with conductor N, we define BP"*™(F') as the image

of BP"""(E) under the transfer map
TI‘E/F : f(zn._l(E) — f(gn._l(F).

Let BPrim(F) be the image of BZ™(F) in Kyn_1(F).
We describe briefly the elements on the étale cohomology side. Consider the

cyclotomic Z-extension of E = Q({x), and n an integer, n > 2. For each r > 0
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define

ca(CN)r = corg(cryE(8(1 — (npr) @ 2 Y) € HE(E, Z/p'Z(n)),

where § is the Kummer connecting morphism
81 B(Gr)* — Ha(E(Gr, Z/pL(1)).

By passing to the projective limit with respect to the natural maps between the

coeflicient sheaves, we define further

cn(CN) = IEI_HC"_(CN),. € Hét(EaZ:D(n))

We call these the Soulé-Deligne cyclotomic elements. These elements have a
well understood behavior with respect to corestriction maps. Namely, if [ is a prime

number, then:

(1 — 1" *Frob; e (¢n) if (I,Np) =1

corQy(¢ en(Cni) =
{Cw1)/QN) { Cn(CN) 1 | Nop.

Here Frob; is the Frobenius morphism associated to the prime [.

Let D,(E) be the Z,[Gal( E/Q)]-submodule of H}(E, Z,(n)) generated by c,({n)-
For an arbitrary abelian field F' with conductor N, we define D, (F') as the image of
D,(E) under the corestriction map. Denote by D,(F) its torsion-free part.

The modified Soulé-Deligne cyclotomic elements are defined as follows:
En(Cn) = ca(Cn) if p | N, and &(¢n) = (1 — p* Frob™!)c,((n) otherwise (refer
to Benois, Nguyen Quang Do [10]).

As the Chern character chg’,’,)1 : Kyno1(F) ® Z, — HL(03,Z,(n)) maps isomor-
phically BP(F) onto D,(F), for p odd, we obtain:

[R’zn—l(F) ® Zyp: Bﬁrim(F)] = [ﬁ;t(O}";,Zp(n)) ; Dn(F)]
For p = 2, using corollary 3.7, we have:
(Kan-1(F) ® Zo: BI'™(F) @ Zo) = 2774148 - [H}(OF;, Zo(n)) : Du(F)]
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if n =3mod4, and
[K2n-1(F) ® Z : BE™(F) @ Za] = [H}(0OF, Za(n)) : Do(F)]

if n = 1 mod 4. The latter index becomes computable once we relate D, (F ) to cyclo-
tomic units.

Let Fi, be the cyclotomic Z ,-extension of F, and let I' denote the Galois group of
this extension. Using the group of S-cyclotomic units (refer to chapter 7 for details)

of the fields at each intermediate level, we construct the following group:
éoSoF(n = Dr:= ljf_l(és(ﬂ) QZ[p"Z(n—1))r/rer
For p odd, Soulé constructed a map
1 CF p(n = Dr — HY(OF, Zy(n))

(this construction is described in chapter 10). We show in chapter 10 that this map
can be constructed also in the case p = 2 if F is a complex abelian field or if F'
is a real abelian and n is odd. This map allows the use of powerful results from
Iwasawa theory which in combination with the Poitou-Tate exact sequence lead to

the following computation: in the case p odd, one obtains
[H2(03, Zy(n)) : im(9)] = |HZ(OF, Zo(n))[F

(— if n is even, + if n is odd - refer to [46], [10]), and in the case p = 2, F' is real,

and n is odd, we obtain

|coker(3))|

% — oritu—-1 2 S 7
] g 103, 2

(refer to chapter 9).
Finally, it was proven in [10] that:

v =1

[im () : Du(F)] ~p Ea(F) - | ker(4)]

In the case p = 2, F is real, and n is odd, there is an undetermined power of 2, which

we will call 7. Recent results [48] show that this parameter is trivial (see below).
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Putting together all these index computations, in the case p = 2, F' a real abelian

field, and n odd, n = 3 mod 4, we obtain:
2171700 | Kpper (F) @ Zg : BY™(F) @ Zo] = [H(OF, Zo(n)) : Do(F)] =

|coker()] - [im () : Da(F)] ~
(2741 | HH 0%, Zo(n))] - | kex()]) - (Ea(F) - | ker(§) ) =
gt | HY(0F, Zo(n))] - Ea(F).

Writing the same computation for the case n = 1 mod 4, we have:
Theorem 9.4 For p =2, F real abelian, and n > 3 odd, we have:
[K2n-1(F, Zs) : BI"™(F) @ Zo] = 24°7 - |H*(OF, Za(n))| - £a(F)

if n = 3mod 4, and

[Kon—1(F, Zs) : BY'™(F) @ Zy) = 271 - |H}(OF, Zs(n))| - Ea(F)

if n = 1 mod 4.

The same computation can be done for an odd p, any abelian field F', and any
integer n > 2 (with no power of 2 in the result).

The index [im(4) : D,(F)] can be computed if one knows the index between
certain distribution lattices. We need to introduce a few more things in order to be
able to present this index computation.

Let N > 2,and n > 2. Let VI\(]"—I) be the Q-vector space generated by the symbols
[w'], where w' is running through all N-th roots of unity ( w’ € un), and the symbols

[w'] satisfy the distribution relations of weight n — 1:

t-1

W) ="y W]

=0

for all t | N (¢; denotes a primitive t-th root of unity).
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Let w be a fixed primitive N-th root of unity (w € p%'™). The map

r

1 n—
o /T — VW, 5

mod Z) = [}

is a distribution of weight n — 1 (as in Kubert [49]). We consider here only the
case dim VIS,"_I) = ¢(N), i.e. only universal distributions of weight n — 1. Denote

G = Gal(Q(w)/Q). In [49] Kubert proved that < [w°],0 € G > form a canonical
basis of Vjs,nnl).

Definition 9.5 We let Lﬁ(}“)(.—_ Ln) denote the lattice in VI\(,"—I) spanned by [w'],
W € un. E%’;ﬂm(: LN, prim) will denote the lattice spanned by [w°], ¢ € G.
Moreover, if F' is an abelian number field of conductor N, and M is a multiple
of N, we define the lattice ,ng) as the sublattice of Lpr generated by all traces
ZaeGal(Q(w,)/Q(w,)nF)[w"’], where W' € ppr. This definition is independent of the choice
of M, because the trace factors through Q(w')NQ(wn), and Ly is a sublattice of Ls.
That is why we will denote this lattice simply Lp, and we will take M = N as the
conductor of F'. Note that Lr @ Q is a subspace of Vy, and dimg Lr @ Q = [F : Q).
Define also Lg,prim as previously. They are called universal distribution lattice

of weight n — 1, and primitive universal distribution lattice of weight n — 1,

respectively.

Theorem(Kolster, Nguyen Quang Do [48] ) 9.6 For a full cyclotomic field F =
Q(un), NEZ, N >2,andn € Z, n > 2, we have

e 20 = [T -1,
pIN

where f, is the inertia degree of p in F', and r, is the number of primes above p in F.

Corollary 9.7 For a real abelian field field F' and n > 2 odd, we have:

e ) =TT — 1y,
pIN
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Recall that for £,(F) := [[, _1y=(_1yn-t Hpn(1 = x(p)p" "), the Euler factors, we

have:

Sp(n=1) L 1)rp . .
[ J Y, —(p—————lT if n is even.

jp (n—=1) _ 1)"‘

(pF =D —1)%  if nis odd
Sn(F) _ { H:DIN

We have seen that there is an 1mportant map of sets

en N \ {1} — Kon-1(Q(un)) ® Q

such that (pB%e,)(w') = N*1-(n—1)!((Lin(w'?))s), where ' € uny\{1}. The n-th
polylogarithms Li, (') satisfy the distribution relations of weight n — 1. Moreover,
one can define

1
Lis(1) := Tt ZLln Ct),

=1
where t | N, t # 1 (this definition is mdependent of t). So, €, can be extended to py.

We note that B,(Q(un)) (defined previously) is the lattice spanned by all ¢,(w') in
Kon_1(Q(pn))®Q. Under pP¢, it maps to the full sublattice in (R (n—1)Hem(Qwn), O)+
spanned by N*=! - (n — 1)! - ((Lin (w'?))s), ' € un, p2(Bn(Q(un))), which satisfies
the distribution relations of weight n — 1 and the parity relation z = (—1)""'z, for
all ¢ € pP(B,(Q(un))). Notice that B (Q(un)) (defined previously) equals the
image of L, prim in Bn(Q(un)), and consider p2¢ (B ™(Q(uy))). We remind that
we have B,(Q(un)) = Kan_1(Q(un)). Let now F be an arbitrary abelian number
field, with conductor N. There is a canonical map Kpn_y(F) — Kon_1(Q(un)) that
is injective, so that one can view I;’zn_l(F) as a sublattice of I?zn_l(Q(uN)). There
is also a transfer map Trguy)/F : ﬁ'gn_l(Q(uN)) — I~{2n_1(F). We will denote by
B,.(F) the sublattice of Kon1 (F') generated by Trg(/qunnr(en(w’)), for all ' € pn.
If F is a real abelian field and n is odd then we obtain an isomorphism of lattices

with distribution relation of weight n — 1:

Cnr(\JF) ~ Bei
Lr = Bu(F)=p,"(Bn(F)).

Finally, we note that BFF'™(F) be the image of Lp yrim in B,(F). Consider also
pBei(BPrm(F)). Since Ly — L is surjective, the same holds for BE™(Q(un)) —
Bﬁrzm(F)‘
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Using theorem 9.7, we obtain:

Theorem(Kolster, Nguyen Quang Do [48], Kolster [43]) 9.8 For a real abelian
field F' and n > 2 odd, we have

[Ba(F) : BE™(F)] = £,(F).
Also, for p = 2 we have:

(m($) : Da(F)] ~a L5700 LEY) |~y E(F)

F,prim

and, consequently,
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Chapter 10

The Lichtenbaum Conjecture at

the prime 2

Let p be a prime, F' be a number field, and S := S, U S, where S, is the set of the
primes of F' above p and S, is the set of the archimedean places of F.

Let F.o/F be the cyclotomic Z-extension of F. As we know, this is defined as
the unique Z-extension of F inside F(upe) := |, 50 F(ptp). Let T' := Gal(Fo/F)
and A’ := Gal(F(uy=)/Fs). We denote the intern;ediate fields of F.,/F by F, for
allr >0 (Fo=F,=F).

Let Goo 1= Gal(F(puy~)/F) and let I' = Z, and A its subgroups such that G, =
I' x A. Let v denote a fixed topological generator of ', and ¥ a fixed topological
generator of I

If the prime p is odd then G, is pro-cyclic and one works with this group. If
p = 2, G is not always pro-cyclic. In the non-exceptional case, G, = I'. We will
work with I. In the exceptional case we work with I'; not G, (G is not pro-cyclic
in this case).

Recall that T' acts on Zy(n) and Qq/Zy(n) for any integer n if F' is a non-
exceptional field. In the exceptional case, I' acts on Zy(n) and Q3/Zy(n) only if
n is an even integer, because in this case A’ acts trivially on these twisted modules.

The case p odd is studied characterwise by Kolster, Nguyen Quang Do, Fleckinger
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in [46], and [47]. We are approaching here the case p = 2, studying essentially the
“plus” part (we can not work inthe same characterwise manner as for p odd).

We will be using the following notations (see chapter 6):
Xyo0,F 1= Buesoo Fyy Xf oo 1= Buesy Kooy,
UZ,oo,F = @uesﬁoo,F,,y 02{00,}7' = @v632 Uoo,Fv-

Lemma 10.1 Let p = 2 and m > 2. Assume either F' is non-exceptional or m is

even. Then we have:
torsz, H' (OF, Za(m)) & H°(O3,Q3/Z;y(m)), and
HY(O3F, Zy(m)) = Homp(Xeo 5, Zo(m)).

Proof: For any v > 0, and for any m > 2, the Hochschild-Serre spectral sequence

reads
0 — HYT,Z/2"(m)) — HY(Gs(F),Z/2"(m))
— HY(Gal(Qs(F)/Fy),Z /2" (m))F — 0,
because cdyI’ = 1. Passing to projective limit with respect to v, we obtain

0 — HY(T, Zo(m)) — H(Gs(F),Zs(m)) = Homp(Xoor, Za(m)) = 0.

The latter module in the sequence is evidently Zo-torsion free, and the first module
is finite. The second assertion is then immediate. Moreover, we obtain

torsg, H}(Gs(F), Za(m)) = HY T, Zy(m)) = Zs(m)p. Now, it is easy to see that
H(T,Zy(m)) = HY(T,Qs/Zo(m) = H(Gs(F),Qa/Za(m)),
using the cohomology with Qy/Zy(m) coefficients of the sequence
0 = Z/2(m) = Qu/Za(m) % Qa/Za(m) — 0,

and Tate’s Lemma (see Lemma 9.1). Note that Gal(s(F)/F) acts trivially on

Q2/Z(m) because m is even.[
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Remark 10.2 If the prime p is odd, the result holds for all m > 2, and all number
fields F (in this case we are working with G ). The proof follows the same lines,
with the difference that we do not need m to be even, because Gal(Q0s(F)/Fo) acts

trivially on Q,/Z,(m) for any m, of course. Also, we have cdyGoo = 1.

Lemma 10.3 Let p = 2 and m > 2. Assume either F 1is non-exceptional or m s

even. Then we have the following short exact sequence:
0 — Coo,p(m)p — C‘fo,p(m)r — H°(O03,Qy/Zo(m)) — 0.
Proof: On finite levels, for any r > 2, we have an exact sequence
0= C(F,)®%Zy— C5(F,)®Zy— Zy — 0,

where the latter group is generated by Ng, (¢,)/F,(1—(2r) mod C(F,)®Z,, and hence a
trivial Gal(F,/F)-module. By m-twisting, passing to the projective limit with respect

to r, and using the fact that Z,(m)" = 0 (see Lemma 9.1), we obtain:

0 = Co,r(m)p = C’fo,F(m)F = Zy(m)p — 0.
But we have just seen in the proof of the previous Lemma that
H(OF, Qs/Za(m)) = Zg(m)p.O0

Remark 10.4 The same result holds for any number field and any m > 2 in the case

the prime p is odd (working with Go, coinvariants of modules constructed with respect
to the tower F(pye)/F).

There is a very important map that helps us relate unit groups and the first

cohomology group:

TS o(n — Dr 2> HY(OF,Zo(n)).

It has been constructed by Soulé in [72] for the case when p is odd, F' a number field,

and m > 2. The same construction works for the case p = 2, F' a non-exceptional
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number field, and m > 2. We show here that it works also in the case p = 2, F is a

exceptional number field, and n odd, n > 2.

Let ({or) € Zy(1) be a generator of the Tate module ({yr is a primitive 2"-root

of unity, and (24, = (pr). Consider (2" € u$" ™" (note that n — 1 is an even
integer). We denote by | 3(”—1)] its corresponding image in H O(Ofrr,/t?r(n—l)). Also,

let (u,) € Ufo,F be a projective system of S-units with respect to norms, that is
Npg,,,/F(4rq1) = u, for all r > 1. We denote by @, the image of u, in HI(OIS;r,uzr)
(by Kummer theory, we have US(F,)/US(F,)* < HYO3 ,usr)). Using the cup

product in cohomology, we can define a map ¢:

B(ur ® 7)) = (corr (8, UG T]) € HY(OF, Za(n)),
because
lim B (05, u§7) & (05, Zaln)).
As
B((ur ® 7)) = §((ur @ (7)),
we obtain the map we need. We will consider the composition of this map with the
map C3, p(n — 1)r — US p(n — 1)r and denote it by

CS p(n—1)r 5 HY(O3, Zo(n)).

As torsz,C3 p(n — 1)p = 0 < torsg, H (O3, Zy(n)) = Z/2Z, we obtain an induced

map of torsion-free groups:
N P -
C’OSOF(n ~1)p — Hl((’)g,Zg(n)).
The restriction of ¥ to C’oo,p(n — 1)r (via the injection presented in the previous

lemma) will be denoted by ¥ too.

Remark 10.5 A different way of constructing the map v over an exceptional field
F would be realized by taking A-invariants of the corresponding map over F(u,), and
use the fact that HY (0%, Zy(n)) = Hl((’)g(‘“), Zo(n))? (refer to Proposition 2.6). The
study of the map C% p(n — e — (Coor(n — 1)p)? becomes then necessary. This has

been done in chapter 7 for special cases only.
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Lemma 10.6 Let p =2 and n > 2. Assume either F' is non-exceptional or n is odd.
Then the map ¢

U5 p(n = 1)r -5 HY(OF,Z(n))

is injective.

Proof: Using the fact that the Weak Leopoldt Conjecture holds for cyclotomic

Z,-extensions, we obtain the following exact sequence:
0= U3 p(n— 1) = BuesXoo,i(n — 1) = Xeo p(n — 1) = X, p(n—1) =0

Let D,_, denote the kernel of Xroo(n — 1) = X}, p(n — 1). Taking cohomology, we
y oo, F g

obtain
0— DE_ /K — U3 p(n—1)r = ®ues¥oo,p(n — Dr = (Da-1)r = 0,

where K 1= @pesXoor,(n — 1)F = (2/22)®), and a commutative diagram with

exact columns

0
1
0 — DI /K
\J \J
Xoorn—1)F =5 Xerp(n—1)F
3 i
HY(03,Za(n))  — Xbop(n—1)F
) {
BuesXoor,(n—r —  (Dar
3 )
Xor(n —1pr — Xer(n—1r
4 X}
Lpn=1r = X p(n—1r
) \J
0 0
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where the first vertical sequence is the Poitou-Tate exact sequence interpreted in
terms of (co)invariant groups of Iwasawa modules (see Chapter 9). Note that we are

using here the isomorphism

%o p(n = 1r 2= ||[/(OF, Zy(n))

(see Theorem 8.4). Diagram chase gives us the result. [J

Remark 10.7 If the prime p is odd, the result holds for any number field F and any

integer n, n > 2, and the proof follows the same lines. One difference would be that

the isomorphism

Xeor(n = Vaw = |I'(OF, Zs(n))

is true with no restriction on the number field F.

Unfortunately, the natural map
C’fo,F(n - 1)p — 00‘5;3,F(n - 1)p

is not always injective. The next lemma depends on the freeness of the A-module
C’m,p. By Kuz’min (see Theorem 7.13), this property holds for F' = Q(uy,{4), where
d is an odd positive integer (and when p is an odd prime it holds for F' = Q(uq4, (p),
where d is relatively prime to p, and d # 2 mod 4).

Lemma 10.8 Let F' = Q(uq,(4), where d is an odd positive integer, and n be an odd

integer, n > 2. Then the natural map
Corn =1)p — Ug pln = 1),
15 tnjective.
Proof: We will prove first that the map
Coor(n — 1)y = Usop(n — 1)
is injective. This amounts to proving that

Coo,p(n — 1)1‘ — (700,1:'(11 — 1)F
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is injective because
ker(Coo,r(n — 1)1 — Coor(n — 1)) = ker(Uoo,r(n — 1)p — Usor(n — 1))

(in fact they are equal to Za(n)r; Coor(n — 1)r = 0 because Coo r(n — 1) is a free A-
module, and Uso r(n — 1)1" = 0 because, by construction, Uy p(n — 1) is a A-torsion
free module). Now, (éoo,p)r is a (finitely generated) free Z;-module, because Coo F
is a (finitely generated) free A-module. Being a Z;-submodule of it, the kernel of the
map, that is (Jse.r/Coor)(n - ', is a free Zs-module.

By Kuz’min [51] (or Greither [28])

(Uoo,F/éoo,F)(” - 1)+ ~ (ﬁ;F/é:oF)(n ~1) ~ X;,F(” —1).

It follows that ((Uee,r/Coor)(n — 1)F)* is finite since X p(n — 1)¥ is finite. Be-
ing at the same time Zo-torsion free it must be trivial. Also, we can see that

(Uso,r/Coo,p)(n — 1)F)™ = 0. Indeed, applying 1 + J to the tautological sequence
J-— C’OO,F(TL -1)— 000,[9(71 —-1)— (000,1:'/000,1:)(72 -1)—0,

and then using the serpent lemma we get that ((Ue,r/Coor)(n — 1)F)™ injects into
(Coop/2C 00, r)(n — 1)F 2 ((A/2A))(n — ljF = 0, where r is the A-rank of Coo r.

Now, if A is a Zo[A]-module, without Z,-torsion, such that A* = A~ = 0, then A
is null, because [A : (AT @ A™)] is finite. Applying this idea to ker(Coo,r(n —1)p —
Uso,r(n — 1)), we obtain that our map is injective.

The next diagram helps us to finish the proof.

0-— COO,F(TL —_ 1)1« -~ C—'foyF(n — 1)F — HO(OIS;v,Qg/Zz(TI, -— 1) —0

1 I
Uop(n —)r — Uoso,p(n —1)r — Dn—1)r — 0
! Il ]

0— Uz,oo,p(n — l)r —¥ /Yzyoo,p(’n —_ 1)r - @uesHo(Fv,Qg/Zg(n - 1)) - 0

In the above diagram only the row sequences are exact, and all squares are com-

mutative. The composition of the last two vertical arrows is canonically injective, so
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that the first arrow is injective. Because we have just proven that the first arrow of

the upper row of vertical arrows is injective, it follows that the middle one,
C'foF(" -1, — 050,17(” - 1)["
is injective.l]

Remark 10.9 For an odd prime p, an abelian field F', and an integer n > 2 the map
US p(n—1)g,, — HYOF,Zy(n)) is injective. Its injectivity follows esse;ztially in the
same way (see Kolster, Nguyen, Fleckinger [46]), but the approach is character-wise,
and there is no restriction on F' (see also Tsuji [78], and Belliard, Nguyen [9]).

The next theorem is one of our main results.

Theorem 10.10 Let F be an abelian number field and F* its mazrimal real subfield.
Let n be an odd integer, n > 3. Then there is a map

CS pe(n = 1) -5 HY(O%4, Zo(n))

and

|coker(~z/))|
| ker(3)]

Proof: The idea of the proof comes from the computation of Bloch and Kato of

= nED -1 | H2(O3, | Zy(n))]

the Tamagawa numbers of the motives Z(n) in [5] (see also [46]). Namely, we compare

the Poitou-Tate duality exact sequence
0 = Xoo s (n — 1)F = HY(OFs, Zo(n) = BuesXy pr (n — 1),

— Xopt(n — 1)1 — Ll_|2(C’)f,~+,Z2(n)) — 0

to the natural invariant/coinvariant exact sequence
0= (Z/2Z)" = (Ugoi+ [ Coopt )1 = 1) = Cog ot (n — 1)

— U2,00,F+ (n— l)r - (Uz,w,F+/Cw,F+)(n - 1)r - 0.
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From the 9-term sequence presented in the Poitou-Tate Global Duality Theorem we

obtain the following 6-term exact sequence (see Theorem 2.16):
0 — Bues HO(F}, Za(n)) = H* (O, Qo/Zo(1 - n))# — HY(OF+,Zo(n)) —

Does HUFF, Qo) Zo(1 — n))* = HY(O%4,Q2/Zo(1 — n))* — [|I(OF+,Zs(n)) = 0.

Using Theorem 8.4 and Proposition 2.12, we obtain immediately the first sequence

to be used. Note that we are using the following identification (based on Proposition
2.12) for the cohomology of R:

HYR,Q,/Z(1 — n))* = Xor(n — )y = Z/2Z.

The first group in the tautological sequence is Coo it (n — 1)F = 0, and the second
Uzt oo(n — V)F = (Z/2Z)" .

Next, we obtain the following commutative diagram:

0
!
(Z/2Z)" — 0
4 X
(Ugooit [Coore)n— 1) L X e (n = 1)F
2] 1
Coo it (n — 1)1 2y HYOL,,Z4(n))
1 4
Dpoops(n =1 —> BuesXopr(n—1);
! !
(Osooit [Coort)n =D 22 Xgps(n—1);
+ 1
0 — (0%, Zs(n))
1
0
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From class field theory we obtain the following important map of torsion A-

modules (see chapter 8):
Uspoo,t | Conrt =% Koo ot
Moreover, using results of Wiles [82], Greither [28], Kuz’min [51], we have:
char(Us oo+ /C—'OO,F+)’= 2* . char( X, r+).

(refer to Theorem 7.9). This will allow us to apply Lemma 6.10 to the induced maps

in T'-cohomology,
(Tz,00,04 [Coopt ) — 1T L5 X s (n — 1)T

(UQ,OO,F+/C'OO,F+)(TL - 1){‘ —£2—> Xoo,F"‘ (n - 1)[‘

obtaining:
[er(f)l oy IRer(f)l

|coker(f;)] " Jcoker(f)]°

The map ¢ has been presented a few paragraphs earlier.

The map h appears by taking the invariant/coinvariant sequence of
0 = U oo, pt = Xpoort — Bues, Zg — 0,
after twisting, and using Zs(n — 1)’ = 0
0= Uzgop(n = 1) B Xy oot (n — 1)1

— Bues HY(F,Qa/Zo(n — 1)) = 0.
Note that HO(R,Qy/Zy(n — 1)) = 0.

All squares in the diagram are commutative. We will justify here only the commu-
tativity of the (¢, h)-square. We see that H'(O%.,Zo(n)) injects in H (O3, Za(n))

and the same is true for local 2-adic fields. Moreover,
H'(OF+,Zo(n)) — Gues H' (Ff, Zo(n)) = (Z/2Z)"
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factors through H'(O%.,Zs(n))/2 which, via the Bockstein sequence, injects into
HY(0%,,Z/2Z(rn)) C F*™/(F*)?, so that we can view it as the signature map. As
the cyclotomic units in F* are positive at all real places, the archimedean components
of their images via both map compositions are null. The commutativity on the finite
components is clear from the definition of the maps.

Now, we take the cardinality of the kernels and the cokernels of the above diagram:

ker(f)l 1 1 g Jker(@)l  ker(f)
feoker(f1)] * Teoker(R)]  [|P(O%., Za(m))l Icoker($)] " feoker(f2)]

Using the facts just presented, we obtain:

|coker()] = 21 - |||[*(OF+ , Zafn))] - H JHES Qo/Zofn — 1))| - [ kex(¥))]

The Poitou-Tate global duality exact sequence provides us once more with the

following 4-term exact sequence:
= I (OF'H on)) = H(O%s, Zo(n)) — Sves H*(Ff, ZLo(n))

s HYO3,,Q2/Zs(1 —n))* = 0.

The result is now, via local duality and the equality between the cardinality of a

finite abelian group and that of its Pontryagin dual:
(coker(1)] = 24 - |HH(Ofs, Za(n))| - |HY( Oy, Qu/Zafn — 1)] - | ker(¥)].
Finally, we obtain:
|coker(ih)| = 27+ - |HA(Of4, Zo(n))| - wna (FF) - [ ker(h)].

We then use Lemma 10.3 to pass to cyclotomic S-units. Finally, the passage to the
torsion-free part is done by the following basic fact: if A is a subgroup of an abelian
group B and A and B have equal finite ranks, then [B: Al =[B: A-tors Bl.O

For an odd prime p, and F abelian field the injective map used is
Crop(n —1)_ = H'(OF, Zyn)).

109



One works with F directly instead of F*, writing down the same Poitou-Tate se-
quences, using the computations of cohomology groups from chapter 2 (with no prob-
lems at infinite places, and no need for n to be odd). Moreover, one can work

characterwise as in Kolster, Nguyen Quang Do, Fleckinger [46], and then reassemble

everything.

Theorem ({46] Theorem 5.4) 10.11 Let F be a complez abelian field, K a totally
real subfield, and p an odd prime, p{[F : K]. Let n € Z, n > 2. For each character
x of Gal(F/K), such that x(—1) = (=1)""!, we have

[HY(OF, Zy(n))¥ : Cly p(n = 1), | = |H*(OF, Zy(n) ).
Consequently, for any odd n, n > 2, and any totally real field K we have

[H(O%, Zy(n)) : O x(n = 1)_] = |H*(OF, Zy(n))],
and for any even n, n > 2, and any complex abelian field F we have

[HY(OF, Z(n)) : Cop pl(n ~ 1), = [H*(OF, Zyf(n))"|-

Let

HI (03, ,,<n))|, hP(F) := |HL(OF, Z,(n))|, and

wa(F) = [J1HO(F, Qp/Zy(n))], wl(F) := |HO(F, Qp/Zy(n))].

Note that H°(F,Q,/Z,(n)) = torsy , H' (0%, Zy(n)) for all primes p.
We present now our most important result.

Theorem 10.12 For a compler abelian number field F and n > 3 odd, we have

ha(F)

(r(l —n) =224 wn(F)

RBez(F)
Here pi:= (U g+ /Coo i+ ), where Ft is the mazimal real subfield of F.
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Proof: It is known that

¢r(s) = [ L)

X
with x running through th characters of Gal(F/@) (or, equivalently, through the
primitive Dirichlet characters belonging to F'). We can deduce then that:
Gl-ny= ] Iei-n- I Li-n).
0 x(~1)=(~1)" o x(=1)=(=1)n1

The first part is related with the quotients of lower etale cohomology groups as
follows (see [46] and [43] ):
For p odd:

Ggl-n) P EPE) e
C;:.;.(l—n) phgp)(ﬁ)/wgp)(m) if n is odd

(P . .
(pe(l—n) ~ —ry(—lh" if n is even
H L(X)l - ’fl) = { ? wy” (F)
X, x(—1)=(-1)»
Note that HZ,(0%,Z,(n)) = Hgt(0§,+,Zp(n))@Hgt(Of;,Zp(n))‘ for j = 1,2, and that
if n is even, then HO(F,Q,/Z,(n)) is null, and if n is odd, then H°(F'*,Q,/Zy(n))

is null.

For p =2, n >3, and F/F* is a C M-extension:

]._.[ L(x,1—n)= (1 = n) ~g i2r2(F)+1 . hg)(F)/w,(f)(F).
xox(-1)=(=1)" Ce (1= n) Qn hB(F+)

(1)

Note that wg)(F"') =2.
Now, we will focus on the second part, the derivative of the L-function. The first

essential fact is that it can be expressed in terms of polylogarithms. Recall that Li,(2)

denotes the n-th polylogarithm and it was defined by:

. o zF
Lln(z)= E F,
k=1

and analytically continued to C\ [1, c0). For an abelian number field F', n > 2, and a
primitive Dirichlet character belonging to F, x, such that x(—1) = (=1)""", we have

the following well-known result of Gross:

, _ n—1 . _
Voot =m =2 sk s @
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where f, is the conductor of x, and

[n,x te— Z X(a) . Lin(ez‘lriﬂ/fx)
amod fy
(here 1 = v/—1 = (4). The character x can be also viewed as a character Y mod NV,
where N is the conductor of F, if n is even, and it is the conductor of F'*| if n is odd.

In [65] Neukirch proved then that:

O =x)p™) £ =N Lge (3)
pIN

We compute the covolume of the lattice pZ¢(B2"™(F)) in (R(n — 1)Hom(FO)+,

n

Firstly, we do the computation for the field Q(un). Let us denote the expression
N1 (n = 1) Lig(w?), w € u5*™, by ¢(0), and let G := Gal(Q(pn)/Q). The real
vector space (R(n — 1)Hom(Qem O+ we are working with is also a R[G]-module, and

the element

=Y zfg‘)?_la € R[G].

oG
Multiplication by « takes the standard lattice of covolume 1 to the lattice

pBei(BP™(Q(un))). So, the covolume we are interested in is given by det o Viewing
it as an element in C[G], and using characters, this determinant becomes:

wa= I SRR

X, x{=1)=(-1)r"1 0€G
(Washington [81], Lemma 1.2). Next, we have a commutative diagram:
Romr(Quy)) — (R(n— 1)Hom(@um). O )+

Tr i lir
I%gn_l(F) —> (R('ﬂ — 1)Hom(F,C))+

where the trace on the right hand side is defined by

t?’@(uN)/F((aa)o)=(( 2 “”)‘_’)

o
o, omodH =6
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where H := Gal(Q(un)/F), & € Gal(F/Q) = G/H. For ¢ € G/H let P(F) =
Ea:&modH ¢(U)’ and N
Bi= > ——————(215;5;?_16 € R[G/H].
GEGIH

As previously we obtain:

\_/

covolume pP*(BE™(F)) = det § = H Z ¢27r e

Z n—1
x, x{—1)=(-1)""1 eG/H
with y running through the characters of G/H. But:
Y w(@)x(3) =) #lo)x(o
seG/H oG

so that we obtain:

n-1 . i
covolume pBez(Bprzm(F)) — I’I N (’I’L 1) )

An— {n,i
XtX(—'l):(.—l)n—l (271-7,) 1

Using (2) and (3), we obtain:
covolume pB¢(BF™(F)) = 272 . £,(F) - H L'(x,1—mn).
X x(=1)=(-1)""1

This gives immediately the relation between the values of the derivative of L-function

at 1 — n and the n-th Beilinson regulator:
H L1 = n) = 27730 . £ (F)™ - (Ranoa(F) : BE™(F)] - RE“(F).
x x(-1)=(-1)"*

When F is abelian number field and n > 3 is odd, the characters are even and they
can be considered as characters of F*. Hence, for n > 3 odd we can show in the same

manner that:

I EGot—n) =27 gy (FH) - [Ranaa (F) « BIF(F)] - RIF(F®).

xeven
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Finally, as we saw in chapter 9, for p odd, under Chern character,
Kynt(F)®Z, maps isomorphically to HL(0%,Z,(n)), and B,(F)®Z, maps isomor-
phically to C’fop(n — 1)r. It follows:

[Kan-1(F) : BI*™(F)] ~p (K3t (F) ® Zp - BE™(F) @ Z,)

= &u(F) - [HH(OF, Zy(n)) : C5 p(n — 1)r]
B { |HZ (054, Z,(n))| if p is odd and n is odd
|HZ(O%, Zo(n)|/|HE(O3, , Z(n))| if pis odd and n is even
(see Theorem 10.11). Thus we have the second part (derivative) of the L-function.
Multiplying it with the first part presented above, we obtain the result for podd. For

p = 2, F* the maximal real subfield of an abelian number field F , and n odd, we

have (refer to theorem 9.4 and theorem 10.10):

[Kon1(F*) @ Zy 2 BI™(F*4) @ L] = 2% - |HX (O, Zo(n))| - £, (FF)
if n = 3mod 4, and

[Kont(F*) @ Zy 2 BY™(F*) @ L] = 2771 - |HY (O, Zo(n))] - £, (F)

if n = 1mod4. Multiplying further with (1) and using theorem 4.8 we obtain the
complete result for an abelian number field F' and an odd n > 3. If n = 3mod 4 we

have:

L ho(F) fua(F)
(pl—n + Qn : hn(F"") )

(208 - b (FF) - Ea(FF)) - (27D . g (F+)~1 . RBei(Ft))

r hn(F) 26F+1 et
= 42 'wn(F)'( o B (F*))
= 42" Z’i?; RE(F).

If n = 1mod 4 we have the following computation:
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ori(FH 41 p (FY w,(F
i - = (2 2ol DeelD)),
(2”+”,1 ) hn(F+) . 5n(F+)) . (2—r1(F+) . gn(F+)—1 . Rfei(F+))
ha(EF) (2" Bei/ ot
) (gp o)
ho(F)
wu(F)

= 2.

= 42" .

. RB=(F).

This finishes the proof. O
As we saw in chapter 4, a motivic formulation is possible since we have a motivic
regulator and it can be compared with the Beilinson regulator. Also, the result has

the same form for both complex and real abelian cases:
Theorem 10.13 For an abelian number field F and n > 3 odd, we have

(p(1 —n) = £2*- n((?) RM(F).

Here p = p(Uso p+ [Coo p+ ), where F'¥ is the mazimal real subfield of F'.

Proof: If F is complex, nothing changes (see chapter 4 for the comparison between
regulators). If F is real, using the proof of the previous theorem, we obtain the

following computation:
Cr(1 = n) = £27 - £,(F)™ - [HY(F, Z(n)) : ImBY ™ (F)] - By'(F)

= 40m L £ (F)F - 2 b (F) - E,(F) - RM(F)
ha(F)
wa(F)

We have denoted by ImBP"™(F) the direct product of the images of the Beilinson

= 42" - RM(F).

group under the injective maps Koni(FY® Z, < H'(F,Z(n)) ® Z,, for all primes p.
Also, note that wi?(F) = 2 if F is real and n is odd. O
The motivic context and tools seem suitable for future work on the Lichtenbaum

Conjecture at the prime 2 for all number fields with no restriction on n.
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List of notations

N,Z,Q,R,C Sets of positive integers, integers, rationals, reals, complexes.

Number field.

Algebraic closure of a field F.

Rational primes.

(Ordinary) Bernoulli number.

Generalized Bernoulli number.

Riemann (-function.

Dedekind (-function of a number field F.

p-adic valuation of z.

z having the same p-adic valuation as y.

Primitive nth root of unity.

Group of nth roots of unity.

Group of all roots of unity in a number field F.
Group of all p-power roots of unity in a number field F'.
Euler -function.

Degree of the field extension F((m)/F.

Largest positive integer M such that F({,m) = F((2p).
Ring of p-adic integers.

Field of p-adic numbers.

Completion of the algebraic closure of Q,,.

Ring of integers of a number field F'.

Class group of a ring O of integers.

The p-Sylow subgroup of the S-ideal class group of F'.
Prime ideals, places (finite and infinite).

the set of the primes of a field F' above p

the set of the archimedean places

p-adic completion of a number field F.
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rank,n»(A)

H"(F, A(k))
H(Or, A(k))

Residue class field of O modulo a prime ideal p.

Ramification index of primes over p in F'.

Inertia degree of primes over p in F.

Degree of the field extension F'/Q.

Number of primes above p in F.

Number of real embeddings of F//Q in C.

Number of pairs of complex embeddings of F//Q in C.

Cardinality of a set T

Order of an element v of a group.

p"-rank of an abelian group A.

Z-rank of an abelian group A.

Torsion subgroup of an abelian group A.

Maximal subgroup of an abelian group A with exponent dividing m.

nth cohomology group of Gal(F/F) with k-fold twisted coefficients A.
nth étale cohomology group of spec O with k-fold twisted coefficients A.
Group of units of a ring R.

nth K-group of a ring R.

Ring of formal power series in the indeterminate T' over a ring R.
Dirichlet character.

Teichmiiller character.

Cyclotomic character.

Subfield of F' fixed by elements of ker x.

Cyclotomic Z,-extension of a number field F'.

L-series attached to a character x.

p-adic L-function attached to a character .

Greatest common divisor of a and b.

Group of units of Op; alternatively, O%.

Group of cyclotomic units of F.

The projective limit of U(F,) ® Z, in a Zextension of F' (using norms).
The projective limit of C(F,) ® Z, in a Z,-extension of F' (using norms).
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Fo/F Zextension of F.

L3 r  The maximal abelian, unramified and S-decomposed pro-p-extension of Fe.
My r The maximal abelian S-ramified pro-p-extension of F.

X2 The Galois group of the extension LSy Foo.

Xoo,r The Galois group of the extension My, 7/ Foo.

Lin(s) (n-th) Polylogarithm.

E.(F) Euler factor of a number field F.
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