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-have beeq used for the analysis {n this research.

.of the angular variab?e ‘ito N number of intervals.

 ABSTRACT
| | | A N
\Th1s study is concerned with the analysis of the‘neutron'tranSport -
equat‘io1 with anisotropic phenomena. ~The mathématical method chosen for
this an 1y§1s is thé partial~range orthoﬁonal function for the represent-”
‘ation of| the angu1ar dependence of the pgrtinenﬁ angular neutronic functions.
-These fupctions . are the neutron angular flux and the external soUrces'of
neutrons|as well as the scattering functions. Of the several existing
models o} neutron transport- analysis, the time -independent one-group

neutron transport equat1ons for plane and spherical geometries have been

se]ected'

The partial- range Legendre polynomials, which represent.an

orthogona] set of functions over an arbitrary _range of the angular variable,
,\

The reproduction of the
partial~ range polynomials using the Gram-Schmidt orthogonaljzation theorem

<
as well as the Tinear transformation of variables is mathematica]]y examined
moreover, the properties of orthogona11ty, the recurrence relations, and
the fu111range 1ntegrat1ons have been established. The d15t1ngu1shing

feature d? this mathematical formalism 1s that it cdmbines the features of

" . both methods of the discrete ordinate methods and the spherical harmonics

approx1mat10ns for the neutron transport anaiysis The features of the

discrete ordinate methods are incorporated by the arbitrary segmentation

Then, the features



angu]ar variables. This permits the representation of ing

of the spherical harmonics methods are included by expand1ng the

7

" neutronic functions in terms of the part1a1 range Legendre ponn9m1a1s :

over these intervals. Hence, this formalism is very approprfate for

the transport problems invalving highly varying angular £1uxks and

\

o,

strong anisotropic scattering.

For plane geometry, two different partial-range formalfims have

_been;systematica11y developed. In both‘forma11sms, the neutron ahgu]ar

fiux and the'externa1 sources of neutrons are expanded in ternis of
partial-range Legendre po]ynom1a1s In, the first formalism, which {is
designated by the NPL approximation, the scatter1ng function has been
recresented in terms of fu]l-rgnge chendre po]ynom1c1s; in the second
formaiism, which is designated by the NPLgMPk'approximation, the
scatterihg function is reconstructed using.the partia]-range'Legendre"
polynomials, The two formalisms allow for discontinuities in the angular
flux as we]1 as the external sources of neutrons at arbitrary points of
the angu]ar'var1ab[e. However, it 1s-only the second formalism of the

*pért1a1-range scattering functions which allows for such discontinuities

1n the scattering functions at arbitrary points of the scattering

funct1on to a h1gh accuracy with few terms.

\rzgggr approx1mat10ns. .The NPL approximat1ons have been used to calqulate
fie

efgenvalues associated with the homogeneous neutroﬁ“transpgr equation

, wh1ch gives the diffusion length. . Moreover, £Hé“aau point, the linear

| : A iv



' extrapolation 1engfh and the rat1e of the asymptotic flux to the. total
flux assoc1ated with the vacuum boundary of the M11ne problem.1n plane-
geometry have. been examined It has been found that this forma]ism of
the partial- range analysis 1s better than the convent1onal methods of
analysis especia]]y for highly absorbing medfa and strong anisotropic
scat?ering processes. In a certain sense, ‘the Jow-order 2P0 approxim-
ation doub]es the range of ¢ for the same accuracy compared to the ueua{'
: doub1e-P0 approximation; the constant c¢ s the average number of second-
ary neutrons per collision. . |

Three different low-order approximations of the NPL-MPK anaiysis
have ‘been examined and compared with each other as well as with the
a]ternatfve methods of the samé-comp]ex{f}. A highly anfsotropic scatter-
- tng function, for which the exact €igenvalue 1s known, has been used for
the-comperisOn. It has Been found that the DPL-ZPK approximation is very
adequate for the ena1ysis of problems with highly anisotropic scattering.
‘Moreover, the DEO—DP0 approximation is used to examine tHe critical thick-
ness of a bare slab reactor. For practical compositions of the critfcal
reactors, the critical thickness _changes cons1derab1y with the degree
of anisotropy. The effect of anisotrOpic scattering, therefore, must
be ‘considered in the analysis and design of nuclear reactors especially

when strong anisotropic scattering is involved.

| A genéra1 forma]ism, wh1ch allows for discontinuities in the )
néufﬁQEl%QQUTar qux and its angu]ar derivatives at position dependent
points of the angular variables, has been estab11shed for spherical

geometry. This formalism is exact and free of any functional assumptions
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and exactly represents the actual behaviour of the discontinuities in the
angular flux, and héncexit sa£15f1es the boundary conditions exactiy.
The low-order 2P approximation -has been used to study'the.spherical
Milne's p}oblem The results show d1scont1nu1t1es 1n the angu]ar flux
at position dependent angu]ar po1nts which are expected from the
physical processes of the problem, The 1mportant feature of this form-
a11$m'15 @hat the 2P0 approximation, which 1s of the same computational
complexity as the diffusion theory, gives the total flux with much
higher accuracy espec1a1]iﬁc1bsg to the surface of thg‘sphere.

| Finally, the partigi-raﬁge formalism has been used to study
some reactor physics problems of current praﬁt1ca] interest. This is

concerned with the reconstruct1on of elastic scattering cross sections

" as well as the grcup -to-group transfer cross sections. For a numerical

T1lustration, the elastic scattering cross sections of 14.0—Mev neutrons
of U238 and B1209,,wh1ch aré highly anisotropic, have been reconstructed.
The results show improvement over the dsua] full-range representation

of the scattéring function : Further, the . oup-to- group cross sections
of hydrogen, oxygen and water from (3. 3287 3.0119) Mev to (2 7253 2. 4600)ﬂ
MeV have been reconstructed using Tow- order representat1qh. The_resu]ts
are in good aéréemeﬁi'w1th'the exact values and more accurate compared to
the full~range Légendre polynomials approximat1on; the reason for this is
that the group;to-groﬁp cross section is well-behaved only oﬁer certain

ranges of the scattering angular variables. Moreover, this representation

provides an additional degree of freedom: 1t is not necessary to employ

_the same order of approximation over the various allowable directional

vi



ranges of the scattering angular variable. The order can be var1ed
'according to the extent of anisotropy of the scattering cross section
over each range, This suggests that the partial-range approx1mation of
.the scattering functions and the group-to-group cross sections represents
a potentfally usefu]j[eﬁfesentat1on redundant in the neutron transport
analysis with h1gh1y anisotropic 5cat£ér1n95-a_ca5b in hand {s the fast
breeder reactor, the calculation of the blanket of thé'proposed fusion
reactors, and deta1]éd neutronic'ca1cu1dtf0n in interface regions of

thermal reactors.
h ] ac _
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CHAPTER T
INTRODUCT ION /

/z].], Preface’ .

The characteristics of many neutronic systems of curreﬁt
interest are governed by thé distribution of neutrons in space, energy,
direétion\and time. This distribution is adequatefy described by
the neutron transport or the linearized Boltzmann equation either in its
partial differentiaiFintegra] form or its integfal form; both of
these equations are, of course, équiva]ent_qnd the ébqice of which
form be used for a given problem is primarif& a matter of.conven-
jence. In problems of aﬁy genera?ity, these equations are impossible
to solve ana]yticaliy and prohibitiy%]y expensive to solve numetically.
Except-in the simplest cases, approgimate forms of the‘tragsporti
equétion must generally be used. .

- As neutrons collide with the atomic nuclei of the medium
through which they are passiﬁg, varioué reactiqns'such as absorptﬁon,
‘scattering and fission are possible depending on the energy of the
neutron and the kind of target nucleus. Once these interaction char-
“acteristics are.known they form thé starting point of neutron transport
theory the pbject of which is to predict the average or e%pected dis-
tributions of a larde numbef of neutrons in any neutronic system.

This represents one of the central problems in the field of nuclear



reactor physics. ) _

Due to the relative comp]exity of so]ving the neutron transport
equation ana1yt1ca]1y, even for simple geometries and isotropic scatt-
ering, extensive use is made of numerical and semiana]yticaT methods

(1 4) One of the best known.and widely useq.appr0x1mate

in its solution
methods for one-dimensional neutron distributions is the spherical
harmonics app¥oximation; indeed, an early o?tation on spherical har-
monics dates bock to 1926(5) S1nce then additional techniques have
been deve1oped to solve the neutron transport equation. For example,
the discrete ordinate methods in particujar have been widely used and"
have proven very powerful. Yet, the spherical oarmonics method and

its variations continue to be viable as design and research toolis:«:

One of the key characteristics of the spherical harmonics methods is J

that 1t'describes the angular distribution of neutrons in terms of

polynomials Op to &egree N: Low-order approximation should, tﬁén,

be adequate when the angular distribution is not too anisotropic.
The study of énisotropies in neutron transport theory hos

been of interest for some time. Amaldi and Fermi were concerned with.

it as early as 1936(6). Other workers have subsequently investigated

(1,7-9)

v

it from Several perspectives One recent development to solve

the neutron tFanSport equation for plane geometry and isotropic

1

scattering, that of singular eigenfunctions, has been pioneered by
Case(]o). More recently, efforts in this field have been undertaken
to extend this method to the cases of anisotropic scattering with

modest resu]ts(]]-]sz. U
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The studies of the transport problems for neutron energies and

.media of highly anisotropic scattering and strong angular dependence

of the neutron angular flux have, however, invariably introduced a
number of constraining conditions associated with the directional

. P ' L X
dependence of the angular- flux as well as the scattering function and

i

LS

the transfer cross section within the context of the mu]fi—group
formalism. In s ome cases, effective specialized approaches have been

employed for the treatment of the angular flux;: among_these we cite

‘the use of double Legendre poiynomia]s for plane geometry(]6_18) and

(19- 21); application of asymmetric quadrature sets

(23, 24)

spherica]'geometry (22)

and the use of free parameters

The scatter1ng kerneIs as we]B}as the group-to-group transfer

Cross sect1ons are w1de1y represented by the full-range Legendre

(.2,

po]ynom1a]s The truncat1on induced osc11]at1on ]ead1ng to

(25,26)

negat1ve values for the neutron flux has prompted the intro-

duction of']arge number of Legendre coefficients(27) and other ad-hoc

(28)

methods dQn the other hand, the singular eigenfunctions solution-

I

‘of'the,transport equation sfor plane geometry with anisotropic scatter-

ing yields multiple discrete eigenvalues in highly absorbing media(]1’29).

Indeed, the more forward peaked the anisotropy, the larger the multi-

' plicity of the discrete eigenvaIues This result has requ1red the

1ntroduct1on of large numbers of Legendre coeff1c1ents of. the scatter-

7

“ing functlon‘1n certa1n approx1mat1ons of the neutron angu]ar f]uxtzg).

Very recent]y the group -to- group Cross sect1on has been

ca]cu]ated without Legendre exoans1ons and then used within the context )



of SN-method(3’30) for transport taiculations(3]). The reason tor this .

is the inadequacy of the Legendre expansion in reconstruciing the

transfer cross section. However, this new method necessitates large

r

data storage requirements and computer storage limitations preclide

its wide use(3F). Tha approximate methods using conventional represent-

ation of the scattering function and thé group-to-group'transfer Cross

section, are clearly inadequate in cases of strongly anisotropic
scattering functions and anisotropic transfer cross secoions. i

. To overcome some of the traditionai problems associated with
an150Lrop1es, a new solution forma]1sn1baseQ§pn the partial-range

ao;1}s1s has bﬂen suggested(32 33)

It has been found that, for the
case of jsotropic scattering, this formalism does permit the calcu]ation
of some neutronic transport parameters to a hich degree of accuracy

(32) . The assoct ‘ :

even in low-order approximations The associate problem of
specifying suitable angular segmentation in accordance with the
partial-range functional representations did not appear to be a severe
1imitation(34). |
Here we will develop a formalism which combines the features

of'ooth the discrete ordinate methods and the spEoricallharmonics -

methods for the solution of neutron transport equation with strong

anisotropies. This new formalism is very adeouate for cases of highly

anisotropic angular distributions of both the angular flux as wall as

the scattering functions. Our analysis will be restricted to the one-

group neutron transport equations for plane and spherical geonetr1es

of course one n1ght argue .that the one-group neutron transport equation



represents a highly idealized situation. However, for the purpose of
adaptiné and testing the accuracy of a new formalism one would prefer
to use modef problems for which there are benchmark data to compare
with; the one-group neutron transport eduationS‘for slabs and spheres
are very well suited for this purpose. Moreover, the solution of the
one-group transport equation is an esgential part of the solution of
the energy dependent probiem when multi-group techniques are emg]ﬁ}éd.
In the latter casé, a one-group equation must be solvéd for egéﬁa

- energy group with sodrces of neutrons owing to the fransfgr of neutrons

from the other groups.

1.2 Neﬁtron Transport Equation : \
In the derivation of the commonly used neutron transport
equation the following assumptions have.been'used(3):
— 1) the nedtron is con;idered to be point particle
in the sense that it can be described completely
by its positiop'vector and velocity vector;
2) delayed neutro;s have been.neglected;
3) neutron-neutron scattering is not included.

Under these assumptions the neutron transport equation takes the form,

] a¢(r!8:E;t)
vt 2-9u(r.a,E5t) + o{r,E)u(r,e,Est)

f
= ' J p(r,e')f(r;0',E'2,E)¢(r,0",E'st)da dE"
E'al ‘

..

+ S(r,q,E5t) , ' (1.



where v(r,n,E;t) represents the nautron angular flux at pesition r per
unit solid angle about the direction @ per unit energy about the energy
E at any time t, the neutron speed is given by v wiile the total
macroscopic cross section of neutéons having energy E at position r

js denoted by z(r,E}, the function f(gﬁg',E'wg,E) represents the
probability distribution function of a neutron with direction @' and
energy E' at the position r suffering a collision aﬁd subsequently
appearing or creafing another neutron (or‘neutrons)_with direction 2
and energy E, and finally the source term S(r,Q,E;t} represents all

the external neutron sources and gi&eé the number of neutrons supplied
to the system at time t per unit volume at the position r having a
direction within unit solid angle about ¢ and unit energy about E

per unig;time.

The above equation, Eq. (1.1), represents a balance condition
for the variqugrmechanisms by which neutrons of certain energy and
direction caé‘b; gained or lost from a unit volume at an arbitrary
position with%n the system.  The first term of Eq. (1.1) represents.
the time rate of change of the neutroa angular density. The second
term represents the net loss of neufrons of interest due to leakage
as well as streaming through its surface while the third term repre-
sents the loss of neutrons due to co]liﬁions with the nuclei; this
includes both absorption and scat}ering coilisions. Finally, the
right hand side of Eq. (1.1) represents the mechanisms of neutron
gain; the first term gives all neutrons, in the unit volume under

consideration, of different directions @' and energies E' suffering



collisions that change @' and E' to the direction 2 and the energy E
of interest while the last term represents a]i the external neutron.
sources. |
Eqdation (111) is the neutron transport equation in its
integro-diffegential form. It is a linear equation in the unknown
angular flux @([,Q,E;t) with seven independent variables r(x,y,z),
o(6,u), £ and t. In spite of certain minor limitations, which have
been indicated previously, this traﬁsport equation has been found to
be entirely satisfactory for treating most problems in reactor physics.
As jndicated previously, this equation can not be solved analytically
;:in jts general form. However, it can be simp]%fied by an integration
gver one or more%gf the indepeﬁdent variables. For example, the time-
independent one-group neutron transport equation_for plane symmetry

can be written as

BQ(Xau! +

Lol ) = Fla'.a)elou' ) + gy Stxan) > (1.2)
. Q' :
where now the number of independent variables is two: the Epatia]
“variable x, measured in units of mean free path of the neutron in the
med1ium u&der consideration, and the angular variable p, as the cosine
of the angle between the neutron direction and the x-axis. The
constant ¢ represents the average number of secondary neutrons per
collision and z(x) is the. total macroscopic cross section which is
only function of the position x. The function f{a'.Q) represents

the probability density function for the case of a neutron entefing

a collision with initial direction Q' and subsequently emerging with



direction contained in a unit solid angle about the d1rect1on Q3 it is
assumed to be rotat1ona1Ty invariant.

- For spherical symmetry, the time-independent one-group neutron

transport equation is given by

2ulray) 1 - u® 2¢(r.p)

o - g T v(r)
= C[ fla'.o)p(r,u')da’ + z—(%)-s(r,u) . (1.3)
nl

H;rein, r represents the distance of neutron from the origin measured
in ﬁnits of mean -free path of the neutron and u represents the cosine
of the ang]eﬂbetween the neutron dfrection and the radius vector to

the point r. Here, we note that the streaming term of Eq. (];1) yields
two terms, the first and the second term of Eg. (1.3), because the direction

cosine depends on the neutron position as well as neutron's direction

in spherical geometﬁy. -

The study and application of the solutions of Eqs. (1. 2) and

(1. 3) under conditions of anisotropies is the ObJeCt oﬂ this work.

1.3 Anisotropy: Sources and Effects

Since this work is concerned with anisotropies in neutron
transport analysis, it is important to note the different sources
wnich contribute to neutron anisotropy in any qeutronic system. In
the following we will summarize the sources of anisotropies as well
as their effects.

1) Boundary Conditions:



]

(a) Plane geometry: Any free surface of a neutronic system
with a vacuumf{ntroduces anisotropy in the angulaf flux. The Milne's
problem in.plane @ed%etry(]’B) is an example in which the free

surfacé boundary condition 1is
p(x=0,u) =0 5 wz0 , - (1.4)

where the boundary between the medium and the free space is assumed
to be at x = 0. This;boundary'condition implies that the angular .
flux is discontinuous with respect to the angu]ér variable at yw = 0
and hence repreéents a source of‘high anisotropy in the\angulat flux
especially close to the surface. Moredver; at the interface between
two different media, where the properties of absorption, scattering
and.fi;sion'of the fwo media differ significantly, there is therefore
also a source of anisotropy in the-neutgpn-angular flux close to the
interface. )

(b) Spherical geometry: The free boundary condition in-the
spherical geometry can introduce discontinuities in either the angular
flux or its angu]arhderiQative. As an examp]é, consider the spherical

(35,36)

MiTne's problem , Fig. 1.1, for which the boundary condition is

v(Raw) =0 5 w20 , T (1.5)

where R is the radius of the neutronically black sphere, Region I in
Fig. 1.1. This condition is the same as that for plane geometry.
However, we encounter more complicated pathologies in the angular
flux. Clearly, the angular flux w(R,u) is discontinuous at p = 0

while the angular flux ai the point P, with spherical coordinate r,

)

-
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is discontinuous at - where

W, = cos']er £0 . ' . (1.6)
Therefore, the location of the discontinuity depends on the position r.
In cases- when the central sphere is nbt neutronically black but has
a finite absqrbtion and.scattering Cross sections, the angular f]ux.
is not discontinuous but its derivative with respect to p is discon-
tinuous at u = 0 at the interface while the angular flux may change

rapidly with u near p = 0. Moreover, such discontinuities in the

angular derivative are present at points outside the interface and

for direction cosines.given by Eq. (1.6) as we11(3’35?..

2) Sources and Sinks of Heutrons:

In regions very close to the neutron sources and sinks the
neutron flux changes rapidly with the position. This causes a high
anisotroby in the neutron angular flux at these regions.

3) Scattering Kernels:

It is known that for high energy-neutrons and heavy materials.
the scattering kernels (elastic as well as inelastic) tend to be
very anisotropic(25’37"3g). For an example, the elastic scattering
cross section of U238 and 81209 for 14.0 MeV neutrons are shown in
Figs. 1.2 and 1.3, respectively. These cross sections are highly
anisotropic and peaked in the forward direction. In contrast, for
other materials such as beryl1lium for neutron energy slightly greater
than that for the Bragg cut-off energy, the elastic scattering-.cross

(40)

section is highly peaked in the backward direction .
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Fig. 1.2: Differential cross section of 14.0 MeV neutrons elastically
scattered from u%%8 a5 a function of the cosine of the
scattering ang]e>in the center-of-mass system (from reference

-29).
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Fig. 1.3: Differential cross section of 14.1 MeV neutrons elastically

09

scattered from 812 aS a8 function of the cosine of-the

scattering angle in the center-of-mass system {from

reference 38).
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4) éroup-to—éroup Transfer Cross Sectjon:

In the muiti-group method which js concerned with energy
‘dependent flux calculations of neutrons, the main problem is the ¢on-
sistent determination of group cwoss sectipns. The group cross sectibﬁs
in general depend on direct{on(3). Moreover,.the group-to-group transfer
cross section is'restficted over certain ranges of the cosine of the

(3],4]-43)

scattering angle W Therefore, these functions themselves

are highly anisotropic and ?epresent a source of anisotropy in the
cross section will be given in Section 6.2.2.

He 1nterject,hefe to note that outside the field.of neutron
transport agd~rééﬁtor fhebry there are many problems which involve
aqjsotfﬁﬁic angularidistributions. In the fields of radiative trans- ~

fer(44) (45)

and gas kinetics we find problems simitar to those
descriBéd abﬁve. A series of studies about the radiances in optically
deep absorbing media showed very'anisotropic phase functions(44’46’47).
More examples can be found in references (48-51). Finally, the multi-
gqroup Cbmpton scattering cross section of y-radiation is another

example of anisotropic behgviour(sz).

1.4 SCOpé of this Thesis

. [t is our intent to briefly summarize the various topics to
be presented in this thesis. UWe will limit ourselves to the one
dimensidﬁa] problem for plane and.spherica1 geometries for the case

of time-independent and one-group of neutrons representations. Before

e e e ——— e e
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we proceed to the partial-range analysis of anisotropic neutron trans-

parE equation we shall establish, in Chapter II, the mathematical

formali

we will use. These are the definitions and properties of
the parti 1-range spherical polynomials. Also, the properties of
some other paftia]-range_orthogona] polynomials, such as Jacobi-,
Gegenbauer~ and Tschebycheff-polynomials, will be considered.
) Plane gegmetry-neutron‘transport equation wifh anieotropic

scattefing will be studied in two chapters.. In Chapter III, the
angular flux as well as the external neutron sehrceS'will be expanded
in terms of partial- -range Legendre polynomials; the scatter1ng function
will be expressed in terms of fu]1 -range Legendre polynomials. In
Chapter IV, the neutron angular ?:ﬁ% and the external sources of | A\
neutrons will be represented the same way as in Chapter III. However,
the scattering function will be expressed in terms of partial-range
Legendre po]}nomia]s' In a sense, the study of Chapter IV represents
a complete part1a1 range spherical harmonics ana]ys1s for one-group
neutron transport equation in plane geometry. ) :?

| The neutron transport equation in spherical geometry is con-
sidered in Chapter V. A distinctive procedure will be used for the
analysis in this chapter: the angular flux and the external sources S
of neutrons wi%] be expanded in terms of partia]—fange Legendre poly- R
nomials. However,gbhe segmentation of the angular variable, associated
with the pyoblem, is position dependent.l.

The general procedure, however, in Chapters 111, IV and V is

to develop the mathematical formalism and establish a set of equations



% .
governing the partia]-range moments of the angular flux. Then, we will

discuss some special cases extracted from the 11terature to prov1de the
cont1nu1ty between this work. and that of other researchers After
that, some Tow-order approximations W111 be exam1ned and used for
ca]cu]at1ona1 purposes. NéLtronic parameter associated with each
problem will then be calculated. Some of éhe parameters calculated
in this work are the eigenvalues which are related to the inverse
d1ffu51on length, the end point, the 11near extrapolat1on length
and the ratio between total and asymptotic f]uxes at the boundary
associated with ‘the Milne's problem. Also the angu]ar as well as
the total fluxes will be considered. A compar1son between the results
of this formalism W]th the resu?ts of other approx1mat1ons as well
as the exact resuits, whenrthey are available, will also be given.
In Chapter VI, the ﬁartial-rangg formalism will be extendEd‘
to some problems of current practical interest. These are the
reconstruct1on of the scattering funct1on within the context of one-
group neutron transport theory and the group-to-group transfer crosg
section within the context of mult1—grqqg_theory. As a numerical
illustration, the elastic scatteriﬁé cross sections of 14.0 MeV
neutrons of U238 and 81209, which are very anisotronic, Qi]T be
reconstructed by fey ]ow-ordér approximations. For multi-group
calculations the water group-to-group transfer cross section from
(3.3287-3.0119) Mev to (2.7253-2.4600) MeV will be considered. Also
a comparisen with the usual fu]f—range representation will be gjven.

Figure 1.4 provides a graphical representation of the main lines of

s



I

the reﬁearch\undertaken. Finally, Chapter VII gives a summary‘with

the ‘conclusions of this work.

/ N
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CHAPTER IT

PARTIAL-RA{GE SPHERICAL HARMOMICS FORMULATION

2.1 Introduction

The purpose of this chapter is to define the bartia1~range
spherical harmonics and to establish their properties of orthogonality,
recurrence and full-range integrations. The partial-range spherical
harmonics is the mathematical t001; in this thesis, to describe the
anisotropic angular neug}onfE"?unctions. The pertinent‘neutronic r
functions are the angular flux, the exterﬁal neutrgn sources énd
the scattering kernels. In the present formalism wéhhi11 cémbine .
the features of both the discfete ordinate methods and.fhe spherical

¢
harmonics approximations for the solution of the neutron transport

equation. In- the discrete ordinate methods the neutron transport

" equation is solved in a.discrete set of directions only; anguiar ~TTm— .
" . ‘ , - (
integrals are then approximated by.sums over discrete directions
and angular derivatives‘by differences. In the spherical harmonics

methods, the.angular neutronic functions are written as infinite sums

in terms ,of an grthogonal complete set of spherical harﬁbnjéﬁ over

4 - i
. N : .

thé entire direction cosine i\
The basis of this formalism of partié1—rangeﬁspherica1 har-

monics analysis is the éegmentation of the angu]ar variable, that is‘

“+the directjon cosine u; into N number of arﬁitrary infervd]s; and then

we expand the angu]&r functions in terms of an orthogonal complete set

19 ‘ P
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over every interval. These sets, which are orthogonal and complete over

an arbitrary interval of the direction cosine, have been called partial-

(32,53,54)

range orthogonal functions The method of spherical harmonics

approximations will be incorporated by using the partial-range Legendre
po]ynqmials. The il intervals are here specified by the following

system .of inequalities:

-1 <y <u.|<...<un<..._<uns+1 . (2.1)

Furthermore, the partial-range Legendre polynomial of the 2'th order

-~ over the n'th angular.interval is defined by

Py g () = Py e )3, (2.2)

- ae t Sn)[H(u - un“]) - H{p - p

n

where H is the unit step function

(55)

." The inférval functions a, and
(1)

over the range u € [un_],un]. The reconstruction of this function

én are chosen to preserve the orthogonality of the functions P

4

Ne&

as well as the derivation of the interval functions and theqproperties

e hfgf_orthogonality, recurrence, and full-range integrations will be dis-

——
cussed in latter sections of-this_chapter.
This orthogonal complete set allows theﬁgﬁﬁﬁhsionﬁof any
L .
regular- function over a partial-range of u e [“ﬁ—1’“n]' For example, - -

a function fn(x.u) may be written as
e
f (x,u) = z _Z&_ti_.f R.(X)P

H, ~ Un_'l N,

(U) > (2.3) -
L=0 'n .

n,

where (22 + ])/(nn.- un_1)-represent$ a normalization factor and the

partial-range moments fﬁ i(x) are given by
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n

£, (x) = fn(x,u)P'

, nopluldi (2.4)

Hn-)

An expansion of a function over the entire range of the
direction cosine uw € [-1,1] follows from a summation of such partial-
4 ' .
range Legendre polynomials expansion of Eq. (2.3) over the N angular

intervals. Therefore, any function, f(x,u), can be written as

N o | ) _ )

22+ 1 .

flx,u) = § ] S=——f ()P (n) .. (2.5)
n=1 2=o Mn T Pp-1 Mt T 002

Note that Eq. (2.5) reduces to the usual expansion in terms
of full-range Legendre polynomiéls if we specify N = 1 and full-range
description of the function f(x,u). Moreover, this expansion allows
for irregularities at the position of segmentation Hy 2 such as dis-

-continuities in the angular flux and other neutronic functions.

2.2 Reproduction of Partial-Range Spherical Harmonics

The partial-range spherical harmonics are defined one way by
Eq. (2.2). However, there are two methods to reprodqce the partial-
range spherical harmonics. The first one is by using the Gram-Schmidt
'orthogona1ization theorem(SG) Qﬁile tﬁe second procedure is by linear
transformation of variables.

Using the Gram-Schmidt ofthogonalization theorem, we can

write the following function in the space u e [“n—l’“n]

un’z(u) = Pi(u) - A§£<P2(”)’pn,k

(w) - {2.6)
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- where Pg(u) represents the full-range Legendre polynomials which is a
linearly independent set in the space u € [pn_],un], fhen the partial-
range Legendre polynomial ﬁn 1(“) is given by

- - Uy o (v)-

Pn’g(y) = TTE;"—TGTTT - (2.7}

vhere <P£,P > 1s the inner product defined by

n,t

and ||u, ,(u){] is the norm of u_(u) defined by

n,<

Hug (G = 7w o 5 (2.9)

The partial-range Legendre polynomials set‘{ﬁﬁ»l( }, defined by Eq.

(2.7), is orthonormal over the range [“n—]’“n]' The orthonormality
\ -

can be proven by the Gram-Schmidt orthogonalization #heorem. Using

4
this procedure the two leading terms of the resu]tin% sgt are

A /
_ 1 N/
Pn,o(“) = 72 , (2.10)
(g - vpoy) ,
and
’;n,l(“) = A—[u - ;— (o * )1 s (2.11)
where
A U I S T MaHn-1 + upoq)
+ %’(un + un_])(%-— My = Mot (2.12)



A slightly different partial-range Legendre polynomials'set
can be reproduced from the fuI]-raqge Legendre polynomials set by a
linear transformation as defined by Eq. (2.2). The interval dependent
functions a, and B of Eq. (2.2] are chosen so that (an + Bn) e [-1,1]

for p e [“n—]’”n}'- The expressions of o, and 8, are then given by(az)

) _ .
g = ——— _ . (2.13)
L A T ‘
and .
u, topu .
8 = - n_ n-1 ) . (2.18)
a7 Hpq

Using this transformation the two leading terms of the Py 2(p) are

Pholw) =1, | ‘ (2.15)

and

: we Fouo
Poa(e) = iy - el (2.16)
? n pn-_'l - *n T Bpgy :

The Gram-Schmidt oﬁthogona]ization theorem is the standard
procedure to reproduce the orthonormal set of partial-range spherical
harmonics from the set of full-range spherical harmonics. The second
“method which involves linear transformation of variabdles is only valid
for polynomials of one variable such as Legendre polynomials and
Jacobi polynomials; the reason being that it reproduces incomplete
sets for polynomials of two variables such as the spherical h;rmonics(lg).
In the present study we will use the set detined by Eq. (2.2) because

it is easier %o use.
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. 2.3 .Properties of Partial-Range Legendre Polynomiais

He will use the properties of orthoganality, recurrence and

~full-range integration of full-range Legendre polynomials to establish

o

the properties of partial-range Légendre polynomials by performing
the appropriate transformation of variables. |
1) Orthogonality:
Starting by the known orthogonal property of the full-range

Legendre polynomials,

1
. _ 2 N
[ Pg(“)?g‘l(u)dﬂ T 7L+ ] 5111 s . (2.]7)
- -} :

A

L

pefForming the appropfiate transformation of variables and changing
i .

_thégfunctional notation yields

i

IJl'l
! - 2
?’z [u Pn,l(u)Pn:’in(u)du = mslildnﬂ' . (2-]8)

n-1

Hére, «. IS given by Eq. (2.13) and ¢ is the Kroneckér delta. The
ab;vekequation, Eq. (2.18), represents the orthogona1ity relationship
of the bartia]—range Legendre polynomials.

2) Recurrence Relationships:

The recurrence relationships of partial-range Legendre poly-
nomials are useful in the mathematical formu]a;ionrof the partial-
range analysis of the transport problems. The;e relationships may be
established for the partial-range Legendre polynomials by reference to

the known recurrence expressions of the full-range Legendre polynomials.

First, consider the following recurrence relationship,
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(22 + 0Py () = 2+ VP 6]+ 2P 100 5 (2.19)

and again perform the appropriate change of variables and functional '
notation to obtain the equivalent relationship for the partial-range

Legendre polynomials

B

20+ 1)(eu + 80P, L (w) = (2 + 0P o)+ 2p (). (2.20)

Secondly, using the recurrence relationship for the derivatives-
of the full-range Legendre polynomials,
Prapln) = Pr qGu) + (20 + )P (u) - - (2.21)

we can obtain the corresponding relationship for the partial-range

Legendre polynomials,

P gl = P o) + e (22 - VP, ) (2.22)
where
dP_(n) o
' = Lt
Pre(v) = — 5 - (2.23)
(3) Full- and Partial-Range Integrations:
Another property of interest is the full-range integration
‘defined by
+1 .
1= J Pn,z(“)d” . : (2.24)
-] :

From the definitions of Pn 1(“) the above integral can be rewritfén

as a paftia]—range integration,
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Y : .
I-= ( Pn,l(u)du . (2.25)
i

Using the property P 0(u) = 1 of Eq. (2.15) and the orthogonality
of .Eq. (2.18) we can write

[at}

u : :
I =.l " ,pn,o(”)Pn,i(“)d“ = E;'ézo . ; (2.26)
Yn-1

(4) Special Values of Partial-Range Legendre Po]ynomials:'

The final properties of interest are the special values Jf
partial-range Legendre polynomials at the boundaries of the anguiar
interval, i.e. at w =y and yu = pn;],'respective1y. ﬂsing the
special values of fu]l-ra;ge Legendre ‘polynomials and the definition

of ay and Bn results in

PLalig) = P{+1) =1, (2.27) /

n
and

g (i) = Py(-1) = (D) | (2.\\38)/'

2.4 Partial-Range Expansion of Full-Range Legendre Polynomial /
A subject of iﬁterest to the further development of this study
is the expansion of the full-range Legendre polynomial over an arbitﬁéry
interval of direction cosine p € [“n-l’“n] in terms of tﬁe partial-ﬁ
range Legendre polynomials over this intervé], Using the Gram-Schmfdt

orthogonalization theorem we can write ' !
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L
. 2y + 1

where, using the orthogonality condition of Eq. {2.18), the expansion

coefficients an,z,x are given by
| My : .
B " Pz(”)Ph,A(”)d” . (2.30)
. . _ .

These integrals are easily evaluated for any value of 2 and x. For

example
®n,0,0  Fn T Mol (2.31)
1,2 2 :
| A 107 by - uq) (2.32)
and
1 2
N,1,1 E'(“n - pn—1) (2.33)

We have examined these integrals, Eq. (2.30), further and have

found that the following recurrence relationship exists

e(2x + 1)un {2 + 1)(2x + 1)un
qr,eatl T TR F (22 F 1) %nae-loa T T E I T 1) 2n, et

.

can be shown to be given by

(2 + l)sn \
Yoo ) RO U SN D T A

Moreover, the integral a

(2.34)

N,%,0
- 1
an,z,o T (2e + 1) [P1+1(”n) b P2+](“n-1)

S NRTCR I SN (R ) (2.35)
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i

By Eqs. (2.34) and (2.35) the entire array a

Furthermore, it is useful to note that

can be determined.
a = roL<x . (2.36)

2.5 Generalization of Partial-Range Orthogonal Polynomials

Some other orthogonal polynomials have beéh used in neutron
£ransp0rt analysis. The orthogonal polynomials employed to a varying
extent were Jacobi polynomials, Gegenbaper polynomials and Tschebyscheff

(57-60).

polynomials Moreover, the partial-range polynomials have been

extended to the Jacobi polynomials for the solution of the neutron

(61)

transport equation In the following we will summarize the

definition and properties of partial-range Jacobi polynomials. The

Jacobi{po]ynomials are functions of one independent variable u, are
orthogonal over the range of ﬁ e [-1.1], and have the following property

+1

[ w(u)fy (u)f, (u)du = hys, .o, (2.37)

-1

where the fi(“) denotes the polynomial and w(u) is the weighting

function given by

N

| w(i) = (1 - W)*0 + )8, (2.38)

and hz can be shown to be

h = 2% L w8t 1)
£ (2t ot g+ I)T(L +a+ B+ 1)

(2.39)

where T denotes the gamma—function(sz); it is further required that

@ > -1 and B > -1. Customarily, these polynomials are denoted by
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e

szg(u) possessing the following recurrence relationship

C2fe et e gt 1)(2 ot B)P:;?(p)

il

(20 + o + B8 + 15[p(21 +a+8)(20 + ot B+ 2)

+

- )P | =

202 + 1)(2 + p)(2e + ap 8+ 2P0 . " (2.40)
&

i

Using the transformation of variables, the partial-range
Jacobi polynomials which areorthogonal gver an arbitrary range 6f the -

direction cosine u € [“n~1’“n] is defined by

—

1 { . ' :
T PR = P28 oy g MIH(M - w ) - HGe - w )], (2.41)
Ay n,L' 2 n n n-1 n:

|

: whére\un and B, are given by Egs. (2.13) and (2.14), respectively, and

"H js the unit step function. Again, using the transformation of °
variables énd Eq. (2.37) we can show that tﬁé partial-range Jacopi
polynomials, as defined by Eq. (2.41), possess the following orthogon-
ality relationship over their range of definition

|9

"l

n .
AL INTCERD L RN S
Pn-1
= h 88 (2.42)

n,% L%
Here & represents the Kronnecker delta and hn . is a normalization

3

factor given by

(g - “n_1)(°+3+])r(£ ta+1)r(a+g+ 1)
R ™ T (it afEr)RT(EFa+ B+ 1)

(2 43)

-

-

."}r

e

>
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L

_Using Eq. (2.40), the recurrence relationship of the partial-range

Jacobi polynomials can be shown to be given by

20+ (e +a+p+ 12+ o+ 80y ~uy PR ()

n,et+l
= (2 ra+pt )[(2+a+p)2+ o+ g+ 2) {2 - Wy -'un~1)
B L - ' )
N OO T SN {0
O R L [ Y LW (ORI L)

Finally, we consider the expansion of the fu]l—rangé Jaqobi'r
pofynohia]s o?er the range u[pn_],un] in terms of the partial-range
Jacobi polynomials over that range as

n LA G,B(u)

o hn A n A

[} t

P2 B(y) =
¢ X

where using the orthogonality condition of Eq. (2.42), the coefficients

qn;i,k are given by E _ S

u

y U E [Un_] sl-‘n'] > . (245)

. n . B .
aan | PERPE R Gy - u) e s e . (2246)

ki . . T N un“]

» -

These integrals can be evaluated for arbitrary values of 2 and A. For

example, several low,drder terms can pé‘shown to be given by

®h,0,0 hﬁ,o » _ ‘fgﬁl | .(2-47)
O , TR T
3, b0 = 3 [ 8)( _.Jl_ﬁflqu
u, +u
q n-1
+(2+q+8) ——-—z——-ihn,o , (2.48)

0

G



and

L1 - ~
n,1,1 T 3'(“n B un-’[)hn,l : ‘ 1 (2.49)

-

where h, , 1s given by Eq. (2.43}. Furthermore, higher order of

hese integrals have .been examined anq_a recurrence relationship between
aifferent orde}s has been established, Table 2.1.

We note that, if we set a = 3 = and maintain N > 1 with
arbitrary diractjohal ségmentation, then the partié]-range Gegenbauer
orthogona1zpolynomia] emerges; if we speci%y a=8=-1/2 or 0 and
-.agafn admit an arbiEréry directional segﬁent§tion; then’ the partial-
range Tschebyscheff or the partiaT-rangg Legendye-polynomia]s are ,
formed, respeEtivé]y. ,The§e par}ial-range po]}nomials may be termad

the usual full-range polynomials <if we defined the angular segmentation

o7 cby N=1with ue[-1,1]. Sinﬁlarly, half-range polyndomials can be

specified for any of the above polynomial designations if we choose

N = 2 with (-1,0,+1) segmentations of direction cosine y.



o A+ )2+ a g+ Z)(un - n

4z + Nz +a+s+i)(2r+a+g)(2r+a+ )2+t p+1)

(2x+ a+t 8+ Z)an,2+1,l

2(2 + o+ 8)(2L ta t 5t 122 + o+ 8 +2)(x +1)

(A. + a -+ B + ])(2:\ + G-’+ B)(un = un—])an,f.,}\'{']

a
o .

( 2

= {(2(22 + o+ 8 + D" - 32)(2A +q + gl(2x+ o+ + 1)

T xta+rg+2) -2 ra+)2i o+t st 1)(2Ltat gt 2)

~

@t at st N e e - 89 - g )

n-1

(2A + o+ 8)(20 + a + 5 + 2,

-h(z'+ a}{ +B)(2e + o+ 8+ 1} {2x+a+tp)2r+ at g+ 1)

.
(B rars e, g,

t2(28 + o + B)(22 + o + 8 12+t at g+ 2)(a+a) '

)

n-1 an,i,k-]

L4

Table 2.1: Recurrence reldtionship of the intégrais 20 2
1y

of partial-range Jacobi polynomia]s.
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CHAPTER 111
PLANE GEOMETRY: FULL-RANGE SCATTERING FUNCTIONS

3.1 Introduction

The purpose of this chapter is to explore the solution of the
one—groﬁp neutron tfanspoft equation with anisotropic scattering for
plane geometry using partial-range Legendre.po]ynomia]s as the basis .
solution formelism.. As mentioned in the Introduction, the study of
the neutron transport equation for cases of strong angular depeﬁdence
and anisotropic scattering has, however, invariab]y‘%ntroduced a number

of constraining conditions associated with the directional dependence

of the neutron argular flux. In some cases, effective ad hoc appreaches

have been émp?oyed such as the use of double Legendre pq]ynomia]s(ls']a),

22)

asymmetric quadrature sets(

, and the use'of free parameters(23’24).

Moreover, it has been shown that for the case of isotropic scattering,
partial-range soRutions do pernrit the calculation of some neutron

transeprt parameters to a very h1gh degree of accuracy even in low-

(32, 33)_

order qpproxgmat1ons The associated problem of specifying

suitable angular segmentations in accordance with the‘partial-range

functional representations did not appéar to be a severe 1imitation(34).

- L4

In the partial-range formallsm g1ven in this chapter, the
angu]ar f]ux as well as the external sources of neutrons will be
expanded'in terms of partial-range Legendre po]yﬁbmia1s. The scatter-

ing function, however, will be expanded traditidﬁally in terms\af the

A

33

L3
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‘fu11—range spherical harmonics. 'The'definition and the proper?isﬁkof

the part1a] range Legendre polynom1ais have been given in Chapter II.
Again, the basis for the use of the part1a] range expans10ns for the

ron angular flux and the neutron sources is the segmentation of

‘the direction cosine u into N number of arbitrary intervals. These

intervals are, as previously suggested, sﬁ%cified by the following:

-1 s Sup <. o< <<

. c ¥ . (3.1)

Subsequently, over-each interval the angular flux as well as the neutron

g

sohrces are expanded in terms of the partial-range Legendre polynomials
in this range and summed up over all the.angular intervals. Hence,

the proposed-solution of the neutron transport equation\.Eq. (1.2), in
terms of the set éf partial-range Legendre polyncmials can be written

as a double sum

o) = 1L LG e ) (3.2)
\h n=1 £=0 "n n-1 M
where the partial-range moments of the angular flux, ¢n'£(x), are
given by -
i ‘
by %) = vOGu)P, o (udde (3.3)
M- R

where Pn n(“) are the partial-range Legendre polyrdomials discussed in
Chapter II. The source term of Eq. (1.2), S{x,u), will similarly be

expanded as
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v 22+ 1
i .

- Sp.p (0P L (8) (3.4)

| by 222

S(X:U) ;

n=1 £=0 ¥n ~ ¥pn-1

where the partial-range coefficients of the source Sq 1(x') are given by

3

Hn
Sp.g(x) = I S(xawlPp Gu)du (3.5)
¥n-1 -

_ Finally, the scattering function f(g'.@) can be expanded con-
ventionally in terms of the full-range Legendre polynomials, Pi(“s)’-
' as(] ,2)

flota) = [ Zrleo )., e
2=0 .

where the coefficient f2 is given by

+] |
fl = 217J f({_}'.s_?)Pl(uS)dus . | (3.7)

Here, Mg is the cosine of the scattering angle of the neutron.

3.2 Solution Formulation

The time-independent one-group neutron transport equation with
anisotropic scattering for the case of plane geometry, Eq. (1.2), is

written again here for homogeneous system as

X

H M+ ‘J’(xﬂl) = CJ f(@'-@)‘b(xgu')d@' + st(x)U)- (3-8)
2’

The notation used here has been defined in Section 1.2. Briefly, the

angular flux of neutrons, ¢(x,u), is a function of the position x and

?
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the direction cosine » = coss where & is the angle between the direction
of neutron motion and.fhe x-axis. The neutrons source density function
is designated by S{x,n). Here, the constant ¢ represents the méan
number of secondary neutrons per collision and I defines the space
independent total macroscopic cross section of neutrons. Finally,
f(@'.2), represents the probability density function for the case of
a neutron, entering a collision with initial direction q', and sub-
sequently emerging with_direction contained in a unit solid angle
about the'final direction g. |

The neutron transport equation over the_N independent inter-
vals af u which are defined by Eg. (3.1) expressed explicitly in
terms of the p@rtial-range Legéndre poiynomials are obtained by direct ‘
substitution 6? Eqs. (3.2), (3.4) and (3.6) into Eq. (3.8). The .

resultant equation is given by

N o : : ‘
2% + 1 n,2
ng] !FE'O Un = Un_] [:1-! dx pn,z(“) + ‘:’n’g(X)Pn,g‘(p)]

n=1 ¢=0 "n = Mn-1 . k=0

-

N o w
= 11 iﬂ-ﬂ—tcj B P gdey (0P, (u)dg!
Y

* 3 S (0P (] | (3.9)

Here the scattering cosine Mg is a function of u' and y, where u' is
the cosine of the direction of neutron Before collision, and u is the
cosine of its directicn after collision.

The transformation of the one-group neutron transport equation.f

Eq. (3.9), into a linear system of equations in terms of the one spatial -
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variable x is obtained by multiplication of each term by the partiai-
range Legendre polynomial, Pn',j(“)‘ Subsequently, an integration
over the specified allowable range of the angular variable is per-
formed. T;e most important term in the resultant equation is the
integral associated with the right-hand side’ of Eq. (3.9). This

integral expression, designated by I], is

b

e ]| Rt 08, e (510
unl_] 8' '

Using the addition theorem of the spherical harmonics permits us to

write the following

P () = E ———TA“ Y (a)va*) (3.n)
k¥s? T L T Tk R '

where Ym(n) is the spherical harmonics function which can be expressed
k = ,

in the fonn(62’63)

Yp(a) = KiGe™ . o | o (3.12)

Here the function Kﬂ(u) is independent of the azimuthal angle w and
Kﬁ(u) = Pk(u)} Substituting Eq. (3.12) into Eq. (3.11) and then
into Eq. (3.10) leads to

u"'
Ly = 8“2{

] | |
, Pk(u)Pk(u')Pn-,j(u)Pn,g(u')du'du . (3.13)
Mato) -1 ‘

To evaluate the integration of Eq. (3.13) it is necessary to

obtain the partial-range expansion of the full-range Legendre polynomial
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Pl(u) as discussed in Section 2.4. Using Eq. (2.29) we can write the

above equation as

LAYl . P,
x=o Hn' T Mniel n',k,A n',A(“)

Ay
A

20k Pooa (0P SGOPL (ut )dudu, (3.14)

where the coefficients LTI are defined by Eq. (2.30) and the entire

array 2, . has been evaluated in Section 2.4. Employing the ortho- -
gonality condition of the partial-range Legendre polynomials, Eq. (2.18},

the above integral can be rewritten as

) :
I] 8r"a ',k,J nk,. (3.15)

The second integral of interest is

un' A
I, = [ uPha'j(u)Pn’l(u)du - - (3.16)
unl_lq . ’ ‘
. This integral can be evaluated using the recurrence relationship of
' &
the partial-range Legendre polynomials, Eq. (2.20), and subsequently
the orthogonality condition of Eq. (2.18}. The result is given by

- Uni = Unl_] 5 [(. . ])5
27 o (¥ THE + 1) *ntatt 2,341

+38, 5t By(25+ ey, 03.17L'J
' ' u
where the interval functions Sh and B, are given by Eqs. (2.13) and g"
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{2.14), respectively. The other integrals resulting from the rest

of the terms of Eq. (3.9) involve only thé multiptication of two
partial-range Leéendre polynomials, which is given by their ortho-
'-tgonality condition, Eq. (2.18). Substituting the appropriaﬁe integrals

into Eq. (3.9), and rearranging we fina]]y‘datain

ds . 4 (x) do .. (x)
2 . N -1 i . +3
un(zj 1) (3 n %X +(§+ 1) _z'ﬁ—“n X ]

28 deé . (x)
n ~°n,j
¥ g T dx * 2¢n,j(x)
N o w ( "
28 + 1)(2x-+ 1) .
=cC Z Z e f.a . a ¢, (%}
n'=1 2=0 A=0 un' un'_] £n :R's% n,2,37n" ,A .
2 , . -
3 %hj(x) : J=0,1,...,=and n = 1,2,...,N. (3.18)

This system of linear equations represents the condition on the partial-
range moments of Fhe'angular flux ¢n,j(x),Twhich are functions of
only one independent variable. ~

Before proceeding to 1ow-o;;er approximations, numerical tests

and calcu]atﬁona] studies, we briefly consider several reductions of

Eq. (3.18) to illustrate a measure of generality associated with the o

solution presented here, .and to provide its continuity with the‘previous

works in the field.

3.3 Special Cases

"3.3.1 Isotropic Scattering‘

We consider first the case of a medium with isotropic scattering.

C o g

A R L VR
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- For this case clearly fz = 0 for all & 3 1 and thus Eq. (3.18), after
substituting‘the values of un‘and B, of Egs. (2.13) ahd (2.14),

respectively, reduces to !

H d¢n ](X)

e P TR L j+
23 ¥ 1 [ dx +(j+1) ax 2

i

de_ .{x)

+ iy * ) =g + g, 5 (%)
{
N e :
e ) 7 &l .

n'=1 a=g “nl - un'-] n !95A n:0’1¢n';A(x)

%‘Sn,j(x) B _ (3.19)

From the normalization of the scattering function we write fo = ]

and using Eqs. (2.31) and (2.36) we can write

an‘,o,A = (Unl = Un|_1)6°A N f (3‘20)

and
oL

an’o,j = (un - un_])ﬁoj . . (3-2])
Substituting Eqs. (3.20) and (3.21) into Eq. (3.19), therefore, yields

Hn = Hp-d d¢n,j—1(x) d¢n -+1(X)

AR W] dx + {j +1) _Lﬁ——x ]

ds, +{x)

+ g *up) h*_Tﬁ%—_" * 2y,5(x)

N
= el =) B o(K)egs ¢ L5, 30 (3.22)

i T Sn,j
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This equation agrees with that previously obtained via a different
starting point(32) but for a source free medium, that is Sh j(x) =0

for all values of n and j.

3.3.2 Double Spherical Harmonics Approximation

The double spherica] harmonics approximation which is known

as Yvon's double-P, appfoximation(ls-]a)

can be obtained as a special
case of this general solution by“specifying the number of intervals
of the éngqlar«variab]e N = 2 and allowing the order of the partial-
range Legendre polynomial ¢ to take any arbitrary value. In this
case there are two fixed angular intervals specified by g = -ls

uy = 0, and wp = +1. For n =1, Eq. (§.18) reduces to

3 dey . _(x) dé; .. {x)_ 5
Pl ] . 01,31 . 1,j+1 o
i b L e L
de, (x)
LI,
dx ¥ 2¢],j(x) :
=c ) 7 (22 +1){2x+1)fa fay o Ley L (x)
220 %0 21,2, 1,0,A7T1,A
fay, . e, (1% 85 (k) " (3.23)
2,8,AT2,A £71,] i '
and for n = 2 it reduces to
dé, < q(x) db, <.q(x)  dé, o(x)
‘I. 3 2‘J—1 . 2,J+1 2)\]
T = U+ 1) =0 g+ 2 5(x)

= ¢ if Foo(2e + 1)(2a + T)f'gaz"g,j[a],Z’m_’x(x)

| ] |
Ytz sy 50 (3.24)
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These two equations agree with the results of the double spherical
harmonics-approximation(]s-lg) if we replace the notation ¢ j(x) .

and ¢2,j(x) by ¢3(x) and ¢§(x), respective]y.'

2.4 NP Approximation

In the NP, approximation the flux is written in terms of
N{L+1) components of the partial-range moments ¢n’1(x). This condition
requires thatl¢n’£(x) = 0 for £ > L; that is, we truncate the Pn,z(")
expansion of the angular flux after (L+1) terms oAly. Thus Eq. (3.2)

becomes

L 2+t 1
u{x,n) = { ) - (x)P_ . (w) (3.25)
n=1 2£=0 ¥n ~ Mn-1 *n,e e
and Eq. (3.4) may be written as
2+ 1
Stoad = ) (P () (3.26)
” n=1 2=0 "n = *n-1 "t e

In the expansion of the scattering function we need to set fi = 0 for
% > Lf. This assumes that the scattering function is adequately described

by (Lg+ 1) coefficients and therefore we write for Eq. (3.6)

L
f
flat.a) = 2{ 2rlerlug) - (3.27)
=0 /""
—__/

Finally, the expansion of the full-range Legendre polynomial, Eq. (2.29)

can be approximated by

Mintla2d 5, 4 4

P {p) = S WL P . .28
Q,E__ xzﬁ' T “An,t.an, 2 (w) — (3.28)
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'Herein, we emphasize that the summation extends to L or 2, whichever

is smaller. We note, however, that & can take on a value larger than

L because it is restricted by Lf. i
Using the above approximations finally permits us to write

the following condition for the spatial moments

M " Snop oo S5 1+1( x)
g1 U t U0 0” ]
do_ .(x)
n,Jj
+ (un + Un_]) dx + 2¢n,j(x)
N Sf Min(L,2) W
TS5 (20 + 1)(2a % 1)
n'=1 g=0 A=0 n' n'-1 ?
'!\ -
2 _ :
+ T Sn,j(x)’ . . . ' (3-29)

“with j = 0,1,...,L and n = 1,2,...,0. This equation here represents a-
system of N{L+1) linear equations in Eﬂg H(L+1) unknown partial-range
spatial moments ¢n,j(x)‘ It is the starting point for any furthe}
’apprbximations_and 9a1cu1ati§na1 studies in this chapter for the

present formalism.

3.5 NP, Approximation and thé Eigenvalues

In this section we will formulate the eigenvalu pfoblem

associated with Eq. (3.29). For this purpose we will consider a-

" . : .

source -free medium. However, we assume the presence of a-sour

!

of neutrons at the boundary of the system under consideration to

provide the neutrons; thus this sourcé of neutrons can be treated
T . ' | . -

as a Boundary condition for the problem. Also, we will consider-a

E . r .. : : : ! ’
, . . . .
< . - - .
i b . . . 1
. .I . M
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medium with a linear anisotropic scattering This means that: Lf~ 1.

In this case the an1sotropy s described by two coefficients. The k
first coefficient 15 f which {is equal to unity from the norma]1zat1bn?~"
of the scatter1ng funct1on. The second one is the an1sotropy var1ab1e :'
.71‘-l which depends on the medlum under conswderatlon and its allowgble

v'ange(64

is -1/3 < 1/3. As a first approx1mat1on, we choose
the lowest-order approximation L'= 0.5;Under these conditions, Eq.
(3.29) reduces to

D doy () S
n-1) et 20 o(X) - . (3.30)

+
(un n

=y, - un.__l)‘nl;‘] for L0 # g (o g ) g = ey

with n = =1 2 N, -to yield a system of independent 11near differential
equat1ons possess1ng H! so]utwons for the partial-range monents on, ( ).

The genera] solutions of ¢ ( ) 1is g1ven in terms of
. - . “x/v .. - . . . -
b, olX) = Ae . _ (3.31)

where An is a constant gqyerned not only by fhe usual boundary condftions
but by the eigenvalues; 1% distinctfon‘to previous ana]ysis(]'a) the
eigenva]ues are - as will become c1ear - dependent upon the chosen
angular segmentation. Substituting Eq: (3 31) into Eq. (3.30) leads

to a'matrix representation .for the e1genva]ue problem associeted with

the system of Eq. (3.30) which can be written in the form

]
o
p=Y

-

M=DA , . o T (@.32)

D

‘where A is a diagonal matrix possessing 1/v in each element of the

diagonal and the vector A {s given by -
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A= | - (3.33)

and D is a N x N matrix defined by

.Y](U])‘_ y](uz) e YT(UN)

—

2L TP B 1 (7% SR ) .
D = ‘ o . L ' (3.34)
YN(”]) yN(Uz) DO yN(“N)
where, ' a
h . :
yn(ym) B i;'?figj;'{ZGnm = cluy - upy)
’ ‘ '3f_'l )
U ol (L R (S * e P (3.35)

Cwithn= 1,2, N and = 1,2,00 0N

| r Of significant interest here is the observation that a11
e1genva1ues are along the diagonal; this feature, attained by suit-
able transfornutwon. was not apparent in a re1ated analysis for
isotropic scattering med1um(53). This represents a usual eigenva]ue
prob)em and we can use the standard solution methods of the eigen-

value prob]em in its solution.

3.6 2P, Approximation

To proceed further with this study we calculate the asy@ptotic

+F
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relaxation length by thi; method of partia]—rangéj;na]ysis as described
here and compare it with other\EEEhﬁas of similar compiexity. The
asymptoti; relaxation length is r§1ated t; fhe eigenvalue of the
pfobTEﬁl Consider the low-order approximation of N=2andL =0
which herein is desiénaté&lthe ZPO approximation. In this approxi-
mation, the angularhpartitions Hys W and o are variables subjected
only to the/;ondition that -1 ¢ Mg € My < Hp S +1. To contain the
complete range of u = -1 to pu = +1, we impose Mg =_71-}nd My S +]
and retain u]'as a free variap]e'-l <My < +1. The appearance of a
free variable has previously been encountered in the analysis of the
' one-group neutran transport equation within the context of fq]]-

range orthogonal polynomial e;pansions(sg'so); this necés tateg
a nUmeriéa] or ana1xt1ca1 study- to detefﬁine how the'freé%§3r1a§1el
affects the ndmericai value of the parameter of interest.

In the approximation treated here, we obtain the following

condition on the eigenvalue

91("1) - %' yl(“Z)

=0 , (3.36)
yz(ul) 32(112) = '3',‘

where the y'é functions are given by‘Eq. (3.35) but for the specific

values of n and m. Equation (3.36) is expanded and by the appropriate

substitution of the expressions of the y's functions it yields

: 3f
A -2 a0 - b a0 - o - =0 <A1 =00 (3.37)

R o R Tl L T
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In this case the above equation yields only two eigenvalues

“given by
. 2u (1 = ¢) l
e s 2 - Al -k
0 Ll - 1-wu
1 1
3fy¢ ' y
. R ) L P {3.38)

Y ]
both of which depend upon the parameters c, f1 and the free vartable

My- Here, v, represents the asymptotic relaxation length of the

medium under consideration. From this equation we can'recognize the

. . .
following special cases:

1) For ) = 0, we obtain the isotropic scattering
case. For this special case Eq. (3.38). reduces to
2u1(1 - c)

oy e SUUBO SR D A (3.39)
BRI

This result is in agréement with a previous study

for the isotropic case of scattering(az). .

2) For uy = 0, we obtain the formal DP_ approximation.
1 0

For this special case of u; = 0, Eq. (3.38) yields

3T ¢
(];;-)* a tz\){(TJ- e)(1 - —4—]—':) . = (3.~40)

‘This result again agrees with that of the 0P,

‘approximafion(]‘z).

Whether the eigenvalues of Eq. (3.38)'are real or complex

depends on the sign of the discriminant
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- 3f.c % vy
0= (-l - ude - - (1 -3B)3 (3.41)
The boundaries between the real and complex eigenvalues are given by
the'requirement that D = 0 which is satisfied by the following con-
ditions on ¢ in terms of the free variable My and the anisotropic
coefficient'f]-
1, )
¢ = ' (3.42)
1 .
3F )
i+ (=)

A gfaphica] representation of the properties of the eigenvaluass 1is
shown in Fig. 3.1 for three cases of scattering: isotropic (f] a 0(0}?
Forward (f] =-+0,3}, and backward (fl = -0.3). From this figure we
note that the range of the variables ¢ and u].which gives complex
cigenvalues, increases for backward scattering and decreases for forward
scattering. This means that the region in the C-1y Space in which a
sustained reaction can be obtained is much greater for backward scatter-
ing than for forward scattering. Therefore, a criticality can be
attained by a smaller volume and mass of fuel when materials with
backward scattering aré used. The effect of anisotropic scattering

on criticality of slab reactors will be studied in Section 4.5.3. It
is of interest to note that in an early study of neutron transport with

(65)

anisotropic scattering Davison » employing an entirely different

approach, similarly encountered real and complex eigenvalues for

c > 1.

T ey, MY AN < . 8, .
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The eigenvafue spectfa for the same three cases of scattering,
as well as ¢ = 0.9 and 0.5, are shown in Figs. 3.2 and 3.3, respect-
- ively. From both figures we note that the eigenvalue 1/00 varies
over a wide range as M varies inbetween -1 and +1. It is clearly
of interest to determine the angular sééﬁentation “T which minimizes
the error between the exact eigenvalue and that obtained in this low-
order approximation (N = 2, L = 0} for various cases of linear
anisotropy. We have conducted sgch.a search and listed the re§u1ts
_on Table 3.1.

- ‘In"Table 3.1, the eigenvalue /vy as a function of the number
of secondary neutrons, ¢, and anisotropy, f], have been listed as
calculated by exact méthod, 2P0 appfoxiﬁation of this work, diffusion
theory, and doub]e-P0 approximation. The free parameter My correspond-
ing to the results obtained by the‘ésg approximation as well as the

percentage errors between this result and the exact values have been

given as well. The exact ei{genvalues have been recalculated using tpe

singular eigenfunctions method(sq). The diffusion theory results
have been extracted from Case and Zweifel(z). while the double-P,
approximation results have been calculated as a sbecial case of this
study using Eq. (3.40). Here we note that this low-order partial-
range solution yields very accurate results in the range of small ¢

where alternative methods are particufﬁrly inaccurate. It 1s also

seen that for backward scattering the NPL approximation gives essentially

better resuits than for forward scattering. This would suggest that
the partial-range approximation may possess considerable merit in

highly backward scattering medium with high absorption:

e SRS SPUPLESE
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Fig. 3.2: E1genvalﬁe spectra as a function of dngular segmentation

for ¢ = 0.9 using the 2P0 approximation,
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) ) Exact 2Py (This Work) - D}:Zgi;on Double P
! Solution /v | % error |1y (P} o
0 All 1.0000 1 1.0050 0.50 { 0.99 | 1.7320 2. 0000
0.5 0 0.9575 | 1.0000 4.43 | 0.99 | 1.2247 1.4142
0.1 0.9419 | 0.9975 5.90 | 0.93 { 1.1937 1.3874
0.3 09078 | 0.9819 8.16 | 0.83 | 1.129 1.3323
-0.1 0.9716 | 1.0008 3.01 0.99 | 1.2550 1.4405
-0.3 0.9928 | 1.0639 7.16 | 0.76 | 1.3134 1.4916
0.7 0 0.8286 | 0.9165 | " 10.61 | 0.65 0.9487 1.0954
0.1 0.8069 | 0.8962 | 11.07 | 0.62 | 0.9148 1.0663
0.3 0.7642 | 0.8517 | 11.45 | 0.56 | 0.8432 1.0055
-0.3 0.8944 | 0.9686 8.30 | 0.78 | 1.0435 1.1786
0.9 0 0.5254 | 0.6000 | 14.20 | 0.33 | 0.5477 0.6325
0.05 | 0.5193 | 0.5899 | 13.50 | 0.33 | o0.5350 0.6217
0.07 | 0.5169 | 0.5858 | 13.33 | 0.32 | o0.5302 0.6173
0.1 0.5132 | 0.5796 | 12.94 | 0.32 | 0.5225 0.6107
0.3 0.4897 | 0.5365 9.56 | 0.29 | 0.4680 0.5648 i
0.98] 0 0.2430 | 0.2800 | 15.23 | 0.14 | 0.2450 0.2828
0.1 0.240 0.2695 | 12.25 | 0.14 | 0.2316 0.2726
0.3 0.2345 | o0.2472 5.42 | 0.13 | 0.2058 0.2497
.0 | an 0.0 | 0.0 0.0 | A1l | 0.0 0.0
Calculated elgenvalue 1/vG as a function of number of

Table 3.1:

secondary neutrons,.c, and anisotropy, fy. The results
obtained with the partial-range analysis (this work) are
listed corresponding to the angular segmentation, MY
which yielded the most accurate results. The percentages
errors between the results of this work and the exact
ones are listed.
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3.7 Necessary Numbers of Partial-Range Spherical Harmonics

As an alternative way to test the accuracy of the present
forma}ism of partial-range spherical harmonics we will discuss the
necessary numbé}s of partial-range Legendre polynomials starting by.
the 2Pd approximation given in the previous section. It is evident
. that the asymptotié relaxation Iéngth Vo mUSt be at least as large.

(66)

as the mean free path &g = /2777, where £ is the total macroscopic .

cross section of neutrons. In fact, Vo {s always larger than 24
with the possible exception of a medium with complete-gbsorption fn :
which both are equal. In the NPL approximation this is not fulfilled
for all values of the angular variable uy for specific values of c
and fy. It is important tb determi:g the range in the -y space in
which the largest eigenvalue Vo is greater than the mean free path
%4 = 1, which is chosen in this analysis as the unit of tength.

To illustrate this feature let us consider the 2?; approxi-
mation. Starting by Eq. (3.37) which'caﬁ‘be~r§§¥ranged to read k

3f H 3f
L LIRS L A e
0

tlesm =0 . (3.43)
N

The above equation is a ségond order equafioh in ¢ and it can be solved
for c as a _function of u; for specific values of fitfgln Fig. 3.4,
¢ is given as function of uy for the isotropic case of scattering
(f1 = 0) and for three values of 1/v, = 1.0, 0.8 and 0.6, respectively.

From the figufe, we observe that for values of ¢ from 0.5 to 1.0 the

T S A O her . 1w e
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2Po approximation gives the characteristic values of I/vo less than

unity. This ensures the separabilitx of the asymptotic partial-range

‘solution from the transient solution. Moreover, from the figure one -~

similar to the isotropic case of sgatter{ng.

can a]so_cuncludek;hai_the—%Fad$t%ana%—ddﬁb1e-PO approximation (u1 = Q)
gives, for isotropic scattering, 1/v0 less than upi};;fgr,%he range
of ¢ from 0.75 to 1.0. In this sense this comparison shows that the
2P0 apbroximation of the néw formalism of parfia]-range spherical
harmonics doubles the range of ¢ which gives results as accurate as
the doub-le-P0 approximations. For values of ¢ less than 0.5 we have
to use higher order approximations such as 3P0 or ZPI approximations.

~ In Fig. 3.5 the same set of curves are shown but for forward
scattering (f1 = +0,3), while Fig. 3.6 gives the case of backward

scattering (f1f3‘?073)w\HBQIh_§gps of curves show the same features

L

-~

3.8 NPy Approximation

In this section we consider the.hiéher ofdér approximation of
L = 1 while assuning a sourcé free medium with linear anisotropic
scattering, Lf = 1. For thi{s approximation the running variable
J of Eq. (3.29) can have the values of 0 and 1, respectively. For
J = 0, Eq. (3.29) yields,

dg, 4(x)

| déy o(x)
(i = o=+ g+ g g )R + 2p,0(X)

. N 3f
= C(Nn - Un_])n‘zl {1+ “ql (un + un_]-)(un. + “n'-l)hn‘.o(x)

3y | | ,
¥ —;l (a ) G = e dege a1y (3.44)

\_1

e
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and for § = 1, it yields

d¢, 1(x)

%("n' nl)—'r%g_-+(“ +unl) _t)i_'—+2¢n V(%)

CfT 2 7
» 7 (emmy Z Chupe * vy })¢n.’°(x)
| . : : ‘ 7 . &
+ (un| - lln|_1)¢ntt](3()] 3 e (3‘45)

with n ; 1,2,...,N. Here, we have used the exprqss{ons_of the integrals
_an;z,x discussed in Section 2.4. Equations (3.44) and (3.45) represent
‘a-sys}em of 2N first order coupled differential’ equations. We seek
solutiahs'for this-system of equations that have the expoﬁeptial
space dependent form | u

ERACIEY WIS A - : - (3.46)

where £ = 0,7 and n » 1,2,...3N. Here An , are functibns of the
ware \ ,

eigenvalue 1/v as well as the boundary conditions of Ehe problem

under consideration. By substitutiﬁg-this.ansatf, £qQ. t;.@ﬁ). into
o | ‘ :

Eqs..(3.44) and-(3.45) we obfain an eigenvalue problem in the eigens

value I/v-hnd the e}genvdbtor [An ;].';This eigenvalue problem can

be rgpresqpted {n matrix notation by

DA =0 - (3
. ' A O ~
,y!hgne, « . | ‘ , . v
p i
G o
. - Y
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A | |
A & , (3.48)

N, O -

LR

and D is a sqdare-matri; qf\iize N §’Eﬂ with elements containing‘c.
thg angular partitipns:un. the coeffictgnt of anisotropy 1"1 and the
gigenvalue 1/v. As an {llustration, onsider the two simple cases of
N =1 ;nd N« 2, 'Ee§pect1vely. First{;:or N = 1 with u, = -1 and

Ho ® 1. we obtain the TP] approximatigﬁlwhich is the formal diffusion

approximation. For this approximation the D-matrix is givm
1 . ——
'3'\? . ] - Cf'l B ' *
D= T . . (3.49)
M EURE Y - %- '

The determinant of this matrix must be equal to zero to have non-

teivial solution y{QId{ng the following etgenvalues

(1) @ AT AT ‘ | (3.50)

This result agrees with that of the diffusion approxim&tkon(a)
Secondly, consider the approximation of N = 2. Hore, the
angu\ar~part1tipﬁs are given by uyy wy and w,.  For this approximation;

the g-matrix of Eq. (3.4?)(@55505505 oloments as given in Table 3.2.
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'He note that, there are &4 ejgenvalues. It s evident that
this number {s associéted with the order of angular segmentation H = 2
and the order of polynomial approximation over each interval L = 1,
The magnitude of the eigenvalue, however is specifically as;ocinted
with ¢, tha angular partitions and the degree of anisotropy fyo In
this approximation the angu]af partitions Hgs Wy and Ho are variables

subjected only to the condition that =1 < u < uy < uy ¢ +1. For

0
a full-range description {t is necessary to specify Mg ® -1 and

up = +1. Then the 4 eigenvaiues are therefore functions of the vari-
able g, where uy @ (-1,1), ¢ and f,. .

A significant charactéristic of the matrix of Table 3.2 is
that thé aigenvalug, 1/v, is not restricted to the main diagonal but
also appears in dgbe nondiagonal elements. Indeed, this occurs with
any higher-order approximation of N. This unusual form of tha eigen-
value problem makes the numerical solution of it rather difficult.

“In addition, no zero torms appear in the nondiagonal elements. This
. Deans that tguro is a coup11ng batween all thd purtin]—ranga_gpatinl.
ﬁ%§(71noments ¢n‘£(x). This 1s not the c050 with the traditional spharical
harmonics approximation in which there is only coupling between nny‘
thraﬁ successive moments., ~\j} ;
0f some interaest is the special case of 1sotrop1c qcattéring.
_ ,fi » 0& Specifying f1 a 0 {n Table 3.2 we get a D- matrix in agrnament
with that given in provious work for this qpucinl case(°3). Tha only
differance is the additional normalization factor lf(un - “n-15 in the

axpansion of the nngu]ar’flux. Eq. (3.2);
A -~
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It is of interest-now to write this problem in the usuatl form.of
the eigenvalue problem with the eigenva}ﬂq\appears only in the diagonal
elements. This can be done by the following transformation. Multiply-
1ng Eq. (3.44) by (un.+ un_l) and Eq. (3.45) by (“h-' un-l) gnd then
subtracting, subsequently multiplying Eq. (3.44) by 1/3(un - “n-l) and
Eq. (3.45) by (u * g 1) and again subtracting. Finally substituting
the ansatz of Eq. (3.46) into the resultant equations, the now system
can be written in a matrix form given by Eq. (3.47}. Heruin. tha
elgenvector, A, fﬁs stil given by Eq. (3.48) but the, D hasthe follow-

ing form ‘
y(1.1) - %',V_ y(1,2) 9(1,3) :,,'9(1,2n)
v, ye.2) %; 9°02,3) ... a(2.2N)
- . ]
) - 9(3,1) 9(3,2) ¥(3.3) - = .. g(3.2N) . (3.51)
: 9(4.1) 9(4:2) - y(43) .. og(a.an)
glen-11y ., L Coy(2N-1,28)
g(2n,1) Coe ylavan) - 1

where the elements are given by

y(an-l.an-'l) a ,2, {Z(nn + un‘_]) - C(nﬁ - uﬁ_-l)

3, . 2§ 2 | | -
LR R (TR YRS SRt ) | (3.52)

P
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ey cf

y(2n-1,2n) = - % 2, = upq) = -ql-[3(u§ - uﬁ_])z

< Ly 7 ) (3.53)
“n 7 ¥nay } )

o

y(en2na1) « < g Gy = g g2 = el s g g)d s (3.54)
2 - . -

yznszn) « con Ll (3.55)

F

N LSl L2 gy e ot
gl2n-1,2m-1) = g ((uy = 0+ 7= (g * e iy = ey

f
) 317i"n ) un-l)a("m *

Moy dd (3.56)

f
g{2n-1,2m) = z% (= um_1)[3(uﬁ - ug,l)(nn * )

‘ \3
= iy = w7
C
col2nem-1) o,

g(2n,2m) » 0
and

Foo (it “n-l)a " % Gy - "n-l)2 g

forn=1,2,...,landm= 1,2,. . ,N with n ¢ m,

- The matrix o’?‘t‘.q. (3.51) shows that

this

(3.57)

(3.50)

- (3.59) ’
(3.60)

problam has been forme

ulated in the form of the traditienal eigenvalue problam with the

S L gt b Y kb o o
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eigenvalue 1/v appears only in the diagonal. Also, some of the non-
diagonal e1ement; have zera values; g{(2n,2m) as given by Eq. (3.59).
As a special case, we consider theediffusion approximation again.
The D-matrix of Eq. (3.51) reduces to
-1 301 - ef) |
' , v 1
g ™ . . " (3-6])

1-¢ -
”

< J—

which is different from that of Eq. (3.49) but gives the same eigen-
values as Eq. (3.50). |

Formally, we can take N as large as we please and obtain an
eiﬁenvalue problem of size 2N x 2N. However, as a calculational test
we will consider the case of N = 3, In this case of approximation,
there are three angular partitions (un. n = 0,1,2,3). For full range
description of the angular flux, we specify Mo ™ -1 Jhd My ® +1, This
leaves P and Wa s the only variables in spacifying the angular intar-
vals; both of these variables will be incorporated into a specified

ranguldr sagnentation by defining a freo angular variable Mg using the

following . Y
gty e (=1,0), forup e 0 (3.62)
and -
g = wp & (0,1), foruy =0 - (3.63)

E_Nu have used this definftion for the angular varﬁgb\os and

v

~have caicu]atadAthu corresponding asymptotic ralaxation constant, Tho
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\

results are shown in Fig. 3.7 for ¢ = 0.5 and three cases of anisotropy
corresponding to fl.’ 0.3, 0 and 0.3, respectively. The exact results .
of the etgenvalues are shown in the same figure. These results indicate
that it is possible, in thissloﬁforder approximation to dpproach the
exact value for the backward scattering and very close to the forward
scattering. Again, these results show_the supertority of the partial-

range formalism for backward scattering,

3.9 The Anqular Flux and the Milne Problem

In this section the angular flux will be discussed-fgr the
Milne problem. The NP] approximation discussed so far gives 2N
cigenvalues and 2N elgenvectors. Lat us denote these 2N eigenvalues by
lﬁ_; k = 1|2|||u|2N -| - | | (3-64)
Vk

Ve

and the 2N eigenvectors by
An.z(“k) N2, 0N ) e he . (3.65)

oL .
The aigenvactors An 2(vk) are only functions of the efgenvalues. In
torms .of these oigonvectors and oigenvalues the part1ni-rango_momonts
¢n'z(x) can. bo written as .

o ey
4y, g (%) @ kf] By o (vde

Horo, Bk ara constants to be determined from the boundary condition of
the problem under constdaration. Subsfitufing Eq. (3.66) into tha
cxpansion of the angular flux, Eq. (3.25) wiih L =1, ylelds
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P
| N 1 . eN X/, '
. 2% + 1 : k
p(xan) = 3 ——=—P (u)°] B (v)e . (3.67)
n=1 zgo Mot Ynay MRy i

The eigenvq]ués l/uk and the eigenvectors'An'E(vk) can be determined
from Eqs. {3.51) and (3.47), while the constants B, are determined
~from the boundary conditions. As an {llustrative example we will :
consider the Milne problem.. | |
The Milne problem 1gvo1ves the determination of the neutron

flux distribution in an infinite sourte-freé half space medium with
Zero 1nciéeﬁt'f1ux. Presumab]y there is a sou}ce of neutrons at
1nf1n1ty which provides the neutrons. Far away from this source, bﬁt
still fqr away from the boundary at x -'0. we expect the neutrons to
. follow the a;ymptotic flux distribution obtained from plane sources in
an infinite med%um. This means that the solution rises exponentially
. with the asyﬁptotic relaxation length Vo towards ihe source, . Hence,
" the boundary ég;ditions associafed with the Milﬁe problem are

N g ()

2) v(0w) =0 3 wun0

imroin, vo.(Xan} 1s the dsymptotic flux distribution.

For the further devo]opmeﬁi of th1§ saction, we order the sub-
L scriﬁt notation of tho'ZN eigenvalues to yield an ordared sequence
dofinad by

él—l

< %—é- € v < < N ~ (3.68) ]



€9

Let us assume that of the 2N eigenvalues there are Q negative eigen-
values and (ZN-Q)-positive eigenvalues. The sequence of the eigen-

values, Eq. (3,68). will be rewritten, for“éqﬁvenience in the following

——— T T ——

manner T N
1 ] 1 S
— < . ¢ = < 0 < < el € — (3.69)
_\)" \.‘Q . VQ+'| '.l \JZN .
In the above sequence, Eq. (3.69).che’a§§ﬁﬁzgiic eigenvalues are
given by ’
1= .1 '
. (—) B oo H (3.70)
V_O . \JQ ‘ . |
and
(e R CRAV
v} Q"‘] ' \

The first boundary condition of'ﬁﬁ;prnblem raquires that
B * 0 i ko= Q2,083 2N o (ae)

ﬁﬂi‘ Nota that BQ+] corresponds to the asymptotic cigenvalue. Equation

(3.67) can now ba written as

N T ; - -x/v
‘ : 28 + 1 . +1
. i ngl mgo NN Pnuﬁ(“)[aQ*1An.ﬁ(“Q+1)° :
SR

Morgovar, applying the second .boundary condition to Eq. (3.73) yields

' BQ+\An;g(“Q+]) + kgl Bk‘\l.&(“k) =0 3 | w>0 I. (3.74)



with n'= 1 w2yl and 2 = 0,1,
To ensure that this condition, Eq. (3 74), is satisfied
exactly 1t {s necessary to specify one of the (N-1) angular segment-
——______ ations (”]'“2";““NQ1) equal to zero. We specify yg= 0, where 1.
‘can take any value betwéen 1 and {N-1). The angular soegmentations,

therefore, are )

-1 < My < ...._-:/1(;0 TP VT A I (3.75)' .

' Thfs.pdrtjtion gives a full-range description for the angular flux.
With this specification Eq. (3.74) must be satisfied for the angular
1ﬁterva1s number (i+41},(1+2),..:, and N, respectively. In other words,
Eq. (3.74) can be written as | ' o
) Baerfn, e fVqu? * k§1 Belnavd =00 - (3.78)
for n = i+1,442,...,0, and & = 0,1. We further introduce the follow-

1ng normalization

BQH(-' 1 . : | -A . (3‘7?)
Then, Eq. (3.76) can be written as N

g B A (V) B - (\P ) ’ (3 78):”

ku] k l'lsf- k All.?. Q+] . ' T ' (B )

with n v 4] 1+2.....N. and 2 = 0,1, This aquation can ba writton 1n

a matrix form as
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A1+]'0(v]) v A1+1'0(UQ)‘, B, rRi+],b(“Q+1)—
Apayq(vy) 70 0 0 A (vad | B A (v.)-c
™ Mgl 48 | TR 1 (g
A1+2.0(\J]) N '.'\‘;}ﬁ;‘+2 '0(\)0) Ba l o A1+2'U(\’q+1 )
. _J .,E . . . ‘: “(3:795 | )
1Mot Ay,otvg) [+ Bgu M0 (g4
AN.I(‘"I) "u.i(“Q»)J B | [ A 1("Q+1)

-which rnprosents a sgy of § 1nhomogonaous linanr uquations and can ba -

knghins BB,4..0y and By o
' From the tathmnatical point of view, tha sat of Eq. (3 79) must
give uxactly a nunber of" equutions oqual to tha number of unknowns;

othnrw1su it is not solvable. Hance, the following can tion must hold
Q= 2(N -1) . - (3.80)

This woans éhat tha numbar of nogntiQﬁ aigenvalues is twico the nunber
of sogmentations tn tha positiva part of , {.a. u e (0,1), prov141n§1‘
that thero 1s one of tho segmantation at y = 0. Clearly, for thu
ganeral casos of tha NPL approximation, the nuubor of nagative oigun-
values. 1s aqunl to (L+1) tiines tha numbur of tho sogmentation 4y -

‘______'——__
ne (0 1).. It is -important to noto hara that all the numur1ca1 _casas

,which have baen tustod satisfy this gvndition.

~ The total sca1nr £1lux v(x) 18 given by thu 1ntugrat10n of i
Eq. (3.73) over tha angular varfable; w, from y = =1 to u = 41,
Parforming this Integration and using the' full-ranga integration of

tha partial-range Legendro polynomials, Eqs. (2.24) and {2.26), and
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the normglizatibn'cond1t1on‘Qf,éé. (3.77) Jinids

N =X/, q | =X/N
mr ngl (g, o(vge 0 LI By ol K1, (3.01)
which agroes with the provious rasu1ts(32). viz
LS T S ¢ R - (3

7 nel

Equat10n (3.81) reprosonts tho total scn1nr flux as & function
of the distance x from the boundary_at Xx = 0, Tha nsymptotic f1ux."
which Ts the dﬁmtnnpt part of tho abévn~0dUgtion far away from the
surfaca,. is obta1nud by rotainind ﬁhq t@o dom1nnnt terms in the above

oquation. Thorcfore..tho nsymptotic fluxy ¢, (x), 1s q1vqn by

asy

Fasy () )‘ Ef\n Slvgale "Q*‘wommcvo)o f’-°1. (3.9

- From Eqs. (1 81) and {3.83), wo can deteriting some transport
paramaters and compnro thom with thu nxnct valuos as a tavt for tha
‘mothod.. Somu of the paramotars which aro 4ss ociated with the vacuum=

-madium {ntorface at x = 0 are dnfinod a° fol]owq(1 3)

1) Extrapolatad end point 2,0 7
2) Lincar extrapolation length A
| (o)
A e e 85Y . T 3.05
ﬂwj_’:‘_’ (908
[ ‘ : :
xeQ



) ] o : _ :
. 3) Ratio of the asymptotic flux to the fotal flux at x = 0;

¥ao(0) - o - | :
RS, o e
; ’ These transport parameters have been calcu1ated by the 3P

1
approximat1on with a free anguTar parameter Wes given by Eqs (3.62)

and- (3.63}, for ¢ = 0.5 and three cases of an1sotr0py, f] = -0.3% 0

| and 0.3, respeet1ye1y. The results are given 1n Figs. 3. 8 3.9 and

‘-:3.10, respectively.. From these results it 1s possible to specify an
engular segmenfation that Jeads to exact or very eccurate results.
These “angular segmentations vary with the degree of- anisotropy and

differ in va1ue for the transport parameters under cons1qEration
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CHAPTER 1V

PLANE GEOMETRY: PARTIAL-RAHGE SCATTERING FUNCTIONS

4.1 Introduction

In this chapter the one- group neutron transport equation with
anisotropic scattering for plane geometry will be solved again. How-
gver, the approach of rebreseﬁt1ng the scattering function (scattering
kernel) is d1ffe¥ent from the one used in'Chapter II1: In Chapter-111I
the neutron angular flux w(x,u) and the externa] sourte of neutrons
S(x,u} have been expanded in terms of partia] -range Legendre polynomials
while the.scatter1ng function f(.2') has been expanded the usual way
in terms of the full-range Legendre polynomials. We have seen in
'Chapter 111 that the expansion of neutron flux &nd external sources in
terms of partial-range Legendre polynomials gives better results even
with low-order appfox1mat10ns In the ana]ysfs of this chapter, we
wil] extend the usage of partial- range formalism and expand all the
pertinent angular.functions y(x,u), S(x,u) and f(n n') in terms of
partial-range Legendre po]ynomia]é. In that sense, this represents a
complete partial-range spherical harmoniés analysis for the oﬁé-group
neutron transport equation with anisotropic scattering. ‘

The detailed representation of;fhe scattering function in terms
of the partial-range Leggndre polynomials as well as'some test cases for
this new representation will be given in Chapter VI. Hdwevér, for the

-

purpose of the present chapter it is enough to 1ist this representation

77
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of the scattering function and then apply it within the context of the

one-group neutron transport equation for plane geametry. In other

words ‘the apb]fcation'of the partial-range representation- of the

scattering functfon for the plane geometry one-group neutron transport .

equation fs the main objectfve of this chapter,

; The chosen representation is again based on the a%bitrary seg-

mentation of the directional cosine of the scattering angle into M
intervals with nodal points defined by Mome M = 0,1,2,...,M. Over

each interval (p we expand the scettering function in terms

s,m—]’“sm)
of the complete orthogonal set of partial-range Legendre polynomials
which have been discussed in Chapter 1I. The scattering function

f(n.0')-1s, therefore, written as a flouble sum expansion

24 + 1
f(n.a') = - £ P (k) (4.1)
3 m§1 nzo 2Zulugy = g ma1) My 4 M, 778 o

Here, Mg 1s the cosine of the scattering angle. Obviously, the partiai-

range coefficients fm are given by

» 2

Hs,m s
£ = 21 flo.g )P (uddug . (4.2)
i

The neutron flux ¢(x,p) and the external source of neutrons
S(x,u) are expanded the same way of Chapter III; their expansioﬁs are
giﬁeﬁ by Eqs. (3.2) and (3.4}, respectively. However, the neutron
flux and the external source of neutrons have been expanded 1n “terms
of the angular variable e, which {is the cosine of the angle between

the neutron direction and the x-axis, while the scattering function is
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‘expanded in terms of the cosine of the scattering angle u;- The
angu1ar var1ab1e u, therefore, is divided into N'interva1s by‘the .
following fnequalities. |

.']' £ uo < u-l (: e .< un < v -< uN S +1 ] . (.4.3‘)
R B B . ) l ' ..
,whtleﬂus is. divided into M intervals by the following inequalities -

-1 s-u50<u51 < ..,'<um~< [ <1IMS+1 . (4-4)

of 1nterest here 1s the feature that the segmentation of the angular .
variables v and u  are completely 1ndependent of each other AJso,
the number of 1nterva]s'N is not necessari]y equa1 to the number M.

/

4, 2 Solution Formalism

" The time 1ndependent one~ group neutron transport equation for

plane geometry. Eq. (].2), is again rewritten here for convenience .

o) 4y = ol flaa )ulxutdgt + St o (4:5)
P Q‘ R
\\.

The notation used here has been defined in Section 1.2. The basis for
the formalism here is to expand the neutron flux y(x, w), the'neutron
sources S(x,u), and the scatterimg function f(a.a') in terms of ortho-
gonal sets of partial-range Legendre polynomials. The expansions of
w(x.u) and S(x,u) are given by Egs. (3.2) and (3.4), respectively,
while that of f(a.a') is given by Eg. (4.1) oL
Usually, the next step in this formalism is the substitution

of these expansions, Egs. (3.2), (3.4) and (4.1), into the neutron

!

.

—— ————



transport éduation Eq. (4. 5). followed by a mu1t1p11cat10n of the
‘part1a1 range Legendre poiynom1a1s over a part1cu1ar range of u and
berform1ng the- 1ntegrat1on over this range. The most 1mportant term
jn this process s the integral term of the right hand side of £q.
(4{5) bécause the other terms have been treated in Chapter IlI. We |

- will designate this integral term by the symbol T:
r s [ Fla.a' Jp(x,u')da’ . ‘ (4.6)
nl ! L

Now, suppose that the neutron before the collision possessed a po]ar
angle o' and an azimuthal angle w' and after the collision the neutron
has a direction defined by 0 and w, Fig. 4.1. In this representation

15 the scatter1ng ang]e and the cosine of this angle is given by

LTI (1 - 1/2(1 - Z)K/zcos(w - w ) , (4.7)
where .’
b = COsO- (4.8)
u = cose¢ , | o . (4.9)
and B
| W' = cosp' . _‘ : (4.10)

Mafeover, dR' is given by

da' = -du'de’ . | _ (4.11)

For simplicity, Tet (v - w') be given by w sfnce this will not

LY

affect the géhéra]ity of the formalism; then Egs. (4.7) and (4.11) can

be rewritten as
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Fig. 4.1 Heutron directions before
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the scattering angle,

and after a collision; 0, is
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.
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o N+ (1 AV L B (a,12)
and ‘ )
dg' = dy'd . - S (4,13)

Substituting Egs. (3.2), (4.1) and (ﬁ.13) into the integral of Eq. (4.6)

ylelds
M o0 N ]
(28 + 1)(22" + 1) -
r e ) f
mgl 250 n=l x'zo (b - us,m-1)_(”n T Mpop) Mk .
' - ' —
R L A 1) B - (4.14)

where BEE.(u) 1s a function 6f uonly and it 1s defined by

wp' '

B;';u(ll) = ]E{ f .Pm'z(us‘)Pn’E;(u')du'dm . | | (4.15)

The 1imits of the integratfon are determined so that the following

conditions are satisfied

”ﬁ.m-l $ Mg f oW s ‘ (4.16)
R A - . (4.7)

Hereafter, the integrals of Eq. (4.15) combined with the conditions of
Eqgs. (4.16) and (4.17) will be written as

\ |
BTQ.(U) = %?”Pm,z(”s)Pn,ﬂ'(u')duldw . " (4.18)

Hg,m-1%HgEHon-

I
un_lsu Sun
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The function Bmi.(u) can have va1ues over the entire range of

u from u.ﬂ -1 to u = +1 and 1s not restr1cted to the segment (u - M. 1)
~ Because of the expansion of the scattering function fin terms of partial-

range Legendre polynomials we lose some of the spherjca] symnetry-of-the

scattering integrals and hence the evaluation of'theseqégtegrais is

much nfore complicated and more involved than the case of the-full-range

scattering function studied in Chapter I11. Aside from the fact that

there are many of these nonsymmetr1ca1 sphef1ca1 surface integrals to

befevaluafed, the derivation of the cpmpiete expansions 1in fermsﬁof

part1a1~rénge Legenare polynomials 1s straightforward.

| To proceed further, we substitute Eﬁs. (3.2), (3.4) and (4.14)

1nto the neutron transport equation, Eq. (4.5), multiply by P 0 J( u)

and 1ntegrate over u from MO M tops= Myt rearranging y1e1ds

- (X dé (x)
gj + 1 s X * ) : i:] -
no do. (%)
tug t M) "_Eﬁ%""~'+ 2¢n,J(x)

' i N e o
= 2¢ § (2¢ + 1)(22' + 1)

a1 n's1 450 2'50 \Mem © Ms,m-1) Fpt " ”n'-;)

Y

nmn 2 ! ] :
Fnaatne,qr O * 5 5 5(0) (4.19)
wiih j=0,1y..., and n = 1;2 ..N, where the constants Ajzz' are ..

defined by the following integral
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un : - ‘I . ..,’

I I TN R | - (4.20)

Hp-1

In the derivation of Eq. (4.19), excepting the scattering {ntegra) ferm,
we have proceeded exactly the same way similar to thé derivation of

Sectfon 3.2, The left hand side of Eq. (4.19) as well as the source

-term are exactly the same as that of Eq. {3.18). However._the coupling

between the partial-range moments of the flux in the first term of the
right ihand side 1s different. This meahs that the partial-range repre-
senta:\on df the scatter1ng fpnct1on has two effects. First, 1t '
reconstructs the scattek1ng function more accurately and, second, it

introdices a new way of coupling between the partial-range moments

of the F1u%

Here, Eq. (4.19) 1s the general equation which gives the
conditions on the partial-range moments of the neutron flux. It is an

exact, equation without any functional approximations. The general
A ' I
2., Eq. (4.18), and AQEE,. Eq. (4.20), -

are quite difficult to obtain and each integral for a certain approxi-

expressions of the integrals BE

mation must be considered individually. This represents the dn]y draw-
back of the present formalism. Some low-order integrals will be dis-
cussed 1n detail in the fdTiowing sections where some study cases will
be given. Equation {4.19} represents the starting po1ﬁt for any further
studies 1n this chapter.

?
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4,3 Special Caso: Full- Rango Scattar1ng Functions ' )

~ As mentioned prcv1ou'1y. the part1a1 range rcprcsentation of
the scattering funct1on changes only ‘the scattering term of the right
hand side of Eq. (4.19). Ve will, therefore, consider tho first term
in the ‘right hand side of Eq. (4.195 and work 1t out for the special
case of full-range scatfer1ng function. This special casc can be .
deduced from this ganeral formalism by Spoc1fy1ng‘M = 1 with Moo ™ -1

and Mgy ® +1.  This means that we cdnsider the ent1re range of the A

5catter1ng cosine ug as one 1nterva1. Hence the coeff1c1ent f1 N of .

F

the scattering function 1s fdertically equal to f,» For ‘this spec1a]
case the first term in the right hand side of Eq (4.19), designated

r, reduces to

N 7] ] I A 'i:'
" g (25 + 1)(22' + 1) nin'
: I. ‘cn'n] 240 2'50 Hpt & ¥ g fn¢’n Rl(x)AJPQ' y (4.27)
whereﬂAglg:. in this case, 15 given by
. n _
f nt o :
Aglﬁs S Pn'j(u)Blgu(u)du T (4,22)
¥n-1
and
2n M
Blg;(“) = %‘n' PL(US)Pnl’ll(U')du'dm . (4'23)
Y Nnn_'-l -

From the addition theovem of the spherical harmdﬁfc; we have
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. £ ’
Polig) = PL(u0Po (1) # 2 ), i.;n’“]i PPy (u" Jeos (ma),  (4.24)

where PT(u) is the associate Legen@re'noﬁynomiél. Sﬁ@stituting Eq.
(4:2&) into Eq. (4.23) and performing the;integrétion over the azimuthail

-‘L—"——_
-angle w yields,

iy

' ‘ H.t
n' i% o ' TN
By gi(u) = | Pl(u)Pl(u')Pnn,E.(u')du' : (4.25)
Unl_.-l-
This equation can be written ‘in this form
gt V¥ AL ISP 26
where the constant 11 g, 15 defined by Eq. (2.30). Substituging
EQ-_(4-25) into Eq. (4.22) gives the fdl]owing expression for Aglg,
_ , ‘ o '.
nin' _ :
o Ajzz' F a2 %, 5 (4.27) .

Substituting Eq. (4.27) into Eq. (4.21) yields -
o N T e e e ) | N
ree 1Tl - b g1 (%) AN

n'=1 2=0 &'=o "n T - ~

% an",i,z‘a.n,"g‘,j : P (4%?)/

| This equation, agrees with the scattering~ferm of Eq. (3.18) which has
\“ﬁm;;hgggﬂmggflxggﬁfor this speciat™case from.a different starting point ‘

in.Section 3.2
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. 4.4 HP_-MPy Approximation

In this approximation, the angular variable u s divided into

. : 1
N interyals and over each interval the flux as well as

<

e external
'néﬁf?ons source are represented by the L'th partial-range Legéndré

- po]yﬁ&ﬁia]s. The angu]af vakiable of the scattering function Ko is
‘divided into M <dntervals and over qéch interval the scattering function
is assuﬁed to be'édequate]y9ﬁepéesénted“by the K'th partial-range N
Legendre polynomial. Thjs'means that ¢n,2 5;§h,2 = 0 for 2 > L and
fm,z =0 for ¢ > K. For this appFoxia;;;;;, £q. (4.19) can be

reviritten as

.

¥ Hn 7 ¥pg ¢n,J—1 x) d¢n,j+](x)
23 + ] [J dx + (J + ]) dx ]
' de_ . (x) :
+ {p t oy 1) *"Déi——~ + 2¢n, (x)
- - \ (

MON KL f . .
ZCZ I z z (29.‘*‘])(22 "l‘])

m=1 n'=1 ¢=o0 2'=g (“sm - Lls,m-])(“n' - “n'-])

n

nmn'*

2
jee' T TS

T ghne g (XA 00 (@29

;i__,////// With = 0,1,...,0, and n = 0,1,...,K.

This system of equations represents. N(L+1) first order coupled
differential equations in the N{L+1) partial-range moménts of the
flux o, (x); § = 0,7,...,L and n = 1,2,...,1l. The study of this

system for some simple casesiié4the.goa1 of the following sections. \\
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4.5 DPy-DP, Appiroximation jr&7w '_ " o
When two partia1-range'Legendre pojynomia1 expansiens are used
for the two ha{f-ranges divided by p = 0, the ?orma]ish in this case
is known as the doubIe-PL approximation. Horeover, when L = 0 it
gives the doub]e-b approximation, In th1s approx1mat1on it is possible
to satisfy exactly the free surface boundary cond1t1ons and also
allow for discontinuities of the angu]ar flux at the interface. There-
fore, in the approximation cons1dered in this section we divide both
the angular variable of the fTux u into two ranges by p = 0 and the
angular var1ab1e of the scattering angle Mg into two ranges by e = 0.
Over each range we only consider one term of the partial- -range Legendre
‘po]ynom1a]s corresponding to ¢ = 0. Th1s.nepresentat1on_1s shovm in
Fig: 4.2 for the'angu]ar flux and fﬁe scattering function.
In order to examine this approximation we will consider a source

free medium. Equation (4.29) gives forn = 1 andn = 2, respectively,

dsy (x) ' ‘ .
- -153———-+ 281,6(x) = ago7 (x) + ?i¢2,d(x) s (4.30)
and
dd, (x) :
262—- + 2¢2’0(X) = 32¢-|,’0(x) + B2¢'2’0(X) , . - (4__3”

e

where the coefficients a and B; are given by

_ il i21
¢~ Zc(f] vooo fZ,OAooo) ’ : (4.32)
and @
_ i12 122 .
By = 2c(f1’0 000 | 2 vooo : (4.33)
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Fig. 4.2: The DP -DP representations of (a) angular flux and
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- 1=1,2. Here, the A's are constants defined according to Eq. (4.20)

,__\\\ and given by

~ 0 -

ik _ | Lk | . |

Aooo - J Boo(”)dlj ’ (4.34)
-1

and
23k ]
Jk _ Jk e
Aooo = [ Boo(u)du ; (4.35)

0

= 1,2 and k =_1,2, where ‘the B's are funct1ons of u defined ccord1ng

|
\X to Eq. (4.18) and given by

ng(ﬁ) = ;— ”du dw - (4.37)
. | Bil(u) = %u”dundw , '_ ' (4.38}-

and

| ng(u) s %—-”du'dw : | (4.39)



_Hereafter, for the DPO-DP0 approximation, the A's constants will be
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denoted by Ag and the B's integrals will be designated by'Bg. These

integrals have been evaluated and ‘their results are given by

Vey on220y o0 1 -]

BOO(P) = Boo(u) =1 - —~cos w o, . | | (4.40)
and

B]Z( ) = 821( } = Lcos™? (4 41}

oo'¥ oo*H - H ' | ‘

_The detailed derivation of the Bg functions is given in

Appendix A. U§ing these functions of Eqs. (4.40) and (4.47) ‘into the

Ag integrals, Eqgs. (4.34) and (4.35) and performing the integratiodﬁ

yields ‘ ,
M 22 221 212 1 ‘
Aooo = Aogo = Aoco = Pooo * 7 > _ (4.42)
and | _
21 _ g2 201 _ 22 o1 :
Aoco = Aooo = Moo = Aooo =1 "y s (4.43)

Substituting the proper Ag from Eqs. (4.42) and (4.43) into Eqs. (4.32)

and (4.33) gives, respectively,

=g, = 2L _ I | -
oy = 8, = 2c[Tr f]’o + (1 n)f2,0] , (4.44)
ﬁnd
- g - 1 1 '
32 = B-I - ZCE(] - ;r-)f-l ,0_+ ; f2,o] - (4.45)

Let us define o and 8 as follows:

a = ap= 82 . (4.46)

and

1
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B = ay = B] ﬁ g _l (?'47)

Substituting Eqs. (4.46) and (4.47) into Eqs. (4.30) and (4.31) of the
partial-range moments of the flux and rearranging the resultant

equations to read, respectively,
| !

1

d¢]’O(X) . . . : ’

—dx (2 - a)¢],0(X) - B¢2,0(X) s ) (4.48)
and |

d¢2 O(X) . . ’

—S— = (2 - ooy o(x) + By (X} . (4.49) -

This system of equations, Eqs (4. 48) and (4 49), will be used .
to ‘examine the e1genva1ues assoc1ated with the prob]em, to discuss the
diffusion approx1mat1on within this low-order approximation and to study

the critical thicknesé of a slab reactor as a function of anisotropy.

4.5.1 The Eigenvalues

The eigenvalue problem associated with Eqs. (4.48) and (4.49)
is obtained by'seeking the following solution for the partial-range

momants of the flux.
0 olx) = Ane"‘/" : n=/1,2 , : | (4.50)

where 1/v are the eigenvalues and An are constants which depend on
"the eigenvalues as well as the boundary conditions of the problem
under consideration. Substltutxng th1s ansatz, Eq. (4.50), into Egs.

(4.48) and (4.49) we can write the resu1tant in a matrix form as

l
i
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— - el
-(2 ~ o) - % o 8 AN I
‘ T =0 . (4.51)
1
-B 7 (2 - Ct) - ; AZ
From this equation the eiéenva1ues are given by ' (
(1;)2 =401 - )1 - 5 (a - 8)] . (4.52)

‘ _ \ .
Substituting the expressions of « and B, Eqs. (4.44) to (4.47), into

the above eqhation gives

1
Y v

B2 =40 - a0 - (0 - Hearl  (4.53)

where AT is the degree of anisotropy of the scattering function and it

is, here, defined by
-Af = fz,o - flo - 7 (4.54)

A positive AT represents anisotropy in the forward direction
and-a negative Af represents anisotropy in the backward direction.
Moreover, we can recognize the following special cases:

1} af = 1 represents a complete forward scattering,

where f1,0 = 0.0 and f2,0 = 1.0;
2) af = 0 represents isotropic scattering, where
f],d =-f2,0 = 1/2;

3) af = -1 represents a complete backward scatter-
ing, where f1 0= 1.0 and fz 0= 0.0.
These three special cases are shown in Fig. 4.3. From the norma]izaFion

of the scattering function we have
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Fig. 4.3: Doub]e-P0 representation of ‘scattering function:

{a) complete forward scattering, (b) isotropic

scattering, and (c) complete backward scattering.
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1ot fao=10 « S (4.55)

Alternatively, .this condition implies that the neutrons are conserved
in the system. |
\-\ ‘-._____\ . -
It is worthwhile to notice that theve is a great similarity
between this formalism, here, of the DP -DP qunqgimafﬁoh and the

(23,24).

Asymptotic Doub]e-Po Theory The main&dffference between them

is that in the present formalism f and f2 o are properties of the

1,0
material of the medium under_consideration, while in the Asymptotic
Doub]e-P0 Theory they are free\parameters.

Also, for the isotropic case of scattering, af = 0, Eq. (4.53)

reduces to
1,2 - : S

This result agrees with the eigenvalues of the double-P0 approximation(2‘3).
Equation (4.53) has been used to calculate the eigenvalue 1/v

as a function of the degree of anisoE:ppy Af. Figure 4.4 gives the

results for values of ¢ = 0.1, 0.5, 0.7, 0.9 and 0.95, respectively.

From the figure we can see that the eigenvalue decreases, in general,

with increasing anisotropy, af. This agrees with the general behaviour

of the exact eigenvalue with anisotropy which can be observed in

Table 3.1. Also, fhe decreaéé ‘or increase in the eigenvalue from that

of isotropic scattering, with af, is smaller for small c. However, we

cannot say whether this approximation is better for anisotropic scatter-

ing or not unless we compare with the exact eigenvalues associated with
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Fig. 4.4:
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- .
o . , .
-1 . 0 +1-
DEGREE OF ANISOTROPY, Af

Eigenvalue as a function of degree of anisotrODy, Af, and

number of secondaries, c, for DPO-DP0 approximation.
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il
a certain anisotropic function. Section 4.8 will be devoted to this
purpose. .
o . ‘
4.5.2 Diffusion Approximation ‘
It is possib]é to express the DPO-DPo equations, Eqs. (4.48)
o -
and (4.49), in terms of the scalar flux ¢(x) and the neutron current
J(x). Since the scalar flux is given by(sz)- -
v(x) = 4q o(x) + ey () ~ (4.57)
and the current is given by -
1 ) -

k) = 5 [y o(x) - eq (0T o (4.58)
we can obtain the following equations from Eqs. (4.48) and (4.49} by »
first subtracting, and substituting the expressions of « and g of
Eqs. (4.44) to (4.47),

40 4 401 - (1 - Beaf(x) = 0, (4.59)
and then adding

Sy ek =0 . (4.60)

Equation (4.59) can be rewritten in'ihe'fofh vf the Fick's ru]e(1"3)

which represents the basic relation of the diffusion approximation, i.e.
\ N

‘ d
J(x) = -D —g—)((ﬁ , : (4.61)

!

where D is the diffusion coefficient and is given for the present fgrm—‘

alism by



D= —1 . (4.62)
a1 - (1 - Baaf] :

This relation gives the diffusion coefficient of neutrons as function
of the_pumber of secondaries ¢ end the degree of anisotropy af. From
, Eqs. (4.60) end (4.61) we can write the following diffusion equation
@7)_+ 824(x) = 0, | - (4.63)

dx

A

where B% is the materie] buckling given by

_c -1 : . :
h B, = =5 . (4.64)

Here ¢ is the average number of secondary neutrons emitted per collision

and ‘D, is the diffusion coefficient given by Eq. (4.62).

jrg

4.5.3 Critical Bare Slab Reactor

As a final study case for the DPO-DPO approxiﬁation, we calcul-"
ate the critical thickness of a bare slab reactor as a function of the
degree of anisotropy Af, and compare it with the available exact results.
The solution of-fhe equivalent diffusion equation, Eq. (4.63), for

positiveMBi,-i.e.'c > 1, gives the neutron flux ¢(x) as
e

g(x) = Acos(Bmx) . . . : {4.65)

where the solution sin(B x)} has been suppressed because of the synmetry.

required and A is a constant dependent on the reactor power. The

boundary condition for this problem is given by

¢ olxy0) =0 (4.66)



99

where x]/z 1s the half thickness of tﬁe;reactor. C1éar1y. the bounddry
condition is Sétisfiéd(exactIy. From Egs. (4,575 and (4.58) we 6bta1n
the following re]at1onsh1p for ¢ 0(x) | )3 /

87 ox) =-_1_—¢(x) I o (4.67)

where p(x) is the neutron flux given by Eq. (4.65)‘and J(x) is the
neutron current;which 1; given by éq. {4.61). Us1n§ the boundary
condition of Eq. (4.66) into Eq}_(4.67) and'the definitions of 8,
Eq. (4.64), and D, £Eq. (4.62), we can write the fb11dwing relationship,..,

for the half-thickness x]/2 of the reactpr as a function of ¢ and af,

-
¥

‘ . - : . _]J] - {1 - ?)CAf (4:68)
X = ; an . .
Ve e D - 0 - Deorl -

This_relat%onship has been used to calculate the reactor
thickness (2x]/2)'as a function of Af for.various values of ¢ and
the ;esu1ts have been shown in F%g. 4,5, From the calculations and
the figure we can conclude that for large values of ¢ (c » 2),'
reactor thickness does not- depend strongly on the anisotropy of neutron
‘generation af, but in pract1ca1 ranges of ¢ (¢ = 1 to c = 2) the
reactor thickness changes considerably with af. Therefore, the effect
of énigotropy should be taken into consideration in the design of
nuclear reactors especially when high anisotropic scattering is involved;
a case in hand is the fast reactor. »

Further, by examining the formula of x]/z, Eq. (4.68), we can

, see that x]/zais real and finite qnder the fo]]oﬁing conditions:
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Fig. 4.5: Slab reactor thickness as a function of anisotropy, af, for

various valﬁes of ¢ using the DPO-DP0 approximation.



D oc>1; - !
2) [T-(1-5eaf] > 0 o ' 4
» The second tondition is satisfied for all the negative vatues of af.

However, for positive values of Af it leads to the following -

1

C € ——— ‘
2 .
(1 - 'T'r‘)flf K -

(4.69)

Figure 4.6 gives the domain of c-af space, region I, in which this Tow-

order approximation works and gives real and finite reactor thickness. -

i~
" -

This range includes all the practica]%@a]deé of ¢ and Af. On the \
other hand, in region Il of Fig. 4.6, this gpproximaéion yields negative
diffusion coefficient and dccordfﬁg]y breaks down.

.. To compare the resultf of this 1ow-6rder approximation with the "~
pteVious results we present Table 4.1 for the special case of 1sdtr0pic
scatteran; The reactor half-thickness has been calculated exactly for |

(67,68)_

- this special case However, we have compared our results with the

bénchmark value of the reactor thicknesses(67). In. fact, for this

special case of isotropic scattering our results reduce to the DP0 approx-

imétion of Yvont]6’17)

and are in good agreement with the benchmark
values. Moreover, the data of Table 4.1 is represented graphicaf1y in
Fig. 4.7. Of interest is the cross of the results of the present.approx-
imation over the benchmark values. From the figure-ﬁe can observe that

for ¢ = 1.25 this low-order approximation.gives the same result as the

benchmark value.
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. Benchmark DPy-0Pg 5pproximation
// Va]yes (this work)

1.01 8.3295 7.3555
1.02 5.6655 5.0570
1.05 1.3003 3.0205
1.10 :_&:3 1.9994
1.20 REEY 1.2861
1.30 0.5377 - 0.9765
1.40 0.7366 " 0.7960
1.60 0.5120 —70.5885
2.00 0.3110 | 0.3927

Table 4.1: Critical half-thickness of slabs for isotropic scattering

and various values of the mean number of secondaries_

-

per collision.
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4.6 DP,-2P, Approximation

In this section we will develop the DPO—ZP0 approximation and
use it to calculate the eigenvalue associated with the Milne problem.
In the DPO-ZPO approximation the neutron angular flux is represented
by the asproximation of Section 4.5, DP0 approximation, while the
scattering function is represented by 2P0 approximation. Figure 4.8
shows the representation of both the neutron angular flux and the
scattering function for the DPO-ZP0 approximation. Although the
scattering function has been represented by isotropic scattering over

_ tvo intervals given by = -1, Mgl and Hep = +1, we still have Mo

S0
as a free parameter which can take any value so‘that -1 < Mep < +1.
This allows us to describe a given scattering function with much more
accuracy than 1s possibie with the DP0 representation.

Starting by Eq. (4.29) and specify%ng o T Mg = 71 up = 0,
Mgy @S @ free parameter and By = Kgp = +1 we can write the following

two equations for n = 1 and 2, respectively,

de, (x) » '
1,0 _
- _-a';("_'_ + 2¢] ,O(X) - G]‘:’]’O(X) + 81¢2,0(x) ) (4-70)
and .
dé, {x) \
53—+ 20, ()= ey () + By, (X)) (4.71)

In this case the coefficients o, and Bi are given by

il £ pai2l
a; = 2c[ 1’2‘000 2,0 2,0 000y (4.72)
P51 T -

and
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Fig. 4.8: The DPO—ZP0 representation of (a) angular flux and (b)

sgattering function.

106

(a)

(b)



107

il12 i22
- 1,0 000 2,0 0007 . _—
B 2c[ % e s ”s]] : i : 1 and 2. (4.73)

Again, we have assumed a source free medium and considered the case of
L =0. For ney = 0 these equatioﬁs, Eqs. (4.50)-to (4.73), reduce to
the similar set of equations for the DP-DP approximation, Egs. (4.30)
to (4.33). The main difficulties in this approximation arise‘in the
evaluation of the A's integrals which are also defined by Eq. (4.20).
For this approximation, we will denote these.integra1s by Ag.

To evaluate the integrals Ag we will consider first tﬁe
{ntegra]s Bg defined by £q. (4.18) in some detail. Again BS stands for

the B's integrals of the DPO-ZPO approximation. Consider the integral

22 .
Boo(u) as defined by
22 — ]__ 1 [
Boo(p) = o JJPZ,O(US)F’Z,O(“ Ydu'dw . , (4.74).
Mgy Su st
Osu'st]

This integral can be rewritten as

Bﬁg(u) = %%’[[du'dm . (4.75)

which represents a nonsymmetrical spherical surface integral. In fact
the integral of Eq. (4.75) represents the surface area on the upper
hemisphere (radius = 1) which is also enclosed inside a cone of angle

8 ., = cos_]uSl with the direction @ as shown in Fig. 4.9. This integral

s
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HEMISPHERE ABOVE
YZ-PLANE GIVES

u' 2 0

i

Fig. 4.9: Representation of the integral ng(u) for DP -2P
approximation: Q' is the initial direction of neutron
and Q is its final direction; 0, is the scattering

angle and 0. = COS_]”SI'
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~is evaluated in Appendix B. It turns out that it has different

-1.

expressions depending on the range of 8 = cos']u and 6_, = cos Mo

s
Figure 4.70 gives the expressions of B (u) for the d1fferent
domains of ¢ and 81 while Fig. 4.11 displays it as a function of p
for values of Mgy = -0.8, -0.4, 0.0, 0.4 and 0.8, respectively.

The comptete set of the BB integrals have been evaluated in

Appendix B and they are related to Bzz(u) by the follewing
11 _ 22
BOO(“) = US] + Boo(”) ’ | (4-76)
12, \ _ 22, _
Boo(r) = 1 - Bo () (4.77)
and
21 _ 22 ,
Bo(u) = 1 - - 00( ) | (4.78)

Now, using the definition of the integrals AB Eq. (4.20}, and
the above relationships of the functlons BB we' can show that the

following relationships hold

i _ i22
Aooo ™ Hs1 * Rooo .~ (4.79)
i12 _ i22 .
Aooo =1 - Aooo . (4.80)
and :
i21 _ i22 ' .
AOOO = ] - Us] - AOOO » (4.8])

= 1 and 2, where

0

122 '

A000 - [ ng(“)d“ ’ (4.82)
-1
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ig. 4.10: The function ng(u) as a function 6f ¢ = cos_lu and

§ = cos"]

‘1 ugq for the DPO-ZPO'approximation.
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. .and

222 | .22 . ' '
'AOOO = [ Boo(p)du . v {4.83)
0 ’

" The’ integrals of Eqs. (4.82) and (4:83) have been evaluated in Appendix

B and the resu]ts are given by

122 1 J 2 -1
Aooo = - v - “s} T Hgq©O0s ”sT] ’ (4f84)
and | “
222 _ 122 l
Aoos = 1 - a1~ Pooo (4'8?)

‘The‘expressions of the constants As, Eqs: (4.79) to (4.85), have

been examined further and the following relationships have been found

1M1 212

AOOO = Aooo . . _ (4.86)
121 _ 222 ;

Aooo = A2, (4.87)
112 _ 217 ‘ '

A000 B Aooo : - (4.88)

and

122 _ 221 _

ﬁpoo B Aooo o _ {4.89)

Nuﬁerica] values for the constants Ag are given in Table 4.2 for the
same values of Wy of Fig. 4.11:

y . In order .to exémihe the accuracy of this approximation we will
use it for the calculagion of the eigenvalues associated with the Milne

problem as a function of the scattering angular segmentation Mo and

-



by [ Moy = AZIZ 2T« 22 | L1221 A1

-0.8 0.27120 0.97288 0.17288 0.82712

0.4 | 0.14413 0.85587 0.45587 0.54413

0.0 | 0.3183] 0.68169 0.68169 0.31831

0.4 | 0.564413 0.45587 0.85587 [ . 0.14413

0.8 | 0.82712 | " 0.17288 0.97288 | 0.27120
f

L

Table 4.2: The constants AS of the DPO-ZP0 approximation for

various values of Mo

“D
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the degree of anisotropy af. Substituting the anzatz of Eq. (4.50)
into Egs. (4.70) and (4.71) results, after some rearrangement, in the

following matrix form

: ] B
-(2 had a]) had -\)— B.] A'! .
it =0 . (4.90)
'l .
-ay (2 - 8,) -5 1iA;
L B ‘

Here, 1/v represents the eigenvalue and A] and AZ are the eigenvectors.

From the above matrix thg eigenvalues can be shown to be given by

' (%‘)2 = (2 - C‘-])(Z = 82) - uzs'i

; R € X1

where a; and B i =1,2) are given by Egs. (4.72) and (4.73), respectively.
Equationl(4.91) hés been used to calculate.the eigenvalue and

Fig. 4.12 shows some of the results represented by the eigenvalue as a

function of af for small, intermediate and large ¢, i.e. E = 0.1, 0.5

and_0.9, respectively, for various values of ﬁS]. For small ¢ the

eigenvalue does not change'sigpificant]y with the degree of anisot?épy,

but for large ¢ it does change by chonsiderabIe amount. From these

results we conclude that this formalism of DPO—ZP0 approximation gives

better results for anisotﬁ%pic scattering and large c¢. The reason for- .

th%s is that.fhe DPO approximation for {he case of isotropic scattering

is accurate for:1arge:c. A comparison of the results of this.approxi—

mation with the exact ones for a.specific scattering function will bg

given .in Section 4.8.
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dashed Jines correspohd to isotropic scattering.
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4.7 2P4~2Pqy Approximation

~

As a final case of study we consider the ZPO—ZPO apprqximation.
In this case the angular flux as well as the scattering function are
represented by the 2P0 approximatioQ§ This representatibh is §chemat—r
ically shown in fig.c4.13. The angular variable of thg flux v is
divided by the segmentation By vwhich cén take ény Qa]ue between -1 ahd
+1.' Similarly, the angular variable of the scattering %unctibp Mg
is divided Gy the scattering angular ;egmentatipn ke which taa take
any‘vé1ue between -1 and +1. Basically, M and Moy are independent.
However, for the sake of simplicity we will assume that u]‘= u;]. It

is of interest to observe that for the special case of Wy ® 0

Mgl T

this approximation gives the DPO-DPA approximation of Section 4.5.

Stérting Py Eq. (4.29) and assuming Mg = Moo = -1._u1 = My

as free parameter and My = Mgy = +1 we can write the following two

equations for a source free medium forn = 1 and n = 2, respectﬁve]y, .

o dgy () | , N .
_(17- uy) — ¥ 2¢1,0(X) = u]¢]’0(x) + B1¢2,0(x)’ '(§.92)
and '
-, ey (x) o
(4 w) =S5+ 285 (x) = agpq ((x) + 8y8, ((X) ,‘ (4.93)

where the coefficients a, an9 éi are given by

i gl ; ’
2c 1,0 000 2,0 000
4T T+ up - T g Al ) 1 . (4.94)
and
il2 AiZZ
. _2c 1,0 000 , 2,0 0003. i1 and 2 {4.95)
Bj = T 7 e T i™=1 an - .

B
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The main difference between the formulation of the present
appré;;mation angithé previous two approximations of this chapter is
the evaluation of the A's constants which are still defined by Eq.

~i$.20) but the 1imits 6f integrafions are different. He.w1]1 denote
these integrals for the ZPO-éP0 approximation by Az.

To evaluate the integrals Ag we will consider first the
integrals Bg defined by Eq. (4.18). Again Bg refers here to the
ZPO-ZPO'approximation. As an example consider the integral ng(p)

by

which in this case is given by

{ .
22 , ‘
B2 (1) = %;“du do . (4.96)
]?-USZ’U'I
lau'au]

Graphically, the integral of the above equation represents the area

on the surface of a sphere bf unit rad{us enclosed between two -cones
each of which has an ang]e'of 8y = cos'Tu1 as shown in Fig. 4.14. The
evaluation of the integrals Bg is given in Appendix C. The~expressions
of the integral ng(u) for the different domains of & and 6, ar given
in Fig. 4.15. Furthermore, Fig. 4.16 gives the ng(p) as undtion

of v for values of by = -0.8, -0.4, 0.0, 0.4 and 0.85 respectively.

For all domains of é and‘e] the other B; integrals are related to Bﬁg(u)

by the following relationships

1
Boo () = 2up + B2 (4.97)

and
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Fig. 4.14: Representation of the integral of Bii(p) for the 2P -2P
approximation; the dashed area represents the integral

of Eq. (4.96). )
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-

Boo(w) = 823(w) = 1 - gy - 822G (4.98)

00 - Boo
The symmetry in these integrals, Eq. (4.98), appears because of the
assumption that u, = u_, which is, in a sense, similar to the DP-DP_
integrals, Eq. (4.41).
The integrals Ag are discussed in Appendix C. The results can

be summarized as the following

| Aoog = 2up (1% y) + Ao > | - (4.99)
BE A 1R o
RoM = 2w (1 - ) ¢ A222 (4.101)
ART AR o100
where Algi and Aigg are also funétions of My- However, their

expressions depend on the range of My as follows

D+l
ez | 822 (1)d | (4.103)
000 oo H/CH : :
A
U‘2U1'1
and
222 [ '
Agoo * J Biﬁ(u)du , ~(4.104)



2) 0= uy 2 -0.5
122 3 [ 22
Rogo = ~Hup * [ Boo(n)du »
| u=2u1*1
and ’

1
222 _ 22
A = [ B o (u}du

000
U=U]
3) -0.5 2z “l.> -1
122 ‘ g
AOOO = ‘ZU](] + U]) ?
and
) 1
222 _ 2 22
Rooo = 21y (1 + g - 2u]) + [ , B o(n)du .
- p=2U1”]

123

{4.105)

(4.106)

(4.107)

(4.108)

In Eqs. (4.103) to (4.108) the expression of the integral Bﬁg(u) is

that of the range n - 8/2.2 Bl > 8/2 of Fig. 4.15,

A special case of the above integrals is given when uy = 0.

This case corresponds to the DPO-DP0 approximation of Section 4.5.

For uy = 0, Eqs. (4.99) to (4.108) yield

ny | 22 212 221 1

000 000 000 coo 1w °

A
and )
112 121 211 222

- - - N
Aooo - Aooo - Aooo Aooo 1 T

These results-agree with that of the DPO—DP0 approximation, Egs. (

and (4.43), respectively, which have been already derived from a

(4.109)

(4.110)

4.42)



-used. Table 4.3 gives the constants 5 for various va]ues of H
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different starting point in Section 4.5.

122
000

222 o

The integrals involved in A and A are calculated numer-

ically. The Gauss1an quadrature formula with 10 po1nts( 9) has been
similar to that of Fig. 4.16. From\t e nu r1ca1 resu]ts of AY we

have found that

Al21 12 _ 2l

000 00 ooo °’ (4.111)

and
A]ZZ 221 212

000 A000 - Aooo : ' (9‘112)

Again, in order to test the accuracy of this approximation
we will use it to calculate the eigenvalues associated with the Milne
problem. Introducing the ansatz of Eq. (4.50) for fhe.so1ution of the
partial-range moments of the flux into Egs. (4.92) and (4.93) and /

rearranging we obtain the following matrix form

2 ~ay g By
TN T Ay
1 1 | ~
=0, (8.113)
0‘2 2_82_1_ A

where 1/v is the eigenvalue and A] and AZ are the eigenvectors. From
the above system we can write the following equation governing the

eigenvalue
IV N t |
(:ﬂ + a(;& ¥b=0 , (4.114)

where a and b are constants given by .
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a= ; , o (4.115)
1 - My 1-4 M1 ) —
and
Bia, - (2 - a,){(2 - B,)
b= 12 ; 2. : (4.116)
N - ]‘1-‘1

]

wheré theyu's'and B's are given byTEqs. (4.94) and (4.95), respectively.
‘ The eigenvalues are ca]cﬁlatéd using this approximation and
the results are given in Figs. 4.17 to 4.20. Figure 4,17 gives the
eigenvalue for ¢ =:0.5 as a function of the angular segmentation B -
for the two extreme cases of anisotropic scattering, i.e. af = +1
and -1, respectively. From this figure we can see that the.general
behaviour of the eigenvalue with My and Af is in agreement with the
results of Chapter 111, Fig. 3.3. In Figs. 4.18 to 4.20 the eigen-
value s given as 5‘}unction of the degree of anisotropy af for
various values of the angular segmentation M and three values of c;
0.95, 0.5 and 0.1, respectively, represeq}ing a high, intermediate,
and low value of c. From these figures we can observe the following
characteristics for this particular approximation:
1} the eigenvalue varies approximately linearly
with af; .
2) for a particular value of Af the eigenvalue
changes considerably as chaqges.
The dashed lines in Figs. 4.18 to 4_.20 represent the isotropic case.

of scattering and again it is in agreement with the results givéen

AR

in Chaper III, Figs. 3.2 and 3.3.- _ . ~
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EIGENVALUE,

ANGULAR SEGMENTATION, M)

Fig. 4.17: Eigenvalue spectrum as a function of angular segmentation
uy for ¢ = 0.5 and af = +1 and -1, respectively. |
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Fig. 4.20: Eigenvalue spectrum as a function of the degree of anisotropy

— for ¢ = 0.1 and various values of angular segmentation using

the ZPO-ZPO approximation; the dashed Curves correspond to

isotropic scattering.
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4.5 Comparison Between the DP4-DP,, DP4-2P, and 2P,-2P, Approximations - °

~
In order to compare the results of the approximations described

in the previous sections with the exact solution we have chosen to
calculate the eigenvalue associated with the following fictitious

scattering function

oo, | (4.117)
whereuus is the cosine ‘of the scattering angle. This scattering

- . 3- )
function is frequently used for some calculatioms in neutron

transport(]3‘29’42’7o).

[t becomes increasingly anisotropic in the
forward direction {(+ sign) or in the backward direction (- sign) as
the order of anisotropy il increases. In Fig. 4.21\the scattering
function fN+(us) is shown for various orders of anisotropy N: Very
recently the eigenvalue spectrum for the tenth-order forward and

- backward scattering function for ¢ = 0.95 has been-calculated exactly
based on the singular eigenfunctions approach(zg).

The scattering function, Eq. (4.117), is expanded in terms of
the ZPO approximation with the angular segmentatiéﬁ ey @S 2@ free
parametef which can be any value between -1 and +1. The bartial—range
coefficients fl,o and f2,o are given by
EW%T“'(I g
£ = (4.118)
)N+1

MU for Forvard Scattering

1 -0 -
2N+'i Mg

; for backward scattering
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Fig. 4.21: 'The'scattering function fN+(us)

for various orders of anisotropy.
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and

£ =1 -f (4.119)

2,0 1,0

. For the purpose of this study the angular segmentation u s1
has been chosen according tq the least-squares error criterion; that

1s, according to minimizing the function e

+] . | |
ooe= [ Z R0 (i) - Flu e . (4.120)
! [ p A= Hsn T Hg,p-1 MO S S s
For the particu]ar scattering function fN+(u ) of Eq. (4.117), the
Vs

function e is given by
N+] a+ 1)2N+1

2 (1 +yu_4) u
i+ sl s . .
2(2&'1177‘ +{ A i - 11701 ugy). “(4121)

w3

The condition Mo which gives minimum ¢ is given by the following ¢

1 N,. .
flugq) = o O ug)) 7+ 2 - fugy)

w4 - Nugg) =1=0. - (4.122)

- E%ﬁ.(] * ugq) 4L
The angular segmentation p s1 which gives minimum e as well as the
partial-range coefficients f] o and f2 o corresponding to this angular
segmentat1on for various orders of anisotropy are given in Table 4.4.

A special case is the DPa representation of the scattering
function which is used in the DPOTDPO approximation. For this appfox—

imation, the partial-range coefficients of the tenth-order forward

scattering function are given by



‘ Order of': N f 5
Anisotropy s 1,0 2,
S
, ) 0.0 0.25 0.75
2 0.28078 0.26262 0.73738
’ 3 0.43968 0.26850 0773150
4 0.58415 0.2719] 0.72809
5 0.61196 0.27413 0.72587
10 0.78088 0.27903 0.72097
15 0.84738 0.28082 0.71918
20 0.88292 0.28175 0.71825

134

Table 4.4: The parameters.us}. f1’0 and fz,o for the ZPO,apprpximat10n

of the scattering function fd+(us).
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0.00048828 | - (4.123)

fl,o =

and
f, o = 0.99951172 . | (4.124)
The DP -DP " DP -2 , and 2P -2P_ approximations studied in

this chapter have been used to calculate the eigenvalue associated
with the tenth-ord¥r férwa;d and backward scattering function of
Eq. (4.117). For t NE;ZPO approximation the segmenta;ion “sl.pf
Table 4.4 is used in rgpfesenting the scattering function while for
the 2P0-2P0 approximation it is used as a segnentation for both the
angular flux and the scattering function. The results are compared
~with the exact values in Table 4.5. From the results of Table 4.5
we can conclude the following: _
1} Using the angular segmentation Mgy = 0.78088,

which gives the best representation of the

forward scattering function according to the

1ea$t-squares error criterion, the DPO-ZP0

approximation gives the best eigenvalue for

forward scattering based on the comparison

with the smallest axact eigenvalue. .As observed,

Table 4.5, higher forward anisotropic scattering

1htroduces multiple dicrete eigenvalues. This

makes the comparison difficult becauss in this

casea the sé]ution depends on the weight of each

discrete eigenvalue.
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Approximation "Forward Scattering Backward Scattering [
. Exact +0.16926775 +0.49434330 .
+0.85065254
DPO—DP0 Approximation +£0.3619740 +0.51862782
DPO-ZPD Agproximation +0.32651138 +0.54165517
2P0—2P0 Approximation +0.40612891 *+0.97045304 .
-0.80650803 -0.57049964
DP0 Approximation and +0.28504385 +0.56457949
P] Scattering Function
' . Table 4.5: Comparison of the eigenvalue (1/u)t for the tenth-order

scattering function f“t(ps) and c

0.95; the exact

results are extracted from reference (29).
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2} For backward scattering the DPO-DP0 approximation
giysg,Ihejbest eigenvalue. This means that the
an%ylar segmgntat1on Mgy = -0.78088, which gives
the best rqp#bsentation of the backward scattering
function, does not give the most accurate eigen-
value when used as a segmentation for either the
DPO—2P0 or ZPO—ZPO approximations.

We will compare these results with approximations of the same
degree of complexity. The approximation we have chosen is the DP0

épproximation of the angular flux with a full-range expansion of the

~ scattering function in two terms. For the calculation of the eigen-

value, we used Eq. (3.30) which is appropriate for this case. The
tenth-order scattering function of Eq. (4.117) is expanded in two

terms of the full-range Legendre‘polyhomiai; the coefficients of

e§pansion are given by(TT) //f
/
- /
f0 = 1.0 , p _ (4.125)
and E
fi = £0.83333333  ;  (4.126)

where the positive sign corresponds to forward scattering‘and the
negative sjgh for the backward scattering. The results of this
approximétion are also listed in Table 4.5.

From the table we note that, for backward scattering both the

DP,-DP, and DP,-2P  approximations give better results than the DP,
approximation. For forward scattering the DP0 approximation is, in

a sense, superior over the three other approximations of this formalism,.
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However, the fu]IQrange representation of the scattering functioqnin
two terms gives negative cross section in sohe pqrtions of the scatter—.
ing angular.space Mg This ﬂégative cross section is not desirable

in the neutron transport calculations.

"M}Ee above. results and conclusions suggest the study of the
eigenvalue as a funcfion of the angular segmentation Mo for this
particular case of ¢ = 0.95 and the tenth-order scattering function
of Eq. (4.117}, using both the DPO-ZP0 and 2P0-2P0 approximations.
Figure 4.22 shows the results of the DPO—ZP0 approximation while Fig.
4.23 shows that of the 2P0-2P0 approximation as well as the exact
value of the eigenvalue for both cases. Also, Melb and PPN which
are the angular segmentations that give the best represegtation of
the scattering function for backward and forward scatteﬁing, respect-
ively, gre shown in Figs. 4.22 and 4.23.

| From Fig. 4.22 we see'that it is possible to obtain the exact
eigenvalue for backwafd scattering with }wo different angular segment-
ations, but these segmentatﬁons are ﬁot ;s1b; On the other handf for
forward scattering the most accurate eigenvalue we can.obtain is the
-minimum of the curve of forward scattering in this figure. Th; angular
segmentation corresponds to this minimum is also different from Mg
Here, Melb and Hgyf are the angular segmentations wpich give the best
representation of the backward and forward scattering, respectively,
according to the 1east—squarés error criterion. From Fig. 4.23 we
observe that only for backward scattering we obtain an exact positivé

eigenvalue. The most accurate negative eigenvalue is very close to the
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0.6

DPO-ZP0 Approx.
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0

SIS

ANGULAR SEGHENTATION, Moy

Fig. 4.22: Eigenvalue spectra as a function of scattering angular seg-
mentation for ¢ = 0.95; Y<1b and Meyf give the best represent-
ation for backward and forward scattering, respectively.
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Fig. 4.23: Eigenvalue spectra as a function of angular segmentation for~

= 0,95; ksqp and P give the best representat1on for

backward and forward scattering, respect1ve
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" exact one. However, it occurs.at p_,; which is dlfferent from both
s
and the angular segmentat1on gives the exact positive eigenvalue.
Hs1b. P

"

For forward scattering we never Obtain the exact eigenvalue and the _f?"
most accurate eigenva]ués are almost aﬁ.accurate as tﬁaf of the )
;“DPA-ZPO approximation. Thus, the-conclusion of thi§ comparison sfudy
is that the DPO-ZP0 approximation is the most eppropriate approximation
to treat.such kinds of scatterng function compared with the same
order of other approx1mat1ons In add1t1on we conclude that the
part1a1-range formallsm appears mos t appropr1ate for treating the

neutran transport equation with backward scattering and acceptable |

for forward scattefing.



CHAPTER V

SPHERICAL GEOMETRY: POSITION DEPEHDENT POINTS OF ‘DISCONTINUITIES

5.1 “Introduction
In this chapter the solution of the one-group neutron transport

equation in sphericalfgeunetry will be considered using the partial-

range spherical harmonics formalism. Although -the solutions of neutron \

transport problems by spherical harmonics are extensively employed in
planar geometry, it is‘notewbrthy that they have found little use in
sbhericai'geumetrx. The reasons for this selective avoidance are
lucidly described by Ge]baﬁdtss) and by Bell and Glasstone(3). Basiq:'
ally, difficulties are encountered in'sphericai systems because oi the
poésib]ity of having directipnal discontinuities in either the angular
flux or in its directional de;ivative in position dependent directions.
It seems that this difficulty could be overcome if it were p0551b1e

“to estab]ish a hannonic type soiution formalism which embodies’ position
dependent directional disdontinuities. . ‘

The partial-range spherical harmonics, described in Chapter 11
and empioyed in the solution of the ene-group neutron transport cquation
for plane geometry in Chapters 111 and_lv. allow for discontinuities at
arbitrary fixed divections. 'Howevér. it,is possible to extend.this
formalism with slight modifications io allow for position deﬁ%%dent
directional discontinpities to describe the spherical systems. . Here,
we will develop a sphoriéa] harmonic¢-type solution of the neutron

o

142
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transport equation in spherical geonetry which allows for a pbsition
‘dependent segmentation of the directional variable. In essence, the
solﬁtion'admits the imposition of partial-range Legéhdre polynomials
over position dependent direcfiona\ segménts. 5
Let us consider the idea1ized brob]em formulated by Gelbard(35)
and mentioned in Section 1.3, which consists of a black absorbing
-épherical lump, Region I in Fig. 5.1, contained in a diffusing medium,
identified as Region Il in the same figure, with a neutron source at
infiﬁity to provide'neutrons. Everywhere on thé surface of the neutron-
iéa]]y black sphere we have tHe fb]]owing condition on the angular

flux p{r,u):

v(Rw) = 0 hf;r w0, ' %5 | f? (5-i)

v

where R is the radius of the absorbing sphere. (Clearly, on the‘sﬁrface

of the sphere, the angular flux is discontinuous at u = 0. However;‘af“\\",

the point P in Region II, Fig. 5.1, we can conclude that w(r.u]) is

“discontinuous at uy 7.0, where

My ® COSy = cos[s'in“1 %ﬂ i r:R . - (5.2)

Thus, the poinf of discontinuity has been shifted from u = 0 to LT
indeed, this point M is a function of position r.'IObvious1y this

system of two different media possesses one point of directional dis-
~continuity at My Th{s problem can be treated by a partial-range
Legendre poﬂynomiais with two regions and-position dependent segmentation‘

at uy given by £q. (5.2).

. —
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Horeover,-it 1s possible to have a spherical system with more™s
than one of position dependent directional discontinuities. In the _
following we illustrate one such system, possessing a haximum of three
dirgctional discontinuities either in the angular flux or in its
directiona] derivative. This system, Fig.-5.2, consists of four con-
centric spherical regions having different properties and different
external sources of neutrons. In Region IV of Fig., 5.2, the discon-

tinuities correspond to the cosines given by

by = COSO = cos[sin‘l ?& ;

r ?-Rn ) (5-3)

n
where n = 1, 2 and 3. Ne'emﬁhasjze that Mg (n=1, 2 and 3) are
functions of position r. Clearly, we can have N numbers of position
dependent directional discontinuities in an ({+1) concentric lspherical
systems with different properties and sources of neutrons. It is
obvious that a partial-rahge Legendre polynomial formalism with N

position dependent segmentations is required for the treatment of such

problems,

5.2 Solution Formalism

The time-independent one-group neutron transport equation in
spherical geometry for a homogenaous medium 1s given by Eq. (1.3). For

convenience it is rewritten here as

Cs - 2 ,
" ali»g:m) + 1 = u ng:m) + H!J(rﬂ-l)

"°J piru )t g + L) o (5.4)
a . )
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To write the above equation, Eq. (5.4), in a form which allows
for discontinuities of ¢(r,u) énd/or its directional derivative at
Moo requires that;its second term be rewritten._ It\}s clear that
th1§ term, containing the derivative of w(r,u) with respect to p must”

be proportional to the Dirac delta distribution functions at each M

- Integrating this proportionality relationship over the range (u, - e,
b t€) results in
2 1 «u o
1 = " aulr,u} - n e+ o -
T oy r [¢ (rnpn) 14 (P,un)]é(u un).
W=
where,
+ . , ’
v (rangd = Uimoy(reau) 7, ‘ (5.6)
+ .
'
and
v (rag) = Hmop(ra) | (5.7)
N W

(5.5)

For the general case of N segmentation, Eq. (5.4), therefore can

be rewritten as

el 1 - w2 op(r,u)
ar v 30

W¥u,
Hel 1 - 2 )
+ L — n E&jf;.un) -y (P,un)ld(u - pn)_+_w(r‘u)
- C[ Wrat)E( 9y’ + £ Slr) (5.8)
Qt
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- We note here that Eq. (5.8) incorporates discontinuities in the angular

flux ¢{r,u) and/or its directional derivatives at y = e 0= L2000,
(N-1). The présence of the delta-functions is ass?cigted specifica]]y .
with the assumption of the discontinuities in the angular flux. We™

bshou1d note that in reality it is not necessary to have these discont{n-
uities all the t1me. |

We now expand the angular flux y(r,u) and the neutron source

S(ryu) in terms Bf the partial-range Legendre polynomials as follows

Ho e

22 + 1 .
W(T{u) = ng] zgo ;;—177;;:; ¢n,£(r)Pn,£(u)‘ ) (5.9)
JC.
and .
4 = 22 + 1 |
S(ryn) = ngl igo TR S, (PP ) (5.10)

-

These expansions.are s1m11a£ to those used with plane geometry, Eqgs.

(3.2) and (3.4), respectively, but here the segmentations are functions

of the position r. The partial-range moments of the flux ¢n‘£(r) and

the coefficients of the source Sn.z(r) are given by similar equations

to Eqs. (3.3) and (3.5), respect1vefy. The partial-range Legendre

polynomials Pn.n(“) are defined by Eq. (2.2); the segmertations b, are

'functions of the position r sﬁd given by Eq. (5.3) for arbitrary number N.
The scattering function is expanded in the conventional form

in terms of full-range spherical harmoniés. Eq. (3.6). Though clearly,

it is poss{ble to use partial-range expansion of the scattering function,

Eq. (4.1); as well. However, the purpose‘of the study in this chapter

1s to emphasize the effect of satisfying the boundary conditions of the

.
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neutron flux ékactly within the spherical harmonics approximation,

Proceeding further with Eq. (5.8) requires that the Dirac delta
distribution functions be eliminated by expansion jn terms of the pértia1-
range Legendre polynomials. From the known properties of the delta

function we can write

n
P, 00800 = gl = 3P Gu) (5.11)
Hn-1
and - ' . =
“nt ) N
Praer, o (0)6(u = v ddu = T Pae, () | (5.12)
Nn '

In the above integrals, we have assumed that the &-function 15
symetric about y = My s In previous work by Nang(]g). who employed

the double-spherical harmonics approximation in spherical geometry, the

.effect of distributing the s-function between the forward and backward

directions has been discussed. However, for the purpose of this work
1t appears adequate to assume that the s-function is symmetric about
L , )
Employing the general orthogonality of the partial-range
Legendre polynomials over an arbitrary directional {nterval (un - un_l)ﬂ

Eq. (2.18), together with Eqs’ (5.11) and (5.12) results in the follow-

- ing expression for §(y - un)
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.o o2+ 1
JURSRRE RZO 2 [un T P (4Pg g ()
1 ' . . '
) M+l T Mp P"+1*£(3)Pn+].z(”n)] ' (5.13)

Using the special values of Pn'g(un)-and Pn+].1("n)’ Eqs. (2.27) and

HRY

(2.28), respectively, results in :

w0

- 2% _+ 1 1
§(u = wy) = LZO 5 ["n . Pr,g (0}
N ) N I (5.14)
bnel T g RS

Equation (5.9) can be used to obtain an‘expression for the

dérivative term of ¢(r,n) with respect to the position r:

M.
o). 7Ty (e ek G, (P 5 ()

o n=1 &=0 n-1

de ,(r) P (u) .
+ - -]u [ néi r Pn.l(u) + ¢n.£(p)__ﬂa%_f_i} . (5.15)

n-1

Here, My and Mooy are functions of the position v and hence thg partial-
‘range Legendre polynomial Pn;z(“) {s a function of r as well. The
segmentation Mn is uéed as defined by Eq. (5.3) and the first derivative
term of Eq. (5.15) is obtained by

d ‘( ] ) a -1 | dun dun-l)
dr My - W

LIPS

where, using Eq. (5.3},

e ————— e = — T r— o — = i —



o

T e e e

1581

du 1 -y
n _ n : =

dr = " rp ' (5‘]7)

| n

Similarly, from Eq. (5.9}, the derivative term of y{r,u} with
respect to ', where u # uys 1s given by

N e
e IR A = e SO LI (5] I CRE)
u#un n=1 %£=0 "n n-1 ’ Wi,
where,
dP,{u) | '
S

Finally, we write the ethessfons of the discrete term [¢+(r.un)

- w—(r'un)] of Eq. {5.8) as
' »

]

+ - ] 1
vlru) -y (T:un) = 126(22 + 1)[;;:;f:7;; ¢n+1,£(r)Pn+1.£(“n)

-

: ] -
R ¢n.£(p43ﬂw%1“h)q ' (5.20)

which, in view of Eqs. (2.27) and (2.28), is clearly given by

. . L
N X R ])[“_nﬁlzTn WENOR
| |
- ﬁ;":-E;:;.¢n.2(r)] . | ‘5-21)

The equations of the angular flux over the N intervals of u

expressed explicitly in terms of the position dependent partial-range

' Legendre polynomials are obtained by direct substitution of the appro-

priate terms into Eq, (5.8). Table 5.1 1ists this system of equations.
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uz 2(2“13

P ()
n=1 =0 ~dr n,%

Hn"]-ln_'l ) ’ Ho = u.

2'a0 ¥n T Hpad nt1 ~ Hp
N .
22 + ]
+ 11 (r)P_ . (u)
n=1 220 "n ~ Hn-
) &~
°"2k+1 T 2%+ ]
= c Pe(u)L ¢ Ar) P (u"}P_  (u")du']
kgo 2 _ nzl zgo n T Mped Mak N k* n{Q
1 N

-+

. IER
itk Ty =iy o)

Table 5.1: The one-group neutron transport equation in spherical geometry
expressed in terms of position dependent partial-range

Legendre polynomials. e
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5.3 Partial-Range Spatial Moments.

The conditions on the partial-range spatial moments, ¢n’£(r),
are obtained by, first, multiplying each term of the neutron transport
equation, Table 5.1, by pm,j(“)' Each term 1is sub;equent1y integrated
over the m'th range of the directipﬂ cosine, i.e. ue (u. _qou.). The.
orthogonality and recurrence relationships of the partial-range Légendre
polynomials of Chapter Il are thereupon used to eliminate the directional
dependence resulting in the expression of ¢n’£(r). '

By inspection of terms in Table 5.1, we noté that the operations
implied above involve 1nte§rat10n of products of partial-range Legendre
polynomials and/or its derivatives. Some of these {ntegrals have been
already evaluated in Chapter III, Eqs. (3.15) and {3.17). However, the
other 1ntégra1s will be considered ﬁére. Starting with th following

integral

K
0 .
13 = } {1 - uZ)Pm'j(u) Pﬁ’g(u)du R : (5.22)
' Fin-1
where PA 2(u) s defined by Eq. (5.19). We write Eq. (5.22) as a sum

L R
where.// _({ - k
.. /L”m ‘ ' . .
b?g ?~J Pmig(“)gin.z(”)d” . b (5.24)
and R )
M e (i ‘\ ‘_
d§‘2=] O LI I o (sa)

Pm-1
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These integrals are readily evaluated for arbitrary integral values of

2. Several low order terms can be shown to be given by

¢ r/‘

mn = ’ . - l

bjo' o . . - (5.26)

mn

?j] 26j05mn s §5.27)

m o ' o ' - '

djo =0 , . | (5.28)

~and
' 20 2 —
my _ o n 2
57 = 3 AZ 30,2,3852%m ¥ T %j0%m (5.29)

0
where the coeff1cients'an oy, have been defined by Eq. (2.30) and
extenéive]y discussed in Section 2.4. The interval function an‘is

defined by Eq. (2.13). We have studied the appropriate integrals

further and found that the following recurrence relationships exist

mn _ .mn
and
mn o mn 2 n ‘

+
122 (95 1)e

where e?z is a fhhction given by

. 2 ’ |
n + 1 + 1 + 2
S aRiMC RN LRI ¥ S§+1,8-2

: -1 2 |
t2p, (3 + 1)5j+1,£-1 + i%i'1711'53-1,a ¥ 23“4“1'63,2-1

+ Zansj;k , ' ' (5.32)

/

!
I

/, .

/

b
P

e

s b v e
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withyen given by Ed',(2'14)' By Eqs. {5.26) to (5.32) the entire array
of integrals of Eq. (5.22) can be evaluated. -
The final integral is defined by

P dp o () | - N
14 =1 Upm’j (lJ) _é?_ dl-'“ 1 ' (5-33)
um-1 . N

which, for reasons of subsequent notational convenience, we choose

to define it by

. ) © ' o o .
Using the chain rule of differentiation the ahove integral, Eq. {5.33),
can be rewritten as doro o )
- . . @ . (A e T T W
da {*m
S g-nwa[ W2 (IPL (u)du
n | ]
Mm-1
dg, My | '
|
Yool qu'J(u)Pn.L(u)dp] K : : (6.35)
Y1 »
: | ﬁ.\
which can be rewritten as
mn [ 0. dmn hmn] ‘ : 5.3

where d?? is defined by Eq. (5. 25) and- hjz is given by

—_— . - o
hyy = qu.j(u)Pﬁ.ﬁ(u)du . ' (5.37) -
W - ’

m=1

L]
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. The above {ntegrals, Eq. (5.37), haggioooo/oigm#noa/?o;;;;;/;;;/we can

writo the following retationship’

o~

n

e \ ' ‘ d

“123‘*‘17‘[(3 1)bj+] g t JbJ 1.2

+ R \(23 + 10 . | s

S | -
whore b??’is defined by Eq (5.24).  The parameters o and B, ATe used

as dofined by Eq. (2.13) and (2. 4), rospootivoly. but u is a function
of tho position *. The derivative terms of Eq, (5 36} are obtained as

! da . “du du <
. n . =2 n . “Mn-l .
o dr ( o )2 [dl‘ T Tdr J ' (5'39)
. M T R .
and
dﬂn o . du du 4 .
& AR (8400
. RRUSEITIEY . | -t
whare the derivative dy /dr-1q given by Eq. (5.17) .. ~
' Following the procedure described carlier in this saection and
usinq the 1ntogrols I Io, I3 and Iy of Eqs. (3 18), (3.7), (5.23) -
Lond (5. 34). rospoctivoly..ms woll as the orthogonality condition ot "
" the partial- -range Legendra polynomials, Eq. (2. 18). the resultant - TS

syqtem of oquofiono for the partial-range, spotial moments ¢ (r) is
found 1n Toblo 5.2, "

) 1 .
1 R
o L]

8 4 Two-Rnngo roximation

t-r-—--u

d
Fow the p rpose of nume rieal 111ustrotion\‘tho low-ordor

& .

L

——— -

J L
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approximation case of N = 2 will be cohsidered. By this case of study
we are able to describe the two media problem defined by Gelburd}ss)

and explained here in the introduction section and given by Fig. 5.1. 2

of the direction cosine from -1 to M and from My to +1. Herein, we
have chosen to segment the direction cosine by uys Where uy 1s given by

Eq. (5.2). For this two-range problem the backward and forward flux

~ moments are jiven'by $ L(r) and ¢2.£(r). respectively, where

n
"¢'|“L(T‘) . I ‘P(r‘ﬂl)P].g(N)dN ' ‘ - (5-4])
-] ) '
and i
M ‘ _ ‘ ;
4, (1) ~J wlroPy (udde (5.42) ‘

il]

i

Employing N = 2 1n tho system of equations of Table 5.2 and

- writing two equations for nwlandn e 2.’basﬁact1v01y. yields the

condition on the bagkward»dnd forward: flux moments. The results are

listod 1n Tables 5.3 and 5.4, vospactivaly.

&

i
5.5 Qn1cu1at10nn1 Analysis | {'

The analysis presented in the provious sections ‘is frnd of‘any
functional assunptions or approximations. “In a calculation upp11cnt10n
1t will of course - be necassnry to truncate -thoe sertes nxpansion at some 7 ,
appropriato ordor. As a tost casa, for this naw fornalism we constdor

the low= ordor approximation o? L=20and undartako to calcu\ato tha ™

¢

£
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angular %}ux as well as the total flux‘for the two media problem defined
in the introduction of this chapter, Fig. §.1. This‘prob1em with a
neutron source at infinity has been defined by Ni\]iams(qs) as the Milne
prob]em 1ﬁﬁ%§her1ca1 geometry with boundary conditions, using the
notation adopted here 1in Section 3.9, given by

D oelra) > V()

o
and

2y ¥Ryw) = 0 ; w>0

where R 1s.tﬁe radius of the absorbing sphere, Fig. 5.1..and wo_(r.u)
s the asymptotic~angular flux disteibution due to a source at infinity.
He w1}1 consider a medium with linear anistropic scattering, hence, )
f, = 0 for 22,

For L « O, the system of oquations of Tablo 5 3 and Table 5.4

roducas to
d¢11°(r) S : .
dr T Ty Pot,e(t) * Bygig o(r] s (5.43)
and . ‘ .
e A i Dot o) + Bagia o(M1 (5.44)

whara A]O' 810. Aao and Badwnro;giyggiby -

2
SELAEI P A R

ﬁ%f] .
- (0 - u1) SRR I (5.45)

¢



RS,

e

162

) ]+U] 3Cf1 2
Blo " 7~ e+ ) + 7= (0 =)+ u)¢ (5.46)

Ty . 3cf, 2
Apg ™ = —— = c{1 ¢ 31) N (- w1+ uj) ' (5.47)
and
2
(] + u") 1+ U'l
20" TRyt et
.- "4'—‘ (] W“])(] + 111__). . (5-48)

The above cquations, Eqs. (5.43) and (5.44)}, represent a system.

of first o;der differential cquations. We note, however, that the co-

© efficients A]O‘ 810. Aao and Byg are space dependent. Th1§ dependency

of these coefficients on the position r is 1ntr6duce& because of the
position dependent segmentation My Hence, the equations are singular
at.ul = d which corresponds to the point r = R aven though the solution
need not necessarily be singular aﬁ this point.. There may be.several
ways of circumventing this nnalytiEaI-anarica1 difficulty. For our
present purposoc of numerical calculations we have elected to rof&nﬁu]ato

the prob1qm for a constant although arbitrary W and subsaquantly

‘spocified W™ 0 applicable to tha angular flux at'tho_surfaco of the

sphare, In view of the conceptual dertvation of this solution formalism,
this solution {s analogous to fho'doublo-P],solution npp\icgblo only at
r = Ri this, incidently, gives the 1imiting condition of this position
dopendent partial-range formalism as r =« R. _Thdfuforé. wa have, at the
surface of the sphere, tha following system of Qquqﬁﬂons which can be

obtained by specifytng that u]'is constant right from tha baginning and

=
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™~
subsequently equal to zero:
d¢1 o
—'3_ Aoy .o(” *Bonte,lt (5.49)
and | )
d“’2 0 |
—3—‘ J"200%.0‘“"'.‘*‘ Baont2,0l™) 0+ (5.50)
where,
3cf
Alouua‘&‘c‘j—l [ ’ . (5151)
Bp " g ¢ -7 ' - (5.52),
| -/’\ : 3cf, | _
T el Wy ‘ (5.53)
and :
1 3cf1 ‘ . .
BZOD‘2+‘E‘C‘T . (5.54)
‘ s
Thae subscript D identifies the usual doub]o-PL approximation. This

(19) and uéud over

approximation has baen ;tudiod praviously by HWang
the entire space.

The System.of equatfbns. Eqs. (5.43) and (5.44), have been
solved numarically uging‘tho Runge=-Kutta mathod. As an 111ustrntion.

we shaw the angular flux distribution as a function of u for several

~distances from the surface of the sphore! Fig. 5.3.' We\note that, as

expected from the physics of'thg problem, the prosent forn 14sm shows
a discontinuity in the angular flux at Wy ﬂhicqyyarius with pogjtioh.
Eq. (5.2). In viow of the oﬁaor'of approximation used the flux is

constant in the two forward and backward diractional domains.
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| To obtain an indication of the accuracy of this directionally-
discontinuous solution we have calculated the total flux for the
special’ case of isotropic scattering with no absorption in the moderator
(region I1) and compared these results to the equi;alent resu]ts
reported by Sahn1(72). This comparison is shown in Table 5.5 where
each column of data is normalized to unity at the surface of the sphere.
Figure 5.4 displays the data given in Tab]e 5 5.  The important feature
to note here {s that this low-order 2P approxjmnt1on. which 1s of the.
“same computational comp]exity as the diffusion approx1mat10n. yields
more accurate results closer to the surface of the sphere. This
suggaests that the app11cation of the solution: ?orma]ism devaloped hera
can, in general, providu more accurate results without additional

computational effort.

&



Distance Transport Diffusion 2Py Approximation

r " (Ref. 73) (Ref. 73) (This Work)
0.0 1.0 1.0 S W
01" 1.4548 1.1581 | 1.4350
0.2 1.7539 1.3162 1.6707 -
0.3 2.0259 1.4743 1.8538
0.4 2.2806  1.6326 . 2.0058
0.5 2,5357 1.7907 2.1363

0.6 .2.7814 1.9487 2.2509
0.8 3.2644 12,2649, 2.4453
1.0 3.7397 2.5822 2.6064

S

Tabla §.5: Calculated total flux in the modarating medium

normalized to unity at the surface of an

_absorbihg sphare possessing a radius of two

maan=-frae paths. Tha distanca r is measured

from tho‘surfuco of the sphere in units of

tha mean-fraa path. .

!‘ ' - '-ﬁ-', - -
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\
4.0 —
I Transport. : g o L
11 -Diffusion _ k ‘
II1 2P, Approximation (this work)
3I5

3.0

2,0

HEUTROH FLUX (ARBITRARY WHTS)
ST
on

1.5

1.0 | -~ /
[‘ 1 ) 3 : ) )
0 0_.2 0.4 0.6 0.8 - 1.0

DISTANCE FROM THE SURFACE OF THE SPHERE (mfp)

+ Flg. 5.4: Total flux in the mpderating medium normalized to unity at
the surface of an absorbing sphere possessing a radius of

two mean free paths. : 5

e e T PV



CHABTER VI  ° |
- SCATTERING KERNELS: REPRESENTATION AND APPLICATIONS

!

—

6.1‘ Introduction -

The subject of this chapter is the representation and applications '
of the scattering kernels based on the use of part{al-range thendre;~

polynomials. Thfis functional approach appears to p055355'the'property':

I

Y
of permi tting¥ high order accuracy representation-of very amisotropié

phehomen&”ih low-order expansions. The representation of both the one-

‘group neutron transport scattering kernel and the group-to-group‘neutroﬁ

transfer cross section in the multi-group fechn1§§§>w111 be considered

hara,

For neutron-nucleus interaction, we can derive a sufficiently

accurate. scattering cross section using a quantum mechanical formalism -~

suggested by Van.Hova(73). Also, the ncutron scattering cross saction

{s mbasured_expor1mentu]1y for some elements and some nautron pnorgius(37'38'74).

As. the noutron energy fncreases or as the mass of the interacting nucleus

increases, noutron sbatter1ng bacomas increasingly anisofwopic(25'37'3g)t

-In the noutron transport analysia.with anigotropic, scattor1ng.*1t is

nocossury to raconstruct the sdﬁttoring kerpals in a. simple analytical
fermuIa to bo usad in .the transport oquation, Full-range Legondre
polynomials are usually usod('| 3) ‘

The various difficultios which have buon roportud can be attributod

to. thu analyt1cu1 rapresontation of the scattoring function in torns of

\
AY . v
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e +

d Legendre po1ynom1a1s(1 3) and 1n the property that the d1ffarent1a1 cross

sections vary non-monotonically w1th the scatter1ng angle(zs 37 38)
Truncation induced oscillations 1ead1ng to negat1ve values for the
-neutron flux(25 26) has prompted the 1ntroduct10n of large numbers of
'Legendre coufficionts(z?) and other ad-hoc methods(ze). Morcover, from
the study of Chapter IV, we see that the repraSen;at1on of the scattar-
fng function in terms of partinljrdnge Legendre polynomials gives more

accurate u1genvn1uos.'even-w1th Tow=order apprqx1mat1ons. comparod with

the fu11 rangu rcprusentat1on. |

~. o In tho fo1low1ng saction, wa will considur the nuw roprcsuntat1on

of‘scattor1ng kernals, for ona=group theory, based on tho use of
partdalrrango Logundro po]ynom1a1s.~ Saction 6.2.2 will give tho group-
to-group transfor cross section roprosuntat1on. Finally, in Soction 6.3
$Oma applications will bo givon.

6.2 Partial-Range Expahs1pn pf Scattor{ng Karnals

6.2.1 One=Group Neutron Transport

The analysis 1s again bqsﬁd on tho drb1trufy Sogmuntat1on of‘
the d1r0ct10nu1 variable of the scattaring angle, 1.0, e ™ EoSds. thFd
ruprosonte tho scattcr1ng ang1u. soo Fig. 4.1, That 15; wa divide
tho range of the cosine of tho scattoring angla 1nto N arbitrary intervals

w1th nodal pojnts dofinod by My i 1y 24 ooy No Over oach {ntorval

_ (u Hp- 1.u ) Wo oxpand tha scattor1nd function in tarms of the compiota

orthogonal sat of -partial-range Logandre polynomials. Tho scattoring

function f(n Q') is thdéywritton as & doublu sum oxpunqion




- g 0.
SRR | .  'J_ ;
f(n q' )."“f Lo (s 1) ) RIS

P
n=1 £=o 2"("‘n ; n ]) NiLn,4
where the P j(hs) 1s‘fhe m;th'braer part1a17range Legéndre polynomial

“oVar the #'th range of the angular- variable be

properties of the partfal-range Legendre.pd&yﬁom1a1§ have'been given
11" Chapter iI. éi:r:f_gart‘lﬂ-range moments fn . follow directly as

. The definition and‘ I

no T
fo,e ® f(”s)Pn,z(Hs)dFs : o ' o (6.2)
. un_] .

Here, we made use of the following relationship

| = ] \ - . ]
Fl.a') = 5= flu. ) _ (6.3)..
implying that the scattering function is a funct1§n of Mg only. A)so,
the above relationship leads to the following normalization conditfon

of the Scatter1ng‘funct10n
r (s,) R - (6.4)
fly Jdu. =41 . . ' 6.4
) .5 5 ih . ] .
Lo

Using fhe expansion of Eq. (6. 1) it 1s now possible to describe
the scattering function f(u ) to a given degree of accuracy even with
'..a 1ow-order partia]-range Legendre polynomials expansion,by increasing
- ‘the number of d1rect1oﬁa1 intervals. For example, consider the Tow
Jofder approximation of L = 0 for which Eq. (6.1) and Eq. (6.3) yleld .

N .
)= I ey fonolisd - (5.5)



" . y .‘L . : -' .- § | . i
Substftuting the express1on of he Zero- order part1a1-range Legendrc

:.polynom1a1 which is given by Eq. (2.15) into Eq. (6 5) y1ers

. N - 7 ’ . . N
_f( = n§1 1—-—-—-—*—-; mo t . (6.6)
based pn the ‘zero-order moment of the n'th interval, '
Mo | R _ L o
1 fn,o a f(us)dus f _ . : (§-7)
¥n-1

9 .

This low order moment rebresentsm;he probabil{ty of a neutron

-

'5cattér1ng into the rarge of -the cosine 6f-the scattering anglé between
My 1 .and M We note that Eq. (6.5) implies that the angu]ér vaﬁiablé
1s divided into; ol arbftrary intervals and over each 1nterva] the

_ scattering function f(us) is approximated by & constant. We designate
this case as partfa]-fange {sotropic scattering. It is obvious that as‘.
N increases, the acCuracy of:Eq.,(G.ﬁ) fncreases and 1t s clear,_al&g#:
that 1t 1§\jmpossib1e to generate a negative d1fferent4a1 cross section
‘1n this 1owest order approximation of partial- range representation.

For the seEznd order of approximation L =1, Eq. (6.1)Mand Eq.
(6.3) yleld - _ | | |

) o | .
fug ) = f T-_————-__Y [f) o * 3f 1( w80 . (6.8) -

Here, ve have used the expressions of zero-order and first—ordef Legendre
polynomials given by E?//,(Z 15) and (2. 16 ), respective1y The moment
f o 18 st111 given by Eq. (6. 7) while f 1 is defined by\\\

-
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. ; | -
. n : S
T ["' f(”s)(“n”sa+ren)d“s L | (6.9)
: | LS o : .
The_intbrvaT'funct1bns a and B are g1ven by £gs. (2.13) and (2.14), -

respectively,” Equat1on (6.8) 1mp11es that the angular variable T s

_divided into N arb1trary {ritervals and over each interval the scattering

functibn 1s approximated by a straight 1fne segment. We denote this -
case by the part1a1-rénge 1inear'y anisotropic case of scattering,

It s usefu1 to place the representation .deveioped thus far

é?into perspect1vq.by noting that the usual expansion of the scatter1ng

function 1n terms of the full-range Legendre polynomials 1s obtained
as’a'spec1a1 casg-by setting i = 1, For this case Eq. (6.1} gives,
. i - '

theggfore,

> L ‘o ' -
& 2m0 17 _

For the full- -range description of the scattering functiom ve require
Mo = -1 and u1 = +1 and Eq (6 10) reduces to . ' A) )

28 ¢ . | :
f , ! f P ’ 6.1]
(a.0') = EZO . l(us)‘ \ (‘ )

where pz(“s) 1s the full-range Legendre polynomial and_‘f'2 1s the usual.

moment of the scattering function given by '
+1] " EFJ

N

fn s 21 f(g'gl)PL(“s)dPs' . - (6.12) :
-1 -

L T A T
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These 1atter two equation' are the usual description of the scattering .
- @
function in terms of the fu]l-range Legendre po1ynom1a’ls(1 2)
Me now consider the case of 1sotropic, scatter1ng C1ear1y, the
2

scattering funct1on f(u ) sat1sf1es the normalization condition of

. (6.4) and 1s given by
flu,) = (63
st 7 . : SRR
which, upon substituting into Eq. (6.7), results in
RO N - C (6.19)
n,o) Z *Pn " Hay) 2 - C W

and f o =_0Jfor g > 0, _
oy Using Eq. {6.14) we can write

N ;o : ‘ -
‘nz] fn.o g f ng.‘(un - un_]) = 2’ (VN - 110) . ) (5.]5)

As§um1ng a full-range descriptfén for the scattering function, that is

Mo = -1 and My = 1, we obtain
N 'l i . 0
] o= 1.0 . | - (6.16)
n= ’ _ . -

This condition, Eq. (6.16), applies for both 1sotfop1cjfnd anisotropic

;i scattering. Indeed, it represents the norma1izat16n condition of the
scattering function, Eq. (6.4},
| 0f .some 1nterest is the special case of H'=2. In ihis case,
there are two ranges of the scattering variab]e ”s given by this

1nequa1j}y
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&
T el g by < +] (6']7) :
Again, we have assumed fuif&ﬁange representétion of the scattering :
function, 1.e. Mo ® -1 and Hp +1. From Eq. (6.14) we can write ' E
o 20+ m) o | (608
and IR ' - ' i
B Y XUEE T (6.19)
from which the degree of an1§otropy af, defined by Eq. (4.54), 1s given by
AF =y . (6.20)
+ .- N ' :
Therefore, even for isotropic scattering, the moments of the scattering |
\
function f1' and fz are functions of the partition My - The conditfon
of Eq (6.20) has been frequently used in Chapter 1V, !
| )
6.2.2 Multi- Grcup lleutron Transport = . %
Cons1derat1on w111 now be given to the deve10pment of the group- N
to group transfer cross section.

|
The exdct elastic scattering transfer !
cross section from group g' to group g can generally be written as

] o (rE' e "E,2)p(r,E' 0" )dE ' }dE .
E E 1 ' .
= 4 g
Ugl*g(::us) Egl_] ‘ ’ (6-2])
’ v(rE',0' )dE" v
Egl '

'where g is the scatter1ng cross sect1oﬁ which {s the probab1}1ty of an
neutron having energy £' at direction Q' to be scattered to the directio

f with energy £ per unit volume at the position r, and w(r E',Q') is.t



e L,

' neutron angu1ar f]ux whd]e the jmmaining symbo]s are emp]oyed as.con-

vent1ona11y used in the 11terature(3) p

The scattering law,” that 1s, a relation betweeh the scattering

angle and the energy change of the scattered particle, can be written
(75 76) {

0.9) = £(EE) § -l s g4l . ' (6.22)

This restricts our analysis here to ncutron slowing down only, which
is represented by Fig. 6.1. The scattering transfer cross\seétion can

hence'be written in {ts usual form

o (IIE',0'E,0) = & K(E,E)s[g.0" - e(E,E)] , - -(6.23)

wheré k(E,E') 15 a funct16n,of the neutron energy befcﬁe; E', and éfter,
E, the 'scattering event. For the case of elastic scattering Egqs. (6.21),
(6.22) and (6.23) reduce to the following equations, respect1ve1y(4]).

1 | fg-1 . (Fgr a1 SAriE) }

2 l gL,

Ug.,,_g(l_‘-us) = T - & ,dE ‘dE _E"l'_— f{E’ DE(‘J )]
E.g ; Eg. : -

« 9lEa0"E* Yol - s(E‘.‘E')]

H(E - aE') - H(E - E') ) (6'24,)"
[ " e ) '
Eg'
and
= S(E,E) (6.25)
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1 | [
T >
uEgr_-] Eg Eg'-'l

Fig. 6.1 RepFesentafion of energy groups g and g' 11lustrating

neutron down scattering.



where . ’ -
CoseeysftnenfEow-nfE=. L (s
The delta function, &, and the'wnit step function,H, fn Eq. (6.24)
describe the angle- energy coupling 1mposed by elastic scattering. |
Here, Mo and ¢ are- thé cosine of }he scattering angles in the 1aboratory
and center-of-mass-system, respect1ve1y. f[E‘.,(uS)] 15 the differential

scattering distribution, and US(E'E') is the'tpta1 scattering cross

section. The constant « 1s given by
. - (6.27)

'where A 1§‘thc relative miass of the scattering {sotope to tbe:mass
of the neutrcn _

With the introduction of a mu1t1 -group structure Fig. 6 1, the
allowable range of . for the transfer of.a neutron elastically scattered
}rom a.gource group g', containing E', to group g, containing E, maj not
include the entire r&nge of Mg (-1.?1); Instead the bounds of B for

the transfer g"¥ g are given by

‘tmé1nk17-<A~1ﬁ{¥h . (6.28)
’ 9'- g
§[m+1ﬁ -(A-UJ S . (6.29)

We are considering energy groups which are not directly coupled, that

and

4s g# g+ 1. Also, we are considering a case in which the max{imum




‘range of Mg {s given by the lower bound ¥
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Y

” decréase in neutron energy affer elastic scattering {s Guch larger

than the width of any chcrgy groﬁp. This 1s particu1aﬁﬁy épplicab1e
for 1ight elements; hence, Eqé. (6.28) and (6.29) are correct providing
the following condition holds, |

iy € By - (6.30)
This condition imposes the following restriction on b1 and we,

-l e < gy < 1. ' (6.31)

n-1

It is worthwhile to note that this formalism {s correct for all nuctei

and any division of energy groups; it is, however, necessary to take

~ care in ca1cu1at1ng the allowable range of Mg+

For example, the allowable range of u  for fhé\?nrgrgup crass

section {s g{ven by

. . £ ' . . .' N | | '
DR LRl o 15 v R L)

~

and
TR | ST T (6.33)

Moreover, for the contiguous groupAtransfer cross section the allowable

~. .,

= BT , ’
oy T LA+ ) E—z—;:— - (A - 1) Ej—j—] : (6.34)

while u  1s unchanged, £q. {6.33).

. vl

From the above discussions, we conclude that the group~to-group
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transfer cross section agiwg(r'”s) {s not well-behaved in the entire '

'*1nterva1’of Mg e (-1,1), but 1t is well-behaved {n the allowable range

of 1, € (un-].uh);hby this we mean that 1t {s eqUa] to zero everywhéré“

except 1n the allowable ;anges of Mg where 1t varies monotonically.

The objective, therefore, is to expand the transfer.cross section

_°g'+§(f'“s) in terms of a complete set of orthogonal functiqnéuovek

the arb1trary range of u.e (”n-1'9n)" For this purpose we have chosen |

- the part1a1-fange Legendre. polynomials swhich introduced {n Chapter II.
Accordingly, the group-to-group i:pﬁ;;;iﬁ;ross section of Eq. .(6.24)

can be expanded as i

28 + 1 > o , '
21!(],|n - un 1) g ,.g( )P (US) ] : (6-35) ,,

.

where, generajiy. Ml and M are g1ven for the case of eiast1c scatter-
1ng, by Egs. (6.28) and (8. 29), respect1ve1y, and the . | 4

partié]-range Legendre po]ynomial,— (u Y, 1s given by Eq. (2.2).

The part1a1 ‘range moment c ' (r) fo1lows directly and 1s given by

' 7y : S
(e) =} 0gi,g(ramgdPy o (ugdda o (6.36)

O

9g'+g

“A similar procedure has recently been applied to the d1ffekent1a1

Compton scattering cross section of photons(sz),

6.3 Examples of Applications

6.3.1 Scatter1ﬁg Function Calculations

As an application of the expansion of the scattering function

\
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in tanﬁs of thc_p&rtfa]-rangc Legendre polynomials, we cons{der the
elastic scattering of U238 ﬁﬁd 81209 of i4.0 MeV ndutréhs. The 0238
nucleus has been chosen because 1t displays part1cq1ariy strong - |
an1sotrop1e§ at this energy; morecover, this urﬁn{um 1sotope 1s 1ikely
to be used 1n fusion reactor blankets as a fertile fuel. The‘cho1ce
‘of 51209 '

{s based on {ts vcﬁy anisotrop1c scattering cross section to

{1lustrate the expansion fofma11sm. que. the expansions have be¢5-

Heveloped and compared with the usual expansion in terms of the

| full-range Legendre polynomials. The criteria of interest are:

' 1) noh-negat1ve cross section from the reconstructed
moments;' {

s

2) the deviation of the éxpanded.cross sectio

from the experimental values {5 determined |
"accord1ng to the least-squares erro; cr1tér1a.
defined by Eq. (4.120) and rewritfen again,

here, for convenience, :

1 ' - .
€ = [g lf'(Lfi—yfn'
_1 =1 250 *n Fp-1/

From the definition of the function/e, 1t -1s clear that it 1s géverned

S

by the order of partial-range polynomials, L, the number of direction

'1nterva15, N, and on the choice/of the division By

and L, the divisions, u

For a given order of j , are completely

n

arbitrary. However, one way/ of chobsiﬂg these divisions 1s to minimize
theCfunction e, by varyi {the values of My for giVen_va1ues of N and L,

Figwre 6.2 depicts exper1mentai elastic scattering cross section for

naln) - fu )P o (6.37)

1
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section (14 MeV) and 1ts partial-range Legendre repreéentat1on

for L = O while N

=1, 2 and 3,
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as w011 as some low -order approximations of the cross sectfon, The

se of Nedandt's0 approx1matos the cross saction by an 1sotrop1c

‘rnpresentnt1on N=2andL = 0 cas upprox1matas tha cross act1on by

2 partial-range 1sotropic scattcring ovor the two rangcs with " " 0
25 a directional partition wh110 the case of N=3andLl =0 approximates
the cross section by o partiu]-ranga {sotroﬁic scattor{ﬁﬁ‘over three
ranges with e ™ 0 and ug © b.975'as bart1t1on§. Thﬁ value of e 0
in 211 the approximations of‘fh1s section has begn chosen to be con-
sistcn} with the choice of ur 0 1n the part1a1-rapge'represcntation
of tpe neu;ron_f1ux on the baéjs of exa§t1y sgt15¥y1ng'the vacuum-
med{um boundary conditions in plane geometry(15). The valuo of Mg "
0.975 for tﬁﬁ case of M= 3 and L n 0 gives m1n1mum ¢ for this case.
Figure 6.3 displays the approximations of W =3 with L = 2 and 3, ‘o
réspectivéiy. for,Uzag. | _

From these results we note that, as the number N increases,
even with L n.O. the reconstructed cross sections become closer to |
the expcr1;;dfa1 one and thc‘errdr de¢1at1on decreases considarably

aE tabulated, Table 6.1. Table 6.1 also 14sts the values of ¢ for

- some PL approximations for the purpose of comparison We note that

the full-range Pg approx1mat1on ylelds a negative differential cross
section 1n some intervals of Mg The value of ¢, for this approx1mat1on.
1s comparable with that of the approximation of N = 3 and L=0 wh1ch
glves a non-negative cross section.- ‘ :

Figure 6.4 disgjays the s section of B1209 for three low-
order approximaﬁ1on$;'ﬁ = 3 and L =_0. 2 and 4, respect1ve1§. These

4
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Fig. 6.3: TIllustrative comparisoﬁ between the experimental U238 cross ‘
: section (]4‘Mev) and its partial-range Legendre representation
for L = 2 gnd 3 while N = 3, In comparison to Fig. 6.2 this
illustrates the effect of integral changes in the order of

expansion.
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<

e for U238 e for 81209
P, Approximation 1.0 () | 1.0 (P,)
) . . * *
0.21 .(PB) _ 0.029 (P13)
This Work 0.96 (N=2,L=0) ' 0.98 (i=2,L=0)
0.27 (N=3,L=0) 0.22 (N=3,L=0)
0.0055 (N=3,L=2) 0.0062 (N=3,L=2)
7 ) /' . 0.0018 (1=3,L=5) 0.0011 (N=3,L=6),
Table 6.1: Comparison of goodness of fit for the 0?38 and

209 etastic scdttering cross sections at 14

Bi
MeV with the errors e.nonnalizéd to unity for
the P0 approximation. " The symbol * indicates

I ’ * I3 'b
¢ that a negative cross section was generatgd.
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"Fig. 6.4: Illustrative comparison between the experimental 81299 cross -

section (14.1 MeV) and its partial range Legendre representation

for L = 0, 2 and 4 while N = 3.
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approximapions do not genérate negative cross sections. The error

9

values for 8120 are Tisted in Table 6.1. From the figure and the

table we note that this highly anisotropic cross section can be
abproximated even with a few terms pf’partia]-range polynomials to

a high degree of accuracy. fhe cross sections of 81299 fave been
expanded in terms of the usual fu]]-fange Legendre polynomials up to
order L = 19 and stj11 yields negative differential cross section in
some ranges of\us; the only exception occurs at L = 0 and records an
attendant 1argé error. Finally, ve note the appearance of discontin-
uities in the reconstructed cross sections at the nodes of the angular
segments; this discontinuity is attributable to the inherent pfoperty
of-thié expansion formalism of tre?ting each angutar interval

'independent]y.

6.3.2 Group-to-Group Transfer Cross Section Calculations

For the expansion of the group-to-group transfer cross secfion
in terms of the bart1a1-range Legendre polynomial, we consider elastic
© group~to-group scattering in water from (3.3287 - 3.0119 MeV) to

(2.7253 - 2.4660 MeV). The exact trénsfer cross section between these
two groups has been determined for Oxygen and Hydrogen.using the data
of EHDF/B fi]e(77). The partia]—rangelmoments of the fransfer Cross
’section have been calculated using the exact data of the cross section
then the cross section has been~reconstructe¢ from these moments.
Using Eqs. (6.28) and (6.29), the allowable ranjé of e for Oxygen is
ug € (-1.0,0.2010) and for Hydrogen is Me e (0.8609,0.9510). Figure

6.5 shows a comparison .between the exact cross sectipp—aqg\:;rious
degrees of approximations, L = 0, 1 and 3, respectively, for xygen. From this
: ) :
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Fig. 6}5: Comparison of oxygen group-to-group elastic scattering 6ross
section from (3.3287 - 3.0119) MeV to (2.7253 - 2.4660) MeV

for L = 0, 1 and 3 in the partial-range Legendre representation,

r
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+ . of the same degree. of approximation seems to yield much better agreement
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fiéure we obéerve that the L = 3 approximation gives good representation
without any negat1ve values for the cross section.. Figure 6.6 shovis a

- similar comparison for Hydrogen using L =20, 2 and 4, respectively.

To compare the results of this work with the usual expansion
of the cross sect1on 16 terms of the fu]] -range Legendre polynomial,
the water\group -to- group elastic cross section has been ca1cu]ated
and compared in Fig. 6.7. The results of the eightb order Legendre

expansion are taken from reference (41}. For water, there are two

allowable ranges .of Mg in the range u_ e (-T.0,0;ZO]Of we used L. = 3

approximation while .for the range u_ € (0.8609,0.9510) we used L = 4

5

| approximation. The total number of terms, then are nine which corre-

spond to the s ame number used ‘in the usual eighth order Legendre

' expansion. _From the figure, we conclude that a partia]-range\expansion

than the usha}]y employed Legendre expansions. The use of partial-

renge polynomials thﬁs contributes to a more accurate differential

scattering representation and therefore leads to more reliable results.

‘Finally, we note an additional degree of freedam. It is not
neeesiaryrto emp]of'the'same order of approximation over the yarioue
allowable directional ranges of M - The order can be varies using the
extent of anisetropy of the cross section over each range as the

'

criteria.
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CHAPTER VII
SUMMARY AND CONCLUSIONS

The research reported here may .be broadly summarized by

" three related objectives. The first was to systematica]]y develop

& new partfal-range forma]ism for solving the time-independent one-

group neutron transport equation with anisotropic Séattering for

.plané and spherical géometries. The motivation for this was the

recognized limitations of the diffusion theory. and the slow converg-
ence of the widely used approximation methods for physical systems
with pronounced discontinuities and.hfgh]y anisotropic scattering
processes. . '

The second objective was to exam1ﬁe and compare the‘f]exibility
and accuracy of. the low-order approximations of the developed foym-

alism by calculating some neutronic parameters and by studying some

-problems associéted with neutron ana]ys%s. For ideal

prob]ems, such as the Milne's problem in plane and spherijcal geometries,
the exact solution is known and hence a comparison using the 10w-0rder

approximations of the developed forma11sm meaningfu1 and

instructive.

The third objective, then, was to apply the partial-range
spherical- harmonics in the study of some problems of current interest in
reactor analysis. e have chosen to reconstruct the highly anisotropic

scattering functions within the context of one-group neutron tranéport

191
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theory. 1In addition, thé feconstruct1on of the-group-tOJQroup tranéfe}
cross section within the context of multigroup neﬁtrgn,transport theory,
which is not well behaved over the entire rénge of the scattéring
angﬁ]ar variab]e,\ngg been considered. .

To attain our objectfves, the partial-range polynomials were
used to describe the angular dependence of the functions under con-
sideration in this work, Therefore, we devoted Chapter I1 to the .
definitions!and perert1es-of such polynomials. The partial-range
Legendre pd%ynom1als were reconstructed using two different approaches
namely the‘Gram-Schﬁidt orthogona11zat1dn theorem and the transform-

' atfoh of varfables. The broperties of orthogonality, recurrence
relationships and full-range integrations have been examined. Also,
the generaljzation of these méthematica] definitions and prope;£1es
has been extended t her polynomials namely Jacobi, Gengénbaugr,,
and Tschebyscheff polynomials. ) |

For plane geometry, we have established two formalisms whiqﬁ\(’
are appropriate for media with anisotropic séattering. In both form-
alisms the neutron angular f{ux and the external sources of neutrons
were expanded in terms of partial-range Legendre polynomials. In
the first formalism, Chapter III, the scattering function has beenl
represented in terms of full-range Legendre polynomials; in the second‘
formalism, Chapter 1V, it is represented in terms of partial-range
Legendre polynomials. In the former formalism, the mathematical

analyses were systematic without any mathematical difficulties while

the lafter has introduced some unsymmetrical spherical surface integrals
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”

" which required considerable care in their evaluation.

The two formalisms allow for discont}nu1t1es in the angular

flux as well as the external neutron sources

"

di\arb1trary points of
the .angular variable. In addition, the part1a1~range‘scatter1ng
function formﬁ?fsm allows such discontinuities 1in the scatser1ng
function ‘as well. By this f]exibility the scattering function can

be reconstructed with a higher degree of'accﬁracy even with low-order
approx1ﬁat10ns. }t should be pointed out that,although the formalism
allows for dfscontinuities in the scattering~functioﬁ,the phy§1ca1
scatfering'function need not necessarily be discont1nu6u§.

An indication of the computa§1oné1 usefulness of these
formalisms was obtained by calculating ‘some neutronic hérameférs using
low-order approximations. For example, the efgenvalue associated
with the homogeggsus neutron transport equation, which givgs the
inverse diffusion(length, has been calculated by the low-order approx- -
imation of N = 2 and L = 0 for various cases of liﬁear anisotropy. \
The results show that this low-order approxfmat16n, with a broper
choice for the angular segméntat1on, ylelds very accurate results 1in
the range of small c. Hence, it is betteﬁgthan the a]ternaffve

conventional methods whi;h are particularly inaccurate in this range \
of c.~ It has also been found that for backward scattering the NPL“
approximation gives essentially better results_than fog forward
scattering. Hoée;en, the same order of approximation gives better
results for anisotropic than isotropic Scattering for high values of c.
Us1ng'the 3P] approximation,the!F1genva1ue§ associated with

the homogeneous neutron transport equation have been calculated. This

-

=
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approximation has been found to yie]d better resu]ts than the, 2P
approximation. Indeed, -1t is possible to obtain the exact eigenvalue
espec1a]]y for backward scattering. This approx1mat1on was also
used to calculate the end point, the 1inear extrapo]at1on length and
the ratio of the assymptotic flux to the total f]ux associated to
the vacuum boundary of the Mi]ne s probiem in the plane ‘geometry,

Three different low-order approximations of the NP -Mp
H

LK

“analysis of Chapter)IV have been examined and used for tbe'caloulation

of the'efgenvalues. A fictitious highly an1sotr0p1c'scatter1ng,function
has been used for the ca]cu]atfona1 purpose. A comparison between ‘
the resu]ts of the three Tow-order approximations, DP —DP DPO-ZPO,
and 2P -ZPO approximations and the exact results shows that the
DPO-ZP0 approx1mat{on gives more accurate results than the others. !
It gives, moreover, the-exact etgenvalues for bhackward scattering. In
addition, it gives better results than the traditional 2PO approximation
which 1s comparable 1in complexity. .

-Generally, we recommend the DPL—ZP approximat1on for the

analysis of problems with highly anisotropic. ‘scattering., This is

. because this approximat1on is’ tb\}s1mp]est one which exactly sat1sf1es

the \acuum boundary condition associated with plane geometry. At
the same time. it .deseribes the scattering function to a very good
extent even with low-order approximat1ons. Further, it does not
generate a negative cross section which might result in negative

fluxes. Finally, i€ does not present severe difficulties in its

mathematical analysis.
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The DPO-DP0 approximation 1e further used to examine the critical
thickness of a bare slab reactor. For large values of c‘(c > 2),
the reactor thickness does not depend strongly on the an1sotropy of
neutrons generation. For practical ranges of ¢ (1 <cg2), however,
the reactor th1ckness ‘changes considerably wi}h the degree of anisotropy.
. The reactor thickness 1ncreases as the an1sotropy increases 1n the
forward d1rection while it decreases as the anisotropy increases in the
backward direction. Therefore, the effect of anisotropic scattering
must be taken into consideration in the analysis and design of nuc1ear
reac;ors specially when high anisotropic scattering is involved like
the case of fast breeder reactors.

A genera} formalism, which allowo‘for discont1ou1t1es in the
neutron angular fiux and 1ts angular derivatives at position dependent
points of the angular variable. has been established for spherical
geometry, Chapter V., This formalism is, in principle, exact and free
of any functional assumptions and exactly represents the actual
behaviour of the discontiguities in the angu1ar flux. .Therefore, 1t
satisfies the boundary conditions exactly; there is, therefore, no
need to use approximate boundary cond1t10ns

For the purpose of numerical calculations, the 2P0 approxf-
mation has been used to study the spherical Milne's problem for a
medium with a 11pear anisotropic scattering. The results show dis-

“continuities in the angutar flux at position dependent angular points.
This is consistent with the expectation from the physical process

of the problem; numerical calculations for these discontinuities have
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- apparently not been given previously for such problems. The cota1
neutron flux for the special caee of 1sotroe1c scattering 1s calculated
and compared with the exact as well as the diffusion theory resuTé?
The 1mportant feature of th1s formalism 1s that the low-order 2P
appromeat1on, which is of the same computational complexity as the
diffusion theory, ylelds far more accurate results closer to the “
surface of the sphere. This suggests that the applications of the
position dependent‘partial—range forma11sm-deVe10ped herein for the
spherical geometry can, in general, provide more accurate results
without add{tional ana]yt1ca1 or computational efforts.

Finally, Chapter ¥l 1is devoted to some reactor physics
problems of current practical 1nteres£ It {s concerned with the
reconstruction of elast1c scattering cross sections in terms of _
partial- range Legendre po]ynom1a1s This new representation, even for
few terms, circumvents the appearance of negat1ve cross sections which-
usually are encountered with the traditiona1 methods.. This negat1v1ty
of cross section 1eads; in many cases, to oscillations in the solution
and consequently yields negat1ve fluxes. For a numerical 111ustrat1on,_
the elastic scatter1ng cross section of 14.0 MeV neutrons of U238 and
Bizog, vhich are very highly anisotropic, have been reconstructed
The results show superiority of this new representation over the usual
full-range Legendre po]ynom1a1 representation of the scattering funct1on

Further, e have established representat1ons of the group-to-
group transfer cross section in terms of partial- -range Legendre poly-
nomials. The group- to -group transfer cross section is only we]1—

behaved over certain ranges of the scattering angular va{jab1e. These

-
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ranges are governed by the kinematics ofuneugfon scattering inter-

1.- -
Tinesy

actions as well as the boundaries of the'éﬁéigy groups. Because of this
characteristic, the partial-range Legendre polynomials are very suit-
able For the neéonétruct{on of the transfér cross‘sectians. It yields
very good results compared to the full-range Legendre po]ynomiéﬁs.

Tﬁis has been conffrmed by the numerical regﬁlps of the wéter group-
to-group transfer cross section from‘(3.3287'- 3.0119) MeY to (2.7253 -
2.4600) Meﬁ using Jow-order approximations. Finally, this fepresenf-

étion provides an additional degree of freedom. If is not necessary
to employ the same order of approximation over the various allowable
directicnal ranges of the scattering angular,variab]eJ The order
can be varied according to the eitenf of anisotropy of the scattéring
cross section over each range. ” _-

On the periphery of the main thrust of this research, we have
established severa]‘properties of partial-range spherical harmonics
as well as those of other orthogonal polynomials namely Jacobi,
Gengenbauer and Tschebyscheff polynomials. Some unsymmetrical sphericaj
surface integrals, due to the introduction of partial-range scaftering
functions, have been evaluated. -These integrals, may be of utility
in other fields of physics and engineering.

‘The success of thé partia1—rangé formalism presented herein

shows the potential for further extensions and aﬁpTications for

L
further investigated by numerically examining'higher order approxim-

related problems. The NPL and the ﬁP'—MPK approximations may be

ations. Of particular interest would be the DP1-2P1 and_higher order

approximations. More realistic éhﬁlicatiqns could include the s tudy
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of a critical reactor assuming a scattering function of two components,

isotropic and anisotropic. Further, another app]1cat1on is the study
of the 91bedo problem and compar1ng its results w1th the other me thods
of comparable complexity. . |

For spherical geometry analysis, more numerical investigafions
of the higher order approximations could be undertaken. 1In addition,
more‘ca]cu]%tion for anisotropic écatterjng using 2P0 approximation
appears relevant; the numerical calculations could be extended to
more than two region problems. N

In addition to the above ca]cu]at1ona] studies, it appears

possible to extend this formalism to the multigroup ana]ys1s of

neutron transport.. Of particu]ar interest is the adaptation of the

. new representation of the group-to-group transfer cross section with

-

[}

the present hethods of multigroup analysis. Another probiem mfght
invo1ve'e££ending the.partia]-rénge formalism to the cylindrical
éebmetry and the realistic cell calculations.

Finally, the partial-range formalism developed herein can be
used in alternative transport problems such as radiative transfer

problems and more widly in astrophysics problems.

e e e ek g bl s e g
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THE Bg IHTEGRALS OF THE DPO-DPo APPROXIMATION

T

The B 1ntegra1s of the DP DP approximation are defined in the

text by Eqs (4.36) to (4. 39} Consider, first; the integral 822( )

which is given by

22, v _ 1 ' } _
qu(u) == du'dw s A (A:1)
Osussl
IISTRPS!
where
Mg = COS8_ ., (A.2)
and 7 L
't = cose' . - {A.3)
Here, 6y is the scattering angﬁé, o' and w give thedpeutron direction before

collision while e gives its direction after collision, Fig. A.1. The angle
] 1s assumed to be in the XY- p]ane, this assumption does not affect the
generé]1ty of the theory as mentioned in the text.

The integral of Eq. -(A.1) represents the integration over the
hemisphere abqye the plane 9, which has the origin as one point and the
direction 8 as its normal, and also.above the X = 0 plane. Figure A.2
illustrates the projection of the integral of Eq. (A.1) along the

Z-direction. This integral is giveﬁ by the area on the surface of the

- _ . 199
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Fig. A.1: Geometrical configuration used in the DPO-DP0 approximation;

¢

R' is the neutron initial direction, @ is the neutron

final direction, and gs". is the scattering angle.



201

sphere (unit radius) corresponding to the solid curve shown 1n.Fig.

A.2. Therefore, we can write

N .

22( ) ?"(21 - 28) = 1 - %—cos u s (A.8)

where

B = cos@ ) . (A.5)

Now, consider the ihtegra] Bgl(u) which is given by

( ) = 2‘:1' ”du dm . (A.G)
Osu <l | | \"n
C=lsu's0 | %)

This tntegral represents the integral over the hemiSpHere above the
plane 9 bot below the plane X = 0. In Fig. A.2, it is given by the area

on the surface of the sphere corresponding to the dashed curve. Therefore,

- 29 = %—cos"]u . . . (A.7)

21,y _
Boo(f) v

=

Similafly,_the other two integrals,

) - L [ ove L (5.9)

and

Blg(p) ;—”du des , ? (A.9}

\
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Fig. A.2: One direction projection of the integrals ng(u) and Bg;(u)

of the DPO-DP0 approximation.

A
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represent the integral over the hemisphere under the plane a2, not shown
in Fig. A:1 and at the same time above the X = 0 plane for Blg(“) and

below it for B;;(u), réspective1y. Therefore, we -have

M,y o 1 -
Byoln) = 1-- Tcos uo, | (A.]q)
and
12,5 1 -]
Boo(u) = —cos 'y . (A.11)
3 _
A
.'/-.r‘ I’I
/// }J
/
!
i
\\
p



APPENDIX B

INTEGRALS OF THE P _-2P_ APPROXIMATION

o

.oy

B.1 Non Symmetrical Spherical Surfaﬁé Integral

Before derfviﬁg the Bg“and'the Ag integrals of the DPO-ZPO
approximation we need to cohsider the following non symmetrical spher-
ical surface integra{.which will be used in Pﬁeir deniﬁatjon. Consider
tﬁe area on the surface of a\gphere {(unit radius), Fig. B.1, which is
enclosed between the great circle w and the small circle a shown in
the figure. "From Fig. B.1 we can see that the area unﬁer codsjderation
is given by “

-1 tanw
tane

A=2 | _ sinedsds . - (B.1)
( |

a  (COS

Performing the integration over the ¢ angle gives
. . .
_ - -1 tanw
A = 2[ .5jnecos tang 90 - (8.2)
6=w
Using the integration by parts, the ébove'integra1 can be

shown to be given by

_ ’-"l Sinu‘. .. .=1,tanw : \
A= 2[cos (§7HE) - €0SGCOS (tanu)] . | (B.3)

204
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cosd tanw

sphere radius 1

-1 tanw
tanes

small circle a

> L

’

< - great circle w

Fig. B.1: A graphical représentation of a nonsymmetrical spherical

surface integral.
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B.2 The Bg Integrals

Now, we will consider the Bg integrals which are defined by Eg.
(4.18) with the appropriate limits of integration for the DP -2P
approximation. First, let us consider the B (u) integral which is -

given by Eq. (4.75)

. \
=22 1 . . .
Boo(u) = -Z?J[du dw . _ _ (B.4)
u51suss1

The integral of the-aboveéequation represents the area on the surface
of a sphere (unit radius) on the upper hemisphere (to satisfy the con-
dition 1 > ' 350) and also enclosed inside the cone of the angle & 1

= coé_] s w1th the d1rect1on 9] {to sat1sfy the condition 1 2 Bg % M

)

5]
as shown in Fig, B.2.

Sihi]arly, the- others integrals of Bg can be represented by
non syrmetrical areas over the surface of a sphere. Consider ng(p)

-

which is defined by

Bgl(u) - ]—n'”du'dm . _, . (B.5)

The integral of the above equation represents the area on the surface
of the sphere of Fig.'B.Z on ‘the lower hemisphere and ajso enclosed

inside the cone of the angle @

/‘_\\} -

gj- Moreover, the integral of Bll(“)



Fig. B.2: Graphical representation of the integral of‘ng(u)

of the DPO-ZP0 approximation.
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which is defined by

) \

(u) = deu duw ; g B | (B.6)

represents the area on the surface of the sphere of Fig. B.2 over the
lower hemlsphere and outside the cone of the ang]e 8 . Fina]Ty, the

integral of B] (1) which is def1neg by

"Blg(u) = —;—;”du.'du , : - (B.7)

. gives the area over the upper hemisphere and outside the cone of the

_angle o s1- These three integra]s, Egs. (B.5) to (B.7), can be related

to the 1nte§¥a] Boo(“) as WI]] be given later in this append1x
From Fig. B.2 we can see that the expression of the integral

ng(u) depends on both the range of the angle 8 as well as the range

of the angle es].“'In the fo]]owing we will consider all the possible

ranges of @-and 8., and obtain an expression for B (u) in each range.-

1) 6.s n/2: For this range of 8, there are three possible

-

ranges of 6., as follows:

sl.,—*iz - 83 Fig B. 3 -a:

In this range the Integral of Bi%(u) is just the area of a cap ~
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Fig. B.3: Different ranges of & and 6,1 for the derivation of ng(u)

of the DP_-2P approximation.
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of Boi(u) of the DP_-2P_ approximation.
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ng(p) =1 - Hgp - _- (B.8)

“2) m/2+ 62 81 2 w/2 - 8; Fig. B.3-b:

Using Fig. B.3-b and the integral given by Eq. (B.3) we can
22 ' '

write B-"(n), for this range, as
.00 %
. ™ . . ™
2, 1 3 51n(§-— 8) 1 tan(?-— e)
2 -1 - b1 7w [0S Tgng T koS g - (B.9)

The above equation can be rewritten as

22, \ _ ] -1 coss -1 cote
Boo(k) =1 - ngy -y (cos sine_; ~ Hg1€OS taneS]) (B.10).-
3) 6.y > w/2 + 8; Fig. B.3-c:

In this range the integral of Big(u) reﬁresents.the total area

of the upper hemisphere. Theérefore,

22 - . v )
BES(w) = 1.0 . | . (B.11)
I) 8 = n/2; Fig. B.3-d: For this pandggalar value of @ aﬁd’

for all values of 0.7 the integral Bﬁﬁ(”) is given by
22, \ 1 |
Bl =5 (1 - M) .o - (B.12)

It is of interest to note that this is a special case of all the cases

mentioned in part I and that will be given in partiII as well.

I11} e » #/2: For this rang= of 8, there are thres rangas
of 0.1 as‘follows:

1) 8.7 § 6 - w/2; Fig. B.3-e:

’.
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From the figure we cah see that the cap of the cone of the angle

€1 is completely 'on the lower hemisphére. Therefore,

B22(y) =6.0 . . » (B.13)

oo*H
2) 8 - 1/2 < 8 € 3r/2 - 83 -Fig. B.3-f:
_ From the figdre and £q. (B.3) we can writs

. sinle - %J : _q tan(e - %J

= ugC0s ]-. _ | (B.14)

smes]

222, v _ 1 ¢
Boo(u? T on Lcos tang 4

wnich can be reuritten as

The above equation is exactly the same as £q. (B.10).

3) 6y > 37/2 - 63 Fig. 8.3-g:

sl
For this range the integral Bgi(u) is given by

, Bgi(u) = - | (6.16)

s]

The results of Eqs. (B.s) to (B.16) are surmarixed in Fig. B.4.
dow, it is straightforward to siaow that the other Bg integrals;

Eqs\ (B.5} to (3.7), are related to Bii(“) by the following

Bl = ugy * 8RR L o \ (8.17)
12, \ . 22 | A |
B2 =1 - 8220 . (8.18)
and _ ) ) -
W2l . 22
Boo(u} = 1.- gy = Bgolu) - (B.19)

o e e e i F AL e+ & & e A A A s s adke R e b -



D ]

Ve ' : 213

-1 coss _ cots ] -

es]
n =

M)A

: )
. . . 22 C e . _o -1
Fig. B.4: The integral Boo(u) as a function of & = cos 'p and

_ -1 . .
8 _, = COS Mo for the DPO-ZP0 approximation.
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IT is of iaterest to note that these relations are correct for all the

rangss of -8 and B 1-

3.3 The Ag Constants

In the following wa will evaluate the two Ag integrals of the
0P -2P approximation definad by Eqs. (4.82) and (4.83) in the text.

'First, consider the integral of Eq. (4.82) which reads

0 .

22 _F 22

Az J B2%(w)dn . | (8.20)
-1

From FTg. B.4 we can see that the above integral_&epends on the
sjgn of u,q. First, for negative value of ”sl.the integral of Eq. (B.20)
can be written as
| -X 0 :
oan ° [ “Hgqdu # { [1 - gy - 3 (cos™! EO80
-1 -X

P

-1 cots 3
- US]COS E‘Tﬁds—]-')jdu ’ (B.Z])
whare
- — ‘ ) i
| X = +JT - Mg . (B.22)

Equation (B.21) can be rewritten as

\12z |

Agoo = THgp(-x + 1) % I(s=0) - I{p=-x} , - (B.23)

waere the integral I is definad by

_ tr 1 -1 cos® -1 cote
I(p) = [LI - ugq - 7 (cos 5?55;;~— Hg1€0s taneél)}d“ . (B.2%)
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-

The above integral is evaluated and it is given by
I{u) = (1 - u_qdu - l-{uCOSh] _—
s] T ]-2
s
- _ HoqH
- J] - u21 R J[ucos 1 31
o i J0 -0 -2
Hs]
=147 - u-2
. = sec '( )13 (B.25)
! Hg1

Substituting the limits of uw = 0 and p = -x,
aone equation and note that Mo is negative
into Eq. (B.23), then substituting the expre

rearranging yields

122 _ 1 ’ 2 -1

Aooo = 1 (1 - gy = mgyeos ugy)
Secondly, we will consider the special case
gy = 0 into the expression of ng(u) of Fig

substijtuting into Eq. (B.20) yields

A122

0
= 1 o] -1
Qo0 - I (1 - b cos U)du T
-1

Note that Eq. (B.27) can be deduced from Eq.

= 0. Finaily, for positive value of Mgl Eq

000 s

0
122 _ ‘ 1 -1

Aooo = I A ST
-x sl

which can be rewrjtten as

W

coso  _

respectively, into the
» subsequently substituting
ssion of x, Eq. (B.22), and

(B.26)

of L 0. Substituting

. B.4 and subsequently

(B.27)

(B.26) by specifying Mol
. (B.20) and Fig. B.4 give

COS-] _E.O.EB_._)]d

M (B.28)
s tanes] _

EE S
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Alii = I{y=0) - I{p=-x) , ' _ . \H‘(B.ZQ').

where the integral I is given by Eq. (B.25) but for positive values of
Heq- After some algebraic manipulation Eq. (B.29)} can be shown that

it reduces to Eq. (B.26). )
222

Now, consider the seconp integral of Aoio which is defined by
. 'I ' X
222 _ 22 _ _
Aooo = [ Boo(u)du . (B.30)‘”

o

Proceeding exactly similar to the evaluation of Eq. (B.20) but for the

Teft half of Fig. B.4, the above integral can be shown to be related

122 .
to Aooo by the following R
222 _ 122
Rooo =1 - 151 - Rooo (B.31)

for all ranges of uep-
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APPENDIX C
INTEGRALS OF THE 2P,-2P, APPROXIMATION

C.1 The Bg Integrals

Here, we will consider the Bg integrals of the ZPO-ZP0 approxi-
mation which are defined by Eq. (4.18) with the appropriate limits of
integration for the present approxihation. We will discuss the integraT
Bﬁﬁtp) in some detail and then relate the otﬂer integrals of Bg to it.

The integral ng(u) is defined by

sggwg_ﬁ”du;dm _ e

Here, Mg is agafn the cosine of the scattering angle, Fig. A.1. The
integral of Eq. (C.1) represents the area on the surface of a sphere
'(unit radius) which is common on the cap inside a cone of an angle

1

e]?= cos M with the X-direction (cone 1) and also on the cap inside

a cone of an angle ei with the direction @ {cone 2) as shown in Fig. C.1.
From Fig. C.1, we‘can see that the two small circles of both

caps intersect in two points n and ¢ on the surface of the sphere, for

the case illustrated in the figure. The area under interest is two times

the area between one of these circles and the great circle ng. Then,

217
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Graphical representation of the ng(u) of the 2P -2P

approximation for the range /2 < 6, < n - 8/2.
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-

using Eq. (B.3) with appropriate values for the angles w and a, we can
write

B
] tan 5

- u1cos_ EEHE%J ] . (€.2)

-

'_.The above expression holds only for the range of My given by

%5915"‘

M|

For a] < 8/2, itf?t clear from Fig. C.2 that no common area on

the two caps under interest. Therefore,
22 _ : ’ ‘
Boo(u) = 0.0 . i. . .(C.3)

Finally, for 6, 7 - 8/2 which is shown in Fig. C.3, we can see that
the integral under consideration is given by the total area of the
sphere excluding the area of the two small caps shown in the figure.

Therefore,
22, \ _ . .
BOO(U)" ‘ZH] - f (C'4)

The above results are summarized in Fig. C.4.

Consideration will be given now to the integral of Bil(u) which

- is defined by

Bil(u) = I—"”du'dm . | (C.5)

The integral of the above equation represents the area on the surface

P AV

¢ s

RWVs
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Cone 2

Fig. C.2: Graphical representation of the ng(u) of the 2P0—2I50

approximation for the range_eT s 8/2. -



Cone 1

Cone 2

r

Fig. C.3: Graphical representation of the Bii(”)‘Of the ZPO-ZPO'

approximation fer. the rangé 0y 2 m - 0/2.
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of the sphere on the cap,outside cone 1 and also on the cap inside cone

2, Fig. C.1. Therefore,

IO ER IR O S (c.6)

00

Next is the dntegral B2(x) which is defined by

L .
Blg(u) . ;—n”du'dm . (C.7)
—1sussu]

u]su'sl

The integral of the above equation represents the area on the surface
Qf the sphere on the cap inside’tone 1 and also on the cap outside cone
2 of Fig. C.1. It is clear that this area is symmetric with the area

corresponding to the integral of Eq. (C.5). Therefore,

Boo(u) = Bos(u) . | (c.8)

Finally, consider the integral B;g(u) which is defined by

B () = ;—ﬂ”dp‘dm . | (c.9)

The integral of the above equation represents the area on the surface of
the sphere of Fig. C.1 on the cap outside cone 1 and also on the cap

outside cone 2. Therefore, the integral of Eq. (C.9) can be“written as
1 1 21
Boo(n) = 5= [20(1 + ny) - 2mB_ (W)] . {C.10)
- Substituting Eq. (C.6) into the above equation and rearranging yields

11 _ 22 , .
Boo(“)_' 2ug * B o(u) . | (c.11)
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The integrals of Egs. (C.5), (C.7) and (C.9) have been examined
for the different ranges of 6 and B1«0f Fig. C.4 and the same relation-

ships with B22(u) hold.

C.2 The AJ Integrals |

In this section we will consider the Ag integrals of the 2P _-2P

approximation which. are defined by Eq. (4.20) with the appropriate limits

for this approximation. First, consider the integral of Alg;'which is
defined by
mo (T,
Agoo = Boo(“)d“/ : o g (C.12)
‘ ] ¢ -1 V ‘
Sub;titutiﬁg the expression of Blg(u) of Eq. (C.11) into the above
equation yields
H ‘
]
111 22 :
Aooo = F [2u) + B gle)ldw . (C.13)
-1
This equation gives
11 _ oL 122 . 12\,
AOOO = 211](] * U'la + AOOO » (C.14)J
where
122 [V 2 '
Aooo = Boo(u)du . (C.15)
-] :
o . 121 . . . ”
Secondly, consider the integral Aooo wh1chlg§Edef1ned by
21 [ | |
Aooo = Boo(u)du . _ : . (C.16)
R

Substituting Eq. (C.6) into the above equation and performing the inte-

1

gration of tﬁe first term yields

T

o

VRPN T L

. e
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121 _ 2 122
Rooo =1 = ¥7 = Aggo > (C.a7)
122 . i '
where Ayoo 1 defined by Eq. (C.15).
Next is the integral of Al;ﬁ which is defined by
nz 112 ‘ ‘
Aooo = J Boo(u)dp . _ . {C.18)
-1
From Eqs. (C.8), (C.16) and (C.18) we can conclude that
M2 a2 |
Asoo = Aooo E (C.19)
where AJZD s givén by Eq. (C.17).
000 _
Simi]érly, we can derive thé following relationships for the
other Ag constants
211 _ . \ 222
AOOO = Zu](l - u]) + AOOO s ) FC.ZO)
and ) ’
212 _ 221 _, 2 222 | ,
Aooo = Aooo =1 - - Aoqo R | - . (C.21)
: 222 . . ..
where Aooé.ls defined by
1 .
222 _ 22 S ’ . . )
AOOO = [ Boo(u)dp . ) , (C.22)
. ¥ . i} | ) : . . . .
. 122 222 e _
The integrals of Rsoo @nd A os Egs.  (C.15) and (C.22), respect- R

ive]y,-depend on ihé range of My From Fig: C.4, one can recogniié'
. the following three ranges: | o
1) 1> u 2 0
In. this range of u the infegra]géof Eqs. (C.15) and {C.22) reduce to.
122 i} [u‘ 2, .\, ' |
Rooo T BoCG:)du | ; (C.23)

2u$—l
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and

- 1

1
222 _ 22 S ‘ '
Aooo = [ Boo(p)du > : (C.24)

"
fespective]y. The expression of Eq. (C.2) of Bﬁg(u) must be used in
" the integrals of Egs. (C.23) and (C.24).

In this range we can write

R ¥
Az “2udy + B2 (1)du | (c.25)
a0 221"
which yields
o .
N B S CIL T (c.26)
2u7-1

222

- where Bii(u) is given by Eq. (C.2). The integral of A - for this range

is unchanges and given by Eq. (C.24}.

3) -0.5=3 W -1:

.l >
Again, from Fig. C.4 we can write

. .

1

122 _ .

AOOO = L -2u-ldp R (C.27}
-1

which gives

122

Aooo = ~2m (1 + ) . (C.28)
. 222 . oo
Finally, A for this range is given by

ooo’
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2u§-] |- .
. 22
2= 2upds Boolu)di (C.29)
, 2 )
u.l 211-]"]
which yields
| 1 _
Aggg = 20901 + g - 2u§) + Bii(“)d“ > -~ (C.30)
. . zu%_]

- ! ’
where 22(u) is .given by Eq. (C.2). The integrals, IBiﬁ(u)du,'which

BOO
122 222

000 000" have been calculated

P
are involved in the derivation of A

numerically in the text for the cases considered.

[P
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