
Hardware-based Parallel Computing for

Real-time Simulation of Soft-object

Deformation

HARDWARE-BASED PARALLEL COMPUTING FOR REAL-TIME

SIMULATION OF SOFT-OBJECT DEFORMATION

BY

RAMIN MAFI, B.Sc.

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

c© Copyright by Ramin Mafi, June 2008

All Rights Reserved

Master of Applied Science (2008) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Hardware-based Parallel Computing for Real-time

Simulation of Soft-object Deformation

AUTHOR: Ramin Mafi

B.Sc., (Biomedical Engineering)

B.Sc., (Electrical Engineering)

Amirkabir University (Tehran Polytechnic), Tehran,

Iran

SUPERVISOR: Dr. Shahin Sirouspour

CO-SUPERVISOR: Dr. Nicola Nicolici

NUMBER OF PAGES: xii, 87

ii

To my beloved family and

in loving memory of my dear uncle:

Vahab Montazery

Abstract

In the last two decades there has been an increasing interest in the field of haptics

science. Real-time simulation of haptic interaction with non-rigid deformable ob-

ject/tissue is computationally demanding. The computational bottleneck in finite-

element (FE) modeling of deformable objects is in solving a large but sparse linear

system of equations at each time step of the simulation. Depending on the me-

chanical properties of the object, high-fidelity stable haptic simulations require an

update rate in the order of 100− 1000 Hz. Direct software-based implementations

that use conventional computers are fairly limited in the size of the model that they

can process at such high rates.

In this thesis, a new hardware-based parallel implementation of the iterative

Conjugate Gradient (CG) algorithm for solving linear systems of equations is pro-

posed. Sparse matrix-vector multiplication (SpMxV) is the main computational

kernel in iterative solution methods such as the CG algorithm. Modern micro-

processors exhibit poor performance in executing memory-bound tasks such as

SpMxV. In the proposed hardware architecture, a novel organization of on-chip

memory resources enables concurrent utilization of a large number of fixed-point

computing units on a FPGA device for performing the calculations. The result is

a powerful parallel computing platform that can iteratively solve the system of

iv

equations arising from the FE models of object deformation within the timing con-

straint of real-time haptics applications.

Numerical accuracy of the fixed-point implementation, the hardware architec-

ture design, and issues pertaining to the degree of parallelism and scalability of the

solution are discussed in details. The proposed computing platform in this thesis

is successfully employed in a set of haptic interaction experiments using static and

dynamic linear FE-based models.

v

Acknowledgements

I would like to express my great gratitude to my supervisor, Dr. Shahin Sirouspour

for his invaluable suggestions, support and encouragement throughout my grad-

uate program at McMaster university. In addition, I give my special thanks to my

co-supervisor, Dr. Nicola Nicolici for his constructive comments and suggestions

during the development of the hardware design in this project. I also would like to

thank my other committee members, Dr. Patriciu and Dr. Shirani for their interest

in my work.

My deepest gratitude goes to my family, for their unwavering love and encour-

agement throughout my life.

I am indebted to my mentor, friend and uncle, Vahab Montazery, whom with-

out his encouragement and support, my ambition to study abroad could hardly be

realized. Although he is no longer with us, he is forever remembered.

I would like to acknowledge all my friends, specially Fabiola De Vierna, who

supported me and made my time a lot more fun.

Additionally thanks to my friends and lab mates, Brian Moody and Behzad

Mahdavikhah, who were in parallel involved in this project and had a significant

part to accomplish it.

vi

The generous support by Quanser Consulting Inc., The Health Technology Ex-

change (HTX), and the Ontario Centres of Excellence (OCE) for this research is

greatly appreciated.

vii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Problem Definition . 3

1.2 Thesis Objectives and Contributions 6

1.3 Thesis Outline . 8

1.4 Related Publications . 9

2 Literature Review 10

2.1 Deformable Body Modeling . 10

2.1.1 Mass-Spring Model . 13

2.1.2 Finite Element Model . 16

2.2 Real-time Simulation of FE-based Models 17

3 Finite Element Formulation 20

3.1 Problem Statement . 21

3.2 Differential Equations Describing Static Equilibrium 24

viii

3.3 Geometric Discretization . 25

3.4 Interpolation Functions . 26

3.5 Elemental Stiffness Matrix and Assemblage 30

3.6 Dynamic FE Analysis . 33

3.6.1 Newmark Integration . 35

3.7 Modified Force Vector . 36

4 Conjugate Gradient Algorithm 39

4.1 A Comparison Between Different Linear Solvers 40

4.2 Fixed-point Implementation of the CG method 41

4.3 Preconditioning . 46

4.4 Data Dependence Analysis . 50

5 Hardware Architecture 53

5.1 Data Structures . 54

5.2 Sparse Matrix by Vector Multiplication 55

5.3 Hardware Parallelism . 57

5.4 Memory Structure . 61

5.5 Critical Path . 64

5.6 Scalability . 65

6 Performance Analysis and Experimental Results 67

6.1 Hardware Accelerator Performance 68

6.2 Experimental Platform . 70

6.2.1 Hardware-based Accelerator for the CG algorithm 71

6.2.2 Haptic Control and Communication Process 71

ix

6.2.3 Collision Detection and Graphics 72

6.2.4 Experimental Results . 73

7 Conclusions and Future Work 75

A PROCStar II Technical Specifications 78

x

List of Figures

1.1 Haptic Tools in Surgery Simulation . 2

2.1 Spline Parametric Surface . 12

2.2 2D Chainmail Configuration . 13

2.3 Mass-Spring System . 14

3.1 General 3D Body For Structural Analysis 21

3.2 Typical Finite Elements Geometries . 25

3.3 A Four-Node Tetrahedron . 32

3.4 FE Procedure . 33

3.5 Calculating the Modified Force Vector 38

4.1 Static-Scaling . 43

4.2 Error Vector v.s. the Exact Solution in CG 45

4.3 Error Vector v.s. the Exact Solution in PCG 49

4.4 Computation Flow in the CG Algorithm 52

5.1 3x3 Block Structure of Non-zero Elements 55

5.2 Graph Partitioning Techniques Used in Matrix Permutation 57

5.3 First Level of Parallelization . 58

5.4 Second Level of Parallelization . 59

5.5 The Connection Of MAC Units to Memory Blocks 60

xi

5.6 Matrix Partitioning For Increased Parallelism 61

5.7 Third Level of Parallelization . 61

5.8 Basic Memory Structure For NZ Components Of Matrix 63

5.9 Basic Memory Structure For Vectors In The CG Algorithm 64

5.10 Critical Path . 65

6.1 Setup Block Diagram . 70

6.2 Haptic Control and Communication Process 73

6.3 Experimental Results . 74

A.1 PROCStar II Block Diagram . 78

xii

Chapter 1

Introduction

Real-time computer simulations of virtual environments have found numerous ap-

plications in recent years [1–4]. Examples include computer games, virtual reality-

based training simulators, computer-aided virtual prototyping and design, and

computer-assisted surgery. A growing number of such applications are evolving

from mere graphical representation of the virtual environment into more interac-

tive forms of simulations involving force feedback [5,6]. They often employ a hap-

tic device, a bidirectional human-machine interface that allows users to feel object

interaction forces generated based on mathematical models of the virtual world.

Early haptics systems were mostly limited to the simulation of rigid objects. As

such, physics-based modeling of interaction with rigid objects for real-time simu-

lation has been extensively studied in the past [5, 7, 8]. More recent applications of

haptics are in medical training simulators and computer-assisted medical interventions

involving non-rigid deformable objects. Fig. 1.1 provides some examples of haptic

applications in these areas.

1

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Figure 1.1: Haptic tools in surgery simulation (Figure courtesy of Geobench project,
data c©CEA-DAM; Richard Holbrey)

As an example, medical students can develop their operational skills by practic-

ing surgical procedures in virtual environments. Such systems provide a number

of advantages over traditional forms of training. First, there is no real consequence

to making mistakes since the training is performed in a virtual environment. Sec-

ond, the trainee’s progress can be quantitatively measured and the task difficulty

level can be adjusted accordingly. Finally, the trainee can be actively assisted by

providing corrective force-feedback through the haptic interface.

Real-time virtual modeling of medical procedures, with or without haptics, can

also be indispensable in computer-assisted surgical systems where the ability to

integrate multiple sources of information for planning and execution of the in-

tended procedure is critical to success. For instance, in percutaneous therapy pre-

operative intervention plans often have to be monitored and revised in real-time

to account for soft-tissue deformation due to needle insertion as well as organ

movement and respiratory motion. Independent of the imaging modality used,

intra-operative images can be registered to the pre-operative surgical plan in or-

der to provide the operator with real-time feedback as the procedure unfolds [9].

2

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Such registration has to take into account organ motion and deformation. Sim-

ilarly, automated needle steering algorithms can greatly benefit from the use of

real-time tissue deformation models to continuously correct any deviation from a

preplanned needle trajectory [10].

There has been considerable research in modeling of real-time interaction with

non-rigid deformable objects, e.g. see [11–14]. In early systems, mass-spring-

damper models were popular due to their relative simplicity [15–18]. However,

they often produce physically inaccurate and unreliable results. More accurate

models of soft-tissue deformation based on the continuum mechanics have also

been proposed in the literature [19]. In such approaches, the finite element method

(FEM) is usually used to partition the object into smaller elementary shapes and

then derive the equations of motion for the mesh nodes resulting in a discretiza-

tion of the model in the spatial domain [19,20]. Details of FEM will be discussed in

Chapter 3. The price of the better accuracy of FEM is a significant increase in com-

putation. In the next section the research problem and the challenges addressed

by this thesis will be outlined.

1.1 Problem Definition

Static linear elastic FE analysis requires the solution to a large but sparse linear sys-

tem of equations in the form of KU = f , where K is a global sparse stiffness ma-

trix, U is a vector of node deformation and f is a vector of external forces applied

to the nodes. Similarly, an incremental form of such equations can be derived for

some nonlinear deformation models in which K and f can be functions of the ac-

tual deformation [21].

3

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

In dynamic analysis, inertial body and velocity dependent damping forces are

taken into account. In this case spatial discretization is followed by a temporal dis-

cretization using explicit or implicit integration techniques [22]. Explicit integra-

tion routines are easier to implement but can suffer from poor numerical stability.

Depending on the size and characteristics of the elements, very small integration

time steps may be required to maintain stability. Implicit methods, on the other

hand, exhibit robust numerical behavior independent of the time step used [22,23].

However, similar to the static case, a large and sparse linear system of equations

must be solved at each time step.

FE-based real-time simulation of soft-tissue deformation has been hindered

by the large amount of computations that must be completed within each time

step, e.g. 1 − 10 msec if haptic feedback is needed. Various simplifications and

workarounds have been proposed in the literature to address this challenge, but

mostly at the expense of the fidelity of the simulation [24–27]. A review of the

previous work in the literature reveals a prevailing tendency in the research com-

munity towards using algorithmic software-based solutions for real-time simula-

tion of object deformation. A notable exception is a recent paper in [28] which

proposed element-level parallelization of the computations on a Graphics Process-

ing Unit (GPU). Due to the use of an explicit integration routine in this approach,

there is no need for solving a system of equations, significantly reducing the com-

putations at each time step. Explicit integration methods, however, are known for

their numerical instability issues which make them rather unreliable for real-time

applications using a fixed simulation time step.

Parallel computer grids have been previously employed in solving large-scale

4

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

computational problems. However, access to computer girds is limited due to size

and cost of operation, and solutions that rely on them cannot be deployed with

stand-alone equipment. Moreover, the parallelism achieved by computer grids is

limited by the inherent execution overhead associated with programmable proces-

sors, which are the core of each grid node.

In this thesis an FPGA-based parallel computing platform is proposed that can

greatly speed up the calculations in the FE-based deformation analysis. In the

last few years, FPGAs have significantly advanced both in terms of speed and

resources, i.e. the number of arithmetic units, programmable logic cells and em-

bedded memories. Compared to programmable processors, including vector pro-

cessing engines such as GPUs, FPGA-based custom computing architectures can

accelerate scientific calculations by tailoring the hardware computing unit to the

problem at hand, and by replicating it to exploit parallelism.

The proposed hardware accelerator is a highly parallel implementation of the

iterative method of Conjugate Gradient (CG) [29] for solving the system of equa-

tions derived from either static or dynamic FE-based deformation analysis. The

CG method has been widely used in the literature due to its robust numerical be-

havior and will be discussed in detail in Chapter 4. It is worth mentioning that

hardware-based solutions for sparse matrix by vector multiplication and for solv-

ing linear systems of equations have been discussed in a few previous papers, e.g.

see [30–32]. These approaches, which use floating point operations, are rather ab-

stract and cannot be scaled to solve practical problems using exiting FPGA devices.

Only architectures based on fixed-point operations can truly provide the degree of

5

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

parallelization needed for FE-based real-time simulation of soft-tissue deforma-

tion. A more detailed study on fixed-point implementation versus floating-point

is provided in Sec. 4.2.

The computation speed-up gained by the hardware platform would not only

depend on the number of multiplier/adder units employed, but also on their de-

gree of utilization at each clock cycle. A critical challenge for achieving massive

parallelization is in addressing the issue of memory access bandwidth. In an im-

properly structured architecture, the amount of data that can be transferred to the

computing units at each cycle can be fairly limited hence reducing the degree of

parallelism. A key novelty of the proposed solution is in its ability to continuously

supply data operands to a large number of computing units within a scalable ar-

chitecture. The hardware solver is largely independent of the FE mesh configura-

tion and can be scaled up based on available FPGA resources to solve problems

of larger size. The utility of the proposed computing platform is demonstrated in

a set of hardware-in-the-loop haptic simulations for interaction with deformable

objects using linear FE models.

1.2 Thesis Objectives and Contributions

Although FEM can provide accurate results for soft-object deformation, its real-

time applications have been limited due to its computational complexity. Real-time

computation requirements of large FE-based models far exceed the capabilities of

existing computers. In this thesis, a highly parallel FPGA-based computing archi-

tecture for solving the system of equations arising from FE soft-object deformation

6

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

models is proposed. The main objectives of the architecture design are speed, scala-

bility of the solution, and optimal usage of resources. Through a high degree of paral-

lelization of the computations, the hardware architecture must meet the real-time

response requirement of soft-tissue haptic interaction. The hardware implementa-

tion should be compatible with matrices of different sizes and different structures.

The available on-chip resources should also be utilized optimally to increase the

size of the largest FE mesh that can be processed.

A computational platform meeting the above requirements can be instrumental

in the development of real-time planning/assistive tools for medical interventional

procedures.

The main premise of this work is that the steps involved in the FE simulation

of object deformation can be classified as:

(i) performing algorithmically complex but computationally inexpensive routines.

(ii) solving a large linear system of equations.

The later can be delegated to a new customized parallel-computing platform whereas

the former can be simply executed on a conventional computer.

The proposed hardware accelerator is a highly parallel implementation of the

iterative method of Conjugate Gradient (CG) [29] for solving the system of equa-

tions in (ii).

In summary, the main contributions of the thesis are:

• Proposing a fixed-point implementation of the CG algorithm for solving a lin-

ear system of equations arising from FE models of deformation.

• Design, implementation and verification of a novel FPGA-based hardware

architecture for the CG method that overcomes the fundamental challenge of

7

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

memory access bandwidth for massive parallelization of the computations.

A key feature of the proposed architecture is its scalability which allows for

solving FE problems of different size based on available hardware resources.

• Demonstrating the effectiveness of the proposed FPGA-based parallel com-

puting tool through a set of hardware-in-the-loop haptic simulations for in-

teraction with a deformable object using linear static and dynamic FE models.

It should be emphasized that the application of the proposed micro-architecture

is not limited to real-time haptics rendering. The proposed system can be easily

employed in any application requiring a fast solution to a system of linear equa-

tions or simply involving a sparse matrix by vector multiplication.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, some of the exist-

ing techniques in the literature for object deformation modeling are reviewed and

compared with each other. A brief survey of prior work on real-time implemen-

tation of FE-based deformation models is also provided at the end of this chapter.

In Chapter 3, an overview of the FEM formulation of soft-object deformation is

given. In this context, the partial differential equations for static equilibrium, ge-

ometric discretization, interpolation functions, elemental characteristic equations

and dynamic analysis are discussed in details. Chapter 4 compares direct and it-

erative solvers as the two main approaches for solving the large and sparse linear

system of equations produced by the FEM. A modified version of the iterative CG

method for working with fixed-point computing units is proposed. The use of

8

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

pre-conditioners to improve the convergence of the CG method is also discussed.

Chapter 5 provides details of hardware architecture design for implementing the

fixed-point CG algorithm on FPGA. An overview of the problem, the proposed

micro-architecture properties and also some of the challenges involved in attaining

the design objectives are explained in this chapter. In Chapter 6, the performance

of the proposed FPGA design is evaluated. The experimental setup and the re-

sults of hardware-in-the-loop haptic simulations using linear elastic FE models of

deformation are also presented in this chapter. Finally, the thesis is concluded in

Chapter 7 where some possible directions for future work are also suggested.

1.4 Related Publications

• R. Mafi, S. Sirouspour, B. Moody, B. Mahdavikhah, K. Elizeh, A. Kinsman,

N. Nicolici, M. Fotoohi and D. Madill, “Hardware-based Parallel Computing

for Real-time Haptic Rendering of Deformable Objects” submitted to IROS

2008. IEEE/RSJ International Conference on Intelligent Robots and Systems, Niece,

France.

• Ramin Mafi, Shahin Sirouspour, Behzad Mahdavikhah, Brian Moody, Kaveh

Elizeh, Adam Kinsman and Nicola Nicolici, “A Parallel Computing Platform

for Real-time Haptic Interaction with Deformable Bodies” submitted to the

IEEE Transactions on Haptics.

9

Chapter 2

Literature Review

This chapter provides a brief survey on the deformable body models in the liter-

ature. In real-time applications of deformable body modeling, there is a trade-off

between the accuracy and complexity of the solution. These factors are compared

with each other throughout this chapter. In our application, we have chosen FE-

based modeling. The chapter is concluded by a review of prior work on real-time

implementation of FE-based deformation models.

2.1 Deformable Body Modeling

Although deformable body modeling has only been an active area of research for

about two decades [33], extensive research has already been conducted on the sub-

ject. Deformation modeling has has found an ever-increasing significance in differ-

ent applications. Meier et al. [33] categorize these applications into three(3) groups:

• Pre-computed animations [34, 35]

10

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

• Image segmentation and registration (eg. 3D image reconstruction based on

MRI or CT scans) [36, 37]

• Haptics, bidirectional human-machine interfaces that allow users to inter-

act with computer generated virtual worlds while receiving force-feedback

based on a model [33, 38]

In this chapter, some of the deformable body models used in the literature

are briefly reviewed and a comparison among prose and cones of each method

is provided. For a more comprehensive survey of the subject, the reader is ad-

dressed to [33,39,40]. Depending on whether the deformation models are physics-

based/continuum mechanics-based or not, they can be generally classified in dif-

ferent categories. Throughout the rest of this chapter, first heuristic deformation

models such as Spline and Chainmail modeling techniques are introduced. Mass-

spring models as discrete physics-based methods and also finite element analysis

of constitutive models based on continuum mechanics are briefly discussed subse-

quently.

Two main classes of deformable body models have have been most popular

among others in the field of surgery/training simulation, namely mass-spring

model (MSM) and finite element method (FEM). In the next chapter the FEM,

which is employed in this thesis, will be discussed in more details.

Deformable Spline Model

Deformable Spline method (also known as active contours) is generally based on

defining the deformation of smooth curves, surfaces or volumes as a function of

11

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

some certain control points. Figure 2.1 demonstrates an example of a Spline para-

metric surface. The curves can be adjusted by changing the location of the control

points, or by adding or removing the control points or changing their weight [40].

Deformable Splines were the first models used in surgery simulation [41]. How-

ever due to the complexity of the computations, inaccuracies of non-physics-based

modeling and simulation, and inconsistency for displaying the curves in modern

graphic cards, this method is no longer employed [33].

Figure 2.1: Spline parametric surface. (Figure courtesy of Evgeny Demidov).

Chainmail Model

Chainmail algorithm suggested by Gibson [42] is another heuristic method for de-

formable body modeling. In this method, each element as shown in Fig. 2.1 is

interconnected to its neighbors as links of a chain, having a certain level of free-

dom. As the first step of deformation modeling, large enough displacement of

an element results in a position change of its neighbor elements, and their neigh-

bors and so on. In the second step, the raw displaced positions of the elements

are adjusted through minimizing an energy function defined in the system. There

is no clear mechanism for determining the reaction forces in this method. In one

12

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Figure 2.2: 2D Chainmail configuration and its corresponding deformation when
one element is displaced. (Figure courtesy of Sarah F.F. Gibson [42]).

approach, the force is assumed to be proportional to the displacement and is cal-

culated correspondingly. However this assumption is not true for inhomogeneous

materials.

Despite the fact that this method offers a relatively simple approach for mod-

eling complex mechanical behaviors, determining the parameters of the model for

achieving realistic results is not an easy task. Additionally, simultaneous multiple

contact points in this model result in an extensive computational cost for deter-

mining the propagation of the imposed displacements on the elements [33]. These

disadvantages have hampered widespread use of the Chainmail model.

2.1.1 Mass-Spring Model

Due to a relative simplicity in implementation and real-time behavior, MSM has

been one of the common methods in the literature for a variety of problems such

13

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

as soft tissue modeling, cloth simulation and facial animation [43–46]. Another

advantage of this method is its ability to allow topological changes in the object

without significant computational burden, making it suitable for operations such

as cutting [47].

Figure 2.3: Mass-Spring system

A mass-spring system, as shown in Fig. 2.1.1, is consisted of a set of mass points,

also referred to as nodes, that are connected by springs in the model mesh. For sim-

plicity, damper elements similar to mass are defined locally for each node. Using

the Newton’s second law, the equation of motion for a mass particle i in the lattice

structure is derived as:

miẍi = −ciẋi +
∑

j

gij + fi (2.1)

where xi ∈ <3 is the position and mi is the mass of node i. In the right hand side

of (2.1), ci represents the damping of the node and
∑

j gij is the sum of elastic forces

coming from the neighbor nodes connected to node i and fi is the total external

forces at that point.

14

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Assembling Eq. (2.1) for all the n nodes of the MSM mesh and representing

them in the matrix form, the following equation is derived:

Mẍ + Cẋ + Kx = f (2.2)

where M and C ∈ <3n are diagonal matrices for mass and damping; K ∈ <3n is

a sparse stiffness matrix. The system of equations in (2.2) can be broken into two

first order equations and be integrated over time to find the displacement vector

x(t).

ẋ

ẍ

 =

0 I

−M−1K −M−1C

x

ẋ

 +

0

f

 (2.3)

The MSM has some main drawbacks prohibiting its use in applications requir-

ing accurate simulation and realistic results. The MSM not only dicretizes the ge-

ometry of the model, but also it discretizes the continuous equations of the motion,

resulting in less accurate results compared with that achievable with the FEM. The

method also lacks a clear mechanism for selecting the model parameters, i.e. mass,

spring and damper values to produce a physically correct deformation response.

It has been shown that homogenous linear properties of a material can not be

achieved through assigning the same spring stiffness to its mass-spring model [48].

Therefore a method for determining MSM parameters is needed. There has been

several attempts to develop methods for estimating the model parameters in the

MSM. These methods can be generally categorized into two groups. In the first ap-

proach, it is attempted to obtain the MSM parameters through the known physical

characteristics of the material. Methods in this class are rather general and may

15

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

need ad hoc modifications for improved results. The second group includes the

approaches based on optimization algorithms that minimize the error between the

model response and some reference data. Methods in this group are more applica-

tion specific.

Following the first category, Van Gelder proposed an approach for defining the

stiffness of the spring based on the sum of the area/volume of the triangles/tetrahedra

containing that edge in the triangular/tetrahedral mesh [48]. As some examples

from the second category, Bianchi et al. proposed a method based on genetic al-

gorithms identifying topology of the mesh in addition to MSM parameters, using

FE-based model as the training reference [49]. In contrast, Zerbato et al. suggested

a solution for a user predefined mesh without modifying it, calibrating the MSM

model by a genetic algorithm [47].

Another deficiency of MSM is its lack of potential for accurate simulation of

torques applied to the model making it inappropriate for applications with multi-

ple contact points. Due to the nature of the defined springs, it is not easy to model

torsion in the mesh. In addition, large mass-spring-damper meshes can impede

rapid global propagation of deformations resulting in a localized deformation [33].

2.1.2 Finite Element Model

The more accurate behavior of FE-based models compared to MSM makes them

more suitable for medical applications requiring high-fidelity response. Contrary

to mass-spring models that define the discrete equations of motion for each node

of the model mesh (i.e. Eq. (2.1)), there are methods that consider the object as a

continuum and define a distributed energy within the body. In such approaches,

16

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

the FEM is usually used to partition the object into small elementary shapes such

as tetrahedrons and then derive the equations of motion for each element as a

function of the mesh nodes resulting in a discretization of the model in the spatial

domain [19, 20]. Meshless techniques including meshless FE methods have also

been proposed for modeling of object deformation and cutting [50–52].

Static linear elastic FE analysis requires the solution to a large but sparse linear

system of equations in the form of KU = f , where U is a vector of node deforma-

tion and f is a vector of external forces applied to the nodes. Similarly, an incremen-

tal form of such equations may be derived for some nonlinear deformation mod-

els in which K and f can be functions of the actual deformation [21]. In dynamic

analysis, inertial body and velocity dependent damping forces are taken into ac-

count. In this case spatial discretization is followed by a temporal discretization

using explicit or implicit integration techniques [22]. Explicit integration routines

are easier to implement but can suffer from poor numerical stability. Depending

on the size and characteristics of the elements, very small integration time steps

may be required to maintain stability. Implicit methods, on the other hand, exhibit

robust numerical behavior independent of the time step used [22]. Similar to the

static case, a linear system of equations must be solved at each time step. FEM

formulation will be discussed in more details in Chapter 3.

2.2 Real-time Simulation of FE-based Models

FE-based real-time simulation of soft-object deformation has been hindered by the

large amount of computations that must be completed within each time step, e.g.

1−10 msec if haptic feedback is needed. Off-line pre-computation of K−1 has been

17

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

suggested in [25,53]. The result is calculated through a dense matrix by force vector

multiplication in each time step. However, it should be noted that in most haptic

simulations it is the displacement not the force at the contact node that is known. A

change of role between these force and position variables would result in a new K

matrix that is dependent on the contact node hence rendering pre-computation of

K−1 impractical. Additionally, the precision of this method suffers from numerical

errors. A similar approach relies on the superposition principle in linear elastic

models to compute the deformation response based on pre-computed responses to

deformations at all possible interaction nodes. Aside from their massive memory

requirement, pre-computation methods are unable to model nonlinear behavior or

accommodate for changes in the FE mesh, e.g. due to cutting.

Bro-Nielsen and Cotin [25] used a matrix condensation approach in their ex-

periments. In this method, the equations for a volumetric model are rearranged

in a way that only the deformation of surface nodes will be calculated. This ap-

proach, to some extent, would reduce the size of the problem, but at the expense

of producing a stiffness matrix that is no longer sparse. In most cases, the increase

in the density of the matrix would nullify any gain in size reduction for the ma-

trix by vector multiplications in iterative methods such as the CG. Moreover, there

are many applications in which the motion of internal nodes is of significance and

must be included in the simulation.

Zhuang and Canny [26] worked on geometric nonlinear FE models. They use

graded-mesh for increasing the computation speed at the expense of reducing the

accuracy of simulation. In their approach, mass lumping approximation is also a

18

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

key assumption for reducing the computation load. They solve the problem us-

ing explicit integration scheme with a frequency of about 20 Hz for 1331 elements

on a 400MHz Pentium II PC. To obtain the real-time performance for haptics, the

simulation is delayed for one cycle, and using interpolation the force is computed

at the desired rate. Xunlei Wu et al. [54] employed both material and geometric

nonlinearities in FEM. Similar to Zhuang and Canny they rely on mass-lumping

assumption and use explicit integration method to solve the dynamics of the prob-

lem. They reported a similar frequency of 20 Hz for 2,200 nodes using 800MHz

Pentium III PC.

Taylor et al. [28] have implemented a non-linear FE model on a general-purpose

graphics processing unit (GPU). By parallel utilization of the hardware resources

available on GPU, they have gained solution speeds of up to×16.4 faster compared

with equivalent CPU implementations. They use nonlinear total Lagrangian ex-

plicit FE formulation. Again, the use of an explicit integration scheme significantly

reduces the complexity of the problem in their case. Some other attempts at real-

time FE simulations have been reported in [24, 27, 55].

19

Chapter 3

Finite Element Formulation

In this chapter, we will discuss how to model linear elastic deformations through

finite element formulation. Considering our application, FEM is reviewed and

discussed from an engineering point of view rather than its abstract mathematical

formulation. For more information about FEM, the reader is addressed to [20, 22,

23].

Compared to other techniques such as MSM, FEM results in a more accurate

physical modeling in the sense that it is formulated based on the original contin-

uum mechanics differential equations. For this reason, it is often easier to cali-

brate FE-based models to obtain the desired deformation response. In FEM, the

idea is to extract the partial differential equilibrium equations for a general prob-

lem. Next the geometry of the problem (domain of the differential equations) is

discretized into smaller elements with known geometrical shapes. Then using in-

terpolation functions, the continuous equations over each element is defined as a

function of its nodal displacements. Finally the continuous equilibrium equations

are rewritten based on the nodal displacements per element and are assembled

20

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

into one global matrix of equations. In the next chapter, we will discuss different

approaches for solving this system of equations. Steps involved in FEM are further

elaborated in the following sections.

3.1 Problem Statement

As the first step of FEM formulation, the problem has to be stated more precisely.

Consider a general example of 3-D body is in equilibrium conditions in Fig. 3.1.

Figure 3.1: General 3D body for structural analysis

The body is constrained at surface Sc with prescribed displacement of uS and

it is exposed to body forces distributed over volume denoted by fb (e.g. gravity

force), surface forces fS distributed on Su (eg. pressure) and concentrated loads Ri.

21

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

The relationship between strain vector εT = [εxx εyy εzz εxy εxz εyz] and the dis-

placement vector uT = [u v w] can be expressed as [56]

εxx =
∂u

∂x
+

1

2

[
(
∂u

∂x
)2 + (

∂v

∂x
)2 + (

∂w

∂x
)2

]

εxy =
∂u

∂y
+

∂v

∂x
+

[
∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y
+

∂w

∂x

∂w

∂y

] (3.1)

The remaining terms of ε are defined similarly. For small displacements higher

order derivatives in Eq. (3.1) can be neglected. This approximation leads to linear

strain-displacement relation. Considering the higher order derivatives in (3.1) re-

sults in geometrical nonlinearity [21]. Equations in (3.1) can be expressed in the

matrix form

ε = Lu (3.2)

where the strain-displacement matrix L is a linear differential operator matrix

L =

∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

∂
∂y

∂
∂x

0

The relationship between stress σT = [σxx σyy σzz σxy σxz σyz] and strain ε using

the generalized Hooke’s law can be represented as [56]

22

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

σ = Dε (3.3)

For linear homogenous and isotropic materials the stress-strain matrix D is related

to Poisson’s ratio ν and Young’s elasticity module E in the form of

D =

λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ

(3.4)

where λ and µ are called lamé ’s constants and are defined as

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)

Based on how the stress-strain relationship is established, material nonlinearity

can be taken into account in more complex forms [22].

Now the problem can be stated as the calculation of the displacements u and

the corresponding stress σ and strain ε, given the external forces (body, surface and

concentrated loads), boundary conditions on Sc as well as the strain-displacement

and stress-strain laws for the deformable body.

23

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

3.2 Differential Equations Describing Static Equilib-

rium

At this state, the objective is to express the equilibrium equations in terms of the

unknown object displacement vector u that must be calculated. After determining

u based on these equations, it is straight forward to compute stress σ and strain ε

according to Eqs.(3.2) and (3.3).

The development of differential equations of equilibrium for FEM in structural

analysis can be based on either the virtual work principle or the minimum total poten-

tial energy principle. The virtual work principle, also known as virtual displacement

principle, is more general as it is applicable to both linear and non-linear material

behaviors. This principle states the deformable body in Fig. 3.1 is in equilibrium

if and only if for any small virtual displacement 1 imposed on the body, the whole

external virtual work done on the body equals to the total internal virtual work,

i.e.

∫

V

ε̄T σdV =

∫

V

ūT fb dV +

∫

S

ūT
S fS dS +

∑
i
ūT

i Ri (3.5)

where ε̄ is the virtual strain corresponding to the virtual displacement ū. The stress

σ corresponds to the external loads of the right hand side at the equilibrium state.

The left hand side of Eq. (3.5) is the internal virtual work, whereas the right hand

side of this equation is the virtual work by external forces. The overbar notation

is used to emphasize that the virtual displacements and the corresponding strains

are unrelated to the real deformation and strain that the body undergoes given the

1These virtual displacements are zero at the prescribed displacements on Sc

24

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

external loads and restrains of the problem stated in the previous section.

In the following sections the discretization of the geometry will be discussed.

Then it is followed by expressing Eq. (3.5) in terms of the nodal displacements.

3.3 Geometric Discretization

As stated earlier, generally there is no direct analytical solution to differential equa-

tions obtained in 3.5 for a given object geometry. For this reason the body in

Fig. 3.1 is approximated as an assemblage of a set of smaller elements with known

regular geometries. These elements are disjointed and interconnected to each other

only through nodes on the element boundaries. Fig 3.2 shows some typical 2D and

3D elements used in FEM. It also gives an example of the approximation of a larger

geometry using tetrahedral elements.

Figure 3.2: (a) Typical 2D elements including: linear triangular and rectangular
elements, quadratic triangular element with 6 nodes and Lagrangian with 9 nodes
(b) Typical 3D elements including: linear tetrahedral and hexahedral elements, 10
node tetrahedral and 20 node brick element (c) A more complex geometry assem-
bled with tetrahedral elements

25

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

In determining the number of the nodes, there is a trade off between the simu-

lation accuracy and the complexity of the calculations. Since the accuracy is depen-

dent on the number of nodes, meshes using elements with larger number of nodes

generally require fewer number of elements for the same degree of accuracy. As

a rule of thumb for a proper mesh in FEM, elements with angles close to 0 or 180

degrees should be avoided [57, 58]. Additionally, the aspect ratio in each element

defined as the ratio of the longest edge of the element to the shortest one should be

a small number, typically less than or equal to 2 ∼ 4). Following these tips leads to

a better accuracy in FEM results.

Using mesh refinement techniques, it is possible to gain more accurate results

with the same number of the nodes. To this end, a finer mesh is employed in the

regions exposed to larger stress and deformation whereas a coarser mesh is used

in other areas [57].

3.4 Interpolation Functions

In Sec. 3.2, the equilibrium equation was derived as a function of the continuous

displacement of the body. This section discusses how FEM approximates this con-

tinuous deformation based on the displacement of mesh nodes in the discretized

geometry of the body.

Focusing on elements in the mesh, an interpolation function (also known as shape

function) can be defined for each element to give an estimation of the varying inter-

nal quantities as a function of its nodal displacements. To derive the shape function

(denoted as H), in the first step the interpolation equation should be defined per

26

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

element. Interpolation equations (denoted as Φ) are usually in the form of polyno-

mials. Depending on the dimension of the space, Φ can be a function of x (1D), x

and y (2D) or x, y and z (3D). The number of coefficients in the polynomial should

be equal to the number of elemental nodes to provide enough degrees of freedom.

Some examples of polynomial Φ are given below

Element Polynomial Interpolation Equation

3 node triangle (2D) Φ = a0 + a1x + a2y

4 node rectangle (2D) Φ = a0 + a1x + a2y + a3xy

6 node triangle (2D) Φ = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2

4 node tetrahedron (3D) Φ = a0 + a1x + a2y + a3z

8 node hexahedron (3D) Φ = a0 + a1x + a2y + a3z + a4xy + a5yz + a6xz + a7xyz

Where Φ and ai coefficients are 2D or 3D vectors. In structural FE-based analy-

sis Φ represents the interpolated internal displacement vector (u v w) while (x y z)

indicates the position in coordination system. Interpolation equations must be in-

variant under linear coordination transformations. Therefore in deriving interpo-

lation equations, Φ should be a symmetric polynomial, eg. it can not have the x2

and y2 terms while missing z2.

Having more nodes in an element translates into higher degree polynomials

for interpolation equations resulting in smoother simulations. However this will

increase the complexity of the equations per element. In the following through an

example, it is shown how interpolation functions can be derived based on Φ. For

27

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

the simplest two dimensional element, a three-node triangle, the linear interpola-

tion equation as is given by

ΦT = [1 x y]

a0
T

a1
T

a2
T

(3.6)

It should be noted that Φ as well as a0, a1 and a2 are two dimensional vectors

in this case. To obtain the interpolation function, Eq. (3.6) is constrained at node

positions (xi, yi), to nodal displacement values Φi, i = 0, 1, 2.

Φ0
T

Φ1
T

Φ2
T

=

1 x0 y0

1 x1 y1

1 x2 y2

a0
T

a1
T

a2
T

(3.7)

Solving Eq. (3.7) for ai and substituting in Eq. (3.6) yield

a0
T

a1
T

a2
T

=

1 x0 y0

1 x1 y1

1 x2 y2

−1

Φ0
T

Φ1
T

Φ2
T

(3.8)

ΦT = [1 x y]

1 x0 y0

1 x1 y1

1 x2 y2

−1

Φ0
T

Φ1
T

Φ2
T

(3.9)

Eq. (3.9) expresses the continuous internal displacement vector Φ in terms of

the nodal displacements Φ0, Φ1, and Φ2. Writing the equations for column vectors

we have the interpolation function H as

28

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Φ(x, y) = H(x, y)

Φ0

Φ1

Φ2

(3.10)

Λ(x, y) = [1 x y]

1 x0 y0

1 x1 y1

1 x2 y2

−1

= [Λ0 Λ1 Λ2]

H(x, y) =

Λ0 0
... Λ1 0

... Λ2 0

0 Λ0
... 0 Λ1

... 0 Λ2

With a change of notation, Eq. (3.10) can be written as

u = Hû (3.11)

where u = Φ and û represents the nodal displacement vector of the element. Gen-

erally in this context, variables with ‘ˆ’ denote discrete nodal parameters. The

procedure for deriving interpolation function based on interpolation equation for

other elements with different number of nodes and dimensions is similar to that of

this example and will not be repeated here.

29

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

3.5 Elemental Stiffness Matrix and Assemblage

By rewriting Eq. (3.11) for each element in the mesh based on the displacement

vector of all the nodes in the general three-dimensional case, we have

ue(x, y, z) = He(x, y, z)Û (3.12)

where Û is the general nodal displacement vector of the mesh and the superscript e

denotes element e. For d-dimensional mesh with n nodes the length of this vector

is d × n. Similarly we can express the elemental strain parameter based on the

general nodal displacement vector Û.

εe(x, y, z) = Lue(x, y, z) = LHe(x, y, z)Û = Be(x, y, z)Û (3.13)

matrix LHe(x, y, z) is denoted as Be(x, y, z). Defining the element displacements

and strains in terms of the general displacement vector Û makes the assemblage

process straight forward.

At this state, the equations of equilibrium derived in Sec. 3.2 based on virtual

displacement can be written as a sum of integration over the volume of all the

elements.

∑
e

∫

V e

ε̄eT σedV e =
∑

e

∫

V e

ŪeT f e
b dV e +

∑
e

∫

Se

Ūe
S

T f e
S dSe +

∑
i

Ūi
TRi (3.14)

30

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

where Ūe is the virtual displacement within each element and ε̄e is the correspond-

ing strain. Substituting Eqs. (3.12) and (3.13) and (3.3) in Eq. (3.14), we obtain

¯̂U
T

(∑
e

∫
V e BeTLeBe dV e

)
Û = ¯̂U

T

[(∑
e

∫
V eH

eT f e
b dV e

)
+

(∑
e

∫
SeH

e
S

T f e
S dSe

)
+

∑
i

Ri

] (3.15)

Given that the virtual quantities are arbitrary and independent imaginary vari-

ables, virtual displacement ¯̂
U can be removed from both sides of the above equa-

tion. Denoting the global nodal displacement by U from now on (i.e. U ≡ Û), the

remaining terms can be expressed as

KU = f (3.16)

where K is the global stiffness matrix of the mesh given by

K =
∑

e

Ke =
∑

e

∫

V e

BeTLeBe dV e (3.17)

The right hand side of Eq. (3.16) is the external force vector on exerted the nodes.

Now the assemblage can be performed by simply adding the elemental stiffness

matrices Ke. To make this step more clear an example for a tetrahedral mesh is

provided below. Consider the tetrahedron in Fig. 3.3 with node numbers m, i, j

and k. In a mesh with n nodes, m, i, j and k can be any unique number from 1 to

n.

Since there are four nodes in the tetrahedron, the elemental stiffness matrix will

31

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Figure 3.3: A four-node tetrahedron

be 12× 12, with the following structure

Ke =

Ki,i Ki,j Ki,k Ki,m

Kj,i Kj,j Kj,k Kj,m

Kk,i Kk,j Kk,k Kk,m

Km,i Km,j Km,k Km,m

(3.18)

It should be noted that Ki,i and the other similar terms are 3 × 3 matrices. In the

assemblage process, Ki,i from location (1,1) 2 in Ke gets accumulated in location

(i, i) in the global stiffness matrix, i.e.

Kp,q(3×3)
=

∑
e

Ke
p,q(3×3)

p, q = 1, · · ·node− number

e = 1, · · · element− number

(3.19)

Fig. 3.4 on Page 33 summarizes the steps involved in the FE procedure. In

Step 1, the structure being analyzed is discretized into a sufficient number of basic

elements. In Step 2, expressions for local element characteristics, i.e. the elemental

stiffness matrices and nodal forces are derived. These expressions can be obtained

2the term ‘location’ is refered to the location of each 3× 3 block matrix, and not a single compo-
nent of the matrix

32

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

according to the virtual displacement principle. In Step 3, the elemental stiffness

matrices and nodal forces are assembled into one general matrix equation. Finally

in Step 4, the boundary conditions of the problem are applied and the resulting

system of equations is solved. The next chapter will focus on algorithms for solv-

ing the system of equations in the fourth step.

Figure 3.4: FE procedure

3.6 Dynamic FE Analysis

In dynamic analysis, inertial body and velocity dependent damping forces are

taken into account. The governing equations for dynamic analysis in the finite

33

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

element system are derived as:

MÜ + CU̇ + KU = f (3.20)

where U̇ and Ü are the first and second time derivatives of the global nodal dis-

placement vector U, representing velocity and acceleration vectors respectively.

M and C are the mass and damping matrices. Similar to assemblage of stiffness

matrix K, mass matrix M can be assembled by adding up the mass matrices per

element. Using the interpolation function H the mass matrix M can be defined

as [22]

M =
∑

e

Me =
∑

e

∫

V e

ρeHeTHedV e (3.21)

In many cases for simplification, mass of the body is approximated to be con-

centrated at the mesh nodes resulting in a diagonal mass matrix. This technique is

known as mass lumping.

The damping matrix C can be defined similar to M in (3.21), however in prac-

tice it is difficult to determine the actual damping parameters. Therefore C matrix

is often constructed as a linear combination of mass and stiffness matrices known

as Rayleigh damping

C = αM + βK (3.22)

There are different numerical techniques for solving the differential equations

in (3.20) in the discrete-time domain depending on how position, velocity and ac-

celeration terms are updated at each time step. While explicit approaches such

as the central difference method are, in general, easier to implement, they are

only conditionally stable. To maintain stability, the simulation time step ∆t must

34

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

be smaller than a critical value ∆tcr which would depend on the characteristic of

the worst element in the mesh. In contrast, implicit methods such as Houbolt, Wil-

son and Newmark [22] guarantee numerical stability independent of the time step

used. They do, however, require solving a linear system of equations similar to

that in (3.16) at each time step. In the following, Newmark integration scheme, as

a common method used in dynamic analysis is briefly reviewed.

3.6.1 Newmark Integration

Newmark integration scheme [22, 23] is a common method for implicit time dis-

cretization of dynamics equations arising from FE models. A brief overview of this

algorithm is presented below. Consider the standard linear second-order dynam-

ics of object deformation given by

MÜn+1 + CU̇n+1 + KUn+1 + fn+1 = 0 (3.23)

The position and velocity vector at time step n + 1 can be approximated as follows

Un+1 = Un + ∆tU̇n +
1

2
∆t2

(
(1− β)Ün + βÜn+1

)

U̇n+1 = U̇n + ∆t
(
(1− γ)Ün + γÜn+1

) (3.24)

where γ and β are two constants yet to be chosen. The above equations can be

solved for Ün+1 and U̇n+1 resulting in

Ün+1 =
¨̂
Un+1 +

2

β∆t2
Un+1

U̇n+1 =
˙̂
Un+1 +

2γ

β∆t
Un+1

(3.25)

35

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

where

¨̂
Un+1 = − 2

β∆t2
Un − 2

β∆t
U̇n − 1− β

β
Ün

˙̂
Un+1 = − 2γ

β∆t
Un + (1− 2γ

β
)U̇n + (1− γ

β
)∆tÜn

(3.26)

Substituting (3.25) and (3.26) into the dynamics equation of (3.23) yields

ÂUn+1 = f̂ (3.27)

where
Â =

2

β∆t2
M +

2γ

β∆t
C + K

f̂ = −(fn+1 + C
˙̂
Un+1 + M

¨̂
Un+1)

(3.28)

Note that to obtain the displacement vector Un+1 one needs to solve the system

of linear equations in (3.27) similar to that of the static case in 3.16. The follow-

ing choice of the parameters β and γ guarantees the stability of the discretized

system [22, 23]

γ ≥ 0.5 β ≥ 0.5(0.5 + γ)2 (3.29)

3.7 Modified Force Vector

In this work modeling of single-point interaction with deformable objects using

an impedance-type haptic device is considered. In such case, the external force at

the contact node is unknown whereas the displacement of the node is constrained

36

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

to the device measured position. Obviously this type of boundary condition is

inconsistent with the static or dynamic equations in (3.16) and (3.20) where f rep-

resents the vector of external forces acting on the nodes. To address this problem,

as shown in Fig. 3.5.a, all but the diagonal elements of the rows and columns cor-

responding to the contact node are set to zero. The diagonal entries are set to one 3.

The force vector f is also modified to account for the multiplication of the omitted

columns by the known displacement of the contact node, i.e. see Fig. 3.5.b. After

solving the resulting equations for U, the unknown force at the contact point can

be calculated as shown in Fig. 3.5.c. It should be noted that throughout the process

of modification, matrix K preserves its symmetry and positive-definiteness.

3To improve the condition number of the matrix, as a heuristic method instead of 1, the diagonal
values can be set to the average value of diagonal elements of the sparse matrix, however its effect
should be compensated in the right hand side of the equation. This trick, results in better numerical
results.

37

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Figure 3.5: Contact node boundary condition and modified force calculation: a)
zeroing all the elements of the corresponding row except the diagonal ones which
are set to one; b) zeroing the columns to keep the matrix symmetric and modifying
the force vector accordingly; c) calculation of the force at the contact node after
obtaining the displacement vector.

38

Chapter 4

Conjugate Gradient Algorithm

Both static and dynamic FE modeling require that the solution to a large and sparse

linear system of equations (i.e. (3.16) and (3.27)) be computed at each time-step in

haptics simulation. In this chapter, the system of equations is denoted as Ax = b.

Several direct and iterative methods are available in the literature for solving such

systems [59, 60]. Based a comparison among existing linear solvers, we choose the

iterative CG algorithm as the best approach for the intended application of this

thesis. To implement the solver on an FPGA, the algorithm should be able to reli-

ably work with fixed-point values and operations. A fixed-point implementation

of the CG algorithm is proposed in Sec. 4.2. This is followed by a discussion of

the effect of preconditioning on the convergence of the CG method. Accuracy and

convergence properties of the fixed-point CG and Preconditioned CG (PCG) are

analyzed through a set of numerical experimentations.

39

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

4.1 A Comparison Between Different Linear Solvers

One of the main advantages of iterative methods in the case of sparse systems of

linear equations is their efficiency in terms of memory usage. For example, direct

methods based on matrix factorization can lead to the decomposition of a sparse

matrix into new matrices which are not as sparse as the original matrix. Iterative

methods, in contrast, only need to store the non-zero elements of the main matrix.

This reduces the usage of memory resources from an O(N2) to O(N), where N ×N

is the size of the matrix. In general, iterative methods are more suitable for the

intended application of this thesis as they lend themselves rather neatly to paral-

lelization of the computations [59]. It should also be noted that in haptics appli-

cations, even when a linear elastic model is used, matrix A can change depending

on the contact node. Moreover, nonlinear FE modeling of deformation can lead

to a matrix A which would be dependent on the deformation x. A changing A

eliminates the possibility of an off-line calculation of the inverse matrix.

The CG method is one of the most prominent iterative approaches used for

solving large systems of linear equations. The original algorithm requires that the

matrix A be symmetric and positive-definite. Matrices arising from FEM or Finite

Difference Method (FDM) are of this type. From a numerical perspective, the CG

method is usually more robust and less computationally intensive than some other

more general iterative methods such as BiCGStab or GMRES [59, 61].

40

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

4.2 Fixed-point Implementation of the CG method

A critical decision in hardware-based implementation of the CG algorithm is whether

to work with fixed-point or floating-point operations. Floating-point/fixed-point

representations approximate a range of real numbers with constant relative/absolute

error, respectively. Due to the practical usefulness of constant relative error, which

enables representation of a much larger dynamic range of values than fixed-point

of the same size, modern general purpose computing platforms are almost univer-

sally equipped with double precision floating-point arithmetic units. The standard

availability of such units has led to the large majority of existing scientific software

to rely on floating-point implementations. However, in order to take full advan-

tage of FPGA parallelism, the size of each individual computing unit should be

minimized. Floating-point implementations have a high hardware cost, severely

limiting the parallelism and thus the performance of the hardware accelerator. For

most scientific calculations the use of high precision is motivated more out of the

availability of the hardware in general purpose computers rather than the need

for such high precision. In fact in many applications, a reduced precision floating-

point or fixed-point calculation will often suffice.

Fixed-point computation poses its own unique challenges particularly in iter-

ative methods such as the CG. The limited dynamic range of data representation

in fixed-point computing can easily result in data overflows generating erroneous

outcome. An absolute error representation leads to relative quantization errors

that can become significant over time and hence may prevent the algorithm from

converging to the actual solution. Special consideration are given to these issues in

the design of the hardware accelerator proposed in this thesis. A key factor in the

41

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

success of the design is reaching a good tradeoff between error, calculation time

and hardware cost.

A pseudo-code of the CG algorithm for solving Ax = b for x is given below.

#m is the maximum number of iterations and ε is the error tolerance:

1. x = init; %initial guess for solution of Ax=b

2. r = b−A× x; %residue

3. d = r; %initial ”search direction”

4. cntr = 1;

5. rr = r′ × r;

6. rr0 = rr;

7. while (rr > ε2 × rr0 & cntr <#m)

8. α = rr / (d′ ×A× d);

9. x = x + α× d; %update approximate solution

10. rn = r− α×A× d; %update the residue

11. rrn = rn′ × rn;

12. β = rrn/rr;

13. d = rn + β × d; %update search direction

14. r = rn;

15. rr = rrn;

42

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

16. cntr = cntr + 1;

17. end

In this thesis two types of scalings, namely static and dynamic are proposed for

the fixed-point implementation of the CG method in order to improve its numer-

ical accuracy, reliability and convergence rate. From the first three(3) lines of the

pseudo-code, it can be observed that b, r and d vectors are in a different scale com-

pared to x vector since they are all computed based on Ax. If 16-bit and 12-bit

words were chosen to represent the vector and matrix elements, respectively, it is

easy to see that the results of matrix by vector multiplication Ax can easily exceed

the designated word length. This is particularly problematic if the vector x were

to utilize its full 16-bit range. In order to be able to represent the results of the mul-

tiplications in 16 bits, as shown in Fig.4.1, b, r and d are scaled down by a static

scaling factor, i.e. shifted to the right by m bits where static scale = 2m.

Figure 4.1: Static-Scaling

The proposed scaling can significantly reduce memory utilization since we still

use only 16-bit words for those vectors while preventing overflow in the multipli-

cation results. This, however, is gained at the expense of some loss of data in the

43

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

least significant bits. The proper scaling factor m generally depends on the norm

of the actual matrix A. However assuming that the matrix elements are scaled to

utilize their full 12-bit resolution, a constant scaling factor in the order of 9-12 bits

would usually work under most circumstances.

As the CG algorithm progresses towards the final solution, it is expected that

norms of r and d vectors gradually decrease. Consequently relative quantization

errors in r and d become significant resulting in large errors in the updated x vec-

tor. Conceptually, the αd steps taken towards the solution in Line 9 of the al-

gorithm become gradually smaller and as such a finer resolution is required to

properly represent these steps. To address this issue, a dynamic scaling is proposed

to re-scale the r and d vectors when the value of ‖r‖ falls below a certain thresh-

old. Finally, it should be pointed out that the nearest rounding mode has been

employed in all division operations.

The convergence properties of the proposed fixed-point implementation of the

CG algorithm were examined using Matlab’s Fixed-point toolbox. A linear elastic

model with a 3D mesh of 1000 nodes was used in the tests. The vectors were

represented by 16-bit signed numbers whereas the matrix elements were 12-bit

singed numbers. Scalers dTAd, rTr, and rT
n rn were represented by 64-bit signed

values whereas α and β were 16-bit signed numbers. The tests were repeated with

different random b vectors and A matrices and in each case the algorithm started

from a zero initial guess. The condition number of A matrices was within the

range of 2500−4000. The average results of these numerical experiments are given

in Table 4.1 where x0 is the actual solution and err is the error vector in the solution

of the fixed-point CG algorithm. Fig. 4.3 shows one of the numerical test results,

44

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

plotting the x0 and err in the same frame. The error vector is based on a solution

obtained with an initial guess of zero and after 60 iterations of the fixed-point CG

algorithm.

CG iterations 30 40 50 60 70 80
‖x0‖ 2.47e+5
‖err‖ 6422 5336 4655 3875 2429 1255
‖err‖/‖x0‖ 2.6e-2 2.2e-2 1.9e-2 1.6e-2 9.8e-3 5.1e-3

Table 4.1: Simulation results for fixed-point CG algorithm.

Figure 4.2: Error vector v.s. the exact solution for CG algorithm in 60 iterations.

In haptics applications, the update rate is in the order of 300-1000Hz and there-

fore the change in object deformation within one sample period is expected to be

small. This implies that the solution at the previous sample time is usually a good

initial guess for the CG algorithm at the present time step. Given that the results

45

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

of Table 4.1 were actually calculated with an initial guess of zero, it can be con-

cluded that 60 iterations of the fixed-point CG algorithm would provide accurate

results for a 3D mesh of 1000 nodes. In the hardware-based implementation of the

CG algorithm, the number of iterations can be fixed since exiting the algorithm at

an earlier iteration does not provide any timing advantage. However, this would

simplify the architecture design to some extent.

4.3 Preconditioning

In theory the CG algorithm is guaranteed to find the solution to Ax = b at a num-

ber of iterations not exceeding the dimension of the unknown vector x. In practice

a solution is usually obtained within a much smaller number of steps. The actual

number of iterations required to converge to the solution depends on the size of

the problem, initial guess, desired error tolerance, and the condition number of

the matrix A. In hardware-based FE simulation, the size of the problem and the

number of iterations are fixed and known, and the starting point is usually close to

the actual solution. It is required that the algorithm converge to the error tolerance

sphere at the given number of iterations. However due to changes in the matrix

condition number, the convergence to the solution is not necessarily guaranteed.

The condition number could depend on the quality of the FE mesh and the tissue

model parameters. Moreover, the condition number of FE models of second-order

elliptic boundary value problems posed on d-dimensional domains is in the order

of κ ∼ O(N2/d) and increases by the problem size [29].

Preconditioning techniques [60] can be employed to improve the condition

number of the matrix A and ensure that a solution is obtained within the fixed

46

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

number of iterations imposed by the real-time response constraint. In the so-called

left preconditioning, Ax = b is replaced with

P−1Ax = P−1b (4.1)

where P is an approximation of A whose inverse is much easier to compute. The

idea is that P−1A would have a smaller condition number than that of the orig-

inal matrix A. In practice instead of using (4.1), the preconditioning is directly

integrated into the CG algorithm [29]. A pseudo-code for the preconditioned con-

jugate gradient (PCG) is given below. The cost of hardware implementation of a

simple PCG like the Jacobi method [60] will be discussed later in the thesis.

1. x = init; %initial guess for solution of Ax=b

2. r = b−Ax; %residue

3. z = P−1r;

4. d = z; %initial ”search direction”

5. cntr = 1;

6. zr = z′Tr;

7. zr0 = zr;

8. while (cntr < #m)

9. α = zr/(d′TAd);

10. x = x + αd; %update approximate solution

47

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

11. rn = r− αAd; %update the residue

12. zn = P−1rn;

13. zrn = zn′Trn;

14. β = zrn/zr;

15. d = zn + βd; %update search direction

16. r = rn;

17. z = zn;

18. zr = zrn;

19. cntr = cntr + 1;

20. end

As will be seen in Section 5.6, the word length of d vector has a significant

impact on the memory usage and the main reason for using static scaling is to

restrict its size. From the first four(4) lines of the pseudo-code it is evident that,

unlike in the original CG algorithm, d vector is not in the same scale of b and r and

hence requires no scaling. Therefore, an improvement in the condition number of

the matrix A also helps avoid information loss due to static scaling.

The results of numerical simulations for the fixed-point implementation of the

Jacobi-based PCG for a 1000-node 3D FE mesh are summarized in Table (4.2). A

comparison of the data with the results in Table 4.1 shows that preconditioning has

reduced the error by an order of magnitude using the same number of iterations.

48

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Fig. 4.3 demonstrates a random x0 vector and its corresponding error vector pro-

duced by the fixed-point PCG in 60 iterations. Zero vector is chosen as the initial

guess for the solution.

PCG iterations 30 40 50 60 70 80
‖x0‖ 2.47e+5
‖err‖ 4146 2652 599 309 239 220
‖err‖/‖x0‖ 1.7e-2 1.1e-2 2.4e-3 1.3e-3 1.0e-3 9.0e-4

Table 4.2: Simulation results for fixed-point PCG algorithm.

Figure 4.3: Error vector v.s. the exact solution for PCG algorithm in 60 iterations.

49

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

4.4 Data Dependence Analysis

A data dependence analysis is needed to discover the instruction-level parallelism

(ILP) in the CG and PCG algorithms. This information will be instrumental in the

design of efficient hardware architectures for the implementation of the algorithms

in the next chapter. The analysis is performed for the computations in the “while

loop” that must be repeated at each iteration of the algorithm. From the pseudo-

code of the CG method in 4.2, it is clear that the inner vector product of dTAd

(Line 8) can be executed in parallel with the matrix by vector multiplication Ad.

In particular once the multiplication of five(5) nodes (15 rows) by the vector is

complete, the results can be multiplied by the corresponding elements from the

vector d and be accumulated in temporary buffers to be stored in the memory. In

Line 8 of the algorithm, α can be calculated using the result of the vector inner

product dTAd. Due to the data independency between rn and x in Lines 9 and 10,

these vectors can be updated in parallel. The inner product of rn
Trn (Line 11) can

also be computed as the components of the r vector are being updated. Similar to

α, β in Line 12 is calculated in series. Finally, the scalar by vector multiplication

as well as the vector addition in updating d vector in Line 13 can be executed

in parallel. Fig. 4.4 displays a block diagram of the computation flow in the CG

algorithm.

Cost of Preconditioning

The overhead cost of using a Jacobi preconditioner can be estimated as follows.

Based on the PCG pseudo-code given in Section 4.3, one additional vector z has to

be defined and stored in memory. Matrix P in Jacobi preconditioning is constructed

50

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

from the elements of the main diagonal of matrix A. Therefore, P−1 can be simply

stored as a vector containing the inverse values of the diagonal entries. As stated

earlier, avoiding to use static scaling results in longer word lengths for vectors b

and r to circumvent any overflow, consequently causing a slight increase in the

memory resource usage. In the “while loop” of PCG pseudo-code, the task of

updating vector z using N scalar multiplications in Line 12 is the main addition

to the original CG algorithm. This task requires some extra multipliers but since

vector z can be updated in parallel with vector r the computation timing would

not be affected.

51

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Figure 4.4: Computation flow in the CG algorithm: a, b and c group the tasks that
run in parallel with each other. The three dashed blocks are executed sequentially
one after the other; α and β are calculated at the borders; (a) Ad and d′TAd; (b)
xn = x + αd, rn = r− αAd and rn

Trn; (c) dn = rn + βd.

52

Chapter 5

Hardware Architecture

This chapter discusses the details of hardware architecture design for the CG algo-

rithm to solve a set of linear equations in the form of Ax = b. The main objectives

of the design are speed, scalability of the solution, and optimal usage of resources.

Through a high degree of parallelization of the computations, the hardware archi-

tecture must meet the real-time response requirement of soft-tissue haptic interac-

tion. The hardware implementation should be compatible with matrices of differ-

ent sizes and different structures. The available on-chip resources should also be

optimally utilized to increase the size of the largest FE mesh that can be processed.

The hardware architectures presented here are the result of numerous design

iterations and revisions to satisfy the objectives stated above. The details of the

design steps are rather lengthy and are omitted for brevity. Instead, an overview of

the problem, its unique properties and some of the challenges involved in attaining

the design objectives is given in the following sections. A particular emphasis is

placed on describing parallel usage of multipliers at different architectural layers

for implementing the sparse matrix by vector multiplication in the CG algorithm

53

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

(i.e. Line 8 of the pseudo-code in Sec. 4.2). The scalability of the overall solution

will be discussed at the end of this chapter.

5.1 Data Structures

For notational convenience, throughout the rest of the thesis K represents the

equivalent sparse matrix obtained through static or dynamic FE modeling
(
i.e.

Eqs. (3.16) and (3.24)
)

and U denotes the node displacement vector. The design of

the hardware architecture can be optimized to fully exploit any special data struc-

ture in the CG-based solution of KU = b. The data include the equivalent stiffness

matrix K, the unknown vector U, the known vector b, the search direction vec-

tor d, and the residue vector r 1. Among these variables, the matrix K constitutes

the largest data block to be stored and processed by the hardware accelerator. A

3D FE mesh with n nodes would result in a K matrix of the size 3n × 3n. In this

context, each node is associated with three consecutive rows of the matrix K cor-

responding to its x, y, and z displacements. The non-zero elements of the matrix

are due to connections among the corresponding nodes in the mesh. The number

of these connections is determined by the meshing algorithm used and is nearly

independent from the number of the nodes. Since each node in the mesh is usu-

ally connected to only a few neighbor nodes, the resulting matrix K is sparse. The

sparsity of the matrix grows by number of nodes. Our numerical experimentation

has shown that the number of non-zero (NZ) elements in the matrix K is typically

less than 3% of the size of the matrix for meshes with more than 400 nodes.

The matrix K is also symmetric and positive definite meeting the requirements

1r and d are some internal vectors in the CG algorithm, defined in the CG pseudo-code in Sec. 4.2

54

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

of the CG algorithm. Its other useful property that can be understood through the

assemblage process expressed in Eq. (3.19), is that each three(3) rows/columns of

3i, 3i−1, 3i−2 (for i = 1, · · · , n), as shown in Fig. 5.1, have the same indices of non-

zero elements. This implies that the non-zero components in K for 3D meshes are

in blocks of 3× 3, regardless of the meshing algorithm employed. The vectors r, d,

b, and U usually have no particular pattern that can be exploited in the hardware

design.

Figure 5.1: 3x3 Blocks of non-zero elements of a portion of K matrix with the cor-
responding node numbering.

5.2 Sparse Matrix by Vector Multiplication

The computational bottleneck of the CG algorithm in Sec. 4.2 is the sparse matrix

by vector multiplication (SpMxV). The hardware architecture should be able to

utilize the sparsity of the matrix K in order to meet the real-time computation

55

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

constraint of haptic simulations. At the same time, it must be reasonably scalable

by the problem size and be independent from the meshing algorithm used.

A full matrix by vector multiplication is impractical both in terms of memory

usage as well as the time required to complete the task. Graph partitioning tech-

niques [60,62] can be employed to reorder the rows and columns of the matrix such

that the non-zero elements fall into isolated sub-blocks which have a denser struc-

ture compared with that of the original matrix. The multiplications can then be

performed on these smaller blocks which may or may not have overlap with each

other, e.g. see Figs. 5.2. Multiplication based on matrix partitioning can signifi-

cantly simplify the hardware architecture design. However, experimentation with

various graph partitioning methods such as the vertex based greedy method, the

element based method, and the edge based approach using METIS [63] revealed

that typically no more than 60% of the zeros may be isolated. This is far less than

the 97% sparsity of the original matrix. The architecture proposed here mainly

stores the non-zero elements of the matrix2 and hence utilizes its sparsity. This is

achieved at the expense of having to design a memory indexing logic. In addition

to the data values, the indices of the non-zero components in the sparse matrix are

saved separately and are used to drive the address lines of the multiplicand vector

in SpMxV.

2Our analysis in Section 5.4 shows that the proposed approach in average stores 11 % extra com-
ponents as non-zero elements; however considering the sparsity of the matrix, this extra memory
usage is relatively minor.

56

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Figure 5.2: Graph partitioning is used to isolate non-zero elements of the matrix.

5.3 Hardware Parallelism

To meet the real-time computation requirement, in principle, the hardware archi-

tecture must employ as many number of multipliers as possible in parallel. How-

ever memory bandwidth limitation restricts the amount of data that can be trans-

ferred to the multipliers at each clock cycle posing a challenging design problem.

To demonstrate the trade-off involved between the complexity of the architecture

and its use of resources, one may consider the case in which m multipliers are used

to multiply m rows of the matrix K by the vector d. Since the multipliers access the

same d vector simultaneously, there is always potential for memory contention. A

simple solution that avoids a complex contention resolution logic circuitry is to cre-

ate multiple dedicated copies of the vector d that can be accessed independently.

However this is obviously not a viable solution given the limited amount of on-

chip memory and the restricted bandwidth of off-chip memory access.

57

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

In the proposed architecture, parallelism is achieved at several levels. Based on

the ordered structure of the NZ elements in the matrix K, each three(3) consecutive

rows can be stored and accessed in three(3) similar blocks of memory with the

same addressing logic. This results in parallel processing of three(3) values from

three(3) rows at a time at the first level (PL1), i.e. see Fig. 5.3.

Figure 5.3: First level of parallelization: multiplication of three(3) rows by the vec-
tor d.

The parallelism can be further increased by processing several elements of each

node at the same time. This increase is determined by the memory structure ex-

plained in the next section. Given the memory resources of our current FGPA de-

vice, the maximum number of columns per node that are processed concurrently

58

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

is restricted to eight(8). This constitutes the second level (PL2) of parallelization.

Fig. 5.4 shows the structure of the 3x8 multipliers and accumulation (MAC) units

used for each node.

Figure 5.4: Second level of parallelization: the 3x8 MAC units structure per three(3)
consecutive rows of the matrix.

As mentioned earlier, the number of the NZ entries per row in the matrix K

is determined by the number of the nodes connected to the corresponding node

in the mesh. Our numerical experiments have shown that the maximum number

of NZ elements per row using the particular meshing algorithm used in this work

does not exceed 54. This number may vary if a different meshing routine is em-

ployed. The proposed architecture can employ s series of multiplications per node

and hence be capable of processing up to 8× s non-zero elements per each row of

the sparse matrix. A proper value of s can be determined based on the meshing

algorithm used. Fig. 5.5 depicts the connection of the MAC units with the memory

blocks containing the multiplicand vector and a portion of the sparse matrix. This

block which is based on the first and second level of parallelization is referred to

as ‘SpMxV sub-block’ hereinafter.

59

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Figure 5.5: The connection of MAC units to memory blocks.

In the third level (PL3), the parallelism is further improved by dividing the ma-

trix K into multiple partitions, each containing several nodes as shown in Fig. 5.6.

These partitions should be balanced in terms of number of their NZ elements. Each

new partition requires one extra SpMxV sub-block as shown in Fig.5.7.

Obviously a lager number of partitions leads to a higher degree of paralleliza-

tion. In our case this number is limited to five(5) due to the available on-chip mem-

ory and multiplier units. The matrix partitioning allows for concurrent utilization

up to 120 multipliers per FPGA device for sparse matrix by vector multiplication.

60

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Figure 5.6: Matrix partitioning for increased parallelism.

Figure 5.7: Third level of parallelization: top-view block diagram of the hardware-
based sparse matrix by vector multiplication.

5.4 Memory Structure

The data structure discussed in Sec. 5.1 can be divided into two groups, namely

the non-zero components of the sparse matrix, and the vectors used in the CG

algorithm. In this section some details on the memory structure used for each data

type are given. This discussion will help provide an insight into the operation of

the proposed micro-architecture.

Table 5.1 summarizes different types of memory resources available on the

61

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

FPGA device used in work. All these memory blocks can be arranged in a dual-

port configuration. In the current design, M4K blocks are used to store the NZ

elements and vectors. MRAM blocks are utilized to store corresponding indices

of the NZ components. M512 blocks are not currently employed in the micro-

architecture.

Feature EP2S60 FPGA Device

M512 RAM Blocks (512 bits + Parity) 329
M4K RAM Blocks (4 Kbits + Parity) 255
MRAM Blocks (512 Kbits + Parity) 2
Embedded Multipliers (18× 18) 144

Table 5.1: Altera Stratix II EP2S60 Overview

The basic memory structure for matrix components as shown on Fig. 5.8 on

Page 63 consists of three(3) M4K memory blocks, capable of storing 1 K 12-bit val-

ues. Multiple number of these basic blocks together construct the memory units a,

b or c shown in Fig. 5.3. Using two(2) address ports, the available data bandwidth

enables reading/writing of eight(8) 12-bit values at the same time. According to

this bandwidth, PL2 as shown in Fig 5.5, is bounded to eight(8). SpMxV is pro-

cessed as an internal multiplication of the vector by each row of the matrix and in

this process, no data value from other rows should be accessed to avoid complex-

ity in memory indexing logic. For this reason, the NZ components of each row in

the matrix are bundled in packages of eight(8) while writing the data into memory

blocks. This will result in storing some redundant values in the rows that their NZ

components number is not a factor of eight(8). For a matrix of dimension N with

62

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

NNZ number of NZ components, the additional storage cost per row in average

is four(4) 12-bit values, i.e.

Extra Memory Resource Usage Ratio =
4×N

NNZ
(5.1)

where NNZ is proportional to N . In our numerical experiments for meshes with

more than 400 nodes, NNZ ' 36 × N but this number could change using other

meshing algorithms. According to Eq. (5.1), the additional memory usage cost is

computed as 11% in average.

Figure 5.8: Basic memory structure for NZ components of matrix

The basic memory unit used for storing vector data is simply constructed by

three similar blocks each storing either of 3i, 3i− 1, 3i− 2 (for i = 1, · · · , n) values

63

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

of the vector. Given the dual-port access in each of these memory blocks, the pro-

posed structure provides a bandwidth of 6× 16 bits per clock cycle. The proposed

memory structure is depicted in Fig. 5.9. Using 3 or 4 M4Ks in each one of the

memory blocks, the bandwidth can be easily increased to 6× 24 or 6× 32 per clock

cycles. 3

Figure 5.9: Basic memory structure for vectors in the CG algorithm

5.5 Critical Path

According to Quartus II timing analyzer, the maximum operating frequency (fmax)

in the current design is limited to 100 MHz. As shown in Eq. (5.2), this frequency

is determined based on the path with the longest propagation delay (∆tcr) in the

circuit. The path can be either connecting an external input to a register, between

two registers or from a register to an external output. This path is referred to as the

critical path.

fmax =
1

∆tcr
(5.2)

The critical path in our architecture is due to the vector-vector multiplication dT(Ad)

in the CG algorithm, discussed in Chapter 4. It should be noted that d and Ad

3Using the parity bits, it is also possible to have 6× 18, 6× 27, 6× 36 bandwidths.

64

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

vectors are 16 and 32 bit respectively. Therefore to enhance the utilization of the

resources, 16 × 16 multipliers have been employed instead of 32 × 32 multipliers.

Fig. 5.10 shows how this 32×16 multiplication is broken into two 16×16 multiplica-

tions. In this figure, LSB and MSB denote the least significant and most significant

16-bits of the 32-bit values.

Figure 5.10: Critical path

The critical path shown in a dashed box in Fig. 5.10 consists of a 2x1 multiplexer, a

16-bit absolute value circuit and a 16× 16 multiplier.

5.6 Scalability

The whole design can be extended to process FE meshes of larger sizes if an FPGA

with more memory and multiplier units is employed. It is easiest to scale up PL3.

This is due to the fact that the first and second levels of parallelization (PL1 and

PL2) are based on the sparse matrix structure and the available memory band-

width, whereas the third level (PL3) is mainly restricted by the number of multi-

pliers and memory blocks. For each additional matrix partition in Fig. 5.6 one extra

“SpMxV sub-block” displayed in Fig. 5.7 is required. Obviously the NZ memory

65

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

block in “SpMxV sub-block” in Fig. 5.5 would only contain the portion of the non-

zeros that are in the corresponding partition of the matrix in Fig.5.6. However the

vector d as a memory block in “SpMxV sub-block” has to be replicated for each

matrix partition. This underlines the significance of the choice of the word length

for this vector in terms of memory usage. In summary, the third level of paral-

lelization can be scaled up using an FPGA with larger number of multipliers and

memory blocks. An extension of the proposed hardware architecture to a double-

FPGA configuration is discussed below.

66

Chapter 6

Performance Analysis and

Experimental Results

In the previous chapters some basic details of soft-body deformation modeling

with an emphasis on FE formulation were reviewed. Fixed-point implementation

of the iterative CG algorithm to solve a linear system of equations was discussed.

A scalable FPGA-based hardware architecture for parallel implementation of the

CG was proposed. In this chapter, the performance of the proposed architecture

in accelerating the computations is studied. Moreover to demonstrate the effec-

tiveness of the proposed approach, hardware-in-the-loop haptic simulations for

interaction with deformable objects using linear FE models have been conducted.

The experimental setup and the results are also reported in this chapter.

67

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

6.1 Hardware Accelerator Performance

Following the discussion on the scalability of the design in Section 5.6, an estima-

tion of Giga Operations Per Second (GOPS) and the number of the multipliers used

in SpMxV are provided in Table 6.1. The operations needed for SpMxV in the ideal

case includes NNZ multiplications and NNZ-N additions, where NNZ is the num-

ber of the non-zero components of the sparse matrix, and N is the vector length.

In this table, PL3 denotes the number of the sub-partitions of the matrix in Fig. 5.6

in the third level of parallelization. PL3 is the easiest level of parallelization for

scaling and hence is chosen as the determining factor for scalability in Table 6.1.

Number of Multipliers 24× PL3
GOPS (36× PL3)/clock cycle

Table 6.1: Estimation of GOPS and number of the multipliers for SpMxV.

The proposed microarchitecture has been implemented on Altera Stratix II EP2S60

FPGA device. Table 6.2 summarizes the resource usage in the FPGA. In our de-

sign, given the hardware resource limitations PL3 is bounded to 5. In Table 6.1, the

number of multipliers used for SpMxV multiplication is 120. In addition 21 other

multipliers are used in parallel for vector-vector and scalar-vector multiplications

in the implementation of the CG algorithm. These multipliers use the configura-

tion of 18x18 bit sizes and are capable of running at 450 MHz.

The current FPGA implementation with PL3 = 5 leads to SpMxV kernel that

operates at a rate of 18 GOPS. In Table 6.3, the performance of the proposed archi-

tecture has been compared with that of three different microprocessors used in the

68

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Logic Utilization Memory Blocks Multipliers Freq.
Combinational ALUTs Dedicated Logic Reg. M4K MRAM

8.4 k 10.5 k 251 2 141 100 MHz

Table 6.2: Resource utilization in FPGA and clock speed.

experiments conducted by Goumas et al. [64]. The last column provides a compar-

ison between the average results in the fourth column to the speed of computation

in our proposed architecture. It is evident that the massive low-level parallelism

using fixed-point operations in our approach has yielded a significant speed up in

the calculations over general-purpose floating point processors.

Processor Clock Speed L2 Cache Average MFLOPS xSlower
Woodcrest 2.6 GHz 4MB 495.53 x37
Netburst 2.8 GHz 1MB 297.88 x61
Operton 1.8 GHz 1MB 273.72 x66

Table 6.3: Comparative performance of SpMxV kernel on general-purpose
CPUs [64] and the proposed FPGA-based hardware accelerator.

It should be noted in contrast to the mentioned processors, our proposed micro-

architecture is using fixed-point operations rather than floating-point. Nonetheless

given the test results presented in Sec. 6.2, it can be concluded that for the appli-

cations considered in this thesis, the proposed parallel computing platform can

provide a huge speed up in calculations with a sufficient numerical accuracy.

In Table 6.4 approximate values of PL3 using different FPGA devices from the

Altera Stratix II and III families are given. It is clear that due to their large on-chip

memory and multiplier units, these FPGAs can easily enable real-time simulation

of FE meshes in the order of several thousand nodes.

69

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

FPGA EP2S60 EP2S180 EP3SL150 EP3SE110 EP3SE260
PL3 5 14 14 32 28

Table 6.4: Approximate value for PL3 in different FPGAs

Figure 6.1: The block diagram of haptic-enabled simulator with hardware-based
accelerator.

6.2 Experimental Platform

The proposed hardware-based accelerator for the CG algorithm has been imple-

mented and integrated into an experimental platform for haptic interaction with

deformable objects as shown in Fig. 6.1. The system consists of a custom-designed

3DOF haptic interface, a Quanser QPA linear current amplifier, a Quanser Q4

hardware-in-the-loop data acquisition board, a Gidel PROCStar II development

board (see appendix) with two Altera Stratix II EP2S60 FPGA devices, and a 3.0

GHz Pentium R(D) with 2.0 GB RAM using a Matrox Millennium PCIe P650 graph-

ics card. A brief description of different processes involved in the system follows.

70

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

6.2.1 Hardware-based Accelerator for the CG algorithm

The main computing engine of the system is the proposed FPGA hardware-based

accelerator for the CG algorithm described earlier in the Chapter 5. At each time

step, the FPGA board communicates with the PC through the PCI bus interface

to receive the vector b for static or dynamic simulation. The matrix K in static

(Eq. (3.16)) and also matrix Â (Eq. (3.27)) in dynamic simulations are assumed to

be constant and are loaded to the FPGAs on-chip memory once at the beginning

of the simulation process. However it should be emphasized that it is possible to

partially update the on-board memory blocks filled with non-zero components of

the sparse matrix. This can be done during the communication period in which the

new b vector and the resulting node displacement vector are exchanged between

the FPGA board and the host PC. As discussed in Sec. 3.7 the sparse matrix needs

to be modified in real-time in order to accommodate a variable contact node. The

changes to the matrix are applied directly on the FPGA devices according to the

procedure outlined in 3.7. At the end of the CG iterations, the computed deforma-

tion vector U is returned to the PC through the PCI bus.

6.2.2 Haptic Control and Communication Process

The haptic control process is the communication hub among the haptic interface,

the hardware-based accelerator, and the graphics and collision detection units, as

depicted in Fig. 6.1. It runs at a rate of 500Hz under Quanser’s Windows real-

time extension QuaRC. During each time-step of haptic simulation, the Q4 board

reads the haptic device position through the QPA current amplifier. Next, this

data is sent to the collision detection unit to report the contact node number of

71

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

any collision occurs between the haptic pointer and the virtual deformable object.

Based on the deformation at the contact node and the contact node number, the

modified force vector b is calculated according to the procedure outlined in Sec. 3.7

and is transmitted to the FPGA board via the PCI bus. The deformation vector U

is computed and sent back to the host PC. The deformation vector is employed to

calculate the interaction force. At a lower rate, it is also sent to the graphics unit for

display. The computed force is sent to haptic device via Q4 board. The remaining

steps in the dynamic FE simulation given in Sec. 3.6, i.e. (3.24)-(3.26) are performed

on the host PC. All these steps are depicted in the flow-chart diagram in Fig. 6.2 on

page 73.

6.2.3 Collision Detection and Graphics

OpenGL is used for graphics rendering and collision detection. The process detects

any possible collision between the haptic device and the virtual object and sends

the contact node number to the control process. In turn, it receives the node dis-

placement vector and renders the object deformation accordingly. The use of the

Graphical Processing Unit on the video card for deformable object rendering and

collision detection frees up CPU resources for other applications. The graphics and

collision detection process is updated at a rate of 33Hz which should be sufficient

considering the human visual response time and typical speed and frequency of

hand motions.

72

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

Figure 6.2: Haptic control and communication process

6.2.4 Experimental Results

Our hardware architecture which currently utilizes one Stratix II EP2S60 FPGA is

capable of real-time FE simulation of deformation for a 3D mesh of 500 nodes at a

rate of 500Hz (the length of vector U is 1500). Our preliminary haptic exploration

experiments have been very encouraging. The proposed system, using linear static

and dynamic elastic models, can provide users with a stable and realistic haptic

and deformation feedback for objects with different mechanical properties. Fig. 6.3

73

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

shows the results of real-time FE dynamic simulation for haptic interaction with a

deformable sphere. The object is constrained at several nodes in the lower left

corner of the image. The user can make single point contacts with the sphere at

any surface node.

Figure 6.3: Three frames of object deformation in a dynamic simulation: (1) the
user represented by small sphere is about to make contact with the large de-
formable sphere; (2) contact has been made; (3) the object is further pressed by
the user.

74

Chapter 7

Conclusions and Future Work

Real-time simulation of haptic interaction with deformable objects is challenging

due to a large amount of computations that must be completed within a very short

period of time. In particular in FE modeling of deformation, the object is meshed

and partitioned to tetrahedron elements and the partial differential equations aris-

ing from continuum mechanics based models are discretized in the spatial domain

accordingly. Using static or dynamic linear elastic models results in a large linear

system of equations that must be solved at each time step (namely 1 ∼ 10 msec

for haptic simulation of soft tissue). The main goal of this thesis was to develop

a hardware architecture to accelerate the computational kernel in such systems of

equations meeting the tight real-time constrain of haptics applications. This ob-

jective was achieved through massive parallelization of the computations on an

FPGA platform. Scalability of the solution and optimal usage of resources were

the other main objectives in our hardware architecture design.

75

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

To solve a large and sparse linear system of equations, a fixed-point imple-

mentation of the iterative CG algorithm was proposed in Chapter 4. The numeri-

cal accuracy and reliability of the proposed fixed-point CG method were verified

through numerical analysis. An FPGA-based parallel implementation of the fixed-

point CG algorithm was proposed in Chapter 5. The ordered memory structure

and concurrent usage of a large number of multipliers and adders provide suf-

ficient bandwidth and computational power to meet the real-time computation

requirement in haptics applications. The proposed micro-architecture employs

fixed-point operations in order to maximize the parallelization of the computa-

tions. It is fairly independent of the FE mesh structure and can be easily scaled for

deployment on FPGA devices with various capacities.

The hardware architecture was successfully employed for real-time haptic in-

teraction with static and dynamic deformable objects. In our experiments, using

one Altera Stratix II EP2S60 FPGA device and a 3.0 GHz Pentium R(D) with 2.0 GB

RAM, for a 500-node 3D mesh with tetrahedral elements, a simulation update rate

of 500 Hz was achieved. The proposed FPGA-based CG solver provides a pow-

erful and portable computing platform that can be integrated into a desktop com-

puter system and is capable of real-time simulation of 3D FE deformation models

of several thousands nodes using commercially available FPGA devices.

Although the preliminary results presented in this thesis are very encouraging,

there are still numerous possibilities for further research including:

• Extension of the work to allow multi-contact-point tool-object interaction

• Hardware-based real-time simulation of cutting and needle insertion

• Hardware-based acceleration of nonlinear FE models

76

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

• Extension of the proposed architecture to multi-FPGA configurations

• Comprehensive analysis of the trade-off involved in selecting the data word

lengths, simulation accuracy, resources usage, and the achievable level of

parallelism in a fixed-point implementation of the CG algorithm

77

Appendix A

PROCStar II Technical Specifications

Figure A.1: PROCStar II Block Diagram

78

Bibliography

[1] R. T. Azuma, “A survey of augmented reality,” Presence -Cambridge Mas-

sachusetts, vol. 6, pp. 355–385, Nov. 1997.

[2] M. Slater, A. Steed, and Y. Chrysanthou, Computer Graphics and Virtual Envi-

ronments: From Realism to Real-Time. Addison Wesley, 2001.

[3] A. Liu, F. Tendick, K. Cleary, and C. Kaufmann, “A survey of surgical sim-

ulation: Applications, technology, and education,” Presence -Cambridge Mas-

sachusetts, vol. 12, no. 6, pp. 599–614, 2003.

[4] D. Koller, P. Lindstrom, W. Ribarsky, L. F. Hodges, N. Faust, and G. Turner,

“Virtual gis: A real-time 3d geographic information system,” in Proceedings of

the 6th Conference on Visualization, IEEE Computer Society, 1995.

[5] C. Basdogan and M. Srinivasan, “Haptic rendering in virtual environments,”

K. Stanney (Ed): Virtual Environments HandBook, Lawrence Erlbaum Associates,

pp. 117–134, 2002.

[6] K. Salisbury, F. Conti, and F. Barbagli, “Haptic rendering: Introductory con-

cepts,” IEEE Computer Graphics and Applications, vol. 24, no. 2, pp. 24–32, 2004.

79

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

[7] S. D. Laycock and A. M. Day, “A survey of haptic rendering techniques,”

Computer Graphics Forum, vol. 26, no. 1, pp. 50–65, 2007.

[8] A. Gregory, A. Mascarenhas, S. Ehmann, M. Lin, and D. Manocha, “Six

degree-of-freedom haptic display of polygonal models,” in Proceedings of Vi-

sualization, pp. 139–146, 2000.

[9] S. P. DiMaio and S. E. Salcudean, “Needle insertion modelling for the inter-

active simulation of percutaneous procedures,” Medical Image Computing and

Computer-Assisted Intervention, pp. 253–260, July 2005.

[10] S. P. DiMaio and S. E. Salcudean, “Interactive simulation of needle insertion

models,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 7, pp. 1167–

1179, July 2005.

[11] V. Gourishankar, G. Srimathveeravalli, and T. Kesavadas, “Hapstick: A high

fidelity haptic simulation for billiards,” in Second Joint EuroHaptics Conference

and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Sys-

tems (WHC’07), pp. 494–500, 2007.

[12] S. P. DiMaio and S. E. Salcudean, “Simulated interactive needle insertion,”

Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment

and Teleoperator Systems, pp. 344–351, 2002.

[13] C. BRUYNS and K. MONTGOMERY, “Generalized interactions using virtual

tools within the spring framework:probing, piecing, cauterizing and ablat-

ing,” J. Westwood (Ed): Medicine Meets Virtual Reality, pp. 74–78, 2002.

80

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

[14] R. Lapeer, P. Gasson, J. Florens, S. Laycock, and V. Karri, “Introducing a novel

haptic interface for the planning and simulation of open surgery,” Studies in

Health Technology and Informatics, pp. 197–199, 2004.

[15] K. Waters and D. Terzopoulos, “A physical model of facial tissue and muscle

articulation,” in Proceedings of the First Conference on Visualization in Biomedical

Computing, pp. 77–82, 1990.

[16] H. Delingette, G. Subsol, S. Cotin, and J. Pignon, “A craniofacial surgery simu-

lation testbed,” Visualization in Biomedical Computing, vol. 2359, no. 1, pp. 607–

618, 1994.

[17] E. Keeve, S. Girod, R. Kikinis, and B. Girod, “Craniofacial surgery simula-

tion,” in Proceedings of the 4th International Conference on Visualization in Biomed-

ical Computing, pp. 541–546, 1996.

[18] D. Aulignac, C. Laugier, and M. Cavusoglu, “Modeling the dynamics of a

human thigh for a realistic echographic simulator with force feed-back,” in

Medical Image Computing and Computer Assisted Intervention, pp. 1191–1198,

1999.

[19] M. Bro-Nielsen, “Finite element modeling in surgery simulation,” Proceedings

of the IEEE, vol. 86, pp. 490–503, March 1998.

[20] F. L. Stasa, Applied Finite Element Analysis for Engineers. Holt, Rinehart, and

Winston, 1985.

[21] Y. Zhuang, Real-time simulation of physically realistic global deformations. PhD

thesis, 2000. Chair-John Canny.

81

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

[22] K. J. Bathe, Finite Element Procedures. Prentice Hall, 1996.

[23] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1, 5th Edi-

tion. Butterworth-Heinemann, 2000.

[24] J. Berkley, S. Weghorst, H. Gladstone, G. Raugi, D. Berg, and M. Ganter,

“Banded matrix approach to finite element modelling for soft tissue simu-

lation,” Virtual Reality, vol. 4, pp. 203–212, September 1999.

[25] M. Bro-Nielsen and S. Cotin, “Real-time volumetric deformable models for

surgery simulation using finite elements and condensation,” Computer Graph-

ics Forum, vol. 15, no. 3, pp. 57–66, 1996.

[26] Y. Zhuang and J. Canny, “Haptic interaction with global deformations,” in

Proceedings of the IEEE International Conference on Robotics and Automation,

pp. 2428–2433, 2000.

[27] M. Mahvash and V. Hayward, “Haptic simulation of a tool in contact with a

nonlinear deformable body,” in Proceeding of the International Symp. on Surgical

Simulation and Soft Tissue Deformation, pp. 311–320, 2003.

[28] Z. A. Taylor, M. Cheng, and S. Ourselin, “Real-time nonlinear finite element

analysis for surgical simulation using graphics processing units,” Medical Im-

age Computing and Computer-Assisted Intervention, vol. 4791, pp. 701–708, 2007.

[29] J. Shewchuk, “An introduction to the conjugate gradient method without the

agonizing pain,” in Technical report, School of Computer Science, Carnegie Mellon

University, 1994.

82

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

[30] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on fpgas,”

in Proceedings of the 13th International Symposium on Field-Programmable Gate

Arrays, pp. 63–74, 2005.

[31] J. Jang, S. Choi, and V. K. Prasanna, “Area and time efficient implementation

of matrix multiplication on fpgas,” in Proceedings of the First IEEE International

Conference on Field Programmable Technology, pp. 93–100, 2002.

[32] J. Sun, G. Peterson, and O. Storaasli, “Sparse matrix-vector multiplication de-

sign on fpgas,” in Proceedings of 15th Annual IEEE Symp. on Field-Programmable

Custom Computing Machines, pp. 349–352, 2007.

[33] U. Meier, O. Lpez, C. Monserrat, M. Juan, and M. Alcaiz, “Real-time de-

formable models for surgery simulation: A survey,” Computer Methods and

Programs in Biomedicine, vol. 77, no. 3, pp. 183–197, 2005.

[34] S. Coquillart and P. Jancéne, “Animated free-form deformation: An interac-

tive animation technique,” ACM SIGGRAPH Computer Graphics, vol. 25, no. 4,

pp. 23–26, 1991.

[35] W. M. Hsu, J. F. Hughes, and H. Kaufman, “Direct manipulation of free-form

deformations,” in Proceedings of the 19th Annual Conference on Computer Graph-

ics and Interactive Techniques, pp. 177–184, 1992.

[36] M.-E. Algorri and F. Schmitt, “Deformable models for reconstructing unstruc-

tured 3d data,” in Proceedings of the First International Conference on Computer

Vision, Virtual Reality and Robotics in Medicine, pp. 420–426, 1995.

83

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

[37] T. McInerney and D. Terzopoulos, “Deformable models in medical image

analysis: A survey,” Medical Image Analysis, vol. 1, no. 2, pp. 91–108, 1996.

[38] H. Delingette, “Toward realistic soft-tissue modeling in medical simulation,”

Proceedings of the IEEE, vol. 86, no. 3, pp. 512–523, Mar 1998.

[39] P. Moore and D. Molloy, “A survey of computer-based deformable models,”

in Machine Vision and Image Processing Conference,IMVIP 2007, pp. 55–66, 2007.

[40] S. Gibson and B. Mirtich, “A survey of deformable modeling in computer

graphics,” in Technical Report No. TR-97-19, Mitsubishi Electric Research Lab.,

Cambridge, MA.

[41] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically deformable

models,” in Proceedings of the 14th Annual Conference on Computer Graphics and

Interactive Techniques, pp. 205–214, 1987.

[42] S. F. Gibson, “3d chainmail: A fast algorithm for deforming volumetric ob-

jects,” in Proceedings of the 1997 Symposium on Interactive 3D Graphics, pp. 149–

154, 1997.

[43] A. Joukhadar and C. LAUGIER, “Dynamic simulation: Model, basic algo-

rithms, and optimization,” J. Laumond and M. Overmars (Eds): Algorithms for

Robotic Motion and Manipulation, pp. 419–434, 1997.

[44] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in Proceedings of the

25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–

54, 1998.

84

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

[45] Y. Lee, D. Terzopoulos, and K. Waters, “Constructing physics-based facial

models of individuals,” in Proceedings of Graphics Interface ’93, pp. 1–8, 1993.

[46] Y. Lee, D. Terzopoulos, and K. Walters, “Realistic modeling for facial anima-

tion,” in Proceedings of the 22nd Annual Conference on Computer Graphics and

Interactive Techniques, pp. 55–62, 1995.

[47] D. Zerbato, S. Galvan, and P. Fiorini, “Calibration of mass spring models for

organ simulations,” in Proceedings of the International Conference on Intelligent

Robots and Systems, pp. 370–375, 2007.

[48] A. V. Gelder, “Approximate simulation of elastic membranes by triangulated

spring meshes,” Journal of Graphics Tools, vol. 3, no. 2, pp. 21–41, 1998.

[49] G. Bianchi, B. Solenthaler, G. Szekely, and M. Harders, “Simultaneous topol-

ogy and stiffness identification for mass-spring models based on fem refer-

ence deformations,” Medical Image Computing and Computer-Assisted Interven-

tion MICCAI 2004, pp. 293–301, 2004.

[50] S. De, J. Kim, and M. Srinivasan, “A meshless numerical technique for phys-

ically based real time medical simulation,” in Medicine Meets Virtual Reality,

pp. 113–118, 2001.

[51] I. Babuka, U. Banerjee, and J. Osborn, “Survey of meshless and generalized

finite element methods: A unified approach,” A. Iserles (Ed): Acta Numerica,

vol. 12, pp. 1–122, 2003.

85

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

[52] S. Idelsohn, E. Onate, N. Calvo, and F. D. Pin, “Meshless finite element ideas,”

in Proceedings of the Fifth World Congress on Computational Mechanics, pp. 1–20,

2002.

[53] H. Delingette, S. Cotin, and N. Ayache, “A hybrid elastic model for real-time

cutting, deformations, and force feedback for surgery training and simula-

tion,” Visual Computer, vol. 16, no. 8, pp. 437–452, 2000.

[54] X. Wu, M. Downes, T. Goktekin, and F. Tendick, “Adaptive nonlinear finite el-

ements for deformable body simulation using dynamic progressive meshes,”

Computer Graphics Forum, vol. 20, no. 3, pp. 349–358, 2001.

[55] D. L. James and D. K. Pai, “Artdefo: accurate real time deformable objects,”

in Proceedings of the 26th Annual Conference on Computer Graphics and Interactive

Techniques, pp. 65–72, 1999.

[56] C. S. Krishnamoorthy, Finite Element Analysis: Theory and Programming. Tata

McGraw-Hill, 1995.

[57] J. Shewchuk, “Delaunay refinement algorithms for triangular mesh genera-

tion,” Computational Geometry: Theory and Applications.

[58] M. Bern, D. Eppstein, and J. Gilbert, “Provably good mesh generation,” Jour-

nal of Computer and System Sciences, vol. 48, no. 3, pp. 384–409, 1994.

[59] G. Karniadakis and R. K. II, Parallel Scientific Computing in C++ And Mpi: A

Seamless Approach to Parallel Algorithms and Their Implementation. Cambridge

University Press, 2003.

[60] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition. SIAM, 2003.

86

M.A.Sc. Thesis - R. Mafi McMaster - Electrical Engineering

[61] K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom, The Finite Element

Method for Engineers, 4th Edition. Wiley, 2001.

[62] P. O. Fjllstrm, “Algorithms for graph partitioning: A survey,” Computer and

Information Science, vol. 3, 1998.

[63] METIS - Family of Multilevel Partitioning Algorithms:

http://glaros.dtc.umn.edu/gkhome/views/metis.

[64] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris, “Un-

derstanding the performance of sparse matrix-vector multiplication,” in Pro-

ceedings of the 16th Euromicro Conference on Parallel, Distributed and Network-

Based Processing (PDP 2008), pp. 283–292, 2008.

87

