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Abstract 

This project aims to give an overview of knots, orderability of knot groups, and to 

construct knots for which the knot groups enjoy some nice properties. 

To accomplish this, we first present some preliminary results concerning knots 

and knot groups. We then introduce the Alexander polynomial, and explain the 

idea of a special polynomial originally introduced by Linnell, Rhemtulla and Rolfsen. 

By investigating the conditions on a special polynomial, we classify all the special 

Alexander polynomial of fibred knots of degree less than 10. Finally we construct 

examples of fibred knots which have a special Alexander polynomial. 
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Chapter 1 

Knots and Knot Groups 

In this chapter, we give some preliminary results about knots and the orderability 

of knot groups. 

1.1 Definition of Knots 

Definition 1.1.1. A link L of m components is a subset of S 3 , or of IR3 , that consists 

of m disjoint, piecewise linear, simple closed curves. A link of one component is a 

knot. 

If not stated as "unoriented" it is often assumed that an orientation is associated 

with a link given by a specified direction along each component curve. 

There is a natural way to draw a link in the plane using a projection p : IR3 ----> IR2
. 

Each line segment of L projects to a line segment in IR2
. The projections of two such 

segments intersect in at most one point which for disjoint segments is not an end 

point, and that no point belongs to the projections of three segments. The image 

of L in IR2 together with "over and under" information at the crossings is called a 

diagram of L. The crossing number of a diagram is the number of crossings in the 

diagram. The crossing number of a link is the minimal number of crossings needed 

for a diagram of the link. 

1 
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Figure 1.1: A Knot Diagram for Figure-8-Knot 

Having defined knots, the natural question is: How do we distinguish knots, that 

is to say, how do we know whether two knots are the same or different? 

It is natural to make the definition below, from a topological point of view. 

Definition 1.1.2. Two links Li and L2 in S 3 are equivalent if there is an orientation­

preserving piecewise linear homeomorphism h: S3 
--t S3 such that h(Li) = (L2). 

Intuitively, two knots are the same if one knot can be transformed to another with­

out cutting and rejoining. This corresponds to the notion of "isotopic" in topology. 

To be explicit, it means that besides the conditions in the definition above, we want 

h to be isotopic to the identity map, that is, there exists ht : S 3 
--t S 3 fort E [O, 1] so 

that ho = 1 and hi = h and ( x, t) i--+ ( htx, t) is a piecewise linear homeomorphism of 

S 3 x [O, 1 J to itself. It can be shown that these two definitions are equivalent using a 

theorem of piecewise linear topology. 

The simplest knot is the so called "unknot" which is defined as the knot bounding 

an embedded piecewise linear disc in S 3 . We can construct the sum of two knots by 

tying one and then the other in the same piece of string. See figure 1.2. For oriented 

knots, they should be tied according to their orientations. It is easily seen that the 

sum is well-defined. We denote the sum of two knots Ki and K 2 by K 1 + K 2 • 



cBCD 
cBCfJ 
co~D 

Figure 1.2: Sum of Two Knots 
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It follows from the definition of the sum that this addition is commutative and 

associative. It has been proved that no knot other that the unknot has an additive 

inverse. See [10] for details. 

Giving the above two definitions, we can define the building block for a complex 

knot. 

Definition 1.1.3. A knot K is a prime knot if it is not the unknot, and K = Ki+ K2 

implies that Ki or K2 is the unknot. 

Schubert showed in [9] that every knot can be uniquely decomposed (up to the 

order in which the decomposition is performed) as a knot sum of prime knots. 

So from now on, we will concentrate on prime knots, since many properties of 

the composite knot could be derived from the properties of each summand knot in a 

relatively easy way. 

Now, we give the definition of meridian and longitude. 

Definition 1.1.4. Let K be an oriented knot in S3 with solid torus neighborhood 

N. A meridianµ of K is a non-separating simple closed curve in BN that bounds a 
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Figure 1.3: Seifert Surface of Figure-8 Knot drawn using Jack van Wijk's Seifert View 

disc in N. A longitude>. of K is a simple closed curve in 8N that is homologous to 

K in N and null-homologous in the exterior of K. 

1.2 Seifert Surfaces 

It is very interesting that every link in S3 can be regarded as the boundary of a surface 

embedded in S3 . The surface will be used to construct the Alexander polynomial of 

a given knot. 

Definition 1.2.1. A Seifert surface for an oriented link L in S 3 is a connected 

compact oriented surface contained in S 3 that has L as its oriented boundary. 

Remark 1.2.1. While the condition "connected" and "compact" is reasonable for us 

to get a nice surface, "oriented" is a crucial condition for us to construct the infinite 

cyclic cover. This eliminates the possibility of a Mobius band being a Seifert surface 

of some link. 

Theorem 1.2.1. Any oriented link in S 3 has a Seifert surface. 
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Figure 1.4: Trefoil Knot 

1.3 Fibred Knots 

Definition 1.3.1. A fibred knot or link Lis one for which S 3 
- L fibres over S 1

, with 

fibres open surfaces, each of whose closures has L as its boundary. 

Many knots and links are fibred, for example, the unknot (See Fig 1.4.), trefoil 

knot, and figure-eight knot are fibred knots. The sum of two fibred knots is fibred.(See 

pp. 323-326 of [12].) 

The commutator subgroup of the group of a fibred knot is finitely generated. In 

deed, the finite generation of the commutator subgroup characterizes fibred knots as 

follows. 

Theorem 1.3.1. (Stallings) The complement of a knot fibres locally trivially over S1 

with Seifert surfaces as fibres if the commutator subgroup G of the knot group is 

finitely generated. (See Theorem 5.1 in (11].) 

The Alexander polynomial has very good properties when the given knot is fibred, 

which we will illustrate in the coming chapter. 
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1.4 Knot Groups 

Intuitively, we can see that different knots are likely to shape different complement 

spaces, that is, the complement of the knot. In [8], Gordon and J. Luecke proved that 

knots are determined by their complements. 

Theorem 1.4.1. If K1 and K2 are unoriented knots in S3 and there is an orientation 

preserving homeomorphism between their complements, then K1 and K2 are equivalent 

(as unoriented knots). 

This is not necessarily true for links with more than one component. 

Looking at the topology of the complement thus is a good way to study knots. 

We give the definition of a knot group. 

Definition 1.4.1. The group of a link L in 83 is defined to be 7r1 ( 8 3 - L), the 

fundamental group of the complement of L. 

The fundamental group of the complement determines the topology of complement 

for prime knots. 

Theorem 1.4.2. If K1 and K2 are prime knots in S3 and 7r1 (S3 - Ki) to 7r1 (S3 -K2) 

are isomorphic groups, then S3 - K1 and S3 - K2 are homeomorphic. (See Theorem 

11.9 in {10}.) 

The theorem above is not true for composite knots. The square knot, which is a 

knot sum of a trefoil knot and its mirror image, and the granny knot, which is a knot 

sum of two trefoil knots having the same orientation, have the same knot group but 

different knot complement.(See p. 62 in [12].) See Fig 1.5. 

If the isomorphism between those two groups preserves the peripheral structure 

of the knots, we could conclude those knot are actually equivalent. 

Theorem 1.4.3. If there exists an isomorphism from 7r1 (S3 - K1 ) to 7r1 (S3 - K 2 ) 

which sends [..\1] to [..\2] and [µ1] to [µ2], where ..\, is a longitude for K, and µ, is a 

meridian for K,, then K 1 and K 2 are equivalent knots. (See Theorem 11.8 in [10}.) 
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Square Knot 

Granny Knot 

Figure 1.5: Square knot and Granny knot 
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Figure 1.6: Two possible relations 

There is a simple way to determine a group presentation of a given knot group 

(simple in principle, the actual process is tedious). It is called the Wirtinger pre­

sentation, G =< gi,gz, ... ,gm;r1,r2, ... ,rn >where g;'s are generators, and r/s are 

relations. 

We shall select a diagram of the link L: Select an orientation of L for convenience. 

Corresponding to the ith segment of the diagram with the usual breaks at under­

passes take a group generator g;. For each crossing take a relation as indicated in 

Figure 1.6. Suppose at the crossing c the over-pass arc is labeled gk and the under­

pass is labeled g, as it approaches c and g1 as it leaves c. Then re= gkg,g"k1gj1 if the 

sign of the crossing is negative and re = g-;; 1 g;gkgj1 if the sign is positive. See figure 

1.6 

The proof can be found in [10]. 

1.5 Group Orderability 

An ordered group is a group with a compatible order on it, while an orderable group 

is a group which can be equipped with such an order. 
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Definition 1.5.1. A group G is said to be left-ordered (respectively, right-ordered) if 

there is a strict total ordering < of its elements such that for all f, g, h E G, f < g 

implies hf < hg (respectively, f h < gh). If a group has an ordering such that it is 

both left-ordered and right-ordered, then we say that this group is bi-ordered. 

Note that a group is left-orderable if and only if it is right-orderable. 

An orderable group has various good algebraic properties. 

If G is left-orderable, then G is torsion-free. 

If G is bi-orderable, then: 

1. G has no generalized torsion (product of conjugates of a nontrivial element 

being trivial), 

2. G has unique roots: gn = hn implies g = h, 

3. If [gn, h] = 1 in G then [g, h] = 1, where [x, y] = xyx-1y-1 

There are many results on orderable groups. See [1] for an exposition. 

Many groups of interest in topology are orderable. 

Theorem 1.5.1. If M is any connected surface other than the projective plane or 

Klein bottle, then 7r1(M) is bz-orderable. (See Theorem 1.4 in [4].) 

Specifically, although bi-orderability is not common in knot groups, we have fol­

lowing proposition. 

Proposition 1.5.2. Classical lznk groups are right-orderable. (See Proposition 3.1 

in [3].) 

The group of the trefoil knot is isomorphic to B3 , the braid group on 3 strands, 

which has presentation of< x, y I x 2 = y3 >. (See pp. 52 and 61 in [12].) 

And it has been proved that when n > 2, Bn is left-orderable but not bi-orderable. 

(See [l].) 



Chapter 2 

The Alexander Polynomial 

The tools of algebra are extremely useful in the study of topology, and their applica­

tion to knots is no exception. There are a lot of algebraic invariants associated with 

a given knot. Here we introduce the Alexander polynomial, which is the first polyno­

mial of a sequence of related polynomials. Although it is not a complete invariant of 

knots, it is quite efficient at distinguishing two knots. 

2.1 The Definition of the Alexander Polynomial 

In this section, we construct the Alexander polynomial using the Seifert surface of a 

given knot. 

First, we review some algebra and establish some notation. 

Suppose that M is a module over a commutative ring R. It will be assumed that 

R has an identity, i.e., a 1 E R such that lx = x for all x E R. A module is free if 

any element in it can be uniquely expressed as a linear sum of elements in basis; the 

module of n-tuples of elements of R is the canonical example of a free R-module. A 

finite presentation for M is an exact sequence F ~ E !.... M --t 0 where E and F are 

free R-modules with finite bases. If a is represented by the matrix A with respect to 

bases e1, e2, ... , em and f1, f2, ... , fn of E and F, then the matrix A, of m rows and 

n columns, is a presentation matrix for M. 

10 
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Definition 2.1.1. Suppose M is a module over a commutative ring R, having an 

m x n presentation matrix A. The r-th elementary ideal Er of M is the ideal of R 

generated by all the (m - r + 1) x (m - r + 1) minors of A. 

Proposition 2.1.1. Suppose that F is a connected, compact, orientable surface with 

non-empty boundary, piecewise linearly contained in 8 3 . Then the homology groups 

Hi (53 - F; Z) and Hi (F; Z) are isomorphic, and there is a unique non-singular bilin­

ear form /3: Hi (53 - F; Z) x Hi (F; Z) ---+ Z with the property that /3( [c], [d]) = lk( c, d) 

for any oriented simple closed curves c and d in 53 - F respectively. 

Next, we construct the Alexander polynomial of a given link. 

Now suppose that Fis a Seifert surface for an oriented link Lin 5 3 , so that 8F = 

L. Let N be a regular neighborhood of L, a disjoint union of solid tori that "fatten" 

the components of L. Let X be the closure of 8 3 -N. Then FnX is F with a (collar) 

neighborhood of BF removed. Thus F n X is just a copy of F and , just to simplify 

notation, it will be regarded as actually being F. This F has a regular neighborhood 

F x [-1, 1] in X, with F identified with F x 0 and the notation chosen so that the 

meridian of every component of L enters the neighborhood at F x -1 and leaves it at 

F x 1. Let i± be the two embedded images F ---+ 5 3 - F defined by i± ( x) = x x { ± 1} 

and, if c is an oriented simple closed curve in F, let c± = i±c. 

Definition 2.1.2. Associated to the Seifert surface F for an oriented link L is the 

Seifert form a: Hi(F;Z) x Hi(F;Z)---+ Z defined by o:(x,y) = f3((i-Lx,y) 

Now let Y be the space X cut along F. This means that Y is X - F com­

pactified,with two copies, F_ and F+ of F replacing the removed copy of F (Y is 

homeomorphic to X less the open neighborhood F x (-1, 1) of F). Of course, X can 

be recovered from Y by gluing F+ and F_ together; thus X = Y/¢, where¢ is the 

natural homeomorphism ¢ : F_ ---+ F ---+ F+. Now take countably many copies of Y 

and glue them together to form a new space X 00 • More precisely, let Y;: : i E Z be 

spaces homeomorphic to Y, and let h, : Y ---+ Y;: be a homeomorphism. Let X 00 be 
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the space formed from the disjoint union of all the Y,, by identifying h,F_ with hi+lF+ 

by means of the homeomorphism h,+ 1¢h-;1
. 

On X= there is a natural self-homeomorphism t : X= -+ X= defined by t!Y; = 

hi+1h-; 1
. Clearly this is well defined; t is thought of as a translation of X= by "one 

unit to the right". Hence the infinite cyclic group < t > generated by t acts on X= 

as a group of homeomorphisms. Thus< t >also acts on H 1(X=; Z). 

Theorem 2.1.2. Let F be a Seifert surface for an oriented link L in S 3 and let A be 

a matrix, with respect to any basis of H1 (F; Z), for the corresponding Seifert form. 

Then tA- AT is a matrix that presents the Z[r1, t] - module H1(X=; Z) where AT is 

the transpose of A. 

Finally we reach to the definition of Alexander polynomial. 

Definition 2.1.3. The r-th Alexander ideal of an oriented link L is the r-th ele­

mentary ideal of the Z[r1, t] module H1(X=; Z). The r-th Alexander polynomial 

of L is a generator of the smallest principal ideal of Z[r1, t] that contains the r-th 

Alexander ideal. The first Alexander polynomial is called the Alexander polynomial 

and is written ~L(t). 

We have a very straightforward way to calculate the Alexander polynomial of a 

given knot if we know the Wirtinger presentation of the knot. It is called the free 

differential calculus devised by R. H. Fox. Instead of proving it here, we would rather 

state a step-by-step method of how we use it. The complete proof can be found in 

[10]. 

Now given a knot diagram, after labeling each segment(generator), we can imme­

diately get several relations( the number of relations is one less then the number of 

generators). Each relation is either of the form g1 = gkg,gk, 1 or g1 = gk, 1g,gk. Note 

that we could choose a natural order of the segments such that j = i + 1. Then we can 

set an x (n + 1) matrix with all entries 0, where (n + 1) is the number of generators, 

and n is the number of relations. For the ith relation, let entry ( i, k) be 1- t. Besides, 



13 

if crossing is negative, let ( i, i) be t and ( i, j) be -1, otherwise crossing is positive, 

we let ( i, i) be -1 and ( i, j) be t. Remember j = i + 1, so it is quite straightforward. 

Now we have a big matrix with mostly zeros. The Alexander polynomial is the 

greatest common divisor of all n-minors. 

While it is simple in principle, it is tedious even with the help of mathematical 

software when n becomes large. So when we have a nice Seifert surface F for a given 

knot K, we can use the definition to calculate the Alexander polynomial directly. 

The Seifert matrix A is given by A;1 = lk(J;, j
1
+), where Jf is a copy of fj pushed 

off F into S 3 - F in the direction defined by the oriented meridian of K. Then it 

follows that the Alexander polynomial is the determinant of tA - Ar. 

It is more efficient when the knot is presented nicely and systematically. 

For the Alexander polynomial regarding a fibred knot, we know the following 

theorem. 

Theorem 2.1.3. A fibred knot has a manic Alexander polynomial and has genus 

equal to half the degree of the Alexander polynomial. See (11]. 

This is fairly effective at picking out a non-fibred knot! In particular, a knot is 

not fibred if it does not have 1 as the leading coefficient of its Alexander polynomial. 

2.2 Levine's Characterization 

In [5], J.Levine gives a characterization of knot polynomials, namely an equivalent 

condition for a polynomial to be the Alexander polynomial of some knot. 

Notice that by the definition of the Alexander polynomial, it is actually a class of 

polynomials. Within a class every two polynomial differ by a unit multiple, that is, 

±ta. 

The necessary and sufficient conditions for a given polynomial .6.(t) defined over 

the integers to be the Alexander polynomial of some knot are: 

1..6.(1) = ±1 

2 . .6.(t) = t2a~(r 1 ) for some integer a 
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We can always multiply ±1 to the polynomial to make condition 1 become 6.(1) = 

1. 

As we have mentioned in Theorem 2.1.3, the Alexander polynomial .6.(t) of a 

fibred knot should satisfy .6.(0) = ±1. 



Chapter 3 

Fibred Knots With Orderable 

Knot Groups 

In [2], it was shown that certain kinds of fibred knots have bi-orderable knot groups. 

The criteria for this nice bi-ordering is whether the Alexander polynomial is spe­

cial. 

In this chapter we classify all special Alexander polynomial of degree less than 10. 

And we use this result to construct several concrete fibred knots with nice orderings. 

There is a rather nice result. It gives a general result on the relation between the 

orderability of the knot group and the Alexander polynomial. 

Theorem 3.0.1. If K is a fibred knot in 8 3, or in any homology 3-sphere, such that 

all the roots of its Alexander polynomial 6..K(t) are real and positive, then its knot 

group 7r1(S3 \ K) is bi-orderable. (See Theorem 1.1 in {3].} 

In [2], Linnell, Rhemtulla and Rolfsen obtain a related result which we state in 

the next section. 

15 
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3.1 Classification of Special Alexander Polynomi­

als of Degree Less than 10 

It has been proved that the restriction on the Alexander polynomial in theorem 3.0. l 

can be modified. Next,we give a definition of a special polynomial. 

Definition 3.1.1. Let f = Q[X] be a monic polynomial and let f = f 1 · · · fn be its 

factorization into irreducible polynomials (so n is a nonnegative integer and each f, 
is irreducible). Then we say that f is a special polynomial if each fi has odd prime 

power degree, negative constant term, and all roots real. (See Definition 3.1 of [2].) 

"Odd prime power" above means Deg(!,) =pd where pis odd prime, d E Zand 

d 2: l. 

The special polynomial can play a important role of providing the invariance 

property of the bi-orderings. 

Proposition 3.1.1. Let f E Q[X] be a special polynomial, let G be a residually 

torsion-free nilpotent group, let() be an automorphism of G, and let</> : G / G2 ---> G / G2 

be the automorphism induced by (). Assume that G / G2 has finite rank and that the 

eigenvalues of () are roots off. Then G has a bi-ordering invariant under (). {See 

Proposition 3.4 of (2].} 

G2 = {g E Glgm E [ G, GJ for some positive integer m} 

G2 is a characteristic subgroup of G, which contains the commutator subgroups 

of G. 

Next, we investigate what the special polynomials look like. Let us briefly review 

what the Alexander polynomial looks like. 

Levine's Characterization of Alexander polynomial is: 

l.b.(1) = ±1 

2.b.(t) = t2ab.(r1) for some integer a 

We shall classify all the special monic Alexander polynomials of degree less than 

10. 



17 

By condition 2, we know that the degree of the Alexander polynomial is even 

given a non-zero constant term. 

For degree 2 and degree 4: 

Since we want the degree of each factors to be greater than 2, and since 4 is not 

an odd prime power, there are no special Alexander polynomials of degrees 2 or 4. 

For degree 6: 

Special polynomial condition: 

Since we are not allowing the degree of a factor less than 3, we must have b.(t) = 

b.1(t)b.2(t) where both of b.1(t) and b.2(t) are of degree 3. 

Alexander polynomial condition 1: 

Since b.(1) = ±1 and the factors are irreducible, both b.1(1) and b.2(1) must be 

equal to ±1. 

Alexander polynomial condition 2: 

This leads to two possibilities: 

b.1(t) = ±t2ab.2(t-l) 

or 

b.1 ( 1) and b.2 ( 1) satisfy condition 2 respectively. 

If the degree of the factor is odd and satisfies the condition 2, it contradicts 

condition 1, otherwise we would have non-integer coefficients. 

So they must be of the form: 

b.1(t) = t3 + (±1 - a)t2 +at - 1 

b.2(t) = t3 - at2 - (±1 - a)t - 1 

where ~1 (t) = ±t2a~2 (r 1 ) 

since the coefficients of the polynomial are all integers. If the discriminants of 

these cubic polynomial are non-negative, then all their roots are real. We denote ±1 

above by E below. 

Case 1: E = 1: 

The discriminants of b.1(t) and b.2(t) are 

D1 = D2 = a4 
- 10a3 + 3la2 - 30a - 23 
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After drawing the graph of Di and Di as a function of a, it is not hard to see that 

a < 0 or a > 5 is enough for all the roots real. 

Case 2: E = -1: 

The discriminants of .6.1 (t) and .6.2 (t) are 

Di = D2 = a4 
- 6a3 + 7a2 + 6a - 31 

So we have a < -1 or a > 4 for all roots real. 

For degree 8: 

Due to the same reason above, we must have two factors of degree 3 and 5. But 

it contradicts condition 2, which we have discussed above. So there is no degree 8 

special Alexander polynomial. 

To summarize, we state a proposition below: 

Theorem 3.1.2. In all the Alexander polynomials of degree less than 10, the special 

ones have one of the following two forms: 

(t3 + (1 - a)t2 +at - l)(t3 
- at2 - (1 - a)t - 1) where a< 0 or a> 5 

or 

( t3 + ( -1 - a )t2 + at - 1) ( t3 - at2 
- (-1 - a )t - 1) where a < -1 or a > 4 

and any polynomial having one of these two forms is a special Alexander polyno­

mial. 

3.2 Construction of Fibred Knots 

We describe a construction of fibred knots by Quach in [7] which is originally discov­

ered by Burde in [6]. 

Let ~(t) be an Alexander polynomial such that ~(O) = -1. Then we can con­

struct a fibred knot with Alexander polynomial ~(t). A even stronger version can be 

found in [7]. 

Let ~(t) = >.-2h(-Ah + L:Z;;;;~pkAk + 1), 

>. = i~t' A= .X(l - >.),Pk E Z 
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• + r.hd 1-'._U:.j,,J) .. L Jis-J 'L (cjiJ):;. ~t-6o Q r.611-1-8(0 ~'c!'lilftt 
'~ ( !.J~J}=- r. h~J i +(ljr.J) = [ lt'fJ 

i tcr.:J,J/"'- [ h2J il!.j, 3) [ h6J 

Figure 3.1: A Fibred Knot with Alexander Polynomial: 1 - (6 + pz)t + (15 +PI + 
4pz)t2 

- (21 + 2pI + 6pz)t3 + (15 +PI + 4pz)t4 
- (6 + pz)t5 + t6 

We take h = 3 for example. See Figure 3.1. The Seifert surface can been easily 

seen as a surface with 2k twisted handles. Pk is the number of the full twists, and the 

sign of Pk is associated with the orientation as illustrated in the figure. 

By counting the linking numbers, the Seifert matrix for this knot is 

-1 1 0 0 0 0 

0 P1 1 0 0 0 

0 1 0 1 0 0 

0 0 0 Pz 1 0 

0 0 0 1 0 1 

0 0 0 0 0 1 



• of L t (cjil) :: [n.J 

[t(cy~1)=- C..h.JJ 

i tc r.~,J7"" r h :i.J 

i,-t(lj'fl) .. L ti,,J 

i t(l~sJ): [ lt'+J 

i.t(Lj,J) ( htJ 

Figure 3.2: i+ is surjective 
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So the resulting Alexander polynomial is 1 - (6 + p2 )t + (15 + p1 + 4p2)t2 - (21 + 
2p1 + 6p2)t3 + (15 +Pi+ 4p2)t4 

- (6 + P2)t5 + t6
. 

We claim this knot is fibred. 

Proof. By [7], we only need to prove i+ is surjective where i+ : 7r1 (F) --> 7r1 (S3\F) is 

the induced map from the lifting map of the knot where F is the Seifert surface of the 

knot. It is sufficient to show that every generator of 7r1(S3\F) has a preimage. While 

the generators are those loops winding around the handles of the Seifert surface, the 

generators of rr1 (F) do map to them. See Figure 3.2. 

D 
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Figure 3.3: Knot 120477a with A Special Alexander Polynomial 

3.3 Examples of Fibred Knots with Special Poly-

nomials 

In this section we are going to give a concrete construction of fibred knots which have 

special polynomials as their Alexander polynomial. 

When we are considering all the fibred prime knots of 12 or fewer crossings, there 

is only one fibred knot which is 120477a that is, knot of no. 0477a in crossing 12. The 

Alexander polynomial of this knot is 

1- 11t + 41t2 
- 63t3 + 41t4 - 11t5 + t 6 = (-1+5t - 6t2 + t3)(-1+6t - 5t2 + t3

). 

Figure 3.3 is a diagram for this knot. 

Since all the roots of this Alexander polynomial are real and positive, it has been 

covered previously by Theorem 3.0.1. 

For degree 6 case, we let E = 1. 

~(t) = 1+(1-2a)t+(-l+a+a2)t2+(-3+2a-2a2 )t3+(-1 +a+a2 )t4+(l-2a)t5+t6 

We have known in last chapter that when a = -1 the polynomial is a special 

Alexander polynomial. And the roots of the Alexander polynomial are not all positive, 

so it is not covered by Theorem 3.0.1. And this corresponds to p1 = 20 p2 = -9 in 
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Figure 3.1. 

By Theorem 3.1.1 the knot group of this knot is bi-orderable. And by varying the 

parameter a we get infinitely many fibred knots with special Alexander polynomials 

and bi-orderable knot groups. 
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