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ABSTRACT \‘ . .

The power output from a high turding angle ‘turbine
blade passage depends on many factors and the most impor-
tant of all is theé appropriate pressure distribution along
the pressure and suction surfaces of the blades. The
operation of a fully ‘choked passaée requires the specifi-
cation of the proper operating pressure ratio to avoid the
formation of any compression waves after the geométric
throat which would otherw1se generate a total pressure
loss for the system. o K . ) '
Wlth the advancement of computat10na1 methods, Epé/———_HiT:
two- d1menszona1 supersonic flow field existing after a
choked passage iS'elaborately_analysed to avoid'the adverse

effect of compression waves on the blade performance. For

-different pressure ratios the characteristic waves as well

‘as the pressure distribution are presénted which give a

theoretical prediction for the presence of a possible shock
wave-éfter'the geometric throat of the passage. The shock
free operation of the‘passagp definitely increasés the -
p?fgg oufput of the cascade. The stream iube method of -

pressure distribution is extended for generating the charac-

‘teristic waves covering the entire supersonic flow field

qxisting near the trailing edgé of the fuliy choked passage

of a high turning angle turbiné'bladelpassage; N

i ‘ _ , N
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'CHAPTER 1°
INTRODUCTION

‘The ﬁerformance of high turning turbine blades,
neglecting the losses due to separation, exhibits 'the .ten-
dencf to reach a limiting loading condition rapidly with the
increase of operating total-to-static 'pressure ratios [li.
As the pewer output per blade may be raugmented by increas- "
ing fluid’ deflect1on through the bladlng, the flow passage
as well as the trailing edge portion of the blade should be
thoroughly investigated for high power output associated with-
high operating pressure ratios. The Zweifel lift coefficient .
fS] in the power output equation may be increased by suitably
verying the spacing of the‘blading as suggested by equation
2.1, but the variation of flo&\deflection‘needs further
consideration. Odce a blade row is choked for a certain
pressure ratio,-the reduction in downstream static pressure
dees not influence the flow upstream of the geometric throat of
the passage except tdat further decreases in downstream pressure
generate complications due to the effect of compressibility’
after the throat. The generation of any compressien shock
after thé throat may lead to a loss of total pressure and thus
adversely effecting the performance of the blade. While

analysing the flow behaV1ourcﬁ'ablmh for certaln loading



condition, it thus becomes inevitable on the designer's'pprt
_to specify the range of operating pressure ratios so as to
avoid the formation of such compression shock waves downstream
of the geometric throat of the passage. The graduﬁl increase
gf pressure ratioélfrom the "just choked" condition definitely
increases the overall area of the pressure plotting. However,
the increase of pressure ratio after the fully expanded. flow sit-
uation will not prﬁduce any increase in the power output at
the expense of increased mass flow through the passage. The.
flow deflection caused by the presencg'of compression and
expansion waves which may become' excessive due to this high
pressure ratio should be specified for the smooth operation
of the flow through the passage. As the flow deflection influences the
Zweifei lift coefficient, a proper assessment of the flow
deflection becomes necessary to reduce any adverse effect
on'the.power output of the blading. ‘

The present thesis presents a methdd of determining
the possible shotk fofmation for different operating pressure
ratios together with an outline of the procedure to obtaih
the pressuré distribution inside the blade passage. The pro-
cedure used for designing any highly curved blade passage is
the application of the stréamline curvature method which is
found to be more-suitable than other methods not only because
of its simplicity and'rapidity discussed in Chapter 2 of this

thesis. The pressure distribution for both the suction and



pressure”surface is also obtained by this method as well as
the Mach number distribution required to analyse the super-'
.sonic flow field, if, in faqt; it exists. The parametéré
pertaining to the geometfic throat aré usggfto predict the
presence of any compression waves downstreal‘nl of the throat
which may effect the flow near the blade trailing edge.

The method for analysing a supersonic flow system is
discussed both in Chapter. 3 and Chapter 4. The édvantage of '
the method outlined in Chapter 3 is that the use of Cartesian
coordinate 5ystem‘for Fhe method of characteristics avoids
the solution of the equation which expresses the Prandtl:
Meyer expansion angle v in terms of the Mach number of the
flow field. Ilowever, since the value of the Mach angle u is
. known the Mach numbeg can easily be obtained ahd then v can
'be'calculated using the Prandtl-Meyer expression. Also this
method gives the coordinates of thé éoints whereas the method
described in Chap€gr 4 covers the entire flow field in the
form of lattices with angles specified for each side of the
lattice. | |

The aim of this thesis is to develop é'suitable com-
puter program for the analysis of a supersonic flow field
including the location of compression shocks and expansion
fans and the distribution of the static pressufé on a suction
surface downstream ofnthe throat of a highly'curved passage.

Though it has been developed for a two dimensional case, the
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method can be slightly modified to accommodate the problems
of'axi-symmetrical flow. In Chapter 4, the classical
method (such as Riemann Invariants) for describing a super-
sonic flow fielﬁ is briefly outlined and for a peessure Bt
ratio (PO/P = 2,.486), this method is eompared with that
developed in Chapter 3 end as one would expect the methods
tally with reasonable accuracy. | _ *
The numerical analysis technique utiiizing the method
of—characterlstlcs as developed in Chapter 3 is used for
McMaster blade passage with three different total-to- statlc
pressure ratlos viz., 2.486, 2.752 and '3.038. For comparlson‘
purpeees tﬂe analysis is also car?ied out on another blade
shape in which the flat back section.of the blade downstream
of the throat, on the suction surface is given a small radius
of curvature. This modification would be of considerable

structural value to the blade.




_ CHAPTER 2
THEORETICAL ANALYSIS‘ AND
) BLADE PROFILE CONSTRUCTION

2.1 Design Procedure

In the early 1900's, compressor and turbine séage
désign was based on the pitch-line calculations using mean
camber line as th% reference for inlet and exit anglss. But
later, due to the introduction of higher rotational speeds,
the flow was observed to gravitate towafds the shroud area 6.f the
 blades. This gave a'non-uniform flow distribution thfough
the blade passage. This difficulty was overcome by using
the concept of radial equilibrium which assumed that no
radial flow existed in the flowpath and therefore, there
existed a uniforﬁ axial mass flow through the passages. The
basic idea was simply to "under-expand" the flow near the tip
and “over-expand" the flow near the hub. This differential
expansion process along with-the increasing pressure distri-
bution in the.radial direction gave a uniform mass flow in
the axial direction and this uniform mass flow gave a better
distribution of loads in all sections ofrthe blading. The_
design of blading on the concept of radial equilibrium was
a considerable step forward in turbine and compressor'design

and its use was confirmed by ©the jmproved performance of the



blading. Utilizing the concept of radial equilibrium, the
résultiﬁg design prdvided high pressure ratios and high
enthalpy drops by stage and also high flow deflection angles.
The present day method of cascade performance depends

on the radial équiliBrium free vortex de§;gn.' Two assuhp-
tions are involved in this design [25]

"i) The flow is, assumed to be in radial equilibrium

before and after all blade rows, such that

mVZ

'S . %Ir""“r—T
ii) The Tangential velocity distribution is idealized
to Ge a free vortex in which the product of
tangential velocity and radius is constant, .that
i?’ vy = ‘constant. |
* The blades @esigned usipg this concept are generally
knoﬁn as free vorte% blades. The  free vortex design calls
for a high degree of twist in the rofating blades and this
results. in a 1argé change in the inlet and outlet angles
across the span of the blades. Also, the manufacturing of
twisted blades reduires precise instrumentation and a high

degree of technical expertise.

4

There are other types of design procedures used for
compressor and turbine bladings. For example, the mapping
techniques used in conjunction with potential flow theory

may be used to establish the stream-lines through a cascade.
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The flow turnfﬁg is more realisticallf assessed with the air-
foil thickness. taken into éonsiderationﬂ These types of flow
calculations are usually restricted to two-dimensional passages.
The theoretical calculations are labérious however and it has
been found easier and more direct to describe the profile
shape over the required range of turning angies and then to
design the channel by varying the curvature at ﬁoints on the
profile to obtain the most favourable pressure distributioﬂ
around the blades. .

) The computation methods now available may break down
when applied to.da very high surface curvatures. The methods

)
of Martensen (10) anid’Stanitz (9) have been used for many

years in blade design. The method of Margensen is not an
appropriate one to modern designs since itlis essentially a
method involving only incompressible flow. Stanitz's method
involves laborious mathematical calculations for a relaxation
solutlon of a potential function along a blade surface. The
Tecent advancement of computer science made it p0551b1e to
use finite difference or finite element solutions to the
equations of motion, momentum, and energy.. Examples of these
methods are found in the work of McDgnald [11] and Davies énd
Millar [4]. These‘later me thods fhough'very‘accurate in des-
cribing the flow through the blade passage, poses certain
difficulties. A large number of nodal points are required

.
- A

_to obtain a good engineering solution which again calls for,
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a computer with a large memory. v

An easy and direct method of obtaining both the sur-
face pressure and veléﬁity distribution is the. streamline
curvature technique. Tﬁis method is described in- the works
of Stannard (7), Kumar (S5), Malhotra (6). The . streamline
curvature technique has two defects which may surface during
‘the ‘design. They can be briefly stated as follows:

- (a) As the turning angle increases that poftion of
the 'blade covered by the method degcreases (Region B, Figure
2.2). “

(b) As the blade nears choking the basic assumptions

used in the analysis break down.

2.2 Design of Blaﬁe\Shape

As the gas passes through a blade row it experiences
a change in momentum. Depending on the tdtgl turning of the
gas through‘fhe blade passage;'the rate of change of momeﬁtum
will vary and a proportional force can be derived from the
blade row. The main aim of the blade shape design’'is to
achieve high turning, which provigés greater lift (up to a
maximum, of course) across the blade without any unfavourable
developmenf or separation within the blade passage. The
blade 1lift coefficient .has been defined by Zweifel [3] ds
follows: '

CL = 2(s/b) coszae (tanai -'tanae) 52.1)

where C; is so-called Zweifel lift coefficient (please refer
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to Figufe 2.1 and the nomenclature for further notations).
In the design shown in this thesis 1ift coefficient is
assumed to be 1.0 and hence for fixed inlet and outlet
’angles, the pitch-chord ratio (s/b) is also defined.

Thus, the de#ign is simplified in defining the vari-
ation of surfa;e curvature, particularly on the suction
surface, to eliminate whereverlpossible adverse pressurer
gradients. From the design of any turbine blade, it is
obvious that tﬂe veloéity at the Efailing edge region is
very high'(Figure 2.3), usually reaching?sgglc speed for
blade pressure ratios slightly higher than the choking
pressure ratio of 1.893:1. OnFe this stage is .reached a
slight change in curvature will give a very rapid increase
in the vélocity near the surface which indutes patches of
supersonic flow near the frailing,edge region of the blade

passage,

2.2.1 Blade Layout

The "flat-back" blade design is the easiest pﬁ?.tqzé.
carry out since that portion of the blade downstre5m¢§¥ :.?‘
- throat is straight and no adverse pressure gradient iéiirgﬁ
sent in this region. The following steps are usuaily‘ﬁéken
in the construction of fhe blade surface profile:
(a) Two parallel lines are drawn at a distance-

N -

b + f& apart, representing the leading and tfailihg edges of

v -
T e T o 4 g e S M ¢
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the cascade. 4A suitable scale may be chosen, say 1" = 10"
for the proper sketching of the blade surface (Eee Figure
2.5). ‘ |
(b) With the outlet angle known, for a flat-baﬁk
'blade, the throat dimension is effectively fixed by thq
blade spacing. The throat dimension (0) is calculated from
the follewing relatidn:“ |
'f 0/s =. cosg,
" where a,. = blade outlet angle.

(c) The pitch distance (s) is marked on the trailing

R
edge line and two trailing edge circles*are drawn for the
two blades ensuring that the trailing edge line is tanggnf'to
Ethe circles. An arc éf?;ddiustq * Ty is now drawn with,the
centre located at the same point as the trailing edge circle.
Depending onAthg‘blade.fot%tional diyectioq,'either of the
circles can be chosen as starting point. '

(d) A tangeﬁt is dréwn to the other circle at an
aqgle.sse = Arc cos (0/s - AcosB) where Acosg deeends on
the exit plane Mach number (M ). The ex&t Mach number can
be estimated from the velocity diagrams and from this the
Mach number, and AcosB can be calculated from Figure 2.4
which shows the exit Mach.numbep as a function of AcosB. A
curve 1s then drawn from the trailing edge to ‘the throat ‘
position. For flat-back blades, the curve can be feplacéd

by a straight line. . In Q;aﬁtice of course, a small curva-

~
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ture is drawn at the throat position to complete the surfece
contour of the‘suctidn surface. A smooth continuous contour
is required to avoid any undesirable flow separation near
the trailing edge of the blades.

'(e) The inlet bla@e angle Bsi is determined at this
stage which actually varies from a; + 20° to a; * 15° that
is @; *.a;. * nose angle/2.0 where ai'= flow angle at inlef;
@;. = incidence angle which normally falls between 0° to 's°
Nose angle = 20° (reaction blade, ref. 6). "Once the blade
inlet angle sgi;rs found, then B » the blade outlet angle
may be calculeted Bse is the’ angle made by the suction sur-
~face at the point B as shown 1n Figure (2 5) and B 1is the
point where the tangent from Fralllng edge c1rc1e touches
the arc drawn from the other traili%g edge point. The
angle B8 - usually varies from @, - }00 to a, - 5° where
' e, = flow angle at outlet of the cascade.

(£) The:nose radius of the blade will effectively
supply about 15° of the total turning. The remaining turn-
ing of the flow is obtained frpm the Eegion of suction sur-
face curvature between the tangént to the nose radius and
throat. Hence, after calculating Bg; and B it can be
seen from a simple geometfital consideration, Figure (2.6)

that

sin o] = (/B)/(R/D) = E .2 (2.2)
: -1

where x/b is the non-dimensional chord. T
{

lsin 851
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Tangent to Leading Position of

Throat

Edge Circle

Sin Ss; +J5in'485e ,.-—- X/b/ﬁ”s/b

- Gy

= Area.of the Histogram

&

Figure 2.6 Geometry of Suction Surface Curvature.
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Equation (2.2) can be representéd in the form of a rectangle
of area |sin Bsii + |sin Bsel on a_graph paper with coordi-
natgs x/b and b/Rs, Figure (2.7). The area of the rectangle
now represents the blade suction surface curvature. The
blade surface design entirely depends on the redistribution
of this area in the form of histogram which ensures the
desired pressure distribution over the suction surface with-
out significant separation.

(g) A histogram is now superimposed on the rectangle
drawn with the peak value .of histogram lying somewhere 0.2 <
(x/b) < 0.55. The histogram is shown in Figure (2.7).

Though the histogram is discontinuous, the actual blade
curvature when drawn 1is neceséarily continuous. The suction
surface can next be drawn aé continuous arcs equal to the
radii taken from the histogram at proper x/b ratios which
give the RS/b for the curvatures. The entire process depends
on good draftsmanship as the contours should be continuous.

) (h) The pressure surface is drawn with monotonically
decreasing channel width similar to the nozzle design. The
work of Mr. Malhotra (6) can be referred to for obtaining
further information on the process of the blade surface
construction. (See also Referenceslé and 7.)

Using the above method and the original version of
the pressure distribugion program a series of such blades

was designed by Malhotra (6) with 1ift coefficients varying
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from 0.8 to 1.2 and total turning angles from 115° to 140°.
One particular blade which was chosen for further
analysis is the McMaster blade with a lift coefficient of
1.0 and total turning angle 128°30° . '
To establish the theoretical flow E}OPerties within
a blade passage;/the stream-line curvature method has been
adapted as described in the next section,
g“’-\

2.3 Stream-line Curvature Method

This method is discussed elaborately in the work of
Kumar (5) and Malhotra (6) and further details can be

obtained from their works.

2.3.1 ~Stream-line and Quasi-orthogonal System

In this method, the blade passage 1is divided into
a number of stream tubes with the help of a good drafting
machine.  The number of-.stream tubes depends on the choice
of the designer and in the case at hand nine stream tubes
were chosen to cover ;he entire blade paésage. The number
of stream-lines chosen here gave good accuracy without
overly ézmplicating the computation method. The exact
location of the generatioﬂ of stream tubes may not be
possible to determine at this stage.

Next a set of orthogonals are drawn which intersects -

every stream-line at 90_degrees exactly -once. Figure (2.1l)
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shows the’ three-dimensional orthogonal surface. The stream-
lines and their normals form a grid system for the flow
solution. The system is drawn aslaccurately as possible
with the aid of a drafting machine as shown in Figure (2.9).
The general equations are developed below which are used in

the solution of a computer program.

2,3,2 Derivation of Equations

The following assumptions are made in-the derivation
ﬁf the equations: -

(a) thé working fluid is iﬁviscid, but compressible

(b) the'flow is steady

(c) the flow ig two-dimensional

(d) the flow is isentraopic, and

(e) the mid-passage line is defined as a ;¥?€;m-

line. " |

Considering a unit depth of the field, the continuity

equation for one stream tube is pVAn, Figure (2.12).

For the whole passage the mass flow is
0 .

] o' R '
. om =_j oVdn | o (2.3)

where n,6 = total length of the orthogonal line between the
two boundaries.
The Momentum equations along stream-lines and ortho-

gonals respectively are:
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3V _ 3p

pV -é*-s~ 7S and (2.4)
A
Ve _ . 8p . 2 236

2w n A (2.5)

Equation 2.4 provides the balance between the acceler-
ation and the pressure gradient along the stream-line whereas
equation 2.5 is taken normal to the stream-line. For the
latter case, the acceleration deﬁends on the stream-line cﬁrva—
ture, 1/R or 36/3s. . .

Equations 2.3 and 2.5 can be numerically integrated
along each orthogonal by assuming a certain velocity at either
surface and then calculating the pressure, density and velocity
at a neighbouring point with the help of the assumed velocity

for the initial calculations and also considering the known

. .value of radius of curvature at the point of consideration.

Once the.density an& velocity at each point are known, the
mass flow per unit height of the blade passagé can be calcu-
lated and compared with the‘¢esign mass flow rate. If there
exists a difference in the calculated m;ss flows, the velo-
city is corrected to obtain th@ proper mass flow rate.

In the same fashion, the velocities and pressures
can be calculated with the help of the known values of the
radius of curvature at each point. A computer program has
been provided for calculating the various flow parameters at

each of the intersections of orthogonals and stream-lines.

From Equation 2.4, it can be conveniently shown that,
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X ‘ 1 ' Q
vav = - rap - ) (2.6)
and from Equation 2.5 ‘
2 . .
1 _ Vv
(  2dp = +pdn @2

(One should note that for the passage considered here, g% is
positive as dp increases with dn.)
From Equations 2.6 and %.7
r,d:n ’=-_ - Vdv
v _ _dn

or . g = -z - (2.8)
If C is the éurvature, the Equation 2.8 may be re-
written as: »
a |
" C dn . 0 . . (2.9)

The curvature C is assumed to vary linearly along the ortho-

L]

gonal and can be expressed in the form:

. n
C = Cs + (Cp - CS) T

o (2.10)

where Cp and Cs are the curvatures at the pressure and suction

surfaces respectgvely. "

The differentiation of Equation 2.10 results in the

T

’followiﬁg: . ,
‘ dn
dc 0+ (C, "Cs):ﬁg o .
n o g .
oT dn = 0 dC S (2.1
(Cp Csj.r . |

From Equations 2.9 and 2.11

av ' Ny ...
v . c . dC
d p s
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v "o c? (2.12)
oT = exp {- - . } 2.12
2, - CJ)

Equation 2.12 defines the velocity at any point on
an orthogonal as a function of curvature. The velocity of

the mid-channel can be obtained as follows:

C o+ C
= S
Cmid
‘n
- - 0 2
Vnid expl- srr——77T -+ Cpig!
P )
| ‘ 2
N : (C_+C)
s oexpls Ty e
P 5
\'E n, 2 pr * Cs)2
A = exp{- - . C% - - Y- (2.13)
- Vhid 2(C, - C) 4 o

Using the ‘alternative simple assumption that radius -

_of curvature varies linearly across the passage [6]:

- n  ML.CL.C
C_+ (C. - COT" —Btri;rég-
g_;_ = (2{-E S PO}y P s (2.14)
mid . Cp + CS ' '

LN
*

The above equatien can be simplified to obtain an

expression as follows:

4

1

n

. 2
: 3 _n 1. 1 n
= exp{n_[C (5 - =—) + C_. - =(C_-Cl=]} (2.1%)
nid ol~s % o §p  Z%p s noz

At the pressure surface C = Cp and Equation 2.12 can be

written ;

ad



30

Sonic Line |
Geometric Throat

\Flow

“»

Fiﬁure 2.13(a) Sonic Line in Convergent Blade
\ Passage

Flow

Streamtube,

~, [
7_;/ Sonic line.
[

Y
-~ T 575

[}

Figufe 2.13(b) Stream .tube Approximation to

Sonic Line



31

n

- _ 0 2
vpressure exp{ ‘Z(Cp - CS) ’ Cp}
pressure p s P

The above expression can also be simplified further to give

v = exp{no[(C +c)-22. % - -cC )“2]} (2.16)
Vpressure T P s . s nO ) P S %

For the particular case when Cp = C, which may occur
near the blade trailing edge Equation 2.13 becomes:

v 1 n " :
= expln (3 - =—)C_} (2.17)
mid "2 n, s

“With the help of the above equations, the mass A£low .
per unit area éan be calculated. From the known inlet flow
conditions and the isentropic flow relations, the velocity
distribution can also be estimated. For thé mass flow calcu-
lation; iteration can be carried out using the mid-channel
Eglodity as the variable until it cbnverges to a total mass
flow equal to that allowed by choking or to some other design
inlet mass flow. o |

- 4

2.4 Development of Computer Program

-

The computer program is used to find the Mach number

oy
distribution together with other flow parameters along the

stream-lines. The Mach number distribution at the theoretical

throat is utilized for analysing tHe trailing edge flow

et
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behaviour of the McMaster blades for different pressure
ratios. As‘thé flow velocity at the theoretical throat
exceeded the sonic velocity then the method of characteris-
tics can be applied for analysing the downstream flow condi-
tions, This technique allows one to show any expansion or
compression waves that may exist in the downstream flow field
of the blade passage. The actual flow pattern can be vari-
fied during model or full scale testing with the help of a
Schlieren technique which can be used to observe the flow
near the trailipg/éﬁg:}region of tﬁe passage..

The complete program was initially developed and
successfully used by earlier researchers; see references (5),
(6), and (7). Further details can be obtained. from these ‘
woTks. “

The mass flow (m), can also be calculated using the

rela;ion
- . ch - M .
m = ﬂ—_ *(0) *PO *12-0 * T_'_l
. v+1)/2(y-1)
g °re1 Trel (1+ v-1 MZ)

For cﬁoking conditdion M-= 1.0 and for y = 1.4, the ‘above
expression reduces to
0 *g

- e 12.0 -
Moke - KT * (0) * Py *T1.728 (2.18)
_ 8 Ora1 rel

The static temperature (T) it inlet is given by the isentropic

flow relation in the form
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T

o

T = rel - (2.19)

y - 1
Ly =M

where.Mi = Mach number at inlet.

The static pressure (p), can be expressed as

T 7T
p = P * ( ) (2.20)
rel(inlet) 0ol

The density (p) can be calculated from the Ideal Gas

Law written in the form

o = p_* 144.0 . . ) (2.21)
g i

1

While the sonic velocity (a) is given by the expression

a = /ch R, T . (2.22)

Hence the resultant velocity is
Vo= M=*a ' L (2.29)
Also the design channel mass flow can be expressed as

Ci N

Mldesign) = ° *V * 170 - (2.24)

'whefe-ci = channel width at the inlet of the passage.

" An iteration process is.initiated by assuming a mid- -

channel stream-line velocity. TQe orthogonal is divided into
eight equal parts and it is assumed that each part corres- |

ponds to a channel between two stream-lines With the known'*
values of pressure'surface and suction surfice curvatures and

the length of the orthogonals, using Equations 2.15, 2.16,
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and 2.17, the velocities at nine pointé along each ofthogonal
are obtained. Also from known values of relative total
pressure, temperature and relative velocities, density at
each stream-line is calculated using simple thermodynamic

reldtionships.

Let Z(I) = (I) » W(I) where Z(I) is the mass flow per

unit area. Then calculating 2(1), Z(2)...etc. at all the nine

points along the orthogonal line, the total mass flow through
w ‘

the channel can be obtained using the following equation [12].

m = {0.03489(Z(1) +'Z(9)) + 0.20769(Z2(2) + 2(8))
- 0.03273(Z(3) + Z(7)) + 0.37023(Z(4) + Z(6})

- D.16014(Z(5))} # 9%9[&3 (2.25)

Here the géuge refers to the orthogonal length.' ’
The Mach number at each and every station is calcu--

lated based on the velocity as given above and the speed of

sound based on the static tempetrature at the point in question.

2;5 Alternative Choké Calculation

| The_proé}am discissed earlier may cause problems when
applying it.po'calculéte the flow parameters in the vicinity
of a chokgd throat. As is obvious from the statement that
for maximum mass flow, the derivative dp/dA changes its sign
at the throat, the program djverges from the solution while
hunting for the correct mass flow with the help of a simple

algorithm, This difficulty is generally .avoided by Eonsider-

’
e T e MY, camrThe L3 L D1
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ing the blade surface to have a small curvature near the
throat region. Though arbitrary and somewhat unsatisfactory,
it does allow the computer program to proceed. JFurther, it
has'bean obserVedlthat most~turbine blades have a radius of
curvature at the throat although it is difficult to numeri-
cally assess. In the final analysis it means that the actual
location of the choked throat may be somewhat different than
thé theoretical location but close enough to it for all prac-
tical purposes.

With the method diséhssed earlier it is obvious that
the flow;wii; choké in the stream tube closest to the suction
surface, the choking process will then progress towards the
pressure sufface. To mdake the computer program work under
this condif&on, an altérnative pfogram stateﬁggtﬂis adde
When the Mach number at the geometric throat reaches a-
critical value, the velocity distribution is calculated from
the pressure surface towards the suction surface with the
help of.Equétion 2.16. To start the calculation it is assumed .
that the flow -has reached sonic condition on the pressure sur-
face first. Though for a real viscous fluid, the throat may
shift by a small percéntagé of axial chord (Figure 2.13), the
assumption can be treated as first approximafion for generat-
" ing potential fléw. '_

Certain shortcomings are inhefent.in this calculation

as just described, because it is assumed that there is a

-
v
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linear rate of change of curvature across the throat and also
the mass flow as calculated is generally a little less than

the design geometric throat value.

2.6 The Trailing Edge Region °

The region of the blgde paséage downstream of the
geometrit throat has been t;rmed the trailing edge region -
this region constitutes a large portion of the suction sﬁfface
of many highly loaded blades. The study of the trailing edge
effect is important as the trailinguedge'regioq dgtermiﬁes
the flow pattern of the gases.onée they leave the blade
passage;. Depending on’'the working pressure ra;io and trail-
ing edge configuratién;'the flow pattefn'will be different
for different_conditions.' 0f the above two factors, the |
influence'of operating pressure ratio plays an important role
in shaping the flow pattern in the tfailing edge region. The
complete flow analysis in this region is important for the
" following vital reasons: ’ )

(a) distribution of blade loading

(b) aerodynamic moments about the neutral axis
(c} blade vibration and flutter

(d) bounda;y layer behaviour and wake -thickness’
(e) flow deflection at exit plane, énd

(f£) the estimation of the exit plane static pressure

distribution for possible use in the design of
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blade cooling air passages.
For a converging-passage the portion of the choke
line and the fluid properties can be estimated for the cri-
tical operating condition of the passage. When the back
pressure falls below the critical fressure at the throat, an
expansion wave system.exists around the trailing edge of the
blade. Once the pressure ratio (p/Po) is below critical, the
initial dne-dimengional floﬁ‘ahalysis will not give a proper
solution of the pfoblem. “The expansion wave system génerated
at the trailing edge will modify the static pressure distri-
bution as the flow passes through the expansion wave system.
A variation of working pressure ratioslwill produce different
expansion wave patterfis around the blade trailing édge. The
trailing edge thickness is neglected. in the analysis and
expansion waves, are considered to divérge from the centre of
the trailing edge radius. The éxpansion fan so generated,
interacts with a weak shock wave further downstréam and this
shock wave balances the pressure ta the downstream back pre-
ssure. ‘At a §mall distance downstream ffom the cascade the
wave system cancels out leaving a net f;ow deviétion and a
reduced static pressure. The system can be represented for
1% or 2° waves depen&ing.on the accuracy:requifed. For pre-
ssure ratios greater than 4:1, the wave pattern becomes md}e
complicated and entropy changes along with the gradients of

temperature and pressure may be noted.
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Fpr analysing the flow at't'i
of a flat-back converging passage thibxethod of characteris-
. (A

tics is found to be more suitable. 'Igythe next chapter this

3

trailing edge region

5sible and is applied

to the flow analysis of the McMaster blai-. The complete

A computer program was developed Iwy finding the pre-

ssure distribution over thelMcMast blades. \Though the gen-
eral. features of the distriﬁution and changes with angle of
attack awaiting expefimental verification for this blade
profile, a favourable pressuré gradient is shown to'éx;st on
the suction surface for the under-expanded case. The compu-
tation method is adequate for design purposes. The Mach
number distribution at the exit plahe gives an approximétion; .
of the flow condition at the trailing edge or along the geome-
tric throat of the blade passage. This Mach number distri-
bution is utilized in finding the theoretical characteristic

curves near the trailing edge of the passage as shown in a

later section of this thesis.

2.7 Performﬁnce of a Transonic Passage

For isentropic flow through a convergent section the

. flow will choke for a critical ratio of stagnation pressure

N
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TABLE 1

LEADING PARTICULARS OF McMASTER BLADE

Total turning angle ‘ 128° 30
Inlet air angle 64°
‘Outlét air angle (at Choking) : 64° 30"
Lift coefficient (Zweifel) . 1.0 |
Pitch | ' 0.650 inches (16.51 mm)
' Axial chord = : ©1.00 inch . (25.4 )
Uncovered. turning - 0° ‘
- Geometric throat ' : 0.257 inches (6.53 mm)
Inlet choking Mach number | 0.68’
L 5
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) . ‘
(PO) to back pressure (pb = p ). The choking mass flow is

then given by [25] 4
~
m [ReTo g - .
= 0,686
A P
0 ~”

fof M=1.0 and vy = 1.4,
For any back pressure higher than the criﬁical pre-°
ssure, the mass flow will decreiﬁe with'the increase of back
~pressure. But if the back pressure is lower than the critical
pressure, the flow will expand from the throat to the'trailing
edge of iqn surface. If the section of the passage in this
region is hi, ly curired;\for an over-expansion condition the
efflux angle of the flow will Qeviate greatly frogfthe normal
operation without any expansion. The characteristic curvesl
for a curved back surface will be of'cqmplicated nature deny:
: ing any theoretical ﬁrediction of gas outlet angle froﬁ the
cascade. For a straight*or flatback'bléde\surface_this diffi-
culty ié reduced to some extent as the flow EhF;actg?istics_
are much simplier on flatback blades. The only resort left
to the desigﬁer in eithef case fop estimating the exact gas
outlet angle is to make use of a flow visu;Iization technique.
- ' In transoﬁic passages there are suﬁersoqic flqw patches
in the floQ field even with-a subjsonic inlet Mach number. The
highly curved blades again worsen the situation for which a

theoretical analysis will not give any adequate information

of the flow condition inéide the passage. Somé researchers
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4 .
[22] are of the opinion that shocks may even be generated near

the suction surface leading edge. .This occurrence of shock
may drastically change the flow pattern and consequently.the

static pressure distribution in the blade passage.

2.8 Shock - Boundary Layer Interaction

The shock and boundary layer phenomena are complex by
themselves, their interaction makes the problem more compli-
cated. The analytic solution of the interaction is still not
available, although the recent papers in £he area show a com-
bination of theoretical analysis and a flow visualization
technique. The highly curved transonic blading are more read-
ily effected by this phend;enon. So the study of the such
blading with the help.of a Schlieren or Shadowgraph apparatus
becomes inevitable in the understanding of actual f}Ow beha-
viour in such blades, particularly when considering a. wide
range of pressutﬁ ratios. —

Consider the fact that a beundary layer is genetrated
along a surface to maintain the no-slip condition between the
fluid and the surface. The interaction of shock with the
boundary layer produces adv;rse flow‘phenomenoﬁ which results
in further losses -in the blade passage. If the shock strength
is enough to create a separation of the boundary layer from
the surface therg appears to be a %sgduallincrease in the sur-

face static pressure of the blading [30]. Though a weak
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interaction may produce mild adverse effects, the prediction

of a strong interaction is impbssible ﬁsing the present
analytical procedure. These circumstances call for a flow
visualization technique to be adopted in order to experi-
mentally show the flow behaVLo%§ in "transonic blading.

"The experimental 1nvest1gat10ns {20] indicate that
there is marked change in the pressure distribution due to
the interaction. Though the interaction process was known
to sciéntists, it is only recently that some numerical tech-
niques are being applied to obtain a ‘possible solution of the
. shock-boundary layer 1nteract10n B

All the above dlscu551ons call for a good visuali-
zation technique to‘be adopted to completely understand the
flow behaviour. The Applied Dynamics Laboratory of‘McMasﬁer
University provides a very useful blow-down cascade type wind
tunnel, but bécagse of the horizontal construction of the test
section a vertical Sclieren or Shadowgraph system 1is required.
The information available for vertical Schlieren system ig
very limited, particularly applied to cascades, and because
a vertical system is difficult to deéign to be very rigid
researéhgrs usually prefer a horizontal arrangement of the °

system.

2.9 Flow Visualization Apparatus

The prdposed Schlieren/Shadowgraph system is shown in

i

e e e A
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, v
Figure 2.17. The main light beam which traverses the test

. section is vertically orien;ed. A monochromatic ™ight source
S of high intensity generates suffi%ient light to illuminate
thé test section. The source may be either a circular or a
rectangular type dependlng on the shape of the knife edge

KE used in thg system. nght from source S is reflected
vertically'déwnward with ﬁhe help of a plane surface mirror
M, and then travels downward thfough the lens L,, beam splitter
BS and finally onto plane mirror.Mz. The rays of lighf are
;hen made incident on the parabolic mirror PM from therg light
rays travel through the test section onto the plane ﬁiréor M.
The pencil of rays then travels back along the incident path
and only at the beam splitter it is reflected to the camera

C. The parabolic mirror used is of f/8 ‘size with a focal
length of 48". The camera ﬁas a large focal length léns for
obtaining the largest possible ifage of the teﬁt section. All
the components are mounted on a portable structure which is
normally independent of the test section structure of the wind.
tunnel.

The blades are to be fixed in the test section parallel
to the light rayé with the help‘of clear acrylic hlastic which
will give better fixing quality as well ﬁs maintaining the
transparency for the liéht to ‘pass through. The bottom and
top sections are covered by two round glass plates which are

désigned to make the test section more rigiﬁ. All mirrors

and lenses can be easily adjusted to suitable position for

\J
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Figure 2:17 Schematic of a Vertical Schlieren
Arrangement
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\ .
obtainiﬁg the correct resolution and.contrgst of the image;
Theuarrangement of the Schlieren system is not com-
monly in practice. However, for the test section at hand
the double traverse arrangement eliminates many practical

difficulties {18, 19). This arrangement of the Schlieren

system has also been suggested in the discussion of reference

17, pp. 222.

2.10 Supercritical Blade Exit Conditions

If the étatic pressure behind a turbihe passage or
blade row is progressively reduced, then a situation .similar
to the flow in a tonvergent-divergént nozzle with‘varying
back pressure arises. The continual reduétibn,in patk pre-
ssure or increase inltotal pressure at the passage inlet
will increase the exit yeloc1ty of the blade passage until
at the geometrlc throat the velocity is sonic. If the pas-
sage is choked, that is Mach ‘wumber relative to the blades
at the throat is unity, then the condition ﬁpstream will be
unaffected however, much the back pressure behind the
' throat ig reducet. |
The outlet flow condition after the throat has been -«
“studied by Hauser, Plohr and Sonder [27]. It was observed-
that, even at static-to-total pressure ratios considerably_
lower than that required to give critical velocity at the

throat section, the flow was défleg;ed in the tangential

e v e
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directgon. For further reductions in prgssure ratio (static--
to-~total), the.aerodynamic loading of t ng;r portion of the
blade reacheh_a_maximuﬁ and remained co:jﬁant.' After this

" stage, the expansion downstream of the cascade took place with
constant tangential velocity so that no further increase in.
the amount of turning across the blade row and nozfurthgr
increase in loading was available.

Figufe 2.18 shows the flow picture when the super-
lcrif}cal flow conditions after the throat‘haﬁé been established.
An expansion fan originates from the pressure surface extremity
of the bla&e and the flow is slowly turned as it passes throug
the expansion wave system. As the flow proceeds further down-\
stream a weak shock wave turns the flow in the opposite direc-
tion. As the ﬁressure_ratio‘(static-to-totdl) is reduced \
further, the expansi;n fan starts enlarging and the séefks .
are found to méve towards the extremities oé the bléde (Figure
2.19). The flow also turns towards the tangent;:I\B;;ection.
Once the fullf expanded flow is established the pressure
distribution on the blade surface changes.” A representative
plot is shown in Figure 2.?0 where the variation of pfessure
distribution after the tAroat is shown. For supercritical
_conditions an increased area'andrasséziated tangential force
aré produced by the decreased pressure on the sﬁction surface.

The "1limiting lo®ding" [ 1] condition is reached when the

supersonic expansion fan after the blade throat first reaches
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Figure 2.20 Effect of Outlet Pressure on Surface
Pressure Distribution (1)
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A

the extremity of its adjacent blade., This limiting loading
condition is important because the pressure ratios below this
condition will cause turbine efficiency to decrease as no

increase in work per pound of fas is possible.
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CHAPTER 3
METHOD OF CHARACTERISTICS- -
_ ~
3.1 General Flow Egquations

The non-linear equations of motion for two dimensien-

al, noh-v1§cous irrotational plane flow are [8)]

2 2 3u 3u 2 v
(u"-a 3 3 * 2uv 3y + (v'-a 35 0 . (3.1)
au 3V '
,and 'a—y' - ﬁ 0 (3.2)

~

The above equations in general, are applicable to

. s ae s < s ez
both subsonic and supersonic inviscid flows. Restricting

" the application to supersonic flows only that is, when

2 4 vz)/a2 > 1, the equations are hyperbolic in nature and

(u
the numerical solutions may be-obtained by method of charac-
teristics. Eence, for the supersonic flow situation, the
general flow properties at a barticdlar_goint in the flow
déﬁénds on the upstream flow conditions in a spetifieﬁ region
of the flow, but are independent of the downstream flow condi-

tions. Knowing the flow properties at some initial points,

other points in the flow'field may be calculated in a forward -

marching type numerical method. The method of characte;}ﬂf&cs

may be appiigdjin the solution of the above-differentiql equa-

tions. ' - ‘ N

’

The method of characteristics of a supersonic flow

-
53
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many factors, for a speedy accurate solution of the problem,
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field governed by hyperbolic partial differential equations
may be obtained by three possible procedures [131, namely:

i) purely graphical

. ~
ii) purely numerical, and

- 4
iii) a combination of numerical and graphical

N
methods.

Though the choice of the above methods depends on

1

a’ purely numerical met:id is indispensablg. When of course,

the numerical resul e represented in a diagramatic form,

a complete picture of the pattern of the flow can be obtained.

Classical methods for the numer%cal solution of the
qfthod of charac;erisfics follow the natural flow coordinate
system [8]. However, with the advent of nuﬁerical analysis
and digital computer the solution of method of characteris-
tics may be obtainéﬁ even.using the cartesian coordinate
system. For the présent study emphasis-ié givén to the

numgrical method using cartesian coordinates. .
The compuiation method using the natu£§1 flow coordi-
nate system faces the main di£fiku1ty of evaluating the valué
of Mach number for a particular value qf Prandtl-Meyer expan-
sion angle v. The va}ues of Mach numbers cggresponding to
different values of v have to be supplied external to the

a

computation system. . ' e
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3.2 Properties of Characteristics

As mentioned previously, the solution of quasilinear
p;rtial differential hyperbolic eqﬁatidhs can be obtained
by method of characteristics.: Some of the,quperties of the
characteristics may be stated as follows [15]):

i) a characteristic is a curve along whlch a physical
disturbance shﬁ;l\\?ropagate and in supersonic ;
flow disturbances propagate along the Mach lines,
hence Mach lines are the characteristics for a v
supersonie/flow. - o A

ii) across a characteristic the normal derivative of
the dependent variables'(u,vj may be discontin-

B ' "
., uous, while the property itself qéﬁgiﬂs continu-

. .
. QuUS. . : '
»

iii) on the characteristics, the dépendent vag}ables'

> - Satisfy'é certdin reldtion known as the. compati-
bility relation: ' a 45;,%Ei?\
. - . . - ’ _ . -..
3.3 Equation} of Motlon 1n Characterlstlc Form- ;l-

P to Q alo he stream-line S\Eflgure 3.1) may be written

=

‘as

F

In mrms of coordinate system, this takes -the-foilowing form
‘_ _ . N

. A | Ol ’
df-gsds‘ / ‘d“- -

9.
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Figure 3.1 Streamline and Coordinate Axes
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or - g - fx . Xg ¥ £ . Y

In the same fashion, the change in variables u and v going

from P to Q may be written as -
Ug = Uy . Xg * uy + Yg (3.4)
Vg % Vi . Xg * vy - Yg . (3.5)
Tﬁe above two equations may be solved for Ue, vV, ON the line

im terms of Ug, Vg, uy and vy.

From 3.4,and 3.5

u
. S
u = —_— - m u -
x Xg y .
: v
S
V¥ Eg m vy

—

Y ) . .
where m = §§ is the average slopeiof the line between points
S ' S
P and Q.
A , . . .
Substituting the values of u, and vy in equations 3.1 and

3.2, the following form is obtained.

. } u ’
[-(w2-a®m + 2uvlu) + (vPeaPyvy = -uleady % '(3.6)
Vg |
u, +myv = — . . (3.7)

Y b4 x;

Equations 3.6 and 3.7 are simultaneous algebraic equations
which can be used to determine u&-and vy. The matrix of the

L]
pair is [16]
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u
uv - (uz-az)m (vz-az) -(uz-az) S
. Xg
v
1 m ié
S
Let the .determinants D1 and D2 be
' [2uv - (uz-az)m]_ (vz-azj)
D . - ‘ . (3.8)
1 1 o m
u
[Zuv—(uz-az)m] -(Uz'az) =
D2 = r*~*4/ (3.9)
’ Vs
1 Xo
’ S

For uy and vy to have finite, but non-un;ﬂue‘solutions,

L)

both Dl,and D2 must be zero. The coﬁdition D1 = 0 determines
the directions of given lines for which uy and v are not
uniquely determined, hence the charactegistic e&uations of
the chara;teristic.curves. The condition D2 = 0 gives a
relation that must be satisfied b& the inner derivatives

along such lines and hence the compatibility relations of

the characteristic curves.

3.3.1° Characteristic Equation

Expanding D1 = 0 from Equation 3.8, the following
quadratic equation may be written -
2

2 2

- Zuvm + (v2 -a") =0

Ve

- az) m

(u
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-

& -

Solving for m .
2 2 .
i//ﬁ + v .
uv + a —— -1
a
m = my,, m, =
1 A 2 2
u® - a
uv b a2 M2 -1
My, my = 7 7 ~- : (3.10)
- u” - a

Equation 3.10 defines two characteristic direg¢tionm
at each point which are real and distinct fdf M>1.
Consequently, thé method of characteristics is applicable to
steady two-dimensional supersonic flow, but is not appf?table
to a subsonic flow field.

Putting u = V cose ; v = V sine

then a = V siny  and M2 -1 = coty .

Equation 3.10'may be written as | /}/‘-df,i\\\

. + .
$1n8 COsS® - sinu COSp ’ -

e
cosze - sinzu

m =

. With the help of.trigonometric relations, this can be

i reduced to a ‘

m = tan (o i'~.u) (3.11)

- \
where 6 = flow angle
and u = Mach angle. . 3

It is.obvious from’ equation 3.11 that th;character-

istic directions are equally inclined to the stream-line



Y
Left-Running
Characteristic, C, ' Tangent to c,
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-

Figure 3,2 Characteristics as the Mach Lines at

‘h“-ﬁ’;> ' a Point in a Flow-Field
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~ ~

direction at the Mach angle u - these are the Mach line direc-
tions. In Figure 3.2 denoting the left and right runniﬁg
Mach lines at point P as C_ and C_ characteristics, Equation

L]

3.11 then represents characteristic directions as:
(%1) = m a tan(e + u) along the C characteristics
)+ ' (8 + g : -

(%X)_ = m_ = tan(e - u) along the C_ characteristics
Hence, the characteristic equation may generally be

presented as

s

(%)t = m, = tan(e En) (3.12)

3.3.2 Compatibility Equations

Condition D2 = 0 of Equation 3.9 provides the equation
of motion with respect to the characteristic coordinates.

Expanding D2 = 0, the following equation may be obtained:

Vg 2 2.

ug .

[2uv - (u - a ) m} = * (u” - a") == = 0 , .
Xs S

Remembéring ug = 33 and v 33 , the above equation can be

wrltten in differential form along a characterlstlc curve as

2

(u ) a ) du + [2uv - (u - a ) m]dv = 0

For C_ and C_ characteristics, the above equation can

be put in the following form:

(2 - a?) du, +[2uv - (o - a?) mJ dv, = 0

‘The subscript f indicates that the differentials du, dv are

-

Ty

‘».r‘\
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to be evaluated along the C, and C_ chdtacteristics respec-

tively, the corresponding slope is m_ .

Hence, the compatibility equation may generally be

“
represented as

-~

(u2 - az) du, +[2uv - (u2 - 32) m+] dv, = 0 (3.13)

P

4 Numerical Integration Procedure

3
—
The characteristic (3.12) and compatibility (3.13)
equations are non-linear total differential equations and
the solutions have been obtained by finite difference tech-
niques. The characteristic equation (3.12) defines.two
characteristics passing tfrough each point in the flow field
whereas the compatibility equation (3.13) defines one rela-
tionship between the velocity components u and v on each of
the'two characteristics. Defining a network in which two
characteristics intersedct at a point; two independent rela-
tionships between u and v may be obtained at that'point-of
intersection, so that on each of the ihteréecting character-
istics one relation exists between ﬁ and v. In Figure 3.3,
the Commén peint 4 on ¢, and c; cﬂaracteristics could be
determingd by simultaneous application of the compatibility

-equations. This gives the solution of the equations at a

-

. 3Bint interior to the flow stream.

For any point either on a solid wall or on a free
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pressure boundary, minor change in the calculation procedure
must be introduced. Alsa in applying the numerical technique,
the characteristic éurves are usually approximated by
straight lines joining the solution points.

The numerical method empibyed here for the integra-
tion of characteristic and compatibility equations is the

modified Euler predictor-cdrrector method [31]. This is;&f‘/ﬁ*

| second order method for integrating total differential equa-
tions where coefficients are determined on the average pro-
perty method where the numerical values of the coefficients
of the differential equations are determined based on the
average values of the properties at the initial points and

final solution point [14].

3.4.1 Modified Euler Predictor-Corrector Method:

For an ordinary differential equation in the form

%% = f(x,y) | | (3.14)

»

r

a predicted value of the solution of the above equation at
" ' 0 0
a point x, 4 = Xx; *+ h, denoted by y (xi + h) = Yi+q DAY be

obtained by a predictor algorithm in the following form:

0 . .
Yier * Y; * f(xi» Yi)h : (3-1‘5)

where h = the step size of the finite difference algorithm
and xi = ytxi) where i is a known starting point.

The solution thus obtained by the predictor algorithm
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may now be improved by employing the values Y and yo +1 tO
+

find the value of yi+1/2 a y(xi + h/2). The value of
f(xi, yiJ in Equation 3.15 is then replaced by the value of

f(x, y) determined at the mid-point of the interval. Hence

1 0 .
Yiep = vyt fl(xg + 0/2), (y; + y{,,)/20n (3.16)
where Y%+1 = yl(xi + h) is the corrected value of the solu-
tion at Xie1"

The predictor value y2+1 in the above equation may

further be modified by the corrector value of yl and

i+l
repeating the use of Equation 3.16. Proceeding this way
after n iterations, the corrector algorithm may be represented

as follows:

Y?+1 =yt f[@g)flVZ),.03‘+)ﬁt%)/zny (3.17)

i
where y?g = the value of y after n applications of the cor-
rectorib. t R ‘ BN

Accuracy 6f the numerical values .as obtained by the
method presented depends on the step size an@ the number of
applic#tions of the corrector. Accuracy can also be con- .
trolled by assigning some value which controls the difference
bgtween values of the n-‘-:E and the (n - 1)—— iteration pro- \&
Cesses., Referring to the work of Hoffman [23) it has been , ¢

observed that in most practical. sztuatlons, the application ’

of corrector algorithm about 3 times w111 prov1de a result

accurate enough for all practical purposes. It - has also
7 R : :
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been found that the method is stable if h %§ < 2. Also to

keep the error under control the stepsize should be small.

3.4.2 Finite Difference Equations «?
Replacing the differentials dx, dy, du, and dv'in

equations 3.12 and 3.13 with the help of ax, Ay, au and av’

finite differencé eqﬁations may be obtained as follows:

From Equation 3.12

&, = &, = om,
-8 -

Hence, &y, = m_ (ax}, (3.18)

From Equation 3.13

(u? - alydu, + (2w - @b -aH) m)dv, = 0
or * Q au, +R &V, = 0 ) (3.19)
-where m, = tan (e M ), from Equation 3.12 _ (3.20)
Q = (w® - 2% s (3.21)
and R = 2uv - (u2 - azf m o U (3.22)

The coefficients m; Q and R are gene%ally determimed
at the initial points for the predictor and in-an average
manner for Ehe corrector. The above equations are ysed for
finding the flow properties, mainiy the flow deflection, in
a supersonic flow field. This procedure may be used‘to find

solutions at interior points as well as points on a solid

wall or on free pressire boundary points.
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[¥Y

3.4. 3’L\The Solution for an Interlor Point

Referrlng to Figure 3.3 )the

ion of point 4
may be obtained in terms of points 1 and 2 from Equations

3.18 - 3.22. Thus from Equation.3.18
(Y4 - YZ) -Am*' (X4 - xz)

g sy = om (X m Xy)

' Hence, from above two equatioﬁs
Yg - M, Xy ® Yy 0 M Xy (3.23)
Yq --ﬁ_‘x4 =y, -m_oXge a (3.24)
writing m in terms of 8 and "

m, = tan (6 + w) and m_ = tan (& - u) (3.24)

v, .

. 1 ' _
/ﬂ///%here e:' = tan- (E:) ; (3.25)

. Also the resultant velocity-vect3} can be destribed by
Vv, = (u2 + vf)llz

M M MAENG
The sonic velocity is determined from the stagnation
o .
conditions as follows:

' % . . ) .
2 2 =1 2 ' : .
a® = ap - T - .
f\&\ = v R T _‘{_2_ y usv o - _ (3.'25)__

1f a is the sonic velocity, then ~ ¢
. :
u, = sin (ve) (3.28)

Therefore, e, and u, can be evaluated for specified

(3.26) ~,
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values of u_ and v, and thus m_ can be evaluated.
' Froﬁ the compat1b111ty equatlons, using a similar

procedure as above the following equations can be formed

which are valid on C_ and C_ characteristics respeétively.

Q.., (u4 " u—z) + R+ (V4 - Vz) = 0

Q_ U4 - ul) }‘J(V - 1)‘(' = 0 ";\,-_

otherwise Q, u4 + R, v = T, —na) (3.29)

¢ Q. uy *+R_ v, = T_ . T (3.30)

In the above equations * N
Q;‘ - (uf - af) o ¢ (3.31a)

L. - L .

R, = [(Zu+ v, - Q. m) ' ' ¢3.32a)

T, = Q u2;+/§i v, & S (3.33)
L = wr-ah - . (3.31b)
R = (2u v -Q m) . 1 (3.32b)

T a~Q t +R v, L (3.38)

For the Euler predic;of a}gorith@, éhe values 6f u;,'v+i and -.
y, may be givep the fofloﬁiﬁg.initial conditions: ? | ) ~
. = _ | V. v, Y, = _yé (3.35)
s U - ui\ v. o=V 'y_.‘. =¥ '-(3.36)
For Ehe Eu1er.corr§cto} al?orithm;.the valués are .
u, = prug)/2 v, (Vv)/2 Ty, /2 (33D
u_ = (ui+U4)/£' v = (w*v)/2 y, = (yr;ya)IZ' (3.38)
: .

L

Y _ o ' , )




' ]
v+'kﬁ (ué + vf)%!z

ow Equatiens

+

S
lut - ‘ sin (v;] *
. Set (b)

Determination of Coefficients

m, = tan (o f )

o

‘R = 2u v, -Q m

+

Set (c) Ni;‘*#;__ -

Computational Equations -

Yqg - B, X4 . Y2 - my X,

Yo B Xg L% ¥y omIx

1 (3.27)

(3.28)

1\

(3.20)

(3.31)

(3.32)

(3.23) |

(3.24)

' (3.33)

(3.34).
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and v_.at two points l(xl;-yl) and 2(x2, yz), predictor

equations provide the predicted values of u,

70

Corrector Equations

u, = 1/2(u2+u4)
ﬁf’- 1/2(uy+u,)-

v, = 1/2(v2+v4) Y.

v, = 1/2(vi+v,)

= 1/2(y,*y,)

Y. = 1/20y;*y,)

Q+‘u4 +R,v, = T, (3.29)
Q- u, *R_v, = T, (3;30)
Set (d) -

'.Predictor.Equations | .
u, - Uz ."+ DU Yo = v, F3-35) v
ul =y V. o= vy y. =" ?1 (?.36)
Se; (e) ‘ f

(3.37)

(3.38)

In a supersonic. flow field, knowing the values of u,

. solution point which lies at

characteristics.

used in equations of Set (a)

the predicted values.

lteratxon can be term1nated e;ther after uselof certain

coefficients m+, Q and R,

and y+, the above sets of.equat10q; are Tepeated.

Next these

the intersection of C+

values of u,

and (b} for determining the

and v, for a
and C_“’?

and v, are then

With the help of. computational

Uy and v, are déterminéd.

-

. The;

I

equatlons in Set (c) 40 y4, ‘These
" values are then usgsfzn the correétér algorithm for correcting

With the corrected W lues of u+, v,

numper gfaqogrector algorithms or.comparlng the alfference
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in values with a pre-asSigned.valﬁe. The determination for
convergence'after n applicafions of corrector are made as
follows: )
ls¥.- S¥*1| (Specified Tolerance) o -
where S represents value of XpeYgo u4; and vd‘taken one
parameter at a time. Typical tolerances for Ugs Vo x4;

and Y4 depend on the required accuracy of the problen.

3.4'5 Solution for Wall Point

For a solid wall, which can be‘ébecified.by

y = y(x) | h - (3.39)
and %% = tan 8 = % | . (3.40)
the foregoing equations can be'mod;figd for the solution of
a point on the wall. Along a solid wall, the flow velocity "
wvectot follows the contour of the waLl hence, the d1rect10n
of this vector must be 1dent1ca1 to the slope of the wall

If the wall lies on the right-land side of the main flow
d1rect10n, then as seen from Figure 3. 4 a right rdﬁning
characterlstlc from an interior po1nt meets the wall. Hence,
Yfor a right runn1ng or C_ character1st1c Equat1ons 3.24 and
3.30 may be. solved along with Equatlons 3.39 and 3. 40

For any geometry of e wall a suifable equation may

e wa;l contour. This equation,

when differentiated, will jive the corresponding slope of the
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_)-flow velocity vector. o | ' ’/}
[ -

3.4.6 Free Pressure Boundary Point

On a free pressure boundary, the static pressﬁfe is
equal to that of the ambient pressure. So for the solution
of point 4 &n the free pressyre boundary the condition
Py = P, (where P, is ambient pressure) is a known priori,
The velocity V4 at the solution poimt is given as

o2, .201/2
Yy (uy + vy)

= f(pa) = f(p4) . (3.41)
Now from an interior point 2 a left runpiﬁg charac-
teristic is extended to meet the free pressure boundary at

the solution point... Hence, Equation 3.29 together with

Equation 3.41 may be solved for u, and Vy The simultaneous
! . ~ .
solution of these two equations gives the following results:
a 2 A2 25 2,1/2
- Q T, - 3+[V4 £9+ + R]) - T[]
4 3 7 (3.42)
Q, * R, .
g2 2312 " e
and v, (V4 u4) - - (3.43)
. The slope of the jet boundary from point 3 to point

4 may beﬁébtained as

d - !. = )

= TS _ N (3.44)
where m, = slopé”df“line 3-4 (Figure 3.5).
In finite &iffgrdnce'form,‘fhis yields

.y4'”; my X, = Yz - My Xz (3.45)
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The computer program for the solution of an interior
point may be modified to accommodate the above equations for

solution of free pressure bourndary points.
1 .

v

3.5, Development of the Computer Program

The solution for two- dlmen51ona1 supersonic flow f1e1d
by the method of characteristics requires an initial value
line along which Mach number is greater than unity; This ¢
initial value line shpuld not be a characteristic itseif,
but a line through which the characteristics may cross.

The Mach number distribution along the geometriéil

throat of McMasté% blade as.observed from the computex prd-

gramming in Appendix A, is more than unity everywhete. e
sonic line along wh{ch Mach number is unity .at all points,
exists slightly upstream of geometrical throat. Along the
geometrical throat a few points (preférably eqﬁispaced)-may
be selected h;ving known values of Mach number and coordinate
position. The number of points selected depends entirely on -
the volume of 1nformat10n required for the flow fleld down-

stream of this geometr1ca1 throat. - Know1ng the ‘working -

’ pressure ratio PO/p, and from the,isentropi; gas'tablé, the

value of Prandtl-Meyer expansion angle v can be obtainqg.

'As at the exit plane of the geometric throat, the flow turns

through a total angle of v, a linear distribution of v for

each stream-line pas§ing through the geometric fthroat may be
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defined as the initial value line for the solution of the
sdpersénic flow field that exists in the trailing region of
a convergin} passage. The f}ow deflection alonj.with the
values of Mach nu;;;; and coordinate axes for each point\
selected on the initial value line provides the u and v
bomponents of the resultant velocity at that point using
the subroutine FLOW given in Appendix B. At each point on
the initial value line, two characterlstlcs will pass, a left-
running or c and a r1ght runnlng or ¢ characteristic

(Figure 3.2). The compatibility edé§tion {(equation 2¥13)

. together with.the characterieﬁic equation (eqdation 3.12) may
h{_integrated to obtain a solutionmpoint which iies at the
intersection of a ¢, and. a\c characterietics emanating from'
two specified, but adJacent poifits 'in the f1ow f1e1d In

S

equations 3.13 anqgf é} subscripts + (plus) and - (mlnus)

-

‘.,refer_to thec+ and c_ characteristic respectively.
J. " 1._ .

3.5.1 Interior Points"

-

. To find the sdlutioh'at a point, interier to the flow
< field, subroutine INTPT in Appendix B has been developed
'accordlng to para’ 3 4.3. To find the conxdlnade/axee add
veloc1ty components at an‘interior point which- is the point
of intersection of the c and the c_ characterlstlc, one of\ﬂ/
each set of “the characterlstlc and the compatibility equa-

tions may be used along .the ¢, and the c characteristic

.

&

'9. ®



respectively. Comparing Figure 3.3 and Figure S.QQ it should
bé observed that to solve for points E, F, and G (interior _
- points) iﬂfFigure 3.6, the Figuae 3.3 can be superimpased I
on each triangle’gz that the points E, F, and G corresgond

to point 4 of Figure 3.3 at each location. Therefore, to
solve for point E, £ and B with known values of X, ¥, u and

v may be considered.to correspond fo points I\Eﬁd 2 of Figure
3:3 and'by virtue of the similarity point E may correspond

to point 4 of Figure .3.3. For point F, B and.C may be set
equivalent to points 1 and 2 of Figures 3.3 with F as point

Y
4 and so on.

;A necessary computer statement is incorporated in the’

main program as well as in subroutine INTPT in Appendix B
to compute sufficient points inside the flow field and also

b .
to generate characteristic lines covering the entire flow

fii}df’/)

3.5.2 Wall Point | <

Subroutire WALPT in Appendii B. is developed in accor-
dance with the equation§ and specifications as stated in para

3.4.5. In this case, the wall is on the rightihand side of

the mean flow'direction, and -therefore the compatibility and

characteristic equations pertaining to the -right running
characteristic are utilized. Additiqé}l conditions req

to specify the wall contour may be added in-sﬁbrqutine B

-

s
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in Appendix B. In general,‘fny wall shape with known boundary
conditions may be used in the solution of the charaeteristic
.curves. T

Computer statements as in the previous case are a d
both in the main progfam GAS and the subroutine WALPT (see
Appendix B) for-generating sufficient wall points «as the

solution marches forward.

3.553 The Free-Pressure Boundary Point

As the free pressure boundary lies on left-hand side
of the mean flow direction, only the left running charac-
teristics intersect the boundary. From Figure 3.5, it is

L4 }
to obtain the values of the first poi#&T on the free pressure

obvious that additional information i:ejegyired (poine 3)
boundary Designeting this as the upper'corner point, the
required 1n£ormat10n 1s‘f2£212hed external to the program
for any particular case ©f blade position and spacing.

Subroutlne BODPT in Appendix B has been 4eveloped
/Eeeping in mind the modifications 5pec1f1ed-gp para 3.4.6.
As the solution progresses forward, the computer etatements
for each solution poiﬂt dietnibute the .values of point 2
and point 3 in accordance to the Figure 3.5. |

As éach reflected wave crosses. the. free pressure

boundary, 1t turns the boundaryhllne towards the main flow |

Rl

:;
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N R
and as all the reflected waves or characteristics touch

the boundary the boundary line finally becomes parallel to

.the mean f%@g direction. The design of a supersonic nozzle

in which the exit plane flow direction is horizontal has a

similar set of characteristics.




CHAPTER ‘
METHOD OF CHARACTERISTICS (RIBMANN INVARIANTS)

4.1 General Considerations . ™~

| 4

Many books on Gas Dynamics have described elaborately

tﬁg'classical method of characteristics (Riemann Invariants)
and the method used to produce an excellent solution of many
Euperson1c flow problems. tf\l‘he pr1nc1pa1 disadvantage of this
method lies in‘the fact that the method is too 1abor10us
when a large number of points is required for describing the .

flow field.

—_ o _ _

N, The problem is amplified 'eve'lng what might be -
called good'design office pragtice since one has to produce

‘ on a drawing the entire characteristic net‘using specific P

values of the Prandtl-Meyer expansion angles v and therefore

Mach numbers.
2 1/2

i} ME-1 -
. v = f(M) boarc tan i—-E—l——— - arcs tan (M -1)

o
(Y+1)1/2

1/2

where b _ |

and hence the solution of Mach number for a particular value

of v is a tedlous'one which somewhat llmxts.qge accuracy of
~ value of v = £f(M) requi;ed for.the'purbose of drafting the

characteristic lines. : ' : N

i 80 : o | '

-




. o
81 _ «

ggy
&

4,2 Derivation of Equations

From Equations 2.4 and 2.5, which describe the momen-
tum change along the stream-lines and thq.orthdgonals are,

respectively (Figure 2.12),

vV _ 3 ' < ‘ _—
oV =z = (2.4)
and v 2. -2 | ; (2.5)

The Continuity equation can be written as

. pVAn ‘= Constant . ) ; (4.1)
The one-dimensional Moméntuﬁ equation can be written in the
form |

] TRV 1 4
CZTJ’A/’T/\ n T . V. m

and dntroducing this'vglue into Equation 2.5, the conditién'of-

irrotationality becomes as follows: -

av a9 -' . ‘
ﬁ.'.VTS' .0 . ...(.4'2) ‘

’he Continuity equgtion’ in.more convenient form may be written .
> _ . :

_ 1 23,1 a8V _ 1" a(an) -
T _‘5'-55*v-55*m,-—§—s)' .0
o 17 3,1 V., 38 _ ’ S
or . F‘?EH"V':_?S'*H' lO : | . _ (4-3)'

From Equation 2.4, the'eliminatiOn'of the pre§sur§

“term with the help of Equation a2 - ap/au;-givés the follow-
% ing form" e : ‘.H' Iﬁfi | |
A .. ~
V?s- =5 . EE : o : (4.4)

< which when combined with the Continuity equation has the

-

- .

Ll .
. ? .
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following form .
2 ' , 4
v 1 v a8 . .
(;z- - 1) v -5-5- - S—ﬁ = | | . (4.5-) :
' M2 - 1 oV seg. B . h

. —_—= -3 3 0 - . .(4.5a)
° For‘superSOnic.flow, the Mach ahhle can be defined as cot-u ° Eu

- (M2 - 1)1/2_.and .stn p*= 1/M,
| The Prandtl-Meyer funqtion_o may be introduoed as

L

vow | SOt gy , o,
or "dv = cot u Q& I " . L (4.6) L

Combinin;\?ffjfk.S' and 4.6, a compatibility relation g\(;;f

between v and ¢ may be'obtainedﬁta] ahd whicﬁ according td the
L™ LY '

theory of hyperbollc equatlons must exlst on the character-‘g

«1st1csﬁor Mach 11nes. The compat1b111ty relatlons between . S

v.and o are W f ' ' o ‘ . T
. . : - ‘ )

v -0 =_RI, constant along a C characterlstzc ¢ (4 7)
v+e = QI, cons agt along aC_ character1st§_,;*' (4 8) : Co

Here RI and QI are the’ Riemann Invarlant54
"..- L Y M . . . N . ' ’ ‘;' . ) - i . 3 I N [

- 4.3 Computatlon Methodr _ ' B T~

Referring to F1gure 4 1, it ;s observed that at p01nt '5;-
| 4, there are two char%cterlstics, one of type C and the other =
of type C_. These-two characterlstlc.curves intersect the
‘data- curve at points 1 and 2, re§pective1y, Knowing the‘f

.\-
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‘values of v and 8 at 1 and 2, the values of v and 8 at bther_,
points may easily be calFulated.'
. As QI and RI are constants along C_ and C_ them

Qr, = a1y

]

.

and RI, = RI

z [
Replacing QI and RI with the help of Equations 4.8 and 4.7,

the following relations may be -obtained:

Lo

- Vgt 8y Vit 4
‘ &
and vy - 94 = v, - 92
Solving for Va and 8,
vy = 1/2(v1 +.l>y2)’+ 1{2(31 - 62) . (4.9)
64 = 1<2Fv1 - YZ) + 1/2(61 + BZ) (4.10)

Hence, in terms of tﬁe invariants, these may be expressed as
“‘*\ ‘v = 1/2(QI + RI) | | ‘ (4.11)
e = 1/2(QL - RI)
A complete solution of the flow field may be obtained
by suitably subdividing the entire region into sm 1;"1attices"
~and the. number of lattices directly controls the :ituracy of
the solution of the flow f1e1d - - h
To 1ocate the characteristics, a step by-step prpce-
dure is employed. The initial values are prescribed on

data curve and the solution ‘proceeds outward from the known

data curve. In calculating the characteristics in a flow

&
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fieid; three different flow situations may arise as described
earlier, namely; the solution at
' ij- interior poiﬂt . , oL
., ii) solid boundary point, and
’iii) free-pressure boundary point.

L4

4.4, Lattice Point Method of Solution

'_Thé géneral procedure fdr this;hethod can be éiven‘by
the following set of rules thch are applied to flow in a
straightvbacked turbine blade (McMaster blade) with a known
Mach number distribution along the geometric throat. ‘

.a) A stalé drawing showing the floﬁ‘boundaries‘is
dfgwn. Tﬁe\deviatiqn of“"the free .pressure boundary surface
‘is estimatea.from the operating pressure ratios, and drawn
along with the flow b;undaries. .

b) A.suitable set of points (prqﬁeraﬁly equispaced)
is selected on the gebmetric throat with known Mach numbe;;
at each poiﬁt (pqints , 2, 3 and 4).

c) A liﬁear distribution of the flow angle 8 is
assumed at each of the selected points. .

d) From given initial conﬁifions, the leuqs for
each of the points are determined: from iéentropic flow table.

e) The ;alues of the Mach angle for each #oint'on
the géométric curve may also be estimated froh the isentropic

flow tables corresponding to the Mach number at each point.

“n »
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f} Values of QI angd RI are determined for each pdinf

using Equations 4.8 and 4.7, respectively.
g) Both the left-running and right-running charac-
teristics (straight line segments)-at each point are drawn

extending downstream of the geometric throat. The inclina-

tions of these lines are & + u and .- re?pqct%yély; Their
intersections locate new latfice-poinms on the characteris-
tics. : - | \ Lt .

h) Values of 8 and v for each new point are.obtained

. . v A
; by simultaneous solution of equations 4.7 'and 4.8, For
; ¢ ’
: example, for point 6 in Figure 4.2~ o Coe
L] ) .
Ve v 8g = v, ¥ 8w @ QI2 3

since points 2 and 6 lie on axight;running characterigéic:
Also e . B

L vg q6 = vy BL = RI1

since points.1 and 6 lie on a left -running characteristic.

.

Hence,

vg = 1/2( QI * RIy)

{ . | . 8 = 1/2(Q1, - RI;)

i) From.the isentropic flow tables, corresponding to
the .value of v, the Mach angle u is determined. The 1eft~:

.. running and right-running characteristics are. drawn at the

. new poinf of intersection at inclinations of & + yu and 8 - u,

respectively.
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j) The procedure is modified in case one of the new
points lies on the solid boundary or a free pressure boundary

point. In such cases the value of & is obtainéd from the

- geometry of the boundary of the flow field.

k) For each'point covered by the characteristics,
the Mach number corresponding to the value of v at that point
may be determined. Once the Mach number at a point is known,
other flow proberties may-be estimated from the Isentropic

Flow Tables [29].

| s
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CHAPTER 5
RESULTS AND DISCUSSIONS
& .

The numerical method developed for solving the super-
sonic flow with the help of the methods of characteristics

conforms to the glassical method of Riemann Invariants.

' The principal advantage of the numerical method is that 'the

values of Mach number for different values of the Prandtl-
Meyer éxpansioﬁ fan need not be calculated from the standard
relation of M and v. As the numerical method works on the
Cartesian system, the points of interest in the flow field -
are clearly definéd. The corresponding values of sfatic

pressure, static temperature and flow deflection at any poilnt

'in the flow field covered by method of characteristigs are '

easily determined from the program set up.

Figure 5.1 shows the characteristic lines és drawn \
with the help of a drafting machine using calculation procedure;
as outlined in_Ghapter'4. This way of, analysing a supersonic
flow fieid is tedious. In this analysis, . the conditions -
along the géometric throat are specified with the results
obtained from the program outlined in Appendix’ A. In Figure .
5.2 the characteristic lines are obtained'by the meﬁhod

outlined in Chapter 3 and this method provides-a very rapid

analysis of the supersonic flow field covered by the charac-
- ' ¥

1
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teristic lines. The position of the sonic line is first
approximated and then for different pressure ratios the
charéctéristic lines are drawn using the program.developed'
in Appendix B based on the method described in Chapter 3.
AS' seen from the Figures 5.3, 5.4, 5.5, 5.6 and 5.7 the position of

the shock waves formed by the weak compression waves move

'steadily outward with the increase of total-to-static pre- '

ssure of the system. The free pressure boundary surface

is also found to move away from the horixnrfal reference lines
with the increasing pressure ratio, The same discussion holds
good for curved-back blade surfaces where with the'increasing'
pressure ratio, the shock stérts moving awaj from the geome-

tric throat and the Prandtl-Meyer expansion fan increaseés

with the pressure ratio.

\

From Figure 5.8 the approximate\position of the com-

pression shock is nearly 89% of the axial chord and from this
point qnward, the pressure ratio gradually starts increasing
confirming the 'effect of the compression waves. Now for
the‘same system préssure ratio qf 2.486, when the method of

Chapter 3 is used the position of shock is approximately

'87.5% of the axial chord (figufe 5:5)., This suggests that

the computational method is better because the characteristic
lines are drawn By computer system. As the working pressure
is steadily increased the compression shock moves slowly

away from the throéq and for the under-expanded case, the
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shock is no longer in the blade passage, so there is no rise

of 'static pressure as observed in the previous figures.

Scope for future studies:

- The method of analysis for supersonic flow flelds

can be varified by carrying out experlmental flow visuali-
zation studies in the cascade tunmnel with the help of a suit-
able Schlieren system. The experimental method.together
with the method developed in this study will enable the
researchers to analyse the supersonic flbw field prevailing
in the exit-piane-pf a highly curved turbine blaée passage.
A possibie deéign scheme for thé Schlieren system suitable
for the blowdown cascade windlfunpel in the Applied Dynamics
Laboratory.of McMaster Un?versity is outlined in Figure
2.17, and discussed in Section 2.9 of this report.

Figure 5.15 shows th; proposed Schlieren system to
.be used for the flow visualization of the flow passages of
the turbine blade passages in the blowdown cascade wind
tuhnel in the Applied Dynamics Laboratory of McMaster Univer-
sity. Due to the inherent design of‘fhe’test'section of
the wind tunnel, the proposed Schlieren system would prove
to be one of the most suitable one. The structufe is made
of steel channels and mounted on four swivel wheels for the
ease of mobilitf All the major optical components haVe

enough freedom of movements so that the de51rable results

e

—_
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may be obtained., The light source S is a ;uper pressure
mercury lamp, 500 watts (OSRAM, HBO 500 W/2 type lamp). ‘The
housing to accommodate the lamp is designed and fabricated

as detailed in the specification supplied by the manufacturer
of the lamp. An arrangement ‘for the lens and iris diaphragm
must be provided to control the size of the light source.

The mirror Ml,the lens LZ’ the'beamiﬁﬂit;er BS and the mirrer
MZ are mounted on a squdre bar which can be adjusted for
suitable position and also all the components on the bar can
be separately Positioned. The parabeolic mirror PM and the
mirror MS' each can be adjusted for the ease of proper align-
ment of the light rays. The knife edge KE is tb be placed

at the focal point of the parabolic mirror PM. The camera

T is about 30 inches long for obtaining better image of the

flow field. F



CHAPTER 6
CONCLUSIONS

The present study represehts the application of nume:
rical as we;l as classical methods for solving the two-dimen-
sional supersonic flow fields. For a high turning angle
turbine blade, depending‘on the working pressure ratios, a
supersonic flow field appears near the trailing edge of the
blade. The numerical method is successfully applied td locate
the compression as well as expansion waves after the geometric
throat. An increase ig the total-to-static pressure ratio

graddally moves the shock towards the trailing edge of the

blade and for a pressure ratio (po/p) eqhal to 3.038,. an over-

expanded situation occurs. Figures 5.7 and 5.11 describe
this effect. This situation gives the maximum area of the
pressure distribution along the blade chord. Pressure ratios

higher than this critical value may not be useful in increas-
For a pressure ratio of p_/p = 2.486, both the nugier- .

L

ing the work load of the blade.

ical and the classical (Riemann Invariants) methods gi#é?
results which agree quite closely, (Figure 5.5 and Figure 5.8).

For curved back blades, the analysis showed that once’
againkthe positibn of shock gradually moved towards the trail-

ing edge with increasing pressure ratios. From the program

108
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developed in Appendix B, static temperature, Mach number,

and the flow deflection may be estimated at different coor-

dinate points in the flow field.
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APPENDIX Al
USER'S MANUAL FOR THE PROGRAM

This appendix contains the flow chart and program
listiﬂg for the pfogram used for finding the pressure and
Mach number distribution in a confergent passage. For a
particular type of blade the curvatures Cp’ Cs and Gauge
(1gngth of orthogonal) are specified. The pressure distri-
bution shown in Figure 2.15 confirms the shape of the blade
passage with that obtained in the earlier design [7]. At
the.geometric throat the distrigution'of'Mach number 1is
‘most important and depending on this distribution the initial
value line is constructed for the method of characteristics.

The program starts by reading the inlet flow condi-
tions, then it reads the important constants of the flow
field such as gas consténf, acceleration due to gravity,
specific heat ratio, etc. Next it sets the control variables
to pre-assigﬁed values. A mass flow is églculated which is
the mass flow required for choking the geometric throat or
a mass flow less than the choked mass flow which may be
termed as design mass fiow somewhere in the channel. For
the first quasi-orthogonal line, it'feads in the values for
 the pressure and suction surface curvatures along with the

length of the quasi-orthogonal. Using a velocity equation

114
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as developed in Chapter 2, a mass flow value is calculated

- and compared to the design mass flow value, If the value is

within the certain limit of the design value, the program
prints out the results and proceeds to the next quasi-ortho-

gonal. When the flow is choked‘at the throat, the alterna-

. tive calculation procedure may be employed.

For all orthogonals, the values of static pressure,
Mach number distribution, velocities, pressure ratijos, static
temperatures and &ensities are calculated for all of thé nine
stream tubes. The values of Mach numbers of the last quasi-
orthogonal that is the geometric throat are utilized for

initial value line for the Mach number distribution.

VARIABLE ' ' DESCRIPTION
' A(D . Speed of Sound
ACC Difference between Design
‘ - and Calculated Mass Flow
AMACH(I) . Mach Number
AMACHIN Inlet Mach Number
+  AMAS o | Design Channel Mass Flow
AMCRIT ' Critical Inlet Mach Numﬁer
for Choking the Geometric
Throat _
AP - Static Pressure
AR » - Density
AT Static Temperature
AV Resultant Velocity

F U N S
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L

VARIABLE © DESCRIPTION .
CMAS Choking Mass Flow for
Geometric Throat
CP(K) Curvature of Pressure Surface
CS(K) Curvature of Suction Surface
D Constants (with suffix) for.
Easy Calculations Step
DELG Distance between Two Adjacent
: Stream Lines '
DRPR Ratio of Static to Total
_ (relative) Pressure
G ’ (g}cceleration due to Gravity
GAGE ' : “Width of Flow Passage defined
¢ by Inlet Stream Lines. (Pitch
X Cosine of Inlet Air Angle)
GAMMA {  Ratio of Specific Heats
GASC . ‘ Gés Constant for Air
GAUGE (K) . Quasi-orthogonal Length
JX ' Ce Control Variable; 1 for Linear

Curvature Variation; 2 for Linear
Radius of Curvature Variation

NDATA Number of Quasi-orthogonals
PEXIT Static Pressure Downstream of
: Cascade M '
POW- ? ' Variable to Calculate the
- Velocity Distribution Expre-
ssions '
RATIO ' _ Iteration Variable, Given Start-

ing Value Equal to 1
RELTOP Relative Total Pressure

- RELTOPT Relativé Total Pressure at fnlet

= - wear domn skl Ak g L
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VARIABLE

RELTOT
RO(I)
RPR(I)
RT(I)
SPACE
THROAT
TMAS
W(I)
Z(1)

117

DESCRIPTION

Relative Total Temperature
Density.

Static Pressure

Static Temperature

~ ~

Blade Pitch
Geometric Thraat Width
Calculated Mass Flow in Channel

Velocity

Density X Vélocity
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FLOW CHART

Start

Read Input Data

Calculate Choking and Design
Mass Flows

S

Read CP(K), CS(K), GAUGE(K)

Yes

(> Yes

[

Start Iteration Set M = 1.0 on
Pressure Surface

P

Use Eq. 2.13
for Velocity
Distribution




119

j

Use Eq. 2.16
for Velocity
Distribution

Use Eq. 2.12
for Velocity
Distribution
I M
Adjust Calculate
Mid-Channel Mass Flow
Velocity '

No

Yes

Is
Accuracy
Sufficient

[ 3

C

Printout |
Results

Sfop
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APPENDIX A2
RARRRAAKKARRNRARARKARRARAARRRRRARRARRRARRKRRRARAAA
* PROGRAM TO CALCULATE THE MACH NUMBER *
* AND OTHER FLOW PARAMETER DISTRIBUTIONS n
* "IN TURBINE 3ASSAGES *
* *

KEARRAAARRARRRARRRKRARARAARARARNANARRAARNRARAARARARAK
) |

PROGRAM TST (INPUT, OUTPUT, TAPES=INPUT, TAPEG=

OUTPUT)

DIMENSION W(Q),RPR(Q), Z(9) ,AMACH(9), DRPR(9)

READ THE FLOW PROPERTIES

READ (5,*) RETOPI,PEXIT,AMACHIN,RELTOT

READ THE CONSTANT VALUES

READ (5,*) GASC,G,GAMMA,SPACE,JX

."READ THE CONTROL PARAMETER VALUES

READ (5,*) ACC,GAGE,THROAT,RATIO,AMCRIT, NDATA

CALCULATE THE USEFUL CONSTANTS

D1=2.0*GAMMA*GASC*G

D3=GAMMA-1, 0 :
D2=GAMMA/D3 . ) ‘
D4=GAMMA+1.0

D5=( (GAMMA*G) / (GASC*RELTOT)) **0.5 |

CALCULATE THE CHOKING MASS FLOW

CMAS=(D5) *THROAT*RETOPI*12.0/1.728
WRITE(6,21) CMAS
WRITE(6,999)

WRITE(6,22) RETOPI,PEXIT,AMACHIN,RELTOT
WRITE(6,999)

WRITE(6,23) GASC,G,GAMMA,SPACE,JX
WRITE(6,999) -

WRITE(6,25) ACC, GAGE,THROAT,RATIO,AMCRIT,NDATA
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63
62
51

52
66

53

56

49

57
58
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WRITE (6,999)

AT=RELTOT/ (1.0+(D3* (AMACHIN**2.0))/2.0)
AP=RETOPI* (AT/RELTOT) **D2
AR=AP/GASC/AT*144.0
AV=AMACHIN* ( (GAMMA*GASC*G*AT)**0.5)

CALCULATE THE DESIGN MASS FLOW

AMAS=AR*AV*GAGE/12.0
WRITE (6,24) AMAS

READ THE SURFACE CURVATURES AND
QUASI-ORTHOGONAL LENGTHS

READ (5,*) CP(K),CS(K),GAUGE(K)
WRITE (6 28)
WRITE (6,241) CP(K),CS(K),GAUGE(K)

IF (GAUGE (K) -THROAT) 63,63,62
IF(AMCRIT - AMACHIN) 64,64,62
W{5)=AV*GAGE/GAUGE (k)

IF(((W(S)**Z)*DS/DI) LT. (RELTOT)) Go, TO 52
W(5)=W(5)/2.0
CONTINUE
W(5)=W(S5)*RATIO
DO 235 1=1,9

C=I

DELG=(C-1.0)*GAUGE(K)/8.0

IF(JX;EQ.2) GO TO 57

D6=DELG/GAUGE (K)

D7=CS(K)*(0.375-D6)

D8=0,125*CP (K) -0.5%(CP(K)-CS(K))*(D6**2.0)
POW=GAUGE (K) * (D7+D8)

W(I)=W(5)*EXP (POW)

GO TO 60 .

IF(CP(K)-CS(K)) 58,59,58

D9=CP(K)+(CS(K)-CP(K))*DELG/GAUGE (K)
D10-GAUGE(k)*CS(K)*CP(K)/(CP(K)-C?
W(I)=W(5)*(2.0*D9/(CP(K)+CS(K)))*
GO TO 60
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59
60

64

\C‘

245
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)

A

(/5 ﬁiﬁAucﬁ(x)*(o.s-nELG/cAUGE(K))*CS(K)

"GO TO 49

~RELTOP=RETOPI
RT(I)=RELTOT- (W(I)**2)*D3/D1 ,
A(I)=(GAMMA*GASCAG*RT(I)})**0.5
AMACH(I)=W(I)/A(I) :
RPR(I}=RELTOP/ (RELTOT/RT(I))**D2 -~
DRPR(I)=RPR(1)/RELTOP :
RO(I)=144.0*RPR(I)/(GASC*RT(I))

Z(1)=RO(I)*W(I)

D11=0.03489*(Z(1)+Z(9))+0.20769*(2(2)+Z(8))-0.03273*
$(2(3) + z(7M)) :
D12=0,371023*(Z(4)+£(6))-0.16014*Z(5)

TMAS= (D11+D12)*GAUGE (K)/12.0

RATIO=2.0- (TMAS/AMAS)

IF (ABS{AMAS-TMAS) .LE.ACC) GO TO 61

GO TO 66 ’

DO 245 1I=1,9

RT(9)=RELTOT*2.0/ (GAMMA+1,0)
W(9)=(GAMMA*GASC®*G*RT (9) ) **0.5

C=1

DELG=(C-1.0)/8.0 7 »
D13=CP(K)+CS(K)-2.0*CS(K)*DELG -
D14=(CP(K)-CS(K))*(DELG**2.)
POW=GAUGE (K) *(D13-D14)
W(I)=W(9)~EXP(POW)

RELTOP=RETOPI : . //

RT(I)=RELTOT- (W(I)**2.0)*D3/D1
A(I)=(GAMMA*®GASC*G*RT (1)) **0.5
AMACH(I)=W(I)/A(I)

RPR(I)=RELTOP/ (RELTOT/RT(I))**D2
DRPR(I)=RPR({I)/RELTOP .
RO(I)=144.0%RPR(I)/(GASC*RT(I))
Z(I)=RO(I)*W(I) . :
$D11-o.03439*(2(1)+2(9))+ .20769 * (Z(2)+Z(8))-.03273*(Z(3)+
(7)) . ©
D12=0.371023%(Z(4)+Z(6))-0.16014*Z(5)
TMAS= (D11+D12)*GAUGE (K)/12.0

WRITE (6,27)TMAS

L
&
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WRITE (6,999)
WRITE (6,999)
WRITE (6,999)

C
o
WRITE (6,30)
WRITE (6,999)
DO 26 1I=1,9
C .
C .
21 FORMAT (/,10X,®*CHOKING MASS FLOW=* ]
22 FORMAT {4F8. 3) ~
23 FORMAT (4F8.4,12) _ ~
. C '
24 FORMAT (/,10X,*DESIGN MASS FLOW=*,F10.3)
o
25 FORMAT (5F8.4,I8) p
o _ .
26 WRITE (6,29)RPR(I) »AMACH(I},W (1) ,DRPR(I),RT(I),RO(I)
C -
27 FORMAT (/ 10X, *CALCULATED MASS FLOW=* ,F10.3) ,
o
28 FORMAT (IHO 20X *CPf~; CS(X) GAUGE(K)*) _ ff
c .
29 FORMAT (1HO,5X,F10.3,1X,F10.3, sx F10.3,1X,F6. 3
‘ $3X,F10.3,3X, F6 3)
c . .
30 "FORMAT (1HO,* ' RPR(I) AMACH(I) WD)
. $ DRPR(I) RT(I) RO(I)*)
C .
241 FORMAT (16X,3F10}4)
c .
o 999 FORMAT (10X,* - //*T///\\l
C
' 900 CONTINUE ; \
ST . -
EN .
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“
' ' APPENDIX A3
c INPUT DATA FOR McMASTER BLADE
Y 1
27.800  14.696 .680 530.000
53.350  32.140 1.400 630 1
.0005 .285  .257 1.000 670
CP(K) ¢S (K) GAUGE (K)
.100 3.000 420

.500 3.250 .425

1.500 .~ 3.250 420
_ 2.000 3.500- 420

. | 2.000 3.500 .380

T 1500 . 4.500 370
. © . 1.000 "~ 4.500 .330

‘ | - 750 . 4.500 usoo@

' 250 P 4.000 .290

k\J(f‘ . .10 2.500 .270 |

. : . . 050 1.000"  .260

.020 . 600: 257

e e e *
tm g ey
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APPENDIX B1
USER'S MANUAL FOR THE PROGRAM:

This appendix contains the program listing and the
program as developed in Chapter 3 for analysing the super-
sonic flow field at the exit section of the McMaster blade
(converging passage). The resultant velocity, flow deflec-
tion, pressure and temperature at‘any point with known
coordinate axes can easily be determined with the help of

above program.

The Mach number,ﬂistributioq at the geometric throat
of a particular blade passage is obtained by using stream-
tube method (Appendix A)and a few equispaced points afe
seiected (in this case N=4) at the geometric throat. The
bfigin of coordinate system'may preferably be chosen as the
- suction surface of the péir forming the convergent ﬁassage.
A s;i;able,sﬁéle is selected to enlarge(or reduce) the
throat section for a better appreciation of the character:'
istics or Mach 1inés¢;overing the flow field. The coordinates
of all the points including the total length of the;;hroat
(upper corner point) section are obtained with the help of
a-good drafting technique, prefgrébfy méchanical, and ‘the

Prandtl-Meyer expansion angle v (here THEUC)is provided at

- the beginning of the program from the'isentropic flow tables.
i o
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This gives the deviation of the free pressure boundary and
the deviation can be linearly distributed .at the selected
" points (here THE(I){. Once all these values are specified,
the other inpfit values are mentioned in the beginning have
to be supplied as a suitable input statement. ¢
The numbering of the flow field (Figure 4.2 and
Figure 5.2) is done in conjuﬁction Qith the flow field ob-
tained bylusing Riemann Invariants method and the computer
.programﬁgs suitably applied when the solution pointlis an
interiot, wall or free pressure boundary point. The number-
ing system is shown in Figure 5.2. As seen from the sketch,
the points- 5, 14, 23, 32, 41, 50, etc. are on the solid wall
énd points 9, 18, 27, 36, etc. are on the -inter section of
free pressure boundary and characteristic lines - so these
pbints are‘termed as boundary point. Other points such as
5, 7, 8, etc. are the interior points. The subroutines afe
developed to suit the solution of all these three types of
points. Subroutine INTPT solves for the points which are
interior to the flow i.e. at the points of interséétions of ~
both left and right running characteristics. The subroutine
wall point (WALPT) and BODPT are for solution of points on
the suction surface.wall and free préssure boundary of the
flqw; The subroutine FLOW determines flow velocities at
the selécted points (4 points in fhis case) on the initial

value line or geometric throat depen&ing on the flow devia-
S
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tions at all these points. Similarly, the subroutine FLOW1
determines the flow velccities at the ex%t corner of pre-
ssure surface of the blade. Subroutine BODPT1 determines
the first point (here point 9) on the free pressure boun-
dary line whereas the remainder of the points on the free
pressure boundary are determined by using subroutine BODPT.
Subroutine THERMO determines sonic velocity, Mach number,
static pressure and static temperéture at any point in‘
'question, The subroutine BOUNDRY determines the confour

of the suction surface from the geometric throat to fhe
trailing edge radius. For a curved surface, a quadrétic
form of the surface suéh as y = sz + Bx + C iéwused and

the cbefficients, A, B, and C are dgtermined depending on
the initial and final conéipions of the blade surface after
the throat. Fof a straiéht back bladé y = 0.0 everywhere_
is assumed as obvious from the geémetry of the blade. For

a curved blade the slope dy/dx = 2Ax + B can be evaluated

at the origin of the suction surface and also at the exit

of the blade surface. Three equations are formed with threé
initial conditions to solve the toordinates, A, B, and C and

thus the equation of curvature of the suction surface after

'S

the ‘throat.
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\
Program Listing:
VARIABLE DESCRIPTION
ICOR Numbér of applications of the corrector
El Convergence tolerance for location, metre
E2 Convergence tolerance for velocity m/sec
ITER Number of interations desired
THAE ngle of free pressure boundry line after
successive reflected waves cross it
IFIN Value chosen to generate about 100 points
in the flow field )
* THEUC Value of Prandtl-Meyer expansion angle
‘ in degrees v for a definite pressure
ratio PO/p
X0- Origin of X-coordinate
YO Origin of Y-coordinate
XE ‘Maximum X-coordinate, for curved back
blade, m m
Maximum Y-coordinate for curved-back
blade, m.m : ‘ .
THEQ Slope of suction surface at Xgs Yg
THEE Slope of suction surface at XE, YE
G Specific heat ratio, 1.4
RG Gas constant, -287.0 J/Kg-XK
TS Stagnation temperature, K
PS Stagnation pressure, N/m2

meamam L miiinan e b e——
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VARIABLE Dég;;IPTION

PA : AmbiJnt\pressure, N/m2

TA ‘Static temperature, K

GC : Gravitational constant 1-6 m—Kg/N-secz
M(I) Mach number

X(I) X-coordinate of locations, m m

Y(I) Y-coordinate of locations, m m

Uu(I) Velocity along X-axis, m/sec

V(1) Veloﬁity along Y-axis, m/sec

Q(I) . Resultant veloc1ty, m/sec

THE(I) Streamline ‘angle with x-axis at dlfferent

. locations %p degrees

Xuc | X-coordinate of upper corner point

Yyoc - " Y-coordinate of uppef corner point

"MUC . Mach number of upper corner point

uuc l X- -component of ve10c1ty at upper corner

point
vuc - . Y-compeonent of ve10c1ty at upper corner
p01nt

QucC Velocity (Resultant) at upper corner Qoint
c’ ) Velocity of sound, m/sec

A T Flow angle,:6 in r;d'
M . m_ =tan‘(e - u)

LP : m, =tan (o ¢ H) ‘

QM Q. = (uz-%f)mzlsecz along C_ characteristics
QP Q, = (uz-az).mz/sec2 along C{characteristics
RM R -= (Zu_\r_-m_Q_)mZ/sec:2 along 'C_ characteristics
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VARIABLE DESCRIPTION
RP R, = (2uyv,- m, Q+)m2/sec2 along C_
- characteristics

™. T =Qu+R_vV, ms/sec3 along C_
characteristics

TP ' T, = Qu+R,v, m3/sec3 along C,
characteristics

L0 oMy o= v3/h3, slope of jet boundary
3-4 at point 3

Uu ' f'Average value of u

Vv : Average value of v

YY 2 Average value of Y >

QQ Average valué of q

DENO Q_R, - QR

DD @2+ R?

XC. Corrected value of X

YC ' i Corrected value of Y

ucC - : Corrected value of u

VC g Corrected value of v
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APPENDIX B2
PROGRAM

THIS PROGRAM IS USED TO FIND THE CHARACTERISTICS
WITH THE HELP OF EULER PREDICTOR-CORRECTOR (MODIFIED)

METHOD

PROGRAM GAS (INPUT,OUTPUT)

COMMON/CONTRL/ICOR, E1,E2,PI,COUNT,THAE,YFIN,THEUC
COMMON/PROPT/XO, YO , XE , THEO , THEE |
COMMON/PROPTY/G,RG,TS,PS,PA,GC,TA,YUC

REAL M(lSO),THE(;SO),Q(150),X(lSO),Y(lSO},U(lSO),V(léO)
REAL M1,MZ,LP,LM,LE,L12,LO \\\

REAL Muc,xuc,Yuc;UUC,VUQ}QUC,THEUC,yﬁxr-

READ ALL THE INPUT DATA

READ ALL THE CONTROL VARIABLE

READ*, ICOR,E1,E2, IFIN,N, THAE

READ THE THERMODYNAMICS PROPERTIES OF THE FLUID |
READ*,G,RG,GC

.READ THE FLOW PROPERTIES OF FLUID

READ *,TS, TA,PS,PA :

READ THE VARIABLES FOR CURVED BLADﬁs -
READ *. XO,YO,XE,THEO,THEE -tijﬂ\\\
READ THE UPPER CORNER VALUES |
READ * XUC,YUC,MUC,THEUC - |



22

Nel

133

READ THE VALUES OF M(I),X(I),Y(I) AND THE(I)
DO 22 I=1,N '

READ *, X(I)

READ *, Y(I)

READ *, M(I)

READ *, THE(I)

CONTINUE

THAE=THEUC/ N

-

CALL FLOW1 (QucC,uucC,vucC,THEUC,MUC)

PRINT *,"  UPPER CORNER VALUES"

PRINT *,"  X=¥,XUC," Y= ", YUC," M= ", MUC
PRINT, *," Q=",QUC," U= ", UUC,” V= ", VUC
PRINT *," THE= ", THEUC

PRINT *, " " ' '

PRINT *," "

PRINT *, " INITIAL ", N, " POINTS"
CALL FLOW (Q,U,V,THE,M,N) .
DO 33 I = 1,N

PRINT *, " X",I, "=", X(I)," Yo, T, Y (IS MY, T,
PRINT *, "=", M(I) '

PRINT *, " Q= ", Q(I), "y MU, = L V(T)
CONfINUE‘ '

-

1.1
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CALL WALPT(X,Y,U,V,M,I,N)
NN = N-1

DO 17 J= 1,NN

CALL INTPT(X,Y,U,V,M,I,N)
I = I+1

CONTINUE

CALL BODPT1(XuC,YUC,UUC,VUC,MUC,I,N,X,Y,U,V M)

COUNT = 1

DO 18 J = 1,N

I = I+1

CALL INTPT(X,Y,U,V,M;I,N) -
CONTINUE

DO 12 Kal,IFIN

I = I+2 ,

CALL WALPT(X,Y,U,V,M,I,N)

NN = N-1

DO 13 J = 1,NN

CALL INTPT(x,Y;U,v,M,I,N)
I = I+1

CONTINUE

CALL BODPT(X,Y,U,V,M,I,N)
DO 14§ J = },N |

I = I+1

CALL INTPT(X,Y,U,V,M,I;N)

- GONTINUE

¥
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CONTINUE

LINES
CALL FACTOR(I,X,Y,10.0,7.0,1.0,2.5)
DO 34 J =1,I

CALL PLTSPT(X(J),Y(J),0.2,1H+,0.0)

CONTINUE

I =1

DO 89 J = ),IFIN

DRAW LINES FROM N INTERIOR POINTS BACK
D0 91 K = 1,N

CALL PLTLN(X(I),Y(I),X(I+4),Y(I+4))
CALL PLTLN(X(I),Y{I),X(I+5),Y(I+5))
I = I+l

CONTINUE

DRAW LINES TR\FREE SURFACE BOUNDARY
CALL PLTLN(X(I),Y(I),X(I+5),Y(I+5))
I = I+1

NN = N-1

DO 92 K = 1,NN

CALL PLTLN(X(I),Y(I),X(I+4),Y(I+4))
CALL PLTLN(X(I),Y(I),X(I+5),Y(I+5))
I = I+1

oy e P TR T RIS 1T B S Sl i
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l

CONTINUE ,

CALL PLTLN(X(I),Y(I),X(I+4),Y(1+4))

I = I+1

CONTINUE

DO 99 K = I,NN

CALL PLTLN(X(I),Y(I),X(I+4), Y(I+4)) -

CALL PLTLN(X(I),Y(I),X(I+§f;Y(I+5))

I = I+1 ‘

CONTINUE

CALL NEWPEN

CALL INCHT0(10.0,7.0,XMX,YMX)

CALL PLTLN(XUC,YUC,X(2*%N+1),Y(2*N+1))

IFINI = IFIN - 1 |

CALL NEWPEN (3) o

DO 93 J = 1,IFINI

IN = 2%N+1 . | _
CALL pLTLN(X(J*JN),Y(J*JN),X((J+1)*(JN)),Y((J+i)*(ju)))
‘KN = 2*N+1 ' o |
K=J-1

CALL PLTLN(X(5+K*KN),Y(5+K*KN),X(5+(K+1}*KN), -

$Y (5+(K+1)*KN)) |

CONTINUE

CALL LETTER(10,.1,0.0.1.0,0.5,10HCHARACTERI)

CALL LETTER(lO,;1,0.0,2.0,0.5,10HSTIC-L{NES).

CALL LETTER(10,.1,0.0,3.0,0.5,10H FOR )

/\
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CALL LETTER(10,.1,0.0,5.0,0.5,10HTURBINE BL)
CALL LETTER(10,.1,0.0,6.0,0.5,10HADE =~ )} ¢
CALL LETTER(10,.1,0.0,1.5,0.25,10HFOR PRESSU)
CALL LETTER(10,.1,0.0,2.5,0.25,10HRE RATIO P)
CALL (LETTER(4,.1,0.0,3.5,0.25,4H /P= )
- CALL LETTER(1,.05;0.0,3.5,0.25,1HO)

CALL LETTER(2,.1,0.0,0.5,5.0,2HM=)
IF (THEE.EQ.0.0) GO TO 118
CALL LETTER(10,.1,0.0,3.5,0.5,10H CURVED )
CALL LETTER(S,.1,0.0,4.5,0.5,5HBACK )«
GO TO 119

118 CONTINUE
CALL LETTER(10,.1,0.0,3.5,0.5,10HSTRAIGHT B)
CALL LETTER(S,.1,0.0,4.5,0.5,SHACK )

119 CONTINUE
o END
C -
* iy
. - C. . .
- ‘. C t*.ﬁ**i********t**t***t******!t*att*‘*.****#***i*ﬁt
‘C * . . ®
C . ‘ FLOW SUBROUTINE _ "
» ' .
C * . x
C uaavm*na*a**a**tau’m*aa**a****n*a**aa******t**ﬁ_**
o

SUBROUTINE FLOW(Q,U,V,THE,M,N)  ° Y
COMMON/PROPTY/G,RG,GC,TS,PS,PA,TA,YUC

x

ch-::z R Rttt B 2 e
) B .

. . .
had *
. . ~
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REAL M(150),THE(150),X(15b71§?::;;?E{150),V(150),Q(150)

PI = 4.0%ATAN(1.0)

Do 30 I = 1,N

THE(I) = THE(I)*2*PI/360

C = 20.0%*SQRT(TS)

Q(I) = C*M(I)/SQRT(1.0 +.th&1)**2)

UCI) = Q(I)/(SQRT(1.0+TAN(THE(I))**2)) -

" V(I) = U(I)*TAN(THE(I))

CONTINUE -

RETURN
END

RS
f

*******ﬁ********t**********************t*t********
. 4

* - ' ' *
FLOW1L SUBROUTINE

A ‘ ' *

% : o ‘ R .

f**********i**********t*******t*****************a*

- >
SUBROUTINE FLOWI(QUC,UUC,VUC,THEUC,MUC)

COMMON/PROPTY/G,RGyGC,TS,PS, TA,PA,YUC
REAL MUC,THEUC,XUC,YUC,UUC,VUC,QUC

PI = 4,0*%ATAN(1.0)

“THEUC = THEUC*2*PI/360

C = 20.0*SQRT(TS)
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QUC = C*MUC/SQRT(1.0+0.2*MUC**2)
YUC = QUC/(SQRT(1.0+TAN(THEHC)**2
£) .

yuc = UUC*TAN(THEUE%;) —
RETURN : )
END ' -

***t***t**************#a‘n**tk*********ﬁ**t*ﬁ*****

x *
.k SUBROUTINE FOR INTERIOR POQINTS *
x . . *

***a;*aa**a**an*)\(*******a**a*ntaaﬁ*ﬁn*aa*t**aan*

. andl
sﬁﬁROUTINE INTPT(X,Y,U,V,M,I,N)
COMMON/CONTRL/ICOR,E1,E2,PT,COUNT, THAE,YFIN, THEUC .
COMMON/PROPT?/G,RG,GC,TS,PS;TA,PA,YUC
_ REAL M(150),X(150),Y(150),U(150),V(L50)

REAL MM,LP,LM,LE,L12,L0 -
X1 = X(I+1)
Y1 = ¥(I+1) -
Ul = U(I+1)
V1 = V(I+1)
X2 = X(I) . .
YZ = Y(I)
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Uz = U(I)
vz = V(1)
Q = SQRT(U1l**24V1*#2)

A = ATAN(V1/Ul)

CALL THERMO(Q,P,R,T,C,MM)
LM = TAN(A-ASIN(1.0/MM))

QM = UL**2-CA*2

RM = 2.0%UL*V1-QM*LM
PRINT *," "

PRINT *," INTERIOR POINT
Q = SQRT(U2**Z + V2%#2)

‘A = ATAN(V2/U2)

CALL THERMO(Q,P,R,T,C,MM)

LP = TAN(A+ASIN(1.0/MM))

QP = U2**2 - CA#2

RP = 2.0*U2*VZ - QPALP

ITER = 0

T

’

I+N+1

SOLUTION OF THE FINITE DUFFERENCE EQUATIONS

X4 = (Y1-Y2-LM*X1+LP*X2)/(LP - LM)

" Y4 = Y1+LM*(X4-X1)

IF (Y4.LT. 0.0) GO TO 30
TM = QMAUL + RM*V1

TP = QPAU2 + RPAV2

DENO = QM*RP - QP*RM

U4 = (TM*RP - TP*RM)/DENO
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4 . P
V4 = (QMATP - QP*TM)/DENO
CHECK FOR CONVERGENCE OR COMPLETION OF ITERATIONS

IF (ITER.EQ.IEOR) GO TO 30 _ '

IF (ITER.EQ.0 ) - GO TO 20

IF ((ABS(X4 - XC).GT.E1).OR.(ABS(Y4-YC).GT.E1)) GO TO 20
IF ((ABS(U4-UC).LT.EZ*UC).AND. (ABS(V4-VC) .LT.EZ*VC)

GO TO 30 | _

CALCULATE THE COEFFICIENTS FOR THE CORRECTOR

ITER = ITER + 1 | y

XC = X4 ‘

YC = Y4

uc = U4 ’ G

vC = V4

YY

0.5%(Y1 + Y4)
uu

0.5*%(Ul1 + U4)

VV = 0.5%(V1 + V4)

Q = SQRT(UU**2 + VV##2)

A = A;RN(VV/UU) |
CALL THERMO(Q,P,R,T,C,MM) <ﬁ\

LM = TAN(A - ASIN(1.0/MM))
QM = UU*A2 - C**2

RM = z;o*uu*vv - QM*LM

UU = 0.5%(U2 + U4)

VV = 0.5%(V2 + V4)

A = ATAN(VV/UU) | ’
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- YY = 0.5%(Y2 + Y4)
Q = SQRT(UU*#2 + VVA*2)
CALL THERMO(Q,P,R,T,C,MM)
LP = TAN(A + ASIN(1.0/MM))
QP = UU**2 - C**2
RP = 2.0%UUAVY . QP*LP{’
GO TO 10
CONTINUE
NI = N+1
Y(I+N1) = Y4
X(I+N1) = X4
CU(I+N1) = U4 -
V(I+N1) = ﬁ4
D = ATAN(V4/U4)
PRINT 5, X4,Y4,Ud,V4 o
FORMAT (1X," X=",F8.2,5X,"Y=" F8.2,5X,"U=",F8.2,
$5X,"vs=" F6.2)
PRINT 6,T,P,D
FORMAT (1X," . T=",F8.2,5X,"P=" ,F10.2,5X,"D=",F8.3)
RETURN '
END
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_SUBROUTINE BODPT(X,Y,U,V,M,I,N)

143

-

REAARANARARARARRRRR AR R AR ARRRARRARRNRANARRAARRARARARRANRRN

* x
* SUBROUTINE FOR BOUNDARY POINTS *
* . N - " a

*t*t**************ﬁ**************Qﬁ*************** -

COMMON/CONTRL/ICOR,EI,EZ,PILCbUNT,THAE,YFIN,THEUC
COMMON/PROPTY/G,RG,GC,TS,PS,TA,PA,YUC

REAL M(150),X(150),Y(150),U(150),V(150)

REAL MM,LP,LM,LE,L12Z,L0 _—

X3. = X(I-4)
Y3 = Y(I-4)

U3 = U(I-4) .
V3 = V(I-4) '

X2 = X(I)

Y2 = Y(I)

Uz = U(I)

V2 = V(I)

PRINT *," z
YI = YUC

* CONTINUE .

GK =(G-1.0)/6) |
Q4 = SQRT(2.0*G*RG*TS*(1:0- (PA/PS)**GK)/ (G-1.0))
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ITER = 0 .

Q = SQRT(UZ**2 + V2**2)

A = ATAN(V2/U2) |

CALL THERMO(Q,P,R,T,C,MM)

LP = TAN(A+ASIN(1.0/MM)) '
L0 = V3/U3

CONTINUE

QP = U2**2 - C**2

RP = 2.0%U2%V2* - QP*LP . D
PRINT*," .m
" PRINT *," BOUNDARY POINT ", I+N+1

SOLUTION OF THE FINITE DIFFERENCE EQUATIONS

CONTINUE ¢

X4 = (Y3-Y2-LO*X3 + LP*X2)/(LP - LO)
TR = QP*UZ + RP*VZH

Y4 = Y3 + LO*(X4 - X3) /

DD = QP**Z + RP**2

U4 = (QP*TP - RP*SQRT(Q4**2*DD-TP**2))/DD v

V4 = (TP ) QP*U4)/RP s :

CHECK FOR CONVERGENCE .OR COMPLETION OF ITERATION
(ITER.EQ.ICOR) GO TO 30

[

IF (ITER.EQ.0) GO TO 20

IE.((ABS(X4-XC).GT.El).OR.(ABS(Y4-YC).GT.El})
GO TO 20
IF ((ABS(U4-UC).LT.E2*UC).AND.(ABS{V4-VC)}.LT.E2*VC))
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GO

YC
uc
vC
uu
Vv
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/
/

(

TO 30

CALCULATE THE COEFFICIENTS FOR CORRECTOR
ITER = ITER + ﬂ)

= X4

= Y4

= U4 _ : .
= V4 |

<

0.5% (U2 + U4)
0.5% (V2 + V4)

A = ATAN (VV/UU)

YY

QQ
- CALL THERMO(Q,P,R,T,C,MM)

LP
QP

f

RP
uu
w
LO
GO

= 0.5%(YZ + Y4)
= SQRT(UU**2 + VV*#2)

= TAN(A + ASIN(1.0/MM)) ’

UUR*2 - Ch*2 .

2.0%UU*VV - QPALP
0.5%(U3 + u4a)

0.5%(V3 + V4)
- VV/UU
TO 104

CONTINUE

N1l

= N+1

X(I+N1) = X4

Y(I+N1} = Y4

U(I+N1) = U4

b
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V(I+N1) = V4

D = ATAN(V4/U4)
M(I+N1) = MM

PRINT 5,X4,Y4,U4,V4

© FORMAT (1X," X=" F8.,2,5X,"Y=" F8.2,5X,

$"ygs=" F8.2,5X,"V=" ,F6.2)
PRINT 6,T,P,D

FORMAT (1X," T-",FB.Z,5X,"P=",FlO.Z,Sf,”D-",FB.S)
RETURN : . .

END

»
RRARARARARARARARRRARARRARNANRARARARRRARARRRARRARRAAR

. ~ _
] *
* SUBROUTINE}FOR BLADE CORNER POINT *

* x

o . .
ARANARRRRRANARARANARRRRARARRRNARARARRARRRARRRARARK
! -

SUBROUTINE BODPTI (XUC,YUC,UUC,VUC,MUC,I,N,X,Y,U,V,M)’
COMMON4CONTRL/ICOR,E1,E2,PI,COUNT, THAE,YFIN,THEUC
COMMON/PROPTY/G,RGlGC,TS,PS,TA,PA,YUCﬁ.

REAL MUC,XUC,YUC,UUC,VUC,Quc™

L]

REAL M(lSO),X(lSO),Y(;SO),U(lSD),VilSO)

REAL MM,LP,LM,LE,L12,L0 ; ‘
X2 = X(N) : '
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Y2
uz

V2

X3 =

Y3 =

U3 =
V3 =
YI =

Y(N)
U(N)
V(N)
XUC
Yuc
uuc
vuc
Yuc

"\ CONTINUE

GK = (G - 1.0)/6
Q4 = SQRT(2.0*G*RGATS*(1.0- (PA/PS)**GK))/(G-1.0))

ITER = 0.0 |
Q = SQRT(UZ**Z +. V2**2)

‘

A = ATAN(V2/UZ)

147

CALL THERMO(Q,P,R,T,C,MM)

[

bl C

10

LP
LO

TAN(A + ASIN(1
THEUC*2*P1/360

QP =\U2**2 - C**2
RP = 2.0*U2*V2 - QPALP

. PRINT I,"

.0/MM))

BOUNDARY POINT

N

v

", T+N+1

SOLUTION OF THErfTNITE DIFFERENCE EQUATIONS

CONTINUE
X4 = (Y3-Y2-LO*X3+LP#*X2)/(LP-L0)

‘p = qp*® + RPAV2

Y4 = Y3+LO*(X4-X3)

<

K :
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o

DD = QP**7%+ RP**2 ;

U4 = (QP*TP)g RPMSQRT(Q4**2*DD - TP*#2)) /DD

V4 = (TP - QP*U4)/RP .

CHECK FOR CONVERGENCE OR COMPLETION OF ITERATION

IF (ITER.EQ.ICOR) GO TO 30

IF (ITER.EQ.0 ) GO TO 20 _

IF ((ABS(X4-XC).GT.E1).OR.(ABS(Y4-YC).GT.E1)) ~ ¢~
GO TO 20 7 f/~\aq>
IF ((ABS(U4-UC).LT.EZ*UC).ANDJIABS(V4-VC).LT.EZ*YC))
GO TO 30

CALCULATE THE COEFFICIENTS FOR THE CORRECTOR

ITER = ITER+1 C

XC = X4 |

YC = Y4

uc = U4

VC = V4

du

"0.5*%(U2 + U4) : ¥

e

S VV .= 0.5%(V2 + V4)
A = ATAN(VV/UU)

YY = 0.5%(Y2 + Y4)

QQ = SQRT(UUA*2 + VV**2) 1 N\ |
CALL THERMO(Q,P,R,T,C,MM) -
LP. = TAN(A+ASIN(1.0/MM)) ' -
QP = UU**2 - C*#*2

RP = 2.0*UU*VV - QP*LP

£ URFUPPRE Y
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o

UU = 0.5%(U3 + U4) ‘
VV = 0.5%(V3 + V4)

L0 = VV/UU
GO TO 10°
CONTINUE

N1 = N+1
X(I+N1) = X4
Y(I+N1). = Y4
U(I+N1) = U4
V(I+N1) = V4 <

D = ATAN(V4/U4) : .
M(I+N1) = MM |
PRINT 5,X4,Y4,Us,V4

L

FORMAT (1X,"' X=",F8.2,5X,"Y=" F8.2,5X,

-$"U="" F8.2,5X,"V=" F6.2) B

PRINT 6,T,P,D

FORMAT(1X,"  T=",F8.2,5X,"P=",F10.2,5X,"D=",F8.5)
RETURN : P ‘

END | - .

-~

L

*****l********!ﬁ*******ﬁ*******************t*****ﬁ

* e ' *
* SUBROUTINE FQR CALCULATING WALL POINTS *A‘
* ° Tk

**ﬁA***h*t*t******t**t**********a**t****i*********
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.u{;;’TM/(QM + LO*RM) -

. ] 150

SUBROUTINE WALPT(X,Y,U,V,M,I,N)

COMMON/CONTRL/ICOR,EI,EZ,PI,COUNI,THAE,YFIN,THEUC ot

* COMMON/PROPTY/G,RG,GC,TS,PS,TA,PA, YUC

REAL M(150),X(150),Y(150),U(150),V(150)
REAL MM,LM,LE,L12,LO
X1 = X(I)
7 .
Y1 = Y(I)
Ul = U(I)
vl = V(I)
PRINE 1," WAL 'POINT
Q & SQRT(UL**2 + V1**2) <
A = ATAN(V1/U1) |
CALL THERMO(Q,P,R,T,C,MM) -
LM = TAN(A-ASIN(1.0/MM))
QM = U1l**2 - C**2

© RM = 2.0%U1*V1 - QM*LM .

ITER = 0

7~

", I+N

SOLUTION OF THE FINITE DIFFERENCE EQUATIONS

CONTINUE

CALL BOUNDRY(X4,Y4,Ad,X1,Y1l,LM,X0,YO,XE,THEO, THEE)

T = QM*Ul + RM*V1
LO = TAN(A4)

- .

e

T TP ST T, R

F
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V4 = U4*LO

CHECK FOR CONVERGENCE OF COMPLETION OF ITERATIONS
IF (ITER.EQ.ICOR) GO TO 30

IF (ITER'EQ.0' ) GO TO 20 -

IF ((ABS(X4-XC).GT.E1).OR. (ABStY4-YC).ST.E1)) |

GO TO 20 » |

IF ((ABS(U4-UC).LT.EZ*UC):AND.fABS(V4-VC).LT.EZ*VC))
GO TO 30 o ' o

CALCULATE THE COEFEICIENTS- FOR cQRgECTOR'

ITER = ITER + 1 '

XC = X4

YC = Y4

uc = U4

vC = Ve

UU = 0.5%(U1 + U4)

Vv

0.5% (V1 + V4)
A = ATAN(VV/UU)

YY = 0.5%(Y1 + Y4)
Q = sancﬁug*z + VV**2) -

CALL THERMO(Q,P,R,T,C,MM) -

LM = TAN(A -IASIN(i.O/MM)) |
QM = UuA*2 - C*R2 ‘ S ~F
RM = 2,0%UUMVY - QM*LM ) S |
GO TO 10

CONTINUE
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Y(I+N) = f4
X(I+N) = X4
U(1+Nf = U4
V(I+N) = V4 ’
D = ATAN(V4/U4)
PRINT 5,X4,Y4,04,V4
FORMAT (1X," Xﬁy:?ag

2,5X,"Y=",F8.2,5X,

§"U=" F812,5X,"V=" F6.2) ¢ -

PRINT 6,T,P,D

FORMAT (1X," (% .T=" F8,
RETURN o

END

.

ARRRRAXARRRARAARAARNRRRRRXRAAARARR

T A S .
* SUBROUTINE FOR CALCULATING FLOW. PROPER

®
b .
ARRAARNRARARAAARARRANRARR

“

PROPTY/G,RG,GC,TS
'REAL MM .

C = SQRT(G*RG*TS - ({(G-1
MM = Q/C

Y

2,5X,"P=",F10.2,5X,"D=",

j
N

w

;

IES

-

s

T

: ' .
RARRRAKARRANARARARRARRERAR

. 1 ?
UTINE THERMO(Q,P,R$T,C,MM) /;iET\

,PS,TA,PA,YUC '

.0)/2.0)*Q**2) c

. ‘7

-
RS

F8.3)

ARNRARRARKRARARAK A

.
®

A

®

L

-



153

cp = RC*(G/H;-\ETBB) "
T = TS ~,Q**2/(;.0*Gc*cpj N\

P w‘PS*(T/TS)**(G/(G - 1.0))

RETURN

END ﬁ“ - *
X | -

N

.
************ﬁﬁ************t***ﬁ******t******t***ﬁ*

C »

C
C
8 .
f\_‘c
c

. SUBROUTINE FOR BLADE CURVATURE .
Yowe

& : |
N |

4
***********ﬁ********ﬂ***t************’k**t*ﬁ******

s |

-

SUBROUTINE BOUNDRY (X4,Y4,A4,X1;Y1,LM,X0,Y0,XE,THEO,
[ 'k * - .J
$ THEE)

REAL LM , "

IF (THEE.EQ. 0.Q GO TO 10

AAA = - (TAN(THEE) - TAN(THEO))/(2.0*(XE-X0))
BBB. =~ -TAN(THEO) -, 2.0%AAA*XO

ccc = -YO-AAA*YO**2 - BBB*XO

X4 = ((LM-BBB)+SQRT((LM-BBB)**2-4.0%AAA®

§ (CCC-Y1+LM*X1)))/(2.0%AAA)

Y4 = (AAA®X4%%2 + BBB*XE + CCC)

A4 = ATAN(2.0%AAA*X4 + BBB)
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CONTINUE
X4 = X1 - Y1/LM

. Y4 = 0.0
A4 = ATAN(0.0)
- RETURN
END

154





