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ABSTRACT |

_ The dynqmic.respoﬁsélof ﬁﬁe railway track modelled
as a continuously supported beam on a Kelvin type |
. foundhtion;and subjected- to an axial force and time-
deéendent moving loads is stugdied. The.transient and
steady state solutions are found for the general_case
including all linear effects. This study shows the éfﬁectsn
. of axial'forée and damping on the dynamic res?onse. The
results also show that the effect of the velocity of the
moving load on the dynamic response ls‘small, and hence 1t
is not ﬁecesﬂary to consider the wave type expression to

study the effect of track elasticity on the dynamics of

railway vehicles.

An analysis for the dynamics of a railway vehicle
including the effect of vertlcal tracL elast1c1ty is
presénted, with particular emphasis, gn the lateral staﬁility
and the response to verticél track irregularities. The.
modegl used in the aralysis. is that of a six-axle locomotlve
of the type commonly used in North America. Wheel tread
;profile parameters,‘gravity stiffness éffects and creep

forces are included in the mathematical model.

The results show that an increase in vertical

track elasticity results in a small“iﬁékease in the
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critical speed at which ﬁunting'instability occurs. _The
iricrease in track elasticity results in appieciable-
increase in the amplitude of the response to track i

irregularities’especially at'high Frequencies.
A method for the minimization .of the vibrations

transmitted due to track irregularities using the minimax

principle and mathematicallproér

ing techniques-is _.
suggested. Tbé method is demonstrate 5y consideringuthe
minimization of the lateral”cab acceleration within the *

. ' T
— - '

frequency range of interest.

»* -

_ The analyses and digital computer simulations are -

viewed as apalytical tools .for studying the effect of

r

changing the vehicle and/or track parameters on the

_dynamic respgonse of both the véhicle and the tracku: The

methods developed are general and can be used in the design
0 ' '\' . - - "

"stage to adjust.geometry and/or suspension characteristics

for any proposed design of. a railway vehicle.
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CHAPTER-1 - ' -
INTRODUCTION

- =

' "Engineering may be’éééc;ibed as the art‘éf—
applying SQience'fo the advantaée'of somé.businéés purpose.
The opportunities offg;eé by.modern sclence havelbeén
variousiy grqgéééjby diffe:enthindust;ies and raiiways are
genegglly held\tgvbergmong the more backwara‘in this .
réspect. The situation has advanced considerably in recent
fears..." [1]*. ) Expanded apd improved. rail service is
required worldwide to meet the needs of growing popu}atidﬁsr

Throughbut the world, high~speed rail passenger and freight

service has grown. Concern with congestion, ecology,

o>

energy and safety is at the root of the.growing emphasis on

»

émgroveéent.and expansion of public transportation

facilities. ;

Research and/or the identification of research needs”
47

is befng stressed by governmental agencies and industry.

High on the list of research priorities are numerous issues

concerned with the dynamics, control, and mechanical design
p :

of transportation vehicles, components and guideways.

Academic work in the field of Applied Mechanics can be of

*Numbers in square brackets designate references in
the Bibliography. :



direct and immediate relevance to these problems and to

nuch of the ‘research work in the future.

Because of the lncreased use Of heavrer trarns
moving at highex speeds, new and more serious operatrng
‘problens have arlsen. Thesetproblems-manifest themselves
in a variety of ways Such as the Tock and roll problem.,
track buckling and derailment. It is beccming more and
‘more apparent that many of tﬁe problems encountered‘have
their rocts in the dynamic characteristics of railway
vehicles and tracks In most of the research work in the
area of rallway vehicle dynamics reported so far, the
contribution of the track to the total system was mlnlmlzed

to the extent that it is regarded simply - as a structure

provrdlng a reactlcn to the loads of passing vehicles.

The present practice of'welding rails together to
lengths of about 1400 feet has significant advantages in
maintenance and in the runniné of trains, but on the othér

-
-

hand new potentlally dangerous problems have arisen.'_Tﬁere\

~ o

.
is the risk of failure under tension loading in the winter

+ime and the possibility of summer buckling especially

under the influence of moving loads-

Hunting, which is a sustained lateral oscillation
experlenced by the whenlsets and/or bogies is an important
aspect cof the dynamlcs of rallway vehicles, it is stizll one

of the major factors limiting VEthle speeds ~ Fod safe

& >



operation the speed“at,which-hunting occurs should be

greater than the maximpm;oﬁerating speed. In the absence
: ‘ . : .

of instability, when the speed at which hunting occurs is

above the operating speed range, the lateral and vertical

motions of the railway vehigles are determined by track

— -

geometry. For new high performance systems, passengef

Compar?ﬁéﬁt accelerations should be much less than the

T ——

graviﬁatidngi,acceleration, and a study of the dynamic

response to track imperfections and the minimization of the’
./ B B s

response transmitted to the vehicle due to track

irregularities is necessary.

The subject is of growing importance becadggiof'the
*trénd_towérds higher speeds and higher payloads and the
.aigrming increase in-the number of -serious problems *
attributable to track/train dynamics..rCurrently seve;al
research centres ;re'undertaking ambitious research programs
19ﬁ*tiack/trqin GYnamics. The railroad industry in No:ﬁh
'Aﬁeriéé=ﬁas embarked on intensified research.efforts in this

area.

y The first objective in the present investigation is
.. . . )
to review and make systematic presentation of the most

significant contributions. 1In the review, attention is

concentrated on analytical research and experimental research

I

performed in conjunction with analytical e@fbrts.

.,
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The second objective=of.tﬁe\pre5ent inveetigation'
ie‘to study the dynamic response of railwaY'tracrs;to .
mcving forces. This is necessary ip order. t& develop more
insightnintO'the dypamic.behavibur of the railway track-_
.when subjecte@jto time.dependent and constant,mcving loada.
This is also important"because for the case of new high
speed hlgh—comfort systems (v;bratlonal accelerations .-
much leae than g) 1nert1a effects-.can be neglected The
characterization of tue track and roadbed should be
sufflc1ently reallstlc to allow the successful predlctlon
of vehlcles and track motlons All p0551ble linear éffécts

—

including damprngx\g\the rail and the foundation, and i
axial force in the rails due to temperature cpanges of the
.continuously welded rails is included. This study 1is
interdea.to show the effect of axial load and damping on
the dynamic response and bqpklipg of the railway track,

and to determine the effect of the velocity of the moving

loads on the dynamic rESpEEse.‘

The third objective,iﬁ\the present investigation
is to study the dynamics of a railway vehicle model
incfuding the effect of vertical track elasticity. with

particular emphiasis on lateral stabilit¥ and reeponse to
vert1cal track 1rregular1t1es. The solutions are
intended to provide a better understanding- Qf some of the

problems encountered in the area of track/train dynamlcs,w (\_



; /"7‘ : _ ' ; | L

o

and to illustrate the adequacy or inadequacy of models

on rigid track.: o

‘The analyses and.computer simulations deveiopedif‘

are to be viewed as analytical tdols_for studying the

-~

effect of changiﬂg vehicle and/or track péiameters and .

the design on the coupled track/train.dynamics in oxder
to achieve stable running conditipns-with maximum comfort.
. \ ‘ .
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CHAPTER 2 ' .

LITERATURE SUDPVEY OF TRACK/TRAIN DYl AMICS RESERRCH

P
s
¢

Over the laét few years an extensive amount ¢f
research dealing with different aspects of raiiwaf vehicle
dyna@ics, raillway track mechanics and track/train dynamics
has appeareduin the literature. In addition many papers
on c}eep, rolling contact, vibrations of peams on elastic

- . . . i : ) k. .
foundations, vibrations of beams and structures under™the

[t

,

elfect of moving loads, ...,etc., have been published. .

» These are also imvortant and relevant to the study of

. i , k)
track/train dynamics. ™~

In the present survey of the litcrature, attention

1s concentrated on analytical research and expe

imantal

research performed in conjunction with analvtichl offorts.
The survey.is pfimarily concerned with the dynami
single, conventional railway vehicles including locomotives

on rigid and flexible tracks. A review of track dyﬁamics

and coupled track/train dynamics is also presenteod.

For convenience, this review is divided into
several sectilons, in such a manner, that in each section

a different aspect of the problem is discussed. These

"sections are:



2.1 Train Dynamics

2.1.1 Kine%atié Osciliationé
2.1.2 Creep

2.1.3 Dynamic Stability

2.1.4 Dynamic Response to Track Irregularities

2.2 Tfack/Train Dynamics
2.2.1 Track Dynamics

2.2.2 Coupled Track/Train Dynamics

2.1 Train Dynamics

Over the past few yéérs, there has been an
increasing effort devoted to development and design of
trains. An attempt shall be made nere to review the
significant research concerned with the dynamics oﬁ.
conventionalurailway vehicles. The wheels for such
vehicles are coned or tapered to provide static stability,
self-centering action of the vehicle, in order to prevent
the continuous rubbing of one flange or the other against
the rail. With the original cylindrical wheel treads,
guidance was largely achieved by the lateral forces
exerted by the flanges, and the contribution of the tread
forces was secondary. Until a few years ago aymbst_all
scientific work on the behaviour of railway veﬁlcles in
curves ignored the coning of the wheels and assuﬁed that
the guiding forces were obtained-compleﬁely by thé action

of the flanges.



Reéently, it has been recognizea tﬁat éuidance,
dynamic response to rail irregularities and dynaﬁié
stabil%ty are intimately related, and a new approach to
vehicle design was possible. This approach reﬁognizes
‘that in the first instance the aim should be to design the
vehicle and its suspension so that guidance is achieved by
tﬂe forces acting between the wheel tread and the rails,
thus avoiding flange congggt in normal running conditions.
with this apprbach it has been possible to develop a

theory for the dynamics of railway vehicles based on a

linearized analysis.

The application of this theory enables the anélysis
of a given vehicle and 1its suspension as well as the
systematic consideration of new ranges of values of the

parameters involved in the problem.

-

The main functions of the suspension in addition
to support the vehicle are:

LS

(i) to provide guidance to thf’vehicle [{e] tha£ it
follows the track without flange contact in
normal running conditions.

(ii) to stabilize the motion of the vehicle so that
the critical speed will be outside the operating
range. B

(iii) to provide effective vibration isolation to

track irregularities over the entire speed range.
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The requirements tc fulfill these various functions
have always conflicted to various degrees. The severity
of these conflicts have increaeed-recently in view of the
trend towards higher payloeds anéd speeds. The problen is‘
how to design a ‘railway vehicle which is stable and has
optimum damping so that the response to economlcally
attractive track imperfections is satisfactory up to very

high speeds. 4

' 2.1.1\ Kinematic Oscillation

Consider a sieéle pair of tapered wheels that are
rigidly joined by an axle and that roll on rails having
rounded heads, (Figure 2.1(a)). If the axle is initfally
aligned with’ the track and'if ne external disturbances
-are applied, the axle will roll unlformly along the track.
The path 0of the centre of the ahle w1ll coincide with the
centre -line of the track Next, con51der the same axle !
starting from an initial condition in which the axle is
dlsplaced in the transverse direction toward the right

‘o

rail (Figure éCE%Q\‘. In pesition l the left wheel 1s-
rolling on a smaller radius than the right wheel. The
effect of this difference is to cause the left wheel to
slow down and the right wheel to speed up. The axle vaws
toward the left rail (position 2), and seon is displaced
as far to the-left (position 3) as it was initially to

the right.(position 1). Now the left wheel speeds up and
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Figure 2..% The kinematic oscillation of a wheelset
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the right wheel slows down, the axle turns tack toward
the right rail (position 4). For small displacements the
flanges do not come into play and therefore the coning of

L

the wheels dominates the motion.

If pﬁre rolling is maintained the wheelset traces
out a more oOr less sinuso%dal path as it proceeds down the
track as shown in Figufé 2.1(c). This motion'is referred
to as thé”kinematic oscillation. Klingel [2] showed.that
the frequency of oscillation is propoftiqnal toqépeed and
to the square root of the cone angle. (as cited bf Wickens

[31).

Frequency of kinematic mode = S /-
. - ) esTg

where S is the forward speed of the vehicle
/A the coning angle

e. one half the rail gauge

s
0 the nominal rolling radius .
_Klingel's description of the wheelset oscillation assumgg
that pure rolling 1s maintained throughout the motion of
the wheelset. In reality this is not the case because of

the phenomenon of creep, first described in the present

application by Carter [4].

For a truck, the rigid frame restrains the axles
from following their sinusoidal paths independently. The

motion of a truck initially displaced toward the right
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rail is shown in Figuie 2.2. In the initial position the
front axle has é tendency. to turn back t0wa£d‘the right
rail while the rear axle has a tendency to Eurp furtheri

- toward the 'left éail. Thé\rigid truck frame restrains the
axles from turning in oppofSite directions. As a result,.
tangential forces are deveioped at the wheel-rail inter-
faces aﬁd!elastic strains exist in both the wheel énd the
.raill Consequently the wheel is subject to a slipping or
"creep" dispiapemeﬁt in the direction of the creep force

which arises from tHe difference in elastic strains of

the wheel and rail. .

Generally sPeéking lateralrslipping of the wheel
occurs when a vehicle is moving over curves ¢or when a
"npéing“ of the vehicle, which is actually a movement with
altérnating_radii, occurs. On the other hand the |
longitudinal slipping results from the difference between

the actual distance travelled by the centre of the wheel

along a tangent rail and the calculated distance on the

basis of the number of revolutions of the wheel. (/
~ e
\\\
2.1.2 Creep \\\\\ \x\
The phengmefion of creep between ﬁﬁée} and rail is
/_,__—'

of fundamental importance in the study of railwa?‘veQicle
dynamics. Complete slip of wheel on rail, which is the
limiting case of creep, is important for studies of

traction and braking. When two bodies are pressed together
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.by a force and one is made to roll on the other by means of
appropriate forces or moments, rolling contact is»sqid to
take place. A theory of rolling contact is one which

explains how forces are transmitted from one body to

another during rolling.

Creep may be deScriEed as the part-elastic part-
frictional behaviour, iﬁ which the elasticity of .the two
bodies in contact accommodates regions of complete slip
and no-slip within the rolling contact area: Creep will
be pfesent between a wheel and a rail when the contact.

: ” .
pressure is insufficient to maintain friction adhesion.

When an elastic body rolls over another elastic
body, contact takes place over an area. Small deviations
from_é pure rolling motion induce tangential forces
actiﬂg in tﬁe common area of contact; and EOnversely,
-externally applied tangential, forces cause de;iation from
‘the steady- rolling motion. For example, when & wheel
exerts a tractiveféffort, the*ETQtance travelled by the
wﬁeel is less than the pure rolling displacement as.g
calculated by combining the number 6f revolutions made
with the perimeter of the wheel. This effect is termed
~ "longitudinal creep", so that creep is a mode of
progression intermediate between pure rolling and pure
sliding. Similarly, if a wheel is roiling élong'a:rail

and a lateral force is applied, a lateral displacement of
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the wheel occurs which is proportional to ths distance

travelled. This is "lateral creep".

The\devia;ion from the pure rolling velocity
during rolling is referred to as the "creep". Considering
the rigid body velocity of the contact area around the
.wheel (velocity attributable to pure rolling) and the
actual velocity of the contact area with the rail, creep
| is. defined as the difference between these velocities.

The "lonéitudinal creepage” 'is defined as the ratio of the
creep to the mean rolling velocity of the'whéél. fhe
";ateral creepage”" Is similarly defingd as the difference
between the actugl veloéity at the con&ac£ area of the
wheel ang rail in tﬁé:la£eral direction and the rigidnbody
velocity divided by the mean.rolling velocity. In
addition, there méy be éngular‘velocéties of wheel and

rail anut an axis normal to the contact area, giving rise
to "spin", defined as the difference betﬁeen these

angular velocities. Longitudinal creeé, la;eral creep ané/’

spin, define the relative motion between wheel and rail

as illustrated in Figure 2.3.

The problem of creep was first treated by Carter
[4,5] who recognized its importance in the railway field.
He was the first to appreciate that the.wheel—rail forces
are due to "creépage".- Carter [4] defined creepage as

the ratio between creep and rolling Velocity. Poritsky's'

AN
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- angular velocity = B

~ -

(a) longitudinal creep

a
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. . 7’

(c)'spin |

Figure 2 .3 Relative motions between wheel and rail
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[7] work is similar to Cartér‘s, both treated the two

dimensional case of two cylinders with parallel axes rolling

together with creep in tﬁe direction of rolling. Johnson
[8] proposed an approxima$e solution for longitudinal and

transverse creep. His solptlons are ESSentlally extensions

of the two dlmenSLonal solutlon obtalned by, Carter and

Porltsky In the two dlmen51onal solutlon, the contact

region consmdered is an lnflnlte strip. The locked region

'is an 1nf1n1te strip adhering to the leadlng edge. In the
) contaot of -a sphere and a plane, the contgeE/;eglon is a

- circle. Johnson then assumed that the locked region is a

circle_symmetrio about the x-axis.

Johnson [9) provided also a solution to the creep
problem which for the first time 1ncludes spin, the -
theory is only valid for vanishing creep and spln and for

circular contact area. Johnson also performed experiments

~and his results agree reasonably well~ w1th his theory.

0

The assumptlon of a circular no-slip region, tangential
with the contact circle at its leading point was apbarently
a reasonable approximation for the case of rolling spheres
or a rolling_sphere on a plahe. This work was extended

later to consider the case of an elliptic contact ar®a.

An approximate theory for the three dimensional
problem was given by vermeulen and Johnson [10], who

approximated the area of ;S%esion by~an ellipse similar

-

' ’ 17
/,L e L -,.

]



, e——

. AL . .
to thw conthct ellipse. The theory treals the case of

lungatadinal and transverse, or lateral, creep for all

—

values of creepade.

Another treatment is-given by Haines and Ollerton
137 for the three uimensionallcase of elliptic#l contact,
\-."‘ ‘ {r . . ‘.

Lut for'creep in the direction of relling only. This

solution amounts to dividing up the contact region into

S [

strips parallel to the direction of relling, ahd then

applying the two-diménsiona;.théOry (Carter 'solution) to"‘

each strip separately. Ferhaps one of the-most poditive

. - . . '_"‘v"" ‘. ’ v
achievements 1In that paper is the demanstration, for the

first time, of the validit} of.the:assﬁmption that the
. A - o N .-‘
tangential traction in the slip region is a censtant

proportion of the normal pressure at any point. Al T

theoretical woxrk in the field so far has been based upon

that proposition.

‘Kalker's [11,12] work 1is perhaps'the most
mathematically rigorous work réported. He'hés'a?velopgg
theories for the moét general cases of arbitrary valués
of creep and spin. Kalker [11l] also indicated that
Johnson's-theoretical>results compared with the experi-
mental ones show that the theory can very well bé used as
an approximate-theory. Joﬁnson (27, p.59}‘indicated that
creep measurements, show large variatigﬁggwith boéh the

theory and with each other, and that Furtlfer refinements
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to the theories are unlikely to change the predictions of

creep coefficients by more than a few percent; he also
presented a éogparison between re;ults from his theory
with Miller's [28] experimeﬁtal results. The comparison
is reasonable (Figure'é.4f although céeeﬁ measurements.

,.aie lower than predictions, this is believed to be due to

" surface contamination.

-,

Nayak et.al. [14;15] reviewed eiperimental énd
aﬁalytical studiés of friction‘and creep in rolling contact
and exam%ned the influence of different factors on friction
{adhesion) and creep. The;r findihgs indicate that the
creeé coefficients are insépsit;ye?to rolling velocity or
normal vibrations, and that'surface roughness does not
influence the creep coefficients at opérating loads. They
also found tﬁat dynamic loads due to suspension resonances

do not appear to influence the friction or creep

coefficients significantly.
"

As the magnitudes of the creepages and spin

increase, only\paét of the ca;tact area remains locked
toéether, relative slipping taking placé over part of. the
trailing edge, in accordénce with the l%y of coulomb

e
frictioh. Because of this, a departure from the linear
relationship as indicatea in Figure_z.s exists. 'The

increases in the value of the creepages and spin cause

slibping over an increasingiy large part of the contact

J
I
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until uliimately theve is gross sliding of the wheel

over the roil.
2.1.3 ‘Dynamic Stability
»
An irnortont aspect of the dxnamics of railway

vehicles is the sustained oscillaticn in the lateﬁal plane
cxperienced by the veticles and which is usually referred-ﬂ
to as hunting. The existence of this oscillation has been
a matter of experience since the early days of railwavs,
but: it is only in the last decade that an increésing
scientific work on hunting has beeﬁjgubliéhed. This
hés peean ﬁotiﬁated firstly by a recécnition of the
inadequacy of the old empirical cut—-and-try d?proach to
Suspension development, and by the needs of ‘current and
future high speed tra&n ptpjects.,

I

This behaviour occurs only above a certain critical

forward velocity, known as "eritical speed". This generally

£

determines the maximum safe speed which the vehicle

concerned is able to attain, because the hunting oscillations *

héve a number of practical consequences which tend to limit
the maximum speed éf brains; In addition to humai. discom—
fort arising froh.high vibrational acceleration 1évels, the
large laterallfordes which can occur cortribute to
derailﬁent proneness and to structural fatigue damage to

both the track and the vehicle. It follows that the

elimination of hunting is &n important requirement for safe
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running at high sreeds.

The hunting oscillation, in which the wheel flanges

bang from one rail to the other arises frgém the dynamic

instaﬁility of the‘whegléets and bodies causdd by thé
interéction between the conicity of the whegls the forces
acting bétween the wheels and the railé, and the action of
the'-suspension.-‘3 It will be described iater how the forces

acting between the wheels and rails are non-conservative

in nature.

The truck hunting, or secondary huntihg, is inherent
in the wvehicle dééign. Unless the wheel profile is
cylindrical, truck huntiné will always occur above a certain

critical speed.

Another hunting mode, known as body hunting of
primary huhting: may occur 1if the suspension between the
trucks and car body is such that.relative.yaw and roll
motion 1is allowed. This is reported in reference [16]
which copsiders-a dual axle vehicle. ‘Body hunting which
usually occurs at low Speeds 1s characterized by violent
motions of the car body, and less distinct truck and/or
wheelsets motions. Body or érimary huntiqg usually occurs
in a limited speed range (see Eigure‘l.G; referencé [16]).
‘This hunting mode is similar to a resonance phencmenon in

several ways. First, the hunting usually begins when the

frequency of the truck motion eguals one of the natural
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frequencies of car bedy motion. The dominant truck
freguency is caused by the coned or hollowed profile of the
wheel tread, and increases nearly prOPOEtiopally with
vehicle Speed. Thus when the dominant frequeﬁpy £eaches
one of the car body fréquenéies, hunting may occur. Like
resonance behaviour; body hunting can be controlled by
dampifg. If the car body is adequately damped, body

hunting can be eliminated entirely [17].

In the case of truck hunting, when it begins it
wlll continug to grow more violent as vehicle speed
increases. Whiié below fgﬁ critical speed the motion of
the vehicle is determined by track features, above the
critical speed £he continuously growing hunting oscillations
are limited only by the action of the flanges, slipping of

the wheels, and suspension non-linearities.

’

In the désign of the railway vehicles, the aim
should be to achieve guidance by the creep forces acting
on the wheel tread, thus hvoiding flange?contact in normal
running conditions. For this reason lineariZzed analyses
of the stability of railway vehicles have been used to
predict the critical speeds. Considerable research work
related to the development of a realistic linearized
stability theory is reported in the literature, ahd
significant effort has been devoted to correlating'these.

linear stability analyses with actual rolling stock

]
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behaviour, especially in Great Britain and Japan. This
work has utilized roller stands on which scale model and
full scale vehicles are placed, The véhicle wheels are
driven by the rollers at 5peéas equivalent to the operating
speed range. Quatitative agreement has beén obtained in
many cases. Good correlation between experimental results
and those obtained using the linear theory waé;échieved by
Wickens [16]). Successful éttempts to correlate the-results
from the developing stability Eheory with QFrformance on
actual rails are few. Gilchrist, et.al. [18] have obtained
,good agreement between the predicted results 'and the
resuiés of actual running tests ‘for British four-wheeled
vehicles. Blader andkiurtz [19] have obtained agreement
between aralytically predicted results ﬁsing the linearized
stébility theory and the results_of running tests f0r.

freight cars. ~

Attempts to include non-linearities such as that
dué to wheel-flange contacts have been made by some authors
[20,21,22,23). These studies have indiqated that hunting
oscillation occurs in'§ limit cycle. While the linear
theory  cannot describe the eventual motion it has proved to
be very usefud in pfedicting critical speeds, and haé in
fact doﬁinated the practical design of high speed vehicles.
‘ Surely itJi§/;;;;\important to kﬁow how to avoid instability

rather than to describe it. In view of that, the remainder
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the‘disgussion here will concentrate on the review of

s

~

lincar stat:ility theory.

Cavtr-o's modelling [4,5] is the forerunner o¥ all
modern dyh:mic stability analyses. His work resulted from
thie reguirewent for'a discussion of the relative merits of

\
Locomotives so far as their riding qualities and‘tendency

1

to derail were concerned. Using a modelling of the wheel-
rail forces which for the first time included creep terms,

but omitting the components 3f rail reactions in the
=) P _

herizental plane (now referred +o as "the gravitational

1Y

&

<

th> significant achievements reported in literature cn the{

forces"), Carter established the differential equations and

the characteristic polynomials for a nunmber of locomnotive

. . — - . .
types, and investigated tHeir stability. Unlike his

predecessors and some authors who followed him, Carter [5]

understood from his modelling that the lateral oscillations

could be self—excited: o

Langer and Shamberger [6] misrepresented Carter's
A
work by stating that it "... discussed forced oscillations

the life of which depended upon-the application of some

periodic force, such as from cylinder action or rail joints

--.", and claiming their modelling to be the first of a
self-induced nature. Their conclusion that the critical
speed ié dependent on roll frequency is not borne out in

more recent expericnce.

&
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Cain [24,25] established energy balance equations
using Carter's modelling of the creep phenomena. Like
Langer and-Shamberger [6] he also assumed that the roll

freguency was an important factor.

The analysis of the dynamic stability of railway
Jwehicles took new importance with tﬁe adYent of modgrn
computers. Sincelthé 1960's ﬁany ipvestigators'ﬁave
analyzed the linearized multi—degreé'of freedom equa£ions
of motion of railway wheelsets and trucks using both’ analog
and digital computers. Some of these analyses have
included degrees of freedom of the car.body while others
have assumed fhe car bedy to translate uniformly along the
track as the truck and wheelsets undergo—various dynamic
‘motions. All investigations have shown that the taper
ratio or coning angle significantly affects the stability
of the secondary hunting mode. All of these linear ¢

analyses result in éigenvalue problems. The solution%bf
the eigenvalue problem for various design paraﬁeters and

spééds indicate the effects of these parameters on the

stability of the railway vehicle.

Wickens [26] published a very useful study on-the
subject of dynamic instability of 'wheelsets and bogies.
In his paper, the instability is investigated for the
caée of profiled wheel tréad (worn Qheels) rather than

purely conical. Using the root-locus and parametric
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studles Wickens shows that the instabllity is duc to_ﬁhé
comoined actilen of the shapé of the wheel treéd-profii; and
Lhe creep fosces acting-between the wheels and rails.
wi:kcng' mosL significantlcontribution both iA this paper
ani inlhis later work lies in the glarity of the presentation

and discussion of the concepts and parameters involved in

sucn analyses. _ ‘ ‘

-

In November 1965, a Joint Convention on the

. ‘
"Interaction between Vehicle.and Track! was organized by

the Institution of Mechanical Engine=rs. Papers presented

anéd published in the proceedings of that conferenced [27]
arc to that date widely used as a reference for those

*

working in the field of car design. The Convention was

arranged to show how scieq;ists and engineers were

-

cooperating togetﬁer in order to help ‘the railways to make
full use of its advan%aaes, and use the new and better
skills now availablekgo them to this end. The discussion
of the papers*presented at the Conference are published in
the Proceedings and are as intérestihg to read as the paéers
) :
themselves. Notable amongst the matters discussgghigga
relevant to the present discussion are the papers by

Bishop [28], Wickens [l6], Matsudaira [17], and Gilchr@st

et.al. [18]).

Bidhop {28] demonstrated the hunting phenomenon

using a model vehicle, and noted that during bogie hunting,



tosn v oticd exhiblis a limit C}LIC._ He emphasized the

valaz -of development of a '1nedr thLO*” and thrcughout hisg

—

procy cormpared hunting of radlway vehicl@s with the flutte

Wickens' [16] presented an improved gravitational
stiffness model but neglected the spin terms and Fhe
lateral creep due to spin and his paper contains ‘a
s _ ) - _ R
misinterpretation discussed by Blader [29]. Wickens
discussed existing and recently developed theories of the
Lateral motion of railway venicles in relation to
experimental work on both modéig and. full-scale vehicles.

He showed that a linear theory taking 1nto account a

significant number of degrees of Lreedop anc the influence

0f wheel rail profiles, vield vaiﬁg for the critical speeds

-

0
wiiich are consistent with experimental rezults. The
é %
influence of various parameters on the stability . Ts also
. ) ! :

discussed in the paper using the root-locus curve.

A discussion of the appropriaténess ofethe
mddelling and the valueslﬁor creep by Gilchrist [27, p.104],
Johnson [27, p.69] and Wickens [27, p.150) confirms .the
importance of t?ﬁ spin term in the dyAamic.stability
analysis of railway vehiblgé In'the dlscus51on of his
paper Wickens [27, p. lSOf/showed that for. the numerlcal

example consmde:ed [16], the quantitative error due to fhe

neglect of spin is sigh;fiCant; but tiat qualitatively,

~

i 7



however, the behaviour remains unchanged.

: 2

Matsudaira'{l7] reported comparisons between tﬁe
test track.' The value of the critical speed reported is
ruch higher than that found by Wickens [16]. The wide-
discrepancy ma%/ﬁg:attributed to the*different vehicle
_desighs and to the fact that Matsudaira considered a conical
tread whefeas Wickens ﬁsed a worn tread (the effeot of
tread wear was shown to decrease'the critical speed), and
although in his paper Matsudaixa does not refer to it, the

tread profile has appreciable influence on hunting.

Gilchrist et.al. [18] illustrated cdmparisons
between the theoretﬁcal predictions and the results -
obtained using an experiﬁental vehicle. Their experiments
have'shown a reasonable degree of accuracy for the
theoretical predictions of h;nting motigp, and they'conelude

that it is desirable and possible to remove the problem of

lateral instability at the design stage. ZEﬁggfhe lateral
problem, fike the vertical, would becgme o of response

to rail irregularities.

At the "High-Speeds" Symposiul in Vienna in 1968,
Wickens [30] reviewed theoretical and experimental aspects’
of lateral dynamics of rallway vehlcles, with partlcular

reference to the problems of dynamlc stability and xesponse

to track features. The paper includes the description and

o

theoretical predictions ana results For modelsﬁgg,aA{ciIEEf//fe
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’//////,,//’ﬁaaezzzg;/ef the creep-spin terms.

paper by making remarkKs on the validity of the stand test
0 ! .

‘ Wickens [31] pubiighed a further study on the
lateral dynamlcs oﬁxrallway vehicles w1th partlcﬁiar
reference to dynamic stability, dynamic response and
curving. The paper contains a comprehensive_aﬁalysis of
the gasic problems, but his analysis and expe ental data,
as in his prev1ous work, deal prlmarlly with :?Egle axle

suspensions.

Matsudaira et.al. [32] gave the derivation of the

*

equations of motion for a car model, the prediction from

‘which are compared with experiments on the roller rig

developed at the Railway Technical Research Institute of

-

the Japanese National ﬁailways. The authors conclude their

as a means of experimental research on the hunting of

railway vehicles; in bq}ef the test is recommended but it
a ok . B

comprises several points to be checked with particular

reference to the railway vehicle model and scale.

Bladexr [29] showed that the prediction of the
linear critical speed remains substantially unaffected)by
the con51deratlon of other cars coupled to it, and that a

group of cars under tensmon 1s no less stable than a single
\ n .

E

uncoupled car. :
4

~

Claik and. Law [33], Cooperrider [23] and Matsudaira

iy

[(17] have found-that the'c}igical speed of hunting for

3



stability performance of the vehicle.
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conventional, dual axle trucks increases w1th lncrea51ng

o

suspension stiffness. Cooperrider also found'that the

primary stiffness has a more dominant effe'?fthén the_
secondary stiffness on’ the criticélsggéé:¢6f ﬁfuck hunting.
Wickens [16,26] found that the tri;i-'cél speed for a duwal
axle vehicle increases initially”&ith suséension stiffness,

but beyond a certain point will decrease as stiffness is

increased further.

4

The influenéés of wheel conicity, mass distribution,
suspension damping and vehicle geometry ;n the secondary
hunﬁiﬁg are shown by Clark and Zaw [33], Cooperfider [23]
and Matsudaira [17] for conventlonal trucks and by chkens

[16 26] for dual axle vehlcles and by Blader and Kurtz [19]

for frelgh rs.

A dynamiqﬁifability‘analysis‘for a proposed_high
speed passenger car includiﬁg the control unit and the
tilting mechanism was performed by Dokainish and Siddall
[34]; " The number of degrees of freedom considered is
realistically 1£3ge; in.addition the equations for the
active suspension are inﬁluded in the analysis. The work

also includes the effect of the wheel tread profile and

the variation of the suspension parameters on the dynamic

'"In the case of linear analyses, the dynamic

stability is investigated by studying the character of the
. . ~



solutions, more precisely by studying the rcots of the

-

characeerlstlc equatlon assocxated with . the equaelons of
notlon of the system In the case of a mul i-degree of

freedom system tHe problem is an eigenvalue probiem, its
soiution in the presence of damping in the system resuits
in complex conjugate e;genvalues with negative real part
_for all roots if the systém is stable. %he stabil.J:.tyl is

then investigated using root-locus plots for various system

parameters. : ' Q\

/~

2.1.4 Dynamic Respomgg':o-Track irregularities
B L. T . .
Below the critical speed, above which hunting cccurs,.

the lateral and vertical.motions of railway vehicles- are .
determined by track geometry. In studies of‘dynamic response,
three general quantities of interest exist: the defipition
of the input, the determinarion/oﬁ the transfer fqnction

and the assessment of the resulting output.

-Motions of the vehlcle symmetrlc about the
longltudlnal plane of symmetrv are excited by wertical,

track 1rregular1t1es, while transverse motions are excited -

by lateral track irregularities and cross-level.

Track irregularities ean be considered to bhe -

’

dlstrlbuted randomly, 1n which case the t chﬁlques of random

:process theory can be used; thus, the fnput is described

by a-power spectral densityﬁfunction hich gives a

distribution of the mean-square value of the input in terms

S
3
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of its freguency content. Track irregularities can also
be treated as deterministic imperfections. The sinusoidal
irregularities are in particular worth considering because AN
power spectra and aﬁto—correlgtion functions obtained from

field measurements indicate the existence of periodic . /

. . \ - - ¢ ',/.
o - , B
functions [35]. Periodic excitition of the vertical S
. - . : - .
vehicle oscillations results also from evenly spaced rail . AN

- . ~

Joints or rail welds.

>

Hobbs [35] studied the e%fgct of track alignment on
“the responsé‘of a restrainéq wheélSet.' The wheelset has |
two degreeg ot,éteedom‘(iateral)and yaw motion) and 1is°
rgstra%ﬁééfg§15prings~in the 1atéra1'and longitudinal
ditections. The model assumes thag the.véhicle body is
‘running at a constant speed with negiigible body oscil}%tion.
|The forcing functions”due.to rail irregularitiés are

kéggfﬁed and the resoonse of the wheelset were obtalned

Jﬂ\\ In [37] the.authors have studled the dynamlc

response of a raglway vehlcle to track lrreguiarltles both .
theoretlcally and experlmentally. This work has shown that
the response of a wheelset of a vehlcle is a max1mum when

the wave length of lmperfectlon is equal to the -kinematic

wave length of the wheelset. .For wave 1ength of lmﬁérfectlons
longer than the kine@atic‘wave length, thé\wheelset tends

to follow the imperfection. For wave length of - imperfection \

TN \’
!' B

shorter than the kinematic wave length the dlsplacement of

-

i

r/f/
{
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of the wheelset is reduced.

Research work describing the'laﬁeral irregularities -

of fails in a statistical sense was done by Stas;én [38]
and by Sewall et.al. [39]. Stassen studied the dynamic
'respongé.of a simplified model d?’a bogie with two degrees
of freedom having the lateral de;iaﬁions as input, ana the
generalized coordinates which describe the movement% of the
bogie as output. Sewall et.al. [39]‘used four-degrees—of-
freedom modgis for lateral response to lateral or rolling
(cross-level) inputs from the raiis. They‘also considefed
the basé*bf éete:miﬁistid (including sinusoidal) and random
input functions, and tﬁeir results were obtained in both

the frequency and time domains.

La Buschagne and Scheffel [40} described briefly
some aspects of experimental research in the South African
Railways and the conditions affecting the riding quality of

railway‘vehicles. Parameters which influence the veftical

-
C

riding qdality of railway vehicles are given with reference

to the théory of forced vibrations. For the six degrees of

o

freedom model, the assumption that wheel-rail contact is
'being maintained at all times ‘(which is the case generally)

with the wheels following Qhellongitudinal rail profile is

-

made. The authors consider a sinusoidal excitation of
~

vertical vehicle oséillations‘resultingffrom the evenly

spaéed rail joints or rail welds. Results recorded .during



\ . el

tests were found to be in good agreement with the theory,
~and it is concluded that the vertical vehicie oscillations

. N
can be simulated on digital computers ﬁsing,the rail
profile as input function. The authors note however that a
more rigourous mathematical model of the path of the wheel
on the rail shoulé include the vertical vibrations of the
rails as an additional degreé of ;reedom of the whole

system,

- : ’
The most recent advance for the case of dynamic

response of railway vehicle to track irregularities was
done by ElMarachy [41]. He studied the dynamic response

of models for a six-axle locomotive due to sinusoidal
latéral and)or vertical track irregularities. Two
mgfqpm;tical models wére éet up, a full model for the
“stétionary" vehi;le in which creep between wheelé and rails
was neglected, and a full.model for the "moving” vehicle

in which creep forcesf gravity stiffness effects and wheel
tread profiles were considered. Ihe results obtained show.
the effect of creep forcés and the condition of the wheéré
on the steady_state response. The analysis is general and‘
for the metﬂbd used there is no restriction on the number
of degrees of freedom or the modes'to be considered, and.
the inputs can be.in—ghase or out-of-phase, with or

without the same forcihg frequency. Virtually all previous

studies.did not allow rigid body pitch motion of the.car,

-
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-, - .(-,}
conseguently out-of-phase vertical inputs could not he

considered.

2.2 Track/Train Dynamics

Because of the increased use of heavier trélné
moving at hlgher speeds, it is becomlng more'and more
apparent that the dynamic characteristics of the rallway
track and roadbed caﬁ influence appreciably the dynamic
response‘of railway vehicles. 1In.almost all of the
research work on.railway vehicle dynamics repoited‘so far,

" the contribut;on of the -tragk to the total system is
minimized to the extent that it is regarded simply as a
structure providing a reaction to the loads of passing
vehiclesf )

~
With the present practice of welding rails

together to lengths of aboutwl400 feet signifiéant
advantages in maintenance and in running of trains are
achieved, but on the pther hand new serious problems have

" arisen. There is the rfskAof failure under tension loading
in the winter time or tﬁe possibility of summér buckling

or "kinking",espeéially under the influence of moving loads;
Koci [46] ;hdicated that in a number of cases buckling of

the track was observed,by locomotive crews, occurring ahead

of the moving train.

Assuming that instability of railway vehicles can



be eliminated up to very\high vehicle speeds, consideration
should be given to the limitation due to wave generatioﬁ
and propagation. Generaliy, to a body moving iéﬁé medium,
~Q§apropagation velocity of wave in the me@ium sets a speed
limit to ﬁhe moving body. The sound velocity in the air
provides a barrier.for an éirplage. This situation 1s
applicable to a train too. .Let us also examine the wave
proﬂagation due to ‘the rolling of a wheel on the rail. The
rail deflects under the wﬁeel load and the éeflected shape
propa@a%es with the translation of the veh%cle. "As the
vehicie speed increéses and approaches the wave propagation
velacity in Ehe rail, an extraordinary resistance will be
produced as in the case of sound in the air..." [47]. The
wheels will be accompanied by large-amplitude stationary
waves, which will eﬁentually destroy the rail. This means
that the propagation velocity of deflection wave of the
‘rail Sets a speed limit to the train running on it. For
assumed ;alues of foundation and rail parameters, Timoshenko
[48] found that the "critiéal_speed"‘isﬁmore than fifteen
times the speed of the fastest locomotive at that time.
In‘the presence of axial lcad in the rails due to temperature
changes however, the critical speed for the track may be
reduced to within the range of the operating velocities of
modern—hiéh speed £rains, and Kerr [49] demonstrated that

this is indeed a pbssibility.
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To obtain more insight into the dynamié behaviocur
of the railway track aﬁ analysis for the static and dynamic
response of the-railway track to time dependent and constaht-_
moving loads should be undertaken as a first step.’ Very
few studiés on this subject have been published in the
literature. In some cases models have Beén used without
justification. ﬁost inveétigators have considered the
railway track system modelled as a continuously supported
beam on a foundation subjected to concentrated moving lqads.
A concentrated moving load represents the force due to a
wheel load, inertia effehts bei?g neglected on the
assumption that comfort specifications placed on new systems

are stringent (vibrational accelerations much less than g),

Much of the research work. on the coupled dynaﬁics
of transportation Vehicleé;and guldeways deal with the case
of beam-type elevated guideways. In this case the dynamic
‘motion of the vehicle is computed by standard trénsfer
function mefhods using the guideway deflection as a known
input to the vehicle suspensions. This was the subject of
a recent survey paper [50] and will not be discussed in the
'present feview; the interest here is in the case of a

railway track on a "foundation".

2.2.1 Track Dynamics.

The dynamic effects of moving loads and vehicles
on beams has been, for more than one hundred years, the

subject of numerous mathematical and experimental studies.

s
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Scme of the early investigations were concerned with the
constfuction ?;,railg?y bridges and later on the highway
bridges. Recently, tﬁ\ present and future high speed
ground transportation sysﬁems have motivated a new interest
in the problem of the t;Eq¥ dynamics due to mOVlnG loads.
-The track is usually modelled as a beam on a foundation.
The characterization of the track and roadbed should’be
sufficiently realistic to allew the successful prediction
of vehicle motions, but not neédlessly complex. If the
model is too complex, the utility of the model will suffer
due to the difficulties in supplying accurate data; solving

the. resulting equations, and interpreting the results.

Timoshenko (48] was the first to conduct a study on
the response of the rqilway tracﬁ modellq@las a continuously
supﬁd;ted beam on a ﬁoundation and subjected to a moving
load. Actually, in the crosstie systems only ties are

continuously supported by the roadbed while the rail itself
rests or the tlesu that is on closely spaced elastic
supports as shown in Figure 2.6. Investigations have shown
however, that an equiyalent continuous elastic foundation
~can be substituted with goodpapp:okimation for such supports
[Sl],'and in this way the theory of beams on elast;c
foundations can, be applied to the analysis of the rails

themselves.

The usual apéroach in formulating problems of beams
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E:igure 2.6 The conventional railway track and
its representation as a system of /
- springs as suggested by Birmann {[53]
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(ér plates or she}ls) on foundation is to include the
reaction from the foundation into the corresponding
differential eQﬁatiop of motion. The foundation is rather
a complex medium. The ballast material for example (as all
soilsj 1s not elastic. ,LBut since interest here is in the
reéponse of the foundatlon at the contact area (actually
at the tép of the crosstles) and not in the stresses or
displacements 1ns;de the ballast or the soil, the problem
reduces to finding a relatively simple mathematlcal
expression which should describe the response of the
foundation at the contact area with a reasonable degree of

accuracy. 7 )

The simplest fepfesentation of a continuous elastic
foundation was provided by Winklerf who assuméd.it was
composed of closely spaced, independeht linear springs.
"The Winkler assumption, in spite of its simplicity, does
often more accufately represent the actual conditions
existing in soil foundations than do some of the more
complicated analyses where the foundation is regarded as a
continuous isotropic elastic body..." [51]. For this
reason Hetényi in his book [51] devotes nine chapters out
of ten in analyses of problems arising in connection Qi;h
this type of foundation. Railway tracks have almost . B

always been modelled for the purpose of analyses as beams

supported on Winkler‘type foundation with or without

G
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damping; various investigators, however, have used different
end conditions. Other types of elastic ahd visco=elastic
foundations (e.g., Filonenko-Borodich, Hetényi, Pasternak,
Vlasov, Reissner, semi~infinite elastic half space,...,etc.)
were used for different physical applications, depending

on the properties of the supporting medium. Thi§ was
reviewed in a paper by Kerr [Sé]. o -

[}
1

Birmann [53] conductéd an experimental and
analytical study for the static and dynamic track parameters.
The moéel used for the track is a rail on elastic
foundation (see Figure 2.6), and Birmann measured the
deflections of 'the track and roadbed by the aid of deeply,
buried probes. Birmann found that even a% high speeds, tﬁe
behaviour of the foundation is quasi-static, and éhat the
vertical track elasticity is a verf important factor iﬁ the

analysis. _ '

E)

Indeed, a principal factor 'in‘track analysis and

design is the modulus of track-elasticity more commonly

-
-

known as track modulus (and sometimes foundatiéon modulus).
The track modulus is the ratio of applied load.to track
éepression; the load per unit length of each running rail
required to depress the track one uniﬁ. The track modulus
is usually calculated by one of the following three

expressions.

k = }Pf- o (2.1)



o This is illustrated’ in Figure 2.7 (a)

where 'p is a uniform load per unit length of rail
: _ L
and N the track depression.

o . e -

Another way is to symmetrically apply loads to ties and

Y ?

find the deflection ordlnates of the rail measured at

every tie (Figure 2.7(b)), then calculate the track modulus

k from ' e

(2.2)

whé;e P, is the wheel load at .tie number - i,
i

Yy deflection of tie number i - K N

s and s the tie spacing

(2.3)

o | . ' f ——
This is illustrated in Figure 2.7(c){////

e

where P is the magnitude of sin Te wheel load, *

Y  rail deflection und load point

E modulus of el icity of rail

of inertia of the rail éection.

s '
e relxtionship between the maxdmum bending stress

nd the applied ldgad P is given by:
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(a) for a uniformly distributed rail load

1 2.
i Y ¥s
e, "'E;T.: ':\‘v - > . - B )
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- S et T LSyl
N RTS8
s % 7
(b) for the tra

ck under wheel

e

Yo ¥o__Jio

Y, 7By
'=2~:'.‘-3/ /
loads

(c) for the track modeled as a beam on
elastic foundation '

Figure 2.7 1Illustration of the methods{for the determination

of the tiack modulus
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M

. _ _max _ v/ 4ET

. . P .
o ' max 7 4z ¥ "k (2.4)

where Z denotes the section modulﬁs of the rail.

It is seén from egquation (2.45'that an error in the
determination of the modulus k will not influence ll
subsiéntiélly the value of o _ . Putting for instance, 2k
instead of;ﬁwinto (2.4), we find that a 100 percent increase
introduced in k causes éhly 16.5 percent deviation in the
value of the maximum bending stress. A comparison of o
Measured and calculated deflections as wel;_as stressés is
given in’}igure 24 of reference [51]1. It can be obsexved
that the stresses measured usually checkimore closé}y‘with
theﬁtheo:etiéal results than do the deflecéion measurements.

~

— Timoshenko and Langer ([54] utilized the beam on

Winkler foundation theory to develop an experiﬁental method
for the determination of forces produced in rails by moving
locomotives. ‘Their experiments show that the mégnitude.of
the track modulus can be determined in such a manner thaﬁ
the deflection of the rail ﬁal?ulated on the assumption of

N,

the continuous foundation is in\good agreement with the

' defléction of the actual rail supported by ties.

The problem of the resﬁbnse of .an infinite beam
continuously supported on a Winkler type foundation and
subjected ta constant velocity moving load aé}shpwn,in

Figure 2.8 was investigated in connection with the response -
, - - i . : " . Y-
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of a railroad track by several authors. he differential

equation which describes the response of the beam .. .

subjetted to a moving load g(x,t) is:
B . 7

* _—
- -
W3

i \ 2 = ’ )
Er 3X 4 n 38X 4 ky = g(x,t5 o (25)
ax*  at? _

. where y(x,t) is lateral displacement of the beam axis
" EL the flexura} rigidity
m the beam mass per unit length

: k - modulus of the Winkler foundation
. ‘../‘L

When the load or the beam is a concentrated, load P
/ .o

equation (2.5) is'rewritt?ﬁ as:

b 2
ET %—%+m--§—¥+ Ky=P3 (x,£)  (2.6)
x t-

where & (x,t) As. the Dirac delta function.

~,

To find the dynamic reéponse due to a moving load
when the beamn and the base are of infinite extént, the
propertieé are constant, and constant velocity of the
moving load, it appears reasonable to assume that after a
pericd of time the trénsient motions will become negligibly
small and that the beam displacéments will.approach the

steady state. This assumption was made by several authors.

When a beam rests on a continucus foundation and
subjected to a dynamic load, the caused deformations are

associated with dissipation of energy in the Leam as well

el

Y
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Y

as in the foundation. Therefore wheh-analyzing such
problems it is more realistic to introduce the damping
effects in the forrmulation of the problem. )
. ( ’
In the most common approach, the viscous dampﬁqg

term is included in the differential equation by assuming

' that the damping force is proportional to the lateral

veloéity. Differential equation (2.5) becomes: <
3’y Chb QU4 - )
EI —& + m +cap t ky = glx,t) (2.7)
ax" at? d

where c 1s the damping coefficiént. It should bé noted
that in the abod@\fquation the added terﬁ (c %%)-reprgsents
the damping of the beam as well as of the foundation. ‘The
corresponding mathematical model is that of a beam on a.
Winkler foundation of the Kélvin type as shown in Figure
2‘:9:

Equation (2.7) was solved by Crinér and McCann [55]
for an infinite beam subjected to a moving load,P,“using
an electrical analog computer. The results are presented
as graphé in termsrof dimensionless parameters. Some non-—
linear characteristics as beam lift-off were considered,

but for none of the cases could more severe conditions be

prdduced than indicated by the lin?it solutions.

Equation (2.7) was solved analytically by Kenny [56]

for an infinite beam subjected to a constant load which

moves with a constant velocity. Because of damping the
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moving deflection profile is not symmetric. Due to the
phase shift the'position of largest deflection takes place
at a position‘slightly behind the position of the moving

load.

Mathéws considered tﬁe'stéady state‘response of

the réilway track as a beam on a Winkler tfpe foundation
with [57] and without [58] damping. ‘The analysis is for

the case of an infinite beam subjected to an alternating
| ioad whose poinﬁ‘pf applicétion moﬁé; with constant velocity
along_the-beam and is of the form P cos {4 t 8 (x~vt) where
0 is the frequency éf the sinuscidally fluctuating load.
This load is:suéposedly due to forces exerted by the wheels
of vehféles and locomotives on a continuously supportéd
rail. fhese periodic fluctuations may be caused,_for
example, by the vertical component of forces of oscillating
~ parts in the moving vehicle or due to vertical sinusoidal
track irreqularities. Using this approacﬁ; and for
vanishing frequency of fluctuation of the moving load,

Mathews [58] duplicated Kenney's [56] results.

The recent.practice of'welding railroad rails to
each oﬁher suggesté that considerable axial compression
forces may be induced in the rails due to thermal strains.
This axial force affects the critical‘speed as well as the
response of the rail to a moving load. ' Timoshenko 48]

found that for assumed values of rail and foundation
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parameter the critical speed is more than fifteen times

the highest speed of a locomotive at the time, and he

concluded that the static eguations are sufficient for the

analysis of ‘stresses in railroad rails.

Recently, Kerr [49] treated the problem for an
infinite beam on a Winkler type foundation including the

axial load; the mathematical model he considered is shown
8

in Figﬁre 2.10. It was shown that the critical speed
increases with an axial tension and decreases with

compression, Veor approaching zero when the axial force

approaches the buckling 1oad} This is shown in Figure 2.1l

AXEL | E. and it was
m? m

concluded that in the absence of expansion joints in the

which is an illustration of Vo © //
rails, the critical velocity may be reduced to within the
operational velocities of trains. The response of the beam

due to ‘a moving concentrated load was found based on the

following differential equation:

b 2 2
EI gxx.+N—12x2+m—§f§+ky='p5(x,t) {2.8) "

where N is the axial force.

The relation between the speed (s) of propagation
of free waves in the beam and the ‘axial force* (N} was found

in a non-~dimensional form to be

S — = l.(Yz + 1 y - N__ (2.9)
e ] 2 2 N
min N =0 Y cr.
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where _2 Yk
Y ) EI
k is the foundation modulus
X the wave length of wave train
and NCr the buckling load
A three dimensional illustration of eguation (2.9) is given

in Figure 2.12.

Aﬂ‘—)——_—-‘—)—_—i- V . - - ' - -
o Kerr did not include damping in his model and
considered only the case of a constant concentrated moving

load at constant speed.

Newland in a shdrt-Research'Note [59] has studied
the poSsibility of lateral buckling of a continuously
welded rail due to a moving load. His modelling for the
begm_motion in the horizental plane is similar to that of
Kerr, given by equation (2.8), for the motion in the

vertical plane;

2.2.2 Coupled frack/Train Dynamics

' Dynamic coupling occurs between a.vehicle and its
guideway due to the suspenéion férces acting on the guideway )
and the guideway deflection profile acting on the suspension.
The two systems may be strongly coupled dynamically with

vehicle body and suspension dynamic§'exerting a major

influence on guideway deflection or may be weakly couplgd
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if the dynamic suspension forces acting on the guideway are

small compared with the static forces due to:qehicle weight.

\ After the high speed digital and electrohic analog
computeis came into wide use ir the mid-1950's, the study
of moré'complete and realistic vehicie/guideWay models
became feasible, and since 1970 several imporﬁant
inﬁestigations have been published for vehicles with
vertical degrees of freedom conly or with vertical as well
~as pitch motion (done and two dimensional vehicles). Most
of these investigations howefer were for vehicle/elevated
guideway of the single; multiple or continuous span types.'
Virtually all of these studies wefe based cn the modal
. analysis &sing the Bernoulli-Euler beam eguation. Other
methods"- of soluéiog included the lumped mass methods and
the finite differehce and other direct methods [50]. The
simplest model for a vehicie/guideway system consist.of
~constant concentrdted or distributed forces equal to
vehicle weight which crosses the guideway at constant
velocity (see Figure 2.13). Studies of constant forxces
moving along the guideway are considered to be important
because they represent good limitiﬁg approgimations for

vehicle-guideway systems in which passenger compartment

accelerationsvare less than about 0.05 g [50].

The coupled dynamics of transportation vehicles

and beam type elevated quideway was the subject of a recent
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review [50] and will not be furéher discussed here. Present

and future High speed ground transportatioh systems have
activiated a new interest in the problem of movrng loads
and mass-spring systems on beams contlnuously supported on
elastic foundation. As vehicle speeds_for oroposed systems
increase, the aynamic interactions between the veHicles and
their guideway become an increasisgly importqp; ppsential_

problem.

Nelson and Conover [60) appear to be among the

flrst 1nvestlgators to consider the probler of the trans—

verse response of a beam sub]ected to a continuous sequence'e
of moving mass loads. ‘More specrfloally,.the problem they
treated‘was';ot expiicit determination.of the transverse
response but rather the determination of the behaviour
(steble and ﬁnstable) of the trsnsverse response for’a

fimite, simply supported, Bernoulli-Eulerxbeam_resting on

a uniform elastic foundatlon and loaded by a contlnuous

sequence of identical, equally spaced, constent}speed mass

particles. They deﬁermlned.the bogndariesgseparatiqg the.

regions of stable and.unstabie respoﬁse for.varioos values
_ . ‘ . o

of the physical system paraﬁetersL' This was done.by

utilizing Floguet theory'and an iterative computational:

. . - ‘\
procedure on a digital computer.

Benedetti [61] studied the problem of the

determination of the coupled transverse response of a finite-

et
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Bernodlli—Eule; beeﬁ'loaded by,one'or seteral sﬁring—mase
vehicles.tfafeliiné across the ‘beam at a.constant epeed.
The beam- is uniform; Smely supnorted and rests on a
.massless unlform elastic’ foundatlon. Th vehlcles whlch
i e;e identical, equally spaced end a é;Z; to the beam

consist of a wheel mass and a viscous damped springr

-~

supported mass. : s

Studles [62 63] .on tHe vehicle- gulceway dVdamlcs
were performed in conjunctlon WLth tHe Drocosed "designing
'of tracked alr cushlon vehlehes (TACV) . The vehicle-
gxuhways?stem is nodelled as an ;rblt*ary 1umber of‘iumped
sprung vehlcle mass travelllnc along single simplvy
'supported Bernoulll—Eﬂler beams on a feundation. Blggers
ang son [63] found the dynamle response of the vehlcles
“and guldeway u51ng an 1terat1ve orocedure. The erd
condltlons used ln these StudlES, which are 51nole subports,
are not reallstlc for modelllng a rallway track as a

T'.
contlnuously supported beam on a foundatlon It appears
that it was used by most autnors for reasons of mathematlcal
_s;mpllcatlons, ‘namely to use_the normal modes method for

the eplgtions.

In reference [37] the authors have studied
'anelyticélly add.experimentally-the dynamics of four wheeled
. raiilway vehiéles including the effectrof yeftical track

elastieity. rThisdeffect Qas introduced by assuming the

&

v
-
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-

mass of a wheelset to be supported by a Spring and -the.

' anchorage of this spring follows the rail irregularjti
profile. This mo%el does not repfesent the_actgd{/case
and is“flore applicable to the modelling of the elasticﬂgé '

. L)
of the tires of a vehicle and not the vertical elasticity

~of the railway track.

The dynamic variation of wheel load attributed to

& vertical deformation of rail end due to unevenness profile

¥

of running surfdce of rail at weld was studied by Kuroda
o .{64]. The vehicle/track model assumes t@?t the wheel and
the rail are mass points and that theyffémain in contéct

without Separation (Figdre 2.14) which is the case in normal

-

running conditions. But it is further assumed that the

‘deviation of truck and body of vehicle motion is negligibly

-

small and that they can be considered moving at the constant

speed of the vehicle, while motionless in the vertical

direction.

. ™
Meacham [(65,66] as result of several years of
t . ‘ .

active research in the fielg of traék/train'dynamics

interaction developed a noye realistic model for tife

% conventional track structlire which is not too complex.’

Meacham ubed this model o study the freight car-rogking

I problem. The computer study included the use of analog as >

. P . . ‘ - - . L
e, ‘well as digital and hybrid computers. Laboratory and fﬁ\\
o s * . . *

.field tests results gave good correlation with the computer

. " -

!
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Figure 2.14 A simplified vibration model <or a
vertical deformation of rail used by
Kuroda [64]
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results. The model cof a conventional tie-type structure

is converted to a mathematiéal nodel that can bg incorporated .
in the analysis of the vehicle motions. For this purpose
the track system is discreﬁized. Meacham's studies

>

indicate that for the mathemafical £é§§é§entation of the
railway vehiclé and the track for computer studies, the
vehicle can be represented by a spring-mass system §hpported
by another Spring—mass system representinc the track. The
input to the system is usually a displacément representing
the vertical préfile of thé track. The wheel-track, force
generated fepresents a fprce tra;elling at-vehicle speed
and located at the wheels. '"For étudies oI vehicle
response, this is a perfectly proper system giving as it
“does ﬁhe continuéus force excitinb the vehicle..." [55]. 4
For a study of the tfack, however, it is obvious that|£%is-
force fs'ggtransient one with respect to anylfixed point

on the track. Thg force diféctly over any point'%éaches a

maximum only‘wheh the wheel is directly over that point.

In the discu%sion at the "Interaction between Vehicle
. St

and Track" Conference [27, p.49] Professor Bishop éays

"That the track is essentially a passive thing; it has no

source of energy built into it. There are thus good . -

-

reasons, I think, for asserting that it cannot change the

motion qualitatively. It can only change it quantitatively.

So we really need to know, how sehsitive is this



Giantitative adjustiment that can be exzocted from the

. track?',
Actually one should also say 1in which directian
ct be. If a vertical trach flexibility is

in which direction)will this affect the

Jateral stability? How will it affect the response of the
railway vehicle due to rail irregularities?... etc.

{

| ‘
In this thesis an atterpt shall be made to answer

_ . _
sorme of these guestions and to illustrate the adequacy or

inadequacy of nodals on rigid tracks. - .

R




CHAPTER 3

TRACK DYNAMICS

Studies on the response of the continuously
supported beam subjected to ﬁoving loads were conducted
first, in connection with the determination of stresses=in
-railroad tracks, byaT;moshenko_[48].w The problem of the
response of. beams on foundations subjected to moving loads
has been éreated.by severél authors [49, 55, 55, 57, 58].
However, the models used for theée analyées neglected
important factors aﬁd‘considered only special cases of
loading. |

As the tendency is toward heavier loads aﬁd higher
speeds for railway vehicles, the foréeé exerted by the
wheels may cauée‘excessive dynamic deflections of the -
track. These deflections{;if large, may cause permanent
distortions or buckling of the track, whiich in turn can
result in costly acciéents

In this chapter the problem of the dynamlc response
of the rallway track modeled as a beam orr Kelvin type
foundation and subjected to’ time dependent moving forces
is analyzed. The principal analytical techniques and
simplifying assumptions which may be used for physically
realistic forcing funétions are discussea.

=3

The ‘analysis takes into consideration all possible —_

65

M
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linear effects including damping in the beam and the =~
e ’ .-
. N . : ;
foundation and axial load in the beam. The effect of
‘damping, axial load in the beam, ﬁelocity and acceleration

of the moving forces on the dynamic response are discussed.

3.1 Description of Mathematical Model “
~In all anélyses for the response of railway tracks

rreported so. far, the track has been modeled as a beam on

. 1

an elastic foundation of the Winkler type with or without

//"“\

damping. In the crosstie systems only the ties are
continuously sﬁpported by the roadbed, while the rail
itself rests on the ties. Investigations {51, 54] have
showﬁ, however, fhat an equivalent continuoué elastic
foundation can bé&substituted with gdod_approximation'for
such supports. 1In this'wéy, the theory of beams on elastic.
foundations (which had its first application in the
calculation of stresses and deflections of railroad tracké
[51] can be applied to the analysis of the railway track
itself. Various' investigators, however, have used

] different end conditions when modeling the track and the‘ -
roadbed as a continuously supported beam on an elastic
Winkler type foﬁqdation with or without damping. The
infinite beam, the semi-infinite and the finite beam with
simply supported ends have all been considered. It is

believed that the infinite beam represents a more )
' - L~
realistic representation of the physical situation, ané&



thus is the model wiich is used in the ‘present resoarch,

Curreﬁt practice is to weld the rails_toguther
into lengths of about 1400 Feek. Sisnificant advantages
in the‘mainﬁenance of the track and Lrains_are achieved
by this téchnique."Because.of the lack of cxpansion joints,
changes in temperature may cause considurablé axial fopces
in the rails. 1In the present analysis, this effect is
taken inEo.acCOunt by including_an axial load N in the
model of the railway frack. " This load will be compressive
if there is.a rise in temperature or tensile if thefe is
a drop in tempearature; the reference temperature being
the one atlyhich the axial thermal strains or strosses
vanish." ‘ .

K .

In view of the abaove discussion, £he model
considered in this research is that of an infinite Euler
bean oﬁ a Kelvin type foundation subjected to an axial load
and a time dependent moving.loéd as shown in Figure 3.1.

The diffegential equation of a beam subjected to a
load w may b$ obtained by first considering the bending of
an elemental;segment of a beanm subjected to an axial force

N. For the uniform beam having a moment of inertia I and

a modulus of elasticity E we get:

4 2
7 pr 2 ¥, y 8y o= W ' (3.1)
b _ ax" ax -

The loads applied (w) when the beam rests on an clastic

viscpusly damped foundation are:
' o
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3.2 Derivation of Solutions

¥

69

. t 2
Inertia force: m 3~%
at

Force due to viséous damping: ¢ %%

Spring force: k y
Applied force: g(x,t)
where |
M = mass of beam per unit length

v k

‘modulus of the foundation

¢ = the coefficient of viscous damping

Substltutlng for w into equation (3.1) produces
the differential equatlon of motion of the continuously
supported beam od’a foundatlon of the Kelvin type
subjected to an axial load and a moving time- dependent

forc1ng function gix,t).

. 5 '
EI-a—-x+\I——X+~mg;1+c-—X+kv=q(x,t) (3.2)
™ :

T @L< X <®, £ >0

The present investigation is based on the solution

of this partial differential equation.

_—
K

\
Before proceedlng with the solution of equatlon -

\-.-

" (3. 2) the possibility. of propagatlon of free waves in the

infinite beam should be considered.

3.2.1 Propagation Velocity of Free Waves

-To study the propagation of free waves in the
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infinite beam, we consider the undamped case. with no

forc;ng function:

Iy 2 2
EI%—X+N§-—X+ma—X-}-ky=O (3.3)
X X at?

This equation was previously solved by Kerr [49] who
found the critical velocity of the beam subjecte& to the

-

~Aaxial compression force N to be:

_ J/BET _ ¥ e
Yer TN TmT T m (3-4)

3.2.2 Response to Gereral Moving Load

Very little work on the responée of beam to time
dependent forces is reported in the literature. Nowacki
{67] is one of the few authors who considered the transient
problem; the particuiar case studied is the response of an
infinite Bernoulli-Euler beam on an elgstic foundation
{without axial force or damping) Qué to é transient load
P §(x}&(t). . The transient.response of an infinite beam on
a foundation was consideréd‘in_[69]. Solution in integral
form is obtained, Qithout its evaluation in closed form.

For the general case\the initial~boundary value
problem is solved using integral methodé. In addition to-
equation (3.2) we have the following 1h1t1al and boundary

.

condltlons The initial conditions w1ll be given by the

prescribed dlsplacement and velocity (at t=0):

¥(x,0) = £(x) ana Q&0 _ g (3.5)



The boundary conditions for all times (t>0) are:

N
yix,t) — 0
|| + «
and 4D (x, ) _ ) » (3.6)
‘ SLimes) ~——— 0 (n=1,2,3)
ox IXI + :

/
Integral tranéform methods are used to solve the
partial différentia; equation (3.2) with initial and
bohndary conditions given by (3.5) and (3,6) respectively.
The usual assumptions concerning the existence of the
Laplace and Fourier transforms are made.

Laplace and Fourier transforms are defiﬁed by [68]:

¥(a,p) = —/;=Tr Imefidx dx re“Pt y(x,t) at (3.'7)
_ —o o .

Where the capitglization of the respeétive‘letters
implies the Fourier transformation and the ovérbar indicates
thé Laplace transformation.

The transformed form of equation (3.2) becomes:

)

(LF+G) + (p+g) F+% Q

Y{a,p} =L(p+§)2 P IR E (3.8)

where

_ o 2 _ EI 2o k

5= 5m @ T “0 7 o &
_ N 2 . 2 _ .2 _ 232

bh = BT J A wg T a‘b

The inversion theorem for thelLéplace transform

together with its convolution property are first used,



72

.

" followed by the use of the convolution theorem for the
Fourier transform. The integral representation of the :

displacement field y(x,t) is given by Abpendikf(A): .

y{x,t) = ehct{ J[g(s) + CE£(E)] h(x~%, t) @t -

+ f £(8) h(x-E, t)'dE} SR

-—

t e ' '
. %.f o=t (t-1) J q(£,7) h(x-E, t-1) ardtc
0 .

-0

(3.9)
where .
) N ,
hix,t) = %_ I Ju(kVtz—uz)%zucos(gﬁ—uabu_ﬁqdu
4ma /, A au 4
and -
e (B9, WERu®) %2
h (X t) = - J — cO0Ss (....._
t " dwa ‘¢ ‘,t2_u2) . /E 4ag
- - abu -~ %)du
1 1 }C2 s '
+ -—= cos{( - abt - =) (3.10)
Ydma vYt. 4at, . 4
For zero initial conditions the result is
. .t © " ‘
y(x,t) = x}ﬂ J e b (t T)J al&,1) h{x-f, t-7) dgdar (3.11)

u — OO
For physically realistic situations, the appljed, loading

function is non-zero over .a region X, £ x ¢ Xy
- — 2 R B :
yix,t) = = f et l* T’f a(&,7) h(x-g, t-7) dfdt  (3.12)
S0
. X



;
Ea

Although (3.9)., (3.11) and {3.12) represent the”

. complete integral solutions of the problem, they cannot,

in general, be evaluated exactly. Even in simple cases of
interest,_evéluation of solutions in closed-form is ‘very.
difficult, and it is necessary to resort to asymptotic

and/or numerical methods. In the following disdussion the

term "transient response" will be used to designate.the'

solution bf the initial-value problem along with a forecing
functibnl ‘%he steady—-state response can be obtained from -
a éérmal passage to the limit as t tends to infinity. 1In
general the steady étate solution can be ohtained from the.
transient solution for large.values of t.

. Some special cases for the forcing function of*'

physiéal interest and relevance to the area of railroad

track defiection and vibrations‘are:

(i) g(x,ty = P §(x)

(1i) g(x,t) = P §({x) §(t)

(iii) gi(x,t) =P égt); X, £ X £ X,
(iv) - q(x,t) = P &(x-vt)
(v) ' g{x,t) = P cos Q t &{x-vt)

I

Kvi)  qix,t) = P £(t) §(x-vt * pt?)

In all the above cases the initial conditions will be

assumed td\be equal to zeré, and hence the integral
. - i . , i . .
representation of the solution given by eguations (3.11)

or (3:12) will be used. {
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d"‘ - .
(1) Deflectlon of the beam due to a_conc entrated static
load q(x,t) = P §(x)

. For; the case of no ax1al force (N O hjg) the '

T-’

£réﬁsient solutlon is: <
. yix,t) = — J e 7’ J J (Are-u®}) ==
_ o mrdma ./ .0_0 R Ju -
| iy T - Ly
cos(4au - E) @u dr~ . |(3;13)

or
The steady—state. solutlon is obtalned from a formal

passage to the limit as t tends to 1nf1n1tv.

[} ‘h r .
(x) P J e_cr [ JO(KVrZ—uz) ;—

dra Jy 0o Yu

cos{s—

e
e -.-.-Zl-‘)._criu dr (3.14)

The integratidn may be.pérformed by interpreting. -
(3.14) as the Laplace transform of:tﬁe:inner'integral.

‘Let Au = v, Ar = v and X =.(A'x?)4a), géttin§

zw | - L : SR
' = —F i Joivr) X . T
Vet a{[ﬁ LJD( VEv) - cos(k - ) c:lv} (3.15)

mvydmra s - v 4

From Erdélyi‘% [70] table of Laplace transiorm we have

- ¢p2+l

where £ (p) = DQLf(\J) i v=p)
) N |

v - : ~ o ., - _
J'Jo(fvz—vz f(v)-dv;v+pj = L §yp2+l)' - (3.16)
o © ot

:. Also let o = l/%ﬁ

A
9



\ 1 T '_‘.)/_2_‘ s 1 Y -1 e ‘
df[;g_cos(é.—'z)] = = w{[7§ cosv] +d<[7$ s;nv]%

3 B :
N .
. ® _B_
'*:ﬁ_.____‘\' /E[J' e g2 -COF(/ng) :_E
. /I =

5 © p_ ' ‘
\+ [ e gt Sin(xdz)gi -t {3.17)
I .

1] . -—_

W

From Gradshteyn's Ryzhik's[71] table of integrals:

e .
J e & sm(AZEZ)‘fE YT Y2 BB gin (/2 a8)  (3.18
0 S T

-&2

sin (V2 4B) (3.18b)

Using equations (3 16), (3.17) and (g»lSa&Bi\?s well as

lettlng >0, - N J

y t(x) = %%— e ¥ Ix-‘(cos w |x| + sin m'Jx[) (3.19)

S

where

which is the result given by Hetényi [51] in a slightly

different form.

(ii) Response to an instantaneous loading

glx,t) =P &(x) &{t)

- <5

By substituting for q{x,t) P &(x) &(t) in

equation (3.12) the transient response due to the

2
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instantaneous loading is obtained as:

i
LY

t _
P -zt 2 1
vi(x,t) = e f J, (Weiou?y
nY4ma, . ‘s ’ Yu
B c.:ss(‘xz - abu - Ty au (3.20)
4aur 4 . TEEL

To compare the result with the cne 0uta1ned by

~

t

Nowacki [67], the transient response at the origin is

obtalned for the case of no damping (z=0} and no axial

L
force (N=0, b=0 and X = mo): e

yio,t) =

- t 3 . " . .
E:os(—g)f ‘JO(%VtZ—uZ) ’/—1_ du " (3.21)
il

my¥dra u

The integral can be evaluated by making the change

of varlables u = t ¢os 8, hence

-

_ P T Ty . t . .

¥(O,t) = cos(—EJ J J, (w;tsin 9) cos § Sin 0°4ds
0

. ) (3.22)

, ., 1 [T .

= cos(-zd o J, (wgtsin g) Yuw,t
o ﬁl 0 1

Ycos 6 /sin 8 da (3.23)

Noting that this result is a special case of Sonine's

first finite integral (see Watson [72]), we get

v
K i 27%g

I,ZJo(mt sin ) 30 0 aes yy (0t} T(1/4)
o Ycos 8 ya—t

4}

and hence



ylo,0) = ZAEECLAL AT ey

2/T(4ET) v (2K) P

3y, (K/m ) - ©(3.24)

This result differs slightly from the result
obtained by Nowacki [67]. -This difference is apparentlf
due to the difficulties encountered byANowacki iﬂ

calculating an inverse Laplace transform.

3.2.3 Responsé to Moving Load of Constant Amplitudg”
E

Most-reseafchers were essentially concerned wiﬁh
the investigation of the steady state problém whicp takes
into account certain specific,physicai cases. Of course,
neglecting certain effects leads to mathematical simplifi- -
cations and the resulting steady state problem is solved

as a boundary value problem.

Mathews [57,- 58] analyzed. the problem of wvibrations

"of an infinite beam on an elastic foundation (without axial

force) subjected to an alternating load whose poipt of
application moves with constant vélocity along the beam.
Application of the results to problems of deformations of
railway track is briefly indicated.

Kenney [56], Kerr [49] and others analyzed the
steady state vibrations of beams on foundations subjected
to a constant moving concentrated load but theirlmodels
for the beam, usually considered as a Bernoulli-Euler beam

do not include all possible Ylinear effects. 1In the
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followirig steady state soiutigﬁ all linear effecfs ingiuded
in the pfesent analysis,will Se cbnsidered for the éasg~of
a concentrated load moving at a constant velocity as shown
in Figure 3.2. . ' |

The right hand side of equation (3.2) is of the
form P § (x-vt), and the governing equation of motion

becomes

[ L 2 2 | V i, |
gp Y 4 n g Yy om 2 Yy e %% + ky = P §(x~vt) (3.25)
Ix X t ‘ A

Because of the infinite extent of the beam as well
as the steady-state assumption, for, an observer moving with
the load along the beam, the deflectioqs of thé‘beam wili
appear static. This observation suggests that it is
desirable to'transpose the coordinéte s&glem to the moving
reference axes (&, n, ¢) where £ = x-vt; n =vy(£) =
y (x-vt), ¢ = z. '

This transformation of coordinate systems will ~
transform the partial differential equation given by |
equation (3.25) to an ordinary differential equation in the
moving reference axes. Because .interest hefe is in
the case of load'éhd velocity invarient wi;h time, all
partial derivatives with‘respect to time become equal to
zérq,rand the differential equatiodn becomes:

ET n'V + (N+mv?) n'' —cvn' + kn =P 6(5) (3.26)

) Because of the steady~state assumption, the load
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-

; moves horizontally but does not experience any acceleration

-

~in the verticél direction. Thus P in equétién (3.26)
represents oﬁly the static intensity of thé }oad.

It is useful to note that equation (3.26) is
‘identical to the giffé}ential equation of motion of a beam
which rests on‘akéamped elastic foundation, subjected to
an axial force (Nghvé) and a latérai load P’at £=0. .
Dividing'throuéh by (EI) eg\ation (3.26) becones:

iv _ Nemv: o o, k P & (&)

Némy? S SY g4k o RS (E)
t =%~ " BTN P ET ET (3.27)
Setting: . T
’ ‘ ) 2 N+mv ?
i 4&1 BT
8 = speed ratio = —/— = v —.
2 r T //EkEL W
e - m -
. . c ®
. - . B = damping ratio = = ) . |
: cr
< ‘ |
Cor. ™ 2 km {as for a simple mass spring
' system)
k
a b = —
4o = ET
T e v 4KEI _ N |
& = cx -cr _ Ykm m2 m : -
~ BEI EI 8 :

Substituting back in equation (3.27), 'the homogeneous form

. ) P
of the equation becomes: o
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ntV T+ dal a" - B29E A+ 4uw' m =0 (3.28)

If a concentrated load is .assumed at the orlgln
Ay . P

(at E= 0), equatlon (3. 27) may be. solved by the use of

Green's function, assumlng zero deflectlon and slope at

lnflnlty and zero charge in deflectlon, slope, and moment

across the origin. A discontinuity in shear across~the

- .

origin of value -~ %f is used ‘as the last boundary condition.

-

. The solution of'equation‘¢3128) i1s developed in Appendix

(a) with the aid df_these boundary conditioné. It is
useful to recall that when N 2 Ncr' the stable beam shape'
is not straight and hence the differential equation (3.28)
i;.noﬁ appliéable. In- this 1nvest1gatlon we analyze only
thé'casa when N < chz the problem of immediate practlcal
importance.

" The solutlons for the region ahead and reglop

;behlnd the load in the moving reference coordlnates (E,y r)

are given by equation (A.12) inp the Appendix. In the

fixed coordinates (x,y,z) the solutions ‘are obtained by

1
transformation:
For x >‘vt:
, = ap e—d(x-vt) : 1
a B 4 (2d"+2aid2—8¢ﬁd)+e%§(4d2.+4ggé)u} .

. - 33 . '
(648-d") sin /éai+d2-%%$§ {(x~vt)

w3

I



82

\
+ cos Jéﬁi+d +2§$§ (x~vt¥] ' - (3.29a)
R - S
For x € vt. ~
e gd{x-vt) 1 ¢
b EL 2 (24" +202a-608a) +22E (4a7+4288)
197 3 a
- Iy,
(8¢8+d") sin /£%2+d“—£g£§ (x-vt) .
12 oazsa? 2998 1 a .
“1 d a ’ - .
_ +?co§_/§ai;d?+z%%§ (va?;l : : (3.2§b)

[

where d is the positive real root of equation (A.9) 7

In the llmltlng ‘case of no dampiﬁg the solutions

for the.vertical deflectlons ahead and behlnd the load

L3

<

. . . §
become: : ' ~

For k 2 vt:

P é-{sz-ai(x—vt)} ¢w2—ai S _ 1_
y., =" : : - sin sz—ai(x—vt) .
a 8 ET'w’ mz—a; {w?+ai -

5
+ cos sz—a;(x-vtf

and for x € vt: ) V(3. 30)

+{/m —altx -vt) b —Yw? —a /_,___
| Yy, = /r____ w*+o (x—vt)
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Hence the wave citsed'by P, and which moyes with P %t a
. o _ | - | . .
constant velocity\v, is symmetrical with respect to P for

any N < Ncr'- In the presence of damping, the wave is not

- - ’
symmnetkical. » - L

3.3 Numerical Solutions andoResqlts _ : ;

/" For the case of the general solution, the
mathematlcal formulatlon of the problem is- qulte general °
and no- steady—state assumptlons wvere made It was noted, ’
ﬁhowever, that the resultlng lntegral solutlons gioen by

equations (3.9), (3.11), and (3;12)‘are, in general,

"diffioult to evaluate:in closed form and known solutions

t

were obtained for special cases of interest. To be able-
oo ‘ - . ‘ ) ) :
to solve all cases of interest, an alternative approach

is to numerically solve the equations resulting from the
. - " \ . .
general analysis. A géneral computer program was developed

to integrate the equations resultingbﬁrom the aﬁalysis.
N ' ' Y -

It is obvious that pumerical solutions of equations (3.9),

~

(3.11), and (3:12) are not free of a different type of
difficulty. Singularities, accurate .evaldation of the 5
Bessel function é#pressiOns and the integrals ... etc., '

are numerical difficulties thét have .to be @atched for.

The program was first tested for some’cases?for which~

wr

solutions were known or found in closed form 'Flgure 3.37

lllustrates the comparlson of the results dgtalned from '

the numerlcai solution with Eﬁé one obtalned from the exact:

Q

)
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solution obtained earlier for the same case of transient
impact loading, g(x,t) = P §(x) §(t), (with no damping or:

: . . ;

<

axial load in the beam).

'Figuré 3.4 represents the solution versus time

for the case of the infinite beam subjected to a constant

concentrated load P §(x), with no axial Fforce in the bean,

bu; in corder to.éonverge to steady-state results a smali
amount of damping is included. It is shown that the
respongé\for large values 6£ time converges td the steédy—
stété response whith in this case ié the result obtained
bf eéuation {(3.19).

: The computer results obtained for the case of a
conéentrated'moving load with a velocity v and an
acceleratibn p i.e., for-q(x,t) = P G(x“vt-i ot?)

indicated that the acceleration. has Tittle effect on the

- dynamic deflection of the beam.

. For the numerical integration two different

algorithms were used. The first algorithm is based on

: Clenshéw‘- Curtis quadrature developed by Gentleman [73].

The second algorithm is based on Simpson quad;g;ure¢used

-adaptively [74]. The two algorithms proved to be efficient

~and accurate in most cases.

The effects of the damping, the axial force and

the velocity of the movingfloéds on the dynamic deflection

of the railway track are illustrated in Figures 3.5 to 3.9.
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These résults are computer plotted after ewalugtioh qf the
_ dynamic defléctions given ;y‘équations (3.29a) and 3.29b).
'fhe ordinate in all these figures is the deflectibn.of the
cohvgntibnal raiiway track with wooden ties. The
illustrated resulits show that the presence o£ damping in
the foundation results in an unsymmetric dynamic deflection
of the rail. Due to phasé shift the.pbint'of“largest<
‘deflection occurs slightly behind the poiﬁt of applicgtion
;of‘thé moving load. The deflection ahead of the point of
magimﬁm deflection is always larger than the deflection
behind it. As the damping increases, the‘amplitudé éf the
mﬁximum deflection decreases and the éhift increases. This
is shown in Figuré 3.5 f;r values of damﬁing ratiosioﬁ 10%.
and 20% for the case oghno axial force and in Figure 3.6

-

when an axial loéd in'ﬁhe-rail_is present. In both cases
comparison ;s'shown witﬁ the limiting.case of‘nd dampigé
(B-;'UT-; It is interesting to noté that in the presencé
of ddmpihéithé amplitude of the defléction profile ahead.
is always lérger and the frequéncy of the waqé.is higher
than the. 'quency behind the pqint of_maiimuﬁ deflection.
% The efféct_of axiél load on tﬁe.dynamic éeflectioA
of the rail is shown in.Figure 3.7; It is shown that when
.a compressivg fofce exists,.the maximam defleﬁtion is
lafger than in the ¢a3é of o axial compréSsioqr«and ﬁhg_

frequency -of the deflection wave is higher.. In contrast,

when a tension force exists, the maximum deflection is
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N

smaller than in the case of no axial compreSsidn, and the *

-

frequency. of the deflection wave is lowérf_ Figﬁfes 3.8 and
3.9 show the effect of velocity of the moving load on the. .

dynamic deflection of. the rail in the presence and absendée

©

- of damping respectively. It is seen that the incH?ase in
the deflection as the velocity ratio increases is quite

small.

- The negligible effect of the velocity of the moving

load on ‘the dynamic deflection is a result of particular
: -]

‘

importance. This suggests that it is not necessary to
consider the wave type expression to study the effect of
track elasticity -on the dynamics of railway vehicles.

%

et
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CHAPTER 4

VEHICLE/TRACK DYNAMICS

Over the last decade there has been an increasing

effor( dévoted to research and, development concerned with

railway vehicles. Most of the research work reported in

.~

~the literature is concerned with the dynamic stability

" analysis of 'single, conventional railway vehicles. The

¥ -

dynamic stability of railway vehicles is indeed an
important aspect of the dynamics of railway vehizles. o
Below the criﬁical speed, the lateral and vertical motions

of railway vehicles are determined by track geometry. The

‘response of railway vehicles to rail irregularities and

the minimization of the vibrations transmitted to passenger
positions received little attention until recently. The
new interest is motivated by the concern about passenger

comfort for high speed-rail transit systems.

In addition to supporting the vehicle, the rail

vehicle suspension is dési;ked such as t9 provide guidance

withqhdequate stability.range and,to provide effective
vibration isolation such that passengers experience a.

comfortable ride and freight is not damaged:

Recently, it has been recognized that guidance,
dynamic stability and dynamic‘respons o rajl

94
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irregularitiesranalysea are intimately related, and a
new-approach to railway vehicle-desigﬂ was possible. This
approach recognizes that, in the first instance; the aim.
should be to desiga tﬁe'vehicie and its suspension so that
guidance is achleved by the forces actlng between . the wheel
treads and ‘the ralls Therefore flange contact is avaided
in normal runnlng‘conditions With this: approach it has
been p0551ble to develop a theory for the dynamlcs of
railway vehicles based on a linearized analysis. This
approach, which is adopted here,,enable; the consideration
of a significantly larée_gumber of degrees of freedom.
This is of prime importance because simplified models Ain
which some of the degrees of freedom are neglected do not,

in general lead to realistic results.

a——

' Dyaamic coupling occurs between.a railway yehrcle
and the track due to the reaction forces acting between
the wheels and the track, and the elasticity of the track
and the foundation. It has become apparent that track |
.elasticity can influence the dynam&c behaviopr of the
‘railway vehicle, yet in most of fhe researchIWOrk in_the‘
area of railway vehic¥e dynamics reported so far, the

track is regarded simply as a rigid structure, providing

the reactions to the loads of passiig vehicles.

In this chapter the models used for the analyses

of the vehicle dynamics (on rigid track) and for the

o
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coupled vehicle/track dynamics will be described. The

equations of motion are derived, and 'the results obtained
= . y
for the cqupled vehicle/track model are pre%ented and

.2

compared with those obtained for the case of an infinitely
rigid track The objectlves here are, ‘first, to'present

methods for the dynamlc analysis 'of the vehlcle/track
'

model and second to compare the dynamlc behav1our of. that

model with that of the vehicle on a rlgld track. Particular
emphasis is on the effect of vertical track elast1c1ty on”
the lateral dynamic stability, anquh the response of the

-

" vehicle to vertical track elasticity.

4.1 Description of the Vehicle/Track Model

The mathematical model foy_tie coupled vehicle/
trackldynamics is shown in Figure '4.1. The model fcr\the'
railway vehicle is that of a six—-axle loccmctive of the
-type commonly used in North America. The model consists
‘of fifteen rigid bodies: the locomotive body (chassis),
two frames (trucks), six motors and six wheelsets ?he
suspehsion of the hody (the secondaries) 1is usua{izjbgry
Sélff in the vertical dlrectlon in- order to stabilize the
truck frames against the locomotlve body and thereby |
minimize the deflecticn of the former in the pitching mode.

t\the same time 1t must permit the- necessary lateral and
rotational movements in the horizontal plane. The ultlmate

form of body suspension might employ a horizontal sliding

i

-
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surface which ‘would be infinitely stiff vertically, but
these,preéent the disadvantage of being wearing components
_anq requrlng oil bath lubrlcatLOn An ideal alternative

was found in laminated rubber 81debearers whlch consist

of several layers)of rubber bonded to intermediate steel —

&

_piates [75] : The locomctive body is supporteg on such
sidebearefs which 'provide a stiff spring effect‘in the
vertical direction while‘permittidg mévemenﬁ in the
hofizontalodirectioﬁs agginst‘a relaﬁively low resistance,
the rate of which can bé selected from a fairly wide r;nge
as requlred A resilieﬁtiy mounted centre pivot is used

in conjunction’ wlth the SLdeoﬂarers, thus avomﬁlng
metallic contact between the body and the frames. Further-
"more;'the several inches of rubber provide a complete

break in the metallic structure of the locomotive's

sushension and thus make a good noise barrier.
‘ -

Because the bod? is suppo:?ed freely, it can
oscillate in all six modes, i.e., along the three
principal axes through their{ centres of gravity
(i) longit&din Cor "fore and aft" oscillation

(in.thé u direction) .
' (ii) lateral os;illation (in the v direction)
(111) vertical or "bouncing" oscillation (in
| the w direction)

and rotate about these three axés:
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(i) ‘about thé‘loﬁgitudinél u-axisrof "roll"®
{(in theha direction}

(ii) about ﬁhe latérai v-axis cr'"pitch"‘(in
the 8 airection) |

(1ii) about the vertical w-axis or "yaw" {in

4

the y direction)

The primary suspension, which is the one between

' the wheelsets axle bearings and the ffémes consists of
coilﬁsprings apd shock absorbers. If-the secondaries are
very stiff as descri; d above, then the majoxr vertical‘
springiﬁg must be provided by the primary suspension.
Low-rate springs also suilt the'requirementé of low-weight
ﬁransfer by being able to accomodate variafions in track

level or pitching of the frames with a minimum variation

in axles loading [75].

Wheelsets are restrained with reszect to the

w

frames in both the longiﬁudiﬁal and in the lateral direc~

tions., The driving mechanism is arranged with-all the

P
[

motors on the same side of their respective axles. A
traction motor is supported on the axle from one side and

" on a rubber nose support on the other side. A rubber

\.
o

nose support is used to_prevent motor nose lug failure
due to sudden torque impulses. This assembly is such that
rotation of the motor about the axle center line is the

only allowable relative motion between the motor and the
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wheelset.

The raiIWay track is ﬁodelled, as' described earlier,
as an inrinite beam centinuously supported on an elastic
damped foundation cf the Kelvin type. In order to simulate
the coupled dynamic benaviour of the vehicle/track model,
the mathematlcal 51mulat10n of _the track 1nvolves the -
replacement of the 1nr1n1tely iong contlnuous model of’the
track by an equivalent lumped- parameter svsten composed of
dlscrete masses,rsprlngs and danpers The discretization
is possrble because it was found in chaoter 3 that tKﬂ
velocity effects can#be neglected, and that it is not
necessary to consider the wave type equation for the
simulation of the dynamic resgonse of the track iﬁitne/
vertical direction. For this study of the dynamic effect
of the track elast1c1ty, it was concluded that the track
can be adeguately represented by a 51ngle degree of
freedom system with a lumped mass, stiffness and damping
which will have the séme datural frequency as that of the

distributed system. A lumped mass-spring-damper system

under each wheelset,”@hhc-'tdrreSQOnds to a certain
. ) R S _
effective rail length, allows two additional degrees of

o

freedom per wheelset, vertical displacement and roll.

The wheelsets are'assumed to remain in contact with the

a

track at all times, which is the case in normal running

conditions.
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Because of“symﬁetty, the equatiorns describing the
laterel«motiens of the system.(these inclu@e,the lateral,
roll and‘yaw displacemenhs); ere-unceupled from the
equations descfibing the'longitudinai hotiohs itheser
- ificlude the longitudinal, vertieai and pitph displacemente).
Wlth,ﬁhls ngervatlon -in n1hd. the solutl01s for the
lateral mdtions w111 be treated separately from the
. solutiohs for the vertical modes of VLh;etlons. For the
coupied vehicle/track model the total'number of_degrees S
of freedom is 42, fifteen for the latexal dyhamics and
tweﬁty seven generallzed coordinates for the vert;cal
dynam1cs:5 For the dynamics. of the railway vehlcle on- o>
rigid‘trecks the total number of degreed c2 freedom is
reduced te 30, nine for_;he lateral dynamics and twenty~ -

one'fo: the vertical dynamics. Figure éyi illustrates

the modehifor the sixgaxle~locomotive on rigid track.

For both'the coupled'vehicle/track model and the
model of the vehicle on rigid trecks,‘the complete
mathematlcal modelllng includes the effects of the wheel/
| ralllproflle, the grav1ty Stl fness.effects and the

creep forces Several assumptlons are mate in deriving
. » ! .
the equatlons of motlon. The vehlcle comnonents are

’ "\
treatedhas perfectly rlgld, and the.elastlclty is lumped

h

in the suspension elements. Aerodynamic and coupling (\m

forces on the vehicle are assumed-to be nsgligible. ‘The
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axles are assumed to run freely in their bearings with no
lateral or longitudinal play. All displacements are

assumed to be small.

7
4.2 Derivation of the Equations of Motion

oy

The equations of motion are derived inAEhis section
for the coupled vehicle/track model. The kinematics.
problem is solved first following the approach described
in feferénce [41}. In this approach displaéements and.
velocities are found for the mass center of each rigid
bddy in the system and for each point on ﬁhe bodies where
an active force acts. Inertia forces are also found for
each coorq%nate. The active forces are a1l forces acting
on the bodies except those contact forces between bodies
that are applied at points where the relz:ive velocity
between the bodies has no component parallel to the line
of“action of the force. The active forces are due to
linear gprings and dampgrs. The non-active forces are the
internal reactions which will be eliminated from the
‘équations of motion. This elimination progess ig followed
by the tfapsformation of the :ésulting equations to the

geﬁeralized coordinates system as described in Appendix (B).

The motion of a railway vehicle can not be
adequately explained by a model that assumes pure rolling
of the wheels on the rail, because there is relative motion

between the two surfaces at their contact. Consequently,
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the tangential forces acting Qn the contact areas, which

are of fundamental impprténce,rmESt be inciuded in the
analyses. These forces are due to the creep phenomenon

and are non-conservative in nature. In order to a?alyse
“the forces acting between the wheel and rail the wﬁeel—*_;f 
rail geometry and thé wheel/rail interaction forces havé

to be studied. In addition to the suspeﬁsion forces and

the éreep forces, "gravity stiffness” effects will be
considered and the corresponding gravity forces are

included in the eguations of motion.

4.2.1 Wwheel/Rail Interaction and Gravity Stiffness Effects

The gravity stiffness effects and corresponding
gravity foreces are due to the lateral, roll and yaw
displacements of the wheelset. When a wheelset is dispiaced
laterally a small distance, the normal reactioﬁ forces
between the rails and the wheels change their direction.
Since they are large forces, approximately equal to half
the axle load, a small change in direction can lead to a
significant lateral force on the wheelset. This lateral
restoring force is due to the incre;se in potential energy
due to the rise of the wheelset cenﬁer of gravity ané"
Qill depend on the shape of the wheel tread and the rail
héad profile. Similarly, the yaw gravity stiffness which
is defined as the change of the net torque on the wheelset

—

per unit of yaw displacement is a function of axle loading

v
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and whéel—raii contact geometry,-and'for'bonventzonal
wheels and rails, comes out as a négative stiffness term
that acts to further dispiace the wheelset. Gilchrist
et.al. [1B] indicate that for new wheelé the:gravitational
stiffness is negiigible. Some authors [33] neglect gravity

stiffness completely.

‘Lateral.gravity stiffness and yaw gravity stiffness
are present for the model of the wheelset on both flexible
and rigid tracks. -In addition in. the former case, a

dispfacement in roll of the track, gives rise to a new

negative stiffness term that acts to displace the wheelset.

In order to derive expressions for thé forces
acting between wheels and rails it is neces$ary to considerx
the mutual geometry of the wheel treéd and rail head and
the wheel/rail kinematics. The most important kirematic
parameter is the effective conicity which is defined.as
the raté of change of rolling radii with the lateral
displacement of the wheelset; For a purely coned wheél'
the effective.conicity is simply equal to the cone angle
(usually 1/20 taper). For purely coned wheels the area
éf contact with the rail is small énd the contact stresses
‘are high. Local wear éccurs and this ﬁroduces hollowness
of the tread profile. After an iﬁitialléeriod of rapid
wear, the-wear ;s distributed over the whole tread to

give the "worn" profile which thereafter remains fairly



.
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constant.

‘ -Linearized theories of wheel—ré;l kinematics are
given in [16,19,26,30,32,34,41,77,78] . Usually the
geometric'pafameters are dbtaiﬁed from thé wheel/rail
kinematics assuming the whée; tread and rail head ﬁrofile

to be circular arcs of different radii as shown in Figure

4.3. The assumption that the' length and width of the

contact .area between wheel and rail is gquite small
compared with the displacements of the wheelset is also

- made. Consequently, the small area is treated as a point.
initg. The

- However in deriving the expressions for the creep

coefficients, the contact area is treated as
geometric relationships can be very complex, and estimates

for equivalent linear values of the effective conicity and

other parameters have been obtained using 4Aifferent methods

[16,18,29,78]. Wwhen the wheels are centralized, both
When the wheelset

including measurements of existing wheel/rail combinations
tread circles have the same radius ro.
is 5isplaced.laterally, contact occurs at new points, and
the angles made by the contact plénes are changed. These
angles ér and 82 are affected in the case of the flexible

track with the rotation of the track as illustrated in
Following Wickens [16] for the linearized

expression'relating the change in the angles made by the

Figure 4.3.
© contact plané with the horizontal resulting from the

lateral displacement of the wheelset, the following

.
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expressions are obtained.

vaq .
8r= 80 + E_'é-a"‘(!d.e-r ‘ (4.1)“
and
V3 ‘ o
0, = % - £ * o e
+ : . f//
where 8, is the angle between the contact plane~and.
horizontal when the wheelset is in central
position with no track rotation
ar,eg are the angles between the contact planes and

the horizontal after lateral movement of the

‘wheelset and/or rotaﬁion of the track
Va is the lateral dispiacement of the whgelset
a. 1is the roll displacement of the wheelset/track

e is the rate of change of contact plane slope
with latefal displacement of the wheelset (for
-

new wheels ¢ becomes A)

half thé lateral distance between the wheel~.

rail contact points

v

From equations (4.1) and (4.2), it is seen that
both 6 and 9, are equal to 8, if the lateral displacement

of the wheelset is zero for a horizontal track.

Fol

similarly, the distances between the wheelset

center-line and the contact points can be expressed as

er = ey - n vy {4.3)

Ly
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e2'= ey + n V4 ' ‘ (4.4)

where n is a correction factor equal to the change in the
distance between the center-line of the track and

‘ the-fontact point for a unit lateral displacement.

The tread radii of the wheels are given by

r.=r. + Av

- 0 (4.5)

rg=r - A v {4.6)

0 a
. - e
where r0 is the wheel circle radius, when the wheelset
is in céntral position
are the radii of tread circles, when the wheelset

is displaced laterally

and A" is the‘efféctive conicity which is cdefined as the
rate of change of roliling radius with lateral

displacement of the wheelset.

In.addition the complex non-linear constraint
between the rolling motion of the wheelset and its lateral
displacement is linearized as follows

' = - !
a4 v vg | (4.7)

where ¢ is defined as rate of change of the angle of the
wheelset center-line to the horizontal with the

latéral displacement of the wheelset.
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An expression for ¢ can be found from studies of
the wheel-rail contact geometry assuming the wheel tread

and rail head profiles to be circular arcs. From

reference [29] or [78]:

. Y = (4.8)
L | e, E !

0

¥ obtained from eguation (4.8) 1is even much smaller.

The value of 6§, is small (= 0.05) and the value- of

Apparently for this reason some research workeis [77j

neglect Yy altogether. -

Typical values for the parameters =, A, 6., n and

0 r
} are given by Wickens [16] and by Joly [78].

4.2.2 Creep Forces

Creep and corresponding creep forces between wheel
and rail is of fundamental importance in thLe study of
:dyﬁamics of railway vehicles. €£; railway vehicles non-
copservative forces arise from the phenomenon of creep.
Consequently the taﬁgential forces acting on the contact
area, because of the relative motion between the two

surfaces at their contact, must be inclﬁded among the

acting forces.

The problem of determiniig tha;iangential forces
[~ .

between two elastic bodies in rolling contact has beep—=,
studied by a number of researchers. Although the theory

of creep has advanced considerably, exact soclutions for
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the general prdﬁlem have not yet been found. Approilmate
theories are now falrly well established but the '
d}fflculty of obtaining working data for real vehicles
. ¥
still axists. Johnsoa [é] divides the folling problem
into three categories:b free folling, ralling under
tangential forces and rqlling with spin. 1In ﬁ;ee rolling
the resultant force transﬁitted between the contact
surfdces is perpendicular to the plane of contact, without‘
spin between the bodies. 1In rolling ﬁnder-tangential
fo;ces,‘the transmitted force is not normal to tpe aontact
plaae. Rolling with spin occurs when the bodies.move
with an angular velocity relative to each other about an
axis normal to the contact surface. The actual roI};ng

©0f a wheel on a rail includes each of these catagorieé;g
'_Howevar, the resistance to motion in free rolling is-small
éompared with the other tangential forces. Note that the
components of the tange%tial forcea in the longitudinal
directions do,nba incluﬁe%gge steady stage.propelling

force. They are variations about this force. -

The constitutive relationships for creep and spin

on a single wheel are:

T = b )

x 1 Ex-
T¥ = - £, Ey - f23 EY ) (4.9)
Mz == f3p 8, ~ £5 & )
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winre
TV’TY are the longitudinal and lateral treep {orces
I 1s the momant about the spin axis
7 . .
. g
- - - < - : ' . P %
PRy aXe a.complete set of creep-spin coefficients.
. . .
FoF According to Kalker's theory £ = - f_- . B
37723 _ o ' _ : ‘ 32 23 .
and f
32 .
- .
aw,iy are the longitudinal and lateral creepages
3 15 the spin
Y -
L

Carter [5] originally proposed the followihg

relaFionship to predict the creepoforce§:
\ ==

S K
creep or reiative slip
velocity in direction of
force '

Tangential creep forces = - £ Yol1ling velocity

-

vhare £ 1s the crcep coefficlent given by an empirical
equation [4]:

2

f'= 3500 (ro N) (4.10)

where T, is the radius of the wheel,
and N is the vertical pressure between the wheel and the

.rail; ‘ g ,/H\‘

Thé formulation (4.10) assumes that fl = f2 and

neglects £ and'f Clark and Law [33] and Marcotte

23 32°

[79] used this evaluation. Cooperrider {77] used different
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values for the longitudditial and laferal c:éep.coefficients

derived from Vermeulen and Johnson [10] but neglects théJ

spin and coupling coefficients. Wickens [30], Gilchrist

et.al. [18] and others (34, 41, 76]-used the work of
Vermeulen and Johnson [10] and Kalker [11] for longitudinal

and lateral coefficients and of Johnson [9] for the

L;rotagional coefficients. A similar practice is adopted

N
-
\\\

here.

¢

Th% creepage is defined by Kalker [11] as the
différence in the circumferential velocity of the wheel
and‘the rail in the longitudinal agd lateral directions
divided.by_the rolling velocity. Spin is defined as the

difflerence between the angular velocities about an axis

perpendicular to the contact area divided by the rolling

velocity. Using these definitions for the wheel/rail

-

model of a wheelset and with S the forward speed of the

railway vehicle and X the effective con;city {defined as

the rate of change of rolling radius with the lateral

displacement of the wheelset), the creep forces for the

fight wheel are given by:

(i) longitudinal creep:

In a small interval of time dt, the actual forward

%

displacement at the wheel tread is:

S dt + d Ugq + e, d Ygq

W
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8
The bure rolling forward displacement is:
r §—‘dt - r_ 43,
A . . rr r d -,
S - o 0 '
Hence the longitudinal creop displacement in time dt =
3 ' S dt
-]\ - + g + - = - a\\- -

(ro + vd}dﬁc1 du 4 e dya V3 Z, (4.11)

Vs

my

'ne first two terms represent slip induced;by the

difference betwgen’ the axle longiﬁhdinal diéplacement and
. : { : T, ‘
the displacement corresponding to ithe angular rotation of

~
I

the axle. Thé third term is slip~induced by angular. ~~—--

-~

displacerment and tne fourth term is slip induced by the

forvard steady state displacement § dt due to the rolling

radius deviating from the mean Ig-

Tc get the creep velocity we divide the terms in? ex-
pression (4.11) by dt and get- the limit as dt aggf?aches

Zero.

creep = (r0 + lvd)éd + u, + e

a o ¥a d

- The nonlinear term is assumed negligible, and
i

dividiné the longitudinal creep velocity by the velocity

attributable to rolling we get the longitudinal creepage
_ . - S
Exr = (lo Bd + ud + eo Yd &vd E'a')/s ; (4-12)

The longitudinal creep fofde on the right wheel

is obtained using equations (4:9) and (4.12)

e

1 - g. : A

r
0-.
. T =~ E (= @
1Y _ | T,

Xr a
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'creep torque for the left wheels (T

(ii) lateral creep:

The actual lateral displacenment in time dbt is given

N

wr - o 1 - .
by: . d vy ,;O ¢ g - /

b, -

.- . The purec rolling lateral displacement, ‘wnich %s the
A . . N r .
lateral ceorponent of the forward displacerient is: -S dt y

Hence the la#eral creepage is given by

- g~ Ty Gyt Sgyd?/S (4.;4)
and the rotational creepage (spin) is

N o (4.15)
Using equations (4.9), (4.14) and (4.15), the

.

. Y '
lateral creep force at the right,wheel is found to bhe

[

\\“\fl S . ig’é + #')'— E‘ Y (4.16)
v 2's Ya T 8§ "a d 23 5 'a :

-

(iii) rotational creep:

o

The torcgue due to spin is given by

r -
- - L o Oa Joy g Lo
Mar T 7 f32l5 Vg T 5 T\jd) E3 5 Yo 417D
.
In a similar manner the creep forces at the left
) >
wheel are found:
r e ,
T S O USRS Y A
Txe T 7 Rlgm Pa gt T g Ya g Ve (4.18) -

" The expressions giving the lateral creep force_and

and Mz )"are

yh £

similar to the ones obtained for tha'laterar~creep force
and creep torgue for the right wheelﬁ{'l‘xr and Mzr) given

by equations (4.16) and (4.17) reépectively. The creep

1o
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forces and torgues acting on the whaelset are obtained .
o . o :
from the summation.of the forces:rand torgues due to creep
¥

and spin at the right and left wheels.

For the determ}nation of trhe creer coefficients
the contact surface befween the rail and the wheel is
considered to be an ellipse. The léngth,of ﬁhe magor and
minor axes of the ellipse ané'the distribution of the
.normal load between the %odies_abross the contact'area are
-found by Hertz's solution‘[BO];for the pressure between

two bodies in contact, an assumztion made in nearly all

analyses of this rolling contact problem.

Fpiﬂa wheel in contact with a rail when both are

. - i
of the same material, the lencth o2 the axss, a and b are

[80]: ;
330N (1-v2)
a=n /2 E (A<B) - y (4.19)
and 3 :
- 3N (1-v*)
’ v b =n /55 (58) (4.20)

where N 1is the normal load between the tﬁo'bodies‘(wheel
and fail)
E is the modulus of elasticity

. - 7 o
v is the Poisson's ratio.for the bodies

m,n are functions of the ratio (B-A)/(A+B) given in

a table on page 416 in [60]
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A,B are constantsg depending on the mégnitude of the
. Principal curvatures of the surfaces in contact
and on the angle between the planes of pfincipal

curvature of the two surfaces [80].

Vermeulen and Johnson [10] assumed that’the n§n~
slip-region is =& geometrically similar ellipse tangent to
the leading Eoundary of £hefgpntact ellipse. And the
relations between the longitg@inal,and[lateral creep

ratios or creepages and the iongitudinal and lateral

creep forces respectively a;% given by the following

expressions:
T
3 UN X 1/3 ° -

F = - D -_ —

£ Grap 011 - -7 (4.21)
T 1

s — _ 3 BN I A

Sy CTab Vl[l (1 —=) 7] (4.22)

where T is the tangential forece in the direction of

' b

rolling,

Ty' is the transverse tangentiai force,
N is the.nOrmal force between the two surfaces,
G is the modulus of rigidity, 9
i 1% the coeféicient of friction,_
gx,—gy are t?e'longitudinal and lateral créépégé a
and - ,
: ¢,‘Wl are functions of the ratio % and Poisson's

ratio v. Their values can be obtained from

- ) }\
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Figure 2 in reference [10] or from the table

on page 208 of reference [B81].

For small values of tangential forces (Tx;Ty)
compared with the limiting friction force uN, the creep

relations (4.21) and (4.22) become {81]:

Ex = _ Gﬂab Tx - (4.23)
w .

£ =~ —*_ ¢ (4.24).

Y Grab "y T

To get the longitudinal creep coefficient we use

equation (4.23) knowing that

X 1 ®x .
hence \
_ Gmab
fl = = ‘ (4.25)
similarly
£, = Grah- (4.26)
Yl _

A correction factor is usually used in conjunction
with the values f fl’ f2 given by equatiogé (4.25}) and
(4.26) respectively to account for the discrepency in the’

SN

experimental and analytical results as suggested in : N '
for)

reference [81}.

For the determination of the creep coefficients
relating spin with' transverse tangential force and moment

about the spin'axis, Johnson [8] considered the problem of

B ‘ - :
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the effect of Spiijupon the rolling motion of gnkeiastic

sphere on a‘plane. ‘Johnson feports agreement between his

theory and quantgfative neasurements over a wide range of
]creep. Equations {26} and (27)“in rererence [9] express

thé following relations

_ 2 {2 - ) o
. Ey =3 (3= © EY (4.27)
and _
__ 32 (2 - v) . -
. . Mz = 5 (3 = 2) G ¢ EY (4.28)

~

where ¢ is the radius of the,diécular"contact'area. For
an‘elliptical areé of contact.c can be épp;oximated to be
Yab where a and b are the semi-axes for the ellipse. For
the area of contact between wheel and rail, the ratio.of

- the two axes of the ellipse-is nearly unity, and therefore

eguations (4.27) and (4.28) are considefed to be gquite

satisfactory. o .

The creep coefficient :elating the creép torque to

the spin is from equation (4.28)

32 (2 ~ V) .
f3 =93 5 G c , (4.29)

The cqupled creep coefficient is défined by

‘ lateral force = - f23 §Y (4.30)

but the lateral force is also given by

lateral force = - f, £y _ (4.31)
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Using equation-(4.27), (4.30) and (4.31), one finds the.
relaticn between_fz_and f23. _ . ’
2 (2 - v) - y -
£ = =
£53 T3 - 2v)° f2 .469%¢c f2 ' (4.32)

It should be noted that the choiwe of the reference
‘coordinates for tﬁe fall model of the railway vehicle on
rigid tr;zﬁuénd for thg coﬁéledlvehicle/track model was
such that the expressiohs derived in both cases for the
- longitudinal ané lateral c;eepages and spin are identical.
Theregfore the corresponding expressions for the cfeep
'fdrces and mdments acting‘bn the wheelsets are the same
in both cases. For the gravity forées, the expressions

.

are «different.

4.2.3 Lumped Parameter Model of Track

The simulation of the track for the coupled vehicle/
track dynamics, involves the representation of the € |
infinitely lpng sgruéture by an equivalent lumped parameter
system composéd of discrete masses, springs and dampers.
This 1s possible hecause it was found tha; the velocity
effecﬁs on the dynamic)respoﬁse of the track can be
negiected. In this representatiog,-ﬁhe vertical elasticity
of the track is considered by including a lumped parameter
system oﬁ an éffective‘lumped stiffness K and énleffective

mass m,. The error involved in this approximation isg

negligible especially for low frequencies in comparison
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with the fundamental typs of free wvibration of the rail cn

en elastic foundation. This freguency can bz celculated

i

Bl in a very s.iple nanner by taking into consideration 'the
- - - - 9, . - - -
g fact that the fundamental type of vibration consists of

an cscillation of the rail as an absolutely rigid body in

the vertical directiorn. N
7 K
.o @q =,/:,.\ (4.33)

v

This can _also be obtained from the equation giving ths natural

P

frequencies ¢f a finite beam of length & on an elastic

foundation [82]
L

by o= AL (50 sy (4.34)
L.,j = o 3 - 1 . ) e
* as L tends te infinity ; '
- 2 ET - 3
where a“ = —=
.
kot
VTR e
. . i ' .. «th -
and @j 1s the natural frequency for the j mode of

~

vibration

-'Equation (4.33) can also be rewritten to give the

frequency in hertz: P
) : = L 1 E- :
fO T2+ wO T2t Y nm _(4'35)

For typical physical'parameters for the conventional track

f0 is found to be approximately 62 hertz.
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If Qe 1s the efiective lencth of rail which will
give an effective lumped mass Mg corresponding to the
natural frequency of the distributed system, the value of

Qe and m, can be determinéd by writing eguaticn (4.35) in

kK & lle. .-; 1}2 _
278y = |- Re N 53 | (4.36)

For an infiﬁite beam on elastic foundation [51]:

the form

%e = FT0T - ) (4.37)
gpere y(0) 1is the deflection ©f the beam under the load P
énd
- w = (4—;—1-) v (4.38)
which gives the lumped systeﬁ parametef
o= 2/ | (4.39)

The damping Ce is calculated as for a 'single degree
of freedom system given‘a certain percentage. Meacham
[65,66] showed that both the damping and the mass of the
track structure can be neélected so long as the frequencies
are less than.0.3 f0 with little loss of accuracy in the

dynamic deflections. In the present analysis however,

these effects are included.

—~
— - -
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N

»= Bguitions of Motion

, .
o

T dzrivation of the eguations cf motion for alig‘

i . c
nasses cewcepl the wheelsebts 1s quite straight forwaxd.

Foer the wheslsets, in addition to the active forces due to'
the sug ension system and the inertia forces, the creep
forces ol gravity forces have to be included. , FQr wheel-

set numbz2r 1, the equations are:

{1} Longitudinalkf Motor/Wheelset:

(mc + md)adl“+ (igi)ﬁdl + (2220)éd1
‘ +'(RA1) = 0 (4.4?)
_(ii);Vertical —'Track/Wheélset: -
(mg + m )Wy £ L-2Kglw  + (2K + K _wy,

o

T2, Kg) B+ (=Cyy=Coglwp

o {Cy gt pFClwWay + R (CygHCig) by
o - (Rwl) = 0 (4.41)
(iii) Pitch - Wheelset: \
20 . f 202 £
. 20%1, - 2051, -
TagPar ¥ (g —ug * (5184, = 0 (4.42)
{i1v) Lateral - Wheelset:
. 2f 20, f
- 2, - 2052, .
MaVay * (2f)vgy + (gFlvgy + (-—g—ag,
2f 2€V
23 - di
tolg= gy PN (B h - ag)
18 N
. N
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R - N (80 - -'_qu + G'.del) + (PBl)

0 (4.43)

Il

o+ (va)

But '2€v 2ev g

er (80 + ——"l

g1 (Bg'~ =3 %3e1!
can be rewritten as:

(Npy = Ngy) 8 + Ny + Wpy) (== agy)

However (er + Nil)

rewritten as:

= W and equation (4.43) can be

2f 28, F

. 2 . . 20 2
maVayp * (2f)vgy + (gl + (-5 —Slay,

2f, 4

2We
5 a1

118

+ + Yv + (-W)a

dl del.

+ (N + (RB.)

1)t (RVl)‘= 0 (4.44)

rr ~ V1’8

2We
18

where the quantity N is the so called lateral gravita-

tional stiffness.

(v} Roll - Motor/Wheelset:

(Ica+1du)adl + (= 2R17 o) Opy * (2L15Kglagy
f [£2g(-C, ,-C 18)]&br + [834(Cy,+C gdagy
t (289050 +(":i%g:f"z)ﬂ‘."dll
. (22§0f2 i . 2222f23) i
+ (f%§ = nvgy) N4 - (f%g N vgy) Nyy
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+ £ (9 - — YN ) (B :
2070 9'18 “del’ L1 '20 0‘ 2.1

N =0

- @ rl

del
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Combining the terms in‘er and N as done before we get

. 21 ‘ ]

'(I +I

catlag) @1 T (-22]

+ (222 Yo

17%9) %pr 17%¢7 %41

-k

2 4 _ N 2.
t (2] (-Cy=Cighlay, + [214(Cy4*C
2”'20f2)V

5 Va1

\
(20t Yar * LS

. %ﬁzo 2,5 (_222of23)- j
o : —§ % * 5 Y41
20 =W

+ (-n¥W + v + (2 W)cc

del

3 ) )
+ (—l§ 2. 5) N . -N..) =9

p !

(vi) Yaw - Wheelset;

9. Af ‘ 2f
18°f1 - |
__I;a_)vdl * (2f32)Td1 +

.s 32 -
IayYar ¥ s Var
2
. (_2220f32)& (E18f1‘+ 2f3)-
S al 25 7§ Va1
2ev 2.4
al 18
Pt Tt 3 Pla
e
eV
al 18 ‘
Tlq %ge1’ 2 NrilYar

+

+ [—(80 +

|
o

-
+ (RM,) + (Ry;)

Substitutiﬂ%Zf?f:ék, # N_; = W and neglecting (N,
™~

Evdl
Y18

, equation (4.47) becomes:

18’ 1%a71-

(4.46\)

" Ny

(4.47)
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L. AE e %
5 18 "1 " - W—i8g
TayYar * g7 War * Bra2 7 W5 So'var
L2
. i +.t_2120f32)&| . st o
s Va1 S ar* T
28, . '
' (4.48)
2

where —-%EBOW is. the yaw‘gravitaﬁional stiffness which

- ' . v
is a negative stiffness that acts to further displace the.

wheelset.

(vii) Roll - Track/Motor/Wheelset:

/'—‘/
+ (=24%_K.)

‘ 1
(I +T. + 17%g

— 2 -. —_
cotTaetT FlgMe! ®ger * TV

ai Shy P

- re? - _ :
Tl l=CyymCrg) topy
‘ . 2 = 2 1 - —
< | + [219(C1%Crg) * 5 £15%1% 061 T ° >> (4.49)

o~ >
I 2

! The other wheelsets have similar eq ghioq% of

-~ -~
———

7

motion. Cpmb%Fing these equéti%ps for the wheel¥éts with
the equétions for the other masses of the system, we get
all . the equations of ﬁotion‘which ;gé given in detail }n
Appendix (grh In that Appendix the érocess of elimination
of internal reéctions and the transformation of thé
“equations to th& generalized coordinates éystem are

«

described in detail.

Because of the symmetry: the equations describing

the lateral motions of the system (these include the
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léteral displacement: (v}, the roll (a) and thélyéw (y))
are'upcoupied from the eguations of motion <i the |
longitudinal mgdés (lengitudinal (u), vexrtical (w); and"
pitch (8) displacements). g

The equations of motion for the lateral vibrations

e

are given in part (B.l) of Appéndix (B) and those for the

longitudinal vibrations in part (B.2) of the same appendix.

The equations in the generalized coordinates have the _

general form : ) . A o
M3 {x} + {cl{x} + (K]{x} = {0} (4.50)

wheré [M] is the 'mass matrix
: &
[C] is the damping matrix . .

[K] i1s the stiffness matr;x

and {x} is the %ector of the independent displacements.

For -the lateral vibration of the couplea vehicle/

_ 3 . '
track model equation (4.50) 1is a 15 by 15 mitrix equation.
"For the longitudinal vibration of the same odel equation

(4.50) répresents‘a 27 by 27 matrix %éﬁgzgoh. Because of
the introduction of the noq—consefvative‘creep forces and
gravity forces, the mass, stiffness and déﬁping matrices
are not symmetric.
The equatio?sfwere derived for the coupled vehicle/
. track model. The equatlons of motion for the model of the
N

vehicle on rigid track can be obtained if all the terms

in wdj and adej (3 = 1,...,6), 1in the given equations,

/

J
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are neglected, i.e., by eliminating the rows and columns

ih the matrix equations, corresponding to these zero

displacement. s -

L] = -

4.3 Solutions and Results

4.3.1\\*Xnamic Stability

L]

lhe dynamic stablllty of the rallway vehicle
model 1is 1nvestlgated by studying the character of the

solutlons, more prec1sely by studying the roots of the

characteristic equation associated with the equations of

motion of the system.
. b

The Creep forces are of fundamental importance in

+ the dynamic stability analysis of railway'vehicles. Creep

"

" can modify the transient response of a railway vehicle

appreciabiy. At high speeds the system is aynamically
upstablgg and so th&re is a critical speed" dependent upon
the elastlc restorlng forces, damplng in the system, the
creep forces and- the grav1ty forces. Motlons at speeds

above the critical sgeeﬁﬁg;e limited by the wheel flanges

and slippin

at the treads. . )

a multi—degiee of freedom system ‘studying the
€3

character/ of the solutlon leads to. an elgenvalue problem

The solutlon of the elgenvalue problem in the presence of

damping in\the system results in complex conjugate
TN ¥

eigenvalues with negativegreal part for all roots ifu.the

=
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" Now let:@
X . .
{v} = ¢-- (4.52)
X N
and ’ .
G = .-__'0____|__ _[Ii_, , (4.53)
T —[M 7Y} [K] - M)

- . o 129°

system is stable. The dynamic stability is then
- ‘ ] » ' ! L,
investigated using root-locus plots. '

First it is réqﬁired,to transform the equations

» . 7 [
governing -the lateral motion of the system to a standard

form, required foxr the computatfﬁns of the charactertistic

roots. 'The procedure used is to transform the n second
order differential equatioﬁs intg 2n first order
differential equations. The n second order differential
equations governing the lateral mo£ions of the syétem,
are.given in their general form by the matrix equation
(f.SO)._ Equation (4.50) éan'be rewritten in the

following form:

(x] "2 o T o x

D (- Em = s e = o= =g - (4.51)
x | - IIKY - lel || x

g -~

where all the quantities in eguation (4.51) are-submatricés

except D which is the differential operator; and x is the- -~

vector of displacements.

!

- Substituting from equaﬁion (4.52) and (4.53), egquation

(4.51) becomes:

%
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~
BT T R T S " (4.54)
Assume a solution inithe form - ?
e {0} (restl .  (4.59)
énd substitﬁte in equation (4.54}, ge%ting
s (1) = 16 {r} (4.56)
1 ‘ kms (1] - 16]) {T}=0 (4.57)

-
-

which is the aMQ;;:aic eigenvalue problem. The matrix
[G] . is a 2n X 2h7hatrix with rezal ceoefficients. The roots
of [G) are the eigenvalues and may be obtained. numerically

using a computer library subroutine. The solutions are

complex in the form: ~~

s.jé“y. t Iwgs _ . | (4.?8)

for the jth root,

=

where p. is'thq real part of the root and is equal zero
for zero damping associated with the j{Eh root

‘and g5 is the damped natural frequéncy.-

Fromrequatioﬂs {4.55) agﬁkif.ss) it is found that -

|
H

a general element of the vector v j}'

& i

—_— ‘ . uj l - .
i Uj = A e \zii;yéjtl+ W) o {(4.59)

(“\
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Motions of the vehicle sytmetric about the

longitudinal plane Qf symme%ry are excited by veitical
track irreqularities, while transverse motions are

excited by lateral track- irregularities and cross-level,
The sinusoidal track irreqularities are in particular
worth considering because power spectra and auto- .
correlatioﬁafhhctions'bbtained from field neasurements
indicate the existence of periodic functions [35]). Periodic

excitation of vertical vehicle oscillations results also

from evenly spaced rail joints or rail welds.

Vhen the railway vehicle tis moﬁing on the track,
the generalized displacements of the wheelsets are governed
by tne laws of creep and ?he dynamics of ths full system.
The system of linear differéntial equation ¢f motion may
be expressed in the following form:
[[]{%} + [T1{x} + [K)1{x} = Y0, %) + Flv,¥,¥)  (4.60)

.

where Y (x,x) represents the constraint imposed by the
track (due to creer proécess, mutual wheel/rail
C - {

geometry, gravity stiffness effects and the

forward speed)

F(y,y.¥) is the forcing function due‘to.rail‘
irregularities. For a perfectly straight .track

4

F would. simply be a zero vector.

The force ¥ depends on the instantaneously prevailing
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values cg x and x. In the lin&ar case, the Zfunction

Y (x,%) may be expressed in the form:

Y i) = - (IC1{x} + [K'1{xD) (4.61)

where the squ;re matrices ¢' and K' are determimed by the
process of creepaée, the mutual wheel/rail geometry and
by the forward speed S of the railway vehicle. XK' and C'
are not symmetric, equation (4.60) tan be rewritten in

the form:

[M]{X} + [Cl{x} + [K]{x} = {F} (4.62)

The L.H.S. of equation (4.62) 1is the same as for equation'

(4.50) .

In the present analysis the forcing function

F(y,v,¥) has the form

Fly,v,¥)= ~ [MI{¥} - [C1{y} - [K}iy} (4.63)

where {y} is the vector of known displééements due to

rail irregularities. To détermine this forcing function,
We must go back to the original equations of motion up to
the-point where ;reep fo;ces and gravity forces are
introduced. These are valid for any_displacements whether
free or induced. Agsume that all displacements have the
general~§bngﬁ

X = X_ + X. (4.64)

where X is the displacement relative to the track due to

creep s
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All- displacenents #; ars zZeros except for the
variables describing the noltion of the wheelsets and for
re

the frames in the lateral and yaw directions. The rolliing

1

. otion of the wheelsets relative to ;he track [adjij=l,.;.6)]

are not independent variables, but they do exist implicitly
in the eqguatlons dua to the lateral displacement of the

vheelsets and the nutual wheel/rall geometry.

-

Because it is assumed that in normal running
.conditlons the wheels are following the rails in the

vertical direction and that there is fo creep in this

direction, the. following additional constraints are

vy
ik

osed:

;.4.

'(4

a} TFor the case of the rigid track
The relative displacement o7 the wheels in the
vurtlcal direcction is zero (xr=0), it follews that

W = 0 (jél,..;,G), and rows and columns corresponding

d]

to these variables should . be deleted reducing the number

-0f degrees of freedom of the system by 6.

The induced vertical displacements of the wheels

are due to the vertical track irregularities, i.e.,

X, = g(t) . (4.65)

where e({t) 1is an error function due to track irregularities.

-\

Y
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f

b) For

rr

gé case of the flexible track,
The displécement ©of the wheels in the vertical

~direction is due to the vertical displacement of the

track énd track irregularities which are represented by -

an input time function e(t) correspondinc to spatial

variation and train speed so that
W = ‘ . -
Wit = wWalt) + e(t) | ’ (4.66) |
where W is the vertical displacement of the wheelset

Wd is the vertical displacement of the track
Y

The steady state solutions are obtained using the
generalized method of complex algebra. The use of this

method simplifies the procedure for solving the system of

differential-equatiens. For forced vibraEion of a linear
generel nmulti-degree of freeaom system where the impressed .
force is harmonic, the steady state vibrations are also |
harmonic with the same frequency. In the presence of
damping in the system, phase differences between the
resulting ;etions and the input excitation exist. Hence

we solve the system of differential equations given by

the matrix eguation (4.62), where F is a vector representing
the forcing.function

1Qt

{F} = {F} e (4.67)

‘where F is the vector representing the complex amplitude

of the input.
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and 0 is the forcing freguency.

Equation (4.62) can 'be solved by assuming the
solution in the form
(x} = (%) ™ ' " (4.68)

where X is the vector representing the amplitude of the

response in complex form. v

Equations (4.62), {4.67) and (4.68) lead to the

equation
(k-0 + ipcl{X) = {F) (4.69)

‘Where tha quantity in square brackets is a
square matrix whose elements are complex. If this square
matrix is denoted by Z, and provided that 2 is nonsingular,

+he solution of (4.62) will be:

(X} = {z“]if} (4.70)\ 5.

f

1t should be noted that the derivation was done‘/Jﬁ/”J/

fo; a multi-degree of freedom system related to an )
arbitrary set of periodic forces all having the same
frequency.w If the system is acted upon by forces of

© different frequenc1es then the resultant displacement
vector will be the sum of the displacement vectors duefto
the forces at each frequency taking one frequency at a

time.

The method outlined provides a systematic way of
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finding the displacements due to an applied set of forces
with or without damping. For a'system having a large
number of degrees of freedom, the method is ideally

-

suitable for solution on a digital computer.

/The steady state response:of the vehicle components
to varying input frequencies is compuéed and cémputer
plotted in each case. The input frequency, which is a
function of the wave length of ﬁhe irregularities and the
vehicle forward speed, is ikcreased from zero to 8 hert:z
corresponding to a for&ard'speed of épprpximately 200 mph.
Typical results for the response obtained for the cases

of rigid and flexible tracks are shown in Figures 4.5 to

L3

4.11. Figures 4.5 to 4.7 show the response curves

.

obtained for the body in longitudinal vertical and pitch

: displacements respectively. Figure 4.8jéhow the response
curves obtain%d fof the vertical amplitude of dispiagements
for the rear_f;ame;' Figure 4.9 gives the response of the
front frame in pitch motion. Figures 4.10 and 4.11 show

the response curves for the pitch mode of oscillation of

the motor and wheelset number 3 respectively.

-

The results show that track elasticity has an
appréciable effect on the vibration of the motors and the
wheelsets esﬁetially at high frequencies. More specifically
track elasticity has little.éffect on the dynamic.dispiéce—

ments of the car body in the vertical and pitch
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displacements, the effect is negligible‘for low
frequencies: For the vibrationé of the body in the
longitudinal mode, the effect ‘is more app:éciable at high
frequencies. The effect of the élasticity o{ the track
on the dynamic displacements of the frames is shown in
Figurés 4.8 and 4.9. The eﬁfect on the vertical displace-
ment is nég;igible especlally a£ lower frqugncies, for
the pitch displacement the effect is more agéreciable
especially near higher re#onant responses. The effect of
track elasticity on the vibrations of the motors ahd the
wheelsets is shown to be appreciable especiélly-gt higher

frequencies.

Figure 4.12 illustrates the frequency response
curve - for the vertical displacenent of the track/wheelset

no. 3: Other wheelsets have similar responses.

The results presented show tﬂat track elasticity
results, in general, in higher dyn&m}c displacements for
the vehiafe components. For the motors, wheelsets and
pitch of frames the effect is significant especially on
peak responses at high frequencies. In all cases the
track elasticity does not generally affect the shape of
the response curves except fgr the vertical displacement

. of the wheelsets where the response for the case of rigid

track is zero.

It is recommended that the elasticity of the track
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bé" included in the dynamic response analyses cf railway
N . ° \

vehicles to track irregularities especially for propased

high speed systems.

4.3.3 Minimization of Response to Track Irregularities

The minimization of the response of railway vehicles
due to trapk irregularitieé_is a topic which received
little attention in the literature until recently. In the
last feﬁ years a great deal of ffort has been devoted to
tryingrto improve the riding qualities of railway vehicles.
The aim is to achieve maximum speed and comfort on
existing tracks. The objectives of maximizing éhe speed
while minimizing the response of vehicle components to
e;:;omically attractive track irqggulariéies have a1way§
‘conflicted to various degrees. The aim is to design an
optimun suspensibn system capable of attenuating the

vibrations at passenger positions while still maintaining

an adequate margin of dynamic stability.

In most of the research work published in this
area so far, attempts have been made to find rear
optimum designs. The optimization process is carriéd
either in the time domain [42] or in the.ffequency domain
[44]. The advantage of the solution in theﬂfrequency
éomain is that the minimization is carried out for all

frequencies within the range of interest. References [43,

44, 43] report some of the research work directed toward

-
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the minimization of the vibrations transmitted due fQ rail
irregulari%ies. In these.studieslno rigid body pitéh motion
of the c&f is.allgwed and consequently out of phase

vertical inéuts to f}ont and rear suspensions could not

be considered. The general objective of the optimization

is to minimize the acceleration of chosen points on.thé
railway car within the frequency domain of }nterest.

Usually, designers used a sensitivity analysis approach to

the problem.

A sensitivity analysis is a procedurelba§ed on
trial and error. If the responses dolnot fall withip
prescribed limits, theidesigner changes the configuration

or the elements Of the system and the analysis is

repeated. This process is time consuming and leaves doubts
in the designers mind as to what alternative trials should
be terminated. Because a oreat deal of interaction between
the suspension elements exists, the prediction of the
contribution of each suspension element cqnsidered

separately 1is quite difficult.

In this research a methOd;for the minimization of
the response to track irregularities based.on a minimax
principle and mathematical ﬁrogramming techniques is
suggested. Tﬁé objective o% ﬁhe optimization is to
minimize the lateral acceleration transfer furiction at the

cab. A simplified model of the locomotive on rigid track

/

{
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is used for thg illustration of the proposed methcd. The
simplification is made by assumifig that the primary sus~
pension and creep forcés have little effect on the lateral
vibrations of the body. ft is known that the response of
a dynamic system such as a railway vehicle can be
minimized by choosing certain, optimum, values of the

damping and stiff@ess elements in the system.

In any optimization problem, certain parameters

" called the design variables, the suspension parameters in

. o .

the prgsent cCase, are to be found. The optimum parameters
A .

oktimize (mini@izer a certain objective function,. satisfy

equations Qh%ch describe the behaviour of the system

N .
t the same 'time satisfy certain desiqn constraints.

The objecti&é\of the optimization is to minimize
the maximum lateral aé\eleration at the cab, within the
frequency domain of irnterest. For'an n decree of freedom
system, it is well known that the response or acceleration
transfer function f has n of fewer maxima in Q(”the
number of maxima dependiny on the damping in the system;
for small enough aamping there a;é‘exactly.n maxima. The
frequencies of these maxima corres;qnd to the damped
natural frequencies of the system. ﬁy solving the
eigenvalue problem,'the damped nafural'frequencies can be

obtained as given in equation (4.58):

(3 = 1,...,n)
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where Sj are the complex conjugate eigenvalues. -

A maximum is.suppressed at the damping value for which two

values of the real part of the roots coalesce.

If the daméed;natural fregquencies mdj are inserted
into the transfer function £, the respohse maxima are
obtalned as functlons of ‘the 1ndependent design variables
(x)only, where f is a real-valued functlon of the real
variable © and Ny n2f"'”nr are the r stiffness and‘
damping luriped parameters to be optimized. The notation

X is used to represent the r component vector of the

independant Q%sign Qariables}° The jth reésponse maximum is

L -+ i > -+
fj {x) =if (udj (<), %) (4.71)

-
.For each value of x there are n or fewer fj' these are

defined for all X values for which wdj are defined.

The frequency interval of interest may be infinite
or finite, in most practical cases it is finite, in any

case, Q2 and Qu denote the , lower and upper bounds on the

frequency intexrval respectively. Qi may be zero or . finite

and Qu may be infinite or finite.

Let: .
. £ {x)

£ (0, X
(4.72)

-

£ (Qu, X}

il

£, (%)

The reason for including the functions evaluated at the
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limits of the frequency interval of interest is that in
case all resonances are suppressed in the intexval, the

s + u” - - 2
optimum parameters vector X will be the vector toO minimlze

equation (4.72). _Iﬁ is useful to note that some resonant

responses may reappear for large values of damping.

The set of response maxima functions is takén as
the set £, from equation (4.71) together with £, and f_

from equations (4.72), hence

r

(£ (%)}
{fk Gh} = { £, (%) . (4.73)

\ fu (x)

Equation (4.73) defines at most n+2 functions and
no fewer than 2. For each given design variables, values
of % in the first orthant, one of the elerents of the
vector f; will be Fhe largest. The objective function-is

defined as the maximum of the response maxima, i.e.,

U (%) = max (f

() } o (4.74)
x K »

U is a well-defined positive. function in the
first -orthant of % space. It can be shown that U is a
continuous function everywhere excep' at corners of the

first orthant -which represent zero dampinc in the system,

where U is infinite. The optimum stiffness and damping
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parameters Xone '8 definzd as the vector which minimizes
il

the objective function U:

U (SEO ) = min U (X) = min max {F, (%)) O (4.75)

Pt N k
f—’\—/ ~ : Xk

The response corrgsponding to Xt is defined as
A .
the minimax response for the given function f and frequency

D b = 0~ 1
lilcerval i to O .

2 u
To find the optimum paraneters vbutor x opt the
-minimax pr1nc1p1 togethar with.mathematical Proyramning
techniques are used. Thé design constraints, which are
bounds on the design variables, and the optimization
technigques used for the sclution of this problem are

discussed in detail in [83].

The response to lateral track irregularities and
the lateral acceleration transfer function at the cab is‘
computed for varying input frequencies. The input
fregquency is increased from zero to 3 cycles per second
.which corresponds toka forward speed of 150 mph for the
known ’TV/’ ength of lateral track lrregularities. The
cab 1aé/ral acceleration ;efore optimization is given in

Figure 4.13. The maxinun lateral acceleration'at the cab

Wiuhln the frequency range of 1nterest is very 1ﬁrqc.

The values of the existing suspension were used

to start the search for the minimax response of the system.
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.In all cases the constralnts were satlsfled and the same

optimum solution was found. . ’ ‘

B
S

. ' 155

The procedure was repeated for different starting po;nts.
[*)

The acceleration after optimization is given.in

Eigure'4.l4. It is’ shown that the peak acceleration

dropped from 714.8 in/séc2 to 56.2 in/sec? after o
optimization,: which is a great improvement. It wé; also
found that the maximum latéral displacement at the cab |

was 11 in. and 1.3 in. before and after -optimization as

shown in Figures 4.15 and 4.16 respectively. These

resul£; correspond to an amplitude of lat;ral irreqgularities
of 0.25 inches.' A check on the dynamic stability of the
locomotive was also made:' Figure_i.l? shows the velocity
root locus éuf%es before and after optimization. The
results indicate a small dro? in the value of the critical’

speed, but the stability is maintained throughout the

range of interest,

Figure 4.18 illustrates three dimensional computer
plots for the objéctiveqfunction with .and without the

constraints versus the two most lmportant parameters K2 and

i'
"\

Ky., It &s 1nterest1ng £b note that an absolute optimizatioh
~

of such system, i.e., without any bounds on . the design

variables, tends to assume a value of zero for the

stiffnesses involved. For these values the natural

fregquencies of the system zero and the lateral cab
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acceleration Vvanishes., This is however a trivial solution.
For the practical case where the design constraints are
introduced, the optimum soluticn is found at the

intersection .of the constraining surfaces.

LN

w




CHAPTER 5

SUMMARY AND CONCLUDING REMARKS e

The primcipal factors limiting the speed of trains
are related. to the dynamic characteristics of both the
railway vehicles and the tracks. o0ne of thesejfaqﬁors is
the sustained lateral oscillations experienced by railway
vehlcles when the speed is increased. For safe operation,
the speed at which this hunting 1nstab111ty occurs should be
greater than the operating speed. ihen this is achleved,
the vibration of the railway vehicle domponents is
determine? by track geometry. The res@qnse to track
irregularities can result in passenger discomfort, in the
case of passenger trains, or in damage to freight car |
coneents. Another main cause for liniting the speed of
trains is the railwey track which conceptually did not
change for more than a century. As' the speeds and loads
increased the length of the rails inereased, with the —

v
-ellnlnatlon of all 301nts by, welding ther as a flnal goal,
the ‘tie Cross section increased ang the‘tle ‘Spacing
decreased At the present time an intensifieg research
effort is devoted to the desigﬁ and testing of new track
structures including the possibility of eliminating the tie

spac1ng altogethér by using, instead of discrete ties, a

continuous bed. RS
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In this thesis, the dynamic response of the
railway ﬁracklmpdelled as a cgn&inuously supported beam on
a Kelvin type foundation and subjectedito an axial force
and a moving l?ad is studieé. The transient and steady
state solutioni)are founq;for the general case including
all linear effects. for the transieﬁt response in the
case of a general load, the resulting integral solutiéns

are, in general, very difficult toevaluate in a closed

tained for some

form. Closed form soluﬁions we
spééial cases of interest, but for other cases, a numericél
approach had to be used; ana a'digital.computer program

Qas developed'for the solﬁtio.

in the cgeneral case of

A
loéalng.

The results sho& that the presence of damping,
results in an unsymmetric dynamic deflection'bf the rail.
Due to phase shift the point of largest deflection occurs
slightly behind the point of appiicafion of the moving
load, and the deflection ahead of the pqi?t of maximum
deflection is always larger than the deflection behind it.
As .the damping increases,-the amplitude of the maximum
deflection decreases and the phase shift increases.  When
.no damping is present, the dynamic deflection profile is
sjmmetric about-the line of action of the load. _The
presence of an axial compression force in the rail ;S

Vg
shown to result in a larger amplitude of resﬁﬁﬁgé to the

~
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moving load compared to the case of no axial force and the
frequency of the deflection wave 1s higher. In contrast, . ~
. when a tension force exists, the maximum deflection 1is

smaller than the one obtained for no_éxial force and the
frequency'of the deflectlon wava is lower In the presence

of damping the amplitude of the deflectlon p:bfile ahead

is always larger and the frequency of the wave is larger

than the amplitude and freguency, respectively, beh;nd the
point of maximum deflectigﬁ. The results also show that

an increase in the dynamic deflection due to an increase

in the velocity of the moving load is quite small.

Dynamfc coupling occurs between a railway vehicle
and the track due to therreactlon forces acting between
the wheels and the track, and the elasticity of the track
and.the foundation. An analysis for the coupled dynamics
of the railway vehicle and the track with particular
reference to the lateral stability and the response to
vertical E;EE?*irregularities is presented. The.modei used.
fér the vehicle is that of 2 six axle locomotive of the
type commonly used in North America. Wheel tread and rail
héad profile parameters, gravity foxces and creep forces

are included in the equations.-of motion. The results

obtained show that an increase in track elasticity causes
a very small increase in the speed at which hunting occurs,

but the vehicle is inherently more stable. The increase

in track elasticity results in a larger amplitude of
oo n
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response to track irregularities. In general, the effect
is small for low;forcing frequencies but becomes more

-w%ppreciable as the forcing frequency is increased.

(’ . A method for the minimization of the vibrations
transmittéd due to track irregularities using the minimax
principle and mathematical programming.tecﬁniques is
suggested. The method is demonstrated by considering ﬁhe
minimization of the acc;leration resanse ét the cab

within the frequency range of interest.

The analysis of the continuously.supported\track
subjected to moving loads was-tQne to provide a fundamental
understanding for the simultgcebs effects of dampinvj in
the track and the foundation, an axial force in the rail
and the velocity of the moving load on the dynamic deflection
of the track. As the tendency ié towards highér loads and
speeds; the forces éxerted by the wheels may cause
excessive dynamic deflections of the track. It is therefore
of interest to know how these forces wili affect the
d¥namic deflection_or if they will cause permanent
deformation of the track. An instance of a situation
where such knowledge is important is when it is necessary
to choose between various designs for railway vehicles
transmitting to the track forces having different

characteristics. The results obtained'are also relevant

to present studies of the temperature effects on the



dynamic response anéd buckling of the continuously welded
rails. The negligible effect of the velocity of the
moving load on the dynamic deflection is a result of
particular iﬁportance. This suggested that it is not
necessary to consider the w;ﬁe type expression to study
the effeét of track elasticity on the dynamics of railway"
vehicles. For this reason, the modelling of thé.track for
the coupled vehicle/track dynamics involves the
‘repre%entation of the infinitely long structure by a

dynamically equivalent lumped parameter model composed of

discrete masses, ‘springs and dampers.

In the analysis of thé dynamics of the railway

vehicle, the difference in the predicted critical speeds

- for a vehicle running on a fiexible track and on rigid

track wés;found to be very small. Tﬁis suggests that for
the study of the lateral stability of a railway vehicle
the assumption of a rigid tr;gkAis adequate. For the
response to track ir: qularities, however, this assumption

is inadequate for high forcing frequencies.

i)

The analyses and digital computer simulations are
viewed as analytical tools far studying the effect(éf

changing the vehlcle and)or track parameters on the dynamic

response of both the vehicle and the track. It follows

that, in addition to the results and conclusions reached in

this research, one of the most important contributions is
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¥

that technigues which can be used in the assessment of the
dynamic behaviour of new designs of railway vehicles and

tracks, have been developed. ~
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APPENDIX (A)
DERIVATION OF SOLUTION FOR THE RESPONSE OF THE

TRACK TO>GENE'RAL AND CONSTANT VELOCITY MOVING LOAD

Lt

A,l Solution for a General Load

Consider the solution of the partial differential

equation
EI 'y + ﬁ 3%y . oty + é 31\4 k ¥/01x“t)
S T e T Y T AT |
/ : . e . _ (A.1.1)
- : - @ ¢ ¥ € = t->‘0 '
subject to: “L . 7
(i)  the_initial conditions
“1 . .
y(x,0) = £(x)
Iy i{x,0) _ _
3E g(x)
and

(ii). the boundary conditions
N .

Sy (x,t) S — 0 ; )
|x] + = ’
. L (A.1.3)
n
3 y(x,t) 5 0 L2 '
oX |X| + . J
176 N
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Fourier and Laplace transforms are used to solve

equation (A.1.1) subject to the initial and boundary -

conditiong given by'(A.l.Z) and (A.l1.3), respectively. .
. v ; N . >—~.__._\ !
Note that the second term of eguation (A.1l.1) could

y -
ﬁrq;/// be positive or negative. It is positive if the load is
. i \

compressive and negative if thé%load is tensile. For

definiteness, assume that in_this case the load-is tensile
and of its magnitude equal:B:;\ﬁg\ ) '

-

Also let

. : _ "~
PSR o [E(x); o] = Fle) = F .

)[g(x)'; al = Gla) = _’c‘;—

Loy (x,t); x-m] = Y(a,ti '

L [é"(X-,t); x+a] = Q{u,t}) = Q

. ) \ . . o
},.[%_3;'_@; X"’U.] = - 0-2 Y{a,p) = - C!'.2 v
. ) L [Eigi%LEl; x+a] = o Y{a,t) = a* ¥ N
. = <

Y

Know@ng*that E, I, N, m, ¢ and k are constants, the

‘%

‘Fourier transform for both sides of equation (A.l.l) gives:

(ET o + N o? + k)Y (a,t), ‘e Bgéu,t)
- . L | __’
+m 22D <oce, b (a.1.4)
at. ,‘
Let . . ) | )
_7( [¥Y(a,t); t+p]l = ¥(a,p) = Y )
‘([Q(O‘.{t)‘; top] = 6.(,1'?)"‘5 a ) b | .

AN

K e e e . . e ————
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/-/f' 2
. _ f\‘/[%.égii); top] - p Y(u,p) - Y{a,0) - e
= p ¥ - F
-p aZY . ' . _ , . .o
<[ a—'—é(:lt); _t':P] = p2. Y(a',p) - P Y{a,0) - ¥Y'(a,0)

3

p? ¥ - pF -G

‘The transformed form of equation {A.l.l) becomes

- (BT at + N o + 1Y + ¢ (p¥5F) ¥ m (p?Y-pF-G) = 8 (A.1.5)

.

3

The capitalization of the respective letters
implies the Fourier transformation and the cverbar indicates

the Laplace transformation. -

-The transformed egquation (A.i,S)-can’be writteh as:

—_——

{c.+ mp) F +m¢@G f.a

Y(a,p) = (A.1.6) "
( '3) EI o + N o> ¥+ k + cp + m p?
© . If we let -
_.c . _EI - _ N
T ' & T b= 3%T
A2 = w? - 7?2 - a’pb? and w2 Lk ;
. 0 0 m

&

.Equation (A.l1.6) can be written in a more suitable form as

Iz

Y(o,p) =.(p+é)r n az(i7+bIT'+ TTL(CF+G) + (p4§)F4% Q]
(A.1.7)

The inversion and convolution theorems for Laplace
N -

transforms [68] are used to write

3
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rd v i
Y(art) = (GrgFle " Hio,e) + F e 28 2
1 £ i —ckt—r) '
t 5 J Qlu,7) e H{ojt-1) dt |
0 . (A.1.8)
where

sin t. /32(a2+b)2+x2

H(O-tt) =

/é (a +b

+ 2

The appllcatlon of the convolutlon theorem for

-Fourier transforms 1681 *in con]unctlon w1th the 1nverse

transform of H»[69], enables wrltlng the flnal SOlUthH

- for the dlsplacement field y(x,t‘

Tog

in the following integral
—. .- -
‘form: - o
. —rt 00 o = —
L yix,t) = e 7 f [g{3) + ££(&)] h(x-g,t) A& .
~ S L
I
v ' .
_C,t ® . .
+ e £(&) ht (x-£,t) dg
R AR O R i | ’
+ = J et (ET) I q(&,1) h(x-£,t-1) didr
e 0 —o '
- (A.1.9)
where . ' o
, t ) 2 e
_ h(x t) 1 J JO(XVtzeuz) ri-cos(%———abu-%) du 7 ->
‘ /4na 0 s u /
A.1.10) .
y and
| Bh.(x, t)- * / '
X,
ht = Y K(n.l.ll)
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For zero initial conditions the solution becomes

. ot ® , )
yix, &) = % [ efC(tjj) [ q(é;T).h(x—E,t—?) dgat (A.1.12)

i}

~ =@

* Some special cases for the, forcing functions of

physical interest are:

(1) s 7alx,t) = B 800

, (ii) q(x,t) = P 8(x) &(t)
. (1i1)  qlot) = P (b)), x; € x € %,
f (iv) - g{x,t) =P 6(x—vt)
{v) q(x;t) = P cos Ot &(x- v*)‘
- (vi) oqix,t) = P _£(t) 6(x—vt 2 pt )

M .

cot e : Assumlng the beam to be initially at rest in the

Fl

.. ~

equlllbrlum position,® the solutlons for these dlfferent

kY

,cases will be obtained uSLng the integral representatlon-

~

for the displacement.field givgn by (A.1.12)

. . i ) Ny
(1) q(x,t) =P 6(x) U
‘ . » C S '
’ . : P -G (t-T) / 7 .2y 1
v . ) (x,t) = { e J J. (A (t-1) =0’ )—
- ! ) m dna 0 -7 0 ‘ S
) - . . - 2
. . - S cos{ —abu——) du dt
' (A.1.13)
/ .
Let t - T = 'r, hence - o -
\ ® §
. “‘_A__ \‘



" tA . \ 11: . .
.[\\ Or 4 > 7 l
vy Yoo o J Jy e m-u’) ==
n/4, | - D vfil
- cos(4a 7

P - t»
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(A.lrffi

.t M l .
x,t) = J (A/er-uf) —
¥l nvédna . o _ ! Yu
o cos (3 abu ?Z:) du (A.1.15)
(ii}) g(x,t) =P ﬁ(t), xl_: X £ \2
. T X2 —_
y(x,£) = —be ¢ °F J { 3. (OW/EEu?)
m/dna 0 /o
° x
"1
cos (e ~abu-+) dx Adu (A.1.16)
\ 4au 4 ' i
(iv) g(x,t) = P &(x-vt)~’
- let n = x-vkt and r = t - 7
r .
P -or 1
b)) = s T D I, AYE -2
Y ) mydira L Ju 0 . Yu
? (n+vr) ” _ T )
cos ( S5 abu 4) du,&f
XN (A.L.17)

(v) qglix,t) = P cos Q £ 6ix—vt)'

Jet n = x-vt and, r =t - *



y e, t)

{wi)

- t . r -
v(x,t) = P J-e“cr f(t-1) J JO(A/rz—uz) L.
) . 0

-4
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[

P € N N 7 1
=i f e "T-'cos Q(t—rrﬁyJO(A/r’—uz)*—

C n/ina o ‘ 6 Yu
i ( )2
nrvr)t o T \
,cos(zﬁu abg 4)‘du @r
{A.1.18)
G(x,t) = P £(t) S(x-vt * pt?}

let n = x-vt + pt? and ¥ = t - 7

nira - . Ju
. : (n+vrtorz)2_ _m ]
cos Tau abu 4) du dr

(A.1.19)
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A.2 Solution for al/Constant-Velocity Hoving Load

Consider the solution of the ordinary differential

equation:

3

where

iv

4o

=

4 af n" - 85:8 24 4 wf
_ N4mv 2 f = S - _€
= ;R = S = S
EI Cor Ykm
g = Y = v
VCI :
fXEI _ N
n? '’
S —
: ,"4KEI _ N
N / n n
T GEI )
k K
b S = 4/ = _
4w’ = g1 © 3BT
n=e"
//'
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Substituting in equation-(A.z_l) wéfget; ‘ _‘._\ ‘
. - . .é,.. e :
r + 4 oy ot o~ BOOR r + 4.~ = g

(A;2;3},‘

o

- By Descartes'’ rule there +is not more than one., palr T
of real roots to this equatlcn " Since’ lnterest is in the

underdamped portlon of the solutlon let us assume the

following two complex conjuguate palrs _ ' , -
r, = d+lbl
- i r, = d—lbl > - s .
' . (a.2.4)
T, =-d+1b2
T, =-d—lb2 ,

Since the assumed roots must satisfy the following‘
ldentity: a
(r-r,) (r-r,) (r—1{3) (r-r,) =0 (R.2.5)
Combining equations (A.2.4) and (B.2.5) we get:

4 23242 4E2) 2 L 2_12 2,42 22,42 -
r- + (-24 +b1+b2) T .24 (b2 bl) r + (d .bl) (a +b2)_ 0
(B.2.6)

Equating coefficients of {A.2.3) and (A.2.6) we get:

~23% + b2 + b2 = 442

1 2 1
-24 (bé—bi) = -88¢% S (A.2.7)
I 2 2 2y~ og,.b : -
(@%+b%) (d%+b3) = 4u .
-



~ -
7 _ .lﬂ'* bGQB ﬂ
bl 2 3 +d _?,‘d_
) & v
P 2 2, 28¢B
b2 = 2cl + d % a

in (A.2.7) obtain b

185.
N
1 and b2,
N
) (A.2.8)
J

Substitute back in the third equation in (2.2.7) to get =

d( " (2&;) d“‘+ (ai_my).dz

» A

92¢ZBZ =0

(A.2.9)

The positive real root of this last equation is to be used

to keep the form of the solutioen as assumed in eguation

(A.2.4). The solution of the homogeneous differential

eguation (A.2.1l) written in real form becomes:

e
13

1 sin bi& + C2

+ edb

-

for the region ahead of the lqad, ahd: /.
o

_dg

o o9 T .
ng = e (C3 sin blE + C4 cos 915)

cés‘bzg)

(gl sin blg + A, cos by&)

e

+ e (Aa'sin b2£ + A4 cos bZE)

for the region behind the load.

-

It is reasonable to assume that as E-w, n,

N, = 0. Thus

A
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n = e—dg éC sin b, + C. cos b r)‘-fovr-»";d
a 1 2= " & 25 -
(A.2.10)
n, = 95 (C, sin b, £ + C, cos b E) for‘§Cd
b . 3 1- 4 170

"The remaining four constantsFCi, C,s C3 and C, are determined

from the four conditions at £ = 0.
(a) lim [na (O+e) - ny (0~e)] = 0
\ " e+0 ) . ‘ ,
(b) lim [n; (0+g) - ”5 (C-€)1 =0
e-+0
() lim [n! (0+e) - n}':') (0+e)] = 0
e-+C
7 CRNE LT . — " - — :g_
. (d) lim [na (0+¢€) ny (0-¢}] = i
.- e-+0
r
The solution for the constants gives: - \\
N
: . (b%—bi)(4d2—bi+b§)
N EI d?[4a%+b2+3b2) + ,
\ 2 1 4
. (A.2.11)
2 _ g2 2 : 2 _n2 2
. . - bl b2 + 44 . o - b1 b2 44 ol
‘ : 17 4db 2 3 1db 2,
? 2 1

-~

Equations (A.2.9) with (A.2.10) .and (A.2.11) give the solution

of the differential equation (A.2.1), which can be written as

-



d P e

ol +3pf = 2e] v e -2 R el 2 3at - g oes
e )
= - ’; =4
3 a 3
bz 5 2:-8
2 1 4 Il
1
Hence -
- ap
.., = = P
2 EI {(8d"+8:]d%d600a) + I (4at+1888)y
r .2 o, ACeF
by = »3 a
OUC - 4,,:2 ¥
C ‘ = d ) C = ._E..?’_tg..i O
3 4 4 bl 2 dzbl
and
o2 ad
€, = - :%5—9— C,
d b2 <
. 4
. Hence for >0
- _at -

BI{4[2¢" +262d°-258a] + i&— (;az+¢%§)}

3
= (po2-a") e SCE
- - 3 I v )
T sert sin aéai*c~+2i;
52 2,372 g ’ .
d +d 245528
v20.l a
2080
cos J@;;*;‘+ ok
A a

187
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/ \/
/
and fcr T £ 0 ° ) /
no= d P edE
T - R 8
b EI{4[2d"'~i—2uidz—8¢Bd] + :.gi (442 +4—%= ¢B)}
- 3
(BoB+d”) sin 2cxl+d2 28¢ £ +
/202422808 - .
A 1 d - )
cos V2al+q?-2808 ¢ (AéZ.lz') ‘

where ¢ is the positive real root of equation (A.2.9). For
the limiting'caseaof no damping B = 0, and equation (A.2.8)

simplifies to:

Let: | .
19 (A.2.13) "

For £ > 0 .
} ’ : P e~g£

"a T BEI g(g‘+ui)

3

—ﬁ—E———— sin ¢2a +g E + cos V22 +g £
V20?2 +g -

1

o

and for £ € 0
: p 96

b T 8EI gkg2+ai)

{f——li——— sin ¢2a +g E + cos /2& +g Eil

Y2al+g
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These equations can be rewritten as

P "S54

(o4 . J
= '-2+ 2 b
"a T BEILTs T sin Awtee] o+
w0
i
B o cos ¢m2+ui b
and 2 ot (AL2.14)
g¢ _
P e -4  ru—
”b = W — 9 _ Sin w2+ai L+ -
g ./wi-f-gi. '
' cos /w2+ai Z
’ 'ls
Hence, in the limiting case of no damping, the wave caused

by P, and which moves with P at a cdnstant velocity less

than the critical, is symmetrical with rescect to p for any
N < N
cr

.t;\

oL
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APPENDIX (B) ' PRI

EQUATIONS OF MOTION FOR THE COUPLED ’ ' -

. - P’ . - :
{ _ VEHICLE/TRACK DYNAMICS .

- , In this appendix the equations of motion for the

full moving model of the vehicle including the discretized
model of. the tgack are given. Fbr‘the equations describing
the motions of theé whealsets, the effecté of creep/Tgnd thé
aprresponding creep forces) between wheels and rails and

the wheel tread/rail profile geometry are considered.

Because of symmetry,. the equations describing the
lateral motions of the system (these include the latefal
displacement {v), the rolli(a)ahd the vaw (y)) are
ﬁncoupled~from the equations of motidﬁ of the longitudinal
nmodes (longitudinal (=), vefrtical (w)oana pitching (8)

displacements) .

In the first part of this appendix (Section (B.1)) the
equations of moticn for tﬁe lateral vibrations are given
both in detail and in their general forms. The elimination
of the internal reactions is described and‘the transformation
iﬁatxiﬁ [T] relating all the variables‘with the independent

ones is shown in Table (B.1l) based on the givern equations °

of constraints. In this case the system is composed of

fifteen degrees of freedom. 1In the generalized coordinates, .

180
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b ~

the general form of the eguations is given by the matrix

eduqtipn (3.1.50).

In. the 'second part of the appendix (Section (B.2)) -

the equations Qoverning the longitudinal motions of the

.
-~

system are presented following a similar analysis. In this

e

case the transformation ma¥rix is [D] which is shown in

-

Table (B.2).- The system consists of twenty-seven degrees.
of freedom; and the equations are given in their general
‘ form, in the generalized coordinates, by the matrix equation

(B.2.§4).

Figure B.l shows the plan view of the secondary
suspension and illustrates some of the dimensiocns and
parameterﬁ given in the eguations (dimensions, angles ey
and az,,&%mpini éoeffiéients,...,etc.)._ The primary
suspension consists of coil sprinés and shock absorbers
(CI7'and‘p18), because of symmetry, Cl? and C18 nave the

same numeric value.

-8

~
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B.l Equations of Motion for Lateral Vibrations

-
8

Lateral - Body # 4
m oV o+ (2K2 + aKg + dxg)va
+ (=K, - 2K —”exs)vbf + (-K, - 2% - 2Kg)v,
4‘(ﬁ2£lxz - 48K - 42;K8)aa H o
TRy T 285Ky - 2hg5Kglaye
tomkpRy = 2gaKg - 2hgKglay,
(R Ky + 20K - 2£5K8)Yb£_ - \
+.(—216K2 - 2Q4K5’+ 20, Ko) vy, |
v (2¢, + 4Cé + 4Cg + 4Cy 4 sine; + 4C ¢ sinay)v, ,_,/////
+ (—Cé - Zés - 2C8 - 2C13 sinal - 2C15'sina2)6bf 
+ (—Fz - 2C5 - 2C8 - 2Cl3 Sinal - ?Cls SinaZ)Gbr
+>(—2alc‘2 = 427¢5 - 45.Cg - 48,.C,, sina,
| - 4%15C15 sinaz)aa ~
TOERCy 725G - 2233C8.‘ 2835Cy3 sineg \‘#j{
‘ | - 2232C15 sinaé)&bf
+ (~2,C, - 2%3c5l— 2033Cg 7 285,€, 5 Sina;
- - 223_2C15 sinus)&br
+ [216C2\+ 224C5 - 29.5C8 + 2Cl3(9_3l coso:l + 229 sinal) !
| +2C (25, cosu2‘+ 2.4 sinaz)l;bf



.‘\

Roll - Body ) i

L0t (720K, — 4RKg - 42, 8)v )

+ (LK, + 205K, 2z7h8)ybf

-

+ (,Q,V‘le +

2«
+ (Zilﬁz + 427K5 + 4£7x8 + 429K3 + 42 l

) f

] ‘ il -_— 2zr
+ (g 1E2K2 + . 2£7L33 5 + 217233K8 229

R

+ 28,1 - 22

+ (2,2.K.. + 28,2 7 33 8

; 2
1%2K, 7%33%5 K

9

228, K. + 2172

PRy gRy T 2890, Ky

sgs)Ybf
7858g) Yo

\\\7 4% C8 - 4215Cl3-s;n

- 4215C15 sin

E'ElGKZ + 22725K5 - 200K

+ 22 C

2 ' .
+ (£102 + 227C5 + 2 7C8 + lesc13 513

+ (llcz + 2£7C5 + 217C8

r

+

15713

4+ 2215ClS sin

2
+ (22.1(32 + 4R7C5 + 4£7C8 + 429C3 + 421

+ 422_C

%1501 3 s

SLnO1 + 4115 15

22,'71(

+ zhlscls qd
.
2%,.C HFain :

0 6)

3 7 22 K)oy

3 T 10K6)“

&l,
CL-.’z).va

b

1
35 Vpe
“1
) Vi
oC6

>

B)VHI

-
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+ (28,0, + 28583305 + 22,83,5C —~2;5c3 - 222 ¢,
ML PR E R 2£15?32C15 sin o) oy
+.“119'2C2 * 2279’33 -5 * 21 7%33% - 2i3cy - 24]C 6.
i '+'2115232Cl3 sin ap ¥ 2815%35C 5 sin Gz)abr_“
/;’ B S T S 22724(35 +-Z£7RSC8 ~ 23040 5 (hy) cos o
. T Ay sine }’dﬂb %15 15( 30 €95 &y F fpgsin G
‘\ ¥+ (28 Cy * 2,C. - 22,8.Co + 28 (2, cos o

475 7 8 l" 13

: ol o . N 3 y =
+ L,q sin l) + 2&15C17(230.cos 5t 228751n GQHYBI 0

{(B.1.2) »
Yaw - Body
IaYYa+ [(Q3+216)K2 +.2(13+;4)K5 +“2(23<25)K8]vbf
;i:fjfﬁ3+zlGiK2 - 2(8 +g_4)}<5 - 2(23iL5)K8}Vbr
% L -
+ [(1 +216) K, + 2( LA Ky + 2005 202 33K8]Gbf ‘
+ [5(£3+216)22K2 - 2(13+1 )133 g - 2(2 -2 )233K8]
; : 2 2 2
+ [2(m3+£16) K + 4£9K4 + 4110K7 + d(@ +£ ) K

+ 4(Q3—:S)2K8 + 4Ky, + 4K oly,
o [P (g Ky - 200K, = 281 0Ky - 2(hgrE ) kK
+ 2(R 3ohe) BgRg = 2%y - 2Kl2]Ybf
+ [—116(a3+il6)K2 - 2;;K4 - 21;0 7 " 2(g3+24)14K5 B

///—\\\; +2(04-05)8gKg = 2K ) = 2K,y
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167Gz T 2UE57E 00 + 20852 )C

g) + 2(%

* f‘i3+2 3 8 12%13

) sin a, + 2(2 c

13 14 1 S 16) sin o ]vy .

+ [—j23+216)C2 - 2(£3+£4)C5-—~%(£3—£5)C8‘— 2(£l2Cl3

+213Cl4) s:.n_OLl - 2(26Cl5+£llC16) sin Gz]vbr

L.C. 4 2(0_+12 c_ o+ 2(z1

,
* ‘(23+2161 2%5 3780 2358

37451 255C

‘ " sin @ : ,
t 205, (0),C, ¥ 213c14) SIn By 4 2045 (BCo g

49,C ) sin 2l

| 11%56 bE
TR )00, - 20k ) 8 - 20i3=25) 245C, y

_ 1 a -
24320812034 0y5C, ) sin @) - 20 (2 1s.

+£11C16 sin u2]u

2 fo-
' + {2(23+Q )2 C + 499C4 + 4210 7 + 4 (4

2.1%C, + 4c + 4C + 4(5113 cos a

5! "Cg. 11 12 1
+ IlZ sin al)(212C13+£13Cl4) + 4(1ll cos a2
+ Lo sin 2l 2S5t 1€ )17, i
* ['216(R3+216)C2." 205, - 281007 — 20230200, C
208310 ReCy - 20y, - 20y, - 2(s,) cos q
Ttag SER ) (11,0 5%y 10 ) - 208, cos a,

+ 2 sin 32)(

28 6 15*211 ls’lef
—r - - 2 -
+ =) i+ e, 219c¢%“ 202 c. 2(2 +1,)2,C
+ 2(23—25)25C8 - 2Cll - 2C12 - 2(L31 cos ul
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ot dyg sin o)) (2 12 13%513C14) — 2li5 cos o,

* hgp SEn 0,) (260, 54130, )Ty, = 0

(B.1.3)

Lateral - Rear Frame
Ty Vi +‘r(-—K2 —'2K5 - 2158)va + (Az + 2K55+ 2K8)vb
' + ¢ ' K.+
-t (llK2 + 29,7K5 2£7h8)ua + (zznz 2133K5 +‘2£33 8)ub
e B LIL ALY —"b(h-ﬁS)Ke]Ya .
o l . : ' *
- 2 z N
toR Ryt 2K - 2RRg)
R
+ (-~C2 - 2C5 - 2C8 - 2Ci§ sin oy - 2C15 5in az)va
wt (C2 +'2¢5 + 2C8 + ch% sin oy +.2c.:15 sin az)vbr
+ (Rlc2 + 227(25 + 227C8 + 2215C13 sin o,
+‘2215C15 sin onz)oia
+ (chznj!2£33cs 4+ 2233(28 + 2232Cl3 sin al
f - -
p T 283505 sin aple,
+ [-(& +216) 5 2(i3+£4)c5 - 2(£3—25)C8
. " ) \\
29.13Cl3 cos al - 2212(:13 sln ¢y —A2211C15 cos a2
, N ‘ - 2£6CL5 sin °2]Ya
. T
+ (£16C2 + 2£4CS - 2£5C8 + 2231C13 cOos &l

n

+ 2129C13 sin al + 2230C15 cCOs az

T 22,805 Sineg) v
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- (RB,'+ RB, + RB,) = 0 ' . - (B.1.4)

-1 2 3

Roll - Rear Frame . ot

Tha®pr? 178Ky = 22535 ¢ 2055Kg)v,

L

UKy 200K ¢ PRV

\

i ‘ - ; ‘2- _ 2 o
+d22£lK2 + 29_3317K5 + 729"339’7K8 -22,9&‘3 25!.10K6)aa

+ (RIK, o+ 202 K.+ 202 K. + 287K, + 222 K.+ 6%22.K )a

“2%2 3305 T 2433Kg g3 1076 17897 Oy

(=202 K.Y

_np2 1 _5¢p2
17K + [-22:_K )udz + (-287_K.)

%a1 1779 17797 %a3 |
. _ 2 .. ; T " 2 . _ 2 -
LR Ry T RRA Ry * (m20 1K) ay g

+ [—12(£3+L16)Kéff 2k33(£3+£4)K5 - 2133(JE,BT-R.S)KS]'Yia

Ty 18,0 K, +’2£33£4K5 - 20408 Ko)y, . v
FUTRCy T 203505 ¢ 20550 - 203,01 Sn g
. : - 5232¢15'5i“ gé)éa
+ (22(:2 + 22133(:5 + 2£33(_:8 + 2232Cl315in' cxl.
, . " + 29,32C15 sin 0‘2)\}br

/ .
- - 2 - 2 '
FoRah Oy F 2h338gCs ¥ 20458,Ce - 2050y - 2] Co

»

+ 2£32£15Cl3 S}n e, + 28 .8

1 32%15C15 SN agle,

P

+ {R2c, + 28% c. + 2R%3.C. 4 28%C. 4+ 222 C ¥

2€2 33% 33% 93 10%
62 3 i 2 . V k. 2 N
T 2h3p01g SIn eyt 205,005 sin e, 2040y,
‘. coT
- * 40 ) opy
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MR PALE!

L 12.-- [l<--
R1gC17 T F1gC1e) e

15517 7 *19%1s

o .
(=2275C1 ) 42

\”/f\‘\ b (=22 C._ =12 Col)e
2 19%177%19% el a3

)i

27 B
AR e1 F (32814C 18)”de2

e

* { A de3

2
19%17” 19C18
+216)C2 - 2£33(£3+24)C5 = 2133(13—25)C8

cos.a, — 28..8.%C .sin o

2h55%13%13 1 32%1%C13 S %y

- 28

+

+ 28

+ £21(RB

32%11%15
[25%16C

32%29%13 1 Y 230%30%s

cos a, - '32'§-15 sin azlya

2 +,?£33£4C5 - 2b33L5C8 + 2”32“3lcl3 c§s al
sin a. +2%_.1..C | cOs mz
20358905 i aplyy,

1 2 3
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+ RB. + RB.) = O : *(B.1.5)

(r

Yaw - Rear Frame -

ITpyprt 16

(11652

1671

-+

+ (L

+ (}1612

+

[ 219

2¢r
+ [229h4

(-1, K

— 20 K+ 20KV

2 4% T “"5%8’ Ta
+ 224K51— 215K8)vbf
Ry + 28,0 K. = 2»5Q7K8)a
Ky 214233 5 ~ 5233K81“
l 2£§0 7 - g (> +216) 5 22, (25408 ) Kg
7+'21;(z SLKy - 2Kp; - 2Kp,lY,
+ 22;0 5t Ri%KZ + 224x5 + 2&%k8 + 2Ky,

-f 2K12]Ybr



-2
+
4

+ [ll

+ [21

- 2229C13)(£l3 cos oy - 212 sin al) + (=22

+ [22

+.

RL

- .7 200

c, —22,C. + 2zx_.C_, - 2

162 4Cs 5Cg £31%4 Sin oy
129C13 sin ay - 29.30(216 sin ay = 2228ClS s%n az]Qa
6C2 + 2£4C5 - 2£568 + 29.31C14 sin ay .
20,4C 5 sifl ) + 225,C 0 sin o, + 28,,C csin uz]x}br
€£1C, * 2£41ic5 - 204.Co + 223,%74C), sin q '
+ 20,40,.C, 5 sin o) + 2230215c16_s;n'a2
: * 25871505 Sin Qél&a
6%,Cy * 224233c5 - 2 84,C, + 2131%32C14 sin'a;
+ 2229£32C13 siﬁ oy + 2130132C16 sin @,
+ 27,05.,C C sin uéj&br
z;c4 - ZbeC7 - 316(;3le6)c2 = 22, (8 k2,0 C,
AZQS(ﬂj"ié)Cs - écil =20, 4 (F2i50p,

30%16

- 2128C15)(£ll cos a, + 2, sin az)lya

| 6
;c4 + 2£i0c7 + ziscz + 222c5 + 2z§c8 + 20 &
20, + (284,Cy, + 20,0C ) (8, cos oy + 1y, sin &p)
+ (2230c160 + 2128ci5)(130 cos a.,
+ 2, sin az)libr
(RB)) = £,,(RBy) + 1,,(RBy) - (R, + Ry,

+ RM3)=0 (B.1.6)



Lateral

201

- Front Frane

v

(-K2 - 2K5 - 2K8)va + (K2 +‘2K5-+ 2K8)vbf

(LK, + 2£7K5 + 227K8Y3b

.(£2K' + 22K + 222 K. }la

2 3375 3378° "bf

[(23+116)K2 + 2(£3+L5)K5 + 2(£3f15)K817a

(=L1gKy = 204Kg + 28 Ko)y o

- 2C. - 2C, - 2C

(-C, 5 8

13 sin ay - 2C15 sin az)va

(C. + 2C. + 2C, + 2C., sin a. + 2C._ sin a.)v

2 5 8 13 1 15 2’ 'bf

(2,.C, + 2_C_ + 2% C8 + 2115C13 sSin o

1-2 75 7 1

+ 2215C15 sin az)&a

(22C2 + 2£33C5 + 2233C8 + 2132C13 sin %

+ 2232C15 sin az)abf

JC., + 2(8,+51,)C

[(23+874)C, 3ty

16 5

+ 2212Cl3 sin al + 252.llC15 cos a2 + 2£6C15 sin azlya

[—ilGC2 - 224C5 + ZQSCB - 2£31Cl3 cos a,

- 2229C13 sin o, - .2% cos o, — 2

1 3015

(m4+xm5+R%)

I
<

+ 2(23*25)C8 + 2213(:13 cCOS «:

1

2 228C15 Sin o]y

(8.1.7)

RS J



Roll - Front Frame -

I Gpet (FRK, = 2855K, = 2845Kg)v,

+ (£2K2 + 2£33K5 + 2h33 8)

+ (9,29,11(2 + 21.33 7 5 + 29‘33&'71{8 .: 215[‘:

) 2 2 2 K -2
+ (12K2 + 2233 5 + 2133 8 + 2x9 3

+ (-222%2_K )a + {-2:2%_K

1779 17° (=22

) %as

+ (=221 7h9)& + ( -242

1 17897 2ges

L
+ [£2(£3+£16)32 + 2£33(k3+£4)h5 + 2L33

+ (=R, 0y Ky = 20930 Ko+ 205505Rg) g

t(mR,C) = 283305 - 2h33Cg 7 205505 8

= 213305 S

+ (Q.ZC2 + 2233C5 + 2L33C8 + 2L32C13 s1

+ 2L32C15 si

+ [izilcz + 2£33£7C5 + 33‘7C8 - 9C
L

* 203,050 3 SR ap * 2h552815C g

2 2 2
[£2C2 + 2133 5 + 2£33C8 + 22 9 3 + 28

2 : 2 .
+ 2E32 13 sin al + 2232 15 sin a2

—_g 2 - 2 . 2
+ (=230 5 = 2340 glagy + (-2214C gl 0y

+(-22.C - ) &

19717 19 18" 7de6

17 9

+ (=222

202

- 2
3 2£lOK6)a

KE + 62 17K9)a

)u-

17%9) ®deg

(13—255n 1y
/“\\ i

i?.al

ln'az)va

na
1

n oa )vbf

37 2210 6

sin uzlaa

2

10 6

2
* 2814C7

. )
+ 4219C18]ubf

bf



’

i~

_ 203
* (";igcl7 - Lfgé;aiideq + (=28]oC g g -
* ("119C15 ~ #14C19) %ges |
+ [1262341ig)c2 +i2233(13+£4)c5 + 2055 (25-0,)Cy
? + 2232113C13 cos al'* 2232212Ci3 sin ay
+ 22321ilc15 cos a, +:2£3226éi; sin a2]§a;
+ o[-l 0o - 223$£4c5 + 20458.Cy - 2232131C1$ cos a)
i32£29C13 sin @y - 2132130C15 cos aé
= 203525605 sin 0Ty,
+@2l(m4+-m5+-$6)=0 (B.1.8)
Yaw - Front Frame
IbY§bf+ Ty Ky + 28K, - 2iKglv,
t=Ry Ry = 28R+ 20Ky o
o eh Ry = 28, 00K+ 22g1,Kg) ay + (=2, 2K,
- 284%33Ks * 20g8a3Rgdope
* 1“225K4." 201 0Ky T L1683ty - 2y (322 0K
+205(8-2 0Ky = 2Ry = 2K,y
+ [229K4 + 2£i0'7 + iis'z + 2£4K5 + 22§K8 + 2Ky,
*2Kyolvye
+ (£i6C2 + 25&4(:5 — 225¢8 + 2131(:14 sin oy
+.29.29C13 sin ay * 2130C16 sin a, ; 22;8C£g sina,}v



204 .
+ (=2,,C, = 28,C, + 25,Cy = 224,C, sin él-
- éé29C13 sin ql.— 2230C16 sin a,
- 20,,C; . sin az)ébf
+ (=2 2,0y - 2i4£§c5 + 22527c8 - 285,2,.Cy, sin o)
1513 Sin o) = 20302)5Cq sin o,
- 22282.15C15.s’_'*n azl&é
+ (21680l - 20,054C; + 20525,Cg - 2231132c14 sin oy
2Cy15 sin o) - 2230232Ei6 sin az
= 2,85,C) 5 sin ayla,
+ [—2£§c4 - 21i0c7 ~ ke {igtl )0, - 214(13+§4)c;
F 205 (hg=ig)Cg = 20y = 20y, + (225,Chy
f,2%29c13)(—£13 cos ai —'112 sin ul) + (2230éi6

+ 2228C15)(f2ll cos a, — L. sin az)]Ya

2 2 2 2 2 A
-+ [256.9(!4I + 2210C7 + £16C2 + 2£4C'5.+ ZQ,SCS + ZCll-i- 2C12

+ (29.31(314 + 2229Cl3)(231 cos ul'+ 229 sin al)

+ (29,3OC16 + 2R28C15)(130 cos a, + 228 sin az)]ybf

= 1,3 (RBy) + L, (RBg) + L., (RBy = (RMy + RMg

_ + RM.) =0

{B.1.9)



Lateral - Motor No. 1

m cl (va) =0
Yaw - Motoxr No.'l
T IcYYcl - 234(va) - (Ryl} =0
x
Lateral - Wheelset No. 1
- 247e ' 2f, .
m3Va1 +'(218)le W ag r@E ) vy t (v
20 £
2072, - £a3 <
o (—20 05 (—S Viap + (g, )6
+(RB)) + (RV)) = 0
Roll - Motor/Wheelset No. 1 -
M e 2 i '
(Too * Taod®qp * (20398 g)ep + (2E],Kg) ey,
2 - o
+ 8] g¢ cls'c”)]ubr + []g(Cyg+C
20, ¥ o
+ (uﬂp + “mf*_f)vdl + (Rzow)adel
18
2¢. f
20%2.
+ ("2120 2)Yd1 g vy
. 2
, E2of2) . 2"20’323)
S %31 S Ta1
7 .
18 _
Fo(5 = Ry8g) (M =N )= 0

205

(B.1.10).

(B.1.11)

(B.1.12)

(B.1.13)



Yaw - Wheelset No.

. i 32
Id‘r\dl + ( )

8

+ (2f

1
25 £ £, 2z,
20%32. » ilgfy
Var * ¢ s gy TS5t %)

:O)Ydl+ {RMl) + (Ryl) =0

- ) =
Lateral ~ Motor No. 2

Yaw - Motor No.

Yoo ~ 834 (RV,) = (Ry,) = 0

cy'¢2

Lateral - Wheelset o. 2

2We
18

m.w + IRY

a2
20, £
legy * g Vg,

(—W)dee2 + (2f2)Yd2 + (—=

2f
23 + (N_.-N

r2 V2! 0

0

+ (RBz) + (sz) = 0

Roll - Motor/Wheelset No. 2

(Toy + Iaq )udZ

+

+ (282

“br 1787 245

P19C1gtdpy * (2874C gl g,

29, €W
(-¥In + ——%9~— v + (L

U)a
18 az

20 e2

(-22 +

20527 Yaz “ 5 —1Vaa

206

A E
F1gtEy
Y20

dl

(B.1.14)

(B.1.15)

(B.X.16)

(B.1.

(B.1.

li)

18)
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Yaw - Wheelset No. 2 \
: o ' r2 = 2’ '
e O 3,9 +,(_2*20f32)& . (‘18‘1%353)‘ _1stfy
ay’az s Va2 S 'Maz T l73s 5 'Ya2” 1, vaz
- ) L .
—w L8 .+ (RM,) + (Ry.) = 0 B.1.19
o285 W0y, FO(RY, Y, ( )
Lateral - Motor No. 3
mVey = (RV)) = 0 - < (B.1.20)
Yaw - Motor No. 3. -
ICYYC3 - »34(RV3) - (RY3) = 0 (B.1.21)
. Lateral~- Wheelset No. 3
=s 2We J J 2f2 *
MaVas * (E;g)vd3 e F R vgy + (FERvgy
20, F. 2f |
_“*20*2, - : 23, - _
Py g YYa3 * (N.3-Nj3)eg

* (RBy) + (RV;) = 0 (B.1.22)

¢

Roll - Motor/Wheelset No. 3 .

‘ P - 2 g 2 1
Teq * Tag)ogy + (=20 Kg)a,  + (221 7Kg) ey,
2 a . 2 N
Tl (=Cy o Cigd e+ [279(Cy5¥C gl ays
222OEW )
+ {-Wn, + )vd3 + (zZOW)ad83
18
20, f
2052, -
Foelvay + 5y, o/
) 4
. (2120f2)% . (_2£20f23).
s %3 s ‘Ya3
- 218 1
+ (52 - a,20) (N3 = N3) = 0 (B.1.23)
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Roll - Motor/Wheelset No. 4

™ 902 2 .
(Ica + Ida)ad4 + (-22%_K.) o +1(2217h9)a

1779 "bf éd

¢

L o 2 _
* 1219 (=CigCrqtape *+ [R34(C g+C )0y,

2220£W

[)

+ 4—vn + s )vd4 + (220W)Qde4

2220f2 -

20727 Va4 s ' Vaq

2 .
282 f P (-2220f23
a4 5

+ (-2 2,,f.) + (-

Yy

B, (N - N, ) =0 (B.1.28)

-

Yaw - Wheelset No.- 3
. p - 2..4: -. : '
T Yqq + (EE;E)G + (_%EEEEEZ); +'(El§:}+3£§)' _%lﬁif_v
ay¥a3 5 7a3 5 %43 " Y728 "T85 'Taz 1,, 43
. 18 . - :
RISV ¢ (RMy) ¢ (Ryg) =00 (B.1.24)
Lateral - Motor No. 4 .
mv_, - (RV,) =0 ‘ , (B.1.25)
Yaw — Motor No. 4
ICYYC4 + 234(RV4) - (RY4) = Q (B.1.26) °
"Lateral - Wheelset No. 4
- 2f
“ . 2We ~ _ 2. -
MaVas ¥ (zls)vda W agey v (2R g * (v,
' - 24, F 2f .
_“*20%2, ¢ 23,y 4+ (N_,-N).)8
ol agy f o) gy LR
q + (RB,) + (RV,) = 0  (B.1.27)



Yaw - Wheelset No. 4

- 2f Y
32, L

TayYas * (=3 ’Vd4 (

18

Lateral - Metor No. §
m VCS

Yaw - Motor No. 5

ICYYC5 L

Liateral - Wheelset No. 5

_ e
. 2‘@5 . -2, .
Ta¥as T (g WVas v (TWhageg + (26)) 745+ (gPlvg -
A | 28, f 2f s
- 2052, - LI
e i R WE TR

R ‘
Roll - Motor/Wheelset No. 5

| . ~«*\\¢\(RB )+ (é%s) -0 (B.1.32)

iy -_ 2, 2 :
(T + I. ) + (_2217K9)abf + (2217K9)ad5

ca da; "d5
‘ 2 N
t(=2874C g bt (2219 :Ls;)Cl
22205w -
N . + (“‘WT] + "—2"——-—-)Vd5 + ( 20W)u. a5
) 18 g
22 f . - . .
2072 , _
2 ' ' : ”
\\Zﬁ\ M R L N
S as . 3 Yas
N
218 R |
+ (-—2—- - 22050) (Nrs —NES) = 0 ‘ : (B,l-33)
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e
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Yaw - Wheelset No. 5
C2f. .- 2%, F 2 £ 2f. . L. Af
. 32, _“%20732, 18*1 “f3 187y
TayYas * g WVas ¥ "5 %s t o T )Yas"izg——vds
: 2
18 _
| +\(2f32 h—ifeo)yds '+ (RMS) + (RYS) 0 (B.1.34)
Lateral - Motor No. 6 '
WV = (RV) =0 (B.1.35)
Yaw - Motor No. 6
TeyYes * L44(RV) = (Ryg) =0 (B.1.36)
Lateral - Wheélset No. 6 _ : ﬂ
. - 2f
te 2We " 2,
"a¥as * @ 'Vas Mageg ¥ (28)vq¢ * (571 Vg6
' 20 f 2f :
_“*20%2,: 23, _
*od Dige g Vg ¥ (Mg Mgl 8y
. ' 4+ (RB,) + (RV.) = 0 (B.1.37)
'\ , . : 6 6 _
"Roll -]/ Motor/Wheelset No. 6 |
TN L ap2 2
PTog FTagt%ge T OTH g o * (287,Kg) g
2 ’ _‘J.’— 2 . _ ; 2 . . -_
¥ [Ryg(=Cy57Crgllape + [214(C 9*Crg) 2ge
22205W _
+ (=Wn +,‘Izg_“)vd6 By Woge
20 f
AN 2072, -
- * (‘zgzofz)Yd6.+ (-—5—)Vg4
- 2 .
28508, - 2%50%03 -
b 3 .
18 . _ .
o3 T 208 (N N£6y =0 (B.1.38)

~
=

k2
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W
Yaw - Wheelset No. 6
N i Nt 1 Y I S U R N L
<. 7dy ' de S d6 S de 25 S “'de 220 de
' fgg o ‘
+ (2f32—h—5—ao)yde + (RM6) + (RYG) = 0 (B.1.39)
Roll - Track/Motor/Wheelset No. 1
(I + I, 4 : g2 ™ )H. + (-W)v +‘(—2£é Ka i
Tea da 4 718 e’ “del dl 17 9" "br

2 K i,2 Kl. 2 4 _“\ . |
P 297 * 2hlgTe) Sger * 1919 (70 C g ey,

2 ‘ _l_ 2 1 N - ° \ i~
* h1g(Cyy7Cig) + 581gCagy = 0 (B.1.40)

AN

Roll - Track/MotoryWheelset No. 2

(I + I +-%12 m +. (W) v

ca A 18™e) ®aa2

2 l?.-r|
* (2£l7K9 * 5%18né)&de2

+ (-222_K )o

a2 1779 "br

_7g2 :
+ (=22 ) @00

19€

18

+ (2219

. J—_- 2 Ty o -
ClB + Zp“l_sce)adeZ = 0 (B.l.fldi._),}

Roll - Track/Motor/Wheelset No. 3

Loz oy 202
(Icu %-Ida_+ 4218me)ade§ *om22,K

* (-Wvg, 17%9) oy

2 l 2 ' 2 - - N
* 205K+ FgR)agey + [89(-C o Crp) Tay
- L |
*[Ryg(Cyo¥Cig) + FR7gC Ta o

Roll - Track/Motor/Wheelset No. 4

. l 2 . _ _ 2 '
(Icq + Ida + 4118me)ade + W)vc:‘itl + 2!?'71'1'1(9)(1

-0 (B.1.42)

o

4 bf
: 2 Llo2 102 . N
T 209Ky + 50K ag, 10 Cigdla
1

- 2 ' *
P+ 2%18C] %aey

g {=Cy bf

. 2 = - - .
+eiglc,+C 0 (B.1.43) |

17 718

oo

~3
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Roll - Track/Motor/Wheelset Mo. 5 =&

(;ca

Roll - Track/Motwr/Wheelset No. 6

+

Iaa

N 1

+

e

4

, .
%18"e) %ges
202 K+ if

1

202 ¢ & L2 en)g

19718 2718

2 1
1779 7 3higRel e

+ i—w)v

e

as, *

+

de5

deb

Loy

+

I

da

The eqhations describing the lateral motions

L1

+

+ [

q

992
( 2217K9)abf

(=22,4C g0 o

»

= 0

2 . _ mp2
11gMe) Ogag T (WIVge + (F203Kgdayp o

2
219(Cy4%C1g) *

=02 K ¥
179 ¥ Fh1g"e)®

1

__‘2 RN
2218C§]a

¥

C 4

deb

de6

[22

19(—c

17-C18)]

0-

&

212

(B.1.44)
e

bf

(B.i.45)

o

(equations {B.1l.1l) to (B.l.45)) are of the general form:

(A]

45 x 45

where i
c
B

and R

Mode

Va

o

Ta

Ya

Vbr

o

45

is
is
is

is

x 1

the

the

the

the

inertia matrix’

damping matrix

stiffness matrix

vector of internal reaction given by:

Equation No.

B.1.1

- (RB, + RB

21

(3} + [E1{z} + [B]{z} + (R}

45 =

Reaction

(RB

2
+ RB

= {0}
1

-

+ RB3)~

+ RBj) -

(B.1.46)



Mode Equation No.

Yy,  B.1.6
be 7
be .8
Ybf .9
Vel - 10
1ol .11
y&l ’ .12
tqy .13
R .14
VcE .15
Y2 -16
vdzg* 17
&dé .18
Yaz 1R
vc3 .20‘
TC3 .21
vd3 .%2
ad3 .23
Yd3 .24
vc4 .25
Yeq ) .26

2. (RB +RB

Reaction”
. ‘.
g (BBy) =i, (RBy)+2,5(RB
- (Rhl?RM2+RM3)

1)

f(RB4+RBS+RB6)

21 {RE ¥RE+RE )

23

-2 (RB4)+126(RB5)+224(RBG)

- (RM4+RM5+RM6)

-RV | “
—134 (RVl) _—R‘fl

R§L+va + (Nr
2'1 .

18

(—5— - 22080) (N

1Ng1) 8y,

.
r1™ g1
RMl + RYfE
-RV, .

—234(RV2) ﬁ‘RYz

RB,+RV, +'(Nr2—N22)BO

F18 4y (N-N )
7 20% " Ny Ngo

RMz‘f RY2-

—RV3

. =R5,(BV4) - Ry,

RB_+RV. + (N_,-Ng )8

37 RV, 37 Ng3 9
2
18 _
(57 = %080 (N 3=NpJ)
- 7
RM3 + Rya
~RV,

244 (RV,) = Ry,

213
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v

214

Mode.‘Equation_No. ' Eipction
Vi B.1.27 © | RB ¥RV, + (Nr4—N14)BOW
%
18
%a4 .28 = 250800 NLg7Ngy,)
Y 44 .29 ‘ RM4t+ RY4 ,
VCS .30 . . -RV5
Ves -3 ‘ f44(RV5) .~ Ryg
VdS .32 ' “RB5+RV5 + (NrS—NQS) 80
2' .
o 33 (-8 5 8y (N_.-N,.)
ds 33 5 2070 rs Vg5
Y45 .34 | RMé + RyS
Vc6 .35 ‘ . —RV6
Y - . o
Y -36 Rgy (RVg) = Ryg | - =
Vg .37 RB+RVy + (N_ =N, )8
- ~"Q,
18
%36 -38 A R0 (W gTHp )
Yae -39 RMg + Ry
udel .40 f. 0
adeZ .41 0
GdeB .42 - 0
¢ 404 .43 0
adeS .44 0
®3e6 45 Q. _

T

T

using the

\\r\&\giggiig;éyqthe equations are desicnated by their corresponding,

s

]
The reactions are eliminated from\ the equation (B.l.46)

method of substitution as described below. For

)
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numbers (i.e., 1 refers to eguation afB8.1.1), 2 to

equation (B.1.2),..., and so on). J
1 =1
2 =2
3 =3

where

;/:\;\>‘(10+12+p'13) & (15+17+0-18) + (20+22+p-23)

10- =

11 =

13 =
14 =

15 =

40

41

42

43

44

45

—Qzl[(10+12+p-13) + {15+17+p+18}

+ (20+22+4p+23)]

+ [£é4(1o+12+c-13) + i (15+17+p-18)

26
L23(20+22+p-23)]

£34[(10+15+2O) + (11+16+21) + (14+19+24)]

+ (25+27+75°28) + (30+32+p-33) + (35+37+p-38)

-

- 121[(25+27+p-28)14 (30+32+2-33)
4 (35437+0-38) 1]
+

[8,,(25+27+p 28) - iy (304324p-33)

- 424(35+37%o-38)]

+ 5, [(25+30435) + (26+31+36) + (29+34+39)]

g
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After the elimination of the reactions, the system
SY

-

of equations (B.1l.46) becones:

(A} {Z} + [c1{z} + [8.7{z) = {0}  (B.1.47)
15 x 45 45 x 1 - .

s

That is a system of fifteen equatians in fourty-

1~

five unknowns,only fifteen of which are independent. The

relation between all the unknown displacements and the

indeéehdent ones ‘will be given by the transformation matrix
[T} based on the eguations oFf constraints. The eguations

defining ‘the constraints are:

(A) Constraints between Wheelsets and Frames

bl

Val T Vbr T f21%r * f24Yp:
Ya2 = Vbr T *21%r T t26Vbr
"Vas T Vor T Rafpr T fasYer - .
Yag T Vor T Y210 * f23Vps
Vas = Vpg T Lp10ng T LogVpe
Vas T Vor T f21%f T fag¥ps
Ya1 = Ypr Yaa = Tbf
Ya2 = Ypr Ydas © 'bf
. ¥
Ya3 = Ypr Yae = Vbt



(B)

Constraints between Motors and Tineelsets

%31

a

cl

“cz

Clc3

Olc4
cS5

OLc6

Ycl
Yc2

YcB

"These relations have alreédy been

PR

21

n sSatisfied by combining the wheelset

and ‘motor eguations

Y91%y

f21%r

w
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(C) Additional Constraints

.The constraint between the wheelsets and railg -

(due to the conicity of the wheels) yields the following

‘constrainfé:

%1 T T v vy Caq T V;4 .

fq2 T T ¥ vy, f %as T TV vgg

“43 T TV v, fas TT ¥ Vg '
where Vs (1 = l,-r?,i) is‘the‘;elative lateral displacement

between the wheelsets éﬁd the rail.

The Transformation Matrix [7]

T

This matrix gives the relation between all the

T: -
variables ang the independent variables, based on the
The matrix [T] is given in

egquations of constraintsﬁ

Table (B.1) where

op 7w Q2= Ly W
P3 = = I, ¥ P4 T foy T 2y,
P = Xyg = 23, P = 7 By + 20,
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!4 5 6 - 3 : |lo 0 12 13 14 15
& CENERAL:I-CZIOD COORDEI = ~ < E S
Q\S!‘ ﬁQ\b Ny L Y ! = See e |4 Dy B . 2 a,
- Br br 3+ el bi He del S deld ded debl de
‘l Va . b .
2 ca -
3 Ya
4 Ybr 1
5 Spr 1
6 Tye 1
7 Ve :
8 Spe 1
$ Ipe 1
10 | Ya1 1 -tan S
1] Tel 1 ’
12 | Va1 vtz tas
13 | a1 Py P2 3
14 | tal T |
15 | Yeo 1 -tz S .
1677 Te2 1
17 | Yaz2 1 tm i:ai
18 | “az S U S
19 | Ya: 1 ! ) X
20 | Ve3 v TRar fe ’ ot
21 | Ves 1 .
22 | Va3 1 “in “:3}
23 | %aa Py P2 ¥ , .
LI, 1 l
25 | Ves. i Lot g
26 Yo | 1
27 | Vai i S SRR 5
28 | "as S B
29 | Yau 1
30 | Yes o o-ia <t
31.| Yes
2 { Yas ottt
13 | “%as M I
34 | Yas 1
35 | Yes Lol 7
€ | s 1
37§ Vas P PR
38 | %ds’ 1 2 f3
39 | Yds 1
40 | %del 1 7
41 | %de: 1
$ e . T 1 .
3 Y 1
44_] ‘des N 1
15 | des 1
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" To eliminate the dependent variables from the
equations of‘métion, the transformation matrix [T] is used.
This matrix relates all the displacements {z} to the
generalized coordinates {x} as follows: |

. {z} = [T {x} (B.1.48)
© 45 x 1 45 x 15 15 x 1 . .

N

Substituting for {z: from eguation (B.l.48) back in

equation (B.1.47) we get '

(A ] [T] {X} + ¢ 1 [T] (X} + (3 1[7){x} ={0}
15 x 5 45 x 15 15 x 1 - :
’ * (B-1.49)

which after carrying the matrix multipiicationrgives the
following system of fifteen eguations in fifteen
independent coordinates.

[AT] [x} + [cTi{x} + [BT){x} = {0} (B.1.50)
15 x 15 15 % 1

’

It should be noted that{because of the intreoduction

=

of the non-conservative cree» forces, the inertia, damping

and stiffness matrices ([AT], [CT] and §BT] respectively),

are not symmetric.
oM Ay
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B.2 Eguatiodons of Motion for Longitudinal Vikrations

1 - - e

Longitudinal - Body

\

maﬁg * (2Ky + ARG+ 4Kdu + (-K) - 2K, - 2K )u, .
+ (=Ky - 2K, - 28 )u +‘(221xl + 41K, + 41.K) B,
~i+ (15K, # 20338, + 2133K7;§bf\__ - | ‘
e (LK) + 2045K, 1 2033K,) 8
+ (~cl - 2C4 - 2C7 - 2C14 cos &y - 2C16 cos lZ)Qbf
+ (—Cl - 2C4 - 2C7 - 2C14 c;; &l - 2C16 cos :2!ﬁbr
+ (200C) + 41,0 + 42,C, + 45),C), cOs o)
+‘4€15C16 cos az)z
+ (L2Cl + 2L33C4 + 2£33C7 + 2;3qél4 cos él
*. 2035016 €05 Gpliys
+ (?2Cl + 2133C4 + 2133C7'+ 2132C14 cos o,
+ ?232Clé ccs az)ébr
+ (2C, ¥ 4C, + 4C, + 4C,, cos a; + 4C . COS ,)u_ = 0
’ (B.2.1)
Verﬁical - Body
M+ (4K, + 4K w4 (<2Kg = 2K )w, o+ (22K - 2K )w,
+ (204K, +T20K)B o + (20,Ky - 20K )8,
. sy 4c€)&a + (=204 - 20w, . + (-2C5 - FC)w
£ (=20,Cq + 20,0 B + (20,05 = 20,008, = 0  (B.2.2)

| /ﬂ\\_’///F‘_JL\3 5Cg)
4
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Pitch - Body

I .5 + (2L.K, + 48_K, + 45_K_)u
777 Ta

aiz”a 1l 7
"R, - 2nK, - 2@—%)%: «
+ (f2ﬂ13+14)k3 T 2T | 5)%6) g

202440 ) Ky + 2(R52 ) KW

+ (202K, + 4(% +24)2K S+ 4(%

222

By

171 3 3 ~3 6 774
+ 41 )8
+ (5}&2K1 e 224(£3+£40K3 + 225(23—15}K6 + 2L7233K4a
' t2ig05, 7)Bbf :
+ (Qliznl - 224(£3+L4)K3 + 215(Q3-£5)K6 + 2u7 33 4~
: -
S R 2R e
+ (2ElCl + 4£7C4 + 4£{C7 + 4%15C14 cos g
+ 215C16 cos az}u
+ (=-2.C. - 29.7C4 - 29,7C7 - 2215(314 cos &l
T 2%y5Cy 608 opluye /
) + (—F,lCl - 2£7C4 - 227(27 "2115C14 cos al’
k\l\ ) . -
- 2£15Cl6 cos az)ubr
+ (—2(23+24)C3 - 2(23425)C6)wa
+ (2(23f£4)c3 + 2(£3~,5)C6}wb
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+ Ii112€i 214(13+24jc3 + 2;5(23 _,)t + 20,144C,
+ 2£7;33C7 +-2£15132Ci4|cos oy -
t 2h3583,C ¢ cos u2]'é’b£
+ (28,0 —'224(i3+14)c3'+ 20i5(85725)Cg + 225235C,
+ 2&7'33C7 +20655,C, cos o
o ‘ + 2&15232C16_cos azyébr
+ [22iC1.+ 4(£3+24)2C$ + 4(13*£5)2c6 +“4£§ct + 42§c7
) 15 14 COS oy ~:4£i5C16 cos éz}éa =0 (B.2.3)
Longitudinal - Rear Frame i -
WU+ (CKy - 2K, - 2K?)ua £ R+ 2Kﬁwf 2K2)ubr
| + O (-R4K) - ?17x4 - §F7ngsa E\___f

o

FORR,K) = 2055K, = 2053850 By Y N

+ (--Cl - 2C4 - 2C7 Z £C14 cos oy L

i . - ﬁclé cos az) (ﬁ - ébr)
+ (-2,C, - 28,Cy - 205C, ~ 28,£Cy, ©OS Q)
 ‘ 2Q.lSC16 cos,uz)é‘a
+‘(“£2Cl - 2233(34 - 2,133(27 32C14 cos oy
’ — ,2£3£c16 cos QZ}ébr
=" (RA] + RA, + RAj) = 0 (B.2.4)
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Vertical - Rear Frame

- 2K_)

2K 6

i ;

br +

m w_oo+
a

b ("

+ (=K

. AN
(AKID)hL‘ 10

W

+ (—2K9_

a2 T L2l

[+22 K

4¥3 + 22 K

5

6

=L ]Bbl +

235010 (-2

-2C +

(=2C4

_.2C6)wa

~C )wdl +

(=C19 ~C18

(-Co )w

t T

(C

lo)w

[2(24+2,)Cy + 2(2

+ 22_C

-22 . C 5

(=224

3 6 "

——

(-2

Rear Frame

2%

(2K 33

oKy *

K4 + 2

n

*33

(—221{l - 2 K4

[224K3 - 225K6]wa

wc2

- 2%

2K3 + 2K6

+ (-K

£3+24)K

2€t£23 +

3551078

2C, + 2C

3 6

—2C gl vas
c2 *

(-2.. .+

24 723

.

2

33K70 1,

+ (255K00

+ 6K

10

Tw

9

c3

+ 2(1

%2

L

6

27

+

c2'

+.

B

,('Clo’w

P .
3-25)c6]6a

yC

+

33 7)ubr

lw cl + (-227K

..[
2

(

17

(&

-+

<y

-C

+

+ 3K

ia(“2K9)wd1

i

1

JK

+ (-2K

£

24

35 10

7

1K

5

+ -

(-2

+4

25"

-+

(-2

7

-9

Kl

]

4C

-18

Ci1s

24

25

224
4

O) br

6l 84

) ¥a3

=2,

25

6 Bus
81

+ 3C. )w

i0" "br

)wd3

+4%

~2856%0 03

6 )C18

)CIO]Bbr

3SclO)Bcl + (- Lig 10)8 9 +.( 35 lO)iF},3§0 (B.Z.S)

10 Ye2

K10'¥¢3



_(.Q,QCl + 22

(28, ,Kgiwgy +
[-22 4K

3 5

[2221Kl + 2133

2 2
[P.ZKl + 2133K4

2 2
+ 2(224+226+£

(2558358301801

3354

(2%£C3 - 2R5C6
-t

- 2%

.

(C

2618

)

294{C17%C1g) Vg

(2o5C107 %

3

(Rzilcl + 2233

28 K. + 2(-—9,2

X ) + (=25_.%

(28, gKglvigy 33

6

s -

- T
+ +% +£25)K

227 %27 10

EaKy Hy2hgatKy

- 244

+ 24
]

2 ' 21 5
+ 2£33K7 + 224h3 + 2

2y 4 2 102 a2
2318g * (2ot +ns)

ol hgsK gl By ¥

+ 28 .C_ + 2

337 233C14 ¢

+ ZQBjCIG c

4 T 2330 7 225,Cy,

T 28550

)Wa + L,—2u4C3 + 2‘15(:

z
“

+L,+2..)C +

(PRt gtl,51C

1t (2RyeC glwy, * (-

+ (-~

(=2,2C10) v ‘25C

R7C4 + 2233£7C7 - 2L4

\ + 225(23—15)C6 + 2232gL5C14.cos a

T 28450,5C ¢

5%

a7 hogt a5 Ry '~

225

9)w

a3
rl.n

]wbr

(i3+24)K3

‘13~£5yK6]Ba

- 2
~5Kg

X101 Bpx

[=%55255K 0B85

oS
1

as az}ua

cos o
1

coSs az)ubr

154 (Cy4%Cyg)

C

Log (CyqatCigllwy,

t23(C17¥C g} vy
) v
10" "c3 -

(13+24)03 )

LY

1

v

cos aZ)Ba
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n 2 2‘ 2 m -2 '

‘+.[~2Cl + 2233 4 + 29,33C7 . 214C3 + 2;.5(:6
2 ‘ 2 & N4 o2
+ 2232 14 cos al + 21 16 cos a2 + 124Cl7
2 . 2 A 2
*hyuCrg * 20560 * 13309 7 *23%18
' 2 2 -
(i 23*227+“ 1Cio0l Ppy

t‘ . .. - O - -

T (Rgp0a5C 0By + (FR3g055C g0 By * (m255055C; () B 5
- 251 (RR) + RR, + RAy) = 0 (B.2.6)

l K} 3

Longitudinal - Front Frame

mou, o + (—Kl - 2K4 - 2K7)ua + (Ki + 2K4 + 2K7)u
~ .

bf

+'{—£1Kl - 200K, - 20K )3
ot E“RzKll" 2h33Ry — 2533%5) By
+ (—Ci'— 2Cy - 2?7 - 2Cy, cos oy ~ 2C, . cos az)ﬁa
+;(C1 + 2C4 f 2C7 + 2C14 cos al.+ 2C16 cos.a )ubf
+ (=2,Cy - 20,Cy' = 20,Cy = 28,.Cy, COS @y
- ‘ : ) - 5115C16 cos az)éa
+(~1,C - 2844C, —'2233c7 = 285,Cy, €OS o)
CT vy ' = 225,C  cOs « )Sbf )
% “V”m4+1m;+fmd = 0 _ (B.2.7)
‘Vertical - Front Frame
mW, e+ (-2Kg - 2K;Swa + (2Kg + 2K, + 6Ky +'3K10)wa;
+ (=K glw 4 + Ky g+ (K v :
+ (-2K +w +-(42K95wd5 + (=2Kg) Wy
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[0,

3571

+ (—2C3

+ (=C

+ (~clo

177C

- 28 K. + 2(71

Y8 .t

07 "c4

- 2C6)wa

18'¥as

Yw_, +

wlt (-2

(235810
+‘(2C3

+ (=2C

23 726 *24

25 %27"

+L. +2 )K9

% )K

\ .

101 8pg |

J8e5 * (235K10)Bd6\\

18,

ra

f 2¢6 + 2C17

) dS + (_C

ér'\( Clo)w |

+ [~2(13+£4)c3 - 2(2£’Z/ o ]s

+ [2£4C3

*35C10

Pitch - Front

- 21.C

576

Bc4 + &

Frame

g?~+\(1 K

ThpPpE 281

+‘§712Kl

o+ L—214K

4 Ry

+

(2855

+ [szlK

3 + 215

+ (-2

O)wc4 +

) w +

9’ a4

1 * 2%8

351085

6]w +

23*”5@

(255810

(=22,¢

3K,

-

(f T 284385 uy

[

+£24)K9 + (-2
YW

Kg)w

~

+ (Fhog

T 235C10Fce

4 " 231“33K'7_)“‘bf

224K3 ﬁ,2£5K6

25

g + (72yKy

das

+ (15224

208 K, - 2%

3377777 4

+

18~C

2

23,726

-2

4C

18

Vv

170 ¥ae

2

-%

hv-

_§_

+ %

7

= 0

2

C

Kg)

(

3

2

4]

6

dé

+

22)

bf

F

+24)K3

4

227

}Cig

CrolPpsz

(B.2.8)
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R
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IRV LR

chl +

—2R.4C3

.+ 5

253(C19%C

“1a4(C)

244

235%,5C

2
+
2 Cl

2
T+ 2232C

o+ 282.¢C

N

32

2510 ¥e4

+12 402 VK, + (2

100 Beg ¥ 72550

22,,C, + 28,.C

3374 3377

2233C4 ~‘2233C

+20.Cow_ + [2%
.‘ a ’

576
126818 T tna(Cyg

)]J

qa t (=22

778! g6

t gC100 v

&
A .-31
*2hyahgCy T2ty
+ 205(23-25) C

+ (-

10) cd 35

2 2
2233C4 + 29,33C7

14

2
16 cOs a2.+ 223

7

c5

+

+
v
B

2 2 2
25*227 259)

35%1018cs *

+-2 CcO

L3214

- 2%..C,, cos a

32714

- 21--C cOSs az)ﬁ

32716

€3 7 2%

+F18) + (-2

)w

26%18 as.

a

+ ("222C10

L2805 = 28,
2832%15%14
2232215C16
27 10)B

+ 2E4C3 + 28

2 2
cos a; f t25%0 * *27%0

2
17 * %23%8

2
* 22457

__'-\‘

25‘227

" cos o

K10l Bps

[£55%45K

Sdl

\, s
-+ 283,Cy4 cos oyluy

1

b

- 2.,(C

2371

)WCG

23+£4)C3

1

228

10} Bcs

£

e

+£22)C

cos aleé

(235222C

K

2
+ £22C10

2
+ 2226Cl

2
* 254C1s

10’ B

8

_18)

]w

cb

bf
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- g21{RA4

Vertical - Motor No.

+ RA

+ RAG)

Il
e

5

1

mwoy t CEygdw, ot

* (_Clo)wbr f

+ (RWl) = 0

o

(K (2

10091 T BaaKi0! Bpy

(Coiglwar & (BoCig) By T

229

(B.2.9)

(235810t By

(L )B

35 10

«(B.2.10)

Pitch - Motor No. 1
I gBe1t ("23s5K10)wWpr * (35K 0)Way * (RpphssKygh fuy
* (“35'10)5 Pt (RgsCy)vpe + (R35C50) v
* (2550350 ) By ¥ (2350 ) By — F3q(R¥) = 0 (B.2.11)
Longitudinal - MotoY/Wheelset No. 1
2f 20, F -
: . 1, - 20f1. - Ly
(mg + mglugy + (ghugy * (g 8gy * (B = 0 (B.2.12)
Vertical ~'Trackaheelset No. 1
(md +Lm )wdl + (—2K9)wbr + (2K9+Ke)wdl + 2{,&,24 g)y
*(mC97CygdWpy T (€19t C1g*Ce) Fay .
+ [%24( 17+c1§)16b - (RW)) =0 - (B.2.13)
Pitch - Wheelset &o. 1
28, f L2822 f : g
- 20t - 2%50h
IdBBdl + S )udl + S )Sdl 0 (B.2.14)
Vertical Motor No. 2
" - _ n
Moyt (CKpglwy o+ (Kygdwoy (285K, o) B+ (E35%9) By
+ - ClO) br ¥ (Cro?Wéa F (TPa7Ci0) Bpr Uiy 10)B
+ (RW,) = 0 - {(B.2.15)
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e
Pitch - Motor No. 2.
Togfer T (TR3sRig)Wer t (RgsR g)w ) + iyt oK )8
. -z 5 L . ) -
F 3Ry Tap (S350 gdw, + (5.0 ) 5
62 .
t (735729000 Bpr * (1350100 By — g (RW,) = 0 _
.  (B.2.16)
1ongitudinél - Motor/vheelset No. 2
2£, . 22,08, . -
Vertical'- Track/VWheelset No. 2
(md + m )wd2 + (—2K9)wbr + (2K9+”e)wd2 +_(2£26K9)8br
- " 4 y ' :
(R0 g+ (2C g4 C Y, + (28,56C g7 By
T (BY,) = 0 ' T (B.2.18) _
Pitch - Wheelset ic. 2
2L 203 f
T 201, - 2051 _ »
Tagban * (g luy, + (—_:—__)ed2 =0 (B.2.19)
Vertical - Motor Né. 3
MeWez v FKjglwp 4 (K glw g + (=225K10) 8y * (235K4) B g
FC) vy (Cppdviag (22,50 )6+ (£35C10) B3
+ (RW) = 0 | (B.2.20)
Pitch - Motor No. 3
TepPea * (Fh3sKyglwp, + gk w g + (=235%,5K, o) By,
2 )
*OR3gK gl B g + (24 10)wb (2550 0) Wy
t o {mt35055C ) By, * ”isclo)B T 234 (RW3) =0

v

(B.2.21)
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Longitudinal - !otor/ilheelset No. 3 = &
, - 2f 215 . .
(M + ) ua. + (—=2u.. + (—22 Ly2 L ey =g (B.2.22)
"o d g ' Y4a3 ?&3 =3 i

d3

Vertical - Track/Wheelset No.. 3

4 <

f(rnd + me)ﬁd3.+i(—2xg)wbr + (2Kg*R ) wgq + (—2125K9)Bbr
+ (=0 mCrgdwp, + (€ 4+C T )y, |
+ [-123(ci7+c18)]ébr_1 (RW,) = 0. (B.2.23)
Pitch - wheeisét No. 3
: e
TagBas * (E£§Q££)5d3-+ (E:égii)éd3 -0 - (B.2.24)
Vertical - Motor No. 4.
Mg+ (Kpghvpe ¢ (Rygdu b (L5800 B0+ (-igK )8
b (=Cygluyg + (C.lo"‘:’cd,#+ (255C10) Pz + (=135C ) B y
. (R¥,) = 0 |  (B.2.25)
Pitch - Motor No. 4
Togbeq * (35%10) Vpe +(mRggRpghvi, + (=235%55K ) Byg

3Ky g Byt (i€l (HR34C v,
ot gsto5C ) Bpp T (835C ) By * R34 (RW,I=0 (B.2.26)
Longitudinal - -Motor/Wheelset No. 4
. 29 £
(m_ + m.)u,. + (Efl)u s (=29 L 4 (RA) = 0 (B.2.27)
To T MgdUgy 5 ) Uay 5 a4 4 -2.
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Vertical - Track/wheelset lo. 4
> . L .
TWgy v O(2055Kg) B

(mgy + me;§é4 + (m2Rg)w g (2Kg+K )Wy,
+(CpgmCygluigs + (C18+é17+ce)*d4
- 3 : g
) |+ Ly (CgC 1B - (RW,) =0 . (B.2.28)
itch - Wh;elset No. 4 ' .
{dsém - (2£.2§f1)ud4 ¥ cz%gflyécM = 0 | (B.2.29)
Vertical - Motor N 5 ' '
mog F R et (Rygdwog b (K ) B+ (836K )8 g
+ (=G )V + (Cpgdvag * (1550 Y Epe + (=234C ) B g
+ (RWg) = 0 ’ (B.;.BO)
Pitch - Motor No.‘S
Teg®cs (235K10)be_+ (=2358100%es * (7h35%27%10) Pes
* R3sRigdgs * (Rasclo)fbf'+ ("135C10)&c§
o ("235£2?C10)s;;\;thggclo)écs T gy (Rg) =0 (3.2.31)
Longitudinal - Motor/Wheelset No. 5
| B 2, 20,0, .
(mC + md)_udS + (——S—)uds + (—S—) Bag * (RAS) =0 (B.2.32)
Vértical - Track/Wheelset No. 5
(mg + m)Wgg + (~2Kg)uy e + (2K;+Ke)wd5 t(28,6Kg) By
* (2C18+Ce)éés +(-2856Cyg) By

+ L—EClS)wa
(B.2.33)

- W = 0
(Rg) = .
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Pitch - Wheelsét Y¥o. 5 ‘
24 £ 28218
. 2051, - 201 o
. IdBBds + (-“ﬁg—*)uds + (___5__)3d5 = 0 (B.2.34)
Vertical « Motor1No.'6
' 1
- . . .
mWee TRy wWe  (Kygdwig 7o (mR0K 00 B (_235K10)8c6
* (=Cydwpet (Crgdweg * (FR55C 00 By t (=235 10’5

+ 1Rw6i = 0. (B.2.35)

Pitch - Motor No. 6

TegBos t (EasKi)Wpe t ('£35K;0’W¢5 + (35%55K19) Bpg
. | i

. . . .
t (AgsKi)Beg * (R3sCyp)vpe + (FR35C g0 Ve -
(12,0 )8 g + Ly, (RW) = 0 (B.2.36)

T (R35855C 90 Bps + (535C149) B

Longitudinal - Motor/Wheelset No. 6

2f ‘ 2%, f
- s IR Yoo
(m, + mglugg + (gTluge * (577 By,

70 (B.2.37)

+ (RAS)

Vertical - Track/Wheelset No. €

(md + me)wd6 + (—2K9)wa + (2K9+Ke)w66 + (—2224K9)Bbf

-+ (Cl7+C

* (=C177C1g) Vg tC v

18 d6

+ [2,,(-C (RWG) = 0 (B.2.38)

24¢7C197C1g) 1By -

Pitch - Wheelset No. 6
802 £
2£20f1)u . (2220*1)é _ o
S S deé

TagPas * !
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The eguaticns describing the longitudinal motions

(equétions (B.2.1) to (B.2.39) are of the ceneral form:
| - - - .

(X] (7} + [E)1{3} + (Bl{z} + (R} = {0} (B.2.40)
39 /39 39 x 1 - _ 39 x 1
| .
where A is the ifertia matrix

(@l

is the damping matrix

(ve i

is the stiffness matrix

and R is the vector of internal reactions given by:

by

lode Equation No. ' Reaction
u ' B.2.1 0

W : -.2 0

B .3 0

U .4 - (RAl-i-RA2+RA3)
. .5 0 '

Bir .6 4&-21 (RA1+RA2+RA'3)
Uy e .7 - (RA4+RA5+RA6)
Wy f .8 0

Bﬁf .9 - 1,1 (RA +RA+RA()
Wop oo L -10 RV,

Bcl ' A1 - —£34(RW1)

U3y .l? RAl

wa)1 .13 | —RWl

Bay T 0

Weo | S .15 ‘ sz
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Q

Mode Zguaticn No.
Bc2 B.2.16
U 7 .17
W3 o .18
de .19:
W .20

c3 21
U3 .22
Y33 f .23

d3 24
W4 .25
Bc4 26
udq .27
w-d4 ) .28
8&4 .29
Yes 30
s A
ud5'£' | '.}2
Vs .33
Bd5 - 34
ch . .35
Bg .36
Ui .37 -
Yag .38
8 .39

1

Reaction

~2,, (R,)
RA,
~R¥,
0.

T
RW 3

%34 (RW3)
RA, ]
“Riy
0

!
RW,
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The reactions are eliminated from the eguations
using the method of substitution as descritbed below. For:

simplicity the equations are designated by their

" corresponding numbers (i.e., 1 refers to ecuation (B.2.1),

2 to equation (B.2.2),..., and‘so on). _ a//i
1=1 -~ /”‘_\\\\
2 =2 :
- \\i
3 =3 J

4 = 4 + (12+17+22) - o

6 = 6 + 221(12+l7+22). o f\
7 = 7 + (27+32437)
g =8 ' ~
9 =9 + £21(27+32+37)
10 = 11 +_£34(10)
11 = 10 + 13
12 = 14

13 = 16 + L 15)

34 ¢
14 = 15 + 18
15 = 19

16 = 21 + 1,(20)

17 = 20 + 23 :

19 = 26 ~ 134(25)

20 = 25 + 28
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21 = 29 .
22 = 31 - 2_,(30)

23 = 30 + 33

S 24 = 34
25 = 36 ~ 25,(35) | )
* N
26-= 35 + 38 : \
27 = 34.

After the elimination of the internal reactions,

the system of equations (B.2.40) becomes

[A ] {z} + [Cc1{z} + [B ]{z} = {0} (B.2.41)
27 x 39 39 x l‘ )

That is‘afsyétem of‘twenty—seven equations in 8
thirty-nine unknowns, only twenty-seven of which a;é
independent. 'Thé relation hetween all the unknown displace-
ments and the‘independént ones will be given by the,

transfoxmpation matyix [D] based on the equations of

constraints. ° The eguations defining the constraints are:

(A) Conséfaints between Wheelsets ahd Frames
P .

gy T Vpp v Ao B,

Ya2 T Ypr F Ap1By;

a3 T Upp t 2548,

e Yag T Ype t R5qB

9as T Vpe T 21 Bps

Y36 = Ype thyBp¢
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(B) Constraipnts betweén Motors and Wheelsets

u = 1

dl cl _ ) o o Ly
P-4 udz = uc2 - ) 'Lﬂ"_:
., = u : ; .
d3 c3 ‘ These relations have already
Ugg = ?04 been satisfied b;ﬂgombinlng
a0 = u the wheelset and motfor
ds c5 o S
- : equations
Ya6 T Ycs
- /
‘-
Wel T War * Fyafey
Ye2 T wd2.+ 1348c2 ‘ . T
W3 T Maz t o Faufes -
Yeq T Wag T %3gBdyY
Yes T Was T t348cs )
Yoo T Yae ~ *34Pce

ch

The Transformation Matrix [D] ‘
. A,

This matrix gives the relation between all the

variables and the independent variables, based on the
equations of constraints. The matrix [D] is given in
Table (B.2). |

The relation between all the displacements {z} and

the geneiiiiiigfgcdidinates {x} is given by

A
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b ‘ )
\ o

. Az} (D] {x) (B.2.42)
39 %1 39 x 27 27 x 1 :
. 4

Swbstituting for {z} from equation (B.2.42) back .

i equation (B.2.41) we get

. : N
() (D] {x} + [c }[PI{x} + [B I[D){x} = {0}(B.2.43)
27 x 39 39 x 27-27 x 1 - . _ —
Which after carrying the matrix mulﬁiplicati;n giy;s
) the foi;owing SYEEEE of twenty-seven eqﬁatiogs in twenty- g
seven independent éoordinates.' .
[AD)- {x} + [CDI{x} + [BDi{x}f= {0} N (3.2;445 _

27 x 27 27 x 1

R i . It shouid be noted that here too, the inértia damping.

and stiffness matricqé‘([AD], [CD} and [BD] respectively), -

°

_ are not symmetric due to. the presence of the non-conservative

' creep forces.

a S -




