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Abstract 

Evidence suggests that children's prelinguistic conceptual knowledge 

significantly influences the course of language acquisition. In a series of nine 

experiments we investigate this influence. We begin with two experiments using 

adult human subjects, in which we develop an analogue ofchildren's early 

sensorimotor semantic representations and demonstrate that we have captured 

important aspects ofmeaning. We then use these sensorimotor semantic 

representations in simulation experiments using neural network models of 

language acquisition. First, we provide evidence that having these sensorimotor 

representations improves grammatical learning. Then we demonstrate that with 

these rich semantic representations there are strong correlations between the time 

course of lexical and grammatical learning analogous to those found in children. 

We suggest that this supports the position that grammar emerges from the 

formation of a rich lexicon. Finally, we show that it is not necessary to provide 

these sensorimotor representations for all words. We provide evidence that, given 

a directly grounded foundation of children's earliest words, the model can 

indirectly acquire grounded, embodied semantic representations for novel 

ungrounded words. Our results thus provide evidence that the initial structure of 

children's conceptual or semantic 'space' provides an important constraining and 

simplifying foundation that influences the course of later language acquisition. 

111 



Acknowledgements 

I am sincerely grateful to my supervisor, Suzanna Becker, for her thoughtful 

advice, patience, and guidance. She has provided essential motivation and 

encouragement, in some particularly difficult times. Her confidence in my ability 

to do independent research has motivated me throughout my graduate career. I 

thank her as well for supervising my work even when it diverged from her 

primary interests. I would like to thank Lee Brooks, who has guided me in many 

moments ofdifficulty and whose advice on matters of cognitive psychology and 

general scholarship is greatly appreciated. I have learned much from him in many 

areas, not limited to those relevant to this thesis. I would also like to thank Betty­

Ann Levy, whose casual wit and friendliness enlivened the early years of my 

dissertation work. I owe her for giving me the opportunities and the confidence to 

teach university courses at McMaster and hence round out my skills as an 

academic and future professor. I appreciate her abilities to put the esoterica of 

connectionist research into a broader psychological perspective. 

I would also like to thank Damian Jankowicz for his constant 

encouragement and friendship over the years. He has been my most important 

sounding board and provided valuable feedback on many topics. Patrick Byrne, 

Melissa Dominguez, and Chris Gilbert have also been good friends and listeners 

whose input has at times improved this work, and at other times merely 

maintained my sanity. 

IV 



I would like to thank Jerome Feldman for supervising me as a visiting 

student at UCBerkeley, and George Lakofffor inspiring my use of sensorimotor 

features while I was at Berkeley. 

Financial support for this work was provided by departmental scholarship, 

a National Science and Engineering Research Council (NSERC) postgraduate 

scholarship and two Ontario Graduate Scholarships. 

Finally, I would like to thank my family who helped me through difficult 

times and who always supported my many years ofeducation. Similarly, I would 

like to thank Catherine McKee for her support in many trying times, and for 

helping to support me financially during this research. I am truly sorry that my 

lengthy doctoral education became an issue between us. 

v 



Table of Contents 

Abstract .............................................................................................................. iii 


Acknowledgements ............................................................................................ iv 


List ofFigures .................................................................................................... ix 


List ofTables ..................................................................................................... xii 


Preface ............................................................................................................. xiii 


1 - Introduction .................................................................................................... 1 

1.1 The Simple Recurrent Network ............................................................ 4 

1.2 The Prediction Task and Gold's Proof.. ................................................ 8 

1.3 Reference, Meaning, and Embodiment ............................................... 10 


2 - A Model of Grounded Language Acquisition: Sensorimotor Features Improve 

Grammar Learning ............................................................................................ 19 


2.1 Preface ............................................................................................... 19 

2.2 Abstract. ............................................................................................. 19 

2.3 Introduction........................................................................................ 20 

2.4 Experiment 1 -Generation ofNoun Sensorimotor Features ................ 30 


2.4.1 Method ....................................................................................... 31 

2.4.2 Results........................................................................................ 34 

2.4.3 Discussion .................................................................................. 36 


2.5 Experiment 2- Generation ofVerb Sensorimotor Features ................. 38 

2.5.1 Method ....................................................................................... 38 

2.5.2 Results........................................................................................ 40 

2.5.3 Discussion .................................................................................. 42 


2.6 Experiment 3- A Model of Grounded Lexical Acquisition ................. 43 

2.6.1 Method ....................................................................................... 44 

2.6.2 Results........................................................................................ 48 

2.6.3 Discussion .................................................................................. 49 


2.7 Experiment 4A- A Large Corpus Model of Lexical Acquisition ........ 51 

2.7.1 Method ....................................................................................... 53 

2.7.2 Results........................................................................................ 55 

2.7.3 Discussion .................................................................................. 56 


2.8 Experiment 4B- Pause Markers Removed ......................................... 57 

2.8.1 Method ....................................................................................... 57 

2.8.2 Results......................................................................................... 58 

2.8.3 Discussion ................................................................................... 59 


2.9 Experiment 4C- Reduced Hidden Layer ............................................. 59 


Vl 



2.9.1 Method ....................................................................................... 60 

2.9.2 Results........................................................................................ 61 

2.9.3 Discussion .................................................................................. 63 


2.10 General Discussion and Conclusions .................................................. 65 


3 - Grammar from the Lexicon: Evidence from Neural Network Simulations of 

Language Acquisition ........................................................................................ 69 


3.1 Preface ............................................................................................... 69 

3.2 Abstract. ............................................................................................. 69 

3.3 Introduction........................................................................................ 70 

3.4 Simulation Experiment 1 .................................................................... 72 


3.4.1 Method ....................................................................................... 73 

3.4.2 Results........................................................................................ 80 

3.4.3 Discussion .................................................................................. 82 


3.5 Simulation Experiment 2 .................................................................... 85 

3.5.1 Method ....................................................................................... 85 

3.5.2 Results........................................................................................ 86 

3.5.3 Discussion .................................................................................. 89 


3.6 General Discussion ............................................................................. 90 


4- Grounding Words in Meaning Indirectly- A Computational Model of the 

Propagation ofGrounding.................................................................................. 93 


4.1 Preface ............................................................................................... 93 

4.2 Abstract. ............................................................................................. 94 

4.3 Introduction........................................................................................ 94 

4.4 Method............................................................................................. 100 


4.4.1 Corpus and Training Schedule .................................................. 104 

4.4.2 Control Network ....................................................................... 105 

4.4.3 Experimental Networks ............................................................ 105 

4.4.4 Categorical Analysis ................................................................. 108 


4.5 Results ............................................................................................. 109 

4.5.1 Categorical Analysis ................................................................. 116 

4.5.2 Verb Group .............................................................................. 117 


4.6 Discussion........................................................................................ 118 


5 -General Discussion ..................................................................................... 127 

5.1 Sensorimotor Feature Representations .............................................. 128 

5.2 Sensorimotor Representations' Effect on Grammar Learning ........... 131 

5.3 Lexicon to Grammar Effects and Emergent Grammar ...................... 132 

5.4 Propagation of Grounding ................................................................ 134 

5.5 "Facilitative Interference" ................................................................ 136 

5.6 Model Limitations ............................................................................ 136 

5.7 Conclusion ....................................................................................... 140 


Vll 



References ....................................................................................................... 142 


Appendix A: Forms and Instructions for Experiment 1, Chapter 2 ................... 153 


Appendix B: Cluster Analysis of352 Nouns from Chapter 2 ........................... 164 


Appendix C: Forms and Instructions for Experiment 2, Chapter 2 .................... 173 


Appendix D: Cluster Analysis of90 Verbs from Chapter 2 .............................. 188 


Appendix E: SRNEngine- A Windows-based neural network simulation tool for 

the non-programmer ........................................................................................ 191 


Vlll 



List of Figures 

1.1: A simple recurrent network in which activations are copied from hidden 
layer to context layer on a one-for-one basis, with fixed weights of 1.0. 
Dotted lines represent trainable connections ........................................7 

2.1: Self-organizing Feature Map ofExperiment 1 Feature Vectors -Each 
concept is written on the unit that responded most highly to presentation of 
that concept after training. Note the grouping of similar concepts on nearby 
units, as well as the overall topography of similarity............................3 7 

2.2: 	Self-Organizing Map of the Verb Feature Ratings- Note the grouping 
together ofwords involving similar motor activities such as drink/lick/taste 
and listen/say/talk as well as modes of locomotion such as 
slide/jump/ go/walk/hurry .............................................................4 2 

2.3: CMU Phonemes and their compressed 14-bit Representations. 	The bits 
represent articulatory features such as voiced/unvoiced, place and manner of 
articulation, etc ........................................................................45 

2.4: The network used in Experiment 1. Note the use of two different inputs per 
word, one containing the phonemic representation of the word, the other the 
real-valued noun features of the word ............................................. .46 

2.5: Graph of mean prediction accuracy ofExperimental and Control Networks 
averaged across 6 runs starting from random initial weights. Error Bars are 
standard errors ........................................................................49 

2.6: 	Modified SRN architecture, including standard SRN hidden layer and 
context layer, standard linguistic (word) prediction output, and novel noun 
feature output and verb feature output. The linguistic input is a whole-word 
phonetic representation of up to 10 phonemes. The Noun and Verb feature 
targets are meant to be an abstract representation of pre-linguistic sensory and 
motor-affordance semantics ......................................................... 52 

2.7: Mean grammatical prediction performance for a large naturalistic corpus 
(10,742 words) which includes pauses/periods. Number ofnetworks in each 
condition is 10, and error bars indicate standard error ...........................54 

2.8: Mean grammatical prediction performance for a large naturalistic corpus 
(8328 words) which excludes pauses/periods. Number ofnetworks in each 
condition is 10. Error bars indicate standard error ...............................58 

2.9: Mean grammatical prediction performance for a large corpus (8328 words) 
which excludes pauses/periods, with a reduced hidden/context layer (size 1 0). 
The number of networks in each condition is 10. Error bars indicate standard 
error ............................................................................................................ 62 

2.10: Noun and Verb feature encoding accuracy from Experiment 4C. These two 
output layers were performing a recoding from the phonetic features of a 
word to the semantic features of a word. The noun feature encoding is 
significantly different across the two conditions, as measured by t-test at the 

lX 



terminal point, but the verb features are not. The number ofnetworks in each 
condition is 12. Error bars indicate standard error. ..............................64 

3.1: Modified SRN architecture, including standard SRN hidden layer and 
context layer, standard linguistic (word) prediction output, and novel noun 
feature output and verb feature output. The linguistic input is a whole-word 
phonetic representation of up to 10 phonemes. The Noun and Verb feature 
targets are meant to be an abstract representation ofpre-linguistic sensory and 
motor-affordance semantics ......................................................... 74 

3.2: Noun Lexicon to Grammar Correlations in all three conditions ofExperiment 
1. Curves are noun to grammar correlations from the Epoch 20 noun 
reference point to all grammar points (Epochs 1 to 500). Simultaneous 
correlations occur when the Epoch is equal to the Noun reference point 
(Epoch 20). Correlations before that point are from earlier grammar to later 
lexical learning, correlations after are lexical learning to later grammatical 
learning.................................................................................81 

3.3: Verb Lexicon to Grammar Correlations in all three conditions ofExperiment 
1. Curves are verb to grammar correlations from the Epoch 20 verb reference 
point to all grammar points (Epochs 1 to 500). Simultaneous correlations 
occur when the Epoch is equal to the Verb reference point (Epoch 20). 
Correlations before that point are from earlier grammar to later lexical 
learning, correlations after are lexical learning to later grammatical 
learning.................................................................................82 

3.4: Noun Lexicon to Grammar Correlations in both conditions of Experiment 2. 
Curves are noun to grammar correlations from the Epoch 40 noun reference 
point to all grammar points (Epochs I to 500). Simultaneous correlations 
occur when the Epoch is equal to the Noun reference point (Epoch 40). 
Correlations before that point are from earlier grammar to later lexical 
learning, correlations after are lexical learning to later grammatical 
learning.................................................................................87 

3.5: Verb to Grammar Correlations in all three conditions of Experiment 2. 
Curves are verb to grammar correlations from the Epoch 40 verb reference 
point to all grammar points (Epochs 1 to 500). Simultaneous correlations 
occur when the Epoch is equal to the Verb reference point (Epoch 40). 
Correlations before that point are from earlier grammar to later lexical 
learning, correlations after are lexical learning to later grammatical 
learning.................................................................................88 

4.1: 	Modified SRN architecture, including standard SRN hidden layer and 
context layer, standard linguistic (word) prediction output, and novel noun 
feature output and verb feature output. The linguistic input is a whole-word 
phonetic representation ofup to 10 phonemes. The Noun and Verb feature 
targets are meant to be an abstract representation ofpre-linguistic sensory and 
motor-affordance semantics ........................................................ 101 

4.2: CMU Phonemes and their compressed 14-bit Representations. 	The bits 
represent articulatory features such as voiced/unvoiced, place and manner of 

X 



articulation, etc. This representation is not meant to make any claims as to 

the relevance of these features, it was chosen only for practical purposes of 

compressing the number of bits required to represent a phoneme ............ 103 


4.3: The hierarchical cluster analysis dendrogram of the Noun master features, as 
generated by human raters ........................................................ .. 11 0 

4.4: The hierarchical cluster analysis dendrogram of the Noun Feature layer 

output prototypes for the Noun Control network. Note the correspondence to 

the master feature dendrogram in Figure 3 ................................... ... .111 


4.5: 	An example of a noun hierarchical cluster analysis dendrogram for the Exact 

Match results of the Noun Group .............................................. ... 114 


4.6: 	An example of a noun hierarchical cluster analysis dendrogram for the Near 

Match results of the Noun Group ................................................. 115 


4.7: 	An example of a noun hierarchical cluster analysis dendrogram for the 

Incorrect results of the Noun Group .............................................. 116 


XI 



List of Tables 


2.1: Noun Category Agreement Results - Feature Vectors compared to Centroids of 

Categories Drawn from MCDI. ......................................................... .35 


2.2: Table 2.2- Verb Category Agreement Results ........................................ .41 

2.3: Output Accuracy from sample network at 500 epochs, during training ............ 56 

4.1: A summary ofthe results ofthe hierarchical cluster analysis on the Noun Group's 


Noun Feature prototypes ................................................................ .113 

4.2: The results of the categorical analysis on the Noun Group's Noun Feature 


prototypes. Centroids were calculated by averaging the feature vectors of its 

members, and then each word's features were compared to the category centroids. 

The word was assigned to the closest category by Euclidean distance 

measure ................................................................................................. 11 7 


xu 



Preface 

This dissertation is divided into three main sections, each of which represents 

material that has been submitted for publication and is now under revision. Since 

each of these articles have multiple authorship, my contribution to each is 

explained here. I am first author on all articles. 

Howell, Becker and Jankowicz (submitted) reports 6 experiments. All six 

experiments represent my contribution to the paper, and thus are all relevant to 

this dissertation. We create novel semantic representations ofwords based on 

human subject ratings along sensorimotor feature dimensions, then provide 

experimental evidence that these features capture important aspects ofconceptual 

meaning. Furthermore, we provide simulation evidence that the incorporation of 

these semantic representations improves another aspect of language acquisition, 

word-sequence (grammatical) learning. All experiments provide a novel 

contribution to the literature. Experiments one and two were conducted between 

September 2001 and September 2002. The remaining experiments were 

conducted between September 2002 and October 2003. 

Howell and Becker (submitted) reports two experiments. Both 

experiments represent my contribution to the paper, and thus are both relevant to 

this dissertation. We provide evidence that lexical learning that is grounding in 

pre-linguistic sensorimotor features causes a distinct correlation between lexical 

and grammatical learning analogous to that found in children. Control 

experiments ofacquisition that lack this grounded sensorimotor meaning do not 
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show this high correlation. Both experiments provide a novel contribution to the 

literature. These experiments were conducted between April 2003 and December 

2003. 

Howell and Becker (submitted b) reports one several-part simulation 

experiment. All parts represent my contribution to the paper, and thus are 

relevant to this dissertation. We provide evidence on a possible mechanism for 

the indirect acquisition of grounded meaning for words, a process we call 

'propagation of grounding'. This process is argued to be similar to how children 

learn the meanings of novel words encountered in the absence oftheir physical 

referents, such as in conversation or reading. This experiment provides a novel 

contribution to the literature. These experiments were conducted between 

November 2003 and December 2003, although extensive pilot work investigating 

this phenomenon took place between September 2002 and November 2003, which 

is not reported herein. 

Finally, Howell and Becker (Submitted c) is a methods paper describing a 

computational modeling software system that I created for the purposes of this 

dissertation. It is attached in Appendix E. The unique properties of this simulation 

platform have allowed me to process the large, naturalistic simulations contained 

in the dissertation in manageable amounts oftime. This is a novel contribution to 

the literature. This simulation environment was created (programmed and tested) 

by me between September 1999 and December 2003, on an ongoing basis. 
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Chapter 1 

Introduction 

The study of language using the methodology of modelling is an interesting and 

difficult challenge, and one that has been addressed in a number ofdifferent ways 

by different researchers. This is due in part to the inherent difficulty of the study 

oflanguage. Language is composed ofmultiple different interacting levels of 

processing, dealing with initial perception, semantics, syntax and grammar, 

pragmatics or content, and more, all operating together. Attempts have been 

made to model different parts of this multi-level process. Examples include 

Weibel et al. (1989, 1989a) on phoneme recognition, McClelland and Elman 

( 1986) on phoneme and word recognition, McClelland and Rumelhart ( 1981) on 

speech perception, Mozer (1987) with his Blirnet model ofword recognition, and 

Seidenberg and McClelland ( 1989) on the pronunciation ofwritten words and 

simulated lesioning. Hinton and Shallice ( 1989) and Hinton and Sejnowski 

( 1986) also addressed the lesioning of trained networks in order to study the 

performance of the disrupted net in comparison to such human disorders of 

language as dyslexia. Rogers & McClelland (1999) provide an interesting model 
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of semantic featural representation. Landauer et al. ( 1997) demonstrates the 

usefulness ofpure semantic analysis with his Latent Semantic Analysis, while 

Elman and colleagues (1990, 1991, 1993) deal with pure grammar learning. 

While some of these simulations involved more than one 'level' of processing, 

some of the most impressive models (Landauer, Elman) incorporate only a single 

aspect of language. I believe that some ofthe most promising directions for 

future research may lie in extending these excellent single-level models to 

encompass more of the language task. Specifically, working within the Elman­

Jordan Simple Recurrent Network (SRN) tradition (Elman, 1990; Jordan, 1986), I 

shall examine extensions and modifications of the basic model, including the 

incorporation or examination of constraints and structures from computer science 

(structured connectionism, see Feldman, 1989), psycho linguistics (e.g. Lakoff and 

Johnson, 1980, 1999; Goldberg, 1995, 1999) and constrained connectionism 

(Regier, 1996). 

While it follows a completely different methodology than the SRN 

tradition, Landauer's simulation of semantic knowledge, based on what he calls 

Latent Semantic Analysis (LSA), is perhaps the most impressive work on 

language. It is relevant to any work that intends to model semantics since it 

provides a sense ofwhat is possible to date in this area. Cast in the framework of 

a neural network model, LSA could be viewed as a method for training a network 

that associates two classes of events reciprocally, by linear connections through a 

single hidden layer. Landauer's model was trained to learn and represent relations 
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among very large numbers ofwords (20k- 60k) and very large numbers ofnatural 

text passages (1k-70k) in which those words occurred. The result was 100-350 

dimensional 'semantic spaces' in which any word or passage could be represented 

as a vector. Similarities could then be measured between any two vectors 

(words), usually via the cosine of the angle between the two vectors. Landauer 

reports very impressive results on a variety ofhuman tasks, such as multiple­

choice vocabulary and domain knowledge tests, emulation ofexpert essay 

evaluations, and in a number of other ways (Landauer, Laham, and Foltz, 1998). 

There are several impressive aspects to Landauer's model. First, the 

vocabulary size used is immense, at twenty to sixty thousand words. This is a 

vocabulary comparable, or at least on the right order of magnitude, to that ofa 

human adult. Few other models exceed more than a few hundred word 

vocabulary, which is too small even to compare to a child's. Second, Landauer 

trains his model purely by the input of natural language texts, and the statistical 

processing that the model performs upon it. This process ofdiscovering the 

semantic relationships between words by exposure seems analogous to the way 

infants acquire semantics (word knowledge) just by exposure. 

Still, despite the model's ability to do such things as grade student essays 

(with up to 80% correlation with expert human evaluation!), it treats language as 

nothing more than a "bag ofwords" (Landauer, 1998, p. 48). That is, the words 

are in an unordered collection, there is no 'grammar' or regularity to them. 

Furthermore, it is not apparent how this architecture could be extended to include 
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grammar, being founded as it is solely on word-to-text correlations. Including 

grammar would necessitate some role for context or order of the input words. Of 

course, the order that is present in language is first and foremost a temporal order. 

As Becker ( 1999) demonstrated, incorporating temporal context can improve 

object recognition in a sequence of visual images. How much more effect must it 

have on language, which is a strictly serial process, happening one word after 

another in time? Which words come before and after others is dictated by the 

grammatical 'rules' ofthe language 1
• Thus it seems as though any more 

comprehensive model oflanguage, one which includes grammar, would have to 

incorporate temporal context of some sort. 

1.1 The Simple Recurrent Network 

While there are a variety ofways of incorporating temporal context, the SRN 

architecture has emerged as the leading candidate in this sort of language 

modelling effort. Simple Recurrent Networks (SRNs), as advanced and 

popularized by Jeff Elman, to the point that they are often known as Elman nets, 

work admirably welf. The SRN architecture possesses a number ofdesirable 

1 Note that I when I refer to the "rules" of grammar, I mean this only 
heuristically, and am not claiming that there are rules for grammar embodied 
anywhere in the brain. 

2 It is important to note that Simple Recurrent Networks, as can be inferred 
from the name, are simplified versions offully recurrent networks. In a fully 
recurrent network, the feedforward sort of architecture does not necessarily hold, 
and units can be connected to themselves or to other units in a multitude of ways, 
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temporal properties, and has yielded many interesting results for Elman and 

others, in such language-related areas as grammar learning (Elman, 1990, 1991, 

1993, 1995) and grammar generalization (Elman, 1998, 1998a, 1999), English 

past-tense learning, (Elman et al., 1996; Hare, Elman, & Daugherty, 1995) 

morphological drift in English past-tense (Hare & Elman, 1994), processing of 

recursive sentences (Weckerly & Elman, 1992), counting (Wiles & Elman, 1995), 

the mathematical properties of dynamical systems such as language (Elman, 

1995), and neo-Piagetian developmental thought (Bates & Elman, 1993). 

No matter the application, the power of the SRN (Figure 1) is that it 

represents time indirectly, through its effects on processing, not by any sort of 

explicit repetition or re-representation at the input. The system possesses 

dynamic properties that are responsive to temporal sequences. In short, the 

network has memory. 

As Elman ( 1990) notes, a number of possible ways of giving a network 

memory have been suggested. However, perhaps the most promising one, and the 

method used by SRNs, was suggested by Jordan (1986). Jordan defined a 

with different amounts ofmemory being involved. I will not consider them 
further here, but a full discussion ofone of several commonly used learning 
algorithms for training them, known as backprop-through-time, is available in 
Williams and Zipser (1989). Simple recurrent networks are essentially a 
truncated version of this algorithm, which consider the slope of the error at only 
one time step back, and not any farther, when calculating the net's error signal. 
Elman and others have been able to achieve significant results with the truncated 
version, but if necessary a more accurate model could easily be achieved by using 
the full backprop-through-time algorithm, at the expense ofbeing more 
computationally intensive. 
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network containing recurrent connections, in which the output could be 

associated, not just with the current input, but with the network's previous output. 

Simple recurrent networks operate in much the same way; they use a layer of 

recurrently connected "context" units to store a memory of the network's internal 

state at previous time steps. 

The architecture of an SRN is straightforward. There is a layer of input 

units, which receive input from the environment. These feed forward into a layer 

ofhidden units, with each input unit connected to every hidden unit. These 

hidden units are similarly fully connected to the output units, but also connected 

to a set ofcontext units. The connections of the hidden units to the context units 

are of a one-to-one nature, that is, each hidden unit feeds forward into one and 

only one context unit. Furthermore, the weights on each hidden unit to context 

unit connection are 1.0. Thus the context units receive an exact copy, at each time 

step, of the hidden units' output. The context units themselves feed forward, in a 

fully connected fashion, back to the hidden units. Thus what the context units are 

supplying to the hidden units is the hidden unit's own output from the previous 

time step. 

6 
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Output Layer 

Ridder~~~, __ ~ 

1 I Context Layer 

r---------~------~ 

Input Layer 

Figure 1.1 - A simple recurrent network in which activations are copied 
from hidden layer to context layer on a one-for-one basis, with fixed 
weights of 1.0. Dotted lines represent trainable connections. 

It is important to note that the memory of these networks is not for a single 

time step only. Rather, the activation at each time step gets fed back into the 

processing of the next, and the combined processing of that input gets fed back on 

the next time step, and so on. The memory is thus 'smeared-out', with the effect 

ofany given preceding time step decreasing every new time step. This effect is 

the motivation for adding parameters to the context layer to control the rate of this 

memory decay, in effect specifying the duration of that memory trace. This 

addition also makes useful the incorporation ofmore than one hidden layer, each 

with a different rate of decay of context, as has been explored by Howell and 

Becker (2000). 
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1.2 The Prediction Task and Gold's Proof 

Also important, however, is the task performed by the SRN, which in most 

language work to date has been the prediction task. Since SRN's are trained with 

the supervised backpropagation algorithm (Rumelhart, Hinton, &Williams, 1986), 

some training signal is of course required. The use of the prediction task is at least 

partially to avoid the implications of Gold's proof(Gold, 1967; Rohde & Plaut, 

1999) . Gold demonstrated that if a language learner is presented with positive­

only data, that only regular languages can be learned. Unfortunately, natural 

languages belong to a more powerful, and thus more complex, class than these, 

and thus cannot be learned solely on the basis ofpositive evidence. However, 

perhaps natural language learners (i.e. children and neural nets) receive more than 

just positive data during language acquisition. That is, perhaps in addition to 

exposure to the proper uses of language (positive evidence) they also receive 

negative evidence in the form of explicit corrections and modifications from 

mature language users (i.e. adults). Unfortunately, there is no good evidence that 

children receive or use negative data during grammar learning (Brown & Hanlon, 

1970), although they may during word learning (Bloom, 2002). Gold suggests 

several possible explanations for the fact that children somehow do manage to 

learn language, in spite ofhis findings. Gold suggests that while children may not 

make use of explicit negative evidence, they may in fact make use of several 

forms of indirect negative evidence. One form is innate knowledge or constraints 

on the language mechanism. While certainly true to some extent, the nature of 
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these innate constraints is very much an open question to date (Elman, 1993; 

Pinker, 1995). Thus connectionist research has focused on the second form of 

indirect negative evidence, the violation of expectations. 

Imagine a child who is beginning to put sentences together. He or she 

begins by consistently using non-grammatical utterances. However, the speech 

that he or she hears from others is typically ofa different form (grammatical) and 

the non-grammatical structure is rarely heard. The child might be expecting to 

hear similarities to his or her own constructions in the speech of others. In spite 

ofnot being told directly that his or her utterances were not correct, we might 

expect that the child would learn that they were not correct from the failure ofhis 

or her predictions ofother's speech. This is the form of indirect negative 

evidence that is used in the prediction task. The network makes a prediction 

about, for example, what word will be 'heard' next in the input sequence, and this 

is compared against the actual next word in the stream. If the prediction is 

accurate, the network will alter its weights to make that response more likely in 

the future. If the prediction is not confirmed, then the weights will be altered 

slightly to make that response less likely. Prediction-task SRNs thus don't use an 

external 'teaching signal' to provide the supervision for the SRNs, they use their 

own input at the next time step. This 'self-supervising' form of training signal 

makes the use of the algorithm more biologically plausible. 
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1.3 Reference, Meaning, and Embodiment 

However plausible the learning mechanism of the SRN, there remains a 

crucial disadvantage. It has been said that an SRN's operation is analogous to 

"learning a language by listening to the radio" (McClelland, quoted in Elman, 

1990). The suggestion here is that an SRN is simply manipulating words and 

other symbols, and while it may be able to learn rules for ordering these symbols 

in a stream, it will be incapable of learning what the symbols mean. This 

criticism can be interpreted as a demand for the grounding of the symbol system 

in reality, which to a linguist is the problem of embodiment. Obviously this 

criticism is not a fatal flaw, since Landauer's LSA is capable of making semantic 

comparisons with surprising accuracy. In fact, LSA can serve as a baseline level 

beyond which embodiment may indeed be necessary to ground semantics. There 

is considerable evidence, however, that for full language understanding 

embodiment is necessary, perhaps especially at the earliest points of learning. 

Among others, a community of researchers at the University of California at 

Berkeley have addressed this issue. Their group is called the Neural Theory of 

Language (formerly LO), and incorporates psycholinguists (George Lakoff, Adele 

Goldberg), artificial intelligence researchers (Jerome Feldman) and structured or 

constrained connectionists (Feldman, Terry Regier, Srini Narayanan). All of 

these researchers have contributed to an understanding ofthe process of 

embodiment of meaning (semantics). 
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Perhaps most far-reaching is the long-standing work ofLakoffand 

Johnson on metaphor. Lakoff & Johnson (1980, 1999) offer detailed analysis of 

metaphor in everyday and even scientific language that, according to them, 

influences the way all but the most concrete sentences are perceived. Sentences 

such as "He's crazy about her" or "She's steaming mad" can only be understood 

using metaphor, according to Lakoff & Johnson. The metaphors in these two 

cases would be Love is a Sickness and Anger is a Hot Fluid, respectively. Lakoff 

and Johnson examine a great many metaphors in their work, convincingly 

demonstrating that metaphor is more than just poetic, that it is in fact essential to 

any understanding of abstract concepts. Indeed, any concept that is not directly 

grounded in bodily experience (e.g. through perception) is indirectly grounded 

through metaphor, they claim. These metaphors thus conventionalize the 

extension of some concrete experience to an abstract domain, rendering that 

domain more comprehensible. As mentioned, this is applicable to scientific as 

well as everyday language, including such abstract domains as economics, where 

Srini Narayanan (1995) has used structured connectionism to build a system that 

could understand economics newspaper headlines in light ofembodying metaphor 

(e.g. "France crawled out of a recession."). Still, since metaphor builds on 

concrete concepts, even if we accept that metaphor may underlie our 

understanding of abstract concepts, we must first address the acquisition of those 

concrete concepts. 
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Relational words, such as those encompassing the spatial relationships, are more 

concrete than metaphor, labeling as they do physical concepts that must be 

learned fairly early in life. Regier (1996) has simulated, using connectionist 

methods, the acquisition of spatial prepositions like under, on, and into from 

simulated perceptual information (2D movies). Regier's model consists primarily 

of a standard feedforward (PDP) neural network which performs the learning of 

the spatial terms. Importantly, however, his model also incorporates detailed, 

hand-wired neurologically-motivated 'structures' that are viewed analogously to 

various aspects of the visual system. Specifically, he incorporates orientation­

comparing nodes (orientation tuned cells), perceptual 'filling-in' structures 

(centre-surround cells), and boundary maps (the hypothesized 'feature maps' of 

attentional researchers like Treisman). The structures process the 2D visual 

information and feed into and constrain the operation of the standard PDP net, 

making the problem easier to learn than if the net were 'searching' without 

constraint for the solution in an effectively much larger potential problem space. 

Regier's model thus demonstrates, quite successfully, that linguistic terms for 

spatial relations emerge from the interaction of simple perceptual structures 

(biological constraints such as orientation tuning in the visual system) and 

perceptual and linguistic experience. Furthermore, he offers possible extensions 

to his model that could account for other forms of relational words. 

Regier's model handles relational words, which serve both a concrete and 

a grammatical function, and are learned at a later point by children, but what 
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about the earliest and arguably most concrete part of language acquisition, noun 

learning? Smith ( 1999) argues that learned attentional biases in children facilitate 

the acquisition of new words, specifically nouns. She proposes that children 

generalize from the form of the utterances typically used by adults to instruct 

them or speak to them3
, and acquire a frame or template for noun acquisition: the 

shape bias. The count noun frame "This is a _" is often used when introducing 

a new object to a child, and Smith summarizes evidence that attention to this 

learned frame results in much better noun acquisition (Smith, 1999). Other 

frames offer advantages for other words, such as the adjective frame ("This is a 

__thing.") or the mass noun frame ("This is some __""), but Smith focuses 

on the count noun frame and the way it arises out ofa learned cue (the frame) and 

an attentional bias to shape that is learned along with it. That is, when the count 

noun frame is used, children learn that shape is what is relevant to the distinction 

ofa new word for this new object. In fact, when asked to categorize objects, 

children who have learned this bias will categorize differently based on whether 

the experimenter phrases the request with a count noun frame (attention to shape) 

or a mass noun frame (attention to substance & texture). Evidence also exists that 

3 It is important to note that this is not contradicting the evidence that 
shows that parents tend not to explicitely correct their children's grammar. That 
evidence is from a later stage in childrens's development, during the 'grammar 
burst', while Smith's argument pertains to children who are learning their first 
words. Typically around 300 words are learned at the single word stage before 
the grammar burst begins. (Bates and Goodman, 1999). Although for a differing 
view see Bloom (2002). 

13 




PHD Thesis -Howell, S. R., McMaster University 

this is indeed an attentional bias that emerges with word learning; it does not exist 

in children who have fewer than about 50 count nouns in their vocabulary, but is 

present in those who do, and can be learned by children during experimentation 

(Smith, 1999). 

For an SRN language modeling effort, what is important about this 

research is its emphasis on the importance of some early learning for later 

learning to be facilitated. This "bootstrapping" phenomenon seems to occur at 

various stages oflanguage acquisition. For example, available evidence 

(reviewed in Bates & Goodman, 1999) suggests it is likely that a certain critical 

mass ofwords is necessary before beginning to acquire grammar, and this fact, 

along with the manner in which those words are learned by children, may inform 

the design of extensions to the SRN architecture, as we shall see. 

We have briefly examined aspects of the learning of concrete nouns, 

spatial prepositions, and the metaphorical processes that may be necessary to 

extend them to deal with abstract concepts. Verbs and verb phrases, on the other 

hand, tum out to be perhaps the most complex, and the most related to what we 

consider to be grammar. Verbs have been argued to determine the lexical 

structure ofutterances, for example, by determining the argument 'slots' required 

in the sentence, into which nouns and relational words are 'dropped'. For our 

purposes, we can consider that this is what SRNs are learning when they acquire 

aspects of the syntax of a language from its serial order. Beyond even that, 

however, Goldberg and others (Goldberg, 1995, 1999) have argued that there 
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exists a level, constructions, above that ofverbs that actually determines sentence 

structure more than verbs do. These constructions can actually take different 

verbs as fillers of sentential 'slots' and change the verbs' allowable uses and 

requirements for arguments. Thus a verb, such as sneeze, that normally isn't 

allowed a direct object or patient ("He sneezed") can be used in a construction, 

e.g. the caused-motion construction, and suddenly is allowed to take them (e.g. 

"He sneezed the foam off the cappuccino.") Goldberg examines the acquisition 

of these constructions as an emergent property of the early use oflight verbs. 

Specifically, Goldberg shows that these 'light' verbs (such as go, do, make, give, 

and put) are the most frequent verbs in children's early language. They are also, 

she argues, the most generally useful verbs, not too specific and applicable to a 

wide range of instances. For example, 'go' can be used in any sentence involving 

motion, and while it will often significantly under-specify the true actions (e.g. 

"He drives the car to the store" vs. "He goes to the store") the central meaning of 

the events is still conveyed. In chapter two I take advantage of the centrality and 

wide applicability of these light verbs by using them in the verb feature 

generation pilot section of experiment two. 

The frequency and applicability of light verbs, Goldberg argues, gives 

them a central status in the acquisition oftypes of sentence 'frames', such that 

they actually come to define and characterize the frames. Then later, as additional 

words are learned that specify the same general event with greater specificity, 

these other words (run, drive, etc) can likewise be fitted into the frame. When a 
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frame becomes highly well-learned over time (such as the caused motion 

construction in the sneeze example above) it can actually impose its structure on 

novel verbs in the frame, allowing them to be used (and importantly, understood) 

in ways that would be ungrammatical otherwise. This aspect of language 

acquisition, like that of metaphorical processing mentioned above, is among the 

more complex language processes that one could attempt to model. While our 

SRN models of language acquisition are presently not powerful enough to address 

these sorts ofprocesses, I do in later chapters discuss some ways in which these 

might eventually be addressed. Furthermore, we again see the idea of language 

"bootstrapping", with existing knowledge providing constraints that makes 

possible more difficult learning. 

While the preceding discussion has addressed more aspects of language 

acquisition than can presently be addressed in a single model, the general themes 

are valuable to keep in mind as we think about what can be modeled successfully. 

Starting with the most readily accessible, I have chosen to address both concrete 

and abstract noun learning, verb learning, and then the beginnings of syntactic and 

grammatical learning. Specifically, I conduct experiments using SRN models of 

language acquisition that incorporate lexical learning of both nouns and verbs, 

along with aspects of syntactic learning (grammar learning). In the experimental 

evidence that follows, grammar learning will refer exclusively to syntactic 

learning, specifically sequence learning, leaving out any inflectional or other 

aspects of grammar for present purposes. 
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The central question addressed in this dissertation is thus: How do 

children acquire language? In particular, I focus on factors contributing to the 

acquisition ofvocabulary and early grammar, especially how prelinguistic 

sensorimotor learning affects the developmental trajectory of this language 

acquisition. 

I begin in chapter two by exploring the hypothesis that sensorimotor 

grounding of meaning facilitates grammar development. First I develop a 

semantic representation ofwords that allows me to address the phonology-to­

meaning mapping that is necessary for lexical learning in children. I investigate 

these representations in a variety of ways, including incorporating them into 

variants of the SRN neural networks introduced above. These simulation 

experiments indicate that having pre-existing grounded semantic representations 

facilitates the process ofgrammatical learning. 

In chapter three I investigate the relationship between lexical learning and 

grammatical learning in a different way, by examining the correlations between 

lexical learning and grammatical learning in the presence of different amounts of 

semantic grounding of word forms. This investigates the hypothesis that the 

correlations found between lexical and grammatical status in children's 

development are due to the semantic grounding of the words and the effect of that 

grounding on grammar development. 

In chapter four I explore the hypothesis that possessing word meanings 

grounded in sensorimotor features allows the language learner to readily infer the 
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meanings ofnovel, ungrounded words. Specifically, I examine how the 

incorporation of the sensorimotor features (which accomplish the phonology-to­

meaning mappings throughout this research) actually allows the network to 

indirectly acquire grounded meanings for novel words not previously linked to a 

meaning, without any specific training as was done in chapter two. 

Finally, in chapter five, I briefly summarize what I have demonstrated in 

the work contained in the previous chapters, consider implications and limitations, 

and draw conclusions. 
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Chapter 2 

A Model of Grounded Language Acquisition: 
Sensorimotor Features Improve Grammar 
Learning 

2.1 Preface 

This chapter is reproduced from Howell, Becker, and Jankowicz, (submitted). 

This paper was first submitted to the Journal ofMemory and Language in 

November, 2003 and is currently under revision for resubrnission. In this paper 

we explore two hypotheses: first, that sensorimotor features can capture 

significant aspects of the intuitive meanings and similarity structures ofwords; 

and second, that sensorimotor grounding of meaning facilitates grammar (syntax) 

acquisition. 

2.2 Abstract 

It is generally accepted that children have sensorimotor mental representations for 

concepts even before they learn the words for those concepts. We argue that 
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these prelinguistic and embodied concepts direct and ground word learning, such 

that early concepts provide scaffolding by which later word learning, and even 

grammar learning, is enabled and facilitated. We gathered numerical ratings of the 

sensorimotor features of many early words (352 nouns, 90 verbs) using adult 

human participants. We analyzed the ratings to demonstrate their ability to 

capture the embodied meaning of the underlying concepts. Then using simulation 

experiments we demonstrated that with language corpora of sufficient complexity, 

neural network (SRN) models with sensorimotor features perform significantly 

better than models without features, as evidenced by their ability to perform word 

prediction, an aspect ofgrammar. We also discuss the possibility of indirect 

acquisition of grounded meaning through "propagation of grounding" for novel 

words in these networks. 

2.3 Introduction 

Considerable evidence suggests that, by the time children first begin to learn 

words around the age of 10-12 months, they have already acquired a fair amount 

of sensorimotor (sensory/perceptual and motor/physical) knowledge about the 

environment (e.g. Lakoff, 1987, Lakoff & Johnson, 1999; Bloom, 2000; Langer, 

2001), especially about objects and their physical and perceptual properties. By 

this age they are generally able to manipulate objects, navigate around their 

environment, and attend to salient features ofthe world, including parental gaze 
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and other cues important for word learning (Bloom, 2000). These cues help them 

to learn their first words, which correspond to the most salient and imageable 

(Gillette, Gleitman, Gleitman, & Lederer, 1999) objects and actions in their 

environment, the ones they have the most experience with physically and 

perceptually. Generally speaking, the more "concrete" or "imageable" a word, the 

earlier it will be learned. This helps to explain the preponderance of nouns in 

children's early vocabularies. The meanings of verbs are simply more difficult to 

infer from context, as demonstrated by Gillette et al. (1999). Only the most 

clearly observable or "concrete" verbs make it into children's early vocabularies. 

However, later verbs are acquired through the assistance of earlier-learned nouns. 

If a language learner hears a simple sentence describing a real-world situation, 

such as a dog chasing a cat, and already knows the words dog and cat, the only 

remaining word must be describing the event, especially if the learner already has 

built up a pre-linguistic concept of"dogs chasing cats" at the purely observational 

level. As Bloom (2000) describes, the best evidence for "fast-mapping" or one­

shot learning of words in children comes from similar situations in which only 

one word in an utterance is unknown, and it has a clear, previously unknown, 

physical referent present. 

These very first words that children learn thus help constrain the under­

determined associations between the words children hear and the objects and 

events in their environment, and help children to successfully map new words to 

their proper referents. This happens through the use ofcognitive heuristics such 
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as the idea that a given object has one and only one name (Smith, 1999), or more 

basic object-concept primitives (Bloom, 2000) such as object constancy. With a 

critical mass of some 50 words, children begin to learn how to learn new words, 

using heuristics such as the count-noun frame, or the adjective frame (Smith, 

1999). These frames are consistent sentence formats often used by care-givers 

that enable accurate inference on the part of the child as to the meaning of the 

framed word, e.g. "This is a_". These factors combine to produce a large 

increase in children's lexical learning at around 20 months. As they begin to 

reach another critical mass ofwords in their lexicon (approaching 300 words), 

they start to put words together with other words - the beginnings of expressive 

grammar (Bates & Goodman, 1999). Around 28 months of age children enter a 

"grammar burst" in which they rapidly acquire more knowledge of the syntax and 

grammar of their language, and continue to approach mature performance over 

the next few years. 

By this account, conceptual development has primacy; it sets the 

foundation for the language learning that will follow. Words are given meaning 

quite simply, by their associations to real-world, perceivable events. Words are 

directly grounded in embodied meaning, at least for the earliest words. Of course, 

it seems clear that the incredible word-learning rates displayed by older children 

(Bloom, 2000) indicate that words are also acquired by linguistic context, through 

their relations to other words. Children simply are learning so many new words 

each day that it seems impossible that they are being exposed to the referents of 
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each new word directly. The meanings ofthese later words, and most of the more 

abstract, less imageable words we learn as adults, must clearly be acquired 

primarily by their relationships to other known words. It may in fact be true that 

these meanings can only be acquired indirectly, through relationships established 

to the meanings ofother words. 

Evidence for the indirect acquisition of meaning is not limited to children's 

behavior. The work of Landauer and colleagues (e.g. Landauer, Laham, & Foltz, 

1998; Landauer & Dumais, 1997) provides perhaps the clearest demonstration 

that word "meanings" can be learned solely from word-to-word relationships 

(although see Burgess & Lund, 2000, for a different method called HAL). 

Landauer's Latent Semantic Analysis (LSA) technique takes a large corpus of 

text, such as a book or encyclopedia, and creates a matrix of co-occurrence 

statistics for words in relation to the paragraphs in which they occur. This yields 

a very high-dimensional vector representation for each word. This high­

dimensional representation is then reduced via the statistical technique of singular 

value decomposition to a more manageable number of dimensions, usually 300 or 

so. The resulting compressed meaning vectors have been used by Landauer et. al. 

in many human language tasks, such as multiple choice vocabulary tests, domain 

knowledge tests, or grading of student exams. In all these cases, the LSA model 

demonstrated human-level performance. 

While these high-dimensional models ofmeaning such as LSA and HAL 

perform well on real world tasks, using realistically-sized vocabularies and 
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natural human training corpora, they do have several drawbacks. First, they lack 

any consideration of syntax, since the words are treated as unordered collections 

(a 'bag of words'). Second, LSA and HAL meaning vectors lack any of the 

grounding in reality that comes naturally to a human language learner. 

Experiments by Glenberg and Robertson (2000) have shown the LSA method to 

do poorly at the kinds of reasoning in novel situations that is simple for human 

semantics to resolve, due largely to the embodied nature of human semantics. 

So it seems that there are two sources ofmeaning, direct embodied 

experience, and indirect relations to other words. However, there is an infinite 

regress in the latter. If words are only ever defined in relation to other words, we 

can never extract meaning from the system. We have only a recursive system of 

self-defined meaning, symbols chained to other symbols. To avoid this dilemma, 

at least some of the words in our vocabularies must be defined in terms of 

something external. In children, at least, the earliest words serve this role. They 

are defined by their mappings to pre-linguistic sensory and motor experience, as 

discussed above. They do not require other words to define their meaning. The 

most imageable words are thus directly grounded, while the less imageable and 

more abstract the words that are encountered during later learning, the more 

indirectly grounded they are. At some point, we argue, the adult semantic system 

begins to look much like the LSA or HAL high-dimensional meaning space, with 

our many abstract words (e.g. love, loyalty, etc) defined by relations among words 

themselves. However, the mature human semantic system is superior to the high­
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dimensional models, since it can trace its meaning representations back to 

grounded, embodied meaning, however indirectly for abstract words. 

Intuitively, this is something like trying to explain an abstract concept like 

"love" to a child by using concrete examples of scenes or situations that are 

associated with love. The abstract concept is never fully grounded in external 

reality, but it does inherit some meaning from the more concrete concepts to 

which it is related. Part of the concrete words' embodied, grounded, meaning 

becomes attached to the abstract words which are often linked with it in usage. 

The grounded meaning 'propagates' up through the syntactic links of the co­

occurrence meaning network, from the simplest early words to the most abstract. 

Thus we have chosen to call this the "propagation of grounding" problem. We 

argue that this melding ofdirect, embodied, grounded meaning with high­

dimensional, word co-occurrence meaning is a vital issue in understanding 

conceptual development, and hence language development. We believe it is 

essential to resolving the disputes between embodied meaning researchers and 

high-dimensional meaning researchers. 

In previous work (Howell and Becker, 2000, 2001; Howell, Becker, & 

Jankowicz, 2001) we began developing what we consider to be a promising 

method for modeling children's language acquisition processes using neural 

networks. In this work, we continue this effort, emphasizing the inclusion ofpre­

linguistic sensorimotor features that will ground in real-world meaning the words 
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that the network will learn. This is a necessary precursor to addressing the 

"propagation ofgrounding" problem itself 

Our goal is to capture with one model the process by which children learn 

their first words and their first syntax or grammar. As mentioned above, this is a 

period stretching from the earliest onset ofthe first true words (10-12 months), 

through the "lexical-development burst" around 20 months up to the so-called 

"grammar burst" around 28 months. Developing a network that attempts to 

model the language acquisition that is happening during this period in children is, 

of course, an ambitious undertaking. However, given the discussion on 

propagation ofgrounding above, this sort of developmental progression may 

actually be necessary not just for children learning language, but also for any 

abstract language learner such as a neural network or other computational model. 

A multi-stage process of constrained development may be necessary to simplify 

the problem and make it learnable, with each 'stage' providing the necessary 

foundation for the next, and ensuring that meaning continues to be incorporated in 

the process. As such, we seek to develop and extend a single model that can 

progress through these 'stages' of language acquisition, from initial lexical 

learning, through rapid lexical expansion, to the learning of the earliest syntax of 

short utterances. Developing a model that fits developmental behavioural data on 

child language acquisition is one way to ensure that this process is being 

followed. For the simulations reported here, we have adopted and extended the 

Simple-Recurrent Network architecture that has been shown many times to be 
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capable of learning simple aspects of grammar, namely basic syntax (e.g. Elman, 

1990, 1993; Howell & Becker, 2001 ). Furthermore, SRN's have been shown to be 

able to produce similar results to high-dimensional meaning models. Burgess and 

Lund (2000) point out that their HAL method using their smallest text window 

produces similar results in word meaning clustering to an Elman SRN. Also, they 

state that the SRN is somewhat more sensitive to grammatical nuances. SRN's 

may be able to model the acquisition of meaning and grammar, unlike the high­

dimensional approaches. 

The present emphasis of our model is on the inclusion of sensorimotor 

knowledge of concepts or words (for clarity, in what follows we use the term 

"concept" to mean the mental representation of a thing or action, and the term 

"word" to mean merely the linguistic symbol that represents it). This pre­

linguistic sensorimotor knowledge (following Lakoff, 1987) is represented by a 

set of features for each word presented to the network, features that attempt to 

capture perceptual and motor aspects of a concept, such as "size", or "hardness", 

or "has feathers". If a word that the network experiences is accompanied by a set 

ofvalues or ratings on these feature dimensions, then the network should be able 

to do more than just manipulate the abstract linguistic symbol ofthe concept (the 

word itself). Like a child learning the first words, it should then have some access 

to the meaning of the concept. The network's understanding would be grounded 

in embodied meaning, at least at the somewhat abstracted level available to a 

model without any actual sensory abilities of its own. 
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Unlike most existing language models that employ semantic features (e.g. 

Hinton & Shallice, 1991, McRae, de Sa, & Seidenberg, 1997) our sensorimotor 

feature set has been designed to be pre-linguistic in nature. That is, features that 

derive from associative knowledge about which words occur together or other 

language-related associations are excluded. Only features that a preverbal child 

could reasonably be expected to experience directly through his or her perceptual 

and motor interactions with the world are included. As discussed above, while 

children's first words are obviously learned without any knowledge oflanguage­

related word associations, children quickly begin to incorporate linguistic 

associative information into the semantic meanings ofconcepts. Certainly, at 

some point words begin to acquire associative meaning not only from the sensory 

properties of the concept, but from the linguistic contexts in which the word has 

been experienced. We take the conservative stance herein of excluding any 

linguistic associative influences on sensorimotor meaning; the sensorimotor 

feature representations do not change with linguistic experience. The network is 

capable of learning these associations, but they do not affect the sensorimotor 

features directly. 

Whereas most language models employ binary features, our features are 

real-valued (range 0-1), allowing a network to make finer discriminations than 

merely the binary presence or absence ofa feature. For example, two similar 

items (for example, two cats) may be perceived, but they are not identical; one is 

larger. Our dimension of size would differentiate the two, with one receiving a 
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rating of0.2, one of0.3. Binary features cannot easily make such fine 

distinctions. Finally, inspired by the work of McRae et al. (1997) on human­

generated semantic features, the feature ratings that we use are all derived 

empirically from human participants. 

One of the advantages of the neural network model ofchild language 

development that we present below is the ability to measure word-learning 

performance using analogues of lexical comprehension tasks that have been used 

with children. Since the network learns to associate the sensorimotor features of 

each concept with a separate phonemic representation of the word, it is possible to 

examine the strength of the associative connection in either direction. Thus, given 

the phonemes of the word, we can measure the degree to which the network 

produces the appropriate sensorimotor meaning vector. This we refer to as the 

'grounding' task, analogous to when a child is asked questions about a concept 

and must answer with featural information, such as ''What kind of noise does a 

dog make?" or "Is the dog furry?" Similarly, we can also ask if, when given the 

meaning vector alone, the network will produce the proper word. This is an 

analogue to the 'naming' task in children, where a parent points to an object and 

asks "What is that?" In the network, ifthe completely correct answer is not 

produced, we can still measure how close the output was to the correct answer. 

For example, we can check whether the answer was a case of"cat" produced in 

place of'dog', two concepts with a high degree offeatural overlap, or whether it 

was a complete miss. These measures can be used singly or together to assess 
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lexical comprehension. In this paper, we address the grounding task, but not the 

naming task, although the model can account for both. However, the central aim 

of this paper is to investigate the contribution of the sensorimotor features to 

improving the model's grammar learning. 

In Experiments 1 and 2, we describe the empirical collection of feature 

ratings for nouns and verbs respectively, and describe the results of several 

analyses performed to verifY that they are capturing an abstract representation of 

the words' meanings. In Experiment 3, we describe simulations of a simple neural 

network model using these features with a small test corpus, to demonstrate the 

utility of feature grounding for language acquisition. In Experiment 4A, we use 

these feature ratings in a larger model with a naturalistic corpus, and examine the 

extent to which features improve grammar learning over a control condition. In 

Experiment 4B and 4C, we address the issues discovered in Experiment 4A, and 

try to clarify the contribution of sensorimotor features to grammar learning. It is 

important to note that in referring to "grammar learning" we are in fact only 

considering the simplest aspects of grammar, namely basic syntax or sequence 

learning. 

2.4 Experiment 1 -Generation of Noun Sensorimotor Features 

Developing a set of sensorimotor dimensions that are plausible for 8 - 28 month 

old infants was an important first stage of this research effort. In our previous 

models oflexical grounding and acquisition of grammar (Howell & Becker, 2001, 
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Howell, Becker, & Jankowicz, 2001) we used a more simplistic semantic feature 

representation ofwords (Hinton & Shallice, 1991) that was both artificial and 

confounded word's conceptual semantics with "associative semantics", the 

linguistic relationships between words. We needed a more child-appropriate set 

of semantic features. 

2.4.1 Method 

In order to avoid having artificial, experimenter-created semantic feature 

representations, we investigated the McRae et al. empirically generated feature set 

(e.g. McRae et al., 1997). However, ofthe thousands offeatures contained in that 

set, many were non-perceptual (e.g. linguistically associative), and few were 

common across many concepts. To obtain an appropriate set of input features for 

a neural network model of child language acquisition, we required a more 

compact, concrete set of features that are perceptual and motor in nature, and 

could reasonably capture purely pre-linguistic knowledge. Thus we narrowed 

down the McRae et al. feature list to some 200 common and widely-represented 

features. This list was further condensed by converting each set of polar 

opposites and intermediate points to a single set of 19 polar-opposite dimensions. 

For example, "small" and "large" became a single continuous dimension of size, 

ranging from small (0) to large (10), and eliminating the need for "tiny", 

"medium", "huge", etc. The remaining 78 features which could not be 

unambiguously converted to a set ofpolar opposites were retained as a condensed 

list of real-valued dimensions, such as color (is _red) or texture (has_feathers), 
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where the real value indicated the probability ofpossession of that feature by that 

concept. 

This resulting list of features was then reviewed by a developmental 

psychologist, for accessibility to children of the age range in question (8-28 

months), and any features that were not considered developmentally appropriate 

were removed. For example, "age" is not reliably perceived by children beyond 

simply "young'' or "old" (Dr. Laurel Trainor, private communication, 2001) and 

so was removed. 

The final list of sensorimotor feature dimensions was small enough to be 

feasible as input for our neural network models, and broad enough to be 

applicable to many concepts. Given this set of feature dimensions, it was next 

necessary to obtain ratings of the early concepts along each feature dimension. 

We used a large sample ofhuman raters to generate the featural ratings for our 

early words. Our raters were undergraduates at McMaster University who 

participated in this experiment for course credit in an introductory psychology 

course. 

Participants were presented with the concepts and the list of feature 

dimensions along which to rate them on a computer screen. The display was 

presented via a web browser, and responses were entered by filling in response 

boxes on the display (See Appendix A). Participants were given detailed 

instructions as to how to make judgments, and which anchoring points to use in 

assigning numerical values. For example, in rating the size ofan object, the 
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smallest item a child might know about might be 'pea' for example, while for 

adults it might be something microscopic like 'virus'. Thus participants were 

specifically instructed to make judgments taking into account the limited frame of 

reference that a pre-school child would have, especially relevant for polar­

opposite dimensions such as "size". Participants entered their data as numbers 

between 1 and 10, which were later scaled down to the 0 - 1 range for easier 

presentation to neural network models. 

The rating forms were administered over the Internet as web forms. The 

data was checked carefully for outliers. Three participants' data were excluded 

due to obvious response patterns (all O's, all10's, 1-2-3's, etc.), indicating 

insufficient attention given to the task. Ratings were collected for 352 noun 

concepts from the MacArthur Communicative Development Inventory (MCDI -

Fenson et al., 2000) in 38 separate phases with approximately 10 concepts each 

during winter, 2002. The first two phases had 10 participants each; the rest had 5 

participants each. Participants received course credit for participation so long as 

the data was not obviously invalid as discussed above The resulting ratings were 

then averaged across participants yielding a single feature vector of size 97 for 

each concept, 352 in all. 

Three forms of analysis were performed on these newly created feature 

representations, in order to demonstrate that they do capture important aspects of 

the meanings of the words represented: a hierarchical cluster analysis, a Kohonen 
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self-organizing map, and a Euclidian-distance-based categorical membership 

analysis. 

2.4.2 Results 

We analyzed the 352 averaged feature vectors in a hierarchical cluster analysis 

using SPSS version 11.5, to see whether our features captured our intuitive sense 

ofword similarity. The 352 concepts clearly clustered by meaning, with 

subcategories merging nicely into superordinate categories (See Appendix B). 

Animals are separated from people, people and animals are separated from 

vehicles and inanimate objects, etc. Thus while the high degree ofvariability 

between participants' ratings was originally a concern, after averaging, the 

regularity inherent in the feature vectors is quite reassuring. To provide another 

view on the ratings, the ratings vectors were fed into a Self-Organizing Map 

(Kohonen, 1982; 1995) neural network, which sought to group the concepts 

topographically onto a two-dimensional space based on their feature similarity. 

The resulting topographic organization respects the semantic similarities between 

concepts, showing intuitive groupings based only on the sensorimotor features of 

concepts (See Figure 2.1). Note, for example, the grouping of "creatures that fly" 

in the top left corner, and the grouping of parts of the body in the middle-left. 

A more clearly-defined measure of success is provided by the categorical 

analysis. We formed category centroids for each of the pre-existing categories of 

nouns on the MCDI form from which the words were originally drawn. This was 

done by taking all of the words that belonged to that category and averaging 
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together their feature vector. Then each and every word's feature vector was 

compared to the centroids of each of the 11 categories represented, and the closest 

match indicated into which category the word should fall. This was done both 

with the target word included in the centroid generation process, and with it 

excluded (a more conservative approach). Results are very good, at 92.8% and 

88% accuracy respectively (Chance performance would be 9.1 %). See Table 2.1 

for details. 

Table 2.1 -Noun Category Agreement Results 

Feature Vectors compared to Centroids of Categories Drawn from MCDI 

Category Category Inclusive Exclusive 


Number Name Accuracy Accuracy 


2 Animals 0.8205128 0.8205128 

3 Vehicles 0.9166667 0.75 

4 Toys 0.9166667 0.8333333 

5 Food & Drink 1 1 

6 Clothing 0.9285714 0.8928571 

7 Body Parts 1 0.862069 

8 Small Household Items 1 1 

9 Furniture and Rooms 0.8484848 0.7878788 

10 Outside Things 0.9333333 0.8666667 

11 Places to Go 0.8636364 0.6363636 

12 People 0.8461538 0.8461538 

Overall 0.9283668 0.8796562 
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2.4.3 Discussion 

We believe all three analyses indicate the success of the experiment. The 

hierarchical clustering analysis, while vast and somewhat difficult to interpret, 

shows many clear separations ofconcepts, and consistent local clusters of 

meaning. The SOM representation shows clear clustering by meaning, with both 

fine-grained and broader similarity structures across the map. Finally, the 

categorical analysis provides a clear numerical measure of the goodness of fit of 

our features to the preexisting categorizations of these nouns, with 93% accuracy 

of word to category. The sensorimotor feature ratings thus capture much ofthe 

meaning of the concepts, definitely enough to be useful as inputs to our language 

learning model, and they certainly capture what's important for categorical 

reasoning. 
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Noun Feature SOM 

Figure 2.1: Self-organizing Feature Map ofExperiment 1 Feature Vectors 
Each concept is written on the unit that responded most highly to presentation of that 
concept after training. Note the grouping of similar concepts on nearby units, as well 
as the overall topography of similarity. 
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2.5 Experiment 2 - Generation of Verb Sensorimotor Features 

Verbs are more difficult to develop representations for than are simple, concrete 

nouns, so our method had to be slightly more exploratory. 

2.5.1 Method 

In this experiment we followed much the same methodology as for Experiment 1, 

this time for verb features. However, given that verbs correspond to events in the 

world rather than to objects, the nature of verb features was expected to be 

different from that for nouns. Also, there was no pre-existing taxonomy of verb 

features readily accessible in the literature, as there had been for nouns. 

Therefore, our collection ofverb features proceeded in two steps. First we 

conducted a pilot experiment in verb feature generation with human participants, 

and from that we created a set ofverb feature dimensions to be rated in an online 

phase of the experiment exactly as in Experiment 1 (See Appendix C for forms 

and instructions used in both the pilot and the experiment). The pilot experiment 

was conducted with 12 undergraduate participants at McMaster University. 

Participants completed a feature generation form for some ofthe earliest (MCDI­

Fenson et al., 2000), and most prototypical (Goldberg, 1999) verbs, with the 

objective being not complete characterization of any given verb but rather the 

creative generation of a set of feature dimensions which might be common to 

many verbs. 
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While fully half of the features generated were unusable due to 

contamination by functional relationships with corresponding nouns, associational 

relationships, etc., there were sufficiently many perceptual and motor features 

identified to allow us to create an initial set of feature dimensions. From this 

beginning, we were able to fill in missing complements ofexisting dimensions. 

For example, several participants focused on limb movement to define verbs, 

which is in line with some existing models ofverb definition in computer science 

(see for example Bailey, Feldman, Narayanan, & Lakoff, 1997). From this and 

considerations of bodily motion and proprioceptive constraints in humans we 

were able to generate a large primary set ofjoint-motion dimensions. We also 

included some other features that had been identified by pilot participants, which 

brought the total to 84 feature dimensions (See Appendix C) 

A second group of participants participated in the rating phase of the verb 

experiment. As in Experiment 1, they rated each verb on the list with a value 

between 0 and 10 on the 84 feature dimensions. We then converted these ratings 

to the 0-1 range, which became the feature representations for verbs used in the 

Experiments below. We analyzed the results of the experiment (the feature 

ratings) in the same three ways as in Experiment 1 : A hierarchical cluster 

analysis (see Appendix D), a self-organizing map (Kohonen, 1982; 1995), and a 

Euclidian-distance-based categorical membership analysis. The categories used 

in the latter analysis were drawn from Levin, 1993, and grouped together into 

superordinate categories with the assistance oflinguists Anna Dolinina of 

39 




PHD Thesis- Howell, S. R., McMaster University 

McMaster University, and Sylvia Gennari, of the University of Wisconsin­

Madison. Nine categories were used, as can be seen in Table 2.2 below. Only the 

inclusive methodology was used to create the category centroids, based on the 

results from experiment 1. 

2.5.2 Results 

Overall, the verbs do not perform as well as the nouns. Still, as can be seen from 

the SOM, similar verbs do group together in space (See Figure 2.2). Note the 

grouping of "tongue-verbs" in the top left, and movement verbs in the bottom 

right, for example. Major trends in the cluster analysis for verbs are less clear than 

for nouns, although the analysis does find many intuitively reasonable groupings, 

such as take, bring, push, put, and move, for example. (See Appendix D). 

Finally, the categorical agreement analysis, while not as clear as that for the nouns 

shown previously, still demonstrates a 70% overall accuracy of the target words 

to their correct category. Chance performance would be 11.1 %. Categorical 

performance by category is shown in table 2.2 below. 
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Table 2.2 - Verb Category Agreement Results 
Feature Vectors compared to Centroids of Categories Drawn from MCDI 

Verb Category 
Body-Movements 
Motion 
Creation/Destruction 
Food-Related 
Possession & Relocation 
Change of State 
Statives 
Communicative 
Perception 
Overall 

Percentage 
Correct 
60% 

83% 

64% 

83% 

78% 

55% 

78% 

67% 

75% 

70% 
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Verb Feature SOM 

Figure 2.2: Self-Organizing Map ofthe Verb Feature Ratings 
Note the grouping together ofwords involving similar motor activities such as 
drink/lick/taste and listen/say/talk as well as modes oflocomotion such as 
slide/jump/ go/walk/hurry 

2.5.3 Discussion 

The somewhat weaker clustering of our verb features is consistent with the results 

ofVinson and Vigliocco (2002), who also show that verbs generally do not 

cluster very well. Their verb features were also human-generated, but they placed 
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no developmental or sensorimotor restrictions on the form of those features as we 

did in this experiment. Nonetheless, it seems that verbs, or pre-linguistic verb 

concepts, simply do not share as tight a similarity space as nouns do, although the 

fact that there were fewer verbs in Experiment 2 than there were nouns in 

Experiment 1 may have an effect, as there is less opportunity for featural 

similarity to become apparent. However, our features are still capturing important 

aspects of the meanings of verbs, as can be seen qualitatively in the hierarchical 

cluster analysis and SOM, and quantitatively in the Category Agreement analysis. 

An agreement rating of 70% is more than sufficient for us to wish to use these 

features in further experiments. 

In experiments 3 and 4, we investigated the contributions of sensorimotor 

feature grounding to language learning in a series of neural network simulations. 

In experiment 3 we used a small training corpus and only the noun features. In 

experiment 4 (parts A, B, and C) we used a larger corpus and both noun and verb 

features, and made the language learning task progressively more difficult. 

2.6 Experiment 3- A Model of Grounded Lexical Acquisition 

In this first simulation experiment, using only our noun feature set (the verbs were 

not yet complete at the time of this experiment), we used a small corpus and 

simple vocabulary to test whether extending the SRN architecture to include 

feature input would assist in grammar learning (basic syntax learning), as 

evidenced by performance on the word prediction task. In previous work (Howell 
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& Becker, 2001) we determined that adding an artificial set of semantic features 

improved word prediction dramatically ( 18.5% to 37.1%). However, in that 

experiment the word representations were localist (a series of zeroes with a single 

1), while the feature representations were binary distributed codes (a sequence of 

zeros and ones). It was impossible to determine how much ofthe improvement in 

word prediction was due to the simple increase in the information content of the 

combined input representation, rather than the inter-word similarity structure 

inherent in the semantic features. 

In contrast, in this experiment, the word representation is a very long ( 140 

elements) distributed representation ofphonemic features, described below. The 

feature representations are smaller, 97-element vectors of real-valued features. A 

significant benefit is thus expected to be due to the statistical regularities inherent 

in the sensorimotor feature information, beyond a simple increase in the 

information content due to the use of distributed representations. 

2.6.1 Method 

We used the Simple-Recurrent Network (SRN) architecture, performing the word 

prediction task: predicting from the current input word what the next word would 

be. Each word was encoded as a set of up to 10 phonemes using 140 input units. 

The 140-element word inputs represented 10 phonemic slots each of 14 phonemic 

feature bits, without representation of word boundaries. The Carnegie Mellon 

University (CMU) machine-readable phonetic transcription system and 

pronouncing dictionary was used to generate our phonetic representations of 
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words (available at: http://www.speech.cs.cmu.edu/cgi-bin/cmudict). Each 

phoneme was uniquely mapped to a set of 14 bits (See Figure 2.3), representing 

articulatory dimensions of the phonemes. Words shorter than 10 phonemes had 

their rightmost slots padded with 14 zeros, while longer words were truncated. 

"AA" "1 ,0,0,0,0, 1 ,0,0,0, 1 ,0,0,0,0" "L" "0,0, 1 ,0, 1 ,0,0,0,0,0, 1 ,0,0,0" 
"AE" "1 ,0,0,0, 1 ,O,O,O,O,O,O,O, 1 ,0" "M" "0,0,0, 1 ,0, 1 ,0,0,0, 1 ,0,0,0,0" 
"AH" "1 ,0,0,0,0, 1 ,0,0,0,0, 1 ,0,0,0" "N" "0,0,0, 1 ,0, 1 ,0,0,0,0, 1 ,0,0,0" 
"AO" "1 ,0,0,0,0,0, 1 ,0,0,0,0, 1 ,0,0" "NG" "0,0,0, 1 ,0, 1 ,0,0,0,0,0, 1 ,0,0" 
"AW'' "0, 1 ,O,O,O,O,O,O,O,O,O, 1 ,0,0" "OW'' "0, 1 ,O,O,O,O,O,O,O,O,O,O,O, 1" 
"AY" "0, 1 ,O,O,O,O,O,O,O, 1 ,0,0,0,0" "OY" "0, 1 ,O,O,O,O,O,O,O,O, 1 ,0,0,0" 
"B'' "0,0,0, 1' 1 ,0,0,0,0,0, 1 ,0,0,0" "P" "0,0,0, 1' 1 ,0,0,0,0, 1' 1 ,0,0,0" 
"CH" "0,0,0, 1 ,0,0,0,0, 1 ,0, 1 ,0,0,0" "R" "0,0, 1 ,0,0, 1 ,0,0,0, 1 ,0,0,0,0" 
"D'' "0,0,0, 1' 1 ,0,0,0,0,0,0, 1 ,0,0" "S" "0,0,0,1,0,0,0,1,0, 1,0,0, 1,0" 
"DH" "0,0,0, 1 ,0,0,0, 1 ,0,0,0, 1 ,0,0" "SH" "0,0,0, 1 ,0,0,0, 1 ,0, 1 ,0,0,0, 1" 
"EH" "1 ,0,0,0, 1 ,O,O,O,O,O,O, 1 ,0,0" "T" "0,0,0, 1, I ,0,0,0,0, 1 ,0, I ,0,0" 
"ER" "1,0,0,0,0,1,0,0,0,0,0,1,0,0" "TH" "0,0,0, 1 ,0,0,0, 1 ,0, 1 ,0, 1 ,0,0" 
"EY" "0, 1 ,O,O,O,O,O,O,O,O,O,O, 1 ,0" "UH" "1,0,0,0,0,0,1,0,0,0,1,0,0,0" 
"F'' "0,0,0, 1 ,0,0,0, 1 ,0, 1, I ,0,0,0" "UW'' "1 ,0,0,0,0,0, I ,0,0, I ,0,0,0,0" 
"G" "0,0,0,1,1 ,O,O,O,O,O,O,O, 1 ,0" "V'' "0,0,0, 1 ,0,0,0, 1 ,0,0, 1 ,0,0,0" 
"HH" "0,0,0, 1,0,0, 1 ,0,0, 1 ,0,0,0,0" "W'' "0,0,1,0,1,0,0,0,0,1,0,0,0,0"" 
"IH" "1 ,0,0,0, 1 ,0,0,0,0,0, 1 ,0,0,0" "Y'' "0,0, 1 ,0,0, 1,0,0,0,0, 1 ,0,0,0" 
"IY" "1,0,0,0,1,0,0,0,0,1,0,0,0,0" "Z" "0,0,0, 1 ,0,0,0, 1 ,0,0,0,0, 1 ,0" 
"JH" "0,0,0, 1 ,0,0,0,0, 1' 1 ,0,0,0,0" "ZH" "0,0,0, 1 ,0,0,0, I ,0,0,0,0,0, 1" 
"K" "0,0,0, 1' 1 ,0,0,0,0, 1 ,0,0, 1 ,0" Pause "O,O,O,O,O,O,O,O,O,O,O,O,O,O" 

Figure 2.3: CMU Phonemes and their compressed 14-bit Representations. The 
bits represent articulatory features such as voiced/unvoiced, place and manner of 
articulation, etc. 

In addition to the phonemic word features, a set of noun features was also 

input to the network, simulating the co-occurrence of sensorimotor information 

and phonological information in the child's environment. A single hidden layer 

and a single context layer (both of30 units) were used (See Fig. 2.4). The output 
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layer was the same size and used the same representation as the Word Phonemic 

representation. A continuous stream of sentences was input to the network, one 

word at a time. The task of the network was to predict the phonemic features of 

the next word in the input stream. Training used the back-propagation oferror 

learning algorithm (Rumelhart, Hinton, & Williams, 1986). 

Word Prediction Task 

(Whole-word phonetic representation) 


Noun Feature Input Word Input 
(97 Dimension Distributed Real-valued) (Whole-word phonetic representation) 

Figure 2.4: The network used in Experiment 3. Note the use of two different 

inputs per word, one containing the phonemic representation of the word, the 

other the real-valued noun features of the word. 

Corpora and Training Schedule 

We used a very small60 word corpus oftext consisting ofthree word subject­

verb-object (SVO) sentences with a vocabulary of only 13 words. The text corpus 
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was presented to the network as a continuous stream ofwords with no breaks 

between sentences and the network was trained to predict the next word in the 

stream. It was hypothesized that word prediction, a measure of syntactic learning 

which is one part of grammar (Elman, 1990), would improve with sensorimotor 

grounding of nouns. While we expect to find more support for our hypothesis in 

larger corpora, using a smaller corpus allowed many runs of the network to be 

processed in several experimental conditions. Semantic relations holding between 

subjects, verbs, and objects in the text were not random but obeyed physical 

constraints (only MAN can HOLD something, whereas DOG or CAT cannot). 

Three variants of the network were run, to simulate one experimental 

condition and two control conditions. The Experimental condition used the full 

network as described above. The SRN-only condition used a similar SRN, with 

an input layer containing word (phonemic) features but lacking the noun 

sensorimotor features. The Random Control network used the same architecture 

as the Experimental condition, but replaced the human-generated (and 

meaningful) noun features with randomized permutations of that same set of 

features. This condition is intended to control for sheer number of connections 

and input vector magnitudes, aspects in which the Experimental and the SRN­

only conditions differ dramatically. The randomization was performed by 

iteratively swapping the value at each position on the 97 element vector with that 

ofanother random position. When all words' representations had been 

randomized, each word's entire randomized feature representation was then 
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swapped with another word's representation. This manipulation minimizes any 

featural similarity between related words. 

Six networks were run in each of the three conditions, for a total of 18 

networks. Each network was run for 500 epochs using the SRNEngine simulation 

package (Howell & Becker, submitted). The networks' grammatical accuracy, as 

measured by word prediction accuracy, was recorded at the output layers. The 

network used a Euclidian distance based output rule to convert its output 

activations to a word label; thus every time step resulted in a discrete word 

prediction, as opposed to any sort ofphonological blend state. Comparison ofthis 

word to the target word produced the accuracy measure. 

In preliminary simulations, randomly selected representative networks 

from each condition were run up to 8000 epochs, and it was found that no 

substantial alteration in the network behavior occurred beyond 500 epochs. 

2.6.2 Results 

Accuracy curves for the three conditions are shown in Figure 2.5. Only one 

difference is clear from this Experiment. The learning trajectory of the SRN-only 

condition is clearly different from the other two (See Figure 5). The accuracy in 

the SRN-only condition stays low much longer, then catches up to the accuracy of 

the other two conditions around the half-way point oftraining (250 epochs), but 

seems to have reached an asymptote around that point, while the accuracy for the 

other two conditions continues to rise. The Experimental and Random conditions 

are indistinguishable from one another at all points during the training. 
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Word Prediction Accuracy (Small Corpus • No Periods) 
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Figure 2.5: Graph of mean prediction accuracy of Experimental and Control 

Networks averaged across 6 runs starting from random initial weights. Error Bars 

are standard errors. 

2.6.3 Discussion 

Augmenting the input with additional features has a significant effect on word 

prediction (grammar) performance, but it appears to be solely due to the extra 

input information, rather than the structure present in the sensorimotor feature 
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inputs. This extra information could be helping the network to learn more distinct 

representations for individual words in the hidden layer. One way around this 

would be to use the features as output targets instead of inputs. This seems 

reasonable in light of our assumption that children have already formed internal 

representations of the features of a concept by time of initial language learning. 

By using these features as output targets, rather than inputs, the network is forced 

to focus on the mapping ofwords to meanings and therefore learning the 

associations between words and existing concepts, as well as how those words 

predict each other in the speech stream. 

However, why was there no difference between networks with real 

features and randomized features? While both provide extra bits of information at 

input, only the real features convey information about interword similarity. The 

fact that some concepts are perceived by people as similar is at least partially due 

to their similar perceptual qualities and leads to similar sensorimotor feature 

ratings for them, and hence a high degree of overlap on the 97 dimensions 

defining them. Thus we predicted that these features would tend to be learned as 

being linked together due to their pattern of co variation (e.g. Rogers & 

McClelland, 2003), thereby facilitating the learning ofword "meanings". 

However, the size of this covariance effect on learning will depend on how many 

of these concepts there are, and how often they are used. In the small training 

corpus used in this experiment, there may have been insufficient covariation of 

feature representations for the network to learn to take advantage ofthis structure. 
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In the remaining experiments, we therefore used a large, naturalistic 

corpus of child-parent speech, one in which many of the words (but not all) had 

corresponding sensorimotor feature representations from our MCDI list. We also 

modified the architecture slightly in ways that should both improve performance 

and make it possible to perform additional analyses on the results later. 

2.7 Experiment 4A- A Large Corpus Model of Lexical 

Acquisition 

In Experiment 4A, we modified the Simple-Recurrent Network (SRN) 

architecture to perform three separate tasks simultaneously, in three separate 

pools of output units (See Figure 2.6) A small common hidden layer and context 

layer of 30 units each were used, to force the network to develop an integrated 

internal representation common to the three tasks. A single input layer presented 

whole-word phonetic representations of words (as in Experiment 3), in serial 

order through the corpus. 

The Linguistic Predictor output layer performed the same word-prediction 

task as in Experiment 3. At each time step, its task was to predict the phonemic 

representation of the input word at the next time step. The task for the remaining 

outputs was to produce the sensorimotor features of the current word. The Noun 

Features layer had output targets that represented the sensorimotor features for the 

current word, as created in Experiment I. The Verb Features layer had output 

targets that represented the sensorimotor features for the current word, as created 
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Noun 
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Verb Linguistic 
Features Predictor 

Linguistic 
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Figure 2.6: Modified SRN architecture, including standard SRN hidden layer 
and context layer, standard linguistic (word) prediction output, and novel 
noun feature output and verb feature output. The linguistic input is a whole­
word phonetic representation of up to 1 0 phonemes. The Noun and Verb 
feature targets are meant to be an abstract representation of pre-linguistic 
sensory and motor-affordance semantics. 

in Experiment 2. When the current input was not a noun or a verb (respectively), 

a vector input ofall O's was presented at that layer, and no backpropagation of 

error was performed for that layer. 

Employing the sensorimotor features as output targets was designed to 

eliminate the confound of representational richness involved in using additional 

inputs, as discussed in Experiment 3 above. Also, the fact that the network is 
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producing sensorimotor noun and verb features at the output means that we can 

examine the ability of the network to generate the correct features for any given 

word. This gives us a measure of vocabulary acquisition both during learning and 

when testing generalization performance on novel words presented at the input. 

See the general discussion for further comments on this. 

2.7.1 Method 

We used a large (10,742 word) selection of speech drawn from the ChildDES 

database (Me Whinney, 2000) transcribed from mother-child playtime 

interactions. This corpus was created by appending all of the Bates FREE20 data 

sets (Bates, Bretherton, & Snyder, 1988; Carlson-Luden, 1979) from the 

ChildDES database into a single body of text. Any pauses, periods, etc. in the 

original corpus were replaced with a generic pause marker, intended simply to 

assist in defining clause boundaries in this corpus of more complex sentences. 

Since simulations of networks trained on these large corpora take a long 

time to run, we eliminated the SRN-only control condition (supported by the clear 

difference between both the experimental and random conditions and the SRN­

only condition from Experiment 3) and focused on examining the difference in 

word prediction performance between the Experimental Condition (meaningful 

features) and Random Control Condition. 10 networks were run in each 

condition, for a total of20. Each network was run for 200 epochs using the 

SRNEngine simulation package (Howell & Becker, submitted). Rather than 

running these larger networks to asymptotic performance, we simply ran them for 
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Experiment 4A: Large Corpus, With Pauses 
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Figure 2.7: Mean grammatical prediction performance for a large naturalistic 

a fixed period (200 Epochs) within which grammatical prediction began to 

approach reasonable levels of performance. The networks' word prediction 

(grammatical) accuracy was recorded over the course of training. The network 

used a Euclidian distance based output rule to convert its output activations to a 

word label; thus every time step resulted in a discrete word prediction, as opposed 

to any sort ofphonological blend state. Comparison of this word to the target 

word produced the accuracy measure. 
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We also analyzed the networks' ability to produce the correct 

sensorimotor features at the output layers for each phonetically-presented input 

word, including any relationships to the frequency of the word. 

2. 7.2 Results 

The grammatical prediction performance of the networks in the Experimental 

Condition tends to be higher than that of the Random Condition, but the effect 

size is quite small (1.2% difference) with only a trend towards significance (t-test 

at Epoch 200, p = 0.161, df= 18) (See Figure 2.7). 

We also analyzed the performance ofthe network on the sensorimotor­

feature grounding task. That is, how accurate is the network at producing the 

sensorimotor features when it experiences the phonemes ofthe word? We ran 

one of the Experimental condition networks above (chosen at random) for a total 

of 500 epochs. At this point, noun and verb grounding were quite good, as can be 

seen from Table 1 below, although based on past experience accuracy could rise 

as high as 90% with further training. The network did not learn to produce 

sensorimotor features for any noun that occurred fewer than 4 times in the corpus, 

nor for any verb that occurred fewer than 5 times. Feature production accuracy 

for both nouns and verbs was correlated highly with frequency (nouns, r = 0.7353, 

verbs, r = 0.6828). Word Prediction accuracy was also highly correlated with 

frequency of the target word (r =0.6266) (See Table 2.3). 
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Table 2.3: Output Accuracy from sample network at 500 epochs, during training 

Noun Features Verb Word Prediction 
Encoding Features 

Encoding 
Accuracy 65.535% 75.251% 28.030% 
Number of 60 grounded 49 grounded 529 words in this 
Items nouns in this verbs in this corpus total 

corpus corpus 

2.7.3 Discussion 

The network is clearly able to learn to produce sensorimotor features at 

output that correspond to the meaning of the word presented phonetically at input. 

This is not critical to our present analysis, and so will not be considered further, 

although it will prove important in further studies of "propagation of grounding" ­

the ability of the network to learn to produce features for novel words that have 

never had features. (see Howell, Becker, & Jankowicz, 2001). 

We expected that the modified architecture and larger corpora would be 

sufficient to demonstrate the advantage of including meaningful features in the 

word learning and word prediction process. While the results show a trend in this 

direction, the difference is not large enough to be truly convincing. 

With the richness and complexity ofthe corpora seeming to be sufficient, 

what other factors could have swamped our ability to detect an advantage for 

sensorimotor features in word prediction? We hypothesized that it is the 

numerous pauses that occur in natural speech and are included in this corpora that 

obscure the advantage for meaningful features over random features. The pauses 
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provide extra information that may make feature information less important (as 

well as artificially inflating the accuracy figures for input-symbol prediction by 

being very frequent). For example, after a sentence boundary, the next word will 

most likely be an animate noun (an agent). In simple (SVO) sentences, after an 

object noun, a sentence boundary is likely to follow. In Experiment 4B we 

repeated the methodology ofExperiment 4A on the same corpus, but after the 

removal ofthe markers at clause and sentence boundaries. 

2.8 Experiment 4B- Pause Markers Removed 

Removal of the pauses from the training corpus reduced the size of the 

corpus to 8,328 words. However, it also increased the difficulty of the word 

prediction task. Periods or other sentence boundaries serve as indicators that one 

thought or message is complete and another is beginning, and this information 

affects the predictions that can be made. Thus we expect to see a larger difference 

between the Experimental Condition and the Random Control Condition in this 

experiment than in Experiment 4A. 

2.8.1 Method 

The network had exactly the same architecture as that used in Experiment 

4A (See Figure 2.6). The control condition and training parameters were likewise 

identical, and the training corpus was identical except for the removal ofall pause 

markers. We ran ten networks in each condition. 
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Experiment 48- Naturalistic Corpus with Pause Markers Removed 
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Figure 2.8: Mean grammatical prediction performance for a large naturalistic 
corpus (8328 words) which excludes pauses/periods. Number ofnetworks 
in each condition is 10. Error bars indicate standard error. 

2.8.2 Results 

The results are slightly clearer than in Experiment 4A. The mean 

performance ofnetworks in the Experimental condition is higher than that of the 

Random condition (See Figure 2.8), but the difference is not significant (t-test at 

Epoch 200, p = 0.236,, df= 18). The gap is wider in the later epochs than in the 

earlier ones, implying a possible divergence in the two conditions with further 

training. The difference between the two conditions is approximately 3.6% at the 

end of training. 
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2.8.3 Discussion 

Removing the pauses in the training corpus made the learning task more 

difficult, resulting in a greater reliance by the network on the structured 

information in the sensorimotor features. However, while the difference between 

the two conditions has increased by a factor of 3 from Experiment 4A to 

Experiment 4B, it is still not very dramatic. However, in light of the relative 

success ofExperiment 4B, the inability ofExperiment 4A to demonstrate a clear 

advantage for sensorimotor features might now be viewed as a sort of ceiling 

effect, due to the powerful ability of standard SRN's to learn the word prediction 

task. However, as we are making the task more difficult, we are seeing a larger 

advantage for the sensorimotor features materialize. This implies that if we make 

the task yet more difficult for the network, we may see an even larger advantage 

ofusing sensorimotor features. In our final experiment, Experiment 4C, we do 

just that by reducing the size of the network's hidden layer. 

2.9 Experiment 4C- Reduced Hidden Layer 

Experiment 4C was identical to Experiment 4B except that the size of the 

hidden layer and context layer was reduced. By limiting the network's resources 

for forming internal representations, we intended to make the task harder. This 

may be a better analogue to children's early learning, when attentional and other 

resources are immature and very limited. We predicted that this would magnify 

the advantage for the Experimental Condition over the Control Condition. 
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2.9.1 Method 

The network had the same architecture and training corpus as that used in 

Experiment 4B (See Figure 2.6). The only exception is the size of the hidden 

layer and context layer, which have been reduced from 30 units to 10 units. In 

addition, we used two different grammatical error criteria in our analysis. The 

first, the 'exact match' criterion, is quite conservative, as already mentioned. The 

predicted word has to be the exact target word expected. The second is a more 

generous "categorical match" criterion, where the predicted word only had be in 

the same grammatical category as the target word. All words in the corpus were 

divided into 1 of 12 grammatical categories, which included: adjective, adverb, 

conjunction, determiner, other, noun, possessive, preposition, pronoun, 

meaningless, and verb. The inclusion of this measure is to test the possibility that 

our exact match criterion is too conservative to have enough power to detect a 

difference between the Experimental and Control Conditions. 

Also, for the first time we analyzed the data from the other two output 

layers, the Noun Feature encoding accuracy and the Verb Feature encoding 

accuracy, to see if there was any difference in the accuracy between Experimental 

and Control conditions. To speed processing of the simulations in this 

experiment, accuracy data was logged at only 50 epoch intervals instead of 20 

epoch intervals. We ran 10 networks in each condition. 
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2.9.2 Results 

The results show a larger gap in word prediction accuracy between the two 

conditions than in Experiment 4A or 4B (See Figure 2.9). Using the exact match 

error criterion, the difference between the two conditions at epoch 200 is 

significant (t-test at Epoch 200, p = 0.017, df= 18). The percentage difference 

between the two conditions is 13%. Also, the gap is wider in the later epochs than 

in the earlier ones, implying a possible divergence in the two conditions with 

further training. Indeed, a repeated measures ANOVA on the data from epochs 

150 and 200 yields a significant interaction effect oftraining by condition (p = 

0.034, df=18). 

Using the categorical match error criterion, the mean accuracy of the 

Experimental group rises to 0.185, the control group to 0.171. The size ofthe 

difference is 0.014, or an 8.2% difference between the two groups. The 

difference under this error criterion is also significant, (t-test at Epoch 200, p = 

0.035, df = 18). Due to the processing demands of calculating this error criterion, 

it was only calculated for the final epoch of training. 
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Experiment 4C- Naturalistic Corpus without Pauses (10 hidden Units) 
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Figure 2.9: Mean grammatical prediction performance for a large corpus (8328 
words) which excludes pauses/periods, with a reduced hidden/context layer (size 
1 0). The number of networks in each condition is 10. Error bars indicate standard 
error. 

Noun encoding accuracy is also significantly different between the two 

conditions at the 200 epochs (t-test at 200 epochs, p = 0.0344, df= 18), with the 

sensorimotor feature condition being superior to the random features condition 

(see Figure 2.1 0). The difference in verb encoding accuracy was not significant, 

however (p = 0.120, df= 18). 
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2.9.3 Discussion 

Increasing the difficulty of the task for the network has magnified the 

advantage of the sensorimotor features in the Experimental condition. Using the 

exact match error criterion, a significant difference of 13% in word prediction 

accuracy (a simple measure ofgrammar learning abilities) is evident at the final 

point oftraining, and the difference between the two conditions' average accuracy 

curves is increasing with the amount oftraining. 

The categorical match error criterion produces a similar result (8.2% 

difference) at the final epoch of training, and is also significant. However, given 

that using the exact match measure is much easier to calculate than the categorical 

match measure, and does not involve issues such as the choice of the right level of 

grammatical categories to use, etc., it seems appropriate that we have been using 

the more conservative exact match grammatical accuracy measure throughout 

these experiments. Still it is interesting to see that the results do not depend on 

the choice ofgrammatical accuracy error criterion. 
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Noun and Verb Feature Encoding Accuracy Across Condition 
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Figure 2.10: Noun and Verb feature encoding accuracy from Experiment 4C. 
These two output layers were performing a recoding from the phonetic features 
of a word to the semantic features of a word. The noun feature encoding is 
significantly different across the two conditions, as measured by t-test at the 
terminal point, but the verb features are not. The number of networks in each 
condition is 12. Error bars indicate standard error. 

Also, the ability of the network tore-code the phonetically presented word 

inputs as semantic features is significantly different between the two conditions, 

at least for nouns. The fact that this effect was not significant for verbs may be 

due to the fact that fewer of them were grounded in our training corpus ( 60 nouns 

versus 49 verbs) and the fact that the network has more exposure to nouns (since 

most simple sentences contain only one verb, but several nouns). 
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These results demonstrate the ability of sensorimotor features to improve both the 

grammar learning process, and the process of mapping words to conceptual 

features. 

2.10 General Discussion and Conclusions 

From the preceding sequence of experiments we can see that while the 

influence of sensorimotor features on language acquisition is expected to be large, 

trying to explore it using only the word prediction task is tricky. As other work 

(Elman, 1990, 1993) has shown, a normal SRN is already quite good at learning 

sequences ofwords; demonstrating even better performance with the inclusion of 

sensorimotor features is therefore not easy. Also, it is important to note in all of 

these experiments that even with this child-directed corpus, only 60 nouns and 49 

verbs were actually represented in our vocabulary of352 grounded early nouns 

and 90 grounded early verbs. Had more ofthe corpora's vocabulary of529 words 

been grounded, the effects of including the sensorimotor features might have been 

larger and easier to detect. However, in several simulation experiments, and most 

strongly in Experiment 4C, we were able to demonstrate the advantage of using 

sensorimotor features in the word prediction task, with features yielding up to a 

13% improvement over the control condition on this measure of grammatical 

performance for a language acquisition network. We also showed that the 

networks in the Sensorimotor Feature condition were better able to learn to 

encode the relationships between phonetically input words and their 
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corresponding conceptual features. Both of these results demonstrate that having 

sensory and motor knowledge ofobjects and events in the environment is a 

significant advantage when trying to acquire language for the first time, for 

networks and presumably for children. 

There are numerous other advantages in using networks with sensorimotor 

features. One is that we could simulate an analogue of word comprehension, by 

assessing whether a word label (the sound ofa word) has been linked to a 

meaning representation. Data was briefly presented herein to demonstrate that 

these networks perform quite well at learning by this measure. Another advantage 

relates to word sense disambiguation: these sort ofmeaning representations may 

be used to disambiguate multiple senses ofa word encountered in text, through 

the operation of feature prediction in concert with word prediction. That is, if the 

network is predicting the word "bank" next, by examining the features it is 

predicting at the same time we might be able to tell whether it means to output "a 

place to store money" or "the edge of a river". 

Once we have a set of explicitly grounded sensorimotor features for the 

earliest words, a question then naturally arises: do we need to derive featural 

ratings for every concept that the network is exposed to? Fortunately, that should 

not be necessary. As discussed previously, evidence indicates that only the 

child's earliest words are fully grounded in sensory experience (Gillette et al., 

1999); in fact it is the early words' very imageability and accessibility to 

observation that leads them to be the first words generally learned by children. 
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As lexical learning progresses, less and less imageable (i.e. more abstract) words 

are experienced and learned. Also, the learner is exposed to novel words in 

speech or text that are not directly grounded in immediate sensory experience. 

Both of these sorts of words can be grounded only indirectly by association with 

other more imageable words in the context. Therefore, if we empirically generate 

the sensorimotor features for the most imageable, earliest words in children's 

lexicons, we can reasonably expect that later words will be effectively grounded 

via their relationships to these earlier words. In the neural network model, novel 

words presented to the model without accompanying sensory input should begin 

to elicit the appropriate sensorimotor features due to similarities to other concepts 

or words that share context or usage (See Howell, Becker & Jankowicz, 2001, for 

a discussion). This is our "propagation of grounding" process. 

We have not yet addressed directly with these networks this question of 

whether novel "ungrounded" words introduced to a trained network will 

automatically develop sensorimotor representations, via word co-occurrence 

relations to similar words which are grounded in sensorimotor features. The 

present demonstration ofthe contribution of sensorimotor features to lexical and 

grammatical learning was a necessary first step. We are now experimenting with 

networks designed to investigate this propagation of grounding more directly. 

Finally, sensorimotor features can also be particularly useful in modelling 

in detail the process ofword learning. If as Bloom (2000) suggests, children learn 

the meanings of words through attention to what the caregiver is attending to, then 
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combining feature representations with phoneme-by-phoneme speech 

representations might be a network analogy. This would help the network to learn 

to bind individual phonemes into words, using the constancy of sensorimotor 

features (as an analogue to focused joint attention with a caregiver) to determine 

that all these phonemes apply to the same perceived object. In unpublished work, 

we have begun to examine exactly this. 

In summary, since children seem to use preexisting sensorimotor concepts 

to bootstrap the language learning process, neural network models of language 

should benefit from including them too, in a variety ofways. We have 

demonstrated herein three of the ways in which they provide an advantage to a 

language learning network, specifically, the improvement of the network's word 

prediction (an aspect of grammar), improvements in noun feature encoding, and 

the ability to assess word comprehension. More work is clearly needed, however, 

to explore the capabilities gained by adding sensorimotor grounding to a neural 

network model of language acquisition. 
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Chapter 3 

Grammar from the Lexicon: Evidence from Neural 
Network Simulations of Language Acquisition 

3.1 Preface 

This chapter is reproduced from Howell and Becker (submitted). The paper was 

first submitted in December 2003, and is currently under revision. We provide 

evidence that lexical learning that is grounded in pre-linguistic sensorimotor 

features causes a distinct correlation between lexical and grammatical learning 

analogous to that found in children. Control experiments ofacquisition that lack 

this grounded sensorimotor meaning do not show this correlation. This furthers 

our research program into the effects ofchildren's pre-linguistic embodied 

knowledge on language acquisition. 

3.2 Abstract 

Previous evidence indicates that there is no dissociation between lexical learning 

and grammatical learning in children's language acquisition. Rather, the 

acquisition ofwords is the driving force behind the acquisition of early grammar, 

69 




PHD Thesis -Howell, S. R., McMaster University 

with grammatical performance being strongly correlated with earlier measures of 

lexical performance. We suggest that this is due to children's rich knowledge of 

the sensorimotor content of early words: knowledge about basic semantic features 

such as motion or size. This semantic knowledge helps to constrain the ways in 

which those words will be expected to occur in sentences heard by children, and 

eventually produced by them. We present neural network simulations of language 

acquisition that show strong correlations between early lexical performance and 

later grammatical performance. Importantly, this relationship greatly diminishes 

as the semantic content of the word representations is reduced. This supports the 

hypothesis that early grammar is emergent from children's previous lexical 

learning. 

3.3 Introduction 

There are several theories in the language acquisition literature concerning the 

origins ofgrammar in children. For example, some have argued for innate 

components to grammar, either as dedicated hard-wired neural structures devoted 

to syntax or at least as a set of constraints imposed by neural architecture (e.g. 

Chomsky, 1988; Pinker, 1994). This often includes the notion ofa specific 

grammar module. Others, especially recently in linguistics, have suggested a more 

constructivist perspective, a 'lexicalized' grammar, or an 'emergent' grammar (e.g. 

Bates & Goodman, 1999). From this point ofview early grammar is thought to 
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be built upon the acquisition of a lexicon of words, a lexicon rich in semantic 

detail indicating properties such as agency, motion, etc. 

Bates and Goodman ( 1999), among others, have suggested that should the 

former position be correct in child language, we should expect to see signs ofa 

dissociation in lexical and grammatical learning or performance. They argue that 

such evidence is not convincing. They present data that contradicts commonly 

held ideas about the relative sparing of grammar or lexicon in various disorders, 

such as William's syndrome for grammar. Furthermore, they present data 

showing that children's lexical acquisition status, as measured by vocabulary size, 

is strongly correlated with their later grammatical performance, as measured by 

their mean length of utterance (MLU). Specifically, the correlation between 

lexical status at 20 months and grammatical status at 28 months is between r = 0. 7 

and r = 0.84. These correlations are as high as those between separate measures 

of grammatical status. 

In previous work, we investigated this lexicon to grammar correlation 

using neural network models oflanguage acquisition (Howell and Becker, 2001). 

We reasoned that if a simple neural network architecture could demonstrate the 

same sort of lexicon to grammar relationship, this would provide support for the 

constructivist explanation. Our neural network was designed to map linguistic 

forms ofwords to semantic meanings of words, while simultaneously learning to 

predict which word should come next, a grammatical task. The former was our 

measure of lexical performance, the latter our measure ofgrammatical 
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performance, and indeed, we did find that the highest correlation (r = 0.8) 

between the two was at a moderate learning lag, from earlier lexical learning to 

later grammatical learning (Howell and Becker, 2001). 

However, the similarities between that work and the child data were 

somewhat limited, in that it used a very small vocabulary, somewhat unrealistic 

localist representations ofwords, and an artificial set of feature dimensions that 

was partially contaminated by linguistically associative features. The feature 

representations of pre-linguistic children, as we have argued elsewhere (Howell, 

Becker and Jankowicz, 2001), should be restricted to those features directly 

available to the child through sensory-motor interactions with the world, such as 

size, or texture (see Lakoff, 1987). We have since created such a feature set 

(Howell, Becker and Jankowicz, submitted), by having human participants rate 

nouns and verbs on a set of sensorimotor feature dimensions (97 for nouns, 84 for 

verbs). Thus, we were able to attempt a clearer demonstration of the lexicon-to­

grammar effect with a new set of simulation experiments. The experiments 

described below use both simple and complex training corpora with our 

sensorimotor training set and phonemic rather than loca1ist word encoding, all in 

an attempt to more closely match the measurement conditions used with children. 

3.4 Simulation Experiment 1 

In this experiment, we trained a neural network model of language acquisition 

under several different conditions to investigate the relationship between lexical 
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learning and grammatical learning. Specifically, by grammar learning we are 

referring to basic syntax, or sequence learning. 

3.4.1 Method 

We used an extended Simple-Recurrent Network (SRN) architecture as our 

language-acquisition model in this experiment (See Figure 1 ). These networks 

have been shown (e.g. Elman, 1990, Howell & Becker, 2001) to be capable of 

learning aspects of syntax or grammar. Elman ( 1990) first demonstrated this by 

training a network to perform the word prediction task: predicting from the 

current input word what the next word would be. In order to do this, the network 

must develop an internal representation ofhow words relate to each other 

sequentially; in other words, it must learn simple elements of grammar. 

Elman's original SRN architecture employed a simple form of recurrence 

in the hidden layer to maintain context. We extended this SRN model in an 

important way. In addition to performing word prediction, the network was 

trained to produce the sensorimotor features ofthe input word. We hypothesized 

that by using a common pool of hidden units for both word prediction and word 

recognition, the network would make use of its semantic knowledge ofwords in 

learning word-word relationships. Our prediction was that given enough 

structured knowledge about words, the network would behave similarly to 

children: grammatical performance (basic syntactic learning) would be highly 

correlated with earlier lexical performance. 
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Figure 3.1: Modified SRN architecture, including standard SRN hidden layer 
and context layer, standard linguistic (word) prediction output, and novel noun 
feature output and verb feature output. The linguistic input is a whole-word 
phonetic representation of up to 10 phonemes. The Noun and Verb feature 
targets are meant to be an abstract representation ofpre-linguistic sensory and 
motor-affordance semantics. 

Thus, our network was trained to perform two tasks simultaneously: 1) 

word prediction and 2) sensorimotor feature retrieval. This was done using three 

separate pools of output units (See Figure 1 ). The Linguistic Predictor output 

layer performed the word-prediction task. At each time step, its goal was to 

predict the phonemic representation of the input word at the next time step. The 

task for the remaining two outputs was to produce the sensorimotor features of the 

current word, or essentially, to map the sounds of the word to its 'meaning'. The 

Noun Features layer and Verb Features layer had output targets that represented 
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the sensorimotor features for the current word, either noun or verb (see Howell, 

Becker & Jankowicz, submitted). When the current input was not a noun or a verb 

(respectively), a vector input ofall O's was presented at that layer, and no 

backpropagation oferror was performed for that layer. 

At input, whole-word phonetic representations of words were presented in 

serial order through the corpus. Each input word was encoded as a set of up to 10 

phonemes using 140 input units. The 140-element word inputs represented 10 

phonemic slots each containing 14 phonemic feature bits. The Carnegie Mellon 

University (CMU, 1995) machine-readable phonetic transcription system and 

pronouncing dictionary was used to generate our phonetic representations of 

words. Each phoneme was uniquely mapped to a set of 14 bits, representing 

articulatory dimensions of the phonemes (See Howell, Becker, and Jankowicz, 

submitted). Words shorter than 10 phonemes had their rightmost slots padded 

with zeros, while longer words were truncated. Thus while we are using a 

phonetic encoding scheme for words, the network's input is not a sequence of 

phonemes and pauses but a continuous series ofphonemic "chunks" pre­

segmented into words. 

A small common hidden layer and context layer of 30 units each were 

used. Whatever internal representation of grammar that the network develops is 

encoded in the weights to and from the hidden layer. Given a large enough hidden 

layer, the three pools of output units could recruit a separate portion of the hidden 

units for their own purposes. Thus, to force the network to develop an integrated 

75 




PHD Thesis- Howell, S. R., McMaster University 

internal representation common to both tasks, we keep the hidden layer resources 

limited. 

The structure of our model allows us to measure both lexical and 

grammatical performance. Lexical performance can be inferred from the ability 

of the network to generate the correct sensorimotor features for any given word. 

This gives us a measure ofvocabulary acquisition both during learning and when 

testing generalization performance on novel words presented at the input. 

Grammatical performance, on the other hand, can be inferred from the network's 

word prediction accuracy. Thus we have measures of lexical performance 

(features encoding accuracy) and grammatical performance (word prediction 

accuracy), which are obviously necessary before we can examine the relationship 

between them. 

The training input for the networks in this experiment consisted ofa small 

corpus (390 words) of two and three word subject-verb (SV) and Subject-verb­

object (SVO) sentences. These sentences were an excerpt from a larger corpus of 

sentences which was created via a simple random generation of allowable 

sentences using a lexicon of29 words (18 nouns and 11 verbs). Three classes of 

verbs were included, transitive, intransitive, and optionally transitive. This 

produced telegraphic sentences like "Dog Chase Cat", "Man Eat Sandwich", or 

"Cat Sleep". Training used the back-propagation of error learning algorithm 

(Rumelhart, Hinton, & Williams, 1986). 
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In addition to the network model described above, which we refer to as the 

Experimental condition, two control conditions were run to evaluate the 

contribution of semantic meaning (structured sensorimotor features) to the 

lexical-grammatical relationship. The Experimental condition used human­

generated meaningful noun and verb features. These scalar-valued features 

corresponded to human ratings ofdimensions such as size (see Howell, Becker, 

and Jankowicz, submitted, for details). This condition has maximum semantic 

content. 

The Random Control condition used the same architecture as the 

Experimental condition, but replaced the human-generated (and meaningful) noun 

features with randomized permutations ofthat same set of features. This 

condition is intended to provide a minimal baseline and control for input vector 

magnitudes. The randomization was performed by first swapping each word's 

feature representation with the representation of another word in its class (either 

noun or verb). Secondly, within each of these vectors, the representations were 

further randomized by iteratively swapping the value at each position on the 97 

element vector with that of another random position. These manipulations 

minimize any featural similarity between related words, while maintaining the 

overall magnitude and range distribution of the feature vectors. 

The Swapped Control Condition falls somewhere between the other two. 

The existing, meaningful, feature representations ofthe Experimental condition 

were randomized using only the first part of the above-described randomization 
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scheme. That is, the featural representations ofeach word were swapped with 

another random word. Within a featural representation, however, the position of 

each individual bit did not change, and so neither did its meaning. In most cases, 

this would mean that the featural information for a word no longer agreed with the 

usage of the word. Thus a word like "Book" with a speed feature of zero might 

now have the features of"Dog", giving it a speed rating of0.5. This should cause 

the network to expect to see it in sentences involving running or chasing, when in 

fact the same sentences will be presented for "Book", in spite of its changed 

'meaning' representation. Of course, in some cases similar representations might 

be maintained, e.g. if "Cat" were swapped with "Dog". Minor meaning 

representation differences would be present, but at the level ofcomplexity ofour 

corpus this might not make a noticeable difference. Thus we expect the 

relationship between lexical semantics and grammar to be preserved to a greater 

degree in this condition than in the case of the Random Control condition, but less 

than the Experimental condition. 

Eight networks were run in each of the three conditions, for a total of 24 

networks. Each network's weights were initialized randomly and trained for 500 

epochs using the SRNEngine simulation package (Howell & Becker, submitted). 

The networks' output accuracy was measured using the Euclidean distance from 

the actual output to the target output. We measured accuracy by counting as 

correct only those outputs that produced a smallest distance measure to the correct 

target. Near-misses, such as "Dog" in place of "Cat" or "Move" in place of "Run" 

78 




PHD Thesis- Howell, S. R., McMaster University 

were counted as failures. There may be reason to count near misses like the 

above as accurate, especially for word prediction, when predicting any valid 

subject as the third word ofa sentence might be considered accurate, for example. 

However, for the present experiments we measured accuracy in the more 

conservative way. Accuracy was recorded in this fashion in all three pools of 

output units. 

Measurement 

In order to calculate a lexical-grammatical correlation we need to specify points 

on the learning trajectories ofboth tasks at which to take measurements. For 

lexical status we simply took the peak performance point of the lexical accuracy 

curve (approximately Epoch 20) as our point of reference. This was roughly the 

point at which the steeply rising curve began to plateau. We also took several 

points on either side of this one, for comparison purposes, to ensure that the 

choice oflexical reference point was not critical. Grammatical accuracy, 

however, does not 'peak' during our training range. Thus we decided to avoid the 

necessity ofpicking a single point, and calculated the correlation from each of our 

several noun points to grammatical accuracy at every epoch during the training 

range. Thus, instead of looking at the value of any particular correlation 

coefficient, we examined the overall pattern ofcorrelations. We predicted that 

this overall pattern ofcorrelations would be higher and more stable for the 

Experimental condition than the Random condition, and that furthermore the 

Swapped condition should be intermediate between them. 
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3.4.2 Results 

Figures 2 and 3 show plots of the lexicon to grammar correlation across condition, 

for nouns and verbs, respectively. 

In the Experimental Condition, the lexical-grammatical correlations start 

extremely low at lexical to grammatical lags of zero or negative values, but at 

positive measurement lags, the correlations climb quickly and stay very high. The 

approximate sustained correlation is r = 0.9 for the nouns, and r = 0.8 for the 

verbs, throughout the training range. Furthermore, the difference between the 

correlation lines for the different lexical performance measurement points 

(discussed above) is quite small; they parallel each other closely. This is true for 

both noun and verb correlations. Thus, the choice of noun and verb reference 

point is not a critical factor in our results. 

In the Random Condition, the noun lexical-grammatical correlations start 

negative to low, and rise slowly over time, staying below r = 0.4. They are 

somewhat stable. The Verb lexical correlations are wildly varying, with a mild 

central peak midway through learning of about r = 0.3 
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In the Swapped Condition, the noun lexical-grammatical correlations are 

quite variable, with (in the best case) a correlation that jumps up to around r = 0.8 

fairly quickly and then tails off to the r = 0.4 level. The verb lexical-grammatical 

correlations are even worse, varying a great deal, and in the best case peaking at 

around r = 0.75 after very short lags and then dropping negative. 

Experiment 1: Comparison of Noun (N20) to Grammar Correlations 
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Figure 3.2: Noun Lexicon to Grammar Correlations in all three conditions of 
Experiment 1. Curves are noun to grammar correlations from the Epoch 20 noun 
reference point to all grammar points (Epochs 1 to 500). Simultaneous correlations 
occur when the Epoch is equal to the Noun reference point (Epoch 20). Correlations 
before that point are from earlier grammar to later lexical learning, correlations after 
are lexical learning to later grammatical learning. 
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Figure 3.3: Verb Lexicon to Grammar Correlations in all three conditions of 
Experiment 1. Curves are verb to grammar correlations from the Epoch 20 verb 
reference point to all grammar points (Epochs 1 to 500). Simultaneous 
correlations occur when the Epoch is equal to the Verb reference point (Epoch 
20). Correlations before that point are from earlier grammar to later lexical 
learning, correlations after are lexical learning to later grammatical learning. 

3.4.3 Discussion 

The difference between the sustained high correlations of the Experimental 

condition and the lower or varying correlations of the other two are dramatic, both 

for nouns and verbs. Overall, the Random condition clearly has a lower 

correlation. The Swapped condition, while occasionally demonstrating higher 

correlations, also demonstrates large negative correlations. This variability may 

be explained by the differing forces at work on the learning of the networks in the 

Swapped condition, with sensorimotor feature information being sometimes 
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opposed to syntactic information provided by word order and sometimes in 

concert with it. 

While trying to make too close an examination of the correlations in the 

Random and Swapped conditions is pointless due to the high degree of variability, 

it seems obvious that the connection between lexical learning and grammatical 

learning in the random condition is somewhat more stable than the swapped 

condition. The lexical grammatical correlations in the Random condition are 

consistently lower than in the Experimental condition, and indeed, at whichever 

lexical to grammatical correlation point we examine, the Experimental condition 

is a great deal higher than the Random condition. 

The implications of this finding for theories oflexicalized grammar or 

emergent grammar are interesting. Networks that have access to informative 

representations about the sensory and functional semantics ofwords show a high 

lexical-grammatical correlation, while networks that have less semantic 

information do not. Thus, in our networks at least, the more that is known about 

the semantics of the words in the lexicon, the greater will be grammatical 

knowledge (in this case, basic syntactic knowledge) at a slightly later point in 

learning. The explanation for this is straightforward. The kinds ofknowledge that 

our sensorimotor features represent are information about concrete properties of 

objects and events. Those concrete properties are the same things that dictate in 

the environment how those objects and events can interact. For objects, some of 

these properties would be related to the objects' affordances, the list ofthings that 
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it is possible to do with an object, thanks to its physical properties (Glenberg & 

Robertson, 2000). Most language is used to discuss or describe the real world and 

possible events in it. Thus, having prior knowledge about how the physical 

referents of the new and to-be-learned word symbols can interact or appear would 

simplify the language learning task. Understanding a sequence ofwords about 

these objects or events becomes a lot easier when the learner has strong, extra­

linguistic expectations as to the allowable combinations of referents, and hence 

their word symbols. That is, knowing that dogs often move while books don't 

makes it easier to predict a sentence like "dog move" than one like "book move". 

Some ofthe work of learning syntactic rules has been already done for the 

network, or the child, by the operation of semantic knowledge and expectancies 

that has been incorporated into the mental lexicon, and is not inherent in the 

syntax of the speech or text stream. 

The above effects were produced by training our model on a relatively 

small and simple corpus of artificially generated sentences with a small, fully­

grounded lexicon. The sentence structures involved were somewhat limited as 

well (only SV and SVO structures). Natural language is much more complex and 

less rigidly structured. Further, spoken language frequently contains 

ungrammatical utterances. We therefore wanted to determine whether the same 

effect would be apparent in a larger, more naturalistic corpus with a more 

realistically-sized lexicon. 
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3.5 Simulation Experiment 2 

In this experiment we used a much larger, naturalistic corpus of text with the 

same network as in Experiment 1, to ascertain whether similar effects are visible 

in its lexical-grammatical relationships. 

3.5.1 Method 

We trained on a large (10,742 word) selection of speech drawn from the 

ChildDES database (Me Whinney, 2000) transcribed from mother-child playtime 

interactions. This corpus was created by appending all ofthe Bates FREE20 data 

sets (Bates, Bretherton, & Snyder, 1988; Carlson-Lucien, 1979) from the 

ChildDES database into a single body of text. Any pauses, periods, etc. in the 

original corpus were replaced with a generic pause marker, intended simply to 

assist in defining clause boundaries in this corpus of more complex sentences. 

This corpus had a vocabulary size of529 words. Ofthese 529 words, a sizable 

minority ofthe content words were grounded in our sensorimotor feature 

representations (60 nouns, 49 verbs). The grounded words were those that are 

represented earliest in children's vocabularies (Fenson et al, 2000). 

Due to time and processing constraints with these larger networks, we 

eliminated the swapped control condition and compared only the Experimental 

and the Random conditions. 11 networks in each condition were trained for 200 

epochs using the SRNEngine simulation package (Howell & Becker, submitted). 

Rather than running these larger networks to asymptotic performance, we simply 
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ran them for a fixed number ofepochs (200) within which grammatical prediction 

began to approach reasonable levels ofperformance. The networks' word 

prediction (grammatical) accuracy was recorded over the course of training, as 

well as its noun and verb feature encoding accuracy. We analyzed the noun-to­

grammar and verb-to-grammar relationships in the same way as in Experiment 1. 

3.5.2 Results 

The epoch at which a 'peak' oflexical accuracy was reached was 

approximately epoch 40 for both nouns and verbs. Thus we calculated the 

lexicon-to-grammar correlations from both noun and verb performance at Epoch 

40 to every epoch of grammar learning. We show the comparison of the 

Experimental to the Random condition for nouns in Figure 3 .4, and for verbs in 

Figure 3.5. 
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Figure 3.4: Noun Lexicon to Grammar Correlations in both conditions of 
Experiment 2. Curves are noun to grammar correlations from the Epoch 40 noun 
reference point to all grammar points (Epochs 1 to 500). Simultaneous correlations 
occur when the Epoch is equal to the Noun reference point (Epoch 40). Correlations 
before that point are from earlier grammar to later lexical learning, correlations after 
are lexical learning to later grammatical learning. 

For nouns, the Experimental condition correlations are everywhere 

substantially higher than the Random condition (averaging around r = 0.75 

compared tor= 0.3), and they rise slightly from the contemporaneous Epoch 40 

point to a peak ofr = 0.86 at a point 40 epochs later. The Random condition 

correlations steadily decline. For verbs there is also an increase, from Epoch 40 

to a correlation ofr = 0.88 at a point about 40 epochs later (grammar learning at 

Epoch 80) in the Experimental condition. There is a steady decline in the 
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Experiment 2: Comparison of Verb (V40) to Grammar 

Correlations 
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Figure 3.5: Verb to Grammar Correlations in all three conditions ofExperiment 2. 
Curves are verb to grammar correlations from the Epoch 40 verb reference point to 
all grammar points (Epochs 1 to 500). Simultaneous correlations occur when the 
Epoch is equal to the Verb reference point (Epoch 40). Correlations before that 
point are from earlier grammar to later lexical learning, correlations after are 
lexical learning to later grammatical learning. 

Random condition from the Epoch 40 point. The verb-to-grammar correlation 

stays high and relatively stable (r = 0.75 tor= 0.85) throughout, while the 

Random condition is lower and declining (max r = 0.65, average around r = 0.5). 

Choosing different noun and verb lexical accuracy reference points makes 

little difference to the correlations in this Experiment, as correlation curves 

calculated from neighboring points are relatively close to the curve from the 

Epoch 40 point, although the Epoch 40 correlations are generally the highest. 

These additional curves are not shown. 
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3.5.3 Discussion 

In this experiment, the Experimental and Random conditions are clearly different 

throughout all of the training period, for both noun-to-grammar relationships and 

verb-to-grammar relationships. The verb-to-grammar correlations remain slightly 

higher at large epoch lags, at around r = 0.85, while the noun-to-grammar 

correlations are sustained at approximately r = 0.75. We cannot make too much of 

such a small difference, but there is the possibility that verb semantics might be 

somewhat more important to sentence meaning (and hence grammatical 

performance) than noun meaning, especially in the more complex sentences of 

this Experiment. This would certainly be consistent with the literature on the 

importance of early verbs as prototypes for basic argument structure constructions 

(e.g. Goldberg, 1999). 

Interestingly, in this experiment the lexical to grammar correlation is 

already quite high at grammar points before the epoch 40 noun and verb reference 

points. These correlations would represent a correlation between earlier 

grammatical and later lexical learning, which is not what we are expecting in 

these experiments. Ofcourse, these correlations are not as high as those observed 

at later grammatical points (representing the expected lexical-to-grammatical 

lags) but they are still unexpected. 

Once possible reason for these first several points is that they are spurious 

correlations. In drawing our conclusion about the lexical-to-grammatical 

correlation pattern at positive time lags, we have a sequence of many points, all 
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showing the pattern in question, which indicates that the pattern is not due to 

chance alone. The two data points supporting the pre-lexical correlation, on the 

other hand, are not as convincing evidence for a meaningful pattern. Furthermore, 

the sets of correlations taken from different noun reference points (which 

normally show a close correspondence, taken above as an indication that the exact 

noun reference point is unimportant) show a higher range of variability in the 

neighborhood of the pre-reference point correlations. The lexical-to-grammatical 

relationship for those first several points thus seems to be highly variable, and for 

the particular data points that were sampled and plotted, happened to be high. 

The post-reference point correlations, on the other hand, are more regular, and do 

not depend as much on which data points are used or plotted 

3.6 General Discussion 

In these experiments a similar pattern of lexicon-to-grammar relationships was 

found for both nouns and verbs, in both a small, simple, fully grounded text 

corpus and a large, naturalistic, partially grounded speech corpus. The 

Experimental condition, in which some or all of the words experienced are 

grounded in sensorimotor feature representations, always showed a higher 

correlation between earlier lexical performance and later grammatical 

performance than conditions without these meaningful feature representations. 

This is an effect analogous to the relationship found in children, where their 
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lexical performance at 20 months is highly correlated with grammatical 

performance at 28 months. 

In essence, what these simulations indicate is that a language learner 

possessing rich representations for the concepts which will become the basis for 

the first words has an easier time learning how those words can be used in 

sentences. The featural information that is provided to our networks, or via the 

children's senses, helps to constrain the ways the word representing that concept 

can be used in sentences. A rich lexicon that contains these kinds oflow-level 

semantic features allows the similarities between related words to be detected and 

taken advantage of during learning. Thus grammar learning is influenced in two 

ways in our networks, the straightforward statistical learning about which words 

occur in which syntactic roles, and the learning of semantic constraints of what 

words can fit together in a sentence based on the relationships that hold between 

the underlying concepts. Thus grammar, at least partially, emerges from the 

lexicon. 

Of course, the analogy between the lexicon to grammar relationships 

displayed in these simulations and that found in children has certain limits. For 

example, in children lexical performance is measured at a pre-determined age for 

these calculations, 20 months, and grammatical performance is assessed based on 

a mean-length of utterance (MLU) measurement at 28 months, once grammatical 

production has taken off. We have an analogous lexical reference point, but not 

any single logical grammatical reference point, hence our method of looking at 
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patterns of correlations across the entire trajectory of grammar learning. Also, we 

are still only able to use grammatical comprehension as our measure of 

grammatical performance, not grammatical production. This may not be a 

problem, however. The reason that production is measured in children is simply 

because it is measurable, whereas comprehension, which necessarily precedes 

production, is more difficult to assess. In the networks, this situation is reversed; 

comprehension is easier to assess than production. However, the design of our 

networks does allow us to force them to produce sequences of text. In future 

work, we plan to investigate measuring MLU from the networks' production 

behaviour. This will allow us to more closely approach the way the child 

correlation is measured, and provide even stronger support for the view that early 

grammar emerges from the lexicon. 
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Chapter 4 

Grounding Words in Meaning Indirectly- A 
Computational Model of the Propagation of 
Grounding 

4.1 Preface 

This chapter is reproduced from Howell and Becker (Submitted b). This paper is 

in preparation, to be submitted shortly to the Journal ofMemory and Language. 

This paper is written partly in response to the debate between proponents of the 

grounded, embodied meaning ofwords in children and proponents ofhigh­

dimensional models of conceptual meaning. This paper provides evidence for a 

process by which the former can, with development and experience, build up to 

the latter. We believe this process has the potential to demonstrate a way to 

merge the two opposing theoretical viewpoints. This work also provides 

simulation evidence of a candidate cognitive process for the statistical inference 

ofthe meaning ofnovel words in children. Specifically, we explore the 

hypothesis that possessing word meanings grounded in sensorimotor features 
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allows a language learner to readily infer the meanings of novel, ungrounded 

words. 

4.2 Abstract 

The problem of mapping the forms of words to their meanings is a long-standing 

one, and in connectionist models of language generally requires training the direct 

pairing of word and meaning. We describe a neural network that begins with this 

direct pairing but also generalizes to more indirect acquisition ofword meanings. 

The network had the dual task of producing the meaning representations for each 

word, as well as predicting the next word. Most words had training targets 

provided for their meaning representations ('grounded'), and the network quickly 

learned these. However, the network also produced the correct meaning 

representations for many words which had never had meaning representation 

targets (ungrounded). We argue that this "propagation ofgrounding" is due to the 

overlapping task demands that allowed syntactic and semantic word co­

occurrence information to influence the word meanings being learned, much as 

children might learn novel words from context while reading. 

4.3 Introduction 

Considerable evidence indicates that children learn the meanings of many oftheir 

early words from direct sensory evidence (e.g. Bloom, 2000, Lakoff, 1987). The 

actual sequence ofthis learning is informative, however. Children start doing 

most of their word learning during the second year (Bloom, 2000). However, by 
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the end of the first year, they have already learned a great deal about navigating 

the world, interacting with objects, and comprehending events in it (e.g. Piaget, 

1952; Spelke, 1994; Baillargeon, Spelke, and Wasserman, 1985; Mandler, 1992). 

Furthermore, they have already learned a great deal about the sounds of language, 

through listening to the verbalizations of those around them, and through their 

own babbling (e.g. Saffran, Aslin, and Newport, 1996; Vihman, 1996). Thus in 

the second year, they are ready to put together the non-linguistic conceptual 

knowledge that they have developed about the world, and the knowledge of 

phonology that they have learned, to begin acquiring stable word representations 

that they can use (Bloom, 2000). 

In previous work (Howell, Jankowicz, and Becker, submitted), we 

addressed this stage of the language acquisition process in children. We created a 

set ofpre-linguistic conceptual representations that were designed to be as 

representative as possible of the sensory and motor (sensorimotor) representations 

of concepts that pre-linguistic children might have, for all of children's earliest 

words as represented on the MacArthur Communicative Development Inventory 

(MCDI- Fenson et al, 2000). We demonstrated that our sensorimotor feature 

representations captured much of the similarity structure of children's early 

words, while using only feature dimensions that are either sensory or motor in 

nature. By sensorimotor we mean aspects of meaning that might be captured in 

cortical representations, that are derived from either direct sensory perception of 

the world (and hence sensory cortex) or from manipulation and motor-affordance 
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experience with objects and events in the world (Glenberg and Robertson, 2000) 

that might involve representations in motor cortex. This idea ofconcept 

formation through mental imagery is consistent with the viewpoints ofBarsalou 

( 1999) and Lakoff (1987). Finally, we used these sensorimotor feature 

representations in neural network models of language acquisition to study the 

process of the phonology to meaning mapping, and its implications for other 

aspects of language, such as grammar learning. 

We used a modified SRN architecture (Elman, 1990) which had the dual 

task of mapping input phonology of words to sensorimotor meaning 

representations of words, as well as predicting the next word in the input stream. 

We trained the networks on a stream oflanguage taken from actual mother-to­

child speech (the ChildDes Corpus, McWhinney, 2000; Bates, Bretherton & 

Snyder, 1988; Carlsen-Luden, 1979) and compared the experimental networks to 

control networks which had random meaning representations rather than 

sensorimotor representations. We demonstrated that having this pre-linguistic 

conceptual information, and simultaneously performing the two tasks, makes it 

easier to learn syntactic information (word sequence information). Essentially, 

having prelinguistic conceptual representations makes it easier to learn aspects of 

grammar. This supports the importance of the early grounding ofwords (in 

physical, embodied, meaning) for later learning. 

However, children certainly do not learn all words, not even all nouns and 

verbs, from direct physical experience. This cannot be the case, given the 
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incredible word learning rates that occur in the school-age child (Bloom, 2000). 

These older children must be learning the meanings of some oftheir new words 

indirectly, by inferring meanings from the context, from the relationship of any 

given novel word to nearby words, sentence structures involved, or verb 

constructions (see Goldberg, 1999), and to other, related words that are not 

present but that typically occur in the same ways as the word in question (for a 

similar argument, see Landauer & Dumais, 1997). If so, how do they develop a 

rich representation for the word? Is it possible for them to do so for such words, 

or is the conceptual representation of such words eternally more vague, abstract 

and ill-defined than the more grounded and embodied conceptual representations 

held for words learned through direct sensory experience? 

Presumably, children's later learning of novel words in the above­

described manner is not destined to be eternally vague. Many of the sorts of 

words that children learn as they expand their vocabulary will be simply rarer 

words that nonetheless do have direct physical referents, and which children may 

eventually be exposed to directly, and be able to physically interact with. For 

example, children may have a strong, embodied concept for the word 'dog', based 

on their direct sensory experience with the family pet, and on their physical 

interactions with it. When a new word such as 'wolf or 'fox' is encountered, it 

may have a vague conceptual representation at first, based solely on contextual 

similarity to the usage of the word 'dog', but over time the child may be taken to a 
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zoo, and may gain direct sensory or even motor experience 4 with the animal (or 

to a lesser extent through watching television or in picture books). The vague 

conceptual representation built up solely through contextual co-occurrences will 

eventually be supplemented and solidified by direct physical experience. In the 

meantime, however, the vague conceptual representation derived from context 

allows the young reader (or listener) to continue to comprehend the text or speech, 

in at least a superficial way. 

Ofcourse, the novel word in question could be a more abstract word that 

does not have a direct physical referent, such as 'love', 'economics', or 'value'. 

What happens in this case? The word cannot be learned through direct physical 

experience, but perhaps as some have suggested it is learned through experience 

of multiple exemplars of subcomponents ofthe word, such as their effects, or 

persons engaged in the field, or examples ofthings of value, respectively. Or, as 

Lakoff and colleagues have suggested (Lakoff, 1987; Narayanan, 1995) these 

abstract concepts may be understood in terms of analogies to more basic, 

embodied concepts. For example, a headline about economics such as "France 

4 For the importance of motor experience in addition to sensory experience 
in concept formation and retention, an example from neuropsychology is relevant. 
Some lesion patients who are suffering anomia are left with particular deficits, 
unable to name any animals except for those with which they have had direct 
physical contact (petting, riding, etc) (Dr. George Lakoff, private communication, 
2000). This seems to support the inclusion of motor-area cortex in the 
representations of concepts, and may indicate that when lesions of more central 
semantic association areas are suffered, that motor-cortex components ofthe 
distributed meanings of words may be spared, and be sufficient cue to provide 
entry to the word's meaning. 
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crawls out of recession" maps abstract concepts directly onto more embodied 

concepts in a metaphorical way, and yet it is more than just a colourful metaphor. 

The text above is a legitimate way of conceptualizing the meaning of an abstract 

concept in terms of more concrete concepts, with France visualized as a person 

laboriously extricating himself or herself from a hole in the ground into which he 

or she had fallen. The essential aspects to understanding the meaning are present 

in the metaphor. 

In either case discussed above, the process of understanding the meaning 

ofthe novel word involved is one of indirect mapping from the occurrences ofthe 

novel word to the occurrences ofknown words, whether by similarity of sentence 

structure, verb construction, word co-occurrence, or metaphoric imagery. The 

grounded, embodied meaning ofthe directly-learned early words serve as a 

foundation for the learning of the later words. Of course, this argument may not 

apply to non-conceptual closed-class or functional words like prepositions, whose 

meaning is much more syntactically linked than present in the external 

environment, and we make no claims regarding these words. 

So this argument about word learning, if true, eliminates one objection to 

the use of sensorimotor features, namely that it may be impossible to represent all 

concepts in this fashion. Certainly not all concepts are nouns that have direct 

physical referents, but whether abstract nouns, verbs, or whatever, perhaps all can 

be represented indirectly in terms of simpler, basic words or concepts that are 

grounded directly in embodied experience. 
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In the present work, we investigate this hypothesis. Using neural 

networks like those in our previous work discussed above, we attempt to train a 

set of networks in which ungrounded words (words without a sensorimotor 

meaning representation) acquire a meaning representation without any explicit 

training for those words. Will grounded meaning essentially 'propagate' through 

the network from grounded words to ungrounded ones? 

4.4 Method 

Our neural network model of language acquisition is relatively simple. We 

modified the common Simple-Recurrent Network (SRN) architecture to perform 

three separate tasks simultaneously, in three separate pools ofoutput units (See 

Figure 4.1 ). A small common hidden layer and context layer of 30 units each 

were used, to force the network to develop an integrated internal representation 

common to the three tasks. A single input layer presented whole-word phonetic 

representations of words, in serial order through the corpus. 
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Noun 
Features 

Hidden Layer 

Context Layer 

Verb Linguistic 
Features Predictor 

Linguistic 

Input 


Figure 4.1: Modified SRN architecture, including standard SRN hidden layer 
and context layer, standard linguistic (word) prediction output, and novel noun 
feature output and verb feature output. The linguistic input is a whole-word 
phonetic representation ofup to 10 phonemes. The Noun and Verb feature 
targets are meant to be an abstract representation ofpre-linguistic sensory and 
motor-affordance semantics. 

Each word was encoded as a set of up to 10 phonemes using 140 input 

units. The 140-element word inputs represented 1 0 phonemic slots each of 14 

phonemic feature bits, without representation of word boundaries. The Carnegie 

Mellon University (CMU) machine-readable phonetic transcription system and 

pronouncing dictionary was used to generate our phonetic representations of 

words (available at: http://www.speech.cs.cmu.edu/cgi-bin/cmudict). Each 

phoneme was uniquely mapped to a set of 14 bits (See Figure 4.2), representing 

articulatory dimensions of the phonemes. This articulatory representation is 

primarily meant simply to reduce the number of units required to represent a 
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phoneme. Localist phoneme units would have worked just as well, but made the 

network larger and slower to simulate. Words shorter than 10 phonemes had their 

rightmost slots padded with 14 zeros. Longer words, had any existed in our test 

corpus, would have been truncated. 

The Linguistic Predictor output layer performed the word-prediction task 

that is commonly used in SRN's. By forcing the network to attend to word-order, 

this sort of layer has been shown to enable the network to learn simple aspects of 

syntax or grammar (Elman, 1990; Howell and Becker, 2001). At each time step, 

its task was to produce the phonemic representation of the input word from the 

next time step. Thus, the size ofthis layer is the same as the input layer, 140 

units. The task for the remaining outputs was to produce the sensorimotor 

features ofthe current word. These sensorimotor semantic features are drawn 

from Howell, Jankowicz, and Becker (submitted), and are distributed, real-valued 

feature representations of semantic meaning derived from human raters, which 

emphasize the sensory and motor-affordance properties of objects and events. 
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"AA" "1 ,0,0,0,0, 1 ,0,0,0, 1 ,0,0,0,0" "L" "0,0, 1 ,0, 1 ,0,0,0,0,0, 1 ,0,0,0" 
"AE" "1 ,0,0,0, 1 ,O,O,O,O,O,O,O, 1 ,0" ''M'' "0,0,0, 1 ,0, 1 ,0,0,0, 1 ,0,0,0,0" 
''AH'' "1 ,0,0,0,0, 1 ,o,o,o,o,1 ,0,0,0" "N" "0,0,0, 1 ,0, 1 ,0,0,0,0, 1 ,0,0,0" 
"AO" "1 ,0,0,0,0,0, 1 ,0,0,0,0, 1 ,0,0" "NG" "0,0,0, 1 ,0, 1,0,0,0,0,0, 1 ,0,0" 
"AW" "0, 1 ,O,O,O,O,O,O,O,O,O, 1 ,0,0" "OW'' "0, 1 ,O,O,O,O,O,O,O,O,O,O,O, 1" 
"AY" "0, 1 ,O,O,O,O,O,O,O, 1 ,0,0,0,0" "OY" "0, 1 ,O,O,O,O,O,O,O,O, 1 ,0,0,0" 
"B'' "0,0,0, 1 '1 ,o,o,o,o,o,1 ,0,0,0" "P" "0,0,0, 1 '1 ,0,0,0,0, 1' 1 ,0,0,0" 
"CH" "0,0,0, 1 ,0,0,0,0, 1 ,0, 1 ,0,0,0" "R" "0,0, 1 ,0,0, 1 ,0,0,0, 1 ,0,0,0,0" 
"D" "0,0,0,1,1,0,0,0,0,0,0,1,0,0" "S" "0,0,0, 1 ,0,0,0, 1 ,0, 1 ,0,0, 1 ,0" 
"DH" "0,0,0,1,0,0,0,1,0,0,0,1,0,0" "SH" "0,0,0, 1 ,0,0,0, 1 ,0, 1 ,0,0,0, 1" 
"EH" "1,0,0,0,1,0,0,0,0,0,0,1,0,0" "T" "0,0,0, 1 '1 ,0,0,0,0, 1 ,0, 1 ,0,0" 
"ER" "1 ,0,0,0,0, 1 ,o,o,o,o,o,1 ,0,0" "TH" "0,0,0, 1 ,0,0,0, 1 ,0, 1,0, 1 ,0,0" 
"EY" "0, 1 ,O,O,O,O,O,O,O,O,O,O, 1 ,0" "UH" "1,0,0,0,0,0,1,0,0,0,1,0,0,0" 
"F" "0,0,0, 1 ,0,0,0, 1 ,0, 1 '1 ,0,0,0" "UW'' "1 ,0,0,0,0,0, 1 ,0,0, 1 ,0,0,0,0" 
"G" "0,0,0, 1,1 ,O,O,O,O,O,O,O, 1 ,0" "V'' "0,0,0, 1 ,0,0,0, 1,0,0, 1 ,0,0,0" 
"HH" "0,0,0, 1 ,0,0, 1 ,0,0, 1 ,0,0,0,0" "W'' "0,0, 1 ,0, 1 ,0,0,0,0, 1 ,0,0,0,0" 
"IH" "1 ,0,0,0, 1 ,O,O,O,O,O, 1 ,0,0,0" "Y" "0,0, 1 ,0,0, 1 ,0,0,0,0, 1 ,0,0,0" 
"IY" "1 ,0,0,0, 1 ,0,0,0,0, 1 ,0,0,0,0" "Z" "0,0,0, 1 ,0,0,0, 1 ,0,0,0,0, 1 ,0" 
"JH" "0,0,0,1,0,0,0,0,1,1,0,0,0,0" "ZH" "0,0,0, 1 ,0,0,0, 1 ,O,O,O,O,O, 1" 
"K" "0,0,0, 1,1 ,0,0,0,0, 1 ,0,0, 1 ,0" Pause "O,O,O,O,O,O,O,O,O,O,O,O,O,O" 

Figure 4.2: CMU Phonemes and their compressed 14-bit Representations. The 
bits represent articulatory features such as voiced/unvoiced, place and manner of 
articulation, etc. This representation is not meant to make any claims as to the 
relevance of these features, it was chosen only for practical purposes of 
compressing the number of bits required to represent a phoneme. 

The Noun Features layer had output targets that represented the 

sensorimotor features for the current word if it was a noun, in 97 feature 

dimensions (units). The Verb Features layer had output targets that represented 

the sensorimotor features for the current word if it was a verb, in 84 feature 

dimensions (units). When the current input was not a noun or a verb 

(respectively), a vector input of all O's was presented at that layer, and no 

backpropagation oferror was performed for that layer. This separation of nouns 

and verbs is not central to our model, but is rather simply a practical 
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simplification. It would be possible to interleave noun and verb features in a 

single feature layer, which would simply be larger, but would provide fewer 

intrinsic cues to syntactic category. 

The fact that the network is producing sensorimotor noun and verb 

features at the output means that we can examine the ability of the network to 

generate the correct features for any given word. This gives us a measure of 

vocabulary acquisition both during learning and when testing generalization 

performance on novel words presented at the input. 

4.4.1 Corpus and Training Schedule 

We used a large (27, 494 word) selection of two and three word sentences created 

by a simple grammar which obeyed semantic constraints, based on Elman, 1990. 

There were 29 unique words in the corpus, 18 nouns and 11 verbs. Words could 

occur as subject or object, as semantically and syntactically appropriate, and verbs 

could take an object or not. Sentences were thus either SVO or SV in format (a 

very basic level of syntax), with no attempt to provide for agreement in order to 

keep the network as simple as possible. Each network was run for 50 epochs 

using the SRNEngine simulation package (Howell & Becker, submitted). Rather 

than running these large networks to asymptotic performance, we simply ran them 

for a fixed period (50 Epochs) by which point the accuracy ofphoneme to 

meaning mapping had peaked and grammatical prediction accuracy had begun to 

nse. 
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4.4.2 Control Network 

We ran one simulation of this network with semantic feature targets provided for 

each and every one of the 29 words in this corpus. This was our fully grounded 

control network, and it served as a comparison for each ofthe other simulations to 

follow. It was run for 50 epochs. At this point, word prototypes were taken, as 

described in Elman (1990), but at the output layer, not the hidden layer. That is, 

we were not interested in what hidden layer representation the network was 

developing (at least not at this time) but rather in what semantic features the 

network was producing for this word. Thus, for every instance of the word in the 

corpus, the output activation at the corresponding output layer was recorded (noun 

or verb). These were averaged together over all occurrences ofa given word in 

the corpus to produce an averaged meaning representation for that word (this is 

analogous to the way a human language learner encountering a new word for the 

first time might slowly accumulate evidence as to its meaning from the contexts it 

occurs in), and the results were subjected to a hierarchical cluster analysis using 

SPSS. The results were compared to a similar hierarchical cluster analysis 

performed on the raw feature vectors produced by human raters for validation of 

the network's prototyping process. 

4.4.3 Experimental Networks. 

While we used the same corpus for each experimental run ofour network, the 

vocabulary changed slightly each time. There were 29 words in the vocabulary 
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for this corpus, and so we ran 29 different simulations, grouped into the Noun 

Group (the 18 nouns) and the Verb Group (11 verbs). For each different 

simulation, the input representation of the word being tested remained the same, 

but its output targets at the noun or verb sensorimotor feature layer were removed. 

The target for that word was replaced with a marker that indicated to the network 

that it should not do any learning on this word on this time step (no 

backpropagation of error, no weight updates). However, statistical learning of the 

word order relationships through the Linguistic Prediction layer continued to take 

place, and backpropagation oferror and weight updates from that source 

continued for all words throughout training. Effectively, while the subject word 

continued to be present in the input stream with all other words, it was not linked 

to a meaning. This is meant to be analogous to a child hearing (or reading) a 

word for which a referent is not known; the word symbol may be learned, the 

pattern of its occurrence may be learned, but no direct mapping to meaning (e.g. 

via direct physical perception of the word's referent) takes place. Meaning must 

be inferred from context and patterns of word co-occurrence. 

Despite not having been trained in a word to meaning mapping for the 

subject word, the network will still produce an output at the meaning layer, and so 

some meaning representation will be indirectly acquired for the subject word, 

through random fluctuations in the output activations if nothing else. However, 

any useful aspects of meaning that are acquired can only be based on the learning 

of the other words' mappings and the influence from the learning done by the 
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Linguistic Prediction layer. So, at the completion oftraining, word prototypes 

were taken as in the Control network above, and the prototypes were subjected to 

a hierarchical cluster analysis, to see just how much meaning for the subject word 

the network was able to learn. 

We examine the nature of this meaning by where it groups in the 

hierarchical cluster dendrogram. For our present purposes, we can classify this 

into one of three results. The most accurate result would be that the ungrounded 

subject word clusters exactly where it should according to the control network. 

This would clearly indicate that the subject word has acquired a correct meaning 

representation. The next most accurate would be a close match, a meaning 

representation that lets the subject word fall somewhere close to where it should 

according to the control network, but not exactly in the right cluster. For 

example, boy clustering with the animals "dog" "cat" etc. This is somewhat 

accurate, since there is more similarity between 'boy' and these animals than 

there is to other concepts in the vocabulary, such as car or book. So this would 

indicate that there has been at least partial learning of the word-meaning mapping 

for the subject word. Finally, the subject word could fall in a cluster that is 

completely dissimilar to it (within the bounds of the corpus) such as in the 'boy' 

clustering with 'book' example. 'Boy' is animate, large, intelligent, etc., while 

'book' is immobile, nonintelligent, etc. Examining the actual features produced 

by the network can elucidate exactly what aspects of the word's meanings were 

indirectly learned in this manner, but this detailed analysis is not required at this 
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point for this simple corpus. The hierarchical cluster analysis is sufficient to 

capture the overall characterization of the meaning. 

Ofcourse, the network could arrive at the correct meaning vectors for the 

subject word solely by chance, although this is unlikely. We could examine how 

likely it is that a given clustering would occur by chance, and then run a given 

subject word's simulation for enough times to allow us to distinguish its mean 

cluster performance from chance. Or, since we are not interested in the 

acquisition of individual words' meanings at this time, but rather in the entire 

process of propagation ofgrounding, we can simply consider the number of 

correct matches achieved across the 18 nouns, and 11 verbs, and compare that to 

the chances of that result occurring by chance. The latter is the approach we take 

here. 

4.4.4 Categorical Analysis 

We were also able to perform an additional analysis on the Noun Group that we 

could not on the Verb Group, since the nouns were originally grouped into six 

categories in Elman, ( 1990) while the verbs had no a priori categorical distinction, 

only syntactic distinctions. We used the six noun categories, formed a category 

centroid for each by averaging the individual meaning representations of their 

members, and then compared each individual word to each of the categories. The 

category to which each word was closest was compared to the category to which 

it is a priori supposed to belong, and an accuracy measure across words was 

calculated. A word was considered correct if it was found to be in the correct 
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category, incorrect otherwise. This accuracy count was compared to that which 

might be expected due to chance (Binomial test, P= 1/6, q = 5/6, n = 18). 

One criticism of this approach is that there is sometimes the possibility of 

bias when the word being tested has been included in forming the centroid vector 

for one of the categories. This has not been an issue in previous work with these 

sensorimotor feature representations, however. In Howell, Jankowicz and Becker 

(submitted), we found very high (92.8%) agreement between the category 

memberships calculated via the above method (inclusive calculation), and a very 

similar agreement score (87.9%) using the more conservative method of 

removing the item under consideration from the calculation of it's a priori 

category's centroid (exclusive method). This difference has been so small that we 

consider it fair to use the inclusive method in the present work, which is 

computationally simpler. 

4.5 Results 

We will discuss the results of our simulations according to their group: Control, 

Noun Group, or Verb Group. First, the Control network performed well, learning 

how to map the input words to their sensorimotor features after only 50 epochs of 

training. The accuracy of feature encoding was 99.98% at the noun feature 

output, and 100% at the verb feature output. The hierarchical cluster analysis of 

the original noun features is provided in Figure 4.3, and that of the Noun feature 

layer prototypes is shown in Figure 4.4. Note the close correspondence, 
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demonstrating that the output prototype technique is capturing the feature 

representation accurately. The control group had feature targets provided for all 

words (fully grounded) so no analysis of indirect grounding is necessary. In the 

rest of the networks, however, we examined how well the particular ungrounded 

word in each simulation acquires a featural representation indirectly. 

~~~?~,~~~ us~ng Average L~nkage (Between Groups) 
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Figure 4.3: The hierarchical cluster analysis dendrogram of the Noun 
master features, as generated by human raters. 
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Figure 4.4: The hierarchical cluster analysis dendrogram of the Noun Feature 
layer output prototypes for the Noun Control network. Note the correspondence 
to the master features 

In the Noun group, 18 simulations were run, with a different noun 

excluded from phoneme-to-features training each time. The results showed a mix 

of feature-encoding performance across words, including 7 exact matches, 5 near 

matches, and the rest counted as incorrect matches. Chance performance for the 

dendrogram grouping is somewhat difficult to estimate. A word is counted as an 

exact match if it is in the same subordinate cluster as it should be according to the 

control network. There are somewhere between 9 and 12 clusters into which any 
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item could fall, depending on how many subordinate clusters occur in the analysis 

and how many words link in at a higher level. Taking the most conservative 

estimate, this would result in a chance level ofperformance of 1/9 (0.111 ), which 

is substantially lower than the 7/18 (0.389) exact match performance, or the 12/18 

(0.667) exact+ partial match performance. The exact match performance is 

significantly different from chance using the binomial test (p=1/9, x=7, n = 18, p 

= 0.005). A summary of the hierarchical clustering results is shown in Table 4.1 

below. Representative hierarchical clustering dendrograms are also shown in 

each ofthe three conditions in figures 4.5, 4.6, and 4.7. 
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Table 4.1: Noun Propagation of Grounding- Hierarchical Cluster Summary 

Book Propagation Test Near Match 
Boy Propagation Test Match 
Bread Propagation Test Partial Match 
Car Propagation Test Incorrect 
Cat Propagation Test­ Incorrect 
Cookie Propagation Test Near Match 
Dog Propagation Test Incorrect 
Dragon Propagation Test Exact Match 
Girl Propagation Test Exact Match 
Glass Propagation Test Near Match 
Lion Propagation Test Near Match 
Man Propagation Test Far Match 
Monster Propagation Test Near Match 
Mouse Propagation Test Exact Match 
Plate Propagation Test Exact Match 
Rock Propagation Test Exact Match 
Sandwich Propagation Test incorrect 
Woman Propagation Test Exact Match 

Incorrect: 4 (4/18) = 22.2% 
Car, Cat, Dog, Sandwich 

Far Match (Correct Superordinate distinction): 2 (2/18) = 11.1% 
Bread, Man 

Near Match (Correct Subordinate Distinction): 5 (5/18) = 27.8% 
Book, Cookie, Glass, Lion, Monster 

Exact Match (Proper place in Grouping): 7 (7/18) = 38.9% 
Boy, Dragon, Girl, Mouse, Plate, Rock, Woman 

Good Match (Near Match plus Exact Match): (12/18) = 66.7% 
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Figure 4.5: An example ofa noun hierarchical cluster analysis dendrogram for 
the Exact Match results of the Noun Group. 

Dendrogram ueing Average Linkage (Between Groupe) 

Reecaled Dietance Clueter Combine 

C A S E 0 5 10 15 20 25 

Label Num +---------+---------+---------+---------+---------+ 

GIRL 4 


BOY 14 


MAN 7 
 I 

WOMAN 8 
 h 
DOG 2 


CAT 12 
 h I 

LION 6 


MOUSE 16 


DRAGON 13 


MONSTER 19 


SANDWICH 15 


BREAD 17 


COOKIE 1.1 


GLASS ~0 


PLATE 18 


BOOK 3 


ROCK 9 


UNKNOIJN 1 


CAR 5 
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Dendrogram using Average Linkage (Between Groups) 

Rescaled Distance Cluster Combine 

C A S E 0 5 1.0 1.5 20 25 
Label Nutn +---------+---------+---------+---------+---------+ 

SANDWICH 1.5 

BREAD 1.7 

COOKIE 1.1. ~ 
GLASS 1.0 h 
PLATE 1.8 

BOOK 3 -'lh
ROCK 9 

UNKNOIJN 1. I 
CAR 5 

GIRL 4 

BOY 1.4 ]If-------, 
MAN 7 

WOMAN 8 h 
DOG 2 

CAT 1.2 1-------------ll ~----1_ _______. 

MOUSE 1.6 

DRAGON 1.3 I 
MONSTER 1.9 __-----JrLION 6 

Figure 4.6: An example of a noun hierarchical cluster analysis dendrogram 

for the Near Match results ofthe Noun Group. 
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Dendrogram using Average Linkage (Between Groups) 

Rescaled Distance Cluster Combine 

C A S E 0 5 1.0 15 20 25 
Label Num +---------+---------+---------+---------+---------+ 
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 I 
IMOUSE 1.6 

LION 6 

Figure 4.7: An example of a noun hierarchical cluster analysis dendrogram 

for the Incorrect results of the Noun Group. 

4.5.1 Categorical Analysis 

The results of the Noun group categorical analysis are shown in Table 4.2. The 

subject word was closest to its correct a priori category in 7 out of 18 trials. This 

is significantly different from what one might expect due to chance (binomial test, 

p= 1/6, q = 5/6, X= 7, n = 18, p = 0.024). We consider this test to be particularly 
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useful at assessing the partial learning that is occurring during propagation of 

grounding, since with limited training data we do not expect the network to learn 

the exact meaning vector for the subject word, and in fact they do not. Rather, the 

overall character of the subject word's meaning vector should tend to group with 

other words with similar meanings, as shown in this analysis. 

Table 4.2: Categorical Analysis of the Noun Group 

Nominal Actual Nominal Actual 
Catego Category Label Label Accuracy 

Book 6 4 Inanimate Edibles 
Boy 1 1 Human Human 1 
Bread 4 4 Edibles Edibles 1 
Car 6 3 Inanimate Animals 
Cat 3 4 Animals Edibles 
Cookie 4 6 Edibles Inanimate 
Dog 3 6 Animals Inanimate 
Dragon 2 2 Dangerous Dangerous 1 
Girl 1 1 Human Human 1 
Glass 5 4 Fragile Edibles 
Lion 3 2 Animals Dangerous ** 
Man 1 3 Human Animals 
Monster 2 1 Dangerous Human 
Mouse 3 3 Animals Animals 1 
Plate 5 5 Fragile Fragile 1 
Rock 6 6 Inanimate Inanimate 1 
Sandwich 4 1 Edibles Human 
Woman 1 3 Human Animals 

Number 
Correct: 7/18 

4.5.2 Verb Group 

The generalization performance ofthe Verb Group is substantially lower than the 

noun group. Hierarchical cluster analyses show only 3 correct matches out of 11, 
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with the rest incorrect. This is not clearly different from chance performance. As 

explained above, categorical analysis is not possible for the verb group in this 

corpus, due to an absence of preexisting categories and a small sample size of 

verbs. 

4.6 Discussion 

Our results indicate that 'propagation of grounding', or context-mediated 

acquisition of semantic features, can and does take place. Many ofthe test words 

across the various networks acquired a sensorimotor representation without direct 

training that was sufficiently accurate that the word grouped precisely where it 

should have according to semantic similarity to other words. This occurred 

despite the fact that the training corpus involved was a small, not particularly rich 

sequence of short sentences. According to Landauer (Landauer & Dumais, 1997) 

this sort of statistical learning about word co-occurrences, which is similar to that 

involved in high-dimension models of meaning such as Latent Semantic Analysis 

(LSA) or Hyperspace Analogue to Language (Burgess & Lund, 2000), only 

becomes effective with large, complex corpora that provide a large number of 

relatively weak word-to-word connections as influences. Thus, larger, richer 

corpora, which use the words involved in more varied ways, should allow even 

more effective propagation ofgrounding than small, simple corpora like that used 

herein. 
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We can view these large number ofweak word-to-word relationships as 

probabilistic constraints, possibly operating at many levels of linguistic 

complexity (word to word, word to sentence structure, word to verb construction, 

etc.) and the operation of the network as a constraint-satisfaction process that 

arrives at correct meanings for the new words (following Seidenberg and 

MacDonald, 2001). This is another reason to expect that this effect will scale well 

with larger corpora, since those more complex corpora should have more varied 

sentences, which will put words into a wider array of linguistic situations, and 

provide more simultaneous probabilistic constraints that will allow their meanings 

to be more fine-tuned. Of course, our current process, and our current feature 

dimension representations, are necessarily somewhat crude. We probably are not 

currently capturing with this architecture the more advanced forms of context 

effects such as verb construction similarity, or metaphoric imagery. The network 

is simply not that powerful at present. However, it suggests some directions for 

further modeling work. 

It is important to note that the small size and lack ofcomplexity of the 

current corpus might also contribute to the lack of significance of the propagation 

of grounding effect that we found for the verb group. While there are only a 

small number of nouns in this corpus, there are even fewer verbs, and fewer 

exemplars for each 'category' of verb. This may indicate that the size and 

complexity of the noun vocabulary and noun usage is a lower limit on the type of 

corpus which will exhibit the propagation ofgrounding effect. On the other hand, 
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we have already seen in previous work with these verb feature representations that 

while they do cluster by featural similarity and meaning, they do not cluster as 

well as nouns (Howell, Becker, and Jankowicz, submitted). It is possible that our 

verb feature representations are still not capturing enough of the meaning ofverbs 

to allow indirect grounding ofverbs to occur. One way of addressing this that we 

plan to implement in future work with these features is to integrate the noun and 

verb feature layers, such that the primarily sensory noun features and the 

primarily embodied and affordance-related verb features are combined. This 

would allow us to investigate the learning ofboth sorts of features by propagation, 

especially the learning ofnovel verb meanings from their occurrences with known 

nouns, as demonstrated in humans in Gillette et al. (1999). If nouns begin to 

acquire verb features due to their occurrences with known verbs, when a novel 

verb is encountered it may acquire these verb features from the nouns, in an 

indirect verb to noun to verb process. 

Informal examination of the feature dimensions themselves indicates that 

in some cases, the individual values are a close match to those of the directly 

grounded word, but of course this does not happen for all features or for all 

words. A more rigorous analysis of the individual feature dimensions, how well 

each is learned through propagation ofgrounding, and what elements of the 

corpus affect which dimensions are learned is an important next step of this work, 

following along the constraint satisfaction viewpoint discussed above. For 

example, if a word occurs in sentences where it is the agent, or in which animacy 
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is clearly indicated, then propagation of grounded might be more effective for 

features related to animacy, such as speed, or intelligence. This would be due to 

the word occurring repeatedly in sentence structures in which many other animate 

words also occur, and so the novel word should acquire features like those words. 

If we bias a corpus to contain only sentences that provide certain linguistic 

contexts and constraints, then we should expect to see that only some aspects of 

featural meaning propagate to novel words introduced to that corpus. 

This brings us to a possible criticism ofour networks, namely the 

introduction ofnovel words. For simplicity's sake in the simulations herein, what 

we call a novel word was merely a word from the existing corpus which did not 

participate in the phoneme to meaning mappings. It existed in the corpus from 

the beginning, and was not introduced to a partially-trained network midway 

through training. We do not consider this to be a serious problem, since if 

anything, adding the novel word at a later point in training, when the network has 

already been able to learn the phoneme to meaning mappings for the fully 

grounded words, will only increase the speed with which the network is able to 

generalize features to this new word. The word sequence learning will be further 

along as well, allowing the network to "pay attention" to the novel word more, as 

it would be well on its way to learning the initial word's usage. This is actually 

reminiscent ofexperiments by Gillette, Gleitman, G lietman and Lederer ( 1999) 

regarding "bootstrapping" in language learning. They showed subjects sensory 

information about a scene (such as movies) along with various degrees of 
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utterances pertaining to that scene. Target words in that utterance, such as the 

verb for example, that subjects found impossible to identify at first, became clear 

when other words in the utterance were unmasked. For example, knowing which 

nouns occurred in an utterance allowed subjects to infer the verb that was taking 

place in the scene. A similar process should take place in our networks, where the 

earlier learning means that the network is more skilled at recognizing and 

predicting the early-learned words, and these 'known' words make it possible for 

the network to infer the meaning of a novel word occurring with them. 

Another hypothesis regarding the important of the early grounding of 

words relates to the possible attractor-dynamics or 'foundational' aspects of 

grounded conceptual representations, as we have suggested in previous work 

(Howell, Becker and Jankowicz, 2001; See also a discussion of attractor dynamics 

in language comprehension examined in detail in Tabor and Tannenhaus, 2001). 

It might be the case that the reliance of more abstract concepts and words on the 

dynamical attractors developed in previous learning of more embodied and 

grounded words is partially responsible for the critical period effect of language. 

Children who do not develop proper conceptual representations of the earliest, 

most basic words early in life, when cortex is most plastic, might not form 

sufficiently well-organized attractors in their cortical representations. Then later 

learning does not have accessible linking and 'scaffolding' points or a solid 

foundation on which to build, resulting in a relatively low level ofoverall 

linguistic attainment. Of course, the simulations in the present work are not 
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sophisticated enough to examine whether the learning of the meanings for the 

earliest words, or even pre-linguistic conceptual representations, are responsible 

for critical period effects in language, but it is an interesting avenue for future 

work. 

On a technical note, the demonstration that propagation of grounding 

occurs has practical consequences for connectionist language researchers as well. 

If we want to gather sensorimotor feature representations for more or even all of 

the directly-grounded words that children can learn, do we have to create them 

manually for every word? The process of gathering human ratings of words along 

feature dimensions can be laborious (for details on different versions of the 

process see McRae, de Sa, & Seidenberg, 1997; Howell, Jankowicz and Becker, 

submitted; Vinson and Vigliocco, 2002). Happily this does not seem to be the 

case, since various methods of incrementally building a grounded lexicon in 

networks such as those discussed herein can be imagined, and we are presently 

implementing one. The general idea is to train a network on a progressive corpus 

oftext (similar to Elman's (1993) 'Starting Small' argument) with new, novel 

words being introduced in much the same fashion they might in children's 

exposure to language. The new words will develop grounded featural 

representations through the process of propagation of grounding. When 

sufficiently well-learned (through having been experienced many times, and in 

many different contexts) the word's interim representation can be essentially 

'added' to the directly grounded lexicon, and new novel words introduced into the 
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input stream. The new words will now have the previous novel words' grounded 

representations to learn with as well, and in such manner meaning can propagate 

to all words in the training corpus. This bootstrapping approach is another 

example of the potential importance of developmental constraints and experiential 

timing on learning (Elman, 1993), as they allow the learner to focus on the current 

crop ofnovel words, learn them, and then use them to learn future novel words. 

Learning of all ofthe words at once would be impossible, since there would be 

insufficient grounded words for novel words to borrow meaning from. 

Finally, these results may be relevant to the debate between proponents of 

high-dimensional models of meaning (e.g. Landauer, & Dumais, 1997; Landauer, 

Laham & Foltz, 1998; Burgess & Lund, 1996) and those that advocate very 

embodied approaches to conceptual knowledge (e.g. Glenberg & Robertson, 

2000, Barsalou (1999), Lakoff, 1987). The high-dimensional models of meaning 

such as LSA and HAL are impressive, having been shown to be able to perform 

human-like tasks such as similarity judgments, essay grading, etc. However, their 

'features' are not clearly defined, having no meaning per se on their own. Thus 

examining the meaning of a word through its LSA or HAL representation is 

impossible, except by comparing it to other words. Clearly-defined feature 

representations like ours, however, have the advantage ofproviding information 

about the components ofthe meaning of a word. This componential meaning 

might be important in allowing for the types of affordance judgments that 

Glenberg and Robertson use to critique HAL and LSA, since it could allow 
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various different aspects of the meaning ofa word to be highlighted in different 

contexts and situations, allowing for situation-appropriate judgments about 

affordances to be made on the fly. 

Additionally, as Burgess and Lund point out, their HAL model using its 

smallest window size is essentially an SRN, like our architecture (Burgess & 

Lund, 2000). This implies that as the power and complexity of our simple 

network is increased somewhat, it may be able to reach approximately the same 

levels of performance as the high-dimensional models, while of course retaining 

the transparency of the individual feature meanings, and the ability to address 

questions of syntax (while LSA has been referred to as a 'Bag ofwords' 

approach). Furthermore, while LSA and HAL may be functional as models of 

adult processing, they do not explain how the system develops to its adult state. 

Our approach has the advantage ofbeing rooted in the very basic, grounded 

learning ofchildren's first words, and in possibly providing a developmental 

mechanism, through the idea of propagation of grounding, for how the adult 

'steady-state' may be reached, while retaining the ability to allow for judgments 

based on individual meaning components (i.e. affordances) of the meanings of the 

words. 

In conclusion, we have demonstrated a simple version of the propagation 

ofgrounding phenomenon, and suggest a number ofways in which it might be 

expanded, and the implications those expansions could have for the modeling, and 
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the understanding, of children's and adult's language acquisition. We are 

presently investigating several of these areas. 
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Chapter 5 

General Discussion 

The goal of this dissertation has been to investigate the contribution of 

pre linguistic conceptual knowledge to the processes of language acquisition. The 

results from the six experiments reported in Chapter 2 suggest that we can create 

useful representations of this pre linguistic conceptual knowledge for nouns and 

verbs, and that having this knowledge improves sequence learning, an aspect of 

grammar. The results from the two experiments reported in Chapter 3 suggest 

that it may be the rich prelinguistic semantics that children possess that causes 

grammar to develop the way it does, which is evidence for an "emergent 

grammar" viewpoint. Finally, the results of Chapter 4 demonstrate that even 

words for which this prelinguistic conceptual knowledge is not available 

(ungrounded) can acquire this knowledge indirectly from relationships with other, 

grounded, words over the course of learning. 
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5.1 Sensorimotor Feature Representations 

In chapter 2, I developed using human raters a set of sensorimotor feature 

representations intended to capture the same kind of knowledge that might be 

found in children's prelinguistic conceptual knowledge. Using hierarchical 

clustering analysis, self-organizing maps, and categorical analysis using Euclidian 

distance, I demonstrated that both noun and verb representations were capturing a 

meaning structure that corresponded with what we would expect based on human 

knowledge. However, this demonstration was clearer for nouns than for verbs. 

There are several possible reasons for this. 

One is that the similarity spaces for nouns and verbs are inherently of 

differing complexity. Given the presence of similar results in the literature 

(Vinson and Vigliocco, 2002), and the contrast between nouns as having object 

referents and verbs as having event referents (which we would expect to be a 

more complex mapping), there is at least some validity to this explanation. 

However, a simpler explanation may be that the lesser clarity in the clustering 

analysis ofverbs is due to the fact that there are fewer of them in our corpus. 

Since there were 352 grounded nouns, but only 90 grounded verbs, the similarity 

spaces are of different densities. 

Ofcourse, it could also be the case that the feature dimensions that were 

chosen to represent the range of verb meaning are themselves flawed. In creating 

these dimensions, I drew upon existing successes representing verb meaning, 

specifically representations of hand-action verbs (Bailey, 1997). However, the 
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usefulness of each verb-meaning dimension is not as well confirmed for these 

purposes as are the well-used noun-meaning dimensions, which are drawn from 

McRae, De Sa, & Seidenberg (1997). Also, it would be desirable to perform 

feature-by-feature statistical analyses, confirming or disconfirming the usefulness 

of each feature dimension to the distinctions of meaning that are required to be 

made. 

However, this sort of analysis is a lengthy undertaking (Dr. Ken McRae, 

private communication, 2002) and since the creation of these features was a 

necessary first step to the remainder of this research program, lengthy delays 

could not be afforded. However, if these sensorimotor feature representations, or 

a later incarnation, are to be accepted and widely used, this sort of in-depth 

analysis of their dimensions and ratings will need to be performed. In fact, with 

the assistance of an undergraduate summer student, Yue Wang, I have recently 

completed the process of cross-comparing and adjusting all of the noun and verb 

feature values to compensate for any unusual subject ratings, and have begun the 

statistical analysis of the feature dimensions themselves, studying how much 

variance in the meaning categorization each accounts for. The completion of this 

process may tell us how much, if any, improvement is necessary or desirable in 

our verb features. Whatever the case, development of a set of featural 

representations is an ongoing, fine-tuning process, and to my knowledge I am the 

first to pursue this with the goal ofcapturing pre-linguistic knowledge. 
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Eventually, it would be very useful to validate these pre-linguistic features 

directly against children's knowledge, but that is another task entirely. 

Another concern regarding the sensorimotor features is the duration of 

their applicability. It is important to note that the use ofa static set of 

sensorimotor feature dimensions, while eminently reasonable when considering 

pre-linguistic knowledge and the earliest stages oflanguage acquisition as 

discussed herein, might begin to be too limiting at later stages of language 

learning. That is, once an older child is learning words indirectly from context, as 

in Chapter 4, and is processing enough speech and text (as perhaps in school age 

children) to be making the kinds ofdirect linguistic-linguistic relationships that 

we specifically restricted in our prelinguistic sensorimotor features, the 

dimensions of semantic meaning may need to be expanded. While sensorimotor 

dimensions may remain the core of a broader semantic representation, additional 

frequent linguistic or contextual relationships may become common enough to be 

"featurized", and be able to take place in processes such as the propagation of 

grounding. The process of extension of basic sensorimotor features of meaning to 

a broader, mature semantic representation is a significant part of our call for 

future work into bridging the embodied-meaning/high-dimensional meaning gap, 

as discussed in chapter 4. 
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5.2 Sensorimotor Representations' Effect on Grammar 

Learning 

Also in chapter two, I used the above-discussed features in neural network models 

oflanguage acquisition, to study the contribution of these features to simple 

aspects ofgrammatical learning. I found a significant effect of the inclusion of 

these features; they assist grammar learning by 1 7% over a control condition with 

random features (equated for range and distribution of values). These 

experiments were performed using the most naturalistic corpus I could find, a 

concatenation of mother-to-child speech taken from the ChildDes database (Bates, 

et al., 1997; MacWhinney, 2000; Carlsen-Luden, 1979). This naturalistic training 

corpus was intended to allow for good input representativeness (Christiansen & 

Chater, 2001) on the part of the model, the idea being that it is receiving the same 

sort of input that the child might, and so the model's results would be extendable 

more readily to the case ofchild language acquisition. This goal certainly still 

holds; we can be confident that this effect of pre-linguistic conceptual knowledge 

on grammatical learning should appear in children as well as the network. At an 

extreme level, it is obvious that it has to. If a child has no meaning 

representations for any of the words that he or she is hearing in speech, then the 

grammar ofthe language will be impossible to learn. This is McClelland's 

"learning a language by listening to the radio" criticism (Elman, 1990). Thus, the 

more words whose meaning is known that occur in the speech stream, the more 

the grammar is inferable, and the more easily that novel words can be understood. 
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Experimental evidence of this process has been discussed earlier (Gillette, 

Gleitman, Gleitman, and Lederer, 1999) and is addressed directly for novel words 

in chapter 4 of this dissertation. 

However, the naturalistic corpus that I used for these simulations was not 

a very grammatical corpus! Upon examination, the mother-to-child speech 

contains very few proper sentences, and very many partial sentence fragments, 

repetitions of words, attention-eliciting verbal behaviors (e.g. "look at this, what 

is this", etc.), and as mentioned previously, only a minority of the words were 

grounded in sensorimotor features. While this may make us confident in 

generalizing from the network's behavior to that of children, it makes it very 

difficult to produce that network behavior in the first place, hence the small sizes 

of the effects found in Experiment 4 of chapter 2. In fact, by including only 

mother-to-child speech, this training corpus is in fact much more impoverished 

than children would be exposed to, since they also overhear more grammatical 

adult-to-adult speech. I would thus expect larger differences between 

experimental and control conditions to be evident with training corpora that were 

more grammatical and more completely grounded. 

5.3 Lexicon to Grammar Effects and Emergent Grammar 

In chapter three I continue an investigation into the well-known phenomenon in 

children of the lexical-grammatical correlation over time. I have addressed this 

previously in a paper published in a conference proceedings (Howell and Becker, 
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2001). In the chapter I investigate this further, using techniques increasingly 

more analogous to those used with children. Specifically, the simulations used in 

chapter three incorporate phonemic input representations, similar to those children 

would experience, rather than localist lexical representations. Also, the 

sensorimotor features that are used in the chapter are far more appropriate to 

children's experience than were the simpler, more artificial features used in the 

previous work. 

The results reported in chapter three demonstrate that the richness of the 

word representations in children's lexicons is directly related to their later 

grammatical competence. Specifically, when the lexical representations are 

meaningful sensorimotor semantic ones, much higher correlations (0. 7 in 

Experiment 1, 0.8 in Experiment 2) between lexical accuracy and later 

grammatical accuracy are found than in conditions where the lexical 

representations are less structured and more random. These correlations are very 

high, and provide evidence for the position that grammar emerges from the 

operation of a semantically rich lexicon. There are several possible criticisms to 

address, however. As discussed previously, the measure oflexical and 

grammatical performance used with the networks differs from that used in 

measuring children, being accuracy of performance on a limited lexicon rather 

than overall size of the lexicon. However, in fact these are really just 

transformations of one another. Parents typically provide the measures of the 

sizes ofchildren's lexicons, and they do so by recalling via a checklist which 
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words their child uses properly. Our measure of lexical accuracy is essentially an 

assessment of how properly the child uses a word. The likelihood that a parent 

would rate a child as knowing the word will be a function ofhow properly that 

child uses it. Thus the two measures will be closely related, and should not hinder 

generalization of the network results to children. 

Furthermore, in children the grammatical measure most commonly used is 

a measure ofproduction (mean length ofutterance), since it is impossible to get 

inside the child's head and assess his or her grammatical competence. In network 

simulation this situation is reversed, such that it is easier to get a measure of 

grammatical comprehension than production. However, the two measures will of 

course be closely related, and in fact the comprehension measure may well be the 

purer ofthe two, as it is uncontaminated by behavioral variance that may mask 

the expression in production ofgrammatical comprehension competence. Again, 

this should not hinder generalization of the network results to children. 

5.4 Propagation of Grounding 

Chapter four contains perhaps the most interesting results of the dissertation. 

Specifically, in chapter 4 I demonstrate that when the network is exposed to a 

novel word occurring in a well-structured context, it is able to 'infer' the meaning 

of that novel word from its context, and produce the correct sensorimotor features 

for the novel word. This is very similar to the way that the meanings of novel 

words might be learned by children while reading or listening to speech, and is to 
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my knowledge the first demonstration of a candidate process for the indirect 

inference of the meanings of novel words. Of course, in the network's case, this 

process is purely a statistical one, with word co-occurrence statistics slowly 

building up a similarity between known, grounded words, and novel words, until 

values on the feature dimensions of the novel word come to be similar to those on 

the known, similar word. A full discussion of the impact ofthis process is 

provided in the chapter, but there are additional criticisms that need to be 

addressed. First, it might be suggested that it is not the overlap of the two tasks 

(lexical and grammatical learning) through a common hidden layer that causes the 

propagation of grounding. Perhaps the prediction task that is being performed to 

learn grammar is irrelevant to this effect, and a network without the Word 

Prediction output layer would still show this generalization from known word to 

novel word, based on some other factor? One factor might be simple similarity of 

the meaning of a novel word to the grand mean of all the words in the lexicon. 

That is, if most words are animals, and an unknown word is presented, it is more 

likely that the features corresponding to an animal will be randomly activated as 

an output activation than anything else. An examination ofwhich words 

propagate and which do not from Table 4.2 will show that this is not the case. 

Another possibility is that it is something about the overlap ofthe 

phonemic representations that causes the generalization to novel words (Dr. Art 

Glenberg, private communication, 2004). Again, Table 4.2 does not show any 

clear relationship between the phonology ofany test word and the rest as an 
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influence on when propagation will occur. However, to investigate both this 

criticism and the preceding one more closely, I ran a number ofpilot control 

simulations ofwords that did show propagation ofgrounding when used as novel 

words in chapter 4. In these controls, I completely eliminated the Word 

Prediction Layer, ran the network for the same number of epochs (50) and then 

ran the hierarchical cluster analysis. None of the tests showed any hint of 

propagation of grounding for the new words. 

5.5 "Facilitative Interference" 

Thus, it does seem to be the overlap and facilitation found between the lexicon to 

meaning mapping Noun Feature output layer and the Word Prediction output 

layer that is responsible for the propagation of grounding effect. This constitutes, 

if anything, the reverse ofthe usual catastrophic interference effect that critics of 

connectionist modeling often raise as a limit on their usefulness. Rather than one 

task interfering with the other, there is mutual facilitation (Experiment 4, Chapter 

2) allowing learning to generalize (Chapter 4). Further investigation of these 

kinds ofeffects in models of language acquisition may be most fruitful. 

5.6 Model Limitations 

The network architecture used in the simulation experiments herein, while 

successful at modelling these phenomena, does have other limitations. First, the 

learning algorithm that it uses, backpropagation of error, is not considered to be 

very biologically plausible. That is, we do not think that neurons in the brain 
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actually learn in this fashion, nor that they receive explicit teaching signals. 

However, these same sorts ofarchitectures can be implemented in more 

biologically plausible ways, by algorithms based on the more biologically 

plausible Hebbian learning principle. 

Related to this is the issue of neural representation. How exactly does the 

brain represent and process the information and mechanisms that our neural 

network simulations are analogues to? Our simulations are too abstract at this 

point, too behaviourally oriented, to be able to make claims about how or where 

in the brain these processes occur in humans. Perhaps the closest to a 

neurological claim we can make relates to the representation of sensorimotor 

information. As Lakoff(1987), Barsalou (1999), and others have suggested, the 

meanings ofwords may involve not just semantic association areas. Rather, the 

meanings of words are represented in a distributed fashion across a wider area of 

cortex, including sensory areas and motor areas. This, as alluded to in Chapter 2, 

is part of the motivation for our use of sensorimotor features specifically, as 

opposed to any other sort of meaning features more generally. 

Still, whether something like the prediction task is actually represented in 

the brain, or how exactly the brain handles sequential grammar-like learning, 

awaits future research with more complex methods. Generally speaking, our 

models operate as behavioral analogues, not direct neurological analogues, 

although we do try to make as close a fit as we are able at this time, in general 

terms. 
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However, one interesting line ofneurological work does support the use of 

the "violation ofexpectations" sort of learning that is incorporated in the 

prediction task. Connolly and colleagues (e.g. D'Arcy et al, 2004; Newman et al, 

2003) have identified, using brain imaging techniques, the time course of 

semantic and phonological processing. Using event related potential methods 

(ERP) in particular, they have shown that the brain produces a spike ofactivity 

for violations of phonological and semantic expectations. The two are doubly 

dissociable, with the phonological signal occurring earlier than the semantic. The 

phonological mismatch signal is known as the PMN, or phonological mismatch 

negativity, and occurs at about 250 ms post-stimulus. It has a frontal, right­

asymmetrical scalp topography. The semantic mismatch is an n400 wave, a 

negative spike at about 400 ms post-stimulus, which has a centro-parietal scalp 

topography. The fact that two such mismatch signals have been identified in 

human language processing thus makes the use of violation of expectations 

prediction learning much more plausible, whether we are predicting phonology or 

semantics. 

Of course, there are many aspects of language acquisition that are 

important, but outside the scope of this research, as must be the case when 

studying a phenomenon as complex and multi-faceted as language. Acquisition 

of phonology is a subfield of its own, and one that we do not address in this work, 

except to borrow a set of idealized phonemes for use as input representations. 

The aspects ofgrammar that we are able to address with these networks are very 
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simple ones, essentially word-to-word correlations and sequence learning. The 

degree to which these sorts ofmodels can capture more complicated aspects of 

syntax and grammar is a topic for future investigation. 

Also, issues such as varying presentation rates of input are abstracted 

away in our models, which enforce a discrete timestep-by-timestep rate of 

presentation, rather than a more realistic continuous-time representation. 

Algorithms for continuous time models are now available, but do require 

additional computer processing power to employ. Still, this is a valuable avenue 

for future work. Even with discrete-time networks like those used herein, 

however, there is an issue of what level oflanguage input will be represented at 

each time step. In our simulations, each time step corresponds to one word, and 

the phonemes of that word are presented all at once. It is entirely possible to 

choose to have each time step represent one phoneme, and thus a word would take 

a series of time steps to be represented via a sequence of its phonemes. In 

unpublished work we have used networks like these to investigate word 

segmentation and intraword and between-word errors. However, when we are 

interested in both lexical and grammatical phenomenon, as we are in the 

simulations described herein, it is more practical to use the word as the level of 

input representation. It would be useful to develop a multi-leveled network which 

used inputs which were a sequence ofphonemes (as would be encountered in 

speech), and yet was able to develop a word level representation, and from that 
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perform the word-prediction task necessary to study grammar. This, however, is 

a more difficult modelling task that remains to be solved adequately. 

Importantly, even if such a hierarchical, multi-leveled model were 

developed, it would still be an abstraction in its own way, since the idealized 

phonemes used at input are not the sort ofcoarticulated and acoustically varying 

phonemes that children actually encounter. Unless we attempt to model an entire 

brain, something that is presently far beyond our computational power as well as 

our understanding ofneuroscience, our neural network models will always have 

to abstract away some part of the complexity ofthe task. However, so long as we 

abstract away the least relevant aspects for the task at hand, our models should 

still generalize to human behaviour and human neural processing. 

5.7 Conclusion 

The results reported in this dissertation provide evidence for the importance of 

pre-linguistic conceptual knowledge (herein operationalized as sensorimotor 

semantic features) in facilitating language acquisition. I report converging 

evidence from several lines of investigation, including examination of the effect 

of sensorimotor representations on simple grammar learning, investigations of the 

strong correlations between early lexical learning and later grammatical learning, 

and demonstrations ofhow grounded meaning can be acquired indirectly for 

novel words via a process of 'propagation ofgrounding' from known, grounded 
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words. Sensorimotor, embodied concepts thus facilitate and ground the processes 

ofword and grammar learning, throughout the course of language acquisition. 
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Appendix A: Forms and Instructions for 
Experiment 1, Chapter 2 

Attached are the instructions and rating forms used in the feature rating 

experiment from Experiment 1 in chapter 2. These were originally presented as 

web pages, since participants completed the experiment on-line via the Web. 
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Building Sensorimotor Semantic Representations 
from Human Knowledge -Noun Feature Ratings 

On the following pages are a series of various concepts or words, such as "dog", or "kettle". For 
each of the concepts/words, there is a list offeatures. Please rate each concept on each feature on 
a scale ofO to 10. Try to picture the object or concept mentally as you are making your rating, 
including its sounds, smells, motions, etc. 

In Part I, the feature ratings are between two polar opposites, such as size: small - large . In this 
case a rating of 5 would be average, or size medium; midway between the two extremes. A rating 
of I might be small, a rating of9, large, while ratings ofO and IO would be the tiniest and largest, 
respectively, things that you would see in everyday life. 

Try to be consistent in your ratings from concept to concept. For example, don't rate "cat" a 7 in 
intelligence, and then '"man" a 4, since cats are clearly not more intelligent than people. However, 
don't worry if you can't remember exactly your ratings from concept to concept. 

In Part II, in contrast, these ratings should be viewed as percentages (0% to 100%). For each 
concept, rate the percentage of the time that they exhibit this feature. For example, for the concept 
"apple", the feature "is_gold" might get a rating of I, indicating that less than 10% of the apples 
we see might be gold (most are red or green). A 9 indicates the almost definite presence of the 
feature; for example for the concept "ball", the feature "is _round" might be rated a 9, indicating 
that at least 90% of the balls that we see are round (some, like a football, are not). A rating of 5 on 
these features indicates uncertainty as to the presence of the feature, 50% of the time it is there, 
50% of the time it is not. A rating of 6 would be 60% present, 40% absent, etc. A rating of 0 
means that the concept never has the feature, and a rating of I 0 means that the concept always has 
the feature. Features may be rated as present even if they are only in one part of a concept, as well. 
An oilcan might get 9's on both is_conical and is_cylindrical, since its different parts are different 
shapes (body vs. spout). 

Thus in both Part I and Part II you should assign relatively few 0 or I 0 ratings on any of the 
features. To know where to draw the line on these extreme ratings, you should try to limit yourself 
to the knowledge of the world that an average pre-school child would have. For example, for size, 
don't compare the concept in question to a microscopic bacteria or to a mountain. You might limit 
your comparison group to anywhere from the size of a pea (tiny= 0) on up to the size of a house 
(extremely large=IO), for example. 

(The concept "is _gold" for apple in the example above is only a I and not a 0 because it is 
remotely conceivable that someone would paint an apple gold, and hence this feature would be 
true for that apple. This is an example of why you should be wary of the extreme 0 and IO 
ratings.) 

Click Proceed to begin the experiment. Remember, to receive credit you must complete IO 
concepts. This will mean I 0 passes through the web form, selecting the next concept each time. 
Each time you submit the data for one concept, you will be linked back again. 

Proceed! 

154 




PHD Thesis- Howell, S. R., McMaster University 

CJStudent ID (For Experimental Credit): 

CJBelow is a drop-down box containing all the words in the 

experiment, in alphabetical order. You must rate only 10 of them, the 

10 that were assigned to the phase you signed up for and that you 

wrote down previously. You will thus have to go through this form 10 

times, crossing a word off of your list of 10 each time until you are 

done (so you don't forget and rate a word twice). Each time you 

complete a concept, you will go to a completion page, where you can 

link back to this form if you have not completed all10 of your words 

yet. 

Please try to imagine the concept that you have selected, and keep 

that image in mind throughout the ratings. Try to imagine all aspects 

of the sensory experience of that concept or object. That is, vision, 

hearing, touch, smell, and if applicable, taste. Do not spend too much 

time agonizing over the ratings, however, just pick what seems 

reasonable and keep going. 

Part I 

c::JPlease enter a value between 0 and 10, with 5 being in the middle 
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of the two opposites. 

0-10 

Size (small-large) I 

Weight (light-heavy) I 

Strength (weak-strong) I 

Speed (slow-fast) I 

Temperature (cold-hot) I 

Cleanliness (dirty-clean) I 

Tidiness (messy-tidy) I 

Brightness (dark-light) I 

Noise (silent-noisy) I 

Intelligence (stupid-smart) I 

Goodness (bad-good) I 

Beauty (ugly-beautiful) I 

Width/thickness/fatness (thin- thick/fat) I 


Hardness (soft/pliable- stiff/hard) 


Roughness (smooth-rough) 


Height (short-tall (Vertical)) 
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Length (short-long (Horizontal)) I 


Scariness (nonthreatening-frightening) I 


Colourfulness (drab-colourful) I 


Please enter a value between 0 and 10. A value of 10 means the feature is 

ALWAYS true or ALWAYS present, a value of 0 means that it is 

NEVER true or present, and a value of 5 means that it is true about 50% 

ofthe time, or for 50% ofthe instances ofthat concept. Example: ifyou 

think that 60% of the time an apple is red, then rate apples a 6 on is_ Red. 

c:JColor: 

0-10 


I
is black 

I
is blue 

is brown I 


is_gold I 


is_green I 


is_grey I 


is_orange I 


is_pink 
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is_purple I 


is red 
 I 


I
is silver 


I
is white 


is _yellow I 


c::JShape: 

0-10 


is conical 
 I 


I
is crooked 


I
is curved 


is_ cylindrical I 


is flat 
 I 


is_liquid I 


is rectangular I 


is round 
 I 


I
is solid 

is_square I 
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is_straight I 


is_triangular I 


CJSurface Texture: 


0-10 


has feathers I 


has scales 
 I 


has fur/hair I 


is_pricldy I 


is_sharp I 


is breakable I 


CJSubstance: 


0-10 


I
made of china 

I
made of cloth 

made of leather I 


made of metal 
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made_of_plastic 

made of stone 

made of wood 

c::JLocomotion: 


0-10 


climbs r­
crawls I 


flies 
 I 


leaps I 


runs 
 I 


swims r­

c::::JActions: 


0-10 


breathes 
 I 


I
drinks 

I
eats 
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makes animal noise I 


sings I 


talks 
 I 


c::JComponent Parts: 


0-10 


has_4_1egs I 


has a beak 
 I 


I
has a door 

I
has a shell 

has_eyes I 


has face I 


I
has fins 

I
has handle 

I
has leaves 

has_legs I 


has_paws I 


has tail 
 I 
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I
has teeth 


I
has wheels 


has whiskers I 


has_wings 


CJJudgments: 

0-10 


is_ annoying I 


is comfortable 
 I 


I
is fun 


I
is musical 


is_scary I 


is_strong_smelling I 


is _young I 


is old 
 I 


is_comforting I 


is lovable 
 I 


I
is edible 
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is delicious 

Please comment on any features that you found particularly difficult 

or confusing for this concept (if any) 

r::::::llndicates Response Required 

163 




PHD Thesis- Howell, S. R., McMaster University 

Appendix B: Cluster Analysis of352 Nouns from 
Chapter 2 

For those unfamiliar with reading Hierarchical Cluster Analyses, the 

following figures are a tree structure. For any concept, follow the branches from 

the left to the right. The lowest level category including that concept is defined 

by the first+ encountered. E.g. for Puzzle, the concepts Picture and Book share 

its category. Continuing to the right, Puzzle, Picture and Book join with Present 

in the next higher-level category, then Necklace joins in at the next level, etc. 
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Dendrogram using Average Linkage (Between Groups) 


* * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * 


Rescaled Distance Cluster Combine 

C A S E 0 5 10 15 20 25 
Label Num +---------+---------+---------+---------+---------+ 

KLEENEX 163 -+---+ 
TISSUE 310 -+ +-+ 
NAPKIN 196 -----+ +---+ 
PAPER 210 -------+ +---+ 
FLAG 115 -----------+ I 
PICTURE 223 -----+ I 
PUZZLE 247 -----+---+ I 
BOOK 34 -----+ +-+ I 
PRESENT 241 ---------+ +-+ I 
NECKLACE 197 -----------+ +-+ 
MONEY 184 -------------+ I 
BIB 28 -------+-----+ +---+ 
DIAPER 89 -------+ I I I 
BOOTS 35 ---------+-+ I I I 
PURSE 246 ---------+ I I I I 
BLANKET 31 ---+-+ I I I I 
SWEATER 301 ---+ +---+ I +-+ I 
SCARF 261 ---+-+ I I I I 
TOWEL 316 ---+ I I I I 
PILLOW 225 ---------+ I I I 
JEANS 156 -----+-+ I I I I 
PANTS 209 -----+ I I I I I 
BATHROOM 16 -----+ I I +-+ I 
SLIPPER 277 -----+-+-+-+ I 
SOCK 282 ---+-+ I I I I 
UNDERPANTS 331 ---+ I I I I I 
PAJAMAS 207 ---+-+ I I I I 
SHORTS 267 ---+ I I I I I 
TIGHTS 309 -----+ I I I I 
HAT 144 ---+-+ I I I I 
SHIRT 265 ---+ +-+ I I I 
SHOE 266 -----+ I I I I 
GLOVES 131 -----+ I I I I 
MITTENS 182 -----+ I I I I 
BELT 26 -+-+ +-+ I I I 
JACKET 154 -+ +-+ I I I 
COAT 74 ---+ I I I I 
DRESS 100 -----+ I I I 
SNOWSUIT 280 ---------+ I I 
SNEAKER 278 -----------+ I 
BENCH 27 -------+-+ I 
TABLE 303 -------+ +-+ I 
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* * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * 

C A S E 

Label Num 

ROCKING-CH 253 

COUCH 80 

SOFA 284 

CHAIR 60 

HIGHCHAIR 148 

PLAYPEN 231 

CRIB 85 

BASKET 14 

PICNIC 222 

SANDBOX 258 

BACKYARD 11 

YARD 346 

COUNTRY 81 

PARK 211 

BEACH 18 

DOWNTOWN 97 

FARM 109 

OUTSIDE 203 

PLAYGROUND 230 

PORCH 237 

BASEMENT 13 

ROOM 255 

BEDROOM 23 

LIVINGROOM 174 

KITCHEN 161 

STORE 294 

BED 22 

CHURCH 68 

HOME 149 

HOUSE 151 

SCHOOL 262 

POOL 233 

DISH 90 

HOSE 150 

MOVIE 193 

TV 329 

RADIO 248 

TAPE 304 

PENCIL 215 

STICK 292 

APPLESAUCE 6 

FORK 118 

SCISSORS 263 

ZIPPER 351 

KEYS 160 


0 5 10 15 20 25 


+---------+---------+---------+---------+---------+ 

---------+ I I 

-----+---+ +-----+ I 

-----+ +-+ I I 

-----+-+ I I I I 

-----+ +-+ I I I 

-------+ I I I 

-----------+ I I 

---+-------+ I I 

---+ I I I 

-----------+ I I 

-----+-+ I I I 

-----+ +-+ +-+ I I 

-----+-+ +-+ I +-+ 

-----+ I I I I I 

---------+ I I I I 

-------+-+ I I I I 

-------+ +-+ I I I 

---------+ I I I 

-------+-+ +-+ I I 

-------+ I I I I I 

-----+ I I I I I 

-----+-+ +-+ I I I I 

-----+ I I I I I I I 

-----+ I I I I I I I 

-----+-+-+ I I +-+ I 

-----+ I +-+ I +---+ 

---+---+ I I I I 

---+ I I I I I 

-----+-+ I I I I 

-----+ I I I I 

-----------+ I I I 

---------------+ I I 

-----------------+-+ I 


-----------------+ I I 

-------+-+ I I 

-------+ +---+ I I 

---------+ +---+ I I 

-------------+ I I I 

-----------+-----+ I I 


-----------+ I I I 

-----+-+ I I I 

-----+ +-+ +-+ I 

-----+-+ I I I I 

-----+ +-+ I I I 

---------+ +-+ I I I 
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* * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * 

c A s E 0 5 10 15 20 25 

Label Num +---------+---------+---------+---------+---------+ 

NAIL 195 ---------+ I +-+ I I I 
KNIFE 165 -----------+ I I I I I 
SPOON 287 -------------+ I I I I 
BATHTUB 17 -------+---+ I I I I 
SHOWER 270 -------+ +-+ I I I I 
SINK 272 -----------+ I I I I I 
WATCH 338 -----+-+ I I I I I 
WATER 339 -----+ I I I I I I 
CAMERA 53 -------+---+ +-+ I I I 
GLASSES 130 -------+ I I +-+ I I 
CLOCK 70 -------+-+ I I I I I 
TELEPHONE 307 -------+ +-+ I I I I 
SLIDE 276 -------+ I I I I I I 
WALKER 336 -------+-+ +-+ I I I 
SPRINKLER 288 -------+ I I I I 
BEADS 19 -------+---+ I I I 
BUTTON 51 -------+ I I I I 
BOTTLE 36 -------+-+ I I I I 
POTTY 240 -------+ I I I I I 
BOY 40 ---+-+ +-+ I I I 
JAR 155 ---+ +-+ I I I I 
BOWL 38 -----+ I I I I I 
LAMP 168 -------+-+ I I I 
CUP 86 -------+ I I I 
BRUSH 44 -------+ I I I 
TOOTHBRUSH 315 -------+---+ I I I 
COMB 77 -------+ +-+ I I I 
BROOM 42 -------+---+ I I I I 
MOP 189 -------+ I I I I 
DOOR 96 ---+-+ I I I I 
DRAWER 99 ---+ +-+ I I I I 
STAIRS 290 -----+ +-+ +-+ I I 
CLOSET 71 -------+ +-+ I I I 
BUCKET 45 ---+-----+ I I I I 
ROOF 254 ---+ I I I I I 
HAMMER 142 -------+-+ I I I I 
SHOVEL 269 -------+ I +-+ I +-+ 
BOX 39 -----+-+ I I I I I 
TRAY 321 -----+ +-+ I I I I 
BLOCK 32 -------+ I I I I 
WINDOW 341 -----------+ I I I 
TOOTH 314 -------------------+ I I 
GARBAGE 124 -------+-------------+ I I 
TRASH 320 -------+ I I I 
ANKLE 3 -+-------+ I I I 
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* * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * 

C A S E 0 5 10 15 20 25 

Label Num +---------+---------+---------+---------+---------+ 

STREET 298 -+ +-----+ +-+ I 

BELLYBUTTO 25 ---+-+ I I I I I 
STONE 293 ---+ +---+ +---+ I I I 
ROCK 252 -----+ I +-+ I I 
SIDEWALK 271 ---------------+ I I I 
PENNY 218 -------------------+ I I 
SLED 275 -----------+---+ I I 
TRICYCLE 323 -----------+ +-----+ I I 
BICYCLE 29 -------+-----+ I I I I 
MOTORCYCLE 190 -------+ +-+ +-+ I 
STROLLER 299 -------------+ I I I 
GAME 122 ---------------------+ I I 
LAWNMOWER 169 -----------+---+ I I 
VACUUM 332 -----------+ I I I 
GARAGE 123 -------+-----+ I I I 
GAS-STATIO 126 -------+ I I I I 
DRYER 102 -----+-+ +-+-----+ I I 
OVEN 204 -----+ +---+ I I I I I 
STOVE 296 -------+ +-+ I I I I 
WASHING MA 337 -------+ I I I I I 
REFRIGERAT 251 -----------+ I I I I 
CAR 56 -----+---+ I I I I 
TRUCK 324 -----+ +-+ I +-+ I 

BUS 48 -------+ I I I I I 

TRACTOR 318 -------+-+ +---+ I I 
FIRETRUCK 113 -------+ I I I I 
TRAIN 319 -----------+ I I I 
HELICOPTER 146 ---------------+ I I 
LADDER 166 ---------------------+ I 
GARDEN 125 -------+---+ I 
PLANT 227 -------+ +-+ I 
FLOWER 116 -----------+ +-----+ I 
GRASS 137 -------------+ I I 
SAUCE 260 -------+-+ I I 
SOUP 285 -------+ I I I 
VANILLA 334 ---------+ I I 

POP 234 -+---+ I I I 
SODA 283 -+ I +---+ I I 
DRINK 101 -----+-+ I I I I 
JUICE 159 -----+ +-+ I I I 
ICECREAM 153 ---+---+ I I I I 
PUDDING 243 ---+ I I +-+ I I 
YOGURT 347 -------+ I I I I I 
MILK 181 ---------+ I I I I 
COKE 76 ---------+-+ I I I I 
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* * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * 

C A S E 0 5 10 15 20 25 

Label Num +---------+---------+---------+---------+---------+ 

COOKIE 78 ---------+ +-+ I I I 
COFFEE 75 -----------+ I I I 
MEDICINE 179 -----+---+ I I I 
VITAMINS 335 -----+ +-+ +-+ I I 
GLUE 132 ---------+ +-+ I I I I 
SALT 257 -------+-+ I I I I I I 
SANDWICH 259 -------+ +-+ I I I I I 
ICE 152 ---------+ I I I +-+ I 
EGG 105 -------------+ I I I I I 
JELLO 157 -------+---+ I I I I I I 
JELLY 158 -------+ +-+ I I I I I 
GUM 139 ---------+ I +-+ I I I I 
PLAYDOUGH 229 ---------+-+ I I I I I 
CEREAL 59 -----+---+ I I I I I 
POPSICLE 236 -----+ I I I I I I 
CAKE 52 ---------+ I I I I I 
APPLE 5 -----+---+ I I I I I 
GRAPES 136 -----+ +-+ I I I I I 
STRAWBERRY 297 ---------+ +-+ I I I I 
FOOD 117 -----------+ I I I I I 
MELON 180 -----+-+ I I I I I 
ORANGE 202 -----+ +---+ I I I I I 
PUMPKIN 244 -------+ +-+ I I I I 
CARROTS 57 -----------+ I I I I I 
CRACKER 84 -----+-+ I I I I I 
TOAST 311 -----+ +---+ I I I I I 
CHOCOLATE 67 -----+-+ I I I I I I 
FRENCHFRIE 119 -----+ I I I I I I 
NUTS 201 -------+-+ I I +-+ I I 
PRETZEL 242 -------+ I I I I I I 
BANANA 12 ---+ I I I I I I 
BEANS 20 ---+---+ I I I I I I 
PEAS 214 ---+ +-+ I I I I I 
GREENBEANS 13 8 -----+-+ I I I I +---+ 
PICKLE 221 -----+ I +-+ I I I 
PIZZA 226 -----+-+ +-+ I I I 
PLATE 228 -----+ I I I I I I 
HAMBURGER 141 ---+-+ +-+ I I I I 
PANCAKE 208 ---+ I I I I I I +-+ 
DONUT 95 ---+-+ I I I I I I I 
MUFFIN 194 ---+ +-+ I I I I I I 
CHEERIOS 62 -----+ I I I I I I 
PEANUT BUT 213 -----+ I I I I I I 
CORN 79 -------+-+ I I I I I 
POTATO 238 -------+ I I I I I I 
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* * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * 

C A S E 0 5 10 15 20 25 

Label Nurn +---------+---------+---------+---------+---------+ 

NOODLES 198 -----+-+ I I I I I I 
SPAGHETTI 286 -----+ I I I I I I I 
CHEESE 63 -+ +-+ I I I I I 
CHILD 65 -+-----+ I I I I I 
CHICKEN 64 -+ I I I I I I 
POPCORN 235 -----+-+ I I I I I 
POTATOCHIP 239 -----+ I I I I I 
MEAT 178 -----------+ I I I I 
RAISIN 250 -----------------+ I I I 
MAN 177 -----------+-+ I I I 
PARTY 212 -----------+ +---+ I I I 
LIPS 173 -------+-----+ I I I I 
TONGUE 313 -------+ I +-+ I I I 
VAGINA 333 -------------+ I I I I I 
MOUTH 192 -----------------+ I I I I 
KNEE 164 -------+---------+ +-+ I I 
LEG 170 -------+ I I I I 
STORY 295 -----------+-----+ I I I 
WIND 340 -----------+ +-+ I I 
BOOBOO 33 -+-------+ I I I 
OWIE 205 -+ +-+ I I I 
WORK 345 ---------+ +---+ I I +-+ 
RAIN 249 -----------+ I I I I I 
ARM 7 -----+-+ I I I I I 
FINGER 111 -----+ +-+ I I I I I 
HAND 143 -----+-+ I I I I I I 
SHOULDER 268 -----+ I I I I I I 
HAIR 140 ---------+-+ +-+ I I I 
FEET 110 -----+---+ I I I I I 
TOE 312 -----+ I I I I I I 
PENIS 217 ---------+ I I I I I 
CHEEK 61 -------+ +-+ I I I I 
TUMMY 325 -------+ I I I I I I 
BOTTOM 37 -+---+ +-+ I I I I I I 
BUTTOCKS 50 -+ +-+ I I +-+ I I I 
EAR 104 -----+ I +-+ I I I I 
CHIN 66 -------+ I I I I I 
NOSE 199 ---------+ I I I I 
EYE 107 -------------+ I I +-+ 
MOON 187 ---------+---+ I I I I 
STAR 291 ---------+ +---+ I I I I 
SUN 300 -------------+ +-----+ I I I I 
CLOUD 72 -----------+---+ I I I I I I 
SKY 274 -----------+ +-+ +-+ I I I 
LIGHT 171 ---------------+ I I I I 
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* * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * 

C A S E 0 5 10 15 20 


Label Num +---------+---------+---------+---------+---------+ 


SNOWMAN 279 -----------------------+ I I I 
DOLL 93 -------+-------------+ I I I 
TEDDYBEAR 306 -------+ I I I I 
BUTTERFLY 49 -------+-+ I I I +-+ 
GIRL 128 -------+ +-----+ +-----+ I I I 
FISH 114 ---------+ I I I I I 
CAMPING 54 -------+---+ I I I I I 
CANDY 55 -------+ +---+-----+ I I I 
TOY 317 -----------+ I I I +---------------+ 
CIRCUS 69 ---------------+ I I I I 
zoo 352 ---------------+ I I I I 
LOLLIPOP 175 -----------------------+-----+ I I I 
SOAP 281 -----------------------+ I I I 
SWING 302 -------------------------------+ I I 
TREE 322 -----------+---------------------+ I 
WOODS 344 -----------+ I 
HEN 147 -------+-+ I 
ROOSTER 256 -------+ +---+ I 
TURKEY 327 ---------+ I I 
DUCK 103 ---+-----+ +-----------+ I 
GOOSE 133 ---+ +---+ I I 
PENGUIN 216 ---------+ I I I 
BIRD 30 -----------+-+ I I 
OWL 206 -----------+ +---+ I 
ANT 4 ---------+-----+ I I I 
BUG 46 ---------+ +-+ I I I 
BEE 24 ---------------+ +-----+ I I I 
FROG 121 -----------------+ +-+ I I 
BAT 15 -----------------------+ I I 
ALLIGATOR 1 ---------------+-----------+ I I 
TURTLE 328 ---------------+ I I I 
FACE 108 -------+-------+ I I I 
HEAD 145 -------+ I I +-------+ I 
FIREMAN 112 ---+-+ I I I I I 
FRIEND 120 ---+ I I I I I I 
GRANDMA 134 -+-+ I I I I I I 
GRANDPA 135 -+ +-+ I I I I I 
LADY 167 -+-+ I I I I I I 
MAILMAN 176 -+ I I I I I I I 
DOCTOR 91 ---+ I I I I I I 
DADDY 87 -----+ I I I I I 
TEACHER 305 -+ I I +-+ I I 
UNCLE 330 -+-+ +-+ I I I I 
PEOPLE 219 -+ I I I +-------+ I I I 
SISTER 273 -+ +-+ I I I I I I 
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* * * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * 

C A S E 0 5 10 15 20 25 

Label Nurn +---------+---------+---------+---------+---------+ 

PERSON 220 ---+ I I I I I I I 
MOMMY 183 ---+ I I I I I I I 
NURSE 200 ---+ I I I I I I I 
AUNT 8 ---+ I I I I I I I 
YOUR-OWN-B 348 ---+-+ +---+ I I I I I 
WOMAN 343 ---+ I I I I I I I I 
BREAD 41 ---+-+ I I I I I I I 
GLASS 129 ---+ I I I I I I I I 
BABYSITTER 10 ---+ I I I I +---+ I I 
BROTHER 43 ---+-+ I I I I I I 
COWBOY 83 ---+ I +---+ I I I 
POLICE 232 -------+ I I I I 
CLOWN 73 -----------+ I I I 
BABY 9 -----------+ I +-----------+ 
DRAGON 98 -------+-------+ I I 
MONSTER 186 -------+ +-----+ I I 
ELEPHANT 106 ---------------+ I I I 
MOUSE 191 -----------+-----+ I I I 
SQUIRREL 289 -----------+ I I I I 
DOG 92 -----+-+ I +-+ I 
PUPPY 245 -----+ I I I I 
CAT 58 -----+-+-+ I I I 
KITTY 162 -----+ I +---+ I I I 
YOUR-OWN-P 349 -------+ I I I I I 
BUNNY 47 ---------+ I +---+ I 
LION 172 -------+ I I I 
TIGER 308 -------+-+ I I I 
WOLF 342 -------+ +-+ +-+ I I 
BEAR 21 ---------+ +-+ I I I 
ANIMAL 2 -----------+ I I I I 
MONKEY 185 -------------+ I I I 
PIG 224 -----+---+ +-+ I 
SHEEP 264 -----+ +-+ I I 
cow 82 ---------+ +-+ I I 
ZEBRA 350 -----------+ I I I 
DEER 88 -------+-+ +-+ I 
GIRAFFE 127 -------+ +-+ I I 

DONKEY 94 ---------+ +-+ I 

MOOSE 188 -----------+ I 
TUNA 326 -------------------------------------+ 
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Appendix C: Forms and Instructions for 
Experiment 2, Chapter 2 

Attached are the instructions and rating forms used in the pilot verb feature 

generation experiment and the verb feature rating experiment from Experiment 2 

in chapter 2. These were originally presented as web pages, since participants 

completed the experiment on-line via the Web. 
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Pilot Study- Verb Features Generation 

Please list as many features/aspects ofthe following verbs as you can. There is no 

rush, please take the time to think about and visualize (ifpossible) the word in 

question. Try to focus on physically observable aspects of that verb, rather than 

on other words, nouns, etc, that it tends to occur with. A "feature" does not have 

to be a single word, so for "fly" the features might be something like: 

Requires wings 

Goes fast 

Travels from point a to point b 

Moves through the air 

Etc... 

Hit: 

Move: 
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Go: 

Put: 

Run: 

Sleep: 
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Eat: 

Fall: 

Carry: 

Hold: 
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Touch: 

Walk: 

Sit: 
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Building Sensorimotor Semantic Representations 

from Human Knowledge- Verb Feature Ratings 

On the following pages are a series ofvarious actions or verbs, such as "hit", or 
"run". For each ofthe actions/verbs, there is a list ofjeatures. Please rate each 
verb on each feature on a scale of 0 to 10. Try to picture the object or concept 
mentally as you are making your rating. Also, rate a given verb in the context of 
other verbs, for example, the speed rating for "walk" should be lower than that 
for "run", and the forcefulness rating for "hit" should be higher than for 
"touch".. However, don't worry if you can't remember exactly your ratings from 
concept to concept. 

A 10 rating is the highest level ofthat feature possible, e.g. "smash" might get a 
10 on increases disorder. A 0 on the other hand indicates the total absence of 
that feature. In some cases this implies its opposite is true. For example, a rating 
ofO for noisy would mean total silence. Thus lower ratings (1-4) on noisy might 
correspond to relative quiet. Therefore, on some of these dimensions, a rating of 
5 can be viewed as the dividing point between the feature and its opposite. In 
other cases there is no opposite to the feature, merely the absence of it, for 
example the feature causes damage. If this action is not a damaging action at all, 
then it is appropriate to rate it with a 0. Otherwise, the larger the number, the 
more damage this action causes (e.g. up to perhaps a 10 for the verb destroy). 

Try to avoid a 10 rating unless you are convinced or it is obvious that this verb is 
the highest possible on that feature. Likewise, avoid a 0 rating unless it's clear 
that this feature is not present at all for this verb, or this verb has the lowest 
amount possible of that feature. Try using a 9 or a 1 respectively if you are not 
sure enough to give a 10 or a 0. 

In general for these ratings, you should limit yourself to the experience that a pre­
school child might have, that is, very basic physical understandings ofthemselves 
and their actions. 

Click Proceed to begin the experiment. Remember, to receive credit you must rate 
10 verbs. This will mean 1 0 passes through the web form, selecting the next verb 
each time. Each time you submit the data for one concept, you will be linked back 
again. 

Proceed! 
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Verb Ratings Form 

Student ID (For Experimental Credit): 

c:JBelow is a drop-down box containing all the words in the 

experiment, in alphabetical order. You must rate only 10 of them, the 

10 that were assigned to the phase you signed up for and that you 

wrote down previously. You will thus have to go through this form 10 

times, crossing a word off of your list of 10 each time until you are 

done (so you don't forget and rate a word twice). Each time you 

complete a concept, you will go to a completion page, where you can 

link back to this form if you have not completed all10 of your words 

yet. 

3 

Please try to imagine yourself performing each verb as you proceed, 

and keep that image in mind while rating the verb on the following 

featural dimensions. Press TAB to move to the next entry field. Try to 

ensure that you are consistent across verbs (e.g. don't say that walk is 

faster than run) but don't spend too much time agonizing over the 

ratings; just pick what seems reasonable and keep going. 
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Please enter a value between 0 and 10. A value of 10 means that ofall 

possible verbs, this feature is the most true of this verb, or is of the 

highest value ofall verbs. (E.g., "smash" might get a 10 for "causes 

damage", or "fly" might get a 10 for speed. A zero means the absence of 

that feature, e.g. a zero for noise means COMPLETE silence. For normal 

quiet, try a 1 or a 2 rating.) 

c::::JPlease rate the amount of physical activation of the following 

body parts involved in this verb (note that limb motion is expressed 

in terms of joint motion e.g. elbow): 

0-10 (0 = no movement or irrelevant to 

this action, 5 = average amount) 

toes I 

ankles I 

knees I 

hips I 

torso (e.g. twisting) I 

shoulders I 

elbow I 

wrist I 
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fingers I 


neck 
 I 


I
head 

face (General face movement) I 


I
eyes 

eyebrows I 


nose 
 I 


I
mouth 

lips I 


tongue I 


requires a specific overall bodily position? 


degree of overall body contact involved 

CJPlease rate the degree to which the following sensory 


perceptions/physical observations are present/involved: 


0-10 


I
horizontal motion involved 

I
vertical motion involved 
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optimum size of actor I 


noisyness (0 =silence) I 


perception - Auditory I 


perception - mental I 


perception - Smell I 


perception - Taste I 


perception - Touch I 


perception - Visual I 


speed (10 =fastest) I 


suddenness (0 - totally expected) I 


tightness (0 = no hold) I 


agitation (physical) I 


c:::JPhysical States: Please rate the degree to which the following are 

true of a person performing this verb or experiencing its 

consequences. 

0-10 


balance (0 = totally unsteady) 
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decreases agitation I 

decreases energy I 

decreases hunger I 

decreases thirst I 

decreases tiredness I 

increases agitation I 

increases energy I 

increases hunger I 

increases thirst I 

increases tiredness I 

reactiveness (0 =unreactive to stimuli) I 

tension (0 =completely relaxed) 

c::JMental State Features: Please rate the degree to which the 

following mental or cognitive states are typically present in a person 

performing this verb. 

0-10 

aggression (0 =complete passivity) 
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attention (0 =oblivious to this stimulus) I 


awareness (0 = unaware of anything) I 


control (0 = completely accidental) I 


pleasureable (0 = not at all) I 


painful (0 = not at all) I 


purposeful (0 = completely unintentional) I 


c=::ffemporal Features: How much of any of the following are 


involved in the performance of the verb? 


0-10 


starts something else I 


ends something else I 


duration of action (0 =instantaneous) I 


periodic action (0 =single action) I 


time pressure involved (e.g. verb "race") I 


c:=:JPhysical Requirements/Characteristics: How much are the 

following features characteristic of or required for performing this 

verb? 
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0-10 

amount of contact involved between actor and object I 

involves container/containing I 

involves supporting something I 

forcefulness I 

requires physical object (e.g. target for "hit") I 

requires a surface I 

strength involved I 

involves a trajectory or path from source to goal I 

c::::JPhysical Effects: Rate the degree to which performing the verb 

has the following physical effects, results or consequences. 

0-10 

interrupts a path or trajectory 

causes damage 

distance typically travelled (0 = no change in position) I 

conjoins things I 

divides things I 
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consumes (e.g. uses up like in "burn") I 

creates (something new) I 

destroys I 

displaces other object (and takes its place) I 

creates disorder/untidyness I 

creates order/tidyness I 

closes/closes down I 

opens/ opens up I 

change is involved (0 =totally static e.g. "exist") I 

transference of something I 

assembles things I 

disassembles things I 

CJPlease suggest at least one feature dimension that is not yet listed 

in the above, and that would have been helpful when rating the above 

verb. Or, list the LEAST useful feature(s) from the list above for this 

verb. Also, feel free to make any general comments about the 

experiment here as well. 
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c::Jlndicates Response Required 
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Appendix D: Cluster Analysis of 90 Verbs from 
Chapter 2 

For those unfamiliar with reading Hierarchical Cluster Analyses, the following 
figures are a tree structure. For any concept, follow the branches from the left to the 
right. The lowest level category including that concept is defined by the first + 
encountered. 
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* * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * 

Dendrogram using Average Linkage (Between Groups} 

Rescaled Distance Cluster Combine 

C A S E 0 5 10 15 20 25 
Label Num +---------+---------+---------+---------+---------+ 

DRY 21 -+---+ 
GRAND 30 -+ I 
TAKE 79 -----+-+ 
BRING 4 -----+ I 

PULL 54 ---+-+ +-+ 
PUSH 55 ---+ +-+ I 

PUT 56 -----+ I +-+ 
MOVE 48 -------+ I I 
FIT 26 -----+---+ I 

SHAKE 63 -----+ +-+ 
BUY 7 -----+---+ I I 

SHOW 64 -----+ I I I 
BUILD 5 -----+---+-+ I 

MAKE 47 -----+ I +---+ 

OPEN 49 ---------+ I I 

RIDE 58 ---+-+ I I 

THROW 83 ---+ +-----+ I +-+ 
DRIVE 20 -----+ +-+ I I 
CATCH 9 -----------+ I I 
CLEAN 12 -----------------+ I 
TICKLE 84 -------------------+-+ 
BUMP 6 -----+---+ I I 

HIT 35 -----+ +-----+ I I 

KNOCK 41 ---------+ +---+ I 

CUT 16 -----+-----+ I I 
RIP 59 -----+ +---+ I 
SPILL 71 -------+---+ +-----+ 
SPLASH 72 -------+ I I 
CHASE 10 -------+---------+ I I 
RUN 60 -------+ +-+ I I 
KICK 39 -----------------+ I I I 
HIDE 34 -------+---+ I I I 
STAND 73 -------+ +-----+ +-+ I 
HURRY 37 -------+-+ I I I +---+ 

SLIDE 68 -------+ +-+ I I I I 
GO 29 -------+-+ +-+ I I 
JUMP 38 -------+ I I I I 
STOP 75 ---------+ I I I 
SWIM 77 -------+-----+ I I I 
SWING 78 -------+ +---+ I I 
DANCE 17 -------------+ I I 
BREAK 3 ---------+-----------------+ I 
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C A S E 0 5 10 15 20 25 
Label Num +---------+---------+---------+---------+---------+ 
SMASH 69 ---------+ I 
BLOW 2 -------+-----+ I 
PRETEND 53 -------+ I I 
SAY 61 -------+-----+-----+ I 
TALK 80 -------+ I +---+ +-----+ 
LISTEN 44 -------------+ I +-----+ I I 

SING 65 -------------------+ I I I I 
HATE 31 -----------------------+ I I I 
LICK 42 ---+---------+ I I I 
TASTE 81 ---+ +---------+ I I I 

SMELL 70 -------------+ I I I I 

SIT 66 -----------+-------+ I I I I 

SLEEP 67 -----------+ I I I I I 

LOOK 45 ---+-+ I +---+ I I I 

SEE 62 ---+ +---+ I I I I I I 
WATCH 88 -----+ +---+ I I I I I I 

READ 57 ---------+ I I I I I I I 

CLAP 11 ---------+---+ I I I +-+ I 

WAKE 86 ---------+ +---+ +---+ I I I 

GIVE 28 -+---+ I I I I I I 
HAVE 32 -+ +-+ I I I I I I 
COVER 15 -----+ I I I I I I I 

EXIST 23 -------+-+ I I I I I +-------+ 
WISH 89 -------+ +-+ I I I I I I I 

STAY 74 -----+---+ I I I I I I I I 

THINK 82 -----+ I +-+ +-+ I I I I 
FINISH 25 ---------+ I I I I I I I 
LOVE 46 -----------+ I I I I I I 

HEAR 33 -------------+ I I I I I 

DRAW 18 -+-+ I I I I I 

WRITE 91 -+ +-----+ I +-+ I I 
PAINT 50 ---+ +---+ I I I I 
CLOSE 13 -------+-+ +-+ I I I I 

FIX 27 -------+ I +-+ I I I 

SWEEP 76 -------------+ I I I I 

HUG 36 ---------------+ I I I 

LIKE 43 ---------------------------+ I I 

PICK 51 ---------------------------+ I I 

EAT 22 -------------+-+ I I 
KISS 40 -------------+ +-------+ I I 

DRINK 19 ---------------+ +-------------+ +---+ 
FEED 24 -----------------------+ I I I 

TOUCH 85 -------------------------------------+ I I 

CARRY 8 ---------+-------+ I I 

WORK 90 ---------+ +---------+ I I 

COOK 14 -----------------+ +-----------------+ I 

PLAY 52 ---------------------------+ I I 

WALK 87 ---------------------------------------------+ I 
BITE 1 -------------------------------------------------+ 
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Appendix E: SRNEngine -A Windows-based 
neural network simulation tool for the non­
programmer 

Preface 

This appendix is reproduced from Howell and Becker (Submitted c). This paper 

was first submitted June, 2003, to the journal Behavior Research Methods, 

Instrumentation, and Computation. It is presently being revised for publication. 

It describes the self-contained software application that I designed to support the 

simulation experiments conducted in other chapters of this thesis and in earlier 

work. While methodological rather than experimental in nature, it is a vital part 

of my dissertation, since without it I would not likely have been able to complete 

as many large, complex simulations as I have. 

Abstract 

SRNEngine is a windows-based application package for training neural networks. 

The graphical user interface allows the drag-and-drop creation of neural networks 
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with a variety of architectures, without the need for any programming. At 

present, these architectures/learning algorithms include Simple Recurrent 

Networks, Jordan networks, and any kind of feedforward backpropagation 

network, with up to five each of input, hidden, and output layers (pools of units). 

A version that adds backpropagation-through-time is in development. The 

interface is designed to conform to the Microsoft Windows GUI environment that 

most PC users are already familiar with. SRNEngine includes tools for creating, 

editing, and manipulating various types of training data, and is especially 

optimized for working with text/language data, including automatic word-to­

input-representation translation at runtime for text corpora. The distributed 

computing feature allows multiple simulations to be run on a network of 

workstations, co-ordinated via a central ftp server. 

Introduction 

Many simulation environments or neural network toolboxes that currently exist, 

while powerful and flexible, are either designed for those familiar with 

programming methodologies or are primarily used on a Unix platform. 

SRNEngine was designed for the Microsoft Windows environment and can be 

used even by non-programmers. As Macho (2002) points out, one of the options 

for non-programmers interested in neural networks is to use a spreadsheet 

program to implement neural network models. However, to implement a neural 

network within a spreadsheet requires a fair degree ofcomputational 

192 



PHD Thesis -Howell, S. R., McMaster University 

sophistication and effort. SRNEngine was explicitly designed to permit easy 

creation and training ofneural networks. Thus, the SRNEngine application 

package allows a researcher to design a network by dragging layers graphically 

onto a screen, and then dragging connections between them to define the 

activation flow. After specifying a training corpus and output tasks, the network 

is ready to run. The simplicity of the interface makes the SRNEngine not only an 

attractive research tool for non-programmers but also a powerful teaching tool. 

Undergraduates in our lab have found it very easy to use in their research. 

Development of a novel neural network application, whether for a 

research publication or industry, typically requires running numerous simulations 

to optimize model parameters and to generate a valid sample of model 

performance statistics. Parallel processing can greatly speed up this process. 

SRNEngine can be run in distributed-computing mode in order to run multiple 

simulations in parallel on the idle compute cycles ofclient PC's. This powerful 

feature allows the network model to be designed once, and then uploaded to an ftp 

server. Any number of client installations can then be installed in a special 

screensaver mode, which uses any idle time on the client computer to download 

the network specification from the FTP server and run it until complete. When 

complete, it uploads the results to the server, where they may be retrieved for 

analysis. 

The following sections expand on the interface and distributed computing 

features of this application. We also describe how it has been optimized for 
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language/text models (e.g. Howell & Becker, 2000; Howell & Becker, 2001; 

Howell, Becker, and Jankowicz, 2001; Howell, Trainor, and Sonnadara, 2002) 

and categorization models (e.g. Howell, Schmidt, Trainor, and Santesso, 2002), 

the two areas where it has been applied to date1
• 

Control Panel 

The main screen of SRNEngine is its Control Panel, which houses the main menu 

and update fields for monitoring the real-time training progress ofthe network 

under simulation (See Section 5.4.2). New networks are created by simply 

dragging layers from a toolbar to the workspace and dropping them in position, 

then dragging one layer and dropping it onto another to establish the flow of 

activation. 

Learning Algorithms Supported 

At present the SRNEngine application supports only the back-propagation oferror 

learning algorithm (Rumelhart, Hinton, & Williams, 1986), although many 

architectural variants that use this learning algorithm are supported, from arbitrary 

feedforward architectures to Simple Recurrent Networks (Elman, 1990) and 

Jordan networks (Jordan, 1986). It is also possible to implement a time-delay 

neural network (TDNN, Lang, Waibel, & Hinton, 1990) using multiple input 

'layers' (pools of input layer units). A back-propagation-through-time (BPTT) 
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version is currently in development to extend the ability ofSRNEngine to handle 

arbitrarily connected recurrent networks. 

Text Corpus Pre-processing Tools 

As the name might suggest, the SRNEngine application was originally designed 

to support the Simple Recurrent Network (SRN) architecture, as it is often used 

for language modelling. Thus, SRNEngine has an extensive suite ofpre-and post­

processing tools for language-related models. 

SRNEngine is designed to use text-mode human-readable training 

corpora, and hence translates these human-readable inputs to computable vector 

representations internally at runtime. This facilitates the use of any textual corpus 

for training, since the researcher does not have to manually convert the text to 

vector representations. Text corpora can be converted to any ofthe following 

input representations (see Table 5.1): localist word, localist letter-by-letter, letter 

clusters of arbitrary length, user-defined distributed representations, phoneme-by­

phoneme representations, or whole word phonemic representations. The ability to 

deal with training data and outputs in human-readable form has proved to be a 

major advantage in our research on language acquisition. 

Post-processing, Logging, and Analysis Tools 

SRNEngine includes many options for logging performance ofa simulation over 

time. The most basic are error and accuracy logging, but some ofthe others 
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available include optional logging of all weights, all deltas, any layer's 

activations, Euclidean distance to target, per item frequency and accuracy, and 

more. In addition, prototypes (representations averaged across all exemplars of 

an input word) may be automatically generated from any hidden layer's activation 

pattern across the training set, allowing later statistical analysis ofnetworks' 

hidden layer representations. These log files are easily imported to spreadsheet 

programs, statistical packages or other analysis tools. 

Table 1: Types of Input Representations Supported 

Localist Word e.g. "CAT"= "0 0 0 1" 

Localist Letter-by-letter e.g. "C" = "0 0 0 1 ",A=" 0 0 1 0" 

Localist Letter Cluster (length n) e.g. "CA" = "0 0 0 1 ","AT"= "0 0 1 0" 

User Defined Vector Representations e.g. "CAT"= "0.4, 0.3, 0.1, 0.5" 

Phoneme-by-phoneme Representations e.g. "ae" = "0 1 0 1", "ng" = "1 0 0 0" 

Whole Word Phonemic Representations 
(automatically generated) 

Each word is composed of up to 10 
phoneme slots, each containing a 14 bit 
compressed representation of that 
phoneme 
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Operational Details of SRNEngine 

The Control Panel displays the current epoch and pattern being trained, the output 

layer being examined, and the translated output of the network at each pattern. In 

Figure 5.1, for example, the network is in the process of running 300 epochs of a 

language acquisition model using a 10,742-word corpus. It is currently running 

Flle Logs: · . OptiOns . ... · . · > .. ·:..: : . : . ., '-~--· ;· . .. ·--~- ·.;,: . 
fnitializatlopllnputFife: lte~ Single·pall:Se fo.loNoun Condition h30 np05.net SeliCffile f ; 

Ptev. Epoc;h' lo Prev. Patterri ro---: l. Raterlci.1 ~;:::::::::::~1 

.P' Initialize WeitJ!..,*?f?' 0~? ~~l~al; 0 
Epoch Count Pattetm 

boo bo74~ 
...lliiiiiiiiiiiiiiiiii 

i '.'CUrient Epoch: p;:o- Current P~em: f16i'O"Anpealing: lo 
oiltput; ILDoK Taroet ~~u--NK""""N... .....-InpUt ITO''v\-IN 

Figure 1 -The control panel of the SRNEngine Simulation Environment. 

epoch 240, is on pattern 1610, and the word 'LOOK' is being produced at output 

layer number 1 when no target was specified, and when the input was the word 

'IT'. Furthermore, the error or accuracy curves of the network may be examined 

at any time during a run. All of this information provides a simple way to check 
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on the status of the simulation at a glance, although more in-depth visualization 

on the operation of the network is available from the Inspect Running Net button. 

Network Design WorkSpace 

This is the other major screen of the application and is where new networks are 

designed and where currently running networks are examined (See Figure 5.2). 

New networks are created by merely dragging layers from a toolbar to the 

workspace and dropping them in position, then dragging one layer and dropping it 

onto another to establish the flow of activation. Left-clicking on all layers brings 

up dialogs that allow the user to specify various parameters for that layer, such as 

type of activation function, initialization range, etc. Once all parameters have 

been entered, or the default values accepted, the user may return to the Control 

Panel and immediately run the network. 

On-line Visualization Features 

The Workspace screen is also used as the visualization screen, as can also be seen 

in Figure 5.2. Left-clicking on any layer will display a window containing the 

current activation values across the nodes ofthat layer, and the contents will be 

updated in real-time as the training patterns are processed by the network. Output 

layers have more options; they can display either activations, mean-squared error 

per node, target activations, translated output (text or labeled representations), or 

all of these at once. 
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Left-clicking on the connections between layers will similarly display the 

weights between those layers, as seen in the background window in Figure 5.2. 

These weights can be viewed as Hinton diagrams or as numerical arrays. Right­

clicking on a connection will display not the weights themselves, but rather the 

deltas or changes to those weights that are being made as a result of the current 

error feedback cycle. 

All of these visualization tools have proved to be useful in our work when 

diagnosing problems in a misbehaving simulation, or when a novice user or 

student needs to understand exactly how a network is operating time-step by time­

step. 
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Figure 2: The SRNEngine NetDesigner Workspace screen. This screen is used 
for both network design and inspecting running networks. The background 
window is a display ofthe weights between the context and hidden units. This 
display is available for any set ofweights or layer activations, and can be 
displayed as Hinton Diagrams (as here) or as numerical arrays. Output 
activations can also be viewed translated into the correct readable output 
response, either a word or a categorization response. 

Distributed Computing Abilities 

One of the most powerful and innovative features of the SRNEngine environment 

is its support for parallel distributed processing of simulations. In most parallel 
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computing applications, multiple processors work on several parts of a single 

problem simultaneously and then recombine the parts to form the solution. 

However, most of the neural networks that will be simulated with SRNEngine 

cannot be broken down into subtasks or partitioned, but must be run in a 

continuous serial fashion. Another way to parallelize neural networks is by 

partitioning the training data into non-overlapping sets, training different 

networks on different data subsets, and periodically averaging the weights. 

However, this method is not well suited to applications like language where the 

data consists of one continuous time-varying stream. Yet another way to 

parallelize neural networks is across multiple runs ofthe same network, starting 

from different random initial weights. This is the form of distributed computing 

that SRNEngine makes possible, by using unused computer time in a building or 

department to run many copies of one simulation, or one simulation in each of 

several conditions, simultaneously. 

Much of the early neural network research was conducted at the 

"existence proof' level, whereby showing that a single network can solve the 

problem, or can model the data, was the only goal. However, today most 

researchers realize the need for valid scientific comparisons between alternative 

network models' performance, or comparisons to control networks lacking one or 

more critical features. Obviously, in order to be able to compile statistics on 

network performance, many networks must be run, often on the order often or a 

dozen networks per condition. For example, we have run a three condition 
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experiment using SRNEngine that investigates the use of semantic features added 

to a word prediction task (Howell and Becker, 2001). We ran ten networks in 

each condition, performed at-test on their performance, and were able to 

demonstrate that adding features significantly improved word prediction, a 

finding that has relevance to the literature on the processes ofchildren's word 

learning. 

The SRNEngine application accomplishes this distributed computing by 

providing the option to be installed as a hidden application on client computers 

(ScreenSaver mode). When running in ScreenSaver mode, SRNEngine 

downloads a network to run from a local server (which is simply an account on an 

FTP server). It then lies dormant while the computer is in use, but as soon as the 

computer is idle long enough to activate the screensaver, SRNEngine continues 

from where it last left off. When a simulation is finished, SRNEngine uploads the 

results to the server and downloads a new simulation to run. The researcher can 

periodically retrieve the uploaded results via FTP and perform various analyses 

using a copy of SRNEngine in normal mode. A graphical server management 

program is also provided that insulates the user even from the need to use an FTP 

program, by automating the validation and uploading ofeach network's files to 

the server. Furthermore, the SRNEngine program checks the server for new 

versions of its own program each time it downloads a new network to run, 

enabling auto-upgrading of all client machines. 
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Conclusion 

The SRNEngine neural network simulation engine provides an easy-to-use, 

graphical neural network design tool as well as a flexible neural network 

simulator for back-prop and similar models (e.g. SRN's). Full text pre-processing 

tools are provided for language and phonetic models, and a wide selection of 

logging and reporting tools are built into the program. The program's distributed­

computing ability allows researchers to take advantage ofall extra computing 

cycles in their lab or department, and run many copies of networks or many 

different networks with easy central administration. 
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