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Abstract

Modelling and analysis of recurrent infectious disease epidemics often depends on

the reconstruction of a time-varying transmission rate from historical reports of cases or

deaths. Statistically rigorous estimation methods for time-varying transmission rates

exist but are too computationally demanding to apply to a time series longer than a

few decades. We present a computationally e�cient estimation method that is suitable

for very long data sets. Our method, which uses a discrete-time approximation to the

SIR model for infectious diseases, is easy to implement and outperforms the classic

Fine and Clarkson [21] estimation method.
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1 Introduction and motivation

The transmission of an infectious disease throughout a population, is an aspect of disease

dynamics that is generally unobservable. Yet without knowledge of the transmission rate,

it is di�cult to determine which underlying factors (e.g., weather or contact patterns) are

most influential in the spread of disease. Mechanistic mathematical modelling provides a lens

through which we can discover and interpret information about the spread of a disease, based

on quantities we can observe (such as numbers of cases or deaths). Specifically, it provides us

with a framework to investigate how di↵erent factors a↵ect disease dynamics, and can explain

the underlying mechanisms that cause these dynamics to change [2,4,7–12,15,18,27,31,44].

The transmission rate is a key quantity that influences disease dynamics in epidemic

models [13,18], and usually varies in time [1,2,14,31,50]. Investigation of the 1918 influenza

pandemic in London, England, has shown that a time-varying transmission rate best explains

the observed weekly mortality pattern [24]. For childhood diseases, temporal variation in the

transmission rate is typically associated with school terms [17, 21, 22, 41, 50, 52]. In general,

understanding how the transmission rate varies in time is vital to understanding the key

factors that influence disease transmission, and is important for predicting future epidemics

and evaluating control strategies [27].

A rich history of infectious diseases in humans has been preserved in the London Bills of

Mortality and the Weekly Returns of the Registrar General’s o�ce, a data set that contains

over 350 years of weekly mortality data in London, UK. This data set has recently been

digitized and used to investigate the presence of herald waves preceding cholera epidemics

[51], and to identify the seasonal pattern in smallpox transmission [37]. This invaluable

resource presents the opportunity to study the dynamics of many di↵erent infectious diseases.

Knowledge of the time-varying transmission rate is essential for determining which underlying

factors caused changes in disease dynamics over the course of centuries. The potential to

learn from this extensive data set is very exciting, but there are some practical limitations

in reconstructing the transmission rate because of the length of the data set.
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The recent literature describes several complex, sophisticated methods for estimating

time-dependent disease transmission rates, including generalized profiling to fit deterministic

models [28], and an explicit likelihood-based approach to fit stochastic models to partially

observed Markov processes (POMP) [24, 26, 29, 35, 36]. These estimation methods are cast

in a rigorous statistical framework, but are too computationally demanding to apply to time

series longer than a few decades.

The purpose of this paper is to present a simple, fast, and intuitive estimation method

for the time-varying transmission rate of an infectious disease, that can be applied to either

incidence or mortality data. We build on the classic work of Fine and Clarkson [21] which

uses a discrete-time approximation to infer the underlying transmission rate. Our estimation

method is grounded in the standard SIR model [2,32–34,50] for infectious diseases. Pollicott

et al. [46] have recently developed another fast method to estimate the time-varying trans-

mission rate (from prevalence data) using the inverse problem for the SIR model. Future

work should compare their estimation method with ours.

2 Three methods for estimating the time-varying trans-

mission rate of an infectious disease

We will examine three successive ‘fast’ methods of estimating the per capita transmission

rate �(t). The notation used in the �(t)-estimation methods is recorded in Table 1 for easy

reference. All three methods are derived from the standard SIR model (or SEIR model) with

vital dynamics [2], i.e.,

dS

dt
= ⌫(t)N

0

� �(t)SI � µ(t)S , (1a)

dI

dt
= �(t)SI � �I � µ(t)I , (1b)

dR

dt
= �I � µ(t)R , (1c)
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where S, I, and R are the numbers of individuals that are susceptible, infectious, or removed

(either recovered or dead from the disease). ⌫(t) is the per capita birth rate, µ(t) is the per

capita natural mortality rate, N
0

is the population at the initial time, t
0

, and � is the rate

of removal from the infectious class due to recovery or death from disease (hence ��1 is

the mean infectious period). The SIR model (1) is based on the law of mass action, which

assumes that the population is well mixed and that a certain proportion of contacts between

infected and susceptible individuals results in new cases of infection [2, p. 65].

There are often concerns with using an SIR model, since the true infectious period of a

disease is not distributed exponentially [40]. Additionally, the SEIR model is commonly used

since it incorporates a latent class to account for individuals who have been infected but are

not yet infectious [2, p. 663]. Krylova & Earn [38] have shown that for a fixed mean latent

and infectious period, the dynamics of the SEIR model are not sensitive to the distribution

of the infectious and latent periods and that for a fixed mean generation time, the dynamics

of the SIR and SEIR model are almost identical. (The mean generation time of a disease,

sometimes called the serial interval, is defined to be the time from initial infection of a

primary case to initial infection of a secondary case [20].) The mean generation time in the

SEIR model is the sum of the mean latent and infectious periods [38], so we set ��1 in the

SIR model to be the sum of the true mean latent and infectious periods to ensure the SIR

model exhibits dynamics similar to the SEIR model.

2.1 The S method

First, we review the �(t) estimation method presented by Fine & Clarkson [21] (referred to

here as the “S method”). Let Zt be the number of new infectious cases in the population

from time t � �t to t. (Fine & Clarkson estimated Zt for measles in England and Wales

(1950 � 1965) from case notification data by dividing the data by a two-thirds reporting

ratio [21, p. 10].) Let St be the number of susceptible individuals at time t. If we assume

that the generation time (i.e., serial interval [20]) of all infected individuals is exactly �t,
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Symbol Definition

�t Time interval between published case notifications (observation interval)

Zt Number of infections from time t��t to time t

St Number of susceptible individuals at time t

It Number of infected individuals at time t

Bt Number of births from time t��t to time t

Ct Number of cases reported from time t��t to time t

T
rep

Mean time from initial infection to reporting (must be equal to k�t, k 2 N)

[T
inf

] Mean time from initial infection to recovery (must be equal to k�t, k 2 N)

⌘ Case fatality ratio (relevant if using mortality data)

⇢ Reporting ratio (proportion of cases that are reported)

Table 1: Notation used in the derivation of estimates for the transmission rate �(t).

then currently infectious individuals will have infected their secondary cases and recovered a

time �t in the future. Thus we can relate the current and future number of infections using

the mass action principle,

Zt+�t = ZtSt�t�t. (2)

St increases as individuals are born, and decreases as susceptibles become infected. Let Bt be

the number of births from time t��t to t. We can keep track of the number of susceptibles

by accounting for these births and infections in each time step,

St+�t = St � Zt+�t +Bt. (3)

Rearranging Equation (2), and keeping track of the susceptible population using Equa-

tion (3), Fine & Clarkson [21] estimated �(t) as

�t =
Zt+�t

ZtSt�t
. (4)
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(In Fine & Clarkson’s derivation they assume the time unit is chosen such that �t = 1.)

The dynamics of the discrete-time epidemic model formed by Equations (3) & (4) has been

further analyzed in [43].

One disadvantage of this method is that the observation interval, �t, is constrained to be

equal to the generation time, which generally requires aggregation of incidence data to ensure

the time between data points is equal to the generation time (e.g., Fine & Clarkson [21]

aggregated their data bi-weekly since the mean generation time for measles is approximately

2 weeks). Also, there is no natural mortality term in the susceptible update equation (3),

so over a long period of time it is possible for the number of susceptibles to grow without

bound.

With a little more e↵ort, the observation interval constraint can be lifted and the esti-

mation process tied much more closely to the SIR model.

2.2 The S+ method

In her PhD thesis, Krylova modified the S method in order to estimate the transmission

rate for smallpox in London, England over 250 years using mortality data from the London

Bills of Mortality [37]. Instead of simply using the mass action principle to estimate �(t),

she derived an estimate of �(t) explicitly from the SEIR model (referred to here as the “S+

method”). The following is a summary of her derivation of the S+ method [37], adapted

slightly to apply to the simpler SIR model (1).

As in the S method, let St be the number of susceptibles in the population, Bt the

number of births from time t��t to t, and Zt the number of new infections from t��t to

t. Additionally, let µt be the per capita natural mortality rate at time t. In the S+ method,

the observation interval, �t is no longer constrained to be the generation time. The number

of susceptibles in the population can be estimated using a discrete-time approximation to
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the susceptible rate of change equation in the SIR model (1),

St+�t = St +Bt � Zt+�t � µt�tSt. (5)

This equation is similar to equation (3) of the S method, but includes a natural mortality

term.

Since Zt is the number of new infections that have occurred in the last time interval

�t, we can keep track of Zt using the SIR model by counting the cumulative number of

individuals that enter the infectious class from time t��t to t:

Zt =

Z t

t��t

�(⌧)S(⌧)I(⌧) d⌧. (6)

Alternatively, if [T
inf

] is the mean time from initial infection to recovery, we can approximate

Zt by counting the number of individuals that leave the infectious class at time [T
inf

] in the

future:

Zt =

Z t

t��t

(� + µ(⌧ + [T
inf

]))I(⌧ + [T
inf

]) d⌧. (7)

Here [T
inf

] is taken to be the mean generation time (��1), rounded to the nearest �t. If �t is

short enough that we can assume �(t), S(t), I(t) and µ(t) are approximately constant over

�t, equations (6) and (7) can be rewritten as

Zt ⇡ �tStIt�t, (8)

and

Zt ⇡ (� + µt+[Tinf]
)It+[Tinf]

�t. (9)

Rearranging equation (9), It can be approximated as follows:

It ⇡
Zt�[Tinf]

(� + µt)�t
. (10)
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Then replacing It in equation (8) with the right side of (10),

Zt ⇡ �tSt
Zt�[Tinf]

� + µt
. (11)

Rearranging equation (11) provides an estimate of �t,

�t =
1

St

Zt

Zt�[Tinf]

(� + µt) (12)

which di↵ers from Equation (4) of the S method by the factor (� + µt).

Usually we do not observe the exact number of new cases in a time period; instead we

have case notification data that provides a sample of the true case count. The S+ method

can be applied to case notification data, Ct, via

Ct = ⇢⌘Zt�Trep , T
rep

2 {�t, 2�t, ...}, (13)

where ⇢ is the proportion of cases (or deaths) that are reported, ⌘ is the case fatality ratio

if we are dealing with mortality data (⌘ is set to 1 otherwise), and T
rep

is the delay between

infection and reporting. The time T
rep

is an integer multiple of the observation interval �t,

because T
rep

tells us how many points forward in the case notification data we must look for

a reported infection (we are assuming the delay T
rep

is the same for every case).

In summary, the S+ method uses equations (5) and (12) to estimate �(t), derived ex-

plicitly from the SIR model (in contrast to equations (2) and (3) in the S method). The

S+ method avoids unnecessary aggregation of data, since the observation interval, �t, can

di↵er from the generation time. In addition it accounts for a delay in reporting and can be

applied to mortality data.

Krylova [37] estimated the seasonality of transmission of measles in England and Wales

(1950 - 1965) using weekly measles case notification data. She used the S+ method to

estimate the transmission rate �(t) for the entire time series, and then divided this estimate
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�t by its long term trend to identify the seasonal component of �t. Her estimate of the

seasonality of �(t) is qualitatively similar to the estimate of Fine and Clarkson [21] (the S

method), and the estimate of Finkenstädt and Grenfell [22], who used a more sophisticated

method of fitting a discrete-time stochastic SEIR model (the TSIR model) to the measles

data set. She was also able to produce a qualitatively similar seasonal transmission estimate

with the S+ method as Hooker et al. [28] who used generalized profiling to fit a deterministic

SEIR model to measles incidence data in Ontario, Canada (1939 - 1965).

2.3 The SI method

The SI method improves upon the S+ method by additionally estimating the number of in-

fectious individuals at each point in time using a discrete-time approximation to the infected

rate of change equation in the SIR model (1) (in addition to the discrete-time approximation

to the susceptible range of change equation). We will see that having an estimate of both

the susceptible and infected populations at each point in time still allows for easy estimation

of �(t).

We define the following discrete-time approximations to the continuous SIR model (1),

as an estimate of the number of susceptible and infected individuals at each point in time:

St+�t = St +Bt � Zt+�t � µt�tSt (14)

It+�t = It + Zt+�t � (� + µt)�tIt. (15)

Equation (15) estimates I(t) more accurately than the approximation made by the S+

method in Equation (10). In equation (6) of the S+ method, we know the number of

cases from time t��t to t (Zt) via

Zt =

Z t

t��t

�(⌧)S(⌧)I(⌧) d⌧. (16)
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Once again, assuming that �t is small enough that �(t), S(t), and I(t), are approximately

constant over �t, we can approximate Zt using the value for �(t), S(t), and I(t) either at

the left or right end point of the integral in equation (16).

If we use the right endpoint we have:

Zt ⇡ �tStIt�t (17)

as in the S+ method. If we use the left endpoint we have:

Zt ⇡ �t��tSt��tIt��t�t. (18)

Alternatively, we could take some linear combination of the endpoints to find an optimal

approximation of Zt. For example, we might take the average of �(⌧)S(⌧)I(⌧) at each

endpoint and hope to obtain a better approximation,

Zt ⇡
1

2
[�tStIt�t+ �t��tSt��tIt��t�t] . (19)

Thus, �(t) can be estimated by rearranging any of equations (17), (18), (19) to get

�t =
Zt

StIt�t
(right endpoint) (20a)

�t =
Zt+�t

StIt�t
(left endpoint) (20b)

�t =
1

2


Zt

StIt�t
+

Zt+�t

StIt�t

�
. (average of endpoints) (20c)

where It and St are computed as in equations (14), (15). Once again, this can be applied to

case notification data (Ct) using Equation (13).

Taking the left endpoint of the integral in Equation (16) (i.e., computing �t from Equa-

tion (20b)) performs the best by far when tested, since using the right endpoint results in a

lagging �t estimate (see §S4.4 of the Supplementary Material). So from this point forward,



Masters Thesis - M. deJonge; McMaster University - Mathematics & Statistics 10

we define the SI method to be the estimate of �t obtained by using the left endpoint of the

integral as in Equation (20b).

The recurrence relations for St and It in equations (14) and (15) can be solved (see §S4.5

of the Supplementary Material for a proof using mathematical induction). Having exact

solutions to the recurrence relations slightly increases computational e�ciency and facilitates

some asymptotic analysis. To illustrate this point, consider the special case where the time

period of interest is short enough that the natural mortality rate µ(t) is approximately

constant. For many data sets the assumption that µ(t) is constant is reasonable as µ(t)

changes over a much longer timescale than the epidemics occur (if we ignore seasonality in

µ(t)) [25]. Setting t
0

= 0, the solutions to the recurrence relations are then simply:

Sj�t = S
0

(1� µ�t)j +
jX

k=1

(1� µ�t)j�k
⇥
B

(k�1)�t � Zk�t

⇤
j = 1, 2, 3, .. (21a)

Ij�t = I
0

(1� (� + µ)�t)j +
jX

k=1

(1� (� + µ)�t)j�kZk�t j = 1, 2, 3, ... (21b)

which can be inserted in Equation (20b) to obtain an explicit estimate of �(t) given an

observed time series Zt. (§S4.5 of the Supplementary Material provides the solution to the

recurrence relations in the case of a non-constant µ(t).)

Equations (21a) and (21b) display the dependence of the estimates St and It on the

initial conditions, S
0

and I
0

. In the estimate of Ij�t, the initial condition I
0

is multiplied

by (1 � (� + µ)�t)j. Given measles parameters in time units of a week (Table 2), and

assuming �t = 1 week this quantity is approximately 0.461j. Thus, as time increases,

the estimate Ij�t will rapidly have negligible dependence on the initial number of infected

individuals. For example, after one year the contribution of I
0

to Ij�t is reduced by a factor

0.46152 ⇡ 3.25 · 10�18.

By contrast, in the estimate of Sj�t, the initial condition S
0

is multiplied by (1� µ�t)j.

For the above parameters, this quantity is approximately 0.999j. Thus, after one year Sj�t

depends on a reduced factor of 0.99952 ⇡ 0.949 of S
0

. Thus the estimate of St depends
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strongly on the initial condition, S
0

, but the estimation of It depends little on the initial

condition I
0

. Generally, the initial conditions are parameter values that are extremely hard

to estimate for a data set, and an incorrect estimate of S
0

strongly a↵ects the estimate of

�(t). Compared with the S+ method, the only new parameter value in the SI method is I
0

,

and fortunately an incorrect estimate of I
0

has a negligible e↵ect on the estimation of �(t).

The S, S+, and SI methods are all extremely fast computationally. For example, es-

timating the transmission rate with the SI method from weekly case notification data for

300 years takes less than 0.5 seconds on a MacBook Pro laptop with a 2 GHz Intel Core i7

processor.

3 Comparing the performance of the three estimation

methods

3.1 Simulating case notification data

In order to compare the performance of the three methods, we test each estimation method

on simulated case notification data. To generate these data, we define the SIRQ model to

be the set of SIR equations in Equation (1) with an additional di↵erential equation for the

cumulative number of cases, Q(t), from the initial time t
0

to time t,

dS

dt
= ⌫(t)N

0

� �(t)SI � µ(t)S , (22a)

dI

dt
= �(t)SI � �(t)I � µ(t)I , (22b)

dR

dt
= �(t)I � µ(t)R , (22c)

dQ

dt
= �(t)SI . (22d)

Then using the deSolve package [49] in R [47], we numerically solve the SIRQ model (Equa-

tion (22)) given a set of parameters, initial conditions, and the chosen transmission rate �(t).
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As in Equation (13), let Ct represent typical case notification data with a time interval �t

between published notifications, i.e., Ct is the total number of reported cases since the last

observed time point. If a fixed proportion ⇢⌘ of cases are reported, Ct can be computed from

the numerical SIRQ solution (22) via

Ct�Trep = ⇢⌘
⇣
Q(t)�Q(t��t)

⌘
. (23)

3.1.1 A sinusoidally forced transmission rate

In our simulations we use a sinusoidally forced transmission rate �(t) (as in [3,13,30,41,44]),

with mean �
0

and amplitude ↵, i.e.,

�(t) = max

⇢
�
0


1 + ↵

✓
cos

✓
2⇡t

Y

◆
+ ✏�(t)

◆�
, 0

�
, (24)

where the constant Y is one year in the chosen time unit, �(t) is a point drawn from a

Normal(0, 1) distribution, and ✏ is the intensity of the ‘noise’ term �(t). In Equation (24)

we take the maximum of the sinusoid and zero to ensure �(t) is never negative. However, in

practice for ✏  0.5 and ↵  0.1 such negative values do not occur anyway.

Term-time forcing is also commonly used for the transmission rate [8, 18, 30, 48], but

Earn et al. [18, References and Notes: #13] found that the dynamics of the SEIR model is

qualitatively equivalent for a term-time forced transmission rate with amplitude ↵
1

and a

sinusoidally forced transmission rate with amplitude ↵
2

, for some ↵
2

< ↵
1

.

In the SIR model with constant vital dynamics (µ(t) = ⌫(t) ⌘ µ) and a constant �(t) ⌘

�
0

, the basic reproduction number, R
0

, is [38, Supplementary Material (S6)], [42]

R
0

=
�
0

N
0

� + µ
, (25)



Masters Thesis - M. deJonge; McMaster University - Mathematics & Statistics 13

so the mean value of �(t) can be written

�
0

=
R

0

(� + µ)

N
0

. (26)

3.1.2 Initial conditions

Since the solutions of the sinusoidally forced SIR model oscillate around the equilibrium

value of the unforced model with �(t) ⌘ �
0

, we chose the initial conditions for S(t) and

I(t) to be the endemic equilibrium values of the unforced SIR model with constant vital

dynamics, µ(t) = ⌫(t) ⌘ µ (derivation in §S2.1 of the Supplementary Material),

S
0

= Ŝ ⌘ N
0

R
0

, (27a)

I
0

= Î ⌘ N
0

✓
1� 1

R
0

◆
µ

� + µ
. (27b)

3.2 Computing the error in estimation

We have simulated many case notification time series and used the S, S+, and SI methods

to estimate �(t). As a measure of accuracy we calculate the relative root mean square error

(RRMSE) between the true continuous �(t) and the estimated discrete �j�t, j = 1, 2, ...n

using:

RRMSE =

vuuuut

Pn
j=1

⇣
�(j�t)� �j�t

⌘
2

n
h
�(t)

i
2

, (28)

where n is the number of time points in �t, and �(t) is the mean value of the true �(t) at

the observation times, i.e.,

�(t) =
1

n

nX

j=1

�(j�t) . (29)
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Table 2: Parameters for measles and smallpox in London, England from 1662 � 1930. Both the
estimated parameter value (in bold) and the range explored in this paper [in grey] are listed.
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4 Results

From a given simulation generated by Equation (22) with measles parameters (Table 2), we

estimate the transmission rate �(t) with each of the S, S+ and SI methods (see Figure 1).

It is clear that the S method is much less accurate in estimating �(t) than the S+ or SI

methods, in part because it was not derived explicitly from the SIR model (from which the

simulated case notification data is generated). Since the susceptible update equation (3) in

the S method does not contain any natural mortality, the number of susceptibles steadily

increases over time, causing the estimated �t to steadily decrease. Also, the S method

requires rounding of the mean generation time (13 days for measles) to the nearest �t (1

week) which causes underestimation of �(t) even at the beginning of the time series. The S+

method is a revised version of the S method that corrects for these errors, so we will proceed

with only considering the S+ and SI methods. In the case of measles parameters, the SI

method outperforms the S+ method, having almost half the error in estimation compared to

the S+ method. This is especially relevant in the case of a noisy �(t) as the error is generally

much larger.

4.1 Dependence on parameter values

While it is valuable to check how each method performs for the estimated measles parameters

stated in Table 2, it is important to ensure that the estimation methods perform well when

applied in a more general context. We now consider how well the S+ and SI methods

estimate �(t) for a range of parameter values.

In order to explore the parameter space, we start with a ‘base’ set of either measles or

smallpox parameters. Then, one at a time, we vary a parameter up to a factor of 4, from 25%

to 400% of its value in the ‘base’ parameter set. Measles and smallpox parameter sets, and

the 25% to 400% parameter ranges for µ(t), ⌫(t), N
0

, ��1, S
0

, and I
0

are listed in Table 2.

For each parameter value in the range, the simulated case notification data is generated
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Figure 1: An example of estimating the transmission rate �(t) using the S, S+ and SI methods
(§2) for 20 years with measles parameters (Table 2). Each panel contains the �(t) used to simulate
the case notification data, as well as the estimates from each method. �(t) is plotted in units of
R

0

. In the left panel, the true �(t) is constructed using equation (24) with R
0

= 20,↵ = 0.08, ✏ =
0, and the relative root mean square error (RRMSE, Equation (28)) for each of the estimation
methods is (S, S+, SI) = (0.34, 0.014, 0.008). In the right panel, the true �(t) is constructed with
R

0

= 20,↵ = 0.08, ✏ = 0.5, and the RRMSE for each of the estimation methods are (S, S+, SI) =
(0.34, 0.062, 0.032).

(Equation (22)) with a sinusoidal �(t) (↵ = 0.08, and ✏ = 0 in Equation (24)), and �(t) is

estimated using the S+ and SI method.

Figure 2 displays how each method performs for a range of �, µ, ⌫, S
0

, and I
0

. For the

explored range of parameters, �(t) is usually estimated accurately with error less than 4%

of its mean value. The SI method (§2.3) estimates �(t) with greater accuracy than the S+

method (§2.2) for all explored parameters. In part since R
0

for smallpox is small, �(t) is

estimated more accurately for smallpox parameters than measles parameters (dependence of

estimation accuracy on R
0

is explored later in Figure 3).

As noted in §3.1.2, since the solutions of the sinusoidally forced SIR model oscillate around

the equilibrium (Ŝ, Î) value of the unforced model (constant �(t) ⌘ �
0

) it is reasonable to

set the initial conditions (S
0

, I
0

) in our simulations to be (Ŝ, Î). Accuracy in estimation of

�(t) depends strongly on the initial number of susceptibles S
0

. If S
0

is far from Ŝ, �(t) is

estimated poorly until S(t) settles back to oscillating about Ŝ. If S
0

is much larger than Ŝ,

I(t) initially increases very rapidly, depleting the susceptible population, and then crashes
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dramatically because there are virtually no susceptibles left. These sudden changes in S(t)

and I(t) make estimation methods for these quantities less e↵ective. The estimation error

for very large or small S
0

values is beyond the range plotted in Figure 2 and for the SI

method with measles parameters, reaches a maximum RRMSE of 0.137 when S
0

= 4Ŝ.

Estimation of �(t) is not sensitive to I
0

, as expected from the solution to the recurrence

relations (Equation (21b)).

The mean generation time (��1) is also a parameter that substantially a↵ects the error in

estimation of �(t). Error in the SI method decreases exponentially as ��1 increases, whereas

error in the S+ method oscillates as a function of ��1, increasing both for large and small

values of ��1. The oscillation can be attributed to rounding the parameter [T
inf

], used in the

S+ method (Equation (12)). [T
inf

] is the mean time from infection to recovery, rounded to

the nearest �t, which we have taken to be a week.

In the measles base parameter set (Table 2), estimation accuracy appears to be sensitive

to the birth rate ⌫(t), with a maximum error in estimation occurring when ⌫(t) is twice as

large as its value in the measles parameter set. In that case, both the S+ and SI estimates

of �(t) are good approximations, except at the peak of the true �(t) where there is a small

dip in each of the estimates. This dip is due to an overestimation of I(t) at the peak of

transmission (demonstrated in §S6.1.2 of the Supplementary Material). In the smallpox

parameter set we instead see that estimation error increases as the disparity between ⌫(t)

and µ(t) increases, and does not depend on just the value of ⌫(t) itself. Because estimation

error depends di↵erently on ⌫(t) for the two parameter sets, the parameter space would have

to be explored further to understand the dependence of estimation accuracy on ⌫(t).

Figure 2 demonstrates the dependence of each method’s accuracy on parameter values for

a smooth �(t) (✏ = 0 in Equation (24)). §S6.1.1 of the Supplementary Material contains the

same figure but for a ‘noisy’ �(t) (✏ = 0.5 in Equation (24)). In that case, the dependence on

each parameter is similar, although the estimation error is higher overall due to the noise. In

this ‘noisy’ �(t) case, the S+ method has twice as much estimation error as the SI method.



Masters Thesis - M. deJonge; McMaster University - Mathematics & Statistics 18

When testing the estimation methods, we chose a transmission rate �(t) to simulate

case notification data, and then estimated �(t) with each of the methods. The mean and

amplitude of the true �(t) influences the success of our reconstruction. For a range of R
0

and seasonal amplitude ↵, Figures 3–4 display the estimation accuracy of each method for

✏ = 0 and ✏ = 0.5 respectively (using measles parameters in Table 2). Estimation error

increases as R
0

and ↵ increase, and more than doubles in the presence of noise in �(t). For

noisy �(t) the error in estimation is much larger for large values of ↵ since noise is added to

�(t) in proportion to ↵. The same figures are produced for smallpox parameters in §S6.2.1

of the Supplementary Material and are qualitatively identical.

The Supplementary Material also contains figures that demonstrate the error in estima-

tion of �(t) from simulations with much larger seasonal amplitude ↵ 2 [0, 0.9] (§S6.2.2). For

large amplitude ↵, estimation of the transmission rate becomes less accurate and the SI

method estimates �(t) much more accurately than the S+ method.

4.2 Sensitivity to incorrect parameter values

Some of the parameters necessary for estimating the transmission rate of an infectious disease

are typically poorly known (e.g., reporting ratio). It is therefore important to know how

well each estimation method performs if the estimate is calculated with the wrong parameter

values. In this section, �(t) and the simulated case notification data are generated using

‘correct’ parameter values, and each method estimates �(t) using one ‘incorrect’ parameter

value. For both smallpox and measles parameters, we explore each method’s sensitivity to

incorrect parameters, by varying each parameter by a factor of two from its ‘correct’ value

when estimating �(t).

Estimating �(t) with the wrong parameter values yields errors that are much larger than

the di↵erence in error between the S+ and SI methods. Consequently, the sensitivity of

both methods to incorrect parameter values looks qualitatively the same.

Figure 5 shows that having incorrect information about the birth rate, ⌫, and the re-
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Figure 2: Accuracy in estimating the transmission rate �(t) using the S+ and SI methods (§2.2
& §2.3) for a variety of parameter values. Each point plotted represents the relative root mean
square error (RRMSE, Equation (28)) in estimating �(t) for one set of parameter values. For
each parameter set, case notification data is simulated with a chosen �(t) (Equation (24) with
↵ = 0.08, ✏ = 0) and then used to estimate �(t) with the S+ or SI method.

The top two panels begin with measles parameters at the 100% parameter range line, and then
one parameter at a time is varied from 25% to 400% of its value in the measles parameter set. The
bottom two panels are the same but for smallpox parameters. Parameter definitions, estimates and
ranges are stated in Table 2.

For the range of parameters explored here, �(t) is usually estimated accurately within 4%
of its mean value. The SI method estimates �(t) more accurately than the S+ method in all
cases. Estimation accuracy decreases rapidly if the susceptible initial condition (S

0

) is far from the
equilibrium of the unforced SIR model (see discussion in §4.1). In the SI method, estimation error
decreases for larger mean generation times (��1), and in the S+ method, both small and large ��1

increase estimation error. Estimation accuracy does not depend strongly on the birth rate (⌫),
the natural mortality rate (µ), the disparity between the birth and natural mortality rates, or the
infected initial condition (I

0

).
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Figure 3: Dependence of the performance of the S+ and SI estimation methods (§2.2 & §2.3) on
the underlying basic reproduction number R

0

and the seasonal amplitude in transmission ↵. For
each ↵-R

0

pairing, the transmission rate �(t) is computed (using Equation (24) with ✏ = 0), and
used to simulate case notification data with measles parameters (Table 2). Then the S+ and SI
methods estimate �(t) using the simulated data, and the relative root mean square error (RRMSE,
Equation (28)) between the true �(t) and the estimated �t is calculated.

In general the SI method estimates �(t) with greater accuracy than the S+ method. Larger
values of ↵ and R

0

decrease estimation accuracy, though the estimation error is still small (< 4%
of the mean value of �(t)) for the range of ↵ and R

0

explored here (↵ 2 [0, 0.1],R
0

2 [2, 30]).
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Figure 4: Dependence of estimation accuracy on the basic reproduction number R
0

and the
seasonal amplitude in transmission ↵ as in Figure 3 but with a ‘noisy’ transmission rate �(t)
(✏ = 0.5 in Equation (24)). Once again, the SI method estimates �(t) with greater accuracy than
the S+ method. Larger ↵ and R

0

decrease the estimation accuracy, but increasing ↵ causes a
more substantial accuracy reduction. This is because noise is added to �(t) as a proportion of the
amplitude ↵. So larger ↵ values result in a noisier transmission rate to estimate. Even with the
noisy transmission rate, the error in estimation is small (< 9% of the mean value of �(t)) for the
range of R

0

and ↵ explored here.
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porting/case fatality ratio, ⇢⌘, causes substantial error in estimating �(t). If our estimate

for ⌫ is twice as large as the true value for ⌫, our error is ten times as large, and even worse

if ⌫ is underestimated. Underestimating ⌫, or ⇢⌘ is essentially equivalent to adding fewer

people to the susceptible class than are being removed, so the number of susceptibles in the

update equation (14) eventually becomes negative. This is helpful information practically

as it allows us to constrain our parameter estimates; we know we have underestimated ⌫ or

⇢⌘ if the estimated number of susceptibles has become negative.

Estimation of �(t) is also sensitive to incorrect parameter values for ��1, µ, and S
0

,

but is not sensitive to to incorrect parameter values for I
0

or T
rep

. Once again, the lack

of sensitivity to the initial number of infectives is not surprising because the estimate It

depends very weakly on the initial condition I
0

(as seen in Equation (21b)).

Overall, Figure 5 shows that estimation of parameter values is very important for accurate

estimation of the transmission rate. It is unfortunate that both methods are so sensitive to

⇢⌘, since it is di�cult to estimate the reporting ratio of a data set. Further work involving

a method for fitting ⇢⌘ to the data set is clearly necessary.

4.3 Sensitivity to observation error

The real world provides much noisier data than the case notification data Ct simulated by

the SIR model. Up to this point we have tested the �(t) reconstruction methods using Ct

where Ct = ⇢⌘Zt�Trep , which is the number of new infections, Zt�Trep , multiplied by the

proportion of cases that are reported (⇢), and the proportion of cases that result in death

(⌘). In this case, ⇢⌘ represents the proportion of infections that are recorded in the data

set, and for convenience we will consider them together as one quantity that represents the

reporting/case fatality ratio. We could more accurately simulate what happens in the world

by assuming the case notification data is sampled from a binomial distribution, where the

number of trials is the number of new infections over time �t, and the probability that an

infection is recorded (the probability of ‘success’) is equal to the reporting/case fatality ratio
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Figure 5: Sensitivity to incorrect parameter values when estimating the transmission rate �(t).
Each point represents the relative root mean square error (RRMSE, Equation (28)) in estimating
�(t) with the SI method (§2.3) for a set of parameter values, where one parameter is incorrect.
Given case notification data simulated from the SIR model and measles (top panel) or smallpox
(bottom panel) parameters (see Table 2), �(t) is estimated from a set of parameters where one
parameter varies from 50 � 200% of the value that was used to generate the simulated data. The
vertical line at 100% marks the set of true parameter values used to simulate the case notification
data.

Estimating �(t) with incorrect parameters yields error that is much larger than the di↵erence
between the S+ and SI methods, so qualitatively this plot looks identical for the S+ method (this
plot is produced for the S+ method in §S7 of the Supplementary Material). Accurate estimation of
�(t) is most sensitive to an underestimate of the birth rate (⌫) and the reporting/case fatality ratio
(⇢⌘), but is also sensitive to the mean generation time (��1), the initial number of susceptibles
(S

0

), and the natural mortality rate (µ). Accurate estimation of �(t) is not sensitive to the initial
number of infected individuals (I

0

) or the time from infection to reporting (T
rep

).
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(⇢⌘).

Figure 6 shows the accuracy of each estimation method if the case notification data

is sampled from the binomial distribution, with ⇢⌘ = 0.2 and measles parameters. As in

Figures 3–4, larger R
0

and ↵ values cause greater error in estimation for both methods.

However, in the presence of observation error a low R
0

value of 2 or 3 also results in large

error in estimation. With observation error, we see that the SI method estimates �(t) much

more accurately than the S+ method. If we instead use smallpox parameters, we again see

that low R
0

values of 2 or 3 causes large estimation error, but the error is otherwise not

very sensitive to R
0

or ↵ (see §S8 of the Supplementary Material). A sample estimate of the

transmission rate in the presence of observation error is provided in §S8 of the Supplementary

Material.

The true case fatality ratio (⌘) for measles is between 0.3% and 34% depending on the

time period and location [45]. If we look at a range of ⇢⌘ values from 0.1 to 1, the dependence

of estimation error on ↵ and R
0

looks qualitatively identical to the ⇢⌘ = 0.2 case in Figure 6

(also see §S8 of the Supplementary Material). However, the magnitude of the estimation

error increases as ⇢⌘ decreases, as shown in Figure 7.

If we look at ⇢⌘ < 0.1, which is possible for a disease such as current day measles (case

fatality for measles from 1987–2000 in the US was 0.3% [45]), our estimate of �(t) is so noisy

that is di�cult to identify any characteristics of the true transmission rate (see §S8.5 of the

Supplementary Material). Because the number of reported cases each week is too noisy a

representation of the true disease dynamics, neither the S+ or the SI method can estimate

�(t) well. If ⌘ is extremely small, than a useful estimate of �(t) can be made only from

incidence data, not mortality data.

4.4 Sensitivity to process error

The spread of an infectious disease in a population is a stochastic process. Also, in the de-

terministic SIR model, S, I, and R are taken to be continuous variables, instead of the whole
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Figure 6: Sensitivity to observation error in estimating the transmission rate �(t). The case
notification data we observe in the world is noisier than the mock data simulated with the SIR
model (22) because of observation error. In order to investigate this, we treat the recorded cases
each time step �t as a binomial process where the number of trials is the number of new infected
cases in �t and the probability of success is equal to the reporting/case fatality ratio (⇢⌘). Here
⇢⌘ = 0.2 and measles parameters are used (Table 2). For each ↵-R

0

pairing where ↵ 2 [0, 0.1]
and R

0

2 [2, 30], the relative root mean squared error (RRMSE) is computed for both estimation
methods. In the presence of observation error it is clear that the SI method is much more accurate.
Very small R

0

values (such as 2 or 3) and large R
0

and ↵ values decrease estimation accuracy.
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Figure 7: Maximum and minimum error in estimating the transmission rate �(t) over a range of
↵ and R

0

values (R
0

2 [0, 30],↵ 2 [0, 0.1]) if the simulated case notification data is sampled from a
binomial distribution. Figure 6 shows how the estimates depend on the value of R

0

and ↵ for the
reporting/case fatality ratio ⇢⌘ = 0.2. Varying ⇢⌘ from 0.1 to 1 results in a qualitatively similar
plot to Figure 6, except that the maximum and minimum error on the legend change. This figure
shows the maximum and minimum error for both the S+ and SI method as a function of ⇢⌘.



Masters Thesis - M. deJonge; McMaster University - Mathematics & Statistics 27

numbers of individuals that we observe in the real world. We can incorporate discreteness

and demographic stochasticity by using the Gillespie algorithm [23] to simulate case noti-

fication data. The Gillespie algorithm is a simple method that can provide realizations of

the stochastic SIR model with a discrete population. We want to ensure that our estimation

methods can predict �(t) well in this more realistic situation.

With measles parameters, for each value of ↵ and R
0

we ran 100 realizations of the

stochastic SEIR model using the Gillespie algorithm, and then used the case notification data

from those realizations to estimate �(t). Then for every ↵-R
0

pairing, we took the median

RRMSE in estimating �(t) from the stochastic data for both the S+ and SI methods. We

examined population sizes of N
0

= 100, 000, 500, 000, and 1, 000, 000. Figure 8 shows the

accuracy of each method’s estimate of �(t) if we use a population size of 100, 000. In this

case, since the population size is so small, we often have fadeout of the disease before the

end of the 20 years we are looking at. The far right panel of Figure 8 shows the probability

of fade-out of the disease for each ↵-R
0

pair. Smaller values of R
0

and larger values of ↵

contribute to a higher probability of fadeout, and greater error in estimation. With R
0

= 2,

the disease faded out before 20 years in almost every case. In general, there is larger error

in estimation if we experience fadeout, because both methods have di�culty estimating �(t)

right before the disease fades out (see an example of this in §S9.3 of the Supplementary

Material).

Figure 9 shows the RRMSE if we instead use the Gillespie algorithm with a population

of 1, 000, 000. In this case, as long as R
0

� 4, we almost never have fadeout before 20 years,

since the population is greater than the critical community size for measles [5,6]. With this

larger population size, we begin to see a similar pattern of error with respect to R
0

and ↵

as we did when observation error was added (Figure 6). For large R
0

and large ↵ there is

greater error in estimation, as well as for small values of R
0

. With this larger population

size, both the S+ and SI methods predict �(t) well, though the SI method is more accurate

(the estimation error is < 10% of the mean value of �(t) for the S+ method and < 8% of
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the mean value of �(t) for the SI method). Sample �(t)-estimates for a population size of

100, 000, 500, 000, and 1, 000, 000 in the presence of process error are presented in §S9 of the

Supplementary Material.
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Figure 8: Sensitivity to process error when estimating the transmission rate �(t) with a population
of 100,000. For each ↵-R

0

pairing (where R
0

2 {2, 4, 8, 16, 32},↵ 2 {0, 0.025, 0.05, 0.075, 0.01}),
100 Gillespie realizations were computed for measles parameters (Table 2) and used as mock case
notification data. Then the S+ and SI methods estimated �(t) using each of the 100 simulated
time series, and the median relative root mean square error (RRMSE) in estimation over all 100
data sets is recorded and plotted. Clearly the SI method is more accurate in estimating �(t) for
the range of R

0

and ↵ than the S+ method. In the right panel, the probability of fadeout of the
disease before 20 years is recorded. Since the population size is so small, if R

0

< 8 the infectious
disease always fades out before reaching 20 years. Estimation of �(t) is especially di�cult right
before fadeout of the disease, which is why the estimation error is so high for small values of R

0

.
Estimation error for both methods seem to correspond exactly to the probability of fadeout.
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Figure 9: Sensitivity to process error when estimating the transmission rate �(t) (as in Figure 8
but with a population of 1 million). Once again, the SI method is more accurate in estimation
than the S+ method. With this larger population size, estimation of �(t) is very accurate, with
a maximum RRMSE of 0.097 for the S+ method and 0.079 for the SI method. The right panel
shows the probability of fadeout of the disease before 20 years. Since the population size is large
enough, the disease rarely experiences fadeout in less than 20 years.
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5 Discussion and conclusions

The goal of this paper was to derive a fast and accurate method to estimate the time-

varying transmission rate, �(t), with the ultimate goal of estimating �(t) from very long

disease notification time series (e.g., the London Bills of Mortality which contain weekly

notifications since 1662). We have presented three methods for estimation of �(t) given a time

series of case notification data: the ‘S method’ as proposed by Fine and Clarkson [21], the

‘S+ method’ as proposed by Krylova [37], and the ‘SI method’ proposed here. Each method

was tested on simulated case notification data generated from the SIR model (Equation (1))

with a sinusoidally forced transmission rate �(t), and we examined the methods’ dependence

on parameter values, and sensitivity to incorrect parameter values, observation error, and

process error.

The S+ method is an improved version of the S method, and performs much better in

testing (e.g., Figure 1). Krylova demonstrated that the S+ method provided a qualitatively

similar estimate for the amplitude of the seasonality of the transmission rate as Fine and

Clarkson [21], Finkenstädt and Grenfell [22], and Hooker et al. [28] when testing it on the

same weekly measles data [37]. We have found that the SI method presented in this paper

performs even better than the S+ method, especially in the case of a noisy transmission rate,

or noise introduced by process or observation error.

If the mean generation time is short, or the initial state is far from the endemic equillib-

rium of the SIR model with a constant transmission rate (§3.1.2), there tends to be greater

error in the estimation of �(t). However, for a large range of parameter values (see Table 2),

with �(t) taken to be a sinusoidally forced function with amplitude ↵ = 0.08, the error in

estimation is usually less than 4% of the mean value of �(t) (see Figures 2–3). The transmis-

sion rate is easier to reconstruct accurately if its mean value and amplitude are small. The

presence of noise in �(t) makes estimation more di�cult but the SI method still estimates

�(t) to within 4% (see Figure 4).

One major concern in estimating �(t) with the fast methods presented here is that they
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require a knowledge of disease parameter values. Often, one does not know the correct values

for the population size, reporting ratio, etc., of a data set. The fast estimation methods do

not attempt to fit any parameter values and are especially sensitive to an underestimate of

the birth rate ⌫(t), and the reporting/case fatality ratio ⇢⌘ (Figure 5). In general, the need

for independent parameter estimates is a significant limitation of the fast methods.

In order to use the SI method we need to know the mean generation time (��1), the

natural mortality rate µ(t), the number of births Bt, the time from infection until reporting

T
rep

, the reporting/case fatality ratio ⇢⌘, and the initial number of susceptible and infected

individuals in a population S
0

and I
0

. For many infectious diseases we know the mean

infectious and latent periods, so we can compute a reliable estimate for the mean generation

time. In §4.2 we found that the SI method is not sensitive to a correct estimate of T
rep

, and

in §2 (Equation (21b)) we found that our estimate is not sensitive to I
0

. For many data sets,

vital statistics such as population size, the number of births, and the number of deaths are

given. In that case we explicitly have birth data for Bt, and µ(t) can be computed as the

number of deaths each time interval divided by the population size.

This leaves us with two parameters to estimate, the initial number of susceptibles S
0

,

and the reporting/case fatality ratio ⇢⌘. An accurate fast method for estimating each of

these parameters for a long data set would be extremely valuable. Krylova suggests picking

S
0

so that the estimated number of susceptible individuals has no long-term trend for the

first 5� 10 years [37]. One possible way to estimate ⇢⌘ is to estimate the transmission rate

using the SI method for a range of ⇢⌘ values. Then we could use the estimated transmission

rates and the SIR model (Equation (22)) to simulate case notification data, and see which

⇢⌘ value generates a set of case notification data closest to the real data set.

We tested these fast estimation methods on binomially sampled simulated case notifica-

tion data to mimic observation error (§4.3). The SI method accurately estimates �(t) from

these data sets as long as the case fatality/reporting ratio ⇢⌘ is not too small (i.e., ⇢⌘ > 0.1).

As in the case without observation error, there is an increase in accuracy if R
0

is small (but
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larger than 3) and the amplitude of seasonality in �(t) is small.

Lastly, sensitivity to process error was tested by applying the estimation methods to real-

izations of the stochastic SEIR model using the Gillespie algorithm (§4.4). For a population

of 1 million, the SI method well approximates �(t), with error less than 8% of the mean value

of �(t) (Figure 9). However in a smaller population size such as 100, 000, the infectious dis-

ease fades out quickly, which decreases the estimation accuracy of each method (Figure 8).

This decrease in accuracy is presumably because the disease dynamics are dominated by

demographic stochasticity rather than seasonal forcing in the transmission rate.

Di�culties arise when attempting to estimate the transmission rate from a poorly sampled

epidemic (i.e., with a very small reporting or case fatality ratio). For example, with measles

parameters (Table 2) and a population size of 500, 000, if ⇢⌘ = 0.01 both the SI and

S+ method provide too noisy an estimate of �(t) to identify any key characteristics of the

transmission rate because very few cases are recorded in the case notification data. Of course,

a data set with a low reporting/case fatality ratio presents a challenge for any method for

reconstructing the transmission rate, not just the fast methods presented here.

In general, the SI method proposed in this paper estimates �(t) accurately and quickly

but relies on independent estimates of a number of parameters. It would be extremely

beneficial to develop a fast method to fit parameters (such as the reporting ratio) to a

long data set and to set up a statistical framework for the transmission rate estimation.

Future work will also hopefully include analysis of the transmission rates for various diseases

recorded in the London Bills of Mortality, which would provide a wealth of understanding

of how infectious diseases change over time, and what factors influence transmission.
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S1 Introduction1

This collection of supplementary material includes both additional figures that have not2

been included in the main text, and computer code that provides the computational details3

behind our results. The goal of this supplement is to provide enough details to the reader4

that our results are easily reproducible, and the presented estimation methods are easy to5

implement. This document has been written with the knitr [5] package, which allows easy6

integration of LATEX documents and R code. All of the computations used for this document7

were conducted using R version 3.1.0 (2014-04-10) [4].8

S2 Parameter Definition9

S2.1 Determining the initial conditions10

When testing the performance of the S+ and SI methods for estimation of the transmission11

rate, we generate simulated case notification data from the SIR model (§3). Since the12

solutions of the sinusoidally forced SIR model oscillate around the equilibrium value of the13

unforced model, where �(t) ⌘ �0, the initial conditions for S(t) and I(t) are chosen to be14

the endemic equilibrium values of the unforced SIR model with constant vital dynamics,15

µ(t) = ⌫(t) ⌘ µ. We will derive these endemic equilibrium values here.16

Consider the SIR model with an unforced transmission rate, �(t) ⌘ �0, and constant
vital dynamics, µ(t) = ⌫(t) ⌘ µ, i.e.,

dS

dt

= µN0 � �0SI � µS , (S1a)

dI

dt

= �0SI � �I � µI , (S1b)

dR

dt

= �I � µR . (S1c)

To find the endemic equilibrium values (Ŝ, Î), of this system of equations set dS
dt = 0 and17

dI
dt = 0:18

dS

dt

= 0 =) µN0 � �0ŜÎ � µŜ = 0, (S2)

19

dI

dt

= 0 =) �0ŜÎ � �Î � µÎ = 0. (S3)

Factoring Equation (S3), we see that20

�0Ŝ � � � µ = 0 OR Î = 0. (S4)

Since we are looking for the endemic equilibrium, we will discard the disease free equilibrium21

(when Î = 0). So we can rewrite the equilibrium number of susceptibles as22

�0Ŝ � � � µ = 0 =) Ŝ =
� + µ

�0
. (S5)
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Then using the definition of R0 as provided in Equation (25):23

R0 =
�0N0

� + µ

, (S6)

we can rewrite Ŝ as24

Ŝ =
N0

R0
. (S7)

Then, we plug this value for Ŝ into Equation (S2) to find Î25

µN0 � �0
N0

R0
Î � µ

N0

R0
= 0. (S8)

Rearranging this equation for Î we have26

Î = N0

✓
1� 1

R0

◆
µ

� + µ

. (S9)

Thus we choose the initial conditions for our simulated data sets to be

S0 = Ŝ ⌘ N0

R0
, (S10a)

I0 = Î ⌘ N0

✓
1� 1

R0

◆
µ

� + µ

. (S10b)

S2.2 R Code: Defining measles and smallpox parameter sets27

Throughout the main text we use two main sets of parameters, one for measles and one for28

smallpox (as defined in Table 2). The R function param.define() records the parameters29

(as in Table 2) and initial conditions (as in Equation (S10)), and outputs a parameter list.30

param.define <- function(type = "Measles", ## type = "Measles" OR "Smallpox"
no.years = 20, # number of years to look at
time.step = 1){ # data time step in weeks.

## Define parameters for both Measles and Smallpox cases:

## times we want SIR data at
times <- seq(0, 52*no.years/time.step, by = 1)

## natural death rate
yearly.mortality.rate <- 0.04 # per year
mu <- (yearly.mortality.rate/52)*time.step # per time.step

## (1) Measles in London,
if (type == "Measles"){
## size of the population at time t_0
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pop.size <- 500000

##In SEIR model mean generation time is the sum
## of the mean latent and mean infectious periods
mean.gen.time <- 13 #days
## gamma.val = Rate of Recovery: Units = 1 / time.step
gamma.val <- 7/mean.gen.time*time.step

R0 <- 20 # Basic Reproductive Number
## time (in weeks) between infection and reporting
t.report <- round(1/gamma.val)

## time (in weeks) between infection and recovery
t.recover <- t.report

## Both t.report and t.recover must be rounded
## to the nearest Delta t (time between case
## notifications in the data set)
## Because they tell us how many weeks forward
## or backwards we need to look in the data set
## case fatality ratio * reporting ratio
cf.RR <- 1

}

## (2) Smallpox in London, 1664 Parameters
else if (type == "Smallpox"){
## size of the population in London in 1664
pop.size = 392400

#in SEIR mode mean generation time is the sum of
## the mean latent and mean infectious periods
mean.gen.time <- 22 # units = days.
## gamma.val = Rate of Recovery: Units = 1 / time.step
gamma.val = 7/mean.gen.time*time.step

R0 <- 4 # Basic Reproductive Number
## time (in weeks) between infection and reporting
t.report <- round(1/gamma.val)

## time (in weeks) between infection and recovery
t.recover <- t.report

## case fatality ratio * reporting ratio
cf.RR <- 1

}

## otherwise print an error
else{

stop("Parameter Type Not Recognized (must be = Measles OR Smallpox)")

}

## Set the initial conditions to be the endemic equillibrium



Masters Thesis - M. deJonge; McMaster University - Mathematics & Statistics 45

## values of the SIR model with an unforced transmission rate
Init.S <- 1/R0

Init.I <- (1 - 1/R0)*(mu)/(gamma.val + mu)

Init.R <- 1 - Init.S - Init.I

## Births per week: (This is a vector so that
## when applying the estimation method to a data set that contains
## the number of births each time unit, we can easily incorporate
## the reported births by setting Birth.input to be the birth data.)
Birth.input <- rep(round(pop.size*mu), length(times))

## output a parameter list that contains everything.
param.list <- list(times = times,

pop.size = pop.size,

gamma.val = gamma.val,

mu = mu,

t.report = t.report,

t.recover = t.recover,

cf.RR = cf.RR,

R0 = R0,

Birth.input = Birth.input,

Init.S = Init.S,

Init.I = Init.I,

Init.R = Init.R)

## return the parameter list.
return(param.list)

}

S2.2.1 R Code: Modifying parameter lists31

Here we define a few functions that allow for easy modification of parameter lists. replace.param()32

replaces one parameter value in a list with a new value, range.list() creates a list of pa-33

rameter sets, where each parameter set is the same except for one parameter that is varied34

across the list, and extra.range.list() takes in a list of parameter sets (as created by35

range.list()), and changes one parameter in each list according to the range specified36

(this allows us to vary two di↵erent parameters over a range of values in the same list of37

parameter sets).38

replace.param <- function(param.set, param.index, new.val){
param.set[[param.index]] <- new.val

return(param.set)

}
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range.list <- function(orig.param, # original parameter set
param.index, # the index of the parameter to vary
range){ # the range over which the parameter varies.

## create an empty list for space
param.range.list <- vector('list', length(range))

## for every entry in the parameter range:
for (index in 1:length(range)){
## change the original parameter in the original list to be the new value
## if range is just a normal vector:
if (typeof(range) == "double"){

orig.param[[param.index]] <- range[index]

}
## else if range is a list (as in Birth data):
else if(typeof(range) == "list"){

orig.param[[param.index]] <- range[[index]]

}
## store this parameter set with the new value in the param.range.list
param.range.list[[index]] <- orig.param

}
## return the list of parameter ranges.
return(param.range.list)

}

extra.range.list <- function(range.list, # list of parameter lists
param.index, # index over which we want to vary
range){ # range of varying parameter

for (index in 1:length(range.list)){
# if range is just a normal vector:
if (typeof(range) == "double"){

range.list[[index]][[param.index]] <- range[index]

}
## Else if Range is a list (as in Birth data):
else if(typeof(range) == "list"){

range.list[[index]][[param.index]] <- range[[index]]

}
}
return(range.list)

}

S2.3 R Code: Constructing the sinusoidal transmission rate �(t)39

For a given set of parameter values we choose a transmission rate �(t) to be used in generating40

the simulated case notification data. As in equations (24) and (26) of the main text, �(t) is41
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defined to be42

�(t) = max

⇢
�0


1 + ↵

✓
cos

✓
2⇡t

Y

◆
+ ✏�(t)

◆�
, 0

�
, (S11)

where43

�0 =
R0(� + µ)

N0
. (S12)

The constant Y is one year in the chosen time unit, �(t) is a point drawn from a Normal(0, 1)44

distribution, and ✏ is the intensity of the noise term �(t). In Equation (S11) we take the45

maximum of the sinusoid and zero to ensure �(t) is never negative.46

Rand.Vec() constructs the random vector �(t) and saves the vector so that each �(t)47

used in this document has the same random component.48

Rand.Vec <- function(length){
vec <- rnorm(length, mean = 0, sd = 1)

write.csv(vec, "RandomVectorForBeta.csv", row.names = FALSE)

}

Create.Beta() constructs a discrete vector that represents the transmission rate �(t),49

computed using Equation (S11).50

Create.Beta <- function(param.list, amp, period, noise.percent){
with(param.list,{
## read in the random vector computed by Rand.Vec
rand.vec <- read.csv("RandomVectorForBeta.csv")[,1]

## compute the mean value of beta
b0 <- R0*(gamma.val + mu)/pop.size # mean value of Beta
ppy <- (365/7) # data points per year
## compute beta.vec
beta.vec <- b0*(1 + amp*cos(2*pi*times/(ppy*period)) +

amp*noise.percent*rand.vec)

## check if there is any negative entries due to the noise term:
neg.entries <- which(beta.vec < 0)

## replace these negative entries with zero
beta.vec[neg.entries] <- 0

## return beta(t)
return(beta.vec)

})
}

S3 R Code: Simulating case notification data51

For testing the �(t)-estimation methods, we simulate case notification data using a numerical
solution of the SIR model. Let Q(t) be the cumulative number of cases from the initial time
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t0 to t. We add an additional equation for Q(t) to the SIR model, which will keep track of
the cumulative number of new cases so far, i.e.,

dS

dt

= ⌫(t)N0 � �(t)SI � µ(t)S , (S13a)

dI

dt

= �(t)SI � �I � µ(t)I , (S13b)

dR

dt

= �I � µ(t)R , (S13c)

dQ

dt

= �(t)SI . (S13d)

Recall that �t is the observation interval, Trep is the mean time from infection to reporting52

(rounded to the nearest �t), and ⇢⌘ is the reporting/case fatality ratio. If a fixed proportion53

⇢⌘ of cases are reported, the simulated case notification data (Ct) can be computed from the54

numerical solution of Q(t) as follows:55

Ct�Trep = ⇢⌘

⇣
Q(t)�Q(t��t)

⌘
. (S14)

The function solve.SIR numerically solves the SIRQ model in Equation (S13) given a56

set of parameters and the chosen �(t), and uses this solution to simulate case notification57

data (as in Equation (S14)).58

solve.SIR <- function(params, beta,

## binom.dist == TRUE, means the case notification
## data is taken from a binomial distribution of the
## true incidence data.
binom.dist = FALSE){

## the deSolve package computes the solution to the SIR model
library(deSolve)

with(as.list(params), {

## a. Define functions that linearly interpolate Beta(t),
## and the births to find the appropriate
## value for each specific value of t when solving the SIRQ model
Beta.lin <- approxfun(beta, method = "linear", rule = 2)

Birth.lin <- approxfun(Birth.input, method = "linear", rule = 2)

## define the gradient function for the SIR model
SIR <- function(time, state, parameters){

with(as.list(c(state, parameters)), {
## find the correct Beta value for each time using Beta.lin
Beta.point <- Beta.lin(time)

Birth.point <- Birth.lin(time) # same with Birth.lin
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## compute the derivatives.
dS <- Birth.point - Beta.point*S*I - mu*S

dI <- Beta.point*S*I - (gamma.val + mu)*I

dR <- gamma.val*I - mu*R

dQ <- Beta.point*S*I # cumulative number of reported cases
## return the list to de solve.
return(list(c(dS, dI, dR, dQ)))

})
}

## b. Solve the SIR model
## define the initial conditions and parameters.
init <- c(S = Init.S*pop.size, I = Init.I*pop.size,

R = Init.R*pop.size, Q = 0)

parameters <- c(gamma.val = gamma.val, mu = mu, cf.RR)

## ode solves the system of equations
## We have to jump through a few hoops here to supress the messages
## outputted by the function ode
options(warn = -1) # ignore warnings (warn = -1)
# after we leave this function: restore default warnings (warn = 0)
on.exit(options(warn = 0))

## solve the SIR model
## capture.output doesn't allow ode to print any messages to
## our knitr file
capture.output(out <- ode(y = init, times = times, func = SIR,

parms = parameters, method = "lsoda",

maxsteps = 10000, atol = 1e-100))

output <- as.data.frame(out)

## c. Compute the Case Notifications
## output£Q is the sum of all cases up to point t
## Cases for time t will be just the cases from t - delta t, to t.
Cases <- output$Q[-c(1)] - output$Q[-c(length(output$Q))]

## Then move the Cases vector ahead t.report points so that it is
## reported t.report weeks in the future from when the infection started.
len <- length(Cases)

if (t.report != 0){
Cases <- c(rep(NA, (t.report + 1)),

Cases[-(seq(len - t.report + 1, len))])}
else if (t.report == 0){

Cases <- c(NA, Cases)

}
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## Now we need to adjust the cases by the reporting ratio and
## case fatality ratio. we can either do this by drawing
## from a binomial distribution in binom.dist = TRUE
if (binom.dist == TRUE){

Cases <- rbinom(Cases, size = round(Cases),

prob = cf.RR)

}
## or we can simply multiply the cases at each point in time by the
## reporting ratio * case fataltity ratio.
else{

Cases <- cf.RR*Cases

}

## In the case that the numerical ode solver ('lsoda') may have to quit
## early, fill in the rest of the time points with NA values
len <- length(times)

output.len <- dim(output)[1]

if (output.len != len){
difference <- len - output.len

na.vec <- rep(NA, difference)

na.dataframe <- data.frame(time = na.vec, S = na.vec,

I = na.vec, R = na.vec, Q = na.vec)

output <- rbind(output, na.dataframe)

Cases <- c(Cases, na.vec)

}

## return a data frame that has time, S, I, R, Beta, C, Births
output <- data.frame(time = times, S = output$S,

I = output$I, R = output$R,

beta = beta,

C = Cases,

Births = Birth.input)

return(output)

} )

}

S3.1 A sample time series generated by the SIR model59

Let’s look at a sample time series of susceptibles, infecteds, and simulated case notification60

data generated from a numerical solution to the SIR model. (In this case we use measles61

parameters (as in Table 2), and a sinusoidal �(t) with seasonal amplitude ↵ = 0.08.)62
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## define parameters
param.meas <- param.define(type = "Measles", no.years = 20)

## define beta(t)
meas.beta <- Create.Beta(param.list = param.meas,

amp = 0.08, period = 1, noise.percent = 0)

## generate the SIR and case notification data
Data <- solve.SIR(params = param.meas, beta = meas.beta)

## Let's only look at the the first 5 years
end <- which(Data$time > 5*52)[1]

Data <- Data[1:end, ]

Print the first couple lines of the data set that is generated. The data set columns are63

t ime (in units of a week), S (the number of susceptibles), I (the number of infecteds), R64

(the number of removed individuals), beta (the transmission rate at each point in time), C65

(the simulated case notifications), and B irths.66

## Look at the first 10 lines of the dataset
print(Data[1:10,])

## time S I R beta C Births

## 1 0 25000 677.6 474322 2.329e-05 NA 385

## 2 1 24963 707.2 474330 2.328e-05 NA 385

## 3 2 24909 737.2 474354 2.324e-05 NA 385

## 4 3 24840 766.9 474394 2.318e-05 402.9 385

## 5 4 24756 795.3 474450 2.310e-05 419.4 385

## 6 5 24660 821.6 474521 2.299e-05 435.2 385

## 7 6 24553 844.8 474604 2.286e-05 449.7 385

## 8 7 24439 864.0 474699 2.272e-05 462.4 385

## 9 8 24321 878.3 474804 2.255e-05 472.7 385

## 10 9 24203 887.0 474914 2.238e-05 480.1 385

To look at this sample data set over a longer time period we plot the number of infected67

individuals (I(t)), the number of susceptible individuals (S(t)) and the number of case68

notifications (C(t)). The plotting code is suppressed. The vertical axis for S(t) is on the left69

of the plot, and the vertical axis for I(t) and C(t) is on the right side of the plot.70
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S4 Implementing the S, S+, and SI Methods for esti-71

mating the transmission rate �(t)72

S4.1 R Code: The S Method73

Fine & Clarkson presented a method to estimation the transmission rate of an infectious74

disease, which we refer to here as the ‘S method’. The method estimates the transmission75

rate �(t) with the following two equations.76

St+�t = St � Zt+�t +Bt, (S15)

77

�(t) =
Zt+�t

ZtSt
. (S16)

When applying the S method to a time series, the time between observations �t is required78

to be equal to the mean generation time. The functions agg.cases() and select.cases()79

adjust the data set, so that the observation interval of the data is equal to the mean gener-80

ation time. agg.cases() adds up the cases or births that have happened over the desired81

interval �t, and select.cases() picks out the time point every �t apart.82

agg.cases <- function(vector, # vector to be aggregated
delta.t){

## delta.t is expressed as the number of points
## in the data set that we need to aggregate over.
len <- length(vector)

## set up space for the new aggregated vector
agg.vector <- rep(NA, round(len/delta.t))
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vector.index <- 1

for(i in 1:length(agg.vector)){
## add up the cases/births/etc from over delta.t
agg.vector[i] <- sum(vector[vector.index:

(vector.index + (delta.t - 1))],

na.rm = TRUE)

vector.index <- vector.index + delta.t

}
return(agg.vector)

}

select.cases <- function(vector, delta.t){
len <- length(vector)

## create space
select.vec <- rep(NA, round(len/delta.t))

vector.index <- 1

for (i in 1:length(select.vec)){
## select the value every delta.t timepoints apart
select.vec[i] <- vector[vector.index]

vector.index <- vector.index + delta.t

}
return(select.vec)

}

The S method is implemented in Est.FC() which uses a set of estimation parameters83

and case notification data to estimate �(t) and S(t). Fine & Clarkson did not distinguish84

between exact incidence data Zt and case notification data Ct, so we simply replace Zt with85

Ct when applying the estimation method to case notification data.86

Est.FC<- function(est.pars){
with(est.pars,{
## a. aggregate the data to ensure Delta t = mean gen time
## mean.gen.time = mean generation time in weeks
mean.gen.time <- round(1/gamma.val)

## add up the case notifications over the last Delta t time
new.cases <- agg.cases(vector = C[1:length(C)], delta.t = mean.gen.time)

## add up the births over the last Delta t time
agg.births <- agg.cases(vector = Birth.input,

delta.t = mean.gen.time)

## pick out the times Delta t apart
times.out <- select.cases(vector = times, delta.t = mean.gen.time)

## b. Compute S(t)
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S <- rep(NA, length(new.cases)) # create space
S[1] <- Init.S*pop.size # set initial condition
for (k in 1:(length(S) - 1)){

S[(k + 1)] <- S[k] + agg.births[k] -

new.cases[(k + 1)]

}

## c. Compute Beta(t).
Beta <- rep(NA, length(new.cases)) # create space
for (k in 1:(length(Beta)-1)){

Beta[k] <- new.cases[(k + 1)]/(new.cases[k]*S[k]*mean.gen.time)

}
## if Beta(t) is infinite, replace it with an NA
Beta[which(is.infinite(Beta))] <- NA

## return the estimated S, Beta, and the times recorded.

## The second entry is set to be NA because the mortality
## data is delayed in such a way that the second entry would
## only have half the appropriate mortality entries
Beta[2] <- NA

return(list(S, Beta, times.out))

})
}

S4.2 R Code: The S

+ Method87

Krylova [3] modified the S method by deriving an estimate for the transmission rate direction88

from the SEIR model. We refer to her modified method as the ‘S+ method’ which is defined89

by the following two equations.90

�t =
1

St

Zt

Zt�[Tinf]
(� + µt), (S17)

91

St+�t = St +Bt � Zt+�t � µt�tSt. (S18)

In this document, the transmission rate is estimated from case notification data (Ct) as92

opposed to exact incidence data (Zt). A proportion of the cases that occur over a time93

interval �t are reported, and there is a delay between infection and reporting of each case.94

Thus we can relate Ct and Zt as95

Ct+Trep = ⇢⌘Zt, (S19)

where ⇢⌘ is the reporting/case fatality ratio and Trep is the mean time from infection to96

reporting. When applying the S

+ estimation method to case notification data we rewrite97
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the estimation method (in Equations (S17) & (S18)) in terms of Ct using Equation (S19).98

�t =
1

St

Ct+Trep

Ct+Trep�[Tinf]
(� + µt), (S20)

99

St+�t = St +Bt �
Ct+Trep+�t

⇢⌘

� µt�tSt. (S21)

The S+ method is implemented in Est.S.plus(), which uses a set of estimation parameters100

and case notification data to estimate �(t) and S(t).101

## Est.S.plus: implementation of the S+ Method
Est.S.plus <- function(est.pars){

with(est.pars,{

## a. Estimate S(t)
S <- rep(NA, length(C)) # create space
S[1] <- Init.S*pop.size # set initial condition
## compute S(t)
for (k in 1:(length(S) - (1 + t.report))){

S[(k + 1)] <- S[k] + Birth.input[k] -

C[(k + 1 + t.report)]/cf.RR - mu*S[k]

}

## b. Estimate Beta(t)
Beta <- rep(NA, length(C)) # create space
## need to pick and start and end index because t.report
## pushes the case notification data forward.
start.index <- 1 + t.recover - t.report

end.index <- length(Beta) - t.report

for(k in start.index:end.index){
Beta[k] <- (1/S[k])*

(C[(k + t.report)]/C[(k + t.report - t.recover)])*(gamma.val + mu)

## if Beta(t) is infinite, replace it with an NA
Beta[which(is.infinite(Beta))] <- NA

}

## return the estimated S and Beta
return(list(S, Beta))

})
}
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S4.3 R Code: The SI Method102

The SI method presented in this document estimates the transmission rate �(t) by using a103

discrete-time approximation to the SIR model for both S(t) and I(t):104

St+�t = St +Bt � Zt+�t � µt�tSt, (S22)

105

It+�t = It + Zt+�t � (� + µt)�tIt. (S23)

Then �(t) can be estimated in three di↵erent ways, depending on which t value we take (left
endpoint, right endpoint, or average) for �(t)S(t)I(t) over the observation interval �t.

�t =
Zt

StIt�t

(right endpoint) (S24a)

�t =
Zt+�t

StIt�t

(left endpoint) (S24b)

�t =
1

2


Zt

StIt�t

+
Zt+�t

StIt�t

�
. (average of endpoints) (S24c)

As in the discussion in §S4.2 about the S

+ method we want to apply the SI estimation106

method to case notification data (Ct) instead of exact incidence data (Zt). Using the rela-107

tionship108

Ct+Trep = ⇢⌘Zt (S25)

the Zt terms in the SI estimation method (Equations (S22), (S23) & (S24)) are rewritten109

in terms of Ct, i.e.,110

St+�t = St +Bt �
Ct+�t+Trep

⇢⌘

� µt�tSt, (S26)

111

It+�t = It +
Ct+�t+Trep

⇢⌘

� (� + µt)�tIt. (S27)

�t =
Ct+Trep

⇢⌘StIt�t

(right endpoint) (S28a)

�t =
Ct+�t+Trep

⇢⌘StIt�t

(left endpoint) (S28b)

�t =
1

2


Ct+Trep

⇢⌘StIt�t

+
Ct+�t+Trep

⇢⌘StIt�t

�
. (average of endpoints) (S28c)

The SI method is implemented in Est.SI(), which uses a set of parameters and case112

notification data in order to estimate S(t), I(t) and �(t). The SI method returns three113

estimates of �(t) corresponding to the three di↵erent endpoints in equations (S28a).114
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Est.SI <- function(est.pars){
with(est.pars, {

## a. Estimate S(t)
S <- rep(NA, length(C)) ## make space
## set the initial condition for S.
S[1] <- Init.S*pop.size

for (k in 1:(length(S) - (1 + t.report))){
S[(k + 1)] <- S[k] + Birth.input[k] -

C[(k + 1 + t.report)]/cf.RR - mu*S[k]

}

## b. Estimate I(t)
I<- rep(NA, length(C)) ## make space
## set the initial condition
I[1] <- Init.I*pop.size

for (k in 1:(length(I) - (1 + t.report))) {
I[(k + 1)] <- I[k] +

C[(k + 1 + t.report)]/cf.RR - (gamma.val + mu)*I[k]

}

## c. Estimate Beta(t) three ways:

### I. Right Boundary.
Beta.1 <- rep(NA, length(C))

for (k in 1:(length(Beta.1) - t.report)){
Beta.1[k] <- C[(k + t.report)]/(S[k]*I[k]*cf.RR)

}
## 2. Left Boundary
Beta.2 <- rep(NA, length(C))

for (k in 2:(length(Beta.2) - t.report)){
Beta.2[(k-1)] <- C[(k + t.report)]/(S[(k-1)]*I[(k-1)]*cf.RR)

}
## 3. Average of the Left and Right Boundary
Beta.3 <- (Beta.1 + Beta.2)/2

## Return the estimate of S, I, and each Beta estimate.
return(list(S, I, Beta.Av = Beta.3,

Beta.End = Beta.1, Beta.Start = Beta.2))

})

}



Masters Thesis - M. deJonge; McMaster University - Mathematics & Statistics 58

S4.4 Choosing the left or right time endpoint of the observation115

interval to estimate �(t)116

In the derivation of both the S+ and SI methods, it is necessary to make an assumption that117

over each observation interval �t, �(t), S(t) and I(t) are approximately constant. Then we118

assume �(t)S(t)I(t) ⇡ �(⌧)S(⌧)I(⌧) over each �t, where ⌧ is some point in the time interval.119

Since we will only have estimates of S(t) and I(t) every �t in time, our choice for ⌧ is limited120

to the left or right endpoint of the time interval. Krylova [3] chose to use the right endpoint121

when deriving the S

+ method. In deriving the SI method, it was initially unclear which122

endpoint to pick, and if there would be any significant di↵erence in estimation accuracy123

between the two choices. We found that choosing the left endpoint of each time interval124

produced a more accurate estimate for a wide range of transmission rates and parameter125

values.126

In order to illustrate the resulting estimates for di↵erent endpoints, we plot a sample127

�(t) along with its estimate using the left and right endpoints of the time interval. We also128

plotted the average of the two estimates of �t. In the plot we can clearly see that using the129

left endpoint is much more accurate in estimating �(t).130

## define our parameter set (measles)
param.meas <- param.define(type = "Measles", no.years = 20)

## define beta(t)
meas.beta <- Create.Beta(param.list = param.meas,

amp = 0.08, period = 1, noise.percent = 0)

## generate case notification data
CN.Data <- solve.SIR(params = param.meas, beta = meas.beta)

## estimate beta(t) using the SI method with each endpoint
estimates <- Est.SI(est.pars = append(param.meas, list(C = CN.Data$C)))

est.left.endpoint <- estimates[[5]]

est.right.endpoint <- estimates[[4]]

est.av.endpoint <- estimates[[3]]
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Seeing as the SI method does much better with the left time endpoint than the right,131

we revisited the derivation of the S+ method to see if it would performs better with the left132

time endpoint as well (instead of the assumed right endpoint). We computed and evaluated133

estimates of �(t) using the S

+ method with the left and right time endpoints. The sample134

plot shown below demonstrates that the estimate of �(t) changes is very similar whether135

the left or right endpoint is used, and the estimate is actually more accurate for the right136

endpoint.137
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S4.5 Solutions to the St and It recurrence relations138

S4.5.1 A variable µ(t)139

The SI method uses a discrete-time approximation to the continuous SIR model to estimate140

S(t) and I(t). These estimates are defined recursively where each value of St and It depends141

on the previous value in time. The discrete-time approximations are142

St+�t = St +Bt � Zt+�t � µt�tSt, (S29)

143

It+�t = It + Zt+�t � (� + µt)�tIt. (S30)

These recurrence relations can be solved to provide an explicit estimate for S(t) and I(t).144

Setting the initial time t0 = 0 the solutions are145

Sj�t = S0

j�1Y

k=0

(1�µk�t�t)+B(j�1)�t�Zj�t+
j�1X

l=1

j�1Y

k=l

(1�µk�t�t)
⇥
B(l�1)�t � Zl�t

⇤
j = 1, 2, 3, .. ,

(S31)
146

Ij�t = I0

j�1Y

k=0

(1�(�+µk�t)�t)+Zj�t+
j�1X

l=1

j�1Y

k=l

(1�(�+µk�t)�t)Zl�t j = 1, 2, 3, ... (S32)

These explicit solutions can be inserted into the �t estimate of the SI method (see Equa-147

tion (S24)) to obtain an explicit expression of �(t) for a time series Zt.148

The solutions to the recurrence relations can be proven using mathematical induction.149

We summarize and prove the solutions in Propositions 1 & 2.150

Proposition 1. If the initial time t0 ⌘ 0, then the solution to the recurrence relation151

It+�t = It + Zt+�t � (� + µt)�tIt (S33)

is152

Ij�t = I0

j�1Y

k=0

(1�(�+µk�t)�t)+Zj�t+
j�1X

l=1

j�1Y

k=l

(1�(�+µk�t)�t)Zl�t j = 1, 2, 3, ... (S34)

Proof. (By Mathematical Induction)153

154

Base Case: Verify the proposition holds true for j = 1 (i.e., t = 0). Setting t = 0 in155

the recurrence relation (S33) results in156

I�t = I0 + Z�t � (� + µ0)�tI0. (S35)

Setting j = 1 in the proposed solution (S34) results in

I�t = I0

0Y

k=0

(1� (� + µk�t)�t) + Z�t (S36a)

= I0 + Z�t � (� + µ0)�tI0 . (S36b)
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So the proposition holds in the base case when j = 1 (i.e., t = 0).157

158

Induction Hypothesis: Assume that the proposition holds true for j = (m � 1),m > 1,159

i.e.,160

I(m�1)�t = I0

m�2Y

k=0

(1� (� + µk�t)�t) + Z(m�1)�t +
m�2X

l=1

m�2Y

k=l

(1� (� + µk�t)�t)Zl�t (S37)

Now, prove that if the proposition holds true for j = m � 1,m > 1, it also holds true for
j = m,m > 1. By plugging t = (m � 1)�t into the recurrence relation (S33) we gain an
expression for Im�t, i.e.,

Im�t = I(m�1)�t + Zm�t � (� + µ(m�1)�t)�tI(m�1)�t (S38a)

= (1� (� + µ(m�1)�t)�t)
⇥
I(m�1)�t

⇤
+ Zm�t. (S38b)

Using the induction hypothesis, we can replace I(m�1)�t in equation (S38b) with the expres-161

sion for I(m�1)�t in equation (S37), i.e.,162

Im�t = (1� (� + µ(m�1)�t)�t)


I0

m�2Y

k=0

(1� (� + µk�t)�t)

+Z(m�1)�t +
m�2X

l=1

m�2Y

k=l

(1� (� + µk�t)�t)Zl�t

�
+ Zm�t.

(S39)

Distributing the (1� (� + µ(m�1)�t)�t) factor gives us:163

Im�t = I0

m�1Y

k=0

(1� (� + µk�t)�t) + Zm�t +
m�1X

l=1

m�1Y

k=l

(1� (� + µk�t)�t)Zl�t. (S40)

Thus this proposition holds true for j = m, so the proposition must hold true for all j =164

1, 2, 3, .... By mathematical induction, the solution to the recurrence relation for It is165

Ij�t = I0

j�1Y

k=0

(1�(�+µk�t)�t)+Zj�t+
j�1X

l=1

j�1Y

k=l

(1�(�+µk�t)�t)Zl�t j = 1, 2, 3, ... (S41)

166

Proposition 2. If the initial time t0 ⌘ 0, then the solution to the recurrence relation167

St+�t = St +Bt � Zt+�t � µt�tSt (S42)

is168

Sj�t = S0

j�1Y

k=0

(1�µk�t�t)+B(j�1)�t�Zj�t+
j�1X

l=1

j�1Y

k=l

(1�µk�t�t)
⇥
B(l�1)�t � Zl�t

⇤
j = 1, 2, 3, ...

(S43)

Proof. Similar to proof of Proposition 1169
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S4.5.2 A fixed µ170

If the data set we are interested in spans a short enough time period that the natural mor-171

tality rate µt is approximately constant, these recurrence relations become much simpler.172

With constant natural mortality the solutions to the recurrence relations stated in Equa-173

tions (S31) & (S32) become174

Sj�t = S0(1� µ�t)j +
jX

k=1

(1� µ�t)j�k
⇥
B(k�1)�t � Zk�t

⇤
j = 1, 2, 3, .. (S44)

175

Ij�t = I0(1� (� + µ)�t)j +
jX

k=1

(1� (� + µ)�t)j�k
Zk�t j = 1, 2, 3, ... (S45)

S4.5.3 Dependence on initial conditions176

The solutions to the recurrence relations display the dependence of the estimates St and It177

on the initial conditions S0 and I0. Here we will look at the case when the natural mortality178

rate µ is approximately constant over the data set (i.e., we will use Equations (S44) & (S45)).179

In the estimates, the initial condition S0 is multiplied by (1�µ�t)j and the initial condition180

I0 is multiplied by (1� (�+µ)�t)j. For measles parameters(Table 2), and assuming �t = 1181

week, (1�µ�t)j ⇡ 0.999j, whereas (1�(�+µ)�t)j ⇡ 0.461j. Thus as time increases, St and182

It will depend less and less on the initial conditions. However, dependence on I0 decreases183

much more rapidly, than dependence on S0. Plotting 0.461j and 0.999j as a function of time,184

we see that St depends on S0 for a long time, whereas It rapidly has negligible dependence185

on I0.186

param.meas <- param.define(type = "Measles", no.years = 20)

with(param.meas,{
weeks <- seq(0, 52*4, by = 1)

## assuming Delta t = 1 week,
## j in units of 1 week
S0.depend <- (1 - mu)^weeks

I0.depend <- (1 - (gamma.val + mu))^weeks

plot(weeks/52, I0.depend, type = "l", col = "red", lwd = 2,

main = "Proportion Of Initial Condition In Estimate",

ylab = "Proportion", xlab = "Time (Years)", las = 1)

lines(weeks/52, S0.depend, type = "l", col = "blue", lwd = 2)

legend("right", c("Dependence on $I_0$", "Dependence on $S_0$"),

col = c("red", "blue"), lwd = c(2,2), lty = c(1,1))

})
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S5 Comparing the performance of the �(t)-estimation187

methods188

S5.1 R Code: Relative root mean square estimation error (RRMSE)189

In order to evaluate the performance of the �(t)-estimation methods, we compute the relative190

root mean square error between the true continuous �(t) and the estimated discrete �j�t, j =191

1, 2, ...n. The relative root mean squared error (RRMSE) is the euclidean distance between192

�(t) and �j�t divided by the square root of the number of points in �j�t, and the mean value193

of �(t).194

RRMSE =

vuuuut

Pn
j=1

⇣
�(j�t)� �j�t

⌘2

n

h
�(t)

i2 , (S46)

The R function e.dist() computes the euclidean distance between two vectors. If an element195

in one of the vectors is NA, the distance between the two vectors at that index is set to zero.196

e.dist <- function(vec1, vec2){
## if the vectors arent the same length,
if (length(vec1) != length(vec2)){
# print an error
print("Error in computing distance, vectors are of different length")

}
## compute the distance
summation <- 0

for (index in 1:length(vec1)){
## as long as neither value vec1 or vec2 are NA
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## add the distance between them to the summation
if ((!is.na(vec1[index])) && (!is.na(vec2[index]))){

summation <- summation + (vec1[index] - vec2[index])^2

}
}
summation <- sqrt(summation)

## return the euclidean distance between the two vectors
return(summation)

}

error.est() uses e.dist() to compute the RRMSE in estimating �(t), S(t), and I(t)197

with the S+ and SI methods.198

error.est <- function(est.data, # estimated data
real.data, # true data
## possible delay in computing error,
## default is FALSE.
five.year.delay = FALSE){

## first check if five.year.delay is TRUE
if (five.year.delay == TRUE){
## If so, cut off the first 5 years of the data set.
start <- 5*52

end <- dim(est.data)[1] - 52

est.data <- est.data[start:end, ]

real.data <- real.data[start:end, ]

}

## compute the mean value of beta
mean.val <- mean(real.data$beta)

## compute the number of points in the estimates that are not NA
no.points <- dim(est.data)[1]

no.NA.vals <- length(which(est.data$SI.S == NA))

real.no.points <- no.points - no.NA.vals

div <- sqrt(real.no.points)*mean.val

## compute error in S+ method
S.plus.Beta.error <- e.dist(est.data$S.plus.Beta, real.data$beta)/(div)

## compute error in SI method (using left, right, average endpoints)
SI.Beta.Av.error <- e.dist(est.data$SI.Beta.Av, real.data$beta)/(div)

SI.Beta.End.error <- e.dist(est.data$SI.Beta.End, real.data$beta)/(div)

SI.Beta.Start.error <- e.dist(est.data$SI.Beta.Start, real.data$beta)/(div)
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## compute error in S_t, I_t estimates
SI.S.error <- e.dist(est.data$SI.S, real.data$S)/(div)

SI.I.error <- e.dist(est.data$SI.I, real.data$I)/(div)

## return the error in estimation
output <- c(S.plus.Beta = S.plus.Beta.error,

SI.S = SI.S.error, SI.I = SI.I.error,

SI.Beta.Av = SI.Beta.Av.error,

SI.Beta.End = SI.Beta.End.error,

SI.Beta.Start = SI.Beta.Start.error)

return(output)

}

When using the S method to estimate �(t), we use a slightly di↵erent R function to199

compute error since the time interval between points (�t) is adjusted to be equal to the200

mean generation time (as discussed in section §2).201

## Error in estimating beta for the S method (Fine and Clarkson's method)
error.FC.est <- function(est.beta, est.S, # estimated beta and S

real.beta, real.S, # real beta and S
est.pars){ # parameter values

with(est.pars, {

## First ensure that the timestep between two points of the
## true beta(t) and the true S(t) is equal to the
## mean generation time
mean.gen.time <- round(1/(gamma.val)) # mean generation time in weeks
delta.t <- mean.gen.time # our time step is the mean generation time
## select only the real Beta and S points every delta.t
real.beta.dt <- select.cases(vector = real.beta,

delta.t = mean.gen.time)

real.S.dt <- select.cases(vector = real.S, delta.t = mean.gen.time)

mean.val <- mean(real.beta)

## now since both the real and estimated beta and S
## have the same time distance between the points
## we can compute the error in estimation using e.dist
no.points <- length(est.beta) #number of points
no.NA.vals <- length(which(est.beta == NA)) # number of NAs
real.no.points <- no.points - no.NA.vals # number of non-NA points
div <- sqrt(real.no.points)*mean.val

## error in estimating S(t)
S.error <- e.dist(real.S.dt, est.S)/div
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## error in estimating beta(t)
Beta.error <- e.dist(real.beta.dt, est.beta)/div

output <- c(S = S.error, Beta = Beta.error)

return(output)

})
}

S5.2 R Code: Combining operations to easily estimate �(t)202

In order to quickly generate simulated case notification data and estimate �(t) with each of203

the methods, we define some additional functions that combine these operations. Estimate.Beta()204

estimates S(t), I(t), and �(t) using both the S

+ and SI methods given a set of parameters205

and case notification data.206

## extended.params is a parameter set along with the generated case data
Estimate.Beta <- function(extended.params){
## Compute S and Beta using S+ method
S.plus <- Est.S.plus(est.pars = extended.params)

## Compute S I, and beta using the SI method
S.SI <- Est.SI(est.pars = extended.params)

## Combine it into a data frame.
output <- data.frame(S.plus.Beta = S.plus[[2]], # Beta_t (S+ Method)

SI.S = S.SI[[1]], # S_t
SI.I = S.SI[[2]], # I_t
SI.Beta.Av = S.SI[[3]], # Beta_t (SI Method - average)
SI.Beta.End = S.SI[[4]], # Beta_t (SI Method - right)
SI.Beta.Start = S.SI[[5]] #Beta_t (SI Method - left)

)

## Then return the output
return(output)

}

Simple.comparison.NA() generates the simulated case notification data, estimates S(t),207

I(t), and �(t) using this data and the S

+ and SI method, and then computes the error in208

estimation. If more than 20% of the �(t) estimate is NA, the estimation error is set equal209

to NA, so that we are not favouring estimates that just have more NA values. (NA values210

occur in the S+ method if the case notification data is zero). count.nas is a helper function211

that computes the percent of the estimate that is NA.212

Simple.comparison.NA <- function(beta, # true beta(t)
params, # parameter values
## option to only count error after
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## the first 5 years
five.year.delay = FALSE){

## compute case notification data
SIRdata <- solve.SIR(params = params, beta = beta)

## make an extended parameter list that also includes the
## case notification data
extended.params <- append(params, list(C = SIRdata$C))

## Estimate Beta, S, and I using S+ and SI methods
Estimates <- Estimate.Beta(extended.params)

## look at the percent of values in each estimate that
## is na, using the helper function count.nas
na.percents <- count.nas(Estimates)

## compute the error in the estimation
error <- error.est(est.data = Estimates,

real.data = SIRdata,

five.year.delay = five.year.delay)

## If more than 20\% of the values in an estimate are NA, we change
## the error term to be NA, so that we are aware of what is happening.
for (index in 1:length(na.percents)){

if (na.percents[index] >= 20){
error[index] <- NA

}
}
## return the error vector
return(error)

}

## count.nas is a helper function that counts
## the number of na values in the estimated data set
count.nas <- function(est.data){

col.no <- dim(est.data)[2] # number of columns
row.no <- dim(est.data)[1] # number of rows
## compute the percent of each column that is marked NA
percent.na <- rep(NA, col.no)

for (column in 1:col.no){
percent.na[column] <- 100*length(which(is.na(est.data[,column])))/row.no

}
return(percent.na)

}

S5.3 Estimating the transmission rate: an example213

With simulated case notification data generated from a sinusoidal �(t) and measles pa-214

rameters, we estimate the transmission rate using the S, S+ and SI methods and measles215
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parameters (Table 2). The following serves as an example of implementing the previously216

defined functions in order to produce Figure 1 of the main text.217

## First define the parameter values
param.meas <- param.define(type = "Measles", no.years = 20)

## Then define Beta(t)
## If there is not a random vector already created for Beta create one now
## check if the file "RandomVectorForBeta.csv" exists.
if(file.exists("RandomVectorForBeta.csv") == FALSE){
## if the file doesn't exist, call the function Rand.Vec
# outputs a random vector with the same length as time.
Rand.Vec(length(param.meas$time))

}
## we will have a beta(t) with epsilon = 0 (no noise)
meas.beta <- Create.Beta(param.list = param.meas, amp = 0.08,

period = 1, noise.percent = 0)

## and a beta(t) with epsilon = 0.5 (noise)
meas.beta2 <- Create.Beta(param.list = param.meas, amp = 0.08,

period = 1, noise.percent = 0.5)

## Compute the SIR data set, including the
## simulated case notification data
SIR.data <- solve.SIR(params = param.meas, beta = meas.beta)

## compute beta using the S Method (Fine & Clarkson)
FC.estimate <- Est.FC(est.pars = append(param.meas, list(C = SIR.data$C)))

FC.S <- FC.estimate[[1]]

FC.Beta <- FC.estimate[[2]]

FC.Time <- FC.estimate[[3]]

## compute the error in estimation.
FC.error <- error.FC.est(est.beta = FC.Beta, est.S = FC.S,

real.beta = meas.beta,

real.S = SIR.data$S,

est.pars = param.meas)

## compute beta using the S+ Method and SI Method
Estimate <- Estimate.Beta(extended.params = append(param.meas,

list(C = SIR.data$C)))

SI.Beta <- Estimate[,6] # SI estimate
S.plus.Beta <- Estimate[,1] # S+ estimate

## compute the error in estimation
error <- error.est(est.data = Estimate,
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real.data = SIR.data)

## Then let's plot each of the estimates of beta(t):
par(mfrow = c(1,2), oma = c(0,0,0,0)) # two panel plot
par(mar = c(3, 5, 0.1, 0.1)) # set up margins
with(param.meas,{

yrs <- times/52 # time is in weeks, lets plot in years
## we want to plot beta in units of R0
## so need to multiply it by mult:
mult <- pop.size/(gamma.val + mu)

## plot the real beta
plot(yrs, meas.beta*mult, lwd = 1, ylim = c(14, 24), xlab = "",

ylab = "$\\beta(t)$ (in units of $\\R$)", type = "l")

## plot S method estimate, has a different time step
lines(FC.Time/52, FC.Beta*mult, col = "green", lty = 1, lwd = 0.8)

## plot SI method
lines(yrs, SI.Beta*mult, col = "blue", lwd = 0.8)

## plot S+ method
lines(yrs, S.plus.Beta*mult, col = "red", lty =3, lwd = 1)

## Create a legend
legend("bottomright", c("$\\beta(t)$", "$S$ Method",

"$S^+$ Method", "$SI$ Method"),

col = c("Black", "Green", "Red", "Blue"), lty = c(1, 1, 3, 1),

lwd = c(1, 0.8, 0.4, 0.6), cex = 0.7)

})

## Then, lets look at the case of a noisy beta(t).
## (meas.beta2 defined above)
## Compute the SIR data with the noisy beta term,
## including the simulated case notificaiton data
SIR.data.N <- solve.SIR(params = param.meas, beta = meas.beta2)

## compute beta using the S Method
FC.estimate.N <- Est.FC(est.pars = append(param.meas,

list(C = SIR.data.N$C)))

FC.S.N <- FC.estimate.N[[1]]

FC.Beta.N <- FC.estimate.N[[2]]

FC.Time.N <- FC.estimate.N[[3]]

## compute the error in estimation
FC.error.N <- error.FC.est(est.beta = FC.Beta.N, est.S = FC.S.N,

real.beta = meas.beta,

real.S = SIR.data.N$S, est.pars = param.meas)

## compute beta using the S+ Method and SI Method
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Estimate.N <- Estimate.Beta(extended.params = append(param.meas,

list(C = SIR.data.N$C)))

## compute the error in estimation
error.N <- error.est(est.data = Estimate.N,

real.data = SIR.data.N)

S.plus.Beta.N <- Estimate.N[,1] # S+ method
SI.Beta.N <- Estimate.N[,6] # SI method

## plot the results with a noisy beta.
par(mar = c(3, 0.1, 0.1, 4))

with(param.meas,{
yrs <- times/52 # time is in weeks, lets plot in years
mult <- pop.size/(gamma.val + mu)

## plot true beta
plot(yrs, (meas.beta2*mult), lwd = 1, ylim = c(14, 24),

xlab = "", ylab = "", type = "l", yaxt = "n")

## plot S method estimate
lines(FC.Time.N/52, FC.Beta.N*mult, col = "green", lty = 1, lwd = 0.8)

## plot SI method estimate
lines(yrs, SI.Beta.N*mult, col = "blue", lwd = 0.6)

## plot S+ method estimate
lines(yrs, S.plus.Beta.N*mult, col = "red", lty = 3, lwd = 0.4)

mtext("Time(Years)", adj = 1, side = 1, line = 2) # xaxis label
})
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S6 Dependence on parameter values218

It is important that the �(t)-estimation methods are accurate for a wide range of parameter219

values. To explore the parameter space, we start with a set of measles or smallpox parameters220
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(see Table 2) and then vary one parameter at a time by a factor of 4, from 25% to 400% of221

its value in the measles or smallpox parameter set (see Table 2).222

S6.1 R Code: Dependence on �, ⌫, µ, S0,& I0223

First, we explore the parameter space of the mean generation time �

�1, the birth rate ⌫,224

the natural mortality rate µ, the initial amount of susceptibles S0, and the initial amount of225

infected individuals I0. We define several R functions to state the parameter range explored,226

compute the error in estimating �(t) for each parameter in the range explored, and plot227

the resulting estimation error as a function of each parameter value. The structure of the228

functions used in this section is displayed in the following tree:229

230

ParamDepend()

Plot.Params()compute.RRMSE()

PRL.implications()range.list()simple.comparison.NA()

Parameter.Range()

add.real()

231

232

233

ParamDepend() is the overall function that is called when investigating dependence on pa-234

rameter values. It uses Parameter.Range() to compute a vector that contains the range235

of values explored for the specified parameters, compute.RRMSE() to compute the error236

in estimating �(t) for each value of the parameter in the range, and Plot.Params() to237

plot the resulting error for a variety of parameter values. We will begin with defining the238

ParamDepend() function.239

ParamDepend <- function(beta, # chosen transmission rate
orig.param, # original parameter set
## option to compute the error after the first
## five years have passed:
five.year.delay = FALSE,

method.name, # either "S+" or "SI.start"
min.error.val = 0, # min error for plotting
max.error.val, # max error for plotting
max.percent, # max percent in param range
min.percent, # min percent in param range
stored.data.name, # so we can just reload the data
param.name, # specify for plotting
noise.percent = 0, # epsilon in beta definiton
right = FALSE,# if right=TRUE,yaxis drawn on the right
x.spot = 3.2, y.spot = 0.018, # legend location
legend = FALSE, # if legend = TRUE we plot a legend
cex.val = 1.5, # size of points.
...){
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## if the error in estimation as a function of param values has already
## been computed, then we load the saved error information from
## stored.data.name. If the estimation error has not yet been computed,
## stored.data.name will not exist, and we will go through the
## computation process.
if (!file.exists(stored.data.name)){
## The error as a function of a parameter value is stored in
## Error.Param.List. Each entry corresponds to a data frame for
## a specific parameter (indicated by param.index)
## that contains the parameter range (as a % of the original value)
## and the error in estimating beta (t) for each value in that range.
Error.Param.List <- vector(mode = "list", length = 6)

## EPL.i is the index of Error.Param.List
EPM.i <- 1

## Length out is the number of points we want in our parameter range
length.out <- 15

## index.4 checks if this is the first time we are looking at
## the natural mortality rate (= 0 if first time, else = 1)
index.4 <- 0

## then for each parameter, compute the estimation error in the S+
## or SI methods for the range of explored values.
for (param.index in c(3, 4, 4, 10, 11, 9)){

## first get the parameter range and percentange range
## (percentage range = parameter range / original parameter value)
## using the subfunction Parameter.Range
output <- Parameter.Range(max.percent = max.percent,

min.percent = min.percent,

orig.param = orig.param,

param.index = param.index,

length.out = length.out)

## mu.only = TRUE means that only mu is varied, and nu stays equal to
## its value in the orig.param set.
## mu.only = FALSE, means that we vary nu alongside mu keeping
## the two parameters equal (so there is no change in pop size)
## if index.4 == 0, set mu.only = FALSE
if (index.4 == 0){ mu.only <- FALSE }
## if index.4 == 1,set mu.only = TRUE
else{ mu.only <- TRUE }
## if the parameter.index is 4, then increase the index.4 counter
if (param.index == 4){ index.4 <- index.4 + 1 }

## Then for each value in the parameter range, compute
## the error in estimating beta (t) with the S+ or SI method.
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error.vec <- compute.RRMSE(orig.param = orig.param,

param.index = param.index,

range = output[[1]], # param range
method.name = method.name, # S+ or SI.start
five.year.delay = five.year.delay,

mu.only = mu.only,

noise.percent = noise.percent)

## store this estimation error into Error.Param.List as
## a data frame, with the first column equal to the percentage range
## and the second column equal to the error.
Error.Param.List[[EPM.i]] <- data.frame(percent.range=output[[2]],

error = error.vec)

EPM.i <- EPM.i + 1

}
## save the data set so we don't have to compute it again
save(Error.Param.List, file = stored.data.name)

}

## now lets plot the error
## define a list of colours
col.list <- c("slateblue2", "darkseagreen4", "darkslategray3",

"deeppink3", "mediumorchid2", "tan1")

## define the legend label names
label.names <- c("$ \\gamma^{-1}$" , "$ \\mu = \\nu $",

"$ \\mu $","$ S_0 $", "$ I_0 $", "$ \\nu $")

## plot the data using the function Plot.Params
Plot.Params(stored.data.name = stored.data.name,

col.list = col.list,

label.names = label.names,

min.error.val = min.error.val,

max.error.val = max.error.val,

min.percent = min.percent, max.percent = max.percent,

right = right, x.spot = x.spot, y.spot = y.spot,

cex.val = cex.val, param.name = param.name,

legend = legend, ...)

}

Next we will define the Parameter.Range() function, which takes a parameter value240

specified in param.index and varies that parameter from 25% to 400% of its value in the241

measles or smallpox parameter set. In this section, we are defining R functions that help242

investigate how estimation accuracy depends on parameter values, but in the next section243

we will look at sensitivity of estimation accuracy to incorrect parameters values (§S7). Thus244

in the Parameter.Range() function, the marker incorrect = TRUE specifies that we are245

dealing with incorrect parameters.246
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## outputs a parameter range for the parameter in orig.param[param.index]
## where the range is from min.percent*param.val to max.percent*param.val
## spread equally across length.out points.
Parameter.Range <- function(max.percent, min.percent,

orig.param, # original parameter set
param.index, # index of parameter to vary
length.out, # length of the parameter range
incorrect = FALSE){

## incorrect = TRUE => dealing with incorrect parameter values

## a. Find the original parameter value
real.param <- orig.param[[param.index]]

## b. find the parameter range
## Case 1: Population Size (param.index == 2),
## mu(t) (param.index == 4)
## case fatality/reporting ratio (param.index == 7),
## S0 (param.index == 10), & I0 (param.index == 11)
if (is.element(param.index, c(2, 4, 7, 10, 11))){
## vary the parameter from smallest to largest value
range <- seq(min.percent*real.param, max.percent*real.param,

length.out = length.out)

## add.real adds the real.param to the range,
## if the marker incorrect = TRUE
range <- add.real(range, real.val = real.param, incorrect)

## compute the percent range of the true parameter
percentage.range <- range/real.param

}
## Case 2. Mean Generation Time/ Gamma Val (param.index == 3)
else if (param.index == 3){ # case 2
## In this case we actually want to vary the mean generation time
## not just gamma, and we increase/ decrease the mean gen time
## by one day incremets
real.MGT <- 7/real.param # real mean generation time
## mean gen time range, increasing by 1 day each time
MGT.range <- seq(round(min.percent*real.MGT),

round(real.MGT*max.percent), by = 1)

## our actual range is in terms of gamma:
range <- 7/MGT.range

percentage.range <- MGT.range/real.MGT

}
## Case 3: T.report (param.index == 5), T.recover (param.index == 6)
else if (param.index == 5 | param.index == 6){
## We need T.report and T.recover to be a multiple of Delta t
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## Here the time unit is set to be equal to Delta t, so we need
## T.report and T.recover to be non-negative integers.
range <- seq(round(min.percent*real.param),

round(max.percent*real.param), by = 1)

percentage.range <- range/real.param

}
## Case 4: Birth.input (param.index == 9)
else if (param.index == 9){
## Birth.input is not just a parameter, but a vector
## of the number of births at each point in time.
## If we are varying birth.input, we first find nu(t)
## (the per capita birth rate) = births/population
real.param <- orig.param[[9]][1]/orig.param[[2]]

## then find the range of nu(t).
nu.range <- seq(min.percent*real.param, max.percent*real.param,

length.out = length.out)

nu.range <- add.real(nu.range, real.val = real.param, incorrect)

percentage.range <- nu.range/real.param

## then the range of birth.input is going to be a list of vectors
range <- list(NA)

for (index in 1:length(nu.range)){
range[[index]] <- nu.range[index]*

orig.param$pop.size*rep(1, length(orig.param[[9]]))

}
}
## if we don't fall under one of those cases, print a message
else{

print("Input for param.index is not in the range of accepted values.")

}
## return the range of parameter values.
return(list(range, percentage.range))

}

Parameter.Range() calls a sub-function add.real() that adds the true parameter value247

(from the base parameter set) to the parameter range if it is not in the range already. The248

‘true’ value is only added if the marker incorrect = TRUE. Although this is only useful249

for the section dealing with sensitivity to incorrect parameters (§S7), since add.real() is a250

sub-function of Parameter.Range() we will define it here.251

add.real <- function(range, # parameter range
real.val, # 'true' value of the parameter
incorrect){

## if we are looking at sensitivity to incorrect parameters,
## then incorrect = TRUE, and we want to add real.val to the range
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if (incorrect == TRUE){
## if real.val is NOT already in the range:
if (!is.element(real.val, range)){

## then check if the range is increasing or decreasing:
if ((range[2] - range[1]) < 0){

decr.boolean <- TRUE

}
else{

decr.boolean <- FALSE

}
## and add the real.value accordingly.
new.range <- sort(c(range, real.val), decreasing = decr.boolean)

}
}
## otherwise, real.val is in the range, so just return the original vector
else{

new.range <- range}
return(new.range)

}

The main function ParamDepend() uses compute.RRMSE() to compute the error in esti-252

mating �(t) for each parameter value in the parameter range given. compute.RRMSE() calls253

several sub-functions: Create.Beta() (defined in §S2.3), Simple.comparison.NA (defined254

in §S5.2), range.list (defined in §S2.2), and PRL.implications() (defined below).255

compute.RRMSE <- function(orig.param, param.index,

range, method.name,

five.year.delay,

mu.only = FALSE, noise.percent = 0){
## for each element in the parameter range, create a parameter set
## that contains this element as the parameter value for param.index
## Then make a list of these parameter sets, one set for each
## element in the parameter range.
param.range.list <- range.list(orig.param = orig.param,

param.index = param.index, range = range)

## a change in one parameter will sometimes imply a change in another
## (eg. changing S0 changes the other initial conditions)
## PRL.implications goes through and implements all the implied changes
param.range.list <- PRL.implications(orig.param,

param.range.list = param.range.list,

param.index = param.index,

mu.only = mu.only, range = range)

## then for every parameter set in param.range.list compute the
## error between the true beta (t) and the estimated beta_t
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index <- 1

error.vec <- rep(NA, length(range)) # vector to store the estimation error
for (param.set in param.range.list){
## compute beta (t) with the parameter values in param.set
current.beta <- Create.Beta(param.list = param.set, amp = 0.08,

period = 1, noise.percent = noise.percent)

## compute estimation error
error <- Simple.comparison.NA(beta = current.beta, params = param.set,

five.year.delay = five.year.delay)

if (method.name == "SI.start"){
## then estimation error is stored in the 6th element
error.vec[index] <- error[6]

index <- index + 1

}
else if (method.name == "S+"){
## then estimatino error is stored in the 1st element
error.vec[index] <- error[1]

index <- index + 1

}
}
## return the estimation error as a function of the parameter range.
return(error.vec)

}

Many of our parameter values depend on other parameters. For example, if we change one256

of the initial conditions, the initial number of susceptible, infectious, and removed individuals257

must still add up to the initial population size. PRL.implications() ensures that a change258

in one parameter results in all dependent parameters being adjusted accordingly.259

PRL.implications <- function(orig.param, param.range.list,

param.index, mu.only = FALSE, range = range,

incorrect = FALSE){
## Case 1: If gamma changes (ie mean gen time changes)
if (param.index == 3){
## adjust T.report and T.recover to be the mean generation time rounded
## to the nearest observation interval.
## Change T.report (if incorrect = TRUE we don't change it because
## sensitivity to incorrect reporting time is something we later explore)
if (incorrect == FALSE){
param.range.list <- extra.range.list(range.list = param.range.list,

param.index = 5,

range = round(1/range))

}
## Change the T.recover values
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param.range.list <- extra.range.list(range.list = param.range.list,

param.index = 6,

range = round(1/range))

}
## Case 2: If S0 or I0 changes
## If we are changing the initial conditions then we
## need to make sure they still all add up to one
## (they are stated as proportions of the population.)
else if (param.index == 10){ # if we changed S0
## Change the values of R.init to be 1 - I0 - S0
I.init.val <- orig.param[[11]]

param.range.list <- extra.range.list(range.list = param.range.list,

param.index = 12,

range = (1 - I.init.val - range))

}
else if (param.index == 11){ # if we changed I0
# Change the values of R.init to be 1 - I0 - S0
S.init.val <- orig.param[[10]]

param.range.list <- extra.range.list(range.list = param.range.list,

param.index = 12,

range = (1 - S.init.val - range))

}
## Case 3: If the natural mortality rate is changing
else if (param.index == 4 & mu.only == FALSE){
# if mu.only == FALSE we want to keep nu = mu when ranging mu
pop.size <- orig.param$pop.size

len <- length(orig.param$Birth.input)

range.vec <- list(NA)

for (index in 1:length(range)){
range.vec[[index]] <- range[index]*pop.size*rep(1, len)

}
param.range.list <- extra.range.list(range.list = param.range.list,

param.index = 9,

range = range.vec)

}
## Case 4: If we change the population size,
## we need to adjust the recorded births
else if (param.index == 2){

mu <- orig.param$mu

len <- length(orig.param$Birth.input)

range.vec <- list(NA)

for (index in 1:length(range)){
range.vec[[index]] <- range[index]*mu*rep(1, len)

}
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param.range.list <- extra.range.list(range.list = param.range.list,

param.index = 9,

range = range.vec)

}

## If the parameter that is ranging is NOT one of the initial conditions,
## We need to change the initial conditions so that we always start from
## the equillibrium value of the unforced model with constant beta
param.range.list <- fix.IC(param.range.list, param.index, orig.param)

return(param.range.list)

}

fix.IC <- function(param.range.list, # list of parameter sets
param.index, # index of the parameter that changed
orig.param){ # original parameter set

## if the parameter is mu, gamma, or population size:
## then adjust the initial conditions accordingly.
if (is.element(param.index, c(2, 3, 4))){

for (index in 1:length(param.range.list)){
## record the parameter values
eGamma <- param.range.list[[index]]$gamma.val

eMu <- param.range.list[[index]]$mu

ePop <- param.range.list[[index]]$pop.size

eR0 <- param.range.list[[index]]$R0

## Then define the new initial conditions.
Init.S <- 1/eR0

mean.beta <- eR0*(eGamma + eMu)/ePop

Init.I <- (eR0 - 1)*eMu/(mean.beta*ePop)

Init.R <- 1 - Init.S - Init.I

param.range.list[[index]]$Init.S <- Init.S

param.range.list[[index]]$Init.I <- Init.I

param.range.list[[index]]$Init.R <- Init.R

}
}
return(param.range.list)

}

The last function we need to define for this section is Plot.Params() which plots the260

relative root mean square error (RRMSE) in estimating �(t) for the di↵erent parameter261

ranges.262
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Plot.Params <- function(stored.data.name, # estimation error
col.list, # list of plotting colours
label.names, # legend labels
min.error.val, # min error plotted
max.error.val, # max error plotted
right, # if right = TRUE, yaxis drawn on right side
min.percent,

max.percent, # max/min percent in param range
param.name, # parameter set name printed on plot
x.spot, y.spot, # legend location
cex.val = 1.5, # size of the points
legend = FALSE, ...){

## Start a plot that will show the error for a range of parameters.
plot(0, 0, xlab = "Parameter Range", ylab = "",

col = "white", ylim = c(min.error.val, max.error.val),

xlim = c(min.percent, max.percent), ..., xaxt = "n", las = 1)

## decide on the x-axis labels of the plot:
delta.x <- 0.5 # space between labels (50\%)
num.vec <- 100*seq(0, max.percent, by = 0.5)

## Want to write the label as a percent not a proportion,
## so write out label names seperately
label.vec <- rep(NA, length(num.vec))

for(index in 1:length(label.vec)){
label.vec[index] <- paste(num.vec[index], "\\%", sep = "")

}
## Create the x-axis
axis(side = 1, at = seq(0, max.percent, by = delta.x),

labels = label.vec)

## If right = TRUE, create a yaxis on the right side of the plot
if (right == TRUE){

axis(4, las = 1)

}
else{ # if right = FALSE, label the yaxis with RRMSE

mtext("RRMSE", side = 2, line = 4)

}
## add a line showing where 100\% is.
abline(v = 1, col = "gray39", lty = 2, lwd = 2)

## add gridlines to make the plot more readable.
grid(lwd = 2, col = "gray80")

## Print the name of the parameter set on the plot
## in the top left corner (eg. Measles Parameters)
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if (max.percent == 4){ # if the max percent range is 4
## print the name at x = 3.5

text(3.50, max.error.val, param.name, cex = 1.2)

}
else{ ## otherwise print the name at 1.75

text(1.75, max.error.val, param.name, cex = 1.2)}

## Then for each dataframe in Error.Param.List plot the estimation error
## as a function of the percentage parameter range.
load(stored.data.name) # contains Error.Param.List
for (index in 1:length(Error.Param.List)){

dataset <- Error.Param.List[[index]] # data set for one parameters
## plot error as a function of the percentage param range.
lines(dataset[[1]], dataset[[2]], pch = 21,

lwd = 4, type = "b", bg = col.list[index],

col = col.list[index], cex = cex.val)

## outline the points in black
points(dataset[[1]], dataset[[2]], pch = 1,

col = "black", cex = cex.val)

}

## the if legend == TRUE add a legend to the plot
if (legend == TRUE){

k <- length(label.names)

legend(x = x.spot, y = y.spot, label.names,

col = col.list, lty = rep(1, k), pch = rep(1,k),

pt.cex = rep(cex.val, k), lwd = rep(4, k),

bg = "white", cex = 1.2, text.width = 0.5)

}
}

S6.1.1 The dependence of estimation accuracy on parameter values with a263

‘noisy’ �(t)264

In the main text, dependence of estimation accuracy for the SI and S

+ methods on parameter265

values was shown in Figure 2 for both measles and smallpox base parameter sets. There, we266

used a smooth �(t) (✏ = 0 in Equation (S11)) to generate the simulated data and later be267

estimated by the S+ and SI methods. Here we will produce a similar error dependence plot268

but for a ‘noisy’ �(t), where ✏ = 0.5 in Equation (S11).269

## 1. Define the Parameters:
years <- 20

param.meas <- param.define(type = "Measles", no.years = years) # measles
param.small <- param.define(type = "Smallpox", no.years = years) # smallpox
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## 2. Define Beta(t)
## If there is not a random vector already created for Beta create one now
## check if the file "RandomVectorForBeta.csv" exists.
if(file.exists("RandomVectorForBeta.csv") == FALSE){
## if the file doesn't exist, call the function Rand.Vec
# which outputs a random vector for the time series
Rand.Vec(length(param.meas$time))

}
## beta with measles parameters and epsilon = 0.5
meas.beta2 <- Create.Beta(param.list = param.meas,

amp = 0.08, period = 1, noise.percent = 0.5)

## beta with smallpox parameters and epsilon = 0.5
small.beta2 <- Create.Beta(param.list = param.small,

amp = 0.08, period = 1, noise.percent = 0.5)

## 3. Compute the estimation error as a function of parameter values
par(mfrow = c(2,2))

lb <- 0.02 # yaxis lower bound
ub <- 0.08 # yaxis upper bound

## Case 1: Measles, S+ Method
par(mar = c(5, 5, 2, 0) + 0.1)

ParamDepend(beta = meas.beta2, orig.param = param.meas,

method.name = "S+", min.error.val = lb, max.error.val = ub,

max.percent = 4, min.percent = 0.25, five.year.delay = FALSE,

stored.data.name = "SplusMeasles-Noisy.Rdata",

main = "$S^+$ Method", param.name = "Measles Parameters",

noise.percent = 0.5)

## Case 2: Measles, SI Method
par(mar = c(5, 0, 2, 5) + 0.1)

ParamDepend(beta = meas.beta2, orig.param = param.meas,

method.name = "SI.start", min.error.val = lb, max.error.val = ub,

max.percent = 4, min.percent = 0.25, five.year.delay = FALSE,

stored.data.name = "SIMeasles-Noisy.Rdata",

main = "$SI$ Method", param.name = "Measles Parameters",

noise.percent = 0.5, yaxt = "n", right = TRUE)

## Case 3: Smallpox, S+ Method
par(mar = c(6, 5, 1, 0) + 0.1)

ParamDepend(beta = small.beta2, orig.param = param.small,

method.name = "S+", min.error.val = lb, max.error.val = ub,

max.percent = 4, min.percent = 0.25, five.year.delay = FALSE,

stored.data.name = "S+SmallPox-Noisy.Rdata",
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param.name = "Smallpox Parameters",

noise.percent = 0.5)

## Case 4: Smallpox, SI Method
par(mar = c(6, 0, 1, 5) + 0.1)

ParamDepend(beta = small.beta2, orig.param = param.small,

method.name = "SI.start", min.error.val = lb, max.error.val = ub,

max.percent = 4, min.percent = 0.25, five.year.delay = FALSE,

stored.data.name = "SISmallPox-Noisy.Rdata",

param.name = "Smallpox Parameters", noise.percent = 0.5,

yaxt = "n", right = TRUE, legend = TRUE, y.spot = 0.06)
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The plot demonstrates the a↵ect that di↵erent parameter values have on estimation error270

with a ‘noisy’ �(t). With a noisy transmission rate the benefit of using the SI method over271

the S

+ method becomes clear. The SI estimation error is approximately twice as small272

than the S

+ estimation error. These plots bear a strong resemblance to Figure 2, except273

for an overall increase in error due to the noise in transmission. For both smooth and noisy274

transmission rates, estimation error is primarily influenced by S0.275

S6.1.2 Why does the estimation error peak in value, when ⌫(t) is approximately276

twice as large as in the measles parameter set?277

When looking at dependence of estimation accuracy on parameter values, we found that for278

both a smooth and noisy transmission rate, error in estimation as a function of the birth279
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rate ⌫ peaks if ⌫ is twice as large as its value in the measles parameter set. In order to280

understand why this happens we plot the true �(t) along with the estimated �(t) in this281

case. Both the S

+ and SI methods estimate �(t) well except for a dip in the estimates, at282

the peak of �(t). These dips in estimation do not occur for the regular measles parameter283

set (as we saw in Figure 1). This dip is due to an overestimation of I(t) at each of the points284

of maximum transmission. We can see this by looking at a plot of the estimated �(t) and285

I(t).286

## start out with measles parameters
param.dip <- param.meas

## then double the amount of births
param.dip$Birth.input <- 2*param.dip$Birth.input

## then lets simulate case notification data and estimate beta(t)
## with each of our methods.
D1 <- solve.SIR(params = param.dip, beta = meas.beta)

## compute beta using the S+ Method and SI Method
Estimate1 <- Estimate.Beta(extended.params = append(param.dip,

list(C = D1$C)))

SI.Beta <- Estimate1[,6] # SI estimate
S.plus.Beta <- Estimate1[,1] # S+ estimate
SI.S <- Estimate1[,2] # S_t estimate
SI.I <- Estimate1[,3] # I_t estimate

## Now let's plot beta(t) and I(t) and their estimated values
par(mfrow = c(2,1), mar = c(0, 5, 4, 2) + 0.1)

with(param.dip,{
## a. plot beta(t) and its estimates
col1 <- c(brewer.pal(8, 'Accent')[c(8)])
yrs <- times/52 # time is in weeks, lets plot in years
## we want to plot beta in units of R0
## so need to multiply it by mult:
mult <- pop.size/(gamma.val + mu)

end <- which(yrs > 5.2)[1] # just look at the first 5.2 years
## plot the real beta
plot(yrs[1:end], meas.beta[1:end]*mult, lwd = 5,

ylim = mult*c(0.95*min(meas.beta), 1.1*max(meas.beta)),

xlab = "", col = col1, las =1, xaxt = "n",

ylab = "$\\beta(t)$ (in units of $\\R$)", type = "l",

main = "Estimating $\\beta(t)$
(measles parameters with $\\nu(t)$ doubled)")

## plot SI method
lines(yrs[1:end], SI.Beta[1:end]*mult, col = "blue", lwd = 3)

## plot S+ method
lines(yrs[1:end], S.plus.Beta[1:end]*mult, col = "red", lty =3, lwd = 3)
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grid(col = gray(0.9)) # add a grid
## Create a legend
legend("bottomright",

c("$\\beta(t)$", "$S^+$ Method Estimate", "$SI$ Method Estimate"),

col = c(col1, "Red", "Blue"),

lty = c(1, 3, 1) , lwd = c(5, 3, 3), cex = 0.9, bg = "white")

## b. plot I(t) and its estimate I_t
par(mar = c(4, 5, 0, 2) + 0.1)

col2 <- "#1b9e77" # turquoise
col1 <- "#e7298a" # pink
plot(yrs[1:end], D1$I[1:end], lwd = 3, type = "l", # I(t)

col = col1, ylab = "",

xlab = "Time (Years)", las = 1)

lines(yrs[1:end], SI.I[1:end], col = col2, lwd = 3, lty = 1) #I_t
mtext("$I(t)$", las = 1 , side = 2, line = 3)

grid(col = gray(0.9)) # add a grid
## Create a legend
legend("bottomright", c("True $I(t)$", "Estimated $I_t$"),

col = c(col1, col2),

lty = c(1, 1), lwd = c(3, 3), cex = 0.9, bg = "white")

})
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S6.2 R Code: Dependence on R0 and ↵287

The seasonal amplitude ↵ and mean of the transmission rate �(t) also a↵ects the performance288

of each of the methods. Figures 3–4 of the main text, display the error in estimating �(t)289

with measles parameters for a range of R0 2 [0, 30] and ↵ 2 [0, 0.1]. Here we will present290

the underlying R functions used to produce Figures 3–4.291

The main function beta.2D() calls comp.error.2d() to compute the error in estimating292

�(t) for a range of R0 and ↵ values, and then plots these results using ColorPlot.2D().293

beta.2D <- function(R0.range, # Range of R0 values
amplitude.range, # Range of Alpha values
param, # parameter set
period, # period of beta(t) (usually 1 yr)
noise.percent, # epsilon value
five.year.delay = FALSE,

max.val.legend = 2, # maximum error plotted
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matrix.file.name, # location where the
# estimation error is stored

binom.dist = FALSE,

outer.title = ""){ # specify overall title
## (binom.dist = TRUE) means that we want to simulate case notification
## data with a binomial distribution to mimick observation error.

with(as.list(param), {
## (1) Compute all of the error:

## If the error has not been previously computed and stored,
## use comp.error.2d to compute the error for the range of R0
## and alpha.
cond1 <- file.exists(paste(matrix.file.name, "-SI.csv", sep = ""))

cond2 <- file.exists(paste(matrix.file.name, "-S+.csv", sep = ""))

if(cond1 == FALSE | cond2 == FALSE){
error.output <- comp.error.2d(R0.range = R0.range,

amplitude.range = amplitude.range,

param = param,

period = period,

noise.percent = noise.percent,

five.year.delay = five.year.delay,

binom.dist = binom.dist,

matrix.file.name)

}

else { # If the error has already been computed and saved, then
name1 <- paste(matrix.file.name, "-SI.csv", sep = "")

name2 <- paste(matrix.file.name, "-S+.csv", sep = "")

error.output <- list(as.matrix(read.csv(name2, row.names = 1)),

as.matrix(read.csv(name1, row.names = 1)))

}

## (2) Plot the error in a 2D plot with a colour gradient representing
## the estimation error
ColorPlot.2D(error.matrices = error.output, x.values = amplitude.range,

y.values = R0.range, max.value = max.val.legend,

noise.percent = noise.percent, outer.title = outer.title)

})
}

comp.error.2d takes in a range of R0 and ↵, and for every R0-↵ pair, creates a �(t)294

and uses this to simulate case notification data. It then estimates �(t) using the S+ and SI295

method and the simulated data, and computes the error in estimation. The error is stored296

in a matrix with rows corresponding to ↵ and columns corresponding to R0.297
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comp.error.2d <- function(R0.range,

amplitude.range,

param, period, noise.percent,

five.year.delay, binom.dist = binom.dist,

matrix.file.name){
with(as.list(param), {

n <- length(amplitude.range)

m <- length(R0.range)

## create empty matrices to store the estimation error for the SI
## and S plus beta-estimation methods.
error.SI.start <- matrix(data = rep(0, (n*m)), nrow = n, ncol= m)

error.S.plus <- matrix(data = rep(0, n*m), nrow = n, ncol = m)

## now for every value in amplitude.range and R0.range
## we compute the error in estimating Beta
for (R0.index in 1:m){ # for every R0 value

for (amp.index in 1:n){ # and every amplitude value

## create a parameter list to use
pass.params <- list(gamma.val = gamma.val, mu = mu,

pop.size = pop.size,

R0 = R0.range[R0.index],

times = times)

# Create beta(t)
beta.vec <- Create.Beta(param.list = pass.params,

amp = amplitude.range[amp.index],

period = period,

noise.percent = noise.percent)

## lets replace any possible negative beta entry with zero.
neg.vals <- which(beta.vec < 0)

beta.vec[neg.vals] <- 0

## compute initial conditions for the given R0.
Init.S <- 1/R0.range[R0.index]

mean.beta <- R0.range[R0.index]*(gamma.val + mu)/pop.size

Init.I <- (R0.range[R0.index] - 1)*mu/(mean.beta*pop.size)

Init.R <- 1 - Init.S - Init.I

## place these in a parameter list
param.use <- replace.param(param, param.index = 10,

new.val = Init.S)

param.use <- replace.param(param.use, param.index = 11,

new.val = Init.I)
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param.use <- replace.param(param.use, param.index = 12,

new.val = Init.R)

#now we compute the SIR model
SIR.set <- solve.SIR(params = param.use, beta = beta.vec,

binom.dist = binom.dist)

## Estimate beta(t) using the S+ and SI method
Est <- Estimate.Beta(append(param.use, list(C = SIR.set$C)))

## Concern: In the case of case notification data from the
## stochastic SEIR model (when looking at sensitivity
## to process error) fadeout is possible.
## If there is fadeout, we want the estimate of Beta(t) to
## be NA and not 0. This already happens in the S+ method
## (since we get divide by zero), but needs to be adjusted for
## the SI method (stored in Estimates[,6])
no.zeros <- which(Est[,6] == 0)

Est[,6][no.zeros] <- rep(NA, length(no.zeros))

## If more than 20\% of the values in an estimate are NA, we change
## the error term to be 0. Then, when plotting the R0-alpha values
## that cause a 0 error term is marked in gray. We do not want to
## be mislead that estimates have small error if
## they are NA most of the time.
na.percents <- count.nas(Est) # count the number of NA values
temp <- error.est(est.data = Est, real.data = SIR.set,

five.year.delay = five.year.delay)

for (index in 1:length(na.percents)){
if (na.percents[index] >= 20){

temp[index] <- 0

}
}

## Then store the estimation methods in the matrices
error.SI.start[amp.index, R0.index] <- temp[6]

error.S.plus[amp.index, R0.index] <- temp[1]

## Check if I(t) < 0 at some point, if so this will also
## be plotted in white, so we know something is going on.
## It also prints warning messages.
I.check <- which(SIR.set$I < 0 )

if (length(I.check) > 0){
print(paste("negative I values at mean value: ",
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R0.range[R0.index], "at R0.index: ",

R0.index, "amplitude: ",

amplitude.range[amp.index]))

print(paste("min value: ", min(SIR.set$I, na.rm = TRUE)))

error.SI.start[amp.index, R0.index] <- -1e-16

error.S.plus[amp.index, R0.index] <- -1e-16

}
} # end of ranging through the amplitudes

} # end of ranging through the R0 values.

## save the matrices holding the error information to .csv filed
name1 <- paste(matrix.file.name, "-SI.csv", sep = "")

name2 <- paste(matrix.file.name, "-S+.csv", sep = "")

write.csv(error.SI.start, name1)

write.csv(error.S.plus, name2)

## return the computed error matrices
return(list(error.S.plus, error.SI.start))

})
}

ColorPlot.2D takes in the matrices computed by comp.error.2d and plots them, with298

↵ on the x-axis and R0 on the y-axis. For each R0-↵ pair, a point is plotted with a colour299

corresponding to the RRMSE. calc.col() is a sub-function that chooses the colour to plot300

a point with given the RRMSE in each case.301

ColorPlot.2D <- function(error.matrices, # the 2 error matrices
x.values, # x values in our plot (amplitude)
y.values, # y values in our plot (mean value)
max.value, # max error to be plotted
noise.percent = 0, # percent noise in beta
outer.title = ""){ # outer title for the plot

par(oma = c(1, 2, 2, 2))

## set up the plotting area.
layout(matrix(c(1, 1, 1, 1, 2, 2, 2, 2, 3), nrow = 1, ncol = 9,

byrow = TRUE))

## find the maximum value for the error legend.
max.vals <- rep(NA, 2)

min.vals <- rep(NA, 2)

index <- 1

for (matrix in error.matrices){
max.vals[index] <- max(matrix[which(matrix < max.value)])

min.vals[index] <- min(matrix)
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index <- index + 1

}

max.val <- max(max.vals)

min.val <- min(min.vals)

titles <- c("$S^+$ Method", "$SI$ Method") # plot titles

## plot the results
index <- 1

par(mar = c(5, 4, 4, 0) + 0.1)

for (matrix in error.matrices){
## Set up the plotting window
if (index == 1){ # If index = 1, keep the y-axis

plot(0, 0, type = "l", col = "white",

ylim = c(min(y.values), max(y.values)),

xlim = c(min(x.values), max(x.values)),

xlab = "$\\alpha$", ylab = "",

main = titles[index], las = 1, cex.lab = 1.5)

mtext("$\\R$", side = 2, line = 3, las = 1)}
if (index == 2){ # if index = 2, don't print the y-axis

par(mar = c(5, 1, 4, 3) + 0.1)

plot(0, 0, type = "l", col = "white",

ylim = c(min(y.values), max(y.values)),

xlim = c(min(x.values), max(x.values)),

xlab = "$\\alpha$",
main = titles[index], yaxt = "n", las =1, cex.lab = 1.5)

}
## then for each entry in the matrix plot a point
## representing the estimation error
for (col.index in 1:(dim(matrix)[2])){ # for every matrix column (R0)

for (row.index in 1:(dim(matrix)[1])){# for every matrix row (alpha)
## first determine the color using the function calc.col
val <- matrix[row.index, col.index]

p <- calc.col(val, max.val, min.val)

## then plot the point
points(x.values[row.index], y.values[col.index],

col = p, pch = 15, cex = 2.1)

}
}
index <- index + 1

}
## Then produce an overall title if outer.title is not ""
if (!outer.title == ""){
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title(outer.title, outer = TRUE, cex.main = 2)

}
## create a color legend on the side.

list.of.colors <- blue2green2red(51)

list.of.vals <- seq(min.val, max.val, length.out = 51)

par(mar = c(5, 1, 4, 4) + 0.1)

plot(0, 0, col = "white", ylim = c(min.val, max.val),

xlab = "", main = "RRMSE", xaxt = "n",

ylab = "", yaxt = "n", las = 1, cex.main = 0.85)

axis(4, las = 1)

for (index in 1:length(list.of.vals)){
points(0, list.of.vals[index], col = list.of.colors[index],

pch = 15, cex = 2)

}

}

calc.col <- function(val, # value to assign a color to
max.val, # min and max error values
min.val){

library("colorRamps")

## if val = 0, the estimate has more than 20\% NA values
if (val == 0){

plot.col <- "gray"

}
## if val = -1e-16 the I(t) term has negative parts
else if (val == -1e-16){

plot.col <- "white"

}
## if value is greater than the max value to put on the legend
else if (val > max.val){

plot.col <- "black"

}
else{ # otherwise: use the blue2green2red color scheme

list.of.colors <- blue2green2red(51)

list.of.vals <- seq(min.val, max.val,

length.out = length(list.of.colors))

k <- which(list.of.vals >= val)[1]

plot.col <- list.of.colors[k]

}
return(plot.col)
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}

S6.2.1 Dependence on R0 and ↵ with smallpox parameters302

Figures 3–4 of the main text display how the error in estimation depends on the values of303

R0 and ↵ for measles parameters. We will reproduce the same figures here, but for smallpox304

parameters, looking both at a smooth and noisy �(t) (✏ = 0 and ✏ = 0.5 respectively).305

## 1. Smooth transmission rate beta(t)
RR <- seq(2, 30, by = 1) # range of R0 values
amp <- seq(0, 0.1, length.out = length(RR)) # range of alpha values

## compute and plot the estimation error
beta.2D(R0.range = RR, amplitude = amp,

param = param.small, # smallpox parameters
period = 1, noise.percent = 0,

five.year.delay = FALSE, matrix.file.name = "Smallpox-0noise")
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This figure produced with smallpox parameters looks very similar to Figure 3 which306

was produced for measles parameters, except that the overall error estimation scale here is307

smaller. As in Figure 3 the SI method performs better overall, and large values of R0 and308

↵ decrease estimation accuracy for both methods.309

## 2. Noisy transmission rate beta(t)
RR <- seq(2, 30, by = 1)

amp <- seq(0, 0.1, length.out = length(RR))
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## Smallpox, zero noise:
beta.2D(R0.range = RR, amplitude = amp,

param = param.small, # smallpox parameters
period = 1, noise.percent = 0.5,

five.year.delay = FALSE, matrix.file.name = "Smallpox-50noise")
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This figure for smallpox parameters looks qualitatively identical to Figure 4 of the main310

text which was produced with measles parameters. For this noisy transmission rate, the311

estimation error increases quickly with large ↵ since noise is added to �(t) in proportion to312

↵.313

S6.2.2 Estimating transmission rates with large amplitude314

Up to think point, we have looked at how estimation accuracy depends on the seasonal315

amplitude ↵ of transmission for ↵ 2 [0, 0.1]. This is because ↵ is estimated to be 0.08 for316

measles [1], and between 0.032�0.12 for smallpox (in London, England from 1664 - 1930) [3].317

However, we are interested to see how each estimation method performs for transmission rates318

with large seasonal amplitude. Here we examine the estimation error for ↵ 2 [0, 0.9]. First,319

we look at the case with a smooth transmission rate (✏ = 0 in Equation (S11)).320

## Case 1: Smooth beta(t)
RR <- seq(2, 30, by = 1) # R0 range
amp.large <- seq(0, 0.9, length.out = length(RR)) # alpha range
beta.2D(R0.range = RR,

amplitude.range = amp.large,

param = param.meas, period = 1,

noise.percent = 0, max.val.legend = 1,

five.year.delay = FALSE,
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matrix.file.name = "Measles-0noise-largealpha-3")
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The grey squares represent a �(t)-estimate that is NA for more than 20% of the time.321

This usually means that for many time intervals �t there is no case notifications. The black322

squares mean that the error in estimation is greater than one. Here we see an interesting wave323

pattern when looking at estimation error as a function of R0. There is a clear advantage324

to using the SI method for estimation, except in the case of small R0 (< 10) and very325

large ↵, where there is a lot of error in the SI method. In all other places the SI method326

outperforms the S

+ method. In order to gain a clearer understanding of the estimation327

accuracy displayed in this plot, let’s look at the actual estimates for �(t) with the S

+ and328

SI methods and measles parameters if R0 = 20 and ↵ = 0.5.329

## define parameters and beta
param.meas <- param.define(type = "Measles", no.years = 20)

case1.beta <- Create.Beta(param.list = param.meas,

amp = 0.5, period = 1, noise.percent = 0)

## solve the SIR model
Case1 <- solve.SIR(param = param.meas, beta = case1.beta)

## estimate beta using the S+ and SI methods
Estimates1 <- Estimate.Beta(append(param.meas, list(C = Case1$C)))

## now plot Beta(t) and the estimates
par(mfrow = c(1,1))

with(param.meas, {
end <- which(times > 10*52)[1]

mult <- pop.size/(gamma.val + mu)

max1 <- mult*max(case1.beta)*2

min1 <- mult*min(case1.beta)/2
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## plot the true beta(t)
plot(times[1:end]/52, mult*case1.beta[1:end], lwd = 5, type = "l",

main = "$\\alpha = 0.5, \\R = 20, \\epsilon = 0$",

ylim = c(min1, max1), xlab = "Time (Years)",

ylab = "$\\beta(t)$ (in units of $\\R$)", col = gray(0.3), las = 1)

## plot the S+ method estimate
lines(times[1:end]/52, mult*Estimates1[,1][1:end],

col = "red", lty = 3, lwd = 3)

## plot the SI method estimate
lines(times[1:end]/52, mult*Estimates1[,6][1:end],

col = "blue", lwd = 3)

## add a legend
legend("topright",

c("True $\\beta(t)$", "Estimated $\\beta_t$ ($S^+$ method)",

"Estimated $\\beta_t$ ($SI$ method)"),

col = c(gray(0.3), "red", "blue"), lwd = c(5,3,3),

lty = c(1,3,1), bg = "white", text.width = 3, cex = 0.8)

})
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So we see that estimating transmission rates with such large seasonal amplitude produce330

some interesting results. Here both methods are producing an estimated transmission rate331
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that has a period longer than one year.332

Next, we will look at the dependency of estimation error for ↵ 2 [0, 0.9],R0 2 [0, 30] if333

we use a ‘noisy’ transmission rate (✏ = 0.5 in Equation (S11)).334

beta.2D(R0.range = RR,

amplitude.range = amp.large,

param = param.meas, period = 1,

noise.percent = 0.5, max.val.legend = 1,

five.year.delay = FALSE,

matrix.file.name = "Measles-50noise-largealpha-3")
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Since the noise is added as a proportion of the amplitude ↵, estimation accuracy decreases335

quickly for large values of ↵ simply because the underlying �(t) is much noisier. Here we see336

a clear advantage in using the SI method. We will look at one specific set of estimates for337

the ‘noisy’ transmission rate with R0 = 20 and ↵ = 0.8.338

## use measles parameters, choose alpha = 0.8, epsilon = 0.5
param.meas <- param.define(type = "Measles", no.years = 20)

case2.beta <- Create.Beta(param.list = param.meas, amp = 0.8,

period = 1, noise.percent = 0.5)

## solve the SIR model in each case
Case2 <- solve.SIR(param = param.meas, beta = case2.beta)

## estimate beta(t)
Estimates2 <- Estimate.Beta(append(param.meas, list(C = Case2$C)))

## now plot Beta(t) and the estimates
par(mfrow = c(1,1))

with(param.meas, {
end <- which(param.meas$times > 52*5)[1]
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mult <- pop.size/(gamma.val + mu)

max2 <- mult*max(case2.beta)*2

min2 <- mult*min(case2.beta)/2

plot(times[1:end]/52, mult*case2.beta[1:end], lwd = 5, type = "l",

main = "$\\alpha = 0.8, \\R = 20, \\epsilon = 0.5$",

ylim = c(min2, max2), xlab = "Time (Years)",

ylab = "$\\beta(t)$ (in units of $\\R$)",
col = gray(0.3), las = 1)

lines(times[1:end]/52, mult*Estimates2[,1][1:end],

col = "red", lty = 3, lwd = 3)

lines(times[1:end]/52, mult*Estimates2[,6][1:end],

col = "blue", lwd = 3)

legend("topright",

c("True $\\beta(t)$", "Estimated $\\beta_t$ ($S^+$ method)",

"Estimated $\\beta_t$ ($SI$ method)"),

col = c(gray(0.3), "red", "blue"), lty = c(1,3,1),

lwd = c(4,2,2), bg = "white", text.width = 2)

})
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This plot clearly emphasizes the benefit of using the SI method in the case of a noisy339

transmission rate. Even with very large seasonal amplitude, the transmission rate is predicted340
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accurately by the SI method, but the S

+ method predicts some very large values for the341

transmission rate.342

S7 Sensitivity to incorrect parameters343

Many parameter values necessary for these fast estimation methods are unknown (e.g., re-344

porting ratio, initial number of susceptibles, etc), and are di�cult to estimate. In this section,345

we explore how well the �(t)-estimation methods perform if they estimate �(t) with incorrect346

parameter values. Starting from a base set of measles or smallpox parameters, the simulated347

case notification data is generated. Then, the S

+ and SI methods are given this simulated348

data and a set of parameters, where one is incorrect. We measure the estimation error for349

each method with an incorrect parameter, in order to get an idea of which parameter values350

are essential to know for accurate estimation of the transmission rate.351

S7.1 R Code: Sensitivity to incorrect parameters352

The main function that computes the estimation error for each set of parameter values and353

plots the results is named ParamIncorrect(). It calls many of the functions previously de-354

fined in §S6.1 (the structure is very similar to the tree in §S6.1) but compute.RRMSE.Incorrect()355

is used instead of compute.RRMSE()356

ParamIncorrect <- function(beta, orig.param, # transmission rate and params
five.year.delay = FALSE,

method.name, # either "S+" or "SI.start"
min.error.val = 0,

max.error.val, # min/max error plotted
max.percent,

min.percent, # min/max percent range
right = FALSE, # if yaxis should go on the right
stored.data.name, # name where we store the data
param.name, ...){ # name of the parameter set

## If the estimation error has been computed for all the parameters sets
## then we just load the saved data in stored.data.name
## But if that file doesn't exist, we will go through the process of
## computing estimation error.
if (!file.exists(stored.data.name)){
## The error as a function of the incorrect parameter value is stored in
## Error.Param.List. Each entry corresponds to a data frame for the
## parameter indicated by param.index that contains the parameter range
## of incorrect values and the error in estimation
Error.Param.List <- vector(mode = "list", length = 7)

EPM.i <- 1 # index of the Error.Param.List
## number of points we want in each range:
length.out <- 15
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## then for each parameter, vary one parameter from 50% to 200% of
## its correct value, and compute the error in using that incorrect
## parameter
for (param.index in c(3, 4, 5, 7, 9, 10, 11)){
# first get the range of parameter values and percentange range
output <- Parameter.Range(max.percent = max.percent,

min.percent = min.percent,

orig.param = orig.param,

param.index = param.index,

length.out = length.out,

incorrect = TRUE)

## compute the error for each value in the parameter range
error.vec <- compute.RRMSE.Incorrect(orig.param = orig.param,

param.index = param.index,

range = output[[1]],

method.name = method.name,

five.year.delay = five.year.delay,

beta = beta, mu.only = TRUE)

## store that error in Error.Param.List
Error.Param.List[[EPM.i]] <- data.frame(percent.range = output[2],

error = error.vec)

## increase the index of Error.Param.List by 1
EPM.i <- EPM.i + 1

}
## save this data set for next time
save(Error.Param.List, file = stored.data.name)

}

## define a list of colours
col.list <- c("slateblue2", "darkslategray3", "darkseagreen4",

"gray20", "deeppink3", "mediumorchid2", "tan1")

## state the legend label names
label.names <- c("$ \\gamma^{-1}$" , "$ \\mu $", "$\\Trep$",

"$\\rho \\eta$", "$ \\nu $","$ S_0 $", "$ I_0 $")

## Plot the data using Plot.Params
Plot.Params(stored.data.name = stored.data.name,

col.list = col.list,

label.names = label.names,

min.error.val = min.error.val,

max.error.val = max.error.val,

min.percent = min.percent, max.percent = max.percent,

x.spot = 1.7, y.spot = 0.95, right = right,

param.name = param.name, ...)

}
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compute.RRMSE.Incorrect() takes in a transmission rate �(t) and a set of ’true’ pa-357

rameters (measles or smallpox) and generates simulated case notification data. Then, using358

a parameter set that contains one incorrect parameter at a time, it computes the RRMSE359

in estimation of �(t).360

compute.RRMSE.Incorrect <- function(orig.param, # parameter set
param.index, # parameter to explore
range, # parameter range
method.name, # S+ or SI.start
five.year.delay,

beta, # beta (t)
mu.only){ # vary mu independantly of nu

## Compute the SIR and case notification data with the true parameters
SIR <- solve.SIR(params = orig.param, beta = beta)

## for each element in the parameter range, we create a parameter set
## that contains this element as the parameter value for param.index.
## Then each of these parameter sets are stored together in a list:
## param.range.list
param.range.list <- range.list(orig.param = orig.param,

param.index = param.index, range = range)

## since a change in one parameter sometimes implies a change in another
## parameter PRL.implications goes through and implements all these changes
param.range.list <- PRL.implications(orig.param = orig.param,

param.range.list = param.range.list,

param.index = param.index,

mu.only = mu.only,

range = range,

## incorrect = TRUE if we are
## dealing with incorrect parameters
incorrect = TRUE)

## create an vector to store the estimation error
error.vec <- rep(NA, length(param.range.list))

index <- 1 # index of the error vector
## Then estimate beta using the parameters in param.range.list
## and compute the estimation error
for (param.set in param.range.list){ # for each parameter set
## combine the parameter set and case notification data:
e.p <- append(param.set, list(C = SIR$C))

## estimate Beta, S, I using the S+ and SI method
Estimates <- Estimate.Beta(e.p)

## count the number of NA entries in the Estimates
na.percents <- count.nas(Estimates[1])[1]

## compute the error in estimation
error <- error.est(est.data = Estimates, # estimated beta/S/I

real.data = SIR, # true beta/S/I
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five.year.delay = five.year.delay)

## then if more than 20% of the estimate is NA values,
## we replace the error term with an NA value
for (index.na in 1:length(na.percents)){

if (na.percents[index.na] >= 20){
error[index.na] <- NA

}
}
## add the estimation error to the vector
if (method.name == "SI.start"){

error.vec[index] <- error[6]

index <- index + 1

}
else if (method.name == "S+"){

error.vec[index] <- error[1]

index <- index + 1

}
}
return(error.vec)

}

S7.2 Comparing sensitivity to incorrect parameter values between361

the S

+ and SI methods362

In the main text, Figure 5 shows the sensitivity of the SI estimation method to incorrect363

parameters for smallpox and measles. The S+ method is not presented in Figure 5 since the364

di↵erence in error between the S

+ and SI method is much smaller than the error obtained365

by using incorrect parameter values. Here, we show sensitivity to incorrect parameter values366

for measles and smallpox parameters for both the S

+ and SI methods. From the produced367

figure it is clear that sensitivity of both methods to incorrect parameters is very similar.368

par(mfrow = c(2,2))

## Case 1: Measles Parameters, S+ Method
par(mar = c(5, 5, 4, 0.2) + 0.1)

ParamIncorrect(beta = meas.beta, orig.param = param.meas,

method.name = "S+", min.error.val = 0,

max.error.val = 1, max.percent = 2, min.percent = 0.5,

stored.data.name = "MeasIncorrect-Splus.Rdata",

param.name = "Measles Parameters", main = "S+ method")

## Case 2: Measles Parameters, SI Method
par(mar = c(5, 0.2, 4, 5) + 0.1)

ParamIncorrect(beta = meas.beta, orig.param = param.meas,
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method.name = "SI.start", min.error.val = 0,

max.error.val = 1, max.percent = 2, min.percent = 0.5,

stored.data.name = "MeasIncorrect2.Rdata",

param.name = "Measles Parameters", main = "SI method",

right = TRUE, yaxt = "n") # draw y-axis on right side of plot

## Case 3: Smallpox Parameters, S+ Method
par(mar = c(5, 5, 4, 0.2) + 0.1)

ParamIncorrect(beta = small.beta, orig.param = param.small,

method.name = "S+", min.error.val = 0,

max.error.val = 1, max.percent = 2, min.percent = 0.5,

stored.data.name = "SmallIncorrect-Splus.Rdata",

param.name = "Smallpox Parameters", main = "S+ Method")

## Case 4: SmallPox Parameters, SI Method
par(mar = c(5, 0.2, 4, 5) + 0.1)

ParamIncorrect(beta = small.beta, orig.param = param.small,

method.name = "SI.start", min.error.val = 0,

max.error.val = 1, max.percent = 2, min.percent = 0.5,

stored.data.name = "SmallIncorrect2.Rdata",

param.name = "Smallpox Parameters", main = "SI method",

right = TRUE, yaxt ="n", legend = TRUE) # add a legend
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S7.3 Sensitivity of incorrect parameters when estimating the trans-369

mission rate for 20 or 300 years370

The above plot demonstrates the estimation error that results when estimating the trans-371

mission rate with an incorrect parameter over 20 years of weekly simulated case notification372

data. What would happen if we instead estimated the transmission rate with an incorrect373

parameter for over 300 years of weekly data? Which incorrect parameters would cause error374

in estimation to increase over this much longer data set? Here we compare sensitivity to375

incorrect parameters when the transmission rate is estimated for 20 or 300 years.376

## First lets plot the 20 year error plot:
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par(mar = c(5, 5, 4, 0.2) + 0.1, mfrow = c(1,2))

ParamIncorrect(beta = meas.beta, orig.param = param.meas,

method.name = "SI.start", min.error.val = 0,

max.error.val = 1, max.percent = 2, min.percent = 0.5,

stored.data.name = "MeasIncorrect2.Rdata",

param.name = "Measles Parameters",

main = "$20$ years (SI method)",

legend = TRUE)

## Then look at error over 300 years:
## define a 300 year set of measles parameters
param.long <- param.define(type = "Measles", no.years = 300)

with(param.long,{
## Create a sinusoidal beta(t) for 300 years
## compute the mean value of beta
b0 <- R0*(gamma.val + mu)/pop.size # mean value of Beta
ppy <- (365/7) # data points per year
## compute beta.vec
beta.vec <- b0*(1 + 0.08*cos(2*pi*times/(ppy)))

## Plot the estimation error
par(mar = c(5, 0.2, 4, 5) + 0.1)

ParamIncorrect(beta = beta.vec, orig.param = param.long,

method.name = "SI.start", min.error.val = 0,

max.error.val = 1, max.percent = 2, min.percent = 0.5,

stored.data.name = "MeasIncorrect-SI-Long.Rdata",

param.name = "Measles Parameters",

main = "$300$ Years (SI Method)",

right = TRUE, yaxt = "n")

})
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377

So here we see that after 300 years, the estimation error incurred by incorrect estimates of378

⇢⌘, ⌫, and µ has compounded. We particularly see that over this length of time estimation379

accuracy becomes much more sensitive to an incorrect estimate for the natural mortality rate380

µ. Also, sensitivity to S0 decreases over this length of time, since eventually the susceptible381

update equation will depend very little on S0.382

S8 Sensitivity to observation error383

Up until this point, the case notification data has been simulated using the SIR model384

(Equation (1)), which produces unrealistically smooth and clean data. In order to mimic385

the observation error that is present in data sets, we assume that the case notification data386

is sampled from a binomial distribution, where the probability of a case being recorded is387

equal to the reporting/case fatality ratio (⇢⌘). In order to implement this in the already388

defined R functions, we just need to set the marker binom.dist = TRUE in the solve.SIR()389

function when generating the simulated case notification data.390

Figure 6 of the main text displays how the S

+ and SI methods perform in the presence391

of observation error for measles parameters, a reporting/case fatality ratio of 0.2 and a range392

of ↵ 2 [0, 0.1],R0 2 [0, 30].393

S8.1 An example of estimating �(t) with observation error394

To visualize the estimation error it is helpful to look at a sample estimate of �(t) in the395

presence of observation error. Here we choose the case with measles parameters and the396

reporting/case fatality ratio ⇢⌘ = 0.5.397
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## measles parameters
cf.params <- param.meas

cf.params$cf.RR <- 0.5 # reporting/case fatality ratio of 0.5
## Compute the SIR data set, and the simulated case notification data
## Select binom.dist = TRUE
CF.data <- solve.SIR(params = cf.params, beta = meas.beta,

binom.dist = TRUE)

## Compute beta using the S+ Method and SI Method
Estimate <- Estimate.Beta(extended.params = append(cf.params,

list(C = CF.data$C)))

SI.Beta <- Estimate[,6] # SI estimate
S.plus.Beta <- Estimate[,1] # S+ estimate
## Plot beta(t) and the estimates
par(mfrow = c(2,1), oma = c(0,0,0,0)) # two panel plot
with(cf.params,{
## 1. Plot the simulated case notification data:
yrs <- times/52 # time is in weeks, lets plot in years
end <- which(yrs > 5)[1]

bin.title <- "Binomially Distributed Case

Notification Data ($\\rho \\eta = 0.5$)"

plot(yrs[1:end], CF.data$C[1:end], type = "l", lwd = 2, ylab = "Cases",

main = bin.title, xlab = "Time (Years)")

## 2. Plot beta(t) and the estimates.
## Plot beta in units of R0, so need to multiply beta by mult:
mult <- pop.size/(gamma.val + mu)

## plot the real beta
plot(yrs[1:end], meas.beta[1:end]*mult, lwd = 2, ylim = c(16, 26),

xlab = "", ylab = "$\\beta(t)$ (in units of $\\R$)", type = "l",

main = "Estimating $\\beta(t)$ with Observation Error")

## plot SI method
lines(yrs[1:end], SI.Beta[1:end]*mult, col = "blue", lwd = 0.8)

## plot S+ method
lines(yrs[1:end], S.plus.Beta[1:end]*mult, col = "red", lty =3, lwd = 1)

## Create a legend
legend("topleft", c("$\\beta(t)$", "$S^+$ Method", "$SI$ Method"),

col = c("Black", "Red", "Blue"), lty = c(1, 3, 1),

lwd = c(1, 0.4, 0.6), cex = 0.7, bg = "white")

})
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For ⌘⇢ = 0.5, estimation of �(t) using both methods provide accurate enough results that398

the overall shape of the transmission rate is easily recognized. The SI method does estimate399

�(t) better in this case.400

S8.2 Sensitivity to observation error in estimating �(t) for small-401

pox parameters402

In the main text, Figure 6 gives us a picture of the performance of the S

+ and SI methods
in the presence of observation error for measles parameters. Here we will produce the same
figure, but for smallpox parameters instead.



Masters Thesis - M. deJonge; McMaster University - Mathematics & Statistics 110

RR <- seq(2, 30, by = 1)

amp <- seq(0, 0.1, length.out = length(RR))

param.small.cf <- param.small

param.small.cf$cf.RR <- 0.2 # 20 % of people that get measles die from it.

beta.2D(R0.range = RR,

amplitude.range = amp,

param = param.small.cf,

period = 1, noise.percent = 0,

matrix.file.name = "Smallpox-bin-20percentCF",

binom.dist = TRUE)
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For smallpox parameters, we do see a slightly di↵erent pattern in ↵ and R0 than for403

measles parameters. Both parameter sets indicate that small values ofR0 (R0 < 4) decreases404

estimation of the transmission rate. However, unlike measles parameters, increasing R0 and405

↵ with smallpox parameters does not increase the estimation error. There is very little406

change in error for smallpox parameters for this range of R0 and ↵ values.407

S8.3 Estimation error for a range of reporting/case fatality ratio408

values409

Figure 6 of the main text looks at the case of observation error when the reporting/case410

fatality ratio ⇢⌘ is 20%. For ⇢⌘ from 10% to 100%, the dependence of estimation accuracy411

on R0 and ↵ looks qualitatively identical to Figure 6. As ⇢⌘ increases, the observation error412

decreases, and so the overall estimation error is smaller. In order to demonstrate that this413

estimation error has the same pattern in R0 and ↵ for a range of ⇢⌘, we show a series of414
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plots for ⌘⇢ = 0.1, 0.2, 0.5,& 0.9 with measles parameters (plotting code suppressed).415

416
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S8.4 R Code: The dependence of estimation error on ⇢⌘417

The above plots for ⇢⌘ = 0.1, 0.2, 0.5, 0.9 are qualitatively very similar, however the maximum418

and minimum values on the RRMSE legend decrease as ⇢⌘ increase. In order to see how this419

estimation error changes as a function of ⇢⌘ we plot the maximum and minimum estimation420

error for R0 2 [0, 30] and ↵ 2 [0, 0.1] for a range of ⇢⌘ values from 0.05 to 1. This is done421

with the function max.min():422
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max.min <- function(cf.range, # range of reporting/case fatality ratios
given.param){ # parameter values

## if we haven't already computed the max and min values
if (!file.exists("CFlegend.Rdata")){
## create space for the max and min for the S+ and SI methods
max.val.cflegend.SI <- rep(NA, length(cf.range))

min.val.cflegend.SI <- rep(NA, length(cf.range))

max.val.cflegend.Splus <- rep(NA, length(cf.range))

min.val.cflegend.Splus <- rep(NA, length(cf.range))

## for every reporting/case fatality ratio compute the maximum
## and minimum estimation error
for(index in 1:length(cf.range)){

given.param$cf.RR <- cf.range[index]

## (we increase R0 by 2 to cut down on computation time)
R0.range <- seq(2, 30, by = 2) # then for R0 from 2 to 30
## and alpha from 0 to 0.1:
amplitude.range = seq(0, 0.1, length.out = length(R0.range))

## compute the estimation error
error.output <- comp.error.2d(R0.range = R0.range,

amplitude.range = amplitude.range,

param = given.param,

period = 1,

noise.percent = 0,

five.year.delay = FALSE,

binom.dist = TRUE,

matrix.file.name = "temp.csv")

## then store the min and max estimation error for each method
max.val.cflegend.SI[index] <- max(error.output[[2]])

min.val.cflegend.SI[index] <- min(error.output[[2]])

max.val.cflegend.Splus[index] <- max(error.output[[1]])

min.val.cflegend.Splus[index] <- min(error.output[[1]])

## And save these vectors in a data set
save(min.val.cflegend.SI, max.val.cflegend.SI,

min.val.cflegend.Splus, max.val.cflegend.Splus,

file = "CFlegend.Rdata")

}
}

## Then load the max and min estimation error values
load("CFlegend.Rdata")

## And plot the results:
library("colorRamps")

colour.list <- blue2green2red(51)

red.col <- colour.list[51] # define plotting colours
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blue.col <- colour.list[1]

min <- min(c(min.val.cflegend.Splus, min.val.cflegend.SI))

max <- max(c(max.val.cflegend.Splus, max.val.cflegend.SI))

y.range <- c(min, max)

## plot min of S+
plot(cf.range, min.val.cflegend.Splus, type = "b",

lwd = 1.5, pch = 16, cex = 0.6,

ylab = "RRMSE", xlab = "$\\rho \\eta$",
ylim = y.range, col = "lightblue3", las = 1,

main = "Error in estimation (as a function of $\\rho \\eta$)")
## plot max of S+
lines(cf.range, max.val.cflegend.Splus, type = "b",

lwd = 1.5, pch = 16, cex = 0.6, col = "lightpink3")

## plot min of SI
lines(cf.range, max.val.cflegend.SI, type = "b",

lwd = 1.5, lty = 3, pch = 17, cex = 0.6, col = red.col)

## plot max of SI
lines(cf.range, min.val.cflegend.SI, type = "b",

lwd = 1.5, lty = 3, pch = 17, cex = 0.6, col = blue.col)

## create a legend:
legend("topright", c("Max $S^+$ error", "Min $S^+$ error",

"Max $SI$ error", "Min $SI$ error"),

col = c("lightpink3", "lightblue3", red.col, blue.col),

cex = 0.8, lty = c(1,1, 3, 3),

lwd = c(3, 3, 1, 1), pch = c(16, 16, 17, 17))

}

S8.4.1 Maximum and minimum �(t)-estimation error for ⇢⌘ 2 [0.05, 1]423

Now lets actually use max.min() to look at the maximum and minimum estimation error424

for R0 2 [2, 30],↵ 2 [0, 0.1] for a range of ⇢⌘.425

## for a range of reporting/case fatality ratios:
cf.range <- seq(0.05, 1, by = 0.05)

## find the max and min estimation error and plot it
max.min(cf.range = cf.range, given.param = param.meas)
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S8.5 Estimating the transmission rate with very small report-426

ing/case fatality ratios427

Very small reporting/case fatality ratios make estimation of the transmission rate very inac-428

curate, to the point where the estimated �(t) is not helpful in determining any characteristics429

of �(t). Here we demonstrate estimation of �(t) using the SI method, for measles parameters430

with ⇢⌘ = 0.2, 0.1, 0.05, and 0.01. As ⇢⌘ decreases, the estimate for �(t) grows increasingly431

noisy.432

## define the measles parameter set
meas.base <- param.define(type = "Measles", no.years = 20)

## define beta(t)
beta <- Create.Beta(param.list = meas.base, amp = 0.08,
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period = 1, noise.percent = 0)

## Estimate beta(t) with four different case fatality ratios:
par(mfrow = c(4,1), mar = c(2, 4, 0, 7), oma = c(4, 0, 4, 0))

for (cf in c(0.2, 0.1, 0.05, 0.01)){
## define the parameter set:
cfparam <- meas.base

cfparam$cf.RR <- cf

## generate simulated case notification data
CaseNote <- solve.SIR(cfparam, beta = beta, binom.dist = TRUE)

## estimate beta(t) with the SI method
Est.cf <- Estimate.Beta(append(cfparam, list(C = CaseNote$C)))[,6]

end <- which(cfparam$times > 52*5)[1] # only plot the first 5 years
# we will plot beta in units of R0, so define a multiplier (mult)
mult <- cfparam$pop.size/(cfparam$gamma.val + cfparam$mu)

max.val <- mult*max(beta)*2 # max plotting value
min.val <- mult*min(beta)*0.5 # min plotting value
cf.title <- paste("$\\rho \\eta = $", cf)

## plot the true beta(t)
plot(cfparam$times[1:end]/52, mult*beta[1:end],

# ylim = c(min.val, max.val),
ylim = c(10, 30),

lwd = 5, type = "l", xaxt = "n", xlab = "",

ylab = "$\\beta(t)$ (in units of $\\R$)",
col = gray(0.3), las = 1)

if (cf == 0.01){ # if this is that last plot
## add an x-axis:
axis(1)

mtext("Time (Years)", side = 1, outer = TRUE)

}
if (cf == 0.2){ # if this is the first plot, add a title

title("Estimating $\\beta(t)$ With Small $\\rho \\eta$", outer = TRUE)

}
grid()

## plot the estimate
lines(cfparam$times[1:end]/52, mult*Est.cf[1:end], col = "blue", lwd = 2)

mtext(cf.title, side = 4, line = 1, las = 1)

} # end for loop
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S9 Sensitivity to process error433

In order to incorporate discreteness and demographic stochasticity into the simulation of case434

notification data, we use the Gillespie algorithm [2] to provide realizations of the stochastic435

SEIR model. Using measles parameters, for each value of R0 and ↵, we ran 100 realizations436

of the stochastic SEIR model and then used the data from these realizations to estimate �(t).437

For each estimated �(t) we computed the estimation error (RRMSE) and for every R0-↵438

pair we took the median estimation error over the 100 realizations. We looked at population439

sizes of N0 = 100, 000, 500, 000, and 1 million.440
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S9.1 R Code: Sensitivity to process error441

For each R0-↵ pair (R0 2 (2, 4, 8, 16, 32) and ↵ 2 (0, 0.025, 0.05, 0.075, 0.1)), we ran 100 real-442

izations of the stochastic SEIR model to produce 100 time series of simulated case notification443

data. Then �(t) was estimated using the simulated data, and the median estimation error444

over the 100 data sets was recorded. Est.With.Process.Error() computes and plots the445

median estimation error for a given range of R0 and ↵.446

Est.With.Process.Error <- function(R0.sequence, # R0 values
alpha.sequence, # alpha values
population.size,

stored.data.name,

outer.title = ""){
## stored.data name.contains the median error in estimating
## the transmission rate, beta(t) using the S+ and SI methods
## across 100 realizations of the stochastic SEIR model.

## if stored.data.name does not exist, compute the error in estimation
if (!file.exists(stored.data.name)){

## create a data.list that store the names of the
## data set over which we want to look
data.list <- rep(NA, length(R0.sequence))

## population = pop.mult*10^pop.exp for data file notation
pop.exp <- floor(log10(population.size))

pop.mult <- population.size/(10^pop.exp)

for (index in 1:length(R0.sequence)){ # then for each R0 value
## multiply alpha value by 100 for data file notation

alpha.val <- toString(100*alpha.sequence[index])

## There is a bit of a hiccup in the naming of the.csv files
## where alpha = 02 in the .csv file name, means actually 025
## and alpha = 08 in the .csv file name, means actually 075.
## so let's fix the adjustment of our naming system in these two cases.
if (alpha.sequence[index] == 0.025){

alpha.val <- toString(100*0.02)

}
else if (alpha.sequence[index] == 0.075){

alpha.val <- toString(100*0.08)

}

## Then create the parts of the string to identify
## the data file we want
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if ((100*alpha.sequence[index]/10) < 1){ # need 2 digits for alpha
alpha.val <- paste("0", alpha.val, sep = "")

}
R0.val <- toString(R0.sequence[index])

if (R0.sequence[index]/10 < 1){ # need 2 digits for R0
R0.val <- paste("0", R0.val, sep = "")

}
## then store the data name in data.list
data.list[index] <- paste("GillSim-R0=", R0.val, "-alpha=",

alpha.val, "-pop=", pop.exp,

"-popmult=", pop.mult, ".csv", sep = "")

}

## Then for each dataset contained in data.list we will compute
## the median error in estimation over the 100 realizations contained
## in the data set. We will also keep track of how many of the
## realizations fade out before the end of 20 years.

## create space
error.SI <- rep(NA, length(data.list)) # error using SI method
error.Splus <- rep(NA, length(data.list)) # error using S+ method
doesnt.finish <- rep(NA, length(data.list)) # percent fade out

## Then run the function ProcessError (defined below)
## for each of the data sets to compute the estimation
## error and probability of fade out.
index <- 1

for (dataset in data.list){
output <- Process.Error(dataset)

error.Splus[index] <- output[1]

error.SI[index] <- output[2]

doesnt.finish[index] <- output[3]

index <- index + 1

}
## then save these elements to the stored data name.
save(error.SI, error.Splus, doesnt.finish, file = stored.data.name)

}

## load stored.data.name and plot the process error.
load(stored.data.name)

ProcessError.Plot(error.SI = error.SI,

error.Splus = error.Splus,

y.values = R0.sequence, # R0 ranges
x.values = alpha.sequence, # alpha range



Masters Thesis - M. deJonge; McMaster University - Mathematics & Statistics 120

percent.fade.out = doesnt.finish,

outer.title = outer.title)

}

Process.Error() is the function that does the bulk of the work in computing the error447

in estimating �(t). It also records the percentage of cases that end in fade out for each R0-↵448

pairings.449

The 100 sets of simulated data have been stored in a data file named:450

GillSim-R0=xx-alpha=yy-pop=z-popmult=w.csv , where xx is the value for R0 in two451

digits (e.g., xx = 05 if R0 = 5), yy is the value for alpha after the decimal (e.g., ↵ =452

0.08 => yy = 08), z is the exponent on ten for the population size (N = 10z), and popmult453

is the multiple of the population size (N = w10z). Process.Error() assumes the data set454

in named in this manner, and that the distance between recorded time points is equal to the455

time unit.456

library(stringr)

Process.Error <- function(data.set){
## define the measles parameter set
param.meas <- param.define(type = "Measles", no.years = 20)

## Determine R0, alpha, and the population from the data.set name
R0 <- as.numeric(str_sub(data.set, start = 12, end = 13))

alpha <- as.numeric(str_sub(data.set, start = 21, end = 22))/100

pop.exponent <- as.numeric(str_sub(data.set, start = 28, end = 28))

pop.mult <- as.numeric(str_sub(data.set, start = 38, end = 39))

pop.size <- pop.mult*(10^pop.exponent)

## fix alpha (we should have saved the data sets
## with three digits of accuracy for alpha, but since we didn't
## those with three digits need to be corrected)
if (alpha == 0.02){

alpha <- 0.025

}
else if (alpha == 0.08){

alpha <- 0.075

}
Birth.input <- rep(round(pop.size*param.meas$mu), length(param.meas$times))

## define the initial conditions:
mean.beta <- (R0*(param.meas$gamma.val + param.meas$mu)/pop.size)

Init.S <- 1/R0

Init.I <- (R0 - 1)*param.meas$mu/(mean.beta*pop.size)

Init.R <- 1 - Init.S - Init.I
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## Then generate a parameter list to use from now on

param.list <- list(times = param.meas$times,

pop.size = pop.size,

gamma.val = param.meas$gamma.val,

mu = param.meas$mu,

## in the stochastic realizations no delay in reporting
## so t.report = 0
t.report = 0,

t.recover = param.meas$t.recover,

cf.RR = param.meas$cf.RR,

R0 = R0,

Birth.input = Birth.input,

Init.S = Init.S,

Init.I = Init.I,

Init.R = Init.R)

## Then generate the true beta_t that we are using in this case:
beta <- Create.Beta(param.list = param.list, amp = alpha,

period = 1, noise.percent = 0)

## Read in the data generated from the stochastic SEIR model
name.in <- paste("GS/", data.set, sep = "") # In a folder:GS
data.in <- read.csv(name.in)

## count the number of realizations (100 in our case)
no.realizations <- dim(data.in)[2] - 2 #the first 2 cols are for time

## set up space for the following vectors:
## Error in beta estimation for each of the realizations
S.plus.error <- rep(NA, no.realizations) # S+ method
SI.error <- rep(NA, no.realizations) # SI method
## Number of realizations that fade out before the 20 years
doesnt.finish <- 0

## Then for each of the columns that record a set of simulated
## case notification data, lets estimate beta and compute the error
## in our calculation.
for (column.index in 3:(no.realizations + 2)){
## Compute beta using S+ and SI Method:
extended.params <- append(param.list, list(C = data.in[, column.index]))

Estimates <- Estimate.Beta(extended.params)

## If there is fade out, we want the beta estimate to be NA and not 0.
## This already happens in the S+ method (since we get divide by zero)
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## But needs to be adjusted for the SI method (stored in Estimates[,6])
no.zeros <- which(Estimates[,6] == 0)

Estimates[,6][no.zeros] <- rep(NA, length(no.zeros))

## then compute the error in estimation
mean.val <- mean(beta, na.rm = TRUE)

no.points <- dim(data.in)[1]

no.NA.vals <- length(which(is.na(Estimates[,1])))

real.no.points <- no.points - no.NA.vals

div <- sqrt(real.no.points)*mean.val

S.plus.error[(column.index - 2)] <- e.dist(Estimates[,1], beta)/div

SI.error[(column.index - 2)] <- e.dist(Estimates[,6], beta)/div

## Check if there was fade out before 20 years.
## We generally have a lot of error during the time around fade out.
if (is.na(Estimates[(no.points-10), 6])){

doesnt.finish <- doesnt.finish + 1

}
} # end loop over all the realizations

## then take the median of all the errors
median.S.plus.error <- median(S.plus.error, na.rm = TRUE)

median.SI.error <- median(SI.error, na.rm = TRUE)

return(c(median.S.plus.error, median.SI.error, doesnt.finish))

}

ProcessError.Plot then plots the error in estimation of �(t) for the S+ and SI method,457

as well as the probability of fade out before the end of 20 years.458

ProcessError.Plot <- function(error.SI, # estimation error (SI method)
error.Splus, # estimation error (S+ method)
y.values, # R0 values
x.values, # alpha values
# percent cases that fade out before 20 yrs
percent.fade.out, outer.title = ""){

## define plotting layout and parameters
par(oma = c(0,5,3,0))

layout(matrix(c(1, 1, 2, 2, 3, 4, 4, 5), nrow = 1, ncol = 8, byrow = TRUE))

cex.val <- 9 # size of the squares plotted
## define the colour palatte:
library("colorRamps")

part.c <- blue2green2red(51)

part.a <- rev(gray(seq(0.1, 0.98, length.out = 15)))
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part.b <- colorRampPalette(c("gray20", part.c[1]))(3)

list.of.colors <- c(part.a, part.b, part.c)

## 1. plot S+ method estimation error
par(mar = c(5, 0.1, 3, 0.1))

plot(0, 0, type = "l", col = "white", ylim = c(log(1.4), log(45)),

xlim = c(min(x.values - 0.01), max(x.values + 0.01)),

xlab = "$\\alpha$", ylab = "", cex.lab = 1.5,

main = "S+ Method", yaxt = "n")

axis(side = 2, at = log(c(2, 4, 8, 16, 32)),

labels = c(2, 4, 8, 16, 32), las = 1)

mtext("$\\R$", side = 2, line = 3, las = 1)

for (index in 1:length(error.Splus)){
val <- error.Splus[index]

p <- calc.col2(val, list.of.colors) # determine colour
points(x.values[index], log(y.values[index]), col = p,

pch = 15, cex = cex.val)

}

## 2. plot SI method estimation error
par(mar = c(5, 0.1, 3, 0.1))

plot(0, 0, type = "l", col = "white", ylim = c(log(1.4), log(45)),

xlim = c(min(x.values - 0.01), max(x.values + 0.01)),

xlab = "$\\alpha$", ylab = "$\\R$", main = "SI Method",

yaxt = "n", cex.lab = 1.5)

for (index in 1:length(error.SI)){
val <- error.SI[index]

p <- calc.col2(val, list.of.colors) # determine colour
points(x.values[index], log(y.values[index]), col = p,

pch = 15, cex = cex.val)

}

## 3. create a color legend on the side for error estimation
par(mar = c(5, 0.5, 3, 5))

list.of.vals <- c(seq(0.04, 0.1, length.out = (length(list.of.colors)/2)),

seq(0.1, 0.45, length.out = length(list.of.colors)/2))

plot(0, 0, col = "white", ylim = log(c(0.04, 0.45)),

xlab = "", xaxt = "n",

ylab = "", yaxt = "n")

axis.vec <- c(0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5)

axis(4, at = log(axis.vec), labels = axis.vec, las = 1)

for (index in 1:length(list.of.vals)){
points(0, log(list.of.vals[index]), col = list.of.colors[index],

pch = 15, cex = 2)
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}
mtext("RRMSE", side = 3, line = 1, cex = 0.8)

## 4. plot the percent of case that fade out before 20 years
par(mar = c(5, 0.5, 3, 0.1))

## define a new colour scheme,
fadeout.col.scheme <- c("gray95", brewer.pal(9, "YlOrRd"))

fadeout.vals <- seq(0, 100, length.out = length(fadeout.col.scheme))

plot(0, 0, col = "white", ylim = c(log(1.4), log(45)),

xlim = c(min(x.values - 0.01), max(x.values + 0.01)), yaxt = "n",

ylab = "", xlab = "$\\alpha$", cex.lab = 1.5,

main = "Probability of Fadeout")

axis(side = 2, at = log(c(2, 4, 8, 16, 32)),

labels = c(2, 4, 8, 16, 32), las = 1)

for (index in 1:length(percent.fade.out)){
val <- percent.fade.out[index]

p <- fadeout.col.scheme[(which(fadeout.vals >= val)[1])]

points(x.values[index], log(y.values[index]), col = p,

pch = 15, cex = cex.val)

}

## 5. add legend for fadeout percentage
par(mar = c(5, 0.5, 3, 5))

plot(0, 0, col = "white", ylim = c(min(fadeout.vals), max(fadeout.vals)),

xlab = "", xaxt = "n",

ylab = "", yaxt = "n")

axis(4, las = 1, at = seq(0, 100, by = 10),

labels = paste(seq(0, 100, by = 10), "$\\%$", sep = ""))

for (index in 1:length(fadeout.vals)){
points(0, fadeout.vals[index], col = fadeout.col.scheme[index],

pch = 15, cex = 5.5)

}

## If outer.title is specified, list the title:
if (!(outer.title == "")){

mtext(outer.title, side = 3, outer = TRUE)

}
}

## calc.col2 determines which colour to plot each point.
calc.col2 <- function(val, list.of.colors){

list.of.vals <- c(seq(0.04, 0.1, length.out = (length(list.of.colors)/2)),
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seq(0.1, 0.45, length.out = length(list.of.colors)/2))

k <- which(list.of.vals >= val)[1]

plot.col <- list.of.colors[k]

return(plot.col)

}

S9.2 Comparing estimation error for a range of population sizes459

In the main text, Figures 8–9 display the �(t)-estimation error for a range of R0 and ↵ values460

with a population of 100, 000 and 1 million in the presence of process error. Here we will461

also include the estimation error for a population size of 500, 000. We will display the R code462

used to compute and plot the estimation error for a population size of 100, 000. The R code463

for the other population sizes is suppressed as it is almost identical.464

## Case 1: Population size of 100,000
R0.sequence <- c(rep(2, 5), rep(4,5), rep(8, 5), rep(16, 5), rep(32,5))

alpha.sequence <- rep(c(0, 0.025, 0.05, 0.075, 0.1), 5)

output.pop1 <- Est.With.Process.Error(R0.sequence = R0.sequence,

alpha.sequence = alpha.sequence,

population.size = 100000,

stored.data.name = "GSError1.Rdata",

outer.title =

"Population of $100,000$")
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Increasing the population size increases estimation accuracy in both the S+ and SI method.465

Similar to estimates with observation error, small values of R0 and large values of R0 and ↵466

have greater estimation error. Estimating �(t) is inaccurate right before the fade out of the467

disease (if it fades out). This is why estimation error for R0-↵ pairs where there is a high468

probability of fadeout is much higher than cases with a low probability of fadeout.469

S9.3 �(t)-estimation for an infectious disease that fades out470

The estimation methods are inaccurate right before the disease fades out. To see an example471

of this, let’s look at two estimates of �(t), one in the case when the disease fades out,472

and one in the case when the disease persists. We will use measles parameters, but with473

R0 = 2,↵ = 0.1, and N = 500, 000.474
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These figures make it clear that both the S

+ and SI estimation methods are unable to475

estimate �(t) well right before fadeout of the disease, resulting in an estimate that oscillating476

wildly. We also notice that smaller amounts of case notifications each time step results in a477

noisier estimate of �(t). This is especially clear in the case without fadeout when comparing478

years 14 and 15 with years 17� 20.479

S9.4 Plotting the estimate �(t) for a range of population sizes480

Although the figures in §S9.2 give us an idea of the estimation accuracy for a range of R0,481

↵, and population sizes, it is often helpful to have an idea of what an estimate for �(t) with482

that sort of error looks like. With measles parameters we plot the true and estimated �(t)483

in the presence of process error, for a population of 100, 000, 500, 000 and 1, 000, 000. As484
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we increase the population size, the estimate of �(t) becomes less noisy, and the underlying485

transmission rate �(t) becomes much more apparent.486
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