SYNTHESES AND STRUCTURAL CHARACTERIZATION OF NEW XENON(II) COMPOUNDS AND THE USE OF A XENON(II) CATION AS AN OXIDANT FOR THE PREPARATION OF HALOGENATED CARBOCATIONS To my wife,

Nathasha K. Moran

For her constant love and support throughout

my graduate studies

SYNTHESES AND STRUCTURAL CHARACTERIZATION OF NEW XENON(II) COMPOUNDS AND THE USE OF A XENON(II) CATION AS AN OXIDANT FOR THE PREPARATION OF HALOGENATED CARBOCATIONS

By

MATTHEW D. MORAN

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

© Copyright by Matthew D. Moran, 2007

DOCTOR OF PHILOSOPHY

McMaster University Hamilton, Ontario

(Chemistry)

TITLE:SYNTHESES AND STRUCTURAL CHARACTERIZATION
OF NEW XENON(II) COMPOUNDS AND THE USE OF A
XENON(II) CATION FOR THE PREPARATION OF
HALOGENATED CARBOCATIONSAUTHOR:Matthew D. Moran, B.A.Sc. (McMaster University)SUPERVISOR:Professor Gary J. Schrobilgen

NUMBER OF PAGES: 313, xxv

ABSTRACT

The chemistry of Xe(II) has been significantly extended to include the first examples of a neutral Xe(II) oxide fluoride species, $O(XeF)_2$, as well as the first nitrate derivative of Xe(II), FXeONO₂. Until recently, neutral oxide fluorides were known for all formal oxidation states of xenon except Xe(II). The synthesis of the missing oxide fluoride of Xe(II), $O(XeF)_2$, has been accomplished by reaction of the [FXeOXeFXeF][AsF₆] salt with NOF and characterized by NMR spectroscopy in CH₃CN solution at -78 °C and by Raman spectroscopy. Reaction of NO₂F with [FXeONO₂, which slowly decomposes (-78 °C) to XeF₂·N₂O₄. X-ray crystal structures have been determined for FXeONO₂, XeF₂·N₂O₄, and XeF₂·HNO₃. The preparation of the XeONO₂⁺ cation was attempted by the reaction of FXeONO₂ with AsF₅ at -78 °C, but was not directly observed. It is presumed that the cation initially forms, but rapidly decomposes to give Xe, O₂, and [NO₂][AsF₆].

The salt, [XeOTeF₅][Sb(OTeF₅)₆], is a strong, low-temperature oxidant capable of oxidizing halomethanes in SO₂ClF solvent at -78 °C. The CCl₃⁺ and CBr₃⁺ cations have been synthesized by oxidation of CCl₄ and CBr₄, respectively. The CBr₃⁺ cation reacts with BrOTeF₅, produced in the initial redox reaction, to give CBr(OTeF₅)₂⁺, C(OTeF₅)₃⁺, and Br₂. The XeOTeF₅⁺ cation also reacts with BrOTeF₅ to give the Br(OTeF₅)₂⁺ cation. The X-ray crystal structures of [CCl₃][Sb(OTeF₅)₆], [CBr₃][Sb(OTeF₅)₆].SO₂ClF, and

 $[C(OTeF_5)_3][Sb(OTeF_5)_6] \cdot 3SO_2ClF$ have been determined and show that the carbocations are trigonal planar about the central atom.

Reactions of chlorofluoroand bromofluoromethanes with [XeOTeF₅][Sb(OTeF₅)₆] have also been investigated in SO₂ClF solvent by ¹³C and ¹⁹F NMR spectroscopy at -80 °C. The CFCl₂⁺ and CFCl(OTeF₅)⁺ cations are among the carbocations that have been obtained by reactions of CFCl₃ and CF₂Cl₂ with XeOTeF₅⁺. The CF₂Br⁺ cation is an intermediate in the reaction of XeOTeF₅⁺ with CF₂Br₂, undergoing rapid halogen exchange with CF₂Br₂ to form CFBr₂⁺ and CF₃Br. The CFBr₂⁺ cation undergoes further halogen exchange over several hours to form the CBr₃⁺ cation and CF₃Br. Although the highly electrophilic CF_3^+ cation has not been isolated by the reaction of CF₃Br with XeOTeF₅⁺, ¹³C and ¹⁹F NMR spectroscopy indicates the CF₃⁺ cation reacts with BrOTeF₅ to form F₃CBrOTeF₅⁺ and/or abstracts an OTeF₅ group from the $Sb(OTeF_5)_6^-$ anion to yield CF_3OTeF_5 and, ultimately, $[SbBr_4][Sb(OTeF_5)_6]$.

The synthesis of C(OTeF₅)₄ has been accomplished by reaction of CBr₄ with BrOTeF₅ in SO₂ClF solution, and has been fully characterized by NMR spectroscopy, Raman spectroscopy, and single-crystal X-ray diffraction, and its geometric parameters have been compared with those of the isoelectronic B(OTeF₅)₄⁻ anion in order to assess the symmetry of the E(OTe)₄^{-/0} (E = B, C) subgroup.

ACKNOWLEDGEMENTS

I wish to thank Professor Gary J. Schrobilgen for providing me with two interesting and exciting avenues of research, as well as for his guidance, enthusiasm, support, patience, and confidence in me.

I would also like to thank the other members of my supervisory committee, Professors Ronald J. Gillespie and Ignacio Vargas-Baca, for their insights and interest in my research projects.

A heartfelt thanks to Dr. Hélène P. A. Mercier for her expertise, advice, and encouragement throughout the course of this work, as well as for the numerous hours spent in helping solve various crystal structures, tabulating data, and writing contributions for our publications together.

I am also very grateful to Dr. Bernard E. Pointner as my primary mentor in learning the day-to-day operations of the laboratory, his off-color humor, his insatiable appetite (i.e., KFC eating contests), and for his friendship. Also special thanks to Dr. Neil Vasdev, Dr. Karsten Koppe, Dr. John F. Lehmann, and Dr. Adrienne A. Pedrech for their expertise, advice, support, and friendship during my first years of graduate school.

I am also grateful to Gregory L. Smith (a.k.a. "Smitty"), Gregory J. Bahun, Lindsay S. Cahill, and Matthew C. Parrott for useful discussions, good times, keeping me sane during the waning years of my graduate career, and for their friendship.

v

Thanks to other past and present members of the Schrobilgen research group, namely Rezwan Ashique, Babak Behnam-Azad, David Brock, Hugh "Hughferd" Elliott, Michael Hughes, and Dr. Kazuhiko Matumoto.

For their help in their respective fields, I would like to thank Dr. Reijo Suontamo (computational chemistry, University of Jyväskylä), Dr. Jim Britten (X-ray crystallographic facilities), Dr. Don Hughes (NMR facilities), and Michael Palme (Chemistry Glassblowing Shop).

I would like to acknowledge the Natural Science and Engineering Council (NSERC) for both PGS-A (two year) and PGS-D (two year) scholarships, the Ontario Ministry of Training and Education (OGS) for a one-year scholarship, and the Department of Chemistry at McMaster University for their financial support.

Finally, I would like to thank my wife, Natasha Moran, for her unwavering love, support, and confidence in my abilities during my entire tenure as a graduate student. As well, special thanks to my parents, Gordon and Margaret-Ann, and my in-laws, Peter and Eileen, for both their emotional and financial support throughout.

PREFACE

The following Chapters have been published, in part or in whole, by the American Chemical Society (ACS). All experimental work was conducted by the author. All computational work was conducted by the author alone, or in conjunction with Dr. Reijo Suontamo, Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland.

- Chapter 5: Mercier, H. P. A.; Moran, M. D.; Sanders, J. C. P.; Schrobilgen, G. J.; Suontamo, R. J. Inorg. Chem. 2005, 44, 49-60.
- Chpater 6: Mercier, H. P. A.; Moran, M. D.; Schrobilgen, G. J.; Steinberg, C.; Suontamo, R. J. J. Am. Chem. Soc. 2004, 126, 5533-5548.
- Chapter 7: Mercier, H. P. A.; Moran, M. D.; Schrobilgen, G. J. In Recent Developments in Carbocation and Onium Ion Chemistry; Laali, K. K., Ed.; American Chemical Society; Washington, DC, 2007; Volume 965, Chapter 19, pp 394-427.
- Chapter 8: Moran, M. D.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2007, 46, 5034-5045.

LIST OF ABBREVIATIONS AND SYMBOLS

General

BDH	British Drug Houses
SAE	Society of Automotive Engineers
ax	axial
eq	equatorial
CCD	charge-coupled device
FT	Fourier transform
FEP	perfluoroethylene/perfluoropropylene copolymer
IR	infrared
Kel-F	chlorotrifluoroethylene polymer
PTFE	tetrafluoroethylene polymer
VSEPR	valence shell electron pair repulsion
N.A.	natural abundance (isotopic)
DSC	Differential Scanning Calorimetry

Raman Spectroscopy

Δν	frequency
cm^{-1}	wavenumber
n	stretching mode
d	in-plane bend
$\rho_{\rm w}$	wagging mode

$ ho_r$	rocking mode
ρ_t	twisting mode
o.o.p.	out-of-plane
i.p.	in-plane

Nuclear Magnetic Resonance Spectroscopy

NMR	nuclear magnetic resonance
ppm	parts per million
δ	chemical shift
Ι	nuclear spin quantum number
J	scalar coupling constant, in Hz
Hz	Hertz, or cycles per second
FID	free induction decay
SF	spectral frequency
SW	sweep width
TD	time domain
PW	pulse width
$\Delta v_{t/2}$	line width at half height
WF	width factor

X-ray Crystallography

a, b, c, α , β , γ unit cell parameters

V	unit cell volume
λ	wavelength
Ζ	molecules per unit cell
V _m	molecular volume (V/Z)
mol. wt.	molecular weight
ρ	density
μ	absorption coefficient
F	structure factor
R_1	conventional agreement index
w	overall weight parameter
wR ₂	weighted agreement index

Computational and Thermochemical

ELF	electron localization fuction
DFT	density functional theory
CCSD(T)	couple cluster, with single and double substitutions and non- iterative triplet excitations
MP2	Møller-Plesset, second order perturbation
HF	Hartree-Fock
RLC	relative large core
ECP	effective core potential
NBO	natural bond orbital/natural bond order
GIAO	Gauge-Independent Atomic Orbital

НОМО	highest occupied molecular orbital
LUMO	lowest unoccupied molecular orbital
$\Delta H^{\rm o}$	standard enthalpy of reaction
$\Delta H_{\rm f}^{\rm o}$	standard enthalpy of formation
$\Delta G^{ m o}$	standard free energy of reaction
$\Delta G_{ m f}^{ m o}$	standard free energy of formation

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1.	Noble-O	Gas Chemistry	1
1.2.	Xenon(II) Chemistry	2
	1.2.1.	Xenon Difluoride as a Fluoride Ion Donor	3
	1.2.2.	Metathetical Reactions Involving Xenon Difluoride	5
	1.2.3.	The Lewis Acid Properties of the XeF ⁺ Cation	7
	1.2.4.	Complexes of XeF ₂	7
	1.2.5.	Spectroscopic Characterization of XeF ₂ Complexes	8
1.3.	Xenon(II) Oxide Fluorides	9
1.4.	The Xe	L^+ (L = F, OSeF ₅ , OTeF ₅) Cations and M(OTeF ₅) ₆ ⁻ (M = As, Sb, Bi)	
	Anions;	General Background	12
1.5.	Synthet	ic Applications of Noble-Gas Salts	14
1.6.	Purpose	and Scope of the Present Work	15

CHAPTER 2: EXPERIMENTAL SECTION

2.1.	Standard	Techniques	18
	2.1.1.	Dry Box and Vacuum Line Techniques	18
	2.1.2.	Preparative Apparatus and Sample Vessels	20
2.2.	Preparati	ion and Purification of Starting Materials	23
	2.2.1.	Sources and Purification of N ₂ , Ar, F ₂ , Xe, O ₂ , NO, and NO ₂	23
	2.2.2.	Purification of Anhydrous HF, SO ₂ ClF, and CH ₃ CN	24
	2.2.3.	Natural Abundance and Isotopically-enriched Water, H_2O , $H_2^{17}O$,	
		and $H_2^{18}O$	26
	2.2.4.	NOF, NO ₂ F, and 15 NO ₂ F	26
	2.2.5.	AsF ₃ , AsF ₅ , SbF ₃ , and XeF ₂	29
	2.2.6.	NaF, NaNO ₂ , and Na ¹⁵ NO ₂	30
	2.2.7.	HNO ₃ and N ₂ O ₅	30
	2.2.8.	CCl ₄ , CBr ₄ , Freon-11 (CFCl ₃), Freon-12 (CF ₂ Cl ₂), Freon-13 (CF ₃ Cl)	
		Freon-12B2 (CF ₂ Br ₂), and Freon-13B1 (CF ₃ Br)	30
	2.2.9.	$[H_3O][AsF_6], [H_3^{17}O][AsF_6], and [H_3^{18}O][AsF_6]$	31
	2.2.10.	$[Xe_3OF_3][AsF_6], [Xe_3^{17}OF_3][AsF_6], and [Xe_3^{18}OF_3][AsF_6]$	32
	2.2.11.	HOTeF ₅ , B(OTeF ₅) ₃ , Sb(OTeF ₅) ₃ , and Xe(OTeF ₅) ₂	33
2.3.	Synthese	es of $O(XeF)_2$, ¹⁷ $O(XeF)_2$, and ¹⁸ $O(XeF)_2$	34
2.4.	Preparat	ion of FXeONO ₂ , FXe ¹⁸ ONO ₂ , and FXeO ¹⁵ NO ₂	35
2.5.	Preparat	ion of XeF ₂ ·HNO ₃	36
2.6.	Preparat	ion of $XeF_2 \cdot N_2O_4$	36
2.7	Synthesi	s of [XeOTeF ₅][Sb(OTeF ₅) ₆]·SO ₂ ClF	36
2.8.	Preparat	ion of $[CX_3][Sb(OTeF_5)_6]$ (X = Cl, Br, OTeF ₅)	37

2.9.	Preparation of [Br(OTeF ₅) ₂][Sb(OTeF ₅) ₆]	38
2.10.	Preparation of [CFX ₂][Sb(OTeF ₅) ₆] and [F ₃ C-Br-OTeF ₅][Sb(OTeF ₅) ₆]	
	(X = Cl, Br)	38
2.11.	Preparation of Natural Abundance and ¹³ C-enriched C(OTeF ₅) ₄	39
2.12.	Preparation of $[N(CH_3)_4][B(OTeF_5)_4]$.	40
2.13.	X-ray Crystallography.	40
	2.13.1. Crystal Growth	40
	2.13.1.1. Attempted Crystal Growth of O(XeF) ₂	40
	2.13.1.2. FXeONO ₂	42
	2 13.1.3 XeF ₂ :HNO ₂	42
	2.13.1.4 XeF ₂ ·N ₂ O ₄	43
	2.13.1.5 [XeOTeFe][Sb(OTeFe)e]:SO $_{2}$ CIF	44
	2.13.1.6 [CCl_2][Sb(OTeF_s)_2] [CBr_2][Sb(OTeF_s)_2]:SO_CIF	•••
	and $[C(OTeE_{c})_{c}](Sb(OTeE_{c})_{c}](SO(OTE$	44
	2 13 1 7 Attempted Crystal Growths of [CEC].][Sb(OTeE_).] and	
	$[E_{1}C_{-}Br_{-}OT_{2}E_{1}]$	45
	2 13 1 8 Attempted Crystal Growth of [CEBrallSh(OTeEr)]: Crystal	чJ
	Growth of [ShBr.][Sh(OTeF.).].SO.CIF	45
	$2 13 10 C(OT_{a}F_{a})$	45 46
	2.13.1.9. C(OTer 5)4	40
	2.13.1.10. [N(CH3)4][D(OTeT5)4]	40
	2.13.2. Low-Temperature Crystal Mounting	4/
	2.13.5. Collection, Reduction, Refinement, and Solution of X-ray	50
0.14	Crystallographic Data	50
2.14.	Number of the Design of the De	52
2.15.	Nuclear Magnetic Resonance Spectroscopy	55
2.10.	Differential Scanning Calorimetry	55
2.17.	Electronic Structure Calculations.	22
	2.17.1. Calculations of Optimized Geometries, Vibrational Frequencies,	~ ~
	Atomic Charges, Atomic Valencies, and Natural Bond Orders	55
	2.17.2. Electron Localization Function (ELF) Calculations	56
CHA	PTER 3: A NEUTRAL OXIDE FLUORIDE OF XENON(II): SYNTHESIS A	ND
	CHARACTERIZATION OF $O(XeF)_2$ AND A COMPUTATION	AL
	STUDY OF $O(NgF)_2$ AND $F(NgF)_2^{+}$ (Ng = Kr, Xe)	
~ .		
3.1.	Introduction	57
3.2.	Results and Discussion.	57
	3.2.1. Synthesis and Reactivity of O(XeF) ₂	57
	3.2.2. Attempted Synthesis of [FXeOXe][AsF ₆]	63
	3.2.3. NMR Spectroscopy	63
	3.2.3.1. Solution Structural Characterization of Natural Abundance and	
	¹ O-enriched O(XeF) ₂ BY ¹ O, ¹⁹ F, and ¹²⁹ Xe NMR Spectroscopy	63
	3.2.3.2. Solution Structure Determination of O(XeF) ₂	64
	3.2.4. Raman Spectroscopy	76

	3.2.4.1.	Raman Spectra of Natural Abundance, ¹⁷ O-, and ¹⁸ O-enriched	
		O(XeF) ₂	70
	3.2.4.2.	Raman Spectra of Natural Abundance and ¹⁸ O-enriched (XeO) _n .	8
	3.2.5.	Computational Results	8
	3.2.5.1.	$O(NgF)_2$ and $F(NgF)_2^+ (Ng = Kr, Xe)$	8.
	3.2.5.1	.1. Geometries	8
	3.2.5.1	.2. Natural Bond Orbital Analyses	8
	3.2.5.2.	The FXeONO Rearrangement	9
	3.2.5.3.	The (XeO) _n Cyclic Polymer	9
3.3.	Conclus	ions	90

CHAPTER 4. AN ISOLATED NITRATE OF XENON: SYNTHESES AND STRUCTURAL CHARACTERIZATION OF FXeONO₂, XeF₂·HNO₃, AND XeF2·N₂O₄

4.1.	Introduc	tion	99
4.2	Results a	and Discussion	100
	4.2.1.	Syntheses and Properties	100
	4.2.1.1.	Synthesis and Decomposition of FXeONO ₂	100
	4.2.1.2.	Reactions of XeF ₂ with HNO ₃	102
	4.2.1.3.	Reactions of XeF ₂ and [XeF][AsF ₆] with N ₂ O ₅	103
	4.2.1.4.	Reaction of XeF ₂ with N ₂ O ₄	104
	4.2.1.5.	Reaction of FXeONO ₂ with AsF ₅	105
	4.2.2.	Solution Characterization of FXeONO ₂ by ^{14/15} N, ¹⁹ F, and ¹²⁹ Xe	
		NMR Spectroscopy	105
	4.2.3.	X-ray Crystallography	108
	4.2.3.1.	FXeONO ₂	108
	4.2.3.2.	XeF ₂ ·HNO ₃	113
	4.2.3.3.	$XeF_2 \cdot N_2O_4$	117
	4.2.4.	Raman Spectroscopy	121
	4.2.4.1.	FXeONO ₂	121
	4.2.4.2.	XeF ₂ ·HNO ₃	133
	4.2.4.3.	$XeF_2 \cdot N_2O_4$	134
	4.2.5.	Computational Results	135
	4.2.5.1.	Geometries	136
	4.2.5.2.	Natural Bond Orbital (NBO) Analyses	141
	4.2.5.3.	Thermochemistry	144
4.3.	Conclus	ions	145

CHAPTER 5: SYNTHESIS, STRUCTURAL CHARACTERIZATION, AND COMPUTATIONAL STUDY OF THE STRONG OXIDANT SALT, [XeOTeF₅][Sb(OTeF₅)_6]·SO₂ClF

5.1.	Introduct	tion	147
5.2.	Results a	and Discussion	147
	5.2.1.	Synthesis of [XeOTeF ₅][Sb(OTeF ₅) ₆]	147
	5.2.2.	Solution Characterization of [XeOTeF ₅][Sb(OTeF ₅) ₆] by ¹⁷ O, ¹⁹ F,	
		¹²⁵ Te, and ¹²⁹ Xe NMR Spectroscopy	148
	5.2.3.	X-ray Crystal Structure of of [XeOTeF ₅][Sb(OTeF ₅) ₆]·SO ₂ ClF	153
	5.2.4.	Raman Spectroscopy	163
	5.2.4.1.	XeOTeF ₅ ⁺ ·SO ₂ ClF	163
	5.2.4.2.	$Sb(OTeF_5)_6^{-1}$	178
	5.2.5.	Computational Results	181
	52.51	Geometry of $XeOTeE_{c}^{+} \cdot SO_{2}CIE$	181
	5252	Bonding in XeOTeFs ⁺ ·SO ₂ CIF and Related Systems	182
53	Conclusi	ons	193
5.5.	Conciusi		175
СНА	PTER 6. T	THE SYNTHESES OF CARBOCATIONS BY USE OF THE NO	
CIIA	$\frac{11200.1}{6}$	THE STRUCTURE OF CARDOCATIONS BY USE OF THE NO SAS OVIDANT [YeOTEL](Sh(OTEL)), THE SVNTHESES	
		THAPACTERIZATION OF THE CX_{+}^{+} (X = C1 R_{+} OT = C1	
		$T_{\pi}(OT_{\alpha}E) + CATIONS AND THEODETICAL STUDIES OF$	CV^+
		$D D D V (V = E C D_{T} O T_{0} E)$	CA_3
	P	$(\mathbf{A} = \mathbf{F}, \mathbf{C}, \mathbf{D}, \mathbf{I}, \mathbf{O}, \mathbf{E}, \mathbf{f})$	
61	Introduce	tion	105
6.1.		uon	193
0.2.	Results a	$S_{\text{rest}} = \frac{1}{2} \left[\frac{1}{2$	198
	0.2.1.	Syntheses of $[CC1_3][SD(OTeF_5)_6]$, $[CBr_n(OTeF_5)_{3-n}][SD(OTeF_5)_6]$	
		$(n = 0, 1, 3)$, $[Br(O1eF_5)_2][Sb(O1eF_5)_6]$, and $C(O1eF_5)_4$ and	100
	())	Solution Characterization by "F and "C NMR Spectroscopy	198
	6.2.2.	X-ray Crystal Structures of $[CCl_3][Sb(OTeF_5)_6]$,	005
	(0.0.1	$[CBr_3][Sb(OTeF_5)_6] \cdot SO_2CIF, [C(OTeF_5)_3][Sb(OTeF_5)_6] \cdot 3SO_2CIF$	205
	6.2.2.1.	$[CCl_3][Sb(OTeF_5)_6] [CBr_3][Sb(OTeF_5)_6] \cdot SO_2CIF$	210
	6.2.2.2.	$[C(OTeF_5)_3][Sb(OTeF_5)_6] \cdot 3SO_2CIF$	214
	6.2.3.	Raman Spectroscopy	216
	6.2.3.1.	CCl_3^{+} and CBr_3^{+}	216
	6.2.3.2.	$C(OTeF_5)_3^+$ and $B(OTeF_5)_3$	226
	6.2.4.	Computational Results for CX_3^+ and BX_3 (X = F, Cl, Br, I,	
		OTeF ₅)	229
	6.2.4.1.	Geometries	230
	6.2.4.2.	Natural Bond Orbital (NBO) Analyses	235
	6.2.5.	Chemical Shift and Coupling Constant Trends	238
6.3.	Conclusi	ions	245
CHA	PTER 7: C	CARBOCATION SYNTHESIS BY USE OF THE NOBLE	-GAS
	C	DXIDANT, [XeOTeF ₅][Sb(OTeF ₅) ₆]: CFX_2^+ (X = Cl, Br) CAT	IONS
	A	AND EVIDENCE FOR CF3 ⁺	

7.1.	Introduction	248
/.1.	muoducuon	2-

7.2.	Results a	and Discussion	249
	7.2.1.	Reactions of CFCl ₃ , CF ₂ Cl ₂ , and CF ₃ Cl with	
		[XeOTeF ₅][Sb(OTeF ₅) ₆] and Solution Characterization by 13 C	
		and ¹⁹ F NMR Spectroscopy	249
	7.2.2.	Reactions of CF_2Br_2 and CF_3Br with [XeOTeF ₅][Sb(OTeF ₅) ₆]	
		and Solution Characterization by ¹³ C and ¹⁹ F NMR Spectroscopy	255
	7.2.3.	X-ray Crystal Structure of [SbBr ₄][Sb(OTeF ₅) ₆]	257
	7.2.4.	Raman Spectroscopy	262
	7.2.5.	Computational Results	
	7.2.5.1.	Calculated Charge Distributions and Bonding in $CF_nX_{3-n}^+$	
		(X = Cl, Br; n = 1-3)	264
	7.2.5.2.	Gas-Phase Thermodynamics of Reactions of XeOTeF ₅ ⁺ with	
		$CF_n X_{4-n} (X = Cl, Br; n = 0-3)$	268
7.3.	Conclus	ions	268
CHA	PTER 8: S	SYNTHESIS AND STRUCTURAL CHARACTERIZATION	OF
	(C(OTeF ₅) ₄ , AND A COMPARATIVE STRUCTURAL STUDY OF	THE
	I	SOELECTRONIC B(OTeF5)4 ANION	
8.1.	Introduc	tion	270
8.2.	Results	and Discussion	271
	8.2.1.	Synthesis of $C(OTeF_5)_4$ and Solution Characterization by ¹³ C,	
		¹⁹ F, and ¹²⁵ Te NMR Spectroscopy	272
	8.2.2.	Differential Scanning Calorimetry (DSC)	279
	8.2.3.	X-ray Crystal Structures of $C(OTeF_5)_4$ and	
		$[N(CH_3)_4][B(OTeF_5)_4]$	279
	8.2.3.1.	Bond Lengths and Angles	285
	8.2.3.2.	Molecular Symmetries	288
	8.2.4.	Raman Spectra of C(OTeF ₅) ₄ and [N(CH ₃) ₄][B(OTeF ₅) ₄]	290
	8.2.5.	Computational Results.	300
	8.2.5.1.	Geometries	300
	8.2.5.2.	Natural Atomic Charges for $C(OTeF_5)_4$ and	
		$[N(CH_3)_4][B(OTeF_5)_4]$	303
8.3.	Conclus	ions	306
CHA	APTER 9: (CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK	
9.1.	Conclus	ions	307
9.2.	Directio	ns for Future Work	309
APP	ENDIX A	DECOMPOSITION OF O(XeF) ₂	325

LIST OF TABLES

page

1.1.	Known Fluoro- and Oxyfluoro-Cations and Anions of Xenon, Their Parent Compounds, and Geometries	10
2.1.	Summary of Typical Spectroscopic Parameters Used for NMR Spectroscopy	54
3.1.	Natural Abundance Isotopomers and Subspectra Comprising the ¹⁹ F and ¹²⁹ Xe NMR Spectra of O(XeF) ₂ , Including Experimental and Calculated Chemical Shifts and Coupling Constants	69
3.2.	Percentage Abundance of All Isotopes of Xenon and the Percentage of Each Isotopomeric Subspectra	70
3.3.	Experimental and Calculated NMR Chemical Shifts and Coupling Constants for $O(XeF)_2$, XeF_2 , and $F(XeF)_2^+$	73
3.4.	Experimental and Calculated Frequencies for O(XeF) ₂ (SVWN)	78
3.5.	Experimental and Calculated Frequencies for O(XeF) ₂ (PBE1PBE)	79
3.6.	Experimental and Calculated Raman Frequencies for $XeF_2 \cdot N_2O_4$ and $XeF_2 \cdot N_2O_3^{18}O_4$.	82
3.7.	Experimental and Calculated Geometries for $O(NgF)_2$ and $F(NgF)_2^+$ (Ng = Kr, Xe)	84
3.8.	Natural Bond Orbital (NBO) Charges, Valencies, and Bond Orders for $O(NgF)_2$ and $F(NgF)_2^+$	86
3.9.	Experimental and Calculated Frequencies and Intensities for $(XeO)_n$ ($n = 4-6$)	95
4.1.	NMP Parameters of FXeONO2 and Related Species	107
4.2.	Crystallographic Data for FXeONO ₂ , XeF_2 ·HNO ₃ , and XeF_2 ·N ₂ O ₄	109
4.3.	Experimental and Calculated Geometric Parameters for FXeONO ₂ , XeF_2 ·HNO ₃ , and XeF_2 ·N ₂ O ₄ (SVWN)	110
4.4.	Geometric Parameters and NBO Analyses for FXeONO ₂ , BrONO ₂ , and ClONO ₂ at the PBE1/aug-cc-pVTZ(-PP) and MP2/aug-cc-pVTZ(-PP)	

	Levels of Theory	114
4.5.	Experimental and Calculated Raman Frequencies for FXe ¹⁶ O ¹⁴ NO ₂ , FXe ¹⁸ O ¹⁴ NO ₂ , and FXe ¹⁶ O ¹⁵ NO ₂	125
4.6.	Experimental and Calculated Raman Frequencies for XeF ₂ ·HNO ₃	126
4.7.	Experimental and Calculated Raman Frequencies for XeF ₂ ·N ₂ O ₄	127
4.8.	Experimental and Calculated Vibrational Frequencies for FXeOSO ₂ F	128
4.9.	Experimental and Calculated Raman Frequencies for HNO ₃	129
4.10.	Experimental and Calculated Raman Frequencies for N ₂ O ₄	130
4.11.	Factor-Group Analysis for FXeONO ₂	131
4.12.	Factor-Group Analysis for XeF ₂ ·HNO ₃	131
4.13.	Experimental and Calculated Geometric Parameters for FXeONO ₂ , XeF_2 ·HNO ₃ , and XeF_2 ·N ₂ O ₄	137
4.14.	Experimental and Calculated Geometric Parameters for Xe(ONO ₂) ₂	139
4.15.	Natural Bond Orbital (NBO) Charges, Valencies and Bond Orders for $FXeONO_2$, $Xe(ONO_2)_2$, XeF_2 ·HNO ₃ , and XeF_2 ·N ₂ O ₄	142
5.1.	The ¹⁹ F, ¹²⁵ Te, ¹²⁹ Xe, ¹⁷ O, and ¹²¹ Sb NMR Parameters for $[XeOTeF_5][Sb(OTeF_5)_6]$	149
5.2.	Crystallographic Data for [XeOTeF ₅][Sb(OTeF ₅) ₆]·SO ₂ ClF	154
5.3.	Experimental and Calculated Geometrical Parameters for the XeOTeF5 ⁺ ·SO ₂ ClF Adduct-Cation	155
5.4.	Experimental and Calculated Geometrical Parameters for the Sb(OTeF ₅) ₆ ⁻ Anion	156
5.5.	Experimental Raman Frequencies for [XeOTeF ₅][Sb(OTeF ₅) ₆] in SO ₂ ClF	164
5.6.	Experimental and Calculated Vibrational Frequencies for SO ₂ ClF, XeOTeF ₅ ⁺ , and XeOTeF ₅ ⁺ ·SO ₂ ClF	168
5.7.	Experimental and Calculated Geometrical Parameters, Vibrational	

	Frequencies (cm^{-1}) and Calculated Infrared Intensities for SO ₂ ClF	170
5.8.	Calculated Geometrical Parameters and Experimental and Calculated Vibrational Frequencies and Calculated Infrared Intensities for the XeOTeF ₅ ⁺ Cation	172
5.9.	Experimental and Calculated Geometrical Parameters for the $XeOTeF_5^+$ ·SO ₂ ClF Adduct-Cation	174
5.10.	Vibrational Frequencies (cm ^{-1}) and Calculated Infrared Intensities for the XeOTeF ₅ ⁺ ·SO ₂ ClF Adduct-Cation	175
5.11.	Experimental and Calculated Vibrational Frequencies for the Sb(OTeF ₅) ₆ Anion	179
5.12.	Calculated Natural Atomic Charges, Mayer Bond Orders, and Mayer Natural Atomic Orbital Valencies for SO_2ClF , $XeOTeF_5^+$ and $XeOTeF_5^+$ · SO_2ClF	183
5.13.	Calculated Bond Lengths (Å), Natural Atomic Charges, Mayer Bond Orders, and Mayer Natural Atomic Orbital Valencies for [XeF][SbF ₆], [XeOTeF ₅][MF ₆] (M = As, Sb), XeF ⁺ and XeF ₂	188
6.1.	The ¹³ C and ¹⁹ F NMR Parameters ^a for C(OTeF ₅) ₄ and CBr _n (OTeF ₅) _{3-n} ⁺ ($n = 0$ -3), and Products Resulting from the Reaction of [XeOTeF ₅][Sb(OTeF ₅) ₆] with CCl ₄ and CBr ₄	199
6.2.	Crystallographic Data for $[CCl_3][Sb(OTeF_5)_6]$, $[CBr_3][Sb(OTeF_5)_6]$ ·SO ₂ ClF, and $[C(OTeF_5)_3][Sb(OTeF_5)_6]$ ·3SO ₂ ClF.	206
6.3.	Experimental Geometries in [CCl ₃][Sb(OTeF ₅) ₆], [CBr ₃][Sb(OTeF ₅) ₆]·SO ₂ ClF, and [C(OTeF ₅) ₃][Sb(OTeF ₅) ₆]·3SO ₂ ClF	207
6.4.	Experimental and Calculated (MP2) Frequencies (cm ⁻¹), Raman Intensities and Assignments for CX_3^+ and BX_3 (X = F, Cl, Br, I)	218
6.5.	Experimental and Calculated Frequencies (cm^{-1}) and Intensities for CX ₄ (T_d)	219
6.6.	Raman Frequencies and Assignments for $[CCl_3][Sb(OTeF_5)_6]$ and $[CBr_3][Sb(OTeF_5)_6] \cdot nSO_2ClF$ and Related Species	220
6.7.	Calculated Vibrational Frequencies (cm^{-1}) and Infrared and Raman Intensities for $C(OTeF_5)_3^+$ and $B(OTeF_5)_3$ and Observed Vibrational	

	Frequencies and Infrared and Raman Intensities for B(OTeF ₅) ₃	227
6.8.	Experimental and Calculated Geometrical Parameters and NBO Study (MP2) for CX_4 (T_d)	230
6.9.	Experimental and Calculated Geometries for CX ₃ ⁺ and BX ₃	232
6.10.	Calculated and Experimental Geometries for $C(OTeF_5)_3^+$ and $B(OTeF_5)_3$	233
6.11.	Calculated Natural Atomic Charges, Mayer Bond Orders, and Mayer Natural Atomic Orbital Valencies for CX_3^+ , CX_4 , and BX_3 (X = F, Cl, Br, I).	236
6.12.	Calculated Natural Atomic Charges, Mayer Bond Orders and Mayer Natural Atomic Orbital Valencies for $C(OTeF_5)_3^+$ and $B(OTeF_5)_3$	237
6.13.	Experimental and Calculated ^a Chemical Shifts for CX_3^+ and BX_3 (X = F, Cl, Br, I, OTeF ₅) and CX_4 (X = F, Cl, Br, I)	240
7.1.	¹³ C and ¹⁹ F NMR Parameters for Products Resulting from Reactions of [XeOTeF ₅][Sb(OTeF ₅) ₆] with CFCl ₃ , CF ₂ Cl ₂ , CF ₂ Br ₂ , and CF ₃ Br	250
7.2.	Crystallographic Data for [SbBr ₄][Sb(OTeF ₅) ₆]·SO ₂ ClF	258
7.3.	Experimental Geometric Parameters for [SbBr ₄][Sb(OTeF ₅) ₆]·SO ₂ ClF and Calculated Geometric Parameters for the SbBr ₄ ⁺ cation	259
7.4.	Experimental and Calculated Frequencies (cm ^{-1}), Raman Intensities and Assignments for CFCl ₂ ⁺	263
8.1.	Crystallographic Data for $C(OTeF_5)_4$ and $B(OTeF_5)_4^-$	280
8.2.	Experimental and Calculated Geometrical Parameters for $C(OTeF_5)_4$ and $B(OTeF_5)_4^-$.	281
8.3.	Experimental (C_1) and Calculated (C_1 and S_4) Te–O–C/B–O Torsion Angles (deg) for C(OTeF ₅) ₄ and B(OTeF ₅) ₄ ⁻	284
8.4.	Experimental and Calculated Vibrational Frequencies ^a for ^{12/13} C(OTeF ₅) ₄	293
8.5.	Experimental and Calculated Vibrational Frequencies for $E(OTeF_5)_4^{-/0}$ (E = B, C)	296
8.6.	Calculated Natural Bond Orbital (NBO) Charges, Valencies, and Bond Orders for $C(OTeF_5)_4$ and $B(OTeF_5)_4^-$	304

A1.	Experimental Raman Frequencies for the Products Resulting from the		
	Decomposition of O(XeF) ₂	328	

.

LIST OF FIGURES

page

2.1.	Metal vacuum line	19
2.2.	Glass vacuum line	21
2.3.	Hydrogen fluoride distillation apparatus	25
2.4.	Apparatus used for the vacuum transfer of SO ₂ ClF solvent	27
2.5	Low-temperature crystal growing apparatus	41
2.6.	Low-temperature crystal mounting apparatus	48
2.7.	Enlarged view of the crystal mounting apparatus and cryotongs	49
3.1.	The calculated (upper trace) and experimental (lower trace) (a) 19 F and (b) 129 Xe NMR spectra of O(XeF) ₂ in CH ₃ CN at -40 °C	65
3.2.	Schematic of the coupling path that arise from the four (4) subspectra of $O(XeF)_2$. ^{a 131} Xe ⁻¹⁹ F and ¹³¹ Xe ⁻¹²⁹ Xe spin-spin couplings are quadrupole collapsed.	67
3.3.	The ¹⁷ O NMR spectra of: (a) ¹⁷ O-enriched (21.9 %) O(XeF) ₂ and (b) natural abundance O(XeF) ₂ in CH ₃ CN solution at -40 °C	68
3.4.	Raman Spectra of ${}^{16}O(XeF)_2$ and ${}^{18}O(XeF)_2$ recorded at -160 °C using 1064-nm excitation.	77
3.5.	ELF isosurface plots for $O(NgF)_2$ and $F(NgF)_2^+$ (Ng = Kr, Xe) at the SVWN/(SDB-)cc-pVTZ//SVWN/(SDB-)cc-pVTZ level of theory, showing the f_{sep} -values for the $V(Ng)$ and $V(O(F))$ basins	87
3.6.	ELF isosurface plots for $O(NgF)_2$ and $F(NgF)_2^+$ (Ng = Kr, Xe) at the SVWN/(SDB-)cc-pvTZ//SVWN/(SDB-)cc-pVTZ level of theory, showing the f_{sep} -values for the $V(Ng)$ and $V(F_t)$ basins	88
3.7.	ELF isosurface plots for $O(NgF)_2$ and $F(NgF)_2^+$ (Ng = Kr, Xe) at the SVWN/(SDB-)cc-pvTZ//SVWN/(SDB-)cc-pVTZ level of theory, showing the f_{sep} -values for the V(Ng) and V(F _t) basins	89
3.8.	Calculated (SVWN/(SDB-)cc-pVTZ) geometries and energies for (a) the	

	ground-state configuration of FXeONO, and (b) the transition-state configuration of FXeONO	92
3.9.	Energy surface plot for the intramolecular rearrangement of the FXeONO intermediate	94
3.10.	Calculated geometries for the cyclic oligomers: (a) $(XeO)_4$ (D_{4h}) , (b) $(XeO)_5$ (D_{5h}) , (c) $(XeO)_6$ (D_{6h}) , one imaginary frequency), and (d) $(XeO)_6$ (C_1)	97
4.1.	(a) X-ray crystal structure of FXeONO ₂ ; thermal ellipsoids are shown at the 50% probability level. (b) Calculated geometry of FXeONO ₂	112
4.2.	 (a) The X-ray crystal structure of XeF₂·HNO₃ showing the H…F and Xe…O contacts; thermal ellipsoids are shown at the 70% probability level. (b) The calculated geometry of XeF₂·HNO₃ (SVWN/(SDB-)cc-pVTZ) 	115
4.3.	Packing diagram of XeF_2 ·HNO ₃ viewed along the <i>c</i> -axis with thermal ellipsoids shown at the 70% probability level	116
4.4.	X-ray crystal structure of the $XeF_2 \cdot N_2O_4$ adduct; thermal ellipsoids are shown at the 50% probability level	118
4.5.	(a) Crystal structure of $XeF_2 \cdot N_2O_4$ showing the three coordination modalities that occur between the xenon atom and N_2O_4 . The calculated geometry of N_2O_4 coordinated to the xenon atom of XeF_2 through two oxygens bound to (b) the same nitrogen atom and (c) two different nitrogen atoms.	120
4.6.	Raman spectrum of FXeONO ₂ recorded at -160 °C using 1064-nm excitation	122
4.7.	Raman spectra of the XeF ₂ adducts: (a) The spectrum of solid XeF ₂ ·HNO ₃ . (b) The spectrum of solid XeF ₂ ·N ₂ O ₄ under frozen N ₂ O ₄ solution	123
4.8.	Calculated geometry for Xe(ONO ₂) ₂ (MP2/(SDB-)cc-pVTZ)	139
5.1.	The ¹⁹ F NMR spectrum (470.571 MHz) of [XeOTeF ₅][Sb(OTeF ₅) ₆]·SO ₂ ClF in SO ₂ ClF solvent at -80 °C.	150
5.2.	X-ray crystal structure of (a) XeOTeF ₅ ⁺ ·SO ₂ ClF and (b) Sb(OTeF ₅) ₆ ⁻ in [XeOTeF ₅][Sb(OTeF ₅) ₆]·SO ₂ ClF; thermal ellipsoids are shown at the 50% probability level. Calculated geometries of the XeOTeF ₅ ⁺ ·SO ₂ ClF adduct-cation and Sb(OTeF ₅) ₆ ⁻ anion appear on the right-hand side	158

5.3.	Raman spectrum of [XeOTeF ₅][Sb(OTeF ₅) ₆]·SO ₂ ClF recorded at -160 °C using 1064-nm excitation	167
5.4.	ELF isosurface plots at contour levels for XeOTeF ₅ ⁺ ·SO ₂ ClF corresponding to the indicated basin separation values, f_{sep} , (a) 0.24, (b) 0.63, and (c) 0.79 at the SVWN/(SDB-)cc-pVTZ//SVWN/(SDB-)cc-pVTZ level of theory	185
5.5.	ELF isosurface plots at the SVWN/(SDB-)cc-pVTZ// SVWN/(SDB-)cc-pVTZ level of theory for (a) XeF_2 , $f_{sep} = 0.45$ contour level, (b) XeF^+ , $f_{sep} = 0.58$ contour level, and (c) $XeOTeF_5^+$, $f_{sep} = 0.70$ contour level. The tilted, right-hand side views in (a) and (b) are plotted at the 0.70 contour level.	186
5.6.	ELF isosurface plots at the 0.70 contour level for (a) [XeF][AsF ₆], (b) [XeF][SbF ₆], (c) [XeOTeF ₅][AsF ₆], and (d) [XeOTeF ₅][SbF ₆] at the SVWN/(SDB-)cc-pVTZ//SVWN/(SDB-)cc-pVTZ level of theory. Basin separation values and xenon torus volumes are indicated	187
6.1.	(a) Crystal structure of $[CCl_3][Sb(OTeF_5)_6]$; thermal ellipsoids are shown at the 50% probability level. (b) A view of the CCl_3^+ cation showing the shortest contacts between carbon and the fluorine atoms of the $Sb(OTeF_5)_6^-$ anion. (c) A view of the CCl_3^+ cation showing the two-fold positional disorder around the crystallographic inversion center	211
6.2.	(a) Crystal structure of $[CBr_3][Sb(OTeF_5)_6] \cdot SO_2ClF$; thermal ellipsoids are shown at the 50% probability level. (b) A view of the CBr_3^+ cation showing the shortest contacts between carbon and the fluorine atoms of the $Sb(OTeF_5)_6^-$ anion.	212
6.3.	(a) Crystal structure of $[C(OTeF_5)_3][Sb(OTeF_5)_6]$ -3SO ₂ ClF; thermal ellipsoids are shown at the 50% probability level. (b) A view of the $C(OTeF_5)_3^+$ cation showing the contacts between the carbon atom and an oxygen atom from each of two SO ₂ ClF molecules in the crystal lattice	215
6.4.	An expanded view of the symmetric $v_1(A_1')$ stretching band of CCl ₃ in the Raman spectrum of [CCl ₃][Sb(OTeF ₅) ₆] showing the natural abundance chlorine isotope shifts.	225
6.5.	Experimental (left) and calculated (right) geometries for (a) the $C(OTeF_5)_3^+$ cation and (b) the $B(OTeF_5)_3$ molecule	234
7.1.	The ¹⁹ F NMR spectrum (470.665 MHz) of $CFCl_2^+$	252
7.2.	Crystal structure of (a) $[SbBr_4][Sb(OTeF_5)_6] \cdot SO_2ClF$ and (b) the closest	

	contacts to Sb(1); thermal ellipsoids are shown at the 50% probability level. The dashed lines indicate the second orientation for the single disordered $OTeF_5$ group	260
7.3.	(a) Calculated geometries for $CF_nX_{3-n}^+$ ($n = 0-3$, $X = Cl$, Br; MP2/cc-pVTZ). (b) Calculated natural (NBO) charges for $CF_nX_{3-n}^+$ ($n = 0-3$, $X = Cl$, Br; MP2/cc-pVTZ//MP2/cc-pVTZ)	266
8.1.	The NMR spectra of C(OTeF ₅) ₄ recorded in SO ₂ ClF solution at 30 °C	274
8.2.	The two different orientations of the disordered molecule in the unit cell of $C(OTeF_5)_4$	286
8.3.	X-ray crystal structures of $C(OTeF_5)_4$ and $B(OTeF_5)_4^-$; thermal ellipsoids are shown at the 50% probability level; (a) a view of an ordered $C(OTeF_5)_4$ molecule (left) and the calculated geometry of the $C(OTeF_5)_4$ molecule (right), (b) a view of the $B(OTeF_5)_4^-$ anion (left) and the calculated geometry of the $B(OTeF_5)_4^-$ anion (right)	287
8.4.	Raman spectra of natural abundance and ¹³ C-enriched (99%) C(OTeF ₅) ₄ recorded at -160 °C using 1064-nm excitation	291
8.5.	Raman spectrum of $[N(CH_3)_4][B(OTeF_5)_4]$ recorded at -160 °C using 1064-nm excitation.	292
8.6.	Calculated local geometries (S_4 symmetry) for the E(OTe) ₄ moieties of E(OTeF ₅) ₄ ^{0/-} (E = C, B) species (a) looking down the collinear S_4 - and C_2 -axes, and (b) looking along the E(1)–O(4) bond	302
A1.	Raman spectrum of (a) solid products of the reaction of $O(XeF)_2$ with HF at -78 °C, and (b) solid products from the thermal decomposition of $O(XeF)_2$.	326

CHAPTER 1 INTRODUCTION

1.1. Noble-Gas Chemistry

The chemistry of the noble gases has been actively pursued since the discovery of noble gas reactivity by Neil Bartlett.¹ When Bartlett discovered that platinum (VI) hexafluoride, PtF₆, was able to oxidize molecular oxygen, O_2 , to O_2^+ ,¹ it became evident that PtF₆ should also have the potential to oxidize xenon gas, since xenon and molecular oxygen have similar ionization potentials (12.13 eV and 12.2 eV, respectively). Bartlett demonstrated that xenon gas was readily oxidized by PtF₆ at room temperature (eq 1.1) to

$$Xe_{(g)} + PtF_{6(g)} \longrightarrow [Xe][PtF_6]_{(s)}$$

$$(1.1)$$

yield an orange-yellow solid, which was then formulated as $[Xe][PtF_6]$. Later, Bartlett² reported that the reaction between xenon and PtF₆ yielded a mixture of $[XeF][PtF_6]$ and $[XeF][Pt_2F_{11}]$, however, he maintains that a pale yellow solid resulting from the reaction of a stoichiometric mixture of Xe and PtF₆ is indeed $[Xe][PtF_6]$, which is more properly formulated as $[XeF][PtF_5]$. The synthesis of a stable xenon compound quickly led to other examples of xenon compounds, such as XeF_2 ,³ as well as to compounds of krypton⁴⁻⁶ and radon in trace amounts.⁷ While a compound of argon, HArF, has been stabilized in a solid argon matrix at very low temperature (7.5 K) and studied by infrared spectroscopy,^{8,9} no long-lived argon species has been synthesized to date, nor has a radon

compound been sythesized in macroscopic amounts. Thus, the only two Group 18 elements which exhibit extensive chemistries are krypton and xenon. Xenon has the most extensive chemistry of all the noble gases, exhibiting oxidation states of 0, $+\frac{1}{2}$, +2, +4, +6, and +8, which are stabilized by bonds to electronegative atoms such as fluorine, oxygen, and chlorine, as well as by ligands bonded through oxygen, carbon, and nitrogen. A number of comprehensive reviews covering the chemistry of the noble gases are available,¹⁰⁻¹⁶ as well as historical accounts of the events leading to the discovery of noble gas reactivity and its impact on modern chemistry.^{17,18}

1.2. Xenon(II) Chemistry

The compounds of xenon in the +2 oxidation state are the most widely studied of the noble gases, and are ultimately derived from xenon difluoride, XeF₂. Several synthetic routes to XeF₂ are known, with the most convenient, high-yield synthesis being the direct combination of the elements at high temperature (~300 °C) and high pressure in the presence of an excess of Xe (eq 1.2).^{19,20} The compound exists as a white, crystalline

$$Xe + F_2 \longrightarrow XeF_2$$
(1.2)

solid that is stable at room temperature ($\Delta H_f^o = -333 \text{ kJ mol}^{-1}$),²¹ and exhibits strong oxidant behavior.

The reactivity of XeF₂ has been extensively explored, resulting in Xe–O, Xe–C, Xe–N, and Xe–Cl bonded species. Derivatives of xenon(II) are typically prepared by

fluoride ion abstraction from XeF_2 , and by metathesis (ligand exchange) reactions involving XeF_2 and a suitable ligand transfer reagent or strong protic acid.

1.2.1. Fluoride Ion Donor Properties of XeF₂

Xenon difluoride reacts with strong fluoride acceptors such as AsF_5 and SbF_5 to form XeF^+ and $F(XeF)_2^+$ salts (eq 1.3–1.5).²²⁻²⁴ The XeF^+ cation interacts strongly with

$$XeF_2 + MF_5 \longrightarrow [XeF][MF_6] (M = As, Sb)$$
(1.3)

$$XeF_2 + 2MF_5 \longrightarrow [XeF][M_2F_{11}] (M = As, Sb)$$
 (1.4)

$$XeF_2 + [XeF][MF_6] \longrightarrow [F(XeF)_2][MF_6] (M = As, Sb)$$
 (1.5)

the anion by means of a fluorine bridge between xenon and a fluorine of the counterion,²⁴ while the $F(XeF)_2^+$ cation is only weakly bridged to the counterion. The latter cation can be regarded as a fluoride ion bridged to two XeF⁺ cations, forming a symmetric, planar, V-shaped cation having $C_{2\nu}$ symmetry (Structure I).²³ The $F(XeF)_2^+$ cation also exhibits

Ι

slightly bent bond angles about the xenon atom.²³ Fluorine bridge formation attests to the strong Lewis acid character of the XeF⁺ cation.¹³

The ionic character of the Xe---F interaction in the [XeF][MF₆] salts is dependent on the ability of the MF₆⁻ anion to partially donate a fluoride ion to the XeF⁺ cation. Decreasing the fluoride ion donor strength of the anion (increasing the Lewis acidity of the Lewis acid fluoride) leads to more ionic Xe---F bridge interactions. For example, the weaker fluoride ion donor properties of Sb₂F₁₁⁻, relative to AsF₆⁻, leads to a more ionic interaction between the bridging Xe---F in [XeF][Sb₂F₁₁] (Xe---F distance, 2.35(4) Å) than in [XeF][AsF₆] (Xe---F distance, 2.12(5) Å).²⁵ Because these bonds are not purely ionic, they are significantly shorter than the sum of the xenon and fluorine van der Walls radii (3.63 Å).²⁶ Weaker fluoride ion donor properties also result in shorter, more covalent terminal Xe-F₁ bonds for [XeF][Sb₂F₁₁] (1.84(1) Å)²⁴ than for [XeF][AsF₆] (1.873(6) Å).²⁵ A simple valence bond description for [XeF][MF₆] accounts for the behavior of the F_t-Xe bond of XeF⁺ salts. The interaction can be represented in terms of three competing resonance structures which serve to describe the so-called 3c-2e hypervalent bonding in their structures (Structures II, III and IV). As the interaction

$$F-Xe^{+}F-MF_{5}^{-} \leftrightarrow F-Xe^{+}F^{-}MF_{5} \leftrightarrow F^{-+}Xe-FMF_{5}$$

$$II III IV$$

between xenon and the bridged fluorine becomes more ionic in character (Structure III), the bridging fluorine donates less electron density to $F-Xe^+$, increasing the bond order between xenon and the terminal fluorine. Conversely, a more covalent interaction between xenon and the bridge fluorine (Structure IV) donates more electron density to $F-Xe^+$, decreasing the bond order between xenon and the terminal fluorine.

1.2.2. Metathetical Reactions Involving XeF₂

Xenon difluoride forms several derivatives of the type F–Xe–L and L–Xe–L. The main synthetic approach to these species involves fluoride ion replacement with the conjugate base of a strong, oxidatively resistant, monoprotic acid (eq 1.6 and 1.7). The criteria for a ligand that is suitable for stabilizing for xenon(II) are: (1) the ligand must

$$XeF_2 + HL \longrightarrow FXeL + HF$$
 (1.6)

$$XeF_2 + 2HL \longrightarrow XeL_2 + 2HF$$
(1.7)

possess a high effective group electronegativity, (2) the ligand must exist as a moderate to strong monoprotic acid, (3) the deprotonated monoprotic acid (anion) should be stable and form stable salts with alkali metals, and (4) the least electronegative element of the ligand should be in its highest oxidation state. The last criterion ensures that the ligand will be oxidatively resistant towards XeF₂. Several strong monoprotic acids, including HOSO₂F,^{27,28} HOTeF₅,^{29,30} HOSeF₅,³¹ HOClO₃,²⁸ HOSO₂CF₃,³² HOC(O)CF₃,³³ and HN(SO₂F)₂,³⁴ match these criteria and have been successfully employed in HF displacement reactions with XeF₂. The monosubstituted derivatives can further be converted to the XeL⁺ cations by fluoride ion abstraction using an appropriate Lewis acid (eq 1.8 and 1.9). The neutral compounds are significantly less stable than XeF₂, and

$$FXeL + MF_5 \longrightarrow [XeL][MF_6] (M = As, Sb)$$
(1.8)
$$FXeL + 2MF_5 \longrightarrow [XeL][M_2F_{11}] (M = As, Sb)$$
(1.9)

decompose to give peroxide species (eq 1.10 and 1.11), as is the case for $Xe(OChF_5)_2$.³¹

$$Xe(OChF_5)_2 \longrightarrow Xe + F_5ChO-OChF_5 (Ch = Se, Te)$$
 (1.10)

$$FXeOChF_5 \longrightarrow XeF_2 + Xe + F_5ChO-OChF_5 (Ch = Se, Te)$$
(1.11)

In addition to metathesis reactions involving a strong protic acid, boron-based ligand transfer reagents of the form BL₃ (L = $OTeF_5$, ³⁵ C₆F₅, ³⁶ XC₆F₄, ³⁶ where X = 3-F, 4-F, 3-CF₃, 4-CF₃) have led to the preparation of Xe–O and Xe–C bonded derivatives as exemplified in eq 1.12 and 1.13.

$$3XeF_2 + 2B(OTeF_5)_3 \longrightarrow 3Xe(OTeF_5)_2 + 2BF_3$$
 (1.12)

$$XeF_{2} + B(C_{6}F_{5})_{3} \longrightarrow [XeC_{6}F_{5}][(C_{6}F_{5})_{n}BF_{4-n}] (n = 0-4)$$
(1.13)

Finally, $OIOF_4$ ³⁷ and $OP(O)F_2$ ³⁸ derivatives of XeF₂ have been prepared by insertion into the Xe–F bond of XeF₂ using the oxide fluorides IO_2F_3 and $P_2O_3F_4$, respectively (eq 1.14 and 1.15). Reactions using these dehydrofluorinated compounds are

$$XeF_2 + IO_2F_3 \longrightarrow FXeOIOF_4$$
(1.14)

$$XeF_2 + P_2O_3F_4 \longrightarrow FXeOPOF_2 + POF_3$$
(1.15)

desirable because no HF is formed, which could back react with the derivative of interest by reprotonating the ligand. Also, $OIOF_4$ derivatives have been prepared by an acid displacement of HOTeF₅ from of the xenon(II) derivative, Xe(OTeF₅)₂, using the stronger protic acid, HOIOF₄, to give Xe(OIOF₄)₂ (eq 1.16).³⁷

$$Xe(OTeF_5)_2 + 2HOIOF_4 \longrightarrow Xe(OIOF_4)_2 + 2HOTeF_5$$
 (1.16)

1.2.3. The Lewis Acid Properties of the XeF⁺ Cation

The XeF⁺ cation, apart from its potential as a strong oxidizer, acts as a Lewis acid towards oxidatively resistant bases such as nitriles, pyridines, diazenes, and triazenes in HF or BrF₅ solvents (eq 1.17-1.20). The strong Lewis acidity of XeF⁺ is further

$$[XeF][AsF_6] + CH_3CN \longrightarrow [CH_3CN - XeF][AsF_6]$$
(1.17)

$$[XeF][AsF_6] + C_5F_5N \longrightarrow [C_5F_5N-XeF][AsF_6]$$
(1.18)

$$[XeF][AsF_6] + o, p-C_4F_4N_2 \longrightarrow [C_4F_4NN-XeF][AsF_6]$$
(1.19)

$$[XeF][AsF_6] + s - C_3F_3N_3 \longrightarrow [C_3F_3N_2N - XeF][AsF_6]$$
 (1.20)

demonstrated by its ability to form the dinuclear $F(XeF)_2^+$ cation, and does so in preference to bridging to MF_6^- (eq 1.5).

1.2.4. Complexes of XeF₂

Complexes of xenon difluoride can be divided into two classes, those that form interactions with weak to moderate Lewis acids through the fluorine atom, and those that interact with electronegative atoms through the xenon atom. There are many examples of the former, where Lewis acids such as XeF₄, XeOF₄, IF₅, and XeF₅⁺ form XeF₂·XeF₄,³⁹ XeF₂·XeOF₄,⁴⁰ XeF₂·IF₅,⁴¹ and nXeF₂·m[XeF₅][AsF₆] (n = 1, 2; m = 1, 2),⁴² respectively. Xenon difluoride also forms adducts with the weak fluoride ion acceptor MOF₄ (M = W, Mo) to give XeF₂·MOF₄, XeF₂·2MOF₄, and XeF₂·m[MoOF₄.^{43,44} In these cases the

F-Xe-F---Mo linkage is non-labile on the NMR time scale at suitably low temperatures. Similarly, the series of $[A^{x}(XeF_{2})_{n}][(MF_{6})_{x}]$ salts (A = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Pr, Tb, Mg, Ca, Sr, Ba, Cd, Pb; x = 1, 2, 3; n = 2, 2.5, 3, 4, 5, 9; M = As, Sb, Bi) have been investigated,⁴⁵⁻⁵² where XeF₂ is adducted to a metal cation through one fluorine atom. There are currently no reports of XeF₂ complexes that involve hydrogen bonding to, or weak dipole-dipole interactions with, lighter main group compounds.

1.2.5. Spectroscopic Characterization of XeF₂ Complexes

Apart from single crystal X-ray diffraction, spectroscopic techniques such as Raman spectroscopy and multi-NMR spectroscopy have proven useful in characterizing the environment of XeF₂ in a variety of molecular adducts. Adduct formation involving XeF₂ can occur symmetrically, as shown in the crystal structures of XeF₂-XeOF₄ and XeF₂·2[XeF₅][AsF₆], preserving the center of symmetry at xenon in XeF₂ and gives rise to a single symmetric XeF₂ stretch in the Raman spectra of these adducts. Adduct formation can also occur in an asymmetric fashion, destroying the center of symmetry at xenon of XeF₂. This gives rise to two bands to high and low frequency of pure XeF₂ (498 cm⁻¹) in the Raman spectrum, as illustrated by XeF₂·MOF₄ (M = Mo, W). Similarly, the series of [A^x(XeF₂)_n][(MF₆)_x] (vide supra) salts possess linear distortions that give rise to Xe–F stretching modes at high frequency (514 to 584 cm⁻¹) and low frequency (411 to 463 cm⁻¹). Many of the X-ray crystal structures determined for these complexes show that the two Xe–F bond lengths of the XeF₂ moiety are significantly different within ±3 σ , in agreement with the vibrational frequencies. While it is expected that the asymmetric stretch of $XeF_2 (555 \text{ cm}^{-1})^{53}$ would be observable in the Raman spectrum upon breaking the center of symmetry of the XeF_2 molecule, it has not been observed thus far for these complexes. Instead, the symmetric and asymmetric stretching modes of XeF_2 are replaced with terminal and bridging Xe–F stretches, which are coupled with one another. The strength of this coupling is directly related to the strength of the interaction between XeF_2 and the Lewis acid center.

1.3. Xenon(II) Oxide Fluorides

The syntheses of xenon oxide fluorides of Xe(IV) and Xe(VI) have been accomplished by various methods,⁵⁴⁻⁶³ the most convenient being by the controlled hydrolyses of XeF_4 and XeF_6 in HF solution according to eq 1.21–1.23.^{64,65} More

$$XeF_4 + H_2O \longrightarrow XeOF_2 + 2HF$$
 (1.21)

$$XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF$$
 (1.22)

$$XeOF_4 + H_2O \xrightarrow{HF} XeO_2F_2 + 2HF$$
(1.23)

recently, an improved synthesis of XeOF₂ has been reported. Controlled hydrolysis of XeF₄ by H₂O in CH₃CN solvent yields XeOF₂·CH₃CN in essentially quantitative yield.⁶⁶ Adducted CH₃CN can be removed at low temperature under dynamic vacuum to give pure XeOF₂. Although several neutral and ionic xenon oxide fluorides are known for Xe(IV) and Xe(VI), as well as neutral oxide fluorides for Xe(VIII) (Table 1.1), only one species, FXeOXeFXeF⁺,⁶⁷ but no neutral oxide fluoride, has been reported for Xe(II).
~	Parent Compound	Structure	Cation(s)	Structure	Anion(s)	Structure ^a
	(XeF ₂	$(linear, D_{wh})$	XeF ⁺	(linear, C_{∞})		
Xe(II)	{		FXe F XeF ⁺	$(V-shape, C_{2\nu})^{b}$		
	FXeOXeF	(V-shape, $C_{2\nu}$)	FXeOXeFXeF⁺	(bent chain, C_s)		
Ya(IV)	∫ XeF₄	(square plane, D_{4h})	XeF ₃ ⁺	(T-shape, $C_{2\nu}$)	XeF5 ⁻	(pentagonal planar, D_{5h})
Λ6(IV)	XeOF ₂	(T-shape, $C_{2\nu}$)			XeOF ₃ ⁻	(planar, $C_{2\nu}$)
Xe(VI)	(XeF ₆	(monocapped octahedron, C_{3v})	XeF5 ⁺ F3XeFXeF5 ^{+ a}	(square pyramid, $C_{4\nu}$)	XeF7 ⁻ XeF8 ²⁻	(monocapped octahedron, C_{3v}) (square antiprism, D_{4d})
	XeOF ₄	(square pyramıd, $C_{4\nu}$)	XeOF ₃ ⁺	(disphenoid, C_s)	XeOF ₅ ⁻ (XeOF ₄) ₃ F ^{- ¢}	(pentagonal pyramid, $C_{5\nu}$) ^d
	XeO ₂ F ₂	(disphenoid, $C_{2\nu}$)	XeO ₂ F ⁺ FO ₂ XeFXeO ₂ F ^{+ b}	(trigonal pyramid, $C_{2\nu}$)	XeO ₂ F ₃ -	(square pyramid, C_s)
	XeO3	(trigonal pyramid, $C_{3\nu}$)			XeO ₃ F ⁻	f
Xe(VIII)	XeO ₂ F ₄	$(pseudooctahedron, D_{4h})^{g}$				
	XeO ₃ F ₂	(trigonal bipyramid, D_{3h})			XeO ₃ F ₃ ⁻	(pseudooctahedron,
	XeO4	(tetrahedron, T_d)			$XeO_4F_2^{2-}$	(distorted octahedron, mixture of isomers cis $(C_{2\nu})$ and trans $(D_{4\nu})$)

Table 1.1. Known Fluoro- and Oxofluoro-Cations and Anions of Xenon, Their Parent Compounds, and Geometries

^a Point group symmetries are given in parentheses. ^b Cations that are mononuclear in xenon and the $F_5Xe_{--}F_{--}XeF_5^+$ (Xe₂ F_{11}^+) cation interact with their fluoroanions through one or more fluorine bridges. Details of the structure and fluorine bridging in the FO₂Xe₋₋₋ $F_{---}XeO_2F^+$ (Xe₂O₄ F_3^+) cation are unknown, but the Xe₋₋₋ $F_{---}Xe$ arrangement is assumed to be bent as in the FXe₋₋₋ $F_{---}XeF^+$ (Xe₂ F_3^+) and Xe₂ F_{11}^+ cations. The Xe₂ F_3^+ cation forms no fluorine bridges with its fluoroanion. The XeF₅ groups in Xe₂ F_{11}^+ have essentially square pyramidal geometries. ^c This work. ^d Point symmetry determined by vibrational spectroscopy. ^e Three XeOF₄ molecules, having essentially square pyramidal geometries, are coordinated through the xenon atoms to a single fluoride ion to give a trigonal pyramidal arrangement about the fluoride ion. ^f The structure consists of open polymeric chains, (XeO₃ F_n), with two fluorine bridges to each xenon atom. ^g Predicted geometry.

11

While XeOF₄ is a thermodynamically stable liquid (estimated $\Delta H_{\rm f}^{\rm o}$, -25 kJ mol⁻¹),⁶⁸ the other neutral oxide fluorides are themodynamically unstable. The Xe(IV) oxide fluoride, XeOF₂, is known to undergo redox decomposition, eliminating molecular oxygen (eq 1.24),⁶⁴ or by disproportionation into XeF₂ and Xe₂OF₂ (eq 1.25). The XeO₂F₂ molecule

$$XeOF_2 \longrightarrow XeF_2 + \frac{1}{2}O_2$$
(1.24)

$$2XeOF_2 \longrightarrow XeF_2 + Xe_2OF_2$$
(1.25)

is an endothermic solid (estimated ΔH_f^{o} , 234 kJ mol⁻¹).⁶⁸ Except for the XeOF₃⁻ anion, all anionic and cationic xenon oxide fluorides that have been reported are derived from neutral Xe(VI) oxide fluorides. Dinuclear μ -F(XeO₂F)₂⁺, trinuclear F(XeOF₄)₃⁻, and polymeric (XeO₃F⁻)_n xenon oxide fluoride species have also been prepared and possess fluorine-bridged xenon centers.

1.4. The XeL⁺ (L = F, OSeF₅, OTeF₅) Cations and $M(OTeF_5)_6^-$ (M = As, Sb, Bi) Anions; General Background

The electronegativity of the pentafluoroorthotellurate group, OTeF₅, is comparable to that of fluorine in its ability to stabilize a variety of noble-gas species.^{69,70} Derivatives of the OTeF₅ group are known for the +2, +4, and +6 oxidation states of xenon,^{29,30,71-76} as well as for the +2 oxidation state of krypton.⁷⁷ The OTeF₅ analogue of the well-known XeF⁺ cation, XeOTeF₅⁺, was first obtained as the AsF₆⁻ salt by reaction of FXeOTeF₅ with AsF₅.⁷¹ The [XeOTeF₅][Sb₂F₁₁] salt was subsequently synthesized from [XeOTeF₅][AsF₆] by AsF₅ displacement in liquid SbF₅,⁸ and the XeOTeF₅⁺ cation has been characterized in solution by ¹⁹F, ¹²⁵Te, and ¹²⁹Xe NMR spectroscopy in SbF₅ solvent,⁷⁶ and in the solid state by Raman spectroscopy of [XeOTeF₅][AsF₆] ^{71,72,75} and [XeOTeF₅][Sb₂F₁₁].⁷⁶ The X-ray crystal structure of [XeOTeF₅][AsF₆] shows that the unsaturated primary coordination sphere of XeOTeF₅⁺, like that of XeF⁺, renders it a Lewis acid that interacts with the AsF₆⁻ anion by means of a fluorine bridge. The resulting Xe---F cation-anion distance (2.24(3) Å)⁷⁵ is significantly less than the sum of xenon and fluorine van der Waals radii (3.63 Å)²⁶ and similar to that in [XeF][AsF₆] (2.208(3) Å)⁷⁸ and [XeOSeF₅][AsF₆] (2.31(4) Å).⁷⁵

No solid state structural data currently exists for salts of the XeF⁺ or XeOTeF₅⁺ cations in which either XeF⁺ or XeOTeF₅⁺, or any other noble-gas cation, may be regarded as "devoid" of interactions with their counter anions. Likely candidates for anions that may prove to be weakly coordinating with respect to XeF⁺ and XeOTeF₅⁺ are members of the oxidatively resistant M(OTeF₅)₆⁻ (M = As, Sb, Bi) anion series.³⁵ The latter anions effectively disperse a single negative charge over 30 fluorine atoms rather than over six fluorine atoms as in their MF₆⁻ analogues. In addition to their low basicities, the high effective group electronegativity of the OTeF₅ ligand and its steric requirements in these hexa-coordinate anions may be expected to make the electron lone pairs of the linking oxygen atoms less accessible to attack by strong electrophiles. The Sb(OTeF₅)₆⁻ anion has been shown to resist attack by the strongly oxidizing SbCl₄⁺ and SbBr₄⁺ cations,⁷⁹ leading to the X-ray crystal structure determinations of their Sb(OTeF₅)₆⁻ salts.

The XeOTeF₅⁺ cation is of considerable interest because of its use synthetically for generating main-group cationic species by oxidative elimination of a halogen ligand bonded to the main-group element (see Chapters 6 and 7).⁸⁰ Until now generation of cationic species of the main-group element using xenon cations has been limited to XeF^{+ 81-88} and C₆F₅Xe^{+ 89,90} (see Section 1.5).

1.5. Synthetic Applications of Noble-Gas Salts

Although the noble-gas cations are stronger oxidants than their parent neutral compounds, their oxidant properties have not been exploited to a significant extent in synthetic contexts. Among the xenon cations, XeF⁺ has been the most exploited synthetically.⁸¹ It has been used in HF solvent to synthesize (precursors given in square brackets) a variety of monofluorosulfonium cations such as R_2SF^+ [R_2S ; R = H, Cl, CN, C_6F_5 , CF_3 , CH_3], $RR'SF^+$ [RR'S; $R = CH_3$, CF_3 and R' = H] and $(R_2C)_2SSF^+$ [(R_2CS)₂; R = CF₃, Cl] as their MF₆⁻ (M = As, Sb) salts.⁸¹ The reaction of XeF⁺ with H₂O in anhydrous HF has been reported to give the H_2OF^+ cation,⁹¹ but this work has been shown to be erroneous, instead giving rise to the FXeOXeFXeF⁺ cation.⁶⁷ In group 15, $PnCl_3$ (Pn = P, As) have been fluorinated in HF solvent by XeF⁺ to give the corresponding $PnFCl_3^+$ cations as their AsF₆⁻ salts.^{81,82} Nitrosyl fluoride, NOF, also reacts in HF with XeF⁺ to form the ONF₂⁺ cation.⁸³ The only reports of synthetic applications to group 17 chemistry are of the Cl_3^{+84} and Br_5^{+85} cations generated in HF by reaction of $[XeF][MF_6]$ with Cl₂ and Br₂. The previously known Br₃⁺ cation has also been prepared by this route.⁸⁵ The XeF⁺ cation has also been shown to oxidize Xe in SbF₅ in the

presence of low concentrations of HF⁸⁸ to give the previously known Xe₂⁺ radical cation.^{86,87} The C₆F₅Xe⁺ cation is considerably less electrophilic than the XeF⁺ cation.⁹² Thus far, C₆F₅Xe⁺ has been shown to arylate pentafluorophenyl derivatives of several main-group elements; $(C_6F_5)_3As$, $(C_6F_5)_3P$, $(C_6F_5)_2S$, C_6F_5I , and C_6F_5Br to give $(C_6F_5)_4As^+$,⁸⁹ $(C_6F_5)_4P^+$,⁹³ $(C_6F_5)_3S^+$,⁹⁰ $(C_6F_5)_2I^+$,⁹⁰ and $(C_6F_5)_2Br^+$,⁹⁰ respectively. No synthetic applications of the remaining higher oxidation state xenon cations have been reported thus far. The KrF⁺ and F(KrF)₂⁺ cations are well-established superoxidant species capable of oxidizing NF₃ to NF₄⁺,⁹⁴ BrF₅ to BrF₆^{+,95,96} TcO₂F₃ to TcOF₅,^{97,98} and O_2 to O_2^+ ⁵ (reference 16 and references therein should be consulted for further examples). The aforementioned reactions involving krypton fluorocations were carried out in oxidatively resistant solvent media such as anhydrous HF. Similarly, synthetic chemistry involving the use of XeF⁺ as an oxidant has been solely reliant upon the superacid, anhydrous HF, as the solvent medium.

1.6. Purpose and Scope of the Present Work

The objectives of the present work are three-fold: (1) to extend the chemistry of the oxide fluorides of xenon, (2) to extend the known derivatives of Xe(II) to include a nitrate species, and (3) to apply Xe(II) cations to the syntheses of new main-group cations.

The syntheses of all the neutral oxide fluorides of Xe(IV), Xe(VI), and Xe(VIII) have been reported, but no neutral oxide fluorides of Xe(II) have been prepared to date. A major goal of this work is to extend the chemistry of the known oxide fluorides of xenon

by synthesizing FXeOXeF (hereafter referred to as $O(XeF)_2$) and structurally characterize it. The preparation of this compound would complete the list of known neutral oxide fluorides of xenon.

Many oxygen-bound ligands have been found to form stable compounds with Xe(II), but no confirmed synthesis or structural characterization of a noble-gas nitrate, ONO_2 , has been reported. Two prior reports have suggested the formation of FXeONO₂ ^{99,100} and Xe(ONO₂)₂, ⁹⁹ but neither study attempted to provide spectroscopic evidence or made attempts to isolate FXeONO₂ or Xe(ONO₂)₂. Attempts to synthesize and characterize the nitrate derivatives, FXeONO₂ and Xe(ONO₂)₂, was another major goal of the research undertaken in this Thesis.

The third major objective of this research was to extend the chemistry of strongly electrophilic main-group cations by use of a strong oxidant noble-gas cation as a synthon. A prior body of work has utilized XeF⁺ and XeC₆F₅⁺ to generate main-group cations by direct oxidation of the central atom (see Section 1.5). This approach, however, suffers from one or two major drawbacks: (1) it relies on the protic, superacidic medium, HF, to solubilize XeF⁺, which, in turn, reacts with the substrate of interest, and (2) it involves oxidative addition of F or C₆F₅ to the substrate. A major goal of this Thesis was to generate other main-group cations using the strongly oxidizing noble-gas salt, [XeOTeF₅][Sb(OTeF₅)₆], which is highly soluble at low temperature in the non-protic, weakly basic solvent SO₂ClF. The intent was to generate halomethyl cations by oxidative removal of a ligand, such as chlorine, bromine, or iodine, from the carbon center, rather than by oxidation and concerted ligation of the central atom. Prior to this work, the

halomethyl cations CX_3^+ (X = Cl, Br, I) had only been characterized in the gas phase by ion cyclotron resonance (ICR) mass spectrometry, or as long-lived species by NMR spectroscopy in SO₂ClF solution, or by infrared spectroscopy in the case of CCl_3^+ (see Chapter 6). Also, during the course of the Thesis, the CI_3^+ cation has been characterized by X-ray crystallography as the [CI₃][Al(OC(CF₃)₃)₃] salt.¹⁰¹ As such, the structural determination of the remaining perhalomethyl cations, CX_3^+ (X = F, Cl, Br) as well as obtaining spectroscopic evidence for long-lived, mixed chlorofluoromethyl cations, CFX_2^+ and CF_2X^+ (X = Cl, Br), was a major goal in the present work.

CHAPTER 2

EXPERIMENTAL SECTION

2.1. Standard Techniques

2.1.1. Dry Box and Vacuum Line Techniques

The compounds used and prepared during the course of this work were moistureand temperature-sensitive, and were handled under rigorously anhydrous conditions on glass and metal vacuum line systems or in an inert atmosphere (N₂ gas) dry box (Vacuum Atmospheres Model DLX, oxygen and moisture <0.1 ppm) equipped with a glass cryowell. Preparative work inside the dry box requiring low temperatures was accomplished using a metal Dewar filled with 4.5 mm copper-plated spheres that had previously been cooled to ca. –140 °C in the glass cryowell (–196 °C) of the dry box.

Preparative work involving volatile fluorides that attack glass (e.g. HF) were carried out on metal vacuum lines constructed primarily from 316 stainless steel and nickel and fitted with 316 stainless steel valves (Autoclave Engineers, Inc., Figure 2.1). Pressures were measured at ambient temperatures using MKS Model PDR-5B pressure transducers having wetted surfaces constructed of Inconel. The pressure transducer possessed a range of 0–1150 Torr, which was accurate to ± 0.5 Torr.

Reactions that did not involve transfer of materials that attack glass were carried out on Pyrex glass vacuum lines equipped with grease-free 6-mm J. Young PTFE/glass

Figure 2.1. The metal vacuum line used in the manipulation of corrosive materials. (A) Outlet to liquid nitrogen and soda lime traps followed by a two-stage direct-drive rotary vacuum pump (Edwards E2M8) – roughing vacuum. (B) Outlet to soda lime and liquid nitrogen traps followed by a two-stage direct-drive rotary vacuum pump (Edwards E2M8) – high vacuum. (C) Dry N₂ inlets. (D) F₂ inlet. (E) Bourdon pressure gauge (0–1500 Torr). (F) MKS Model PDR-5B pressure transducers (0–1000 Torr). (G) MKS Model PDR-5B pressure transducers (0–1000 Torr). (G) MKS Model PDR-5B pressure transducer (0–10 Torr). (H) Ultra-high-purity argon inlet. (I) ¹/₄-in. o.d. (¹/₈-in. i.d.) nickel reaction vessel port. (J) High-pressure stainless steel valve (Autoclave Engineers). (K) 316 stainless steel X-, T-, and L-connections employing ³/₈-in. o.d. (¹/₈-in. i.d.) threaded nickel tubing. (L) Submanifold for NOF/NO₂F transfer.

stopcocks outfitted with PTFE barrels (Figure 2.2). Pressures inside the glass manifold were monitored using a mercury manometer.

Vacuum on the glass vacuum lines (ca. 10^{-3} – 10^{-4} Torr) was accomplished using Edwards two-stage internal vane E2M8 direct-drive vacuum pumps. Vacuum was maintained on the metal line using two E2M8 vacuum pumps; the first, a roughing pump, was used primarily for the removal of volatile fluoride and oxide fluoride compounds. The rough pump was used to pump reactive, volatile fluorine compounds through a fluoride/fluorine trap consisting of a stainless steel tube (ca. 60 cm, 15 cm dia.) packed with soda lime absorbent (Fisher Scientific, 4–8 mesh), followed by a final trapping procedure, utilizing a glass liquid nitrogen trap to remove CO₂ and water formed by reaction of fluoride materials with soda lime and other volatile materials that were unreactive towards soda lime. The second vacuum pump provided the high vacuum (ca. 10^{-4} Torr) source for the manifold and was fitted with a glass liquid nitrogen trap.

2.1.2. Preparative Apparatus and Sample Vessels

All synthetic work was carried out in reactors constructed from lengths of ¹/₄-in. and ³/₈-in. o.d. FEP tubing which were heat-sealed at one end and heat-flared (45° SAE) at the other. The tubing was connected to Kel-F valves, encased in aluminum housings, using brass flare fittings. All vessels were then connected to a glass vacuum line using Cajon fittings and were rigorously dried by pumping (a minimum of 6 h) under dynamic vacuum. Vessels were then connected to the metal vacuum line using a PTFE Swagelok union and passivated with ca. 1000 Torr of F₂ for ca. 12 h. Once passivated, vessels were

Figure 2.2. Glass vacuum line used for the manipulation of non-corrosive volatile materials. (A) Main vacuum manifold.
(B) Dry N₂ inlet. (C) 15-mm greaseless J-Young valve with PTFE barrel. (D) 6-mm greaseless J-Young valve with PTFE barrel. (E) Mercury manometer. (F) Liquid N₂ cold trap. (G) Outlet to vacuum pump.

Ph.D. Thesis – Matthew D. Moran

evacuated under dynamic vacuum to remove all volatile impurities and back-filled with dry N_2 (ca. 1000 Torr) prior to use. Similarly, connections made to a metal vacuum line were dried under dynamic vacuum and passivated with F_2 gas overnight. Connections made to a glass vacuum line were dried under dynamic vacuum overnight.

Nuclear magnetic resonance spectra were acquired using tubes prepared from 1/4-in. and 9-mm o.d. FEP tubing. The 9-mm o.d. FEP NMR samples were constructed from lengths of 3/8-in. o.d. FEP by reducing their diameter in a heated brass cylindrical die using mechanical pressure. One end of each tube was heat-sealed using the end of a heated thin-walled 10-mm o.d. glass NMR tube, while the other end was fused to ca. 5 cm of 1/4-in. o.d. thick-walled tubing. The end was subsequently heat-flared (45° SAE) for connection to a Kel-F valve. Prior to acquisition of the NMR data the sample tubes were heat-sealed under dynamic vacuum using a nichrome wire resistance furnace of appropriate diameter. Otherwise, NMR samples were prepared in 5-mm o.d. thin wall precision glass NMR tubes (Wilmad) fused to 1/4-in. o.d. lengths of glass tubing which were in turn attached to 4-mm J. Young PTFE/glass stopcocks by use of 1/4-in. stainless steel Cajon Ultratorr unions fitted with Viton O-rings. The NMR tubes were then vacuum-dried for 8–12 h before use.

Low-temperature Raman spectra of solids (ca. -160 °C) were recorded on samples prepared in both thin-walled ¹/₄-in. and ³/₈-in. FEP tubing, as well as 5-mm o.d. glass tubes fused to ¹/₄-in. o.d. lengths of glass tubing which were in turn attached to 4-mm J. Young PTFE/glass stopcocks by use of ¹/₄-in. stainless steel Cajon Ultratorr unions fitted with Viton O-rings. All connections to vacuum lines were made using thick-walled ¼-in. FEP tubing in conjunction with either a ¼-in. PTFE Swagelok connector outfitted with PTFE compression fittings (ferrules) or ¼-in. stainless steel Cajon Ultra-Torr connectors outfitted with stainless steel compression fittings and Viton rubber O-rings.

2.2. Preparation and Purification of Starting Materials

2.2.1. Sources and Purification of N₂, Ar, F₂, Xe, O₂, O₃, NO, and NO₂

House nitrogen gas was generated by boiling off liquid nitrogen (Air Liquide) and was further dried through a freshly regenerated bed of type 4Å molecular sieves. High purity argon gas (VitalAire), also employed for the back pressuring of reaction vessels, was used without further purification. Technical grade fluorine gas (Air Products) and Xe (Air Products, 99.995%) were used without further purification, unless high purity fluorine gas was required (see Section 2.2.4). High purity oxygen gas (Aire Liquide) was used without further purification. Ozone, O₃, was generated by a Welsback T-408 ozonator using high-purity O₂. Nitrogen oxide, NO (Matheson, >99%) was purified by condensing commercial NO into a 30-mL nickel can at -196 °C, followed by warming to -120 °C using an ethanol slush, and condensing the NO gas into the reaction vessel at -196 °C. Nitrogen dioxide, NO₂ (Matheson, >99.5%), was purified by pressurizing the glass vessel, fitted with a 4-mm J. Young PTFE/glass stopcock, with high-purity O₂, followed by several freeze-pump-thaw cycles at -196 °C.

2.2.2. Purification of Anhydrous HF, SO₂ClF, and CH₃CN

Anhydrous hydrogen fluoride, HF (Harshaw Chemical Co.), was purified by addition of ca. 5 atm of fluorine gas to a commercial HF sample contained in a nickel can for a period of ca. one month prior to use, converting residual water to HF and O_2 . The HF was then distilled into a Kel-F storage vessel equipped with a Kel-F valve and stored at room temperature for future use. Transfer of HF was accomplished by vacuum distillation from the Kel-F storage vessel, on a metal vacuum line, through connections constructed from FEP, as shown in Figure 2.3.

Sulfuryl chloride fluoride (Allied Chemical Co., Baker and Adams Division, >90%, ca. 100 g crude material) was purified by fractional distillation through two FEP U-tube traps cooled to -78 and -90 °C, respectively, effectively removing the inert impurity SO₂F₂. The remaining SO₂ClF was then condensed into an FEP U-tube containing ca. 80 g of SbF₅ at -78 °C and slowly warmed to room temperature with vigorous mixing to remove SO₂, which is known to rapidly reduce xenon(II) species. The purified SO₂ClF was then transferred to an FEP U-tube cooled to -78 °C and containing dried KF. Again, the mixture was slowly warmed to room temperature with vigorous mixing and allowed to stand with periodic mixing at room temperature for ca. 2 h to remove any residual HF. The sample was again cooled to -78 °C and condensed into a 1.25-in. FEP reaction vessel containing XeF₂ (1.7 g) for 24 h to ensure all impurities with reducing properties (i.e., SO₂) were removed. Finally, the liquid was distilled by dynamic pumping at -78 °C into a glass vessel, outfitted with a 6-mm J. Young all-glass stopcock,

Figure 2.3. Hydrogen fluoride distillation apparatus. (A) Kel-F storage vessel containing HF. (B) FEP reaction vessel fitted with a Kel-F valve. (C) Kel-F valve connected to vacuum manifold. (D) Kel-F Y-connection with Teflon Swagelok unions.

over a bed of dry KF. The purity of the sample was assessed by ¹H, ¹⁷O, and ¹⁹F NMR spectroscopy of a neat sample recorded at -80 °C, in which only trace amounts of SO₂F₂ (2.2%) were found. Transfers were performed using a glass vacuum line by vacuum distillation of SO₂ClF through a sub-manifold comprised of a Y-shaped glass connection to the reaction vessel (Figure 2.4). The sample was stored at room temperature until used.

Acetonitrile (Caledon, HPLC Grade) was purified according to the literature method,¹⁰² and was transferred under vacuum using a glass vacuum line and a glass Y-piece.

2.2.3. Natural Abundance and Isotopically-enriched Water, H₂O, H₂¹⁷O, and H₂¹⁸O

Natural abundance water (Caledon, HPLC grade) was used without further purification. Oxygen-17 enriched water (¹⁶O, 35.4%; ¹⁷O, 21.9%; ¹⁸O, 42.7%) and ¹⁸O-enriched water (99.99%) were obtained from the Bureau de Rayonnements Ionisants, Saclay, France, and used without further purification.

2.2.4. NOF, NO₂F, and ¹⁵NO₂F

Nitrosyl fluoride, NOF, was prepared by reaction of NO and F_2 in a 30-mL nickel can. Pure NO gas (ca. 833 Torr, 0.0905 mol) was measured using a 2-L nickel can and was condensed into a 30-mL reaction can at -196 °C. After transfer, the line was pumped to remove any residual material. Fluorine gas was then condensed into an intermediate 30-mL can at -196 °C. The can was then warmed to -183 °C using a liquid oxygen bath and F_2 , free of non-volatile contaminants (i.e., HF, CF₄, OF₂, and/or NF₃), was allowed

Figure 2.4. Apparatus used for the vacuum transfer of SO₂ClF solvent. (A) 250-mL glass vessel equipped with a 4-mm J. Young all-glass stopcock. (B) Bed of dry, powdered KF. (C) Glass Y-connector. (D) 6-mm J. Yound PTFE/glass valve. (E) FEP reaction vessel fitted with a Kel-F valve. (F) Stainless steel Cajon Ultratorr Union.

into the line and 2-L can. The purified F_2 (384 Torr, 0.0417 mol) was then condensed into the reaction can cooled to -196 °C. The reaction vessel was then closed and allowed to warm slowly to room temperature. After ca. 1 h at room temperature, the vessel was again cooled to -196 °C and the residual F_2 was removed under dynamic vacuum. The procedure was repeated a second time to give a combined yield of 8.63 g (0.1762 mol). Trace amounts of NO₂F (2.2%) and NOF₃ (0.85%) were estimated by recording the ¹⁹F NMR spectrum of the liquid product at -80 °C. A fluorine-passivated submanifold, constructed from 316 stainless steel and nickel and dedicated to the transfer of NOF (and NO₂F, vide infra; Figure 2.1), was passivated with NOF prior to transfer to a reaction vessel. The success of the passivation was determined by a visual check of the color of the NOF/NO₂F condensed into an auxillary tube (see Section 2.3.1).

Nitryl fluoride, NO₂F, was prepared by reaction of NO₂ and F₂ in a 30-mL nickel can in a manner similar to that used for the preparation of NOF. Purified NO₂ (12 g) was vacuum distilled into a $\frac{1}{2}$ -in. o.d. FEP tube that was fused to a 5-cm length of $\frac{1}{4}$ -in. o.d. FEP tubing fitted with a Kel-F valve. Approximately 3 g of NO₂ was reacted with excess F₂ to generate NO₂F for passivation of the nickel can. The crude NO₂F was then removed, and the remaining NO₂ was reacted with a slight excess of purified F₂ in two steps. The amount of NOF impurity was 2.5% as determined by ¹⁹F NMR spectroscopy of the liquid product at -80 °C. Subsequent use of NO₂F prior to distillation into a reaction vessel.

The preparation of ¹⁵NO₂F is an improved version of the published method.¹⁰³ In a one-step preparation, Na¹⁵NO₂ (0.5080 g, 7.258 mmol) was added to a nickel reactor (ca. 10 mL) inside the dry box. The vessel was attached to the metal vacuum line, where all connections were dried under vacuum and passivated with F₂ overnight. Excess F₂ (8.915 mmol) was condensed onto the solid at –196 °C. The valve was then closed and the mixture warmed to –78 °C, where the vigorous release of gaseous CO₂ from the surrounding dry ice/acetone bath indicated the reaction was taking place. The reactor was allowed to warm slowly to room temperature overnight. The reactor was then cooled to –196 °C, and excess F₂ was slowly removed under dynamic vacuum. The ¹⁹F NMR spectrum of the neat liquid product at –80 °C showed an NOF impurity (8.1% by integration).

2.2.5. AsF₃, AsF₅, SbF₃, and XeF₂

Arsenic trifluoride (containing ca. 9 mol% HF as shown by ¹⁹F NMR spectroscopy), was purified by condensing crude AsF_3 into a 2-L nickel can preloaded with an 8-fold molar excess of dry NaF, and was allowed to stand at room temperature for a period of ca. 24 h, during which time it was frequently agitated.

Arsenic pentafluoride was prepared as previously described^{104,105} by direct fluorination of purified AsF₃ with purified F₂ in a nickel can. The AsF₅ was used from the reaction can without further purification.

Antimony trifluoride, SbF₃ (Aldrich, 98%), was purified by vacuum sublimation $(350-400 \ ^{\circ}C)$ and stored in the dry box prior to use.

Xenon difluoride was prepared according to the literature method¹⁰⁴ and stored in a Kel-F tube inside a dry box prior to use.

2.2.6. NaF, NaNO₂ and Na¹⁵NO₂

Sodium fluoride, NaF (J. T. Baker Chemical Co., 99%) and natural abundance (BDH Chemical, 97%) and ¹⁵N-enriched (Isotec, 98+%) NaNO₂ were dried by dynamically pumping the powders under vacuum at 250–300 °C and 150 °C, respectively, in glass drying tubes employing greased connections and J-Young PTFE/glass stopcocks for a period of 3 days. The freshly dried salts were then stored inside the dry box prior to use.

2.2.7. HNO₃ and N₂O₅

Anhydrous HNO₃ was prepared from red-fuming (90%) HNO₃ (Fischer Scientific Co.) by drying the later over 30% fuming sulfuric acid, followed by distillation under dynamic vacuum at room temperature into a reactor at -196 °C. Nitrogen pentoxide was synthesized from HNO₃ and P₄O₁₀ and purified with ozone, O₃, according to the literature method.¹⁰⁶

2.2.8. CCl₄, CBr₄, Freon-11 (CFCl₃), Freon-12 (CF₂Cl₂), Freon-13 (CF₃Cl), Freon-12B2 (CF₂Br₂), and Freon-13B1 (CF₃Br)

Carbon tetrachloride, CCl_4 , (Aldrich) was dried for several days over CaH_2 and distilled into a glass vessel fitted with a 4-mm J. Young PTFE/glass stopcock prior to use. Carbon tetrabromide, CBr_4 (Aldrich), was purified by sublimation under dynamic

vacuum and stored in a dry box prior to use. Freon-11, Freon-12, and Freon-12B2 (Matheson) were dried over P_4O_{10} for several days and distilled into glass vessels fitted with 4-mm J. Young PTFE/glass stopcocks. Freon-13 (Matheson) was distilled into a stainless steel reactor fitted with a stainless steel valve over a bed of dry P_4O_{10} and stored at room temperature. Freon-13B1 (Matheson) was used without further purification.

2.2.9. [H₃O][AsF₆], [H₃¹⁷O][AsF₆], and [H₃¹⁸O][AsF₆]

Natural abundance, 17 O-, and 18 O- enriched [H₃O][AsF₆] salts were prepared as described in the literature.¹⁰⁷ In a typical preparation, water, 0.17401 g (9.6590 mmol), was transferred into a 5-mm o.d. FEP weighing tube inside the dry box, and the entire weighing tube was inserted into a ³/₈-in. o.d. FEP reaction vessel fitted with a Kel-F valve. Anhydrous hydrogen fluoride was then distilled into the FEP reactor at -196 °C to a depth of ca. 6.5 cm, i.e. until the level of HF was above the level of the weighing tube containing H₂O. The mixture was allowed to warm to room temperature and was thoroughly agitated. The metal vacuum line was evacuated and passivated twice with AsF₅. A slight excess of arsenic pentafluoride (9598 Torr in a 19.7-mL volume; 1.64 g, 9.65 mmol), was then condensed onto the reaction mixture at -196 °C. The reaction mixture was warmed to -78 °C to effect dissolution of AsF₅ in the HF solution, immediately affording a white precipitate of [H₃O][AsF₆]. The reaction mixture was allowed to warm to room temperature and was agitated for ca. 10 min. to dissolve the product, forming a clear, colorless solution. The reaction vessel was then cooled to -78 °C and connected to the glass line through an intermediate FEP U-tube trap cooled to -196 °C. The HF solvent and any unreacted AsF₅ were pumped off over a period of ca. 5 h at -78 °C, and subsequently pumped on at room temperature for an additional 1 h. The ¹⁷O- and ¹⁸O-enriched samples of [H₃O][AsF₆] were prepared in the same manner as the natural abundance sample. The purities of the salts were verified by low-temperature Raman spectroscopy.

2.2.10. [Xe₃OF₃][AsF₆], [Xe₃¹⁷OF₃][AsF₆], and [Xe₃¹⁸OF₃][AsF₆]

Inside the dry box, 0.05996 g (0.2884 mmol) of [H₃O][AsF₆] was transferred to a ¹/₄-in. o.d. FEP h-shaped reactor fitted with a Kel-F valve. Anhydrous HF was then distilled (ca. 0.5 mL) into the reaction vessel at -196 °C. The cold vessel was returned to the dry box through the cryowell cold port and maintained at -140 °C. Xenon diffuoride, 0.04731 g (0.2795 mmol), was added to the frozen mixture. The frozen sample was removed from the dry box and connected to a glass vacuum line through an FEP U-tube trap cooled to -196 °C. The vessel was warmed to -50 °C and agitated for ca. 10 min. until all the XeF₂ had dissolved. Formation of an orange-red crystalline precipitate under a light orange solution occurred immediately. The sample was allowed to stand for ca. 1 h, after which time the solution had become clear and colorless above the orange-red precipitate. The HF solvent was decanted into the side arm which had been cooled to -78 °C. The HF in the side arm was warmed to room temperature and back-distilled onto the sample at -78 °C in order to remove any further [F(XeF)₂][AsF₆] impurity or unreacted starting material. The process was repeated a total of three times. The side arm was then cooled to -196 °C and heat-sealed off under dynamic vacuum. The sample was

back-filled with dry N₂ at -78 °C and stored at -78 °C. The purity of [Xe₃OF₃][AsF₆] and absence of XeF2, [H₃O][AsF₆], and [F(XeF)₂][AsF₆] were verified by low-temperature Raman spectroscopy.

Samples of $[Xe_3^{17}OF_3][AsF_6]$ and $[Xe_3^{18}OF_3][AsF_6]$ were prepared in a similar manner to that used for $[Xe_3OF_3][AsF_6]$. The preparation of the ¹⁷O-enriched compound was carried out on a larger scale using a 9-mm o.d. FEP tube fused to a ¹/₄-in. o.d. FEP h-shaped reactor, and fitted with a Kel-F valve. In the dry box, 0.1069 g (0.63147 mmol) of XeF₂ was transferred to 0.12527 g (0.59935 mmol) of $[H_3^{17}O][AsF_6]$ in HF which was cooled to ca. –140 °C. The reaction was carried out at –50 °C, yielding a red-orange crystalline precipitate. The ¹⁸O-enriched compound was prepared in a ¹/₄-in. o.d. FEP h-shaped reactor fitted with a Kel-F valve. In the dry box, 0.13212 g (0.78045 mmol) of XeF₂ was transferred to 0.13875 g (0.66411 mmol) of $[H_3^{18}O][AsF_6]$ in HF and cooled to ca. –140 °C. The reaction was also carried out at –50 °C and yielded red-orange crystals. The purities of both compounds were checked by low-temperature Raman spectroscopy.

2.2.11. HOTeF₅, B(OTeF₅)₃, Sb(OTeF₅)₃, and Xe(OTeF₅)₂

Pentafluoroorthotelluric acid, HOTeF₅, was prepared by reaction of $Te(OH)_6$ (BDH Chemical, >99.5%) with H₂SO₄ and NaF (to generate HSO₃F in situ) as described elsewhere.¹⁰⁸

The compound, $B(OTeF_5)_3$, was prepared by reaction of BCl_3 (Matheson) and $HOTeF_5$ according to the literature method,¹⁰⁹ and stored in a $\frac{1}{2}$ -in. o.d. FEP tube equipped with an FEP plug inside the dry box.

The compound, $Sb(OTeF_5)_3$, was prepared by reaction of SbF_3 and $B(OTeF_5)_3$ by the literature method,¹¹⁰ and stored in a ¹/₄-in. o.d. FEP tube fitted with an FEP plug inside the dry box.

The compound, $Xe(OTeF_5)_2$, was prepared by reaction of XeF_2 and $B(OTeF_5)_3$ as described in the literature,³⁵ and stored in at -78 °C in a ½-in. o.d. FEP vessel fused to a ca. 4-cm length of ¼-in. o.d. FEP tube fitted with a Whitey ORM2 stainless steel valve under an atmosphere of dry N₂ gas.

2.3. Syntheses of O(XeF)₂, ¹⁷O(XeF)₂, and ¹⁸O(XeF)₂

A sample of $[Xe_3OF_3][AsF_6]$ in a ¹/₄-in. o.d. FEP tube fitted with a Kel-F valve was connected to a metal vacuum line through an h-shaped FEP connection that was, in turn, connected to an empty ¹/₄-in. o.d. auxiliary FEP tube fitted with a Kel-F valve. Nitrosyl fluoride was condensed into the auxiliary tube at -196 °C. The solid NOF was colorless, consistent with the absence of N₂O₃. A small amount of NOF was then condensed into the top of the reaction vessel at -196 °C. The solid NOF was warmed to -78 °C whereupon it melted and reacted with [Xe₃OF₃][AsF₆] to form a bright yellow solid over the red-orange solid precipitate. The sample was titrated with NOF at -78 °C until the orange-red color of [Xe₃OF₃][AsF₆] was no longer evident, resulting in a faint blue-coloured solid suspension in colorless NOF. Excess NOF was then removed under dynamic vacuum at -78 °C, yielding a pale yellow solid. The ¹⁷O- and ¹⁸O-enriched samples of $O(XeF)_2$ were prepared from $[Xe_3^{17}OF_3][AsF_6]$ and $[Xe_3^{18}OF_3][AsF_6]$, respectively, in a manner similar to that used for the preparation of natural abundance $O(XeF)_2$.

2.4. Preparation of FXeONO₂, FXe¹⁸ONO₂, and FXeO¹⁵NO₂

A sample of $[Xe_3OF_3][AsF_6]$ (or $[Xe_3^{18}OF_3][AsF_6]$) in a ¼-in. o.d. FEP reactor fitted with a Kel-F valve, an auxiliary ¼-in. o.d. FEP reactor, and a nickel vessel containing NO₂F (or ¹⁵NO₂F) were attached to a 3-way ¼-in. o.d. FEP connector by means of brass compression fittings or ¼-in. stainless steel Cajon Ultratorr unions fitted with Viton O-rings. All connections and the auxiliary tube were passivated with F₂ for several hours. The NO₂F sample, cooled to -78 °C, was condensed into the auxiliary tube (ca. 0.5 mL) at -196 °C and sealed, followed by warming to -78 °C to visually check the purity of the sample (N₂O₃ is an intense blue color at low concentrations in liquid NO₂F) and to control the amount added to [Xe₃OF₃][AsF₆]. The NO₂F in the auxiliary tube (-78 °C) was then condensed onto the [Xe₃OF₃][AsF₆] at -196 °C. The reactor was then warmed to -50 °C, where, after 5 h, the magenta solid slowly changed to a white suspension in excess NO₂F solution. Excess NO₂F was removed under vacuum at -110°C to yield a white, microcrystalline solid corresponding to a mixture of FXeONO₂, XeF₂, and [NO₂][AsF₆].

2.5. Preparation of XeF₂·HNO₃

Inside the dry box, XeF₂ (0.14063g, 0.83070 mmol) was added to a ¹/₄-in. o.d. FEP reactor fitted with a Kel-F valve. Sulfuryl chloride fluoride (ca. 1.5 mL) was then condensed onto the sample at -196 °C, followed by condensation of HNO₃ (0.10469 g, 1.66141 mmol) onto the frozen mixture at -196 °C. The mixture was warmed to -30 °C and agitated for 1 h, after which the solvent was removed under vacuum at -78 °C to give a colorless, microcrystalline XeF₂·HNO₃.

2.6. Preparation of XeF₂·N₂O₄

Xenon difluoride (0.1510 g, 0.8920 mmol) was added to a ¹/₄-in. o.d. FEP reactor fitted with a Kel-F valve inside the dry box. Liquid N₂O₄ was then condensed onto the sample at -78 °C (ca. 1.5 mL) and pressurized with 1 atm. of dry nitrogen. The reactor was warmed to 10 °C to effect dissolution, and initially gave a yellow-brown solution. Cooling to -10 °C caused the adduct to precipitate from the solution as a colorless solid. Formation of the adduct was verified by low-temperature (-160 °C) Raman spectroscopy of the compound under a frozen N₂O₄ solution.

2.7. Synthesis of [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF

CAUTION! The oxidative aggressiveness of $[XeOTeF_5][Sb(OTeF_5)_6]$ ·SO₂ClF is manifested by the ability of the dry salt and its SO₂ClF solutions to oxidize and crack the bodies of the Kel-F valves used in the synthesis and handling of this compound should they come into contact with their wetted surfaces. In a typical synthesis, 0.49654 g (0.5929 mmol) of Sb(OTeF₅)₃ and 0.72192 g (1.1864 mmol) of Xe(OTeF₅)₂ were weighed out and added to a 25-cm long ¹/₄-in. o.d. FEP reaction vessel maintained at -120 °C inside a dry box. The reaction vessel was removed cold from the dry box and immediately placed inside a -78 °C bath and connected to a glass vacuum line, where SO₂ClF solvent (ca. 3 mL) was condensed into the reaction vessel under static vacuum at -196 °C. The reactor was warmed to -20 °C, whereupon the reactants dissolved to give a colorless solution and the reaction proceeded with the liberation of xenon gas to give an intense yellow solution of $[XeOTeF_5][Sb(OTeF_5)_6]$. The reaction vessel was periodically cooled to -78 °C and opened to the vacuum line manifold to remove xenon gas. After 3 h at -20 °C, the reactor was warmed to 0 °C for several minutes to ensure that the reaction was complete. The solvent was then removed under vacuum at -78 °C to yield a pale yellow powder and was then pumped at 0 °C for ca. 30 min to give [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF. The purity of the sample was confirmed by lowtemperature (-160 °C) Raman spectroscopy and in SO₂ClF solution by ¹⁷O, ¹⁹F, ¹²¹Sb, ¹²⁵Te, and ¹²⁹Xe NMR spectroscopy (see Chapter 5).

2.8. Preparation of $[CX_3][Sb(OTeF_5)_6]$ (X = Cl, Br, OTeF₅)

Stoichiometric amounts of solid [XeOTeF₅][Sb(OTeF₅)₆] (0.04134 g, 0.0215 mmol), cooled to -120 °C, and CBr₄ (0.01091 g, 0.0329 mmol) were weighed into an NMR tube, also cooled to -120 °C, in the dry box and immediately transferred to a glass vacuum line, where 0.4–0.5 mL of SO₂ClF was vacuum distilled onto the mixture at -78 °C. To enhance the yield of [C(OTeF₅)₃][Sb(OTeF₅)₆], BrOTeF₅ was condensed onto the

sample of $[CBr_3][Sb(OTeF_5)_6]$ in a 3:1 mole ratio based on initial amounts of $[XeOTeF_5][Sb(OTeF_5)_6]$ and CBr_4 , and allowed to react at -20 °C for ca. 3 h (see Chapter 6). In the case of CCl_4 (270 torr, 0.00337 g, 0.0219 mmol), SO₂ClF was vacuum distilled onto $[XeOTeF_5][Sb(OTeF_5)_6]$ (0.04152 g, 0.02159 mmol), followed by condensation of CCl_4 onto the mixture at -196 °C.

2.9. Preparation of [Br(OTeF₅)₂][Sb(OTeF₅)₆]

Inside the dry box, [XeOTeF₅][Sb(OTeF₅)₆] (0.10124 g, 0.05264 mmol) was transferred at -120 °C to an NMR sample tube kept at the same temperature. The sample was removed from the dry box, immediately placed in a -78 °C bath, and connected to a glass vacuum line. After drying the connection under dynamic vacuum, 0.4–0.5 mL of SO₂ClF was condensed onto the sample under static vacuum at -78 °C. A stoichiometric excess of BrOTeF₅ (0.02347 g, 0.0737 mmol) was then vacuum distilled into the tube at -196 °C.

2.10. Preparation of $[CFX_2][Sb(OTeF_5)_6]$ and $[F_3C-Br-OTeF_5][Sb(OTeF_5)_6]$ (X = Cl, Br)

In the dry box, stoichiometric amounts of solid [XeOTeF₅][Sb(OTeF₅)₆] (ca. 0.02 mmol), cooled to -120 °C, were weighed into 5-mm o.d. glass NMR tubes (Wilmad) kept at the same temperature. The samples were then transferred to a glass vacuum line, where 0.4–0.5 mL of SO₂ClF was vacuum distilled onto the mixture at -78 °C (vide supra). The CFCl₃ (ca. 0.02 mmol) or CF₂Br₂ (ca. 0.04 mmol) were vacuum distilled onto the mixture

at -196 °C to produce [CFCl₂][Sb(OTeF₅)₆] and [CFBr₂][Sb(OTeF₅)₆], respectively. Similarly, CF₃Br (ca. 0.02 mmol) was condensed onto the mixture at -196 °C to afford the[F₃C-Br-OTeF₅][Sb(OTeF₅)₆] salt. All reactions were left for 1–2 h at -78 °C to allow the reaction to reach completion.

2.11. Preparation of Natural Abundance and ¹³C-enriched C(OTeF₅)₄

On a glass vacuum line, BrOTeF₅ (0.3908 g, 1.227 mmol) was condensed into a pre-weighed glass vessel fitted with a 4-mm J. Young PTFE/glass stopcock at -196 °C under static vacuum. Inside the dry box, CBr_4 (0.1015 g, 0.3061 mmol) was added to a ¹/₄-in. o.d. FEP reaction vessel fitted with a Kel-F valve. The reaction vessel was removed from the dry box and connected to a glass vacuum line, where SO₂ClF solvent (ca. 1.5 mL) was condensed onto CBr₄ under static vacuum at -78 °C, followed by condensation of BrOTeF₅ onto the sample under static vacuum at -196 °C. Warming to -78 °C under autogeneous pressure resulted in a vigourous reaction which was indicated by rapid boiling of the solvent and a color change from a bright ruby red solution to a dull redbrown solution of Br₂ and a white precipitate. The reaction mixture was warmed to 0 °C after 1 h, at which point the white precipitate dissolved. Removal of SO₂ClF (-78 °C) and Br_2 (0 °C) under dynamic vacuum yielded white, microcrystalline C(OTeF₅)₄ in nearly quantitative yield. The product sublimed slowly at room temperature under static vacuum, and melted at 33.6 °C as determined by DSC (see Chapter 8). Carbon-13 enriched C(OTeF₅)₄ was prepared in a similar manner by reaction of 0.4232 g (1.3286) mmol) of BrOTeF₅ with 0.1104 g (0.3319 mmol) of 99% ¹³C-enriched CBr₄ in SO₂ClF.

2.12. Preparation of [N(CH₃)₄][B(OTeF₅)₄]

The salt, $[N(CH_3)_4][B(OTeF_5)_4]$, was prepared by reaction of equimolar amounts of $[N(CH_3)_4][OTeF_5]$ and $B(OTeF_5)_3$ in CH_2Cl_2 using a procedure similar to that used for the preparation of $[N(n-Bu)_4][B(OTeF_5)_4]$.¹¹¹

2.13. X-ray Crystallography

2.13.1. Crystal Growth

A large majority of the crystals grown for structure determination by X-ray crystallography were grown in the low-temperature crystal growing apparatus depicted in Figure 2.5.

2.13.1.1. Attempted Crystal Growth of O(XeF)₂

Several attempts were made to grow crystals of $O(XeF)_2$ from CH₃CN solution at low temperatures. However, complete dissolution could only be achieved at temperatures ranging from -15 to -25 °C. Prolonged times at this temperature (ca. 2-3 h) failed to yield crystalline material, and further cooling failed to produce any solid material, indicative of decomposition which is commensurate with the solid-state decomposition temperature. When the solution was rapidly cooled to -30 °C or below crystals immediately formed, but detonated upon drying under vacuum at -42 °C, with the emission of blue light. Attempts to mount crystals grown quickly at -35 °C and slightly wetted with CH₃CN gave a diffraction pattern, but no unit cell could be determined, presumably because the fast crystal growth yielded microcrystalline material rather than

- Ph.D. Thesis Matthew D. Moran
- Figure 2.5. Low-temperature crystal growing apparatus. (A) Glass-jacketed dewar. (B) Nitrogen cold flow. (C) Thermocouple lead. (D) T-shaped FEP reaction vessel with side arm. (E) Sample region. (F) Kel-F valve. (G) FEP U-trap. (H) Vacuum manifold. (I) Greaseless J-Young valve with PTFE barrel. (J) PTFE Swagelok or stainless steel Cajon Ultra-Torr connector.

Ph.D. Thesis - Matthew D. Moran

single crystals.

2.13.1.2. FXeONO₂

Sulfuryl chloride fluoride (ca. 1.5 mL) was distilled onto a mixture of FXeONO₂, XeF₂, and [NO₂][AsF₆] at -78 °C that had been synthesized in situ in one arm of a ¹/₄-in. o.d. FEP T-shaped reactor fitted with a Kel-F valve. The reactor was pressurized with ca. 1 atm. of dry nitrogen and warmed to -30 °C, effecting partial dissolution of the white solid mixture. The arm containing the solution was inclined at ca. 5° from horizontal inside the glass dewar of a crystal growing apparatus that had been previously adjusted to -35 °C. Over 2–3 h colorless plates formed at -35 °C. The temperature was lowered over a period of 3–4 h to -50 °C, allowing for more complete crystallization. The crystals were isolated by decanting the solvent under dry nitrogen into the side arm of the FEP vessel, which was immersed in a dry ice/acetone bath, followed by evacuation and drying of the crystalline product under dynamic vacuum at -80 °C before the side arm containing the supernatant was removed by heat sealing it off at -196 °C. A crystal having the dimensions $0.22 \times 0.16 \times 0.04$ mm was selected for low-temperature X-ray structure determination.

2.13.1.3. XeF₂·HNO₃

Sulfuryl chloride fluoride (ca. 1.5 mL) was distilled onto a sample of solid XeF_2 ·HNO₃ at -196 °C that had been synthesized in one arm of a ¹/₄-in. o.d. FEP T-shaped reactor fitted with a Kel-F valve. The reactor was warmed to -30 °C to effect

Ph.D. Thesis – Matthew D. Moran

dissolution; after a few minutes of intense mixing the adduct dissolved to give a clear, colorless solution. The arm containing the solution was inclined at ca. 5° from horizontal inside the glass dewar of a crystal growing apparatus that had been previously adjusted to -40 °C to prevent decomposition. After ca. 15 min clear, colorless plates had begun to grow on the walls of the reactor. Over the course of 7 h, the temperature was lowered to -60 °C after which time a large quantity of crystals had grown. The supernatant was decanted at -70 °C into the side arm of the reactor, which was cooled in a dry ice/acetone bath. The sample was dried under dynamic vacuum at -80 °C before heat sealing off the side arm of the reactor at -196 °C. A crystal having the dimensions $0.20 \times 0.13 \times 0.04$ mm was selected for low-temperature X-ray structure determination.

2.13.1.4. XeF₂·N₂O₄

A solution of $XeF_2 \cdot N_2O_4$ in liquid N_2O_4 was prepared in a ¹/₄-in. o.d. FEP Tshaped reactor fitted with a Kel-F valve. The arm containing the solution was inclined at ca. 5° from horizontal inside the glass dewar of a crystal growing apparatus that had been previously adjusted to 3 °C. Initially long needles of XeF_2 formed. Upon cooling to -3 °C plates began to form on the needles over a period of 1 h. Over a period of an additional 6 h more plates formed, after which time the N_2O_4 was decanted under dry nitrogen into the side arm of the FEP vessel at -80 °C. The crystals were dried under dynamic vacuum at -10 °C before heat sealing off the side arm containing the supernatant at -196 °C. A crystal having the dimensions $0.16 \times 0.08 \times 0.04$ mm was selected for low-temperature X-ray structure determination.

2.13.1.5. [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF

Inside the dry box, ca. 0.2 g of [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF at -120 °C was transferred to a T-shaped ¹/₄-in. o.d. FEP reactor kept at the same temperature, and dissolved in the minimum amount (ca. 0.5 mL) of SO₂ClF. Crystals were grown by slow cooling of the reaction mixture from -50 to -80 °C over a period of 2 days inside the vertical arm of the reaction vessel. Pale yellow, block-shaped crystals were isolated by decanting the solvent into the horizontal arm at -80 °C, followed by drying under dynamic vacuum at the same temperature. The side arm was then heat sealed off at -196 °C.

2.13.1.6. $[CCl_3][Sb(OTeF_5)_6]$, $[CBr_3][Sb(OTeF_5)_6]$ ·SO₂ClF and $[C(OTeF_5)_3][Sb(OTeF_5)_6]$ ·3SO₂ClF

Crystals of $[CCl_3][Sb(OTeF_5)_6]$ were obtained by reaction of ca. 0.2 g of $[XeOTeF_5][Sb(OTeF_5)_6]$ and a two-fold excess of CCl₄ in 1.5 mL of SO₂ClF inside a T-shaped ¹/₄-in. o.d. FEP reaction vessel. Colorless crystals were grown by slow cooling of the reaction mixture from -20 to -50 °C over a period of 6 h inside the vertical arm of the reaction vessel. Colorless, plate-shaped crystals were isolated by decanting the solvent into the horizontal arm (-80 °C), drying the crystals under dynamic vacuum at -78 °C, and heat sealing the side arm off at -196 °C. Crystals of $[CBr_3][Sb(OTeF_5)_6]$ ·SO₂ClF (pale yellow), $[C(OTeF_5)_3][Sb(OTeF_5)_6]$ ·3SO₂ClF (colorless) and Br₂ (red brown) crystals were grown and isolated in a manner similar to that described for

Ph.D. Thesis - Matthew D. Moran

 $[CCl_3][Sb(OTeF_5)_6]$. Bromine produced in the reaction was identified by determination of the unit cell parameters^{112,113} at -173 °C for a crystal selected from the bulk sample.

2.13.1.7. Attempted Crystal Growths of [CFCl₂][Sb(OTeF₅)₆] and [F₃C-Br-OTeF₅][Sb(OTeF₅)₆]

Attempts were made to grow crystals of $[CFCl_2][Sb(OTeF_5)_6]$ by reaction of ca. 0.2 g of $[XeOTeF_5][Sb(OTeF_5)_6]$ and a stoichiometric amount of CFCl₃ in 1.5 mL of SO₂ClF inside a T-shaped ¼-in. o.d. FEP reaction vessel. Although a white precipitate formed during reaction at -78 °C, attempts to grow crystals by redissolution at -30 °C and cooling between -30 to -50 °C over a period of 6 h inside the vertical arm of the reaction vessel failed, indicating that the salt is not stable above -30 °C. Similar attempts to grow crystals below -50 °C yielded a white film that was unsuitable for X-ray diffraction. Similar attempts to grow crystals of $[F_3C-Br-OTeF_5][Sb(OTeF_5)_6]$ also failed, giving a white, microcrystalline solid over three days between -50 to -60 °C. On the trough the crystals were found to transform to a powder easily when manupulated and thus were unsuitable for X-ray diffraction.

2.13.1.8. Attempted Crystal Growth of [CFBr₂][Sb(OTeF₅)₆]; Crystal Growth of [SbBr₄][Sb(OTeF₅)₆]·SO₂ClF

Attempts were made to grow $[CFBr_2][Sb(OTeF_5)_6]$ crystals between -40 to -50 °C over several hours inside the vertical arm of the reaction vessel. Colorless, plate-shaped crystals were isolated by decanting the solvent into the horizontal arm, followed
Ph.D. Thesis - Matthew D. Moran

by drying under dynamic vacuum at -78 °C. However, X-ray crystallography indicated that the crystals were [SbBr₄][Sb(OTeF₅)₆]·SO₂ClF, indicating that the sample had reacted further (see Chapter 7).

2.13.1.9. C(OTeF₅)₄

Approximately 0.2 g of C(OTeF₅)₄ was transferred inside a dry box by means of a solid syringe into a 10-mm o.d. glass tube fused to a ¼-in. o.d. length of glass tubing which was, in turn, connected to a 4-mm J. Young PTFE/glass stopcock using a ¼-in. 316 stainless steel Swagelok Ultratorr union with Viton O-rings. The vessel was then removed from the dry box and connected to a glass vacuum line, where it was flame sealed under dynamic vacuum at -196 °C. Large, colorless crystals were grown by sublimation over a period of ca. 1 week at ambient temperatures, after which time the glass tube was returned to the dry box where it was cut open. Several crystals were selected under a microscope attached to the dry box and heat sealed inside 0.1–0.4 mm glass Lindemann capillaries and stored at room temperature prior to mounting on the diffractometer. The crystal used in this study was a block having the dimensions 0.45 × 0.35 × 0.30 mm.

2.13.1.10. N(CH₃)₄][B(OTeF₅)₄]

Approximately 0.2 g of compound was transferred into a T-shaped ¹/₄-in. o.d. FEP reaction vessel. Methylene chloride was then condensed onto the salt under static vacuum at -196 °C (ca. 1.5 mL). The salt was dissolved at 50 °C, and crystals were grown by

Ph.D. Thesis – Matthew D. Moran

slow cooling of the solution from 50 °C to room temperature over a period of 6 h inside the vertical arm of the reaction vessel. Colorless, needle-shaped crystals were isolated by decanting the solvent into the horizontal arm (-80 °C), drying the crystals under dynamic vacuum at -20 °C, and heat sealing the side arm off at -196 °C. The crystal of $[N(CH_3)_4][B(OTeF_5)_4]$ used for this study was a needle having the dimensions 0.18 × 0.05 × 0.04 mm.

2.13.2. Low-Temperature Crystal Mounting

Because most of the samples investigated in this work were thermally unstable and/or moisture sensitive, all of the samples investigated (except for C(OTeF₅)₄, vide supra) were mounted at low temperature using the apparatus depicted in Figures 2.6 and 2.7. The reaction vessels containing the samples were first cut open below the Kel-F valve under a flow of dry argon gas, using an inverted glass funnel, while maintaining the sample at -78 °C. The sample was then quickly dumped into to the aluminum trough of the crystal mounting apparatus under a stream of dry argon, precooled (-100 ± 3 °C) by the regulated passage of dry nitrogen gas flow through a 5-L dewar filled with liquid N₂ (Figures 2.6 and 2.7). The temperature inside the trough was measured using a copperconstantan thermocouple positioned in the sample region of the trough. Using an additional glass sleeve, which was fitted into a concentric position around the silvered cold-flow dewar, an ambient nitrogen gas flow was slowly passed through the sleeve in order to maintain a laminar flow, thereby reducing atmospheric moisture build up in the trough. Crystals were then selected using a stereo-zoom microscope and mounted on a

Figure 2.6. Low-temperature crystal mounting apparatus. (A) Nitrogen inlet. (B) Glass sleeve for ambient nitrogen flow. (C) Liquid N₂ dewar. (D) Adjustable support stage. (E) Silvered dewar (glass). (F) Aluminum trough. (G) Stereo-zoom microscope.

Figure 2.7. (a) Enlarged view of the crystal mounting apparatus; (A) Ambient nitrogen gas flow inlet. (B) Glass sleeve for ambient nitrogen gas flow. (C) Adjustable support stage. (D) Aluminum trough. (E) Silvered glass jacketed dewar. (F) Magnetic-tipped wand affixed to (G) the magnetic-based copper pin-fibre assembly. (H) Glass fibre. (I) Stereo-zoom microscope. (b) A set of cryotongs employed in the transfer of the copper pin-fibre assembly with adhered crystal from the support stage to the goniometer head.

glass fibre (0.05 to 0.1-mm o.d.) using perfluorinated polyether oil (Ausimont Inc., Fomblin Z15 or Z25) which served as an adhesive upon freezing at low temperature. The glass fibre was previously mounted with epoxy cement to a copper pin fitted to a magnetic base and affixed to the end of a magnetic wand (Hampton Research). The magnetic wand could be fastened to an adjustable support stage such that samples could be inspected under the stereo-zoom microscope once affixed to the glass fibre. The mounted crystal and magnetic pin were quickly (ca. 5 s) transferred from the crystal mounting apparatus to the magnetic mount of the goniometer by means of cryotongs (Hampton Research) which were precooled in liquid N_2 prior to use. The crystals were maintained at low temperature on the goniometer head by a cold N_2 gas flow provided by a Molecular Structure Corporation cryostat system.

2.13.3. Collection, Reduction, Refinement, and Solution of X-ray Crystallographic Data

All crystallographic data acquired during the course of this Thesis were collected using two different diffractometers: (1) a Siemens P4 diffractometer and (2) a Bruker SMART APEX II diffractometer. Both instruments were equipped with an Oxford Cryosystems low-temperature accessory that provided a stream of cold, gaseous N₂ for low-temperature data collection, and controlled by a Cryostream Controller 700 (Oxford Cryosystems).

The Siemens diffractometer was equipped with a Siemens 1K CCD area detector controlled by $SMART^{114}$ and a rotating anode (molybdenum) emitting K α radiation

monochromated ($\lambda = 0.71073$ Å) by a graphite crystal. Diffraction data collection (typically at -173 °C) consisted of a full φ -rotation at $\chi = 0^{\circ}$ using 0.3° (1040 + 30) frames, followed by a series of short (80 frames) ω scans at various φ and χ settings to fill the gaps. The crystal-to-detector distance was 4.970–5.000 cm, and the data collection was carried out in a 512 × 512 pixel mode using 2 × 2 pixel binning. Processing of the raw data was completed using SAINT+,¹¹⁵ which applied Lorentz and polarization corrections to three-dimensionally integrated diffraction spots.

The Bruker SMART APEX II diffractometer was equipped with an APEX II 4K CCD area detector and a 3-axis goniometer, controlled by the APEX2 Graphical User Interface (GUI) software,¹¹⁶ and a sealed tube X-ray source (Mo target) emitting K α radiation monochromated ($\lambda = 0.71073$ Å) by a graphite crystal. Diffraction data collection was typically at -173 °C consisted of a full φ -rotation at a fixed $\chi = 54.74^{\circ}$ with 0.36° (1010) frames, followed by a series of short (250 frames) ω scans at various φ settings to fill the gaps. The crystal-to-detector distance was 4.969–4.999 cm, and the data collection was carried out in a 512 × 512 pixel mode using 2 × 2 pixel binning. Processing of the raw data was completed using the APEX2 GUI software,¹¹⁶ which applied Lorentz and polarization corrections to three-dimensionally integrated diffraction spots.

The program SADABS^{117,118} was used for the scaling of diffraction data, the application of a decay correction, and an empirical absorption correction based on the intensity ratios of redundant reflections. The XPREP^{119,120} program was used to confirm the unit cell dimensions and the crystal lattices. The solutions were obtained by direct

methods, which located the positions of the atoms (including hydrogen) defining the structural units. The final refinement was obtained by introducing anisotropic thermal parameters and the recommended weightings for all atoms except hydrogen. The maximum electron densities in the final difference Fourier map were located near the heavy atoms. All calculations were performed using the SHELXTL package¹²⁰ for the structure determination, solution refinement, and for the molecular graphics.

2.14. Raman Spectroscopy

All Raman spectra were recorded on a Bruker RFS 100 Fourier transform Raman spectrometer employing a quartz beam splitter and a liquid-nitrogen cooled Ge diode detector. The 1064-nm line of a Nd-YAG laser was used for excitation with a laser spot of <0.1 mm at the sample and configured such that only the 180°-backscattered radiation was detected. The scanner velocity was 5 kHz and the wavelength range was 5894 to 10394 cm⁻¹ relative to the laser line at 9394 cm⁻¹, resulting in a spectral range of 3501 to -999 cm^{-1} . Fourier transformations were processed using a Blackman Harris 4-term apodization and a zero-filling factor of 2. Typical acquisitions involved ca. 300–500 scans at 1.0 cm⁻¹ resolution for strongly scattering samples and 1000–1800 scans at 1.0 cm⁻¹ for weakly scattering samples. Low-temperature spectra were acquired using a R495 low-temperature accessory which provided temperatures ranging from –40 to –160 °C with an estimated error of ±1 °C.

2.15. Nuclear Magnetic Resonance Spectroscopy

High-field nuclear magnetic resonance spectra were recorded unlocked (field drift $< 0.1 \text{ Hz h}^{-1}$) on a Bruker DRX-500 (11.744 T) spectrometer in conjunction with a Silicon Graphics Indy workstation using XWINNMR. The spectrometer was equipped with a Bruker 5-mm broad band inverse probe or a 10-mm broad band probe. Low-temperature spectra were acquired using a cold nitrogen gas flow and a variable temperature controller (BV-T 2000). The ¹H, ¹³C, ¹⁵N, ¹⁷O, ¹⁹F, ¹²⁵Te, and ¹²⁹Xe were referenced externally at 30 °C using neat samples of TMS (¹H and ¹³C), CH₃NO₂, H₂O, CFCl₃, Te(CH₃)₂, and XeOF₄, respectively.

A summary of typical spectroscopic parameters used for the spectra acquired for this Thesis are provided in Table 2.1. In some cases, gaussian rather than exponential multiplication was used to process the FID, and is dealt with in the relevant discussions. Spectral simulations were performed using the program MEXICO.¹²¹

2.16. Differential Scanning Calorimetry

Differential scanning calorimetry was performed on a TA Instruments DSC 2910 modulated differential scanning calorimeter to determine the phase transition temperatures of $C(OTeF_5)_4$. Inside the dry box, 0.00869 g of $C(OTeF_5)_4$ was loaded into a preweighed cold-welded aluminium pan inside the dry box. The pan was closed by a pierced aluminium lid and weighed again to obtain the mass of the compound by difference. The temperature was reduced from 25 to -125 °C at a rate of -15 °C min⁻¹, and then increased to 125 °C at a rate of 15 °C min⁻¹. An identical run was repeated on

Acquisition	¹ H	¹³ C	¹⁴ N	¹⁷ O	¹⁹ F	¹²⁵ Te	¹²⁹ Xe
Parameter ^a							
$B_0 = 11.744 \text{ T}$							
SF (MHz)	500.130	125.758	36.141	67.800	470.592	157.869	138.857
TD (K)	32	32	16	32	64	128	32
SW (kHz)	7	29	29	44	25 to 100	94	100
Hz/pt	0.207	0.885	1.765	1.350	0.380	0.721	3.051
PW (µs)	2.5	6.0	6.0	10.0	2.5	5.3	12.2
RD (s)	2.5	2 to 5	0.05	0.01	0.1	0.1	0.1
NS	100	10000	100,000	100,0000	500 to 5000	50000	100,000
B _o = 14.095 T							
SF (MHz)		150.903					
TD (K)		64					
SW (kHz)		36					
Hz/pt		0.55					
PW (µs)		13.8					
RD (s)		2					
NS		25000					

 Table 2.1.
 Summary of Typical Spectroscopic Parameters Used for NMR Spectroscopy

^a The abbreviations denote: B_0 , applied magnetic field; SF, spectral frequency; TD, time domain; SW, sweep width; PW, pulse width; RD, relaxation delay; NS, number of scans.

the same sample, where the absence of discernable transitions indicated that sample decomposition and/or reaction with the aluminium sample container had occurred.

2.17. Electronic Structure Calculations

2.17.1. Calculations of Optimized Geometries, Vibrational Frequencies, Atomic Charges, Atomic Valencies and Natural Bond Orders

Calculations presented in Chapters 3, 5, and 6 were carried out in collaboration with Dr. Reijo J. Suontamo, Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland. All calculations were performed using the Gaussian 98¹²² or Gaussian 03¹²³ software packages. Geometries were fully optimized using Hartree-Fock (HF), density functional theory (SVWN, SVWN5, PBEPBE, and PBE1PBE) and Møller-Plesset (MP2) methods using DZVP, Stuttgart RLC ECP, and/or (SDB-)cc-pVTZ and aug-cc-pVTZ(-PP) basis **Basis** obtained online sets. sets were (http://gnode2.pnl.gov/bse/portal). Fundamental vibrational frequencies were calculated along with Raman intensities. Natural Bond Order (NBO) analyses¹²⁴⁻¹²⁷ were obtained for the optimized local minima. Calculations of chemical shifts and coupling constants were carried out using the Gauge-Independant Atomic Orbital Method (GIAO).¹²⁸⁻¹³¹ Vibrational motions for mode assignments were visualized with the aid of the program GaussView.¹³²

2.17.2. Electron Localization Function (ELF) Calculations

Electron localization functions discussed in Chapters 3 and 5 were performed by Dr. Reijo J. Suontamo. The calculations were carried out using the TopMod software package.¹³³

CHAPTER 3

A NEUTRAL OXIDE FLUORIDE OF XENON(II): SYNTHESIS AND CHARACTERIZATION OF O(XeF)₂ AND A COMPUTATIONAL STUDY OF O(NgF)₂ AND F(NgF)₂⁺ (Ng = Kr, Xe)

3.1. Introduction

A general treatment of the oxide fluorides of xenon is provided in the Introduction (see Chapter 1). The discovery of the first cationic Xe(II) oxide fluoride, FXeOXeFXeF⁺,^{67,134} occurred during a reinvestigation of the reported protonated hypofluorous acid cation, $H_2OF^{+,91}$ Experiments designed to repeat this work gave, instead, [Xe₃OF₃][MF₆] (M = As, Sb) salts.⁶⁷

No systematic studies exist for the preparation of a neutral oxide fluoride of Xe(II) by hydrolysis of XeF₂, and it has been reported that acidic and neutral solutions of XeF₂ are stable for short periods of time, and decompose to give Xe, O₂, and HF.¹¹ The discovery the FXeOXeFXeF⁺ cation has provided a synthetic route to $O(XeF)_2$. The present work describes the synthesis of $O(XeF)_2$ from $[Xe_3OF_3][AsF_6]$, and the spectroscopic characterization of the first neutral oxide fluoride of xenon.

3.2. Results and Discussion

3.2.1. Synthesis and Reactivity of O(XeF)₂

The crystal structures of both $Xe_3OF_3^+$ salts have been obtained in which the cation is comprised of a FXeOXe---FXeF zig-zag chain. The long contact (2.510(8) Å, As; 2.508(7) Å, Sb) between xenon and the bridging fluorine atom suggests that XeF_2

may be readily displaced from $Xe_3OF_3^+$ by a suitable oxidatively resistant base according to eq 3.1, where M = K or NO.

Reaction of the magenta-colored solid [Xe₃OF₃][AsF₆] with liquid NOF at -78 °C afforded a pale blue-colored solid/liquid mixture, which yielded a pale yellow solid upon removal of excess NOF under dynamic vacuum at -78 °C (eq 3.2). The blue color

$$[Xe_3OF_3][AsF_6] + NOF \longrightarrow O(XeF)_2 + XeF_2 + [NO][AsF_6]$$
 (3.2)

Presumably arose from traces of N_2O_3 .¹³⁵ The product mixture was found to be stable indefinitely at temperatures at or below -30 °C.

Because an excess of NOF was used to react with $[Xe_3OF_3][AsF_6]$, products from the reaction of $[Xe_3OF_3][AsF_6]$ with the NO₂F impurity (ca. 3%) in the NOF sample could be observed by ¹⁷O, ¹⁹F, and ¹²⁹Xe NMR spectroscopy (FXeONO₂, see Chapter 4) and in the solid state by low-temperature Raman spectroscopy (XeF₂·N₂O₄, see Chapter 4). In addition to the known side products, three peaks in the Raman spectrum at 416.5, 406.6, and 180.7 cm⁻¹ could not be assigned, but were suggestive of an exclusively Xe–O bound molecule (see Sections 3.2.4 and 3.2.5).

Syntheses that employed ¹⁷O-enriched (¹⁶O, 35.4%; ¹⁷O, 21.9%; ¹⁸O, 42.7%) and ¹⁸O-enriched (99.99%) [Xe₃^{*}OF₃][AsF₆] confirmed the results derived from the natural

abundance reaction, but further demonstrated that the enriched oxygen from $Xe_3^*OF_3^+$ is not retained solely in the *O(XeF)₂ product, as suggested by the concerted pathway in eq 3.1. Rather, peaks assignable to the N^*O^+ cation and the XeF₂·N₂O₃*O adduct, as well as to ¹⁶O(XeF)₂ in the case of the ¹⁸O-enriched compound, were observed by Raman spectroscopy (see Sections 3.2.4 and 3.2.5). Oxygen isotope scrambling was also observed in CH₃CN solution by NMR spectroscopy. Although the resonance arising from ¹⁷O(XeF)₂ was expected to be more intense than that of the other oxygen-containing products, the natural abundance and ^{17/18}O-enriched oxygen atoms are randomly scrambled in solution. Thus, the resonances in the ¹⁷O NMR spectrum appear equivalent in intensity to those of the natural abundance products (see Section 3.2.3). Furthermore, there are unassigned peaks at 416.5, 406.6, and 180.7 cm⁻¹, attributed to an $(XeO)_n$ polymer (vide infra), which shifted by 7.0, 3.4, and 0.0 cm⁻¹, respectively, in the Raman spectrum of the ¹⁸O-enriched product. The enrichment studies thus indicate that the FXeOXeFXeF⁺ cation does not react with NOF as proposed in eq 3.1, but rather may react in a manner analogous to the reaction of the FXeOXeFXeF⁺ cation with NO₂F (see Chapter 4), proceeding through FXeONO as an intermediate (eq 3.3). This reaction pathway accounts for the formation of $XeF_2 \cdot N_2O_3^*O$, $XeF_2 \cdot N_2O_4$, and $(XeO)_n$ according to eq 3.4-3.6.

The proposed reaction pathways account for the color of the reaction medium (vide supra), which is caused by a small amount of the intense blue N_2O_3 . In addition, the formation of the proposed (XeO)_n oligomer accounts for the two intense Raman bands observed in the Xe–O stretching region of the Raman spectrum, and the concomitant shifts in the Raman spectrum of the ¹⁸O-substituted product (see Sections 3.2.4 and 3.2.5).

The formation of O(XeF)₂, according to eq 3.7 and 3.8, is apparently favored, but

it is also possible for FXe^{*}ONO to undergo intramolecular rearrangement (eq 3.9), or to undergo a bimolecular reaction (eq 3.10). The barrier to rearrangement was calculated to

be +2.85 kJ mol⁻¹ (SVWN/(SDB-)cc-pVTZ), thus it is plausible that FXeON^{*}O arises as a result of this rearrangement (see Section 3.2.5). The subsequent reaction of FXeON^{*}O with XeF₂ accounts for the observation of both ¹⁶O(XeF)₂ and [N^{*}O][AsF₆] in the Raman spectra of ¹⁸O(XeF)₂.

The displacement of XeF_2 from $Xe_3OF_3^+$ was attempted in HF solvent using KF as the fluoride ion donor (eq 3.11). Although XeF_2 is likely displaced, it is probable that

$$[Xe_3OF_3][AsF_6] + [K][F] \longrightarrow O(XeF)_2 + XeF_2 + [K][AsF_6]$$
 (3.11)

the resulting $O(XeF)_2$ immediately undergoes solvolysis in HF to yield XeF_2 and H_3O^+ according to eq 3.12–3.14, with the overall reaction given by eq 3.15 (species in parentheses are inferred and were not directly observed), as determined by ¹H, ¹⁷O, ¹⁹F,

$$O(XeF)_2 + HF \longrightarrow (FXeOH) + XeF_2$$
 (3.12)

$$[FXeOH] + HF \longrightarrow (H_2O) + XeF_2$$
(3.13)

$$(H_2O) + HF \longrightarrow [H_3O][F]$$
(3.14)

$$O(XeF)_2 + 3 HF \longrightarrow [H_3O][F] + 2XeF_2$$
 (3.15)

and ¹²⁹Xe NMR spectroscopy at -80 °C. The formation of the proposed FXeOH intermediate is rapid on the NMR time scale, thus neither O(XeF)₂ nor FXeOH were observed by low-temperature ¹⁹F NMR spectroscopy.

In order to further elucidate the products obtained from the decomposition of $O(XeF)_2$, two experiments were performed, where (1) the solid was warmed step-wise between -30 and 10 °C, with constant monitoring by low-temperature Raman spectroscopy, and (2) by the low-temperature (-78 °C) reaction of $O(XeF)_2$ with anhydrous HF, followed by removal of excess HF by dynamic vacuum at the same temperature and characterization of the products by low-temperature Raman spectroscopy. In the former case, very slow decomposition occurred between -25 and 5 °C over 6 hours, with complete decomposition occurring over 4 h at 10 °C, while reaction with HF was rapid at -78 °C. In both cases, the product was orange in color. The

products of both reactions could not be identified by Raman spectroscopy, but the spectra of both products were found to be very similar, indicating that the proton from HF in the latter decomposition is not incorporated into the decomposition products (see Appendix A).

3.2.2. Attempted Synthesis of [FXeOXe][AsF₆]

The preparation of [FXeOXe][AsF₆] was attempted by reaction of $O(XeF)_2$ with liquid AsF₅ at -78 °C according to eq 3.16. However, only [XeF][AsF₆] and unreacted

$$O(XeF)_2 + AsF_5 \longrightarrow [FXeOXe][AsF_6]$$
(3.16)

 $O(XeF)_2$ were observed, indicating that only the XeF₂ present in the system reacts with AsF₅. No bands were attributable to the FXeOXe⁺ cation,⁶⁷ with the most notable absences being the bands calculated at 573 cm⁻¹ for the v(Xe-F) – v(Xe_t-O) mode and at 534 cm⁻¹ for the v(Xe_t-O) + v(Xe-F) mode, which are expected to be the most intense.

3.2.3 NMR Spectroscopy

3.2.3.1. Solution Structural Characterization of Natural Abundance and ¹⁷Oenriched O(XeF)₂ by ¹⁷O, ¹⁹F, and ¹²⁹Xe NMR Spectroscopy

The identification of the title compound hinges on its characterization in CH₃CN solvent by direct observation of its natural abundance spin- $\frac{1}{2}$ nuclides, ¹⁹F and ¹²⁹Xe. Key experimental and simulated ¹⁹F and ¹²⁹Xe NMR spectra are depicted in Figures 3.1a and 3.1b, where xenon is represented as Ω to denote that the spin system is heteronuclear. A listing of the natural abundance isotopomers and their associate spin-spin coupling paths that give rise to the component subspectra that account for the NMR spectra are provided Figure 3.2. The ¹⁷O NMR spectra are depicted in Figure 3.3. The chemical shifts, δ , and spin-spin coupling constants, J, are summarized in Table 3.1, where the fractional isotopomeric abundances are derived in Table 3.2. The number of observed environments and the multiplet patterns are consistent with an O(XeF)₂ molecule having $C_{2\nu}$ point symmetry. The geometry deduced from the NMR solution study is supported by computational studies (see Section 3.2.5).

The major species XeF₂ (¹⁹F, singlet, -179.1 ppm; ¹²⁹Xe, triplet, -1783 ppm; ¹ $J(^{19}F-^{129}Xe)$, 5646 Hz), the AsF₆⁻ anion (¹⁹F, 1:1:1:1 multiplet, -64.8 ppm), and the NO⁺ cation (¹⁷O, singlet, 610 ppm), and the minor species N₂O₄ (¹⁷O, singlet, 420 ppm), the NO₂⁺ cation (¹⁷O, singlet, 420 ppm), and FXeONO₂ (¹⁹F, singlet, -135.1 ppm; ¹²⁹Xe, doublet, -1897 ppm; ¹⁷O, singlet, 454 ppm for the two terminal oxygen atoms and 383 ppm for the bridging oxygen atom; ¹ $J(^{19}F-^{129}Xe)$, 5467 Hz) were identified by their known NMR parameters (N₂O₄ and NO₂⁺ were found to overlap in the ¹⁷O NMR spectrum, see Figure 3.3). In additon, the ¹⁷O, ¹⁹F, and ¹²⁹Xe NMR spectra (-40 °C) of the yellow CH₃CN solution revealed intense new resonances that were assigned to the O(XeF)₂ molecule as discussed below.

3.2.3.2. Solution Structure Determination of O(XeF)₂

The solution structure of $O(XeF)_2$ was confirmed by use of the spectral simulation program MEXICO,¹²¹ and NMR chemical shifts and coupling constants have been

Figure 3.1. The calculated (upper trace) and experimental (lower trace) (a) ¹⁹F and (b) ¹²⁹Xe NMR spectra of O(XeF)₂ in CH₃CN at -40 °C. Symbols denote ¹⁹F (A, B) and ¹²⁹Xe (Ω) nuclei, respectively.

40.31 %

m \neq 129, where m is a spinless isotope or ¹³¹Xe (I = $\frac{3}{2}$)

 $m \neq m' \neq 129$, where m and m' are spinless or one isotope is ¹³¹Xe (I = ³/₂)

6.99 %

m \neq 129, where m is a spinless isotope or ¹³¹Xe (I = $^{3}/_{2}$)

Figure 3.2. Schematic of the coupling paths that arise from the four ¹⁹F and two ¹²⁹Xe NMR subspectra that occurs for natural abundance O(XeF)₂. The ¹³¹Xe⁻¹⁹F and ¹³¹Xe⁻¹²⁹Xe spin-spin couplings are quadrupole collapsed.

Figure 3.3. The ¹⁷O NMR spectra of: (a) ¹⁷O-enriched (21.9 %) $O(XeF)_2$ and (b) natural abundance $O(XeF)_2$ in CH₃CN solution at -40 °C.

		¹⁹ F spec	¹⁹ F spectrum		ectrum		
$\begin{array}{ccc} \text{spin,} & \text{spin,} & \text{isotopomer} \\ Xe_1{}^b & Xe_2{}^b & \text{fractional} \\ & & abundance^c \end{array}$	δ(¹⁹ F), ppm	multiplicity	δ(¹²⁹ Xe), ppm	multiplicity	coupling constants, J (Hz)		
m	m	0.1380	-90.251 ^d (-54.1)	S			
m	m'	0.4031	$-90.210 (F_A)^{c}$ $-90.286 (F_B)^{c}$	AB			${}^{4}J({}^{19}F_{A}-{}^{19}F_{B}), \leq 1^{d}$ (-80.5)
129	m	0.3890	$-90.210 (F_A)^{e}$ $-90.286 (F_B)^{e}$	ΑΒΩ	-2437.5 (-2324.7)	ΑΒΩ	${}^{1}J({}^{19}F-{}^{129}Xe), 4997.8 {}^{d.f}(-5106.6)$ ${}^{3}J({}^{19}F-{}^{129}Xe), 46.7 {}^{d}(-80.5)$
1 2 9	129	0.699	-90.248 ^d	ΑΑ'ΩΩ'	2437.5 (2324.7)	ΑΑ'ΩΩ'	¹ $J({}^{19}F-{}^{129}Xe)$, 4997.8 ^{d,f} (-5106.6) ² $J({}^{129}Xe-{}^{129}Xe)$, 364.7 ^e (401.7) ³ $J({}^{19}F-{}^{129}Xe)$, 46.7 ^e (-75.4) ⁴ $J({}^{19}F_{A}-{}^{19}F_{B})$, 23.3 ^e (-80.5)

Table 3.1. Natural Abundance Isotopomers and Subspectra Comprising the ¹⁹F and ¹²⁹Xe NMR Spectra of O(XeF)₂,

Including Experimental and Calculated^a Chemical Shifts and Coupling Constants

^a PBE1PBE/DZVP, calculated chemical shifts and coupling constants appear in parentheses. ^b The symbols m and m' represent all spinless isotopes of xenon, as well as xenon-131; the ¹³¹Xe-¹⁹F and ¹³¹Xe-¹²⁹Xe spin-spin couplings are quadrupole collapsed. ^c See Table 3.2 for a detailed listing of isotopomers, xenon isotopic abundances, isotopomer probabilities, and the relative weghtings of their corresponding spin systems, their probabilities, and their fractions. ^d Estimated using spectral simulation software, MEXICO. ^e Directly measured from the ¹⁹F NMR spectrum. ^f A value of 5027.8 Hz was used for simulation of the ¹⁹F spectrum.

Table 3.2. Percentage Abundance of All Isotopes of Xenon and the Percentage of

natural abundance (%) isotope ¹²⁴Xe 0.09 ¹²⁶Xe 0.09 ¹²⁸Xe 1.92 ¹²⁹Xe 26.44 ¹³⁰Xe 4.08 ¹³¹Xe 21.18 132 Xe 26.89 ¹³⁴Xe 10.44 ¹³⁶Xe

8.87

Each Isotopomeric Subspectra

probability^a spin system isotope, isotope, sum Xe₁ Xe_2 129 0.0699 0.0699 $AA'\Omega\Omega'$ 129 129 124 0.00047592 129 126 0.00047592 129 128 0.01015296 129 130 0.02157504 ABΩ 0.3890 129 131 0.11199984 129 132 0.14219412 129 134 0.05520672 129 136 0.04690456 124 126 0.00000162 124 128 0.00003456 124 130 0.00007344 124 131 0.00038124 124 132 0.00048402 124 134 0.00018792 AB 124 136 0.00015966 0.4031 126 128 0.00003456 126 130 0.00007344 126 0.00038124 131 126 132 0.00048402 126 134 0.00018792 136 126 0.00015966

70

Table 3.2.	(continued)			
	128	130	0.00156672	
	128	131	0.00813312	
	128	132	0.01031424	
	128	134	0.00400896	
	128	136	0.00340608	
	130	131	0.01728288	
	130	132	0.02194224	
AB	130	134	0.00851904	0.4031
	130	136	0.00723792	
	131	132	0.11390604	
	131	134	0.04422384	;
	131	136	0.03757332	
	132	134	0.05614632	
	132	136	0.04770286	
	134	136	0.01852056	
	124	124	0.0000081	
	126	126	0.0000081	
	128	128	0.00036864	
G	130	130	0.00166464	0 1200
8	131	131	0.04485924	0.1380
	132	132	0.07230721	
	134	134	0.01089936	
	136	136	0.00786769	
			Σ	1.0000

^a The probability of each isotopomer is the square of the abundance when $Xe_1 = Xe_2$, or the product of the abundances of Xe_1 and Xe_2 when multiplied by 2 ($Xe_1 \neq Xe_2$).

calculated using GIAO at the PBE1PBE/DZVP level of theory (Table 3.1 and 3.3). The spectral simulations (Figures 3.1a and 3.1b) are in excellent agreement with the experimental ¹⁹F and ¹²⁹Xe spectra, and account for the observed peaks and the second-order effects that are manifested as small asymmetries resulting from the relatively small frequency difference (36 Hz) between coupled ¹⁹F nuclei A and B and their coupling constants (23 Hz) in the AB Ω and AA' $\Omega\Omega$ ' subspectra. The simulations also account for the ¹⁹F–¹⁹F coupling observed in the ¹²⁹Xe NMR spectrum, and the ¹²⁹Xe–¹²⁹Xe coupling observed in the ¹⁹F NMR spectrum. However, the simulations do reproduce the broadening of the ¹²⁹Xe satellites, caused by the chemical shieding anisotropy (CSA) at Xe, in the ¹⁹F NMR spectrum. The isotopomers and their most prominent spectral features are discussed below.

The ¹⁹F NMR spectrum of $O(XeF)_2$ consists of a singlet (S) flanked by an AB spin pattern. Satellite doublet subspectra, that are symmetrically disposed about the singlet, result from the AB Ω and AA' $\Omega\Omega$ ' isotopomeric subspectra (Figures 3.2c and 3.2d, respectively). The singlet ($\delta(^{19}F_S)$, -90.251 ppm; Figure 1a) is assigned to the F^mXeO^mXeF isotopomers (Figure 3.2a), while the AB spin pattern arises from the F^mXeO^mXeF isotopomers (Figure 3.2b). Modeling of the AB Ω and AA' $\Omega\Omega$ ' isotopomeric subspectra established that $\delta(^{19}F_A)$ is equal to -90.210 ppm, $\delta(^{19}F_B)$ is equal to -90.286 ppm, and that the $^4J(^{19}F_A-^{19}F_B)$ is equal to 23.3 Hz (Table 3.1). However, when these parameters were applied to model the AB isotopomeric subspectrum, the modeled results were inconsistent with the experimental ¹⁹F NMR spectrum. An AB spin pattern gives rise to four transitions, with two equal-intensity inner transitions that are

٧P	
0.3	
8.8	
9.7	
57.4	
57.6	
3.1	
7.7	
3.2	
.0	

NMR parameter ^a	O(XeF) ₂			XeF ₂			$F(XeF)_2^{+b}$	
		SVWN	PBE1PBE		SVWN	PBE1PBE		SVWN
	exptl ^c	DZVP	DZVP	expt1 ^c	DZVP	DZVP	exptl ^{c,d,e}	DZVP
$\delta(^{19}F_t)$, ppm	-90.2	-31.8	-54.1	-179.1	-117.2	-132.2	-252	-220.3
$\delta(^{129}$ Xe), ppm	-2437.5	-2534.9	-2324.7	-1783.1	-1934.9	-1720.5	-1059	-538.8
$\delta({}^{17}O/{}^{19}F_b)$, ppm	147.4	366.9	287.6				-185	-119.7
$^{1}J(^{19}\text{F}_{t}-^{129}\text{Xe})$, Hz	4997.8	-5609.5	-5106.6	5645.8	-6437.1	-5961.8	6740	-9267.4
$^{1}J(^{19}F_{b}-^{129}Xe)$, Hz							4865	-4867.6
$^{2}J(^{19}F_{t}-^{19}F_{b})$, Hz							308	-543.1
$^{2}J(^{129}\text{Xe}-^{129}\text{Xe})$, Hz	364.7	414.5	401.7				n.o.	737.7
$^{3}J(^{19}\text{F}-^{129}\text{Xe}), \text{Hz}$	46.7	-2.99	-75.4				n.o.	568.2
$^{4}J(^{19}\text{F}-^{129}\text{Xe}), \text{Hz}$	23.3	-28.5	-80.5				n.o.	60.0

Table 3.3. Experimental and Calculated NMR Chemical Shifts and Coupling Constants for O(XeF)₂, XeF₂, and F(XeF)₂⁺

73

^a The chemical shift, δ , was calculated by taking the calculated isotropic magnetic shielding tensor of the reference compound (δ (¹⁷O), H₂O; δ (¹⁹F), CFCl₃; δ (¹²⁹Xe), XeOF₄) and subtracting the shielding tensor calculated for the species of interest. Coupling constants are taken from the values computed for the total nuclear spin-spin coupling (*J*, Hz). ^b A single-point NMR calculation was not performed for F(XeF)₂⁺ using the PBE1PBE method, because optimization failed to give a reasonable geometry. ^c Coupling constants were measured and/or modeled using absolute values. ^d Spectra were obtained in BrF₅ solvent at -62 °C; taken from ref 136. ^e The abbreviation, n.o., denotes not observed.

more intense than the two equal-intensity outer transitions. The separation and relative intensities of the transitions are dependant on the ratio of the coupling constant (*J*) to the chemical shift difference (δv_o) . The modeled and experimental spectra were made to agree by reducing the ${}^{4}J({}^{19}F_{A}-{}^{19}F_{B})$ coupling to a near-zero value, causing the inner and outer transitions to overlap $(J/\delta v_o \approx 0)$, resulting in two discreet transitions that could not be resolved because of the relatively large linewidth (ca. 5 Hz). The small value for ${}^{4}J({}^{19}F_{A}-{}^{19}F_{B})$ in the AB spin pattern is not well understoood, but may be caused by the removal of a through-bond spin-coupling pathway when both xenon are spin inactive. The ${}^{2}J({}^{129}Xe-{}^{129}Xe)$ coupling observed in the ${}^{19}F$ NMR spectrum is unprecedented for ${}^{129}Xe$, but its ${}^{13}C-{}^{13}C$ counterpart has been observed previously for other AA' $\Omega\Omega'$ spin systems such as $F_2C=CH_2$.¹³⁷

The singlet ($\delta(^{19}\text{F})$, -90.251 ppm) is shifted by -0.003 ppm relative to the central transition assigned to the AA' $\Omega\Omega'$ subspectra ($\delta(^{19}\text{F})$, -90.248 ppm). This low-frequency shift is consistent with the secondary isotope effect of xenon on fluorine, $^{1}\Delta^{19}\text{F}(^{132/129}\text{Xe})$ (where ^{132}Xe is the most abundant spinless isotope of xenon), and is comparable to the value of -0.00122 ppm u⁻¹ determined for XeF₂ at 20 °C.¹³⁸

The ¹²⁹Xe NMR spectrum of O(XeF)₂ (Figure 3.1b) consists of a single ¹²⁹Xe resonance at -2438 ppm. The ¹²⁹Xe spectrum arises from the AB Ω and AA' $\Omega\Omega$ ' subspectra (Figures 3.2c and 3.2d, respectively). Again, the ⁴J(¹⁹F-¹⁹F) coupling observed in the ¹²⁹Xe NMR spectrum arises from the AA' $\Omega\Omega$ ' spin system.¹³⁷

The ¹⁷O NMR spectrum of both natural abundance and ¹⁷O-enriched (¹⁶O, 35.4%; ¹⁷O, 21.9%; ¹⁸O, 42.7%) O(XeF)₂ showed a broad singlet at 147 ppm ($\Delta v_{1/2} = 1500$ Hz;

Figure 3.3). Because the ¹⁷O nucleus is quadrupolar ($I = {}^{5}/{}_{2}$), the asymmetric environment about the oxygen nucleus results in a non-zero electric field gradient, and quadrupolar relaxation of the ¹⁷O nucleus, which broadens the resonance, precludes the observation of both the ¹ $J({}^{17}O-{}^{129}Xe)$ and ${}^{2}J({}^{17}O-{}^{19}F)$ couplings. Comparison of the ¹⁶O and ¹⁷O NMR spectra indicate that all species contain equivalent amounts of ¹⁷O in the latter spectrum, as opposed to selective enrichment of ${}^{*}O(XeF)_{2}$ (vide supra), suggesting that further oxygen exchange occurs in CH₃CN solution, as illustrated in eq 3.18. The

$$FXe^*OXeF + [NO][AsF_6] + XeF_2 \longrightarrow FXe^*ONO + [F(XeF)_2][AsF_6] (3.18)$$

FXe^{*}ONO molecule could then undergo the reactions outlined in eq 3.5, 3.6, 3.7, 3.10, and 3.11, eventually leading to the observed distribution of enriched ¹⁷O and ¹⁸O oxygen isotopes. It is also worth noting that the linwidths associated with the transitions in the ¹²⁹Xe NMR spectrum of ¹⁷O(XeF)₂ do not appear affected by the enrichment, though this may result from the broadening caused by the CSA at Xe and the low abundance of ¹⁷O (21.9%). The ¹⁹F NMR signals are much broader ($\Delta v_{\frac{1}{2}} = 85$ Hz) and show no coupling to ¹⁷O, which is again attributable to quadrupolar relaxation.

The calculated NMR chemical shifts and coupling constants (Tables 3.1 and 3.3) were found to be in reasonable agreement with the experimental values, and followed experimental trends when compared with the calculated XeF_2 and $F(XeF)_2^+$ benchmarks (Table 3.3). The calculated $\delta(^{19}F)$ of -54.1 ppm is to high frequency of the experimental value, but is 78.1 ppm to high frequency of that calculated for XeF_2 ($\delta(^{19}F)$, -132.2) in

good agreement with the experimental separation (88.9 ppm). The ¹²⁹Xe NMR shift was better reproduced (exptl, -2438; calcd, -2325 ppm), and is 604 ppm to low frequency of the value calculated for XeF₂ (δ (¹²⁹Xe), -1720 ppm), in reasonable agreement with the experimental separation (654 ppm). The calculated $|{}^{1}J({}^{19}F-{}^{129}Xe)|$ value of 5107 Hz is quite close to the measured value (4998), and is paralleled by the good agreement obtained for the experimental and calculated $|{}^{1}J({}^{19}F-{}^{129}Xe)|$ values for XeF₂ (5646 and 5962 Hz, respectively). Although the other calculated coupling constants were slightly overestimated at this level of theory (Table 3.1), the calculations support the current assignments of both the ¹⁹F and ¹²⁹Xe NMR spectra.

3.2.4. Raman Spectroscopy

3.2.4.1. Raman Spectra of Natural Abundance, ¹⁷O-, and ¹⁸O-enriched O(XeF)₂

The low-temperature, solid-state Raman spectra of ¹⁷O- and ¹⁸O-enriched and natural abundance O(XeF)₂ were recorded. The natural abundance and ¹⁸O-enriched (¹⁸O, 99.99%) spectra are shown in Figure 3.4. The observed and calculated frequencies and their assignments are listed in Table 3.4 (SVWN/(SDB-)cc-pVTZ) and Table 3.5 (PBEPBE/(SDB-)cc-pVTZ). The low-frequency shifts upon ¹⁷O- and ¹⁸O-substitution follow similar trends, and therefore only the results for ^{16/18}O(XeF)₂ are considered in the ensuing discussion.

The O(XeF)₂ molecule $(C_{2\nu})$ possesses nine fundamental vibrational modes belonging to the irreducible representations 4 A₁ + A₂ + 3 B₁ + B₂, all of which are Raman active and all but the A₂ mode are infrared active. There is overall slightly better agreement between the observed and calculated frequencies and frequency trends for

Figure 3.4. Raman spectra of ${}^{16}O(XeF)_2$ and ${}^{18}O(XeF)_2$ recorded at $-160 \,{}^{\circ}C$ using 1064-nm excitation. The symbols *, †, ‡, §, and denote bands arising from FEP, XeF₂, [NO][AsF₆], XeF₂·N₂O₄, and the (XeO)_n cyclic polymer, respectively. Lines drawn between the ${}^{16}O(XeF)_2$ and ${}^{18}O(XeF)_2$ spectra denote Raman shifts between natural abundance and ${}^{18}O$ -enriched O(XeF)₂.

frequencies, cm ⁻¹						
exptl ^a			calcd ^b			
¹⁶ O ^{c,d}	¹⁷ O ^{c,d}	¹⁸ O ^c	¹⁶ O	¹⁷ O	¹⁸ O	assignts $(C_{2\nu})^{e}$
558.5(4)	n.o.	531.9(1)	563.6(3)	549.1(2)	535.8(1)	$\overline{\nu_7(B_2), \nu_{as}(XeO)_2}$
547.5(28)	532.3 sh	519.2(36)	526.9(33)	526.6(36)	525.5(38)	$v_1(A_1), v_s(XeO)_2 - v_s(XeF)_2$
498.0 sh	n.o.	493.2(3)	491.0(13)	490.8(14)	489.9(15)	$v_8(B_2), v_{as}(XeF)_2$
437.7(7) 433.1(100)	427.4(100)	$\left\{\begin{array}{c} 422.5(100)\\ 418.3(14)\end{array}\right\}$	440.7(36)	430.3(32)	420.6(29)	$v_2(A_1)$, $v_s(XeO)_2 + v_s(XeF)_2$
235.6(1)	228.9(5)	227.4(2)	212.4(<1)	209.2(<1)	205.9 (<1)	v ₆ (B ₁), δ(FXeO) o.o.p.
193.1(10)	193.0(72)	193.1(18)	171.1(4)	172.4(4)	172.4(4)	$v_3(A_1), \delta(FXeO + \delta(FXeO))$
173.7(2)	173.7(36)	173.7(3)	147.4(1)	148.0(1)	148.0(1)	$v_5(A_2), \rho_t(FXeO)$
159.3(6)	159.3(64)	159.3(11)	142.9(<1)	143.5(<1)	143.5(<1)	$v_9(B_2), \delta(FXeO - \delta(FXeO))$
62.4(2)	62.2(18)	62.4(4)	57.3(7)	57.4(7)	57.2(7)	$v_4(A_1), \delta(XeOXe)$

Table 3.4.Experimental and Calculated Frequencies for O(XeF)2 (SVWN)

^a Raman frequencies and intensities for ¹⁶O, ¹⁷O, and ¹⁸O were obtained from samples of natural abundance, ¹⁷O-enriched $O(XeF)_2$ (¹⁶O, 35.4%; ¹⁷O, 21.9%; ¹⁸O, 42.7%), and ¹⁸O-enriched $O(XeF)_2$ (¹⁸O, 99.99%), respectively. ^b SVWN/(SDB-)cc-pVTZ. Raman intensities (in Å⁴ amu⁻¹) are given in parentheses. ^c Values in parentheses denote relative Raman intensities. ^d The abbreviation (sh) denotes a shoulder. ^e The abbreviations denote stretch (v), bend (δ), and twist (ρ_t). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (–) signs.

exptl ^a			calcd ^b			_
¹⁶ O ^{c,d}	¹⁷ O ^{c,d}	¹⁸ O ^c	¹⁶ O	¹⁷ O	¹⁸ O	assignments $(C_{2\nu})^{c}$
558.5(4)	n .o.	531.9(1)	513.9(2)	501.6(1)	490.5(<1)	$\overline{\nu_7(B_2), \nu_{as}(XeO)_2}$
547.5(28)	532.3 sh	519.2(36)	489.5(39)	488.9(42)	487.6(45)	$v_1(A_1)$, $v_s(XeO)_2 - v_s(XeF)_2$
498.0 sh	n .o.	493.2(3)	450.3(16)	449.4(17)	447.6(17)	$v_8(B_2), v_{as}(XeF)_2$
437.7(7) 433.1(100)	427.4(100)	$\left.\begin{array}{c}422.5(100)\\418.3(14)\end{array}\right\}$	410.4(41)	401.1(37)	392.2(33)	$v_2(A_1), v_s(XeO)_2 + v_s(XeF)_2$
235.6(1)	228.9(5)	227.4(2)	197.9(<1)	194.8(<1)	192.0(<1)	ν ₆ (B ₁), δ(FXeO) 0.0.p.
193.1(10)	193.0(72)	193.1(18)	159.2(5)	160.4(5)	160.4(5)	$v_3(A_1), \delta(FXeO + \delta(FXeO))$
173.7(2)	173.7(36)	173.7(3)	138.7(1)	139.3(1)	139.3(1)	$v_5(A_2), \rho_t(FXeO)$
159.3(6)	159.3(64)	159.3(11)	134.6(<1)	135.2(<1)	135.2(<1)	$v_9(B_2), \delta(FXeO - \delta(FXeO))$
62.4(2)	62.2(18)	62.4(4)	55.9(9)	56.0(9)	55.9(9)	$v_4(A_1), \delta(XeOXe)$

^a Raman frequencies and intensities for ¹⁶O, ¹⁷O, and ¹⁸O were obtained from samples of natural abundance, ¹⁷O-enriched $O(XeF)_2$ (¹⁶O, 35.4%; ¹⁷O, 21.9%; ¹⁸O, 42.7%), and ¹⁸O-enriched $O(XeF)_2$ (¹⁸O, 99.99%), respectively. ^b PBEPBE/(SDB-)cc-pVTZ. Raman intensities (in Å⁴ amu⁻¹) are given in parentheses. ^c Values in parentheses denote relative Raman intensities. ^d The abbreviation (sh) denotes a shoulder. ^e The abbreviations denote stretch (v), bend (δ), and twist (ρ_t). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (–) signs.

79

O(XeF)₂ for SVWN than PBEPBE methods. For this reason only the SVWN results are discussed. The highest frequency mode at 558.5 cm⁻¹ is assigned to the $v_{as}(XeO)_2$ stretch, which displays a substantial low-frequency shift (26.6 cm^{-1}) upon substitution of ¹⁸O, in good agreement with the calculated $^{16/18}$ O isotope shift (27.8 cm⁻¹). The v_s(XeO)₂ mode is coupled to $v_s(XeF)_2$ with the out-of-phase component, $v_s(XeO)_2 - v_s(XeF)_2$, at 547.5 cm⁻¹ and in-phase component, $v_s(XeO)_2 + v_s(XeF)_2$, at 437.7 and 433.1 cm⁻¹. The totally symmetric in-phase band is, as expected, the most intense mode of the spectrum, corresponding to the observed solid-state $^{16/18}$ O isotope shifts of 14.8 and 15.2 cm⁻¹, which are smaller than the calculated gas-phase shift (20.1 cm^{-1}). The out-of-phase mode displays a large experimental ^{16/18}O isotopic shift (28.3 cm⁻¹) in marked contrast to the calculated value (1.4 cm⁻¹). The three coupled modes involving $v(XeO)_2$ appear at lower frequencies than v(XeO) in O=XeF₂ (749.9 cm⁻¹),⁶⁶ in agreement with a formal Xe–O bond order of one (see Section 3.2.5). The $v_{as}(XeF)_2$ mode is not significantly coupled and appears at 498.0 cm⁻¹, displaying an ^{16/18}O isotopic shift of 4.8 cm⁻¹ (calculated, 1.1 cm⁻¹), as expected for a mode in which the oxygen atom is not expected to have a large displacement. The remaining modes have been assigned as bending and twisting modes, and only the bend at 235.6 cm^{-1} reveals a significant isotopic shift of 8.2 cm^{-1} , compared to the expected shift of 6.5 cm^{-1} .

The ¹⁷O- and ¹⁸O-enrichment experiments have also provided valuable information about the reaction pathway of [Xe₃OF₃][AsF₆] with NOF (see Section 3.2.1), as both enriched N^*O^+ and XeF₂·N₂O₃¹⁸O were observed in the Raman spectra. The v(NO) stretches for N¹⁷O⁺ and N¹⁸O⁺ occur at 2223.2 and 2196.8 cm⁻¹, respectively, and

display isotopic shifts of 30.3 and 56.7 cm⁻¹ relative to N¹⁶O⁺ (calculated shifts: ¹⁷O, 33.8 cm⁻¹; ¹⁸O, 63.8 cm⁻¹). The frequencies for XeF₂·N₂O₄ and XeF₂·N₂O₃¹⁸O are given in Table 3.6 (also see Chapter 4).

3.2.4.2. Raman Spectra of Natural Abundance and ¹⁸O-enriched (XeO)_n

Oxygen-18 experiments have also given insight into the nature of the three unassigned Raman bands at 416.5, 406.6, and 180.7 cm⁻¹ that occur in the natural abundance spectrum, and that shift to lower frequencey by 7.0, 3.4, and 0.0 cm⁻¹, respectively. The absence of any higher-frequency Xe–F stretching modes, and the small number of observed modes, have led to the proposed oligomeric (XeO)_n structures (eq 3.5), which could exist as either a chain or a ring. A chain structure is unlikely because it lacks any obvious termination, except with a fluorine atom, which should give rise to a mode that should be visible in the Raman spectrum, and because more peaks would be expected for a low-symmetry chain than for a highly symmetric ring. The mechanism of ring formation (eq 3.7) would involve incorporation of enriched oxygen, explaining the observed isotopic shifts, and have been reproduced with electron structure calculations. The natures of such rings are fully discussed in Section 3.2.5.3.

3.2.5. Computational Results

The electronic structure calculations of $O(NgF)_2$ (Ng = Kr, Xe) and the isoelectronic $F(NgF)_2^+$ cations (Section 3.2.5.1) were optimized and resulted in stationary points with all frequencies real. Only the SVWN/(SDB-)cc-pVTZ and PBEPBE/(SDB-)cc-pVTZ (PBEPBE values in the present discussion are given in
Table 3.6.Experimental and Calculated^a Raman Frequencies for $XeF_2 \cdot N_2O_4$ and

 $XeF_2 \cdot N_2O_3^{18}O$

	frequenc	eies, cm ⁻¹		
exptl ^o		Ca	alcd ^c	
XeF ₂ ·N ₂ O ₄	$XeF_2 N_2O_3^{18}O$	XeF ₂ ·N ₂ O ₄	$XeF_2 N_2O_3^{18}O$	assgnt $(C_1)^d$
n.o.	n.o.	1870.2(1)	1863.2(2)	$v(NO_A) + v(NO_A)' - (v(NO_B) + v(NO_B)')$
1711.7(6)	1706.5	1838.9(8)	1828.2(7)	$\nu(NO_A) + \nu(NO_B)' - (\nu(NO_B) + \nu(NO_A)')$
1394.4(7)	1384.4 ^e	1456.5(42)	1445.4(41)	$\nu(NO_A) + \nu(NO_A)' + \nu(NO_B) + \nu(NO_B)'$
1353.5(14)	1345.6			2v4
n .o.	n .o.	1327.9(<1)	1313.2(1)	$v(NO_A) + v(NO_B) - (v(NO_A)' + v(NO_B)')$
817.5(16)	811.6	847.8(12)	840.9(12)	$\delta(NO_2) + \delta(NO_2)'$
n.o.	n .o.	759.4(<1)	752.8(<1)	$\delta(NO_2) - \delta(NO_2)'$
691(<1)	683.5 ^f	688.0(<1)	6864(1)	$\delta_{\mathbf{w}}(\mathrm{NO}_2) - \delta_{\mathbf{w}}(\mathrm{NO}_2)'$
n .o.	n.o.	558.1(6)	558.1(6)	v(XeF) – v(XeF)
509.1(100)	496.8 ^g	510.3(8)	504.4(8)	$\rho_r(NO_2) - \rho_r(NO_2)'$
496.8(41) ^g	496.8 ^g	503.0(19)	503.0(19)	v(XeF) + v(XeF)
n.o.	n.o.	443.3(2)	441.6(2)	$\delta_{w}(NO_{2}) + \delta_{w}(NO_{2})'$
296.1(58)	295.0	312.0(21)	308.7(21)	v(N–N)
		238.3(1)	237.2(1)	$\rho_r(NO_2) + \rho_r(NO_2)' + \text{small } \delta(XeF_2)$
n. o.	n.o.	222.8(<1)	220.5(<1)	$\rho_r(NO_2) + \rho_r(NO_2)' - \text{small } \delta(XeF_2)$
		206.5(<1)	206.4(<1)	$\rho_t(NO_2) - \rho_t(NO_2)' + \text{small } \delta(XeF_2)$
n .o.	n.o.	131.5(<1)	130.8(<1)	$\rho_t(NO_2) - \rho_t(NO_2)'$
121(70) ^h	120.5 ^h	121.8(6)	121.8(6)	$\delta(XeF_2) + \rho_r(N_2O_4)$
98(10)	106.1	74.1(1)	73.1(1)	$\rho_t(NO_2) - \rho_t(NO_2)' + \rho_t(XeF_2)$
71(7)	81.0	69.0(2)	67.7(2)	$\rho_r(XeF_2) + \rho_r(N_2O_4)$
64(7)	67.7	61.1(<1)	61.0(<1)	$\rho_r(XeF_2) - \rho_r(N_2O_4)$
04(7)	02.2	38.5(<1)	38.2(1)	$\rho_t(XeF_2) + \rho_t(N_2O_4)$

^a SVWN/(SDB-)cc-pVTZ. Raman intensities (in Å⁴ amu⁻¹) are given in parentheses. ^b Abbreviation denotes not observed (n.o.). ^c Values are taken from Chapter 4. ^d The abbreviations denote stretch (ν), bend (δ), and twist (ρ_t). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (-) signs. ^e This band is coincident with FEP. ^f The band is coincident with the $\nu_1(A_{1g})$ band of AsF₆⁻. ^g The band is coincident with the $\nu_1(\Sigma_g^+)$ band of free XeF₂. ^h The band is coincident with the $\nu_3(\Pi_u)$ band of free XeF₂.

Ph.D. Thesis - Matthew D. Moran

parentheses) results are discussed, and the geometries are compared with those experimentally determined for the $[F(NgF)_2][MF_6]$ (M = As, Sb) salts^{23,139} (Table 3.7). Computations performed using MP2 and hybrid DFT (B3PW91, BHandH, and BHandHLYP) methods failed to give reasonable geometries for $F(XeF)_2^+$ and/or $F(KrF)_2^+$, and for that reason have not been included in the ensuing discussion. Computations have also been performed to elucidate the energy barrier to the FXeONO rearrangement (Section 3.2.5.2) and the nature of the (XeO)_n ring (Section 3.2.5.3).

3.2.5.1 $O(NgF)_2$ and $F(NgF)_2^+$ (Ng = Kr, Xe)

3.2.5.1.1. Geometries

The geometries of both $O(NgF)_2$ and $F(NgF)_2^+$ optimized to $C_{2\nu}$ symmetry. The Ng–O [2.0806 (2.1219) Å, Xe; 1.9512 (2.0021) Å, Kr] and Ng–Ft [2.0414 (2.0802) Å, Xe; 1.9182 (1.9675) Å, Kr] bond lengths in $O(NgF)_2$ are indicative of more covalently bound molecules when compared with the Ng---Fb [2.1963 (2.2436), Xe; 2.0521 (2.1070), Kr] and Ng–Ft [1.9253 (1.9531) Å, Xe; 1.7854 (1.8200) Å, Kr] bond lengths calculated for the $F(NgF_2)^+$ cations (Table 3.7). The latter bond lengths are in good agreement with those determined in the X-ray crystal structures of the $[Ng_2F_3][AsF_6]$ and $[Ng_2F_3][SbF_6]$ salts and the previously calculated gas-phase structures of the free cations.^{23,139} The differences in bond lengths between the neutral and cationic species are mirrored in the bond angles. The Ng–O–Ng and Ng---Fb---Ng bridge angles vary considerably among the four species, and follow the trend $O(KrF)_2$ [111.3 (111.9)°] < $O(XeF)_2$ [115.9 (116.4)°] < $F(KrF)_2^+$ [135.4 (134.3)°] < $F(XeF)_2^+$ [148.7 (146.3)°]. All angles were found to be larger than the ideal tetrahedral angle of 109.5°. The angles

	ex	exptl ^a			calcd ^{a,b}			
	F(N	$F(NgF)_2^+$		O(NgF) ₂		$(gF)_2^+$		
	$[F(NgF)_2][AsF_6]^d$	$[F(NgF)_2][SbF_6]^e$	SVWN	PBEPBE	SVWN	PBEPBE		
Ng– $O(F_b) (Å)^c$	2.142(7)-2.157(3)	2.141(8)-2.146(8)	2.0806	2.1219	2.1966	2.2436		
-	[2.049(6)-2.061(6)]	[2.027(5) - 2.065(4)]	[1.9510]	[2.0021]	[2.0521]	[2.1070]		
Ng– F_t (Å) ^c	1.908(6)-1.929(6)	1.918(9)-1.922(9)	2.0414	2.0802	1.9253	1.9531		
	[1.780(7)–1.803(6)]	[1.787(4)–1.805(5)]	[1.9182]	[1.9675]	[1.7854]	[1.8200]		
Ng-O(F _b)-Ng	148.6(4)-149.5(4)	160.3(3)	115.9	116.4	148.7	146.3		
(deg) ^c	[127.5(3)]	[126.0(2)-142.5(3)]	[111.3]	[111.9]	[135.4]	[134.3]		
$O(F_b)-Ng-F_t$	177.3(4)-177.7(3)	176.9(3)-178.6(4)	177.2	176.7	177.9	177.8		
(deg) ^c	[178.2(3)–178.6(3)]	[175.1(2)-178.3(2)]	[177.3]	[177.0]	[177.3]	[177.2]		

Table 3.7. Experimental and Calculated Geometries for $O(NgF)_2$ and $F(NgF)_2^+$ (Ng = Kr, Xe)

^a Unbracketed values are for the Xe analogue and the square-bracketed values are for the Kr analogue. ^b (SDB-)cc-pVTZ basis sets. ^c The symbols F_b and F_t refer to the bridging and terminal fluorine atoms, respectively. ^d Geometric parameters were taken from ref 23 (monoclinic [F(XeF)₂][AsF₆]) and ref 139 ([F(KrF)₂][AsF₆]·[KrF][AsF₆]), respectively. ^e Geometric parameters were taken from ref 23 (F(XeF)₂][SbF₆]) and ref 139 ([F(KrF)₂][SbF₆]·KrF₂ and [F(KrF)₂][SbF₆]·KrF₂), respectively.

are larger for $F(NgF)_2^+$ than the angles for $O(NgF)_2$, since the lone pairs on the oxygen are expected to exert stronger repulsive forces on the more covalent Ng–O bonds, compressing the Ng–O–Ng angle to a greater extent than the Ng---F_b---Ng angle, which is more ionic and is expected to experience weaker repulsive forces from the two lone pair domains on fluorine.

The F_r-Ng-O bond angles $[177.2^{\circ} (176.7^{\circ}), Xe; 177.3^{\circ} (177.0^{\circ}), Kr]$ are close to those calculated for the F_r-Ng-F_b angles of the $F(NgF)_2^+$ cations $[177.9^{\circ} (177.8^{\circ}), Xe;$ $177.3^{\circ} (177.2^{\circ}), Kr]$. The X-ray crystal structures of $[Ng_2F_3][AsF_6]$ and $[Ng_2F_3][SbF_6]$ give F_r-Ng-F_b bond angles of $176.9(3)-178.6(3)^{\circ}$ in the case of Xe and 175.1(2)- $178.6(3)^{\circ}$ in the case of Kr, confirming the predicted angle.^{23,139} The non-linearity of the angles is apparently a result of the asymmetric environment about the noble-gas atom in both $O(NgF)_2$ and $F(NgF)_2^+$; as such there is no symmetry constraint to keep the bond angle linear. Thus, the 3c-4e hypervalent bond at the noble-gas atom can build in other orbital character and deviate from linearity. With no orbital symmetry constraint, the bond angles about the noble-gas atom can adjust to maximize the interactions with oxygen in $O(NgF)_2$ and the bridging fluorine in $F(NgF)_2$, and, at the same time, minimize any repulsive interactions.

3.2.5.1.2. Natural Bonding Orbital Analyses

Natural bond orbital (NBO) analyses on the SVWN- and PBEPBE-optimized gasphase geometries have been performed to evaluate the strength and covalency of the Ng– F_t and Ng–O(F_b) bonds (Table 3.8). Both sets of values were very similar, thus only the SVWN values will be discussed here. Electron localization function (ELF) analyses

		O(XeF) ₂				$F(XeF)_2^+$			
	SV	WN	PBE	PBE	SV	WN	PBE	EPBE	
				Charges [Valencies]		<u> </u>		
$O(F_b)$	-0.978	[1.545]	-0.890	[0.747]	-0.602	[0.370]	-0.581	[0.328]	
Xe	1.089	[1.108]	1.028	[0.647]	1.244	[0.577]	1.205	[0.540]	
\mathbf{F}_{t}	-0.600	[0.659]	-0.578	[0.263]	-0.443	[0.389]	-0.514	[0.376]	
				Bond (Orders				
$Xe-O(F_b)$	0.374		0.372		0.184		0.163		
Xe–F _t	0.283		0.262		0.389		0.375		
86		O(K	rF) ₂			F(Kr	$F)_{2}^{+}$		
	SV	WN	PBEPBE		SVWN		PBEPBE		
				Charges [V	Valencies]				
$O(F_b)$	-0.756	[0.745]	-0.697	[0.682]	-0.492	[0.349]	-0.467	[0.316]	
Kr	0.901	[0.625]	0.848	[0.567]	1.070	[0.577]	1.029	[0.516]	
Ft	-0.523	[0.264]	-0.499	[0.237]	-0.324	[0.386]	-0.295	[0.360]	
				Bond (Orders				
$Kr-O(F_{\rm h})$	0.369		0.338		0.173		0.157		
Kr–F _t	0.261		0.235		0.384		0.359		

^a (SDB-)cc-pVTZ basis sets. ^b The symbols F_b and F_t refer to the bridging and terminal fluorine atoms, respectively.

Figure 3.5. ELF isosurface plots for $O(NgF)_2$ and $F(NgF)_2^+$ (Ng = Kr, Xe) at the SVWN/(SDB-)cc-pVTZ//SVWN/(SDB-)cc-pVTZ level of theory, showing the f_{sep} -values for the V(Ng) and V(O(F)) basins. Color scheme: blue, lone-pair (monosynaptic) basin, $V(X_i)$; green, bond (bisynaptic basin, $V(E,X_i)$; red, core basin, C(E).

Figure 3.6. ELF isosurface plots for $O(NgF)_2$ and $F(NgF)_2^+$ (Ng = Kr, Xe) at the SVWN/(SDB-)cc-pVTZ//SVWN/(SDB-)cc-pVTZ level of theory, showing the f_{sep} -values for the V(Ng) and $V(F_t)$ basins. Color scheme: blue, lone-pair (monosynaptic) basin, $V(X_i)$; green, bond (bisynaptic basin, $V(E,X_i)$; red, core basin, C(E).

68

Figure 3.7. ELF isosurface plots for $O(NgF)_2$ and $F(NgF)_2^+$ (Ng = Kr, Xe) at the SVWN/(SDB-)cc-pVTZ//SVWN/(SDB-)cc-pVTZ level of theory, showing the f_{sep} -values for the V(Ng) and $V(F_t)$ basins. Color scheme: blue, lone-pair (monosynaptic) basin, $V(X_i)$; green, bond (bisynaptic) basin, $V(E,X_i)$; red, core basin, C(E).

have also been performed on the SVWN-optimized gas-phase geometries. The f_{sep} -values (i.e., the value of the isosurface at which the basins separate) are given in Figure 3.5 and 3.6, while the total noble gas lone-pair basin volumes are provided in Figure 3.7. Details of ELF analyses in relation to systems that contain xenon have been described in a previous paper, and require no further discussion.¹⁴⁰

The NBO analyses give natural charges of 1.089 and 1.244 for Xe in $O(XeF)_2$ and $F(XeF)_2^+$, respectively. These charges are an approximate average of the formal charge 0, expected for a covalent model, and the formal oxidation number two expected for a purely ionic model for Xe, with the number being closer to two in the case of $F(XeF)_2^+$. These values are in accord with the natural charges for $O(F_b)$ (-0.978/-0.602) and F_t (-0.600/-0.443). In both cases, the charges are about half of their respective oxidation numbers, indicating polar covalent bonding that is consistent with 3c-4e bonding. The Xe-O/Xe-F bond order ratio (1.32) and the Xe/O/F valencies (1.108/1.545/0.659) are in agreement with this description of polar covalent bonding, whereas the Xe---F_b/Xe-F_t bond order ratio (0.47) and Xe/F_b/F_t valencies (0.577/0.370/0.389) are better described as more covalent Xe-F_t bonding with more ionic interactions between Xe and F_b. These results are further confirmed by ELF analyses (vide infra). Similar trends were observed for O(KrF)₂ and the F(KrF)₂⁺ cation (Table 3.8).

The relative strengths of the Ng–O(F_b) and Ng–F_t bonds have also been assessed on the basis of the f_{sep} -value at which the contours between the noble-gas atom and the O(F_b) or F_t atoms separate. Separation of the F_t basin from Ng in O(NgF)₂ occurs at an f_{sep} value of 0.427 in the case of xenon and 0.426 in the case of krypton, whereas the value of 0.578 is calculated for $F(NgF)_2^+$, providing evidence that the F_t -Ng bond is more covalent for the latter species. A much larger gap exists for the separation of the $O(F_b)$ basin from Ng for $O(NgF)_2$, with a value of 0.533, and $F(NgF)_2^+$, which has values of 0.294 and 0.270 for Kr and Xe, respectively. Again, the basin separation value reflects the bond orders for Ng–O and Ng---F_b and indicates that the $O(NgF)_2$ molecules are more covalently bound than the $F(NgF)_2^+$ cations. It is also interesting to note the difference between the f_{sep} -values for $F(XeF)_2^+$ (0.270) and $F(KrF)_2^+$ (0.294) also reflect the stronger covalent interaction between Kr---F_b relavtive to Xe---F_b (Table 3.7).

The noble-gas valence basin (torus) volumes given by ELF population analyses (f = 0.500) decrease in the order $F(XeF)_2^+$ (318) > $O(XeF)_2$ (295) > $F(KrF)_2^+$ (206) = $O(KrF)_2$ (206). The smaller torus volumes for the krypton atom in $O(KrF)_2$ and $F(KrF)_2^+$ can be viewed as a contraction of the Kr valence lone-pair basin by the closer proximity of the two negative electric fields of the $O(F_b)$ and F_t atoms, and the higher effective nuclear charge on Kr relative to Xe. The basin volume for xenon in $F(XeF)_2^+$ is larger than that calculated for $O(XeF)_2$, as expected, because the interaction with the oxygen atom is stronger in the latter species, causing a contraction of the toroidal surface.

3.2.5.2. The FXeONO Rearrangement

It has been proposed that the enriched N^*O^+ cation, as well as natural abundance $O(XeF)_2$, resulting from the reaction of $[Xe_3^*OF_3][AsF_6]$ with NOF, arises from the intramolecular rearrangement of the FXe^{*}ONO intermediate (Figure 3.8). The rearrangement was computationally evaluated by decreasing the distance between Xe(1)

Figure 3.8. Calculated (SVWN/(SDB-)cc-pVTZ) geometries and energies for (a) the ground-state configuration of FXeONO, and (b) the transition-state configuration of FXeONO. The energy difference is 2.85 kJ mol⁻¹ (Figure 3.9).

and O(2) in 0.05 Å increments, followed by a geometry optimization at that bond length, which yielded one local energy maximum transition state between the two energy minima for the optimized ground states (Figure 3.9). The ground state geometry shows an unusually long Xe(1)–O(1) bond length of 2.3752 Å, with a short Xe(1)--O(2) contact of 2.9157 Å (Xe–O van der Waals radii, 3.68 Å).²⁶ The long Xe(1)–O(1) bond length appears to account for the high reactivity of FXeONO and the inability to observe this intermediate as a long-lived intermediate on the NMR time scale. The transition state obtained from the scan was then optimized (one negative frequency), and the energy difference when compared with the ground state energy was found to be 2.85 kJ mol⁻¹. The low barrier to rearrangement is expected considering the relatively small difference between the Xe(1)–O(1) bond length and the Xe(1)--O(2) contact distance, and appears to be a reasonable explanation for the presence of enriched oxygen in the N^{*}O⁺ cation proposed in eq 3.10.

3.2.5.3. The (XeO)_n Cyclic Polymer

As discussed previously, the observation of three peaks in the ¹⁶O(XeF)₂ Raman spectrum at 416.5, 406.6, and 180.7 cm⁻¹ is consistent with an (XeO)_n oligomer of very high symmetry. A computational study of (XeO)_n rings (n = 4-6) possessing D_{nh} symmetry was conducted at the SVWN5/(SDB-)cc-pVTZ level of theory (all calculations done without symmetry constraints (C_1) were very close to D_{nh} symmetry, except for n =6, vide infra). The vibrational frequencies are summarized in Table 3.9, and the

Figure 3.9. Energy surface plot for the intramolecular rearrangement of the FXeONO intermediate.

			freque	ncies, cm^{-1}			
					calcd ^d		<u> </u>
ex	ptl ^c	(XeO)	$D_4(D_{4h})$	(XeO	$)_{5}(D_{5h})$	(XeO	(D_{6h})
16 <mark>O</mark>	¹⁸ O	¹⁶ O	¹⁸ O	¹⁶ O	¹⁸ O	¹⁶ O	¹⁸ O
		481.4(54)	454.8(47)	499.6(32)	473.7(28)	533.1(57)	505.7(50)
416.5(17)	409.5(15)	452.2(14)	433.0(12)	462.1(90)	437.0(78)	441.7(141)	417.9(122)
406.6(100)	403.2(100)	435.7(33)	410.8(29)	434.6(1)	414.3(<1)	406.1(2)	386.5(1)
180.7(6)	180.7(2)	186.5(2)	178.1(2)	197.2(2)	188.3(2)	197.0(3)	187.7(2)
		143.0(15)	144.3(15)	125.6(2)	125.8(2)	137.1(2)	137.7(2)
		110.7(5)	110.3(5)	115.6(22)	116.6(22)	97.5(31)	98.3(32)
		68.8(2)	69.6(2)	48.8(6)	49.1(6)	29.6(8)	29.7(8)
		482.2[372]	459.9[338]	505.7[579]	481.8[530]	524.5[980]	499.2[894]
		423.5[2]	399.4[1]	433.2[20]	409.3[16]	417.9[25]	395.1[20]
		240.4[34]	228.4[31]	232.4[45]	221.1[41]	221.7[56]	210.7[50]
		158.2[<1]	159.4[<1]	144.1[<1]	145.1[<1]	129.4[2]	130.3[2]
				······			

Table 3.9.	Experimental and Calculated ^{a,t}	Vibrational Frequencies and	Intensities for $(XeO)_n$ $(n = 4-6)$
------------	--	-----------------------------	---------------------------------------

95

^a SVWN5/(SDB-)cc-pVTZ. ^b Raman intensities are given in parentheses and infrared intensities are given in square brackets. ^c Values in parentheses denote relative Raman intensities. ^d Raman intensities (in $Å^4$ amu⁻¹) and infrared intensities (km mol⁻¹). optimized structures are shown in Figure 3.10. Ring structures calculated with n < 4 failed to optimize, while rings with n > 6 possessing D_{nh} symmetry possessed negative frequencies (i.e. n = 7, three imaginary frequencies). When n = 6, the D_{6h} ring possesses one negative frequency, whereas the S_6 structure optimized with all frequencies real, and was slightly out of the plane, mimicking the chair conformation of cyclohexane, presumably to minimize Xe…Xe interactions (Figure 3.10).

Some interesting trends are observed upon increasing the ring size from 4 to 6. The Xe–O bond length decreased from 2.1570 Å to 2.1212 Å, while the O–Xe–O angle increased from 100° to 115.2°. Moreover, the coplanar O–Xe–O angles bend outward when n = 4 (170.0°), are near linear for n = 5 (179.3°), and bend inward when n = 6 (175.2°).

The frequencies calculated for the cyclic oligomers of $(XeO)_n$ (n = 4-6) under D_{nh} symmetries show that these species possess few Raman active modes, as expected for molecules that possess an inversion center. The low-frequency isotopic shifts that result from ¹⁸O-substitution support the proposed structures, and any one of the proposed structures can reasonably be used to account for the observed Raman bands. It is expected that the highest frequency peak, calculated between 481 and 533 cm⁻¹, is obscured by either XeF₂ (v_s (XeF₂)) or by the Xe–F stretching modes of O(XeF)₂.

3.3. Conclusions

The missing neutral oxide fluoride of xenon(II), $O(XeF)_2$, has now been synthesized, showing marked stability at temperatures at or below -30 °C. The ¹⁷O- and

Figure 3.10. Calculated geometries for the cyclic $(XeO)_n$ (n = 4-6) oligomers: (a) $(XeO)_4$ (D_{4h}) , (b) $(XeO)_5$ (D_{5h}) , (c) $(XeO)_6$ (D_{6h}) , one imaginary frequency), and (d) $(XeO)_6$ (C_1) .

¹⁸O-enrichment studies have also provided useful mechanistic data, suggesting that the formation of O(XeF)₂ first goes through the unstable intermediate, FXeONO, and that this intermediate can undergo facile intramolecular rearrangement, allowing for redistribution of enriched oxygen among the various oxygen-containing products. Solution state ¹⁹F and ¹²⁹Xe NMR spectra have been successfully modeled and provide the first example of 129 Xe $-{}^{129}$ Xe coupling. The unique coupling patterns that result from the natural abundance subspectra and the ability to simulate these spectra, as well as the broadening of the ¹⁹F NMR linewidths observed with ¹⁷O-substitution, provide definitive proof for FXeOXeF and its proposed structure. Solid-state characterization of O(XeF)₂ by Raman spectroscopy shows the expected isotopic shifts upon ¹⁸O-substitution. An indepth computational study of $O(NgF)_2$ and $F(NgF)_2^+$ (Ng = Kr, Xe) has shown that the O(NgF)₂ molecules are more covalently bound when compared to the isoelectronic $F(NgF)_2^+$ cations. Computational studies have also verified the facile nature of the FXeONO rearrangement, and provide a possible explanation for the unexplained bands observed in both the natural abundance and ¹⁸O-enriched Raman spectra of O(XeF)₂, namely the $(XeO)_n$ oligomer.

CHAPTER 4

AN ISOLATED NITRATE OF XENON: SYNTHESES AND STRUCTURAL CHARACTERIZATION OF FXeONO₂, XeF₂·HNO₃, AND XeF₂·N₂O₄

4.1. Introduction

Two prior reports have claimed the formation of xenon(II) nitrates. The first report of xenon nitrate formation stemmed from the reactions of XeF₂ with anhydrous HNO₃ and with anhydrous HNO₃, containing 20% by weight of NO₂, at -20 °C.⁹⁹ Although formation of FXeONO₂ (red-brown) and Xe(ONO₂)₂ (blue) was proposed, no structural characterizations of either FXeONO₂ or Xe(ONO₂)₂ were provided. It is likely that the blue color attributed to Xe(ONO₂)₂ arose from N₂O₃.¹³⁵ In a subsequent study, FXeONO₂ was reported to have been generated by reaction of XeF₂ with HNO₃ in CH₂Cl₂ at -30 °C which was, in turn, reacted in situ with various alkenes to give 1,2-disubstituted fluoro-nitrato alkanes (1 = F, 2 = ONO₂).¹⁰⁰ No attempts were made to characterize the proposed intermediate xenon compound in solution or to isolate it for further study.

The absence of a well-characterized xenon nitrate is surprising, because the nitrate anion meets the general criteria that are normally associated with a ligand that is suitable for stabilization of Xe in its +2 oxidation state: 1) it is the conjugate base of a strong monoprotic acid, 2) the least electronegative atom (nitrogen) is in its highest oxidation state, and 3) the group electronegativity (scaled to the Pauling values, 3.95)¹⁴¹ is very close to that of fluorine (3.98)¹⁴¹ and greater than that established for OTeF₅ (3.87),⁷⁰ for

which both the FXeOTeF₅ and Xe(OTeF₅)₂ derivatives are known and have been structurally well characterized. This electronegativity trend has been confirmed by conductivity measurements, which show that the following acids can be arranged in order of increasing acidity: $HNO_3 < HOTeF_5 < HCl < HOTs < H_2SO_4 < HBr < HClO_4$.^{142,143}

Recent work has shown that XeF₂ and [H₃O][AsF₆] react in anhydrous HF (aHF) to form the only known oxide fluoride cation of Xe(II), [FXeOXeFXeF][AsF₆].⁶⁷ This cation has shown synthetic utility in generating the first neutral oxide fluoride of Xe(II), $O(XeF)_2$.⁶⁷ The present chapter details the synthesis of FXeONO₂, providing a further application of the FXeOXeFXeF⁺ cation to the syntheses of a novel xenon compound. The decomposition of FXeONO₂ is also described along with the attempted synthesis of XeONO₂⁺ and the syntheses and structural characterizations of XeF₂·HNO₃ and XeF₂·N₂O₄.

4.2. **Results and Discussion**

4.2.1. Syntheses and Properties

4.2.1.1. Synthesis and Decomposition of FXeONO₂

Liquid NO₂F was allowed to react with magenta-colored [FXeOXeFXeF][AsF₆] at -50 °C for ca. 5 h. Over the course of the reaction, the magenta suspension of [FXeOXeFXeF][AsF₆] slowly reacted to form a solid white suspension. Isolation by removal of excess NO₂F under vacuum at -110 °C yielded white, microcrystalline FXeONO₂, XeF₂, and [NO₂][AsF₆] according to eq 4.1 and 4.2. The proposed reaction

$$[Xe_{2}F_{3}][AsF_{6}] + NO_{2}F \longrightarrow 2 XeF_{2} + [NO_{2}][AsF_{6}]$$
(4.2)

pathway is supported by a double enrichment study using ¹⁵NO₂F and FXe¹⁸OXeFXeF⁺, giving FXe¹⁶O¹⁵NO₂ and FXe¹⁸O¹⁴NO₂, respectively. Failure to observe FXe¹⁶ON¹⁸O¹⁶O indicated that no oxygen isotope scrambling between the bridging and terminal oxygen atoms had occurred, either by intermolecular exchange or by intramolecular rearrangement.

Attempts to isolate FXeONO₂ from the bulk mixture by dynamic vacuum sublimation at -35 °C failed, producing XeF₂, xenon gas, and N₂O₅, which is postulated to arise from the unstable intermediate, O₂NO-ONO₂ (eq 4.3). The latter rapidly decomposes at -78 °C (eq 4.4),^{144,145} but was inferred by the observation of NO₃⁻ in the

$$2FXeONO_2 \longrightarrow XeF_2 + [O_2NO-ONO_2] + Xe$$
(4.3)

$$[O_2NO-ONO_2] \longrightarrow N_2O_5 + \frac{1}{2}O_2$$
(4.4)

Raman spectrum, arising from N₂O₅, which exists as [NO₂][NO₃] in the solid state.¹⁴⁶ Monitoring a solution of FXeONO₂ in SO₂ClF by ¹⁹F NMR spectroscopy at -50 °C demonstrated that FXeONO₂ was 50% decomposed after 7 h at 0 °C, producing XeF₂ as the only fluorine-containing product. In contrast, a sample of FXeONO₂, left for seven days at -78 °C, partially decomposed to give N₂O₄ and XeF₂·N₂O₄ according to eq 4.5–4.7.

$$FXeONO_2 \longrightarrow [FXeNO_2] + \frac{1}{2}O_2$$
(4.5)

$$2 [FXeNO_2] \longrightarrow XeF_2 + Xe + N_2O_4$$

$$(4.6)$$

$$XeF_2 + N_2O_4 \longrightarrow XeF_2 \cdot N_2O_4$$
(4.7)

It was found that $FXeONO_2$ and XeF_2 could be separated from $[NO_2][AsF_6]$ by extraction into SO_2ClF at -30 °C, followed by decanting the $FXeONO_2/XeF_2$ extract from $[NO_2][AsF_6]$ and coprecipitation of $FXeONO_2$ and XeF_2 at -78 °C (see Chapter 2).

4.2.1.2. Reactions of XeF₂ with HNO₃

Attempts were made to repeat the earlier reported syntheses of FXeONO₂ and $Xe(ONO_2)_2$ by reaction of XeF₂ with HNO₃.⁹⁹ In the present study, XeF₂ was allowed to react with stoichiometric amounts of anhydrous HNO₃ in SO₂ClF solution, as well as with excess, neat HNO₃. Xenon-129 NMR spectroscopy at -30 °C in SO₂ClF solution revealed that xenon gas was the major product (-5374 ppm). It is speculated that Xe(ONO₂)₂ is formed, but decomposes too rapidly to be observed by ¹²⁹Xe NMR spectroscopy (eq 4.8–4.10). Unreacted XeF₂, but no FXeONO₂, which is known from the

$$XeF_2 + HNO_3 \longrightarrow FXeONO_2 + HF$$
 (4.8)

 $FXeONO_2 + HNO_3 \longrightarrow Xe(ONO_2)_2 + HF$ (4.9)

$$Xe(ONO_2)_2 \longrightarrow O_2NO-ONO_2 + Xe$$
(4.10)

present work to be stable indefinitely in SO₂ClF at -30 °C, was detected by ¹⁹F spectroscopy. Thus, it is likely that reaction 4.9, and the ensuing decomposition of Xe(ONO₂)₂ (eq 4.10) and N₂O₆ (eq 4.4), are rapid, precluding the isolation of the mono-substituted species under these conditions. Although Xe(ONO₂)₂ was not observed under these conditions, XeF₂·HNO₃ was isolated at low temperature from SO₂ClF solution and characterized in the solid state by Raman spectroscopy and single-crystal X-ray diffraction (see Sections 4.2.3 and 4.2.4). These results, in conjunction with the reaction of N₂O₅ with [XeF][AsF₆] (vide infra), suggest that Xe(ONO₂)₂ is inherently unstable towards decomposition, which is supported by gas-phase thermochemical calculations (see Section 4.2.5).

4.2.1.3. Reactions of XeF₂ and [XeF][AsF₆] with N₂O₅

Attempts to react XeF₂ and [XeF][AsF₆] with N₂O₅ in SO₂ClF to give FXeONO₂ and/or Xe(ONO₂)₂ were unsuccessful. Both reactions were monitored by Raman spectroscopy and showed only the starting materials in the former case, beginning at -40 °C with stepwise warming to 10 °C. The reaction between [XeF][AsF₆] and N₂O₅ did not occur at -78 °C. Gradual warming of the reaction mixture demonstrated that N₂O₅ only had a significant solubility in SO₂ClF above -30 °C, at which point reaction occurred. Low-temperature Raman spectroscopy showed only XeF₂, [NO₂][AsF₆], and N₂O₅ as products. The reaction likely proceeds through FXeONO₂ to give Xe(ONO₂)₂ (eq 4.11 and 4.12), which decomposes at -30 °C according to eq 4.10, thus accounting for N₂O₅.

$$[XeF][AsF_6] + N_2O_5 \longrightarrow FXeONO_2 + [NO_2][AsF_6]$$
 (4.11)

$$FXeONO_2 + N_2O_5 \longrightarrow Xe(ONO_2)_2 + NO_2F$$
 (4.12)

Nitryl fluoride, which was not observed in the Raman spectrum, in turn, reacts with $[XeF][AsF_6]$, accounting for its absence and the presence of XeF_2 (eq 4.13).

$$[XeF][AsF_6] + NO_2F \longrightarrow XeF_2 + [NO_2][AsF_6]$$
 (4.13)

4.2.1.4. Reaction of XeF₂ with N₂O₄

Dissolution of XeF₂ in liquid N₂O₄ at 0 to 25 °C resulted in NOF (δ (¹⁹F), 492.2 ppm at 30 °C) and a small steady-state concentration of FXeONO₂ which apparently arise according to eq 4.14 and 4.15, where the self-ionization of N₂O₄ has been well

$$N_2O_4 \longrightarrow NO^+ + NO_3^-$$
 (4.14)

$$XeF_2 + NO^+ + NO_3^- \longrightarrow FXeONO_2 + NOF$$
(4.15)

established from electrical conductivity measurements $(2.36 \times 10^{-13} \Omega^{-1} \text{ cm}^{-1} \text{ at } 17 \text{ }^{\circ}\text{C})^{147}$ and by measurement of the self-ionization of N₂O₄ in sulfolane at 303 K (K_{N2O4} = 7.1 × 10^{-8} mol L⁻¹).¹⁴⁸ The small steady-state concentration of the NO₃⁻ anion in equilibrium (eq 4.14) and the instability of FXeONO₂ (eq 4.3–4.6) at room temperature (vide supra), account for the low product concentrations in solution (see Section 4.2.2).

Dissolution of XeF_2 in liquid N_2O_4 resulted in the observation of an $XeF_2 \cdot N_2O_4$ adduct by Raman spectroscopy of the frozen mixture (-160 °C, see Section 4.2.4) and it was found that $XeF_2 \cdot N_2O_4$ crystallizes from solutions of XeF_2 in N_2O_4 at -3 °C (see Section 4.2.3).

4.2.1.5. Reaction of FXeONO₂ with AsF₅

In an attempt to form a salt of the XeONO₂⁺ cation, a mixture of FXeONO₂ and XeF₂ was allowed to react with excess liquid AsF₅ at -78 °C. The reaction was monitored by low-temperature Raman spectroscopy over a period of 24 h and showed that AsF₅ had partially reacted with XeF₂ to yield [XeF][AsF₆], while FXeONO₂ remained unreacted. Warming the reaction mixture to -50 °C for 12 h with periodic monitoring by Raman spectroscopy at -160 °C showed [XeF][AsF₆] and [NO₂][AsF₆] were the only products. The findings are consistent with the formation of an unstable XeONO₂⁺ salt (eq 4.16) that rapidly decomposes according to eq 4.17. The instability of XeONO₂⁺ is supported by

$$FXeONO_2 + AsF_5 \longrightarrow [XeONO_2][AsF_6]$$
(4.16)

$$[XeONO_2][AsF_6] \longrightarrow [NO_2][AsF_6] + Xe + \frac{1}{2}O_2$$
 (4.17)

gas-phase thermochemical calculations (see Section 4.2.5).

4.2.2. Solution Characterization of FXeONO₂ by ¹⁴N, ¹⁹F, and ¹²⁹Xe NMR Spectroscopy

The ¹⁹F and ¹²⁹Xe NMR spectra of FXeONO₂ and XeF₂ mixtures were recorded in SO₂ClF solution at -70 °C and in CH₃CN solution at -50 °C, while the ¹⁴N NMR spectrum was recorded in SO₂ClF solution at -50 °C. The ¹⁹F and ¹²⁹Xe NMR spectra of XeF₂, FXeONO₂, and NOF were determined in N_2O_4 solution at 30 °C (see Reactions of XeF₂ with N_2O_4). The NMR parameters for the three solvent systems are provided in Table 4.1.

The ¹⁹F NMR spectrum of FXeO¹⁵NO₂ (98+ % enrichment) in SO₂CIF consisted of a singlet (δ (¹⁹F), -135.1 ppm) with accompanying ¹²⁹Xe ($I = \frac{1}{2}$, 26.44 %) satellites (¹J(¹⁹F-¹²⁹Xe), 5424 Hz). No three-bond coupling to ¹⁵N ($I = \frac{1}{2}$, 98+ %) was observed, presumably because ³J(¹⁵N-¹⁹F) is smaller than the width of the ¹⁹F resonance ($\Delta v_{\frac{1}{2}} = 13$ Hz at 11.7440 T, $\Delta v_{\frac{1}{2}} = 6$ Hz at 7.0463 T).

The ¹²⁹Xe NMR spectrum of FXeO¹⁵NO₂ (11.744 T) in SO₂ClF solvent consisted of a doublet at -1973 ppm in the xenon(II) region of the spectrum. The ²J(¹⁵N-¹²⁹Xe) coupling was not observed, resulting from the broad line width of the ¹²⁹Xe resonance ($\Delta v_{\frac{1}{2}} = 60$ Hz). In an attempt to reduce the line broadening that results from the chemical shielding anisotropy, the sample was recorded at a lower field strength (7.0463 T). However, the line width ($\Delta v_{\frac{1}{2}} = 50$ Hz) was not sufficiently reduced to observe the ²J(¹⁵N-¹²⁹Xe) coupling.

Both the ¹⁹F and ¹²⁹Xe NMR chemical shifts are consistent with trends previously observed for FXe–R species (R = OSeF₅, OTeF₅, OSO₂F, OS(O)(F)OMoOF₄, OS(O)(F)OWOF₄, OWOF₅(WOF₄), OWOF₅(WOF₄)₂),¹⁴⁹ which demonstrates that an increase in the electronegativity of the oxygen-bonded ligand causes a shift to high frequency for the ¹⁹F resonance and a shift to high frequency for the ¹²⁹Xe resonance. These measurements suggest that the ONO₂ group is slightly more electronegative than OTeF₅ (SO₂ClF, -50 °C; δ (¹⁹F), -151 ppm, δ (¹²⁹Xe), -2051 ppm). Furthermore, it is

	solvent	δ(¹⁹ F), ppm	δ(¹²⁹ Xe), ppm	δ(¹⁴ N), ppm	¹ J(¹⁹ F– ¹²⁹ Xe), Hz	temp, °C
FXeONO ₂	SO ₂ ClF SO ₂ ClF	-130.1	-1973	65.8 ^b	5498	-70 -50
	CH ₃ CN	-135.1	-1874		5463	-40
	N_2O_4 ^c	-130.1	1989		5408	30
XeF ₂	SO ₂ ClF	-183.1	-1712		5621	-70
	CH ₃ CN	-179.1	-1783		5649	-40
	N ₂ O ₄ ^c	-179.2	-1840		5625	30
NOF	N_2O_4 ^c	492.2				30

Table 4.1. NMR Parameters of FXeONO₂ and Related Species^a

^a Unless otherwise noted, the reaction products result from eq 4.1. ^b An attempt was made to acquire at ¹⁵N NMR spectrum on ¹⁵N-enriched (98+ %) FXeONO₂ (SO₂ClF solvent, -70 °C). ^c Equations 4.14 and 4.15.

anticipated that the higher effective group electronegativity of ONO₂ should result in a more ionic Xe–F bond relative to that of OTeF₅, which is suggested by the smaller ${}^{1}J({}^{19}\text{F}-{}^{129}\text{Xe})$ coupling constant for FXeONO₂ (5424 Hz) when compared with that of FXeOTeF₅ (5729 Hz).

The ¹⁴N NMR spectrum in SO₂CIF solvent consisted of a singlet at -65.8 ppm ($\Delta v_{\frac{1}{2}} = 50$ Hz). The resonance was quadrupole broadened to an extent that ${}^{3}J({}^{14}N{}^{-19}F)$ and ${}^{2}J({}^{14}N{}^{-129}Xe)$ could not be observed. A ¹⁵N NMR study on a ¹⁵N-enriched sample of FXeONO₂ in the same spectral region indicated that the relaxation time of ¹⁵N was sufficiently long to preclude its observation, even at delay times of 180 s. The relaxation time is presumably long because the ¹⁵N is surrounded by spinless oxygen nuclei, which does not afford a significant dipolar intramolecular spin-lattice relaxation pathway.

4.2.3. X-ray Crystallography

Details of the data collection parameters and other crystallographic information for FXeONO₂, XeF₂·HNO₃, and XeF₂·N₂O₄ are given in Table 4.2. The experimental and calculated bond lengths and angles are summarized in Table 4.3.

4.2.3.1. FXeONO₂

The FXeONO₂ molecules, which possess C_s site symmetry, are well isolated, discrete molecular units as inferred from the shortest contacts (Figure 4.1). Many of the Xe…O/F contacts (3.322(4) – 3.570(5) Å) are near or at the limit of the van der Waals radii for the xenon and fluorine atoms (3.63 Å)²⁶ and xenon and oxygen atoms (3.68 Å),²⁶

chem formula	NO ₃ FXe	N ₂ O ₄ F ₂ Xe	HNO ₃ F ₂ Xe
space group	-	-	_
	$P2_1/c$	<i>P</i> 1	Pnma
$a(\mathbf{A})$	4.6663(4)	4.5822(3)	17.3543(7)
<i>b</i> (Å)	8.7995(7)	5.0597(3)	5.6539(2)
<i>c</i> (Å)	9.4153(8)	6.2761(5)	4.7658(2)
$\alpha(\text{deg})$	90	79.170(7)	90
β (deg)	90.325(5)	88.454(5)	90
$\gamma(\text{deg})$	90	81.083(5)	90
$V(Å^3)$	386.60(6)	141.19(2)	467.62(5)
molecules/unit cell	4	1	4
mol wt (g mol ⁻¹)	212.30	261.30	232.30
calcd density $(g \text{ cm}^{-3})$	3.648	3.073	3.300
$T(^{\circ}C)$	-173	-173	-160
μ (mm ⁻¹)	8.80	6.10	7.32
R_1^{a}	0.0417	0.0385	0.0140
wR_2^{b}	0.0807	0.0742	0.0317

Table 4.2. Crystallographic Data for FXeONO₂, XeF_2 ·HNO₃, and XeF_2 ·N₂O₄

^a R_1 is defined as $\Sigma ||F_0| - |F_c||/\Sigma |F_0|$ for $I > 2\sigma(I)$. ^b wR_2 is defined as $[\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma w(F_0^2)^2]^{1/2}$ for $I > 2\sigma(I)$.

Table 4.3. Experimental and Calculated^a Geometric Parameters for FXeONO₂,

		FXe	ONO ₂		
		bond le	ngths (Å)		
Xe(1)-F(1)	1.992(4)	[2.018]	N(1)–O(2)	1.199(6)	[1.197]
Xe(1)-O(1)	2.126(4)	[2.144]	N(1)–O(3)	1.224(6)	[1.206]
O(1)–N(1)	1.365(7)	[1.382]			
		bond an	gles (deg)		
F(1)-Xe(1)-O(1)	177.6(2)	[176.0]	O(1)-N(1)-O(3)	118.4(5)	[117.9]
Xe(1)-O(1)-N(1)	114.7(3)	[113.8]	O(2) - N(1) - O(3)	127.1(5)	[129.8]
O(1)-N(1)-O(2)	114.5(4)	[112.3]			
		conta	acts (Å)		
$Xe(1)\cdots F(1A)$	3.420(4)		$Xe(1)\cdots F(1B)$	3.299(4)	
Xe(1)O(1A)	3.322(4)		Xe(1)O(2B)	3.545(4)	
Xe(1)O(2A)	3.478(4)		$Xe(1)\cdots O(3B)$	3.570(5)	
$Xe(1)\cdots O(3A)$	3.390(4)		$Xe(1)\cdots O(3C)$	3.518(4)	
$N(1)\cdots F(1A)$	2.780(6)		O(1)···· $F(1A)$	2.935(5)	
$O(2) \cdots N(1A)$	2.923(6)		$Xe(1)\cdots O(3C)$	2.965(7)	[2.933]
		XeF	2·HNO ₃		
		bond le	engths (Å)		
Xe(1) - F(1)	1.9737(8)	[1.983]	N(1)–O(2)	1.368(2)	[1.360]
Xe(1) - F(2)	2.0506(8)	[2.064]	N(1)–O(3)	1.216(2)	[1.220]
O(1) - N(1)	1.206(2)	[1.193]	O(2)–H(1)	0.83(2)	[1.046]
		bond an	igles (deg)		
F(1)-Xe(1)-F(2)	178.98(3)	[180.0]	O(2)-N(1)-O(3)	117.2(1)	[120.7]
O(1)-N(1)-O(2)	114.6(1)	[116.3]	N(1)-O(2)-H(1)	106(2)	[104.1]
O(1)-N(1)-O(3)	128.2(1)	[128.1]			
		conta	acts (Å)		
$H(1)\cdots F(2)$	1.86(2)	[1.520]	$Xe(1)\cdots F(1B)$	3.3050(4)	
$Xe(1)\cdots O(3)$	3.317(1)	[3.034]	$Xe(1)\cdots F(1C)$	3.3050(4)	
$Xe(1)\cdots F(1A)$	3.4897(9)		$Xe(1)\cdots O(1B)$	3.4156(6)	
$Xe(1)\cdots O(1A)$	3.4156(6)		$Xe(1)\cdots O(1C)$	3.456(1)	
$Xe(1)\cdots F(2A)$	3.4859(8)		$Xe(1)\cdots O(2B)$	3.5284(6)	
$Xe(1)\cdots O(2A)$	3.5284(6)		$O(2)\cdots F(2)$	2.690(1)	[2.566]

XeF₂·HNO₃, and XeF₂·N₂O₄

		XeF ₂	·N ₂ O ₄ ^b	·····	
		bond ler	ngths (Å)		
Xe(1) - F(1)	1.985(3)	[1.996,	N(1)-O(2)	1.182(6)	[1.181]
		2.030]			(1.198)
		(2.014,			
		2.012)			
N(1)–O(1)	1.194(6)	[1.188]	N(1) - N(1A)	1.738(8)	[1.759]
		(1.198)			(1.766)
		bond any	gles (deg)		
F(1)-Xe(1)-F(1A)	180.0	[178.9]	O(1)-N(1)-O(2)	134.5(5)	[135.0]
		(179.1)			(134.0,
					135.4)
O(1) - N(1) - N(1A)	112.5(4)	[112.5]	O(2) - N(1) - N(1A)	113.0(4)	[112.5]
		(113.4,			(112.6,
		112.4)			112.2)
		conta	cts (Å)		
$Xe(1)\cdots F(1B)$	3.370(3)		$Xe(1)\cdots F(1C)$	3.370(3)	
$Xe(1)\cdots O(1B)$	3.516(4)	[3.262]	$Xe(1)\cdots O(1C)$	3.440(4)	[3.332]
$Xe(1)\cdots O(1D)$	3.440(4)	[3.332]	$Xe(1)\cdots O(1E)$	3.516(4)	[3.262]
$Xe(1)\cdots O(2)$	3.490(4)		Xe(1)O(2B)	3.435(4)	[3.262]
$Xe(1)\cdots O(2C)$	3.490(4)		$Xe(1)\cdots O(2D)$	3.435(4)	[3.262]
$Xe(1)\cdots O(2E)$	4.180(4)	[3.314]	Xe(1)O(2F)	4.180(4)	[3.314]
$F(1) \cdots N(1B)$	2.720(4)	[2.564]	$F(1)\cdots N(1C)$	2.834(5)	[2.564]

Table 4.3.(continued...)

^a SVWN/(SDB-)cc-pVTZ. Calculated values are given in square brackets or in parentheses. ^b Calculated geometric parameters for N_2O_4 coordinated to XeF₂ through two oxygens bound to two different nitrogen atoms (square brackets) and two oxygens bound to the same nitrogen atom (parentheses).

Figure 4.1. (a) X-ray crystal structure of FXeONO₂; thermal ellipsoids are shown at the 50% probability level. (b) Calculated geometry of FXeONO₂ (SVWN/(SDB-)cc-pVTZ). Experimental and calculated geometrical parameters are provided in Table 4.3.

and avoid the torus of electron lone pair density about xenon, which is further verified by the good agreement between the experimental and calculated geometric parameters (see Section 4.2.5).

The Xe–O bond length of 2.126(4) Å is indicative of a polar-covalent bond (see Section 4.2.5), and is comparable to that found for the neutral FXeOSO₂F (2.155(8) Å)²⁷ and Xe(OTeF₅)₂ (2.119(11) Å)⁷⁵ molecules. Correspondingly, the Xe-F bond length (1.992(4) Å) and O-Xe-F angle (177.6(2)°) are comparable to those determined for FXeOSO₂F (1.940(8) Å and 177.4(3)°, respectively).²⁷ The Xe–O–N angle (114.7(3)°) was found to be larger than those determined for ClONO₂ $(112.49(4)^{\circ})^{150}$ and BrONO₂ $(113.8(4)^{\circ})^{151}$ in the solid state, which is commensurate with the lower bond density (i.e. bond order) of the order Xe–O < Br–O < Cl–O (see Table 4.4). The geometric parameters for the ONO₂ moiety determined for FXeONO₂ and XONO₂ (X = Cl, Br) differ in that the N-O_{cis} bond length is shorter than N-O_{trans} for the halogen nitrates, and longer for the which agrees with the bond orders determined xenon nitrate, at the PBE1/aug-cc-pVTZ(-PP) level of theory.

4.2.3.2. XeF₂·HNO₃

The structure of the XeF₂·HNO₃ adduct (Figure 4.2) is one of only two examples of hydrogen-bonded adducts of XeF₂, the other being $[H_3O][AsF_6] \cdot 2XeF_2$.⁶⁷ All the atoms are coplanar by symmetry, allowing the molecules to pack in sheets of XeF₂ and HNO₃ molecules (Figure 4.3). This self assembly results from short H…F (1.86(2) Å)

	FXeONO ₂		BrONO ₂ ^a		ClONO ₂ ^b	
			bond	l lengths (Å)		
	exptl	calcd °	exptl	calcd ^c	exptl	caled ^c
R-O	2.126(4)	2.1319 (2.0999)	1.860(5)	1.8171 (1.8069)	1.6834(6)	1.6684 (1.6761)
O _R -N	1.365(7)	1.3705 (1.4036)	1.414(7)	1.4437 (1.5218)	1.4694(7)	1.4747 (1.5687)
N–O _{cis}	1.224(6)	1.2042 (1.2138)	1.192(8)	1.1847 (1.1912)	1.1872(7)	1.1797 (1.1862)
N-O _{trans}	1.199(6)	1.1931 (1.2065)	1.213(8)	1.1862 (1.1946)	1.2030(7)	1.1824 (1.1900)
R…O _{cis}	2.965(7)	2.9759 (2.9446)	N/A ^d	2.8302 (2.8123)	N/A ^d	2.7241 (2.7284)
			bon	d angles (°)		
R-O _R -N	114.7(3)	115.46 (114.18)	113.8(4)	114.84 (112.22)	112.49(4)	113.34 (110.65)
O–N–O _{cis}	118.4(5)	117.82 (117.43)	120.0(5)	114.84 (116.96)	118.36(5)	117.50 (116.10)
D-N-O _{trans}	114.5(4)	113.21 (112.68)	110.1(5)	109.60 (108.47)	109.37(5)	108.97 (107.81)
0-N-O	127.1(5)	129.00 (129.89)	130.0(6)	132.30 (134.57)	132.27(5)	133.53 (136.09)
			tortio	nal angles (°)		
RONO	0.00	0.02 (0.04)	N/A^d	0.01 (0.08)	N/A ^d	0.004 (0.04)
			nati	iral charges		
	PBE1	MP2	PBE1	MP2	PBE1	MP2
2	1.162	1.157	0.365	0.337	0.283	0.256
D _R	-0.573	0.586	-0.474	-0.509	-0.419	-0.465
1	0.723	0.657	0.727	0.662	0.726	0.659
) _{cis}	-0.397	-0.345	-0.318	-0.245	0.298	-0.221
Otrans	-0.325	-0.285	-0.301	-0.245	0.292	-0.229
			natura	l bond orders		
R-0	0.269	0.339	0.553	0.575	0.654	0.628
D _R –N	0.836	0.793	0.708	0.606	0.658	0.545
N–O _{cis}	1.215	1.216	1.265	1.267	1.278	1.277
N-O _{trans}	1.228	1.214	1.248	1.243	1.260	1.256
R…O _{cis}	0.021	0.027	0.020	0.035	0.004	0.034

Table 4.4. Geometric Parameters and NBO Analyses for FXeONO₂, BrONO₂, and ClONO₂ at the PBE1/aug-cc-pVTZ(-PP)

and MP2/aug-cc-pVTZ(-PP) Levels of Theory

^a Taken from ref 151. ^b Taken from ref 150. ^c MP2 values given in parentheses. ^d The symbol N/A denotes not available.

Figure 4.2. (a) The X-ray crystal structure of XeF₂·HNO₃ showing the H…F and Xe…O contacts; thermal ellipsoids are shown at the 70% probability level.
(b) The calculated geometry of XeF₂·HNO₃ (SVWN/(SDB-)cc-pVTZ). Experimental and calculated geometric parameters are provided in Table 4.3.

Figure 4.3. Packing diagram of XeF_2 ·HNO₃ viewed along the *c*-axis with thermal ellipsoids shown at the 70% probability level.

contacts and weak Xe…O (3.317(1) Å) contacts, which are well within the sums of the van der Waals radii (2.67 and 3.68 Å, respectively).²⁶

The strong hydrogen bond was found to distort the local symmetry of the XeF₂ molecule from $D_{\infty h}$ to $C_{\infty v}$ symmetry. The Xe-F bond length distortions (terminal, 1.9737(8) Å; bridge, 2.0506(8) Å) are similar to the distortions found in compounds where XeF₂ is coordinated to a metal ion, $[M^{n+}(XeF_2)_p](AF_6)_n$ (M = Li, Ag, Mg, Ca, Sr, Ba, Pb, Zn, Cu, Cd, La, Nd; A = P, As, Sb).¹⁵² For example, in $[Mg(XeF_2)_2](AsF_6)_2$, the Xe-F bridge and terminal distances are 2.051(4) Å and 1.913(5) Å.⁵⁰ The geometric parameters obtained for HNO₃ (N–O_H, 1.368(2) Å; N–O_{cis}, 1.216(2) Å; N–O_{trans}, 1.206(2) Å; O_{cis}-N-O_{trans}, 128.2(1)°) are much better resolved when compared with the previous structure obtained for the pure acid $(N-O_{H}, 1.41(2))$ Å; $N-O_{cis} =$ N-O_{trans}, 1.22(2) Å; O_{cis}-N-O_{trans}, 130(5)^o),¹⁵³ though they do not differ significantly to within $\pm 3\sigma$.

4.2.3.3. XeF₂·N₂O₄

The XeF₂ moiety of the XeF₂·N₂O₄ adduct (Figure 4.4) is constrained by crystal symmetry to $D_{\infty h}$ symmetry, and possesses an Xe–F bond length of 1.985(3) Å, which does not differ significantly from the bond length determined for pure XeF₂ at -173 °C (1.999(4) Å).¹⁵⁴ Although the N₂O₄ molecules were found to have a local $C_{2\nu}$ symmetry (N–O, 1.194(6) and 1.182(6) Å; N–N, 1.738(8) Å; O–N–O, 134.5(5)°), the N–O bond

Figure 4.4. X-ray crystal structure of the $XeF_2 \cdot N_2O_4$ adduct; thermal ellipsoids are shown at the 50% probability level. Experimental and calculated geometric parameters are provided in Table 4.3.

lengths do not differ from each other by more than $\pm 3\sigma$, and thus may be regarded as having D_{2h} symmetry. The argument for D_{2h} symmetry (and thus a very weakly coordinated N₂O₄) is supported by the lack of band splittings in the Raman spectrum (see Section 4.2.4). The N₂O₄ geometric parameters do not differ significantly from those determined for the pure compound at 100 K (N–O, 1.1855(9) Å; N–N, 1.7560(14) Å; O–N–O, 134.46(12)^o).¹⁵⁵

Oxygen coordination at Xe comprises three coordination modalities; a bidentate interaction with two oxygens bound to different nitrogen atoms (3.435(4) Å and 3.516(4) Å), a bidentate interaction with two oxygens bound to the same nitrogen (3.440(4) Å and 4.180(4) Å), and an interaction with a single oxygen atom (3.490(4) Å) (Figure 4.5). While most of these long contacts differ significantly from the two calculated bidentate interactions in the gas phase, the bidentate interaction with each oxygen bound to different nitrogen atoms was found to be 22.3 kJ mol⁻¹ more stable, in accord with the experimental findings. There are also two long contacts from xenon to two other fluorine atoms from different XeF₂ units (3.370(3) Å) that fall within the sum of the van der Waals radii. The absence of a significant distortion in the XeF₂ molecule is likely a result of the symmetric arrangement of long contacts around the xenon atom. Two long F…N contacts were also observed (2.720(4) and 2.834(5) Å) that are likely the result of electrostatic attractions (van der Waals radii, 3.02 Å).²⁶

Figure 4.5. (a) Crystal structure of $XeF_2 \cdot N_2O_4$ showing the three coordination modalities that occur between the xenon atom and N_2O_4 . The calculated geometry of N_2O_4 coordinated to the xenon atom of XeF_2 through two oxygens bound to (b) the same nitrogen atom and (c) two different nitrogen atoms.

4.2.4. Raman Spectroscopy

The low-temperature, solid-state Raman spectra of $FXeONO_2$, XeF_2 ·HNO₃, and XeF_2 ·N₂O₄ are shown in Figures 4.6 and 4.7, respectively. The experimental and calculated frequencies and their assignments are listed in Tables 4.5–4.7.

The spectral assignments for FXe^{16/18}ONO₂ and FXeO^{14/15}NO₂ were made by comparison with the calculated frequencies and Raman intensities (Table 4.5) of the energy-minimized geometries (Figure 4.1b). The assignments have also been compared with those of FXeOSO₂F,²⁸ which have been improved upon in this work with the aid of electronic structure calculations (Table 4.8). The assignments for the XeF₂·HNO₃ and XeF₂·N₂O₄ adducts were made by comparison with the calculated frequencies and Raman intensities (Tables 4.6 and 4.7) of the energy-minimized geometries (Figures 4.2 and 4.5) and, in the case of the XeF₂, HNO₃, and N₂O₄ modes, by comparison with those of free XeF₂, HNO₃ (Table 4.9), and N₂O₄ (Table 4.10) and other XeF₂ adducts such as [Mg(XeF₂)₂](AsF₆)₂.⁵⁰

4.2.4.1. FXeONO₂

The FXeONO₂ molecule (C_s) possesses 12 fundamental vibrational modes belonging to the irreducible representations 9A' + 3A", all of which are Raman and infrared active. The four FXeONO₂ molecules have C_1 site symmetry in the crystallographic unit cell. The factor-group analysis for FXeONO₂ in the solid state (Table 4.11) predicts that each gas-phase Raman- and infrared-active mode of FXeONO₂

Figure 4.6. Raman spectrum of FXeONO₂ recorded at -160 °C using 1064-nm excitation. Symbols denote XeF₂ (†), FEP sample tube lines (*), and laser artifact (‡).

Ph.D. Thesis - Matthew D. Moran

123

Figure 4.7. Raman spectra of the XeF₂ adducts: (a) The spectrum of solid XeF₂·HNO₃. (b) The spectrum of solid XeF₂·N₂O₄ under frozen N₂O₄ solution. The symbols denote XeF₂ (†), FEP (*), and N₂O₄ (‡) (Table 4.10).

124

		frequenc	ies, cm^{-1}				
FXe ¹⁶	FXe ¹⁶ O ¹⁴ NO ₂ FXe ¹⁸ O ¹		⁴ NO ₂	FXe ¹	⁶ O ¹	⁵ NO ₂	
expt1 ^b	calcd	exptl ^b	calcd	exptl ^b		calcd	assignt $(C_s)^c$
$\frac{1578.8(12)}{1571.7(16)}$	1717.7(92)	1569.8 sh 1562.5(5) }	1717.6(92)	1543.2(<0.1) 1536.6(2)	}	1678.8(88)	$v_{l}(A'), v(NO - NO)$
1448.3(<1)		n.o.		n.o.			$2v_4$
1410.3(2)		1407.3(4)		n.o.			$\mathbf{v}_4 + \mathbf{v}_5$
$\left[\begin{array}{c} 1285.5(5)\\ 1262.1(17)\end{array}\right]$	1322.4(28)	$\frac{1278.4(<0.1)}{1242.5(2)}$ }	1322.1(29)	1264.3(<0.1) 1246.7(8)	}	1307.7(27)	$v_2(A'), v(NO + NO)$
882.9(3)	873.1(10)	873.8(2)	866.7(8)	n. o.		860.2(10)	$v_3(A')$, $v(O_{Xe}-N) + \delta(NO_2)$
769.4(2)	781.7(<1)	n.o.	779.7(<1)	n. o.		761.4(<1)	$v_{10}(A''), \rho_w(NO_3)$
725.5(49)	712.0(9)	719.5 sh 717.8(5)	689.4(7)	723.2(8)		710.5(9)	$v_4(A'), \delta(O_{Xe}-N-O) + \rho_r(NO_2)$
685.4(15)	654.9(42)	677.4(5) 663.7(3)	630.5(36)	690.3(100) ^d 683.5(61)	}	654.7(42)	$v_5(A')$, $v(O_{Xe}-N) - \delta(NO_2)$
$\left[\begin{array}{c} 503.8(54)\\ 478.1(100)\end{array}\right]$	517.7(36)	503.8(40) 477.7(100) }	518.3(36)	503.6(14) 478.4(73)	}	518.4(36)	v ₆ (A'), v(Xe-F)
428.0 br		n.o.		n. o.			$2v_{11}$
$\left.\begin{array}{c} 318.9(23) \\ 312.7(37) \end{array}\right\}$	320.7(26)	$\frac{314.1 \text{ sh}}{307.9(24)}$	315.2(26)	317.9(4) 310.9(14)	}	320.1(25)	$v_7(A'), v(Xe-O) + \rho_r(NO_3)$
220.6(15)	203.5(<1)	219.3(14)	198.7(<1)	220.3(10)		203.9(<1)	$v_{11}(A''), \rho_w(F-Xe-O)$
146.9(14)	192.0(9)	146.0(12)	191.7(9)	146.4(8)		192.0(9)	$v_8(A'), \delta(F-Xe-O) + \rho_r(NO_3)$
$\left[\begin{array}{c} 102.2(11)\\ 93.6(16) \end{array} \right]$	115.3(3)	92.1(8)	115.2(3)	n.o.		115.3(3)	$v_9(A'), \delta(F-Xe-O) - \rho_r(NO_3)$
64.3(11)	79.1(<1)	n.o.	78.7(<1)	n .o.		79.2(<1)	$v_{12}(A'')$, ρ_t about Xe–O bond

Table 4.5. Experimental and Calculated^a Raman Frequencies for FXe¹⁶O¹⁴NO₂, FXe¹⁸O¹⁴NO₂, and FXe¹⁶O¹⁵NO₂

^a SVWN/(SDB-)cc-pVTZ. Raman intensities (in Å⁴ amu⁻¹) are given in parentheses. ^b Abbreviations denote shoulder (sh), broad (br), and not observed (n.o.). ^c The abbreviations denote stretch (v), bend (δ), twist (ρ_t), wag (ρ_w), and rock (ρ_r). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (-) signs. ^d The band is coincident with the v₁(A_{1g}) band of AsF₆⁻.

frequencies, cm ⁻¹				
H	NO ₃	XeF ₂ ·HNO ₃		
exptl ^b	exptl ^{c,d}	expt1 ^d	calcd	$_$ assgnt $(C_s)^e$
3490	3097(<1) 2966(3) 2899(<1)	3080 br	3036(186)	A', ν(Ο–Η)
1697	1663(4) {	$\frac{1681(4)}{1668(4)}$	1749(2)	A', $\nu_{as}(NO_2) + \delta(N-O-H)$
1343	1549(2) 1424(8) 1366(9) 1338(9)	1301(4) 1291(35) 1289 sh	1414(6)	Α', δ(Ν-Ο-Η)
1311	1247(100)	1247(6)	1334(68)	A', $\nu_s(NO_2) - \delta(N-O-H)$
902	971(4) 953(58)	953(4)	961(5)	A', $\nu(N-O_H) + \delta(NO_2)$
767	779(<1)	926(14)	847(<1)	A", $\rho_w(N-O-H)$
	705(18)	706(<1)	799(<1)	A", ρ _w (NO ₃)
660	697(21)	698(<1) 686(11)	692(3)	A', $\nu(N-O_H) - \delta(NO_2)$
597	638(13) 623(6)	$\left. \begin{array}{c} 638(1) \\ 624(10) \end{array} \right\}$	640(6)	A', $\delta(O-N-O_H) + \rho_r(NO_2)$
		529(100) 496(24) ^f	559(20)	A', $v(Xe-F_t)$ – small $v(Xe-F_H)$
479	461 br	468(29) 458(47) 294(2)	474(33) 284(1)	A', ν(Xe–F _H) + small ν(Xe–F _t) A', δ(XeF ₂)i.p. + ρ_r (HNO ₃)
	167(18)	238(1)	192(<1)	A", $\delta(XeF_2)o.o.p. + \rho_w(N-O-H)$
	159(24)	159(5)	176(1)	A', $\delta(\text{XeF}_2)$ i.p. – $\rho_{\text{f}}(\text{HNO}_3)$
	$\frac{135 \text{ sh}}{123(11)}$	130(32)	120(3)	
	100(55)	106(11)	80(2)	strongly counled deformations
	90 sh	101(12)	77(1)	
	85 sh	$\left\{\begin{array}{c} 70(2) \\ 54(1) \end{array}\right\}$	29(<1))

 Table 4.6.
 Experimental and Calculated^a Raman Frequencies for XeF₂·HNO₃

^a SVWN/(SDB-)cc-pVTZ. Raman intensities (in Å⁴ amu⁻¹) are given in parentheses. ^b Infrared spectrum of monomeric HNO₃ in a N₂ matrix, taken from ref 156. ^c Raman spectrum of solid HNO₃ recorded at –160 °C. ^d Abbreviations denote shoulder (sh) and broad (br). ^e The abbreviations denote stretch (v), bend (δ), wag (ρ_w), rock (ρ_r), in-plane (i.p.), and out-of-plane (o.o.p). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (-) signs. The symbols F_H and F_t are used to differentiate the fluorine atom that is hydrogen bonded to HNO₃ and the terminal fluorine atom, respectively. ^f The band is coincident with the v₁(Σ_g^+) band of free XeF₂.

	frequen	cies, cm ⁻¹		
N ₂ O ₄		XeF ₂ ·N ₂ O ₄		
exptl ^{b,c}	expt1 ^c	calcd ^d	calcd ^e	assgnt $(C_1)^{f}$
	n .o.	1870(1)	1780(2)	$\overline{v(NO_A)} + v(NO_A') - (v(NO_B) + v(NO_B'))$
1726(21)	1711(6)	1839(8)	1736(9)	$v(NO_A) + v(NO_B') - (v(NO_B) + v(NO_A'))$
1385(36) 1375 sh	1394(7)	1456(42)	1403(14)	$\nu(NO_A) + \nu(NO_A') + \nu(NO_B) + \nu(NO_B')$
1337(10)	1354(14)			2v ₄
	n.o .	1328(<1)	1273(<1)	$\nu(NO_A) + \nu(NO_B) - (\nu(NO_A') + \nu(NO_B'))$
812(30)	817(16)	848(12)	847(17)	$\delta(NO_2) + \delta(NO_2')$
	n .o.	759(<1)	764(2)	$\delta(NO_2) - \delta(NO_2')$
678(4)	691(<1)	688(<1)	711(<1)	$\rho_w(NO_2) - \rho_w(NO_2')$
	n .o.	557(6)	555(<1)	v(XeF) - v(XeF)
499(22)	509(100)	510(8)	508(26)	$\rho_r(NO_2) - \rho_r(NO_2')$
	497(41) ^g	503(19)	504(8)	v(XeF) + v(XeF)
	n.o.	443(2)	472(<1)	$\rho_{\rm w}({ m NO}_2) + \rho_{\rm w}({ m NO}_2')$
285(100) 281(63)	296(58)	312(21)	302(64)	v(N-N)
-		238(1)	254(<1)	$\rho_r(NO_2) + \rho_r(NO_2') + \text{ small } \delta(XeF_2)$
	n.o .	223(<1)	201(<1)	$\rho_r(NO_2) + \rho_r(NO_2') - \text{small } \delta(XeF_2)$
		206(<1)	200(<1)	$\rho_t(NO_2) - \rho_t(NO_2') + \text{ small } \delta(XeF_2)$
	n.o.	131(<1)	153(<1)	$\rho_t(NO_2) - \rho_t(NO_2')$
	$121(70)^{h}$	121(6)	100(6)	$\delta(XeF_2) + \rho_r(N_2O_4)$
121(3)	98(10)	74(1)	86(<1)	$\rho_t(NO_2) - \rho_t(NO_2') + \rho_t(XeF_2)$
79(50)	71(7)	70(2)	61(<1)	$\rho_r(XeF_2) + \rho_r(N_2O_4)$
56(5)	64(7)	61(<1)	34(4)	$\rho_r(XeF_2) - \rho_r(N_2O_4)$
	υτ(<i>i</i>)	38(<1)	-22(1)	$\rho_t(XeF_2) + \rho_t(N_2O_4)$

Table 4.7. Experimental and Calculated^a Raman Frequencies for $XeF_2 \cdot N_2O_4$

^a SVWN/(SDB-)cc-pVTZ. Raman intensities (in Å⁴ amu⁻¹) are given in parentheses. ^b Raman spectrum of solid N₂O₄ recorded at –160 °C. ^c Abbreviations denote shoulder (sh) and not observed (n.o.). ^d Values are taken from the computed structure c in Figure 4.5. ^e Values are taken from the computed structure b in Figure 4.5. ^f The abbreviations denote stretch (v), bend (δ), wag (ρ_w), and rock (ρ_r). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (–) signs. ^g The mode is coincident with v₁(Σ_g^+) of free XeF₂. ^h The mode is coincident with v₃(Π_u) of free XeF₂.

	frequencies, cn	n^{-1}	
exptl (IR)	exptl (R)	calcd ^c	assignt (C_1)
1393(s)	1390(w)	1428(83)[155]	v(S=O) - v(S=O)
1210(vs)	1197(w)	1204(71)[182]	v(S=O) + v(S=O)
970(vs)	970(w)	881(49)[347]	v(S–O)
798(s)	800(w)	779(6)[144]	v(SF)
614(m)	616(mw)		
597(w)	584(mw)	587(15)[103]	v(XeO) - v(XeF)
540(s)	536(m)	543(16)[3]	$v(XeF) + \delta(O-S=O)$
	530(m)	520(59)[167]	$v(XeF) + \delta(O=S=O)$
518(vs)	521(m)	504(5)[17]	umbrella (SO ₃)
	433(s)	411(15)[3]	$\delta(F-S=O) + \rho_t(O-S=O)$
	395(mw)	366(2)[1]	$\rho_t(F-S=O) + \rho_t(O-S=O)$
	253(s) 243(m)	256(16)[17]	$\delta(O=S-O) + v(XeO)$
		171(3)[7]	δ(FXeO), i.p.
		165(1)[6]	δ (FXeO), o.o.p.
		94(3)[2]	δ(XeOS), i.p.
		43(<1)[1]	ρ _r (SO ₃ F)

Table 4.8.Experimental^a and Calculated^b Vibrational Frequencies for FXeOSO2F

^a Taken from ref 28. ^b SVWN/cc-pVTZ. ^c Raman (in Å⁴ amu⁻¹) and infrared intensities are given in parentheses and square brackets, respectively. ^d The abbreviations denote stretch (v), bend (δ), rock (ρ_r), twist (ρ_t), in-plane (i.p.), and out-of-plane (o.o.p). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (–) signs.

frequencies, cm ⁻¹					
IR ^b	Raman ^c	Raman ^d			
exptl	exptl	exptl ^e		calcd	$_$ assignt $(C_s)^f$
		3097(<1)	1		
3490	3386(6)	2966(3)	36	11(48)	v ₁ (A'), v(OH)
		2899(<1)	J		
1697	1680(8)	1663(4)	17	95(2)	$v_2(A'), v(NO) - v(NO) + \delta(NOH)$
	1538(4)	1549(2)			$2v_8$
		1424(8)			
1343	1394(4)	1366(9)	13	59(10)	$\nu_3(A'), \nu(NO) + \nu(NO) + \delta(NOH)$
		1338(9))		
1311	1301(20)	1247(100)	12	66(4)	ν ₄ (A'), δ(NOH)
902	926(15)	971(4)	} 90	2(9)	$v_{s}(A') v(NO_{H}) + \delta(ONO)$
		953(58)	,	-(-)	
767		779(<1)	78	8(<1)	$\nu_{8}(A''), \rho_{w}(NO_{3})$
	675(10)	705(18)	} 65	4(7)	$v_{s}(A'), v(NO_{H}) - \delta(ONO)$
	()	697(21)]		
660	607(8)	638(13)	57	7(2)	$v_7(A'), \delta(ONO_H)$
		623(6)	1	· · ·	
597	480(1)	461 br	51	7(2)	ν ₉ (Α''), ρ _w (NOH)
		167(18)			
		159(24)			
479		135 sh			
477		123(11)			lattice modes
		100(55)			
		90 sh			
		85 sh			

Table 4.9. Experimental and Calculated^a Raman Frequencies for HNO3

^a SVWN/cc-pVTZ. Raman intensities (in Å⁴ amu⁻¹) are given in parentheses. ^b Infrared spectrum recorded on monomeric HNO₃ in a N₂ matrix, taken from ref 156. ^c Raman spectrum recorded on liquid HNO₃ at room temperature, taken from ref 157. ^d Recorded on the solid at -160 ^oC. ^e Abbreviations denote shoulder (sh) and broad (br). ^f The abbreviations denote stretch (v), bend (δ), and wag (ρ_w). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (-) signs.

	frequen			
exptl ^b	exptl ^c	exptl ^{d,e}	calcd	$assignt (D_{2h})^{f}$
ן 1780				
1759	n.o.	n.o.		$(v_6 + v_{10})$
1750				
1737	n.o.	n. o.	1875[580]	$v_9(B_{2u}), v_{as}(NO_2) + v_{as}(NO_2')$
n.o.	1727	1726(21)	1842(10)	$v_5(B_{3g}), v_{as}(NO_2) - v_{as}(NO_2')$
n.o.	1384 1377	$\left\{\begin{array}{c} 1385(36)\\ 1375 \text{ sh} \end{array}\right\}$	1459(15)	$\nu_l(A_g), \nu_s(NO_2) + \nu_s(NO_2')$
n.o.	1336 1330 sh }	1337(10)		$2v_4$
$\left\{ \begin{array}{c} 1257\\ 1240 \end{array} \right\}$	n.o.	n.o.	1328[385]	$v_{10}(B_{1u}), v_s(NO_2) - v_s(NO_2')$
n .o.	811 804 sh }	812(30)	848(14)	$v_2(A_g), \delta(NO_2) + \delta(NO_2')$
761 742	n.o.	n.o.	757[219]	$\nu_{8}(B_{1u}),\delta(NO_2)-\delta(NO_2')$
n.o.	677	678(4)	693(<1)	$v_4(B_{2g}), \rho_w(NO_2) - \rho_w(NO_2')$
n.o.	496	499(22)	502(9)	$v_6(B_{3g}), \rho_r(NO_2) - \rho_r(NO_2')$
439	n .o.	n.o.	426[14]	$v_{12}(B_{3u}), \rho_w(NO_2) + \rho_w(NO_2')$
n.o.	283 279	$285(100) \\ 281(63)$	307(27)	v3(Ag), v(N-N)
265	n .o.	n.o.	218[<1]	$v_{11}(B_{2u}), \rho_r(NO_2) + \rho_r(NO_2')$
113	n .o.	n.o.	98[0]	$v_7(A_g)$, $\rho_t(NO_2) + \rho_t(NO_2')$
n.o.	180	n.o.		$(v_{T1} + v_{T2})$
n.o .	119	121(3)		
71	76	79(50)		lattice modes
n.o.	52	56(5)		

 Table 4.10.
 Experimental and Calculated^a Raman Frequencies for N₂O₄

^a SVWN/cc-pVTZ. Raman intensities (in Å⁴ amu⁻¹) are given in parentheses. ^b Infrared spectrum recorded at -253.15 °C, taken from ref 158. ^c Raman spectrum recorded at -253.15 °C, taken from ref 158. ^d Raman spectrum recorded at -160 °C (this work). ^e Abbreviations denote shoulder (sh) and not observed (n.o.). ^f The abbreviations denote stretch (v), bend (δ), wag (ρ_w), twist (ρ_t), and rock (ρ_r). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (-) signs.

Table 4.11.Factor-Group Analysis for FXeONO2

is split, as a result of vibrational mode coupling within the centrosymmetric unit cell (C_{2h} crystal symmetry), into a maximum of two Raman-active (A_g and B_g) and infrared-active (A_u and B_u) components. Two components were resolved for every stretching mode except v(O_{Xe} -N) + $\rho_r(NO_2)$.

Vibrational frequencies calculated at the SVWN level of theory reproduced all experimental frequency trends for $FXe^{16}O^{14}NO_2$, $FXe^{18}O^{14}NO_2$, and $FXe^{16}O^{15}NO_2$, although the v(NO – NO) and v(NO + NO) frequencies were predicted to be ca. 140 and 40 cm⁻¹ higher, respectively. The isotopic shift trends were also accurately reproduced (Table 4.5).

The highest frequency modes at 1571.7, 1578.8 cm⁻¹ and 1262.1, 1285.5 cm⁻¹ are assigned to the v(NO – NO) and v(NO + NO) stretches, respectively, and display substantial low-frequency shifts (35.1, 35.6 and 15.4, 21.2 cm⁻¹, respectively) upon substitution of ¹⁵N which are in good agreement with the calculated shifts (38.9 and 14.7 cm⁻¹). The $\delta(O_{Xe}-N-O) + \rho_r(NO_2)$ (725.5 cm⁻¹) and v(O_{Xe}-N) – $\delta(NO_2)$ (685.4 cm⁻¹) modes are most sensitive to ¹⁸O substitution, and their bands are each split into two components in the FXe¹⁸ONO₂ spectrum (719.5, 717.8 and 677.4, 663.8 cm⁻¹, respectively). The latter mode is in accord with that observed for FXeOSO₂F, v(Xe–O) – v(Xe–F), which occurs at 584 cm⁻¹. The bands display isotopic shifts of 6.0, 7.7 and 8.0, 21.7 cm⁻¹, respectively, which differ from the calculated isotopic shifts (22.6 and 24.4 cm⁻¹). The v(Xe–F) stretching mode occurs at 478.1, 503.8 cm⁻¹ and was readily assigned because it is the most intense band in the spectrum and because the band was insensitive to both ¹⁵N and ¹⁸O substitution. Although a pure v(Xe–F) stretch is not observed for FXeOSO₂F, both the v(Xe–F) + δ (O–S=O) and v(Xe–F) + δ (O=S=O) modes observed at 536 and 531 cm⁻¹, respectively, are in accord with this assignment. Bands below 300 cm⁻¹ were readily assigned with the aid of the computed vibrational frequencies and showed no or very small isotopic dependencies, as expected for low-frequency bending and rocking modes.

4.2.4.2. XeF₂·HNO₃

The vibrational modes of XeF₂·HNO₃ were assigned under C_s symmetry. A total of 18 fundamental vibrations are expected, all of which are Raman and infrared active. Many of the vibrations assigned to HNO₃ in XeF₂·HNO₃ are very close to those of monomeric, martix-isolated HNO₃ recorded at the same temperature³¹ and those observed for liquid HNO₃ in previous study¹⁵⁷ (Table 4.6 and 4.9), with a few notable exceptions. There is overall good agreement between the observed and calculated frequencies (Table 4.6). The four XeF₂·HNO₃ molecular units occupy C_s sites in the crystallographic unit cell. The factor-group analysis for the adduct within its crystal lattice is provided in Table 4.12 and predicts that each gas-phase Raman- and infrared-active band of XeF₂·HNO₃ is split, as a result of vibrational-mode coupling within the crystallographic unit cell (D_{2h} crystal symmetry), into a maximum of four Raman-active (Ag, B_{1g}, B_{2g}, and B_{3g}) and four infrared-active (A_u, B_u, B_{2u}, and B_{3u}) components. Experimentally, however, three components are observed for the δ (N–O–H) band, while four other bands are split into two components (Table 4.6). Adduct formation resulting from hydrogen bonding to one fluorine atom causes the $v_1(\Sigma_+)$ stretching band of free XeF₂ to split into $v(Xe-F_t)$ (529 cm⁻¹) and $v(Xe-F_H)$ (458, 468 cm⁻¹) components, because symmetry lowering destroys the inversion center at xenon. The magnitude of the splitting is similar to those observed in [Mg(XeF₂)₂](AsF₆)₂,⁵⁰ where the terminal and bridging Xe–F stretching modes were found to be 578 and 412 cm⁻¹, respectively.

The $\delta(N-O-H)$ frequency (1289, 1291, 1301 cm⁻¹) is, on average, 85 cm⁻¹ lower than that observed for solid HNO₃ (1338, 1366, 1424 cm⁻¹) and 42–54 cm⁻¹ lower than that observed for matrix-isolated HNO₃. Similarly, the $\rho_w(N-O-H)$ frequency (926 cm⁻¹) is 147 cm⁻¹ higher than that observed for solid HNO₃ (779 cm⁻¹) and 159 cm⁻¹ higher than that observed for matrix-isolated HNO₃ (767 cm⁻¹). Both shifts are attributed to the hydrogen bonding interaction (see Section 4.2.3), which would lower the frequency for the bend occurring in the molecular plane, while increasing the frequency for the out-ofplane vibration. Similarly, the coupled $\delta(XeF_2)o.o.p. + \rho_w(N-O-H)$ frequency observed at 238 cm⁻¹ is 71 cm⁻¹ higher than that observed for the $\rho_w(N-O-H)$ in HNO₃ (167 cm⁻¹).

4.2.4.3. XeF₂·N₂O₄

The vibrational modes of $XeF_2 \cdot N_2O_4$ were assigned under C_1 symmetry. A total of 21 fundamental vibrations are expected, all of which are Raman and infrared active. There is overall good agreement between the observed and calculated frequencies (Table 4.7).

Unlike XeF₂·HNO₃, the XeF₂ portion of the Raman spectrum of XeF₂·N₂O₄ is not indicative of a strong molecular adduct (Table 4.7, also see Section 4.2.5). Only one $v(XeF_2)$ stretch is observed, which is only 13 cm⁻¹ higher than $v_1(\Sigma_+)$ of free XeF₂ (498 cm⁻¹), indicating the interactions with N₂O₄ are weak and that $D_{\infty h}$ symmetry and the inversion center of XeF₂ are retained at the local symmetry level. Moreover, none of the modes assigned to the N₂O₄ molecule of the adduct are shifted significantly from that of free N₂O₄ ¹⁵⁸ (Tables 4.7 and 4.10). The weak interaction between XeF₂ and N₂O₄ is confirmed by the absence of bands in the Raman spectrum of XeF₂·N₂O₄ that can be assigned to the formally Raman-inactive *ungerade* modes of free N₂O₄, indicating that N₂O₄ retains its D_{2h} symmetry and center of symmetry and in the solid state. In accord with the calculated C_1 symmetry of the adduct, the modes that are formally inactive under $D_{\infty h}$ (XeF₂) and D_{2h} (N₂O₄) have been calculated to possess weak Raman intensities (Table 4.7), but could not be observed in the experimental spectrum.

4.2.5. Computational Results

The electronic structures of FXeONO₂, XeF₂·HNO₃, and XeF₂·N₂O₄ were optimized at both the SVWN/(SDB-)cc-pVTZ and MP2/(SDB-)cc-pVTZ levels of theory and resulted in stationary points with all frequencies real (Table 4.5), except in the case of the bidentate interaction of two oxygen atoms bound to the same nitrogen atom of N₂O₄ in XeF₂·N₂O₄, where an imaginary frequency (-22 cm⁻¹, SVWN) was obtained.

4.2.5.1. Geometries

The MP2 (Table 4.13) and SVWN (Table 4.3) results were found to be similar for all calculated species; only the SVWN results are discussed because they provide the best agreement with the experimental vibrational frequencies (see Section 4.2.4), except in the case of $Xe(ONO_2)_2$, for which no structural data is available, where the results of both methods are discussed.

(i) FXeONO₂. The FXeONO₂ geometry optimized to C_s symmetry at both the SVWN and MP2 levels of theory (Figure 4.1). There is excellent agreement between the calculated (2.144 Å) and experimental (2.126(4) Å) Xe–O bond lengths, as well as for the Xe–F bond length (2.018 and 1.992(4) Å, respectively). The calculations also accurately reproduce the slight difference between the terminal N–O bonds, which were 1.197 Å for the N–O bond trans to xenon and 1.206 Å for the N–O bond cis to xenon (experimental, 1.199(6) and 1.224(6) Å, respectively). Similarly, all of the calculated angles were in good agreement with experimental values.

(ii) Xe(ONO₂)₂. Although Xe(ONO₂)₂ could not be synthesized in the present work, the structure was optimized at C_1 symmetry (Figure 4.8 and Table 4.14). The calculated (SVWN and MP2) geometric parameters for the mono- and bis-nitrate species are very similar, with the Xe–O bond length being slightly longer for Xe(ONO₂)₂ (2.178 Å) than for FXeONO₂ (2.144 Å). Both the cis- (C_s) and trans- ($C_{2\nu}$) isomers of Xe(ONO₂)₂ were

Table 4.13. Experimental and Calculated^a Geometric Parameters for FXeONO₂,

		FXeC	DNO ₂		
		bond len	gths (Å)		
Xe(1) - F(1)	1.992(4)	[2.013]	N(1)–O(2)	1.199(6)	[1.205]
Xe(1)-O(1)	2.126(4)	[2.110]	N(1)–O(3)	1.224(6)	[1.213]
O(1)–N(1)	1.365(7)	[1.406]			
		bond ang	les (deg)		
F(1)-Xe(1)-O(1)	177.6(2)	[175.3]	O(1) - N(1) - O(3)	118.4(5)	[117.7]
Xe(1)-O(1)-N(1)	114.7(3)	[114.3]	O(2) - N(1) - O(3)	127.1(5)	[129.9]
O(1)-N(1)-O(2)	114.5(4)	[112.4]			
		contac	tts (Å)		
Xe(1)…F(1A)	3.420(4)		Xe(1)…F(1B)	3.299(4)	
Xe(1)O(1A)	3.322(4)		Xe(1)O(2B)	3.545(4)	
Xe(1)O(2A)	3.478(4)		Xe(1)O(3B)	3.570(5)	
Xe(1)O(3A)	3.390(4)		Xe(1)O(3C)	3.518(4)	
$N(1) \cdots F(1A)$	2.780(6)		$O(1) \cdots F(1A)$	2.935(5)	
O(2)…N(1A)	2.923(6)				
		XeF ₂ ·l	HNO ₃		
		bond len	gths (Å)		
Xe(1)-F(1)	1.9737(8)	[1.976]	N(1)–O(2)	1.368(2)	[1.376]
Xe(1)-F(2)	2.0506(8)	[2.036]	N(1)-O(3)	1.216(2)	[1.220]
O(1)–N(1)	1.206(2)	[1.204]	O(2)–H(1)	0.83(2)	[0.986]
		bond ang	les (deg)		
F(1)-Xe(1)-F(2)	178.98(3)	[178.7]	O(2)-N(1)-O(3)	117.2(1)	[116.4]
O(1)-N(1)-O(2)	114.6(1)	[114.8]	N(1)-O(2)-H(1)	106(2)	[103.4]
O(1)-N(1)-O(3)	128.2(1)	[128.8]			
		contac	ets (Å)		
$H(1)\cdots F(2)$	1.86(2)	[1.689]	$Xe(1)\cdots F(1B)$	3.3050(4)	
$Xe(1)\cdots O(3)$	3.317(1)	[3.304]	$Xe(1)\cdots F(1C)$	3.3050(4)	
$Xe(1)\cdots F(1A)$	3.4897(9)		Xe(1)O(1B)	3.4156(6)	
Xe(1)O(1A)	3.4156(6)		Xe(1)O(1C)	3.456(1)	
$Xe(1)\cdots F(2A)$	3.4859(8)		Xe(1)O(2B)	3.5284(6)	
Xe(1)O(2A)	3.5284(6)		$O(2)\cdots F(2)$	2.690(1)	[2.674]

XeF₂·HNO₃, and XeF₂·N₂O₄

Table 4.13.(continued...)

		XeF ₂ ·1	$N_2 O_4^{b}$						
bond lengths (Å)									
Xe(1) - F(1)	1.985(3)	[1.989,	N(1)-O(2)	1.182(6)	[1.196]				
		2.012]							
N(1)–O(1)	1.194(6)	[1.199]	N(1)–N(1A)	1.738(8)	[1.795]				
bond angles (deg)									
F(1)-Xe(1)-F(1A)	180.0	[179.5]	O(1)-N(1)-O(2)	134.5(5)	[135.0]				
O(1)-N(1)-N(1A)	112.5(4)	[112.6]	O(2)-N(1)-N(1A)	113.0(4)	[112.4]				
)						
		contac	ts (Å)						
$Xe(1)\cdots F(1B)$	3.370(3)		$Xe(1)\cdots F(1C)$	3.370(3)					
$Xe(1)\cdots O(1B)$	3.516(4)	[3.500]	$Xe(1)\cdots O(1C)$	3.440(4)					
$Xe(1)\cdots O(1D)$	3.440(4)		$Xe(1)\cdots O(1E)$	3.516(4)					
$Xe(1)\cdots O(2)$	3.490(4)		$Xe(1)\cdots O(2B)$	3.435(4)					
$Xe(1)\cdots O(2C)$	3.490(4)		Xe(1)O(2D)	3.435(4)					
$Xe(1)\cdots O(2E)$	4.180(4)		Xe(1)O(2F)	4.180(4)					
$F(1)\cdots N(1B)$	2.720(4)	[2.746]	F(1)…N(1C)	2.834(5)					

^a MP2/(SDB-)cc-pVTZ. Calculated values are given in square brackets. ^b Calculated geometric parameters for N_2O_4 coordinated to XeF₂ through two oxygens bound to two different nitrogen atoms.

Table 4.14.	Experimental and C	Calculated ^a Geometric	Parameters fo	r Xe($ONO_2)_2$
				the second se	

Xe	$(ONO_2)_2$	
bond l	engths (Å) ^b	
	SVWN	MP2
Xe(1)–O(1)	2.178	2.144
O(1)–N(1)	1.377	1.407
N(1)-O(2)	1.198	1.205
N(1)-O(3)	1.206	1.213
bond a	ngles (deg) ^b	
	SVWN	MP2
O(1)' - Xe(1) - O(1)	175.5	174.1
Xe(1)-O(1)-N(1)	113.4	113.8
O(1)-N(1)-O(2)	112.1	112.3
O(1)-N(1)-O(3)	118.2	117.8
dihedral	angles (deg)	
	SVWN	MP2
N(1)-O(1)O(1)'-N(1)'	107.6	100.6

^a (SDB-)cc-pVTZ. ^b The bond lengths and angles follow the labeling scheme given in Figure 4.8.

Ph.D. Thesis – Matthew D. Moran

utilized as starting geometries, but both geometries optimized to the lower energy C_1 geometry, with an N–O---O–N dihedral angle of 107.6° (MP2, 100.6°).

(iii) **XeF₂·HNO₃.** The experimental Xe–F_t and Xe–F_H bond lengths, 1.983 Å and 2.064 Å, respectively, as well as the remaining bond lengths and angles, were accurately reproduced by electronic structure calculations. The difference between the experimental and calculated Xe(1)···O(3) contact distance (3.317(1) and 3.034 Å, respectively) is attributed to weak contacts from neighboring XeF₂ and HNO₃ molecules within the crystal lattice, which are not taken into account by the calculations and seem to weaken these contacts. The O–H (1.046 Å) and H···F (1.520 Å) distances were found to differ significantly from the experimentally determined values of 0.83(2) and 1.86(2) Å, and are attributed to the uncertainty in the location of the hydrogen atom in the experimental electron density map (see Section 4.2.3). Although the experimental and calculated O–H and H···F distances differ significantly, the calculated O(2)···F(2) contact distance (2.566 Å) is very close to the experimental distance (2.690(1) Å).

(iv) $XeF_2 \cdot N_2O_4$. Unlike the symmetric arrangement of N₂O₄ molecules depicted in Figure 4.5a, both calculated adducts (Figures 4.5b and 4.5c) are asymmetric and do not accurately reproduce the bond lengths, angles, and contact distances of the experimental structure in all cases. However, both calculated structures show that the two bidentate interactions observed in the crystal structure correspond to a local minimum (Figure 4.5c) or close to a local minimum (Figure 4.5b). The vibrational frequencies of both calculated

structures were helpful in assigning the Raman spectrum (see Section 4.2.4). An attempt was made to calculate the structure depicted in Figure 4.5a from the crystal structure coordinates, but failed to optimize using either HF or DFT methods.

4.2.5.2. Natural Bond Orbital (NBO) Analyses

The NBO analyses were carried out for the MP2- and SVWN-optimized gasphase geometries of FXeONO₂, XeF_2 ·HNO₃, and XeF_2 ·N₂O₄. The NBO results are given in Table 4.15. The MP2 and SVWN results are similar; only the MP2 results will be discussed here.

(i) FXeONO₂ and Xe(ONO₂)₂. As with the geometric parameters, the charges, valencies and bond orders were found to be very similar for FXeONO₂ and Xe(ONO₂)₂. The charge on Xe is higher for FXeONO₂ (1.13) than for Xe(ONO₂)₂ (1.04), indicative of the greater electron withdrawing ability of the fluorine when compared with that of the nitrate ligand.

(ii) $XeF_2 \cdot HNO_3$ and $XeF_2 \cdot N_2O_4$. The charges and valencies calculated for HNO₃ and N₂O₄ in their XeF₂ adducts are similar to those calculated for free HNO₃ and N₂O₄. In the case of XeF₂ · HNO₃, the H…F bond order (0.04) is approximately four times greater than the Xe…O bond order (0.01), with their small values being consistent with the weak interactions observed in the crystal structure. No significant bond orders (i.e. < 0.01)

Table 4.15.Natural Bond Orbital (NBO) Charges, Valencies and Bond Orders^a forFXeONO2, Xe(ONO2)2, XeF2·HNO3, and XeF2·N2O4

	FXeONO ₂		Xe(ONO ₂) ₂							
	cha	rges	vale	encies	cha	charges		valencies		
atom	MP2	SVWN	MP2	SVWN	MP2	SVWN	MP2	SVWN		
Xe(1)	1.126	1.086	0.632	0.641	1.042	0.986	0.636	0.658		
F(1)	-0.586	0.566	0.280	0.281						
O(1)	0.588	-0.539	0.938	0.962	-0.570	-0.519	0.912	0.943		
N(1)	0.695	0.676	3.135	3.222	0.692	0.675	3.132	3.227		
O(2)	-0.291	-0.288	1.052	1.082	-0.289	-0.283	1.059	1.076		
O(3)	-0.355	-0.369	1.061	1.087	0.355	-0.367	1.061	1.095		
bond orders										
bond	M	P2	SV	'WN	M	IP2	SV	WN		
Xe(1)-O(1)	0.3	340	0.	318	0.3	300	0.	284		
Xe(1)-F(1)	0.2	278	0.	280						
O(1)-N(1)	0.1	740	0.	785	0.2	742	0.	796		
N(1)-O(2)	1.2	202	1.	220	1.2	200	1.215			
N(1)-O(3)	1.1	194	1.	212	1.194		1.212			
		XeF	2∙HNO3	HNO3						
	cha	rges	valencies		charges		valencies			
atom	MP2	SVWN	MP2	SVWN	MP2	SVWN	MP2	SVWN		
Xe(1)	1.218	1.187	0.639	0.728						
F(1)	-0.623	-0.592	0.325	0.374						
F(2)	-0.561	-0.541	0.339	0.384						
O(1)	-0.307	-0.305	1.044	1.085	0.296	-0.300	1.050	1.075		
O(2)	-0.524	0.495	1.211	1.250	-0.534	-0.520	1.218	1.251		
O(3)	-0.402	-0.429	1.057	1.081	-0.348	-0.352	1.064	1.080		
N(1)	0.710	0.688	3.144	3.236	0.706	0.687	3.132	3.185		
H(1)	0.488	0.487	0.654	0.727	0.472	0.486	0.655	0.695		
			b	ond orders						
bond	M	IP2	SV	WN	M	IP2	SV	WN		
Xe(1)-F(1)	0.3	338	0.	373						
Xe(1)–F(2)	0.2	284	0.	289						
N(1)-O(1)	1.2	200	1.	235	1.	193	1.	224		
N(1)-O(2)	0.1	765	0.	813	0.1	715	0.	741		
N(1)-O(3)	1.3	170	1.	171	1.211		1	209		
O(2)-H(1)	0.:	591	0.	591	0.0	643	0.	657		
H(1)…F(1)	0.0	046	0.	106						
Xe(1)…O(3)	0.0	013	0.	053						

Table 4.	15.	(cont	inued)	
----------	-----	-------	-------	---	--

		XeF	$2 N_2 O_4^{b}$						
	cha	charges		valencies		charges		valencies	
atom	MP2	SVWN	MP2	SVWN	MP2	SVWN	MP2	SVWN	
Xe(1)	1.197	1.174	0.696	0.763					
F(1)	-0.610	0.594	0.351	0.368					
F(2)	-0.580	-0.561	0.345	0.363					
N(1)	0.485	0.507	2.683	2.791	0.471	0.491	2.660	2.751	
N(2)	0.485	0.507	2.683	2.791					
O(1)	-0.262	-0.282	1.112	1.148	-0.235	-0.246	1.100	1.123	
O(2)	-0.262	-0.282	1.112	1.148					
O(3)	0.227	-0.234	1.105	1.134					
O(4)	-0.227	-0 234	1.105	1.134					
			b	ond orders					
bond	MP2		SVWN		MP2		SVWN		
Xe(1)-F(1)	0.324		0.326						
Xe(1)-F(2)	0.350		0.362						
N(1)-O(1)	1.209		1.230		1.210		1.236		
N(2)-O(2)	1.209		1.230						
N(1)-O(3)	1.2	217	1.	1.248					
N(2)-O(4)	1.217		1.248						
N(1)-N(2)	0.357		0.402		0.348		0.392		

^a Both MP2 and SVWN calculations were performed using the (SDB-)cc-pVTZ basis sets. ^b The numbering scheme is taken from Figure 4.5c.

were calculated for the O…Xe interactions in $XeF_2 \cdot N_2O_4$, which agrees well with the crystallographic data (see Section 4.2.3).

4.2.5.3. Thermochemistry

The decomposition of FXeONO₂, and failures to observe Xe(ONO₂)₂ and the XeONO₂⁺ cation, prompted an examination of the thermochemistry for these systems. The enthalpies (ΔH°) and free energies (ΔG°) of decomposition for FXeONO₂, Xe(ONO₂)₂, and XeONO₂⁺ were obtained at the MP2/(SDB-)cc-pVTZ level of theory, and are summarized in Scheme 4.1. The decomposition pathway for FXeONO₂ that leads

	ΔH°	<u>ΔH_{195.15}</u>	ΔG^{o}	$\Delta G_{195 15}$
$2FXeONO_2 \longrightarrow XeF_2 + N_2O_6 + Xe$	-137.1	-162.8	-163.2	-179.5
$N_2O_6 \longrightarrow N_2O_5 + \frac{1}{2}O_2$	-24.0	-24.0	-50.8	-41.5
$2FXeONO_2 \longrightarrow XeF_2 + N_2O_5 + Xe + \frac{1}{2}O_2$	-161.1	-186.8	-214.0	-221.0
$FXeONO_2 \longrightarrow FXeNO_2 + \frac{1}{2}O_2$	44.5	41.2	16.3	23.4
$2FXeNO_2 \longrightarrow XeF_2 + Xe + N_2O_4$	-275.6	-284.1	-292.6	-293.5
$Xe(ONO_2)_2 \longrightarrow Xe + N_2O_6$	-160.5	-160.6	-187.9	-178.4
$Xe(ONO_2)_2 \longrightarrow Xe + N_2O_5 + \frac{1}{2}O_2$	-184.5	-184.6	-238.7	-219.9
$FXeONO_2 + AsF_5 \longrightarrow XeONO_2^+ + AsF_6^-$	379.3	366.5	386.3	371.2
$XeONO_2^+ - Xe + \frac{1}{2}O_2 + NO_2^+$	-175.5	-175.8	-222.3	-206.1

Scheme 4.1. Gas-phase values of ΔH° and ΔG° (298.15 K) and ΔH and ΔG (195.15 K) for the decomposition reactions of FXeONO₂, Xe(ONO₂)₂, and the XeONO₂⁺ cation (MP2/cc-pVTZ).

to XeF₂, N₂O₆, and Xe (eq 4.3 and 4.4) was found to be spontaneous under both standard conditions and at -78 °C, with a ΔG° value of -81.6 kJ mol⁻¹ ($\Delta G_{195.15}$, -89.8 kJ mol⁻¹, for one mole of FXeONO₂), with a release of -25.4 kJ mol⁻¹ ($\Delta G_{195.15}$, -20.8 kJ mol⁻¹) for the further decomposition of a half a mole of N₂O₆ to N₂O₅ and O₂ (overall ΔG° , -107.0 kJ mol⁻¹; overall $\Delta G_{195.15}$, -110.6 kJ mol⁻¹, for one mole of FXeONO₂). The remaining pathway (eq 4.5 and 4.6) involves the non-spontaneous generation FXeNO₂ (ΔG° , 16.3 kJ mol⁻¹; $\Delta G_{195.15}$, 23.4 kJ mol⁻¹), which is compensated for by the spontaneous decomposition of FXeNO₂ to XeF₂, Xe, and N₂O₄ (ΔG° , -146.3 kJ mol⁻¹ of FXeNO₂; $\Delta G_{195.15}$, -146.8 kJ mol⁻¹ of FXeNO₂).

Failure to observe Xe(ONO₂)₂ can be accounted for by the large negative ΔG° that corresponds to the spontaneous decomposition to N₂O₆ and Xe (eq 4.10; ΔG° , -187.9 kJ mol⁻¹; $\Delta G_{195.15}$, -178.4 kJ mol⁻¹). The proposed N₂O₆ intermediate appears reasonable based on previous work involving N₂O₆,^{144,145} and by analogy with the decomposition of Xe(OSO₂F)₂ to Xe and S₂O₆F₂.²⁸ Failure to observe the XeONO₂⁺ cation can similarly be explained by the large negative ΔG° for the spontaneous decomposition of the cation in the gas phase to Xe, O₂, and the NO₂⁺ cation (eq 4.17; ΔG° , -222.3 kJ mol⁻¹; $\Delta G_{195.15}$, -206.1 kJ mol⁻¹).

4.3. Conclusions

The synthesis and structural characterization of $FXeONO_2$ confirms the ability of the nitrate ligand to stabilize the +2 oxidation state of xenon. Attempts to repeat previous

Ph.D. Thesis – Matthew D. Moran

work in which $FXeONO_2$ and $Xe(ONO_2)_2$ were reported to have been synthesized by reactions of HNO_3 with XeF_2 failed. In addition, attempts to react XeF_2 and $[XeF][AsF_6]$ with N_2O_5 also proved unfruitful. The present synthesis of $FXeONO_2$ from $[FXeOXeFXeF][AsF_6]$ and NO_2F is the only synthetic route to $FXeONO_2$ that is presently known. Raman and NMR spectroscopic studies, as well as an X-ray crystallographic study, demonstrate that $FXeONO_2$, like other compounds containing oxygen-bonded ligands, is strongly covalently bound to xenon, and was confirmed by gas-phase quantum mechanical calculations.

The X-ray crystallographic study and Raman spectroscopic study of the XeF₂·HNO₃ adduct provides the first example of a H-bonded adduct of XeF₂, while the study of the XeF₂·N₂O₄ adduct shows that N₂O₄ can interact, in a bidentate fashion, with the xenon center through two oxygens bound to two different nitrogen atoms, or through two oxygens bound to the same nitrogen atom. Computational studies have accurately reproduced the geometric parameters and vibrational frequencies of FXeONO₂, XeF₂·HNO₃, and XeF₂·N₂O₄, as well as those of the unknown Xe(ONO₂)₂ molecule. The calculated ΔH° and ΔG° values show that decompositions of FXeONO₂, Xe(ONO₂)₂, and the XeONO₂⁺ cation are spontaneous for all reaction channels considered and support the experimental observations.

CHAPTER 5

SYNTHESIS, STRUCTURAL CHARACTERIZATION, AND COMPUTATIONAL STUDY OF THE STRONG OXIDANT SALT, [XeOTeF5][Sb(OTeF5)6]·SO2CIF

5.1. Introduction

The relevant introductory material for this Chapter can be found in Sections 1.4 and 1.5. This work details the synthesis and structural characterization of the synthetically useful low-temperature oxidant, $[XeOTeF_5][Sb(OTeF_5)_6]\cdot SO_2CIF$, and provides an example of a noble-gas salt in which the noble-gas cation is not coordinated to its counter ion. Electronic structure calculations have been employed to assess bonding in the title compound, evaluate its oxidant properties, and to compare the relative Lewis acid strengths of the XeF⁺ and XeOTeF₅⁺ cations and the relative Lewis basicities of SO₂ClF and the MF₆⁻ (M = As, Sb) anions towards both cations.

5.2. Results and Discussion

5.2.1. Synthesis of [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF

The ability of Xe(OTeF₅)₂ to introduce two OTeF₅ groups oxidatively has been previously exploited in the syntheses of $[NR_4][Sb(OTeF_5)_6]$ salts (R = CH₃ or CH₃CH₂) from $[NR_4][Sb(OTeF_5)_4]$.³⁵ In the present work, a similar tack has been taken to produce a fully substituted OTeF₅ noble-gas salt, $[XeOTeF_5][Sb(OTeF_5)_6]$. The stoichiometric reaction of Xe(OTeF₅)₂ and Sb(OTeF₅)₃ (<1% molar excess of Xe(OTeF₅)₂) in SO₂ClF solvent at -20 °C (eq 5.1) yields bright yellow to yellow-orange solutions. Unlike its

Ph.D. Thesis - Matthew D. Moran

$$2 \operatorname{Xe}(\operatorname{OTeF}_{5})_{2} + \operatorname{Sb}(\operatorname{OTeF}_{5})_{3} \longrightarrow [\operatorname{XeOTeF}_{5}][\operatorname{Sb}(\operatorname{OTeF}_{5})_{6}] + \operatorname{Xe}$$
(5.1)

fluorine analogue, [XeF][SbF₆], which is insoluble in SO₂ClF at room temperature, the solubility of [XeOTeF₅][Sb(OTeF₅)₆] in SO₂ClF at -78 °C is high, exceeding 2 M. The solid salt was isolated as the pale yellow solvate, [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF, after pumping for several hours at -78 to 0 °C and is stable to pumping at 0 °C for at least 4–5 h. The solid decomposes above 10 °C after 4–6 h, in marked contrast with [XeOTeF₅][AsF₆]^{71,72,75} and [XeF][SbF₆],¹⁰ which are stable at room temperature. Solutions of [XeOTeF₅][Sb(OTeF₅)₆] in SO₂ClF show significant decomposition after 30 min to 1 h at -10 °C.

5.2.2. Solution Characterization of [XeOTeF₅][Sb(OTeF₅)₆] by ¹⁷O, ¹⁹F, ¹²⁵Te, and ¹²⁹Xe NMR Spectroscopy

The ¹⁹F, ¹²¹Sb, ¹²⁵Te, and ¹²⁹Xe NMR spectra of [XeOTeF₅][Sb(OTeF₅)₆] have been recorded at -50 °C in SO₂ClF; the corresponding chemical shifts and coupling constants are provided in Table 5.1. The ¹⁷O NMR spectrum was recorded for an enriched [^{17,18}O]-[XeOTeF₅][Sb(OTeF₅)₆] sample at -15 °C, which was prepared according to eq 5.1 by reaction of natural abundance Sb(OTeF₅)₃ with a stoichiometric amount of enriched [^{17,18}O]-Xe(OTeF₅)₂ (¹⁶O, 35.4%; ¹⁷O, 21.9%; ¹⁸O, 42.7%).

The ¹⁹F NMR spectrum of [XeOTeF₅][Sb(OTeF₅)₆] (Figure 5.1) consists of an AX_4 pattern, assigned to the XeOTeF₅⁺ cation, which is well-resolved at 11.744 T with

	chem s	shift (δ), pp	m		coupling constant, Hz			
¹⁹ F ^b	¹²⁵ Te	¹²⁹ Xe	¹⁷ O ^c	¹²¹ Sb	$^{2}J(^{19}F_{A}-^{19}F_{X})^{b}$	${}^{1}J({}^{19}\mathrm{F}-{}^{125}\mathrm{Te})^{\mathrm{b}}$	$^{1}J(^{19}\text{F}-^{123}\text{Te})$	
-51.7 (F _A)	579.9	-1459.5	133		175	3776 (F _A)		
-40.3 (F _X)					175	3810 (F _X)		
-42.4	548 4		107	-13		3553	2950	
$(F_A \approx F_B)$	540.4					5555	2950	
	$^{19}F^{b}$ -51.7 (F _A) -40.3 (F _X) -42.4 (F _A \approx F _B)	$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{tabular}{ c c c c c c } \hline $chem shift (\delta), pp \\ \hline $^{19}F^b$ & ^{125}Te & ^{129}Xe \\ \hline $-51.7 (F_A)$ & 579.9 & -1459.5 \\ \hline $-40.3 (F_X)$ & -42.4 & 548.4 \\ \hline -42.4 & 548.4 \\ \hline $(F_A \approx F_B)$ & -48.4 & -48.4 \\ \hline $(F_A \approx F_B)$ & -48.4 & $-$	$\begin{tabular}{ c c c c c } \hline $chem shift (\delta), ppm $\end{tabular} \\ \hline 19F^b & 125Te & 129Xe & 17O^c $\end{tabular} \\ \hline $-51.7 (F_A) $& $579.9 & $-1459.5 $& $133 $\end{tabular} \\ \hline $-40.3 (F_X) $& $-40.3 (F_X) $& $-42.4 $& -4	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} & chem shift (\delta), ppm & cd \\ \hline 1^{19}F^{b} & ^{125}Te & ^{129}Xe & ^{17}O^{c} & ^{121}Sb & ^{2}J(^{19}F_{A}-^{19}F_{X})^{b} \\ \hline -51.7 (F_{A}) & & \\ & 579.9 & -1459.5 & 133 & 175 \\ \hline -40.3 (F_{X}) & & \\ -42.4 & & \\ & 548.4 & 107 & -13 \\ (F_{A} \approx F_{B}) & & \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Table 5.1.	The 19 F, 125 Te	e, ¹²⁹ Xe, ¹⁷ O,	, and ¹²¹ Sb NMF	R Parameters for	$[XeOTeF_5][Sb(OTeF_5)_6]^a$
------------	----------------------------	--	-----------------------------	------------------	------------------------------

. . .

. -

. . .

149

^a All NMR spectra were recorded in SO₂ClF solvent at -50 °C except the ¹⁷O spectrum, which was recorded at -15 °C. ^b The subscripts A and B/X, denote axial and equatorial fluorine atoms, respectively. ^c The ¹⁷O NMR parameters for solvent SO₂ClF at natural abundance were also determined in the present study: doublet at $\delta(^{17}O)$, 227.0 ppm; ²J(¹⁷O-¹⁹F), 27.9 Hz.

Figure 5.1. The ¹⁹F NMR spectrum (470.571 MHz) of [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF in SO₂ClF solvent at -80 °C, where the labels A and X denote the AX₄ spectrum of XeOTeF₅⁺ and C denotes the A and B₄ parts of the severe AB₄ spectrum of Sb(OTeF₅)₆⁻. Peaks denoted by a, x and c are ¹²⁵Te satellites that arise from ¹ $J(^{19}F-^{125}Te)$ and peaks denoted by c' are ¹²³Te satellites that arise from ¹ $J(^{19}F-^{123}Te)$.

accompanying ¹²³Te ($I = \frac{1}{2}$, 0.87%) and ¹²⁵Te ($I = \frac{1}{2}$, 6.99%) satellites, and a second very severe AB₄ pattern, with ¹²³Te and ¹²⁵Te satellites, that is assigned to the Sb(OTeF₅)₆⁻ anion. The AB₄ pattern of Sb(OTeF₅)₆⁻ is severely higher order, even at a field strength of 11.744 T, as a result of the near equivalence of the equatorial and axial fluorine environments, appearing as a single, intense broad line and three weaker lines, which are similar in appearance to those previously reported for the anion at the same field strength.³⁵ Consequently, it is neither possible to provide a value for ² $J({}^{19}F_{A}-{}^{19}F_{B})$ nor to differentiate the chemical shifts of F_A and F_B, however, these parameters have been estimated in a previous publication.¹⁵ The ¹⁹F resonances of the anion are accompanied by ¹²³Te and ¹²⁵Te satellites having asymmetric line shapes that arise from the higher order AB₄ portion of the AB₄\Omega ($\Omega = {}^{123}$ Te or 125 Te) spin systems.³⁵

The ¹²⁵Te NMR spectrum of XeOTeF₅⁺ consisted of a well-resolved binomial doublet of quintets (δ (¹²⁵Te), 579.9 ppm) arising from ¹*J*(¹²⁵Te–¹⁹F_A) (3776 Hz) and ¹*J*(¹²⁵Te–¹⁹F_X) (3810 Hz). The doublet of quintets of the Sb(OTeF₅)₆⁻ anion was more shielded (548.4 ppm) and was broadened, appearing as a sextet (¹*J*(¹²⁵Te–¹⁹F_{A,B}), 3550 Hz). The line broadening is a consequence of quadrupolar relaxation by the antimony nuclides (¹²¹Sb, $I = {}^{5}/{}_{2}$, 57.25%; ¹²³Sb, $I = {}^{7}/{}_{2}$, 42.75%) that results in near-complete collapse of the ²*J*(¹²⁵Te–^{121,123}Sb) couplings.

The ¹²⁹Xe NMR spectrum consisted of a singlet at –1489.0 ppm ($\Delta v_{\frac{1}{2}}$ = 388 Hz) in the xenon(II) region of the spectrum. In contrast with the previously reported low-field (2.1139 T) NMR study of this cation in SbF₅ solvent at 25 °C (δ (¹²⁹Xe), –1472 ppm; ³J(¹²⁹Xe–¹⁹F_X), 18.5 Hz),⁷⁶ the ³J(¹²⁹Xe–¹⁹F_X) coupling was not resolved, which is likely a consequence of the increased relaxation rate and line width that attends the higher field strength used to record the spectrum in the present study. The increased relaxation rate likely arises from shielding anisotropy, which is expected to be large in xenon(II) species,¹⁵⁹ and is proportional to the square of the applied field.¹⁶⁰

The ¹²¹Sb NMR spectrum consisted of a broad singlet at –13 ppm ($\Delta v_{1/2} = 1240$ Hz), which is in good agreement with the previously reported chemical shift of the Sb(OTeF₅)₆⁻ anion in CH₃CN solvent.³⁵ The large linewidth and inability to observe the ²*J*(¹²⁵Te–¹²¹Sb) coupling reported for this anion in CH₃CN is most likely a result of the higher viscosity of SO₂ClF and lower temperature used to record the spectrum, leading to a longer rotational correlation time and shorter relaxation time.¹⁶¹

The ¹⁷O spectrum of [^{17,18}O]-[XeOTeF₅][Sb(OTeF₅)₆] gave two broad, partially overlapping singlets. The most intense spectral feature was at 133.3 ppm ($\Delta v_{\frac{1}{2}} = 1350$ Hz), which is assigned to the Sb(OTeF₅)₆⁻ anion. The weaker resonance at 107.0 ppm ($\Delta v_{\frac{1}{2}} = 980$ Hz) is assigned to the XeOTeF₅⁺ cation. This resonance is shifted to low frequency with respect to those of Xe(OTeF₅)₂ (152.1 ppm) and FXeOTeF₅ (128.8 ppm) recorded in SO₂ClF solvent at -16 °C.⁷⁷ The low-frequency shift (shielding) upon XeOTeF₅⁺ cation formation with respect to the parent molecules is analogous to that observed for XeF⁺ and XeF₂.¹⁴

Although SO₂ClF is a very weak Lewis base and has been extensively used as a solvent medium for strong Lewis acid fluoride ion acceptors, ¹⁹F NMR studies of MF₅ $(M = As, {}^{162} Sb^{163})$ in SO₂ClF and in SO₂F₂ have shown that, unlike SO₂F₂, SO₂ClF is sufficiently basic to form weak donor-acceptor adducts with strong Lewis acid

pentafluorides at low temperatures. Although Raman spectroscopy and single-crystal Xray crystallography of the [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF have shown that SO₂ClF solvent is coordinated through an oxygen atom to the xenon atom of the XeOTeF₅⁺ cation (see Sections 5.2.3 and 5.2.4), the ¹⁹F NMR spectrum provides no direct evidence for SO₂ClF. This is attributed to the lability of the Xe···O donor-acceptor bond in solution that results in rapid chemical exchange between the bulk SO₂ClF solvent molecules and coordinated SO₂ClF at temperatures as low as –80 °C.

5.2.3. X-ray Crystal Structure of [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF

A summary of the refinement results and other crystallographic information is provided in Table 5.2. Important bond lengths and bond angles are listed in Table 5.3 along with the calculated values. The structure consists of well-separated XeOTeF₅⁺ cations and Sb(OTeF₅)₆⁻ anions in which each XeOTeF₅⁺ cation is oxygen-coordinated to an SO₂ClF molecule (Figure 5.2).

The structural parameters for the $Sb(OTeF_5)_6^-$ anion are in good agreement with those previously reported^{35,79,80,164} and those calculated in this work (see Section 5.2.5 and Table 5.4) and therefore require no further comment.

The XeOChF₅⁺ (Ch = Se, Te) cations have been characterized in the [XeOChF₅][AsF₆] salts, where all bond lengths and bond angles of the XeOChF₅⁺ cations were influenced by four-fold orientational disorders.⁷⁵ The XeOChF₅⁺ cations were, however, shown to be strongly ion paired with their AsF₆⁻ anions by means of fluorine bridges between the cations and the anions, a structural feature that is also encountered in XeF⁺ salts.^{12,25,75,78} In contrast, the XeOTeF₅⁺ cation in the current structure is neither
Table 5.2.Crystallographic Data for [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF

[XeOTeF ₅][Sb(OTeF ₅) ₆]·SO ₂ ClF						
chem formula	O ₉ F ₃₆ SClSbTe ₇ Xe					
space group	Pī					
<i>a</i> (Å)	9.7665(5)					
<i>b</i> (Å)	9.9799(4)					
<i>c</i> (Å)	18.5088(7)					
α (deg)	89.293(2)					
β (deg)	82.726(2)					
$\gamma(\text{deg})$	87.433(3)					
$V(\text{\AA}^3)$	1787.67(13)					
molecules/unit cell	2					
mol wt (g mol^{-1})	2041.76					
calcd density $(g \text{ cm}^{-3})$	3.793					
<i>T</i> (^o C)	-173					
μ (mm ⁻¹)	7.656					
R_1^{a}	0.0451					
wR_2^{b}	0.0930					

^a R_1 is defined as $\Sigma ||F_0| - |F_c||/\Sigma |F_0|$ for $I > 2\sigma(I)$. ^b wR_2 is defined as $[\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma w(F_0^2)^2]^{1/2}$ for $I > 2\sigma(I)$.

Table 5.3.	Experimental and Calculated ^a Geometrical Parameters for the
	XeOTeF ₅ ⁺ ·SO ₂ ClF Adduct-Cation

1.969(4)				
	1.998	Xe(1)-O(7)-Te(7)	120.8(2)	117.4
1.938(5)	1.958	O(7)-Te(7)-F(33)	177.2(2)	179.7
1.810(4)	1.826	O(7)-Te(7)-F(31)	86.6(2)	87.4
		O(7)-Te(7)-F(32)	91.4(2)	88.9
		O(7)-Te(7)-F(34)	89.5(2)	88.8
		O(7)-Te(7)-F(35)	88.6(2)	87.4
1.813(4)	1.834	F(33)-Te(7)-F(31)	90.6(2)	92.3
1.831(4)	1.854	F(33)-Te(7)-F(32)	91.3(2)	91.3
1.829(4)	1.855	F(33)-Te(7)-F(34)	90.9(2)	91.3
1.817(4)	1.834	F(33)-Te(7)-F(35)	91.0(2)	92.4
		F(31)-Te(7)-F(32)	177.8(2)	176.1
		F(31)-Te(1)-F(34)	90.1(2)	90.7
		F(31)-Te(7)-F(35)	90.3(2)	90.6
		F(32)-Te(7)-F(34)	89.0(2)	87.7
		F(32)-Te(7)-F(35)	90.6(2)	90.8
		F(34)-Te(7)-F(35)	178.1(2)	176.0
2.479(4)	2.388	O(7)–Xe(1)····O(8)	174.2(2)	175.2
1.437(5)	1.423	O(9)–S(1)–O(8)	115.7(2)	119.5
1.429(5)	1.476	O(9)-S(1)-F(36)	109.6(3)	109.8
1.474(5)	1.549	O(9)–S(1)–Cl(1)	108.2(4)	114.1
1.932(2)	1.958	O(8)-S(1)-F(36)	110.6(3)	104.5
		O(8)-S(1)-Cl(1)	108.4(2)	106.8
		Cl(1)-S(1)-F(36)	103.6(2)	100.0
		Xe(1)O(8)–S(1)	139.6(3)	122.5
	1.810(4) 1.813(4) 1.831(4) 1.829(4) 1.817(4) 2.479(4) 1.437(5) 1.429(5) 1.474(5) 1.932(2)	1.810(4) 1.826 $1.813(4)$ 1.834 $1.831(4)$ 1.854 $1.829(4)$ 1.855 $1.817(4)$ 1.834 $2.479(4)$ 2.388 $1.437(5)$ 1.423 $1.429(5)$ 1.476 $1.474(5)$ 1.549 $1.932(2)$ 1.958	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^a SVWN/(SDB-)cc-pVTZ.

				$HF(S_6)$	$HF(S_6)$	SVWN(S ₆)
	bond len	gths (Å)				
Sb(1)-O(1)	1.954(4)	Sb(2)-O(4)	1.966(4)	J		
Sb(1)-O(2)	1.965(4)	Sb(2)-O(5)	1.961(4)	► 1.880	1.943	1.976
Sb(1)-O(3)	1.940(4)	Sb(2)-O(6)	1.952(4)	J		
Te(1)-O(1)	1.846(4)	Te(4)-O(4)	1.847(4)	J		
Te(2)-O(2)	1.841(4)	Te(5)-O(5)	1.832(4)	> 1.801	1.829	1.866
Te(3)-O(3)	1.852(4)	Te(6) - O(6)	1.843(4)	J		
$Te(1)-F_{ax}$	1.834(4)	Te(4)-F _{ax}	1.845(4)	Ĵ		
$Te(1)-F_{eq}$	1.815(4)-1.837(4)	Te(4)-F _{eq}	1.817(4)-1.842(4)			
$Te(2)-F_{ax}$	1.830(4)	Te(5)-F _{ax}	1.847(4)	1.863	1.817	1.855
$Te(2)-F_{eq}$	1.827(4)-1.835(4)	$Te(5)-F_{eq}$	1.823(4)-1.833(4)	(1.856-1.858	1.814-1.815	1.851-1.855
$Te(3)-F_{ax}$	1.825(4)	$Te(6)-F_{ax}$	1.825(4)			
$Te(3)-F_{eq}$	1.825(4)-1.836(4)	Te(6)-F _{eq}	1.825(4)-1.831(4)	J		
	bond ang	les (deg)				
Sb(1)-O(1)-Te(1)	139.7(2)	Sb(2)-O(4)-Te(4)	136.3(2)			
Sb(1)-O(2)-Te(2)	137.8(2)	Sb(2)-O(5)-Te(5)	140.9(2)	145.7	139.0	131.7
Sb(1)-O(3)-Te(3)	139.3(2)	Sb(2)-O(6)-Te(6)	137.6(3)			
$O(1)-Te(1)-F_{ax}$	176.7(2)	O(4)-Te(4)-F _{ax}	178.2(2))		
$O(1)-Te(1)-F_{eq}$	87.3(2)-95.2(2)	O(4)-Te(4)-F _{eq}	90.4(2)-95.6(2)			
O(2)-Te(2)-Fax	177.4(2)	O(5)-Te(5)-F _{ax}	175.7(2)	178.7-179.5	179.6-180.0	176.7
$O(2)-Te(2)-F_{eq}$	89.5(2)-94.9(2)	O(5)-Te(5)-F _{eq}	90.0(2)-96.1(2)	(91.3–93.7	90.4-94.4	89.2-95.1
O(3)-Te(3)-F _{ax}	179.0(2)	O(6)-Te(6)-F _{ax}	177.8(2)			
$O(3) - Te(3) - F_{eq}$	91.3(2)-93.8(2)	O(6)-Te(6)-F _{eq}	89.4(2)-94.6(2)	J		
F_{ax} -Te(1)- F_{eq}	87.3(2)-88.3(2)	F_{ex} -Te(4)- F_{eq}	86.0(2)-88.0(2)	ſ		
$F_{ax}-Te(2)-F_{ex}$	87.4(2)-88.0(2)	F_{ax} -Te(5)- F_{eq}	86.0(2)-87.8(2)	▶ 87.3-87.6	87.2-87.7	87.4-87.9
$F_{ax}-Te(3)-F_{eq}$	86.1(2)-88.4(2)	F_{ex} -Te(6)- F_{eq}	87.7(2)-88.4(2)	J		
F_{eq} -Te(1)- F_{eq}	175.6(2)-176.0(2)	F_{eo} -Te(4)- F_{eo}	173.5(2)-174.0(2)	,		
~~~~~~	87.3(2)-90.6(2)		89.0(2)-90.7(2)			
$F_{eq}$ -Te(2)- $F_{eq}$	175.0(2)-175.5(2)	$F_{eq}$ -Te(5)- $F_{eq}$	173.8(2)-173.9(2)			175 0 175
	89.4(2)-90.8(2)	~ય ં પ્રથય	89.0(2)-90.9(2)	▶ 89.0-91.6	89.7-90.2	175.0-175.0
Fen-Te(3)-Fen	174.9(2)-179.0(2)	Fen-Te(6)-Fen	176.0(2)-176.1(2)			89.4-90.3
τη = · (-) − εų	88.9(2)-90.5(2)		89 6(2)-90 2(2)			

Table 5.4.	Experimental and Calculated Geometrical Parameters for the Sb(	$(OTeF_5)_6^-$	Anion
		570	

Table 5.4.(continued...)

^a The symbols F_{eq} and F_{ax} denote equatorial and axial fluorine atoms, respectively. ^b Stuttgart. ^c (SDB-)cc-pVTZ.





**Figure 5.2.** X-ray crystal structure of (a)  $XeOTeF_5^+SO_2ClF$  and (b)  $Sb(OTeF_5)_6^-$  in  $[XeOTeF_5][Sb(OTeF_5)_6]SO_2ClF$ ; thermal ellipsoids are shown at the 50% probability level. Calculated geometries of the  $XeOTeF_5^+SO_2ClF$  adduct-cation and  $Sb(OTeF_5)_6^-$  anion appear on the right-hand side.

159

coordinated to the anion nor disordered. Rather, the xenon atom of XeOTeF₅⁺ is coordinated through an oxygen atom of the weak Lewis base solvent molecule, SO₂ClF, forming the adduct-cation, XeOTeF₅⁺·SO₂ClF. The difference in solid state coordination behavior is attributed to the weakly coordinating nature of the Sb(OTeF₅)₆⁻ anion relative to those of the AsF₆⁻, SbF₆⁻, Sb₂F₁₁⁻ and related anions derived from strong Lewis acid pentafluorides (see Section 1.4; also see Section 5.2.5). The crystal structure of [C(OTeF₅)₃][Sb(OTeF₅)₆]·3SO₂ClF has been reported, in which two of the three SO₂ClF solvent molecules in the formula unit are oxygen-coordinated to the carbon atom along the pseudo three-fold axis of the C(OTeF₅)₃⁺ cation (see Chapter 6).⁸⁰ The only other published example of a crystal structure in which SO₂ClF forms an oxygen-coordinated adduct with a Lewis acid center is Fe(OTeF₅)₃·3SO₂ClF.¹⁶⁵

Any comparison of the geometric parameters determined for the present structure with those of [XeOTeF₅][AsF₆] are compromised by disorder in the latter structure.⁷⁵ The absence of disorder in the present structure, however, allows valid comparisons to be made with the geometric parameters of Xe(OTeF₅)₂.⁷⁵ As anticipated, and by analogy with XeF⁺ salt formation from XeF₂,¹² the Xe–O(7) distance (1.969(4) Å) is shorter than in neutral Xe(OTeF₅)₂ (2.119(11) Å) and is consistent with the calculated increases in bond orders for Xe–F and Xe–O (also see Section 5.2.5). The Te–O(7) bond distance (1.938(5) Å) in XeOTeF₅⁺ is significantly longer than in Xe(OTeF₅)₂ (1.843(11) Å), which is consistent with the increased bond order and decreased bond length of the Xe–O(7) bond trans to it. The Te–F bond distances of the XeOTeF₅⁺ cation (Table 5.3) are similar to those found in other OTeF₅ compounds.^{35,79,80,164}

When compared with free SO₂ClF,¹⁶⁶ the S–Cl and S–F bond lengths of the adducted SO₂ClF molecule in the salt are shorter, whereas the lengths of both the coordinated and non-coordinated S–O bonds in the adduct-cation have increased and are equal within  $\pm 3\sigma$ . The S–O bond lengthenings and S–F and S–Cl bond contractions are corroborated by lower SO₂ and higher S–F/S–Cl vibrational stretching frequencies (Section 5.2.4).

Although the Xe - O(8) distance points to a significant covalent interaction between the xenon and oxygen atoms based on a comparison of the sum of the xenon and oxygen van der Waals radii (vide supra), the S–O bond lengths of coordinated SO₂ClF are only marginally longer than those of free SO₂ClF (vide infra). The latter observation is consistent with a very weak Xe…O donor-acceptor bond, but is at apparent odds with the short Xe···O(8) distance (2.471(5) Å). Comparison of the Xe···O(8) distance with the sums of the van der Waals radii of xenon and oxygen may not be valid because the distribution of the three equatorial valence electron lone pair domains of xenon that are associated with the AX₂E₃ VSEPR arrangement of the near-linear O(8)···Xe–O(7) moiety is not spherical, but toroidal in shape, allowing the incoming electron lone pair of the oxygen donor atom to approach more closely (see Section 5.2.5). Similar contacts have been noted in the structures of  $[C(OTeF_5)_3][Sb(OTeF_5)_6] \cdot 3SO_2ClF$  (see Chapter 6) and Fe(OTeF₅)₃·3SO₂ClF,¹⁶⁵ where two and three SO₂ClF molecules, respectively, coordinate to the central atom. The S–O bonds of the coordinated SO₂ClF molecules are also equal, within  $\pm 3\sigma$ , to those of uncoordinated SO₂CIF, with the exception of one coordinated S–O bond in  $Fe(OTeF_5)_3$ ·3SO₂ClF that is elongated.

A number of weak inorganic oxygen bases such as  $\text{COF}_2$ , ^{167,168}  $\text{SOF}_2$ , ¹⁶⁷  $\text{SO}_2\text{F}_2$ , ¹⁶⁷  $\text{SO}_2\text{F}_2^{-169}$  and  $\text{POF}_3^{-167}$  have been studied by vibrational spectroscopy and shown to form oxygen coordinated adducts with AsF₅ and SbF₅. The only other example of a weak inorganic oxygen base coordinated to a strong Lewis acid and that has been structurally characterized by X-ray crystallography is SbF₅·SO₂. In this instance, the terminal S–O bond (1.402(4) Å) is contracted and that of the coordinated oxygen is elongated (1.469(4) Å) relative to the S–O bond lengths of free SO₂ (1.434(1) Å).¹⁷⁰

The Xe–O(7)–Te angle  $(120.8(2)^{\circ})$  is comparable to that reported previously for Xe(OTeF₅)₂ (122.3(5)°). The Xe···O(8) donor-acceptor bond distance (2.471(5) Å) is longer than the Xe–O(7) bond, but is significantly shorter than the sum of the xenon and oxygen van der Waals radii (3.68 Å)²⁶ and has been reproduced by electronic structure calculations (see Section 5.2.5). The O(7)–Xe···O(8) angle (174.2(2)°) deviates slightly from the anticipated linear AX₂E₃ VSEPR arrangement characteristic of Xe(II) compounds, and is similar to the O–Xe···-F bridge angle observed in [XeOTeF₅][AsF₆] (174(1) °).⁷⁵ The O(7)–Xe···O(8) and Xe–O(7)–Te angles are reproduced by the gas-phase, energy-minimized structure, but the experimental Xe···O(8)–S angle is larger than the calculated value (Table 5.3). The difference is likely a consequence of crystal packing, anion-cation interactions, and the weak covalent nature of the Xe···O(8) donor-acceptor bond. The angle deformation may, in part, stem from four interionic contacts that occur around xenon (range, 3.065(4) to 3.231(4) Å) which are shorter than the sum of xenon and fluorine van der Waals radii (3.63 Å).²⁶

#### 5.2.4. Raman Spectroscopy

#### 5.2.4.1. XeOTeF5⁺·SO₂ClF

A series of low-temperature Raman spectra were recorded for several  $SO_2CIF:[XeOTeF_5][Sb(OTeF_5)_6]\cdot SO_2CIF$  ratios at -160 °C (Table 5.5), and permitted assignments to be made of modes arising from coordinated and uncoordinated  $SO_2CIF$  based on changes in their relative intensities. The relative ratios of free  $SO_2CIF$  and coordinated  $SO_2CIF$  were determined by integration of the in-phase  $SO_2$  stretching bands of coordinated and uncoordinated  $SO_2CIF$  in their Raman spectra. Changes in  $SO_2CIF$  composition did not result in significant relative intensity or frequency changes for the vibrational modes of either XeOTeF_5⁺ or Sb(OTeF_5)_6⁻. The final spectrum corresponding to [XeOTeF_5][Sb(OTeF_5)_6]\cdot SO_2CIF is shown in Figure 5.3 and the frequencies of the vibrational bands, their intensities, and their origins are provided in Table 5.6.

The Raman assignments for the adduct-cation, XeOTeF₅⁺·SO₂ClF, were made by comparison with the calculated frequencies, and were also guided by previous vibrational assignments for SO₂ClF¹⁷¹ and XeOTeF₅⁺,^{71,72,75} and by more recent detailed assignments (Tables 5.7 and 5.8, respectively). Calculations of the vibrational frequencies were carried out using HF and DFT methods and using Stuttgart and (SDB-)cc-pVTZ basis sets, but only the DFT results are reported in Tables 5.6, 5.9, and 5.10. The experimental and calculated frequencies for SO₂ClF, XeOTeF₅⁺, and XeOTeF₅⁺·SO₂ClF and the assignments for XeOTeF₅⁺·SO₂ClF are also provided in Table 5.6. Although the present assignments for SO₂ClF are in agreement with those previously reported for the neat liquid,¹⁷¹ they are now more precisely described. The present assignments for

	composition ^b		
Ic	II ^d	Ш	assgnt
			2
1444(14), br	1444(5)		
1432(8)	1432(6)		
1226(34)	1226(17)		
1218(72)	1218(27)		
1214(79)			
839(17)	839(5)		A+u
821(18)	821(7)		A+u
629(34)	630(14)		uncoordinated
625(34)			$\int$ free SO ₂ ClF
503(35)	504(11)		
478(37)	478(18)		C+u
430(156)	430(22)		
423, sh	423(9)		
200/(20)	313, sh		
309(62)	309(24)		A+u or C+u
296(45)	296(13)		
200(40)	200(10)		eru y
	1424(4)	1423(6)	)
	1415(6)	1415(14)	
	1178(4)	1177(10)	
1166(20)	1166(26)	1168(27)	
		1155(8)	
		1147(5)	
		860(4)	coordinated
		830(5)	SO ₂ CIF
	510(6)	506(5)	
486, sh	486(10)	486(13)	
		476(15)	
	440, sh	442(14)	
436, sh	437(39)	436(8)	A+c
	254(8)	254(20)	J

# **Table 5.5.**Experimental^a Raman Frequencies for [XeOTeF₅][Sb(OTeF₅)₆] in SO₂ClF

# Table 5.5.(continued...)

745(11)	745(11)	745, sh	C+A
741(10)	741(13)	741(19)	C+A
733(72)	734(49)	734(46)	C+A
712(12)	716. sh	716(35)	
713(18)	712(23)	712(31)	C
667(40)	667(45)	669(48)	C+A
662(100)	662(100)	663(100)	C+A
494(13)	494(15)	493(12)	C
478(37)	478(18)	478 sh	C+u  or  C > XeOTeF [*]
	319(11)	322(11)	C+A
309(62)	309(24)	310(21)	A+u or C+u or u
	298(15)	510(21)	
296(45)	295(15)	294(14)	C+u or u
249(14)	249(15)	22 ((1))	С
	187(4)		č
173(11)	173(22)	172(24)	č
115(11)	122(9)	172(24) 121(10)	
	122())	121(10)	CIA
839(17)	839(5)	841(3)	A + n  or  A
821(18)	821(7)	873(5)	$\Delta \pm n \text{ or } \Delta$
753 sh	753 sh	753(14)	A HOIN
750(15)	750(17)	735(14) 748(10)	
745(11)	745(11)	740(13)	C+A
743(11)	743(11)	745, 511	CTA CLA
733(72)	741(13)	741(19) 724(46)	C+A CLA
733(72) 721(20)	734(49)	734(40)	C+A A
721(20)	122(17)	724(20) 700(27)	A A
704(76)	704(74)	709(27)	A
704(70)	704(74)	103(32) 607(17)	A
602(11)	602(15)	602(20)	A
688(12)	699(13)	095(20)	
685(10)	088(13)	686(12)	A
667(40)	667(15)	660(19)	C+A
667(100)	662(100)	662(100)	
655(21)	655(10)	003(100)	CTA
650(22)	650(20)	653, sh	A
646(25)	630(20)	644(22)	A 1
436 ch	437(30)	044(22) 126(9)	A
415(24)	437(39)	430(0)	
370(0)	414(24)	411(27)	SD(UTEF5)6
367(8)	369(9)	369(10)	A
507(0)	345 sh	344(10)	Δ
337(11)	336(14)	338(16)	
332(14)	331(15)	332(16)	
552(14)	328(13)	552(10)	C+A
324(11)	326(12)	376 sh	C+A
524(11)	319(11)	320(11)	
309(62) ^{d,e}	309(24) ^{d,e}	322(11) 310(21)	C+A or C+u
	303(19)	304(17)	A
244(3)	244(10)	504(17)	A
240(11)	244(10)	242(13)	A
2.0(11)	230(5)	229(6)	Δ
147(11)	147(12)	145(10)	A .
139(9)	139(10)	140(14)	Δ
134(7)	136(8)	134(9)	Δ
		131(7)	
	122(9)	121(10)	C+A
	117(9)	121(10)	
112(8) br	113(9)	111(11) br	$\hat{\Delta}$
		, 01	~ ·

## **Table 5.5.**(continued...)

^a Values in parentheses represent experimental relative Raman intensities. ^b Roman numerals refer to SO₂ClF:[XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF composition of 7.95:1.00 (I), 1.09:1.00 (II) and no excess SO₂ClF (III). ^c Bands were also observed at 1263(4) and 1407(11) cm⁻¹ which are tentatively assigned to  $2\nu(630)$  of uncoordinated SO₂ClF and  $2\nu(704)$  of Sb(OTeF₅)₆⁻. ^d A band was also observed at 1407(14) which is tentatively assigned to  $2\nu(704)$  of Sb(OTeF₅)₆⁻. ^e The labels denote spectral line coincidences corresponding to the cation (C), the anion (A), coordinated SO₂ClF (c) and uncoordinated SO₂ClF (u).



**Figure 5.3.** Raman spectrum of  $[XeOTeF_5][Sb(OTeF_5)_6] \cdot SO_2ClF$  recorded at -160 °C using 1064-nm excitation; asterisks (*) denote FEP sample tube lines.

Ş	SO ₂ ClF		XeOTeF ₅ ⁺			XeOTeF ₅ ⁺ ·SO ₂ ClF		
calcd ^a	liquid ^b	solid ^e	calcd ^a	$Sb_2F_{11}$ salt ^d	calcd	expt1 ^e	assgnts $(C_1)^{f}$	
1453(183)	1450(5)	1441(6) 1437(4) 1431(18)			1389(172)	1423(6) 1415(14)	ν(SO ₂ ) ο ο p	
1214(141)	1217(51)	1215(18) 1208(28) 1205(31)			1100( <b>734</b> )	1177(10) 1168(27) 1155(8) 1147(5)	v(SO ₂ ) i.p	
799(183)	820(10)	826(8) 819(30)			856(158)	860(4) 830(5)	$v(SF)$ + some $v(SO_2)$ 1.p.	
			746(83)	748(2)	735(75)	745, sh ^g	v(TeF3-TeO7) + v(TeF1-TeF2) + v(TeF4-TeF5)	
			740(82)	741(14)	730(180)	741(19) ⁸	v(TeF3-TeO7) + v(TeF1-TeF2) + v(TeF4-TeF5)	
			739(89)		732(97)	734(49) ^s	v(TeF1-TeF2) + v(TeF5-TeF4)	
			675(20)	714(23)	676(176)	716,sh 712(23)	$v(TeO7-XeO7) + v(TeF_5)$	
			659(5)	671(64)	650(8)	669(48)	v(TeF1+TeF2) - v(TeF4+TeF5)	
			655(12)	661(31)	645(99)	663(100)	$v(XeO7-TeO7) + v(TeF_{4e})$	
597(199)	624(33)	612(61)			630(203)		$v(SCl) + \delta(SFO_2)$	
				487(41)	510(39)	506(5)	$v(XeO7+TeO7) - v(XeO8) + \delta(SO8FC1)$	
465(12)	502(7)	508(29)	478(30)	474, sh	483(13)	493(12)	$v(XeO7+TeO7) + v(XeO8) - \delta(SO8FC1) +$ some $\delta(SO_2)$	
440(13)	476(6)	481(24)			453(14)	486(13) 478, sh 476(15)	$\rho_r(SO_2) + \delta(OSF) + v(XeO8)$	
393(<1)	425(100) 418(45)	431(100) 426(46)			414(6)	442(14) ^h 436(8)	$v(SCl) - \delta(SFO_2)$	
			305(90)	320(4) 311(10)	316(44)	322(11) 310(21)	$v(XeO8) - TeF_{4e}$ umbrella + some ( $\delta(F4TeF1) - \delta(F5TeF2)$ ) + $\delta(SFC1) \pm o(SFC1) \pm o(SFC1)$	
			293(22)	293(9)	304(93)	298(15)	$v(XeO8) + TeF_{4e}$ umbrella – some ( $\delta(F4TeF1) - \delta(F5TeF2)) + \delta(SFC1) \pm o(SO) + o(SFC1)$	
			290(35)		296(31) 296(31)	295(15)	$\rho_{K}(3 \circ 2) = \rho_{K}(3 \circ 1)$ $\delta(\text{TeO7F3F4F5}) \text{ umbrella} + \rho_{F}(\text{F2TeF1})$ $\delta(\text{TeO7F3F2F1}) \text{ umbrella} + \rho_{F}(\text{F4TeF5})$	
			290(7)	252(28)	286(1)	249(15)	$\delta$ (F4TeF2) + $\delta$ (F1TeF5)	

Table 5.0. Experimental and Calculated Vibrational Frequencies for 50 ₂ Ch ⁻ , AcOTEL ⁵ , and AcOTEL ⁵ -50 ₂ Ch	Table 5.6.	Experimental and Calculated	Vibrational Frequencies for SO ₂ ClF.	, XeOTeF $_5^+$ , and XeOTeF $_5^+$ ·SO ₂ ClF
------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------	-----------------------------	--------------------------------------------------	----------------------------------------------------------

Table 5.6.	(continued)
------------	-------------

279(<1)	306(16)	313(25) 310(13)			275(<1)			$\delta(FSCl) \pm \rho_t(SO_2) \pm \rho_t(SFCl) + some torsions$
266(<1)	294(13)	295(11)	254(3)		272(3)	254(20)		$(\delta(F3TeF1) + \delta(F3TeF5)) + (\delta(O7TeF2) + \delta(O7TeF4))$
			234(2)	210(3)	234(9)			$(\delta(F3TeF2) + \delta(F3TeF5)) - (\delta(F3TeF4) + \delta(F3TeF1))$
			186(<1)	173(31)	193(<1)	187(4)		$\rho_t(\text{TeF1F3F4}) + \rho_t(\text{TeF5F2O7})$
			157(1)		172(35)	173(22)		$\delta(FSCI) + \rho_w(FSCI) + \nu(XeO8) + \delta(XeO7Te) +$
								$\delta$ (F4TeF1)1p + $\rho_w$ (F2TeF5) + ( $\delta$ (XeO7Te)1.p. + $\delta$ (O7TeF3)1.p.)
			138(<1)	125(4)	160(<1)	121(10)		$\delta$ (F3TeO7) + $\rho_{t}$ (F4TeF1) + $\rho_{t}$ (F2TeF5)
					132(4)			$\rho_r(SO_2) + \rho_w(SFCI) + \rho_r(TeF5F4F3) + \rho_w(F1TeF2)$ in the TeF _{4e}
								plane + $v(XeO8)$
			88(1)		109(<1)		)	
					101(5)			
					59(1)			Strongly coupled deformation and torsion modes involving both
							L	XeOTeF ₅ and SO ₂ ClF
			21/1)		40( -1)		ſ	+ lattice modes
			31(1)		49(<1)			
					20(0)			
					17(0)		)	
					<u> </u>			

^a SVWN/(SDB-)cc-pVTZ; infrared intensities, in km mol⁻¹, are given in parentheses. ^b Values for liquid SO₂ClF (22 °C) ^c Values for solid SO₂ClF (-163 °C). ^d Values taken from ref 76. ^e Frequencies are from column III in Table 5.5. ^f The labelling scheme corresponds to that in Figure 5.2a (calculated, right hand side). Elongation of a bond(s) and angle opening(s) are denoted by plus (+) signs and bond contraction(s) and angle closing(s) are denoted by negative (-) signs. The abbreviations denote stretch (v), bending ( $\delta$ ), twisting ( $\rho_t$ ), wagging ( $\rho_w$ ), rocking ( $\rho_r$ ), in-plane bending (i.p.) and out-of-plane bending (o.o.p.) modes. The in-plane and out-of-plane motions of SO₂ClF are relative to the S,O(8),O(9)-plane in Figure 5.2a while the in-plane motions of the XeOTeF₅⁺ group are relative to the Xe,O(7),Te,F(3)-plane in Figure 5.2a. ^g Both XeOTeF₅⁺ and Sb(OTeF₅)₆⁻ have a band that is coincident at this frequency. ^h The v(SCI) mode of the XeOTeF₅⁺·SO₂ClF adduct-cation displays a ³⁵Cl/³⁷Cl isotope splitting (6.2 cm⁻¹), in close agreement with the previously published value of 7 cm⁻¹ (ref 80) and the values obtained in the present study (liquid SO₂ClF, 7.0 cm⁻¹; solid at -143/-163 °C, 6.8/6.7 cm⁻¹).

169

		exptl ^a	Stutt.			C	cc-pVTZ
	$HF(C_1) \qquad HF(C_s) \qquad SVWN(C_s)$		$SVWN(C_s)$	$HF(C_s)$	SVWN(C _s )		
bond lengths	(Å)						
S-Cl	1.	.9638(8)	1.986	1.986	2.042	1.983	2.015
S-F	1.	5383(13)	1.540	1.540	1.609	1.514	1.575
S–O	1.	4083(10)	1.400, 1.401	1.401	1.450	1.392	1.428
bond angles (	deg)		-				
Cl-S-F	9	8.70(6)	97.6	97.6	96.7	98.1	97.2
Cl-S-O	10	09.60(8)	109.3, 109.3	109.3	109.2	109.0	109.0
F-S-O	10	06.83(10)	106.9, 107.0	106.9	106.7	107.3	107.0
O-S-O	12	22.55(11)	123.6	123.5	124.7	123.1	124.3
exptl ^b	-	Stutt.°			cc-pVTZ ^c		assgnt $(C_s)^d$
	$HF(C_1)$	$HF(C_s)$	$SVWN(C_s)$	$\operatorname{HF}(C_s)$	SVWN(C _s )		
1450(5)	1551	1550	1391(170)	1600	1453(183)		), $v_{as}(SO_2)$
1217(51)	1312	1312	1160(132)	1360	1214(141)	v(A')	$\nu_{\rm s}({\rm SO}_2)$
820(10)	916	917	766(178)	962	799(183)	v(A')	$, \nu(SF)$
624(33)	696	697	576(178)	711	597(199)	v(A')	$\nu(SCl) + \delta(SO_2F)$
502(7)	540	541	439(10)	564	465(12)	v(A')	$\delta(SO_2) + v(SF) + \rho_w(SO_2)$
476(6)	501	501	410(11)	529	440(13)	v(A''	$\rho_r(SO_2) + \delta(OSF)$
425(100)	460	460	378(<1)	469	393(<1)	v(A')	, $v(SC1) - \delta(SO_2F)$
418(45)							
306(16)	322	322	264(<1)	331	279(<1)	v(A")	), $\rho_t(SO_2) + \rho_t(FSCI)$
294(13)	312	312	251(<1)	322	266(<1)	v(A')	, $\delta(FSC1) + \rho_w(SO_2)$

**Table 5.7.**Experimental and Calculated Geometrical Parameters, Vibrational Frequencies (cm⁻¹) and Calculated Infrared<br/>Intensities for SO₂ClF

^a Averaged bond lengths and bond angles are from ref 166. ^b Values are for liquid SO₂ClF (22 °C); values in parentheses are Raman intensities. ^c Values in parentheses are calculated infrared intensities in km mol⁻¹. ^d See Figure 5.2a for the atom numbering scheme. Elongation of a bond(s) and angle opening(s) are denoted by plus (+) signs and bond contraction(s) and angle closing(s) are denoted by negative (-) signs. The abbreviations denote stretch (v), bending ( $\delta$ ), twisting ( $\rho_t$ ), and wagging ( $\rho_w$ ) modes.

Table 5.8.Calculated Geometrical Parameters and Experimental and CalculatedVibrational Frequencies and Calculated Infrared Intensities for the<br/> $XeOTeF_5^+$  Cation

DZVP2 ^a	Stutt.		(SDB	-)cc-pVTZ
$\overline{\text{SVWN}(C_1)}$	$\operatorname{HF}(C_1)$	$\overline{\text{SVWN}(C_1)}$	$HF(C_1)$	$\overline{\text{SVWN}(C_1)}$
<u></u>	bond leng	ths (Å) ^b		
1.893	1.911	1.967	1.899	1.830
1.969	1.973	2.045	1.949	1.957
1.776	1.786	1.843	1.763	1.818
1.788	1.797	1.876	1.770	1.830
1.801	1.811	1.857	1.785	1.848
1.810	1.811	1.857	1.785	1.848
1.788	1.797	1.876	1.770	1.830
	bond angle	es (deg) ^b		
119.6	123.3	115.7	125.8	117.5
178.4	180.1	179.5	179.8	179.1
86.6	86.3	85.3	86.3	85.1
	87.3	87.3	87.6	87.8
	87.3	87.3	87.6	87.8
	86.3	85.3	86.4	85.1
93.4	93.7	94.2	93.5	94.1
	92.7	93.2	92.6	93.1
	92.7	93.2	92.6	93.1
	93.7	94.2	93.5	94.1
173.1	178.5	178.3	178.8	178.5
89.8	90.3	90.6	90.3	90.6
	90.8	90.5	90.6	90.3
	87.9	87.3	88.2	87.7
	90.3	90.6	90.2	90.6
	178.4	178.3	178.7	178.5
	DZVP2 ^a <u>SVWN (C₁)</u> 1.893 1.969 1.776 1.788 1.801 1.810 1.788 119.6 178.4 86.6 93.4 173.1 89.8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

# **Table 5.8.**(continued...)

expt ^{1^c}		Stutt.	cc-pVTZ		assgnt $(C_1)^d$
	$\operatorname{HF}(C_l)$	SVWN(Cs)	$HF(C_I)$	$\overline{\text{SVWN}(C_l)}$	
748(2)	874	711(69)	872	746(83)	v(TeF3-TeO7) + v(TeF1-TeF2) + v(TeF4-TeF5)
741(14)	871	706(75)	869	740(82)	v(TeF3) + v(TeF1-TeF2) + v(TeF4-TeF5)
714(14)	855	705(790	863	739(89)	v(TeF1-TeF2) + v(TeF5-TeF4)
671(64)	813	646(26)	835	675(20)	$v(\text{TeO7-XeO7}) + \text{some } v(\text{TeF}_5)$
661(21)	769	636(7)	780	659(5)	v(TeF1+TeF2) - v(TeF4+TeF5)
001(31)	758	632(7)	760	655(12)	$v(XeO7-TeO7) + v(TeF_{4e})$
487(41) 474, sh	498	470(28)	491	478(30)	v(XeO7+TeO7)
320(4)	343	282(83)	366	305(90)	$\delta(F4TeF1) - TeF_{4e}$ umbrella
311(10)	339	269(15)	363	293(22)	$\delta(F1TeF3) + \delta(F4TeF3)$
293(9)	334 332	264(12) 263(32)	362 359	290(35) 290(7)	$(\delta(F3TeF5) + \delta(F3TeF1) + \delta(O7TeF3)) - \delta(F4TeF2)$ $(\delta(F3TeF2) + \delta(F3TeF5)) + \delta(F1TeF4)$
252(28)	313	233(3)	333	254(3)	$(\delta(F3TeF1) + \delta(F3TeF5)) + (\delta(O7TeF2) + \delta(O7TeF4))$
210(3)	270	213(3)	290	234(2)	$(\delta(F3TeF2) + \delta(F3TeF5)) - (\delta(F3TeF4) + \delta(F3TeF1))$
173(31)	213 184	168(<1) 147(2)	232 203	186(<1) 157(1)	$ρ_t$ (TeF1F3F4) + $ρ_t$ (TeF5F2O7) δ(F4TeF1) i.p. + $ρ_w$ (F2TeF5) + (δ(XeO7Te) i.p. + δ(O7TeF3) i.p.)
125(4)	178	119(<1)	187	138(<1)	$\delta$ (F3TeO7) + $\rho_t$ (F4TeF1) + $\rho_t$ (F2TeF5)
	101	85(1)	101	88(1)	$(\rho_w(F4TeF1) - \rho_w(F5TeF2)) + (\delta(XeO7Te) i.p \delta(O7TeF3) i.p.)$
	39	32(<1)	38	31(1)	O7TeF3 o.o.p. torsion + TeF _{4e} torsion

^a From ref 75. ^b See Figure 5.2a for the atom numbering scheme. ^c From ref 76. ^d The abbreviations denote stretch ( $\nu$ ), bending ( $\delta$ ), twisting ( $\rho_t$ ), wagging ( $\rho_w$ ), and rocking ( $\rho_r$ ), in-plane bending (i.p.) and out-of-plane bending (o.o.p.) modes. The in-plane and out-of-plane motions are relative to the Xe,O(7),Te,F(3)-plane in Figure 5.2a. Elongation of a bond(s) and angle opening(s) are denoted by plus(+) signs and bond contraction(s) and angle closing(s) are denoted by negative (-) signs.

- - -

r

1

	exptl	Stutt.		(SDB	-)cc-pVTZ
		$\operatorname{HF}(C_1)$	$\underline{SVWN}(C_1)$	$HF(C_1)$	SVWN(C ₁ )
$\mathbf{X}_{\mathbf{a}}(1) \mathbf{O}(1)$	1.065(4)	bond leng	gths (A) 2015	1 800	1 009
$T_{e}(1) = O(1)$	1.905(4)	1.912	1 986	1.033	1.998
Te(1) = F(3)	1.813(4)	1.790	1.851	1.767	1.826
Te(1)-F(1)	1.812(4)	1.799	1.860	1,773	1.834
Te(1)-F(2)	1.831(4)	1.815	1.883	1.788	1.854
Te(1)-F(4)	1.823(4)	1.814	1.883	1.788	1.855
Te(1)-F(5)	1.812(4)	1.815	1.860	1.773	1.834
Xe(1)-O(3)	2.471(5)	2.568	2.385	2.588	2.388
S(1)-O(2)	1.435(5)	1.396	1.443	1.386	1.423
S(1)-O(3)	1.431(5)	1.430	1.502	1.419	1.476
S(1) - F(6)	1.476(5)	1.523	1.581	1.499	1.549
S(1)-CI(1)	1.931(2)	1.955	1.984	1.952	1.958
		hond ang	les (deg)		
Xe(1)-O(1)-Te(1)	121.0(2)	124.4	115.4	127.3	117.4
O(1)-Te(1)-F(3)	177.4(2)	180.3	180.0	180.0	179.7
O(1)-Te(1)-F(1)	86.8(2)	87.7	88.0	87.5	87.4
O(1)-Te(1)-F(2)	91.3(2)	88.1	88.6	88.3	88.9
O(1)-Te(1)-F(4)	89.7(2)	88.1	88.6	88.3	88.8
O(1)-Te(1)-F(5)	88.4(2)	87.7	88.0	87.5	87.4
F(3)-Te(1)-F(1)	90.6(2)	92.6	92.3	92.5	92.3
F(3)-Te(1)-F(2)	91.3(2)	91.6	91.2	91.7	91.3
F(3)-Te(1)-F(4)	90.6(2)	91.6	91.2	91.7	91.3
F(3)-Te(1)-F(5)	91.3(2)	92.6	92.3	92.5	92.4
F(1)-Te(1)-F(2)	177.8(2)	178.5	178.2	178.8	176.1
F(1)-Te(1)-F(4)	90.2(2)	90.4	90.9	90.3	90.7
F(1)-Te(1)-F(5)	90.4(2)	90.9	90.9	90.7	90.6
F(2)-Tc(1)-F(4)	88.7(2)	88.0	87.2	88.4	87.7
F(2)-Te(1)-F(5)	90.7(2)	90.4	90.9	90.3	90.8
F(4)-Te(1)-F(5)	178.0(2)	178.5	178.2	178.8	176.0
O(1)-Xe(1)-O(3)	174.2(2)	178.5	173.3	175.2	175.2
O(2)-S(1)-O(3)	115.7(2)	120.0	119.6	119.9	119.5
O(2)–S(1)–F(6)	109.4(3)	109.0	109.7	109.3	109.8
O(2)-S(1)-Cl(1)	108.4(4)	112.2	114.6	111.7	114.1
O(3)-S(1)-F(6)	110.4(3)	105.1	104.2	105.5	104.5
O(3)-S(1)-Cl(1)	108.6(2)	108.7	106.8	108.4	106.8
Cl(1)-S(1)-F(6)	103.6(2)	99.7	99.6	100.0	100.0
Xe(1)-O(3)-S(1)	140.0(3)	138.6	118.4	148.3	122.5

# Table 5.9.Experimental and Calculated Geometrical Parameters for the<br/> $XeOTeF_5^+ \cdot SO_2ClF$ Adduct-Cation

ł

Table 5.10.	Vibrational Frequencies (cm ⁻¹ ) and Calculated Infrared Intensities for the
	XeOTeF5 ⁺ ·SO ₂ ClF Adduct-Cation

exptl	Ç,	Stutt.	(SDB-)cc-pVTZ		
	$\overline{\mathrm{HF}(C_1)}$	SVWN(Cs)	$HF(C_1)$	SVWN(Cs)	
1415(14), 1423(6)	1503(328)	1331(116)	1555(367)	1388(172)	
1168(27), 1177(10)	1261(638)	1045(660)	1313(636)	1101(734)	
830(5), 860(4)	961(198)	821(145)	1006(204)	856(158)	
745, sh	867(103)	699(68)	884(286)	735(75)	
734(49)	863(133)	697(86)	863(186)	732(97)	
741(19)	861(421)	693(128)	861(130)	730(180)	
712(23), 716, sh	831(23)	640(199)	844(42)	676(176)	
669(48)	765(17)	625(10)	776(12)	650(8)	
663(100)	751(4)	618(135)	754(3)	645(99)	
	718(203)	612(117)	731(244)	630(203)	
506(5)	548(37)	503(23)	565(40)	510(39)	
493(12)	533(45)	468(34)	540(9)	483(13)	
476(15), 486(13)	513(5)	425(12)	520(37)	453(14)	
436(8), 442(14)	474(17)	393(8)	484(9)	414(6)	
310(21), 322(11)	352(155)	300(13)	374(188)	316(44)	
298(15)	340(69)	283(106)	367(77)	304(93)	
295(15)	340(40)	272(17)	364(41)	296(31)	
	333(12)	270(35)	357(5)	296(31)	
249(15)	333(44)	262(2)	345(5)	286(1)	
	327(1)	259(1)	342(15)	275(<1)	
254(20)	318(1)	252(2)	328(1)	272(3)	
	271(9)	214(8)	291(4)	234(9)	
187(4)	218(0)	175(<1)	238(0)	193(<1)	
173(22)	193(<1)	166(31)	213(<1)	172(35)	
121(10)	186(21)	141(<1)	195(13)	160(<1)	
	114(6)	124(2)	117(8)	132(4)	
	104(12)	105(4)	93(3)	109(<1)	
	90(6)	98(<1)	81(11)	101(5)	
	52(3)	77(3)	59(7)	59(1)	
	37(<1)	36(<1)	37(0)	49(<1)	
	22(1)	24(<1)	19(<1)	20(0)	
	17(0)	17(<1)	16(0)	17(0)	

÷

XeOTeF₅⁺ reproduce the previously published assignments for this cation.⁷⁵ The XeOTeF₅⁺ cation is expected to be more weakly coordinated in the Sb₂F₁₁⁻ salt than in [XeOTeF₅][AsF₆] and thus represents a better approximation of a weakly coordinated XeOTeF₅⁺ cation. For this reason, the vibrational frequencies of XeOTeF₅⁺ in [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF are compared with, and found to be most similar to, those of [XeOTeF₅][Sb₂F₁₁]⁷⁶ (Table 5.6).

The Raman spectrum of a sample containing a 7.95:1.00 molar ratio of SO₂ClF:[XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF showed several frequencies assigned to uncoordinated SO₂ClF that were slightly shifted with respect to those of pure solid  $SO_2ClF$  and liquid  $SO_2ClF$  (Tables 5.6 and 5.7). Three bands at 436, 486, and 1166 cm⁻¹ were also observed which are assigned to coordinated SO₂ClF (vide infra). At a 1.09:1.00 molar ratio, the bands associated with uncoordinated SO₂ClF greatly diminished in intensity, while the three bands assigned to coordinated SO₂ClF gained in intensity and several new, but weaker, bands appeared that are also assigned to coordinated SO₂ClF. Finally, in a Raman spectrum of a sample containing no free SO₂ClF, the bands attributed to uncoordinated SO₂ClF are absent and the spectrum of coordinated SO₂ClF is better resolved (Table 5.9). The calculated vibrational frequencies show that the formation of the adduct-cation is accompanied by low-frequency shifts of the strongly coupled inphase and out-of-phase SO₂ stretching modes, while the S-F and S-Cl stretches are shifted to higher frequency relative to those of free SO₂ClF. Unlike free SO₂ClF, the S-F stretching mode is weakly coupled to the in-phase SO₂ stretching mode. The SO₂ClF stretching modes show no significant coupling with the cation stretching modes. The

#### Ph.D. Thesis – Matthew D. Moran

ł

TeF₅ group and out-of-phase XeOTe stretching frequencies between 645 and 735 cm⁻¹ are little affected by complexation with SO₂ClF, thus their mode descriptions are the same as in uncomplexed XeOTeF₅⁺. The in-phase XeO(7)Te and bridging XeO(8) stretching modes are strongly coupled and their in-phase and out-of-phase components, in turn, couple with the SO(8)FCl umbrella bend. Aside from four modes that are pure XeOTeF₅⁺ (286, 296, 296 cm⁻¹) and SO₂ClF (275 cm⁻¹) modes, all modes below 316 cm⁻¹ are strongly coupled deformation and torsion modes involving both XeOTeF₅⁺ and SO₂ClF (Table 5.6).

There is good agreement between observed and calculated frequencies in Table 5.6, moreover, the observed frequency shifts arising from complexation are also reproduced. The in-phase SO₂ and out-of-phase SO₂ stretching modes exhibit the anticipated low-frequency shift upon complexation, while the v(SF) and v(SCI) modes shift to higher frequency relative to those of free SO₂CIF. The low-frequency shifts of the strongly coupled SO₂ stretching modes and the high frequency shifts of the sulfur-halogen stretching modes are consistent with the increased S–O bond lengths and the shorter S–F and S–Cl bond lengths observed in the crystal structure. While the S–O bond order is expected to decrease for the S–O bond of the coordinated oxygen atom, the terminal S–O bond order is expected to increase, but to a lesser extent. This is supported by the NBO analyses and is accompanied by increased S–F and S–Cl bond orders. The frequency shifts and calculated bond orders are also consistent with increased negative charge on the coordinated oxygen atom and a smaller decrease in negative charge on the terminal oxygen atom (see Section 5.2.5).

Although the S–O bond length differences in SbF₅·SO₂ are clearly distinguishable and the terminal S–O bond is significantly shorter than the coordinated S–O bond, the strongly coupled in-phase and out-of-phase SO₂ stretching modes of this adduct are also shifted to lower frequencies when compared with those of free SO₂. Other examples of main-group oxide fluorides that function as Lewis bases (e.g.,  $COF_2$ ,^{167,168} SOF₂,¹⁶⁷  $SO_2F_2$ ,¹⁶⁷ SO₂,¹⁶⁷ PO₂F₂⁻¹⁶⁹ and POF₃¹⁶⁷) that form oxygen-coordinated adducts with AsF₅ and/or SbF₅ show analogous decreases in v(CO), v(SO), v(SO₂), and v(PO₂) and increases in v(CF), v(SF), and v(PF) when compared with the corresponding frequencies of the free donor species.

The experimental difference between the in-phase and out-of-phase SO₂ stretching frequencies ( $\Delta$ ) of SO₂ClF increases from 218 cm⁻¹ (solid mixtures), 226 cm⁻¹ (pure solid, -163 °C), and 233 cm⁻¹ (pure liquid, 22 °C) in uncoordinated SO₂ClF to 246 cm⁻¹ in coordinated SO₂ClF. The increase in  $\Delta$  is consistent with the difference in the S–O bond orders that results from complexation, and is reflected in the S–O bond orders of the bridging Xe–O–S moiety (1.14) and that of the terminal S–O bond (1.29) (see Section 5.2.5). Similar increases in  $\Delta$  have been observed for the F₅M…OSO (M = Sb, As) adducts (185 cm⁻¹ in free SO₂; 225 (Sb) and 206 (As) cm⁻¹ in the adduct) and for F₅As…OPF₂O…AsF₅⁻ (165 cm⁻¹ in PO₂F₂⁻; 197 cm⁻¹ in the complex anion).

## 5.2.4.2. Sb(OTeF₅)₆⁻

I.

The prior vibrational assignments for Sb(OTeF₅)₆^{-,35,172} have been improved upon and are presented in Table 5.11.

# **Table 5.11.** Experimental and Calculated^a Vibrational Frequencies for the $Sb(OTeF_5)_6^-$

Anion

HF/Stutt ^{b,c}	SVWN/	exptl ^d	assgnt $(S_6)^e$
	$(SDB-)\infty-pVTZ^{b}$	•	
970(5)	889(13)	841(3)	$A_{s}$ , $\nu(SbO_{6}-6TeO)$
860(3)	801(13)	823(5)	$E_{\mathbf{g}}, v[SbO_4 - (4TeO)] - v[SbO'_2 - (2Te'O')_{\text{trans}}]$
751(1)	720(3)	753(14)	
		748(19)	$\succ A_{g}, \nu[6(\text{TeF}_{2e \text{ cis}} - \text{TeF}_{2e \text{ cis}})]$
		745, sh	
747(2)	717(3)	724(20)	$E_{g}$ , $v[4(TeF_{2e cis} - TeF_{2e cis}) + 2(TeF_{2e trans} - TeF_{2e trans})]$
735(3)	706(14)	709(27)	$\int A_{s}, v[4(\text{TeF}_{2e \text{ cis}} - \text{TeF}_{2e \text{ cis}}) - 2(\text{Te'F}_{2e \text{ cis}} - \text{Te'F}_{2e \text{ cis}})]$
		703(52)	
732(<1)	700(<1)	697(17)	$\sum E_{g}$ , v[4(TeF _{e trans} - TeF _{e trans} ) + 2(TeF _{2e cis} - TeF _{2e cis} )]
		693(20)	ſ,
707(92)	678(87)	669(48)	$A_{s}, v[6(TeF_{s})]$
		663(100)	<b>}</b>
701(2)	675(13)	686(12)	$E_{s}$ , $v[4(TeF_5)_{trans} - 2(TeF_5)_{trans}]$
662(19)	643(95)	)	$A_{s}$ , $v[6(TeF_{4e} - TeF_{a})]$
656(2)	639(6)	653, sh	$E_{r}$ , v[4(TeF _{4e} - TeF _a ) + 2((Te'F _{2e cis} - Te'F _{2e cis} ) - Te'F _a )]
652(<1)	635(<1)	644(22)	$A_{re} v[6(TeF_{2e} trans - TeF_{2e} trans})]$
651(7)	632(3)		$E_{a} \vee [4(\text{TeF}_{2e \text{ trans}} - \text{TeF}_{2e \text{ trans}}) + 2(\text{Te'F}_{4e} - \text{Te'F}_{a})] +$
		<i>J</i>	$v[SbO'_{2} - (2Te'O')_{max}]$
475(2)	475(2)		$E_{\rm v}[{\rm SbO}_4 + (4{\rm TeO})] = v[{\rm SbO}_2 + (2{\rm Te}'O')_{\rm max}]$
430(22)	431(56)	411(27)	$\Delta_{\rm s} \gamma(\rm SbO_{\star} + 6TeO)$
377(3)	349(5)	369(10)	$\Lambda = 8[6(ShOTe)] = 8[6TeE] = 1000$
346(<1)	379(<1)	344(10)	$A_{g}$ , $O[O(OO) = O[OTeT_{4}, under all a]$
207(2)	323((1))	238(16)	$A_{g}$ , $O[O(SOOTE)] + O[OTEr_{4c} umbrena]$
327(2)	212(5)	222(16)	
327(3) 325(1)	312(3) 310(2)	332(10) 226 ch	
310(<1)	206(1)	320, 31	
319(<1)	306(<1)	522(11)	
305(1)	292(3)	í	
297(1)	280(1)	> 304(17)	
295(1)	279(1)	500(17)	
234(1)	231(3)	ί.	
232(1)	226(1)		
221(1)	214(1)	242(13)	strongly coupled deformation and torsion modes involving both
221(1)	214(1)	}	$OTeF_{4}$ and SbOTe moleties
207(<1)	202(<1)	229(6)	
206(<1)	198(<1)		
203(1)	199(0)		
132(1)	134(3)	145(10)	
		140(14)	
124(<1)	125(<1)	134(9)	
		131(7)	
110(<1)	106(<1)	121(10)	
104(<1)	101(<1)	111(11), br	
79(<1)	88(1)		
68(<1)	85(<1)		
42(<1)	53(<1)		
35(<1)	45(<1)		
28(<1)	38(<1)		)
24(<1)	33(<1)		

#### Table 5.11.(continued ...)

^a Only Raman-active modes are reported. ^b Calculated Raman intensities, in Å⁴ amu⁻¹, are given in parentheses. ^c Frequencies calculated at the HF level have been scaled by multiplying by 0.90. ^d Relative Raman intensities are given in parentheses. ^e Elongation of a bond(s) and angle opening(s) are denoted by plus (+) signs and bond contraction(s) and angle closing(s) are denoted by negative (-) signs. The abbreviations denote stretch (v) and bending ( $\delta$ ) modes. The prime symbols (') differentiate Te or O atoms belonging to two OTeF₅ groups that are trans to one another from atoms belonging to remaining four groups which are also mutually trans to one another.

### 5.2.5. Computational Results

#### 5.2.5.1. Geometry of XeOTeF₅⁺·SO₂ClF

The electronic structure of the XeOTeF5⁺·SO₂ClF adduct has been calculated starting from  $C_1$  symmetry using Hartree-Fock (HF) and pure density functional theory (DFT) methods and Stuttgart and (SDB-)cc-pVTZ basis sets, yielding an optimized geometry having  $C_1$  symmetry. Although both types of calculations resulted in stationary points with all frequencies real for SO₂ClF and XeOTeF₅⁺, the energy minimizations of the XeOTeF₅⁺·SO₂ClF adduct cation gave rise to a local minimum at the HF level, but gave one imaginary frequency at the DFT level (Table 5.6). Overall, the DFT method gave better agreement between the experimental and calculated geometries and vibrational frequencies. For this reason, only the DFT results are discussed; the other calculated values can be found in Tables 5.9 and 5.10. The  $XeOTeF_5^+$  cation^{75,80} and SO₂ClF⁸⁰ have been the subject of previous theoretical calculations. They were, however, recalculated in the present study at the same level of theory as XeOTeF5⁺·SO₂ClF in order to study the changes in geometric parameters and vibrational frequencies that occur upon coordination. The present optimized geometric parameters for SO₂ClF ( $C_s$ ) and XeOTeF₅⁺ ( $C_1$ ) are listed in Tables 5.7 and 5.8, respectively.

Overall, there is very good agreement between the calculated and the observed geometries, in particular for the Xe–O–Te and O–Xe…O angles. The largest deviation is for the O–S–O…Xe dihedral angle (calc,  $-13.2^{\circ}$ ; obs,  $24.9(6)^{\circ}$ ), which is expected because it can be more easily deformed by crystal packing. At the HF level, the O–Xe…O bond angle is almost linear and the Xe–O bond is shorter than the Te–O bond.

The HF method has previously been shown to incorrectly predict linear geometries for the Xe₂F₃^{+ 23} and Kr₂F₃^{+ 139} cations. Although there is no crystal structure containing a well-isolated XeOTeF₅⁺ cation, the calculated geometry of XeOTeF₅⁺·SO₂ClF shows several significant changes when compared with the calculated geometry of the XeOTeF₅⁺ cation. As expected, the Xe–O bond length increases upon coordination; the F_a–Te–F_e angles are smaller, moving the equatorial fluorine atoms away from the oxygen atom, while the Te–O and Te–F bond lengths and the Xe–O–Te angle remain essentially unchanged. As observed experimentally, the calculated S–F and S–Cl bond lengths are found to be shorter than in free SO₂ClF, while the coordinated S–O(8) bond is found to be elongated and the terminal S–O(9) bond length is comparable to that in uncomplexed SO₂ClF. The calculated geometrical changes are also in accord with changes observed in the structures of the SbF₅·SO₂ adduct¹⁷³ and Fe(OTeF₅)₃·3SO₂ClF.¹⁶⁵ The increase in Cl–S–F bond angle and corresponding decrease in O–S–O bond angle relative to the experimental values of uncomplexed SO₂ClF are reproduced at both levels of theory.

## 5.2.5.2. Bonding in XeOTeF5⁺·SO₂ClF and Related Systems

Natural Bond Orbital (NBO, Table 5.12) and Electron Localization Function (ELF) analyses have been performed for XeF₂, free XeF⁺, the XeOTeF₅⁺·SO₂ClF adductcation, and for the [XeF][SbF₆], [XeF][AsF₆], [XeOTeF₅][SbF₆], and [XeOTeF₅][AsF₆] ion pairs to (1) determine the relative strengths of the Xe---F and Xe--O donor-acceptor interactions and to (2) correlate the valence electron lone-pair basin distribution with the strength of the donor-acceptor interaction. The total xenon lone pair basin volumes and

		XeOTeF5 ⁺ ·SO ₂ ClF	XeOTeF ₅ ⁺	SO ₂ ClF
charge	Xe(1)	1.16	1.18	
-	O(7)	-0.95	-0.87	
	Te(1)	3.52	3.51	
	F(33)	-0.56	-0.55	
	F(31)	-0.56	-0.55	
	F(32)	-0.60	-0.59	
	F(34)	-0.60	-0.59	
	F(35)	-0.56	-0.55	
	<b>S</b> (1)	2.18		2.18
	O(8)	-0.87		-0.78
	O(9)	-0.74		-0.78
	<b>Cl</b> (1)	-0.003		-0.17
	F(36)	-0.39		-0.44
alency	Xe(1)	0.68	0.58	
-	O(7)	0.97	0.99	
	Te(1)	3.22	3.20	
	F(33)	0.52	0.53	
	F(31)	0.50	0.51	
	F(32)	0.48	0.49	
	F(34)	0.48	0.49	
	F(35)	0.50	0.51	
	S(1)	3.63		3.60
	O(8)	1.06		1.02
	O(9)	1.06		1.02
	<b>Cl</b> (1)	0.64		0.56
	F(36)	0.55		0.52
ond	Xe(1)–O(7)	0.47	0.54	
order	Te(1)-O(7)	0.55	0.49	
	Te(1)-F(33)	0.55	0.56	
	Te(1)-F(31)	0.54	0.54	
	Te(1)-F(32)	0.51	0.52	
	Te(1)-F(34)	0.51	0.52	
	Te(1)-F(35)	0.54	0.54	
	Xe(1)O(8)	0.16		
	S(1)-O(8)	1.03		1.15
	S(1)-O(9)	1.18		1.15
	S(1)-Cl(1)	0.76		0.67
	S(1) - F(36)	0.66		0.62

Table 5.12.	Calculate	d ^a Natura	l Atomic	Charges,	Mayer	Bond	Orders,	and	Mayer
	Natural	Atomic	Orbital	Valencies	for	SO ₂ Cl	F, XeO	)TeF5 ⁺	and
	XeOTeF	5 ⁺ ·SO ₂ ClF							

^a SVWN/(SDB-)cc-pVTZ.

separation values ( $f_{sep}$ ) are given in Figures 5.4, 5.5, and 5.6. Further details associated with the NBO analyses are provided in Tables 5.9 and 5.13.

Gas-phase complexation energies were calculated at the SVWN/(SDB-)cc-pVTZ level of theory and were exothermic for [XeF][AsF₆]/[XeF][SbF₆] (-624.3/-610.0 kJ mol⁻¹), [XeOTeF₅][AsF₆]/[XeOTeF₅][SbF₆] (-557.7/-543.9 kJ mol⁻¹), and XeOTeF₅⁺·SO₂ClF (-116.3 kJ mol⁻¹), showing that the ion-pairing energies are greater for XeF⁺ than for XeOTeF₅⁺ for both AsF₆⁻ and SbF₆⁻, and that the donor-acceptor interaction between XeOTeF₅⁺ and SO₂ClF is only ca. 20% that of the fluorine-bridge bond energy in the AsF₆⁻ and SbF₆⁻ salts and ca. 50% of the complexation energy for XeF⁺·H₂O (-216.3 kJ mol⁻¹). At the opposite end of the scale, the complexation energy for XeF⁺ and naked F⁻ ion (-1086.9 kJ mol⁻¹), leading to XeF₂ formation, is nearly double that of the aforementioned ion pairing energies.

Gas-phase thermodynamic donor-acceptor bond strengths are corroborated by the higher bond orders for Xe---F(7) in [XeF][AsF₆]/[XeF][SbF₆] (0.216/0.199) than for Xe---F(6) in [XeOTeF₅][AsF₆]/[XeOTeF₅][SbF₆] (0.197/0.192), and by the lower natural charges on xenon in [XeOTeF₅][AsF₆]/[XeOTeF₅][SbF₆] (1.194/1.195) when compared with those for xenon in [XeF][AsF₆]/[XeF][SbF₆] (1.222/1.232). Each fluorine, (F(6) and F(7)), that has a long contact to the xenon atom of the ion-pair, is assigned four valence electron pairs by their NBO analyses. The longer M---F(6) and M---F(7) bridge bond lengths and their lower bond orders indicate considerably weaker, less covalent bonding when compared with the terminal M-F bond strengths of the anions. The calculated





 $f_{\rm sep} = 0.63$ 



**Figure 5.4.** ELF isosurface plots at contour levels for XeOTeF₅⁺·SO₂ClF corresponding to the indicated basin separation values,  $f_{sep}$ , (a) 0.24, (b) 0.63, and (c) 0.79 at the SVWN/(SDB-)cc-pVTZ//SVWN/(SDB-)cc-pVTZ level of theory. Color scheme: blue, lone pair (monosynaptic) basin,  $V(X_i)$ ; green, bond (bisynaptic) basin,  $V(E,X_i)$ ; red, core basin, C(E).



**Figure 5.5.** ELF isosurface plots at the SVWN/(SDB-)cc-pVTZ//SVWN/(SDB-)ccpVTZ level of theory for (a)  $XeF_2$ ,  $f_{sep} = 0.45$  contour level, (b)  $XeF^+$ ,  $f_{sep} = 0.58$  contour level, and (c)  $XeOTeF_5^+$ ,  $f_{sep} = 0.70$  contour level. The tilted, right-hand side views in (a) and (b) are plotted at the 0.70 contour level. See Figure 5.4 for color scheme.





**Figure 5.6.** ELF isosurface plots at the 0.70 contour level for (a) [XeF][AsF₆], (b) [XeF][SbF₆], (c) [XeOTeF₅][AsF₆], and (d) [XeOTeF₅][SbF₆] at the SVWN/(SDB-)cc-pVTZ//SVWN/(SDB-)cc-pVTZ level of theory. Basin separation values and xenon torus volumes are indicated. See Figure 5.4 for color scheme.

**Table 5.13.** Calculated^a Bond Lengths (Å), Natural Atomic Charges, Mayer BondOrders, and Mayer Natural Atomic Orbital Valencies for  $[XeF][SbF_6]$ , $[XeOTeF_5][MF_6]$  (M = As, Sb), XeF⁺ and XeF₂

	$[XeF][MF_6](C_1)$			$[XeOTeF_5][MF_6](C_1)$			
	M = As	M = Sb		M = As	M = Sb		
	charge			charge			
<b>Xe</b> (1)	1.222	1.232	<b>Xe</b> (1)	1.194	1.195		
F(1)	-0.511	-0.505	<b>O</b> (1)	-1.016	-1.005		
			<b>Te</b> (1)	3.515	3.513		
			F(3)	-0.584	-0.591		
			F(1)	-0.588	-0.587		
			F(2)	-0.609	-0.604		
			F(4)	-0.587	-0.585		
			F(5)	-0.611	-0.608		
<b>M</b> (1)	2.837	3.111	<b>M</b> (1)	2.840	3.107		
F(2)	-0.585	-0.637	F(6)	-0.563	-0.596		
F(3)	-0.613	-0.665	F(7)	-0.589	-0.638		
F(4)	-0.588	-0.640	F(8)	-0.616	-0.665		
F(5)	-0.613	-0.665	F(9)	-0.586	-0.636		
F(6)	-0.585	-0.637	F(10)	-0.615	-0.664		
F(7)	-0.565	-0.595	F(11)	-0.586	-0.636		
	valency			valency			
<b>Xe</b> (1)	0.614	0.600	<b>Xe</b> (1)	0.693	0.681		
<b>F</b> (1)	0.352	0.353	O(1)	0.973	0.960		
			Te(1)	3.241	3.255		
			F(3)	0.498	0.501		
			F(1)	0.488	0.492		
			F(2)	0.474	0.483		
			F(4)	0.488	0.494		
			F(5)	0.474	0.481		
<b>M</b> (1)	3.282	2.767	<b>M</b> (1)	3.273	2.783		
F(2)	0.556	0.485	F(6)	0.473	0.471		
F(3)	0.534	0.466	F(7)	0.576	0.498		
F(4)	0.581	0.494	F(8)	0.527	0.469		
F(5)	0.534	0.466	F(9)	0.553	0.488		
F(6)	0.556	0.485	F(10)	0.527	0.469		
F(7)	0.486	0.467	F(11)	0.553	0.487		

Table 5.13.(continued...)

bond leng	gth [bond or	ler]	bond length [bond order]				
Xe(1)-F(1)	1.963 [0.352]	1.958 [0.352]	Xe(1)–O(1)	2.055 [0.409]	2.048 [0.402]		
			Te(1)-O(1)	1.908 [0.616]	1.911 [0.610]		
			Te(1)-F(3)	1.838 [0.536]	1.838 [0.537]		
			Te(1)-F(1)	1.843 [0.525]	1.843 [0.529]		
			Te(1)-F(2)	1.858 [0.508]	1.857 [0.516]		
			Te(1)-F(4)	1.843 [0.525]	1.842 [0.530]		
			Te(1)-F(5)	1.858 [0.508]	1.858 [0.513]		
Xe(1)F(7)	2.133 [0.216]	2.149 [0.199]	Xe(1)F(6)	2.150 [0.197]	2.168 [0.192]		
M(1)–F(7)	2.014 [0.298]	2.131 [0.278]	M(1)–F(6)	1.999 [0.304]	2.120 [0.288]		
M(1)-F(2)	1.697 [0.603]	1.879 [0.504]	<b>M</b> (1)– <b>F</b> (7)	1.683 [0.618]	1.872 [0.514]		
M(1)–F(3)	1.723 [0.569]	1.905 [0.474]	M(1)–F(8)	1.726 [0.564]	1.907 [0.474]		
M(1)–F(4)	1.682 [0.621]	1.872 [0.511]	M(1)-F(9)	1.697 [0.601]	1.879 [0.506]		
M(1)-F(5)	1.723 [0.569]	1.905 [0.474]	<b>M</b> (1)– <b>F</b> (10)	1.724 [0.564]	1.907 [0.475]		
M(1)–F(6)	1.697 [0.603]	1.879 [0.504]	M(1)–F(11)	1.697 [0.601]	1.879 [0.506]		
Table 5.13.(continued...)

XeF	$\Gamma^+(C_{\infty v})$	X	$\operatorname{KeF}_{2}(D_{\infty h})$
cł	narge		charge
<b>Xe</b> (1)	1.327	Xe(1)	1.161
F(1)	-0.327	F(1)	-0.580
		F(2)	-0.580
va	lency		valency
<b>Xe</b> (1)	0.454	Xe(1)	0.626
F(1)	0.454	F(1)	0.314
		F(2)	0.314
bond lengt	h [bond order]	bond ler	ngth [bond order]
Xe(1)-F(1)	1.878 [0.454]	Xe(1)-F(1)	2.010 [0.313]
		Xe(1)–F(2)	2.010 [0.313]

^a SVWN/(SDB-)cc-pVTZ.

terminal M–F bond lengths in the ion-pairs are shorter and their bond orders are slightly higher and more covalent for  $AsF_6^-$  than for  $SbF_6^-$ . The interaction between  $F_5TeOXe^+$  and  $SO_2ClF$  is shown to be considerably weaker and more ionic, having a Xe…O(3) bond order of only 0.164 and a larger charge difference on the donor and acceptor atoms (Xe, 1.159; O(3), -0.868).

When ELF isosurface contours are drawn at progressively increasing function values (f), the basins separate at  $f_{sep}$  and the lobes thus formed contain more localized electron density with increasing f-value (Figure 5.4). In the case of the lone pair (monosynaptic) basins, a noteworthy feature is the toroidal valence electron pair density on xenon and the more exposed core charge at the "openings" of the torus. The torus results from the combination of the three non-bonding ELF basins corresponding to the three electron lone pair domains of XeF₂ in its AX₂E₃ VSEPR arrangement of bond pair domains (X) and valence electron lone pair domains (E). Thus, the individual valence lone pairs are not individually localized. The three-dimensional xenon valence isosurface is similar in appearance to that of isovalent  $ClF_2^{-}$ .¹⁷⁴ All xenon(II) species considered in the present study exhibit toroidal xenon valence electron pair basins with XeF₂ providing the most symmetric example (Figure 5.5). For the AXE₃ VSEPR arrangement of XeF⁺, the xenon valence lone pair density also forms a torus, however, it is asymmetric and the opening opposite the Xe-F bond exposing the core basin density is more closed. Thus, the donor atoms of the XeOTeF5⁺·SO₂ClF adduct-cation and ion pairs presently under discussion can be viewed as approaching the xenon atoms of the parent XeF⁺ and  $XeOTeF_5^+$  cations at the centers of their respective tori where the positive charges of the

### Ph.D. Thesis – Matthew D. Moran

xenon core basins are more exposed. A likely consequence of the toroidal xenon valence electron distributions is that the xenon van der Waals radii of xenon(II) species are significantly diminished along their xenon-ligand atom bond axes (see Section 5.2.3).

The relative strengths of the donor-acceptor interactions between the xenon(II) Lewis acidic cations and the weakly fluorobasic  $MF_6^-$  (M = As, Sb) anions and SO₂CIF have been assessed on the basis of ELF separation function ( $f_{sep}$ ) values; that is to say, the *f*-function value at which the contour between the acceptor atom (xenon) and the donor atom (oxygen or fluorine) separate. Separation of the basin on the xenon atom of  $F_5TeOXe^+$  and the oxygen atom of SO₂CIF occurs at an  $f_{sep}$  value of 0.24 and is consistent with weak, highly polar bonding and the long Xe···O(3) bond (2.388 Å). The separations of the corresponding basins for XeF⁺ and AsF₆⁻/SbF₆⁻ occur at higher  $f_{sep}$ values (0.35/0.33) with no assigned bond basins, indicative of more polar-covalent bonding and in accord with long Xe·--F(7) bridge bonds (2.133/2.149 Å). The separations of F₅TeOXe⁺ and AsF₆⁻/SbF₆⁻ occur at  $f_{sep}$  values (0.34/0.32) similar to those of [XeF][AsF₆/SbF₆] and have Xe·--F bridge bond lengths (2.150/2.168 Å) that are also similar to those of XeF⁺ salts.

The xenon valence basin (torus) volumes, given by ELF population analyses, decrease in the order XeF⁺ (329.1) > XeF₂ (308.1) > [XeF][AsF₆/SbF₆] (272.0/268.8). For XeF⁺ and XeF₂, the smaller volume of XeF₂ can be viewed as a contraction of the XeF⁺ valence lone pair basin volume by the negative electric field of a second fluoride ion. While one may have anticipated the xenon lone pair basin volume of [XeF][AsF₆/SbF₆] to be intermediate with respect to those of XeF⁺ and XeF₂, it is further contracted by interaction with a fluorine atom of the anion cis to the Xe---F-As/Sb bridge (Figure 5.6a). Analogous behavior is exhibited by XeOTeF₅⁺ (307.1) and [XeOTeF₅][AsF₆/SbF₆] (241.4/239.1) and, moreover, the contraction is even more pronounced and may be a consequence of the higher natural charge on oxygen (O, -0.870; F, -0.327). The F-on-Te···Xe interaction deforms the xenon lone pair basin in the manner shown in Figures 5.6c and 5.6d. For the least strongly bound case, [XeOTeF₅][SO₂ClF], the xenon torus volume (263.6) is less contracted with respect to that of [XeOTeF₅][AsF₆], and is indicative of a weaker donor-acceptor interaction with SO₂ClF than with AsF₆⁻/SbF₆⁻. In all cases, the xenon lone pair volumes are sensitive to nearest neighbor interactions, and correlate with the strength of the donor-acceptor interaction interaction as assessed on the basis of their *f*_{sep} values.

#### 5.3. Conclusions

The present study provides a reliable synthesis of the strong oxidant noble-gas salt, [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF, which is of proven and potential synthetic utility. The structural characterization of [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF in solution and in the solid state has provided insight into its low-temperature oxidant properties which are primarily consequences of the weakly coordinating nature of the Sb(OTeF₅)₆⁻ anion, the weak Xe···O donor-acceptor bond between XeOTeF₅⁺ and SO₂ClF, and the high solubility of the salt in SO₂ClF at low temperatures. The study has afforded a rare example of the weak Lewis base, SO₂ClF, coordinated to a Lewis acid center, XeOTeF₅⁺. As well as reproducing the geometric parameters and vibrational frequencies of the XeOTeF₅⁺.

consistent trends for the relative strengths of the Xe···O donor-acceptor bond in XeOTeF₅⁺·SO₂ClF and related ion-pair bonds in [XeL][MF₆] (L = F, OTeF₅; M = As, Sb) based on their gas-phase complexation energies, and NBO and ELF analyses. These weak interactions are highly polar in nature, with XeOTeF₅⁺·SO₂ClF providing the weakest donor-acceptor interaction within the series that was examined. The use of ELF separation contours has provided a semi-quantitative approach to assessing the relative strengths of the donor-acceptor interactions in these species, and may be generally applicable. The ELF calculations also show that the three valence electron lone pairs on xenon(II) are in fact not localized in three discreet pairs, but rather combine to form a torus around the xenon atom; even when the coordination about the xenon atom is highly asymmetric, this toroidal electron pair density distribution survives, albeit distorted.

# **CHAPTER 6**

# THE SYNTHESES OF CARBOCATIONS BY USE OF THE NOBLE-GAS OXIDANT, [XeOTeF₅][Sb(OTeF₅)₆]; THE SYNTHESES AND CHARACTERIZATION OF THE $CX_3^+$ (X = Cl, Br, OTeF₅) AND CBr(OTeF₅)₂⁺ CATIONS AND THEORETICAL STUDIES OF $CX_3^+$ AND BX₃ (X = F, Cl, Br, I, OTeF₅)

### 6.1. Introduction

Trihalomethyl cations,  $CX_3^+$  (X = Cl, Br, I), have been the subject of considerable interest. The  $CCl_3^+$  and  $CBr_3^+$  cations have been postulated as superelectrophilic intermediates that catalyze efficient cracking, isomerization and oligimerization of alkanes and cycloalkanes, as well as facilitating the syntheses of carbocations by means of hydride abstraction by the  $CCl_3^+$  cation.¹⁷⁵ The  $CCl_3^+$  cation, the first perhalomethyl cation to have been reported, was observed in the gas phase by mass spectrometry¹⁷⁶ and by ion cyclotron resonance (ICR) mass spectrometry.¹⁷⁷ The CCl₃⁺ cation has also been isolated in the solid state by ultraviolet or microwave irradiation of CHCl₃ and trapping of the free ion in an argon matrix at 14 K,  178,179  and by codeposition of CCl₄ and SbF₅ on a CsI window at 77 K followed by warming to 150 K to produce [CCl₃][Sb₂F₁₀Cl] in an SbF₅ matrix.¹⁸⁰ In all three cases, CCl₃⁺ was characterized by infrared spectroscopy. The  $CBr_3^+$  and  $CI_3^+$  cations have been more recently observed in the gas phase by ICR mass spectrometry.¹⁸¹ The  $CF_3^+$  cation has been observed by mass spectrometry¹⁷⁶ and ICR mass spectrometry,¹⁷⁷ and was first produced in the condensed state by photodecomposition of CF₃X (X = Cl, Br, I, H) in argon matrices.¹⁸² The CF₃⁺ cation has also been obtained by decomposition of an Ar/F₃CNNCF₃ mixture at 14 K codeposited with microwave-excited neon atoms,¹⁸³ and by codeposition of a Ne/CF₄ mixture at 5 K with excited neon atoms produced in a microwave discharge.¹⁸⁴ Matrix-isolated CF₃⁺, derived in the aforementioned manners, was characterized by infrared spectroscopy, and the vibrational assignments for CF₃⁺ have been confirmed by ab initio calculations.¹⁸⁵ The first syntheses of long-lived perhalomethyl cations in solution were achieved by the reactions of CX₄ (X = Cl, Br, I) with SbF₅ in SO₂ClF solvent at -78 °C to give [CX₃][Sb_nF_{5n}X] (X = Cl, Br, I).^{186,187} All three cations were characterized by ¹³C NMR spectroscopy. The CCl₃⁺ cation was also generated by reaction of CCl₃C(O)Cl, CCl₃SO₂Cl, and CCl₃C(O)F with SbF₅ in SO₂ClF at -78 °C.^{186,187} Similar attempts to prepare CF₃⁺ by reaction of SbF₅ with CF₄, CF₃C(O)F and CF₃SO₂Cl in SO₂ClF at -78 °C were unsuccessful and, in the cases of CF₃C(O)F and CF₃SO₂Cl, yielded CF₄.^{186,187} The Cl₃⁺ cation has been recently synthesized as the [Cl₃][Al(OC(CF₃)₃)₄] salt by the abstraction of iodide as AgI from Cl₄ in CH₂Cl₂ solution by use of [Ag][Al(OC(CF₃)₃)₄]

The series of peralkoxymethyl cations,  $C(OR)_3^+$ , has been extensively studied and characterized in solution, and were first generated by alkylation of a carbonic ester¹⁸⁸ or by Meerwein's method,^{189,190} which involves alkoxy group abstraction from an ortho ester by BF₃. Peralkoxymethyl cations, generated in acid solutions from ortho esters or ketals, have been characterized by ultraviolet and infrared spectroscopy and by ¹H and ¹³C NMR spectroscopy.¹⁹¹ The trihydroxymethyl cation,  $C(OH)_3^+$ , was first generated by dissolution of M₂CO₃ (M = Na, K), BaCO₃, or NaHCO₃ in FSO₃H–SbF₅–SO₂ superacid solutions at –78 °C and studied by ¹H and ¹³C NMR spectroscopy.¹⁹² Prior to the present

work, the  $C(OH)_3^+$  cation was the only  $C(OX)_3^+$  cation to have been isolated and studied in the solid state. The low-temperature crystal structure of  $[C(OH)_3][AsF_6]$  and infrared and Raman spectra of  $[C(OH)_3][MF_6]$  (M = As, Sb) were obtained by the HF solvolysis of O=C(OSiMe_3)_2 in the superacidic media HF/MF₅.¹⁹³ The salts were found to decompose to CO₂ and  $[H_3O][MF_6]$  above -16 °C (M = As) and -4 °C (M = Sb).

While there have been a considerable number of structures determined for non-halogen/oxygen substituted carbocations,¹⁹⁴ relatively few crystal structures have been determined for halogen- and oxygen-substituted carbocations. These include  $[F_2C-S-CF-S]^+$ ,¹⁹⁵ [(CH₃)₂CF]⁺,¹⁹⁶ [(*m*-CF₃C₆H₄)(C₆H₅)CF]⁺,¹⁹⁶ [CH₃OCHF]⁺,¹⁹⁷ [(*o*-ClC₆H₄)(C₆H₅)CC1]⁺,¹⁹⁸ [ClCO]⁺,¹⁹⁹ [Cl₂C=NH₂]⁺,²⁰⁰ [ClBrC=NH₂]⁺,²⁰¹ [CH₃OCHC1]⁺,¹⁹⁷ [C(OH)₂CH₃]⁺,^{202,203} [HC(OH)₂]⁺,²⁰⁴ [(C₆H₅)C(-OCH₂CH₂O-)]⁺,²⁰⁵ and [(CH₃)C(-OC(CH₃)₂C(CH₃)₂O-)]⁺.²⁰⁶ Until the present work, the CI₃⁺ and C(OH)₃⁺ cations were the only perhalogen- and peroxygen-substituted cations to have been characterized by single crystal X-ray diffraction.^{101,193}

Given the relative paucity of solid state structural data for trihalomethyl cations, electronic structure calculations have been heavily relied upon for metric data and have been used to account for the bonding and chemical properties of these cations. The relative stabilities of the trihalomethyl cations have been assessed in terms of relative degrees of  $\sigma$  and p( $\pi$ ) donation from the halogen atom to the carbon center.^{101,187,196,199,207-²¹⁰ The  $\sigma$  effect, from the perspective of the halogen atoms of CX₃⁺, has been found to be strongly withdrawing in the case of fluorine and weakly donating in the cases of chlorine, bromine and iodine (I > Br > Cl). Conversely, p( $\pi$ ) back-donation is weak for fluorine} and stronger for the heavier halogens (I > Br > Cl). Other properties have been computed for the  $CX_3^+$  series, including ¹³C chemical shifts,²¹¹ fluoride ion affinities (as measures of Lewis acidities),^{101,210} vibrational frequencies,¹⁸⁵ and atomic charges.^{101,187,196,199,207-210}

While prior syntheses of long-lived perhalomethyl cations have been achieved by halide abstraction by use of either a strong Lewis acid (in superacidic or SO₂ClF solvent media) or  $Ag^+$  (vide supra), no routes to such carbocations through oxidative removal of a halogen bound to carbon are presently known. Among the objectives of this chapter are to provide structural and spectroscopic data for the perhalomethyl cations and related OTeF₅-substituted cations that, thus far, have been lacking for these systems. The present chapter details an oxidative route to carbocations using the strongly oxidizing salt, [XeOTeF₅][Sb(OTeF₅)₆] (see Chapter 5), and represents an interesting new application of noble-gas compounds to chemical syntheses (see Chapter 1).^{81,87,89} The present solution, solid state, and computational studies compliment previous solution ¹³C NMR studies of the CCl₃⁺, CBr₃⁺, and Cl₃^{+ 101,186,187} cations and the X-ray structure of the Cl₃⁺ cation.¹⁰¹

### 6.2. Results and Discussion

6.2.1. Syntheses of  $[CCl_3][Sb(OTeF_5)_6]$ ,  $[CBr_n(OTeF_5)_{3-n}][Sb(OTeF_5)_6]$  (n = 0, 1, 3),  $[Br(OTeF_5)_2][Sb(OTeF_5)_6]$ , and  $C(OTeF_5)_4$  and Solution Characterization by ¹⁹F and ¹³C NMR Spectroscopy

The products of the reactions described below were initially characterized in  $SO_2ClF$  solution by ¹³C and ¹⁹F NMR spectroscopy, and their NMR parameters are provided in Table 6.1.

		chem	shıft (δ),	ppm ^b			coupling	constant, Hz ^b			100 (total satellite intens /central peak intens) *
	Species	¹³ C	¹⁹ F _B	¹⁹ F _A	$^{2}J(^{13}C-^{125}Te)$	$^{2}J(^{19}F_{A}-^{19}F_{B})$	${}^{1}J({}^{19}F_{B}-{}^{125}Te)$	$^{1}J(^{19}F_{A}-^{125}Te)$	${}^{1}J({}^{19}F_{B}-{}^{123}Te)$	$^{1}J(^{19}F_{A}-^{123}Te)$	¹²⁵ Te
	CCl ₃ ^{+ d}	237.1									
	$CBr_3^{+d}$	209.7									
	$\operatorname{CBr}_2(\operatorname{OTeF}_5)^{+d}$	201.1°	-19.9	-61.3		156	4099				
	$CBr(OTeF_5)_2^{+d}$	1876	-24.4	-59 3		162	4029	(4075)	3343		
	C(OTeF ₅ ) ₃ ^{+ d}	168.8	-31.6	-57.6	69	164	4025	4012	3337		12 ± 1 (12 7)
00	C(OTeF5)4	115.8	-41.5	-49.9	64	180	3758	3653	3120	3029	16.9 ± 0.1 (16.8)
	$Br(OTeF_5)_2^{+d}$		-24 4	-58 2		164	4013	(4047)	3324	(3350)	
	BrOTeF ₅ ^f		-53.8	-47.0		180	3786	3419	3140		
	ClOTeF5		-54 0	-49.2		178	3852	3474			
	$Sb(OTeF_5)_6^{-d}$		-42	2.6			3563				

**Table 6.1.** The ¹³C and ¹⁹F NMR Parameters^a for C(OTeF₅)₄ and CBr_n(OTeF₅)_{3-n}⁺ (n = 0-3), and Products Resulting from the Reaction of [XeOTeF₅][Sb(OTeF₅)₆] with CCl₄ and CBr₄

^a Nuclear magnetic resonance spectra were obtained for SO₂ClF solutions at -80 °C ( $\delta$ (¹⁹F), 98.3 ppm; primary and secondary isotope shifts: ² $\Delta$ ¹⁹F(^{16/18}O), 0.043 ppm, ¹ $\Delta$ ¹⁹F(^{32/34}S), 0.061 ppm and ² $\Delta$ ¹⁹F(^{35/37}Cl), 0.008 ppm. ^b The symbols, F_B and F_A, denote equatorial and axial fluorine atoms, respectively. ^c Ratios calculated from natural isotopic abundances are given in parentheses. ^d The Sb(OTeF₅)₆⁻ anion parameters apply to all carbocation salts and to the Br(OTeF₅)₂⁺ salt of Sb(OTeF₅)₆⁻; also see ref 35. ^e Predicted from pairwise additivity parameters as described in Section 6.2.5. ^f See ref 212 and 164.

The synthesis and X-ray crystal structure of  $[XeOTeF_5][Sb(OTeF_5)_6]$ ·SO₂ClF has been described in Chapter 5.¹⁴⁰ Unlike its fluorine analogue,  $[XeF][SbF_6]$ , which is insoluble in SO₂ClF at room temperature, the solubility of  $[XeOTeF_5][Sb(OTeF_5)_6]$  in SO₂ClF exceeds 2M at -78 °C, forming an intense yellow solution. The salt rapidly oxidizes equimolar amounts of CCl₄ at -78 °C to yield clear, colorless solutions of  $[CCl_3][Sb(OTeF_5)_6]$  according to eq 6.1. Removal of SO₂ClF and other volatile

$$[XeOTeF_5][Sb(OTeF_5)_6] + CCl_4 \longrightarrow$$

$$[CCl_3][Sb(OTeF_5)_6] + ClOTeF_5 + Xe \quad (6.1)$$

components under vacuum between -78 and 0 °C gave colorless, crystalline [CCl₃][Sb(OTeF₅)₆] (see Section 6.2.2), which was found to be stable indefinitely at room temperature.

The ¹³C NMR spectrum (SO₂ClF solvent, -80 °C) of the products resulting from eq 6.1 give rise to a sharp singlet (237.1 ppm) assigned to [CCl₃][Sb(OTeF₅)₆], which is in agreement with the previously reported value (236.3 ppm).¹⁸⁶ The ¹³C chemical shift of CCl₃⁺ is significantly deshielded relative to CCl₄ [ $\delta$ (¹³C), 96.4 ppm; SO₂ClF, -80 °C], which is consistent with carbocation formation (see Section 6.2.5). The ¹⁹F NMR spectrum shows the severe AB₄ pattern that typifies the Sb(OTeF₅)₆⁻ anion³⁵ and a wellresolved AB₄ pattern for ClOTeF₅ (Table 6.1).²¹³

The reaction of equimolar amounts of CBr₄ with [XeOTeF₅][Sb(OTeF₅)₆] in SO₂ClF is initially rapid at -78 °C, giving a deep red-brown solution which lightens to red-orange over a period of several hours at ca. -50 °C. The color change corresponds to

the further reaction of the  $CBr_3^+$  cation with BrOTeF₅ to produce  $Br_2$  and the mixed carbocations,  $CBr_2(OTeF_5)^+$ ,  $CBr(OTeF_5)_2^+$ , and, ultimately,  $C(OTeF_5)_3^+$  according to eq 6.2–6.5, with the overall reaction being represented by eq 6.6. Removal of SO₂ClF and



other volatile components under vacuum between -78 and 0 °C resulted in a pale yelloworange solid that was stable indefinitely at room temperature. The [CBr₃][Sb(OTeF₅)₆] and [C(OTeF₅)₃][Sb(OTeF₅)₆] salts have been characterized by single-crystal X-ray diffraction and Br₂ was identified by determination of the unit cell parameters from a single crystal at -173 °C (see Chapter 2).

The ¹³C NMR spectrum of  $[CBr_3][Sb(OTeF_5)_6]$  in SO₂ClF at -80 °C gave rise to a singlet (209.7 ppm), in good agreement with the previously reported value (207 ppm).¹⁸⁶

As in the case of  $CCl_3^+$ , the ¹³C resonance of  $CBr_3^+$  is significantly deshielded with respect to that of its parent molecule,  $CBr_4$  ( $\delta$ (¹³C), -29.7 ppm; SO₂ClF, -80 °C), which is characteristic of carbocation formation (see Section 6.2.5). The ¹⁹F NMR spectrum shows a severe AB₄ pattern corresponding to the Sb(OTeF₅)₆⁻ anion (Table 6.1), similar to that obtained for [CCl₃][Sb(OTeF₅)₆]. The ¹⁹F NMR spectrum of a sample of pure BrOTeF₅ dissolved in SO₂ClF at -80 °C (Table 6.1) was also obtained and demonstrated that BrOTeF₅, as proposed in eq 6.2, was not present in detectable quantities. The absence of BrOTeF₅ is consistent with the formation of mixed Br/OTeF₅-substituted methyl cations and the oxidation of BrOTeF₅ by [XeOTeF₅][Sb(OTeF₅)₆] to give the new Br(OTeF₅)₂⁺ cation (eq 6.7). The formation of Br(OTeF₅)₂⁺ was confirmed by reaction of BrOTeF₅

 $[XeOTeF_5][Sb(OTeF_5)_6] + BrOTeF_5 \longrightarrow$ 

 $[Br(OTeF_5)_2][Sb(OTeF_5)_6] + Xe$  (6.7)

with  $[XeOTeF_5][Sb(OTeF_5)_6]$  in SO₂ClF at -78 °C in a separate experiment.

The formation of the  $\operatorname{CBr}_n(\operatorname{OTeF}_5)_{3-n}^+$  (n = 1-3) cations and their NMR assignments were confirmed by addition of BrOTeF₅ at -20 °C to the reaction products of eq 6.6, in a 3:1 molar ratio relative to the initial amounts of [XeOTeF₅][Sb(OTeF₅)₆] and CBr₄. This resulted in increased amounts of the OTeF₅-containing carbocations and Br₂ as outlined in eq 6.3–6.5 (Table 6.1). The ¹³C NMR spectrum indicated that a small quantity of [CBr₃][Sb(OTeF₅)₆] remained unreacted (7% based on integration of all ¹³C resonances), with [C(OTeF₅)₃][Sb(OTeF₅)₆] as the major product (70%;  $\delta(^{13}C)$ , 168.8 ppm). Of the mixed OTeF₅-substituted bromocations, CBr_n(OTeF₅)_{3-n}⁺ (n = 1, 2), only

the CBr(OTeF₅)₂⁺ cation was detected by ¹³C NMR spectroscopy (10%;  $\delta$ (¹³C), 187.6 ppm), while the ¹³C chemical shift of the CBr₂(OTeF₅)⁺ cation was predicted by use of pairwise additivity parameters ( $\delta$ (¹³C), 201.1 ppm; see Section 6.2.5). A singlet was also observed (13%;  $\delta$ (¹³C), 124.7 ppm) that is tentatively assigned to O=C(OTeF₅)₂ based on the similarity of its ¹³C chemical shift to that of O=CF₂ (134.2 ppm),²¹⁴ and may arise from the formal loss of the TeF₅⁺ cation from C(OTeF₅)₃⁺ according to eq 6.8. Alternatively, O=C(OTeF₅)₂ may prove to be unstable, decomposing to CO₂ ( $\delta$ (¹³C), 124.2 ppm)²¹⁵ and O(TeF₅)₂ ( $\delta$ (¹⁹F_B), -41.4 ppm; F_A was not observed because of overlap with F_A of C(OTeF₅)₃⁺; ²J(¹⁹F_B-¹⁹F_A), 164 Hz) according to eq 6.9. The TeF₅⁺ cation

$$[C(OTeF_5)_3][Sb(OTeF_5)_6] \longrightarrow O=C(OTeF_5)_2 + [TeF_5][Sb(OTeF_5)_6]$$
(6.8)  
$$O=C(OTeF_5)_2 \longrightarrow CO_2 + O(TeF_5)_2$$
(6.9)

presumably is not observed because of its high electrophilicity, which leads to  $OTeF_5^$ abstraction from Sb(OTeF₅)₆⁻, forming O(TeF₅)₂ according to eq 6.10 and/or F⁻ abstractions to form TeF₆ [ $\delta$ (¹⁹F), -52.6 ppm; ¹J(¹⁹F-¹²⁵Te), 3747 Hz; ¹J(¹⁹F-¹²³Te), 3095 Hz] according to eq 6.11. The proposed species, Sb(OTeF₅)₅, which is known to be unstable, ^{110,216} and F₄TeOSb(OTeF₅)₅, have not been investigated further in this study.

$$[TeF_5][Sb(OTeF_5)_6] \longrightarrow O(TeF_5)_2 + Sb(OTeF_5)_5$$
(6.10)

$$[TeF_5][Sb(OTeF_5)_6] \longrightarrow TeF_6 + F_4TeOSb(OTeF_5)_5$$
(6.11)

The formation of the C(OTeF₅)₃⁺ cation was confirmed by the presence of a satellite doublet in the ¹³C NMR spectrum (²*J*(¹³C–¹²⁵Te), 69 Hz). The similar gyromagnetic ratios of ¹²³Te and ¹²⁵Te and the low natural abundance of ¹²³Te (0.87%) relative to ¹²⁵Te (6.99%) precluded the observation of separate ¹²³Te satellites because of overlap with the more intense ¹²⁵Te satellites ( $v_{y_2} \approx 5$  Hz), however, using ⁿ*J*_{AB} = ( $\gamma_A^n J_{A'B}/\gamma_{A'}$ ), the calculated value for ²*J*(¹³C–¹²³Te) is 57 Hz. By combining the intensities expected for coupling to ¹²³Te and ¹²⁵Te (7.86 %), the observed satellite peak/central peak integrated intensity ratios 0.111 : 1.000 : 0.123 in the ¹³C NMR spectrum was shown to be consistent with the calculated satellite peak/central peak intensity ratios 0.0001 : 0.0054 : 0.1268 : 1.0000 : 0.1268 : 0.0054 : 0.0001 expected for a series of overlapping subspectra that arise from coupling to three chemically equivalent tellurium atoms.¹⁶¹ Tellurium satellites were not observed for the CBr(OTeF₅)₂⁺ cation owing to the low concentration of this species (10%).

In order to compare the NMR parameters of  $C(OTeF_5)_3^+$  with those of the unknown neutral parent,  $C(OTeF_5)_4$ ,  $CBr_4$  was allowed to react with a stoichiometric amount of BrOTeF₅ at -78 °C according to eq 6.12. Details of the synthesis and

$$CBr_4 + 4 BrOTeF_5 \longrightarrow C(OTeF_5)_4 + 4 Br_2$$
(6.12)

structural characterization of C(OTeF₅)₄ are provided in Chapter 8. As expected, the ¹³C chemical shift of C(OTeF₅)₄ (115.8 ppm) is significantly shielded with respect to that of the C(OTeF₅)₃⁺ cation.

# 6.2.2. X-ray Crystal Structures of [CCl₃][Sb(OTeF₅)₆], [CBr₃][Sb(OTeF₅)₆]·SO₂ClF, and [C(OTeF₅)₃][Sb(OTeF₅)₆]·3SO₂ClF

Details of data collection parameters and other crystallographic information are provided in Table 6.2. Bond lengths and bond angles for the  $CCl_3^+$ ,  $CBr_3^+$ , and  $C(OTeF_5)_3^+$  cations are listed in Table 6.3. Closest secondary contacts between the carbon and halogen atoms of the cations and the fluorine atoms of the anion or oxygen atoms of the SO₂ClF solvent molecules are also given in Table 6.3 together with important bond lengths and bond angles for the Sb( $OTeF_5)_6^-$  anions and SO₂ClF solvent molecules is also provided (Table 6.3).

The present work reports the first crystal structures of the  $CCl_3^+$ ,  $CBr_3^+$ , and  $C(OTeF_5)_3^+$  cations. The Sb(OTeF_5)_6^- anion, which has been described previously,^{35,79} is comprised of a central antimony atom coordinated to six oxygen atoms and each of the six tellurium atoms is octahedrally coordinated to one oxygen and five fluorine atoms so that the anion structure can be described as an octahedron of octahedra. Bond angles and bond lengths of the Sb(OTeF_5)_6^- anions reported in the present study are in good agreement with those reported in the crystal structures of, for example, [SbBr_4][Sb(OTeF_5)_6],⁷⁹ [SbCl_4][Sb(OTeF_5)_6],⁷⁹ [N(CH_3)_4][Sb(OTeF_5)_6],³⁵ and [N(CH_2CH_3)_4][Sb(OTeF_5)_6],³⁵ and therefore require no further comment. The SO₂ClF solvent molecules present in the structures of [CBr_3][Sb(OTeF_5)_6]-SO₂ClF and [C(OTeF_5)_6]-SO₂ClF have the expected pseudo-tetrahedral geometry, with the S–O, S–Cl and S–F bond lengths in agreement with those obtained from the X-ray

		CCl ₃ ⁺	$C(OTeF_5)_3^+$	CBr ₃ ⁺
с	hem formula	$CCl_3F_{30}O_6SbTe_6$	CCl ₃ F ₄₈ O ₁₅ S ₃ SbTe ₉	CClBr ₃ F ₃₁ O ₈ SSbTe ₆
s	pace group	ΡĪ	PĪ	P2 ₁ /n
a	u (Å)	8.706(2)	10.082(4)	18.617(6)
b	• (Å)	9.181(2)	10.950(4)	9.935(3)
С	: (Å)	9.862(2)	24.572(10)	19.129(7)
C	x(deg)	104.111(5)	83.482(8)	90
29 F	(deg)	103.507(5)	81.679(7)	90.781(7)
<del>ر</del> ک	/(deg)	98.851(5)	70.019(7)	90
V	/(Å ³ )	724.5(5)	2517(3)	3538(4)
n	nolecules/unit cell	1	2	4
n	nol wt (g mol ^{$-1$} )	1671.71	2636.769	1923.6
с	alcd density (g cm ^{$-3$} )	3.832	3.480	3.611
Г	$\Gamma(^{\circ}C)$	-173	-173	-173
μ	$(cm^{-1})$	73.7	61.7	93.5
R		0.0355	0.0668	0.0621
и	$\nu R_2^{b}$	0.0736	0.1259	0.1211

**Table 6.2.**Crystallographic Data for  $[CCl_3][Sb(OTeF_5)_6]$ ,  $[CBr_3][Sb(OTeF_5)_6] \cdot SO_2ClF$ , and<br/> $[C(OTeF_5)_3][Sb(OTeF_5)_6] \cdot 3SO_2ClF$ 

^a $R_1$  is defined as  $\Sigma ||F_0| - |F_c||/\Sigma |F_0|$  for  $I > 2\sigma(I)$ . ^b $wR_2$  is defined as  $[\Sigma [w(F_0^2 - F_c^2)^2]/\Sigma w(F_0^2)^2]^{1/2}$  for  $I > 2\sigma(I)$ .

Table 6.3.ExperimentalGeometriesin $[CCl_3][Sb(OTeF_5)_6],$  $[CBr_3][Sb(OTeF_5)_6] \cdot SO_2ClF,$  and  $[C(OTeF_5)_3][Sb(OTeF_5)_6] \cdot 3SO_2ClF$ 

		$CCl_3^+$	
bond leng	ths (Å)	bond angles (c	leg)
C(1)-Cl(1)	1.672(11)	Cl(1)Cl(2)	118.4(8)
C(1)-Cl(2)	1.598(12)	Cl(1)-C(1)-Cl(3)	118.7(7)
C(1)-Cl(3)	1.592(13)	Cl(2) -C(1)-Cl(3)	123.3(8)
C(1)…F(14A)	2.962(9) [3 [°] ] ^a		
C(1)…F(14)	3.464(9) [4 [°] ] ^a		
C(1)…F(8A)	3.574(11) [13°] ^a		
C(1)…F(2A)	3.574(11) [37°] ^a		

 $\text{CBr}_3^+$ 

bond le	ngths (Å)	bond angle	es (deg)
C(1)-Br(1)	1.851(16)	Br(1)-C(1)-Br(2)	119.1(9)
C(1)–Br(2)	1.787(16)	Br(1)-C(1)-Br(3)	117.9(9)
C(1)-Br(3)	1.783(16)	Br(2)-C(1)-Br(3)	122.9(9)
C(1)…F(44A)	3.39(2) [8 [°] ] ^a		
C(1)…F(24A)	3.09(2) [8°] ^a		

 $C(OTeF_5)_3^+$ 

bond lengths (Å)

C(1)-O(1)	1.313(16)	C(1)-O(2)	1.279(13)	C(1)-O(3)	1.258(15)
Te(1)-O(1)	1.988(7)	Te(2)-O(2)	1.974(8)	Te(3)-O(3)	1.977(9)
Te(1)-F(1)	1.816(6)	Te(2)–F(6)	1.798(8)	Te(3)–F(11)	1.819(8)
Te(1)–F(2)	1.816(8)	Te(2)-F(7)	1.812(8)	Te(3)-F(12)	1.795(8)
Te(1)-F(3)	1.801(8)	Te(2)-F(8)	1.810(7)	Te(3)-F(13)	1.820(6)
Te(1)–F(4)	1.813(8)	Te(2)-F(9)	1.816(9)	Te(3)-F(14)	1.799(6)
Te(1)–F(5)	1.814(8)	Te(2)-F(10)	1.808(8)	Te(3)–F(15)	1.809(8)
C(1)…O(11)	2.690(17) [1°] ^a	C(1)…O(15A)	2.738(18) [3°] ^a		

# Table 6.3.(continued...)

bond angles (deg)

O(1)-C(1)-O(2)	119(1)	O(1)-C(1)-O(3)	119.8(9)	O(2)C(1)O(3)	121(1)
C(1)-O(1)-Te(1)	125.5(7)	C(1)-O(2)-Te(2)	132.7(9)	C(1)-O(3)-Te(3)	131.2(8)
O(1)-Te(1)-F(1)	176.8(4)	O(2)-Te(2)-F(6)	176.2(4)	O(3)-Te(3)-F(11)	174.6(3)
O(1)-Te(1)-F(2)	91.2(3)	O(2)-Te(2)-F(7)	90.1(4)	O(3)-Te(3)-F(12)	85.4(4)
O(1)-Te(1)-F(3)	84.2(3)	O(2)-Te(2)-F(8)	89.9(4)	O(3)-Te(3)-F(13)	91.8(4)
O(1)-Te(1)-F(4)	89.2(3)	O(2)–Te(2)-F(9)	84.5(4)	O(3)-Te(3)-F(14)	82.5(3)
O(1)-Te(1)-F(5)	86.0(3)	O(2)-Te(2)-F(10)	85.3(4)	O(3)-Te(3)-F(15)	89.1(4)
F(1)-Te(1)-F(2)	91.4(3)	F(6)-Te(2)-F(7)	92.6(4)	F(11)-Te(3)-F(12)	93.0(4)
F(1)-Te(1)-F(3)	93.9(3)	F(6)-Te(2)-F(8)	92.8(4)	F(11)-Te(3)-F(13)	93.3(3)
F(1)-Te(1)-F(4)	92.8(3)	F(6)-Te(2)-F(9)	92.8(4)	F(11)-Te(3)-F(14)	92.5(4)
F(1)-Te(1)-F(5)	91.4(3)	F(6)-Te(2)-F(10)	92.0(4)	F(11)-Te(3)-F(15)	92.7(4)
F(2)-Te(1)-F(3)	88.7(4)	F(7)-Te(2)-F(8)	89.7(4)	F(12)-Te(3)-F(13)	90.0(3)
F(2)-Te(1)-F(4)	89.7(4)	F(7)-Te(2)-F(9)	90.2(4)	F(12)-Te(3)-F(14)	90.9(3)
F(2)-Te(1)-F(5)	177.1(3)	F(7)-Te(2)-F(10)	175.4(4)	F(12)-Te(3)-F(15)	174.3(4)
F(3)-Te(1)-F(4)	173.2(3)	F(8)-Te(2)-F(9)	174.4(4)	F(13)-Te(3)-F(14)	174.1(4)
F(3)-Te(1)-F(5)	90.7(4)	F(8)-Te(2)-F(10)	90.0(4)	F(13)-Te(3)-F(15)	89.2(3)
F(4)-Te(1)-F(5)	90.6(4)	F(9)-Te(2)-F(10)	89.6(4)	F(14)-Te(3)-F(15)	89.6(3)

$Sb(OTeF_5)_6^-$	$CCl_3^+$ salt	$\operatorname{CBr_3}^+$ salt	$C(OTeF_5)_3^+$ salt
	b	ond lengths (Å)	
Sb-O	1.951(3) - 1.955(3)	1.936(10) - 1.981(10)	1.934(9) – 1.957(9)
Te–O	1.844(4) – 1.854(3)	1.819(10) - 1.868(10)	1.832(9) - 1.858(9)
Te-F _{ax}	1.834(3) - 1.839(3)	1.833(9) – 1.852(9)	1.819(8) – 1.836(6)
Te-F _{eq}	1.819(3) – 1.841(3)	1.807(10) - 1.849(9)	1.809(7) – 1.840(6)
	b	ond angles (deg)	
Sb-O-Te	137.9(2) - 138.2(2)	138.0(6) – 140.7(6)	137.2(4) - 139.3(4)

Table 6.3.(continued...)

SO ₂ ClF	CBr ₃ ⁺ salt	$C(OTeF_5)_3^+$ salt
	bond leng	gths (Å)
S–O	1.404(13) - 1.417(12)	1.384(11) – 1.407(9)
S–F	1.533(10)	1.519(7) - 1.520(10)
SCl	1.942(7)	1.918(6) - 1.951(6)
	bond angl	les (deg)
O-S-O	120.9(9)	120.1(7) - 122.3(8)
O-S-Cl	109.9(6) – 110.0(6)	108.2(5) - 111.7(6)
O–S–F	107.0(8) - 108.7(7)	106.7(8) - 109.4(6)
F-S-Cl	97.8(5)	94.6(5) - 99.7(4)

^a Values in square brackets represent the angle between the pseudo- $C_3$ -axis passing through carbon and the C…F/C…O trajectories.

crystal structure of  $SO_2ClF^{166}$  and require no further comment (Table 6.3). There are no notable differences between the metric parameters of the two coordinated and one uncoordinated  $SO_2ClF$  molecule in the  $[C(OTeF_5)_3][Sb(OTeF_5)_6]$ ·3SO₂ClF structure.

## 6.2.2.1. [CCl₃][Sb(OTeF₅)₆] and [CBr₃][Sb(OTeF₅)₆]·SO₂ClF

The trigonal planar  $CCl_3^+$  cation in  $[CCl_3][Sb(OTeF_5)_6]$  is positionally two-fold disordered about the crystallographic inversion center (Figure 6.1). In contrast, the CBr₃⁺ cation in [CBr₃][Sb(OTeF₅)₆]·SO₂ClF is not disordered (Figure 6.2). In both cases, the three halogen atoms are crystallographically independent and carbocation planarity is not imposed by symmetry. Both cations are planar, with X–C–X bond angle sums of  $360(1)^{\circ}$  $(CCl_3^+)$  and  $360(1)^{\circ}(CBr_3^+)$ . The C-Br bond lengths and Br-C-Br angles of  $CBr_3^+$  are all equal within  $\pm 3\sigma$ , giving the expected  $D_{3h}$  symmetry. As a consequence of the disorder, the  $CCl_3^+$  cation gives a slightly wider range of bond lengths and angles, but displays essentially  $D_{3h}$  symmetry in its crystal structure. The C-Cl and C-Br bond lengths are found to be shorter than in CCl₄ (1.751(13) Å),²¹⁷ CFCl₃ (1.75(1) Å)²¹⁸ and CBr₄ (1.91(4) Å)²¹⁹ by ca. 0.15 Å, 0.13 Å, and 0.10 Å, respectively, as expected for cations (see Section 6.2.4). In the case of the previously reported structures of chloro- and bromo-substituted carbocations, the C-Cl or C-Br bond lengths are marginally longer than in CCl₃⁺ and CBr₃⁺, i.e. [(*o*-ClC₆H₄)(C₆H₅)CCl][SbF₆]¹⁹⁸ (C-Cl, 1.668(8) Å), [Cl₂C=NH₂][SbCl₆]²⁰⁰  $(C-Cl, 1.663(6)-1.680(6) \text{ Å}), [CH_3OCHCl][SbF_6]^{197}$  (C-Cl, 1.650(9) Å) and $[ClBrC=NH_2][SbCl_6]^{201}$  (C-Cl, 1.69(1); C-Br, 1.843(9) Å). In the CCl₃⁺ and CBr₃⁺ salts, the shortest cation-anion C...F contacts are 2.962(9) Å and 3.09(2) Å, respectively, (cf.



**Figure 6.1.** (a) Crystal structure of  $[CCl_3][Sb(OTeF_5)_6]$ ; thermal ellipsoids are shown at the 50% probability level. (b) A view of the  $CCl_3^+$  cation showing the shortest contacts between carbon and the fluorine atoms of the  $Sb(OTeF_5)_6^-$  anion. (c) A view of the  $CCl_3^+$  cation showing the two-fold positional disorder around the crystallographic inversion center.



**Figure 6.2.** (a) Crystal structure of  $[CBr_3][Sb(OTeF_5)_6]$ ·SO₂ClF; thermal ellipsoids are shown at the 50% probability level. (b) A view of the  $CBr_3^+$  cation showing the shortest contacts between carbon and the fluorine atoms of the Sb(OTeF_5)_6^- anion.

the sum of the carbon and fluorine van der Waals radii, 3.10,²²⁰ 3.30²⁶ Å). These contacts approach the carbon at angles of  $3^{\circ}$  (CCl₃⁺) and  $8^{\circ}$  (CBr₃⁺) with respect to the C₃-axis. As well, longer C...F contacts (CCl₃⁺, 3.464(9), 3.574(11) and 3.574(11) Å; CBr₃⁺, 3.39(2) Å) approach above and below the CX₃-plane at angles of 4, 13 and 37° (CCl₃⁺) and 8°  $(CBr_3^+)$ , respectively. The bond length and bond angle trends are consistent with the previously noted trend of decreasing contact angle with decreasing contact distance in a number of carbocation structures.¹⁹⁴ The present structures indicate that the Sb(OTeF₅)₆⁻ anions are very weakly coordinated to the carbon centers. The occurrence of cation-anion contacts is a common feature, and the present C...F contact distances are comparable to those observed in  $[CI_3][Al(OC(CF_3)_3)_4]^{101}$  (the shortest is 3.26 Å) and in [(m-CF₃C₆H₄)(C₆H₅)CF][As₂F₁₁] (3.01(2) and 3.07(2) Å).¹⁹⁶ The chlorine and bromine atoms also interact with the fluorine atoms of the anion and, in the case of the  $CBr_3^+$  salt, with the oxygen atoms of SO₂ClF (Cl $\cdots$ F: 2.833(5)–3.022(5) Å; Br $\cdots$ F: 2.977(9)-3.301(11) Å; Br...O: 2.778(13), 2.839(12) Å). These interactions are shorter than or are at the limit of the sum of the halogen-fluorine(oxygen) van der Waals radii (Cl...F, 3.15,²²⁰ 3.22²⁶ Å; Br...O, 3.35,²²⁰ 3.37²⁶ Å; Br...F, 3.30,²²⁰ 3.32²⁶ Å) and are apparently a consequence of the positive charges on the halogen atoms (see Section 6.2.4). The Br...O contacts, which occur with the oxygen atoms of two SO₂ClF solvent molecules, are shorter than the secondary C...F cation-anion contacts in the CCl₃⁺ and  $CBr_3^+$  salts and are likely responsible for the absence of disorder in the  $CBr_3^+$  structure.

## 6.2.2.2. [C(OTeF₅)₃][Sb(OTeF₅)₆]·3SO₂ClF

The crystal structure of  $[C(OTeF_5)_3][Sb(OTeF_5)_6]\cdot 3SO_2ClF$  consists of  $Sb(OTeF_5)_6^-$  anions that are well separated from the cations and the solvent molecules, while two of the three SO₂ClF solvent molecules are oxygen coordinated to the carbon atom of the cation (Figure 6.3).

The  $C(OTeF_5)_3^+$  cation is isoelectronic and isostructural with the known B(OTeF₅)₃ molecule.²²¹ To the best of the author's knowledge, the C(OTeF₅)₃⁺ cation is only the second example of a trioxygen-substituted carbocation to have been isolated and characterized in the solid state by X-ray crystallography, the first being the AsF₆⁻ salt of the trigonal planar acidium ion of carbonic acid, C(OH)3⁺.¹⁹³ The O-C-O angles of the  $C(OTeF_5)_3^+$  cation are equal, within  $\pm 3\sigma$ , to the ideal  $120^\circ$  angle expected for a trigonal planar arrangement. Unlike  $B(OTeF_5)_3$  and  $C(OH)_3^+$ , which have  $BO_3$  and  $CO_3$ arrangements that are planar by symmetry ( $C_{3h}$  point symmetry), the planarity of the CO₃ moiety of  $C(OTeF_5)_3^+$  is not forced by symmetry, and the three  $OTeF_5$  groups bonded to the central carbon atom are crystallographically independent. Despite the low local crystallographic symmetry of  $C(OTeF_5)_3^+$  (C₁), the conformational geometry of the cation is very close to the optimized  $C_{3h}$  gas-phase geometry of this cation and the known solid state²²¹ and calculated gas-phase (see Section 6.2.4) geometries of B(OTeF₅)₃. The tellurium and axial fluorine atoms are slightly out of plane and lie to one side of the CO₃ plane by 0.087 and 0.149 Å, respectively. The C-O bond lengths are similar to those in  $C(OH)_3^+$  (1.231(4) Å), ¹⁹³  $CH_3C(OH)_2^+$  (1.265(6), 1.272(6) Å; ²⁰² 1.261(7), 1.273(7) Å²⁰³), and  $HC(OH)_2^+$  (1.239(6), 1.255(5) Å).²⁰⁴ As expected for a positively charged



**Figure 6.3.** (a) Crystal structure of  $[C(OTeF_5)_3][Sb(OTeF_5)_6]$ ·3SO₂ClF; thermal ellipsoids are shown at the 50% probability level. (b) A view of the  $C(OTeF_5)_3^+$  cation showing the contacts between the carbon atom and an oxygen atom from each of two SO₂ClF molecules in the crystal lattice.

S(3)

CI

0

isoelectronic species, the C–O bond lengths are shorter than the B–O bond lengths of  $B(OTeF_5)_3$  (1.358(6) Å)²²¹ and the C–O–Te bond angles, which range from 125.7(7) to 132.4(9)°, are similar to those in  $B(OTeF_5)_3$  (132.3(4)°).²²¹ The bond lengths and bond angles in the OTeF₅ groups are in good agreement with those observed for the OTeF₅ groups of the  $Sb(OTeF_5)_6^-$  anion and other OTeF₅ derivatives^{35,79} and require no further comment.

The C(OTeF₅)₃⁺ cation has two short C···O contacts (2.690(17) and 2.738(18) Å) with two SO₂ClF solvent molecules (Figure 6.3, Table 6.3), which are both nearly perpendicular to the trigonal CO₃ plane, approaching the carbon atoms at angles of 1 and  $3^{\circ}$  with respect to the pseudo three-fold symmetry axis of the cation. The contact distances are significantly shorter than the sum of carbon and oxygen van der Waals radii  $(3.15^{220})$  $3.20^{26}$ Å) and the C…F contacts in  $[CCl_3][Sb(OTeF_5)_6]$ and [CBr₃][Sb(OTeF₅)₆]·SO₂ClF; but are similar to the C…F contacts observed in  $[(CH_3)_2CF][AsF_6]$  (2.66(1), 2.78(1) Å) and in  $[m-CF_3C_6H_4)(C_6H_5)CF][AsF_6]$  (2.78(1), 2.79(1) Å). These interactions with the weak Lewis base,  $SO_2CIF$ , ²²²⁻²²⁴ reflect the high positive charge borne by the carbon atom and its substantial Lewis acidity (see Section 6.2.4).

### 6.2.3. Raman Spectroscopy

# 6.2.3.1. CCl₃⁺ and CBr₃⁺

The vibrational modes of the  $CCl_3^+$  and  $CBr_3^+$  cations were assigned under  $D_{3h}$ symmetry and belong to the irreducible representation  $\Gamma = A_1' + A_2'' + 2E'$ . A total of four fundamental vibrations are expected,  $v_1(A_1')$ ,  $v_2(A_2'')$ ,  $v_3(E')$ , and  $v_4(E')$ , of which  $v_1(A_1')$ ,  $v_3(E')$  and  $v_4(E')$  are Raman active and  $v_2(A_2'')$ ,  $v_3(E')$ , and  $v_4(E')$  are infrared active. The Raman assignments for the CCl₃⁺ and CBr₃⁺ cations were made by comparison with the calculated frequencies and Raman intensities (Table 6.4), which were carried out at the MP2/6-31G(2d) and MP2/cc-pVTZ levels of theory. As a benchmark, the vibrational frequencies of CCl₄ and CBr₄ were also calculated at the same levels of theory (Table 6.5).

The low-temperature solid-state Raman spectra resulting from the reactions of  $CCl_4$  and  $CBr_4$  with  $[Xe(OTeF_5)][Sb(OTeF_5)_6]$  displayed large numbers of bands that could be assigned to the Sb(OTeF₅)₆⁻ anion, unreacted XeOTeF₅⁺, and CBr₄ when an excess of  $CBr_4$  was used (Table 6.6). In the case of  $CBr_4$ , new bands were also observed in the C–O stretching region, which are discussed in the following section. Although the presence of Br₂ could not be ascertained because the expected bands at 296.5 and 302.5 cm⁻¹ for solid Br₂ (-150 °C) overlapped with bands associated with Sb(OTeF₅)₆ or unreacted XeOTeF₅⁺, the presence of  $Br_2$  was confirmed by a unit cell determination at -173 °C (see Chapter 2). The frequency assignments for the Sb(OTeF₅)₆⁻ anion and unreacted  $XeOTeF_5^+$  cation were made by comparison with those of  $[N(CH_3)_4][Sb(OTeF_5)_6]^{35}$  and  $[SbX_4][Sb(OTeF_5)_6]^{79}$  (X = Cl, Br) and  $[XeOTeF_5][AsF_6]^{75}$ and  $[XeOTeF_5][Sb(OTeF_5)_6]$ ,¹⁴⁰ respectively, and require no further comment.

In the CCl₄ system, two new bands were observed at 327 and 554 cm⁻¹ which were assigned to  $v_1(A_1')$  and  $v_4(E')$  of CCl₃⁺, respectively, in excellent agreement with the calculated frequencies and Raman intensities (Table 6.4). The high-resolution Raman

Table 6.4.	Experimental	and	Calculated	(MP2)	Frequencies	$(cm^{-1}),$	Raman
	Intensities ^a and	l Assi	gnments ^b for	$CX_3^+$ and	$d BX_3 (X = F, 0)$	Cl, Br, I)	

<u></u>		CF ₃ ⁺	<u> </u>		BF3	
assgnts	exptl ^e	6-31G(2d)	cc-pVTZ	exptl ^d	6-31G(2d)	cc-pVTZ
		1049/70	1073(7)	<b>888</b> A	003(4)	905(4)
$V_1(A_1), V_8(C-F)$	709 1	1048(7)	1072(7)	600 U	883(4) 733(0)	693(4)
$v_2(A_2''), \pi(C-F_3)$	198 1	843(U) 1602(<1)	823(0)	1452.5	123(0)	098(U)
$V_3(E'), V_{as}(C-F)$	1002.4	1092(<1)	1/1/(<0)	1455 5	1475(<1)	1484(<1)
$v_4(E'), o(F-C-F)$		595(1)	001(1)	480.4	491(<1)	481(<1)
		$\text{CCl}_3^+$			BCl ₃	
assgnts	exptl	6-31G(2d)	cc-pVTZ	exptle	6-31G(2d)	cc-pVTZ
$v_{\rm c}(A_{\rm c}) = v(C_{\rm c})$	554(28) ^f	559(18)	568(17)	467 3	477(9)	483(8)
$v_1(\mathbf{A}_1), v_s(\mathbf{C}_{\mathbf{C}_1})$	55 (20)	538(10)	541(0)	447 3	465(0)	465(0)
$v_2(F_2), x_2(C-C_1)$	1035 \$1037 ^b	1072(<1)	1086(<1)	931	970(<1)	984(<1)
$v_{3}(E), v_{as}(C) \subset C$	326 9(9)	318(4)	317(4)	254 5	257(3)	259(2)
V4(11), 0(01 C 01)		510(1)	511(1)	231.3	231(3)	237(2)
		$CBr_3^+$			BBr ₃	
assgnts	exptl	6-31G(2d)	cc-pVTZ	exptl ^j	6-31G(2d)	cc-pVTZ
$v_1(A_1'), v_2(C-Br)$	321 4(27)	341(13)	340(13)	279 6	292(7)	292(6)
$v_2(A_2''), \pi(C-Br_3)$		461(0)	454(0)	377 3 ⁱ	414(0)	401(0)
$v_{1}(E'), v_{ss}(C-Br)$		932(3)	931(2)	794.4	849(<1)	853(<1)
ν ₄ (E'), δ(Br–C–Br)	$\frac{183}{187} \frac{5(15)}{0(12)}$	193(3)	186(3)	153 4	155(1)	157(2)
		CI ₃ ⁺			BI3	
assgnts	expt1 ^k	(SDB-)cc-	pVTZ	exptl ^j	(SDB	-)cc-pVTZ
$\mathbf{v}_{\mathbf{r}}(\mathbf{A},\mathbf{r}) \mathbf{v}_{\mathbf{r}}(\mathbf{C},\mathbf{D})$		240(14)		104 5	203(6)	
$v_1(x_1), v_3(\bigcirc x_1)$ $v_2(A_2'') \pi(\bigcirc x_1)$	339 w	384(0)		307 0	336(0)	
$v_2(1-2)$ , $m(C-1-3)$ $v_2(E')$ $v_1(C-1)$	739 ve	807(14)		681	741/~1	<b>`</b>
$v_3(12), v_{BS}(\sqrt{-1})$ $v_2(\mathbf{F}') \delta(\mathbf{I}_{-}\mathbf{C}_{-}\mathbf{I})$	155, 45	127(3)		105 3	106(2)	,
$\begin{array}{c} \nu_{3}(E'), \nu_{ss}(C-Br) \\ \nu_{4}(E'), \delta(Br-C-Br) \\ \hline \\ \\ \hline \\ \nu_{1}(A_{1}'), \nu_{s}(C-I) \\ \nu_{2}(A_{2}''), \pi(C-I_{3}) \\ \nu_{3}(E'), \nu_{ss}(C-I) \\ \nu_{4}(E'), \delta(I-C-I) \\ \hline \end{array}$	$\frac{183 5(15)}{187 0(12)}$ $\frac{\text{exptl}^{k}}{339, \text{w}}$ $739, \text{vs}$	952(3) 193(3) CI ₃ ⁺ (SDB-)cc- 240(14) 384(0) 807(14) 127(3)	931(2) 186(3) pVTZ	153 4 exptl ^j 194.5 307.9 ⁱ 681 105.3	849(<1) 155(1) BI ₃ (SDB 203(6) 336(0) 741(<1) 106(2)	853(< 157(2) -)cc-pVT2

^a Values in parentheses represent experimental relative Raman intensities (see Table 6.6) or calculated Raman intensities (in Å⁴ amu⁻¹). ^b Frequencies have been calculated and assigned for  $D_{3h}$  symmetry. ^c From ref 184. ^d From ref 225. ^e From ref 226. ^f The v₁ band is split as a result of the mass effect of the ³⁵Cl and ³⁷Cl isotopes: 554.1(100) (C³⁵Cl₃), 549.1(96) (C³⁵Cl₂³⁷Cl), 544.1(32) (C³⁵Cl³⁷Cl₂) and 538.8(3) (C³⁷Cl₃) cm⁻¹; the most intense band has been scaled to 100 (see Figure 6.4). ^g From ref 180. ^h From ref 178 and ref 179. ⁱ Observed as  $2v_2(A_2'')$ . ^j From ref 227. ^k From ref 101.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$CF_4$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			6-3	1G(2d)	cc-j	oVTZ
$\begin{array}{c cccc} v_1(A_1), v_s & 908.4 & 995(5) & 904(6) & 1012(4) & 925(5) \\ v_2(E), \delta_s & 434.5 & 476(<1) & 435(<1) & 480(<1) & 440(<1) \\ v_3(T_2), v_{as} & 1283.0 & 1435(1) & 1295(<1) & 1448(1) & 1312(<1) \\ \hline & & \\ \hline & \\ & \\$	assgnt	exptl ^b	HF	MP2	HF	MP2
$\begin{array}{c cccc} v_2(E), \delta_s & 434.5 & 476(<1) & 435(<1) & 480(<1) & 440(<1) \\ v_3(T_2), v_{as} & 1283.0 & 1435(1) & 1295(<1) & 1448(1) & 1312(<1) \\ \hline v_4(T_2), \delta_{as} & 631.2 & 684(1) & 626(1) & 694(1) & 640(1) \\ \hline \hline \hline \\ $	$v_1(A_1), v_s$	908.4	995(5)	904(6)	1012(4)	925(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$v_2(E), \delta_s$	434.5	476(<1)	435(<1)	480(<1)	440(<1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$V_3(T_2), V_{as}$	1283.0	1435(1)	1295(<1)	1448(1)	1312(<1)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$v_4(T_2), \delta_{as}$	631.2	684(1)	626(1)	694(1)	640(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CCl ₄			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			6-31	IG(2d)	cc-	pVTZ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	assgnt	expt1 ^c	HF	MP2	HF	MP2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	~ `	450/100)4	40.4/19)	4(2/15)	40((17)	471
$\begin{array}{c cccc} v_{2}(E), \delta_{s} & 220(58) & 238(2) & 222(3) & 237(3) & 221 \\ v_{3}(T_{2}), v_{as} & 794(20), 761(16) & 891(9) & 796(3) & 889(8) & 810 \\ v_{4}(T_{2}), \delta_{as} & 317(68) & 340(3) & 321(3) & 340(4) & 321 \\ \hline \\ $	$v_1(A_1), v_s$	459(100)*	494(18)	463(15)	496(17)	4/1
$\begin{array}{c cccc} v_{3}(T_{2}), v_{as} & 794(20), 761(16) & 891(9) & 796(3) & 889(8) & 810 \\ v_{4}(T_{2}), \delta_{as} & 317(68) & 340(3) & 321(3) & 340(4) & 321 \\ \hline \\ $	$v_2(E), \delta_s$	220(58)	238(2)	222(3)	237(3)	221
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$v_3(T_2), v_{as}$	794(20), 761(16)	891(9)	796(3)	889(8)	810
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$v_4(T_2), \delta_{as}$	317(68)	340(3)	321(3)	340(4)	321
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CD.			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CBr ₄			1/07
assgntexptleHFMP2HFMP $v_1(A_1), v_s$ 269(100)302(16)285292(16)282 $v_2(E), \delta_s$ 128(33)145(2)135138(2)129 $v_3(T_2), v_{as}$ 673(15), 664(15),789(13)713770(17)708 $658(10)$ $v_4(T_2), \delta_{as}$ 182(41), 184(47)208(2)196201(3)190		10	6-3	IG(2d)	cc-p	VIZ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	assgnt	exptl	HF	MP2	HF	MP2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_1(A_1), v_s$	269(100)	302(16)	285	292(16)	282
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_2(E), \delta_s$	128(33)	145(2)	135	138(2)	129
$v_4(T_2), \delta_{as}$ 182(41), 184(47) 208(2) 196 201(3) 190	$v_3(T_2), v_{as}$	673(15), 664(15), 658(10)	789(13)	713	770(17)	708
	$v_4(T_2), \delta_{as}$	182(41), 184(47)	208(2)	196	201(3)	190
C			CI			4

	Table 6.5	. Experimental and	I Calculated F	requencies (cm ⁻¹	) and Intensities	for CX4 (	$(T_d)^*$
--	-----------	--------------------	----------------	------------------------------	-------------------	-----------	-----------

		(SDB-	(SDB-)cc-pVTZ		
assgnt	exptl ^e	HF	MP2		
$v_1(A_1), v_s$	178(10)	201(16)	195		
$v_2(E), \delta_s$	90(4)	94(2)	87		
$v_3(T_2), v_{as}$	555, vs ^f	672(27)	618		
$v_4(T_2), \delta_{as}$	123(5)	137(3)	129		

^a Values in parentheses represent observed or calculated Raman intensities. ^b From ref 228. ^c This work, pure solid compound ( $-120 \,^{\circ}$ C). ^d The v₁ band is split as a result of the mass effect of the ³⁵Cl and ³⁷Cl isotopes: 462(95) (C³⁵Cl₃), 459(100) (C³⁵Cl₂³⁷Cl), 456(51) (C³⁵Cl³⁷Cl₂) and 453(19) (C³⁷Cl₃) cm⁻¹. ^e From ref 229. ^f This band was only observed in the infrared spectrum; vs denotes very strong.

	frequencies (cn	n ⁻¹ )			2	assgnts	
CCl ₃ ^{+ a,b}	CBr ₃ ^{+ c,d,e}	CBr ₃ ^{+ d,e,f}	$CX_3^+$	CBr ₄	OTeF ₅ ^g	non-coordinated SO ₂ ClF	coordinated SO ₂ ClF ^h
554(19) 549(19) 544(6)	321(33)	321(33)	$v_1(A_1')$				
539(<1)J 327(9)	188(48) 184(54)	187(15) 184(18)	v ₄ (E')				
	673(24) 668, sh 653, sh 188(48) 184(54) 269(93) 128(36)	654(28) 187(15) 184(18)		$v_3(T_2)$ $v_4(T_2)$ $v_1(A_1)$ $v_2(E)$		_	
	1454(2) 1449(3) 1095(2), br	}			v(CO) ¹		
	$ \begin{array}{c} 1444(4) \\ 1433(14) \\ 1427, sh \\ 1224(32) \\ 1219(26) \\ 847(5) \\ 839(6) \end{array} $	$1433(18) \\ 1224(42) \\ 1218(39) \end{bmatrix}$				v _{asym} (SO ₂ ) v _{sym} (SO ₂ ) v(SF)	

 Table 6.6.
 Raman Frequencies and Assignments for [CCl₃][Sb(OTeF₅)₆] and [CBr₃][Sb(OTeF₅)₆]·nSO₂ClF and Related

 Species

_

-----

-----

Table 6.6.(continued...)

CCl ₃ ^{+ a,b}	CBr ₃ ^{+ c,d,e}	CBr ₃ ^{+ d,e,f}	$CX_3^+$	CBr ₄	OTeF ₅ ^g	non-coordinated SO ₂ ClF	coordinated SO ₂ ClF ^h
	1415(4) 1407(4)	1415(11)					$v_{asym}(SO_2)$
	1166(8) 819, sh	1168(14)					$v_{sym}(SO_2)$ v(SF)
822(5)	827(7), br	830(10),br			J		
751(3)	749(11)	· ົ ]					
	745(11)	745(21)			$v_{8}(E)$ , $v_{re}(TeF_{4})$		
724(17)	721(21)	) í J			0(		
. ,	717(21)	716(32)					
712(7)	714(22)				$v_1(A_1)$ , $v(TeF)$		
702(100)	703(67)	703(60)			+		
690(8)	693(24)	693(25)			$v_{e}(TeO + XeO)^{k}$		
	690, sh				(100 / 1100)		
686(2)	682(9)	685(18)					
	677(9)	679(19)					
665(8)	668, sh	669(55)			$\mathbf{u}(\mathbf{A}) \mathbf{u}(\mathbf{T}_{\mathbf{A}}\mathbf{F}_{\mathbf{A}})$		
659(40)	663(100)	663(100)			$v_2(A_1), v_s(10F_4)$		
653(19)	653, sh	654(28)					
641(10)	648(24)	648(26),br ]			$v_{5}(B_{1})$ $v_{m}(TeF_{4})$		
	633(14)	635(18),br 🕇			• 5(201), • 85(2014)		
519(<1)		515(6)			j		
505(<1)	503(13)	503(21)			J		
	494(7)	495(10)					
	485, sh						
	480(16)	480(21) >			$v_{s}(\text{TeO} + \text{XeO})^{k}$		
	476, sh				````		
464(2)	460(5), br	J					

----

.

____

221

<b>Table 6.6.</b> (	continued)
---------------------	------------

CCl ₃ ^{+ a,b}	CBr ₃ ^{+ c,d,e}	CBr ₃ ^{+ de,f}	CX ₃ ⁺	CBr ₄	OTeF ₅ ^g	non-coordinated SO ₂ ClF	coordinated SO ₂ ClF ^h
451(1)					· · · · · · · · · · · · · · · · · · ·		
	$438(25)^{m}$	$440(14)^{m}$					
	$435(27)^{m}$						
	$432(26)^{m}$	430(54),br ^m			$v_{2}(\Delta_{1}) v(\text{TeO})$ also		
	428(29) ^m	(			$coupled with y (Sb-O)^{l}$		
	420(13)				coupled with $V_{\mathfrak{A}}(SD-O)$		
414(23)	413, sh	J					
395(5)	408(29)	409(31),br 5					
369(7)	367(11)	367(15)					
342(5)	341, sh	340(19)			ν ₉ (E), δ(FTeF ₄ )		
339(14)	333(20)	332(23)					
320(7)					$v_{10}(E)$ , $v(OTeF_5)$		
310(19)	309(26)	309(44)			$v_4(A_1), \delta_s(FTeF_4)$		
306(16)	305, sh ⁿ	298(50) ⁿ			$v_7(B_2), \delta_{sciss}(TeF_4)$		
	257(7)	258(13)					
	253(9)	254(13)			<u>у(Е) 8 (ТеЕ.)</u>		
246(9)	249(9)	i í			$V_{11}(12), O_{as}(1014)$		
243(6)	240(16)	240(18) J					
231(4)	231, sh	· ٦					
	228(6)	230(10)			$\delta$ (TeOSb) ¹		
	215(4)	215(8)			. ,		
	173(9)	173(14)			S/ET-O)k		
	167, sh	<u>ځ</u>			8(1160)		
148(14)	145, sh	ן 146(16)					
	141(19)	141(19)			τ(TeOSb) ¹		
137(10)	134(12)	136(14)					
123(7)	128(36)				δ(XeOTe) ^k		
118(3)	120(12)	121(15)			lattice medea		
100(1)	111(13)	110(14)			fautce modes		

.....

**Table 6.6.** (continued...)

^a The Raman spectrum of the solid obtained from the reaction of excess CCl₄ with [XeOTeF₅][Sb(OTeF₅)₆] in SO₂ClF at -78 °C (eq 6.1). ^b Experimental Raman intensities are given in parentheses. ^c The Raman spectrum of the solid obtained from the reaction of excess CBr₄ with [XeOTeF₅][Sb(OTeF₅)₆] in SO₂ClF at -78 °C (eq 6.2–6.7). ^d Infrared intensities, in km mol⁻¹, are given in square brackets. ^e The symbol, sh, denotes a shoulder and br denotes a broad line. ^f The Raman spectrum of the solid obtained from the reaction of excess [XeOTeF₅][Sb(OTeF₅)₆] with CBr₄ in SO₂ClF at -78 °C (eq 6.2–6.7). ^g The OTeF₅ group assignments for OTeF₅ derivatives resulting from the reactions of CBr₄ with [XeOTeF₅][Sb(OTeF₅)₆] are tentative due to overlap of their Raman bands. The vibrational modes of the OTeF₅ groups are assigned under C_{4v} symmetry (ref 79). ^h Free SO₂ClF was observed, along with coordinated SO₂ClF, in sample mixtures that were incompletely pumped at -78 °C. ⁱ These modes are most likely assigned to the CBr_{3-n}(OTeF₅)_n⁺ cations (*n* = 1-3). ^j Unassigned modes. ^k These modes are most likely assigned to the SO₂ClF. ⁿ These bands may overlap with Br₂ which occurs at 296.5 and 302.5 cm⁻¹.

223

spectrum of  $[CCl_3][Sb(OTeF_5)_6]$  reveals that the  $v_1(A_1')$  band is split into four components that arise from the isotopomers  $C^{35}Cl_3^+$ ,  $C^{35}Cl_2^{37}Cl^+$ ,  $C^{35}Cl_3^{77}Cl_2^+$ , and  $C^{37}Cl_3^+$  (Figure 6.4). The intensities of the isotopomer bands are in excellent agreement with the intensities calculated from the chlorine natural isotopic abundances. The experimental  ${}^{35}Cl/{}^{37}Cl$  isotopic shifts are 5.0–5.3 cm⁻¹ and are in good agreement with the calculated values and are larger than the experimental isotopic shifts of BCl₃ (3.9–4.5 cm⁻¹)²³⁰ and CCl₄ (3.2–3.6 cm⁻¹).²³¹ The formally Raman-active  $v_3(E')$  band was not observed, in accord with the low Raman intensity calculated for this band at all levels of theory used in this study (Table 6.4).

The low-temperature Raman spectrum resulting from the reaction of CBr₄ with a stoichiometric excess of [Xe(OTeF₅)][Sb(OTeF₅)₆] revealed new bands at 183.5, 187.0 and 321.4 cm⁻¹. The band at 321.4 cm⁻¹ is assigned to  $v_1(A_1')$  of CBr₃⁺ by comparison with the calculated value, 340 cm⁻¹ (MP2/cc-pVTZ). The intense bands at 183.5 and 187.0 cm⁻¹ are assigned to  $v_4(E')$  of CBr₃⁺. The splitting can most likely be accounted for on the basis of simple site symmetry lowering of this doubly degenerate mode to produce two Raman-active components. The assignment is supported by the calculated frequency of 186 cm⁻¹ (MP2/cc-pVTZ). As in the case of CCl₃⁺, the formally Raman-active  $v_3(E')$  band of CBr₃⁺ was not observed. Unlike CCl₃⁺, where  $v_3(E')$  is predicted to be consistently weaker in intensity than  $v_4(E')$ , the relative Raman intensities of  $v_3(E')$  and  $v_4(E')$  of CBr₃⁺, which are also predicted to be weak, are found to vary with the level of theory used (Table 6.4), and are therefore difficult to compare with the experimental



**Figure 6.4.** An expanded view of the symmetric  $v_1(A_1')$  stretching band of CCl₃ in the Raman spectrum of [CCl₃][Sb(OTeF₅)₆] showing the natural abundance chlorine isotope shifts.
Raman intensities. The experimental vibrational frequencies of the  $CX_3^+$  cations are in general found to be comparable to or lower in frequency than the calculated values, a better fit being obtained for the MP2 frequencies (Table 6.4). As expected from the observed and calculated C–X and B–X bond lengths, all frequencies are higher for the  $CX_3^+$  cations than for their BX₃ analogues. The calculated values are also in very good agreement with experimental infrared data obtained for  $CI_3^{+101}$  and the matrix-isolated  $CF_3^{+184}$  and  $CCI_3^{+179}$  cations.

## 6.2.3.2. C(OTeF₅)₃⁺ and B(OTeF₅)₃

Although B(OTeF₅)₃ has been known for some time and limited infrared data have been previously reported,¹⁰⁹ the Raman spectrum is now reported for the first time (Table 6.7). The vibrational modes of B(OTeF₅)₃ were assigned under  $C_{3h}$  symmetry and belong to the irreducible representation  $\Gamma = 11$  A' + 9A" + 12 E' + 8E". A total of 40 fundamental bands are expected, of which the 31 A', E' and E" modes are Raman active and the 23 A" and E' modes are infrared active. The vibrational frequencies for C(OTeF₅)₃⁺ and B(OTeF₅)₃ were calculated at the HF/(SDB-)cc-pVTZ level of theory. The assignments for B(OTeF₅)₃ were made by comparison with the calculated frequencies and infrared and Raman intensities, which are in agreement with the experimental values (Table 6.7).

The low-temperature spectra resulting from the reaction of  $CBr_4$  with a two-fold molar excess of [Xe(OTeF₅)][Sb(OTeF₅)₆] revealed new bands in the C–O stretching region at 1168, 1218, 1224, 1407, 1415, 1427, 1433, 1444, 1449 and 1454 cm⁻¹ (Table

**Table 6.7.**Calculated^a Vibrational Frequencies  $(cm^{-1})$  and Infrared and RamanIntensities for  $C(OTeF_5)_3^+$  and  $B(OTeF_5)_3$  and Observed VibrationalFrequencies and Infrared and Raman Intensities for  $B(OTeF_5)_3$ 

$C(OTeF_5)_3^+$		B(OTe	(F ₅ ) ₃	
$\frac{\text{calcd}^{\text{b,c,d}}}{(C_{3h})}$	$\frac{\text{calcd}^{b,c,d}}{(C_{3h})}$	exptl Raman	exptl infrared ^e	$\frac{assgnt}{(C_{3h})}$
1165 (0.7) [i.a.]	1066 (3.5) [i.a.]	1050(6)	1550,5	A'
798 (i.a.) [316.7]	758 (i a) [484 5]	۰۰۰۰(۵) ۲		A″
785 (0.1) [101.4]	754 (0,3) [272.7]	) l	► 740, vs	Ε'
780 (0.1) [179.2]	770 (0.6) [92.4]	ر 755(5)		– E'
779 (0.2) [i.a.]	751 (0.2) [i.a.]			- E″
777 (i.a.) [133.6]	658 (i.a.) [2.7]	)		A″
777 (1.3) [i.a.]	749 (1.5) [i.a.]	732(5)		A'
764 (11.6) [i.a.]	731 (21.1) [i.a.]	716(96)		A'
755 (2.0) [112.9]	716 (1.4) [78.8]		725, vs	E'
712 (32.9) [i.a.]	683 (17.3) [i.a.]	673(100)		A'
708 (0.3) [0.8]	674 (1.2) [7.2]	702(16)	705, s	E'
682 (2.8) [i.a.]	660 (2.7) [i.a.]	660(18)		E"
680 (i.a.) [1.0]	626 (i.a.) [73.6]		615, m	Α″
448 (7.5) [i.a.]	474 (10.2) [i.a.]	500(44)		A'
388 (0.1) [98.4]	430 (0.0) [125.3]		<b>43</b> 0, s	E'
346 (0.1) [i.a.]	355 (0.1) [i.a.]	338(7)		A'
331 (0.0) [i.a.]	342 (0.0) [i.a.]	332(3)		E″
328 (i.a.) [191.3]	337 (i.a.) [189.9]			Α″
325 (2.3) [i.a.]	328 (0.0) [i.a.]			A'
325 (0.5) [5.1]	332 (0.7) [46.7]	325(15)		E'
321 (0.6) [92.2]	327 (0.1) [236.3]			E'
317 (0.0) [i.a.]	315 (2.0) [i.a.]	318(17)		A'

#### Ph.D. Thesis – Matthew D. Moran

### **Table 6.7.**(continued...)

311 (1.0) [i.a.]	327 (1.3) [i.a.]	J	<b>E</b> ″
308 (0.0) [293.9]	314 (0.3) [0.2]	311(18)	E'
303 (i.a.) [0.0]	319 (i.a.) [3.9]	,	Α″
260 (0.1) [i.a.]	256 (0.3) [i.a.]	254(3)	A'
254 (0.7) [0.3]	247 (0.5) [11.7]	246(7)	E'
216 (0.2) [i.a.]	216 (0.0) [i.a.]		<b>E</b> ″
207 (i.a.) [0.0]	214 (i.a.) [0.1]		A″
198 (0.0) [i.a.]	210 (0.0) [i.a.]		Ε″
198 (i.a.) [0.0]	206 (i.a.) [0.6]		Α″
140 (0.3) [i.a.]	143 (0.2) [i.a.]	140(3)	A'
129 (0.1) [0.4]	129 (0.1) [1.1]		E'
88 (0.1) [i.a.]	77 (0.0) [i.a.]	71(5)	A'
77 (0.1) [i.a.]	63 (0.1) [i.a.]	56(3)	<b>E</b> ″
35 (0.0) [0.3]	29 (0.0) [0.1]		E'
28 (i.a.) [0.2]	24 (i.a.) [0.1]		Α″
20 (i.a.) [0.3]	15 (i.a.) [0.0]		Α″
20 (0.0) [i.a.]	16 (0.2) [i.a.]		E″
		159(2) 98(2), 91(3) 84(5)	lattice modes

^a HF/(SDB-)cc-pVTZ; calculated frequencies have been scaled by multiplying the calculated frequencies by 0.890. ^b Raman intensities, in  $Å^4$  amu⁻¹, are given in parentheses. ^c Infrared intensities, in km mol⁻¹, are given in square brackets. ^d The abbreviation, i.a., denotes an inactive mode. ^e Experimental values are from ref 231 (KBr, -195 °C). The abbreviations denote very strong (vs), strong (s) and medium (m) infrared intensities.

6.6). Although some of these bands fall in the range of the calculated  $v_{sym}(CO)$  and  $v_{asym}(CO)$  frequencies for  $C(OTeF_5)_3^+$ , 1309 and 1688 cm⁻¹ (HF/(SDB-)cc-pVTZ), they could not be definitively assigned to the  $C(OTeF_5)_3^+$  cation, but could also be associated with the mixed Br/OTeF₅-substituted cations, CBr(OTeF₅)₂⁺ and CBr₂(OTeF₅)⁺, formed in eq 6.3 and 6.4.

## 6.2.4. Computational Results for $CX_3^+$ and $BX_3$ (X = F, Cl, Br, I, OTeF₅)

Quantum mechanical ab initio calculations have been previously reported for the isoelectronic  $CX_3^{+101,180,186,207,210,211,232-239}$  and  $BX_3$ ,^{101,207,210,240-245} (X = F, Cl, Br, I) series and related isovalent species such as  $AH_2X^+$ ,  $YH_2X$  (X = F, Cl, Br, I; A = C, Si, Ge, Sn, Pb; Y = B, Al, Ga, In, Tl).²⁰⁷ While results are abundant for species where X =  $F^{101,210,232,234-237,240-245}$  or Cl,^{101,210,211,232,238-247} they are relatively sparse for X =  $Br^{101,186,210,211,232}$  or I.^{101,186,210,211}

The series of trihalomethyl carbocations,  $CX_3^+$ , and boron trihalides,  $BX_3$ , (X = F, Cl, Br, I) have been reinvestigated, and the calculations have been extended to the related OTeF₅ derivatives using all-electron correlation consistent (cc-pVTZ) basis sets for all atoms other than tellurium and iodine, for which semirelativistic large core pseudopotential (SDB-cc-pVTZ) basis sets were used. The geometric parameters and vibrational frequencies (see Section 6.2.3) were calculated and a natural bond orbital (NBO) analysis was carried out using HF and MP2 methods. Energies for the MP2-optimized structures were calculated using the CCSD(T) method. Calculations for the OTeF₅ derivatives were only carried out at the HF/(SDB-)cc-pVTZ basis set. The

methods were benchmarked by calculating the vibrational frequencies (Table 6.5), geometries (Table 6.8) and chemical shifts of  $CX_4$  (see Section 6.2.5) for which there are well-established experimental values.

### 6.2.4.1. Geometries.

Geometry optimization using  $D_{3h}$  (CX₃⁺ and BX₃), and  $C_{3h}$  (C(OTeF₅)₃⁺, B(OTeF₅)₃) as the initial symmetries resulted in stationary points with all frequencies real. All optimized metric parameters for CX₃⁺ and BX₃ are listed in Tables 6.9 and 6.10, respectively.

The HF and MP2 calculations give similar results for  $CCl_3^+$ ,  $CBr_3^+$ ,  $Cl_3^+$ , and the isoelectronic BX₃ molecules, while for  $CF_3^+$  and BF₃ the MP2 calculations predict slightly longer bond lengths. The calculated bond lengths of  $CCl_3^+$ ,  $CBr_3^+$ , and  $CI_3^+$  are in good agreement with those obtained from their X-ray crystal structures. The calculated bond lengths for all BX₃ systems are in good agreement with experiment and the bond length trends, C–X < B–X, are reproduced over this series for X = Cl, Br, I.

The fully optimized (HF/(SDB-)cc-pVTZ) geometries of  $C(OTeF_5)_3^+$  and  $B(OTeF_5)_3$  possess  $C_{3h}$  symmetry (Figure 6.5), with trigonal planar environments around the central carbon and boron atoms. The calculated distances are in reasonable agreement with the experimental ones, although they are all slightly shorter. The calculated C-O-Te, B-O-Te, and OTeF_5 group angles are in good agreement with the observed angles. Overall, the calculated geometries are in very good agreement with the experimental geometries of the  $C(OTeF_5)_3^+$  cation and  $B(OTeF_5)_3$ , indicating that the two C···O

			CF4							CC	4			
		6-31	G(2d)		cc-pVTZ	,				6-310	F(2d)		cc-pVT	Z
	exptl	HF	MP2	HF	MP2	CCSD(T)		exptl	-	HF	MP2	HF	MP2	CCSD(T)
C–F	1 315(3) ^d	1.296	1.323	1.296	1.319	1 319	CCl	1.77(6)	a –	1.768	1.781	1 764	1.768	1.777
								1.751(1	.3)°					
FCF	109.6(3) ^d						Cl-C-Cl							
F…F	2.148(4) ^d	2117	2.161	2116	2154	2.154	Cl…Cl	2.89(12	?) ^a	2 888	2 908	2.881	2.887	2.902
								2.859(6	6)°					
			CD.						CT					
<u> </u>			$\frac{\text{CBI}_4}{21C(24)}$								-VT7			
			<u> </u>	ITE		VIL CORD(T)		416		<u>SDB-JCC-</u>		<u></u>		
C D-	expu	$-\frac{\text{Hr}}{100}$	MP2	HF	<u>MP2</u>	$\frac{CCSD(1)}{1.040}$	C I			NP2		.)		
C-BI	1.91(4)*	1 92	3 1.931	1.934	1.928	1 940		2155(1) 1005(1)	2.131	2127	2.137			
DI-C-DI DrDr	2 1 7 (7)b	2 1/	0 3 154	2 159	2 1 4 9	3 168	I-€-I II	109.3(1)	2 490	3 173	2 /80			
DI DI	3.12(7)	5.14	0 5.154	5 1 5 6	5.140	5.100	11	3 316(1)	J 700	5415	3.407			
CF ₄			6-31G(2d)	cc-pV	ΓZ	CCL			6-31G(2d	f) cc-	-pVTZ			
charge	С		1 37	1.25		charge	С		-0.29		-0.19			
-	F		-0 34	-0.31			Cl		0.07		0.05			
valency	С		3.30	2 82		valency	С		3.36		3.56			
	F		0.75	0.61			Cl		0.71		0. <b>76</b>			
bond order	C–F		0.82	0.70		bond order	C-4	Cl	0.84		0.89			
	F…F		0 02	-0 03			Cŀ	··Cl	-0 04	-	-0.04			
CBr.		ŕ	5-31G(2d)	cc-nV7	7	CL		(5	SDB-)cc-r	VTZ				
charge	C	`	-0.63	-0.55	<u> </u>	charge			-1 10	)				
onargo	Br		016	0.55		ollarBe	T		0.30	) )				
valency	č		3.13	3.34		valency	(	2	3.16	5				
·	Br		0.68	0.71			I	-	0.69	- •				
bond order	C–Br		0.78	0 83		bond order	Ċ	C-I	0.79	9				
	Br…B	r	-0 03	-0.04			Ι	I	-0.03	3				

**Table 6.8.** Experimental and Calculated Geometrical Parameters and NBO Study (MP2) for  $CX_4(T_d)$ 

^a Neutron diffraction from ref 248. ^b X-ray diffraction from ref 219 (Phase I). ^c X-ray diffraction from ref 217. ^d From ref 218. ^e From ref 249.

231

			$CF_3^+$							BF₃			
· · · · · · · · · · · · · · · · · · ·		6-3	1G(2d)		cc-pV	[Z	······		6-3	1G(2d)	-	cc-pV	ГZ
		HF	MP2	HF	MP2	CCSD(T)		exptl ^a	HF	MP2	HF	MP2	CCSD(T)
C-F(Å) F-C-F(deg)		1.209 120	1.236	1.208	1.233	1.233	B-F(Å) F-B-F(deg)	1.30(2)	1 294 120	1.315	1.295	1.315	1.313
F…F(Å)		2 095	2 141	2 093	2 1 3 5	2 136	F…F(Å)	2 26(3)	2 241	2.277	2 243	2 277	2.274
			$CCl_3^+$							BCl			
		6-3	1G(2d)		cc-pV]	ΓZ			6-3	1G(2d)		cc-pV	ſŹ
	exptl ^b	HF	MP2	HF	MP2	CCSD(T)		exptl ^e	HF	MP2	HF	MP2	CCSD(T)
C-Cl(Å) Cl-C-Cl(deg)	1.62(1) 119 9(7)	1.645 120	1.654	1.641	1.645	1.655	B-Cl(Å) Cl-B-Cl(deg)	1.75(2)	1.750	1.750	1. <b>747</b>	1 <b>74</b> 0	1.747
Cl···Cl(Å)	2.805(5)	2.848	2.865	2.842	2.849	2 866	Cl···Cl(Å)	2 99(3) ^a	3 031	3.031	3.025	3.015	3 026
			CBr₃⁺							BBr ₃			
		6-3	1G(2d)		cc-pV]	Z			6-3	1G(2d)		cc-pV?	ſZ
	exptl ^b	HF	MP2	HF	MP2	CCSD(T)		exptl	HF	MP2	HF	MP2	CCSD(T)
C-Br(Å) Br-C-Br(deg)	1.81(2) 120.0(9)	1 800 120	1.803	1 808	1.801	1.816	B-Br(Å) Br-B-Br(deg)	1 893(5) ^d	1.896 120	1.888	1.910	1.891	1.901
Br…Br(Å)	3.129(3)	3.117	3.123	3.132	3.120	3.145	Br···Br(Å)	3.25(3) ^a	3.284	3.270	3.308	3.275	3.293
			$CI_3^+$							BI3			
		(SI	DB-)cc-pVI	ΓZ	_				(SI	DB-)cc-pV	TZ	_	
	exptl ^e	HF	MP2	CCSD(	[]			exptl	HF	MP2	CCSD(T)		
C–I(Å) I–C–I(deg)	2.013(9) 120.0(5)	2.001	1.990	2.007			B–I(Å) I–B–I(deg)	2.112(8) ^f 120 0(9)	2.117 120	2.092	2 105	-	
I…I(Å)	3.486(8)	3.466	3.447	3.477			I…I(Å)	3 659 [°]	3.667	3.624	3.646		

# **Table 6.9.**Experimental and Calculated Geometries for $CX_3^+$ and $BX_3$

232

^a From ref 247. ^b Average values, present work. ^c From ref 250. ^d From ref 251. ^e From ref 101. ^f From ref 252, the I…I contact distance was calculated from the published coordinates.

C(O)	$[eF_5]_3^+ (C_{3h})$		B(O	TeF5)3 (C3h)	
<u></u>	exptl ^b	calcd	<u> </u>	exptl ^c	calcd
		bond le	ngths (Å) ^d		
C(1)-O(1)	1.28(3)	1.256	B(1)-O(1)	1.358(6)	1.354
Te(1)-O(1)	1.98(1)	1.945	Te(1)-O(1)	1.874(6)	1.833
Te(1)-F(1)	1.81(1)	1.765	Te(1)-F(1)	1.822(6)	1.785
Te(1)-F(2)	1.81(2)	1.778	Te(1)-F(2)	1.809(4)	1.790
Te(1)–F(3)	1.81(2)	1.771	Te(1)-F(3)	1.818(4)	1.785
		bond an	igles (deg) ^d	·	
C(1)-O(1)-Te(1)	129.8(1)	135.27	B(1)-O(1)-Te(1)	132.3(4)	137.32
O(1)-Te(1)-F(1)	175.9(6)	180.00	O(1)-Te(1)-F(1)	178.0(3)	180.00
O(1)-Te(1)-F(2)	90.2(9)	88.43	O(1)-Te(1)-F(2)	92.6(2)	91.88
O(1)-Te(1)-F(3)	84.7(9)	85.50	O(1)-Te(1)-F(3)		89.56
F(1)-Te(1)-F(2)	92.6(9)	92.75	F(1)-Te(1)-F(2)	88.8(2)	89.12
F(1)-Te(1)-F(3)	92.6(9)	93.32	F(1)-Te(1)-F(3)	89.0(2)	89.44
F(2)-Te(1)-F(3)	89.9(9)	89.76	F(2)-Te(1)-F(3)	90.2(2)	89.87
F(2)-Te(1)-F(4)	90.0(9)	89.68	F(2)-Te(1)-F(4)	91.2(2)	90.12
F(2)-Te(1)-F(5)	174.8(9)	173.92	F(2)-Te(1)-F(5)		178.56

**Table 6.10.** Calculated^a and Experimental Geometries for  $C(OTeF_5)_3^+$  and  $B(OTeF_5)_3$ 

^a HF/(SDB-)cc-pVTZ. ^b Experimental values are averaged values. ^c From ref 221. ^d The atom numbering scheme corresponds to that of the equivalently labelled OTeF₅ group of the C(OTeF₅)₃⁺ cation in Figure 6.3, where F(1) is the axial fluorine and F(2–5) are the equatorial fluorines. In the calculated structure, the F(2)/F(4) and the F(3)/F(5) pairs are related by symmetry.



**Figure 6.5.** Experimental (left) and calculated (right) geometries for (a) the  $C(OTeF_5)_3^+$  cation and (b) the  $B(OTeF_5)_3$  molecule (experimental structure from ref 221).

#### Ph.D. Thesis - Matthew D. Moran

contacts with two SO₂ClF solvent molecules in the crystal lattice of  $[C(OTeF_5)_3][Sb(OTeF_5)_6]$ ·3SO₂ClF do not have a significant effect on the structure of the cation in the solid state (see Section 6.2.2). Moreover, the slight distortions of the F–Te–F bond angles from 90° in C(OTeF₅)₃⁺ and the near-regular pseudo-octahedral OTeF₅ groups observed for B(OTeF₅)₃ are also reproduced by the calculations.

#### 6.2.4.2. Natural Bond Orbital (NBO) Analyses

Natural atomic charges, Mayer natural atomic orbital valencies, and natural atomic orbital bond orders between atoms in  $CX_3^+$ ,  $CX_4$  and  $BX_3$ , calculated at the MP2 level of theory, are given in Table 6.11 and those calculated for  $C(OTeF_5)_3^+$  and  $B(OTeF_5)_3$ , at the HF level of theory, are given in Table 6.12.

(i) B–X/C–X  $\sigma$ - and  $\pi$ -Donations and Natural Atomic Charges. Following previous approaches, bonding at the central carbon and boron atoms was divided into  $\sigma$ - and  $\pi$ - donation, and the values obtained agreed well with the previous values and associated interpretations (see Tables 6.11 and 6.12).^{199,207}

The NBO analyses for  $CX_3^+$  and  $BX_3$  (X = F or OTeF₅) were carried out at the same level of theory (HF/(SDB-)cc-pVTZ; see Table 6.12), so that both the carbocations and neutral boron analogues could be compared. The  $\pi$ -donations from the carbon bonded to fluorine or to the oxygen atom of the OTeF₅ ligand to the central carbon or boron atom and are similar for  $CX_3^+$ , (0.15 for X = F; 0.19 for X = OTeF₅) and for BX₃, they are equal (0.09) for X = F or OTeF₅. In both cases, the  $\sigma$ -donation from the

$CX_3^+(D_{3h})$		F	Cl	Br	I
	-				
natural Charge $(q)$	C (X)	1.37 (-0.12)	-0.09 (0.36)	-0.45 (0.48)	-1.10 (0.70)
bond order	$C-X(X \cdots X)$	0.88 (-0.04)	1.09 (-0.05)	1.04 (-0.05)	0.99 (0.06)
valency	C (X)	2.64 (0.81)	3.28 (0.99)	3.12 (0.93)	2.97 (0.88)
$p_{\pi}$ populations	C (X)	0.59 (1.77)	0.91 (1.65)	1.00 (1.62)	1.13 (1.57)
$\sigma$ donation ( $\pi$ donation) ^b	$C {\rightarrow} X (X {\rightarrow} C)$	0.32 (0.19)	-0.06 (0.31)	-0.15 (0.33)	-0.32 (0.38)
$CX_4(T_d)$	_	F	C1	Br	I
natural charge $(q)$	C (X)	1.25 (-0.31)	-0.11 (0.03)	-0.56 (0.14)	-1.19 (0.30)
bond order	C–X (X…X)	0.70 (-0.03)	0.90 (-0.04)	0.83 (-0.04)	0.79 (-0.03)
valency	C (X)	2.82 (0.61)	3.61 (0.79)	3.34 (0.71)	3.16 (0.69)
$\mathbf{BX}_{3}\left( D_{3h}\right)$	-	<u>F</u>	Cl	Br	I
natural charge $(a)$	$\mathbf{B}(\mathbf{X})$	1 39 (0 46)	0.34 (_0.11)	0.06(-0.02)	-0.49(0.16)
hond order	$\mathbf{B}_{\mathbf{X}}(\mathbf{X}_{\cdots}\mathbf{X})$	1.32 (-0.40) 0 86 (-0.02)	1.08(-0.04)	1.09 (0.02)	-0.49(0.10) 1 16(-0.04)
valency	$\mathbf{B} = \mathbf{A} (\mathbf{A} \cdot \mathbf{A})$ $\mathbf{B} (\mathbf{X})$	2 58 (0 81)	3.24(1.00)	3.27(1.00)	3 47 (107)
n populations	B(X)	0.32(1.86)	0.24(1.00) 0.48(1.79)	0.53(1.00)	0.63(1.74)
$p_{\pi}$ populations	$\mathbf{D}(\mathbf{A})$	0.52(1.00)	0.70(1.77)	0.00 (0.19)	0.03(1.74)
$\sigma$ uonation ( $\pi$ uonation)	$D \rightarrow \Lambda (\Lambda \rightarrow B)$	0.37(0.11)	0.27(0.10)	0.20 (0.10)	0.04 (0.21)

**Table 6.11.** Calculated^a Natural Atomic Charges, Mayer Bond Orders, and Mayer Natural Atomic Orbital Valencies for $CX_3^+$ ,  $CX_4$ , and  $BX_3$  (X = F, Cl, Br, I)

^a MP2/(SDB-)cc-pVTZ. ^b The value given is per bond; a negative sign indicates donation in reversed order.

236

#### Ph.D. Thesis – Matthew D. Moran

$C(OTeF_5)_3^+ (C_{3h})^b$	charge	valency		bond order
С	1.30	3.04	C0	1.01
0	-0.86	1.33	Te-O	0.45
Te	4.07	3.19	Te-F _A	0.56
FA	-0.65	0.53	Te-F _B	0.54
<b>F</b> _B	-0.67	0.49	Te-F _{B'}	0.55
F _{B'}	-0.66	0.51		
overall OTeF ₅	-0.10			
$p_{\pi}$ populations at C (O) $\sigma$ donation ( $\pi$ donation) ^c		0.56 (1.80) 0.28 (0.19)		
$\operatorname{CF_3}^+(D_{3h})$	charge	valency		bond order
С	1.57	2.66	C–F	0.89
F	-0.19	0.82		
$p_{\pi}$ populations at C (F) $\sigma$ donation ( $\pi$ donation) ^c		0.46 (1.83) 0.34 (0.15)		
B(OTeF ₅ ) ₃ (C _{3h} ) ^b	charge	valency		bond order
В	1.45	2.18	B-O	0.73
Ō	-1.15	1.22	Te-O	0.58
Te	4.08	3.22	Te-F _A	0.53
F _A	-0.68	0.49	Te-F _B	0.52
F _B	-0.68	0.48	Te-F _{B'}	0.53
F _{B'}	-0.68	0.49		
overall OTeF ₅	-0.48			
$p_{\pi}$ populations at B (O) $\sigma$ donation ( $\pi$ donation) ^c		0.27 (1.88) 0.57 (0.09)		
BF ₃ ( <i>D</i> _{3<i>h</i>} )	charge	valency		bond order
В	1.56	2.53	B-F	0.84
F	-0.52	0.80		
$p_{\pi}$ populations at B (F) $\sigma$ donation ( $\pi$ donation) ^c		0.26 (1.91) 0.61 (0.09)		

**Table 6.12.** Calculated^a Natural Atomic Charges, Mayer Bond Orders and MayerNatural Atomic Orbital Valencies for  $C(OTeF_5)_3^+$  and  $B(OTeF_5)_3$ 

^a HF/(SDB-)cc-pVTZ. ^b The symbols,  $F_A$  and  $F_B/F_{B'}$  denote axial and equatorial fluorine atoms, where  $F_B$  and  $F_{B'}$  are nonequivalent under  $C_{3h}$  symmetry. ^c The value given is per bond; a negative sign indicates donation in reversed order.

carbon or boron atom to the ligand atom decreases when fluorine is replaced by the OTeF₅ group. The charge on the carbon atom of  $C(OTeF_5)_3^+$  (1.30) is lower than that on the carbon atom of  $CF_3^+$  (1.57), and the overall charge of the OTeF₅ group (-0.10) is somewhat lower than that of fluorine in  $CF_3^+$  (-0.12). As expected, the charge on the carbon atom is somewhat less positive in the OTeF₅ derivative, which is consistent with the lower electronegativity of the OTeF₅ group.⁷⁰ In both  $C(OTeF_5)_3^+$  and  $B(OTeF_5)_3$ , the positive charges on the central atom are lower and on the ligand less negative when compared with the atomic charges of  $CF_3^+$  and  $BF_3$ , respectively.

(ii) Mayer Bond Orders and Natural Atomic Orbital Valencies for  $C(OTeF_5)_3^+$  and  $B(OTeF_5)_3$ . The B–O bond order and valencies at the boron and oxygen atoms are lower for  $B(OTeF_5)_3$  than the corresponding values of  $C(OTeF_5)_3^+$ , indicating less double bond character. This is consistent with the  $\pi$  donation being lower for B $\leftarrow$ O (0.09) than for  $C\leftarrow$ O (0.19). At the HF level, the B–F bond order and valencies at boron and fluorine are also lower for BF₃ than the corresponding values for CF₃⁺. The difference between the valencies at boron in BF₃ and in B(OTeF₅)₃ is 0.35, which is almost the same as the difference between the valencies at carbon in CF₃⁺ and in C(OTeF₅)₃⁺, 0.38. These trends show that C(OTeF₅)₃⁺/CF₃⁺ and B(OTeF₅)₃/BF₃ exhibit similar electronic properties.

#### 6.2.5. Chemical Shift and Coupling Constant Trends

The ¹³C chemical shifts of the  $CCl_3^+$  and  $CBr_3^+$  cations are significantly deshielded with respect to their parent tetrahalomethanes (Table 6.1). The ¹³C resonance

#### Ph.D. Thesis - Matthew D. Moran

of CI₃⁺ has also been shown to be strongly deshielded with respect to CI₄ (Table 6.13).^{186,187} Electronic structure calculations (MP2/(SDB-)cc-pVTZ) reveal that the ¹³C deshielding that results from carbocation formation,  $\Delta\delta(^{13}C)$ , parallels the decrease in the natural atomic charge on carbon relative to the carbon charge in the tetrahalide (Table 6.11). This reduction in negative charge (CCl₃⁺, 0.10; CBr₃⁺, 0.10; CI₃⁺, 0.26) does not, however, fully account for the extent of deshielding,  $\Delta\delta(^{13}C)$  (CCl₃⁺, +140.7 ppm; CBr₃⁺, +239.4 ppm; CI₃⁺, +389.3 ppm), observed in the ¹³C NMR spectra. The shielding changes can be rationalized in terms of the paramagnetic shielding contribution ( $\sigma^p$ ) to the overall screening of the ¹³C nucleus ( $\sigma$ ) in the Ramsey equation (eq 6.13), where  $\sigma^d$  is the

$$\sigma = \sigma^p + \sigma^d \tag{6.13}$$

diamagnetic shielding contribution. The paramagnetic term in the Ramsey equation is negative and can be interpreted in terms of the atom-in-a-molecule approach as defined in eq 6.14, where  $\mu_{a}$  is the magnetic moment for a given nucleus,  $\mu_{B}$  is the Bohr magneton,

$$\sigma_{p} \approx -\left(\frac{\mu_{o}}{4\pi}\right) \left(\frac{4\mu_{B}^{2}}{\Delta E}\right) \left[\left\langle r^{-3}\right\rangle_{np} P_{i} + \left\langle r^{-3}\right\rangle_{nd} D_{i}\right]$$
(6.14)

 $\Delta E$  is the mean excitation energy,  $\langle r^{-3} \rangle_{np}$  and  $\langle r^{-3} \rangle_{nd}$  are the inverse cube roots of the mean expectation values for the p orbital and d orbital distances from the nucleus, and  $P_i$  and  $D_i$  are the degrees of imbalance of valence electrons in p and d orbitals, respectively. The approach is a one-center approximation, restricted to terms centered on the nucleus

		¹³ C ^b		¹⁹ F ^c			
	exptl	6-31G(d) ^d	,• cc-pVTZ ^{d,e}	exptl	6-31G(d) ^{d,e}	cc-pVTZ ^{d,e}	
$CF_3^+$	$-(150.7)^{f}$	155.5	154.5		32.1	32.9	
CCl ₃ ⁺	237.1 ^d (236.3) ^g	249.8	254.8				
$CBr_3^+$	209.7 ^d (207) ^g	304.9	312.8				
$CI_3^+$	97 ^h (95) ^g		436.4				
	exptl⁴		(SDB-)cc-pVTZ ^{d,e}	exptl ^d		(SDB-)cc-pVTZ ^{d,c}	
$C(OTeF_3)_3^+$	168.8	_	139.5	-57.6 (F _a )		-132.7 (F _a )	
-())				-31.6 (F _e )		-107.3 (F _e )	
	exptl	6-31G(d) ^{d,e}	cc-pVTZ ^{d,e}	exptl ^d	6-31G(d) ^{d,e}	cc-pVTZ ^{d,c}	
CF ₄	$(119.9)^{i}$	119.6	123	-62.4	-88.8	-76.2	
CCl ₄	96.4 ^d	132.1	137				
CBr₄	$-29.7^{d}$	139.1	142				
$CI_4$	-292.3 ^j	_	93				
		${}^{11}\mathbf{B}^{\mathbf{k}}$			¹⁹ F [¢]		
	exptl ^{l,m}		(SDB-)∝-pVTZ ^{d,e}	expt1 ^m	<u> </u>	(SDB-)cc-pVTZ ^{d,e}	
B(OTeF ₅ ) ₃	-22.9		75.4	$-48.2(F_a)$		-62.8 (F _a )	
、 - <i>/-</i>				$-44.4(F_{e})$		$-53.4 (F_e)$	
	$exptl^n$	6-31G(d) ^{d,e}	cc-pVTZ ^{4,e}	exptl	6-31G(d) ^{d,e}	cc-pVTZ ^{d,e}	
BF3	10.0	30.8	24.0	-126.8°	-132.5	-125.6	
BCl ₃	46.5	73.1	68.8				
BBr ₃	38.7	92.8	73.1				
$BI_3$	-7.9		117.8				

**Table 6.13.** Experimental and Calculated^a Chemical Shifts for  $CX_3^+$  and  $BX_3$  (X = F, Cl, Br, I, OTeF₅) and  $CX_4$  (X = F, Cl, Br, I)

^a Chemical shifts were calculated at the B3LYP/6-311G(d)//HF/6-31G(d) and B3LYP/(SDB-)cc-pVTZ//HF/(SDB-)cc-pVTZ levels for  $CX_3^+$ ,  $CX_4$  and  $BX_3$ , and at the B3LYP/(SDB-)cc-pVTZ//HF/(SDB-)cc-pVTZ level for  $C(OTeF_5)_3^+$  and  $B(OTeF_5)_3$ . ^b Referenced to TMS. ^c Referenced to CFCl₃. ^d Present work. ^e The predicted chemical shifts reported here have been obtained by subtracting their absolute values from that of their respective reference compound, i.e., TMS (¹³C), 180.9969 ppm ( $T_d$ , 6-311G*) and 181.2543 ppm ( $T_d$ , (SDB-)cc-pVTZ); CFCl₃ (¹⁹F), 167.9485 ppm ( $C_{3\nu}$ , 6-311G*) and 183.9397 ppm ( $C_{3\nu}$ , (SDB-)cc-pVTZ); F₃BO(C₂H₅)₂ (¹¹B), 123.7710 ppm ( $C_{3\nu}$ , 6-311G*) and 116.3587 ppm ( $C_{3\nu}$ , cc-pVTZ). ^f From ref 187. ^g From ref 186. ^h From ref 101. ^{i 13}C From ref 70. ^j From ref 253. ^k referenced to B(OCH₃)₃. ¹ The ¹¹B chemical shift quoted in the literature (ref 109) was referenced to B(OCH₃)₃ and converted to the ¹¹B chemical shift referenced to F₃BO(C₂H₅)₂ by subtraction of 18.3 ppm from the chemical shift referenced to B(OCH₃)₃. ^m From ref 109. ⁿ The ¹¹B spectra were recorded in methyl cyclohexane at 33.5 °C (ref 254). ^{o 19}F from ref 255. in question. As the bond length contracts in going from the neutral halide (Table 6.8) to the cation (Table 6.9), the mean expectation value of the inverse cube of the p orbital radius in eq 6.14 is expected to increase. The bond length contraction and concomitant increase in  $\langle r^{-3} \rangle_{np}$  results in a more negative paramagnetic contribution to the overall nuclear magnetic shielding term, and, in turn, to a high-frequency ¹³C chemical shift. Similar trends are also noted for the isoelectronic boron trihalides, BX₃,²⁵⁴ and the tetrahaloborates, BX₄⁻ (X = F, Cl, Br, I).²⁵⁶

There are significant discrepancies between the experimental ¹¹B and ¹³C NMR chemical shifts of  $BX_3$  and  $CX_3^+$  and those calculated by the GIAO method (B3LYP/(SDB-)cc-pVTZ) for the heavier halides (Table 6.13). The calculated ¹¹B and ¹³C NMR chemical shifts show monotonic increases from BCl₃ to BI₃ and from CCl₃⁺ to  $CI_3^+$  (inverse halogen effects), which contrast with the observed trends of decreasing chemical shift upon descending group 17 (Table 6.13). The calculated chemical shift trends arise from larger paramagnetic contributions expected for increasingly more covalent interactions between the central atom and the halogen atom upon descending group 17. The discrepancies between the calculated and experimental chemical shifts, however, result from neglect of the effect of spin-orbit (SO) coupling on the overall nuclear shielding, which is not taken into account by the original Ramsey equation.²⁵⁷ Spin-orbit coupling causes a triplet excitation on the heavy atom, which, in turn, is transmitted to a neighboring atom through the bond. As such, inclusion of the SOcorrection increases the shielding calculated for boron and carbon bonded to bromine or iodine, and results in good agreement with observed ¹¹B and ¹³C NMR chemical shifts for the BX₃²⁵⁸ and CX₃^{+ 211} series as previously shown. Although plots of ¹¹B and ¹³C chemical shifts versus halogen electronegativity for BX₄,²⁵⁶ BX₃,²⁵⁶ CX₄,²⁵⁹ and CX₃^{+ 187} are near linear for X = Cl, Br and I, it has been pointed out that such trends are fortuitous, and are, in fact, attributable to the SO coupling term.²¹¹ The ¹¹B chemical shift of BF₃ and the predicted ¹³C chemical shift of CF₃⁺ cannot be understood in terms of the high electronegativity of fluorine, nor can they be understood in terms of the traditional notion that high shielding arises from  $p(\pi)$  back donation to the boron^{260,261} or carbon¹⁸⁶ atoms from the fluorine atoms. Electronic structure calculations, however, reveal that the  $p(\pi)$  back bonding components in BF₃ and CF₃⁺ are weakest among their respective tribulate series (Table 6.11). Thus, the increased shieldings experienced by the boron and carbon nuclei are actually the normal behavior and arise from the highly ionic characters of the B–F and C–F bonds, which lead to large  $\Delta E$  values and smaller paramagnetic contributions to their respective nuclear shieldings (eq 6.14).^{211,258}

The ¹³C chemical shift of  $C(OTeF_5)_3^+$  (168.8 ppm) is in good agreement with values reported for other peroxygen-substituted carbocations  $(C(OH)_3^+, 166.8 \text{ ppm})_{193}^{193}$   $C(OCH_3)(OH)_2^+, 164.1 \text{ ppm}_{192})$ . The carbon deshielding relative to that of  $C(OTeF_5)_4$   $(\Delta\delta(^{13}C), 53.0 \text{ ppm})$  is consistent with cation formation, and follows the trend predicted for  $CF_3^+/CF_4$  ( $\Delta\delta(^{13}C)$ ), 30.8 ppm). This result indicates that the C–O bonding in  $C(OTeF_5)_3^+$  is highly ionic, as expected from the estimated high electronegativity of the  $OTeF_5$  group (3.87),⁷⁰ leading to a small paramagnetic contribution to the overall nuclear shielding and, thus, to a relatively shielded ¹³C chemical shift. This ionic character is supported by electronic structure calculations (HF/(SDB-)cc-pVTZ; vide supra) which

show that the charge on the carbon of the  $C(OTeF_5)_3^+$  cation (+1.30) is nearly equal to that of  $CF_3^+$  (+1.37), which is consistent with the ¹³C NMR empirically predicted (150.7 ppm)¹⁸⁷ and computed (154.5 ppm; this work) chemical shifts for the  $CF_3^+$  cation.

The ¹³C resonance of the CBr(OTeF₅)₂⁺ cation was observed at 187.6 ppm, but that of CBr₂(OTeF₅)⁺ was not observed. The chemical shift of the CBr₂(OTeF₅)⁺ cation was predicted from pairwise additivity relationships (eq 6.15),^{256,262} where  $\eta_{i,j}$  is a

$$\delta = \Sigma \eta_{i,i} \tag{6.15}$$

parameter associated with the carbon substituents *i* and *j* and independent of all other substituents. The pairwise additivity parameters  $\eta_{Br,Br}$  (69.9 ppm),  $\eta_{OTeF_5,OTeF_5}$  (56.3 ppm), and  $\eta_{Br,OTeF_5}$  (65.6 ppm) were evaluated from the experimental chemical shifts of CBr₃⁺, CBr(OTeF₅)₂⁺, and C(OTeF₅)₃⁺. In this way, the chemical shift of CBr₂(OTeF₅)⁺ is predicted to be 201.1 ppm from eq 6.16.

$$\delta({}^{13}C) = \eta_{Br,Br} + 2\eta_{Br,OTeF_5}$$
(6.16)

The ¹⁹F NMR data for  $CBr_n(OTeF_5)_{3-n}^+$  are provided in Table 6.1. Previous attempts have been made to explain the ¹⁹F NMR trends observed for the OTeF₅ group in different chemical environments.^{213,263} The trends observed in the present study are in good agreement with the previously noted trends in ¹⁹F chemical shift and ² $J(^{19}F_{B-}^{-19}F_{A})$ , however, some notable differences occur for OTeF₅ bound to carbocation centers: (1)

The ¹⁹F chemical shifts of the equatorial fluorine environments of  $CBr_n(OTeF_5)_{3-n}^+$  have a substantially larger chemical shift range (-31.6 to -19.9 ppm) than the axial fluorine environments (-61.3 to -57.6 ppm), contrasting with the ranges observed for neutral  $({}^{19}F_{B}, -56.6 \text{ to } -36.7 \text{ ppm}; {}^{19}F_{A}, -54.6 \text{ to } -27.8 \text{ ppm})$  OTeF₅-substituted compounds.²⁶³ (2) The  ${}^{2}J({}^{19}F_{B}-{}^{19}F_{A})$  values range from 156 to 164 Hz, which is significantly smaller than the previously observed range for neutral and anionic species (175-195 Hz).²⁶³ Moreover, the decrease in coupling in going from the neutral species to the cation also holds for BrOTeF₅ (180 Hz) and the Br(OTeF₅)₂⁺ cation (164 Hz). (3) The  ${}^{1}J({}^{19}F_{A}-{}^{123,125}Te)$  and  ${}^{1}J({}^{19}F_{B}-{}^{123,125}Te)$  couplings were found to increase substantially in going from C(OTeF₅)₄ to  $C(OTeF_5)_3^+$ , from  $CBr(OTeF_5)_2^+$  to  $CBr_2(OTeF_5)^+$ , and from  $Br(OTeF_5)$  to  $Br(OTeF_5)_2^+$  (Table 6.1). Furthermore, the magnitude of the coupling was found to increase to a greater extent on going from  $C(OTeF_5)_3^+$  to  $CBr_2(OTeF_5)^+$ . Although there are no other systematic studies involving OTeF₅ ligands bound to a cation center, these observations are consistent with cation formation, and the trends across the  $CBr_n(OTeF_5)_{3-n}^+$  series can be correlated to increasing covalent character of the C-O bond with increasing bromine substitution.

#### 6.3. Conclusions

The present study provides a new oxidative route to carbocations and the first solid state characterization of the previously reported  $CCl_3^+$  and  $CBr_3^+$  cations as well as the novel  $C(OTeF_5)_3^+$  cation. The cations have been stabilized as salts of the preformed oxidatively resistant and weakly coordinating  $Sb(OTeF_5)_6^-$  anion, which avoids the use of

more strongly coordinating anions derived from strong Lewis acid ligand acceptors, such as SbF₅. Despite their anticipated high electrophilicity, these salts are stable at room temperature. In addition, the CBr(OTeF₅)₂⁺ and Br(OTeF₅)₂⁺ cations and C(OTeF₅)₄ have been characterized by ¹³C and/or ¹⁹F NMR spectroscopy. NMR spectroscopy has also been used to monitor carbocation formation, ligand substitution by means of redox elimination and decomposition pathways in these systems.

X-ray crystallographic studies show, in all cases, that the carbocation center is planar in the absence of symmetry constraints imposed by the crystal lattice. Despite the strong Lewis acidities predicted for perhalomethyl cations, the  $CCl_3^+$  and  $CBr_3^+$  cations are well isolated in their respective crystal lattices and possess only long secondary C···F contacts to fluorine atoms of the Sb(OTeF₅)₆⁻ anion that do not significantly exceed the sum of the van der Waals radii of carbon and fluorine. Secondary X···F and X···O (X = Cl, Br) contacts that are close to the sums of the van der Waals radii of the halogen and an oxygen atom of co-crystallized SO₂ClF or a fluorine atom of the anion exist for CCl₃⁺ and CBr₃⁺ that are in accord with the calculated positive charges on the halogen atoms of both cations.

Computational studies reproduce the experimental metric parameters of  $CCl_3^+$ ,  $CBr_3^+$  and  $C(OTeF_5)_3^+$ , and the vibrational frequencies of  $CCl_3^+$  and  $CBr_3^+$ , and have been extended to their  $OTeF_5$  derivatives.

Contrasting with the  $CCl_3^+$  and  $CBr_3^+$  cations, the  $C(OTeF_5)_3^+$  cation possesses two short C-O contacts to the oxygen atoms of two weakly basic, co-crystallized SO₂ClF molecules, which is consistent with the high positive charge on carbon predicted by electron structure calculations and which approximates that of the highly Lewis acidic  $CF_3^+$  cation.

Natural orbital analyses were performed using HF or MP2 densities with the NBO program (versions 3.1 and 5.0).^{126,127} The use of pseudopotential basis set instead of an all-electron basis set was tested and the overall results did not differ significantly, as pointed out previously.²⁶⁴

### **CHAPTER 7**

# CARBOCATION SYNTHESIS BY USE OF THE NOBLE-GAS OXIDANT, [XeOTeF5][Sb(OTeF5)6]: CFX2⁺ (X = Cl, Br) CATIONS AND EVIDENCE FOR CF3⁺

#### 7.1 Introduction

Unlike the  $CX_3^+$  (X = Cl, Br, I, OTeF₅) cations (see Chapter 6), considerably less is known about the mixed, fluorine-containing halomethyl cations. The mixed, fluorinecontaining chloromethyl cations,  $CFCl_2^+$  and  $CF_2Cl^+$ , have been observed in the gas phase by mass spectrometry and photoelectron coincidence spectroscopy,²⁶⁵⁻²⁶⁹ and have been generated by matrix radiolysis and photoionization of CFCl₃ (CFCl₂⁺)²⁷⁰ and CF₂Cl₂ (CF₂Cl⁺)²⁷¹ when condensed with argon at 15 K. Both cations were characterized by infrared spectroscopy, but the assignments of the complex mixture of cationic and radical chlorofluorocarbon species were not corroborated by other means. In another matrixisolation study, it was claimed that the  $CFCl_2^+ \cdots Cl^-$  ion pair was generated by irradiation of CFCl₃ with  $\gamma$ -rays generated at 77 K using a ⁶⁰Co source, followed by irradiation with a xenon lamp using a cutoff of 900 nm.²⁷² The proposed ion pair was characterized by UV-visible absorption spectrophotometry. Similarly, while the mixed bromofluoromethyl cations have been observed in the gas phase, ^{265,268} persistent CFBr₂^{+ 273,274} and CF₂Br^{+ 273} cations have only been observed by IR spectroscopy of both the natural abundance and ¹³C-enriched cations when generated by matrix photoionization and radiolysis of CFBr₃ and CF₂Br₂, respectively, when condensed with argon at 15 K.

The difficulties encountered in the isolation of fluorine-containing methyl cations is apparent from the paucity of crystal structures that have been determined for these systems, i.e.,  $[F_2C-S-CF-S]^+$ ,¹⁹⁵ [(CH₃)₂CF]⁺,¹⁹⁶ [(*m*-CF₃C₆H₄)(C₆H₅)CF]⁺,¹⁹⁶ and [CH₃OCHF]⁺.¹⁹⁷ The fluorine-containing perhalomethyl cations are expected to be among the strongest, if not the strongest, known electrophiles.

To date there have been no syntheses of long-lived fluorine-containing, perhalomethyl cations. Among the objectives of the present work are to provide a viable synthetic route to and spectroscopic data for long-lived, mixed fluorine-containing perhalomethyl cations,  $CFX_2^+$  (X = Cl, Br), as well as evidence for complexes of the  $CF_3^+$  cation, in SO₂ClF solution. The present Chapter also details the solid-state characterization of  $[CFCl_2][Sb(OTeF_5)_6]$  (Raman spectroscopy) and computational studies relating to  $CF_nX_{3-n}^+$  (n = 0-3; X = Cl, Br). The crystal structure of  $[SbBr_4][Sb(OTeF_5)_6]\cdot SO_2ClF$ , a decomposition product of the  $[CFBr_2][Sb(OTeF_5)_6]$  salt, has also been determined by single crystal X-ray diffraction.

#### 7.2. Results and Discussion

# 7.2.1. Reactions of CFCl₃, CF₂Cl₂, and CF₃Cl with [XeOTeF₅][Sb(OTeF₅)₆] and Solution Characterization by 13 C and 19 F NMR Spectroscopy

The products of the reactions described below were initially characterized in SO₂ClF solution by ¹³C and ¹⁹F NMR spectroscopy, and their NMR parameters are provided in Table 7.1. The ¹⁹F NMR spectrum of the  $CFCl_2^+$  cation is provided in Figure 7.1.

	,	chemical shi	ift (δ), ppm ^c		coupling constant, Hz ^c				
Species	¹³ C ^d	¹⁹ F _C	¹⁹ F _A	¹⁹ F _B	$^{1}J(^{13}C-^{19}F_{\rm C})$	$^{2}J(^{19}F_{A}-^{19}F_{B})$	${}^{4}J({}^{13}F_{C}-{}^{19}F_{B})^{d}$		
$CFCl_2^+$	214.3	168.6			429				
FCICOTeF5 ⁺	90.0	175.4			399	157	9.7		
CFCl ₃	117.1	-1.1			335				
CF ₃ Cl	125.9	-20.5			308				
$CFBr_2^+$	208.4	207.9			471				
CFBr ₃ ^f	49.5	7			372				
CF ₃ Br	112.4	-19.1			320				
F ₃ CBrOTeF ₅	119.4	-48.6	-58.1	-19.6	289	163	<b>n</b> .o.		
F ₂ BrCOTeF ₅	<b>n</b> .o.	-12.0	-44.6	-48.1	323	177	4.3		

-49.7

CF₂Cl₂, CF₂Br₂, and CF₃Br

119.9

119.2

-62.5

-51.5

-43.8

	isotopic shift, ppm					
Species	$^{1}\Delta^{19}F(^{13/12}C)^{e}$	$^{2}\Delta^{19}F(^{37/35}Cl)$				
CECL ⁺	0 1900	0.0127				
FCICOTeFs ⁺	-0.1749	-0.0099				
CFCl ₃	-0.2036	-0.0079				
CF ₃ Cl	-0.1780	-0.0069				
CFBra ⁺	_0 1864					
CFBr ₃ ^f	-0.1804 N/A					
CF ₃ Br	-0.1478					
F ₃ CBrOTeF ₅ ⁺	-0.1730					
F ₂ BrCOTeF ₅	-0.1595					
CF ₄	-0.1230					
F ₃ COTeF ₅	-0.1317					

263

267

180

3.8

CF₄ F₃COTeF₅ **Table 7.1.**(continued...)

^a Nuclear magnetic resonance spectra were obtained for SO₂ClF solutions at -80 °C. ^b The NMR parameters for CCl₃⁺ and CBr₃⁺ are given in Table 6.1. ^c The symbols, F_c, F_{eq}, and F_{ax}, denote fluorine bonded to carbon, equatorial fluorine atoms, and axial fluorine atoms, respectively. ^d Not available. ^f Taken from ref 275.



**Figure 7.1.** The ¹⁹F NMR spectrum (470.665 MHz) of  $CFCl_2^+$  generated by the reaction of  $CFCl_3$  with [XeOTeF₅][Sb(OTeF₅)₆] and recorded at -80 °C in SO₂ClF solvent. The intensity ratio for the three isotopomers was found to be 100 : 73 : 19 (calculated, 100 : 65: 10).

The chlorofluorocarbons (CFCs) CFCl₃ (Freon-11) and CF₂Cl₂ (Freon-12) were oxidized, albeit more slowly than CCl₄,⁸⁰ by [XeOTeF₅][Sb(OTeF₅)₆] in SO₂ClF at -78 °C, while CF₃Cl (Freon-13) was not oxidized at temperatures approaching room temperature. The CFCl₂⁺ cation has been synthesized according to eq 7.1 and characterized by ¹³C and

$$CFCl_3 + [XeOTeF_5][Sb(OTeF_5)_6] \longrightarrow$$
  
[CFCl_2][Sb(OTeF_5)_6] + ClOTeF_5 + Xe (7.1)

¹⁹F NMR spectroscopy, and appears to be stable indefinitely at -80 °C. The ¹⁹F (168.6 ppm) and ¹³C (214.3 ppm) chemical shifts are significantly deshielded with respect to those of its parent, CFCl₃ (Table 7.1). The large increase in the ¹*J*(¹⁹F–¹³C) coupling in going from CFCl₃ (335 Hz) to CFCl₂⁺ (429 Hz) is consistent with the increase in s-character in going from sp³-hybridization to sp²-hybridization at the carbon center. The CFCl₂⁺ cation was unambiguously established by observation of the secondary isotope shift on the ¹⁹F resonance arising from ³⁵Cl and ³⁷Cl, which gives three peaks in the correct intensity ratios corresponding to the isotopomers FC³⁵Cl₂⁺ (100), FC³⁵Cl³⁷Cl⁺ (73), and FC³⁷Cl₂⁺ (19), in agreement with the calculated values of 100 : 65 : 10. The discrepancy between the experimental and calculated intensity ratios is due to the partial overlap of the isotopomer peaks in the ¹⁹F NMR spectrum (Figure 7.1).

It was shown by ¹³C and ¹⁹F NMR spectroscopy that the  $CFCl_2^+$  cation undergoes ligand exchange with excess  $CFCl_3$  at -50 °C over a period of several hours to give  $[CCl_3][Sb(OTeF_5)_6]$  and  $CF_2Cl_2$  (eq 7.2). Furthermore, the highly electrophilic  $CFCl_2^+$ 

cation and ClOTeF₅ react, with redox elimination of chlorine, to give the CFCl(OTeF₅)⁺ cation (eq 7.3), which has also been unambiguously characterized by  13 C and  19 F NMR

$$CFCl_{3} + [CFCl_{2}][Sb(OTeF_{5})_{6}] \longrightarrow [CCl_{3}][Sb(OTeF_{5})_{6}] + CF_{2}Cl_{2} \quad (7.2)$$
$$[CFCl_{2}][Sb(OTeF_{5})_{6}] + CIOTeF_{5} \longrightarrow$$

$$[CFCl(OTeF_5)][Sb(OTeF_5)_6] + Cl_2 \quad (7.3)$$

spectroscopy (Table 7.1).

The reaction of  $CF_2Cl_2$  and  $[XeOTeF_5][Sb(OTeF_5)_6]$  at -78 °C in SO₂ClF has also been studied by NMR spectroscopy (eq 7.4). It is proposed that the  $CF_2Cl^+$  cation is

$$CF_2Cl_2 + [XeOTeF_5][Sb(OTeF_5)_6] \longrightarrow$$
  
[ $CF_2Cl][Sb(OTeF_5)_6] + ClOTeF_5 + Xe$  (7.4)

generated, but is not observed because it rapidly undergoes halogen exchange reactions to generate  $CFCl_2^+$ ,  $CCl_3^+$ ,  $CFCl_3$ , and  $CF_3Cl$  according to eq 7.5–7.7, which were all

$$CF_2Cl^+ + CF_2Cl_2 \longrightarrow CFCl_2^+ + CF_3Cl$$
(7.5)

$$CFCl_2^+ + CF_2Cl_2 \longrightarrow CF_2Cl^+ + CFCl_3$$
(7.6)

$$CF_2Cl^+ + CFCl_3 \longrightarrow CCl_3^+ + CF_3Cl$$
(7.7)

observed by ¹³C and/or ¹⁹F NMR spectroscopy. This result is not unexpected because  $CF_2Cl^+$  is destabilized with respect to  $CFCl_2^+$  and  $CCl_3^+$  by virtue of the greater inductive effect of fluorine¹⁹⁶ (see Section 7.2.5).

# 7.2.2. Reactions of $CF_2Br_2$ and $CF_3Br$ with [XeOTeF₅][Sb(OTeF₅)₆] and Solution Characterization by ¹³C and ¹⁹F NMR Spectroscopy

The products of the reactions described below were initially characterized in  $SO_2ClF$  solution by ¹³C and ¹⁹F NMR spectroscopy, and their NMR parameters are provided in Table 7.1.

Generation of the bromine analogue of the  $CFCl_2^+$  cation,  $CFBr_2^+$ , has proven more difficult because halogen exchange is more facile in the case of bromine, and because the product, BrOTeF₅, is more reactive towards the  $CFBr_2^+$  cation with respect to redox elimination of Br₂. Thus, it is proposed that the reaction of  $CF_2Br_2$  with [XeOTeF₅][Sb(OTeF₅)₆] in SO₂ClF at -78 °C initially yields  $CF_2Br^+$ , which rapidly undergoes halogen exchange with  $CF_2Br_2$  to give  $CFBr_2^+$ ,  $CBr_3^+$ , and  $CF_3Br$  (eq 7.8– 7.10). Although the reactivity of  $CF_2Br^+$  has precluded its direct detection by NMR

$$CF_{2}Br_{2} + [XeOTeF_{5}][Sb(OTeF_{5})_{6}] \longrightarrow [CF_{2}Br_{1}][Sb(OTeF_{5})_{6}] + BrOTeF_{5} + Xe \quad (7.8)$$

$$CF_{2}Br^{+} + CF_{2}Br_{2} \longrightarrow CFBr_{2}^{+} + CF_{3}Br \quad (7.9)$$

$$CFBr_{2}^{+} + CF_{2}Br_{2} \longrightarrow CBr_{3}^{+} + CF_{3}Br \quad (7.10)$$

spectroscopy, the CFBr₂⁺ cation persists for several hours at -80 °C. As with CFCl₂⁺, the ¹⁹F (207.9 ppm) and the ¹³C (208.4 ppm) chemical shifts are significantly deshielded with respect to those of its parent, CFBr₃ (Table 7.1), with a ¹*J*(¹⁹F–¹³C) coupling (471 Hz) that is again indicative of an sp²-hybridized carbon center. Attempts to grow crystals of

 $[CFBr_2][Sb(OTeF_5)_6]$  at -50 °C over several hours yielded  $[SbBr_4][Sb(OTeF_5)_6]$  instead (see Section 7.3).

The ¹⁹F NMR spectrum also showed that BrOTeF₅ was not present in solution, but reacted with both CF₃Br and CF₂Br₂ to generate F₃COTeF₅ and F₂BrCOTeF₅. Although the former is known,²⁷⁶ the latter represents the first example of a mixed bromofluoro-teflate of carbon.

Attempts to generate persistent  $CF_3^+$  in solution failed, likely because of its extremely high electrophilicity. The reaction between  $CF_3Br$  and  $[XeOTeF_5][Sb(OTeF_5)_6]$  presumably generates incipient  $[CF_3][Sb(OTeF_5)_6]$ , which then abstracts F⁻ or OTeF₅⁻ to give CF₄ and F₃COTeF₅, respectively (eq 7.11 and 7.12). The

$$[CF_3][Sb(OTeF_5)_6] \longrightarrow CF_4 + Sb(OTeF_5)_5(OTeF_4)$$
(7.11)

$$[CF_3][Sb(OTeF_5)_6] \longrightarrow F_3COTeF_5 + Sb(OTeF_5)_5$$
(7.12)

Latter were observed by ¹³C and ¹⁹F NMR spectroscopy. The resulting neutral antimony species are, themselves, unstable, as previously noted (see Chapter 6).

Indirect evidence for  $CF_3^+$  as a reactive intermediate is also indicated by the formation of the F₃CBrOTeF₅⁺ cation (eq 7.13) which has been characterized by ¹³C and

 $[CF_3][Sb(OTeF_5)_6] + BrOTeF_5 \longrightarrow [F_3CBrOTeF_5][Sb(OTeF_5)_6]$ (7.13)

¹⁹F NMR spectroscopy (Table 7.1).

#### 7.2.3. X-ray Crystal Structure of [SbBr₄][Sb(OTeF₅)₆]·SO₂ClF

Details of data collection parameters and other crystallographic information are provided in Table 7.2. Bond lengths and bond angles for the salt, as well as closest contacts between the cation and anion, are listed in Table 7.3. One  $OTeF_5$  group of the anion was positionally disordered about the equatorial fluorines, and was modeled accordingly (Figure 7.2). Only data from the non-disordered  $OTeF_5$  groups are cited in Table 7.3.

Attempts to grow crystals of  $[CFBr_2][Sb(OTeF_5)_6]$  at -50 °C over several hours instead yielded crystals of  $[SbBr_4][Sb(OTeF_5)_6] \cdot SO_2ClF$  by the following proposed reaction pathway (eq 7.14–7.17):

$$CFBr_2^+ + Sb(OTeF_5)_6^- \longrightarrow F_2BrCOTeF_5 + Sb(OTeF_5)_5$$
(7.14)

$$Sb(OTeF_5)_5 \longrightarrow Sb(OTeF_5)_3 + O_2(TeF_5)_2$$
 (7.15)

$$CFBr_2^+ + BrOTeF_5 \longrightarrow BrFCOTeF_5^+ + Br_2$$
(7.16)

$$2Sb(OTeF_5)_3 + 2Br_2 \longrightarrow [SbBr_4][Sb(OTeF_5)_6]$$
(7.17)

The species,  $Sb(OTeF_5)_5$ , is known to be unstable (also see Chapter 6).^{110,216} The salt,  $[SbBr_4][Sb(OTeF_5)_6] \cdot SO_2ClF$ , was characterized by single crystal X-ray diffraction, and the geometric parameters determined for the cation were in excellent agreement with those obtained from the crystal structure of  $[SbBr_4][Sb(OTeF_5)_6]$ .⁷⁹ The geometric parameters of the single molecule of co-crystallized SO₂ClF were also found to be in good agreement with those previously determined structures for SO₂ClF in structures where it does not significantly interact with the cation, such as

chem formula	$O_8F_{31}SClBr_4Sb_2Te_6$
space group	<i>P</i> 2 ₁ /c
a (Å)	13.2515(4)
<i>b</i> (Å)	15.4225(4)
<i>c</i> (Å)	19.0892(5)
$\alpha$ (deg)	90
$\beta$ (deg)	106.886(2)
$\gamma(\text{deg})$	90
$V(\text{\AA}^3)$	3733.1(2)
molecules/unit cell	4
mol wt (g $mol^{-1}$ )	2113.20
calcd density (g cm $^{-3}$ )	3.760
<i>T</i> (°C)	-173
$\mu$ (mm ⁻¹ )	10.64
$R_1^{a}$	0.0413
$wR_2^{\ b}$	0.0705

**Table 7.2.**Crystallographic Data for [SbBr₄][Sb(OTeF₅)₆]·SO₂ClF

^a  $R_1$  is defined as  $\Sigma ||F_0| - |F_c|| / \Sigma |F_0|$  for  $I > 2\sigma(I)$ . ^b  $wR_2$  is defined as  $[\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma w(F_0^2)^2]^{1/2}$  for  $I > 2\sigma(I)$ .

# **Table 7.3.**Experimental^a Geometric Parameters for $[SbBr_4][Sb(OTeF_5)_6] \cdot SO_2ClF$

		bond len	gths (Å)	
Sb(1)–Br(1)	2.3859(5)		Sb-O	1.946(3)-1.954(3)
Sb(1)-Br(2)	2.3904(6)	12 10161	O-Te	1.833(3)-1.850(3)
Sb(1)-Br(3)	2.3844(6)	[2.4010]	Te-F _{ax}	1.823(3)-1.834(2)
Sb(1)-Br(4)	2.3848(5)		Te-F _{eq}	1.817(3)-1.835(3)
S(1)–Cl(1)	1.969(2)		S(1) - F(40)	1.524(3)
S(1)-O(40)	1.405(4)		S(1)-O(41)	1.398(4)
		bond ang	les (deg)	
Br(1)-Sb(1)-Br(2)	112.97(2)		Sb-O-Te	138.4(2)-141.0(2)
Br(1)-Sb(1)-Br(3)	109.56(2)		O-Te-Fax	176.6(1)-177.8(1)
Br(1)-Sb(1)-Br(4)	106.16(2)	[100 47]	O-Te-F _{eq}	89.3(1)-95.2(1)
Br(2)-Sb(1)-Br(3)	107.25(2)	[109.47]	0-S-0	122.1(3)
Br(2)-Sb(1)-Br(4)	112.55(2)		O-S-Cl(x2)	110.1(2), 109.25(2)
Br(3)-Sb(1)-Br(4)	108.26(2)		O-S-F(x2)	108.0(2), 105.7(2)
			F-S-Cl	99.2(1)
		contac	ets (Å)	
Sb(1)—F(15)	3.299(2)		Sb(1)—F(29A)	3.479(8)
Sb(1)—F(22A)	3.460(3)		Sb(1)—O(40)	3.254(4)

and Calculated^b Geometric Parameters for the SbBr₄⁺ cation

^a Values for the OTeF₅ groups were taken from the five non-disordered groups. ^b Values in square brackets were calculated at the SVWN/aug-cc-pVTZ(-PP) level of theory with  $T_d$  symmetry.



Ph.D. Thesis - Matthew D. Moran

**Figure 7.2.** Crystal structure of (a)  $[SbBr_4][Sb(OTeF_5)_6] \cdot SO_2ClF$  and (b) the closest contacts to Sb(1); thermal ellipsoids are shown at the 50% probability level. The dashed lines indicate the second orientation for the single disordered OTeF_5 group. The numbering scheme corresponds to that given in Table 7.3.

а

260

 $[CBr_3][Sb(OTeF_5)_6]$ ·SO₂ClF and the single uncoordinated SO₂ClF molecule in  $[C(OTeF_5)_3][Sb(OTeF_5)_6]$ ·3SO₂ClF (see Chapter 6). The presence of the SO₂ClF molecule in the crystal lattice allows for more efficient packing, and is therefore not twinned like the previous structure.⁷⁹ As a result, the structural solution for  $[SbBr_4][Sb(OTeF_5)_6]$ ·SO₂ClF is more precise, with the error on the Sb–Br bond lengths being approximately one half to one quarter of those previously reported. The major difference between the two structures is the number of long contacts and their arrangement about the central antimony atom. Although the current structure possesses three long Sb…F contacts to fluorine atoms, as with the previous structure, ranging from 3.299(2)–3.479(8) Å (van der Waals radii, 3.56 Å),²⁶ there is a fourth Sb…O contact of 3.254(4) Å (van der Waals radii, 3.61 Å²⁶) to SO₂ClF. The four contacts are arranged in a distorted tetrahedral arrangement, and are trans to the Sb–Br bonds, providing distorted cubic coordination about the antimony atom (Figure 7.2).

Electronic structure calculations have been carried out for the SbBr₄⁺ cation at the SVWN/aug-cc-pVTZ(-PP) level of theory and show that the cation possesses  $T_d$  symmetry in the gas phase. The calculated Sb–Br bond length (2.4016 Å) is slightly longer than the average experimental bond length of 2.386(1) Å. The experimental bond angles, which in some cases differ from the ideal tetrahedral angle by more than  $\pm \sigma$ , average to 109.46(5)° (calculated, 109.47°). The difference in bond angles in the crystal structure is likely the result of long contacts between the fluorine atoms of the anion and the oxygen atom of SO₂ClF (vide supra).
#### 7.2.4. Raman Spectroscopy

The vibrational modes of the  $CFCl_2^+$  cation were assigned under  $C_{2\nu}$  symmetry and belong to the irreducible representation  $3A_1 + B_1 + 2B_2$ . A total of 6 fundamental bands are expected, of which all are infrared and Raman active. The vibrational frequencies were calculated using DFT (SVWN) and MP2 methods and the cc-pVTZ basis set. Assignments were made by comparison with the calculated frequencies and Raman intensities, which are in agreement with the experimental values (Table 7.4).

The low-temperature, solid-state Raman spectrum of the products from the reaction of  $CFCl_3$  with [XeOTeF₅][Sb(OTeF₅)₆] displayed large numbers of bands that could be assigned to the Sb(OTeF₅)₆⁻ anion. The frequency assignments for the  $Sb(OTeF_5)_6^-$  anion were made by comparison with those of  $[N(CH_3)_4][Sb(OTeF_5)_6]$ ,³⁵ [SbX₄][Sb(OTeF₅)₆],⁷⁹ and [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF.¹⁴⁰ Five new bands were observed in the Raman spectrum ( $v_1(A_1)$ , not observed;  $v_5(B_2)$ , 1223.7 cm⁻¹;  $v_2(A_1)$ , 649.3 cm⁻¹;  $v_4(B_1)$ , 617.8 cm⁻¹;  $v_6(B_2)$ , 448.4 cm⁻¹;  $v_3(A_1)$ , 337.3 cm⁻¹) which were assigned, with the aid of electronic structure calculations, to  $CFCl_2^+$  and which are in good agreement with the calculated values (Table 7.4). The high-resolution Raman spectrum of  $[CFCl_2][Sb(OTeF_5)_6]$  reveals that the  $v_2(A_1)$  band is split into two components (Table 7.4) that arise from the isotopomers  $CF^{35}Cl_2^+$  and  $CF^{35}Cl_2^{37}Cl^+$ . The third isotopomeric peak arising from  $CF^{37}Cl_2^+$  could not be observed because of its low intensity. The intensities of the observed isotopomer bands are in excellent agreement with the intensities calculated from the chlorine natural abundances  $(CF^{35}Cl_2^+, 100;$  $CF^{35}Cl^{37}Cl^+$ , 65;  $CF^{37}Cl_2^+$ , 10). The isotopic splitting,  $\Delta v(^{37/35}Cl)$ , of 5.0 cm⁻¹ is in good

				$\operatorname{CFCl_2^+}$				
			SVWN/cc-pVT2	Z		MP2/cc-pVTZ		
assgnt	exptl	$CF^{35}Cl_2^+$	$CF^{35}Cl^{37}Cl$	$CF^{37}Cl_2^+$	$\overline{CF}^{35}Cl_2^+$	CF ³⁵ Cl ³⁷ Cl	$-CF^{37}Cl_2^+$	
$v_1(A_1), v(C-F)$	n.o. ^c	1391.3(1)	1391.1(1)	1391.0(1)	1409.0(4)	1408.9(4)	1408.7(4)	
$v_2(\mathbf{A}_1),$ $v_2(\mathbf{CC}_2)$	649.3(100) ^d	661.5(12)	656.3(11)	650.9(11)	678.1(12)	672.7(12)	667.2(11)	
$v_3(A_1), \delta(CCl_2)$	337.3(54)	325.4(4)	322.2(4)	319.0	338.2(4)	334.9(4)	331.6(4)	
$v_4(B_1),$ $\delta(CCl_{2}F) \circ \circ p$	617.8(11)	588.4(<1)	588.0(<1)	587.5(<1)	617.7(1)	617.2(1)	616.7(1)	
$v_5(B_2),$	1223.7(9)	1155.7(1)	1153.6(1)	1151.4(1)	1191.5(<1)	1189.4(<1)	1187.2(<1)	
$v_{6}(B_{2}), \rho_{r}(CCl_{2})$	448.4(29)	440.8(2)	438.4(2)	436.1(2)	455.2(2)	452.7(2)	450.2(2)	
	$\begin{array}{c} assgnt \\ \hline \nu_1(A_1), \nu(C-F) \\ \nu_2(A_1), \\ \nu_s(CCl_2) \\ \nu_3(A_1), \delta(CCl_2) \\ \hline \nu_4(B_1), \\ \delta(CCl_2F) \text{ o.o.p.} \\ \nu_5(B_2), \\ \nu_{as}(CCl_2) \\ \nu_6(B_2), \rho_r(CCl_2) \end{array}$	$\begin{array}{c c} \underline{assgnt} & \underline{exptl} \\ \hline \nu_1(A_1), \nu(C-F) & n.o.^c \\ \hline \nu_2(A_1), & 649.3(100)^d \\ \nu_s(CCl_2) & \\ \nu_3(A_1), \delta(CCl_2) & 337.3(54) \\ \hline \nu_4(B_1), & 617.8(11) \\ \delta(CCl_2F) \text{ o.o.p.} & \\ \nu_5(B_2), & 1223.7(9) \\ \nu_{as}(CCl_2) & \\ \nu_{6}(B_2), \rho_r(CCl_2) & 448.4(29) \\ \hline \end{array}$	$\begin{array}{c cccc} assgnt & exptl & CF^{35}Cl_{2}^{+} \\ \hline \nu_{1}(A_{1}), \nu(C-F) & n.o.^{c} & 1391.3(1) \\ \hline \nu_{2}(A_{1}), & 649.3(100)^{d} & 661.5(12) \\ \nu_{s}(CCl_{2}) & & \\ \nu_{3}(A_{1}), \delta(CCl_{2}) & 337.3(54) & 325.4(4) \\ \hline \nu_{4}(B_{1}), & 617.8(11) & 588.4(<1) \\ \delta(CCl_{2}F) \text{ o.o.p.} & & \\ \nu_{5}(B_{2}), & 1223.7(9) & 1155.7(1) \\ \nu_{as}(CCl_{2}) & & \\ \nu_{6}(B_{2}), \rho_{r}(CCl_{2}) & 448.4(29) & 440.8(2) \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

#### **Table 7.4.** Experimental and Calculated Frequencies (cm⁻¹), Raman Intensities^a and Assignments^b for CFCl₂⁺

^a Values in parentheses denote experimental relative Raman intensities or calculated Raman intensities (Å⁴ amu⁻¹). ^b Frequencies have been calculated and assigned for  $C_{2\nu}$  symmetry. ^c Not observed. ^d The  $\nu_2(A_1)$  band is split as a result of the mass effect of the ³⁵Cl and ³⁷Cl isotopes: 649.3(100) (CF³⁵Cl₂⁺) and 644.3(68) (CF³⁵Cl³⁷Cl⁺) cm⁻¹. The band arising from CF³⁷Cl₂⁺ was obscured by bands attributed to the Sb(OTeF₅)₆⁻ anion. agreement with the calculated splitting (SVWN, 5.3 cm⁻¹; MP2, 5.4 cm⁻¹) and with that measured for  $CCl_3^+$  (5.0–5.3 cm⁻¹). The formally Raman-active  $v_1(A_1)$  mode was not observed, in accord with the low Raman intensity that was calculated for this band.

#### 7.2.5. Computational Results

Although quantum mechanical ab initio calculations abound for  $CX_3^+$  (X = F, Cl, Br, I; see Chapter 6), there have been no computational studies of the mixed fluorohalomethyl cations and their neutral progenitors. The series of both mixed chlorofluoro- and bromofluoromethyl cations, as well as XOTeF₅ (X = Cl, Br) and XeOTeF₅⁺, have been optimized using the MP2 method with the all-electron correlation consistent cc-pVTZ basis sets for all atoms other than bromine, tellurium, and xenon, for which pseudopotentials were used (SDB-cc-pVTZ). Energies for the MP2-optimized structures were performed, followed by a natural bond orbital (NBO) analysis using the MP2 method.

### 7.2.5.1. Calculated Charge Distributions and Bonding in $CF_nX_{3-n}^+$ (X = Cl, Br; n = 1-3)

Several prior studies have assessed the bonding and relative stabilities of the  $CX_3^+$ (X = F, Cl, Br, and I) cations in terms of relative degrees of  $\sigma$  and  $p(\pi)$  donation from the halogen atom to the carbon center.^{196,199,207} The Natural Bond Orbital (NBO) analyses have shown that the  $\sigma$  effect is strongly withdrawing in the case of fluorine and weakly donating in the cases of chlorine, bromine, and iodine (I > Br > Cl), with the  $p(\pi)$  backdonation trend following the order I > Br > Cl > F and that these trends were mirrored by the NBO charge analyses.

Figure 7.3 provides analogous assessments of charge distributions and  $\sigma$  and  $p(\pi)$  donation for the mixed chlorofluoro- and bromofluoro- trihalomethyl cations with CF₃⁺, CCl₃⁺, and CBr₃⁺ included for comparison. The individual  $\sigma$ - and  $\pi$ - components are relatively constant throughout the series. The C–F  $\sigma$ -contribution is withdrawing but opposite to the C–F  $p(\pi)$  contribution which, like all C–X contributions, are donating with respect to carbon. In all cases the  $\pi$ -donation, which increases along the series F < Cl < Br < I, serves to stabilize the positive carbon center and dominates the  $\sigma$ - contribution, which also increases in the same direction for Cl, Br, and I. With the exception of negative charges on the fluorine ligands, the halogen ligands are always positively charged and the charge on carbon becomes significantly more positive with each additional fluorine ligand that is added.

Based on calculated carbon charges, the  $CFCl_2^+$  and  $CFBr_2^+$  cations are, thus far, the most electrophilic trihalomethyl cations that have been shown to persist either in solution ( $CFCl_2^+$  and  $CFBr_2^+$ ) or in the solid state ( $CFCl_2^+$ ). Although rapid halogen exchange involving the more electrophilic  $CF_2Cl^+$  and  $CF_2Br^+$  cations may preclude their isolation, the isolation and characterization of a stable salt of the SO₂ClF-solvated  $C(OTeF_5)_3^+$  cation, which has a carbon charge and  $\sigma$ - and  $\pi$ -components, in the absence of solvation, that are similar to those of  $CF_3^+$ , suggests that  $CF_3^+$  may still be attainable as a persistent entity, albeit solvated in the condensed state.







**Figure 7.3b.** Calculated natural (NBO) charges for  $CF_nX_{3-n}^+$  (n = 0-3, X = Cl, Br; MP2/cc-pVTZ//MP2/cc-pVTZ).

7.2.5.2. Gas-Phase Thermodynamics of Reactions of XeOTeF₅⁺ with CF_nX_{4-n} (X = Cl, Br; n = 0-3)

The calculated standard gas-phase enthalpies ( $\Delta H^{\circ}$ ) and Gibbs free energies ( $\Delta G^{\circ}$ ) corresponding to eq 7.18 are given in Scheme 7.1. The spontaneity with which

$$CF_nX_{4-n} + [XeOTeF_5][Sb(OTeF_5)_6] \longrightarrow$$
  
 $[CF_nX_{3-n}][Sb(OTeF_5)_6] + XOTeF_5 + Xe (7.18)$ 

CF_nCl_{4-n} and CF_nBr_{4-n} (n = 0-3) are oxidized decreases dramatically with each successive addition of a fluorine ligand. This trend is in agreement with the experimental findings. For example, CF₃Cl and [XeOTeF₅][Sb(OTeF₅)₆] are unreactive at temperatures as high as 0 °C in SO₂ClF solvent, with  $\Delta H^0 = -5.4$  and  $\Delta G^0 = -34.1$  kJ mol⁻¹ indicating that the reaction is only slightly favored in the gas phase at 298.15 K. In contrast, the corresponding reaction with CCl₄ occurs rapidly at -78 °C in SO₂ClF solvent,⁸² with  $\Delta H^0 = -158.4$  and  $\Delta G^0 = -191.9$  kJ mol⁻¹. Standard heats of reaction leading to the formation of the CF_nBr_{3-n}⁺ cations are 55–65 kJ mol⁻¹ more favorable than their CF_nCl_{3-n}⁺ analogues, in accord with the anticipated relative ease of oxidation of a bromine ligand versus a chlorine ligand.

#### 7.3. Conclusions

The present study provides the first viable synthetic routes to the long-lived  $CFCl_2^+$  and  $CFBr_2^+$  cations and to their solution characterizations, as well as that of

			Δ <b>H</b> ^ο	$\Delta G^{\circ}$
$CCI_4$ + XeOTeF ₅ ⁺	$\longrightarrow$	$\text{CCl}_3^+$ + CIOTeF ₅ + Xe	-158.4	-191.9
$CFCI_3 + XeOTeF_5^+$	$\longrightarrow$	$CFCl_2^+$ + $CIOTeF_5$ + $Xe$	-121.3	-153.0
$CF_2CI_2$ + XeOTe $F_5^+$	>	$CF_2CI^+$ + $CIOTeF_5$ + $Xe$	-73.3	-106.5
$CF_{3}CI + XeOTeF_{5}^{+}$	>	$CF_3^+$ + CIOTeF ₅ + Xe	-5.4	-34.1
$CBr_4$ + XeOTeF ₅ ⁺	>	$CBr_3^+$ + BrOTeF ₅ + Xe	-223.2	-263.3
$CFBr_3 + XeOTeF_5^+$	$\longrightarrow$	$CFBr_2^+$ + BrOTeF ₅ + Xe	-188.3	-220.1
$CF_2Br_2 + XeOTeF_5^+$	$\longrightarrow$	$CF_2Br^+$ + $BrOTeF_5$ + Xe	-140.1	-173.2
$CF_3Br + XeOTeF_5^+$	>	$CF_3^+$ + BrOTeF ₅ + Xe	-61.1	-89.6

.

**Scheme 7.1.** Gas-phase values of  $\Delta H^{\circ}$  and  $\Delta G^{\circ}$  (kJ mol⁻¹) for the reactions of XeOTeF₅⁺ with CF_nX_{4-n} (X = Cl, Br; n = 0-3; MP2/cc-pVTZ).

#### Ph.D. Thesis - Matthew D. Moran

 $CFCl_2^+$  in the solid state. As well, NMR spectroscopic evidence for the  $CF_3^+$  as an intermediate species has been obtained in solution as the adducted  $CF_3^+$  cation,  $F_3C$ -Br-OTe $F_5^+$ . The cations have been stabilized as salts of the preformed, oxidatively resistant, and weakly coordinating  $Sb(OTeF_5)_6^-$  anion. Both cations differ from their  $CX_3^+$  counterparts (X = Cl, Br) in that they do not show appreciable stability even at temperatures as low as -60 °C, owing to their high electrophilicity. In addition, the  $CFClOTeF_5^+$  cation and  $F_2BrCOTeF_5$  have been characterized by  $^{13}C$  and  $^{19}F$  NMR spectroscopy. NMR spectroscopy has also been used to monitor the formations and decompositions of the  $CFCl_2^+$  and  $CFBr_2^+$  cations in solution.

An attempted X-ray crystallographic study of the  $CFBr_2^+$  cation yielded the  $SbBr_4^+$  cation, which was isolated as the  $[SbBr_4][Sb(OTeF_5)_6]$ ·SO₂ClF salt. The crystal structure is of better precision than that previously published, and the formation of this salt provides valuable insight into the decomposition pathway for the  $CFBr_2^+$  cation.

Computational studies reproduce the vibrational frequencies observed for the  $CFCl_2^+$  cation, and the NBO analyses show that the positive charge on carbon for  $CF_nX_{3-n}^+$  increases significantly with increasing fluorine substitution. The values of  $\Delta H^o$  and  $\Delta G^o$  calculated for the gas phase follow the experimental trends, and are consistent with the inability to generate  $CF_3^+$  from  $CF_3Cl$ , as  $CF_3Cl$  is inert to oxidation by the XeOTeF₅⁺ cation.

#### **CHAPTER 8**

# SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF C(OTeF₅)₄, AND A COMPARATIVE STRUCTURAL STUDY OF THE ISOELECTRONIC B(OTeF₅)₄⁻ ANION

#### 8.1. Introduction

Although organic examples of orthocarbonates (C(OR)₄) abound,^{277,278} very few C–O bonded tetrakis-compounds containing inorganic ligands are known; namely C(OSO₂F)₄,²⁷⁹ C(OCF₃)₄,^{280,281} and C(OSeF₅)₄.²⁸² Although the chemistry of the OSeF₅ and OTeF₅ ligands are similar, no detailed study of the OTeF₅ analogue, C(OTeF₅)₄, has appeared in the literature. Prior to this study, the only fully OTeF₅-substituted derivatives of the row 2 elements that have been structurally characterized are B(OTeF₅)₃,^{109,221} B(OTeF₅)₄,^{-111,283,284} O(TeF₅)₂,²⁸⁵⁻²⁸⁷ (OTeF₅)₂,^{31,288} and FOTeF₅.^{289,290} The complete CH_n(OSeF₅)_{4-n} (n = 0-3) series has been synthesized by reaction of the corresponding chlorohydrocarbon with Hg(OSeF₅)₂ in *n*-C₆F₁₄ and characterized by infrared and Raman spectroscopy, NMR spectroscopy, and mass spectrometry.²⁸² No crystal structure is available for C(OSeF₅)₄, but unit cell parameters have been reported.²⁸² Although several mono-substituted alkyl OTeF₅ derivatives, ROTeF₅, have been prepared by reaction of TeF₆ with ROH (R = Me, Et, Pr, CHMe₂, Bu, CHMeEt, CH₂CHMe₂),²⁹¹ the isolation and full structural characterization of C(OTeF₅)₄ has not been reported.

More recently, C(OTeF₅)₄ has been generated and characterized in SO₂ClF solution by ¹³C and ¹⁹F NMR spectroscopy for comparison with the NMR parameters of the C(OTeF₅)₃⁺ cation (see Chapter 6).⁸⁰ This chapter provides the detailed synthesis and

solution multi-NMR and solid state characterizations of  $C(OTeF_5)_4$  by X-ray crystallography and Raman spectroscopy, and a study of its decomposition in CH₃CN. The [N(CH₃)₄][B(OTeF₅)₄] salt has been synthesized, and its crystal structure and Raman spectrum have been acquired for comparison of the geometrical parameters of B(OTeF₅)₄⁻ with those of isoelectronic C(OTeF₅)₄. Electronic structure calculations for both C(OTeF₅)₄ and the B(OTeF₅)₄⁻ anion were carried out using density functional theory (DFT) methods to obtain the energy-minimized gas-phase structures for comparison with their solid-state geometries, and to assist in the assignments of their Raman spectra.

#### 8.2. Results and Discussion

## 8.2.1. Synthesis of C(OTeF₅)₄ and Solution Characterization by 13 C, 19 F, and 125 Te NMR Spectroscopy

The reaction of stoichiometric amounts of BrOTeF₅ and CBr₄ in SO₂ClF solution gave nearly quantitative yields of C(OTeF₅)₄ with the elimination of Br₂ according to eq 8.1. Solvent and Br₂ were removed under dynamic vacuum between -78 and 0 °C,

$$CBr_4 + 4 BrOTeF_5 \longrightarrow C(OTeF_5)_4 + 4 Br_2$$
(8.1)

yielding colorless, microcrystalline  $C(OTeF_5)_4$  which is stable indefinitely at room temperature.

The full solution NMR characterization of  $C(OTeF_5)_4$  in SO₂ClF solution at 30 °C by ¹³C, ¹⁹F, and ¹²⁵Te NMR spectroscopy relies upon 99% ¹³C-enrichment and, in

particular, on the ¹³C NMR spectrum of ¹³C(OTeF₅)₄ (Figure 8.1a). The ¹³C resonance of C(OTeF₅)₄ is a singlet at 115.6 ppm that is accompanied by  123 Te ( ${}^{2}J({}^{13}C-{}^{123}Te)$ , 54.7 Hz) and  125 Te ( ${}^{2}J({}^{13}C-{}^{125}Te)$ , 64.5 Hz) satellites. The  ${}^{13}C$  environment is significantly more shielded relative to that of the  $C(OTeF_5)_3^+$  cation (168.8 ppm).⁸⁰ Separate integrations of ¹²³Te (0.87% natural abundance) and ¹²⁵Te (6.99% natural abundance) satellites were not possible as a result of peak overlap ( $\Delta v_{\frac{1}{2}} \approx 3$  Hz), thus, the weaker ¹²³Te satellites are not fully resolved and appear as shoulders on the ¹²⁵Te satellites. Because ¹²³Te and ¹²⁵Te are spin-¹/₂ nuclei of low abundance, only a superposition of subspectra arising from the most abundant isotopomers,  ${}^{13}C(O^0TeF_5)_4$  (singlet),  $^{13}C(O^{123/125}TeF_5)(O^{0}TeF_5)_3$  (doublet), and  $^{13}C(O^{125}TeF_5)_2(O^{0}TeF_5)_2$  (triplet), where  $^{0}Te$ represents all spinless isotopes of tellurium, was observed. Taking into account the natural isotopic abundances, multiplicities, and statistical distributions of tellurium isotopomers²⁹² among four sites, the experimental combined ^{123/125}Te integrated satellite peak/central peak area ratios (0.0116:0.1696:1.0000:0.1687:0.0126) in the ¹³C NMR spectrum confirm the presence of four equivalent tellurium atoms when compared with their calculated relative intensity ratios  $(3 \times 10^{-6}: 0.0003: 0.0107: 0.1678: 1.0000: 0.1678:$  $0.0107:0.0003:3 \times 10^{-6}$ ).

The ¹²⁵Te NMR spectrum of 99% ¹³C-enriched C(OTeF₅)₄ (Figure 8.1b) consists of a well-resolved binomial doublet of doublets of quintets ( $\delta$ (¹²⁵Te), 547.6 ppm) arising from ²J(¹²⁵Te-¹³C) = 65.8 Hz, ¹J(¹²⁵Te-¹⁹F_A) = 3650 Hz, and ¹J(¹²⁵Te-¹⁹F_B) = 3756 Hz.



Ph.D. Thesis - Matthew D. Moran



Figure 8.1. The NMR spectra of  $C(OTeF_5)_4$  recorded in  $SO_2ClF$  solution at 30 °C: (a) The ¹³C NMR spectrum (150.903 MHz) of 99% ¹³C-enriched  $C(OTeF_5)_4$ . Natural abundance tellurium isotopomer contributions correspond to S (singlet; ¹³ $C(O^0TeF_5)_4$ , where ⁰Te are spinless tellurium isotopes) and satellites denoted by ^{3/5}d (doublet; ¹³ $C(O^{123/125}TeF_5)$  ( $O^0TeF_5)_3$ ] and t [triplet;  $C(O^{125}TeF_5)_2(O^0TeF_5)_2$ ). (b) The ¹²⁵Te NMR (157.869 MHz) spectrum of 99% ¹³C-enriched C(OTeF_5)_4; the inset is an expansion of the two most intense lines of the doublet of quintets. (c) The ¹⁹F NMR spectra (470.592 MHz) of natural abundance C(OTeF_5)_4 (top trace) and 99% ¹³C-enriched C(OTeF_5)_4 (bottom trace). The equatorial and axial fluorine environments of the AB₄ spin systems are denoted by B and A, respectively. Tellurium satellites are denoted by lower case letters, i.e., a and b (¹²⁵Te); a' and b' (¹²³Te). The  125 Te chemical shift is in good agreement with published values of other OTeF₅ compounds.  35,140,293,294 

The ¹⁹F NMR spectrum of the natural abundance C(OTeF₅)₄ (Figure 8.1c) consists of an AB₄ pattern with accompanying ¹²³Te and ¹²⁵Te satellites and agrees well with previously reported parameters.⁸⁰ The NMR spectrum of 99% ¹³C-enriched C(OTeF₅)₄ ( $\delta$ (¹⁹F_B), -41.6 ppm;  $\delta$ (¹⁹F_A), -50.1 ppm; ²J(¹⁹F_A-¹⁹F_B), 180 Hz; Figure 8.1c) shows further splitting of the A part of the spectrum arising from ³J(¹⁹F_A-¹³C) = 24.5 Hz, and of the B₄ part arising from ³J(¹⁹F_B-¹³C) = 12.1 Hz.

The behavior of C(OTeF₅)₄ in CH₃CN is in marked contrast with its behavior in the less basic solvent, SO₂ClF, where it is stable indefinitely at 30 °C. In an attempt to obtain a long-acquisition-time ¹³C NMR spectrum of ¹³C-enriched C(OTeF₅)₄ in CH₃CN at 30 °C, only CO₂ was observed. A study of the decomposition of C(OTeF₅)₄ in CH₃CN at -40 °C by ¹³C and ¹⁹F NMR spectroscopy revealed that during dissolution at 10 °C, followed by immediate quenching of the reaction at -40 °C and recording the NMR spectra at this temperature, C(OTeF₅)₄ reacts to form O(TeF₅)₂ and CO₂ (Scheme 8.1).



Scheme 8.1. Proposed reaction pathway for the decomposition of C(OTeF₅)₄ at 10 °C.

The NMR parameters of  $O(TeF_5)_2 (\delta(^{19}F_A), -47.0 \text{ ppm}; \delta(^{19}F_B), -37.1; ^2J(^{19}F_A^{-19}F_B), 182$ Hz)⁷⁷ and CO₂ ( $\delta(^{13}C)$ , 126.0 ppm)²¹⁵ were in good agreement with the previously reported values. The proposed decomposition pathway is supported by tentative evidence for the reactive intermediate, O=C(OTeF_5)₂ (mol% composition: 4.2% O=C(OTeF_5)₂, 49.5% C(OTeF_5)₄, 46.3% O(TeF_5)₂). Only the B₄ part of the spectrum of O=C(OTeF_5)₂ was observed ( $\delta(^{19}F_B)$ , -40.0 ppm) whereas the A part of the spectrum was obscured by the A parts of the more intense C(OTeF₅)₄ and O(TeF₅)₂ spectra. Further warming resulted in complete conversion of C(OTeF₅)₄ to O(TeF₅)₂ and CO₂. The decomposition of O=C(OTeF₅)₂ to CO₂ and O(TeF₅)₂ is supported by the analogous decomposition pathway established for C(OSO₂F)₄ which gives rise to CO₂ and S₂O₅F₂.²⁹⁵ Under natural abundance conditions, the ¹³C NMR spectrum of O=C(OTeF₅)₂ could not be observed presumably because of its low concentration and the long relaxation time associated with a fully oxygen-substituted carbon species.

The proposed decomposition pathway for  $C(OTeF_5)_4$  has features in common with the reaction of CH₃CN with Nb(OTeF₅)₆, which yields NbO(OTeF₅)₄(NCCH₃)⁻ and has been observed by ¹⁹F NMR spectroscopy.²⁹⁶ Both reactions lead to intramolecular elimination of O(TeF₅)₂ and are apparently initiated by nitrogen coordination of CH₃CN. In the latter case, the seven-coordinate complex anion intermediate, Nb(OTeF₅)₆(CH₃CN)⁻, is presumably formed, whereas the reaction of C(OTeF₅)₄ is unlikely to proceed by  $S_N^2$  attack of CH₃CN at the carbon atom of C(OTeF₅)₄. Rather, solvent coordination to the tellurium atom of an  $OTeF_5$  ligand may occur, which results in expansion of the tellurium valence shell to seven, followed by intramolecular  $O(TeF_5)_2$  elimination and  $O=C(OTeF_5)_2$  formation. Nucleophilic attack of tellurium by CH₃CN may be facilitated by solvent complexation with one or more fluorines of the OTeF₅ group, which would build up positive charge on tellurium, thus activating it for attack by CH₃CN.

#### 8.2.2. Differential Scanning Calorimetry (DSC)

During the course of the X-ray crystal structure determination of  $C(OTeF_5)_4$ , it was found that crystals grown at room temperature by sublimation quickly powdered when handled at or below -100 °C. The phase transition temperature, determined by DSC, showed that an exothermic transition took place at -51.2 °C, releasing 5.73 kJ mol⁻¹ of energy. Consequently, X-ray data were collected at -30 °C, which is well above the phase transition temperature. An endothermic phase transition, corresponding to the melting point, occurred at 33.6 °C (heat of fusion, 9.70 kJ mol⁻¹). A second cycle was performed but showed no transitions, consistent with decomposition and/or reaction with the aluminium sample container between the melting point and 125 °C.

#### 8.2.3. X-ray Crystal Structures of C(OTeF₅)₄ and [N(CH₃)₄][B(OTeF₅)₄]

Details of data collection parameters and other crystallographic information are provided in Table 8.1. Bond lengths, bond angles, torsion angles, and O…O contact distances are listed in Tables 8.2 and 8.3. In order to compare the symmetries for  $E(OTeF_5)_4^{-/0}$  (E = B, C), the geometric parameters of the  $B(OTeF_5)_4^{-}$  anion were determined for [N(CH₃)₄][B(OTeF₅)₄] with the view to obtain a structure in which the

chem formula	$CO_4F_{20}Te_4$	$H_{12}BC_4NO_4F_{20}Te_4$
space group	<i>Pc</i> (No. 7)	$C_{2}$ (No. 5)
a (Å)	9.9176(4)	17.9521(10)
<i>b</i> (Å)	17.9965(6)	7.7195(1)
<i>c</i> (Å)	20.9666(8)	16.6623(10)
$\beta$ (deg)	92.445(2)	94.963(2)
$V(\text{\AA}^3)$	3738.8(3)	2300.4(4)
molecules/unit cell	8	4
mol wt (g mol ^{$-1$} )	966.38	1039.32
calcd density (g cm ⁻³ )	3.434	3.001
<i>T</i> (°C)	-30	-170
$\mu ({\rm mm}^{-1})$	7.18	5.20
$R_1^{a}$	0.0530	0.0259
$wR_2^{b}$	0.0944	0.0419

**Table 8.1.** Crystallographic Data for  $C(OTeF_5)_4$  and  $B(OTeF_5)_4^-$ 

^a  $R_1$  is defined as  $\Sigma ||F_0| - |F_c|| / \Sigma |F_0|$  for  $I > 2\sigma(I)$ . ^b  $wR_2$  is defined as  $[\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma w(F_0^2)^2]^{1/2}$  for  $I > 2\sigma(I)$ .

C(OTeF5)4	$exptl(C_1)$ [ave]	calcd $(C_1)$	calcd $(S_4)$
	$\Delta E$ (kJ mol	Γ ¹ )	
	0.00 C(4) -39 99 C(2) -92 27 C(1)	-173.42	-173 32
	bond lengths	s (Å)	
C-0	1.35(2) - 1 42(2) [1 38(3)]	1.376 - 1 377 [1.377]	1 376
O-Te	1.85(1) - 1.92(1) [1.89(2)]	1.925 – 1 925 [1 925]	1.925
Te-F	1.74(1) - 1.88(1) [1.80(3)]	1.840 - 1.850 [1.844]	1.839 - 1.850
	bond angles (	(deg)	
O−C−O (× 2) ^d	110(2) – 116(1) [113(2)]	112.9, 113.0 [113.0]	113.0
OCO (× 4) ^d	105(1) - 111(1) [108(2)]	107 7 - 107.8 [107.8]	107.8
C-O-Te	127(1) - 131(1) [129(1)]	123.8 - 123.8 [123 8]	123.7
O-Te-F _a	170 8(7) - 177.7(6) [175(2)]	176.4 - 178 7 [177.6]	176.1
O-Te-F.	83.9(7) - 96.7(7) [90(4)]	85 8 - 93 7 [90.1]	85.8 - 93.7
	torsion angle	(deg) ^e	
	155(1) - 174(1) [168(5)]	169.3 - 169.7 [169 5]	169.3
Te-O-C-O (x 4)	29(3) - 55(2) [46(7)]	47 2 - 47.5 [47.4]	<b>47</b> 0
	63(2) - 87(2) [73(7)]	71 4 - 71 7 [71.6]	71.9
	O…O (Å)	d,f	
aa (× 2)	2.28(2) - 2.33(2) [2 31(3)]	2 294, 2.296 [2.295]	2 294
<i>ac</i> (× 4)	2.16(2) - 2.27(2) [2 23(3)]	2.223 - 2.224 [2.224]	2 224

Table 8.2.	Experimental ^a and Calculated ^b	Geometrical Parameters	for $C(OTeF_5)_4$ and $B(OTeF_5)_4^-$
	L		

$B(OTeF_5)_4$	$exptl(C_1)$ [ave]	calcd $(C_1)$	calcd $(S_4)$ (one imag. freq.) ^e	calcd $(S_4)$
		$\Delta E (kJ mol^{-1})$		
	0.00	-28.99	-31 31	-31 13
		bond lengths (Å)		
В-О	1.463(5) - 1 476(5) [1.471(6)]	1.455 - 1.457 [1.456]	1.456	1.457
O-Te	1.828(2) - 1.834(2) [1.831(3)]	1.857 - 1.858 [1.858]	1.857	1.855
Te-F	1.821(3) - 1.844(2) [1.830(6)]	1.854 - 1.861 [1 857]	1 855 - 1 860	1.854 - 1.860
		bond angles (deg)		
O-B-O (× 2) ^d	113.7(3), 113.8(3) [113.8(7)]	113 3, 115.0 [114.2]	111.5	109.5
O−B−O (× 4) ^d	106.8(3) - 107.9(3) [107.4(5)]	106.6 - 107.7 [107.2]	108.4	109.4
B-O-Te	128.2(2) - 131.6(2) [130(2)]	124.9 - 128.8 [126.9]	126.2	127.8
O-Te-F.	173.6(1) - 177.1(1) [176(2)]	176.7 – 178 8 [177 9]	176.4	176.3
O-Te-F _e	89.0(1) - 96.0(1) [93(2)]	89.4 - 96.2 [93 0]	89.7 – 95 7	90.0 - 95.9
		torsion angle (deg) ^e		
	170.4(2) - 179.7(2) [174(4)]	173.7 – 179 4 [176.6]	151.2	135.3
Te-O-B-O (× 4)	47.3(4) - 57 9(4) [52(5)]	49 7 - 58.7 [54 2]	29.9	15 2
	61.1(4) - 71 3(4) [67(5)]	60 0 - 68.6 [64 3]	89.4	104 8
		O…O (Å) ^{d,f}		
aa (× 2)	2.460(4), 2.470(4) [2.465(8)]	1 435, 2 454 [2 445]	2.408	2.386
ac (× 4)	2.366(4) - 2.376(4) [2.371(5)]	2.335 - 2.352 [2 344]	2.363	2 378

^a The quoted geometrical parameters are for the non-disordered C(OTeF₅)₄ molecules. ^b SVWN/(SDB-)cc-pVTZ. ^c The geometrical parameters correspond to the optimized  $S_4$  geometry having the lowest energy. ^d The distinction between the two sets of O–C–O angles and O…O contacts were initially made for each molecule. The values given correspond to the ranges of each set of angles/contacts. ^e The full list of Te–O–C/B–O torsion angles is given in Table 8.3. ^f The symbols *ac* and *aa* refer to the O…O contact distances for A(OX)₄-type molecules of  $S_4$  symmetry as defined in ref 297.

		C(OTeF ₅ ) ₄ ^b		B(OTeF	5)4			
exptl $(C_1)$	exptl $(C_1)$	$exptl(C_1)$	calcd $(C_1)$	calcd $(S_4)$	exptl $(C_1)$	calcd $(C_1)$	calcd $(S_4)^c$	calcd (S ₄ )
78.0	77.5	86.6	71.7	<u> </u>	71.3	68.6		- <u></u>
74.7	76. 2	75.0	71.6	71.0	70.4	68.6	80.4	104.8
72.0	70.7	67.4	71.5	> /1.9	64.1	60.0	09.4	104.0
63.5	65.8	66.4	71.4		61.1	60.0		
55.0	51.8	52.3	47.5		47.3	49.7		
45.2	45.5	51.0	47.4		48.5	49.8	20.0	15.0
43.8	44.8	49.3	47.3	47.0	54.0	58.7	29.9	15.2
42.2	44.4	28.8	47.2		57.9	58.7		
174.4	171.2	174.0	107.8		179.7	179.4		
169.9	168.4	169.4	169.7	1(0.2	176.6	179.3	151.0	125.2
169.7	168.3	169.0	169.6	109.3	171.2	173.7	} 151.2	135.3
163.5	165.1	155.3	169.5		170.4	173.7		

**Table 8.3.** Experimental  $(C_1)$  and Calculated  $(C_1 \text{ and } S_4)^a$  Te-O-C/B-O Torsion Angles (deg) for C(OTeF₅)₄ and B(OTeF₅)₄⁻

^a SVWN/(SDB-)cc-pVTZ. ^b The quoted torsion angles are for the non-disordered C(OTeF₅)₄ molecules. ^c Calculated  $S_4$  geometry with one imaginary frequency.

cation-anion interactions would be minimized so that the anion closely approximates the calculated gas-phase geometry (see Section 8.2.5).

The symmetries of  $C(OTeF_5)_4$  and  $B(OTeF_5)_4^-$  are not constrained by the crystal symmetries, with all atoms on general positions. The unit cell of  $C(OTeF_5)_4$  contains eight molecules that are generated from four crystallographically independent molecules which all occupy  $C_1$  sites. Three of the crystallographically independent molecules are ordered and the remaining molecule is affected by a 60:40 positional disorder (see Figure 8.2). Only the geometric parameters of the three unique, ordered molecules are considered in the ensuing discussion. There are eleven F...F contact distances near or below the sum of the van der Waals radii  $(2.94 \text{ Å})^{26}$  in  $C(OTeF_5)_4$ . These range from 2.81(2) to 2.99(2) Å and are in accord with well isolated molecules. The structure of  $[N(CH_3)_4][B(OTeF_5)_4]$  is well-ordered. The  $B(OTeF_5)_4^-$  anion has seven unique long H...F contacts, ranging from 2.47-2.65 Å, that are at or near the sum of the hydrogen and fluorine van der Waals radii  $(2.67 \text{ Å})_{*}^{26}$  consistent with a well-isolated anion.

#### 8.2.3.1. Bond Lengths and Bond Angles

The C(OTeF₅)₄ molecule (Figure 8.3a) possesses C–O bond lengths (1.35(2)-1.42(2) Å) that are, on average, longer than those reported for the C(OTeF₅)₃⁺ cation (1.258(15)-1.313(16) Å),⁸⁰ and in accord with the expectation that the C–O bonds of the cation will be more covalent. In contrast, the average C–O bond lengths of C(OTeF₅)₄ are shorter than those of the isoelectronic B(OTeF₅)₄⁻ anion (Figure 8.3b, 1.465(5)-1.476(5) Å), which, because of its formal negative charge, is expected to







**Figure 8.3.** X-ray crystal structures of  $C(OTeF_5)_4$  and  $B(OTeF_5)_4^-$ ; thermal ellipsoids are shown at the 50% probability level; (a) a view of an ordered  $C(OTeF_5)_4$  molecule (left) and the calculated geometry of the  $C(OTeF_5)_4$  molecule (right), (b) a view of the  $B(OTeF_5)_4^-$  anion (left) and the calculated geometry of the  $B(OTeF_5)_4^-$  anion (left) and the calculated geometry of the  $B(OTeF_5)_4^-$  anion (right).

possess B–O bonds that are more polar than the C–O bonds of its carbon analogue. The decrease in E–O (E = B, C) bond length upon increasing net positive charge is paralleled by an increase in the Te–O bond lengths (B(OTeF₅)₃, 1.874(6) Å, C(OTeF₅)₃⁺, 1.974(8)–1.988(7) Å; B(OTeF₅)₄⁻, 1.828(2)–1.835(3), C(OTeF₅)₄, 1.85(1)–1.92(1) Å). These trends are reproduced by the calculated geometries and NBO analyses (see Section 8.2.5). The Te–F (1.74(1)–1.88(1) Å) bond lengths are in good agreement with those of B(OTeF₅)₄⁻ (1.819(3)–1.841(2) Å) and those of previously determined B(OTeF₅)₄⁻ structures.^{111,283,284,298,299}

#### 8.2.3.2. Molecular Symmetries

(i) Background. Ligand close packing (LCP) considerations have shown that  $A(OX)_4$  systems possess either  $S_4$  or  $D_{2d}$  symmetries, depending on the effective radii of the oxygen ligand atoms.²⁹⁷ Because the A–O–X angles are bent, the LCP approach for this class of molecules is based upon an electron density distribution around oxygen that is not axially symmetric, with the oxygen atom having different ligand radii in different directions. These radii are denoted as *c*, the ligand radius opposite the O–X bond, and *a*, the two ligand radii on either side of the O–X bond. These radii represent the interligand O…O contact distances which can be associated with  $D_{2d}$  or  $S_4$  symmetry.²⁹⁷ Using LCP criteria, an  $A(OX)_4$  molecule having  $S_4$  symmetry will have two *a*…*a* and four *a*…*c* interligand contact distances (hereafter denoted as *aa* and *ac*, where *aa* > *ac*²⁹⁷), which is differentiated from  $D_{2d}$  symmetry by four *aa* and two *cc* contact distances. Although the

ligand-ligand contact distances are reflected in the O–A–O angles, the latter are not explicitly discussed.²⁹⁷

Previously reported structures of well-isolated B(OTeF₅)₄⁻ anions^{111,284,298,299} have been described as having approximate  $S_4$  symmetry.²⁹⁸ It was noted that for B(OTeF₅)₄⁻ to possess rigorous local  $S_4$  symmetry (the fluorine atoms were ignored as they are in the present discussion), one set of four Te-O-B-O torsion angles must be 180°, while the other two sets of four torsion angles must be equal in magnitude, but opposite in sign.²⁹⁸ In fact, these criteria describe a structure possessing local  $D_{2d}$  symmetry. Electronic structure calculations in the present work show that the energy-minimized geometries of E(OTeF₅)₄^{0/-} (E = C, B) possess  $S_4$  symmetry without meeting these criteria (see Section 8.2.5).

(ii) Experimental Geometries. In the present study, the O–B–O bond angles of  $B(OTeF_5)_4^-$  (Table 8.2) possess precisions sufficient to differentiate tetrahedral from nontetrahedral angles. The average angles were 113.8(7)° for two angles and 107.4(5)° for four angles. In the case of C(OTeF₅)₄, the O–C–O angles do not differ from the ideal tetrahedral angle by more than  $\pm 3\sigma$ , with averages of 113(2)° for two angles and 108(2)° for four angles. On the basis of O–E–O angle considerations alone, both  $E(OTeF_5)_4^{-n0}$ species have local symmetries that are closer to S₄ than to D_{2d} symmetry. Taking into account intramolecular O…O contact distances as per the LCP approach,²⁹⁷ the  $B(OTeF_5)_4^-$  anion and C(OTeF₅)₄ have two *aa* (2.465(8) and 2.31(3) Å) and four *ac* (2.371(5) and 2.23(3) Å) contacts, respectively, which are indicative of local S₄ symmetry for both species. A comparative study and fuller discussion of the symmetries of  $E(OTeF_5)_4^{-70}$  are provided in Section 8.2.5, where the experimental structures are also shown to possess  $S_4$  symmetry based on their experimental and calculated Te-O-E-O torsion angles (Table 8.2).

#### 8.2.4. Raman Spectra of C(OTeF₅)₄ and B(OTeF₅)₄⁻

ļ

The low-temperature Raman spectra of natural abundance and ¹³C-enriched  $C(OTeF_5)_4$  and that of  $[N(CH_3)_4][B(OTeF_5)_4]$  are shown in Figures 8.4 and 8.5. The experimental and calculated frequencies are summarized in Tables 8.4 and 8.5 for  $C(OTeF_5)_4$  and  $B(OTeF_5)_4^-$ , respectively. The vibrational modes of  $C(OTeF_5)_4$  and  $B(OTeF_5)_4^-$  were assigned under  $S_4$  symmetry and belong to the irreducible representation  $\Gamma = 20A + 21B + 20E$ , with all 81 modes Raman active and the B and E modes infrared active. The low-temperature, solid-state Raman spectra of  $^{12/13}C(OTeF_5)_4$  and  $B(OTeF_5)_4^-$  displayed bands that agree with, and could be readily assigned to, their OTeF_5 groups by comparison with the calculated frequencies and the published frequencies of other OTeF_5 derivatives,  35,140,293,294  thus requiring no further comment.

Bands associated with the CO₄ moiety were assigned in the natural abundance spectrum of C(OTeF₅)₄ to 1078.5, 1084.0 cm⁻¹ (E, v(CO – CO)); 1063.5, 1070.5 cm⁻¹ (B, v(CO₂ – CO₂)); and 1023.2 cm⁻¹ (A, v(CO₄ – 4TeO)), which are in good agreement with their respective calculated frequencies (SVWN; 1096.6, 1082.7, and 1010.0 cm⁻¹). Upon ¹³C isotopic enrichment, the v(CO – CO) and v(CO₂ – CO₂) bands exhibited isotopic shifts to lower frequency of 29.5, 31.1 cm⁻¹ (calcd., 29.7 cm⁻¹) and 25.6, 24.8 1



Figure 8.4. Raman spectra of natural abundance and ¹³C-enriched (99%) C(OTeF₅)₄ recorded at -160 °C using 1064-nm excitation. Lines indicate modes that shift upon ^{12/13}C substitution. The dagger (†) denotes an instrumental artifact.



**Figure 8.5.** Raman spectrum of  $[N(CH_3)_4][B(OTeF_5)_4]$  recorded at -160 °C using 1064-nm excitation. Asterisks (*) denote  $N(CH_3)_4^+$  cation bands and the dagger (†) denotes an instrumental artifact.

	OTe	F5)4	¹³ C	(OTeF ₅ ) ₄		
exptl ^b		$\operatorname{calcd}(S_4)^{\mathbf{c}}$	exptl		calcd $(S_4)^c$	assgnts $(S_4)^4$
1084.0(2) 1078 5 sh }		1096.6(15)	1052 9(<1) 1049.0(<1) 1045.7(<1)		1066.1(14)	E, v(CO – CO)
1070.5(<1) 1063 5 sh		1082.7(8)	$\left. \begin{array}{c} 1037.9(1) \\ 1033.9(2) \end{array} \right\}$		1053.8(8)	B, $v(CO_2 - CO_2)$
1023 2(2)		1010.0(31)	1021.6(2)		1009.0(31)	A, $\nu(CO_4 - 4TeO)$
813.5(3)		<b>793</b> .6(16)	811.7(3)		792 5(16)	E, $v(2TeO - 2TeO)$
755 9(1)		741 1(2)	755 6(2)		739 6(1)	$B, v[2(TeO - TeF_a) + 2(TeF_a - TeO) + 4(TeF_{e trans} - TeF_{e trans})]_{small}$
747.3(2)	{	731 5(1) 731.1(1) 730.4(2)	748.7(2) 746.9 sh	{	730 9(1) 730.6(1) 730.3(2)	$ \begin{split} & B,  \delta(\mathrm{CO}_2 - \mathrm{CO}_2) + \nu [(2(\mathrm{TeO} - \mathrm{TeF}_a) + 2(\mathrm{TeF}_a - \mathrm{TeO}) + 4(\mathrm{TeF}_{etrans} - \mathrm{TeF}_{etrans})] \\ & E,  \nu [4(\mathrm{TeF}_{etrans} - \mathrm{TeF}_{etrans})] + \delta(\mathrm{CO}_2 - \mathrm{CO}_2)_{small} \\ & A,  \nu [4(\mathrm{TeF}_{etrans} - \mathrm{TeF}_{etrans})] \end{split} $
736.8 sh 734.7(6)	{	728.3(2) 725.0(6) 720.1(<1)	737.3 sh 734.7(5)	{	728.1(2) 724.9(6) 719.9(<1)	B, $\delta(CO_2 - CO_2)_{small} + \nu[4(TeF_{e trans} - TeF_{e trans})]$ A, $\nu[4(TeF_{e trans} - TeF_{e trans})]$ E, $\nu[2(TeF_{e trans} - TeF_{e trans}) + 2(TeF_{2e e is} - TeF_{2e e is})]$
721.0(44)		707.9(21)	$\left. \begin{array}{c} 718.8(50) \\ 714.2(8) \end{array} \right\}$		708.0(20)	A, $v(4TeF_a)$
$\left. \begin{array}{c} 714.5(10) \\ 710.8(6) \end{array} \right\}$		699.2(6)	708.9(7)		699.1(6)	E, $v(2TeF_a - 2TeF_a)$
705.3(9)		691.3(10)	703.5(7)		690.2(10)	B, $\delta(CO_2 - CO_2) + \nu(2TeF_a - 2TeF_a)$
678.2(100)		659.2 (91)	677.8(100)		659 2(91)	A, $v(4\text{TeF}_{4e})$
	(	657.5 (2)		ſ	657.8(2)	B, $\delta(4COTe) + \nu(2TeF_{4e} - 2TeF_{4e})$
		653.7(4)			653 7(4)	$B, v[4(TeF_{2e trans} - TeF_{2e trans})]$
668.3(11)	$\left\{ \right.$	651 3(5)	667.2(13)	ł	651.2(4)	E, $v[(2TeF_{2e \text{ trans}} - 2TeF_{2e \text{ trans}})]$
003.0(11) ]		650 5(7)	0059(12)	Í	650.3(7)	A, $v[4(TeF_{2e trans} - TeF_{2e trans})]$
	l	649.6(2)		l	649.4(2)	$E, v[(TeF_{4e} - TeF_{4e}) + 2(TeF_{2e trans} - TeF_{2e trans})]$
632.7(<1)		640.4(3)	632.3(<1)		640 9(3)	B, $\delta(2COTe - 2COTe) + \nu(4TeF_{4e})$
$\left. \begin{array}{c} 533\ 0(11) \\ 512\ 0\ sh \end{array} \right\}$		539.9(56)	538.1(11)		543.3(56)	A, 8(4COTe)

____

the second second

**Table 8.4.**Experimental and Calculated Vibrational Frequencies^a for  $^{12/13}C(OTeF_5)_4$ 

293



Table 8.4. (conti

(continued...)



^a Frequencies are given in cm⁻¹. ^b Values in parentheses denote experimental relative Raman intensities. The abbreviation denotes a shoulder (sh). ^c SVWN/(SDB-)cc-pVTZ. Raman intensities (in Å⁴ amu⁻¹) are given in parentheses. ^d The abbreviations denote stretch (v), bend ( $\delta$ ), twist ( $\rho_t$ ), wag ( $\rho_w$ ), and rock ( $\rho_r$ ). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (-) signs. The notations, F_a and F_e, refer to the axial fluorine atom and the four equatorial fluorine atoms of the OTeF₅ group; the notations TeF_{2e} and TeF_{4e} indicate that 2 or 4, respectively, Te-F_e bond stretching motions are in phase. The notations, F_{e trans} and F_{e cis}, indicate that the fluorine atoms are trans or cis to each other.

	¹² C(OTeF ₅ ) ₄			B(OTeF ₅ ) ₄	·····	
		calcd $(S_4)^c$	expt] ^{b,d}	calcd $(S_4)^{e}$		assgnts $(S_4)^{e}$
	$\left.\begin{array}{c}1084(2)\\1078 \text{ sh}\end{array}\right\}$	1097(15)	989(7), br	1026(6)	1065[690]	E, ν(EO - EO)
	$\left. \begin{array}{c} 1070(<1) \\ 1064 \ \mathrm{sh} \end{array} \right\}$	1083(8)	989(7), br	1019(8)	1040[459]	B, ν(EO ₂ – EO ₂ )
	1023(2)	1010(31)	958(4) 951(7)	981(80)	968[0]	A, ν(EO ₄ – 4TeO)
	813 5(3)	794(16)	800(7)	787(15)	781[<1]	E, $v(2\text{TeO} - 2\text{TeO})$
• •	756(1)	741(2)	761(4)	774(8)	785[54]	B, $v[2(TeO - TeF_a) + 2(TeF_a - TeO) + 4(TeF_{e trans} - TeF_{e trans})]_{small}$
96	747.3(2)	731(1) 732(1) 730(2)	754(7)       746(5)       738(4)	708(1) 710(2) 704(4)	709[225] 710[322] 706[0]	E, $\nu[4(\text{TeF}_{e \text{ trans}} - \text{TeF}_{e \text{ trans}})] + \delta(\text{EO}_2 - \text{EO}_2)_{\text{small}}$ B, $\delta(\text{EO}_2 - \text{EO}_2) + \nu[(2(\text{TeO} - \text{TeF}_{e}) + 2(\text{TeF}_{e} - \text{TeO}) + 4(\text{TeF}_{e \text{ trans}} - \text{TeF}_{e \text{ trans}})]$ A, $\nu[4(\text{TeF}_{e \text{ trans}} - \text{TeF}_{e \text{ trans}})]$
	736 8 sh 734.7(6)	728(2) 725(6) 720(<1)	721(7) 718(11) }	707(2) 696(9) 698(<1)	707[90] 700[0] 699[38]	B, $\delta(EO_2 - EO_2)_{small} + \nu[4(TeF_{e trans} - TeF_{e trans})]$ A, $\nu[4(TeF_{e trans} - TeF_{e trans})]$ E, $\nu[2(TeF_{e trans} - TeF_{e trans}) + 2(TeF_{2e cis} - TeF_{2e cis})]$
	721 0(44)	708(21)	$\left. \begin{array}{c} 709 \text{ sh} \\ 702(100) \end{array} \right\}$	675(60)	677[0]	A, $v(4\text{TeF}_a)$
	714.5(10) 711(6)	699(6)	688(8) 682(7) }	660(6)	662[155]	E, $v(2TeF_a - 2TeF_a)$
	705(9)	691(10)	675(7)	659(17)	659[63]	B, $\delta(EO_2 - EO_2) + \nu(2TeF_a - 2TeF_a)$
	678(100)	659(91)	649(78) 646 sh	636(63)	636[0]	A, $v(4\text{TeF}_{4c})$

### **Table 8.5.** Experimental and Calculated Vibrational Frequencies^a for $E(OTeF_5)_4^{-/0}(E = B, C)^c$

668(11) 664(11) } { 633(<1)	658(2) 654(4) 651(5) 651(7) 650(2) 640(3)	640(18) 461(3) 521(13) ]	627(1) 632(4) 630(<1) 629(7) 628(2) 479(12)	628[1] 633[3] 631[1] 629[0] 628[<1] 516[<<1]	B, $\delta(4\text{EOTe}) + \nu(2\text{TeF}_{4e} - 2\text{TeF}_{4e})$ B, $\nu[4(\text{TeF}_{2e \text{ trans}} - \text{TeF}_{2e \text{ trans}})]$ E, $\nu[(2\text{TeF}_{2e \text{ trans}} - 2\text{TeF}_{2e \text{ trans}})]$ A, $\nu[4(\text{TeF}_{2e \text{ trans}} - \text{TeF}_{2e \text{ trans}})]$ E, $\nu[(\text{TeF}_{4e} - \text{TeF}_{4e}) + 2(\text{TeF}_{2e \text{ trans}} - \text{TeF}_{2e \text{ trans}})]$ B, $\delta(2\text{EOTe} - 2\text{EOTe}) + \nu(4\text{TeF}_{4e})$
533(11) 512 sh	540(56)	514 sh 506(8) 500 sh	524(39)	522[0]	Α, δ(4ΕΟΤε)
442(2)	444(5)	333(10)	353(3)	383[0]	A, pt(4EOTe)
428(3)	430(2)	396(3) 375(3) 370 sh 348(3) 333(13)	457(<1)	446[71]	Ε, ρ _w (ΕΟ ₂ )
339(<1)	361(<1)	311 sh	317(6)	331[157]	B, ρ _w (EO ₄ )
324(9)	326(<1)	318(6)	323(<1)	329[0]	A, $\rho_r(EO_2 - EO_2) + \delta(2TeF_{4e \text{ umbrella}} - 2TeF_{4e \text{ umbrella}})$
320(14) 313(16) 302(1)	307(1) 306(1) 303(2) 302(<1) 300(1) 299(1) 298(<1) 296(<1)	304(14) 299 sh	315(1) 313(3) 312(<1) 310(18) 310(<1) 306(<1) 307(<1) 307(<1)	315[23] 314[21] 313[0] 311[7] 309[18] 306[0] 308[56] 306[137]	strongly coupled deformations and torsion modes involving both $OTeF_5$ and EOTe moieties
	$ \begin{cases} 668(11) \\ 664(11) \end{cases} $ $ \begin{cases} 633(<1) \\ 533(11) \\ 512 \text{ sh} \end{cases} $ $ 442(2) \\ 428(3) \\ 339(<1) \\ 324(9) \\ \\ 320(14) \\ 313(16) \\ 302(1) \end{cases} $ $ \begin{cases} $	$ \begin{cases} \begin{aligned} 668(11)\\ 664(11)\\ 664(11) \end{cases} \begin{cases} 658(2)\\ 654(4)\\ 651(5)\\ 651(7)\\ 650(2) \end{cases} $ $ 633(<1) & 640(3) \end{cases} $ $ \begin{cases} 533(11)\\ 512 \text{ sh} \end{cases}  540(56) \end{cases} $ $ 442(2) & 444(5) \end{cases} $ $ 428(3) & 430(2) $ $ 339(<1) & 361(<1)\\ 324(9) & 326(<1)\\ 306(1)\\ 302(1) \end{pmatrix} $ $ \begin{cases} 307(1)\\ 306(1)\\ 303(2)\\ 302(<1)\\ 300(1)\\ 299(1)\\ 298(<1)\\ 296(<1) \end{cases} $	$     \left\{              \begin{array}{c}             668(11) \\             664(11)             \end{array}             \left\{           $	$ \begin{array}{c} 668(11) \\ 664(11) \\ 664(11) \\ \end{array} \right\} \left\{ \begin{array}{c} 658(2) \\ 654(4) \\ 651(5) \\ 651(7) \\ 650(2) \\ \end{array} \right\} \left\{ \begin{array}{c} 640(18) \\ 640(18) \\ 630(<1) \\ 629(7) \\ 628(2) \\ 628(2) \\ \end{array} \right\} \left\{ \begin{array}{c} 633(<1) \\ 640(3) \\ 461(3) \\ 479(12) \\ 521(13) \\ 512 \text{ sh} \\ \end{array} \right\} \left\{ \begin{array}{c} 540(56) \\ 506(8) \\ 500 \text{ sh} \\ \end{array} \right\} \left\{ \begin{array}{c} 521(13) \\ 514 \text{ sh} \\ 506(8) \\ 500 \text{ sh} \\ \end{array} \right\} \left\{ \begin{array}{c} 524(39) \\ 524(39) \\ 500 \text{ sh} \\ \end{array} \right\} \left\{ \begin{array}{c} 442(2) \\ 444(5) \\ 333(10) \\ 313(10) \\ 348(3) \\ 333(13) \\ \end{array} \right\} \left\{ \begin{array}{c} 396(3) \\ 375(3) \\ 348(3) \\ 333(13) \\ \end{array} \right\} \left\{ \begin{array}{c} 396(3) \\ 375(3) \\ 348(3) \\ 333(13) \\ \end{array} \right\} \left\{ \begin{array}{c} 307(1) \\ 306(1) \\ 302(2) \\ 302(<1) \\ 302(<1) \\ 302(<1) \\ 300(1) \\ 299 \text{ sh} \\ \end{array} \right\} \left\{ \begin{array}{c} 315(1) \\ 310(18) \\ 310(18) \\ 310(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 307(-1) \\ \end{array} \right\} \left\{ \begin{array}{c} 307(1) \\ 306(-1) \\ 306(-1) \\ 306(-1) \\ 307(-1) \\ 306(-1) \\ 307(-1) \\ \end{array} \right\} \left\{ \begin{array}{c} 307(1) \\ 306(-1) \\ 306(-1) \\ 307(-1) \\ 306(-1) \\ 307(-1) \\ \end{array} \right\} \left\{ \begin{array}{c} 307(1) \\ 306(-1) \\ 307(-1) \\ 307(-1) \\ \end{array} \right\} \left\{ \begin{array}{c} 307(1) \\ 306(-1) \\ 307(-1) \\ 307(-1) \\ \end{array} \right\} \left\{ \begin{array}{c} 307(-1) \\ 306(-1) \\ 307(-1) \\ \end{array} \right\} \left\{ \begin{array}{c} 307(-1) \\ 307(-1) \\ \end{array}\right\} \left\{ \begin{array}{c} 307(-1) \\ 307(-1) \\ 307(-1) \\ \end{array}\right\} \left\{ \begin{array}{c} 307(-1) \\ 307(-1) \\ 307(-1) \\ 307(-1) \\ \end{array}\right\} \left\{ \begin{array}{c} 307(-1)$	$ \begin{array}{c} 668(11) \\ 664(11) \\ 664(11) \\ \end{array} \left\{ \begin{array}{c} 658(2) \\ 654(4) \\ 651(5) \\ 651(7) \\ 650(2) \end{array} \right. 640(18) \\ \left\{ \begin{array}{c} 627(1) \\ 632(4) \\ 633[3] \\ 630(<1) \\ 631[1] \\ 629(7) \\ 629[0] \\ 628(2) \\ 628(2) \\ 628[<1] \end{array} \right\} \\ \left\{ \begin{array}{c} 633(<1) \\ 640(3) \\ 461(3) \\ 479(12) \\ 516[<<1] \end{array} \right\} \\ \left\{ \begin{array}{c} 516(<1) \\ 511(3) \\ 512(3) \\ 512(3) \\ 512(3) \\ 512(3) \\ 512(3) \\ 512(3) \\ 512(3) \\ 512(3) \\ 512(3) \\ 512(3) \\ 512(3) \\ 540(56) \\ 500(3) \\ 500(3) \\ 500(3) \\ 500(3) \\ 500(3) \\ 375(3) \\ 333(10) \\ 333(10) \\ 313(10) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 333(13) \\ 311(5) \\ 302(1) \\ 302(1) \\ 302(1) \\ 302(21) \\ 302(21) \\ 302(21) \\ 302(21) \\ 302(21) \\ 302(21) \\ 302(1) \\ 299(1) \\ 299(1) \\ 299(1) \\ 299(1) \\ 299(1) \\ 299(1) \\ 299(1) \\ 299(1) \\ 300(1) \\ 299(1) \\ 300(1) \\ 299(1) \\ 300(1) \\ 299(1) \\ 300(1) \\ 299(1) \\ 300(1) \\ 299(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ 300(1) \\ $


298

## **Table 8.5.**(continued...)

^a Frequencies are given in cm⁻¹. ^b Values in parentheses denote experimental uncorrected relative Raman intensities. The abbreviation denotes a shoulder (sh). ^c SVWN/(SDB-)cc-pVTZ. Raman intensities (in Å⁴ amu⁻¹) are given in parentheses. ^d The abbreviations denote stretch ( $\nu$ ), bend ( $\delta$ ), twist ( $\rho_t$ ), wag ( $\rho_w$ ), and rock ( $\rho_r$ ). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (-) signs. The notations, F_a and F_e, refer to the axial fluorine atom and the four equatorial fluorine atoms of the OTeF₅ group; the notations TeF_{2e} and TeF_{4e} indicate that 2 or 4, respectively, Te–F_e bond stretching motions are in phase. The notations, F_{e trans} and F_{e cis}, indicate that the fluorine atoms are trans or cis to each other.

cm⁻¹ (calcd., 28.9 cm⁻¹), respectively. In contrast, v(CO₄ – 4TeO) shifted by only 1.6 cm⁻¹ (calcd., 1.0 cm⁻¹), which is consistent with the near-zero displacement of the carbon atom in the latter mode. The vibrational frequencies of C(OTeF₅)₄ are higher than those of B(OTeF₅)₄⁻; the B–O stretching frequencies occur at 989 cm⁻¹, which is broad (E, v(BO – BO) and B, v(BO₂ – BO₂)) and at 951, 958 cm⁻¹ (A, v(BO₄ – 4TeO)). The ^{10/11}B isotopic shifts were not observed, but have been calculated (Table 8.5). No pure O–C–O or O–B–O bending modes are predicted by computational methods, rather, they are strongly coupled to TeO and TeF stretching modes and have not been explicitly assigned in Tables 8.4 and 8.5.

#### 8.2.5. Computational Results

The geometric parameters and vibrational frequencies (see Section 8.2.4) were calculated using DFT (SVWN) methods for both  $C(OTeF_5)_4$  and  $B(OTeF_5)_4^-$ . Allelectron correlation consistent (cc-pVTZ) basis sets were used for all atoms other than tellurium, for which a semi-relativistic large core pseudopotential (SDB-cc-pVTZ) basis set was used. Natural bond orbital (NBO) analyses were carried out on the DFToptimized geometries at the HF level of theory. Total energies for experimental geometries were derived from single-point calculations.

#### 8.2.5.1. Geometries

The initial  $C(OTeF_5)_4$  and  $B(OTeF_5)_4^-$  geometries used in the optimization were very close to square planar about the central E atom with all E–O–Te angles close to

linear and  $OTeF_5$  groups pseudo-octahedral with two  $Te-F_e$  bonds and the  $Te-F_a$  bond of each OTeF₅ being essentially coplanar with the EO₄ moiety. The starting geometry had  $C_1$  symmetry and the initial calculations were done at the HF level using the (SDB-)ccpVTZ basis set which gave two local minima. As indicated by the three groups of Te–O–E–O dihedral bond angles (vide infra), the calculated geometries were close to  $S_4$ symmetry (Figure 8.6). Both systems were then optimized at the SVWN level at  $C_1$ symmetry, resulting in all frequencies real for both systems. All geometrical parameters, including the Te-O-E-O torsion angles, are comparable to the experimental values. Using the coordinates from the latter calculations, both systems were optimized at the SVWN level at  $S_4$  symmetry resulting in all frequencies real for C(OTeF₅)₄ and one imaginary frequency for  $B(OTeF_5)_4^-$ . While the Te-O-C-O angles were similar to those under  $C_1$  symmetry, the Te–O–B–O angles had changed significantly. In an attempt to obtain all frequencies real for  $B(OTeF_5)_4^-$  at the SVWN level, a further geometry optimization was carried out starting from the optimized  $S_4$  (SVWN) geometry of  $C(OTeF_5)_4$  and produced an energy-minimized  $S_4$  geometry with all frequencies real and Te–O–B–O dihedral bond angles that differed from those obtained previously for  $S_4$  (one imaginary frequency) and  $C_1$  symmetries.

The calculated bond lengths and bond angles associated with the  $C_1$  and  $S_4$  energy-minimized (SVWN/(SDB-)cc-pVTZ) geometries of C(OTeF₅)₄ and B(OTeF₅)₄⁻ all fall within the range of the experimentally determined values, with the exception of the calculated C–O–Te angles which were ca. 5° smaller. The calculated Te–O–C–O



**Figure 8.6.** Calculated local geometries ( $S_4$  symmetry) for the E(OTe)₄ moieties of E(OTeF₅)₄^{0/-} (E = C, B) species (a) looking down the collinear  $S_4$ - and  $C_2$ -axes, and (b) looking along the E(1)–O(4) bond.

torsion angles for both  $C_1$  and  $S_4$  symmetries of C(OTeF₅)₄ are similar to the experimental torsion angles, and are consistent with C(OTeF₅)₄ being well isolated in the structure (see Section 8.2.3). In contrast, the Te–O–B–O torsion angles of B(OTeF₅)₄⁻ vary significantly. The  $C_1$ -structure is only slightly higher in energy than the  $S_4$ -structure, but the Te–O–B–O torsion angles are in better agreement with the experimental values. This suggests that the solid-state geometry of B(OTeF₅)₄⁻, because of its ionic nature, is more susceptible to crystal packing effects than the carbon analogue. When the largest set of calculated Te–O–B–O torsion angles decrease,  $S_4$  symmetry is maintained by concomitant increases in the intermediate set of angles and decreases in the smallest set of angles (Tables 8.2 and 8.3).

#### 8.2.5.2. Natural Bond Orbital (NBO) Analyses

Natural atomic charges, Mayer natural atomic orbital valencies, and natural atomic orbital bond orders between atoms in  $C(OTeF_5)_4$  and  $B(OTeF_5)_4^-$ , calculated at the HF level of theory, are given in Table 8.6.

(i) Natural Atomic Charges for C(OTeF₅)₄ and B(OTeF₅)₄⁻. The NBO analyses for C(OTeF₅)₄ and B(OTeF₅)₄⁻ were carried out at the HF/(SDB-)cc-pVTZ level of theory so that the results could be compared with previous calculations for C(OTeF₅)₃⁺ and B(OTeF₅)₃ (also see Chapter 6).⁸⁰ The positive charge on the carbon atom of C(OTeF₅)₄ (1.20) is lower than that of C(OTeF₅)₃⁺ (1.30), with the boron analogues exhibiting

	$C(OTeF_5)_4(S_4)$		$B(OTeF_5)_4^{-}(S_4)^{c}$			$\begin{array}{c} C(OTeF_5)_4 \\ (S_4) \end{array}$	$\frac{B(OTeF_5)_4}{(S_4)^c}$
	charge	valency	charge	valency		bond order	bond order
Е	1.199	3.264	1.046	2.684	E–O	0.910	0.658
0	-0.946	1.163	-1.000	1.225	O–Te	0.498	0.655
Те	3.965	3.039	3.547	3.237	Te-F _A	0.500	0.511
F _A	-0.660	0.471	-0.613	0.470	Te-F _B	0.487	0.508
F _B	-0.666	0.454	-0.615	0.468	Te-F _{B'}	0.491	0.509
F _B '	-0.662	0.453	-0.606	0.470	Te-F _{B"}	0.482	0.504
F _B "	-0.665	0.449	-0.610	0.469	Te-F _B "	0.490	0.511
<b>F</b> _B '''	-0.666	0.459	-0.614	0.473			
overall OTeF ₅	-0.300		-0.511				

**Table 8.6.** Calculated^{a,b} Natural Bond Orbital (NBO) Charges, Valencies, and Bond Orders for C(OTeF₅)₄ and B(OTeF₅)₄⁻

304

^a SVWN/(SDB-)cc-pVTZ//HF/(SDB-)cc-pVTZ. ^b The symbols  $F_A$  and  $F_B/F_B'/F_B''/F_B'''$  denote axial and equatorial fluorine atoms, where  $F_B/F_B'/F_B''/F_B''$  are nonequivalent under  $S_4$  symmetry. ^c The geometrical parameters correspond to the optimized  $S_4$  geometry having the lowest energy.

parallel behavior, i.e.,  $B(OTeF_5)_4^-$  (1.25) and  $B(OTeF_5)_3$  (1.45). The higher boron charges of  $B(OTeF_5)_3$  and  $B(OTeF_5)_4^-$  relative to the carbon charges of their carbon analogues reflect the higher electronegativity of carbon. As a result of the lower electronegativity of boron and higher net negative charges of  $B(OTeF_5)_3$  and  $B(OTeF_5)_4^-$ , the charge separations between the central atom and the ligands are greater for the boron analogues. Thus, the total charge on a OTeF₅ group of  $B(OTeF_5)_4^-$  (-0.56) is more negative than that of  $C(OTeF_5)_4$  (-0.30) with a parallel trend for  $B(OTeF_5)_3$  (-0.48) and  $C(OTeF_5)_3^+$  (-0.10). The charge separations are indicative of the greater polarity of the B–O bonds when compared with those of their carbon analogues.

(ii) Bond Orders and Valencies for C(OTeF₅)₄ and B(OTeF₅)₄⁻. The C–O bond order for C(OTeF₅)₄ (0.91) is significantly higher than that of B(OTeF₅)₄⁻ (0.62), and, again, reflects the greater polarities of the B–O bonds. The trend is also exhibited by C(OTeF₅)₃⁺ (1.01) and B(OTeF₅)₃ (0.73) (also see Chapter 6).⁸⁰ The bond order differences in going from E(OTeF₅)₃^{0/+} to E(OTeF₅)₄^{-/0} are 0.11/0.10, which reflect the differences in E  $\leftarrow$  O  $\pi$  donation in going from trigonal planar to tetrahedral local geometries. The valencies at E are also consistent with the greater polarities of the B–O bonds in B(OTeF₅)₄⁻ (2.68) when compared with C(OTeF₅)₄ (3.26), with parallel behavior exhibited by B(OTeF₅)₃ (2.18) and C(OTeF₅)₃⁺ (3.04).⁸⁰

## 8.3 Conclusions

The present study provides a synthetic route to  $C(OTeF_5)_4$  and describes its structural characterization in solution and in the solid state. In contrast with the room temperature stability of  $C(OTeF_5)_4$  in SO₂ClF, dissolution of  $C(OTeF_5)_4$  in CH₃CN results in rapid decomposition of  $C(OTeF_5)_4$  at 10 °C to give CO₂ and  $O(TeF_5)_2$ , with the reaction likely proceeding through the reactive intermediate, O= $C(OTeF_5)_2$ . With the availability of a more precise crystal structure for  $B(OTeF_5)_4^-$ , determined in the course of the present work, and that of  $C(OTeF_5)_4$ , it has proven possible to assess the local symmetries of  $E(OTeF_5)_4^{0/-}$  by LCP predictions and by comparisons of Te–O–E–O torsion angles. Both approaches established that the geometries of  $C(OTeF_5)_4$  and  $B(OTeF_5)_4^-$  are best represented by  $S_4$  rather than by  $C_1$  or  $D_{2d}$  symmetries. Electronic structure calculations accurately reproduced the experimental geometric parameters and are in accord with assignments of the experimental symmetries to  $S_4$ . They have also aided in the vibrational assignments of  $E(OTeF_5)_4^{0/-}$ , and reproduce the ^{12/13}C isotopic shifts associated with the vibrational frequencies of the CO₄ moiety of  $C(OTeF_5)_4$ .

# **CHAPTER 9**

# **CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK**

#### 9.1. Conclusions

The chemistry of Xe(II) has been significantly extended to include the first known neutral oxide fluoride,  $O(XeF)_2$ , which has been synthesized and definitively characterized in CH₃CN solution at -40 °C by ¹⁷O, ¹⁹F, and ¹²⁹Xe NMR spectroscopy, and in the solid state by low-temperature Raman spectroscopy. This discovery also completes the list of known neutral oxide fluorides of Xe(II), Xe(IV), Xe(VI), and Xe(VIII) (see Table 1.1).

As well, the first nitrate derivative of a noble-gas element, FXeONO₂, has been synthesized and fully characterized in solution by ¹⁴N, ¹⁹F, and ¹²⁹Xe NMR spectroscopy and in the solid state by low-temperature Raman spectroscopy and single crystal X-ray diffraction. The compound is a colorless solide that decomposes above 0 °C. An early report⁹⁹ of the syntheses of FXeONO₂ and Xe(ONO₂)₂ could not be substantiated because no spectroscopic or other characterization of these compounds was attempted in the prior work. Moreover, the physical properties and stability of FXeONO₂ prepared in the present work do not agree with with those described in the earlier work.

The syntheses of  $O(XeF)_2$  and  $FXeONO_2$  demonstrate the synthetic utility of the FXeOXeFXeF⁺ cation, or more specifically, its ability to insert the FXeO moiety into X-F (X = Xe(II), N(V)) bonds to give FXeO-R-type linkages, which could not be obtained by metathesis reactions with strong monoprotic acids.

The salt, [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF, has now been fully characterized in SO₂ClF solution by NMR spectroscopy and in the solid state by low-temperature Raman spectroscopy and single crystal X-ray diffraction. Unlike [XeOTeF₅][AsF₆] and [XeOSeF₅][AsF₆], and fluorine analogues, [XeF][MF₆] (M = As, Sb, Bi, Nb, Ta, Ru, Ir, Os, Au), the XeOTeF₅⁺ cation in [XeOTeF₅][Sb(OTeF₅)₆]·SO₂ClF is devoid of interactions with the anion and only a very weak interaction with the co-crystallized SO₂ClF molecule exists. The relative "nakedness" of the cation in this structure renders it a strong Lewis acid and a potent oxidizer; the latter property has been expoited to generate perhalogenated carbocations cations (vide infra).

The [XeOTeF₅][Sb(OTeF₅)₆] salt has been shown to oxidatively remove a halogen bound to carbon, generating the [CX₃][Sb(OTeF₅)₆] (X = Cl, Br, OTeF₅) and [CFX₂][Sb(OTeF₅)₆] (X = Cl, Br) salts. The former salts have been characterized for the first time in the solid state by X-ray crystallography, while evidence for the CFX₂⁺ cations has been obtained in solution by ¹³C and ¹⁹F NMR spectroscopy. This synthetic approach has also led to the first syntheses of the F₃C–Br–OTeF₅⁺, ClFCOTeF₅⁺, CBr(OTeF₅)₂⁺, CBr₂OTeF₅⁺, and Br(OTeF₅)₂⁺ cations, as well as neutral F₂BrCOTeF₅. The CFX₂⁺ cations are the first examples of long-lived perhalomethyl cations that contain fluorine, and, as such, are among the strongest electrophiles known. The neutral pentafluoroorthotellurate of carbon, C(OTeF₅)₄, which arose as a side product from the reaction of CBr₄ with [XeOTeF₅][Sb(OTeF₅)₆], has now been prepared in bulk and fully characterized in solution by NMR spectroscopy, and in the solid state by Raman spectroscopy and X-ray crystallography.

geometric parameters and symmetries of  $C(OTeF_5)_4$  have also been compared with those of the isoelectronic  $B(OTeF_5)_4^-$  anion.

## 9.2. Directions for Future Work

The synthetic utility of the FXeOXeFXeF⁺ cation in generating new neutral Xe(II) compounds affords the possibility of synthesizing other neutral Xe(II) derivatives bound to an oxygen-linked ligand. A moderate to strong fluoride ion donor should displace  $Xe_2F_3^+$  according to eq 9.1. Preliminary work has shown that ClO₂F reacts

$$FXeOXeFXeF^{+} + RF \longrightarrow FXeO-R + Xe_2F_3^{+}$$
(9.1)

to form FXeOClO₂ according to eq 9.2,³⁰⁰ and has been characterized by low-temperature

$$[Xe_3OF_3][AsF_6] + 2ClO_2F \longrightarrow FXeOClO_2 + 2XeF_2 + [ClO_2][AsF_6]$$
(9.2)

Raman spectroscopy and by ¹⁹F and ¹²⁹Xe NMR spectroscopy. Other possible fluoride ion donors include, ClO₃F, BrO₃F, and POF₃ to give FXeOClO₃, FXeOBrO₃, and FXeOP(O)F₂, respectively.

Another possibility is to further exploit the lability of the weak bond between the FXeOXe⁺ and XeF₂ in the FXeOXeFXeF⁺ cation to synthesize adducts of the FXeOXe⁺ cation with various oxidatively resistant nitrogen bases. For example, preliminary work has shown that N=SF₃ will displace XeF₂ in NSF₃ solution to give FXeOXe---N=SF₃⁺ according to eq 9.3,³⁰¹ which has been verified in the solid state by low-temperature

## Ph.D. Thesis - Matthew D. Moran

$$FXeOXeFXeF^{+} + N \equiv SF_{3} \longrightarrow FXeOXe---N \equiv SF_{3}^{+} + XeF_{2}$$
(9.3)

Raman spectroscopy of the natural abundance and ¹⁸O-enriched [FXeOXe---N $\equiv$ SF₃][AsF₆] salt. Other oxidatively resistant nitrogen bases that could be considered for such a study include CH₃CN, C₅F₅N, *o*-, *p*-C₄F₄N₂, and *s*-C₃F₃N₃, which have all been found to form stable adducts with XeF⁺.

Although  $CFX_2^+$  (X = Cl, Br) have been characterized by ¹³C and ¹⁹F NMR spectroscopy and Raman spectroscopy, in the case of  $CFCl_2^+$ , no structural information has been obtained by single-crystal X-ray diffraction. While  $CFBr_2^+$  was unattainable (see Chapter 7), the  $CFCl_2^+$  cation demonstrates sufficient stability in SO₂ClF solution at low temperatures to allow for crystal growth, though all attempts thus far have failed in spite of its documented stability in the solid state by Raman spectroscopy. Another approach to attaining a structure of a fluorine-containing carbocation would be to replace a halogen ligand with a more stabilizing ligand, such as  $OTeF_5$ . In a manner similar to the preparation of  $C(OTeF_5)_4$  (see Chapter 8),  $CFBr_2^+$  could be reacted with two equivalents of BrOTeF₅ to give the  $CF(OTeF_5)_2^+$  cation according to eq 9.4.

$$CFBr_2^+ + 2BrOTeF_5 \longrightarrow CF(OTeF_5)_2^+ + 2Br_2$$
(9.4)

The demonstrated of the synthetic utility of  $[XeOTeF_5][Sb(OTeF_5)_6] \cdot SO_2ClF$  for the oxidative removal of a halogen bound to carbon may provide a means to generate cations of groups 14 and 16. More specifically, silyl cations are of considerable interest because  $\pi$ -back donation is reduced as a result of poor overlap between filled 2p orbitals of the carbon ligand atoms and the vacant 3p orbital of silicon. Consequently, they are much more difficult to stabilize.³⁰² Only the [Mes₃Si][B(C₅F₅)₄] salt has been prepared where bulky 1,3,5-trimethylphenyl (mesityl, Mes) groups prevent coordination,³⁰² resulting in a silyl cation that is free of interactions with the anion and the solvent, which has been studied by ²⁹Si NMR spectroscopy and by X-ray crystallography.

The syntheses of sterically unhindered silyl cation salts containing weakly coordinating anions may prove possible using the oxidative approaches described in Chapters 6 and 7. The preparation of perhalogenated silyl cations have been attempted according to eq 9.5 in SO₂ClF solvent. Among the perhalocations, SiCl₃⁺ should provide

 $SiCl_4$  + [XeOTeF₅][Sb(OChF₅)₆]  $\longrightarrow$ 

 $[SiCl_3][Sb(OTeF_5)_6] + ClOTeF_5 + Xe \quad (9.5)$ 

the most favorable  $\pi$  stabilization of the positive charge on silicon. Preliminary ²⁹Si NMR studies, however, show that the silicon nucleus is very shielded relative to that of SiMes₃⁺, indicating strong coordination to the solvent, anion, and/or ClOTeF₅.³⁰³ Further study of products from the reaction of SiCl₄ with [XeOTeF₅][Sb(OChF₅)₆], such as Raman spectroscopy and single crystal X-ray diffraction, needs to be done in order to understand the nature of this adduct.

Apart from  $SiCl_3^+$ , the trimethylsilylium ion has yet to be isolated. The proposed synthesis of this cation is given by eq 9.6. It is possible, based on the experiences of Lambert,³⁰⁴ that the silyl cation may interact with an oxygen lone pair of ClOChF₅ to form an adduct with ClOChF₅ (eq 9.7). Indeed, as with SiCl₃⁺, the ²⁹Si NMR

### Ph.D. Thesis - Matthew D. Moran

$$SiMe_3Cl + [XeOChF_5][Sb(OChF_5)_6] \longrightarrow$$

$$[SiMe_3][Sb(OChF_5)_6] + XOChF_5 + Xe \quad (9.6)$$

 $SiMe_3^+ + XOChF_5 \longrightarrow Me_3SiO(X)ChF_5^+$  (9.7)

spectrum of the reaction mixture shows that the SiMe₃⁺ cation is strongly coordinated in SO₂ClF solution.³⁰³ A singlet was observed that has been tentatively assigned to the silyl cation Si(OSiMe₃)₂(OTeF₅)⁺, which has been characterized by single-crystal X-ray diffraction.³⁰³ Further study must be done in order to follow the decomposition of SiMe₃⁺ to Si(OSiMe₃)₂(OTeF₅)⁺ by NMR spectroscopy, as well as to try and crystallize any intermediate silyl cations.

There are no examples of perfluorinated cations of the chalcogens in their highest oxidation state, +6. Although the trigonal pyramidal  $Ch'F_3^+$  (Ch' = S,³⁰⁵ Se,^{306,307} Te³⁰⁸) cations have been obtained by fluoride ion abstraction from the corresponding tetrafluorides, the hexafluorides do not behave as fluoride ion donors towards strong Lewis acids such as AsF₅ and SbF₅.³⁰⁹ Attempts should be made to synthesize salts of the trigonal bipyramidal Ch'F₅⁺ cations by oxidation of Ch'F₅X (X = Cl, Br; except in the case of SeF₅Br, which is unknown)³¹⁰⁻³¹⁴ in SO₂ClF and/or SO₂F₂ according to eq 9.8. Although preliminary work

 $Ch'F_5X + [XeOChF_5][M(OChF_5)_6] \longrightarrow$ 

 $[Ch'F_5][M(OChF_5)_6] + XOChF_5 + Xe$  (9.8)

(Ch' = S, Se, Te; Ch = Se or Te; M = As or Sb)

demonstrated that the reaction of SF₅Br with [XeOTeF₅][M(OTeF₅)₆] gave SF₆ as the major product, with F⁻ abstraction from Sb(OTeF₅)₆⁻. It should, however still be possible to generate SeF₅⁺ and TeF₅⁺, as the Ch–F bonds (Ch = Se, Te) are weaker than that of sulfur, making fluoride abstraction from the anion less likely.

Although Te(OTeF₅)₄ is known,^{293,315} the sulfur and selenium analogues have not been prepared. The derivative series should be completed by synthesizing  $S(OChF_5)_4$  and  $Se(OChF_5)_4$  according to eq 9.9 and 9.10. It has been shown that  $Xe(OTeF_5)_2$  oxidizes

$$3Ch'F_4 + 4B(OChF_5)_3 \longrightarrow 3Ch' (OChF_5)_4 + 4BF_3 (Ch' = S, Se)$$
 (9.9)

$$Ch'Cl_4 + 4ClOChF_5 \longrightarrow Ch' (OChF_5)_4 + 4Cl_2$$
(9.10)

 $Te(OTeF_6)_4$  to  $Te(OTeF_6)_6$ .³¹⁵ Oxidative addition of OChF₅ to Ch'(OChF₅)₄ using [XeOChF₅][M(OChF₅)₆] to give the pentakis-cations (eq 9.11) should be attempted.

 $[XeOChF_5][M(OChF_5)_6] + Ch' (OChF_5)_4 \longrightarrow$ 

 $[Ch' (OChF_5)_5][M(OChF_5)_6] + Xe (9.11)$ 

## References

- 1. Bartlett, N. Proc. Chem. Soc. 1962, 218.
- 2. Graham, L.; Graudejus, O.; Jha, N. K.; Bartlett, N. Coord. Chem. Rev. 2000, 197, 321-334.
- 3. Hoppe, R.; Dähne, W.; Mattauch, H.; Rödder, K. M. Angew. Chem., Int. Ed. Engl. 1962, 1, 599.
- 4. Peacock, R. D.; Selig, H. J. Am. Chem. Soc. 1964, 86, 3895.
- 5. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1976, 15, 22-31.
- 6. Frlec, B.; Holloway, J. H. Inorg. Chem. 1976, 15, 1263-1270.
- 7. Stein, L. Inorg. Chem. 1984, 23, 3670-3671.
- 8. Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. *Nature* **2000**, *406*, 874-876.
- 9. Runeberg, N.; Pettersson, M.; Khriachtchev, L.; Lundell, J.; Räsänen, M. J. Chem. Phys. 2001, 114, 836-841.
- 10. Selig, H.; Holloway, J. H. In *Topics in Current Chemistry*; Boschke, F. L., Ed.; Springer-Verlag: Berlin, 1984; Vol. 124, pp 33-90.
- 11. Holloway, J. H. J. Fluorine Chem. 1986, 33, 149-157.
- 12. Holloway, J. H.; Hope, E. G. Adv. Inorg. Chem. 1998, 46, 51-100.
- Schrobilgen, G. J. In Synthetic Fluorine Chemistry; Olah, G. A.; Prakash, G. K. S.; Chambers, R. D., Eds.; John Wiley & Sons, Inc.: New York, 1999; pp 31-42.
- 14. Gerken, M.; Schrobilgen, G. J. Coord. Chem. Rev. 2000, 197, 335-395.
- 15. Brel, V. K.; Pirkuliev, N. S.; Zefirov, N. S. Russ. Chem. Rev. 2001, 70, 231-264.
- 16. Lehmann, J. F.; Mercier, H. P. A.; Schrobilgen, G. J. Coord. Chem. Rev. 2002, 233-234, 1-39.
- 17. Laszlo, P.; Schrobilgen, G. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 479-489.
- 18. Ball, P., *Elegant Solutions: Ten Beautiful Experiments in Chemistry*, The Royal Society of Chemistry: Cambridge, UK, 2005, Chapter 8.
- 19. Malm, J. G.; Selig, H. H.; Jortner, J.; Rice, S. A. Chem. Rev. 1965, 65, 199-236.
- 20. Falconer, W. E.; Sunder, W. A. J. Inorg. Nucl. Chem. 1967, 29, 1380-1381.
- 21. Berry, R. S.; Reimann, C. W. J. Chem. Phys. 1963, 38, 1540-1543.
- 22. Sladky, F. O.; Bulliner, P. A.; Bartlett, N.; DeBoer, B. G.; Zalkin, A. Chem. Comm. 1968, 1048-1049.
- 23. Fir, B. A.; Gerken, M.; Pointner, B. E.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. J. Fluorine Chem. 2000, 105, 159-167.
- 24. Bartlett, N. Endeavour 1972, 31, 107-112.
- 25. Zalkin, A.; Ward, D. L.; Biagioni, R. N.; Templeton, D. H.; Bartlett, N. Inorg. Chem. 1978, 17, 1318-1322.
- 26. Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
- 27. Bartlett, N.; Wechsberg, M.; Jones, G. R.; Burbank, R. D. Inorg. Chem. 1972, 11, 1124-1127.
- 28. Wechsberg, M.; Bulliner, P. A.; Sladky, F. O.; Mews, R.; Bartlett, N. Inorg. Chem. 1972, 11, 3063-3070.
- 29. Sladky, F. O. Monatsh. Chem. 1970, 101, 1559-1570.

- 30. Sladky, F. O. Monatsh. Chem. 1970, 101, 1571-1577.
- 31. Seppelt, K.; Nothe, D. Inorg. Chem. 1973, 12, 2727-2730.
- 32. Naumann, D.; Tyrra, W.; Gnann, R.; Pfolk, D. J. Chem. Soc., Chem. Commun. 1994, 2651-2653.
- 33. Musher, J. I. J. Am. Chem. Soc. 1968, 90, 7371-7372.
- 34. Sawyer, J. F.; Schrobilgen, G. J.; Sutherland, S. J. J. Chem. Soc., Chem. Commun. 1982, 210-211.
- 35. Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J. J. Am. Chem. Soc. 1994, 116, 2921-2937.
- 36. Frohn, H.-J.; Jakobs, S.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 1506-1507.
- 37. Syvret, R. G.; Schrobilgen, G. J. Inorg. Chem. 1989, 28, 1564-1573.
- 38. Eisenberg, M.; DesMarteau, D. D. Inorg. Chem. 1972, 11, 1901-1904.
- 39. Burns, J. H.; Ellison, R. D.; Levy, H. Acta. Crystallogr. 1965, 18, 11.
- 40. Bartlett, N.; Wechsberg, M. Z. Anorg. Allg. Chem. 1971, 385, 5-17.
- 41. Burbank, R. D.; Jones, G. R.; Bartlett, N. Inorg. Chem. 1970, 9, 2264-2268.
- 42. Bartlett, N.; Žemva, B.; Jesih, A.; Templeton, D. H.; Zalkin, A.; Cheetham, A. K. *J. Am. Chem. Soc.* **1987**, *109*, 7420.
- 43. Holloway, J. H.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 3363-3368.
- 44. Holloway, J. H.; Schrobilgen, G. J. Inorg. Chem. 1980, 19, 2632-2640.
- 45. Tramšek, M.; Lork, E.; Mews, R.; Žemva, B. J. Solid State Chem. 2001, 162, 243-249.
- 46. Benkič, P.; Tramšek, M.; Žemva, B. Solid State Sciences 2002, 4, 9-14.
- 47. Benkič, P.; Tramšek, M.; Žemva, B. Solid State Sciences 2002, 4, 1425-1434.
- 48. Turicnik, A.; Benkič, P.; Žemva, B. Inorg. Chem. 2002, 41, 5521-5524.
- 49. Tramšek, M.; Benkič, P.; Turicnik, A.; Tavcar, G.; Žemva, B. J. Fluorine Chem. **2002**, *114*, 143-148.
- 50. Tramšek, M.; Benkič, P.; Žemva, B. Inorg. Chem. 2004, 43, 699-703.
- 51. Tavcar, G.; Benkič, P.; Žemva, B. Inorg. Chem. 2004, 43, 1452-1457.
- 52. Tramšek, M.; Benkič, P.; Žemva, B. Angew. Chem., Int. Ed. Engl. 2004, 43, 3456-3458.
- 53. Tsao, P.; Cobb, C. C.; Claassen, H. H. J. Chem. Phys. 1971, 54, 5247-5253.
- 54. Ogden, J. S.; Turner, J. J. Chem. Comm. 1966, 693-694.
- 55. Jacob, E.; Opferkuch, R. Angew. Chem., Int. Ed. Engl. 1976, 15, 158-159.
- Chernick, C. L.; Claassen, H. H.; Malm, J. G.; Plurien, P. L. In *Noble Gas Compounds*; Hyman, H. H., Ed.; University of Chicago Press: Chicago, IL, 1963; p 287.
- 57. Smith, D. F. Science 1963, 140, 899-900.
- 58. Seppelt, K.; Rupp, H. H. Z. Anorg. Allg. Chem. 1974, 409, 331-337.
- 59. Jacob, E. Z. Naturforsch., B: Chem. Sci. 1980, 35, 1088-1095.
- 60. Schumacher, G. A.; Schrobilgen, G. J. Inorg. Chem. 1984, 23, 2923-2929.
- 61. Christe, K. O.; Wilson, W. W. Inorg. Chem. 1988, 27, 1296-1297.
- 62. Christe, K. O.; Wilson, W. W. Inorg. Chem. 1988, 27, 3763-3768.
- 63. Nielsen, J. B.; Kinkead, S. A.; Eller, P. G. Inorg. Chem. 1990, 29, 3621-3622.

- 64. Gillespie, R. J.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1977, 595-597.
- 65. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 2370-2374.
- 66. Brock, D. S.; Bilir, V.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2007, 129, 3598-3611.
- 67. Gerken, M.; Pointner, B. E.; Schrobilgen, G. J.; Mercier, H. P. A.; Moran, M. D.; Boatz, J. A.; Hoge, B.; Christe, K. O., in preparation.
- 68. Gunn, S. R. J. Am. Chem. Soc. 1965, 87, 2290-2291.
- 69. Lentz, D.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1978, 17, 355-356.
- 70. Birchall, T.; Myers, R. D.; de Waard, H.; Schrobilgen, G. J. Inorg. Chem. 1982, 21, 1068-1073.
- 71. Sladky, F. O. Monatsh. Chem. 1970, 101, 1578-1582.
- 72. Sladky, F. O. Angew. Chem., Int. Ed. Engl. 1970, 9, 375-376.
- 73. Lentz, D.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1978, 17, 356-361.
- 74. Lentz, D.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1979, 18, 66-67.
- 75. Fir, B. A.; Mercier, H. P. A.; Sanders, J. C. P.; Dixon, D. A.; Schrobilgen, G. J. J. *Fluorine Chem.* **2001**, *110*, 89-107.
- 76. Keller, N.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 2118-2129.
- 77. Sanders, J. C. P.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1989, 1576-1578.
- 78. Elliott, H. S. A.; Lehmann, J. F.; Schrobilgen, G. J., unpublished results.
- 79. Casteel, W. J., Jr.; Kolb, P.; LeBlond, N.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1996**, *35*, 929-942.
- Mercier, H. P. A.; Moran, M. D.; Schrobilgen, G. J.; Steinberg, C.; Suontamo, R. J. J. Am. Chem. Soc. 2004, 126, 5533-5548.
- 81. Minkwitz, R.; Bäck, B. In *Inorganic Fluorine Chemistry, Toward the 21st Century*; Thrasher, J. S.; Strauss, S. H., Eds.; American Chemical Society; Washington, DC, 1994; Volume 555, Chapter 6, pp 90-103.
- 82. Minkwitz, R.; Molsbeck, W. Z. Anorg. Allg. Chem. 1992, 607, 175-176.
- 83. Minkwitz, R.; Bernstein, D.; Preut, H.; Sartori, P. Inorg. Chem. 1991, 30, 2157-2161.
- 84. Clegg, M. J.; Downs, A. J. J. Fluorine Chem. 1989, 45, 13.
- 85. Hartl, H.; Nowicki, J.; Minkwitz, R. Angew. Chem., Int. Ed. Engl. 1991, 30, 328-329.
- 86. Stein, L. J. Fluorine Chem. 1982, 20, 65-74.
- 87. Brown, D. R.; Clegg, M. J.; Downs, A. J.; Fowler, R. C.; Minihan, A. R.; Norris, J. R.; Stein, L. *Inorg. Chem.* **1992**, *31*, 5041-5052.
- 88. Drews, T.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1997, 36, 273-274.
- 89. Frohn, H.-J.; Klose, A.; Henkel, G. GIT Fachz. Lab. 1993, 37, 752-755.
- 90. Frohn, H.-J.; Klose, A.; Henkel, G. In 11th Winter Fluorine Conference; St. Petersburg, FL, January 1993; Paper 58.
- 91. Minkwitz, R.; Nowicki, G. Angew. Chem., Int. Ed. Engl. 1990, 29, 688-689.
- 92. Frohn, H.-J.; Klose, A.; Schroer, T.; Henkel, G.; Buss, V.; Opitz, D.; Vahrenhorst, R. *Inorg. Chem.* **1998**, *37*, 4884-4890.
- 93. Frohn, H.-J.; Klose, A., unpublished results.

- 94. Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1984, 23, 2058-2063.
- 95. Gillespie, R. J.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1974, 90-92.
- 96. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 1230-1235.
- 97. LeBlond, N.; Schrobilgen, G. J. Chem. Commun. 1996, 2479-2480.
- 98. LeBlond, N.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2000, 39, 4494-4509.
- 99. Eisenberg, M.; DesMarteau, D. D. Inorg. Nuc. Chem. Lett. 1970, 6, 29-34.
- 100. Zefirov, N. S.; Gakh, A. A.; Zhdankin, V. V.; Stang, P. J. J. Org. Chem. **1991**, 56, 1416-1418.
- 101. Krossing, I.; Bihlmeier, A.; Raabe, I.; Trapp, N. Angew. Chem., Int. Ed. Engl. 2003, 42, 1531-1534.
- 102. Winfield, J. M. J. Fluorine Chem. 1984, 25, 91-98.
- 103. Aynsley, E. E.; Hetherington, G.; Robinson, P. L. J. Chem. Soc. 1954, 1119-1124.
- Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Tsai, S. S. Inorg. Chem. 1993, 32, 386-393.
- 105. Emara, A. A. A.; Lehmann, J. F.; Schrobilgen, G. J. J. Fluorine Chem. 2005, 126, 1373-1376.
- 106. Schenk, P. W. In *Handbook of Preparative Inorganic Chemistry*; Brauer, G., Ed.; Academic Press: New York, 1963; Vol. 1, pp 489-491.
- 107. Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1975, 14, 2224-2230.
- 108. Koppe, K., Ph.D. Thesis, Universität Duisburg-Essen, Duisburg, Germany: 2005.
- 109. Kropshofer, H.; Leitzke, O.; Peringer, P.; Sladky, F. O. Chem. Ber. 1981, 114, 2644-2648.
- 110. Lentz, D.; Seppelt, K. Z. Anorg. Allg. Chem. 1983, 502, 83-88.
- 111. Noirot, M. D.; Anderson, O. P.; Strauss, S. H. Inorg. Chem. 1987, 26, 2216-2223.
- 112. Vonnegut, B.; Warren, B. E. J. Am. Chem. Soc. 1936, 58, 2459-2461.
- 113. Powell, B. M.; Heal, K. M.; Torrie, B. H. Mol. Phys. 1984, 53, 929-939.
- 114. SMART, release 5.054; Siemens Energy and Automation Inc.: Madison, WI, 1999.
- 115. SAINT+, release 6.01; Siemens Energy and Automation Inc.: Madison, WI, 1999.
- 116. APEX2, release 2.0-2; Bruker AXS Inc.: Madison, WI, 2005.
- 117. Sheldrick, G. M. SADABS (Siemens Area Detector Absorption Corrections), version 2.03; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1999.
- 118. Sheldrick, G. M. SADABS (Siemens Area Detector Absorption Corrections), version 2.10; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 2004.
- 119. Sheldrick, G. M. SHELXTL, release 5.1; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 1998.
- 120. Sheldrick, G. M. *SHELXTL*, reslease 6.14; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 2000-2003.
- 121. Bain, A. *MEXICO*, release 3.0; McMaster University: Hamilton, Ontario, Canada, 2002.
- 122. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. J.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.;

Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, Revision A.11; Gaussian, Inc.: Pittsburgh, PA, 2001.

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; 123. Cheeseman, J. R.; Montgomery, J. A. J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02; Gaussian, Inc.: Pittsburgh, PA, 2003.
- 124. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.
- 125. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
- 126. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. *NBO*, Version 3.1; Gaussian, Inc.: Pittsburgh, PA, 1990.
- 127. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, C. M.; Morales, C. M.; Weinhold, F. NBO, Version 5.0; Theroretical Chemistry Institute, University of Wisconsin: Madison, WI, 2001.
- 128. McWeeny, R. Phys. Rev. 1962, 126, 1028-1034.
- 129. Ditchfield, R. Mol. Phys. 1974, 27, 789-807.
- 130. Wolinski, K.; Sadlej, A. J. Mol. Phys. 1980, 41, 1419-1430.
- 131. Wolinski, K.; Hilton, J. F. J. Am. Chem. Soc. 1990, 112, 8251-8260.
- 132. Dennington, R. I.; Keith, T.; Millam, J. M.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. *GaussView*, version 3.07; Semichem, Inc.: Shawnee Mission, KS, 2003.
- 133. Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. *TopMod package*, University of Paris VI: Paris, 1998.
- 134. Dagani, R. Chem. Eng. News 2002, 80, 27-29.
- 135. Beattie, I. R. Progr. Inorg. Chem. 1963, 5, 1-26.
- 136. Gillespie, R. J.; Netzer, A.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 1455-1459.

318

- 137. McConnell, H. M.; McLean, A. D.; Reilly, C. A. J. Chem. Phys. 1955, 23, 1152-1159.
- 138. Ingman, P.; Jokisaari, J. P.; Sanders, J. C. P.; Schrobilgen, G. J. Magn. Reson. Chem. 1994, 32, 242-247.
- 139. Lehmann, J. F.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2001, 40, 3002-3017.
- 140. Mercier, H. P. A.; Moran, M. D.; Sanders, J. C. P.; Schrobilgen, G. J.; Suontamo, R. J. *Inorg. Chem.* **2005**, *44*, 49-60.
- 141. Dailey, B. P.; Shoolery, J. N. J. Am. Chem. Soc. 1955, 77, 3977-3981.
- 142. Porcham, W.; Engelbrecht, A. Monatsh. Chem. 1971, 102, 333-349.
- 143. Kolthoff, I. M.; Willman, A. J. Am. Chem. Soc. 1934, 56, 1007-1013.
- 144. Khadzhi-Ogly, M. R.; Yagodovskaya, T. V.; Nekrasov, L. I. Zh. Fiz. Khim. 1981, 55, 3124-3127.
- 145. Khadzhi-Ogly, M. R.; Yagodovskaya, T. V.; Nekrasov, L. I. Zh. Fiz. Khim. 1982, 56, 1807-1809.
- 146. Wilson, W. W.; Christe, K. O. Inorg. Chem. 1987, 26, 1631-1633.
- 147. Bradley, R. S. Trans. Faraday Soc. 1956, 52, 1255-1259.
- 148. Wartel, M.; Boughriet, A.; Fischer, J. C. Anal. Chem. Acta 1979, 110, 211.
- 149. Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980-987.
- 150. Obermeyer, A.; Borrmann, H.; Simon, A. J. Am. Chem. Soc. 1995, 117, 7887-7890.
- 151. Minkwitz, R.; Hertel, T. Z. Natur. 1997, 52b, 1307-1310.
- 152. Tramšek, M.; Žemva, B. J. Fluorine Chem. 2006, 127, 1275-1284.
- 153. Luzzati, P. V. Acta. Cryst. 1951, 4, 120-131.
- 154. Lehmann, J. F., Ph.D. Thesis, McMaster University, Hamilton, Ontario, Canada: 2004.
- 155. Kvick, Å.; McMullan, R. K.; Newton, M. D. J. Chem. Phys. 1982, 76, 3754-3761.
- 156. Guillory, W. A.; Bernstein, M. L. J. Chem. Phys. 1975, 62, 1058-1060.
- 157. Redlich, O.; Nielsen, L. E. J. Am. Chem. Soc. 1943, 65, 654-660.
- 158. Andrews, B.; Anderson, A. J. Chem. Phys. 1981, 74, 1534-1537.
- 159. Gerken, M.; Hazendonk, P.; Nieboer, J.; Schrobilgen, G. J. J. Fluorine Chem. 2004, 125, 1163-1168.
- 160. Howarth, O. W. In *Multinuclear Magnetic Resonance*; Mason, J., Ed.; Plenum Press: New York, 1987.
- 161. Sanders, J. C. P.; Schrobilgen, G. J. In Proceedings of the NATO Advanced Study Institute on Methodological Approach to Multinuclear NMR in Liquids and Solids
  Chemical Applications; Granger, P.; Harris, R. K., Eds.; Kluwer Academic Publishers; Maratea, Italy, 1988; Vol. 322, pp 172-181.
- 162. Brownstein, M.; Gillespie, R. J. J. Am. Chem. Soc. 1970, 92, 2718-2721.
- 163. Dean, P. A. W.; Gillespie, R. J. J. Am. Chem. Soc. 1969, 91, 7260-7264.
- 164. Gerken, M.; Kolb, P.; Wegner, A.; Mercier, H. P. A.; Borrmann, H.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* 2000, 39, 2813-2824.
- 165. Drews, T.; Seppelt, K. Z. Anorg. Allg. Chem. 1991, 606, 201-207.

- 166. Mootz, D.; Merschenz-Quack, A. Acta. Crystallogr. 1988, C44, 924-925.
- 167. Chen, G. S.; Passmore, J. J. Chem. Soc., Dalton Trans. 1979, 1257-1261.
- 168. Hoge, B.; Boatz, J. A.; Hegge, J.; Christe, K. O. Inorg. Chem. 1999, 38, 3143-3149.
- 169. Christe, K. O.; Gnann, R.; Wagner, R. I.; Wilson, W. W. Eur. J. Solid State Inorg. *Chem.* **1996**, *33*, 865-877.
- 170. Haase, J.; Winnewisser, M. Z. Naturforsch., A 1968, 23, 61-64.
- 171. Craig, N. C.; Futamura, K. Spectrochim. Acta., Part A 1989, 45, 507-509.
- 172. Cameron, T. S.; Krossing, I.; Passmore, J. Inorg. Chem. 2001, 40, 4488-4490.
- 173. Minkwitz, R.; Molsbeck, W.; Preut, H. Z. Naturforsch., B: Chem. Sci. 1989, 44, 1581-1583.
- 174. Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. Angew. Chem., Int. Ed. Engl. 1997, 36, 1808-1832.
- 175. Olah, G. A.; Rasul, G.; Yudin, A. K.; Burrichter, A.; Prakash, G. K. S.; Chistyakov, A. L.; Stankevich, I. V.; Akhrem, I. S.; Gambaryan, N. P.; Vol'pin, M. E. J. Am. Chem. Soc. **1996**, 118, 1446-1451.
- 176. Martin, R. H.; Lampe, F. W.; Taft, R. W. J. Am. Chem. Soc. 1966, 88, 1353-1357.
- 177. Lias, S. G.; Eyler, J. R.; Ausloos, P. Int. J. Mass Spectrom. Ion Phys. 1976, 19, 219-239.
- 178. Jacox, M. E.; Milligan, D. E. J. Chem. Phys. 1971, 54, 3935-3950.
- 179. Jacox, M. E. Chem. Phys. 1976, 12, 51-63.
- 180. Vančik, H.; Percač, K.; Sunko, D. E. J. Am. Chem. Soc. 1990, 112, 7418-7419.
- 181. Abboud, J.-L. M.; Castaño, O.; Herreros, M.; Elguero, J.; Jagerovic, N.; Notario, R.; Sak, K. Int. J. Mass Spectrom. Ion Processes **1998**, 175, 35-40.
- 182. Prochaska, F. T.; Andrews, L. J. Am. Chem. Soc. 1978, 100, 2102-2108.
- 183. Jacox, M. E. Chem. Phys. 1984, 83, 171-180.
- 184. Forney, D.; Jacox, M. E.; Irikura, K. K. J. Chem. Phys. 1994, 101, 8290-8295.
- 185. Maclagan, R. G. A. R. J. Mol. Struc. (Theochem) 1991, 235, 21-24.
- 186. Olah, G. A.; Heiliger, L.; Prakash, G. K. S. J. Am. Chem. Soc. 1989, 111, 8020-8021.
- 187. Olah, G. A.; Rasul, G.; Heiliger, L.; Prakash, G. K. S. J. Am. Chem. Soc. 1996, 118, 3580-3583.
- 188. Klages, F.; Zange, E. Chem. Ber. 1959, 92, 1828-1834.
- 189. Meerwein, H.; Bodenbenner, K.; Borner, P.; Kunert, F.; Wunderlich, H. Ann. **1960**, *632*, 38-55.
- 190. Meerwein, H.; Hederich, V.; Morschel, H.; Wunderlich, H. Ann. 1960, 635, 1-21.
- 191. Ramsey, B. G.; Taft, R. W. J. Am. Chem. Soc. 1966, 88, 3058-3063.
- 192. Olah, G. A.; White, A. M. J. Am. Chem. Soc. 1968, 90, 1884-1889.
- 193. Minkwitz, R.; Schneider, S. Angew. Chem., Int. Ed. Engl. 1999, 38, 714-715.
- 194. Laube, T. Chem. Rev. 1998, 98, 1277-1312.
- 195. Antel, J.; Klaus, H.; Jones, P. G.; Mews, R.; Sheldrick, G. M.; Waterfeld, A. *Chem. Ber.* **1985**, *118*, 5006-5008.
- 196. Christe, K. O.; Zhang, X.; Bau, R.; Hegge, J.; Olah, G. A.; Prakash, G. K. S.; Sheehy, J. A. J. Am. Chem. Soc. 2000, 122, 481-487.

- 197. Minkwitz, R.; Reinemann, S.; Blecher, O.; Hartl, H.; Brüdgam, I. *Inorg. Chem.* **1999**, *38*, 844-847.
- 198. Laube, T.; Bannwart, E.; Hollenstein, S. J. Am. Chem. Soc. 1993, 115, 1731-1733.
- 199. Christe, K. O.; Hoge, B.; Boatz, J. A.; Prakash, G. K. S.; Olah, G. A.; Sheehy, J. A. Inorg. Chem. 1999, 38, 3132-3142.
- 200. Minkwitz, R.; Meckstroth, W.; Preut, H. Z. Anorg. Allg. Chem. 1992, 617, 136-142.
- 201. Minkwitz, R.; Meckstroth, W.; Preut, H. Z. Naturforsch., B: Chem. Sci. 1992, 48, 19-22.
- 202. Jönsson, P.-G.; Olovsson, I. Acta. Crystallogr. 1968, B24, 559-564.
- 203. Kvick, Å.; Jönsson, P.-G.; Olovsson, I. Inorg. Chem. 1969, 8, 2775-2780.
- 204. Minkwitz, R.; Schneider, S.; Seifert, M. Z. Anorg. Allg. Chem. 1996, 622, 1404-1410.
- 205. Caira, M. R.; De Wet, J. F. Acta. Crystallogr. 1981, B37, 709-711.
- 206. Paulsen, H.; Dammeyer, R. Chem. Ber. 1973, 106, 2324.
- 207. Frenking, G.; Fau, S.; Marchand, C. M.; Grützmacher, H. J. Am. Chem. Soc. 1997, 119, 6648-6655.
- 208. Robinson, E. A.; Johnson, S. A.; Tang, T.-H.; Gillespie, R. J. Inorg. Chem. 1997, 36, 3022-3030.
- 209. Robinson, E. A.; Heard, G. L.; Gillespie, R. J. J. Mol. Struct. **1999**, 485-486, 305-319.
- 210. Mercier, H. P. A.; Moran, M. D.; Schrobilgen, G. J.; Suontamo, R. J. J. Fluorine Chem. 2004, 125, 1563-1578.
- 211. Kaupp, M.; Malkina, O. L.; Malkin, V. G. Chem. Phys. Lett. 1997, 265, 55-59.
- 212. Seppelt, K. Chem. Ber. 1973, 106, 1920-1926.
- 213. Seppelt, K. Z. Anorg. Allg. Chem. 1973, 399, 65-72.
- 214. Gombler, W. Spectrochim. Acta., Part A 1981, 37, 57-61.
- 215. Ettinger, R.; Blume, P.; Patterson, A.; Lauterbur, P. C. J. Mag. Reson. 1972, 33, 1597-1598.
- 216. Syvret, R. G.; Mitchell, K. M.; Sanders, J. C. P.; Schrobilgen, G. J. *Inorg. Chem.* **1992**, *31*, 3381-3385.
- 217. Cohen, S.; Powers, R.; Rudman, R. Acta. Crystallogr. 1979, B35, 1670-1674.
- 218. Cockcroft, J. K.; Fitch, A. N. Z. Kristallogr. 1994, 209, 488-490.
- 219. More, M.; Baert, F.; Lefebvre, J. Acta. Crystallogr. 1977, B33, 3681-3684.
- 220. Pauling, L., *The Nature of the Chemical Bond*, 3rd ed.; Cornell University Press: Ithaca, New York, 1960, p 260.
- 221. Sawyer, J. F.; Schrobilgen, G. J. Acta. Crystallogr. 1982, B38, 1561-1563.
- 222. Olah, G. A.; Donovan, D. J.; Lin, H. C. J. Am. Chem. Soc. 1976, 98, 2661-2663.
- 223. Calves, J.-Y.; Gillespie, R. J. J. Am. Chem. Soc. 1977, 99, 1788-1792.
- 224. Olah, G. A.; Donovan, D. J. J. Am. Chem. Soc. 1978, 100, 5163.
- 225. Olah, G. A.; Donovan, D. J. J. Am. Chem. Soc. 1978, 100, 5163-5169.
- 226. Vanderryn, J. J. Chem. Phys. 1959, 30, 331-332.
- 227. Anderson, T. F.; Lassettre, E. N.; Yost, D. M. J. Chem. Phys. 1936, 4, 703-707.

- 228. Clark, R. J. H.; Rippon, D. M. J. Chem. Soc. D.: Chem. Commun. 1971, 1295-1296.
- 229. Stammreich, H.; Tavares, Y.; Bassi, D. Spectrochim. Acta. 1961, 17, 661-664.
- 230. Clark, R. J. H.; Mitchell, P. D. J. Chem. Phys. 1972, 56, 2225-2232.
- 231. Shurvell, H. F. Spectrochim. Acta., Part A 1971, 27, 2375-2383.
- 232. Reynolds, C. H. J. Chem. Soc., Chem. Commun. 1991, 975-976.
- 233. Dixon, D. A.; Feller, D.; Sandrone, G. J. Phys. Chem. A. 1999, 103, 4744-4751.
- 234. Ricca, A. J. Phys. Chem. A. 1999, 103, 1876-1879.
- 235. Hansel, A.; Scheiring, C.; Glantschnig, M.; Lindinger, W.; Ferguson, E. E. J. Chem. Phys. 1998, 109, 1748-1750.
- 236. Irikura, K. K. J. Am. Chem. Soc. 1999, 121, 7689-7695.
- 237. Basch, H.; Hoz, T.; Hoz, S. J. Phys. Chem. A. 1999, 103, 6458-6467.
- 238. Rodriquez, C. F.; Bohme, D. K.; Hopkinson, A. C. J. Phys. Chem. 1996, 100, 2942-2949.
- 239. Robles, E. S. J.; Chen, P. J. Phys. Chem. 1994, 98, 6919-6923.
- 240. Jonas, V.; Frenking, G.; Reetz, M. T. J. Am. Chem. Soc. 1994, 116, 8741-8753.
- 241. Chandrakumar, K. R. S.; Pal, S. J. Phys. Chem. A. 2002, 106, 11775-11781.
- 242. Rowsell, B. D.; Gillespie, R. J.; Heard, G. L. Inorg. Chem. 1999, 38, 4659-4662.
- 243. Bauschlicher, C. W. J.; Ricca, A. J. Phys. Chem. A. 1999, 103, 4313-4318.
- 244. Fau, S.; Frenking, G. Mol. Phys. 1999, 96, 519-527.
- 245. Brinck, T.; Murray, J. S.; Politzer, P. Inorg. Chem. 1993, 32, 2622-2625.
- 246. Hudgens, J. W.; Johnson, R. D. I.; Tsai, B. P.; Kafafi, S. A. J. Am. Chem. Soc. 1990, 112, 5763-5772.
- 247. Tachikawa, H. J. Phys. Chem. A. 1997, 101, 7454-7459.
- 248. Jovári, P.; Mészáros, G.; Pusztai, L.; Sváb, E. J. Chem. Phys. 2001, 114, 8082-8090.
- 249. Pohl, S. Z. Kristallogr. 1982, 159, 211-216.
- 250. Lévy, H.; Brockway, L. O. J. Am. Chem. Soc. 1937, 59, 2085-2092.
- 251. Spencer, C.; Lipscomb, W. N. J. Chem. Phys. 1958, 28, 355.
- 252. Konaka, S.; Ito, T.; Morino, Y. Bull. Chem. Soc. Japan 1966, 39, 1146-1154.
- 253. DeMarco, R. A.; Fox, W. B.; Moniz, W. B.; Sojka, S. A. J. Magn. Reson. 1975, 18, 522-526.
- 254. Lappert, M. F.; Litzow, M. R.; Pedley, J. B.; Tweedale, A. J. Chem. Soc. A. 1971, 2426-2428.
- 255. Branchadell, V.; Oliva, A. J. Mol. Struc. (Theochem) 1991, 236, 75-84.
- 256. Hartman, J. S.; Schrobilgen, G. J. Inorg. Chem. 1972, 11, 940-951.
- 257. Morishima, I.; Endo, K.; Yonezawa, T. J. Chem. Phys. 1973, 59, 3356-3364.
- 258. Kaupp, M., *Relativistic Effects on NMR Chemical Shifts*, Elsevier: Amsterdam, 2003/2004, p to be published.
- 259. Malkin, V. G.; Malkina, O. L.; Salahub, D. R. Chem. Phys. Lett. 1996, 261, 335-345.
- 260. Onak, T.; Landesman, H.; Williams, R. E.; Shapiro, I. J. Phys. Chem. 1959, 63, 1533-1535.
- 261. Good, C. D.; Ritter, D. M. J. Am. Chem. Soc. 1962, 84, 1162-1166.

- 262. Vladimiroff, T.; Malinowski, E. R. J. Chem. Phys. 1967, 46, 1830-1841.
- 263. Seppelt, K. Angew. Chem., Int. Ed. Engl. 1982, 21, 877-888.
- 264. Simón-Manso, Y.; Fuentealba, P. J. Mol. Struc. (Theochem) 2003, 634, 89-94.
- 265. Langford, M. L.; Harris, F. M. Int. J. Mass Spectrom. Ion Processes 1990, 96, 111-113.
- 266. Domazou, A. S.; Quadir, M. A.; Buehler, R. E. J. Phys. Chem. 1994, 98, 2877-2822.
- 267. Sheng, L.; Qi, F.; Gao, H.; Zhang, Y.; Yu, S.; Li, W.-K. Int. J. Mass Spectrom. Ion Processes 1997, 161, 151-159.
- 268. Seccombe, D. P.; Tuckett, R. P.; Fisher, B. O. J. Chem. Phys. 2001, 114, 4074-4088.
- 269. Lee, M. S.; Park, M.; Chung, Y. J. Korean Phys. Soc. 2003, 42, 493-498.
- 270. Prochaska, F. T.; Andrews, L. J. Chem. Phys. 1978, 68, 5568-5576.
- 271. Prochaska, F. T.; Andrews, L. J. Chem. Phys. 1978, 68, 5577-5586.
- 272. Truszkowski, S.; Ichikawa, T. J. Phys. Chem. 1989, 93, 4522-4526.
- 273. Prochaska, F. T.; Andrews, L. J. Phys. Chem. 1978, 82, 1731-1742.
- 274. Keelan, B. W.; Andrews, L. J. Phys. Chem. 1979, 83, 2488-2496.
- 275. Muller, N.; Carr, D. T. J. Phys. Chem. 1963, 67, 112-115.
- 276. Schack, C. J.; Christe, K. O. J. Fluorine Chem. 1990, 47, 79-87.
- 277. Diaper, C. M. Science of Synthesis 2005, 18, 1203-1282.
- 278. Lebel, H.; Grenon, M. Science of Synthesis 2005, 22, 669-747.
- 279. DesMarteau, D. D. Inorg. Chem. 1968, 7, 434-437.
- 280. Adcock, J. L.; Robin, M. L.; Zuberi, S. J. Fluorine Chem. 1987, 37, 327-336.
- 281. Lin, W. H.; Clark, W. D.; Lagow, R. J. J. Org. Chem. 1989, 54, 1990-1992.
- 282. Huppmann, P.; Lentz, D.; Seppelt, K. Z. Anorg. Allg. Chem. 1981, 472, 26-32.
- 283. Hurlburt, P. K.; Anderson, O. P.; Strauss, S. H. J. Am. Chem. Soc. 1991, 113, 6277-6278.
- 284. Hurlburt, P. K.; Anderson, O. P.; Strauss, S. H. Can. J. Chem. 1992, 70, 726-731.
- 285. Engelbrecht, A.; Loreck, W.; Nehoda, W. Z. Anorg. Allg. Chem. 1968, 360, 88-96.
- 286. Buerger, H. Z. Anorg. Allg. Chem. 1968, 360, 97-103.
- 287. Oberhammer, H.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1978, 17, 69-70.
- 288. Zylka, P.; Oberhammer, H.; Seppelt, K. J. Mol. Struc. 1991, 243, 411-418.
- 289. Schack, C. J.; Wilson, W. W.; Christe, K. O. Inorg. Chem. 1983, 22, 18-21.
- 290. Schack, C. J.; Christe, K. O. Inorg. Chem. 1984, 23, 2922.
- 291. Fraser, G. W.; Millar, J. B. J. Chem. Soc., Dalton Trans. 1974, 2029-2031.
- 292. Björgvinsson, M.; Sawyer, J. F.; Schrobilgen, G. J. Inorg. Chem. 1987, 26, 741-749.
- 293. Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J. Inorg. Chem. 1995, 34, 5261-5273.
- 294. Casteel, W. J., Jr.; MacLeod, D. M.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. *Chem.* **1996**, *35*, 7279-7288.
- 295. Lustig, M. Inorg. Chem. 1965, 4, 1828-1830.

- 296. Van Seggen, D. M.; Hurlburt, P. K.; Anderson, O. P.; Strauss, S. H. *Inorg. Chem.* **1995**, *34*, 3453-3464.
- 297. Heard, G. L.; Gillespie, R. J.; Rankin, D. W. H. J. Mol. Struc. 2000, 520, 237-248.
- 298. Van Seggen, D. M.; Hurlburt, P. K.; Noirot, M. D.; Strauss, S. H. *Inorg. Chem.* **1992**, *31*, 1423-1430.
- 299. Hurlburt, P. K.; Rack, J. J.; Luck, J. S.; Dec, S. F.; Webb, J. D.; Anderson, O. P.; Strauss, S. H. J. Am. Chem. Soc. **1994**, *116*, 10003-10014.
- 300. Moran, M. D.; Schrobilgen, G. J., unpublished results.
- 301. Moran, M. D.; Smith, G. L.; Schrobilgen, G. J., unpublished results.
- 302. Lambert, J. B.; Zhao, Y.; Zhang, M. S. J. Phys. Org. Chem. 2001, 14, 370-379.
- 303. Moran, M. D.; Mercier, H. P. A.; Schrobilgen, G. J., unpublished results.
- 304. Lambert, J. B.; Zhang, S.; Stern, C. L.; Huffman, J. C. Science **1993**, 260, 1917-1918.
- 305. Azeem, M.; Brownstein, M.; Gillespie, R. J. Can. J. Chem. 1969, 47, 4159-4167.
- 306. Edwards, A. J.; Jones, G. R. J. Chem. Soc. A. 1970, 1491-1497.
- 307. Edwards, A. J.; Jones, G. R. J. Chem. Soc. A. 1970, 1891-1894.
- 308. Edwards, A. J.; Taylor, P. J. Chem. Soc., Dalton Trans. 1973, 2150-2153.
- 309. Schrobilgen, G. J., unpublished observations.
- 310. Jonethal, U.; Kuschel, R.; Seppelt, K. J. Fluorine Chem. 1998, 88, 3-4.
- 311. Winter, R.; Terjeson, R. J.; Gard, G. J. Fluorine Chem. 1998, 89, 105-106.
- 312. Schack, C. J.; Wilson, R. D.; Hon, J. F. Inorg. Chem. 1972, 11, 208-209.
- 313. Murchie, M.; Passmore, J. Inorg. Synth. 1986, 24, 31-33.
- 314. Lawlor, L.; Passmore, J. Inorg. Chem. 1979, 18, 2921-2923.
- 315. Lentz, D.; Pritzkow, H.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1977, 16, 729-730.

Ph.D. Thesis – Matthew D. Moran

# Appendix A DECOMPOSITION OF O(XeF)₂

As stated in Chapter 3, the products resulting from the decomposition of  $O(XeF)_2$ at 10 °C, and the products from the decomposition of  $O(XeF)_2$  in HF at -78 °C, are very similar. Both products were orange, and their Raman spectra (Figure A1 and Table A1) were identical in the region between 550 and 490 cm⁻¹. Although the nature of the products could not be established on the basis of Raman spectroscopy, it is clear that xenon is retained in the products, as evidenced by the intense Xe–F stretching frequencies in the 500–600 cm⁻¹ region of the spectra. While it cannot be ruled out that the peak at 430 cm⁻¹ arises from residual  $O(XeF)_2$  (437/433 cm⁻¹), it is more likely that it belongs to another XeO-bound species. One possibility would be the redox decomposition of  $O(XeF)_2$  to give a Xe(IV) compound,  $(OXeF_2)_n$ , and Xe according to eq A.1.

 $2n \operatorname{O}(\operatorname{XeF})_2 \longrightarrow (\operatorname{OXeF}_2)_n + n \operatorname{Xe}$ (A.1)



Figure A.1. Raman spectra of (a) decomposition products of O(XeF)₂ in HF at -78 °C (HF removed under dynamic vacuum at -78 °C), and (b) solid products from the decomposition of O(XeF)₂ at 10 °C, recorded at -160 °C using 1064-nm excitation. The symbols denote FEP (*), XeF₂ (†), [NO][AsF₆] (‡), and instrument artifact (§).

# **Table A.1.** Experimental Raman Frequencies and Intensities^a for the Products

frequencies, cm ⁻¹					
O(XeF) ₂ ^b	O(XeF) ₂ ^c				
686 sh	690(24)				
594(5)	593(9)				
	589(13)				
585(9)	585(14)				
	582(11)				
	580(5)				
578(3)	577(3)				
	555(3)				
547(22)	547(22)				
543 sh	543 sh				
532(100)	532(100)				
527(31)	527(33)				
520(20)	520(22)				
516(26)	516(25)				
509(44)	509(42)				
493(31)	493(31)				
	483(6)				
	479(6)				
436(<1)	429(11)				
367(15)	367(15)				
290(13)	289(11)				
	250 br				
	226 br				
179 br	179 br				
	146 sh				
140(20)	141(15)				
	71(2)				
62(6)	61(4)				

Resulting from the Decomposition of O(XeF)₂

^a Raman intensities (in Å⁴ amu⁻¹) are given in parentheses. ^b Decomposition products (10  $^{\circ}$ C) ^c Decomposition in HF solvent at -78  $^{\circ}$ C.