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Abstract

Soft multiple-input multiple-output (MIMO) demodulators are a core component

of iterative receivers for MIMO communication systems that employ bit-interleaved

coded modulation (BICM). The role of these demodulators is to extract a good ap-

proximation of the posterior likelihood of each bit transmitted at each channel use.

The main challenge in designing a soft MIMO demodulator is to achieve the desired

level of performance at a reasonable computational cost. This is important because

in the case of a memoryless MIMO channel, the computational cost of the exact soft

demodulator increases exponentially with the number of bits transmitted per channel

use, and the cost grows faster in the case of the channels with memory.

Several approximate low-complexity soft demodulators for memoryless channels

have been proposed in the literature. In this thesis, we develop a low-complexity

soft MIMO demodulator that is based on semidefinite relaxation (SDR) and uses the

max-log approximation to reduce the cost of the demodulation. In particular, we

develop a customized dual-scaling algorithm to solve the semidefinite program that

constitutes the core computational task of the SDR-based soft demodulator. The

computational cost per iteration of the customized dual algorithm is about half that

of the existing customized primal-dual algorithm, and this leads to a reduction in the

overall computational cost. We apply the customized dual-scaling algorithm to two
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different list-based soft demodulators, the list-SDR and single-SDR demodulators,

and compare the performance, computational cost, and EXIT chart characteristics

of these demodulators with other existing methods. This comparison shows that

the developed demodulator provides a desirable trade-off between performance and

complexity.
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Abbreviations

AWGN Additive White Gaussian Noise

BCJR Bahl-Cocke-Jelinek-Raviv

BER Bit Error Rate

BICM Bit Interleaved Coded Modulation

BPSK Binary Phase Shift Keying

CDMA Code Devision Multiple Access

FLOP Floating Point Operation

IDD Iterative Demodulation and Decoding

LISS List Sequential

LLR Log Likelihood Ratio

MAP Maximum a Posteriori Probability

MIMO Multiple Input Multiple Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RTS Repeated Tree Searching
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SD Sphere decoding

SDP Semidefinite Programming

SDR Semidefinite Relaxation

SIC Soft Interference Cancellation

SNR Signal to Noise Ratio

STS Single Tree Searching
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Glossary of Notations

b Transmitted bit vector in one channel use

bi The ith transmitted bit in a bit vector

H Channel matrix

H̃ Real representation of the channel matrix

s Transmitted symbol vector for one channel use

st Transmitted codeword

s̃ Real representation of the transmitted symbol vector

si The ith transmitted symbol in a symbol vector

v Additive noise vector over one channel use

ṽ Real representation of the additive noise vector

y Received signal in one channel use

yt Signal received while a codeword is transmitted over the channel

ỹ Real representation of the received signal

λA The input soft information of the demodulator or decoder

λD The output soft information of the demodulator or decoder

λE The extrinsic soft information of the demodulator or decoder
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Chapter 1

Introduction

The broadcast nature of wireless transmission, and the conventional methods for man-

aging the resulting interference, mean that in the design of wireless communication

systems it is important to ensure that the available spectrum is used in an efficient

way. Systems with multiple antennas at the transmitter and multiple antennas at

the receiver, known as multiple-input multiple-output (MIMO) systems, have the

potential to provide increased efficiency over single antenna systems (e.g., Tse and

Viswanath, 2005; Goldsmith, 2005). However, these systems are substantially more

complex than single antenna systems. As a result, the design of practical MIMO

systems involves trade-offs between reliability, data rate and computational cost that

tend to be stronger than the corresponding trade-off in single antenna systems. The

goal of this thesis is to contribute to the development of receivers that provide a

compelling balance between computational cost and performance.

1



M.A.Sc. Thesis - Mahsa Salmani McMaster - Electrical Engineering

+

+

+

Binary Source

Encoder

and

Modulator

1

2

Nt

V1

V2

VNr

1

2

Nr

Demodulator

and

Decoder

Binary Sink

...
...

Figure 1.1: A standard MIMO system

1.1 Multiple-Input Multiple-Output Systems

An abstract model for a generic MIMO communication system is shown in Fig. 1.1.

In this model, the encoder observes the binary message that is to be sent, and based

on that message it synthesizes signals to be transmitted from each antenna. These

signals propagate through the medium and are sensed by the antennas at the receiver.

The decoder takes the measured signals and estimates the message that was encoded

by the transmitter. This estimation can be based on information that the receiver

has about the channel through which the signals propagate and, in certain cases,

information about the probability with which each message will be sent.

To examine the potential benefits of a MIMO system, let us consider a simple

scenario in which the channel from each transmitter antenna to each receiver antenna

is linear, approximately flat in frequency across bandwidth of transmitted signal (i.e.,

the coherence bandwidth of the channel is significantly larger than the bandwidth of

the signal), and approximately constant over the duration of communication (i.e., the

coherence time of the channel is significantly larger than the duration of communi-

cation). In that setting, each receiver antenna observes a (typically different) linear

combination of the signals that were sent from the transmitter antennas.

2
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To build a model for that setting, we assume perfect carrier and symbol synchro-

nization at the receiver, and in the kth usage of the channel, we let xm[k] denote the

baseband equivalent of the signal transmitted from transmitter antenna m and yn[k]

denote the baseband equivalent of the signal observed by receiver antenna n. With

this notation in place, we can write

yn[k] =
Nt∑
m=1

hnm[k]xm[k] + vn[k], (1.1)

where vn[k] is the additive noise at the nth receiver antenna, and hnm[k] is the base-

band equivalent channel from transmitter antenna m to receiver antenna n at the kth

channel usage. Therefore, if we write all the signals that are received by the receiver

antennas at the kth channel use, we can construct a vector of received signal as yk

and rewrite (1.1) as

yk = Hkxk + vk, (1.2)

where Hk is the channel matrix at the kth channel use.

If the transmitted signals are correlated across the antennas, then the receiver can

take advantage of the received different linear combination to improve the reliability

of detection; for example, if a single signal was repeated from all transmitter antennas,

that signal would see NtNr channel gains as it propagates to the receiver antennas.

The receiver antenna can take advantage of this “diversity” to improve the reliability

of detection.

An alternative scenario would be to send different signals from each transmitter

antenna; a technique that is referred to as spatial multiplexing. Although spatial mul-

tiplexing can enable the successful transmission of higher data rates, the receiver has

3
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to deal with the self-interference of the signals that are transmitted simultaneously,

and this dramatically increases the computational cost of the receiver.

Given the difference between the repetition approach and spatial multiplexing, it

is interesting to ask whether there are any intermediate points that provide a trade-

off. Indeed, there are. In fact, in channels that change slowly, there is a fundamental

trade-off between diversity and spatial multiplexing (Zheng and Tse, 2003). Recent

interpretations of where on that trade-off one should operate have suggested that it

should be at the spatial multiplexing end (Lozano and Jindal, 2010), and hence, in

this thesis we focus on spatial multiplexing. That said, many of the insights and

algorithms that will be developed herein can be applied directly to systems that

employ space-time block coding schemes from the broad class of linear dispersion

codes (Hassibi and Hochwald, 2002).

Even though spatial multiplexing is quite simple to implement at the transmit-

ter, the optimal receiver is complicated due to the interference between the symbols

transmitted at a given channel use.. One approach to designing efficient spatial mul-

tiplexing schemes is to structure the abstract model in Fig. 1.1 by employing the

principles of Bit-Interleaved Coded Modulation (BICM) with iterative soft demodu-

lation and decoding (IDD) (e.g., i Fàbregas et al., 2008). In that case, the encoder

and decoder of Fig. 1.1 take the forms in Fig. 1.2.

In BICM-IDD, the information bits that constitute the message are first encoded

by a binary encoder. Then the encoded bits are interleaved and modulated to symbols

from a scalar constellation. In the case of spatial multiplexing, these scalar symbols

are demultiplexed and transmitted from the different antennas. The interleaver has

the effect of dispersing correlated encoded bits across the codeword so that the local

4
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Figure 1.2: MIMO BICM-IDD transceiver

correlation is typically weak or non-existent. This serves two purposes. First, it

improves the robustness of the system to bursts of demodulation errors, such as those

that occur when the channel is in deep fading. Second, it enables some approximations

to be made in the demodulator that significantly reduce its computational cost.

On the other side of the channel, the iterative demodulation and decoding (IDD)

receiver is structured in a way that is matched to the transmitter. The MIMO demod-

ulator works on a “per-channel-use” basis. The demodulator extracts an estimation

of the posterior probability of each encoded bit that was transmitted in the current

channel use. (That probability is often represented by the posterior log-likelihood

ratio.) In the second and subsequent demodulation steps, the demodulator uses the

estimation of a priori probability of these bits that were produced by the previous

5
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decoding operation. (In the first iteration the bits are presumed to be equally likely.)

Once the demodulation step has been completed for each of the channel uses required

to transmit the encoded bits that represent the message, the demodulator’s estimate

of the posterior probabilities are passed to a soft-input soft-output decoder that seeks

to maximize the a posteriori probability of each bit in the codeword. The decoder’s

estimate of these a posteriori probabilities are then fed back to the demodulator for

the next demodulation iteration. The feedback structure of the receiver in Fig. 1.2

has often been referred to as a “turbo” structure, although care needs to be taken to

avoid the destabilizing effects of positive feedback, and hence the subtraction blocks

in the figure are used.

One of the convenient features of BICM is that we can leverage a long history

of development of binary coding schemes (Costello and Forney Jr, 2007), such as

convolutional codes, turbo, and low density parity check codes (e.g. Lin and Costello,

2004; Richardson and Urbanke, 2008; Hanzo et al., 2002), and the corresponding

soft-input soft-output decoders such as Bahl-Cocke-Jelinek-Raviv (BCJR, Bahl et al.,

1974) or message passing, (e.g., Kschischang et al., 2001).

The main focus of this thesis is the development of computationally-efficient high-

performance soft demodulators for use in the IDD receiver. Given the iterative nature

of the receiver, the demodulator must be computationally-efficient. However, it must

also be quite accurate in order to reduce the number of iterations that are required,

and to reduce convergence problems. Distinct from many of the existing approaches

in the literature, which employ the principles of tree search or minimum mean square

error (MMSE) estimation, the proposed demodulators will be based on an optimiza-

tion procedure known as semidefinite relaxation (Luo et al., 2010).

6
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To provide further background for the proposed work, in the next chapter, we will

describe in more detail the system model for soft MIMO demodulation, and the max-

log approximation that is used in a variety of reduced-complexity soft modulators.

We will also classify soft demodulators in two different categories. In Chapter 3,

we will provide context for the proposed demodulators by describing some of the

existing reduced-complexity soft demodulators in each of the two classes introduced

in Chapter 2.

1.2 Contribution

In this thesis, we develop a low-complexity soft MIMO demodulator which is based

on semidefinite relaxation. In this method, the optimal solution of the underlying

detection problem is approximated by using semidefinite relaxation. The solution to

the semidefinite program is used to guide a randomization procedure that is used to

generate a list of candidate bit vectors, from which the soft output is extracted.

The main contribution in this thesis is to propose an algorithm that can be used to

solve the semidefinite program (SDP) in a low-complexity way. Recently, a customized

primal-dual interior point method was used to solve the SDP for the case of QPSK

and 16-QAM (e.g., Nekuii, 2008; Nekuii and Davidson, 2009b; Nekuii et al., 2011). In

this thesis, we propose customized dual-scaling algorithm to solve the SDP for general

rectangular QAM alphabets. The algorithm is based on the principles that underlie

an existing generic algorithm (Benson et al., 2000), but the proposed algorithm is

tailored in such a way that we can take advantage of the sparse structure of the

matrices.

We also exploit other features of the communication application and the result

7
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is an algorithm that, in our experiments, as about twice as fast as the existing cus-

tomized primal-dual algorithm per iteration and the final cost is also cheaper.

1.3 Thesis Outline

In Chapter 2, we will describe the system model and formulate the problem of in-

terest of this thesis. We will describe the structure of BICM in more detail and

will review the “max-log” approximation of log-likelihood ratio, which is employed in

many soft demodulators. We will also classify soft demodulators into the classes of

“hard demodulation-based” and “list-based” demodulators.

In Chapter 3, we will review some of the existing approaches to soft MIMO de-

modulation. Firstly, we will consider some hard demodulation-based demodulators,

such as the repeated tree search and single tree search methods. Subsequently, some

list-based soft demodulators will be reviewed, including list sphere decoding and list

sequential decoding (LISS). We will also quickly review some other list-based and

fixed-complexity soft demodulators. Finally, methods that fall outside these classes,

such as the minimum mean square error soft interference canceller (MMSE-SIC) will

be described.

In Chapter 4, the basis of semidefinite relaxation will be explained. We will show

how the problem of finding the maximum a posteriori solution can be approximated

by a semidefinite program. Two classes of list-based demodulators that use SDR will

be introduced in this chapter. These demodulators differ in the way that the list is

generated.

In Chapter 5, we will develop a customized dual-scaling algorithm to solve the

8
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semidefinite program SDP that arises from the semidefinite relaxation of the demod-

ulation problem. We will provide the structured matrix formulation that we use in

order to solve the SDP using the dual-scaling algorithm. We will then introduce the

dual potential function and the way it is used to solve the problem iteratively. Some

customizations will also be stated as these help to further reduce the computational

cost of the dual-scaling algorithm.

Finally in Chapter 6, the simulation results are shown. First, we compare the

performance of different soft demodulators in terms of the bit error rate at different

SNRs. In order to compare the complexity of these methods, we count the floating

points operations (FLOPs) required by each demodulator and present the CDF of

the FLOP counts. We also compare these demodulators in terms of their extrinsic

information transfer chart (EXIT-chart; e.g., ten Brink, 2001). These charts help to

provide some insight into the performance of demodulators and detectors in iterative

demodulation and decoding receivers.

In Chapter 7, we will conclude the thesis and provide some suggestions for the

directions of future work.

9



Chapter 2

Problem Statements and System

Model

In the previous chapter, we described MIMO wireless systems in which there are

several transmitter and receiver antennas. In the case of spatial multiplexing trans-

mission, at each channel use different symbols are transmitted from each antenna. If

we let sn denote the vector of symbols transmitted at the nth channel use, then for

a linear narrow-band MIMO channel model, with additive noise at the receiver, the

received signal at nth channel use can be written as

yn = Hnsn + vn, (2.1)

where vn is a vector of additive noise, which we will model as being zero-mean white

additive circular complex Gaussian noise i.e. E{vnvm} = σ2δ[n − m]I. As in the

case for the scalar additive white Gaussian noise channel, most coding schemes for

the model in (2.1) are based on multiple use of the channel. If we consider a set of

10
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N channel uses, the total received signal can be written as



y1

y2

...

yN


=



H1 0 . . . 0

0 H2 . . . 0

...
. . . . . . 0

0 0 . . . HN





s1

s2

...

sN


+



v1

v2

...

vN


, (2.2)

or, more compactly, as yt = Htst + vt, where st will be referred to as the transmitted

codeword.

Given knowledge of the set of codewords that the transmitter might send, which

we denote by S, the goal of a coherent receiver is to determine, based on the received

signal yt and knowledge of the channels {Hi}Ni=1, which codeword was transmitted.

If all codewords are equally likely, the optimal decoder is the maximum likelihood

decoder, that decoder solves the problem

ŝtML = max
st∈S

p(yt|st), (2.3)

where p(yt|st) is the probability of the received signal vector given that st was trans-

mitted.

To assess the computational effort required to solve (2.3), consider a scenario in

which we haveN channel uses and an overall data rate of r bits per channel use. In this

case, the size of the codebook is 2rN . Since the codebook is a discrete set, in the worst

case, finding ŝtML will require 2rN evaluations of p(yt|st). Hence, the computational

cost grows exponentially with the number of transmitted bits. Effective coding for

MIMO channels is based on developing a structured code that enables the optimal

decoder to be approximated in a way that enables a good estimate of the optimal

11
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Figure 2.1: MIMO BICM-IDD transceiver

solution in (2.3) to be found with high probability and at low computational cost.

There are several transceiver structures that have been developed to obtain good

performance at a reasonable computational cost. As stated in Chapter 1, one of

the popular structures is Bit-Interleaved Coded Modulation (BICM) with iterative

detection and decoding (IDD) which was illustrated in Fig. 1.2 and has been repeated

in Fig. 2.1.

The receiver in this structure is an iterative demodulation and decoding receiver

in which soft information regarding the transmitted bits is exchanged between the

demodulator and the decoder. The demodulator works on a “per channel use” basis,

whereas the decoder works on the whole codeword. In a given iteration, when it

comes to the nth channel use, the demodulator observes the signal received at that

12
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channel use, yn, and the estimate of the probability of each bit that indexes sn that

was obtained from the previous decoding operation. That estimate is the nth block

of λAa in Fig. 2.1. The demodulator processes these inputs to refine its estimate of

the a posteriori probabilities of the bits that index sn. Those estimates are stored

in the nth block of λDa . Once the demodulator has processed each channel use, the

outer decoder receives the deinterleaved a posteriori likelihood estimates from the

demodulator, λAb , and refines its estimate of the likelihood, producing λDb . That

refined estimate is then sent to the demodulator, and the iteration is repeated.

This iterative structure can also be modeled using a graphical model, (e.g., Boutros

and Caire, 2002; Hu and Duman, 2008), as is shown in Fig. 2.2. In this model the

demodulator and the decoder are nodes in the graph and extracted soft information

is the message passed between these two nodes.

BICM-IDD has proven to be a rather effective pragmatic coding scheme for scalar

wireless communication systems (Caire et al., 1998; i Fàbregas et al., 2008). However,

in the MIMO case, the demodulation step is still quite computationally expensive,
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as the computational cost of the optimal demodulator grows exponentially with the

number of bits transmitted per channel use. Therefore, an important goal in the

design of soft MIMO demodulators is to achieve acceptable performance (near optimal

demodulator) in systems that operate at rates that are a significant fraction of the

fundamental limit, and yet incur a reasonable computational cost. The focus of this

thesis is to develop such a demodulator using a perspective on the problem that is

substantially different from that of the common strategies.

To place that contribution in context, we will first describe in more detail the

system that we will consider, and the soft demodulation process for that system. We

will describe existing soft demodulators in Chapter 3 and the considered demodulators

in Chapter 4 and Chapter 5.

2.1 System Model

In this thesis, we consider a narrow band MIMO system with Nt transmitter antennas

and Nr receiver antennas. Encoded bits are assumed to be mapped to constellation

symbols and the symbols are sent to the antennas according to the spatial multiplexing

scheme. Hence at each channel use different symbols are transmitted from each

antenna. If we let sn denote the transmitted symbol vector in nth channel use, then

as in (2.1) the received signal can be written as

yn = Hnsn + vn, (2.4)

where Hn is the Nr × Nt matrix of channel gains which is assumed to be known

at the receiver, and vn is a vector of zero-mean additive white circular complex

14
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Gaussian noise with covariance equal to σ2I. As sn is a symbol vector of a constellation

generated by the modulator, it is a mapping of bits to symbol vectors. If the scalar

constellation is denoted by C, then sn ∈ CNt . To capture the ways in which the

bits are mapped to the symbols, we will let bn denote the block of the interleaved

codeword that indexes sn, and we will write

sn =M(bn), (2.5)

whereM(.) denotes the mapping scheme used in the modulator. In the schemes that

we will consider, this mapping scheme operates on a symbol-by-symbol basis, which

means that each symbol is the mapping of a different subblock of bn. However, for

convenience we will use the vector notation in (2.5).

To simplify the notation used in the description of soft MIMO demodulation, we

will leave the fact that the demodulator works on a per-channel-use basis implicit.

As a result, we will drop the channel use index and write the system model in (2.4)

as

y = Hs + v, (2.6)

where s =M(b).

2.2 Soft MIMO Demodulation

In this section we outline the basic principles of soft MIMO demodulation. A review

of specific soft MIMO demodulators that have been proposed in the literature will be

provided in Chapter 3.
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We will consider systems in which the scalar constellation C has 2B points. There-

fore, the total number of bits transmitted per channel use is BNt. We will denote

the vector of those bits as b = [b1, . . . , bBNt ]. We will consider systems in which the

output of the soft demodulator is in the form of the posterior log-likelihood ratio

(LLR). For the ith bit of b that ratio is

λDi , log
p(bi = +1|y,H)

p(bi = −1|y,H)
, i = 1, . . . , BNt. (2.7)

By using Bayes’ theorem, equation (2.7) can be written as

λDi = log

∑
Li,+1

p(y|b,H)p(b)∑
Li,−1

p(y|b,H)p(b)
, i = 1, . . . , BNt, (2.8)

where if L denotes the list of all 2BNt bit vectors, then Li,±1 , {b ∈ L | bi = ±1}.

Under the assumed model of additive white Gaussian noise at the receiver,

p(y|b,H) =
1

(2π)Nt/2
exp
(
−‖y −HM(b)‖2

2σ2

)
. (2.9)

If we let D̆(b) be defined as D̆(b) = ‖y −HM(b)‖2 − 2σ2 log p(b), then (2.8) can

be written as

λDi = log

∑
Li,+1

exp(−D̆(b)/(2σ2))∑
Li,−1

exp(−D̆(b)/(2σ2))
, i = 1, . . . , BNt. (2.10)

In the scheme considered in this thesis, p(b) is not available directly, it is approx-

imated using the information received from the decoder in previous iteration. Using

the fact that the transmitted bits are interleaved randomly after encoding, they can

be approximated as being independent from each other. Therefore, we can estimate
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p(b) using

p(b) '
BNt∏
i=1

p(bi), (2.11)

where, with a mild abuse of notation, p(bi) denotes the estimate of the probability

that the ith bit is equal to bi and it was determined by the previous iteration of the

decoder.

Using this approximation, we can approximate λDi by

λDi ' log

∑
Li,+1

exp(−D(b)/(2σ2))∑
Li,−1

exp(−D(b)/(2σ2))
, i = 1, . . . , BNt, (2.12)

where

D(b) , ‖y −HM(b)‖2 − 2σ2

BNt∑
i=1

log p(bi). (2.13)

Let us define

λAi = log
p(bi = +1)

p(bi = −1)
, i = 1, . . . , BNt, (2.14)

as the ith element of λA, where λA denotes the vector that represents (2.11) in LLR

format; i.e.,
∏

i p(bi) ∝ exp((λA)Tb/2). Then equation (2.13) can be written as

D(b) , ‖y −HM(b)‖2 − σ2(λA)Tb. (2.15)

Many computationally efficient approximate soft demodulation algorithms are

based on the “max-log” approximation of (2.12) under which the logarithm of a

summation of exponentials of functions is approximated by the function that has
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maximum value. Using that approximation we have

λDi ' log

∑
Li,+1

exp(−D(b)/(2σ2))∑
Li,−1

exp(−D(b)/(2σ2))
(2.16a)

' 1

2σ2

(
min

b∈Li,−1

D(b)− min
b∈Li,+1

D(b)
)
. (2.16b)

By making this approximation, approximate soft MIMO demodulation can be achieved

by solving the two binary optimization problems in (2.16b) for each of the BNt bits,

bi in b. In essence, approximate soft demodulation is achieved by solving two hard

demodulation problems. Those hard demodulation problems are still “hard” in the

computational sense, but approximate solutions can be obtained using various forms

of tree search, through estimation, or using semidefinite relaxation techniques. How-

ever, many of those techniques remain rather computationally expensive.

Another class of soft demodulation methods is based on approximating (2.12) by

taking the summations, or solving the max-log approximation thereof, over a list of

candidate bit vectors that is significantly shorter than the list of all bit vectors with +1

or −1 in the ith position, which we have denoted by Li,±1; cf. (2.8). These demodula-

tors are based on generating a list of bit-vectors, L̂, that contains a number of vectors

with small values for D(b) and approximating the LLRs by using marginalization

over L̂i,±1, rather than Li,±1. That is,

λDi ' log

∑
L̂i,+1

exp(−D(b)/(2σ2))∑
L̂i,−1

exp(−D(b)/(2σ2))
(2.17a)

' 1

2σ2

(
min

b∈L̂i,−1

D(b)− min
b∈L̂i,+1

D(b)
)
. (2.17b)

In list-based methods, there are several approaches that can be taken to the
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construction of the list. The list may be generated once, at the first iteration, and

then used for rest of the iterations. In that case, no a priori information about the

transmitted bits is used in the list generation. Another option is to update the list at

each iteration according to the received soft information regarding the transmitted

bits. The main difference between list-based methods is in the way in which they

generate the list members. This can have a significant impact on the performance

and computational cost of the demodulator.

There are some other soft MIMO demodulation methods that are neither list-

based nor hard-demodulation-based group. One of these is the MMSE-SIC demodu-

lator, which is based on minimum mean square error equalization with parallel soft

interference cancellation. In this scheme estimates of the transmitted symbols are

computed and, accordingly, interference can be cancelled (in a probabilistic sense).

That enables the soft information for each symbol to be computed as if the symbol

were transmitted over a single-input single-output AWGN channel.

Having established a coarse taxonomy for soft MIMO demodulators, we will de-

scribe in detail some existing demodulators in the next chapter.
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Chapter 3

A Survey of Methods for Soft

MIMO Demodulation

In Chapter 2, we described the principles of soft MIMO demodulation and stated

that some soft demodulation methods are based on hard demodulation, some of them

are based on list generation, and some, such as MMSE-SIC demodulator, do not

belong to either of these two classes. In this chapter, we will describe in more detail

a variety of different approaches to soft MIMO demodulation that have previously

been proposed.

3.1 Tree Searching Method

A number of approaches to soft demodulation are based on a simple transformation

of the received signal that reveals that the information of interest can be obtained

using a tree search (e.g., Murugan et al., 2006; Larsson, 2009). Since this tree search

is a common feature of several methods, we will first describe how the tree search
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structure is revealed.

Recall from (2.6) that we model the received signal as

y = Hs + v, (3.1)

where v is a zero-mean circular complex random variable with covariance Rv = σ2I.

By applying QR decomposition to the channel matrix H we can write

y = QRs + v, (3.2)

where the matrix Q is a unitary matrix and the matrix R is upper-triangular. By

left multiplying (3.2) by QH we obtain

y̆ = Rs + v̆, (3.3)

where y̆ = QHy, and v̆ = QHv is, like v, a zero-mean circular complex Gaussian

random variable with Rv̆ = σ2I.

In terms of describing the algorithm, we will find it more convenient to consider

the QL decomposition of H; i.e., H = Q̃L, where L is a lower-triangular matrix. If

we define ỹ = Q̃y and ṽ = Q̃v, we can write

ỹ = Ls + ṽ. (3.4)
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Expanding the equation in terms of the elements we have



ỹ1

ỹ2

...

ỹNt


=



`1,1 0 . . . 0

`2,1 `2,2 . . . 0

...
. . . . . .

...

`Nt,1 `Nt,2 . . . `Nt,Nt





s1

s2

...

sNt


+



ṽ1

ṽ2

...

ṽNt


. (3.5)

In some algorithms it can be advantageous to have the flexibility to adjust the ordering

of the symbols (e.g., Murugan et al., 2006; Nekuii and Davidson, 2009a). This can

be achieved using a permutation matrix P, so that

y = Hs + v = HPPT s + v. (3.6)

We can then apply the QL decomposition to the matrix HP. If s′ = PT s and

v′ = (Q′)Hv then we have

y = Q′L′s′ + v⇒ (Q′)Hy = L′s′ + v′. (3.7)

In the remainder of the discussion we will stick to the natural ordering in (3.5).

However, the techniques we will discuss extend directly to the reordered vector s′ in

(3.7).

The search tree obtained from (3.5) has the possible values for s1 as the nodes in

the first level of the tree. Each node at each of the subsequent levels is associated

with a vector containing the values of the symbols of all nodes along the path from

the root of the tree to that node (e.g., Murugan et al., 2006; Larsson, 2009). In the

kth level that vector takes the form sk = (s1, s2, . . . sk). Given an overall cost function
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of the form ‖ỹ−Ls‖2−
∑Nt

k=1 gk(sk), of which the cost function in (2.13) is a special

case, the metric for the branch from the root of the tree to a node at the kth level is

(e.g., Larsson, 2009)

fk(s1, . . . , sk) =
∣∣ỹk − k∑

j=1

`n,jsj
∣∣2 − gk(sk). (3.8)

In the case of a priori information of the form in (2.11), gk(sk) = log p(sk), where,

again with some abuse of notation, p(sk) denotes the probability that the kth scalar

symbol is equal to sk. The contribution of a given node to the cost function is

represented by the cumulative metric which is the summation of metrics of the node

and all its “parents”, f1(s1) + f2(s1, s2) + · · ·+ fk(s1, . . . , sk).

Tree searching can be used to solve the optimal hard demodulation problem in

(2.16) by searching the tree to find a node at level Nt that has the least cumulative

metric. As searching all nodes of the tree is computationally costly, the tree can be

reduced by using the principles that underlie the branch and bound algorithm (e.g.,

Murugan et al., 2006), in which a node represented by sk survives in the tree if it is

possible that one of its descendants is the desired node, otherwise the descendants of

that node are not explored.

In list-based soft demodulators, we are looking for leaf nodes that have a small

cumulative metric. These nodes will be the corresponding list members. In the case of

a simple sphere decoding approach the leaf nodes that make the list have metrics that

are smaller than the radius of the defined sphere. One simple form of that approach is

the sphere decoding method (e.g. Larsson, 2009), which only searches the nodes that

lie within a sphere around the received signal, y. Therefore, the standard pruning
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criteria for each node in this method can be written as

f1(s1) + f2(s1, s2) + · · ·+ fk(s1, . . . , sk) ≥ r2, (3.9)

which means that if the cumulative metric of a node is greater than the defined radius,

that node and all its descendants will be discarded from the tree.

There are different ways of searching the tree according to the order in which

the nodes are explored: depth-first, breadth-first and best-first. In depth-first, tree

searching starts from the root and explores as far as possible along each branch. It

means that for each node, the first child and then the grandchildren are searched

before the second child. On the other hand, breadth-first starts from root nodes and

inspects all neighbouring nodes and then goes to the immediate children of these

nodes. In this tree traversal for each node after searching the first child, the second

child is searched before the grandchild. Another method for tree searching is “best-

first” in which the tree is explored by expanding the exposed node with the smallest

cost. Generally, a tree search algorithm will be terminated when all the available

nodes are explored and so the desired node is found. However, in the case of demodu-

lation, there are other criteria that may be used to terminate the searching, including

the list size.

3.2 Tree Searching with Max-Log Approximation

In Chapter 2, we described the max-log approximation and list generation method to

compute the LLRs. By applying the QL decomposition to the channel matrix, the
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max-log approximation of the LLR (c.f. (2.13) and (2.16)) can be written as

λDn,i = min
s∈X (−1)

n,i

( 1

2σ2
‖ỹ − Ls‖2 − log p(s)

)
− min

s∈X (+1)
n,i

( 1

2σ2
‖ỹ − Ls‖2 − log p(s)

)
, (3.10)

in which i and n refer to the ith bit in the constellation, i = 1, . . . , B, corresponding

to the nth entry of the transmitted symbol vector, n = 1, . . . , Nt, and X (−1)
n,i and X (+1)

n,i

are the sets of symbol vectors for which the ith bit in the nth entry is equal to −1 and

+1, respectively. With some abuse of notation, p(s) denotes the probability that the

symbol vector is equal to s that is obtained using (2.11) and the previous iteration of

the decoder.

In order to determine λDn,i, for all i and n, Nt minimization problems over X (−1)
n,i

and Nt minimization problems over X (+1)
n,i need to be solved. As these problems are

over a discrete feasible set of size |C|Nt/2, where C is the constellation of symbols

and |C| is the number of symbols in the constellation, the worst case computational

cost grows exponentially in the number of antennas and the number of bits in each

symbol.

To reduce the number of problems that need to be solved it can be observed,

(Studer and Bolcskei, 2010), that if sMAP denotes the maximum a posteriori proba-

bility solution of MIMO symbol detection problem, which is

sMAP = arg min
s

( 1

2σ2
‖ỹ − Ls‖2 − log p(s)

)
, (3.11)
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then one of the minima in (3.10) is given by

λMAP =
1

2σ2
‖ỹ − LsMAP‖2 − log p(sMAP ), (3.12)

and the other minima can be written in terms of an optimization over all bits, except

the ith bit in nth entry, which is fixed as the binary complement of the corresponding

bit in sMAP

λMAP
n,i = min

s∈X
(bn,i)

n,i

( 1

2σ2
‖ỹ − Ls‖2 − log p(s)

)
. (3.13)

As a result, the LLR equation in (3.10) can be written as

λDn,i =


λMAP − λMAP

n,i , bMAP
n,i = −1

λMAP
n,i − λMAP , bMAP

n,i = 1

. (3.14)

That means λDn,i can be computed for all n and i by solving the problem in (3.11),

which has a worst case complexity of |C|Nt functional evaluations, plus Nt instances of

the problem in (3.13), each of which has a worst case complexity of |C|Nt/2 functional

evaluations. This is in contrast to solving the Nt problems of worst case complexity

|C|Nt that would be equal to implementing (3.10) directly.

To solve (3.14) using a tree search method, we can use the metric of (3.8) and

compute the cumulative metric of each node, which is dk = f1(s1) + f2(s1, s2) + · · ·+

fk(s1, . . . , sk) as

dk = dk−1 + fk, (3.15)

with the initial value of d equal to d1 = 0. Now d(s) = 1
2σ2‖ỹ − Ls‖2 − log p(s) in

(3.11) and (3.13) can be found recursively such that dNt = d(s). By these definitions,
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the MAP detection and LLR computation can be constructed as a tree with its root

above the level i = 1 and leaves on level n = Nt. Each path from the root down

to a leaf corresponds to a symbol vector. As was stated above, in sphere decoding

tree searching is done only for nodes which are within a specified radius around the

received signal, y. This radius can also be reduced based on the reached leaf node in

the tree, in this way the radius can be initialized with r ← ∞ and whenever a leaf

node s is found the radius is updated as r ← d(s).

3.2.1 Repeated Tree Search - Sphere Decoding (RST-SD)

A straightforward implementation of the discussion above would involve separate

tree searches for the problem in (3.12) and the problems in (3.13). The repeated tree

search algorithm (Wang and Giannakis, 2006; Shieh et al., 2013) does exactly that,

repeating the tree searching algorithm to compute the LLRs in (3.10) for each bit in

the symbol vector, using the sphere decoding idea to control the size of tree search.

The main drawback in this method is that some nodes may be searched for more than

once, which results in significant computational cost.

3.2.2 Single Tree Search - Sphere Decoding (STS-SD)

The single tree search method (Studer and Bolcskei, 2010), is a more efficient way of

searching the tree than RTS, as it ensures that each node in the tree will be searched

at most once. This is done by searching for the solution to (3.11) and all instances of

the solutions to (3.13) simultaneously. The tree search is performed within a radius

analogous to that used in sphere decoding, although in this case the radius must

be large enough to include good counter-hypothesis, as well as the MAP solution,
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without being so large that the complexity becomes problematic.

To describe the algorithm, we will redefine λMAP and λMAP
n,i to be the best esti-

mates of the likelihoods in (3.12) and (3.13), respectively, that the algorithm has

found so far, rather than the optimal values. The algorithm is initialized with

λMAP = λMAP
n,i = ∞ and as the algorithm progresses, whenever a leaf node is re-

vealed the values for λMAP and λMAP
n,i are updated. The algorithm also stores bMAP ,

the current hypothesis of the a MAP bit vector. If we let b denote the bit vector

corresponding to a leaf node that has been revealed, then one of the following two

actions is taken.

• If d(b) is less than the current value for λMAP , then an improved MAP hypoth-

esis has been found. That means that we need to update λMAP and bMAP ;

i.e., λMAP ← d(b), and bMAP ← b. The current values for λMAP
n,i also need to

be updated for all those (n, i) pairs for which the (n, i)th bit of b is different

from the (n, i)th bit of the previous bMAP , so that each λMAP
n,i corresponds to a

valid counter-hypothesis to the new MAP hypothesis. (In an implementation,

these values for λMAP
n,i would be updated prior to the update λMAP ← d(b), and

bMAP ← b).

• If d(b) is greater than the current value for λMAP , then we do not have a new

MAP hypothesis and hence λMAP and bMAP are unchanged. The values of

λMAP
n,i should be checked for all (n, i) pairs for which bn,i is the complement of

the current bMAP
n,i . For those n and i, if d(b) < λMAP

n,i , then λMAP
n,i should be

updated, λMAP
n,i ← d(b).

As in some variants of the sphere decoding algorithm, in the STS-SD method the

pruning radius is also updated whenever a leaf is reached. The pruning criteria in
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this method ensures that a node is explored only if it can lead to a change either in

λMAP or λMAP
n,i for some n and i.

3.2.3 List Sphere Decoding

It was stated in the previous chapter that one class of soft demodulators consists of

those that are list-based. These techniques are based on identifying a list of candidate

bit vectors that correspond to small values of ‖y−Hs‖− log p(s). Hochwald and ten

Brink (2003) proposed a list version of sphere decoding in which the list consists of L

leaf nodes that make ‖y −Hs‖ the smallest among all other nodes in a determined

sphere with radius r. In this method, when a leaf node is found in that sphere, the

radius is not updated (decreased) according to the leaf node that has been found,

but the node is added to the list if the list is not full. If the list is full, this point

is compared with the point with the largest radius in the list, if the new point has

smaller radius it will be stored in the list and the other point will be discarded. In this

scheme, the list is generated only in the first iteration of demodulation and decoding

and a priori information provided by the decoder is not used in list generation. (That

a priori information is used in the calculation of the outputs of the demodulator.)

Vikalo et al. (2004) modified the list generation method of Hochwald and ten

Brink (2003) by considering the a priori information provided by the decoder in the

list generation step. In this method, the generated list is updated in each iteration

based on the a priori information, received from the decoder, and the tree search

seeks list members with small values of ‖y −Hs‖ − log p(s).
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3.2.4 List Sequential Decoding

Another list-based soft demodulator in which the list is constructed using a tree search

is the list sequential algorithm (LISS, Hagenauer and Kuhn, 2007). The LISS method

provides an updated list at each demodulation decoding iteration, and hence, like the

modified sphere decoder (Vikalo et al., 2004), the cost function on the tree includes

the information from the previous iteration of the decoder. The LISS method uses the

stack algorithm (e.g., Jelinek, 1969; Murugan et al., 2006) to search the tree in a best-

first manner. The main stack contains the partial paths which have been explored by

the algorithm, and the size of stack is one of the parameters that control the trade-off

between performance and complexity. The actual metric used in the tree search can

be the conventional metric in (3.8) or can include a metric length bias which is the

pdf of channel observations, ln p(y). Although this term does not actually appear in

the expression for the LLR, it helps to compare the length of explored path and to

control the branch extension. Due to the “best-first” nature of the tree search, the

LISS algorithm produces leaf nodes in increasing order of the metric, and hence the

algorithm is terminated once a target number of leaf nodes have been found. (One

can also choose to terminate if the stack reaches a given size. An alternative is to

discard the “least interesting” node when the stack reaches its capacity.) Once the

algorithm terminates, the information in the partially explored paths can either be

ignored (if the max-log approximation is used), or can be exploited using an extension

technique based on the mean of the current symbol estimates.
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3.2.5 Some Other Tree Search Approaches

Two other tree search approaches that have received considerable attention in the

literature are the K-best approach (Guo and Nilsson, 2006), and the fixed-complexity

sphere decoding (Barbero and Thompson, 2008b,a; Liu et al., 2012). Although we

will not provide direct comparisons with those approaches, they are briefly described

here for completeness.

The K-best algorithm (Guo and Nilsson, 2006) performs a constrained breath-first

search of the tree to find leaf nodes with small metrics. The constraint is that only the

K best paths are retained at each level. The principles of this algorithm can be applied

to any cost function on the tree and hence it can be applied in hard-demodulation-

based and list-based demodulators. The parameter K controls the trade-off between

performance and complexity. An advantage of the K-best approach is that the tree

is searched only in the forward direction, and this can simplify the implementation.

In the tree search algorithms considered so far, the structure of the tree that is

searched is determined by the instance of the problem; it is just the principles of the

search that are specified. An alternative approach is to partially pre-specified the

structure of the tree. This is what is done in “fixed-complexity sphere decoding”,

(Barbero and Thompson, 2008b,a; Liu et al., 2012). In that approach, the first few

layers of the tree are explored in full, and from that point only a single path is taken

from each node in the last fully explored layer to a leaf node. The choice of that path

is typically made using a simple criterion. This approach has the advantage that its

computational cost is fixed by the structure of the tree, rather than depending on

the instance of the problem. However, given the fixed structure of the search, its

performance depends on the ordering of the symbols in the tree search; c.f. (3.7).
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3.3 MMSE-SIC

One of the low-complexity methods for soft MIMO demodulation systems is mini-

mum mean square error with (parallel) soft interference cancellation (MMSE-SIC)

algorithm, which was initially proposed by Wang and Poor (1999). The first step

of this algorithm is to estimate the transmitted symbols based on the information

provided by the decoder in previous iteration. (In the first iteration all symbols are

considered equally likely.) According to the estimated values, an estimate of the in-

terference caused by other symbols is calculated for each symbol and it is removed.

In order to suppress the remaining interference and noise the MMSE equalizer is

used. Finally the LLR of each bit in each symbol is computed as if the symbol were

transmitted over an AWGN channel.

The estimation of each transmitted symbols sn can be written as

ŝn = E[sn] =
∑
a∈C

p[sn = a]a, n = 1, . . . , Nt, (3.16)

where

p(sn = a) =
B∏
i=1

p(bn,i = k) (3.17)

denotes the a priori probability of the symbol a ∈ C with k equal to the ith bit of

symbol a. So for each transmitted symbol we can compute the variance which is

En = Var[sn] = E[|en|2], (3.18)

where en = sn − ŝn.

The probability of each associated binary value bn,i in (3.17) is calculated according
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to the LLR delivered by the channel decoder as follows

p(bn,i = k) =
1

2

(
1 + (2k − 1) tanh

(
1
2
λAn,i
))
, (3.19)

where λAn,i = log
p(bn,i=+1)

p(bn,i=−1)
.

The interference is canceled in this method which means according to the es-

timated symbols, the effect of other symbols on each transmitted symbol can be

removed, so the estimation of the received signal can be written as

ŷn = y −
∑
j,j 6=n

hj ŝj = hnŝn + v̂n, (3.20)

where v̂n =
∑
j,j 6=n

hjej + v is noise-plus-interference (NPI). In order to reduce the NPI

in each ŷn a linear MMSE filter is used.

In (Tuchler et al., 2002), the MMSE filter vector for the nth symbol is computed

as

w̃H
n = Esh

H
n Ã−1

n , (3.21)

where

Ã−1
n = HΛ̃nH

H +N0INr , (3.22)

in which Λ̃ is defined as

Λ̃j,j =

 Ej j 6= n

Es j = n
, (3.23)

where En was defined in (3.18) and E[ssH ] = EsINt .

Then the MMSE filter vectors in (3.21) are used to reduce the NPI of the yn, the

33



M.A.Sc. Thesis - Mahsa Salmani McMaster - Electrical Engineering

output of the MMSE filter is

z̃n = w̃H
n ŷn = w̃H

n hnsn + w̃H
n ṽn. (3.24)

Let ν̃2
n denotes the variance of z̃n,

ν̃2
n = Var{z̃n} = w̃H

n

(∑
j,j 6=n

Ejhjh
H
j +N0INr

)
w̃n, (3.25)

Then, assuming that NPI, w̃H
n ṽn, is Gaussian distributed, the LLR can be computed

as

λDn,i = log
( ∑
a∈X (1)

n,i

exp
(
−|z̃n − µ̃na|

2

ν̃2
n

+
B∑
i=1

(2[a]n − 1)

2
λAn,i

))
(3.26)

− log
( ∑
a∈X (−1)

n,i

exp
(
−|z̃n − µ̃na|

2

ν̃2
n

+
B∑
i=1

(2[a]n − 1)

2
λAn,i

))
,

where X (0)
n,i and X (1)

n,i are the sets of symbols for which the ith bit is 1 or 0 and µ̃n is

the mean of z̃n.

This MMSE filter computation contains multiple matrix inversions per symbol

vector for each iteration, which entails a significant computational cost. Studer et al.

(2011) proposed an approximate version of MMSE-PIC in which the number of re-

quired matrix inversion is reduced to one per symbol vector instead of Nt. In this

method, the MMSE filter vectors are computed as

WH = A−1HH , (3.27)
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where A = HHHΛ + N0INt , (Nt = Nr) and Λ is a diagonal matrix that Λn,n = En,

the MMSE filter vectors are given by the rows of the matrix WH .

Studer et al. (2011) showed that the computational cost of computing LLR in

(3.26) can be reduced by simplifying the computation of ν̃2
n. It was shown that if we

consider Var{z̃n} = µn−Enµ2
n, where µn = wH

n hn, we can write |z̃n−µ̃na|
2

Var{z̃n} in (3.26) as

ρn|zn − a|2, where ρn = µn
1−Enµn

. Now the output of MMSE filter can be shown to be

zn = wH
n ŷn

µn
.

So by using the above equations and applying the max-log approximation in (3.26),

the LLR can be approximated as

λDn,i ' min
a∈X (−1)

n,i

{
ρn|zn − a|2 −

B∑
i=1

(2[a]i − 1)

2
λAn,i

}
− min

a∈X (1)
n,i

{
ρn|zn − a|2 −

B∑
i=1

(2[a]i − 1)

2
λAn,i

}
. (3.28)

Another complexity reduction is performed by omitting the prior term in (3.28).This

results in no loss for BPSK and 4-QAM, and according to (Studer et al., 2011) only

small loss for higher order constellations. Omitting the a priori information, we have

λEn,i = ρn
(

min
a∈X (−1)

n,i

|zn − a|2 − min
a∈X (1)

n,i

|zn − a|2
)
. (3.29)

So the extrinsic LLR can be calculated directly. We will compare the performance of

the full MMSE-SIC (Wang and Poor, 1999) and the approximated one (Studer et al.,

2011) in Chapter 6.
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3.4 Partial Marginalization

Another reduced-complexity soft MIMO demodulation method is the partial marginal-

ization method introduced by Larsson and Jalden (2008). The main idea in this

method is to partition the symbols (bits) set into two subsets and marginalize the

posteriori density of received symbols (bits) in two steps. The first step is exact

marginalization over a subset of the transmitted symbols (bits), typically those with

low signal to noise ratio (SNR), and the second step is an approximate marginaliza-

tion over the remaining symbols (bits). The complexity of this method is fixed and

it has a fully parallel structure. Hence it can be implemented in parallel hardware.

To describe this approach in more detail, we follow Larsson and Jalden (2008)

and consider the case in which the transmitted bits are assumed to be equally likely.

By using (2.9), (2.8) can be written as

λDi = log

∑
s∈X (1)

i
exp(− 1

N0
‖y −Hs‖2)∑

s∈X (−1)
i

exp(− 1
N0
‖y −Hs‖2)

, i = 1, . . . , BNt. (3.30)

If we were to marginalize over all the transmitted bits we would have

λDi = log

∑1
b1=−1 · · ·

∑1
bi−1=−1

∑1
bi+1=−1 · · ·

∑1
bBNt=−1 µ(b1, · · · , bi−1, 1, bi+1, · · · , bBNt)∑1

b1=−1 · · ·
∑1

bi−1=−1

∑1
bi+1=−1 · · ·

∑1
bBNt=−1 µ(b1, · · · , bi−1,−1, bi+1, · · · , bBNt)

,

(3.31)

where

µ(b1, . . . , bBNt) = exp
(
− 1

N0

‖y −Hs(b1, . . . , bBNt)‖
)
, (3.32)

and s(b1, . . . , bBNt) is the symbol vector that corresponds to the bits [b1, . . . , bBNt ].

In the partial marginalization method there is a fixed number of bits, r, over which

exact marginalization is performed. The other BNt − r bits are only approximately
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marginalized. The parameter r offers a trade-off between exact and approximate

computation of (3.30). If r = 0, there are no explicit sums and only approximate

marginalization takes place. Let I be a bit permutation, exact and approximate

marginalization is done over [bI1 , · · · bIr ] and [bIr+1 , · · · bIBNT
], respectively. So for

i = Il, we have exact marginalization as follows

λDi ' log

( 1∑
bI1=−1

· · ·
1∑

bIl−1
=−1

1∑
bIl+1

=−1

· · ·
1∑

bIr=−1

( max
bIr+1

,··· ,bIBNt

µ(b1, · · · , bi−1, 1, bi+1, · · · , bBNt))

1∑
bI1=−1

· · ·
1∑

bIl−1
=−1

1∑
bIl+1

=−1

· · ·
1∑

bIr=−1

( max
bIr+1

,··· ,bIBNt

µ(b1, · · · , bi−1,−1, bi+1, · · · , bBNt))

)
,

(3.33)

where the value of bit bIi is determined in the numerator and denominator and other

bits are marginalized exactly if they belong to I, otherwise they are marginalized

approximately.

For LLR computation for bits which do not belong to I, we have

λDi ' log

( 1∑
bI1=−1

· · ·
1∑

bIr=−1

( max
bIr+1

,··· ,bIl−1
,bIl+1

···bIBNt

µ(b1, · · · , bi−1, 1, bi+1, · · · , bBNt))

1∑
bI1=−1

· · ·
1∑

bIr=−1

( max
bIr+1

,··· ,bIl−1
,bIl+1

···bIBNt

µ(b1, · · · , bi−1,−1, bi+1, · · · , bBNt))

)
.

(3.34)

According to bit index permutation I, symbol index permutation, J on [1, · · · , Nt]

can be defined. Since r shows the number of bits that are exactly marginalized,

p = br/Bc is the number of symbols with exact marginalization. So if br/Bc is an

integer, the channel matrix and received signal can be partitioned according to p such

that

Ha , [hJ1 , · · · ,hJp ], Hb , [hJp+1 , · · · ,hJNt
] (3.35a)
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sa , [sJ1 , · · · , sJp ]T , sb , [sJp+1 , · · · , sJNt
]T (3.35b)

Now (2.4) can be written as y = Hasa + Hbsb + v and the maxima in (3.33) can be

computed by

min
ŝb∈SNt−p

‖y −Hasa −Hbŝb‖2 ≈ ‖y −Hasa −Hbŝb,ZF‖2, (3.36)

where ŝb,ZF is the zero forcing estimate of sb given y and sa,

ŝb,ZF , arg min
ŝb∈Snt−p

‖(HT
b Hb)

−1HT
b (y −Hasa)− sb‖2. (3.37)

Typically the sets I and J contain indices corresponding to the bits or symbols

with low SNR. The original partial marginalization approach to soft MIMO detection

has been extended to higher-order constellation and to cases where prior information

is available (Persson and Larsson, 2011).

3.4.1 SUMIS

Another method based on partial marginalization has been proposed by Cirkic and

Larsson (2012). This method is referred to as subspace marginalization with inter-

ference suppression (SUMIS). There are two stages in this method, the first stage

is to approximate posterior probability for each bit and the second one is using ap-

proximated LLR for interference suppression. After interference cancellation, the

LLR values are calculated based on the resulting model which does not include the
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interference. The partition model here is

y = Hs + v = [H̄ H̃][s̄T s̃T ] + v = H̄s̄ + H̃s̃ + v︸ ︷︷ ︸
interference+noise

(3.38)

where s̄ contains the ith bit, si, in the original vector s. The approximate model is

defined as

y = H̄s̄ + H̃s̃ + v︸ ︷︷ ︸
interference+noise

→ y ' ȳ , H̄s̄ + ṽ, (3.39)

where ṽ is a Gaussian stochastic vector N (0,Q) with Q = H̃Ψ̃H̃T + N0

2
I and Ψ̃ is the

covariance matrix of s̃. The main purpose of the first stage is to reduce the impact of

interfering term H̃s̃. This interfering term is considered to be Gaussian as it consists

a sum of variables that are independent.

In second stage the interfering vector s̃ is suppressed and the model is purified as

y′ = H̄s̄ + v′, (3.40)

so the LLRs can be computed according to

λDi = log

∑
s∈X (1)

i
exp(−1

2
‖y′ − H̄s̄‖2)∑

s∈X (−1)
i

exp(−1
2
‖y′ − H̄s̄‖2)

, (3.41)

where a uniform a priori probability is assumed. The non-uniform a priori case was

also considered by Cirkic and Larsson (2012). In that case, the definitions of Ψ̃ and

Q are different.

39



M.A.Sc. Thesis - Mahsa Salmani McMaster - Electrical Engineering

3.5 Semidefinite Programming

One other approach to reduce the complexity of soft MIMO demodulation is semidef-

inite relaxation (SDR). A simple SDR method from the hard decision class can be

obtained by using the max-log approximation of (2.12), which results in

λDi '
1

2σ2

(
min

b∈L̂i,−1

D(b)− min
b∈L̂i,+1

D(b)
)
, (3.42)

and then finding approximate solutions to the minimization problems using the

semidefinite relaxation techniques.

That approach requires solving 2BNt SDR problems each involving (BNt−1) bits.

Using the idea in (3.14), we actually only have to solve (BNt+ 1) SDR problems, one

involving BNt bits, the others involving (BNt − 1) bits (Steingrimsson et al., 2003).

An advantage of this method is that each SDR problem can be solved in polynomial

time.

The SDR techniques can also be used as a basis for list demodulation techniques

(Nekuii et al., 2011). Those techniques are the focus of this thesis and will be reviewed

in the next chapter.
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Chapter 4

Approaches to Soft Demodulation

Based on Semidefinite

Programming

As described in the previous chapters, one approach to soft demodulation involves

employing the max-log approximation to compute an approximation of the LLRs. As

it can be seen in (2.16b), when the max-log approximation is applied, the LLR of

each bit is approximated by the difference between the optimal values of two hard

demodulation problems (e.g., Steingrimsson et al., 2003; Wang and Giannakis, 2006).

One class of soft demodulators can then be constructed by (approximately) solving

the hard demodulation problems. Another class is based on generating a list of “good”

bit vectors and then finding the best solutions to the problems among the members

of the list.

As discussed in Chapter 3, in the worst case, finding the optimal solution to

the hard demodulation problems incurs a significant computational cost. Tree search
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methods, such as sphere decoding, can reshape the distribution of that computational

cost (which is a function of the channel and noise realization), but these methods

remain expensive in the worst case. In contrast, semidefinite relaxation offers the

opportunity to obtain good approximations to the optimal value of the hard demodu-

lation problem with a computational cost that is bounded by a low-order polynomial

of the problem size. Initially, SDR was proposed for hard demodulation of symbols

from binary phase-shift keying (BPSK) or QPSK constellation, (e.g., Tan and Ras-

mussen, 2001; Ma et al., 2002), but it has been extended to M-PSK and general QAM

constellations (e.g., Ma et al., 2004; Sidiropoulos and Luo, 2006; Kisialiou et al., 2009;

Ma et al., 2009).

In this chapter, we first describe semidefinite relaxation and explain its applica-

tion to hard demodulation. Then, we will show how semidefinite relaxation can be

applied in two classes of soft demodulation: the hard-demodulation-based soft demod-

ulators and the list-based soft demodulators. In the case of list-based demodulators,

we will describe two distinct applications of SDR. The resulting demodulators differ

in the way in which the list is generated. The first demodulator solves a semidef-

inite program in each demodulation decoding iteration and that SDP incorporates

the extrinsic information obtained from the previous iteration of the decoder. This

demodulator generates the list for each iteration by applying the conventional ran-

domization procedure to the solution of the SDP. The second demodulator generates

the list based on an approximation of the randomization procedure that results in

reduction in the number of semidefinite program problems to one per channel use, as

distinct from one per demodulation decoding iteration.
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4.1 System Model

The system model is the same as what we have in (2.4), a MIMO system with Nt

transmit antennas and Nr receive antennas. The vector y, the received signal is

y = Hs + v, (4.1)

where s ∈ CNt is the vector of transmitted symbol (i.e., the mapped version of the

output bits of the binary source) and v represents the additive white Gaussian noise.

In some cases, and in particular for systems that employ rectangular QAM, it is

sometimes convenient to construct a real-valued equivalent representation of (4.1),

namely

ỹ = H̃s̃ + ṽ (4.2)

where

ỹ =

Re{y}

Im{y}

 ; s̃ =

Re{s}

Im{s}

 ; ṽ =

Re{v}

Im{v}



and H̃ =

Re{H} − Im{H}

Im{H} Re{H}

 . (4.3)

4.2 Hard Demodulation Using SDR

For a “per channel use” received signal model of the form in (4.1), the maximum-

likelihood detector solves the optimization problem,

min
s̃i∈C̃

‖ỹ − H̃s̃‖2 = min
s̃i∈C̃

D(s̃), (4.4)
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in which C̃ is the set to which the (real-valued) symbols belong. The expression D(s̃)

can be thought of the D(M̃(s̃)) where M̃ is a variant of the mapperM in which the

real and imaginary parts are separated. For example, for a QAM constellation with

(2K)2 points C̃ can be represented by C̃ = {±1,±3, . . . ,±(2K − 3),±(2K − 1)}. In

the case of 16-QAM, we would have C̃ = {±1,±3}.

If we define

x̃ =

s̃

1

 and Q̃ =

 H̃T H̃ −H̃T ỹ

−ỹT H̃ 0

 , (4.5)

the problem in (4.4) can be written as

min
x̃

x̃T Q̃x̃ (4.6a)

s.t. x̃ = [x̃1, . . . , x̃2Nt+1]T , (4.6b)

x̃i ∈ C̃, i = 1, . . . , 2Nt, (4.6c)

x̃2Nt+1 = +1. (4.6d)

By considering X = x̃x̃T , the optimization problem can be written as

min
X

Tr(XQ̃) (4.7a)

s.t. X � 0, (4.7b)

[X]ii ∈ B, i = 1, . . . , 2Nt (4.7c)

[X]ii = 1, i = 2Nt + 1, (4.7d)

rank(X) = 1, (4.7e)
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where B = {1, 9, . . . , (2K − 3)2, (2K − 1)2}. There are two difficulties that are en-

countered in trying to solve this problem, namely the constraint that X is rank-1

and the constraint that the diagonal elements of X must take on one of the discrete

values in the set B. There are different approaches to address the second difficulty.

For a generic rectangular QAM constellation, Sidiropoulos and Luo (2006) replace

this constraint by two inequalities that determine a lower and an upper bound for

each element. The lower bound is L = 1 and the upper bound is U = (2K−1)2. This

relaxation of the constraint in (4.7c) results in the following optimization problem.

min
X

Tr(XQ̃) (4.8a)

s.t. X � 0, (4.8b)

L ≤ [X]ii ≤ U, i = 1, . . . , 2Nt, (4.8c)

[X]ii = 1, i = 2Nt + 1, (4.8d)

rank(X) = 1. (4.8e)

In the case of 16-QAM the constraint in (4.7c) can be represented precisely in a linear

fashion, but doing so requires doubling the size of the matrix variable X (Wiesel et al.,

2005). However, in the case of hard demodulation the solutions of the semidefinite

relaxations of both problems are equivalent (Ma et al., 2009; Nekuii, 2008), and hence

we will focus on the approach of (Sidiropoulos and Luo, 2006).

The difficulty that remains in solving (4.8) is the rank-1 constraint in (4.8e).

The semidefinite relaxation approach to obtaining an approximate solution involves
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relaxing the rank-1 constraint and solving the following problem,

min
X

Tr
(
XQ̃

)
(4.9a)

s.t. X � 0, (4.9b)

L ≤ [X]ii ≤ U, i = 1, . . . , 2Nt, (4.9c)

[X]ii = 1, i = 2Nt + 1. (4.9d)

After solving that problem and finding optimal solution, Xopt, it should be checked

if Xopt is rank-1 or not. If the solution is rank-1, Xopt is also the optimal solution of

(4.8) and it will satisfy the equality Xopt = x̃optx̃
T
opt, and hence an optimal solution

to (4.6) is obtained. If the solution is not rank-1, a randomization procedure is used

to generate good solutions to (4.6) from Xopt. The randomization procedure uses

Cholesky factor of the optimal solution, (Xopt = VTV), and a sequence of random

vectors u from a uniform distribution on the unit hypersphere. For each vector u the

vector x̄ = (VTu) is computed and then it is quantized to the constellation. So we

have

x = %
( VTu

vT2Nt+1u

)
, (4.10)

where %(.) quantizes the elements of its vector argument to the constellation, C̃ and

v2Nt+1 is the right most column of the matrix V. The expression xT Q̃x is computed

for each constructed vector, and if the value is smaller than the smallest value in

previous steps then we set the current value for x̃ to be equal to x. The value for

x̃ that is obtained after the chosen number of randomizations has been completed is

selected as the approximate solution to (4.6).
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4.3 Soft Demodulation Using SDR

In soft demodulators, rather than solving the maximum likelihood detection problem

in (4.4), we look at variations on the bit wise maximum a posteriori probability

detection problem

s̃MAP = arg max
s̃i∈C̃

p(ỹ|s̃)p(s̃), (4.11)

which can be written as

s̃MAP = arg min
s̃i∈C̃

D(s̃), (4.12)

where, according to (2.13), we have

D(s̃) , ‖y −Hs̃‖2 − 2σ2log p(s̃). (4.13)

This problem can be solved using tree search algorithm in which D(s̃) is considered

as the metric. However, semidefinite relaxation cannot be applied to this problem,

because log p(s̃) is a non-polynomial term and we cannot structure the problem as a

semidefinite program. In order to use semidefinite relaxation, a polynomial approxi-

mation of log p(s̃) will need to be obtained.

Although there are various ways to do that (e.g., Nekuii, 2008), we will focus on

approximations that will result in a problem with the same structure as (4.8). That

means that we should approximate the values that log p(s̃) takes on in such a way

that we can approximate the problem of minimizing D(s̃) by a problem that involves

minimizing a quadratic form x̃T Q̃x̃. That way we can solve the approximated problem

using semidefinite programming. Hence, we seek to approximate the a priori term

with a second order polynomial. The approximation described below also exploits
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the assumed independence of the elements of s̃.

Second Order Polynomial Approximation of log p(s̃)

As long as there are more than three possible values for s̃i to take, we cannot precisely

express the log function in terms of a second order polynomial of s̃i. Instead, we take

advantage of the assumed independence of the elements of s̃ and for the ith element

we choose ais̃
2
i + bis̃i + di as the approximation polynomial. We select the coefficients

by minimizing the sum of squared errors between log pi(s̃i) and ais̃
2
i + bis̃i + ci for all

possible values of s̃i,

min
ai,bi,ci

|C̃|∑
k=1

∣∣log pi(s̃i = sk)− (ai(s
k)2 + bi(s

k) + ci)
∣∣2, (4.14)

where i denotes the ith symbol of the symbol-vector and k denotes the kth possible

value in the constellation set C̃, which is of size |C̃|. In order to minimize the function

with respect to ai, its derivative with respect to ai should be set to zero. That is

∂

∂ai

|C̃|∑
k=1

∣∣log pi(s̃i = sk)− (ai(s
k)2 + bi(s

k) + ci)
∣∣2 = 0 (4.15a)

⇒
|C̃|∑
k=1

(
2(sk)2(ai(s

k)2 + bi(s
k) + ci)− 2(sk)2 log pi(s̃i = sk)

)
= 0 (4.15b)

⇒ai(
|C̃|∑
k=1

(sk)4) + bi(

|C̃|∑
k=1

(sk)3) + ci(

|C̃|∑
k=1

(sk)2) =

|C̃|∑
k=1

(sk)2 log pi(s̃i = sk). (4.15c)
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The same procedure can be performed with respect to bi and ci and the result can be

shown in a matrix format, namely


∑|C̃|

k=1(sk)4
∑|C̃|

k=1(sk)3
∑|C̃|

k=1(sk)2∑|C̃|
k=1(sk)3

∑|C̃|
k=1(sk)2

∑|C̃|
k=1(sk)∑|C̃|

k=1(sk)2
∑|C̃|

k=1(sk) |C̃|



ai

bi

ci

 =


∑|C̃|

k=1 (sk)2 log pi(s̃i = sk)∑|C̃|
k=1 (sk) log pi(s̃i = sk)∑|C̃|
k=1 log pi(s̃i = sk)

 . (4.16)

So if we define vectors a, b and c with elements ai, bi and ci satisfying (4.16), respec-

tively, we can approximate log p(s̃) with s̃T Diag(a)s̃ + bT s̃ + cT1 and so

D(s̃) ' D̂(s̃) = ‖ỹ − H̃s̃‖2
2 − 2σ2(s̃T Diag(a)s̃ + bT s̃ + cT1), (4.17)

where Diag(a) is the diagonal matrix with the vector a on the diagonal.

Now we can write the approximated D(s̃) as a quadratic form. In particular, if we

define the vector x̃ to be x̃T = [s̃T 1], the problem of minimizing D(s̃) is equivalent

to minimizing x̃T Q̃x̃ where

Q̃ =

H̃T H̃− 2σ2Diag(a) −H̃T ỹ − 2σ2b

−ỹT H̃− 2σ2b 0

 . (4.18)

Therefore, the SDR problem can be written as

min
X

Tr
(
XQ̃

)
(4.19a)

s.t. X � 0, (4.19b)

L ≤ [X]ii ≤ U, i = 1, . . . , 2Nt, (4.19c)

[X]ii = 1, i = 2Nt + 1. (4.19d)
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It can be seen that the difference between the Q̃ in (4.5) and the one in (4.18) is that

the a priori information is contained in the structure of Q̃ in (4.18).

In Chapter 2, we described different classes of soft demodulators, one class is

based on solving two hard demodulations for each bit and another class is based on

generating a list instead of checking all bits. In next sections, we will describe SDR

approached to both classes.

4.3.1 Soft Demodulators Based on Hard Demodulation

We have shown that in soft demodulation based on semidefinite relaxation, we can

use max-log approximation to approximate the LLRs of transmitted bits,

λDi ' log

∑
Li,+1

exp(−D̂(s̃)/(2σ2))∑
Li,−1

exp(−D̂(s̃)/(2σ2))
(4.20a)

' 1

2σ2

(
min
Li,−1

D̂(s̃)− min
Li,+1

D̂(s̃)
)
, (4.20b)

where D̂(s̃) is computed as (4.17).

In demodulators that are based on hard-demodulation, in each iteration of ex-

changing soft information between demodulator and decoder, based on a priori infor-

mation provided by decoder, two hard demodulations are solved for each bit and the

smallest value of D̂(s̃) is reached after checking all bits. These hard demodulation

problems can be solved using SDR (Steingrimsson et al., 2003). Then, the updated

soft information is sent to the decoder to be processed for next iteration.
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4.3.2 Soft Demodulators Based on List Generation

Another class of soft demodulators is based on list generation. In this class a list, L̂,

is generated and the LLR is approximated using

λDi ' log

∑
L̂i,+1

exp(−D̂(s̃)/(2σ2))∑
L̂i,−1

exp(−D̂(s̃)/(2σ2))
(4.21a)

' 1

2σ2

(
min
L̂i,−1

D̂(s̃)− min
L̂i,+1

D̂(s̃)
)
. (4.21b)

Nekuii et al. (2011) introduced two semidefinite relaxation demodulators which

are list-based. The way the list is generated is different in these demodulators. In the

first demodulator, one semidefinite program is solved in each demodulation decoding

iteration and the list is generated using the randomization procedure. This demod-

ulator is called the “list-SDR” demodulator. However, in the second demodulator,

by using an analysis of the randomization procedure, and making a prudent approx-

imation, the number of SDPs to be solved can be reduced to one per channel use.

This kind of demodulator is called the “single-SDR” demodulator. In the following

sections, we will explain both demodulators in detail.

List-SDR Method

As it was shown in Section 4.2, in the case that the optimal solution of (4.19) is not

rank-1, a randomization procedure is carried to find a solution for x̃ in (4.6). The

vector generated in randomization procedure often results in small values for D̂(s̃)

which suggests that the generated symbol-vectors are good candidates for being a

list member. Based on this observation, the initial members of the list in (4.21b) are

the bit vectors that arise from randomization procedure. The list is then enriched
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by ensuring that the list contains all bit vectors that are one “bit flip” away from

an initial member of the list. As in the tree searching method, bit-flipping in list

generation is important to LLR computation, because for each i we should ensure

that the list contains at least one vector for which bi = 1 and one for which bi = −1.

At each demodulation decoding iteration, the soft information provided by decoder

is updated and the list-SDR demodulator updates its list by solving the SDP with

the updated prior information and applying bit flipping. As such, in the list-SDR

approach, a semidefinite program should be solved at each demodulation decoding

iteration.

Single-SDR Method

Solving one SDP per demodulation decoding iteration to generate the list incurs con-

siderable computational cost. If we can reduce the number of SDPs that should be

solved, the computational cost will be decreased. The approach that was taken in

the development of the single-SDR demodulator, which was developed for the case of

QPSK modulation by Nekuii et al. (2011), was based on deriving an approximation

for the probability that the randomization procedure generate each symbol. That ex-

pression is then used to approximate the randomization procedure by independently

generating each symbol using the obtained probability mass function. That probabil-

ity mass function can be updated in a straight forward way in response to an update

in the prior information from the previous iteration of the decoder. Therefore, only

one SDP needs to be solved in each channel use.

We now explain how to derive the probability that each randomization output

symbol takes each symbol value in C̃. Let Xopt = VTV be the Cholesky factor of
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optimal solution of SDR and suppose that vi is the ith column of V. Then s̃i can be

written as

s̃i = %
( vTi u

vT2Nt+1u

)
, (4.22)

where u is a random vector from a uniform distribution on the unit sphere and %(.)

denotes the quantization process.

In order to compute the probabilities, the regions that the symbols may belong to,

should be partitioned and each partition results in one specific value for the symbol.

These Voronoi regions are defined according to the constellation and the distance

between each real symbol. In order to find the probability of each randomized symbol,

we should find the probability that each symbol is placed in each defined region.

In (square) QAM constellations with 2B = (2K)2 points, C̃ = {±1, . . . ,±2K − 1},

and these regions can be determined by −2(K − n) ≤ s̃i ≤ −2(K − n − 1), ∀n =

1, . . . , 2K − 1.

We know that the inner product of two vectors can be written as vTu = ‖v‖‖u‖ cos(θ),

where θ is the angle between two vectors. In the randomization procedure, the vector

u is distributed uniformly over the unit sphere, so ‖u‖ = 1. We also know that

‖v2Nt+1‖ = 1, (according to (4.9d)) so the probabilities depend on norm of ‖vi‖ and

the angles between vi and u and between v2Nt+1 and u. Let θi be the angle between

v2Nt+1 and vi and φ be the angel between v2Nt+1, and u. Using (4.22) and considering

53



M.A.Sc. Thesis - Mahsa Salmani McMaster - Electrical Engineering

the regions of the constellation we can derive the probabilities as follows

− 2(K − n) ≤ vTi u

vT2Nt+1u
≤ −2(K − n− 1) (4.23)

⇔ −2(K − n) ≤ ‖vi‖
(
cos(θi) cos(φ) + sin(θi) sin(φ)

)
cos(φ)

≤ 2(K − n− 1)

⇔ −2(K − n)− ‖vi‖(cos(θi))

‖vi‖ sin(θi)
≤ tan(φ) ≤ −2(K − n− 1)− ‖vi‖(cos(θi))

‖vi‖ sin(θi)
.

Let us define {γi,n}2K−1
n=1 as

γi,n = tan−1
(−2(K − n)− ‖vi‖(cos(θi))

‖vi‖ sin(θi)

)
. (4.24)

Then for 1 ≤ n ≤ 2K − 2, from (4.23) and (4.24) we have

γi,n ≤ φ ≤ γi,n+1, (4.25)

and the desired probabilities can be written as

p
(
s̃i = −2(K − n) + 1

)
=
γi,n+1 − γi,n

π
, 1 ≤ n ≤ 2K − 2. (4.26)

For the first and the last point of the (real-valued) constellation, we have

s̃i = 2K − 1⇒ γi,2K−1 ≤ φ ≤ π/2, (4.27)

s̃i = −(2K − 1)⇒ −π/2 ≤ φ ≤ γi,1. (4.28)
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Hence, the probabilities can be written as

p(s̃i = 2K − 1) =
π/2− γi,2K−1

π
, (4.29)

p(s̃i = −2K + 1) =
γi,1 + π/2

π
. (4.30)

In summary, we have

p(s̃i = −2K + 1) =
γi,1 + π/2

π
, (4.31a)

p
(
s̃i = −2(K − n) + 1

)
=
γi,n+1 − γi,n

π
, n = 1, . . . , 2K − 2, (4.31b)

p(s̃i = 2K − 1) =
π/2− γi,2K−1

π
. (4.31c)

Now that we have obtained expressions for the probabilities with which the standard

randomization procedure would generate each symbol, we can approximate that ran-

domization procedure by independently generating realizations for each symbol from

the probability mass function in (4.31). As we will explain below, this approximation

that each symbol is independent not only saves the matrix-vector multiplication that

is implicit in each step of the standard randomization procedure, it also enables us

to decouple the processing of the channel output from the processing of the prior

information, and hence allows us to reduce the number of SDPs to be solved from

one per demodulation decoding iteration to one per channel use.

In the first demodulation iteration, the approximation of the standard random-

ization procedure described above involves generating random symbol vectors by

randomly generating each symbol independently, from the distribution described in
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Solve SDP in

first iteration

y, H, σ2

pi(s̃)

pAi
(s̃)

ps̃i(s̃) {b} L̂
Generate candidate

bit vectors from

Add

“bit-flipped”

vectorssymbol probabilities

Figure 4.1: List generation scheme using Single-SDR. The activities in the dashed
box are performed at each demodulation iteration.

(4.31). In the second demodulation iteration, we seek to exploit the prior informa-

tion provided by the decoder. Based on the assumption of ideal interleaving, that

information from the decoder is independent for each symbol that we are seeking

to demodulate. It is also, by construction (Hagenauer, 1997), independent from

the information provided by the channel. Therefore, at the second and subsequent

demodulation iterations, rather than solving a new SDP that incorporates the soft

information, these approximations allow us to generate an updated list simply by

modifying the probability mass function for each symbol to

ps̃i(s̃i = s̄) = κipi(s̃i = s̄)pAi
(s̃i = s̄), (4.32)

where s̄ ∈ C̃, pi(s̃i = s̄) is obtained using (4.31) in the first demodulation iteration,

and pAi
(s̃i) is the probability mass function for the ith symbol, which is computed

using the corresponding bit probabilities provided by the previous iteration of the

decoder. The constant κi is computed such that
∑

s̄∈C̃ ps̃i(s̃i = s̄) = 1. A block-

diagram representation of the process is provided in Fig. 4.1.

At each demodulation decoding iteration, single-SDR generates M symbol-vectors
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using scalar random number generator with the computed probabilities in (4.32). The

same as list-SDR case, in single-SDR case the generated list is enriched by adding

all the single bit-flipping of the list. An advantage of the single-SDR approach over

schemes that generate lists of candidate bit-vectors in each demodulation decoding

iterations, such as the tree search scheme of Hochwald and ten Brink (2003), is that

we do not need to store the whole list, we need only store the probabilities computed

in (4.31). These probabilities and the updated information that decoder sends to the

demodulator at each iteration are used to generate a new list.

4.4 Interior Point Method to Solve SDP

In the previous sections, we explained semidefinite relaxation and we showed how the

SDP can be used in soft demodulation. In this section, we will discuss two methods

by which the SDP can be solved.

Many of the methods that have been proposed for solving semidefinite programs

fall into the class of interior point methods; e.g., (Boyd and Vandenberghe, 2004).

Three classes of interior point methods are the primal-scaling methods, in which the

primal variables are updated at each iteration, dual-scaling methods in which the

dual variables or primal value are updated, and primal-dual methods in which both

the primal and dual variables are updated at each iteration. Based on the insights of

(Helmberg et al., 1996), Nekuii (2008) developed a customized primal-dual algorithm

for the problem in (4.19). That algorithm is described below.
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4.4.1 Customized Primal-Dual Interior Point Method

The customized primal-dual interior point method derived by Nekuii (2008) was ob-

tained using the following steps: First, the problem in (4.19) is written as

min
X

Tr
(
XQ̃

)
(4.33a)

s.t. L ≤ diag(X11) ≤ U, (4.33b)

x22 = 1, (4.33c)

X � 0, (4.33d)

where

X ,

X11 x12

x21 x22

 . (4.34)

Then, the dual variables are defined as pu ∈ R2Nt , p` ∈ R2Nt , v ∈ R and Z ∈ S2Nt+1,

where Sn is the set of symmetric n× n matrices. The dual problem of (4.33) is

max
pu,p`,v,Z

U1Tpu − L1Tp` + v (4.35a)

s.t. Q̃−Diag([pT` − pTu ,−v]T ) = Z, (4.35b)

pu ≥ 0,p` ≥ 0,Z � 0. (4.35c)
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The primal-dual method is based on solving the following perturbed version of the

KKT conditions,

Z− Q̃ + Diag{[pT` − pTu ,−vT ]} = 0 (4.36a)

1− x22 = 0 (4.36b)

U1− µp−1
u − diag(X11) = 0 (4.36c)

diag(X11)− L1− µp−1
` = 0 (4.36d)

ZX− µI = 0, (4.36e)

where as µ > 0 denotes the perturbation, and is proportional to the duality gap.

At each step of the algorithm, X, pu, p`, v, Z are updated in a way that decreases

µ and hence the iterations approach values that satisfy the optimality conditions

in (4.19). The algorithm is terminated once the duality gap falls below a specified

tolerance. Nekuii (2008, Table 5.1) provided an explicit statement of how the generic

update algorithm of (Helmberg et al., 1996) could be customized to the problem

at hand. In each iteration of that algorithm the update can be computed using a

number of operations that grows at most cubically in Nt. In particular, the dominant

operations are an inversion and a Cholesky factorization of matrices of size (2Nt +

1)× (2Nt + 1), and finding the solution of a set of 4Nt + 3 linear equations.

4.4.2 Dual Scaling Interior Point Method

In the primal-dual interior point method, both the primal and dual variables are

updated at each step. In this thesis we develop a customized dual-scaling interior

point method in which at each step either the dual variables or the primal value are

59



M.A.Sc. Thesis - Mahsa Salmani McMaster - Electrical Engineering

updated. The dual scaling approach exposes some of the structure of the underlying

problem, and by exploiting this structure we obtain an algorithm that requires only

about half the computational effort in our intended application.
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Chapter 5

A Dual-Scaling Algorithm for

SDR-Based Soft Demodulation

In the previous chapter, we described semidefinite relaxation and the ways in which

it can be used for soft MIMO demodulation, and we described a primal-dual interior

point method to solve the structured semidefinite optimization problem that arises

in that application. In this chapter, we will develop an alternative method to solve

that problem— a customized dual-scaling interior point method. Unlike primal-dual

methods, in which both the primal and dual variables are updated at each iteration,

in dual-scaling methods either the dual variables or the value of primal function are

updated at each iteration. By carefully exploiting this difference, we are able to

construct an implementation with lower computational cost.

The focus of this chapter is on the development of a customized dual-scaling

algorithm for the structured SDP in (4.9). In order to place that development in

context, we will first describe each step of the dual-scaling algorithm for the generic

case and then we will explain the way in which those steps are taken in the customized
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dual-scaling algorithm.

5.1 Formulation of Dual-Scaling Algorithm for SDP

5.1.1 Generic Formulation

Let us consider the class of semidefinite programming problems of the form

min
X

Tr(CX) (5.1a)

s.t Tr(AiX) = bi, i = 1, . . . ,m, (5.1b)

X � 0, (5.1c)

where Ai,C ∈ Sn, the set of symmetric matrices of size n × n. Many semidefinite

relaxations of quadratic optimization problems can be written this way (Kisialiou

et al., 2009). In Appendix A, we will show that the dual of problem (5.1) can be

written as

max
y

bTy (5.2a)

s.t
m∑
i=1

yiAi + S = C, i = 1, . . . ,m, (5.2b)

S � 0, (5.2c)

where y and S are the dual variables and b = [b1, b2, . . . , bm]T .

As explained in Section 4.4, problems of the form in (5.1) can be tackled in variety

of ways (e.g., Boyd and Vandenberghe, 2004; Ye, 2011), including primal potential

methods, primal dual methods, and dual scaling methods. The relative computational
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costs of those methods are dependent on the features of the matrices Ai,C and the

vector b, the extent to which the algorithm exposes these features, and the extent to

which the implementation exploits these features. In many applications, the structure

of the SDPs that arise from semidefinite relaxation of quadratic problems is amenable

to dual-scaling algorithms and hence we will pursue the development of a customized

version of such an algorithm that exploits the structure of the SDP of interest, c.f.

(4.19).

5.1.2 Structured Formulation of (4.19)

According to (4.19), the optimization problem that should be solved is

min
X

Tr
(
Q̃X

)
(5.3a)

s.t. X � 0, (5.3b)

L ≤ [X]ii ≤ U, i = 1, . . . , 2Nt, (5.3c)

[X]2Nt+1,2Nt+1 = 1. (5.3d)

In order to develop a convenient dual formulation, we first reformulate the primal

problem in (5.3) so that it only involves equality constraints; c.f. (5.1). To do so we

add non-negative slack variables ui and ti for the lower and upper bound inequality

constraints in (5.3c). That is, we replace (5.3c) by

[X]ii − ui = L, ui ≥ 0, i = 1, . . . , 2Nt, (5.4a)

[X]ii + ti = U, ti ≥ 0, i = 1, . . . , 2Nt. (5.4b)
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In order to write the problem in the form in (5.1), we define the block structured

matrix X̃ ∈ R(6Nt+1)×(6Nt+1) as

X̃ =


X 0 0

0 U 0

0 0 T

 , (5.5)

where U and T are diagonal matrices of size 2Nt whose ith diagonal elements are

ui and ti, respectively. Since X̃ is block diagonal, the constraints that X is positive

semidefinite and that ui and ti are non-negative are equivalent to X̃ being positive

semidefinite. (That said, our algorithm will be based on exploiting the structure of

(5.5).) In order to write the objective as a function of X̃, we observe that if we define

C ∈ R(6Nt+1)×(6Nt+1) to be

C =


Q̃ 0 0

0 0 0

0 0 0

 , (5.6)

then Tr(CX̃) = Tr(Q̃X).

By performing analogous operations on the constraints, the optimization problem

in (5.3) can be written in the form of (5.1) as

min
X̃

Tr(CX̃) (5.7a)

s.t. Tr(AiX̃) = ei, i = 1, . . . , 4Nt + 1, (5.7b)

X̃ � 0, (5.7c)
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where the matrices Ai ∈ R(6Nt+1)×(6Nt+1), which are diagonal matrices with elements

of {0,+1,−1}, and the scalars ei are chosen to represent (5.4a), (5.4b) and (5.3d) in

the form of (5.7b). In particular, if we let Ei denote the 2Nt × 2Nt matrix with all

elements equal to zero except for the ith diagonal element which is equal to one, then

we can represent (5.4a) in the form of (5.7b) using

Ai =



Ei 0 0 0

0 0 0 0

0 0 −Ei 0

0 0 0 0


, i = 1, . . . , 2Nt, (5.8)

and ei = 1. Analogously, we can represent (5.4b) in the form of (5.7b) using

Ai =



Ei−2Nt 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Ei−2Nt


, i = 2Nt + 1, . . . , 4Nt, (5.9)

and ei = 9. Finally, we can represent (5.3d) in the form of (5.7b) using

A4Nt+1 =



0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


, (5.10)

and e4Nt+1 = 1. With these definitions in place, the dual of (5.7) takes the generic
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form in (5.2). In Appendix B, we explicitly connect the dual variables of that for-

mulation, namely y and S, to the variables of the dual of the formulation in (4.33),

namely, pu, p`, and ν; cf. (4.35).

It can be seen that the matrices X̃, C and Ai have sparse structure. This sparsity

will be exploited in the proposed customized dual-scaling algorithm.

5.2 Principles of Dual-Scaling Algorithm

In general, the optimal value of the dual problem is a lower bound for the primal

optimal value. If g(y,S) denotes the dual objective function, then for any feasible

X̃ and any feasible y,S, we have g(y,S) ≤ f(X̃). As this holds for any feasible

X̃, y and S, it also holds for the optimal values, which we denote by a star, i.e.,

g(y?,S?) ≤ f(X̃?). The difference f(X̃)− g(y,S) is called the duality gap.

There are conditions under which this inequality turns to equality, and the optimal

dual value is equal to optimal primal value; a condition known as strong duality.

Slater’s condition is one of the conditions that is sufficient for strong duality (Boyd

and Vandenberghe, 2004, pages 226-227). For the problems in the form (5.1), if

there exists a strictly positive semidefinite X, i.e., X � 0, such that Tr(AiX) = bi

for i = 1, . . . ,m, then Slater’s condition is satisfied and strong duality holds. For

an optimization problem with a differentiable objective and constraint functions for

which strong duality is satisfied, the primal and dual optimal points satisfy conditions

known as the “KKT conditions” (Boyd and Vandenberghe, 2004, pages 243-244).

Based on these conditions, once a solution to the dual problem has been found, a

solution to the primal can be found by solving the KKT equations, (4.36).
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Based on the above discussion, an approach to developing dual optimization algo-

rithm is to seek to iteratively reduce the duality gap, while maintaining the feasibility

of the pair (y,S). That reduction can be guided by the following dual potential func-

tion (Ye, 2011),

ψ(y, z̄) = ρ ln(z̄ − eTy)− ln det S, (5.11)

where z̄ = Tr(CX̃) for some feasible X̃, and e = [e1, e2, . . . , e4Nt+1]T , and ρ is a

parameter of the algorithm which is positive. Note that since X̃ is feasible, z̄ is an

upper bound on the optimal value of the primal problem. Also recall from (5.2b),

that S = C −
∑4Nt+1

i=1 yiAi and hence S is a function of y. The first term in (5.11)

depends on the duality gap, it decreases to −∞ when the duality gap is reduced

towards zero. The second term is a barrier function for the cone of positive definite

matrices and it guarantees that the matrix S remains positive semidefinite during the

algorithm.

When ρ is chosen to be greater than the size of the problem, ρ > n, when n is the

size of matrix A in (5.1), the infimum of the dual potential function is at the optimal

solution to the dual problem in (5.2); (Benson et al., 2000). Given feasible starting

value for y and S, the goal of the dual-scaling algorithm is to sequentially choose y

and S to reduce ψ(y, z̄) until the duality gap is decreased to the point at which it is

deemed to be small enough.
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5.3 Implementation Principles

5.3.1 Update to the Dual Variables

As explained above, the dual-scaling algorithm seeks to iteratively reduce the dual

potential function in (5.11) by updating the dual variables, y and S. If we denote the

values of y and S at the kth iteration by yk and Sk and if for simplicity of notation,

we denote yk+1 and Sk+1 simply by y and S, then the reduction in the potential

function at iteration k is

ψ(y, z̄k)− ψ(yk, z̄k) (5.12a)

= ρ ln(z̄k − eTy)− ρ ln(z̄k − eTyk)− ln det S + ln det Sk (5.12b)

= ρ ln(z̄k − eTy)− ρ ln(z̄k − eTyk)− ln det((Sk)−.5S(Sk)−.5). (5.12c)

In order to bound this reduction, the third term in (5.12c) can be bounded using the

following lemma.

Lemma 1 (Ye (2011)). Let X be a symmetric matrix of size n, X ∈ Sn, and ‖X −

I‖∞ < 1. Then

ln det(X) ≥ Tr(X− I)− ‖X− I‖F
2(1− ‖X− I‖∞)

, (5.13)

where ‖.‖F and ‖.‖∞ denote the Frobenius and infinity norm, respectively and

‖X‖∞ = max
i=1,2,...,n

{|ζi(X)|} ≤ ‖X‖F , (5.14)

where ζi(X) is the ith eigenvalue of matrix X ∈ Sn.

In order to use the lemma, we control the update so that ‖(Sk)−.5S(Sk)−.5−I‖∞ <
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1. In that case, the reduction can be bounded by the following inequality

ψ(y, z̄k)− ψ(yk, z̄k)

≤ ρ ln(z̄k − eTy)− ρ ln(z̄k − eTyk)− Tr((Sk)−.5S(Sk)−.5 − I) + Γ, (5.15)

where Γ =
‖(Sk)−.5S(Sk)−.5 − I‖F

2(1− ‖(Sk)−.5S(Sk)−.5 − I‖∞)
.

In order to simplify the notation, let us define the operatorA(Z) for any symmetric

matrix Z as

A(Z) =



Tr(A1Z)

Tr(A2Z)

...

Tr(A4Nt+1Z)


, (5.16)

and the operator AT for any vector y as

AT (y) =
4Nt+1∑
i=1

yiAi. (5.17)

It can be shown

A(Z)Ty = Tr
(
AT (y)Z

)
. (5.18)

According to the definition of S and by using (5.17), (A.4b) can be written as S =

C−AT (y). As a result

(Sk)−.5S(Sk)−.5− I = (Sk)−.5(S−Sk)(Sk)−.5 = −(Sk)−.5(AT (y−yk))(Sk)−.5. (5.19)

By using (5.18) and (5.19), the reduction of dual potential function at iteration k can
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be bounded by

ψ(y, z̄k)− ψ(yk, z̄k)

≤ ρ ln
(
1− eT

y − yk

z̄k − eTyk
)

+A((Sk)−1)T (y − yk) + Γ. (5.20)

The goal now is to further bound (5.20) in terms of the gradient of the dual potential

function, which is

5yψ(y, z̄) = − ρ

z̄ − eTy
e +A(S−1). (5.21)

Using the inequality ln(1−xθ) ≤ θx and (5.21), the equation in (5.20) can be bounded

by

ψ(y, z̄k)− ψ(yk, z̄k) ≤ 5yψ
T (yk, z̄k)(y − yk) + Γ. (5.22)

Based on the above analysis, we can guarantee a decrease in the potential function

at iteration k by choosing y so that the right hand side of (5.22) is negative. In fact

a good reduction can be obtained by solving the following problem

min
y

5y ψ
T (yk, z̄k)(y − yk) (5.23a)

s.t. ‖(Sk)−.5(AT (y − yk))(Sk)−.5‖2
F ≤ α2, (5.23b)

where α is a positive constant less than one. In this case, using Lemma 1, we have

‖(Sk)−.5(AT (y − yk))(Sk)−.5‖2
F ≤ α2 (5.24)

⇒‖(Sk)−.5(AT (y − yk))(Sk)−.5‖2
∞ ≤ α2, (5.25)

which results in a bounded Γ, Γ ≤ α
2(1−α)

. Hence, Γ can be ignored in (5.22) and we
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can obtain a good reduction in the duality gap by solving (5.23).

By solving the problem in (5.23), we are able to find the update to the dual

variables in a way that the dual potential function is reduced. Note that, since

S = C −
∑4Nt+1

i=1 yiAi, the updated y determines the updated S. Therefore, finding

the new y is enough to update all the dual variables.

5.3.2 Generic Approach to Solving Dual Potential Reduction

Problem

In order to solve the problem in (5.23), we can write the Lagrangian function and the

dual problem of (5.23). The Lagrangian function is written as

L(y,S, λ)

= 5ψT (yk, z̄)(y − yk)− λ
(

Tr
[
(Sk)−1AT (y − yk)(Sk)−1AT (y − yk)

]
− α2

)
. (5.26)

To find the dual function of the problem, we should find the derivative of La-

grangian function with respect to y, ∂L
∂y

= 0. As seen in (5.26), the Lagrangian is

a quadratic function of y and hence solving ∂L
∂y

= 0 involves solving a set of linear

equations such as what we will have in (5.35). In order to reduce the cost of solving

this problem and to find an explicit equation to update the dual variables, we will

exploit the structure of matrices used in Lagrangian function in the next section.
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5.3.3 Exploiting the Structure of Matrices in Dual-Scaling

Algorithm to Update the Dual Variables

As stated in previous sections, the matrices such as Ai and S are sparse matrices and

this feature can help us to solve SDP with a lower computational cost. We can also

exploit this structure of the matrices in solving the problem on (5.26).

If we define P1 ∈ R(2Nt+1)×(2Nt+1), and P2,P3 ∈ R(2Nt)×(2Nt) as

P1 =



y1 + y2Nt+1 0 0 0 0

0 y2 + y2Nt+2 0 0 0

0 0
. . . 0 0

0 0 0 y2Nt + y4Nt 0

0 0 0 0 y4Nt+1


, (5.27)

P2 =



y1 0 0 0

0 y2 0 0

0 0
. . . 0

0 0 0 y2Nt


, and P3 =



−y2Nt+1 0 0 0

0 −y2Nt+2 0 0

0 0
. . . 0

0 0 0 −y4Nt


, (5.28)

we can show that

4Nt+1∑
i=1

yiAi =


P1 0 0

0 P2 0

0 0 P3

 . (5.29)

72



M.A.Sc. Thesis - Mahsa Salmani McMaster - Electrical Engineering

Therefore, since S = C−
∑4Nt+1

i=1 yiAi, we can write

S =


Q̃−P1 0 0

0 −P2 0

0 0 −P3

 , S−1 =


(Q̃−P1)−1 0 0

0 −P−1
2 0

0 0 −P−1
3

 , (5.30)

where the diagonal structure of P2 and P3 enables simple construction of the inverse.

So the first step to compute (5.26) is to compute (Sk)−1AT (y − yk). To do so we

define (Sk1)−1, (Sk2)−1 and (Sk3)−1 as

(Sk1)−1 =



[(Sk)−1]11 [(Sk)−1]12 . . . [(Sk)−1]1(2Nt+1)

[(Sk)−1]21 [(Sk)−1]22 . . . [(Sk)−1]2(2Nt+1)

... . . .
. . .

...

[(Sk)−1](2Nt+1)1 [(Sk)−1](2Nt+1)2 . . . [(Sk)−1](2Nt+1)(2Nt+1)


, (5.31)

(Sk2)−1 =



[(Sk)−1](2Nt+2)(2Nt+2) 0 . . . 0

0 [(Sk)−1](2Nt+3)(2Nt+3) . . . 0

0 0
. . . 0

0 0 . . . [(Sk)−1](4Nt+1)(4Nt+1)


,

(5.32)

(Sk3)−1 =



[(Sk)−1](4Nt+2)(4Nt+2) 0 . . . 0

0 [(Sk)−1](4Nt+3)(4Nt+3) . . . 0

0 0
. . . 0

0 0 . . . [(Sk)−1](6Nt+1)(6Nt+1)


.

(5.33)
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So we have

(Sk)−1AT (y − yk) =


(Sk1)−1 0 0

0 (Sk2)−1 0

0 0 (Sk3)−1




P1 −Pk
1 0 0

0 P2 −Pk
2 0

0 0 P3 −Pk
3

 .
(5.34)

By employing these expressions, we can obtain an expression for the trace in (5.26),

and hence for the Lagrangian function. In order to find the dual function of (5.23) to

solve the dual problem, we should compute the derivative of the Lagrangian function,

∂L
∂y

= 0 (5.35a)

⇒Mk(yk+1 − yk) + β 5y ψ
T (yk, z̄k) = 0 (5.35b)

⇒Mk(yk+1 − yk) + β(− ρ

z̄k − eTyk
e +A((Sk)−1)) = 0, (5.35c)

where β = α√
−5yψT (yk,z̄k)d(z̄k)y

. If we define the matrix Nk as

[Nk]ij =
(
[(Sk)−1]ij

)2
, 1 ≤ i, j ≤ 2Nt, (5.36)

the matrix Mk can be written as

Mk =


Nk + ((Sk2)−1)2 Nk p

Nk Nk + ((Sk3)−1)2 p

pT pT
(
[(Sk)−1](2Nt+1)(2Nt+1)

)2

 , (5.37)

where the ith element of p is equal to
(
[(Sk)−1](i)(2Nt+1)

)2
.
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According to (5.35), we have

yk+1 − yk = −β(Mk)−15y ψ
T (yk, z̄k). (5.38)

Hence, we can define the update for the dual variables as

yk+1 = yk + βd(z̄k), (5.39)

where

d(z̄k) = −(Mk)−15y ψ
T (yk, z̄k). (5.40)

Actually it is typically more efficient to consider d(z̄k) to be the solution of the set

of linear equations Mkd(z̄k) = − 5y ψ
T (yk, z̄k) and to exploit the fact that Mk is

symmetric and positive semidefinite in the solution of that set of equations.

5.3.4 Generic Update to the Primal Function Value

In a dual-scaling algorithm, the main focus is on updating the dual variable rather

than the primal variable. Indeed, we do not find any direction to update the primal

variable. However, updating the value of primal function during the algorithm can be

helpful as it may result in duality gap reduction that can help the algorithm to find

the solution faster. In order to find a feasible primal variable, the KKT conditions

(e.g., (4.36)) can be used such that the feasible dual variables which are available can

help us to find a feasible primal value at each iteration. Benson et al. (2000) solve
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the following least square problem to find a feasible X̃

min
X̃

∥∥∥(Sk).5X̃(Sk).5 − 4k

ρ
I
∥∥∥ (5.41a)

s.t A(X̃) = e, (5.41b)

where ∆k = z̄k − eTyk.

The explicit solution of this problem, which is

X̃(z̄k) =
4k

ρ
(Sk)−1

(
AT (d(z̄k)) + Sk

)
(Sk)−1, (5.42)

can be used to update the primal function value using z̄k+1 = Tr(CX̃(z̄k)). However,

computing this matrix can be costly, so we update z̄ = Tr(CX̃) directly from the

dual variables using

Tr(CX̃(z̄k)) = eTyk + Tr(X̃(z̄k)Sk) (5.43a)

= eTyk +
4k

ρ

(
d(z̄k)TA(Sk)−1) + n

)
, (5.43b)

It was stated before that in dual-scaling algorithm, the primal variable is not

updated at each iteration, hence to have updated value of primal function, we should

define the conditions in which we want to update the primal function value instead of

the dual variables. Note that in updating dual or primal variables/function, feasibility

is the important issue.

There is a lemma by Benson et al. (2000) that defines how to decide whether to

update the dual variables or the primal function value in a way that ensures that the

primal and dual variables remain feasible.
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Lemma 2 (Benson et al. (2000)). Define P as

P(z̄k) =
p

∆k
(Sk).5X̃(z̄k)(Sk).5 − I, (5.44)

and let µk = ∆k

n
= z̄k−bTyk

n
, µ = Tr(X̃(z̄k)Sk)

n
= Tr(CX̃(z̄k))−bTyk

n
, ρ ≥ n+

√
n where n is

the size of the (square) matrices and α < 1. If

‖P(z̄k)‖F < min
(
α

√
n

n+ α2
, 1− α

)
, (5.45)

then the following inequalities hold:

1. X̃(z̄k) � 0

2. ‖(Sk).5X̃(z̄k)(Sk).5 − µI‖F ≤ αµ

3. µ ≤ (1− α
2
√
n
)µk

In order to explain this lemma, let us consider that the current iteration is the kth

iteration of the algorithm. If (5.45) holds in this iteration, the X̃ that results from

(5.42), using the current z̄k, is guaranteed to be positive semidefinite. The duality

gap that arises from the updated X̃ is also bounded, based on the third inequality

in the lemma. Hence, if (5.45) holds, we update the value of primal function and if

not the dual variables are updated. It can be seen that at each iteration either the

primal function value or the dual variables are updated, so although we don’t update

X̃ at each iteration, we can use the reduction of the duality gap which is the result

of updating the value of primal function at some iterations.
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Using (5.42), P(z̄k) can be written as

P(z̄k) =
ρ

∆k
(Sk).5

(4k

ρ
(Sk)−1

(
AT (d(z̄k)) + Sk

)
(Sk)−1

)
(Sk).5 − I (5.46a)

= (Sk)−.5
(
AT (d(z̄k))

)
(Sk)−.5 (5.46b)

= (Sk)−.5
(
AT (

yk+1 − yk

β
)
)

(Sk)−.5, (5.46c)

which, by using (5.39) and (5.40), will result in

‖P(z̄k)‖F = −5y ψ
T (yk, z̄k)d(z̄k). (5.47)

In the customized dual-scaling algorithm that we will develop below, the same

principles in updating the value of primal function are used. In Section 5.5, we

will also explain that by updating the primal function value more frequently, the

algorithm is terminated faster as the reduction of duality gap corresponding to the

primal function update is typically greater than the reduction resulting from the dual

variable update.

To summarize this section, we describe the generic dual-scaling algorithm in Al-

gorithm 1.

5.4 Finding a Feasible Starting Point

In interior point algorithms we need find feasible starting points for the primal and

dual variables. The constraints on the primal variables are that L ≤ [X]ii ≤ U and

that the matrix X is positive semidefinite. The constraints on the dual variables are

that the matrix S is positive semidefinite and that C =
∑4Nt+1

i=0 yiAi + S; cf. (5.2).
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Algorithm 1

Given initial values for the dual variables, (S0,y0), and a primal upper bound,
z̄0, set k = 0, α ∈ (0, 1) and the target duality gap equal to ε.

2: while z̄k − eTyk ≥ ε do
Compute A((Sk)−1) using (5.16)

4: Compute 5yψ
T (yk, z̄k) using (5.21)

Compute Mk and find the direction for updating y using (5.40)
6: Calculate ‖P(z̄k)‖F using (5.47)

if (5.45) is true then, update the primal function value using (5.43b)
8: else update the dual variables, y and S, using (5.39) and Sk+1 = C −∑4Nt+1

i=1 yk+1
i Ai respectively, and set z̄k+1 = z̄k

end if
10: k = k + 1

end while
12: Find the primal variables X̃ that satisfy target duality gap by using (5.42)

One of the contributions of this thesis is to use insight from the MIMO demodulation

application to develop efficient techniques for selecting good starting points.

Primal Feasible Starting Point

There are several ways to initialize the primal variables. Perhaps the simplest way

is to choose matrix X to be a diagonal matrix which has diagonal elements equal to

mean of the upper bound and lower bound of the elements. As the upper bound is

U and the lower bound is L, we have

X =

(U+L
2

)× I2Nt 0

0T 1

 . (5.48)

Then we construct the full matrix X̃ based on the slack variables in (5.4). This choice

guarantees that the initial point is well inside the boundary of the feasible region.

The previous method does not exploit any knowledge of the application to soft
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demodulation. One way to consider that knowledge is to estimate the transmitted

symbols using linear estimation, such as zero-forcing or minimum mean square error

(MMSE) methods and then use that estimate to construct the initial primal feasible

point. In the following, we will focus on MMSE estimation. Assume that the real

representation of channel matrix and the received signal are H̃ and ỹ, respectively,

ỹ = H̃s̃ + ṽ. (5.49)

The linear MMSE estimate is

ŝMMSE = (σ2I + H̃HH̃)−1H̃H ỹ (5.50a)

= (σ2(H̃HH̃)−1 + I)−1s̃ + (σ2I + H̃HH̃)−1H̃H ṽ. (5.50b)

As this estimate is biased, we will use the so called “unbiased” MMSE estimate as

ŝ = ŝUB−MMSE = Φ−1ŝMMSE, (5.51)

where Φ is a diagonal matrix with [Φ]ii = [(σ2I + H̃HH̃)−1H̃H ]ii.

Now that we have the vector ŝ as an estimate of s̃, we should clip each ŝi to the

feasible interval, [−
√
U,−
√
L]∪ [

√
L,
√
U ]. The first block of primal variable matrix,

X can be constructed by knowing s̃. Therefore, we can use the estimate of s̃, ŝ, to

construct an initialization for first block of primal variable matrix as

X =

ŝŝT 0

0T 1

 . (5.52)
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In order to avoid choosing a starting point on the boundary of the primal feasible set,

in practice we will choose a positive δ and clip ŝi to [−
√
U + δ,−

√
L − δ] ∪ [

√
L +

δ,
√
U − δ] to obtain s̆i. Considering that the initial matrix X should be positive

definite, rather than using (5.52) we construct matrix X using

X =

s̆s̆T + ε̆I2Nt 0

0T 1

 , (5.53)

in which ε̆ > 0, to make sure that the primal starting point is reasonably far from

the boundary of the feasible set. The second and third block of matrix are then

constructed using (5.4).

As the above example suggests, starting points for X can be generated using any

standard suboptimal detector. Another example is the (ordered) zero-forcing deci-

sion feedback detector. This method involves a QR-decomposition. As the channel

matrix is known at the receiver, we can apply the QR-decomposition to the real rep-

resentation of channel matrix, H̃. The point here is to order the columns of H̃ to

mitigate the effects of noise. We use the technique of Wubben et al. (2001) to find a

QR-decomposition with sorted R. That is, we replace ỹ = H̃s̃ + ṽ with

ỹ = H̃(PPT )s̃ + ṽ, (5.54)

where P is a permutation matrix that reorders H̃ so that the columns are arranged in

an ascending order with respect to their norms. We then apply the QR-decomposition

to H̃P = QR and construct ȳ = QH ỹ = Rs′ + v̄, where s′ = PT s̃ and v̄ = Q−1ṽ.

Since Q is a unitary matrix, v̄ remains Gaussian with the same covariance as ṽ. The
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matrix format is


ȳ1

...

ȳn

 =



r11 r12 · · · r1n

0 r21 · · · r2n

...
. . . · · · ...

0 0 · · · rnn




s′1
...

s′n

+


v̄1

...

v̄n

 . (5.55)

Estimates of s′ can be obtained by back substitution starting from the last row, i.e.,

s′m =
ȳm −

∑n
i=m+1 rm,is

′
i

rm,m
. (5.56)

After finding the estimation of s′, s′est, we can compute the clipped version of Ps′est

that was used in linear MMSE method, and use it as the estimate of s̃, ŝ. By analogy

with the MMSE method we can then construct X and subsequently X̃.

Dual Feasible Starting Point

Given a primal feasible starting point, X̃, we consider two different ways to find

corresponding dual feasible starting values for y and S. The first is based on the

KKT conditions and the second is derived from the fact that the initial value for y

should be chosen so that S = C−
∑4Nt+1

i=1 yiAi is strictly positive definite.

Our first approach to determining a suitable starting pair (y,S) from a given

starting value for X̃ is to observe that the modified version of the KKT conditions in

(5.2), contain the condition SX̃ = νI, where ν is proportional to the duality gap. A

pair satisfying that condition would correspond to a point on the central path of an

interior point method (e.g., Boyd and Vandenberghe, 2004). We do not need to start

at a point on the central path, but we would like to start close to the central path.
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If we recall that the matrix S must satisfy the constraint S = C−
∑4Nt+1

i=1 yiAi, then

given X̃, we can find an initial feasible starting value for y, and hence S, by choosing

a value for ν, and solving the problem

min
y

∥∥∥(C− 4Nt+1∑
i=1

yiAi

)
X̃− νI

∥∥∥2

F
(5.57a)

s.t. C−
4Nt+1∑
i=1

yiAi � 0. (5.57b)

This is a convex optimization problem, and can be efficiently solved. A convenient

interface to some powerful solution techniques is provided by the popular parser

software CVX (Grant and Boyd, 2008, 2014). The choice of ν involves a trade-off

between the duality gap at the starting point, and the distance that the initial points

are from the central path.

In cases where X̃ is invertible, such as in the first of our methods for selecting X̃,

the objective in (5.57a) can be modified to
∥∥(C−

∑4Nt+1
i=1 yiAi)− νX̃−1

∥∥2

F
, if desired.

In cases in which the upper left block of X̃ is rank-1, such as in our other methods,

we can first modify X̃ to

X̃′ = X̃ +

ε̃I2Nt+1,2Nt+1 0

0 0

 , (5.58)

for some small ε̃, and then use (X̃′)−1. (Of course, in both cases we could simply

solve (5.57) directly.)

To avoid the cost of solving (5.57), we can use the fact that we would like S =

C−
∑4Nt+1

i=1 yiAi to be positive definite to find a feasible starting point. In order to

do so, we use Gerschorin’s Theorem (e.g., Atkinson, 2008), which shows that each
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eigenvalue of a matrix lies at least in one of the circles with centre equal to diagonal

elements of the matrix and radius equal to the summation of the absolute values of

the elements in the row corresponding to that diagonal element, i.e. for matrix S

with eigenvalues ζ`, it means

|ζ` − Sii| ≤
∑
i 6=j

|Sij|, ∀`, (5.59)

which implies that

−
∑
i 6=j

|Sij|+ Sii ≤ ζ` ≤
∑
i 6=j

|Sij|+ Sii, ∀`. (5.60)

The constraint that S is a positive definite matrix is equivalent to requiring that

the eigenvalues of S are positive. Using (5.60), in order to guarantee that each

eigenvalue of S is positive, we can impose the constraint

Sii −
∑
i 6=j

|Sij| > 0 ∀i. (5.61)

On the other hand, based on the equation in (5.30), we know that S is block matrix

whose second and third blocks are diagonal and hence all diagonal elements of these

two blocks should be positive. This results in a determination of the sign of each yi. To

define the value of each yi, we should consider Sii−
∑

i 6=j |Sij| > 0 for i = 1, . . . , 2Nt+1,

corresponding to the first block of S, which is S1 = Q̃−P1. Therefore, we have

Q̃ii − (yi + y2Nt+i)−
∑
i 6=j

|Q̃ij| > 0⇒ −(yi + y2Nt+i) >
∑
i 6=j

|Q̃ij| − Q̃ii. (5.62)
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To solve this inequality we can define a positive vector, γ1, such that

−(yi + y2Nt+i) =
∑
i 6=j

|Q̃ij| − Q̃ii + γ1,i, (5.63)

where γ1,i is the ith element of γ1. Now by fixing either yi or y2Nt+i, we can find the

other one, considering the previously derived condition on their signs. We will show

one of the possible variants of this technique in Appendix C.

5.5 Some Customizations of the Dual-Scaling Al-

gorithm

In addition to what we have described in the previous sections, there are some other

ways to make the algorithm faster. In this section, we will describe two different pro-

cedures that can reduce the number of iterations required for the duality gap converge

to the target value, ε. These customizations exploit features of our application, and

in particular the fact that the target value ε is typically quite large (Nekuii, 2008).

Updating Primal Function Value (Customization 1)

As stated in Section 5.3.4, depending on the outcome of a test based on Lemma 2,

either the dual variables or the primal function value is updated. Our numerical

experience shows that the duality gap reduction in the iterations in which the primal

function value is updated tends to be greater than the iterations in which the dual

variables are updated. These observations suggest that we could update the primal

function value more frequently. In particular, we customize the dual-scaling algorithm

85



M.A.Sc. Thesis - Mahsa Salmani McMaster - Electrical Engineering

such that the primal function value is updated whenever the duality gap reduction

slows. We will base the decision of whether to update primal function value on the

relative reduction in the duality gap at the previous iteration. The primal function

value is updated at the kth iteration if

∆k−1 −∆k

∆k−1
< δ, (5.64)

where ∆k is the duality gap in the kth iteration and δ is a positive parameter. If the

condition in (5.64) does not hold, the convention test based on Lemma 2 is employed.

The effect of this customization is shown in Fig. 5.1, which demonstrates the reduction

of the duality gap due to the primal update triggered by (5.64) at iteration 15. As

analogous updates are employed, the target duality gap will be reached with fewer

iterations.
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Figure 5.1: Duality gap vs. iteration for different customizations.
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Different α for Early Iterations (Customization 2)

In the generic dual-scaling algorithm, the dual variables are updated according to

yk+1 = yk + βd(z̄k), (5.65)

where β = α√
−5yψT (yk,z̄k)d(z̄k)y

. Based on Lemma 1 and (5.23), α is restricted to be

less than one. Considering (5.65), α can be defined as the step size we take toward the

optimal dual variables. Therefore, a bigger α could help us to reach the optimal dual

variables more quickly. However, it may cause infeasibility in the updated variables.

In the early iterations we are, most probably, reasonably far from the boundary

of the feasible set and from the optimal solution. Therefore, it seems likely that we

could take bigger steps while remaining feasible. When we are closer to the optimal

solution, we should take smaller steps in order not to generate infeasible updates.

Although α is chosen to be greater than one in early iterations of the customized

dual-scaling algorithm, we still use Lemma 2 to make a decision on whether to update

primal function value or dual variables. If the probability that the algorithm fails to

provide semidefinite primal and dual variables, X̃ and S, is less than the probability of

error, this choice does not degrade the performance of the demodulator. (Numerical

experience suggests that this is the case.) However, we are reducing the number of

iterations and therefore the computational cost. The effect of this customization is

shown in the lower curves in Fig. 5.1.

In our simulations, we use both customization 1 and customization 2 which results

in a significant reduction in the number of iterations taken by the algorithm. A typical

graph for the algorithm using both customization is shown in Fig. 5.1.
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The complete customized dual-scaling algorithm is described in Algorithm 2.

Computational Cost

The key computational task in the customized dual-scaling algorithm is computing

S−1 in the step 6 of the algorithm, as shown in (5.31). This requires inversion of

a matrix of size (2Nt + 1) × (2Nt + 1). Finding the solution of the set of linear

equations in the step 8 of the algorithm based on the equation in (5.40) involves the

Cholesky factorization of a matrix of size (4Nt + 1)× (4Nt + 1). Hence the order of

the computational cost of each iteration is cubic in the problem size. Interior-point

method analysis yields a bound on the number of iterations of O(
√
Nt log(ε0/ε)),

where ε0 is the initial duality gap.

Therefore, the computational cost of the customized dual-scaling algorithm is

of the same order as the customized primal-dual interior point method. However,

computational experiments suggest that the cost of each iteration of the dual-scaling

algorithm is about half that of the primal-dual algorithm and, as shown in the next

chapter, the overall computational cost of the dual-scaling method is lower than that

of the primal-dual algorithm.
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Algorithm 2

Find good feasible dual initial points, S0 and y0, and a corresponding primal
upper bound, z̄0, based on Section 5.4. Set ε equal to the target duality gap, set
γ ∈ [0, 1], fix the number of early iterations, k′, and set k = 0

2: while z̄k − eTyk ≥ ε do
if k ≤ k

′
then choose α so that bigger step size is resulted (a large value of

α < 2)
4: else choose α so that smaller step size is resulted (a value of α < 1)

end if
6: Compute A(S−1) using (5.16)

Compute 5yψ
T (yk, z̄k) using (5.21)

8: Compute Mk and find the direction for updating y using (5.40)
Calculate ‖P(z̄k)‖F using (5.47)

10: if ∆k−1−∆k

∆k−1 < γ then update the value of primal function using (5.43b)
else if (5.45) is true then update the primal function value using (5.43b)

12: else update the dual variables, y and S, using (5.39) and Sk+1 = C −∑4Nt+1
i=1 yk+1

i Ai respectively, and z̄k+1 = z̄k

end if
14: k = k + 1

end while
16: Find the primal variable X̃ that satisfies the target duality gap by using (5.42)
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Chapter 6

Performance Analysis and EXIT

Charts

In this section we will compare the performance and complexity of the proposed

demodulators to those of the existing soft demodulators that were described in Chap-

ter 3. We will consider both the proposed customized dual-scaling algorithm for the

SDR-based demodulators (see Chapter 5) and the existing customized primal-dual

algorithm (see Chapter 4). The other demodulators that we will consider are the

single tree search demodulator (Studer and Bolcskei, 2010), the LISS demodulator

(Hagenauer and Kuhn, 2007), and the full MMSE-SIC method of Wang and Poor

(1999) and the approximate MMSE-SIC method of Studer et al. (2011).

6.1 Simulation Scenario

We consider a MIMO system with Nt = 4 transmitter antennas and Nr = 4 re-

ceiver antennas. The channel is modeled using an i.i.d. Rayleigh fading model that
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Figure 6.1: MIMO BICM-IDD transceiver

is assumed to be interleaved so that consecutive channel uses are not significantly

correlated. The transceiver structure is the BICM-IDD structure described in Chap-

ter 2; see Fig 6.1. The outer encoder is a (punctured) binary parallel-concatenated

turbo encoder of rate R = 1/2 in which the generator polynomial of the recursive

systematic convolutional codes has an octal representation (5, 7). The interleaver is

also randomly generated for each different codeword. The modulator block consists of

a 16-QAM symbol mapper that employs Gary coding to map the bits to the symbols

and a spatial multiplexer to transmit a symbol from each antenna at each channel

use.

The BCJR algorithm is used to decode the convolutional codes in the turbo code,
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and 8 decoding iterations are performed in the decoder before passing the soft infor-

mation back to the demodulator. We also clip the extrinsic LLR of the decoder to

the interval [−5,+5] for list-based demodulators. This value is chosen based on the

analysis by de Jong and Willink (2005) and is consistent with the clipping value used

by Nekuii (2008). For the STS demodulator the clipping interval is a parameter of

the algorithm.

In the customized dual-scaling algorithm method, the starting primal variable, X̃,

is initialized based on the first method in Section 5.4, in which the diagonal elements

are set to the mean of the lower bound and the upper bound of the constellation; see

(5.48). The dual variables are initialized using variant of the Gerschorin bounding

technique described in Appendix C.

For the SDR-based demodulators we choose the number of randomization itera-

tions to be M = 50 or M = 200 and the accuracy ε = 10−1 is considered based on the

observations made by Nekuii (2008). For the LISS demodulator we choose the stack

size equal to be S = 500, and list size equal to be L = 80. The important parameter

in single tree search method is the clipping parameter, we simulate this method by

choosing clipping value to be 5 and 10.

To evaluate the computational cost of each different method, we counted the

floating point operation (FLOP) required by each demodulator. Each real-valued

mathematical operation for real numbers is counted as one FLOP; as an example,

the addition of two complex numbers counts as two FLOPs. In the SDR-based

demodulators the FLOP count includes, among other things, the number of FLOPs

that are required to solve SDP, to perform the randomization procedure, to generate

the list and to compute the LLRs. In both MMSE cases we count the FLOPs required
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to compute the estimates of symbols, those required to cancel interference and the

FLOPs required to compute and implement the MMSE filter. For the STS method,

the FLOP count includes the FLOPs expended in the preprocessing step, in which

the QR-decomposition is performed on the channel matrix, and FLOPs required to

examine each node and to compute the soft information. In the LISS demodulator

the FLOPs required to generate the list, compute the probabilities, extend the paths

and compute the LLRs are counted.

6.2 Primal-Dual Interior Point vs. Dual Scaling

Algorithm

In Fig 6.2, we compare the bit error rate performance of different SDR demodulators

using the primal-dual interior point method or the dual-scaling algorithm to solve the

semidefinite programming problem. In Fig 6.3 the empirical cumulative distribution

of the computational cost of each method is shown.

It can be seen that the performance of demodulators using dual-scaling algorithm

is close to the performance of demodulators that use primal-dual interior point. The

difference in the performance of these two algorithms is due to the coarse nature of

the solution; the accuracy chosen in these simulation is ε = 10−1 and that results in

a sizeable region of acceptable solutions. If we were to choose ε to be smaller, say

10−2 or even 10−3, the performance of the primal-dual and dual-scaling algorithms

will be closer, but the computational costs will be increased. The choice of ε =

10−1 is based on observations by Nekuii (2008). These simulations also show that

the approximations that were used to obtain the single-SDR method result in some
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Figure 6.2: BER vs. SNR.
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Figure 6.3: Empirical CDF of the number of FLOPs per channel use.
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degradation in performance, but that much of that degradation can be recovered by

using more randomization steps, each of which is of modest cost.

However as shown in Fig 6.3, the reduced computational cost of the dual-scaling

algorithm is an advantage of this method, especially in the case of the list-SDR

method in which one SDP is solved in each demodulation-decoding iteration.

By looking at Fig. 6.2 and Fig. 6.3 simultaneously, we can deduce that the single-

SDR method with the dual-scaling algorithm and M = 200 randomization provides a

desirable trade-off between performance and computational cost. In the next section

we will compare the performance and cost of the dual single-SDR with other existing

methods introduced in Chapter 4.

6.3 Dual Single-SDR vs. Existing Methods

In this section we will compare the performance and complexity of the dual-scaling

single-SDR demodulator with M = 200 randomizations against those of the existing

methods reviewed in Chapter 3. In Fig. 6.4 we compare the performance of these

methods in terms of the bit error rate at different SNRs. In Fig. 6.5 the empirical

CDF of the computational cost of each of these methods is shown.

The first observation from these figures is that the dual-scaling single-SDR de-

modulator provides better performance than all except the LISS demodulator, and

that under most reasonable measures of computational cost the dual-scaling single-

SDR demodulator is cheaper than tree-search methods and is close to that of the

“full” MMSE-SIC of Wang and Poor (1999). The performance of the dual-scaling

single-SDR demodulator is significantly better than that of the full MMSE-SIC.
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Our results show that, as expected, the LISS method provides the best perfor-

mance, but as shown in Fig. 6.5 it is among the more computationally expensive

methods of those we have examined.

In the STS method, the clipping value plays an important role in the trade-off be-

tween performance and computational cost, and this is apparent in our figures, with

the STS method with the clipping level equal to 10 providing better performance than

the STS method with the clipping level equal to 5, but at greater computational cost.

However the dual-scaling single-SDR demodulator provides better performance than

both of them, and does so at lower computational cost. Furthermore, the compu-

tational cost of the dual-scaling single-SDR demodulator is concentrated around its

mean, which can be of considerable benefit when it comes to specifying or managing

computational resources.

Finally, we observe that the approximations made in the approximated MMSE-

SIC demodulator lead to a significant reduction in the computational cost compared

to that of the full MMSE-SIC, but the resulting degradation in performance might

not be deemed to be negligible.

Some of the data in Fig. 6.4 and Fig. 6.5 have been summarized in Table 6.1,

where we state the additional SNR that each method requires to achieve a BER of

10−4 beyond the SNR required by the LISS method. We also state the fraction of

the (average) computational cost of the LISS method that each of the demodulators

requires.

Some insight into the differences in the performance of these methods can be

obtained using the EXIT chart, and we will do that in the next section.
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Table 6.1: Comparison of performance and computational cost of different demodu-
lators in comparison with LISS demodulator. The additional SNR is the difference
between the SNRs (in dB) required by the method and the LISS method to achieve
a BER of 10−4. The fraction of the computational cost is the ratio of the average
computational costs of the method and the LISS method when evaluated at 9.75 dB.

Method Additional SNR (dB) Fraction of comp. cost

Dual-scaling single-SDR M=200 0.24 0.294
Full MMSE-SIC 0.74 0.252
STS clip=10 1.15 1.107
Approximated MMSE-SIC 1.76 0.036

6.4 EXIT Chart

The extrinsic information transfer chart introduced by ten Brink (2001) is a technique

to analyze the behaviour of iterative soft input soft output decoding. Given the

“turbo” structure of iterative demodulation and decoding, an analogous analysis can

be applied. In an EXIT chart, the mutual information between the input bits and

the soft information extracted by the demodulator or decoder is used to observe

the progress which is made as the iterations increment. Let B and Ξ denote the

random variables representing the input bits and the soft information, respectively.

The mutual information is

I(B; Ξ) =
1

2

∑
b=±1

∫ +∞

−∞
f(ξ|b) log

f(ξ|b)
f(ξ)

dξ, (6.1)

where f(ξ|b) is the distribution of the soft information given the input bits.

Let IA denote the mutual information between the input bits and the soft infor-

mation that forms the input to the demodulator (or the decoder) and IE denote the

mutual information between the input bits and the extrinsic soft information (at the
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output) of the demodulator (decoder). The EXIT chart technique depicts the relation

between IA and IE. In computing IA, it is usual to model the input fA(ξ|b) via a

Gaussian distribution, (e.g., ten Brink, 2001; Hagenauer, 2004; Lee et al., 2005), but

the distribution of fE(ξ|b) is determined by Monte Carlo simulation and no Gaus-

sian assumption is assumed (ten Brink, 2001). The EXIT chart characteristic can be

shown as a plot of IE = T (IA).

In Fig. 6.6, we have plotted the EXIT charts of the SDR-based demodulators at

an SNR of 9.75 dB. Based on this EXIT chart these methods are expected to have

similar performance.
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Figure 6.6: EXIT chart of primal-dual interior point and dual-scaling algorithm in
both list-SDR and single-SDR cases.
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In Fig. 6.7 we have plotted the EXIT chart of the dual-scaling single-SDR demod-

ulator, and the EXIT charts of the other demodulators considered in Fig. 6.4. Fig. 6.7

suggests that the performance of the dual-scaling single-SDR demodulator and that

of the LISS method should be significantly better than that of the other methods,

and that is indeed the case in Fig. 6.4. The EXIT chart also correctly predicts that

the full MMSE-SIC demodulator and the STS demodulator with clipping value equal

to 10 will provide better performance than the approximate MMSE-SIC and the STS

demodulator with clipping value equal to 5.
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Figure 6.7: EXIT chart of dual-scaling single-SDR demodulator in comparison with
some existing methods.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

The main focus of this thesis was on developing a low-complexity high-performance

soft demodulator for MIMO communication systems that is based on ideas that are

quite distinct from current approaches. Most of the existing approaches are based on

either tree search ideas, or the principles of minimum mean square error estimation.

The demodulator developed in this thesis is distinct because it is based on the prin-

ciples of semidefinite relaxation, in which a hard detection problem is approximated

by a semidefinite program and a randomization procedure.

For binary signalling schemes, list-based soft demodulators based on semidefinite

relaxation were developed by Nekuii et al. (2011), and some preliminary extensions

to higher order QAM systems have been previously explored (Nekuii and Davidson,

2009b; Nekuii, 2008). In that work, the semidefinite program was solved using a

customized primal-dual interior point method. That method is based on solving the
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primal and the dual problem of semidefinite programming jointly, and at each itera-

tion of the demodulation process both primal and dual variables are updated. In this

thesis we developed a lower-complexity method, with the same level of performance,

to solve the semidefinite program. The development involved the customization of

a dual-scaling algorithm for solving semidefinite program. In this method either the

primal value or the dual variables are updated at each iteration. By carefully ex-

ploiting the structure exposed by the dual-scaling approach, a customized algorithm

that results in significantly reduced computational cost at each iteration, and reduced

overall computational cost, was obtained. Further customization and computational

cost reduction was obtained by using communication insights to generate effective

starting points for the algorithm.

In Chapter 6, we compared the performance and computational cost of differ-

ent soft demodulation methods. Among the list-SDR and single-SDR classes, it was

shown that the proposed dual-scaling algorithm provides a tangible reduction in the

computational cost. In the case of the list-SDR demodulator, in which one SDP is

solved per iteration, the reduction is quite significant. That said, the single-SDR

demodulator, in which an SDP is solved only once per channel use, is significantly

cheaper than the list-SDR approach. When 50 randomizations are used, the degra-

dation in the performance of the single-SDR method related to the list-SDR is not

necessarily negligible, but much of that degradation can be recovered, without giving

up too much of the computational advantage, by employing 200 randomizations.

We also compared the performance and computational cost of the dual-scaling

single-SDR demodulator with some other existing methods. It was seen that the dual-

scaling single-SDR demodulator provides better performance than all of the other
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methods we considered, except the LISS method, and does so at a computational

cost that is about 1/4 of the median cost of the LISS method, is cheaper than the

single-tree search (STS) method, and is about the same as that of the (full) MMSE-

SIC method.

Insight into the differences in performance of these different approaches was ob-

tained from an EXIT chart analysis of the considered methods. The (dual-scaling)

single-SDR demodulator was found to have an EXIT characteristic that is similar

to that of the LISS method, and superior to those of the two instances of the STS

method that we considered and those of the full and approximate MMSE-SIC.

7.2 Future Work

This thesis developed a customized low-complexity algorithm to solve the semidefinite

program that arises in semidefinite relaxation approach to soft MIMO demodulation.

The keys to the customization were to exploit the structure of the same matrices in

the generic algorithm, and to use some communication insights to develop effective

initialization strategies. Although several aspects of the structure of the matrices

involved in dual algorithm are exploited in this thesis, there are still some unexplored

points that might be able to be used to reduce the computational cost or increase

the performance of the algorithm. We may consider the following points as future

research:

• As can be seen in (5.37), the matrix M is a structured matrix. One possible

point for future work could be the development of techniques that can exploit
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this structure in the calculation of its inverse, in order to lower the computa-

tional cost.

• In order to reduce the computational cost, we can also evaluate approximations

to some of the expensive steps of the algorithm. Calculation of the inverse of the

matrix M, and the computation of the optimal primal variable at the last iter-

ation of the algorithm are the examples of the expensive steps in the algorithm.

We can explore the trade-off between the performance degradation and compu-

tational cost reduction of the algorithm in the case of using approximations in

different steps of the algorithm.

• The customized dual-scaling algorithm proposed in this thesis is in the general

format, which means that by changing the constellation parameters we can ap-

ply it directly to the higher order constellations. One direction to future work

would be to explore the performance and computational cost of the algorithm in

the context of higher order constellation (i.e, 64-QAM). Based on the structure

of matrix S in (5.30) and the structure of matrix M in (5.37) and also diagonal

matrices in these structures, there may be some additional advantages of us-

ing the dual-scaling algorithm in comparison to the primal-dual interior point

method. As the cost of each iteration of dual-scaling algorithm is lower than the

primal-dual and this difference in computational cost may be more significant

in higher order constellations, a larger gap in computational cost graph between

primal-dual and dual-scaling algorithm might be observed.

• It was explained that for the first few iteration we use a step size α that is

greater than one. In this case Lemma 2 cannot guarantee that the updated
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primal variable is feasible and we have already accepted the risk of infeasibility.

It may be a direction for future work to consider the option of bigger step sizes,

especially if the structure of the SDP can be exploited to guarantee that the

updated primal and dual variables would be feasible.

• One other important point for future work is the channel matrix structure. We

don’t explore the structure of the channel to take an advantages of cases in

which the channel is constant over several channel uses. Finding a way to take

advantage of this could have a substantial impact on the computational cost of

the algorithm.

• One other direction of the further work is the implementation of these methods

either in a general purpose processor or in dedicated hardware. The comparison

of the performance and computational cost of these implementations, and their

comparison with existing implementations would be of considerable interests.
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Appendix A

Dual Problem

The derivation of the dual problem associated with the problem in (5.1) begins with

the Lagrangian, which can be written as

L(X,S,y) = Tr(CX)−
∑
i

(Tr(AiX)− ei)yi − Tr(SX). (A.1)

The Lagrangian dual function is defined as the infimum of (A.1) with respect to

the primal variable; i.e, g(y,S) = infX L(X,S,y). Since the Lagrangian in (A.1)

is a linear function of X, we can determine the minimizing (if there are any finite

minimizers) by finding the derivative and setting it equal to zero; i.e., ∂L(X,S,y)
∂X

= 0.

Using standard expressions from matrix calculus (e.g., Brewer, 1978), that results in

the equation

C−
∑
i

yiAi − S = 0. (A.2)
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Therefore, dual function can be written as

g(y,S) = inf
X
L(X,S,y) =

 eTy if C−
∑

i yiAi − S = 0

−∞ otherwise,
(A.3)

where e = [e1, e2, . . . , em].

Hence, the dual problem can be written as

max
y

eTy (A.4a)

s.t
m∑
i=1

yiAi + S = C, (A.4b)

S � 0. (A.4c)
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Appendix B

Connection of Different

Representations of Dual Variables

The KKT conditions of the problem in (4.33) are given in (4.36). These conditions

involve the variables of the dual of (4.33), which appears in (4.35). In order to connect

the variables of that dual problem (4.35) to the variables of the dual problem of the

problem in generic form in (5.7), we have

yT = [p`,−pu,−ν]T . (B.1)

which results in

S1 = Z, (B.2)

where S1 is the upper left block of matrix S.
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Appendix C

Dual Initial Point Using Positive

Semidefinite Constraint on S

There are a variety of ways in which the positive semidefinite constraint on S and

Gerschorin’s Theorem can be used to generate a feasible initial point for the dual-

scaling algorithm. Here we describe the approach used in our simulations.

As defined in Chapter 5, S is a block matrix of the form

S =


S1 0 0

0 S2 0

0 0 S3

 , (C.1)

where S2 and S3 are diagonal with elements dependent on {yi}, as stated in (5.28)

and (5.30). Gerschorin’s Theorem shows that each eigenvalue of a matrix lies at

least in one of the circles with center equal to diagonal elements of the matrix and

radius equal to summation of the row corresponding to that diagonal element. As our
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goal is to choose a strictly positive definite S, we would like to ensure that all of its

eigenvalues are positive. Therefore, the first result of the positive definite constraint

is to define the sign of each yi. This arises from the fact that the elements of the

diagonal matrices S2 and S3 are also eigenvalues of S. Considering (5.28) we have

 yi > 0 for 1 ≤ i ≤ 2Nt,

yi < 0 for 2Nt + 1 ≤ i ≤ 4Nt.

The second result is provided by applying Gerschorin’s Theorem to the first block of

S. Considering (5.30), we require

−(yi + y2Nt+i) >
∑
i 6=j

|Q̃ij| − Q̃ii. (C.2)

By adding positive slack variables, γ1,i > 0, that expression can be written as an

equality,

−(yi + y2Nt+i) =
∑
i 6=j

|Q̃ij| − Q̃ii + γ1,i. (C.3)

One way to find values for {yi} that satisfy (C.3) is to choose a unique constant

γ1 for all i. To do so we should find the i for which the Q̃ii is the smallest. If we let

` denote the i for which Q̃ii is the smallest, then we can write

−(yi + y2Nt+i) ≥
∑
i 6=j

|Q̃ij| − Q̃`` ≥
∑
i 6=j

|Q̃ij| − Q̃ii. (C.4)

Then we choose γ1 so that
∑

i 6=j |Q̃ij| − Q̃`` + γ1 > 0,∀j and impose the equality
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constraint

−(yi + y2Nt+i) =
∑
i 6=j

|Q̃ij| − Q̃`` + γ1. (C.5)

If we constrain the value for {yi} in this way, we can be sure that (C.2) holds for all i.

To find the specific values for yi and y2Nt+i that satisfy (C.5), we choose a non-negative

constant which we denote by γ2 and define γ3,i as γ3,i = γ2 + (
∑

i 6=j |Q̃ij| − Q̃`` + γ1).

Then we choose yi according to


yi =

∑
i 6=j |Q̃ij|+ γ2, for 1 ≤ i ≤ 2Nt,

yi = −(
∑

i 6=j |Q̃ij|+ γ3,i), for 2Nt + 1 ≤ i ≤ 4Nt,

yi = −(
∑

i 6=j |Q̃i,j| − Q̃i,i + γ2), for i = 4Nt + 1.

In our simulations we choose γ1 = 1 and γ2 = 1.
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