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In this dissertation weyshall be concerned with a certain
class of topologlcal algebras, \¥

lled BP*-algebras. We discuss
herein, among other properties, the contlnulty of positive
functionals and the identification of the extreme points of the
set of normalized positive functionals on tbese algebras. We

also 1nVest1gate representatlons of BP* algebras by operators

T,u;g; )

on a Hilbert space and conclude with the reallzatlon of these %
algebras as.algebras of functions.

The theory of Banach spaces has been extended to a theory
of general topological vector spaces with very fruitful results,
particularly, in the special casé of Locally convex spaces. It
was therefere natural to define some‘analogous extensions of the
" 2theory of Banach'algebras. The first major.work in this field
was that of E.A. Michael [192]. He defined LMC-algebras to be
an algebra with a Locally convex topology given by a family of

»

semi-norms {pA} satisfylng the condition

p,(xy) < pA(x;\7“pX£y)n-

Tﬁe theory of LMC-algebras achieves much gf its success by

maintaining some of the preperties which are known for Banach —

algebras. For ‘example, they have jointly continueus multiplicatio

However, the notion of LMC-algebras does exclude those topological
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algebras in which multiplication is continuous only in each
variable sebarately such as Exampié 2.4 and sL®[0,1], [4], '
éyenthouén the latéer has joiﬂtly continuous multiplication.

| In order to generalize LMC—élgebras, G.R.(Allan and
others began studying general Locally convex algebras. The
conéept of pseudo—qomplete Locally convex algebra is due to
G.R. Allan [1]. 1In a later paper [2], A}lah_an&;co—authors
introduce a class of pseudo-Banach algebras based on [1] and the
notion of bound structure in an algebra. |

The originaigmotivation for introducing BP*-algebras

comes from [1] and [2]-and a(paper [17] of T. Husain and Riéelhoff

s

on "Representations of MQ*-algebras'. We extend the class of
- » ) A

MQ*~algebras to a new class of Locally convex algebras called _
BP*~a1gebra$.

Chapter 1 contains those definitions and results from
topological vector spaces, pseudo-complete and pseudo-Banach
"algebras, LMC and éanach algebras which'will be recalled in
subsequent chapters. We have included proofs of some of the most

-

fundamental results.
In Chapter II we provide several examples to show that

a BP*-algebra need not be an MQ*-algebra. We discuss some of

the permanence properties of these algebras, We shbw

that Ae (the a;gebra A with unit e adjoi?ed) is_boundeé pseudo-—

Acomplete if and only if A is bounded pseudo-complete.

-~ Chapter III concerns itself ﬁrimarily with continuity s

of positive functionals on‘BP*-algebras. We start with a fundamental
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Lemma that~every positive functional on a BP*-aléebra is admiésible,
thus generaiizing the correéponding result for MQ*-algebras.

"By means of an example we show that not every positive‘functional
on a BP*—élgebra is continuous. waeverf we have established
cohtinuity of positive fUnctiona1§ on BP*-algebré in its
inductive limit tépology. We have shown that every positive
functional oh a barrelled BP*-algebra ‘is continuous and obtain
some interes£iﬁg qorollariés.

In Chapter 1V, we prove an extremely important result
* concerning the extreme éoints of the set P(A) of normalized
positive functionals. P(A) is shown to be‘weakly compact convéx
set, thus extending the result for MQ*-algebras. It is then‘
shown that indecémposable positive functiopals are exactly the
extreme points of P(A), thus éeneralizing the corresponding “3
result for Banach *-algebras apd LMC*-algebras,

Finally in Chapter V,we investigafé representatioﬁs of
éP*-alggpras in B(H?. One of the main results provides a
necessary and sufficient condition for a cyclic representation
to be irreducible. We end up with a theorem which states that
the Gelfand representation is'a continuous *-isomorphism of a
semi- i;mple symmetric BP*—algebra A onto a dense self-ad301nt
separating subalgebra A of ‘C(M(A), o) where'cols the topology
of uniform convergenoe on equi—continuogs'subsets of M(A). Ve
usé this ;ﬁeorem to prove normability of the inductive limit

topology on. a semi-simple, symmetric BP*-algebra.



CHAPTER 1

PRELIMINARIES

1. Topological Vector Spaces

[

" Definition 1.1. A linear space E over K (real or complex

field) endowed with a Hausdorff topology u is called a TVS

(Topologlcal Vecter Space) 1f the mappings
(1) (%,y) » x + y of ExE into E and “
(2) (A\,x) > x ' of KxE into E

are continuous.

We shall denote a TVS by Eu

Definition 1.2. A subset A of a linear space is called

~convex if for all x, y € A, Ax + (1-1) y € A, where o < X < 1.

A is called balanced (circled) if for each x € A, Ax & A whenever ‘

.[A] < 1. A balanced convex set is called absolutely convex.

This is equivalent to saying that for all x and y in A, AX + wy
belongs to A whenever [A| + fu|l < 1. A is said to absorb a
subset B if there exists X > o such that BC AA. A is called

-

absorbing if A absorbs éach point in E. That is for each x € E,

there exists A > o such that x € AA.

Theorem 1.3. In a TVS Eu there exists a fundamental

-~
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system ), of ﬁ-closed neighbourhoods of the origin such that
- (1) Each U in. is circled and absorbing. )
(2) For each U inll, there exists a V inll such that
vV +VCu. .
(3) N U= {o}, where I is inL
.Conversely if E is a real or cﬂﬁplex veétdr sbace ana
Alis a filter-base satisfying conditions (1) fo (3), then there
exis?s a topolégy u on E fuch that Eu is a TVS qsd\is a fundamental
system of neighbourhoods of the origin.
Proof: See Theorem i, Page 13 [15]. - :

- ] \J

Definition 1.4. A TVS is called a locally convex space

if there exists a fungamental system of convex neigpbourhoods =
of the origin.

Clearly each normeg/space is a lo;ally convex space,
where fhe norm []-]] defines a fundamental system {AU} of convex

neighbourhoods of 0, where A > o and U = (x ¢ E: I Ixj] < 1}.

Theorem 1.5. A locally convex space E is metrizable

if and only if it is separated (Hausdorff) and there is a countable
base of neighbourhoods of the origin. ?

!
Proof: See_ Theorem 4, Page 16 [24].

Definition 1.6. A complete metrizable locally convex

space is called a Frechet space.

Proposition 1.7. For each a € A, let Ea be a locally

convex space and {q a linear mapping of Ea into a vector space —



E3:SO that U fa(Ea) spans E. Then there is a.finest convex
té?qlogy u on E under which all the mappings fa are continuous.
A base oi-o—neighpourhqus for this topology is formed by

the set'LLof all absolutely‘convex subsets U of_E, such that,

for each a, £, (U) is a neighbourhood of 0 in E_.

Proof: See Proposition 4, Page 79 [24].

Definition 1.8. A locally convex space E with this

topology u is called the inductive limit of the convex spaces

Ea by the mappings fa'

Remark 1.9. . If the locally convex spaces Ea are vectorh

subspaces of E, whose union spans E and the linear mappings fa
are all restrictions to Ea of the identity mapping of E, then

the inductive limit topology is the finest locally convex

topology on E which induces on each'EOl a topology coarser than
the given topology and an absolutely convex set U is a O- .
neighbourhood in E if and only if U/’\Ea is a O-neighbourhood

in Ea for® each a.

Proposition 1;10. Let f be a linear mapping of ane
inductive limi§ Eu of Ea (¢ € 4) into a locally convex sp%ce F.
“Then f is continuous if and only’if the composftion mapping
fof(1 is continuops for each a.

Proof: See Proposition 3, Page 18 [15].

-~

Definition 1.11. Let E be a locally convex space. A

subset B of E is called a barrel if it is closed, absolutely

-

convex and absorbing. E is called a barrelled space if every
AN ;i



barrel in E is a neighbourhood of the origin. A subset B of)‘
E is said to be bounded if for each neighbourhood V of the

origin, there is a A > o.such that B(:_RV. A subset M of E.is

said to be bornivorous if M absorbs every bounded subset of E.

E is said to be bornological if each convex sei which is d

bornivorous is a neighbourhood of the. origin. A locally convex'

space E is called quasi-barrelled if each barrel of E which is

bornivorous 1is a. neighbourhood of the origin. A TVS E is said

to be quasi-complete if every closed bounded set of Eu is complete.

-

ft is éalled sequentially complete if each Cauchy sequence - i!
-

converges in it. A locally convex space which is barrelled and

in which each bounded set is relatively compact is called a Montel °

space. ) '

Theorem. Suppose a second finer topology v is gi&gn on
a TVS Eu' If v has a base of neighbourheods of O consisting of
u-closed sets, then every subset of E which is complete
(respectively sequentially complete) with respect to u, is also

complete (respectively sequentially complete) with respect to v.

Proof: See (M)(b) Page 210 {18] or Proposition 8 [6]. N

Proposition 1,12. Bvery complete locally convex spage
is quasi-complete and every qQuasi-complete space is sequentially
complete. s

Proof: See 7.4 Page 480 [12].

-

Proposition 1.13. Each barrelled or bonolagical space

A

is quasi-barrelled, but not conversely. , . *



Proof: See Propoéition 9 Page 22 [15]. - \

\ ) ‘\ . AN |
. . . - . | B B
Proposition 1.14. A sequentially complete quag}ﬂfarrelled

>

‘space is barrelled. In particular every quasi-complete qvasi—’

harrelled space is barrelled. . \

4

Proof: See (1) Page 368 t18]. | \-

¢ I‘\
) \
Proposition 1.15. Every sequentially complete borﬁological

space is barrelled. . \

- i

\
Proof: See (2), 28, Page 379 [18]. - The proof also|

: L
follows by combining Proposition 1.13 and Proposition 1.14 \

above. . .
] . ¢

] Y

Proposition 1.16. A metrizable quasi-complete locally
convex space is a Frechet space. : ~ qg

Proof: See 4(b) Page 22 [15]. ' E
: »

Proposition 1.17. Every Baire space (which cannot be!

written as a countqple union of nowhere dense.sets) is a \

1 \

barrelled space. In particular every Frechet space is barrel%ed.

. |

" Proof: . See 6, Page 19 [15]. ’ \
— - .

Proposition 1.18. An inductive limit of barrelled

space 1is ﬁarrelled.

. Proof: See Proposition:G, Page 81 [24].

L]

) Prqﬁosit&on 1.19. A closed subspace F of a complete
s ’ - . .
gnifbnm §paCe*E is complete. Every complete subspace M of a

Hausdorff uniform space is closed.
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Proof; See Proposition 7, Page 16 [6].
Definition 1.20. Let E and F be two TVS. The set of
all linear apd continuous mappings of E i;to F forms a vector
space and is denoted by L(E,F). Let (-, be the class 6f subsets
of E. One can define a topology on'L(E,F) of uniform convergence

over sets M in(E;as follows: Let V be a neighbourhood of the

origin in F and M inf. Let T(M, denote the set of all linear

~and continuous mappings f in L(E,F) such that f(M)(Z.V‘ The

N
collection T(M, V), where M runs over & and V over nelghbourhqus
of the origin in F, forms a sub—Basis for a topology called the

G;—topology. If,GSconsists of all finite subsets of E, then

G;—topofogy is called the topology_of simple convergence. A

subset H-of L(E,F) is called simply bounded if H is bounded in

the simple convetrgence topology of L(E,F). A sﬁbset H of L(E,¥F)

is said to be equi-continuous if, for each neighbou}hood V of

the origin in,F,,/ﬁ\ f—l (V)'is a neighbourhood of the origin
feH
in E.
Theorem 1.21. Let E bé a barrelled space and F any"
locally convex space. Then each. simply bounded subset H of

L(E F) is equi- contlnuous

Proof: See Theorem 5, Page 26 [15].

Definition 1.22. Let E be a locally convexs space. The .

’

set E'" = L(E,R) of all linear and contlnuous mappings of E into

the reals R is called the topological dual or simply dual of E.

-

’»
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Clearly E'C E*(j_RE, where. E* is rthe algebraic dual. The value
of the Linear functional x' € E' at x € E is denoted by <x,x'>.

The coarsest locally convex topology on E for which -the mapping: -
x » <x,x'> for each x' € E', is continuous,. is called the weak
topology o(E,E') on E. In the same way, the weak*-topology ]

c(E',E) on E' is the coarsest topology for which the mapping:

X' + <x,x'> for each x ¢ E, is continuous. c(E',E) is precisely
the topology of simple convergence on E', wh¥¥ch, in furn, is

. ) : ' %
induced from the product topology on RE. For each subset A of

E, the set of 2ll x' € E' such that |<x,x'>] < 1, for all x € A,
is called the polar of A, and is denoted by A®. The bipolar

'A®° is the set of all x € E such that: |<x,x'>] < 1 for all x' e A",

o

Proposition 1.23. The polar A° of any subset A is

absolutely convex and o(E',E) - closed.

Proof: See Proposifion 9, Page 34 [241].
A

Proposition 1.24. A subset M' in E', the dual of a
locally convex space Eu’ is equi—éontinuous if and oply if there
exists a u-neighbourhood U of the origin in E_  such that M'C ue.

Proof: See Proposition 14, Page 28 [15].

-

| Th#msrem 1.25. If E is a loecally convex space with dual

E' and U is a néighbourhood "of the origin, then U° is o(E',E) -

¢ | | ,. _

Proof : .See Theorem 6, Page 61 [24].

compact..

-

) Corollary 1.26. If A' is equi-continuous, then A' is

o(BE',E) — compact.

-

L
Al
A
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~
Proof: Follows from Theorem 1.?5 above.

Definition 1.27. Let u and v be two locally convex
topologies on a vector space E. u and v are said to be equivalent '
(u v v) if Eu and EV have the same topological dual i.e. E& = Eé.

In the sense of Bourbaki, u is said to be compatible with the

' s 1 s 1 = t
duality betwegn Ev and Ev if Eu EV.

Theorem 1.28. , Let Eu be a locally rvonvex space with

, W
dual E'. Then the foXlowing statements are equivalent, =
. . . .

’ﬁ

(b) Each o(E',E) - bounded subset of E' is equi-continuous.

(a) Eu is barrelled.

Proof: See Theorem 7, Page 30 [15].

>

Corollary 1.29. 1If E, is a barrelled space, then in E'
the fqllowing sets ére the Same (a) equi-continuous (b) relatively
compact (c¢c) o(E',E) - bounded.
. Proof: Follows from Theorem i.28 above and the Corollary

8, .Page 30 [15].

Definition 1.30. The ¢ -topology on a locally convex

spabe E, where & consists of all absolutely convex o(E',E) -

T_ compact subsets of the dual E' of E, is called the Mackey topology
and is denotéd ﬁy'T(E,E'). A locélly convex space Eu is.said

to be a Mackey space if u = t(E,E").

Propqsitioh 1.31. A quasi-barrelled space Eu is a Mackgy

space..

Proof: See Proposition 16, Page 31 [15].

r.’"
1‘:9;
Ak
£ ar
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Corollary 1.32. y bornological space (in particular
a metrizable. locally convex space) is a Mackey space.
Proof: Recall Proposition 1.13 and Proposition 1.31

" above.

Proposition 1.33.° Let E be a Fréchet space and F a

barrelled space. _Let f be a linear mapping of E onto ¥ so that
the graph of f is closed. Then f is open.

Proof: See Corollary 5, Page 41 [15].

Proposition 1.34. if there is a continuous open mapping

of a Fréchet space onto a Hausdorff locally convex space F, -
then F is a Fréchet space. ™

Proof: See Proposition .13, Page 119 [24].

Aol

Definition 1.35. In a vector space, a closed (or open)

line segment . fa,b] (or (a,b)) is the set of points. of the
‘form Aa + (1-A)b with 0'<°A < 1 (or O <-X < 1). A point x of

a convex set C 1is éalled an extreme point of C if no proper

open segment through x can be chosen which lies in C. 1In othep

wprds if_x = lxl + (1—A)x2, 0 < A < 1,_x1,‘x2 e C, then
o-

Theorem 1.36. [Krein-Milman]. Every non-empty convex

compact subset of a Hausdorff locally convex space, has extreme

points and is the closed convex hull of-its extreme points

[Convex hull .of an arbitrary set M is the intersection of all

the. convex subsets of E cohtaining it].
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Proof: See Theorem 1, Page 138 [24].

2. Pseudo-Complete locally Convex -‘Algebras.

Definition 1.37. A locally convex algebra is an
associative linear algebra A dver the comple% field C, equipped-
with a topology T such .that

g (1) (A;T) is a Hausdorff locally convex TVS.

(2) ?or any element X, of A, the maps x =+ XX and
x > xx_ of A info iteelf are continuous.

Clearly a locally m-convex algebra (see definition 1.6é);'
and, in particular, eacn’normed algebna is aﬁlocally convex—
algebra, where an algebra E with a norm }|+|]| is called a normed

algebra if

Tlxyll < [tx]] llyl| for all x,y ¢ E .

Definition 1.38. Let A be a locally convex algebra.

An element x of A is bounded if, for some non-zero complex

number ), the set {(Ax)?: n = i 2,3,...} is a bounded subset of

A. The set of all bounded elemenﬂs of A will be denoted by 4
Clearly every element of a normed algebra is bounded

because, for each x + O, A = l/llxll satisfies the definition.
"Hence for a normed algebra A, A = A
Notation Let 631 denote the collection of all subsets

B of A such that

(a) B is absolutely convex and B <. B.
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.Mmeme,,4b%’/§/Z;/;;unded and closed. -

. <P
For each B e:(Bl,

A(B) = {dx: X e C, x ¢ B} is, by (a) and (b), a
subalgebra generated by B and :

-
-~ . »
.

JIIXIIB,= inf {XA > o: x € AB} (x & A(B))

is a norm on A(B) which maké% A(B) a normed algebra, with

ala
closed unit ball B. It will always be assumed that A(B)

" carries the topology induced by this norm.

-
ﬂifw“

1

Proposition %.39. Tﬁé topology induced on A(B) from NE

3 el
.'r’-.u

:A,is coarser than the norm topology on A(B).

Proof: Let V be an absqlutely convex néighbourhood of
the origin for the locally convex topclogy induced from A.
Since B is bounded, there exists A > o such that ABc V. B
is clearly contained in A(B). Hence AB C V C A(B). B being
a closed unig ball in A(B), AB is ; neighbourhood of the origin

in the norm topology on A(B). This proves that the norm topology

on A(B) is finer than the induced topology on A(B).

oo o ; - Q.E.D.

Definition 1.40. A sub-collection{B, of(B, is said to
. "be basic (in@%l) if for every B1 indgi, there is some B2 in
(3, such that B, C B,-

For example, the class of positive multipleé of the

-

unit ball in a normed algebra is basic in the class of all

r bounded subsets. -
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: A is pseudo-complete.
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Proposition 1.41. Let A be a locally convex algebra

and letCBb be any basic sub-collecgion of(E%. Th?n

A = ula) : Be®B ) . r~
o) 2 i U
Proof: Let D denote the right hand side. Let x & D.
Then x € A(B) for some B inCBQ. Then, if A > l[xIIB, the set
{(A-lx)n: n=1,2,3,...} is bounded 'in A(B). The norm topology

on A(B) being finer than the induced oﬁe,and a set bounded

p

in a finer topology remains bounded in the coarser topology,

it follows the set {(l—lx)nf n‘zﬂl} is bounded in A. Consequently

? € Ao. That is D CZAO.

Conversely, if x ¢ Ao, there is some complex A(Fo) such

-

that the set . . rh~

-

\ S = {(Mx)P: n > 1}

]

is bounded in A. Clearly S°C S. It is easy to see that the X
closed absolutely convex hull of S bélongs to 031 [Recall Lemmas
1.3 and 1.4 [19] and [24]]. Thus there is some B 13052 such

that S C B. Hence Ax = z € B. Therefore x ¢ A(B). That is

Ao C D and hence Ao = D.

Q.E.D.

Definition 1.42. The locally convex algebra A is

called pseudo-complete if and only if each of the normed

algebras A(B) (B 86315 is a Banach algebra.

Proposition 1.43. If A is sequentially complete, then

o
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Proof: We have to show that A(B) is complete or -
sequéntially complete for each B ECBl. Consider a Cauchy
_sequence {zn] in A(B) in the norm topology. {zn} being

norm-bounded, there exists afA > o such that
o

{Azn} C BCA 7/

where B is a closed unit ball in A(B). Siﬁce each B'eﬁal

is closed in the topology of A and by proposition 1.39, the
norm topoldgy on A(B) is finer than the induced one on A(B),
{Azn} is also a Cauchy sequence‘in the inducedltopology and
sequentiai completenes§ of A imblies that Azn +~ b € B in the
weaker topology. By the Theore; on Page 7, Azn »- b in the finer

topology on A(B). Since A1

b ¢ A(B), we have shown xhét A(B)
is a sequentially complete normed algebra and thus is a Banach
algebra. This prbves A isapseudOTCOmpleté.

$ Q.E.D.

Prdpagftioﬁfl.44. If 651 contains a basic sub-collection

&% such that A(B) is a Bgnach algebra for every B 6092; then
‘ A is pseudo-complete. .
Proof: Let BE:CBl. We can choose 82 in 632 such that
B(;,Bz. Qlegrly A(B) C A(Bz). Since B is closed in A, it is
closed in A(Bz); since the topology of A(B) is stronger than
its topology as a subspace ‘of A(Bz), it follows by the theorem

quoted in the abové proposition that A(B) is complete for every

BtZG%J Hence A is pseudo-complete. ‘ 7

!

Q.E.D.
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We give here some definitions before we give a counter
example for the converse of proposition 1.43. Let E be a TVS..

We recall phat a sequence {xn} (xn € E) is Cauchy in the sense

of Mackey if there is some sequence of positive numbers {en},

tending to zero,. and a bounded subset B of E, such that for

n

all n, x_ - X, € €.B whenever m > n. {xn} converges in the

sense of Mackey to x, if there is some sequence of positive
\

numbers {sn} tending\to zero, and a bounded subset B of E,

such that x_ - x ¢ ¢,B for all n. Finally E is Mackey complete &

if every Cauchy sequence, in the sense of Mackey, is convergent
in the sense of Mackey. Any sequence which is Cauchy or

convergent in the sense of Mackey is respectively Cauchy or

convergent in- the topology of E. Also if E is sequentially - .

complete, it is Mackey complete. We now give an example of/a

locally convex algebra which is pseudo-complete but not Mackey
i

4

compléte.‘
Example. Let A be the algebra of all complex polynomials;

let A be given the topology T of uniform convergence on the

compact subseéts of(the positive real line R+. Ao consists just

of the constant functions and that(E& has a greatest member

é‘BO, namely the set of all constant functions not exceeding unity

nin absolute value. Thus, by proposition 1.44, A is pseudo-complete.

-

Now let the sequence {pn} in A be defined by

Tl 2rdl ara1y:

. n
po(x) = I (-1)
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Then pn(x) converges to sinx uniformly on compact subsets

of R+. Let

B={p: peA. |px) <e* (x> o0)}.

Then B is T-bounded and e = lpn(x)~sinx] tends to zero uniformly
on R+; therefore {pn}'is Cauchy in the sense of Mackey but does
not converge to an element of A. Thus A is not Mackey-~complete.

Consequently A is not sef§uentially complete.

Q.E.D.

u

Proposition 1.45. (a) A closed subalgebra of a pseudo- -

complete algebra is itéelf pseudo-complete.
(b)) 1If A has no identity, then Ae (the algebra A with
a unit e adjoined) is pseudo-complete if and only if A is

pseudo-complete.

(c) If the locally convex algebra A has an identity e,

then for the collection 031 as defined before,

{B s(!& : e g B},
is a basic subﬁcollectiqd’oﬁfdal.

-Proof: See Propbsition 2.8 [1].

VPR

Notation. With the notation as in (c) above, 1if A

%is a locally convex algebra with identity e, we shall write

;\\ g (55 =, {B eCBl : e'g B}

}If A has 'no identity, we shall write@for (9)1.
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Theorem 1.46. If A is commutative' and pseudo-complete,

then-® is outer-directed by inclusic;n (i.e. if B, C 608, then
the;e is somé D such that D €03, and B.U CC D).
_ Proof: We recall from Theorem 1.21 that each simply
bounded subset H of L(E,F) is equi-continuous where E is a
barrelled space and F is any locally convex space. We first
assume that A has an identity e. Let B, C ¢33 we shov‘v)that
BC is bounded in A. ' ’
For each b € B, let Lb be the linear map from A{C)
into A defined by Lb(c) = bc, where ¢ runs over A(C). Let
ﬁ' = {Lb: b € B}. Multiplicétion in A being separately
continuous, we see tQat each'Lb is continuocus and that B' is
bounded in the tobology of simple converéence on A(C), i.e. -
B' is a simply bounded subset of L(A(C), A). Since A(C) is QE!
a Banach algebra which is a Banach space and hence a barrelled -
space, it follows by the above quoted theorem fhat B' is an
equi-continuous subset of’L(AéC), A). Hencé BC is bounded in A.
Since A is commutatiye; (BC)2 = BZC2(: BC, so that
the closed absolutely convex hull of BC belong§ tc:G%l.

Hence, since e ¢ BN C, there is some D inOB such that

hY

B UCCBCCD.

This proves the theorem when A has an identity. If A has no
identity, we form Ae and use Proposition 1.45 above.

Q.E.D.

ey
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Corollary 1.47. If A is commutative and pseudo-

complete, then Ao is a subalgebra of A.

Proof: Let x, y € AO. It is easy to see that

AX € AO for any A € C. There exist non-zero complex numbers

u and-X such that
B={(x)" n>1}, cC={uy": > 1}

are both bounded in A. Since BC is bounded by the Theorem

1.48, clearly Xxy € Ao. We know by Proposition 1.41, that

A, = U {A(B) : B @} . ig.“

Then x € A(B) for some B inOB, and y € A(C) for some C in(EB.

Shuueéais outer-directed by the inclusion relation, one can ‘;

{ : .":
show that x + y € A(D) for‘some D 1n63 . Hence x + y ¢ AO. I~
We have therefore established that AO is a subalgebra of A.

Q.E.D.

Definition 1.48. If A is a locally convex algebra

and x ¢ A, we define the radius of boundedness, B(x) of x by

-1

B(x) = inf {A > o : {(A7"x)™} is bounded}

n>1

Proposition 1.49. If A is any locally convex algebra,

then for any x ¢ A, B(x) < = if and only if x ¢ Ao.

Proof: See Proposition 2.14 [ll.

Proposition 1.50. If A is locally convex and if x ¢ AO,

then

B(x) = inf (]Ix]lB: B &53115 e A(B)}

—



Proof: See Corollary 2.17 [1].

Definition 1.51. Let A have an identity e and let

x € A. Then the spectrum of x denoted by OA(x) or o9(x), is
a subset of the extendéd complex plane C¥ defined as follows:

(a) for A $# «, A € o(x) if and only if Ae - xhas no

.inverse belonging to Ao.
(b) « € o(x) if and only if x ¢ Al

The spectral radius rA(x) of the element x in A will

be defined by

r(x) = sup {Ix]: X € o(x)}

Proposition 1.52. Let A be a locally convex algebra

and let x ¢ A. Then o(x) ¥+ ¢ and if A is pseudo-complete,

then o(x) is closed.

’ Proof: See Corollary 3.9 [1].

-

Theorem 1.53. Let A be a locally convex algebra and

let x ¢ A. Then B8(x) < r(x) and if A is pseudo-complete,

then B(x) = T(X).
Proof:y See Theorem 3.12 [1].

Proposition 1.54..  Let A be pseudo-complete and let

x & A _, Then

(1) o,(x) = ﬂ{oA(B)(x)j.?”&:@, X € A(B)}.
(2) ry(x) = inf {rA(B)(x): B 665, x € A(B)}.

Proof: . See Propositions3.13 [1].

21
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Theorem 1.55. Let A be a locally convex algebra with

continuous inversion .and let. x € A.. Then

Sp(x). = {A € ¢: Ae - x has no inverse in Al}.

C O(X)‘C; Sp(x)

and if A is pseudo-complete, then o(x) = Sp(x).

¢ Proof: See Theorem 4.1 {1].

Prqpoéition 1.56. If A is pseudo-complete and has

continuous inversion; then x € Ao if and only if Sp(x) is

bounded.

Proof: -See Corollary 4.2 [1]. .Tm‘

- k)

3. Projective Limits

Definition 1.57. Let {Xa: @ ¢ A} be an indexed family

”

of topological spaces Xa' the index set A being directed by the

relation <. Suppose that whenéver o < B, there is given a
continuous map Tog from XB into Xa such that

(1) m,, is the identity map on X  (all a) and

-7
: ag gy T Tay -
We write for the product space-

3

(2) if a < B <y, then =

P = H{Xd: a £ Al

and define the pfojecf@vexlimit n{xu: a € A} of the spaces

X with respectito the maps ﬂas, to be the subspace Q of P
« 19 .\ .

»
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Q = A{Xa: o g A}

. = {(xa)qu e P: W (%) = % (x < B))

Proposition 1.58. If each Xais:inon—empty'compact

Hausdorff space, then Q is also a non-empty compact Hausdorff

space.
Proof: See Proposition 6.2 [1] or Chapter 1, §9,

No. 6, Proposition 8 [5].

~

Definition 1.59. Let A be commutative and pseudo- ﬁ

complete. Then the carrier space of A denoted by MO, is

o)
the set of all non-identically zero multiplicative linear

functionals on Ao’ in the weak *-topology G(Mé,Ao)..- X

'Prbposition 1.60. The space Mb.is a non-empty compact

Hausdorff space.

Proof: See Corollary 6.5 [1].

Proposition 1.61. Let A be commutative and pseudo-
complete, and let x ¢ AO."'Thenfx is invertible in Ao if and
only if ¢(x) + O for every ¢ € M-

Proof: 'See Lemma 6.6 [1]. - '

Theorem 1.62. Let A be coﬁmutative"and pseudd—complete
. < . "
and let x € AO. Then -

-~

5(x)-='{¢(x): b € MO}.

~

Proof: See Theorem 6.7 (1. -

s
A
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4. Pseudo-Banach Algebras

Definition 1.563. Let A be a commutative algebra with

identity e. A bound structure for A is a non empty collection’

(Bof subsets 01.‘. A such that. )

.(1) B is absolutely convex, 821: B, e € B for each B
in 63 l ]

(2) given By, B, in(#, there exists By in& and A > o

such‘that B1 U B2 c:AB3

For B ¢ ®, let A(B) = {}b: A € C, b ¢ B}. 1In view of
(1), A(B) is the subalgebra of A generated by B. The Minkowskil
functional of B defines a sub-multiplicative semi-norm I]-[lB
on A(B). 1If each ||-||B is a norm and if A(B) is_g Banach

algebra with respect to ||-||B, then (A,®) is called a complete

bound algebra. )

From (2), A, = U {A(B) : B ¢03} is a subalgebra of .

A. If A is complete, and if A = AO, then A is a pseudo-~Banach

algebra.

-
-
-

Theorem 1.64. (Gelfand-Mazur Theorem). If the pseudo-
Qanach algebra is a field, then A 1is isomorphic to the complex,
field . 7 R

Proof: See Cofoll;>§ 1.7 [2]. -

Proposition 1.65. The (Jacobson) radical of a pseudo-

Banadh algebra A, is equal to the ideal

(A,®) is called a bound algebra. W
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R(A) = {a € A: x(a) = 0, X ¢ XA}.

where XA is the character space (the set of all non-zero

”multiplicative linear functionals on A).

5. The Space L” , -

The algebra A = L*{0.1] (cf: Arens [4]) consists of all
complex-valued measurable functions f on [091] such that
f € Lp[0,1] (p = 1,2,...), functions equal almost .everywhere not

being distiqguished. A is topologized by the whole collection

of LP-norms {|}|-]] p=1,2,3,...}. Then A is a complete

p:
metrizable locally convex *-algebra (the involution being complex

4

conjugation) with jointly continuous multiplicationf

Theorem 1.66. L”.c LY c LP but L™ # L® # LP for p > 1.
The identity ma.ppings'L°° - LY = P are'coptinuous, but their
inverses are not. L” is dense in L and L® is dense in each
LP(p > 1). '

Proof: See theorem 1. Eﬂl.

h

w . ' . . ' . )
is a convex metric commutative ring

d

fheorem 1.67. L
with the property that if U is a convex open set in LY containing
O and if vvuC U, thgn U coincides with the whole space LY.

- Proof: See Theorem 2 [4].

6. Locally Multiplicatively Convex Topological Algebras

Definition 1.68. A subset U of an algebra A is called
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idempotent . if UU C U: it is called m—-convex (multiplicatively

convex) if it is convex-and idempotent.

Definition 1.69. A topological algebr is called Locally

m-convex if there exists a basis for the neighb

N

origin consisting of sets which are m-convex and symmetric

(balanced).

Clearly every Banach algebra is locally m-convex.

W

L is not locally m-convex. . ‘g

Definition 1.70. An *-algebra is an algebra with a

mapping which assigns to every Xx € A an x* € A such that for

i "ﬁ

X, vy € A
(a) (x*¥)* = x (b)) (xy)* = y*x* (c) (xt+ty)* = x* + y*
and (d) (Ax)* = Xx* for any scalar A.

*
Definition«1.71. A symmetric *-algebra is a *-algebra

with identity and the property that (e + x*x)_1 exists for every

-

X € A.

Proposition 1.72. Every locally m-convex algebra has‘k\’/‘
a continuous inversion on the set of reguiar elements.

Proof:’ See Proposition 2.8 [19].

Propositién 1.73. If 'f is a multiplicative linear .

functional on a symmetric- *-algebra, then
N f(x*) = f(x)

Proof: See Lemma 6.4(b) [19].
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Proposition 1.74. If A is a symmetric *-algebra of

complex valued functions on a space T, then A is closed under

conjugation (i.e. if x € A, then x* defined by x*(t) = x(t)

for t ¢ T, is in A)..

Proof: See Corollary 6.5 [19].

Proposition 1.75. Let A be a symmetric ¥¥alg$bra, and

B a commutative, semi-simple and complete locally m-convex

symmetric *-algebra. Then any homomofphism h from A into B is

a *-homomorphism (i.e. h(x*) = [h(x)]* for all x g A).

Proof: See Lemma 6.6 [19].

Let T be a topological space, t € T and

~

Proposition 1.76.

A a separating subalgebra of(%(T) which is closed under,K conjugation.

Then A is dense inC%CT) with the compact open topology.
‘ f N

Proof: See-Proposition 6.8 [19]. 2

Notation S(A) = {x & A: rA(x) 5\1}.

Proposition 1.77. The followﬁng conditions on a

topological algebra are equivalent,

(1) A is a Q-algebra (the set of invertible e}emehts is

open).
(2) S(A) is a neighbourhood of O.

Proof: See Lemma E.2 [19].

Proposition 1.78. Every element of a Q-algebra has a

v

compact spectrum.- . S o
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Proof: See Lemma E.3 [19].

Remark: Every Banach aigebra is a Q-algebra. The

.algebra C(f ) is not a Q-algebra [19].

7. Positive Functionals

Definition 1.79. A linear functional f on a *algebra

A is said to be a positive functional if f(x*x) > o for each x € A.

A positive functional f is said to be extendable if f(x*¥) = f(x)

and .if there exXists an a > o such that for all x e A, %éw

%

lf(x)lz < af(x¥*x). A positive functional f is said to be
admissibLégif | . ?%

Sup ff%ﬁi;g) Py e A, I(y¥Y) # o) < o

/

!
/

+ Theorem 1.80. If f.is'a positive functional on a *-algebr:

Then for .all x, y € A,
(a) f(y*x) = £(x¥y) .
(b)  12(x*y)|? < £Cekx) - 2(yry)
If A has é unit e, then it follows that :
(e) 12 1? < £(e) 2 (x*x)

Proof: See Theorem (21.16) [147.

<
-

‘Theorem 1.81. If Ay is the algebra A with unit adjoined
and f is a positive fphétional on . A, then a necessary and

sufficient condition foxr the existence of a positive functional
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" n

.t on A, such that f|, = £ is that f be extendable.

Then \

n,
1£(x) 1% < £(e) £(x*x)

Proof: See (C.3) Page 470 [14].

Theorem 1.82. Evefy positive functional on a Banach
- . R ] :

*—algebra with a unit is bounded or continuous.

Proof: See Cgrollary 21.20 -[14]. ' 'gjh

-Definition 1.83ﬂ Let f and g be positive‘functionals
on a *-algebra. g is said to be dominafed by £ ;f_there
exists a pqsitive number A such that Af -~ g is a éositive
functional on A. A positive functional f is said to be |

' . <.
indecomposable if every positive functional g dominated by

f is a multiple of f.

Theorem 1.84. If P(A) denotes the set of all positive

functionals on a Banach *-algebra with identity e such that
f(e) = 1, then P(A) is compact in the weak *-topology.
Proof: See 4, Page 266 (21].

.

Theorem 1.85. A positive functional f in P(A) where A

is a Banach *-algebra, is indecomposable if and only if f is an
extreme point of the set P(A).

Proof: See I, .Page 266 [21]. -

Theqorem 1.86. Positive multiplicative members of P(A)

are exactly the extremé points of P(A).

df
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Proof: See Remark Page 272 [21]. Use also Theorem 1.85

A )

above. '

-

., 8. Extentions of Positive Functionals

Definition 1.87. A €et K in the real linear space X

is called a cone if .

(1) x e K and o > o imply that ax € K. - T~
' . L

(2) x, v e K implies that x + y £ K.

(3) x e K, X # o imply that -x ¢ K. : %

The following theorem due to M. Krein(plays an important

role on extensions of positive functionals.

_Theorem 1.88. Suppose R is a cone in the real locally
convex space X. Assume K contains intérior boints and let Y be
a subspace in X which contains at least one interior point of
- K. Then every posifive linear functional f on Y can be extended
to a positive linear functional F on X.

Krein's theorem can be employed to prove the following

theorem on extensionsof positive functionals.

Theorem 1.89. Suppose A, is a closed *-subalgebra of

1.
a symmetric Banaqh;*—algebra A with identity. Then every positive

functional fo on A1 can be extended to a positive functional oan
A.

Proof: See II1I, Page 304 [Z1].
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9. Representations

Definition 1.90. Let A be a *-algebra and H a Hilbert

space. A homomorphism T: x - Tx of A into the algebra of

bounded operators on H is called a *—rgpfesentation of A

. = Mm% % 1 . .
. provided Tx* Tx’ where Tx is the adjoint«woperator of Tx‘

A subspace Hl of H is said to be invariant under the representation

T if Tx(Hl) C Hy for all x € A. A representation T of an algebra
A by operators on H is said to be cyclic if there is a vector
Z € H such that the linear subspace {Txc: X € A} is dense in H

and ¢ is called a cyclic vector., Let f be a positive functional ﬁF

on a *-algebra A and let T be a *-representation of A on a

]

Hilbert space H. Then f is said to be representable by T if -

A}

there is-a cyclic vector T € H such that f(x) = <Tx§,§>. A

representation T of an algebra A is irreducible if {0} and

H are thg only closed subsyaces of H that are invariant under

-

all Tx' N

Theorem 1.91. Lét f be an admissible, hermitian

(£(x*) = T(x)) positive functional on a *-algebra A. Then there
exists a *-representation T of A on a Hilbert space H with the
following properties:

(1) There is a linear mapping k -+ cx of A onto dense

subspace of H such that "
f(y*xy) = <Tx;y,cy> for all x, y € A.

(2) If A has a unit e, then the representation T has

ol
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a cyclic vector ¢ and
f(x) = <Tx;,g>

/1The *-representation T is called an associated *-representation
A7

of f£f. . .

Proof: See Theorem 4.54, Page 215 [23].

Theorem 1.92. Every *-representation T of«a Banach

*—~—algebra A by bounded operators B(H) on a Hilbert space H is
a continuous mapping of A into B(H), supplied with the norm
topology. L

Proof: See Theorem 21.22, Page 320 [14].

Proposition 1.93. ﬂa) Every positive functional which

is representable is also extendable and admissible.
(b) If a positive functional is representable, then
it is representable by its associated representation.

Proof: See Corollary 4.5.9, Page 217 [23].

Theorem 1.94. A cyclic representation x - Tx of a

*—algebra A with identity in B(H) is irreducible if and only

if the positive functional f defined by

z

f(x) = <TXC, z>

is indecomposable for each cyclic vector ¢ in H.

Proof: See Theorem Page 265 [21].

Generalized Weierstrass Tﬁeorem. Let X be an arh#trary
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space and C(X;c¢) denote the set of all continuous real-valued
functions on X with the compact open topology ¢. If D is a
separatiné subset of C(X;c), containing a non-zero conétant,
then A(D), the algebra génerated‘by D, is dense in C(X,c¢).

Proof: See Theorem 3.3, Page 282 [11].

-
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CHAPTER 11

\BP*-ALGEBRAS
<

As a generalization of MQ*-algebras [17], we introduce

a class of locally convex-algebras, designated as BP*-algebras.

-

We provide several’ examples of these algebras which ensure

that BP*-algebras form a considerably larger class than that @

of MQ*-algebras. We discuss some of the permanence properties.

We modify an example of V. Ptak to show that, unlike MQ*-algebras, -

the continuous, open, homomorphic images of BP*-

not necessarily BP*—algebras.

algebras are

‘].

Definition 2.1. Let A be a commutative pseudo-complete

locally convex-algebra (Definition 1.42) with a gontinuous

involution. A is called a BP*-algebra if A = A
]

i.e. every

element of A is bounded (recall that AO is a subalgebra of A by

Corollary 1.47).

Remark Denote byl * = (B 6531: B = B*}. . A locally

convex *-algebra A will be called *-pseudo-complete if‘A(B)

is- complete for every B e *. Since&%*clﬁal, clearly if A

is pseudo-complete, then A is *-pseudo-complete.

~

Consequently

every BP*¥-algebra is *-pseudo-complete. Hence in a BP*—algebra

every A(B) will be a *-subalgebra of A for eéch

our discussions involving positive functionals,

B ef3*. In all

it will be assumed

34

-

%
-
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_

that(§3* is a basic subcollection ofﬂal, so _that in view of

Propositipn 1.41, A = U{A(B): B e)3*} where each A(B) is a

Banach *-algebra. The induced involution is continuous in

the norm topology on A(B) because we recall from the Remark
1.39 that the topology induced on A(RB) is coarser than the norm

topology on A(B).

nginition 2.2. A commutative sequentially complete

locally m~-convex-Q-algebra with a continuous involution is

called an MQ*-alge f171].

The following proposition and examples justify the

©

existence of this new class of locally convex-algebra.

. ~&

Proposition 2.3. Every MQ*-algebra A is a BP*—ilgebra

but not conversely.

«t

Proof: It is clear that every locally m-convex algebra

is a locally convex algebra with jointly continuous multiplication.

Since by Proposition 1.43, every seqﬁentialiy complete locally
convex algebra is a pseudo-complete logally convex a{gebra, it
follows that A is a pseudo+«complete locadly convex *-algebra.
One knows from Proposition 1.72 that every locally m—convéx
algebra has a continuous inversion and every element of a
Q-algebra has a compact spectrum. Conseduently Proposition }.56
"yields that every element of A is bounded. .Hence A is a ’
BP*-algebra. . -

. L
The converse’ will follow from the following examples

which show that not every BP*-algebra is an MQ*-algebra.

~ -

4



A

EXampleg 2.3. (Example of a BP*-algebra

~>

which is complete Iocally. m~convex *-algebra but not a
Q-algebra). ﬁet Qo be the space of ordinals < Q (the first
ordinal wi@h uncountably many predecessors) with the order

topology. In view of example 3.7 [19], C(R,), the algebra of

o

contiﬁﬁousﬁ cbmplex-valugd functions, with the compact open
topology, is a commutative complete locally m-convex-algebra

with identity and continuous involution. Since ‘Sequential

-

-

completeness implies pseudo-gompleteneséf(Proposition 1.43), ] E;
C(QO) is a pseudo-complete locally convex *_algebra. One
knows from [13] that evéry cohplex—valued céntiﬁubus function
on QO is bounded. In fact every f‘e C(Qo) is bounded in the ‘ L
sense of Definition l.3§£ for let £ #-6 (the cése f =0 is/ "
trivial). o

L Choose - ST X

a = 1/sup|f(x)| > o

xsﬂo

. Let N(K,l) be a neighbourhood of zero in the compact open topology,

% where K is & compact subset of Qo. We wish to show that the set

k)

{(af)®: n > 1} .

,is bounded in C(QOSﬁ It is sufficient to show tnat'

.
e

: ‘f’%\77 faff(x)]3" <1, n>1, ahdxe K.
& . ‘,\- .

iClearly ' o B

- o= 1/sup|£(x)| < 1/sup|f(x)], .
XeQ xeK ' ‘

- ~ -
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consequently

Caf(x)I™ < [asuplf(x)|I" <1
xeK

and this proves that every f ¢ C(QO) is bounded in the sense

of Def1n1t10n 1.38.. <

.

Furthermore by the remark on Page 59 (191, C(QO)'
is not a Q-algebra.‘ We have therefore shown that A is a BP*;

algebra but not an MQ*-algebra.

*

Example 2.4. (Example of a BP*-algebra which is a

complete locally convex algebra but not locally m-convex and
hence not a Q-algebra.) Let Cb(R) denote the algebra‘of bounded
continuous complex-valued functions on the real numbers
"R(pointwise operations and cemplex conjugation as *.operation).
Deﬁote the set of strictly positive real-valued continuous

i functions on R which vanish at infinity by C;(R). The family

of semi-norms {P¢: ¢ € C;(R)} determine a locally convex

topoldgy B on’C, (R) wheré

Po(£) = sup{|£(x)¢(x)|: x e R} f ¢ cb(Rj.

The space (Cb(R) B) is a locally convex *-algebra (multlpllcatlon

" is contlnuous in each factor separately) since
< . € C,_(R).
P¢§fg) < M(f) P¢(g), g p(R)

{ where M(f) is the supremum of |f|. Completeness follows from

i Theorem 3.6 [25]. That each P, fails to be submultiplicative

a4
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follows from Example 3 [9]. Since a topoiogical algebra E is

locally m-convex if and only if the topology is generated b&
a family of sub-multiplicdtive semi-norms, it follows .
(CS(R),B) is not locally m—con@ex and hence not an MQ*-algebra.
Siﬁce completeness or sequential completeness implies pseudo-
completeﬁeés;_(cb(R)}B) is a pseudoicomplete locally convex
*—algeﬁraﬁ It remains to show that every. element is bounded in

the 8-topology. Let f e C_(R), and ¢ ¢ C;(R). Let ||£]],

E.and |‘|(1>|]0o be the sup-norms in Cb(R) and C;(R) respectively.

Choose A = ]Ifr*b > o if £ ¥ o: (The case when f = o is trivial).

“

> Clearly

™
”

Po(£7/11211p) = suplos™/ [12}1]

A

N o _-I|¢||oo .

: If N(P¢,l) denotes the unit ball in the B-toepology, thenr the set

e/, a2 13l ], Ny, f

éand this shows that every elemeﬁt of (Cb(R);B) is bounded in

éfhe sense of Definition 1.38.

We have, therefore, finally shown that (C,(R),B) is a

iBP*—algebra which is not an MQ*-algebra.

'Y - x ua -
’ - ‘{

Example 2.5. (Example of a BP*-algebra which is neitper

:complete, nor locally m-convexgand hence not a Q-algebra.)

bonsider the algebra‘C[O,ljﬂof all continuous complex-valued
. N v - - . " .

functions on the closed unit infeiyai"[o,lj. "A norm p is defined

- o

'y
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 is the greatest member of 651- - ,
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\

on this algebra by \,
p(f) = sup {|£(xX)o(x)|: x e [0,13},
whefe
X o <x<1/2
P(x) =
1l - x /2 < x <1

By second paragraph on Page 21 [9}, (CL0,1], p) is a normed
linear space which is neither complete nor locally m-convex and o
hence qot a Q—aigebra. It ié indegd a locally convex algebra k
siﬂce the multiplication is continuoqs in each factor separately.
As in Example 2.4, one éan show every element of (CLO0,11, p)
is bounded in the sense of Definition 1.38. The following
arguments will show that this algebra is, in fact, pseudo-
complete. ‘

Let N(p,1) denote the unit-ball in (C[0,1], p)..
That is - ‘ '

-

. | L, o<xc}l
N(p,1) = [f: |[f(x)]| <

1 -
Txr 2 2x<1 e
b . -

If 651 denote the collection of all subsets_ of this algebra
which are absolutély cbnvex, idempotent, closed and bounded,

then we claim that

By = (£ [£(x)G0] < [6(x)[} = 1 [200)] <1, x e (0,1))

i



It is easy to check that B, is absolutely convex,

idempotent and p-bounded. To see closedness of B

that for x € (0,1), oL defined 5y
Iy s

2
&

ax(f) = f(x)

is p-contiguous and

"is closed.

We claim that B is & greatest member of 681.

That is B C B, for all B ¢ (3

~ which is not in Bo' Then for some x e (0,1), f(x) > 1.

v

i1

pan B b e

. . n .
Bo is idempotent, Bo C;Bo for all n.

o We see

1> If not, there exists an f‘e B

Since

Consequently 1 ¢ Bo

for all n. Boundedness of BO implies that there exists A > o,

such that

Hence

B, C AN(p,1) = N(p,A).

[£%(x)Y¢(x)! < A for all n

n .
but we can c_hoose'nO such that |f C(x)e(x)] > A since f£(x) > 1

for some x € (0,1). This contradiction yields that B, is the

. f
every B in (B

2!

then A is pseudo-complete. Consequently

' of 631. We know from Proposition 1.44 that if 631 contains a

40

f.greatest member of'63 . éleariy {B_} is a basic sub-collection
3 1 o

' basic sub~colléction(§32'such that A(B) is a Banach algebra for
. _ . 1

Tay

L
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(c[0,13,p) is a pseudo-complete locally convex *-algebra.
Finally we conclude that (C[0,1],p) is a BP*-algebra
&hich is not an MQ*-algebra.
Q.E.D.
Example 2.6. (Example of a BP*-algebra which is neither

sequentially compléte, nor locally m-convex, nor a Q-algebra)
Let A = LwﬂQ}l], the algebra of essentially bounded measurable
functions with the Lw—topology, generated by the whole collection .

(countable) of LP-norms {||-]] p = 1,2,3,...}. A is a metrizable

D
locally convex *-algebra. In view of Theorem 1.66, A cannot
be sequentially complete because A is dense in LY. By Theorem
1.67, Lw is not m-convex. Consequently L°° being a subalgebra
of Lw,cannot be a complete locally m-convex algebra. .
Furthermore we claih A is not a Q;algebra. Let G
: "denote the set of all invertible elements in Lm.‘ We shall show
_éhat G is not open. Suppose G is open, then N(1) C G, where
1 is the constant function equal to 1 and is an invertible
elemeﬂt in L° and N(1) i's a basic neighbgurhood of 1, in the
Lw—topology.
For P; 2 1 (i = 1,?,3,...n) and some £ > O,

n : .
Ve=-/ {fel” ||f-1|], < el N(1) CG.
i=1 Py

- Define



Since g € L~ and llg-lllp =0 <¢gi=1,...,n
P

this implies that g ¢ VC N(1)-C G, but we know by definition

’

of g that g is not invertible and this contradict%on establishes
our claim that‘G is not open.

Moreover L, by 8.4 [10], is a pseudo-complete locally
convex *-algebra. By (4, ﬁagé 96 [3]), L” is the bounded part .
of LY. Hence it follows easily that every element of L°° is,
in fact, bounded in the relativized Lw—topology. (See the proof
of Propositﬁon 2l7, below)

We have therefore shown that A is a BP*-algebra but not p

a Q-algebra and hence.not an MQ*-algebra. . -

Q.E.D.

1. Permanence Properties . ) PR

1

Proposition 2.7. A closed subalgebra Al of a BP*-

"algebra A is also a BP*-algebra.

Proof: Since by Proposition 1.45(a), closed subdlgepra
of a pseudo-complete algebra is pseudo-complete, Al is a
" pseudo-complete iocally convex *-algebra with induced continuous
Zinvolution.‘ We wish to show that every ‘element of A1 is bounded

in the relative topology.

”Lgt X € A). Since A A, (set of all bounded elements

;of A) and Ay is =2 subalgebfa of A, x is a bounded element of
\A, which means there exists a non-zero complex number A, such

“that the set

(

[N
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{((xx)?: n = 1.,2,3,..;}

is a bounded subset of A. Clearly this set is alse/g;undod in
Al’ in the relative topology. In other words x is a bounded
element of Al‘ Consequently Al is a BP*¥-algebra.

Q.E.D.

Proposition 2.8. Let A be a BP¥-algebra, and I a

closed two sided *-idead in A. Then A/I ;s a locally convex

*-algebra every element of which is’ bounded. A/I is not E?

necessarily a BP*-algebra. | . -
Proof: %s is well-known (Proposition 2.4(e) [19]), A/I

is a locally convex *-algebra with involution (x + I)* = x* + 1. e

ey ]

Since the canonical map is a continuous homomorphism of A onto
A/T1, it(is easy to see that every element of A/Ikis bounded
(recall that =a continuous image of a bouﬂded set is bounded).
The following exaﬁple will show that A/I need not be
" pseudo-complete, where I is a closed ideal in a pseudo-complete
locally convex algebra A. We shall nee; the following theorems
due to Morris [20] and' Ptak [221.,° ‘ |
Let X be a Haﬁsdorff space. /If F is a.closed subset of

X, let

Ip = {f e C(X): f vanishes on A}.

Then IF is a closed ideal in the aléebra C(X) of continuous

Y

functions with compact open topology.

Theorem [Morris and Wulbert] The ¢losed ideals in C(X) are in

one-to-one correspondence with the closed subsets of X via
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F > IF if and only if X is completely regular.

Theorem [Ptak] Let F be a closed subset of a
completely regular space X. Then on Cr(X) = C(X)/IF C C(F),
the quotient-topology from C(X) and the relative compact open
topology from C(F) coincide on CF(X).

V. Ptak has shown that there exists a completely
regular space X such that

(1) C(X) is complete

(2) X is not normal.

Let A = C(X) where X is completely regular, non-
normal space as given apove by Ptak. Therefore A, by (1), is
a.pseudo-complete locally convex algebra since we know that
complet;ness ;mplies pseudo-completeness. As a consequence of
(2), there exists a closed set ﬁ (by Tietze extension theorem
(11]) such that not every f in C*(F) can be lifted to a function

in C*(X), where C*(X) denote the bounded continuous functions on

X. Then in view of the above consequence and Morris- Wulbert theo
o C*(X)/1, = CE(X) is a proper subset of C*(F).

The’following simple a;gumept shows that C;(X)‘is uniformly
dense in C*(F).
. Let N(g) = {£\E Cx(F): |f] < e on F) he a neighbourhood

in the sup-~topology. There exists f ¢ C*(X) such that

Af(x)‘# o for i ¢ F and f(F) = o. Clearly g = £ + €/2 € N(e) f\Cﬁ(
This shows that Cﬁ(X) is uniformly dense in C*ﬁF). Since C*(F)

is .complete in the sup-topology and Cf(X) is properly dense in

_—

r



C*(F), C;(X) cannot be complete. ) \

¥

Now let B be a subset of A' = C(X) /Iy = A/1Ig

such that
B = {f ¢ CE(X)™: l£(F)] < 11}.

Ptak's theorem says that the topology of C;(XJ'is, in fact,.

the relative topology.of C*(F). B is, then, closed, bounded,

absolutely convex and idempotent. The span of B,
A'(B) = C*(X)/IF = C;(X) with sup norm.

In view of the abodve arguments, A'(B) is not complete. . M

ConsequentlyaA/IF t,bseudo-complete.
’ Y

-

Q.E.D.

Remark In view of the above example, one easily concludes
that a continuous, open, homomorphic image of a BP*-algebra need
’not be a BP*-algebra. However these results do hold in case

of MQ*-algebras «(Proposition 7, 8 [17]).

2. Adjunction of a unit e (The algebra A with unit adjoined)
The nonfunitary case can be_reduced to the unitary one

by a standard operation called the adjunction of a unit. WVe

endow the set Ae = CxA with operations

(A,x) + {u,y) = (A+u, x+y)
a(A,x)

(A, x)€u,y)

(A, ax)

it

(Ap, Xy + Ay + ux)
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Which transform Aé inté an algebra with a unit e = (0,1).
We identify A with the subalgebra of Ae composed of the elements
(x,0), and we write e + x instead of (A,x). We topologize
Ae as the product of A with the complex field C . If A is a
locally convex algebra, so is Ae. By proposition 1.45 (ii),

Ae is pseudo-complete if and only if A is pseudo-complete.

We have now the following proposition.

Proposition 2.9. Ae is bounded pseudo-complete if and

only if A is bounded pseudo-complete.
Proof: Suppose Ae is bounded pseudo-complete. Then
by Proposi£ion 1.45 (b ), A is a pseudo-complete locally convex-
algebra. A is identified with a subalgébra of ee consisting
of elements ie + X with X = o. Since every element of Ae is
bounded, it follows that every element of A is bounded (See wai
proof of Proposition 2.7). Hence A is boun@ed pseudo-complete. .
Conversely assume A is bounded pseudo-complete. Then,

for any x € A, there exists an ay > 0 sugh that the set
{(a;x)": n = 1,2,3,...}

is bounded in A. We observe, first of al;, that "if %o < a5

then the set
{(azx)n: n=1,2,3,...}

is also bounded. For, if V is an absolutely convex neighbourhood

of the origin in A, there exists A > o such that the set
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'f 4
n
{(ayx)™} C AV and
n>1
o n Qg n_a C‘!.g
ax = == (a;x )y C — (AV) C AV, since an/®; < 1 and V is
04 a
1 1

balanced. This shows that the set

Ve
{(azx)n: n=1,2,3,...}

is bounded in A. , r

Moreover since every element of the normed algebra C is

bounded, the set t
AN
(2" n=1,2,3...} A
| 2] - ‘
is bounded in C.
Let ¢ = min (TlT , al). Then by the above observations
A
the sets .
{¢ca)P: n = 1,2,...}) and {(ex)®: n =1,2,3,...}

are bounded sets in C and A respectively. Therefore for every

Y
absolutely convex neighbourhood U of the origin in C and an
absolutely convex neighbourhood V of the origin in A, there

exist Xl and A2 both positive reals such that
; (oo, x™: n=1,2,3,...} C AU x AV

Choose Al < Az, then AlU C:AZV. Consequently
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(«"(0,x)™: n=1,2,...) C . (UxV)

2

which implies that, in the product topology, the seot

(o, n = 1,2,3,...}
is bounded in Ac' (Recall that multiplication in,Ae shows that
n
(o,x)n = (0,x)). Hence (o,x) ¢ Ae,is a bounded eltment of Ae.

Similarly one can show that (),0) ¢ Ae’ is also a bounded element
of Ae. We know, by Corollary 1.4(, that bounded elements of
a commutative pseudo—completislocally convex algebra form a

subalgebra. Since Ae is commutative pseudo-complete, we conclude

that

(A,x) = (o,x) + (X,0)

is a bounded c¢lement of Ae' Hence Ae is a bounded pseudo-

complete algebra.

Vs . Q.E.D.

(



CHAPTER III

CONTINUITY OF POSITIVE FUNCTIONALS

Onc of the important properties of an MQ*-algebra is
that all it's positive functionals are continuous. The same is
not true for BP*-algebras. Wé give an examplc to show that not
ecvery positive functional on a BP*-algebra i1s continuous. We
discuss continuity of positive functionals on a BP*-algebra in
it's 1inductive limit topology and under certain conditions on

these algebras.

The following lemma is from [17].

Lemma Let A be a locally m-convex algebra which is

scquentially complete. 1f x € A is such that

lim‘(pi(xnd)jlu< 1 for each i, then there is a y € A such that

n->ow

2y - y© = x. If, in addition, A has a continuous involution
f)
and x = x*, then there is a y e A with 2y - y° = x and y = y¥.
n /2 k A (1/2
Proof: Let y_ = - L 8 Y(-x)". Since | K )} < 1 and
—_— n - k
k=1 . .
o .
. 1 k kl/k .
lim [p-CXn)]l/n< 1, the series I (k/%(—l) pi(x )/ is absolutely
n->c 1 i=1
convergent and it follows that {yn} is a Cauchy sequence. Since

A is sequentially complete, there is y € A sucg that Yo T Y-

aiz)(—t)k has the property:

e~ 8

For {t] < 1, the series f(t) = - o1

<A
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2£(t) - [£(¢t)1% = ¢

¢
and it follows that 2y - yz = X and this proves the first

rd

statement. If x —lx*, then clearlyfyn = y; and the-qontinuit}

of the involution implies that y = y*.

Corollary. Let A be a locally m-convex algebra. If

A is either completéuor a sequentially complete Q-algebra, then

for x €'A, r(x) < 1 implies there is y e A with 2y - y2 = x.

L4

If, in addition, A is a *-algebra .and x is hermitian, then y

can be chosen to be hermitian. . }
Proof: Tﬁis fqllows from the above lemma since the g%h
spectral radius r(x)\= sup lim [pi(xn)]lln. v 'g
- i noo ’ - B
) Q.E.D.

1. Admissibility of a Positive Functional on a BP*-algebra.

The following proposition is important.

»

Proposition 3.1. -Every positive functional on a BP*-

-aléebr; is admissiﬁlq. A . . 2
.'Proof: Let x ¢ M- Then xXx ;-Aa= A, = v{A(B): B € 03"

whicﬁ implies that x*x ¢ A(B) for some B. A(B) being a Banach

*-algebra wiph contiguops invglutidﬁ, rA(B)(x*x) is fiﬁite.

:Given € > o, then B

rAgB) (x*x/[rA(B)(g*x) Yely <1 . | = E .

[ \

Hénpe'by_the above lemma (recall that.évery Banach *-algebra is
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an MQ*-algebra), there is a y € A(B).such that y is hermitian

~
MERN

and

2y - y2 = X*X/ErA(B)(X*X) + €]

For z ¢ A, put v = 2z - yz, then

, VIV = zkz - z¥ (x*x/[rA(B)(x*x) + ez

-

Since £ is a positive functional, f(v*v) > o and hence from the
: Z

last equation

4

f(z*x*xz) < f(z*z)(rA(Bj(x*x) + £)

o>

€ being arbitrary, we easily see that - %!

sup {f(§:2:§§) 2 e A, f(z*z) #‘o}

< infT {r (x*x): x*x € A(B)}
- B A(B) . . °

=’rA(x$x), by Proposition 1.54 or Page 413 [1]..
' ' ) : ) }
' We know from Proposition 1.49 that x e A if and only
if r(x) is finite. ‘Consequently rA(x*x) is finite and this
proves that f is admissible.

: , Q.E.D.
: _ N
Corollary 3.2. Let A be a BP*-algebra. Then for a

positive functional f on A, : A _ _ ’

. [
[N

f(z*x¥xz) < f(z*z)r(x*xj_‘
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. Proof: Immediate from the last inequality in’ the proof

of the "above proposition.

Corollary 3.3. Let A be a BP*-algebra. Then a positive

»r

functional f on A is representable if and only if it is extendable.
Proof: Assume f is representable. Then by Proposition
1.93(a), it follows that f is extendable.
" Conversely let f be extendable. Let A, be the %lgebra

A with unit adjoineq. We know by Proposition 2.10 that Ae is

a BP*-algebra with involution given by (x,a)* = (x*,a). Since

f is extendable,.there.is a positive fdnctionai ?.on Ae (recall '

Theoreﬁ 1.81) such that - ' %g&
i . ) .

fla = £

’\I -
By Proposition 3.1, f is admissible. Hence by Theorem 1.91,

there exists an *-~representation T on a Hilbert space H such

that T has a cyclic Wector n such that \

n,
f(x) = <T,n,n>

Proceeding as‘ in Theorem 1 [17], let N = {n € H: Tgn = o

1
for all x e A} and write ¢ = + L, where 5; € N .and £, ¢ N

t1
(the orthogonal complement of N). It follows that f(x) = <TXc2gz>.
Let H pe'the'closure of {Txcz: x € A}, then Hg is cyelic wit?
cyclic véctor t,. Consequently .f is repfesentabié.'

- Q.E.D.

<@

* Corollary 3.4. Let f be a pos;tive'functiodal on a

BP*-algebra A with identity e. Then
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(1) f(x)| < r(x)f(e) for each x ¢ A, (the set of all

hermitian eiements of A).

(2) 1£(x)]2 < r(x*x)f(e)?.

. 4
Proof: Let x € Ah' Then as in the proof of Proposition

i}(g;(x/[rA(B)(x) + €]) <1,

adhd there exists vy in A(B) such that y is hérmitian and

o

2

2y - ¥ = x/[rA(B)(X) + EJ.

’

Let z = e - y, then z = z* and z*z = 22 = e - x/[rA(B)(x) + €],

- -

f being a positive functional, f{z*z) > o, and € being arbitrary,

we obtain as in the proof of Proposition 3.1,'that
CUE(x) £ Ty(x)E(e)
. . b

Since rA(—x) = r(x), we apply the above to -x and obtain

P’

~£(x) < £(-x) < rp(x)E(e)
Conéequqntl&
[£(x)| < r(x)f(e) .

Furthermore since x*x is hermitian, we know from (c)
of Theorem 1.80 [Cauchy—Schdartz.inéquality];that
If(x)lz < f£(x*x)f(e) for any positive .functional f. x*x being

hermitian,. we thain'froh (1)\that

!
4

Ex) |2 < f(x*X)fKS? < r(x*x)(£(e))?
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which proves (2).

2. Continuity of a Positive Functional

- ]

)

The following example shows that not every positive

functional on a BP*-algebra is continuous.

Example As s@q@n in example 2.6 of Chapter
A #
A = 1L7[0,1], is a BP*-algebra. As in [10] we define

functional F on A by

Coo 1
F(£) = J AL (rea) .
: o t(logt-1) :
For p =1,2,3,... , N > 1, wé dgfine
. . -1/2p
,fp,N(t) = min {(?t) ,-N}.
Then ||f lk < [ ! (;t)_l/zdtjllp -1
p,N*'p— o ‘
.A a —2p M
) n
But F(f N) > S : Ndt —5 where n = N 1
P, o t(logt-1) i

= N/(2plogN + logd + 1)

I1,

a positive

(*)

(k%)

which tends to infinity as N » =, "for each p > 1., Now if F

were continuous, there would exist a positive integer p and a

-~

constant k > o such that

. |F(E)] < k l1£[1,, = for all fe 4



55
but in view of (*) and (**), this gives a contradiction on

. taking I = fp y and letting N + «. Hence the positive functional

F defined on the BP*-algebra L7 [0,1] cannot be continuous.
Before we prove some resulis on the-eontinuity of a

positive functional, we shall require the following proposition.

Proposition Let A be a topologicai *~algebra and E

a topological vector space. Then a linear mapping! £f: A > E
is continuous if and only if fiAh is continuous.
Proof: In geﬁeral continuity implies continuity of

restriction in the relative topology for if U is open in E, then

(£la )7ty = a, N ETHo) >
%
is open in Ay - ‘ 'j
Cénversely éuppose f“ﬁ1= ¢ 1Ls éqntinuogs. Then by &‘
definition ‘of restriction ¢(x) = £(x) for x e A,. Consider a R

net {z } in A such that z, + = in A. Ve wish to show that
f(za) + f(z). One knows that i%vgﬂis an element of a *-algebra,
then g can be written uniquely In"the form x = h1 + ihz, where

§ . = X + 3 . = ' 4+ i s
h1 and hz belong to Ah. Hence let za \a 1ya and 2z X y
X,¥,X ,y are in A, and x -+ x and y -+ y. Linearity and continuity
S o T a h a a -

of ¢ imply that
f£(z) = £(x,) + 1T(y ) = ¢(x) + i (y,) » ¢ (x) + ip(¥)

which is equal to f(x) + if(y) = £(z).  Hence continuity of f.
.
is established. ) ‘

Q.E.D.
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Theorem 3.5. Let A be a BP*-algebra with identity e.
If A is a Q-algebra, then every positive functional f on A is
continuous. |

Proof: By (1) of Corollary 3.42 if f(e) = o, f is
identically zmero and hence automatically coﬁtinuous. The

positivity of f implies that f(e) > o. Consider the set

~

W=1{x e€A: r(x) < eg/f(e)}

where € is a given positive number. A being a Q-algebra, W is Y

) .
a neighbourhood of the origin. In view of Corollary 3.4 ‘!
W/ A, is a neighbourhood of o in" A, and ' '

h
E(WMA) <«

so that flAh is continuous. Hence f is continuous by the above’

propésition.
Q.E.D.

Coroilary 3.6. Let A be as in the above theorem without ident

~

2

If f is an extendable positive functional on A, then f is continuous.

-~

Proof: Since A is BP*, it follows by Proposition 2.9,

Ac is a BP*-algebra. The Q—propérty is also preserved in Ae'

Extendability of f ensures the existance of a positive functional
v \,
f on A (Theorem 1.81) such that f|m = f. The above theorcem

A

implies f is continuous.Consequenth f is continuous on A.J'
' Q.E.D.

The following observations will he useful in some of the

. L)

subsequent results. - ‘\
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Remark 3.7. It may well happen that thére are no non-

trivial multiplicgtive linear functionals on a BP*-algebra.
Consider for example the algebra L7 [0,1] in Example 2.6,
where it was shown that it is a BP¥-algebra. One knows from
Page 104 [3], that there are no non-trivial mulkiplicative

linear functionals on the algebra L“[0,1]. For, if f is a

non-trivial multiplicative linear functional on A = LY[0,1], then

f ié also multiplicative restricted to the algebra (¢, say, of
all continuous complex-valued functions on [0,1]. There is
thus some point t, in [0,1] such that £(x) = x(t ) for every

x in C (£ cann&t anniﬁllate C since ¢ contains the identity of
A). But there is~certain1y some continuous E*-valued function

z in L®[0,1] such that z(t.)-= =, z(t) > o for,all t. But then

there is. some Xn in C(n=1,2, . ) such that X, (t ) = 1l-and
nx_(t) < z(t) for all t. Thus f(z) > n (n 1,2, .) which is a
contradiction. \

Since by Theorem 1.66, L"[0,1] is dense in L“[0,1],
there are no non-trivial multiplicative linear functionals on
(o] - L 4
L [0,1] because, otherwise, by continuity of multiplication one

can extend it to a non-trivial multlpllcatlve 11near functlonal

. on LY {0,1] which is 1mp0351b1§ by v1rtue of the above arguments'

Remark 3.8. We know by Definition 12.1 [19] that a’

topological algebra is called functionally continuous if every

multiplicative linear functional on A_is continuous.
A BP*-algebra or, more generally a pseudo-complete

locally convex—algebré may not be functionally continuous.
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Ag in Examgle 2.3,”b(90) is a pseudo-complete locally

L

convex-algebra. 4 Qo
1

proposition of E.A. Michael (Page 52 [19]) and hence C(R,) is not

satisfies the assumptions of the following

functionally continuous.

Proposition Let T be a countably compact, non-compact,

completely regular space, which is either locally compact or

first countable. Let A = C(T) with the compact open topology.

Thén :

(a) A is complete, commutative, locally m-convex algebralr
(b) A is not functionally continuous ‘ e
(c) Every mulfiplicative linear functional on A is

bounded (i.e. sgends bounded sets into bounded sets). »
Proof: See Proposition 12.2 [19].
The purpose of the above discussions is to show that

M(A), the set of all non-zero continuous multiplicative linear

functibnals on a BP*-algebra A may be empty. This forces us

to impose some conditions on the algebra A, so that M(A) is

non—-empty. Since there is a one-to-one correspondence between

non-zero continuous multiplicative linear functionals and closed

maximal ideals,semi-simplicity will sometimes be assumed on the
algebra A. However, in the following reslults on continuity of

positive functionals, we assume M(A) is non-empty.

Proﬁosition 3.9. On every symmetric, BP*lalgebra A,

A}

there exists a family {pf: f e M(A)} of sub-multiplicative

*

semi-norms satisfying
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Pe(x*x) < [pf(x)]z . :

Proof: By Proposition 1.73, f(x*) = f(x) for a
multiplicative linear functional f on a symmetric *-algebra A.
Consequently every multiplicative linear functional on a symmetric
*~—algebra is a positive funcfional. Since every member of M(A)

is admissible, we have by Proposition 3.1.

1/2
pf(x) = sup {[fgﬁtzzzﬁ)] tz e A, f(z*z) # o}.
< o™
Clearly p,(x) > o and pf(}\x) = | x| Pr(x). h

For sub-additivity we observe that

flz*x(x* + y*)(x+y)z]

Ay
o ﬂ
I a«g

= f(z*x*xz) + f(z*y*yz) + f(z*x*yz) + f(z*y*xz)
but by Cauchy-Schwartz inequality,

If(z*x*yz)lz < f(z*x*xz) f(z*y*yz)
and

lf(z*y*xz)]2 < f(z*y*yz) f(z*x*x2z)

Consequently ' LN

1/2 1/242

flz*(x+y)*(x+y)z] < [f(zg{x*xz) + L(z*y*yz)

Hence bf(x+y) < pf(Xl + pf(Y)-

Since £ is multiplicative, we shall show that
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(1) Pexy) € pe(x)-pe(y)

and
(2 pp(x*x) < [po(x)]2
To show (1), we see that | ®
<

pe(Xxy) = sup [{f(z*(¥¥;:;§Y)Z)}l/2: 2 € A, f(z2*z) # o]

= sup tff‘z*y§§§;§§y2)}1/2 z € A, f(z*z) # o]

‘r

Set yz = u, then f(u*u) = f(z*y*yz) = f(z*z)*f(y*y). We then obtain fﬁ
sy = s (LETER) | ety 2 |
where f(u*u) # o, f(z*z) # 0. As z runs over A, u runs over

YyAC A. Consequently,
Pe(xy) S Pe(x) pe(y).

Now to see (2), we observe that pf(x) = pf(x*), hence

by (1), we see that

Pe(x*x) < pe(x*)-pp(x)

< [pp(x)2?

Q.E.D.

Corollary 3.10. pf(x) < r(x) for all f e M(A).

.Proof: By Corollary 3.2,

pPe(x) 2 [r(x*xx) 112 = r(x)
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~

Corollary 3.11. Let A be a BP*-algebra which is also

a Q-algebra. For f{ ¢ M(A), let
<

B' = {x ¢ A: pr(x) < 1},

Then B' is absolutely convex, idempotent and closed in
the topology gencrated by the family {pf: f e M(A)} and B!
1s a neighbourhocod of the origin in A. Hence the topology

generated by this family of sub-multiplicative semi-norms is a
: N
locally m-convex topology coarser than the initial topology of

»,
»

/
A.. K 4

-~

Proof: The first part‘is easy to verify. For the second

part we know by Proposition 1.77 that

S(A) = {x £ A: r(x) < 1) T

is a neighbourhood of the origin. By Corollary 3.10, B' D S(A).
Hence B' is a neighbourhood of the origin and hence the topology
generated b¥ {pf: f € M(A)} is coarser than the initial topology.
In vigy of the féct that a tobological algebra is locally m-convex
if and only if the topology is generated by a family of sub-
multiplicative semi~-norms, we finally conclude that the family
(pf: f ¢ M(A)} generates a locally m-convex topology.
Q.E.D.

We prove some more results on the continuity of a
positive functional on a BP*-algebra. We shall assume as before
M(CA) is non-empty. ‘

We need the following lemma which is analogous to

Theorem 1.62.

wa
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Lemma 3.12. Let A be 2 bounded pseudo-complete locally

convex-algebra. Then the spectrum

o(x) = {¢(x): ¢ & M(A)}

where M(A) denotes the set of all non-zero continuocus multiplicative

linear functionals on A.
Proof: TFor x ¢ AH= AO, © ¢ O(x). For finite X,
A e o(x) if and oﬁly if Ae - x has no inverse in A i.e. if and
only if ¢(Ae - x) = o for some ¢ € M(A). (Recall M(A) is
assumed non-empty) i.e. if and only if ¢(x) = A for some EF-
-

¢ € M(A) and this proves the lemma.
Q.E.D.
Theorem 3.13. Every positive functional f on a barrelled -

ra

BP*-algebra A with identity e is continuous,

Proof: We assume f(e) > o because, for f(e) = o, the

result is triz}a&.

Let € > o be given. Co?sider,
W= {x‘e A: r(x) < eg/f(e) < 1}
By the above fémma, the spectral radius
r(x) ; sup {é(x): ¢ € M(A)] (*)

Then

W= [ ) {xceda: |¢(x)| <1}.
deM(A) '

[M(A)]?, polar of M(A).
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Clearly W is weakly closed in A and hence closed in A. W
is an absolutely convex subset of A (Proposition 1.23). Since

A = AO and by Proposition 1.49, x € AO if and only if'r(x) < o,

it follows by (*) that sup |¢(x)| is finite. Consequently M(A)
beM(A) %

is a weakly bounded subset of A' and hence its polar [M(A)]o = W

is an absorbent suﬁset of A. Using the barrelled property of

A, it follows that W is a neighbourhood of the origin in A. As

in theorem 3.5, one can show that f is continuous. o ~

1

Q.E.D.

Corollary 3.14. Every positive functiocnal f on a

sequentially complete quasi-barrelled BP*-algebra A with identity \

is continuous.

Proof: Since by Propasition 1.14, a sequentially complete
-
quasi-barrelled space is barrelled, it follows f is continuous.

~

Corollary 3.15. Every positive functional f on a

sequentially complete bornological BP*—algebra'A with identity
is continuous. .

Proof: Continuity of f follows by Corollary 3.14,
becau§e every sequentially complete bornological space is

barrelled (Proposition 1.15).

Corollary 3.16. Every positive functional f on a

Fréchet BP*-algebra A with identity is continuous.
Proof: Use the fact that every Frechet space is barrelled
(Proposition 1.17). Continuity of f is then immediate from the

t heorem.



~{Ba: a € A} and we shall write A for A(Ba)'

LIRLRL
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¢ _Corollary 3.17. Every poSitive‘functionaI;f on a Montel
BP*-algebra A with ioentixy is continuous.
: : N
"Proof: Since by Definition (1.11), a Montel space is
barrelled, the continuity of f follows by the~theorem. B o

Q.E.D.

4

. 3. Inductive Limit- Topology on BPr—algebras

Iy

Notation We shall denote ‘the members of 65*by

Proposition 3.18. Let A be a BP*-algebra. Then A also

N

carries the 1nduct1ve limit topology which 1s finer than the

£

original topolOgy

Proof: Since‘eaoh A; is a subalgebra of A and tho
ipclnszon maps fa are the restrictions to A of the identity
mappings of the algebra A, and Uf (A )*spans A, it follows '
by Proposition 1.7, that A carries the 1nduct1ve limit topology.

In view of Remark 1.9 an apsoluteiy convex set U is a neighbourhood

. of 0 in A in the indactive limit topology on A if and only if

UM A is a nelghbourhood of O in- E .for each a.

Let U be'a neighbourhood of the orlgln in the orlglnal

topology T. - We know that the norm topology on A . is flner

than the induced topology on each Aaz Consequently U(’}A is

a norm-neighbourhood of O in. A'.. By what we have shown in the
above paragraph U is a n81ghb0urh00d of O in A in the inductive ©
limit topology i. This proves that T is coarser than 1. .

" .

Q.E.D.
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The following example will show that the inductive
limit topology is not, in general equal to the original topology

on a BP*¥-algebra.

"Example 3.19. Let A = C(Qo) which was shown to be a
BP*-algebra ih Example 2.3 1in the compac% open topology k.
We shall show that the inductivg limit topology'i on A is, in
fact, the‘sup—topology s on A, which is different from k.

,The inductive limit topology on A is the largest

topology on A making each inclusion map iB

ig‘ : - \\\

A(B) — A

. continuous. Let 65* be the corresponding collection for A.

We claim that (B * has the greatest member B

“

"o

B, = {f ¢ A: |f(x)| <1 for all x e 9}
A 4

. . , t
Py and pé .wiIl denote respectively the norms on A(B) and A(Bo)"
» O * . " F

B0 is ciearly absolutely convex, idempotent, closed and bounded.

We wish to show that B ¢ B, for all B € 3*. If not, there exist

¥ ¢ B-such that f ¢‘Bo which means there exists X, € Qg such

that [f(x )| > 1. Since:th:.B,'fn e B for all n. Now
. “ ° ;

N({x_}, 1) i$ a neighbourhood of O in A. Since B is bounded,

there exists A > o such fhat

23

B C:AN({XO}: 1) =.N({xo}, )

~ -

n .
. . O .
Choose a positive integer ng such that If(XO)I > A
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Now.

n " ’ n
£ °eB CNx}, M) =plf (x| < a

which is a contradiction. Hence B C B_ for all B e (B*.

We also observe that

A = A(B_ ) because f/sup [£(x)]| € B, . B
. xeﬂ ‘

Moreover pp < pg and the inclusion map

(A(B),pg) —— (A(B,),pg )
o 4

is continuous. We have therefore shown that C(QO), with the

sup~-topology, is the inductive 1limit of {(A(B),pB): B e'QB*}.

Hence on C(Q ), i = s # k.
Q.E.D.

Propos1t10n 1.10 which says that 'a 11near mapping f of
an inductive llmlt of a family {E } of locally convex spaces
- is continuous if and only if fOf is continuous" will be
1nstrumenta1 in proving the follow1ng results on the continuity
of multlpllcatlve and positive llnear functlonals on BP*-~
algebras and Contlnulty of *—representatlons of these algebras

by operators on a Hilbert space, ‘in the 1nduc;1ve limit topology.

Theorem 3.20. Every multiplieative linear functipﬁgl

on a bounded pseudo- complete locally convex algebra A, endowed

with the inductive 11m1t topology,ls continuous.
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& Prgof: Let f be a multiplicative linear functional
@?{{' ) '
on A,f'f;’will be the inclusion map of A, into A and C is the

complex field.
We have: m | -
fa' f .

. A, ——— 'c —3 C
Then clearly fof is a multiplicative linear functional on
the Banach algebra Ad. Since every multiplicative_lgnear
functiponal on a Banach algebra is continuous, it follows
that, in particular, fofa is continuous. Hence appealing

to Proposition 1.10y f is continuous on A.

A Q.E.D.

Remark 3.21. In view of Proposition 1.60, the space

M(A), consisting.of‘non—zero multiplicative linear functionals
on A,.is weak}y compa?t,'and fhe space of continuous members

of it is clearl§ relatively compact. <Howéver, if we restrict
to the in?uctive‘iimit topology_oﬁ A, then éach member of
M(A)‘is cbnfinqous by Theorem.3.20. Consequently thé space of

continuous multiplicative (non}zero) linear functionals on A

with identiRg,Aaléo dendted by M(A), is compact.

Theorem 3.22: Every positive functibnal on a BP*-algebra

A is continuous in it's inductive limit topology. l
" Proof: ' Let f be a positive functional on A. Since each

f; is. a *-homomorphism, it is eas& to see that f°ia is_a positive

»

functional on the Banach *-algebra A - Since every positive

functional on a Banach *-algebra is continuous, fOfa is continuous
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on Aa and hence by Proposition 1.10, f is continuous.

Q.E.D.
Theorem 3.23. Let A be a BP*-algebra. Then eVery

*~representation of A by operators on a Hilbert space H,is

continuous in the inductive limit topology.

Proof: Let T be a *-representation of A. g
. . &
Diagramatically: , | _—-— _ ‘F%
- : o T : b ‘;
Aa —— A _— B(H) - 5
where T: x =+ Tx and B(H) denotes the Banach algebra of bounded
" operators on H supplied with the norm topology and conjugation
as involution. Each fu being *-homomorphism, we have
) = * = *
,(Tofa)x* T[fa(x )] T[fa(x)]
==Tz* where z‘= fa(x)
= - P * -,
(T)* = [CTofy), ]
which shows TOfa is‘a *—iepresentation of Aa on H. Since any,
*-representation of a Banach *-algebra on a Hilbert space is
continuous, it follows that‘eacthOfa is_continubus. Conéequently

<« .

as above, T is continuous in the inductive limit topology .

S

Q.E.D.



CHAPTER IV

' NORMALIZED POSITIVE FUNCTIONALS ON BP*-ALGEBRAS

Throughout in this chapter,‘P(A) will”denote the set of
all those positive functionals on a BP*-algebra A which take
2~

values 1 at the identity of A. A positive functional satisfying

‘this condition is said to be normalized. P(A) is shown to be

a weakly compact convex set. We characterize the extreme points
of P(A). They are identified as positive continuous multiplicative .
linear functionals on A. 1In fact the indecomposable positive

A

functionals are exactly the extreme points of P(A)

We retall that the projective limit of an 1ndexed famlly
of tepologlcal spaces {X : o € A} with respect to the connectlmv
maps ﬂgB is the subspace Q of the product space P = H{Xq: a € A},

such that
Q.= {(xd) e P: naB(XB) = xa(a'i'B)}:

and é is non-empty compact Hausdorff prowided each Xu_is non-

) empty compact Hausdorff.\ We,denote the members of“63“£§_

{B: o e 4} ehere 4 is the index set. For o, B € 4, we write

.g < B to meae Ba(; BS' By the Theorem 1.46, 05 is outer-direeted
by inclusien and hence‘A is directed by the partial ordering. '
We write A, for_A(B;)‘eﬂd P, = P(4,) will denote: the

b . . . .
set of all positive functionals-on Aa with values 1 at the identity,

-
-

69.
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endowed with the relative weak *-topology o(Pa,A ). It is also
: : o

clear that Ba<: BB implies A, C AB and each Aa is a Banach

*~algebra. ‘P*(A) is the set of aill positive functionals on A,
and Pg = P*(Aa) will denote the. set of all éositive functionals
on Aa' N

The main theorem is as follows:

Theorem 4.1. P*(A) is homeomorphic to the projective

. . * - . . ‘
llmlF of {Pa. PaB}’ where‘paB is defined below.

Proof: iaB: Au -+ AB will denote -the inclusion maps.

Then (Aa’ias) will be the direct system of sets, because ciearly

(1) i,  is the identity map on A, for all o, and
. : .

. o o s
(2) igy 1,8 A}ay’ o < B < ¥,
If ¢, is a positive functional on Ag as in the diagram:

taB g .
Aa ? AB — C,
then ¢B o iaB fs a positive functional on Aa' That is,cb8 o iaB tn
when ¢, € pél L

;We therefore define:

~ A *

Pag: PEF — Pg "

— - - - - - 't 13 n
. pa8(¢8) ¢B,o isg wplch is the restric }o
of ¢B to Aa' Pug

is" clearly continuous in the weak *-~topology.
It is not difficult to see fhat-(P;, Png) is an inverse system

of sets because:

-~ . —_—

P*
84

[
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(1) Poc is an identity on Pé for all o and

(2) for o < B < vy, Pog © OBY'; Py since
Qae‘° Py (05) = DQBEOBY(ﬁY)] = Papldy © 151
S0y e dgy) o dgg =y e gy © iqp)
= ¢Y o ia; = Poy (¢Y) . . “
Tygn | f

Q = {(¢Y) € NP%: Pupl®g) = ¢, for o < i(%},~

is the projective 1limit of the spacesaipzz o(P Aa)} with

a’
re%pect to the connecting maps paB'

We ‘observe that if ¢ € P*(A) then as <in the diagrame
i, ¢

Aa — A — C

. « e ’
¢ ° i s‘ng We then define ,

Py’ P¥(A) —> P

e
by

P (®) = ¢ o 1.
It is simple to see that Po is continuous in the weak *-topology.

For, let

N1 f N1 (¢ ohia,a,e)

be a weak-neighbourhood of p (¢) in P*, where a ¢ A, and ¢ € P* (A).
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In other words
Ny = {b e Px: |y(a) -'@ o i(a)| < e}.
We claim that the weak-neighbourhood N2 = N2(¢,ia(a),s) in
p*¥(A) is such that . o

paFNz) C;Nl, where

Ny = (b e Pr(A): |¥(ig(a)) - o(i(a))]| < e}.

Let ¢ € pa(Nz): Then ¢ = pa(w) = Yy o i, where ¢ ¢ Nz, which

implies that
[ o i (a) - ¢0 i (a)] < e.

That is

-

I » (a) - & o i (a)| < e,

Consequently ¢ € Ny. Hence o is-continuous.

We now define.

-~

p: P*(A) — npg

by ] )

P(9) = (¢ o 1 ),-

~

It is shown below that p(¢), in fact, belongsnto the projective
limit Q; for if a < B, then (see the 'diagrams below. p.'s are

the projection maps). :

! Ve



A : A

(¢\0 iB) o i

¢

) )
- Y
8 Y

. P .
. . R p
la 18 , N o

. P

A ¢ o,hiB ‘} o B

afB
o (iB o iaB)

o i

(¢ o i

It remains to show that p is a homeomorphism.

-

(1) p is one-to-one.

Suppose p(d) = p(Y).
Th ' : i = i
en (¢ o i)y = (e iy
wyhich implies that ¢ o i =¥ e i for all y.
Hence ¢ = ¢ on A and this shows p is'one-to—ope“,

(2) p is onto.

Let (¢Y) £ Q. §ince A

for some a.

==

UAa’ for x in A, x is in A,

Define ¢(x) = ¢_(x) for all a.

¢ is well-defined; for if x ¢ AB and

dp(x) = ¢8(X).

Then since (¢Y)Y £ Q, we have

pa8(¢§) = ¢B ° iaB

=

¢

o

73
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(o)

I Pus Fa \

Hence @6(x) = ¢a(x). That is ¢ is well defined and ¢ ¢€ P*(A).

Furthermore

p(¢) = (9 © iY)Y = (o, ° iY)Y = (¢Y)Y'

This proves that ) is onto. h
(3) p is continuous. . ; N

We observe that | \

M op=p, for all a.

: P
P*(A) ' — Q C MPX

N : Projection map

Since Py is continuous in the weak *-topology (shown before)

on P*(A), it follows p is continuous in the weak *—topoloéy
on P*(A).

(4) p is open.

Let ¢-& P*(A). A basic neighbourhood U of ¢ is

U = N(¢,¢, al,gz,...,an)
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= {¢ e P*x(A): ]¢(ai) - wcai)l < ¢}, a,.a5,...a € A.

n
Choose B such that aq,8g,- 520, are in AB' Then
U= {p ¢ Px(A): IPB(¢)(ai)._ pg(w)(ai)l < e}. (1)
Let pe(¢) = ¢ o iB € Pﬁ. ‘Then a basic neighbourhoed of
08(¢) =¢ o ig in PE is
V= Ng(o o iB,s,all,az,...,a,n)
: e
= {yge Py lpg(e)(ap) - vgapdl < el 43
We know that Hél(V) is a neighbourhood of p(¢) in Q where 3
1 ' it
' .HB (V) = {(¢Y)Y e Q: ¢8 e V}.
We claim that
Q NNV o).
-1
Let (wY)Y bel?ng to Q f\HB (V).
-1 . . R
Then (xpy)Y € HB (V) 1mp11es WB e V and this means that
l¢ o i&(ai)"we(ai)l < €, | o (il)

Since p is onto Q and (t,bY)Y is in Q,

il

(v,)

¥ p(y), for some ¢ € P*(A)

Y

i

(P o iY)Y.

Hence . wB = Y © iB = pB(w) € Pg.
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Therefore by (ii) |QB(®)(ai) - DB(W)(ai)I < g,

In vaiew of (i), it therefore follows that ¢ ¢ U. Consequently

(b)), = p(¥) ¢ p(U), and this proves that p is open in Q,

Yoy
-1

or p 1s continuous. We have finally established that . is

a,homecomorphism.
Q.E.D.

’

We specialize the above theorem to the following

important corﬁﬂlaries.

"\
~ M

Corollary 4.2. P(A) is homeomorphic to the projective p
' ,

Limit af (Pa; paB)’ where P(A) and Pa consist respectively of
those members of P*(A) and P* which are normalized, with their

relativized weak *-topologies.

Proof: It follows immediately from the proof of the
Theorem 4.1. Another way of looking at the proof is as

follows: We know from (6) Page 18 [18] that a continuous
one-to-one mapping of a gémpact space onto a Hausdorff space
is a homeomorphism. The proof follows once we have shown that
p-~ is one-~to-one continuous map of the compact space 9 (See
Corollary 4.3 below) onto the Hausdorff space P(A),Nbccause
then p~ ! is open i.e. p is continuous and ¢ is then a homeomorphism.
(Note that we do not require tﬁo continuity of Oa)' ‘

Q.E.D.

Corollary 4.3. P(A) is a non-empty compact Hausdorff

space.

Proof: By Theorem 1.84, each P’(1 is weakly compact and

convex. Consequentiy the projectivé’limit Q of compact Hausdorff
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space, 1s necessarily compact H;usdorff. Since o is a
homeomorphism, it follows 'that P(A) is a compact Hausdorff
space.

. Q.E.D.

P(A) is convex because if f, g ¢ P(A), then f(e) = 1 = g(e)
and hence Af + (1-)2) g « P(A). Taking together the above theorem
and the corollaries we have the following theorem which will

$1ay an important role in subséquent developments.

-

Theorem 4.5. 'P(A) is a weakly compact convex sct.

'y

Remark 4.6. P(A) has extreme points by Krein-Milman :

theorem.

1. Characterization of Extreme Points of- P(A) )

/
We now proceed to give a characterization of extrene

points which do exist by viittue of the Remark 4.6.

Proposition 4.7. If for any f e P(A), f[A_ (=f o i) ,\/
is an extreme point of P(Aa)(=Pa) for all a, then f is an extreme
point of P(A).

Proof : If f ¢ P(A) and assume

f = AL 1"

1 + (l—A)fz, where f f2 e P(A).

Then it is easy to see that

£[a = AL A+ (1—A)f2]Aa for all o, where
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fllAa and'leAa belong to P, f?r allAu. Since fIAa is ‘an

A

extreme point of ﬁa’ it follows that

. I8 .
£la, .= fllAOt{E,:leAa for all a.

AN

Choose an arbitrafy‘poént Xx € A'= UA

-

Consequent;y f = fl = f2 on‘A. This shows that f is an extreme
- RE

Q.E.D.

, then x ¢ Aa for some «.

>

point of P(A).

L

Proposition 4.8. The positive multiplicative linear

functionals on A are extreme points.of P(A). . ' i
Proof: Let fhbé a"pOS}tivé multiplicative linéar g%
: fqﬁcxionalton A. Then clear}y flAa is a positive muItiplicatiye %
iinear functioﬁal on Ad;for all a. (Since by, Theorem 1.86‘

2 : ¥ ' "

L . . . D : - A : :
positive multiplicafive 11nearyfunct10nals.qn Aa are exactly

: . ) X ) T,
. the extreme points of Pa‘for each o, hence by the Proposition

» 4.7, £ is an extreme‘poinf’of P(A). .a.s \\
] ’ o . o \ Q.E.D.

Deflnltlon f«e P*(A) is said to be?iﬂdeéomﬁoéabie

if every functlonal fl ; P*(A) domlnated by f (1 e. AL - fl is -

a positive functional for some p051t1ve A) is a multlple of f.

$> ’ i We have the following propQSJtion.# ‘
Proposition 4.9. }f f[Aa is ;ndecomposéble for all. a,

- theﬁ flls 1ndecomposable .~» S
s " Proof: Assume f'-is a positive functlonal domlnated by

f. Then for some pogitive numbef A, Afu- f' 1s'a posat;ve

) ) Q." " “ ) - .
functional on A. Consequently Af|4ac— fﬁAa i a pos;?ive
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functional on Aa for all «a. Sincé\fIAa'is indecomposablé, it

follows that
f'iA = quAa for all o, where.

n is a scklar.

Hence f' is a multiple of f, proving, thereby, f' is

indecomposable. ’

) - - Q.E.D.

The following remark may be useful later.

Remark If for any linear functional f on A, flAa
a positive functional on Aa for all o, then f is a positive
functionai-qn A.

Proof:. We know by definition of the BP*-algebra A, that

| S

A =UA . Let x € A, then x ¢ A for some «
o : oy
Then. ' : . . e

o°

f(x*x) = f|A_ (x*x) > o. i )
e - .E.D.
2. K-BP*-Algebras @ .

Definition ‘A BP¥-algebra will be called a K-BP*—

algebra 1f every p051tlve functlonal on A can bé eitended toh
a continuous positive functlonal on A. “[This propérty holds
for -closed ﬁésuﬁalgebras of.symmetr{c Banach *—algebras.

See Theorem’ 1. 891]. , : - , _ .
For such algebras we establlsh a sort of converse for

PR

Proposition 4.7,

~
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n

Theorem 4.10. Let A be a K-BP*-algebra with the -~

inductive limit topplqu, and suppose each Al iéadense in A.
Then f is an extreme .point of P(A) if and only if f o‘ia = i‘lAOt
is an exﬁreme point of P_. for all a. |

ﬁroof: One ﬁart of the theorem is'éiready proved in
@rpposition.4.7. Assume f is'an extreme .point of . P(A).

Consider thé'equation

fla, = Af, + (1-A)f,, o < A <1, £, f,

Extension property says that there exist continuous positive
* - ’

funcfionqls f' and f'" corresponding to fl and f2 respectively

such that - . : . '

Consequently
flga = XA, =xygrlag = D o+ (1-agny] gilq“

We know that f ¢ P(A) 1is diways.confinuous in the inductive -
limit topology. . Moreover we recall that two continuous functions X
equal on a dense subspace, coincide on thg whole. We finally -.
obtain . . . L - 3.
£f ="' + (1-3)f" £f', £ ¢ P(A) ..
- . \

Since f is an extreme point of P(A), f = f' = fleand this;implies'

that
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T fjAa = f, =1 ' ;
This proves that flAa is an extreme point of P(Aa).
o : X W~ .

~  Q.E.D.
The following theorem identifies the extreme points

of P(A). It will be recalled in the next chapter.

Theorem 4, 11 Let A be a BP*-algebra. Then f ¢ P(A)

is 1ndecomposable 1f and only if £ is an extreme p01nt of the

set P(A).

<

pProof: Assume f is indecomposable. <TConsider the .~ B

equation
f = kfl,+ (1—A)f2, o < A< 1f fl: fz e P(A). -
Then f - Afl = (1 A)f is a positive functional and fl is
: - ) . . L
- dominated by f. 'The assumption 1mp11es that fl = pf. Since 3g
f(e) = 1 =(fl(e)r it follows that p = 1;'-Hence £=1). Ve
¢an similarly show that f = f,. Hénpe f is an extreme point (;:B

of P(A)., ¥ . ' ) ‘ oo
Conversely,lét f ¢ P(A) be an extréme point of ?(A):

Let f. ¢. P(A) be dominated by f. IF 6§her.words £' = f - x;l

is a positive functional on A. We-wiéh to show that’fi is-a

multible.of £. « Now let f'(e) u: Thenhf:— \f; = o since

fr(xe) = £'(x) F(e) = 0. That is f = Af but £(e) = 1 = L(e),

which forces A = 1. 'Henée flf T which shows that ‘I is imd§c6mp9§ab1e

' under the condltlon f(e) . I1f fie) > ©, then let £, T-f‘/“

’ . . X
Wh?n'u = £ (e) and therefore f (e) = 1. From the. equation o

e 1%
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f' = £ - Afl we get ufz = f - Afl. ThaF is, f = Afl + uf2

with A, u > o and A + M = 1, because 1 = f(e) = fl(é) = 1,(e).

Since f is an extreme of ‘P(A), f‘zyil = f

in P(A) dominated by { coincides with f. Hence f is indecomposable

/

5 Thus every fuﬁctional

Al Q.E.D.
: - :
Corollary 4.12. Let A be a K-BP*-algebra with the

inductive limit topology. Let each A  be dense in A:, If f is -
an indecgmposable-eléhent of P(A), then‘flAa.is indecbmposable

in P(Aa) for any a. . : :

~

) ) &
Proof: Let f be indecomposable, then by the above E

theorem, f is an extreme point of P(A). In view of Theorem 4.10 =

f[Aa‘is an ektreme point of P(Aa) for any a. By thé corresponding

theorem for Banach *-algebra (Theorem 1.85), it follows that

f{A, is an indecomposable element of‘P(Aa). : Q.E.D.

The following theorem is a sort of converse for‘thé

Proposition 4.8 "for K-BP*-algebras.
- ’ ’

Theorem 4.13. Let A be a K-BP*-algebra with the inductive

)

limit topology and let each Aa‘be'dense-in A. Then thle- positive

"multiplicative linear functionals on A are éxactly the extrome

-«

b

points of P(A). - L
Proof: We, have alipddy shown in Proposition 4.8 that
. - s , . -
if f-is a poFitiveﬁmultiplicative linear functional on A, then
‘ |

f is an e€xtreme point of P(A). : . ' “‘

| —

. . I
Now |assume *f is. an extreme point of P(A). Then fIAa

¢

is an.extrené(point of P(A,) for;any.a by Theorem 4.10. Theor‘em

1.86 for Banach *-algebras implies that {{A, is a multiplicative
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; _ ) V . ,
,,mﬁzber of P(Aa) or any a. Consequently f is a positive

mu tiplicafive ember of P(A).

Q.E.D.
Corollary 4.14. -‘Let A and A, satisfy the conditions

of the above theorem. If A is symmetric, then the kernel of

the Gelfand map G: x - X defined by X(¢) = ¢(x) for ¢ € M(A),

is the set

I'd

R = {x e A: f(x*x) = o 'wvf e P(A)}. :
Proof: Let K, denote the kernel of the Gelfand map.
That i's

KG = {x'e A: G(x) = :j;:::>
K- L

Let x ¢ R, then f(x*x) = o Vv I{ € P(A). Symmetry implies.

‘We have to show that R

‘that every multiplicative linear fhnctional‘onaA is a positive,

functional, hence, in particullar, we have
d(x*%) = o ¥V ¢ € M(A)

. . - - - -
. .

and this yields_cb‘(x) =0 V }p e M(A). Thus G(x){¢] = ¢(§<)_ = :o
.for all ¢ ; M(A) imply G(x) = oO. ﬁence x e Kg.
"On the other hand, 1let # ; Kg - Then ¢(x)'= o for all |
¢‘s M(A) and thérefore p(x*x) .= o Y ¢ e'M(A). -We may regard X*x
; as a contihuous iinean functional on the conjugate sﬁadé.Af‘in'
the weak *-topology. Each ¢ being muItiplicativé and positive

linear functional on A, is exactly the extreme point of P(A) by

’

~
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Theorem 4.13. Therefore x*x vanishes identically on the extreme-

points of P(A). That is

- , $(X*X) =0 V¢ ¢ Ext(P(A)) -

&

. but, by Krein Milman theorem, P(A) "is the closed convex hull of
it's extreme points. Now x*x being a continuous linear functionai
on .A*, we claim that x*x vanishes identically on P(A); for let

¥

D = Ext(P(A)). Continuity says.that

P

x*x(convD) (C x*x(convD) where convD denotesfthe convex
hull of D. Since x*x is a linear functional and x*xD = o, it

follows x*x(convD) = o.Consequentiy xfx(convD) = k*x(P(A)) = o.

N

o ° ﬁ A
oV ¢ € P(A). : >

In other words

d(x*x)

*

Thus x € R. Hence. _ L e

R=(x¢e A: £(x*x) = o, vV £ & P(a)}.



CHAPTER V -

A

'REPRESENTATIONS OF BP* -ALGEBRAS

This chapter déals with an invgsfiéapion of representations
of-BPf—algebras in the algebra of bOunded‘operators on a Hilbert
space H. 'Necessary and sufficient con&itions are obtained fér
a cyclic representation to be‘irreduciblé.. We give various
characterizations of the *—radica¥ of these algebfas. We end.
dp‘with.a theorem which rep;eéeﬁts a symmetric, semi~simple'

BP*-algebra as a éertain subalgebra of a function algebra.

The following proposition is well-known.

Proposition 5.1. If f is a positive functional on .a

*—algebra A, then "

Né = {x € A: f(x*x) = o}

’

'is a 11neag subspace of A and the quotlent space K

.—,‘

P - A/Nf can

be made into a pre Hllbert space by deflnlnv the inner product’

(x + N., y + Nf) = f(y*x), (x, y e A):
2 . ‘ . $
A representation (Uf,Kf) of A is then defined by

[me(O1Cy + Ng) ="xy + Np (x,y € A). | ‘

¢ e

Proof: f being a positive fgnctional on A, x € Nf

4

M SRR e,
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. . - ) 2 . :
implies f(Ax*ix) = || f(x*x) = o, which shows that Ax ¢ Ng-

Farthermore if x, y € N then

f b

-

FLGory ) *(xby) ] = £(x*x) + £(y*9) P~L(x¥y) + £{y*x)
© < E(xRx) ¢ f(y*y) 4+ E(x*x)L/2 peyayy1/2 g

L o1/2 . :
T(y*y) / f(x*x)1/2 by Cauchy
. .
~Schwartz inequality

=t 1e)t/20% < o,

Hence x +‘y € Nf. Consequently Nf is a linear subspace

/

A\ ' ' e
of A. Us$ing the fact that f£(x*) = T(x) and linearit

;/of f, one
can verify that (x + Nf, y -+ Nf) is an fnner produ?}.‘”

Let H denote the completion of K. L(Kf;/@ill denote

¥

the vector space of linear transformations on Kf.
The following theorem is important.

- . Theorem 5.2. Let f be a positive linear functional on

a BP*-algebra A. Then ' o

- (l)ﬁ Each Tx‘is conéinuous'on K éqﬁ’hence extendable
te an operitor in B(H). "-_ ~ ' ;!' . 5
* (2). 1f A is a Q-algebra, then the representation

X - Tx of A ¥n B(H) is continuous and has .cyclic vector v
. ) S

te = e + Nf Whére e is the identity of the algebra.
o (3) For each x ¢ A, f(x) = (rxce,ce). v
Proof: By an earlier Corollary 3.2 on the admissibility

of positive functionals, we have for the positive functiomal f
- . , i

\
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f(z*x*¥xz) < f(z*z)r(x*x).

By the definition of the inner product on H

. S (xz + Ng, Xz + Ng) = f(Z¥x*xz)
. A L

( =z + Nf, z + Nf) = f(z*z).

and

. ) 2
Since (x,x) = |[|x}]° and ¢, ¥ 2+ N., by the application
of Corollary 3.2, we have '

(xz + Nf, Xz + Nf) < (z + Nf, Z +‘Nf)r(x*x) which,

in view of the definition of the representation, yields

5 o s
.2 2 :
{1, 5,11 = Izt T (xxx)
or. - 4
‘ e o< e Il rexex) /2
~

P ad

; Since every element ?f A }s bogndeq, r(x*x) is finite
(Proposition 1.49), it follows by the last inequality that ?x
is a bpunded operator on kf and has a continuous extension to
H which is the éompletion of Ky. This proves klj.

To prove (2), we observe from
|12 112 £ (x*x)

that vy

T 112 < xGo) - (1)

~ - =

X

Ll R,
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If W = {k:.r(x) < 1}, thsn as in Theorem 3.5 we obtain,’

where Ah is the hermitian part of A,

T(W MA)) ¢V o= (T [|T_|]| <1} by (1).

A

The'Q—prpperty assertains that W is a neighbourhood of the
origin. Consequently T]Ah is continuous. Finally as in
Theorem 3.5, T is continuous.

f
of Kg, it follows that {TxCe: x ¢ A} is dense in H and hence

Moreover, since Txge = x + N, and I} is the completion

Le is the cyclic vector for the representation, thus proving (2).

Furthermore, by the definition of the inner-product, g:
T
(T, 2g,05F = (X + Ng, e + Ng) = £(x) %

which establishes (3).

1.0 Irreducibility of Cyclic Representations

The following theorem is well-known for *-algebra with

identity (Theorem 1.94) which is employed to prove our next

t

theorem.

Theorem (Page 265 [21]) A c}clic representation

X - T -Qf_a *- algebra A with identity in B(H) 1s 1rreduc1b1e
(No non-trivial subspaces of H are ifvariant w1th respect to

each T ) if and only if the p051t1ve functlonal f defined by |

L P
h . n . -~

f(x) = (TXC.C)
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is indecomposable for each cyclic vector ¢ in H.

Theorem 5.3. Let A be a BP*-algebra with identity.

Then a cyclic representation is irreducible if and only 1f,
for cach cyclic vector g in il the corresponding positive

functional is an extreme point of P(A).

Proof: Assume that the cyclic representation is
irreducible: Then by the above theorem the positive functional

defined by
CE(x) = (T.5,8)

is indecomposable for each cyclic vector in H. Consequently
by Theorem 4.11, f is an extreme point of P(A).

Conversely assume that the positive functional £

corresponding to the cyclic vector ¢ is an extreme point of B(A).
' §

Then by the same Theorem 4.11,'f i§ indecomposable. Hence the

fhegrem quoted above shows that the cyclic representation . x - Tx

is irreducible.

Q.E.D.

2. Complete Family.of Representations

Definition A family of gepreséntations of a *-algebra

A is complete if, for each non-zero veotor Xx. in 5, there exists

a représentation in the family such that T # o.
. . o

Theorem 5.4. Let A be a BP*-algebra. Then the family

. «

of all irreducible *-representations x -~ T_ of A in B(l) is

Ny

K.

4

~

¥

-~



complete if and only if the set R(A)
R(A) = {x € A: f(x*x) =0 VI € P(A)} = {o}.

Proof: Assume the given family is complete. We wish

kY

to show that R(A) = {o}. “If not, for each y « R(A), such that

vy # o, we have f(y*y) = o for all f ¢ P(A). By Theorem 5.2,

_(Ty*yce.ce) =0

T being a *-representation, (Tyge, Tyce) = o which implies

= o. Hence T ¢ = o, . _ being a unit cyclic

that [lTyae|[ yhe o

vector. Consequently Ty = o which contradicts that the family

1s complete. Therefore R(A) = {o}.

Conversely suppose that R(A) = {o} which means that,
for any positive functional f in P(A) f(z*z) = o implies that
z = 0. 1In other words z # o implies that f(z*z) # o for all :“‘

f ¢ P(A). 1In particular for an extreme point f of .P(A), defiqod

by . R

f(x) (Txce,Ce)

we have

f(z*z) = (T te) T O

z*zge’

and th¥s shows that ||TZ|| ¢ o, for z # o. The representation

P

S 'I‘x being cyeclic (te being a cycgic unit vector), it-finally
N ° L / - E .
follows by the above theorem that T is irreducible. Consequently

the family is complete.
' Q.E.D.

a ’ . '
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Coqollary 5.5. Let A be a BP*-algebra. Then the

following statements are equivalent

(1) There is an f € P(A) such that f(x) # o.
(2) There is g ¢ P(A) such that g(x*x) > o where
g(z) = f(x) + if(y), x, vy €A, Z = %Ay A.

(3) There is a *-representatior T of A such that T ¢ o.

(4) There is an irreducible *—représeptation\s of A

such that Sx # 0. v

~ -~ - ¥

Proof: f(e) =1 for f ¢ P(A). By Schwartz tnﬁquality

(c) ‘Theordm 1.80, we have ) L

|f(x)[ < f(x*x). ) .
Conscquently (1) implies (2).

(2) impiies (4): As in the proof of the above fthecorem

/

g(x*¥x) = (S 4, Lor8e) 77O

Consequent1y||8x|i 4 0. Hence.Sx # o‘ant\s\is .
irreducible. }

(4) implies (3): -(4) equivalently says that the family
of *-representations is complete. lence, by the
above theorem,R(A)\= {o} which‘means X $f O {mplies
f(x*xj >-6‘and as beforelthere is an *-representation
X - Tx such thgt 'I‘x £ 0. -

Finally assume (3) holds. Since T;~# o, there is unit

vedtior in the Hilbert spacé (Theorem 5, [17]) such that

Hel |

1 and (T.4,8) ¥ ©-

-

Q
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Défiqe
~ ")‘ N i -
A .
f(X)'\f‘}g{I‘xc ,8).
* = " 2 : : sl . |
Then f(x*x) = ||Txc|| > o0.s0 that f is a positive functional.
Moreover
.r:.""" -
o .
() = (Tgagri) =+ J7811% = 1. |

' ~
£ +
N

Consequently f & P(A) such that f(x*x) >'0. Hence (1) s -~ wom e,
established. \ ) Per -
Q.E.D.

3. *-Radical ‘ N _ _
N N

~ \,5

Definition Let A be a *-algebra. The *-radical

a

R*(A) of A is defineq as, the intersection of the‘kerﬁelé of all

If R*¥(A) = {0}, then A is called *-semi-simple.

irreducible *—represéntationé of A. ’ . qg:;
»

Theorem 5.6. Let A be a BP*-algebra. Then

/ ,

{"\{KerT:‘ T is irreduc;ble *~representation of A}

R¥(A) =
= {x ¢ A: é(x;xs = o0, f e P(A)} = Ry
- {x ¢ A:'~ffx*x)‘= o, I ¢ ek;(P{A)S} = Ry,
Proof: * Let- x ¢ R¥(A). Then Tx = o for any ir?edpcible

[

*—representatioﬁ i/9é\é. Let f ¢ P(Aj. Then by an earlier theorem

- A ) . 2
.f(x*x)\z (frx*xce’ce) = (Txte ’ TXCe).'f——“I--lATxCell

= O



.
. ‘
~ N -

Hence x' ¢ Rl. Consequently-R*(A)(: Rl'

By the above arguments and appealing to Theorem 5.3

it is not dlfflcult_to show that R*(A) C R2 and R2 C;R*(A%.

That is R, = R*(A). o

To show that Rl(; R2, ;et X €.R Then f(xfx) = 0

1°
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for all f-e P(A). 1In particular f(x*x) = o for all f ¢ ext (P(A)).

Hence R1 c .RZ'

We have therefore shown that

R*(A) C_Rl CRz and R2 = R*(A),

. —~

and this establishes the equality of the sets.
S ' "~ Q.E.D.

Cor?ﬁlary 5.7. Let A be a BP*-algebra. Then A is
19 .

*-semi-simple if and.only if the set

!
}

{x € A: f(x*x) =0 yfe P(%)} = %o}.

’

broof:"lf A is *-gsemi-simple, then by definition

, " , . .
R¥(A) = {0o}. Hence by the 'above theorem

N

{x e A: f(x*x) = o v f ¢ P(AT}'= {o}. -

Conversely -if the given set consists of {o} only, it
follows by the above theorem that R*(A) = {o}. Hence A is

i

*-semi-simple.

Remark It is well-kﬁqwn that R*(A) for any *-algebra,

is a two sided‘*—ideal. Unlike MQ*-dlgebras, if A is a BP*-algebra,

then A/R*(Aj is not necessarily a BP*-algebra and this follows

i
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by a counter-example constfucted'in Proposition 2.8.
The following theorem analogous to a result in (8] provides

another characterization of the *-radical of a barrelled BP*-algebra,

~
.

Theorem 5!8. Let A-be a barrelled BP*-algebra with

the inductive 1limit topology, then

-

(1) E C P(A) is eqdi—éonpinuous if- and only if

sup f(x*x) < = C(xeA).
feE ’

(2) If F denotes the collection of all equi-continuous
subsets of 'P.(A), then for E e},

-‘i:

|x| = [sup {£(x*x): £ e E}1/Z (xen)’ ‘A
: - ()
W,
is ‘a semi;norm on A. e ‘%

(35 .R*'(A)- =-{x e A: lxlE.'= o for E eF}.

Proof: \(1) Assume E is equi-continuous.: Since'by the
Corollary i.29, in the ‘dual ‘of-a barrelled space, equ%—contihudus
sets and o(E',E) - bouﬁded-sété'areiéamé,.it follows that

sup f(x*x) < o,
feE . :

Conversely assﬁme sup fix*x) < @ (xeA). Then K
' feE ' ) ‘ ¢
since by (Theorem 3, Page 69 [24]) or Theorem 1.28, any poih?wiSe‘
bougded‘set of continuous liqéar mappiggs of a bdrreiled space )
into any locally cénvex space ‘is equi—continuous, iﬁfﬁherefore

follows that E is equi-continuous. ) . -

(2) Easily follows by Cauchy-Schwartz inequality.
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L 4

To prove (3), we know from Theorem 5.6, that

-3

o V{fe P(A)}.

RX(A) =‘{Xi€ A: f(x*x)

T e

Then it is easy to see that f(x*x) o if and oT?y if |xlE = 0

for each E in}.

Consequently '

R¥(A).-= {x e A: ]xlﬁ = o for each E e F}. ' : -
| Q.E.D.

"We conclude with the following results.

Lemma 5 8. Let A be a symmetric, semi-simple BP*-algebra.

-

Then the Gelfand representatlon x = % is a *-isomorphism of A

onto a self—ad301nt, separatlng subalgebra A of C(M(A)),

'

where A is the image of A unde; X > X. s

‘ Proof: A being pseudo;complete we know from Proposition 1.60
that M(A) is a non-empty compact Hausdorff space Then with '
every X ¢ A, we .associate .a complex- ~valued function X on M(A)
by - . . | . ‘/
‘ X(¢) = o(x) where ¢ € M(A).

-

Each x is afbontinuous function on M(A) in the weak *-topolqu.

Semi-simplicity of A‘implies_that the radical of A

R(A) = {a e A: ¢(a) = o V¢ ¢ M(A)} (Proposition 1.65)
' = {o}. . _ : ' o 9
)y ‘ _

This means that § = O 1mplles x:—-%) Hence the Gelfand. map
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is a one-to-one homomorphism. 1In viewkef.Proposition 1.74,

~ %

A is self—adjoint Clearly A is separatln% Proposition 1.75

guarantees that x - x is a *- —~homomorphism. . Ontoness of

- *

X +'x is obvious. Hence the Gelfahd representation is

. *-isomorphism of A onto A, and the lemma is proved.

-

~
1

4, Realization of a BP*-Algebra as a4 Function Algebra

* ki
in the following M(A) is the set of non-zero continuousi

multiplicative linear fupctionals on A.

' Es
.Theorem 5.10. Let A be a semi-simple, -symmetric BP*- N
. ' Vo o N
algebra with identity. If?: denotes the topology of uniform ) %%§§
convergence on equi- contlnuous subsets of M(ﬁ), then the W%

Gelfand mab X ;Q, x is a continuous *- 1somorphlsm of A onto a
dense, self adjoint, 'separatlng subalgebra A of (C(M(A» ?'

Proof: The above lemma ascertalns .that the Gelfand
map G is a ¥;isomorphism and A is a self-adjoint, separat;ng
. subalgebra. - T . .

Appeaiing to Generalized Weirstrass Theorem [11) or , ‘
Proposition 3.76, K is dense in C(MﬁA)) in the compact open ‘
topology. The compact open topology is fiher than ¢  (because
closed equi—confinuous subsets are compect and the topology of
uni;erm convergence on members of'a larger coliection is finer
than that on members of a smaller collectlon and deneenees is

preserved under cqarser'topologles)?' Hence A is dense in C(M(A))

with 7 - ) ' . . . "
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Re;;}aing contihuity of G, one knows that for an

equi-continuous subset E of M(A), E° is” a neighbourhood of

zero in A, because by definition of equi-continuity of E,

E° = /M x'_l'(qulj

’

x'€EE .
.1is a neighbourhood of zero in A.

Consider a ~Z;—neighggurhood of zero in C(M(A)) such
that ' | ’

'N(Eue)_Q {f e C(M(Aa)): [£(B)] £ e} ,

"where E is an equi-continuous subset of M(A).

“We- claim that'$E° is a neighbourhood of Zero'in_A such

that

G(eE®) CN(E,¢).

IL

To show this, let b.e¢ €E°. Then b #ea, where a ¢ E° which

implies that [¢(a)| < 1 for all ¢ € E. The definition of the
Gelfand map yields |£(¢)[ < 1 for all ¢ € E. Then
|Gb(¢)| = |b(d)]| = |ea(e)] = le(ead] .
= elo(a)] = ela(e)| < € for all ¢ € E.

Hence Gb e'N(E,Ejﬁ and the continuity of the Gelfand map follows.
Q.E.D.

Corollary 5.11. Let A be as in the above theorem. - If A

is endowed with the inductive limit topology i, then i is normable

.

al
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to the relative toleogy T on G(A) induced from C(M(a)).
‘ Proof: Sirce Lhe-Gelfand map G is onte G(A), A and

G(A) will be identified. A being thg inductive limit of
barrelled spaces Aa’ is barrelled. Since, in the dual of a
barrelled space, weakly compact shbseté'aAd equi—conﬁihuous /¢)
subsets are sgme, the 'Zﬁ—topology Eoincides with the compact
open topology.on C(M(A)). Since every multiplicative linear
functional on A is i-continuous, M(A) is conipact by Propoéition
1,66. Consequently C(M(Ai) is a Banachﬁalgebra. G(A)_being '
nor@ed,has the Mackey topology. Since:A' = A, aﬂd since the
initial topology i and the';ofm topology T are Mackex topologiesggr‘h
it follows i 1is identical\with T. Consequently i is normable. ¥

| Q.E.D. 2

'Corollary 5.12. Let A satisfy the conditions of the

above corollary. If A is Frechet, then A is full i.e.
A = C(M(A)). .

ngggi: As in the proof of the above éorollary, G(A)
is barref;eq. Since A is Frechet -and G.is continuous, it
follows b§ P}oposition 1.33, that G is open. Hence by Proposition
1.34, G(A) is complete. G(A) being dense in C(M(A)), it finally

A = C(M(A)Y . R ~\///

follows that
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