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Abstract

An important question in biology is the identification of functionally important sites

and regions in proteins. A variety of statistical phylogenetic models have been de-

veloped to predict functionally important protein sites, e.g. ligand binding sites or

protein-protein interaction interfaces, by comparing sequences from different species.

However, most of the existing methods ignore the spatial clustering of functionally im-

portant sites in protein tertiary/primary structures, which significantly reduces their

power to identify functionally important regions in proteins. In this thesis, we present

several new statistical phylogenetic models for inferring functionally important pro-

tein regions in which Gaussian processes or hidden Markov models are used as prior

distributions to model the spatial correlation of evolutionary patterns in protein ter-

tiary/primary structures. Both simulation studies and empirical data analyses suggest

that these new models outperform classic phylogenetic models. Therefore, these new

models may be useful tools for extracting functional insights from protein sequences

and for guiding mutagenesis experiments. Furthermore, the new methodologies devel-

oped in these models may also be used in the development of new statistical models

to answer other important questions in phylogenetics and molecular evolution.
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Chapter 1

Introduction

Because of the fast development of DNA sequencing technologies, the number of se-

quenced genomes is increasing exponentially. How to interpret massive sequence data

and extract useful information from them becomes a very important question in the

post-genomic era. Statistical models have been shown to be very powerful for infer-

ring functional information from biological sequences, because statistical principles

naturally model the uncertainty of the relationships between biological sequences and

functions. Among these statistical models for the inference of biological functions,

evolution based methods, e.g. statistical phylogenetic models, are particularly inter-

esting, because these methods are not only useful for predicting functions but also

provide a unified framework for understanding the relationships among sequences,

functions, and evolution. In this chapter, we will firstly introduce the existing works

which apply classic statistical phylogenetic models to infer functionally important

sites in coding sequences. Thereafter, we will discuss the common drawbacks of the

classic phylogenetic methods which may reduce their power of inferring functionally

important coding regions. Finally, we will briefly introduce several new statistical
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phylogenetic models which were designed to overcome the drawbacks of the classic

phylogenetic methods. These new models will be described in detail in later chapters.

In 1981, Joseph Felsenstein published a landmark paper (Felsenstein, 1981) in

which the framework of statistical phylogenetics was developed to infer phylogenies

using the maximum likelihood principle. In Felsenstein’s paper, a continuous-time

discrete-state Markov model was used to describe the evolutionary processes of DNA

sequences and a phylogenetic likelihood function was constructued by combining the

Markov model with a phylogenetic tree. In addition, an efficient algorithm, the prun-

ing algorithm (Felsenstein, 1981), also known as the sum-product (belief propagation)

algorithm in the machine learning literature (Bishop, 2007), was developed to calcu-

late the phylogenetic likelihood function. Parameters in the Markov model, banch

lengthes, and the topology of the phylogenetic tree can then be estimated by max-

imizing the phylogenetic likelihood function (Felsenstein, 1981). Even though the

statistical phylogenetic models were originally designed for inferring phylogenies, it is

relatively straightforward to apply similar models to infer natural selection acted on

biological sequences (Yang, 1998; Yang et al., 2000; Yang, 2006; Mayrose et al., 2004;

Glaser et al., 2003; Gu, 1999, 2001a, 2006). Because natural selection is related to bi-

ological functions, the inferred selection pressures provide insights on the functionally

important sites and regions in sequences. For example, if a protein region is under

strong purifying selection, most of the substitutions in the region are deleterious and

the region may be essential for the biological activity of the protein. In contrast, if

a protein region is under strong positive selection, many substitutions in the region

may convey fitness benefits and the region may contribute to the adaptation of the

organisms in a changing environment.

2
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Most of the existing phylogenetic methods for inferring functional coding sites

and regions are based on a series of highly cited papers published by Ziheng Yang

and colleagues (Yang, 1994; Yang et al., 2000; Yang and Nielsen, 2002). The basic

idea of these models is that we could firstly design a categorical distribution which

consists of multiple categories each of which describes the type and the magnitude of

natural selection potentially acting on a number of sites in an alignment. Then, we

could design a mixture model based on the categorical distribution and Felsenstein’s

phylogenetic likelihood function (Felsenstein, 1981) to model the evolution of the

observed alignment. Finally, we could use standard statistical inference machineries

designed for mixture models to infer the type and the magnitude of natural selection

acting on each site in the observed alignment. For example, if we use an amino acid

substitution model, e.g. the JTT model (Jones et al., 1992; Kosiol and Goldman,

2005), to describe the substitution processes of amino acids and a discrete Gamma

distribution (Yang, 1994) to model the variation of substitution rates across sites, we

could calculate the posterior distribution of substitution rate at each amino acid site

given a protein alignment, which in turn provides an approximate estimation of the

magnitude of purifying selection acting on each site. The Rate4Site program (Mayrose

et al., 2004) and the ConSurf web server (Glaser et al., 2003) use this idea to find

highly conserved protein sites which may have important functions. The idea can be

further generalized by assuming that substitution rates may be different in different

subfamilies in the phylogeny, which has been implemented in the DIVERGE program

to infer amino acids sites under functional divergence after gene duplication (Gu,

1999, 2001a, 2006).

While these existing models are useful, they inherit a number of drawbacks from

3



Ph.D. Thesis - Yifei Huang McMaster - Biology

the framework of mixture models. The biggest drawback is that they assume that

each site in the alignment is independent and identically distributed (i.i.d.). While

the i.i.d. assumption significantly simplifies the parameterizations and computational

implementations of the models, it is not compatible with the current knowledge in bi-

ology. For example, in the context of inferring conserved sites in a protein alignment,

the i.i.d. assumption implies that slowly evolved functionally sites are randomly dis-

tributed and do not form any spatial pattern in either the protein primary structures

or the protein tertiary structures. However, it is well known that functionally im-

portant sites tend to be clustered together in the protein tertiary/primary structures

and form functional regions instead of random sites. Therefore, the existing methods

based on the i.i.d. assumption have weak statistical power to identify functional re-

gions. The problem is further aggravated by the fact that homologous sequences are

typically very similar, which reduces the effective sample sizes in datasets. Therefore,

methods based on the i.i.d. assumption are vulnerable to over-fitting and may not be

able to infer selection pressures acting on sites accurately.

In this thesis, we will present several new statistical phylogenetic models for the

Bayesian inference of functionally important regions in protein tertiary/primary struc-

tures. These models combine prior distributions which can naturally capture the

spatial correlation of evolutionary patterns, e.g. substitution rates, in protein ter-

tiary/primary structures with Felsenstein’s phylogenetic likelihood function (Felsen-

stein, 1981) to infer functionally important protein regions. Both simulations and

focused case studies suggest that these new models are more powerful than the clas-

sic phylogenetic models based on the i.i.d. assumption in the context of inferring

functionally important regions in protein tertiary/primary structures. Therefore, we

4
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believe that these new models are useful tools for the in silico inference of function-

ally important protein regions and several techniques developed in these models, e.g.

the framework of phylogenetic Gaussian process models, may be used to study other

important questions in evolutionary biology and bioinformatics.

5



Chapter 2

Inferring Sequence Regions under

Functional Divergence in Duplicate

Genes

Huang, Y.-F, and Golding, G. B. (2012) Inferring sequence regions under functional

divergence in duplicate genes. Bioinformatics 28: 176–183.

2.1 Abstract

After gene duplication, some protein sites or regions may evolve at different substi-

tution rates in the two duplicate genes due to different natural selection pressures.

This phenomenon is known as type-I functional divergence. A number of statistical

phylogenetic methods have been proposed to identify type-I functional divergence in

duplicate genes by detecting heterogeneous substitution rates in phylogenetic trees. A

common disadvantage of the existing methods is that autocorrelation of substitution

6
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rates along sequences is not modeled. This reduces the power of existing methods

to identify regions under functional divergence. We design a phylogenetic hidden

Markov model to identify protein regions relevant to type-I functional divergence. A

C++ program, HMMDiverge, has been developed to estimate model parameters and

to identify regions under type-I functional divergence. Simulations demonstrate that

HMMDiverge can successfully identify protein regions under type-I functional diver-

gence unless the discrepancy of substitution rates between subfamilies is very limited

or the regions under functional divergence are very short. Applying HMMDiverge to

G protein α subunits in animals, we identify a candidate region longer than 20 amino

acids which overlaps with the α-4 helix and the α4-β6 loop in the GTPase domain

with divergent rates of substitutions. These sites are different from those reported by

an existing program, DIVERGE2. Interestingly, previous biochemical studies suggest

the α-4 helix and the α4-β6 loop are important to the specificity of the receptor-G

protein interaction. Therefore, the candidate region reported by HMMDiverge high-

lights that the type-I functional divergence in G protein α subunits may be relevant

to the change of receptor-G protein specificity after gene duplication. From these re-

sults, we conclude that HMMDiverge is a useful tool to identify regions under type-I

functional divergence after gene duplication. C++ source codes of HMMDiverge and

simulation programs used in this study, as well as example datasets, are available at

http://info.mcmaster.ca/yifei/software/HMMDiverge.html.

7
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2.2 Introduction

An important challenge in the post-genomic era is the identification of biological

sequences that contribute to functional divergence of duplicate genes. After gene du-

plication, homologous regions, e.g., protein motifs or protein domains, may evolve at

different rates between two duplicates because of the discrepancy of functional con-

straints acted on the two duplicates. Therefore, the difference of substitution rates

between two duplicate subfamilies can be used as a proxy of functional divergence,

which is referred to as type-I functional divergence (Gu, 1999) or rate-shifting (Ab-

himan and Sonnhammer, 2005a). Alternatively, substitution rates in both duplicate

genes may increase immediately after gene duplication due to relaxed functional con-

straints, but decrease at a late stage due to increased functional constraints. The

sequence regions or sites that are conserved within subfamilies but diverged between

them may be relevant to functional divergence, which is referred to as type-II func-

tional divergence (Gu, 1999, 2006), conservation-shifting (Abhiman and Sonnhammer,

2005a), or ‘constant but different’ (Gribaldo et al., 2003). A number of statistical

models have been proposed to detect protein regions or amino acid sites relevant to

functional divergence based on the heterogeneity of substitution rates in duplicate

genes (Gu, 1999, 2001b,a, 2006; Knudsen and Miyamoto, 2001; Marin et al., 2001;

Susko et al., 2002; Bielawski and Yang, 2003; Blouin et al., 2003; Knudsen et al., 2003;

Abhiman and Sonnhammer, 2005a; Nam et al., 2005; Arnau et al., 2006; Dorman,

2007; Neuwald, 2010; Pupko and Galtier, 2002). The idea of these existing methods is

to detect the discrepancy of substitution rates using an extended phylogenetic model

in which the substitution rates could be different between different branches.

8
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A common drawback of the existing methods is that any autocorrelation of substi-

tution rates along sequences is not modeled. Most phylogenetic methods assume every

site evolves independently. However, this simple assumption is frequently violated.

In a recent work, Callahan et al. (2011) performed a whole-genome level study on the

correlated evolution of nearby residues in Drosophilid proteins. A strong autocorrela-

tion was found between non-synonymous substitutions but not between synonymous

substitutions, which suggests autocorrelation at protein level (Callahan et al., 2011).

In addition, it has been found that positive selection varies between protein sec-

ondary structures (Ridout et al., 2010). Therefore, a number of neighboring pairs of

sites may show correlated substitution patterns, such as the correlated substitution

rates. Unfortunately, most existing methods for identifying functional divergence do

not model the autocorrelation of substitutions. Instead, independence of substitution

rates across sites is assumed in most of the existing methods (Gu, 1999, 2001a,b;

Knudsen and Miyamoto, 2001; Susko et al., 2002; Blouin et al., 2003; Knudsen et al.,

2003; Abhiman and Sonnhammer, 2005a,b; Gu, 2006; Dorman, 2007). These methods

may be useful to detect critical sites contributed to functional divergence, because

these critical sites may evolve independently in terms of spatial distribution. How-

ever, if substitution rates are autocorrelated along sequences, these methods may be

less powerful than a method which can model the autocorrelation correctly, because

the evolutionary signals in individual sites are very limited. In addition, these meth-

ods may not be able to correctly infer the boundaries of regions under functional

divergence. In a few studies, the autocorrelation of heterogeneous substitution rates

along sequences are considered but are detected by heuristic methods, such as the

sliding window method (Gao et al., 2005; Nam et al., 2005; Arnau et al., 2006). It

9
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has been argued that the sliding window method is not a desired method to study

the spatial distribution of evolutionary patterns. Firstly, failure to correct for the

multiple testing problem can lead to incorrect conclusions (Schmid and Yang, 2008).

Secondly, the resolution of the sliding window method is coarse, since the patterns

are averaged over multiple sites. Thirdly, a predefined window size typically needs to

be assigned before analyses and it is not clear how to define a universally optimized

window size. A short window may not be suitable to detect long regions with weak

signals in each site while a long window may ignore short regions with strong signals

in each site (Zhang and Townsend, 2009).

In this paper, we propose a phylogenetic hidden Markov model (phylo-HMM)

for identifying protein regions under type-I functional divergence, which explicitly

models the autocorrelation of substitution rates along sequences by a hidden Markov

model. A C++ program, HMMDiverge, has been developed to implement this phylo-

HMM. Simulations suggest HMMDiverge can efficiently identify protein regions under

functional divergence unless the discrepancy of substitution rates between subfamilies

is very weak or the regions relevant to functional divergence are very short. By

applying this method to G protien α subunits, we identify a candidate region longer

than 20 amino acids which may contribute to the diversity of receptor specificity in

G protein α subunits.

10
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2.3 Model and Implementation

2.3.1 Motivation of the Phylo-HMM

Consider a gene family in which the evolutionary relationships among members are

known. If the root of the phylogenetic tree corresponds to a duplication event, we

may divide the family into two subfamilies, i.e., subfamily 1 and subfamily 2, by

removing the root. After gene duplication, some regions may evolve at different rates

in the two subfamilies due to different functional constraints. To detect this het-

erogeneous pattern, a model should be able to capture at least two features: the

heterogeneity of substitution rates between two subfamilies and the autocorrelation

of substitution rates along sequences. Phylo-HMM (Siepel and Haussler, 2005, 2004)

is an extension of standard phylogenetic models which can naturally capture both of

these features (Yang, 1995; Siepel and Haussler, 2005). In phylo-HMM, the changes of

evolutionary patterns along alignments are described by an unobserved Markov chain,

which can be inferred from observed alignments. We design a simple phylo-HMM to

identify protein regions under type-I functional divergence in duplicate genes. We

focus on protein sequences rather than DNA sequences because a large number of

duplicate genes are so old that it is difficult to infer nucleotide substitution rates

accurately. Our phylo-HMM is similar to a phylo-HMM used for identifying DNA

sequences under lineage-specific selection (Siepel et al., 2006). However, there were

only two discrete substitution rate categories in this model (Siepel et al., 2006). This

simple assumption may not be flexible enough to describe rate variation very well.

Because the functional elements under diverged selection may be very short in pro-

teins, it is desirable to model the substitution rates with a higher resolution so that

11
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short regions with a strong discrepancy of substitution rates can be detected. In our

phylo-HMM, an arbitrary number of rate categories can be used by modeling the rate

variation with a discrete Gamma distribution.

2.3.2 Notation of the Phylo-HMM

To describe the phylo-HMM, we adopt a notation similar to that described by Siepel

and Haussler (2005). Formally, we define the proposed phylo-HMM to be a four-tuple,

θ = (R, ψ,A,b), consisting of a set of hidden states, R, a set of associated phyloge-

netic models, ψ, a one-step state transition matrix, A, and a vector of initial-state

probabilities, b (Siepel and Haussler, 2005). ψ determines the emission probabil-

ity, i.e., the probability that we observe a column in the alignment given a hidden

state. A and b specify the transition probabilities among hidden states and the initial

distribution of the hidden Markov chain.

2.3.3 Definition of Hidden States and Associated Phyloge-

netic Models

The first step in designing a phylo-HMM model is to define the set of hidden states, R,

and the set of associated phylogenetic models, ψ. We assume the substitution process

of amino acids can be described by a fixed continuous time-reversible Markov model.

We also assume the phylogenetic tree with branch lengths is known. To fully define the

phylogenetic models, we only need to know the relative substitution rates in branches,

which are used as scale factors to rescale corresponding branches. We assume the

substitution rate is a constant within each subfamily but the substitution rates can

be different between two subfamilies. In addition, we assume the rate variation can be

12
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r00 r11 r22

r10 r20 r21

r01 r02 r12

Original tree:

M0 :

M1 :

M2 :

Figure 2.1: The definition of hidden states and associated phylogenetic models.
In this simple example, k = 3. The tree topologies are exactly the same in all of
the hidden states, in which the left subtree corresponds to subfamily 1 while the
right subtree corresponds to subfamily 2. However, the two subtrees are rescaled by
different factors (relative substitution rates). In model groupM0, there is no difference
in terms of relative substituion rates. Therefore, there is no functional divergence in
this case. In model group M1, the substitution rate is higher in subfamily 1. In
model group M2, the substitution rate is lower in subfamily 1. There is functional
divergence in the last two cases.
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described by a discrete Gamma distribution with k substitution rate categories (Yang,

1994). We set the shape parameter, α, equal to the scale parameter, β, to ensure

that branch lengths can be interpreted as the expected number of substitutions per

site. We may define all the possible pairs of the k rate categories between the two

subfamilies to be the members in R, and the corresponding phylogenetic models to

be the members in ψ. Clearly there are k2 possible pairs of the k rate categories,

so there are totally k2 hidden states and k2 associated phylogenetic models. We

define rij as a hidden state, in which the substitution rate in subfamily 1 is in the

ith category and that in subfamily 2 is in the jth category. If i = j, the substitution

rates are equal between the two subfamilies. In this scenario, there is no difference in

terms of evolutionary constraints, so type-I functional divergence is not relevant. If

i > j, the substitution rate in subfamily 1 is higher than that in subfamily 2, which

implies type-I functional divergence. If i < j, the substitution rate in subfamily 1 is

lower than that in subfamily 2, which also implies type-I functional divergence but

the divergence is in the opposite direction. Therefore, we divide the members in R

into three state groups: M0 = {rij : i = j} in which there is no evidence of type-I

functional divergence, M1 = {rij : i > j} and M2 = {rij : i < j} in which there is

evidence of type-I functional divergence (Figure 2.1). The key goal of the phylo-HMM

is to infer the probability of each state group for each site.

2.3.4 Parameterization of State Transition Matrix and Initial

probability Vector

To probabilistically describe the spatial distribution of hidden states in the align-

ment, we adopt a hierarchical framework to specify the one-step transition matrix,

14
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Figure 2.2: The hierarchical parameterization of the one-step transition matrix. The
number of rate categories, k, is set to 3 in this example, because it is the simplest
non-trivial case. Nodes represent states or state groups while formulas beside arcs
represent one-step transition probabilities. A: transitions among three state groups
(M0, M1, and M2); B: transitions conditional on staying in M0; C: transitions con-
ditional on staying in M1; D: transitions conditional on staying in M2.
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A. Firstly, we can model the transitions among three state groups (M0, M1, and M2)

by a simple Markov chain (Figure 2.2A). This Markov chain describes switches be-

tween ‘type-I functional divergence relevant regions’ and ‘type-I functional divergence

irrelevant regions’. We assume (a) both the one-step transition probability from M0

to M1 and that from M0 to M2 are p0; (b) both the one-step transition probability

from M1 to M0 and that from M2 to M0 are p1; (c) one-step transitions between M1

and M2 are impossible and any transition between them must go through M0.

The three assumptions define a symmetric Markov chain, but this symmetric

Markov chain can only describe the transitions among three state groups. To fully

define the transition probabilities among k2 states, the transition process conditional

on staying in each state group must be defined. We use a strategy similar to that

described by Siepel and Haussler (2004). We introduce parameter λ0 to describe

the autocorrelation of states conditional on M0 (Figure 2.2B) and parameter λ1 to

describe the autocorrelation of states conditional on M1 (Figure 2.2C) or M2 (Fig-

ure 2.2D). The transition process within each state group is well defined by the two

autocorrelation parameters. Conditional on staying in a state group, with probability

λ0 (or λ1) the state in site i will be assigned to the same state in site i− 1 and with

probability 1−λ0 (or 1−λ1) it will be assigned to a state randomly drawn from all of

states in the same group with equal probabilities. By combining the transition prob-

abilities among state groups and transition probabilities among states conditional on

model groups, we can specify the unconditional transition probabilities between two

states in the same group. For example, the transition probabilities between two states
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in M0 can be defined to be

P (ri′j′ |rij) =



(1− 2p0) · (λ0 + 1−λ0

k
)

if rij, ri′j′ ∈M0 and rij = ri′j′ ,

(1− 2p0) · 1−λ0

k

if rij, ri′j′ ∈M0 and rij 6= ri′j′ .

(2.1)

In the products, the first components, 1 − 2p0, correspond to the probabilities of

staying in M0 and the second components, λ0 + 1−λ0

k
and 1−λ0

k
, correspond to the

transition probabilities between two states conditional on staying in M0. Similarly,

the transition probabilities between two states in M1 (or two states in M2) can be

defined to be

P (ri′j′ |rij) =



(1− p1) · (λ1 + 2(1−λ1)
k(k−1)

)

if rij, ri′j′ ∈M1 (M2) and rij = ri′j′ ,

(1− p1) · 2(1−λ1)
k(k−1)

if rij, ri′j′ ∈M1 (M2) and rij 6= ri′j′ .

(2.2)

The first components, 1− p1, correspond to the probabilities of staying in M1 or M2,

while the second components, λ1 + 2(1−λ1)
k(k−1)

and 2(1−λ1)
k(k−1)

, correspond to the transition

probabilities between two states conditional on staying in M1 or M2.

Based on this hierarchical structure, we can also specify the transition probabil-

ities between two states in different state groups. It is easy to show the stationary

probability of a state conditional on the corresponding state group is equal to one
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over the number of states in this group, i.e., 1
k

for M0 and 2
k·(k−1)

for M1 and M2 (Sie-

pel and Haussler, 2004). Therefore, when the hidden Markov chain transits from one

state group to another group, it is natural to draw one state from all of the states

in the new state group with equal probabilities as the new state. The transition

probabilities between two states in different state groups can be defined to be

P (ri′j′|rij) =



p0 · 2
k(k−1)

if rij ∈M0 and ri′j′ ∈M1 ∪M2,

p1 · 1
k

if rij ∈M1 ∪M2 and ri′j′ ∈M0.

(2.3)

In the products, the first components, p0 and p1, correspond to the transition probabil-

ities between two state groups, while the second components, 2
k(k−1)

and 1
k
, correspond

to the probabilities of randomly drawing a state from the new state group. Now, all

of the transition probabilities among k2 states are fully defined.

We define the initial-probability vector, b, to be the stationary distribution of

the one-step transition matrix, A. As shown in the Supplementary Material, the

stationary distribution is

π(rij) =


p1

(2p0+p1)k
if rij ∈M0,

2p0
(2p0+p1)(k−1)k

if rij ∈M1 ∪M2.

(2.4)

In summary, the phylo-HMM is fully parameterized by 5 free parameters (p0, p1, λ0,

λ1, and Gamma shape parameter, α).
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2.3.5 Computational Implementation

We used a model comparison method to test whether the alignment contains any

sequence region under type-I functional divergence. In our phylo-HMM, if p0 is equal

to 0 and p1 is a constant which is not equal to 0, the hidden Markov chain always

stays in M0 and our phylo-HMM degenerates to the model described by Siepel and

Haussler (2004) with two parameters (λ0 and Gamma shape parameter, α). This was

the null model in which the duplicate genes are not under functional divergence. The

full model with five parameters served as the alternative model. If the null model was

rejected, we concluded that the two subfamilies evolved at different rates and might

be relevant to functional divergence. We used a näıve empirical Bayesian framework

to estimate how likely a site is relevant to type-I functional divergence (Yang, 2006).

In this framework, parameters estimated in the full model were treated as true pa-

rameters and the posterior probability of each state group in each site was estimated

using the forward-backward algorithm (Durbin et al., 1998).

We have developed a C++ program, HMMDiverge, to implement the proposed

phylo-HMM. HMMDiverge was based on Bio++ (Dutheil et al., 2006), a set of li-

braries designed for phylogenetics and population genetics. In principle, the topology

and branch lengths of the phylogenetic tree should be considered as free parameters

and be estimated in the phylo-HMM. However, in practice it may be infeasible to

estimate so many parameters. A preliminary simulation suggested standard phylo-

genetic software, such as PhyML (Guindon and Gascuel, 2003), could infer the tree

topology and branch lengths with a high accuracy in the simulated data generated by

HMMDiverge, if the regions under functional divergence are not very long (data not

shown). Therefore, when we analyzed real data, we assumed the phylogenetic trees
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estimated by PhyML (Guindon and Gascuel, 2003) were true trees and fixed them in

HMMDiverge.

The JTT model (Jones et al., 1992) was used to describe the transitions among

amino acids and the number of rate categories, k, was set to 4. Maximum likeli-

hood method was used to estimate parameters given a protein tree and an alignment.

The emission probability, i.e., the probability of an observed column pattern in the

alignment given rij, was calculated by the pruning algorithm proposed by Felsenstein

(1981). The gaps were treated as ‘missing data’ or equivalently ambiguous amino

acids (Felsenstein, 1981). Then, the likelihood of the observed alignment was cal-

culated by the forward-backward algorithm (Durbin et al., 1998). Parameters were

estimated by maximizing the likelihood function using conjugate gradient method

with multiple initial values (Press et al., 1992), in which the derivatives are calcu-

lated numerically.

To identify regions under functional divergence, the marginal probability of each

state in each site was calculated by the forward-backward algorithm (Durbin et al.,

1998) using parameters estimated in the full model. The probability of each state

group was calculated by summing the probabilities of states in the group. We are

especially interested in the sites in which the probabilities of M1 or those of M2 are

very high, since these sites are likely to be located in regions under type-I functional

divergence.
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2.4 Simulation Study

2.4.1 Assumptions and Implementation of Simulations

To verify the usefulness and robustness of HMMDiverge, we performed a simulation

study. In general, we do not assume the proposed phylo-HMM captures all aspects of

functional evolution, because the real evolutionary process is too complicated to be

fully described by any model. However, a useful model should be powerful enough to

detect strong patterns even if the model itself is only a rough approximation of the

true mechanism. Therefore, the reference simulation datasets are based on a set of

assumptions which are simple but very different from those in HMMDiverge:

(a) Lengths of ‘type-I functional divergence relevant regions’ and ‘irrelevant re-

gions’ are both fixed rather than described by a Markov chain in each simulation. In

the reference simulations, five lengths (5 amino acids, 10 amino acids, 20 amino acids,

50 amino acids, and 100 amino acids) and three lengths (50 amino acids, 100 amino

acids, and 200 amino acids) were used for the ‘type-I functional divergence relevant

regions’ and ‘irrelevant regions’, respectively.

(b) ‘Type-I functional divergence relevant regions’ and ‘irrelevant regions’ are

distributed alternatively in alignments while the first region is always irrelevant to

functional divergence in every alignment. For a ‘functional divergence relevant region’,

one subfamily is randomly selected to be the subfamily that evolves at lower rate.

(c) In a ‘type-I functional divergence relevant region’, the branches in the slowly

evolved subfamily are rescaled by a constant, ρ1, and the branches in the rapidly

evolved subfamily are rescaled by another constant, ρ2 (ρ1 < ρ2). In the reference

simulations, three pairs of scale factors were used. In the first pair, ρ1 = 0.5 and
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ρ2 = 1.5, which corresponds to a weak discrepancy of substitution rates between two

subfamilies. In the second pair, ρ1 = 0.25 and ρ2 = 1.75, which corresponds to a

intermediate discrepancy of substitution rates. In the third pair, ρ1 = 0.125 and

ρ2 = 1.875, which corresponds to a strong discrepancy of substitution rates.

(d) The standard discrete Gamma mixture model is used to describe rate variation

across sites (Yang, 1994). We emphasize that the Gamma shape parameter, α, in the

simulations has a different meaning from the α in the phylo-HMM. In the reference

simulations, α was set to 0.5.

(e) The substitution process of amino acids is described by the JTT model (Jones

et al., 1992).

We have developed a C++ program to generate the simulation datasets. The

protein phylogenetic tree of a set of 30 G protein α subunits (see Figure A.1 in the

Supplementary Material) was used in the simulation, which will be described in more

detail in the section of Case Study of G Protein α Subunits. To explore parameter

space, we generated 20 alignments for each combination of the mentioned parameters

in the reference simulations. The length of each alignment was set to 420 amino acids,

which is the approximate length of the G protein α subunit alignment. Then, the

simulated alignments and the true phylogenetic tree were fed to HMMDiverge to esti-

mate parameters and the probabilities of state groups in all sites. If the probability of

M1 or that of M2 is higher than a given probability cutoff, the site may be considered

to be relevant to functional divergence. In this way, given a probability cutoff, we

get a binary classification which indicates whether a given site is relevant to func-

tional divergence. Comparing the classifications with the true states, we evaluated

the performance of HMMDiverge. Because the probability cutoff could significantly
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influence true positive rates and false positive rates, we summarized the results by

receiver operating characteristic (ROC) curves (Figure 2.3) generated by the ROCR

package (Sing et al., 2005).

2.4.2 Performance of HMMDiverge in Simulations

In the reference simulations, the performance of HMMDiverge is strongly influenced

by the discrepancy of substitution rates and the lengths of ‘functional divergence

relevant regions’ (Figure 2.3). If the discrepancy of substitution rates between two

subfamilies is very limited, i.e., the scale factors of branch lengths are 0.5 in the

slowly evolved subfamily and 1.5 in the rapidly evolved subfamily, the performance of

HMMDiverge is not very strong due to lack of sufficient signal, represented as ROC

curves very close to the main diagonals (Figure 2.3). However, if the discrepancy of

substitution rates is intermediate, i.e., the scale factors of branch lengths are 0.25

in the slowly evolved subfamily and 1.75 in the rapidly evolved subfamily, the per-

formance is fairly good unless the ‘type-I functional divergence relevant regions’ are

very short, e.g., 5 amino acids (Figure 2.3). If the discrepancy of substitution rates is

very strong, i.e., the scale factors are 0.125 in the slowly evolved subfamily and 1.875

in the rapidly evolved subfamily, the performance is even better (Figure 2.3). The

lengths of ‘functional divergence irrelevant regions’ also influence the performance but

are less important than the lengths of ‘functional divergence relevant regions’ and the

discrepancy of substitution rates (Figure 2.3). In summary, HMMDiverge can accu-

rately identify regions under type-I functional divergence unless the rate shift is very

limited or regions under functional divergence are very short. The results coincide

with our intuition that it is easier to identify long regions in which substitution rates
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are very different between two subfamilies and highlight that HMMDiverge may be a

useful tool to detect type-I functional divergence.

The reference simulations do not address whether the variability of substitution

rates across sites influences the performance of HMMDiverge. Therefore, we per-

formed two sets of additional simulations, in which all parameters were the same as

these in the reference simulations except the shape parameter, α. In the first set of

additional simulations, α was set to 0.2, which implied the substitution rates were

highly variable across sites. In this scenario, the performance of HMMDiverge is

quantitatively worse than that reported in the reference simulations (see Figure A.5

in the Supplementary Material). In contrast, in the second set of additional simula-

tions, α was set to 1.0, which suggested the variability of substitution rates across

sites was low. In this scenario, HMMDiverge performs better than that reported in

the reference simulations (see Figure A.6 in the Supplementary Material). The results

are fairly intuitive, because low variation means low noise, which in turn positively

influences the performance. Thus, the variability of substitution rates does indeed

influence the performance of HMMDiverge, but its influence is relatively small com-

pared to the discrepancy of substitution rates and the size of ‘functional divergence

relevant regions’.

DIVERGE2 (Zheng et al., 2007) is an existing program to identify ‘functional

divergence relevant sites’, in which independence of substitution rates across sites is

assumed. If evolutionary signals in individual sites are strong, ignoring the autocor-

relation of substitution rates along sequences may not significantly reduce the power

to detect sequence regions under type-I functional divergence. To compare the power

of DIVERGE2 with that of HMMDiverge in the context of detecting regions under
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Figure 2.3: The performance of HMMDiverge in the reference simulations. X axes
represent false positive rates while Y axes represent true positive rates. Each row
consists of the ROC curves of multiple simulations having the equal length of diver-
gence relevant regions (L1), which are 5 aa, 10 aa, 20 aa, 50 aa, and 100 aa, increasing
from top to bottom. Each column consists of the ROC curves of multiple simulations
having the equal length of divergence irrelevant regions (L2), which are 50 aa, 100
aa, and 200 aa, increasing from left to right. Three types of curves represent three
pairs of branch scale parameters. Dotted curves: the scale factor is 1.5 in the rapidly
evolved subfamily and 0.5 in the slowly evolved subfamily. Dashed curves: the two
scale factors are 1.75 and 0.25 respectively. Solid curves: the two scale factors are
1.875 and 0.125 respectively. The shape parameter α is 0.5 in all simulations.
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functional divergence, we applied the ‘Gu99’ method in DIVERGE2 to the align-

ments in the reference simulations. The ‘Gu99’ method is a fast method to identify

‘type-I functional divergence relevant sites’, which gave similar results as the more

advanced ‘Gu2001’ method (Gu, 2001a). As shown in Figure A.7, A.8, and A.9 in the

Supplementary Material, seldom can DIVERGE2 identify sites in ‘type-I functional

divergence relevant regions’, since the ROC curves of DIVERGE2 are very close to

the main diagonals. Therefore, at least in the reference simulations, HMMDiverge is

more powerful than DIVERGE2.

To compare the performance of HMMDiverge with that of DIVERGE2 in the con-

text of identifying individual sites under functional divergence, we performed the third

set of additional simulations. The simulations adopted the same set of assumptions

as the reference simulations. However, the length of ‘functional divergence relevant

regions’ was set to 1, which implies that individual sites rather than regions are units

of functional divergence. Three lengths, 19, 9, and 4, were used for ‘functional diver-

gence irrelevant regions’. Besides, six pairs of branch scale factors were used (0.5 vs

1.5, 0.25 vs 1.75, 0.125 vs 1.875, 0.1 vs 5.0, 0.1 vs 10.0, and 0.1 vs 15.0). In the first

three pairs, evolutionary signal in each site is weak while in the last three pairs it is

strong. The Gamma shape parameter, α, was set to 0.5. In total, 18 combinations

of parameters were examined. 20 alignments were generated for each combination of

parameters and then both HMMDiverge and DIVERGE2 were used to identify sites

under type-I functional divergence. As shown in Figure A.10 and A.11 in the Sup-

plementary Material, the power of HMMDiverge is very close to that of DIVERGE2

in the context of identifying individual sites under type-I functional divergence.
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2.5 Case Study of G Protein α Subunits

2.5.1 Parameter Estimation in G Protein α Subunits

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are a family of pro-

tein complexes important to signal transduction (Kaziro et al., 1991; Neer, 1995).

There are three subunits in a typical G protein, a Gα subunit, a Gβ subunit, and

a Gγ subunit (Lambright et al., 1994; Cabrera-Vera et al., 2003). The Gα subunits,

which have GTPase activity, are key factors in signal transduction pathways relevant

to heterotrimeric G proteins (Kaziro et al., 1991; Neer, 1995). Based on sequence

similarities, Gα can be divided into four major subfamilies: Gs alpha, Gio alpha, Gq

alpha, and G12 alpha (Simon et al., 1991; Kaziro et al., 1991). Zheng et al. (2007)

studied the functional divergence of Gα subunits in animals using their software, DI-

VERGE2, and detected a number of candidate sites under type-I or type-II functional

divergence after the splitting of Gq alpha subunits and Gs alpha subunits.

However, DIVERGE2 assumes substitution rates are not autocorrelated along

sequences. Thus, it is highly desirable to reanalyze the functional divergence in G

protein α subunits using HMMDiverge and check whether the phylo-HMM could

uncover any new evidence on the functional divergence of G protein α subunits. We

therefore reanalyzed the data provided by Zheng et al. (2007) and compared the

results from HMMDiverge with the results reported by Zheng et al. (2007).

We downloaded the 16 Gq alpha protein sequences and 14 Gs alpha protein se-

quences analyzed by Zheng et al. (2007) from NCBI. To be consistent with the nota-

tion in the previous sections, Gq alpha class is labeled as subfamily 1 while Gs alpha

class is labeled as subfamily 2. MUSCLE (Edgar, 2004) was used to align the 30
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Table 2.1: Estimation of parameters in G protein α subunits.

Parameter Est. in null model Est. in alternative model
p0 0 ∗ 0.0311
p1 - 0.153
λ0 0.858 0.944
λ1 - 2.03× 10−5

α 0.808 0.771
Log likelihood −4824.28 −4813.52

∗: fixed parameters; -: unused parameters.

protein sequences. A maximum likelihood tree (see Figure A.1 in the Supplementary

Material) was reconstructed by PhyML (Guindon and Gascuel, 2003) with the JTT +

Γ model. The maximum likelihood tree is essentially the same as the neighbor-joining

tree reported by Zheng et al. (2007), which can be divided into two subfamilies, Gq

alpha subunits and Gs subunits (see Figure A.1 in the Supplementary Material). We

rooted the phylogenetic tree at the middle of the longest path. Then, the maximum

likelihood tree and the alignment were fed to HMMDiverge to estimate parameters

and log likelihoods in both the null and the alternative (full) model. As shown in

table 2.1, the log likelihood ratio of the alternative model and the null model is 21.5.

Hypothesis testing was performed by a parametric bootstrap. We generated 1000

alignments based on the parameters estimated in the null model and HMMDiverge

was applied to these alignments. We do not find any log likelihood ratios larger than

21.5 in the 1000 simulations (see Figure A.2 in the Supplementary Material). There-

fore, the null model can be rejected and we conclude Gq subfamily and Gs subfamily

are functionally diverged. The same conclusion is attained by performing a likelihood

ratio test in which we assume the log likelihood ratio follows χ2 distribution with 3
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degrees of freedom (p < 0.001). We found that the χ2 test is more conservative than

the parametric bootstrap (data not shown).

2.5.2 Identification of Regions under Functional Divergence

We can gain more insights on functional divergence by identifying the locations of

the sequence regions relevant to functional divergence. The site-specific probabilities

of the three model groups (M0, M1, and M2) can be calculated by HMMDiverge

(Figure 2.4). To choose a reasonable cutoff for classifying sites, we generated 50

simulated alignments using parameters estimated in the full model and then applied

HMMDiverge to these alignments. The ROC curve is shown in Figure A.3 in the

Supplementary Material. We empirically choose 0.8 as the probability cutoff. In

this case, the false positive rate is 1.6% while the true positive rate is 48.2% (see

Figure A.3 in the Supplementary Material). This cutoff is relatively conservative

because typically we are less tolerant to false positives than false negatives.

As shown in Figure 2.4, we do not find evidence of type-I functional divergence

in most sites, since neither probabilities of M1 nor those of M2 are higher than the

cutoff, 0.8, in most of sites. However, two regions do show evidence of functional

divergence. The first region consists of site 80 and site 81. In this region, M2 is

strongly supported, which suggests the two sites evolve faster in Gs class. More

interestingly, the second candidate region, in which M1 is highly supported, is fairly

long, ranging from site 364 to 386. As suggested by our simulations, HMMDiverge

might not be able to identify short regions very well, so we focus on the second region.
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Figure 2.4: The site-specific prediction for type-I functional divergence in G protein
α subunits. The X axis represents locations of sites, while the Y axis represents the
probability of each model group. Red dots represent model group M1 and blue dots
represent model group M2.

Deeper insights on molecular adaptation can be gained by the combination of evo-

lutionary evidence and structure information (Golding and Dean, 1998). We down-

loaded Protein Data Bank (PDB) entry 1AZS, which contains the Gs alpha subunit

in Bos taurus, and then mapped the second candidate region onto chain C in PDB

entry 1AZS using Jalview (Clamp et al., 2004). The second candidate region overlaps

with the α4-helix and the α4-β6 loop (see Figure A.4 in the Supplementary Mate-

rial). Experimental studies have suggested both the α4-helix and the α4-β6 loop are

critical to mediating receptor-G protein specificity (Cabrera-Vera et al., 2003; Bae

et al., 1997, 1999; Lee et al., 1995). The sequence region under functional divergence

predicted by HMMDiverge may imply that functional divergence of receptor-G pro-

tein specificity after the splitting of Gq subfamily and Gs subfamily is related to the

change of functional constraints in the α4-helix and the α4-β6 loop.
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2.5.3 Comparison with Previous Studies

To gain some insights on how modeling the autocorrelation of evolutionary patterns

along sequences influences prediction, we compared the sites predicted by HMMDi-

verge to those reported by DIVERGE2 (Zheng et al., 2007). Both site 80 and site

81 in the first candidate region predicted by HMMDiverge were identified by DI-

VERGE2 as well. However, DIVERGE2 only identified sites 362, 374, and 376 close

to the second candidate region. The inability of DIVERGE2 to identify most of the

sites in the second candidate region reported by HMMDiverge might be due to the

weak evolutionary signal per site in this region. In turn, for the 25 sites under type-I

functional divergence reported by DIVERGE2, 20 sites are not related to the candi-

date regions reported by HMMDiverge. The 20 sites may contain strong evolutionary

signal so that DIVERGE2 can detect them. However, these individual sites may

be too short to be detected by HMMDiverge, because the parameters estimated by

HMMDiverge may mostly reflect the patterns in the long regions under functional

divergence. Therefore, DIVERGE2 and HMMDiverge may uncover different aspects

of type-I functional divergence after duplication. DIVERGE2 may be more powerful

to detect scattered critical amino acids relevant to type-I functional divergence. In

contrast, HMMDiverge may be more powerful to detect regions under divergence, and

may be able to find the boundaries of these regions. Nevertheless, the long regions

reported by HMMDiverge, e.g., the second candidate region, may more likely be re-

lated to functional divergence, since the parallel shift of substitution rates in multiple

sites in a region is strong evidence of functional divergence.
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2.6 Discussion

Here we report a customized phylo-HMM for identifying protein regions under type-

I functional divergence. A C++ implementation of this phylo-HMM, HMMDiverge,

has been developed. Given an alignment and a phylogenetic tree, HMMDiverge firstly

estimates parameters by maximum likelihood estimation and then decodes the prob-

abilities of underlying state groups by treating estimated parameters as true param-

eters. This is a näıve Bayesian method (Yang, 2006). In the case study of G protein

α subunits, HMMDiverge needs about 1 cpu hour to finish the analysis. Therefore,

it is fast enough to perform whole genomic analyses.

Extensive simulations have been performed to test HMMDiverge. As shown in

Figure 2.3, HMMDiverge can identify candidate regions under type-I functional di-

vergence unless the discrepancy of substitution rates between two subfamilies is very

limited or the regions relevant to type-I functional divergence are very short, both of

which suggest that the pattern of functional divergence is weak. Because the simu-

lated datasets were generated by a set of assumptions different from the assumptions

in the phylo-HMM, the phylo-HMM may be a robust method to identify regions un-

der functional divergence. In the case study of G protein α subunits, HMMDiverge

detected a long candidate region under type-I functional divergence. This long region

may be important to the specific receptor-G protein interaction based on existing

biochemical evidence (Cabrera-Vera et al., 2003; Bae et al., 1997, 1999; Lee et al.,

1995). Most of the sites within this candidate region have not been identified by

DIVERGE2, an existing program for functional divergence, which suggests HMMDi-

verge can identify some new candidates under functional divergence. In addition, the

regions reported by HMMDiverge may not include the sites identified by DIVERGE2,
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because the former concentrates on regions while the latter examines only sites. We

believe HMMDiverge is a useful supplement to existing methods for identifying regions

under functional divergence. New insights can be gained by applying HMMDiverge

to real data as we have shown in the case study of G protein α subunits.
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Chapter 3

Phylogenetic Gaussian Process

Model for the Inference of

Functionally Important Regions in

Protein Tertiary Structures

Huang, Y.-F, and Golding, G. B. (2014) Phylogenetic Gaussian Process Model for

the Inference of Functionally Important Regions in Protein Tertiary Structures. PLoS

Computational Biology 10: e1003429.

3.1 Abstract

A critical question in biology is the identification of functionally important amino acid

sites in proteins. Because functionally important sites are under stronger purifying

selection, site-specific substitution rates tend to be lower than usual at these sites.
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A large number of phylogenetic models have been developed to estimate site-specific

substitution rates in proteins and the extraordinarily low substitution rates have been

used as evidence of function. Most of the existing tools, e.g. Rate4Site, assume that

site-specific substitution rates are independent across sites. However, site-specific

substitution rates may be strongly correlated in the protein tertiary structure, since

functionally important sites tend to be clustered together to form functional patches.

We have developed a new model, GP4Rate, which incorporates the Gaussian process

model with the standard phylogenetic model to identify slowly evolved regions in

protein tertiary structures. GP4Rate uses the Gaussian process to define a nonpara-

metric prior distribution of site-specific substitution rates, which naturally captures

the spatial correlation of substitution rates. Simulations suggest that GP4Rate can

potentially estimate site-specific substitution rates with a much higher accuracy than

Rate4Site and tends to report slowly evolved regions rather than individual sites.

In addition, GP4Rate can estimate the strength of the spatial correlation of sub-

stitution rates from the data. By applying GP4Rate to a set of mammalian B7-1

genes, we found a highly conserved region which coincides with experimental evi-

dence. GP4Rate may be a useful tool for the in silico prediction of functionally

important regions in the proteins with known structures.

3.2 Introduction

An important question in biology is the identification of functional residues in pro-

teins. This information can help us understand the relationship between protein
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structures and functions as well as guide us to design new proteins by genetic engi-

neering. However, experimental techniques for identifying functional sites, e.g. muta-

genesis, are time consuming and expensive, which prohibits the brute force scanning

of functional sites by experiments. Therefore, bioinformatics tools are useful, because

they can narrow down the candidate sites for experimental investigation. Evolution

operates similar to a high-throughput mutagenesis experiment: spontaneous muta-

tions introduce protein variants in each generation and then the functional effects of

the spontaneous mutations are “measured” by natural selection (Kumar et al., 2011).

Therefore, protein sequences contain signatures of natural selection which reflect the

functions of amino acid residues. For example, mutations at the functionally impor-

tant sites tend to disrupt the proteins’ normal functions, so these sites usually are

more conserved than unimportant ones. If the sequences of a family of homologous

proteins can be collected from multiple species, we may compare these sequences to

infer which sites are more important than others.

A number of bioinformatics tools based on phylogenetics have been developed to

infer functional sites by the simple idea that functionally important amino acid sites

tend to be more conserved than unimportant ones (Lichtarge et al., 1996; Dean and

Golding, 2000; Madabushi et al., 2002; Simon et al., 2002; Innis et al., 2004; Mayrose

et al., 2004; Nimrod et al., 2005; Capra and Singh, 2007; Goldenberg et al., 2009;

Ashkenazy et al., 2010). Given the multiple sequence alignment and the phyloge-

netic tree of a protein family, these phylogenetic methods can infer the amino acid

substitution rate at each site in the alignment and an unusually low substitution

rate implies that the site is functionally important. It has been shown that the pre-

dicted conserved sites coincide with experimental evidence, which confirms that these
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bioinformatics tools are useful.

However, these existing methods are far from flawless. Most of the popular meth-

ods, e.g. Rate4Site (Mayrose et al., 2004) used in the ConSurf web server (Ashkenazy

et al., 2010), assume that the substitution rates are independent across sites. In statis-

tical terms, this means that the sites in the alignment are independent and identically

distributed (i.i.d.). The i.i.d. assumption simplifies the statistical modeling, but it

is unrealistic from the viewpoint of biology. The i.i.d. assumption implies that the

slowly evolved functional sites are randomly distributed in the protein tertiary struc-

ture. In contrast, it is well known that functionally important sites tend to be close

to each other in the protein tertiary structure and form functional regions, e.g. ligand

binding sites or catalytic active sites. Clearly the i.i.d. assumption is inappropriate if

a functional region consists of a number of sites.

Several methods have been developed to incorporate the spatial correlation of

evolutionary patterns, e.g. substitution rates at the protein level or dN/dS ratios

at the codon level, to overcome the drawbacks of the i.i.d. assumption (Dean and

Golding, 2000; Simon et al., 2002; Suzuki, 2004; Berglund et al., 2005; Nimrod et al.,

2005; Liang et al., 2006; Tusche et al., 2012; Watabe and Kishino, 2013). Most of these

methods use a sliding window framework, in which the amino acid substitution rate

or the dN/dS ratio at a focal site is approximated by the average substitution rate in a

set of neighbor sites in the protein tertiary structure (Dean and Golding, 2000; Suzuki,

2004; Berglund et al., 2005). A site is considered to be a neighbor of the focal site if

the Euclidean distance between the two sites is smaller than a predefined window size.

Unfortunately, these sliding window methods also have intrinsic drawbacks. Firstly, in

most, if not all, of sliding window methods the neighbor sites, including the focal site
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itself, are weighted equally in the inference of the substitution rate. However, clearly

the focal site itself contains more information on its substitution rate than the sites

near the boundary of the sliding window. Secondly, it is unclear how to determine

the optimal window size (Huang and Golding, 2012; Zhang and Townsend, 2009).

If the window size is too large, there will be too many distant sites in the window,

which could bias the estimation at the focal site. In contrast, if the window size is too

small, the sliding window methods will not be able to capture the spatial correlation

of substitution rates and may lead to overfitting. Furthermore, there is evidence that

the optimal window sizes may vary among different protein families (Suzuki, 2004).

Very recently, a Bayesian model which combines the Potts model in statistical

physics and the phylogenetic model has been proposed by Watabe and Kishino to

infer protein patches under positive selection in protein tertiary structures (Watabe

and Kishino, 2013). In Watabe and Kishino’s model, the Potts model is used to

define a prior distribution of dN/dS ratios over a protein tertiary structure. This

model solved many problems of the sliding window framework. However, the prior

distribution in Watabe and Kishino’s model is unnormalized (Watabe and Kishino,

2013), which makes it difficult to design efficient algorithms to estimate hyperparam-

eters. An advanced algorithm, thermodynamic integration (Lartillot and Philippe,

2006), was used in Watabe and Kishino’s model to infer hyperparameters. However,

the algorithm may be very inefficient, especially if there are many hyperparameters

in the Potts model.

Here we propose to incorporate a Gaussian process with the phylogenetic model

to overcome the drawbacks of the existing methods. The Gaussian process has been
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widely applied in geostatistics and machine learning to capture the spatial correla-

tion of interesting features (Banerjee et al., 2004; Rasmussen and Williams, 2005).

Here we will briefly introduce the basic idea of the Gaussian process. More details

of the Gaussian process and its applications can be found in the geostatistics and

machine learning literature, e.g. (Banerjee et al., 2004). A Gaussian process defines

a probability distribution over functions, namely that a single sample point of the

Gaussian process is a function over a space, e.g. a 3D space. Because the sample

points of the Gaussian process are “smooth” functions, the Gaussian process encodes

an intrinsic spatial correlation. Thus physically closely located points in the space are

more likely to have similar function values. Therefore, the Gaussian process is very

useful for defining prior distributions over spatially correlated patterns. For exam-

ple, in this paper we are interested in modeling the spatial correlation of site-specific

substitution rates in protein tertiary structures. If we image each residue in a protein

tertiary structure as a single point in the 3D space, the Gaussian process can be used

to define a prior distribution of site-specific log substitution rates over these points

(residues). The “smoothness” property of Gaussian process prior suggests that two

physically closely located sites are more likely to have similar site-specific log substi-

tution rates than two distantly located sites. Then, the Gaussian process prior can

be combined with standard phylogenetic likelihood functions (Felsenstein, 1981) to

infer site-specific substitution rates from real data.

We name this kind of hybrid model of Gaussian processes and phylogenetics as

a phylogenetic Gaussian process model (Phylo-GPM). In the Phylo-GPM frame-

work, the spatial correlation of substitution rates can be naturally described and the

strength of spatial correlation can be learned from the data. Therefore, it overcomes
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the common drawback of the sliding window methods that the window size must

be manually specified. Unlike Watabe and Kishino’s model (Watabe and Kishino,

2013), the phylogenetic Gaussian process model uses a normalized prior, so simple al-

gorithms, i.e. the widely used Metropolis algorithm (Metropolis et al., 1953; Hastings,

1970), can be used to efficiently infer hyperparameters. We have developed software,

GP4Rate, based on the Phylo-GPM framework. In both simulated and real datasets,

GP4Rate outperforms Rate4Site, a widely used tool based on the i.i.d. assumption.

Therefore, GP4Rate may be a useful tool for the identification of functionally impor-

tant sites.

3.3 Results

2D Toy Protein Simulations

Simulations were implemented to evaluate the performance of GP4Rate and to com-

pare it with the widely used software, Rate4Site (Mayrose et al., 2004). In the com-

parisons, Rate4Site is used as a representative of the classic phylogenetic models which

use the discrete Gamma distribution to describe the variation of substitution rates

across sites (Yang, 1994) but do not consider the spatial correlation of site-specific

substitution rates in the protein tertiary structure. Because the true site-specific

substitution rates are known in the simulated alignments, the estimated site-specific

substitution rates can be compared with the true rates to evaluate the performance of

the two methods. We generated two sets of simulated alignments based on different

assumptions. In this and the next section, we will describe the first set of simulations

which were based on a 2D toy protein structure. Thereafter we will describe the
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Figure 3.1: The phylogenetic tree used in all simulations and an example of 2D toy
protein structure. (A) the phylogenetic tree used in all simulations; (B) a 5 by 5 2D
toy protein. In the phylogenetic tree, there are 4 species and all branch lengths are
equal to 0.2 substitution per site. In the example of 2D toy protein, there are 25
amino acids which are dots in a 5 by 5 2D grid. Lines between dots correspond to the
“covalent bounds” between amino acid residues. A larger 20 by 20 2D toy protein
with 400 residues is used in the 2D toy protein simulations.

second set of simulations which were based on more realistic assumptions.
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To generate simulated alignments, we need a phylogenetic tree to describe the evo-

lutionary relationship between simulated sequences, a protein structure to calculate

the pairwise Euclidean distances between sites, a substitution model, and a vector of

substitution rates. Note that the following discussions will be mainly based on the

substitution rates rather than their log values. A simple phylogenetic tree was used in

all simulations (Figure 3.1A). The tree consisted of four sequences and all the branch

lengths were equal to 0.2 substitution per site. Because the total branch length was

equal to 1 substitution per site, on average an amino acid site only contained a single

substitution. Therefore, the accurate estimation of substitution rate at a single site

is challenging. The JTT substitution model (Jones et al., 1992; Kosiol and Gold-

man, 2005) was used in all simulations. Note that the protein tertiary structure and

the vectors of substitution rates used in the two sets of simulated alignments were

different and will be described in detail below.

In the 2D toy protein model, the protein tertiary structure was described by a

20 by 20 regular 2D grid, in which each dot corresponds to an amino acid in the toy

protein structure (Figure 3.1B). In addition, we assumed that the distance between

adjacent sites in the 2D grid is equal to 5 Å. This distance is comparable to the

average distance between α-carbon atoms of the physically interacting residues in

real proteins. Even though the 2D toy protein model is artificial and no real protein

has a similar structure, it is useful because the estimated site-specific substitution

rates can be easily visualized by a heatmap (Figure 3.2). Therefore, we used the 2D

toy protein model to check the correctness of the program and to get insights on the

performance of GP4Rate.

Two different spatial configurations of site-specific substitution rates were used in
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the 2D toy protein simulations. In the first configuration, the 20 by 20 grid was divided

into 4 non-overlapping blocks, each of which was a 10 by 10 grid (Figure 3.2A). Sites

within a block had the same substitution rates but different blocks could have different

substitution rates. Two substitution rates, 0.2 and 1.8, were used for simulations

and the substitution rates of blocks were alternatively arranged in the 2D protein

structure (Figure 3.2A). Therefore, the toy proteins consisted of two conserved blocks

with low substitution rates (0.2) and two variable blocks with high substitution rates

(1.8). The second configuration was similar to the first one, but the sizes of non-

overlapping blocks were 5 by 5 instead of 10 by 10 (Figure 3.2B). Twenty simulated

alignments were generated for each configuration of site-specific substitution rates. It

is easy to notice that the average site-specific substitution rate is equal to 1 in both

configurations.

A program based on Bio++ (Dutheil et al., 2006; Gueguen et al., 2013) was de-

veloped to implement the simulations. For each simulated alignment, we ran two

separate MCMC chains using GP4Rate to estimate site-specific substitution rates.

For each MCMC chain, 106 iterations were implemented and the trace plots of the

MCMC outputs were monitored to ensure the convergence of the MCMC chains.

The first 30% of the iterations were discarded as burn-in. Then, the two chains were

combined to calculate the average substitution rate at each site. To compare the

performance of GP4Rate with that of Rate4Site, we also used Rate4Site to estimate

the substitution rates. To make the results of GP4Rate and Rate4Site more compa-

rable, the phylogenetic tree and branch lengths were fixed to the true values in both

GP4Rate and Rate4Site.

We firstly randomly sampled two simulated alignments, one for each configuration,
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Figure 3.2: The visualization of the estimated site-specific substitution rates in
the 2D toy protein simulations. The heatmaps are based on two randomly selected
alignments, one for each configuration. The substitution rates in the heatmaps are
arranged according to the toy 2D protein structure. (A, B) the true substitution
rates in the first and second configurations, respectively; (C, D) the substitution
rates estimated by GP4Rate in the first and second configurations, respectively; (E,
F) the substitution rates estimated by Rate4Site in the first and second configurations,
respectively.
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as examples to get insights on the performances of GP4Rate and Rate4Site. As shown

in Figure 3.2C and 3.2D, the site-specific substitution rates estimated by GP4Rate

are smoothly distributed within the 2D protein structures. In addition, GP4Rate

segments the 2D protein structures into blocks which correspond to the true patches

with different substitution rates. In contrast, the spatial distributions of substitution

rates estimated by Rate4Site are far from smooth. The sites with similar substitution

rates are not clustered together and do not form clearly bounded patches (Figure 3.2E

and 3.2F). Thus, GP4Rate can capture the spatial correlation of substitution rates

but Rate4Site cannot.

3.3.1 Quantitative Evaluation of Different Models

To quantitatively evaluate the performance of GP4Rate and Rate4Site, we used re-

ceiver operating characteristic (ROC) curves to measure the power of the two meth-

ods. ROC curves are widely used to evaluate the accuracy of binary classifiers. The

area under a ROC curve is usually used as a measure of the power of the correspond-

ing method. To apply ROC curves to the simulated datasets, we must divide the

amino acid sites into two categories, functional sites and nonfunctional sites, before

generating simulated alignments. The functional sites are used as true positives while

the nonfunctional sites are used as true negatives. In the 2D toy protein simulations,

functional sites evolved at the lower rate (0.2) while nonfunctional sites evolved at

the higher rate (1.8). Then, the ROC curves were created by plotting the average

true positive rates versus the average false positive rates using the ROCR library in

R (Sing et al., 2005). As shown in Figure 3.3A and 3.3B, the areas under the ROC

curves generated by GP4Rate are larger than those generated by Rate4Site, which
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suggests that GP4Rate outperforms Rate4site.

ROC curves measure whether a model can distinguish slowly evolved functional

sites from the other sites. If a model can assign relatively low substitution rates

to slowly evolved sites and relatively high rates to the other sites, it will perform

well in the evaluations based on ROC curves. However, ROC curves cannot capture

potential systematic biases of the model. For example, if the model adds a constant

bias to the site-specific substitution rates, its ROC curves will be exactly the same

regardless of the magnitude of the constant bias. Therefore, we used a simple loss

function complementary with the ROC curves to capture any potential systematic

biases of the estimated site-specific substitution rates. The loss function is defined

by the following formula

Loss(Φ̂,ΦTrue) = ΣN
i=1(Φ̂i − ΦTrue

i )2, (3.1)

in which N is the total number of sites in the alignment, while ΦTrue
i and Φ̂i are

the true and estimated log substitution rates at site i, respectively. The log values

of site-specific substitution rates are used in the right-hand side of Equation 3.1,

since we want to emphasize the differences between low substitution rates. It is

desirable because both GP4Rate and Rate4Site were designed to detect conserved

regions with low substitution rates. Unlike ROC curves, a model which introduces a

larger systematic bias will have a higher average loss than a model which introduces

a smaller bias.

We plotted the losses of both GP4Rate and Rate4Site in the 2D toy protein

simulations. As shown in Figure 3.3C and 3.3D, GP4Rate outperforms Rate4Site, as

evident by the lower losses produced by GP4Rate (paired Wilcoxon test, p values <
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Figure 3.3: The quantitative comparison of GP4Rate and Rate4Site in the 2D toy
protein simulations. (A) the ROC curves of GP4Rate and Rate4Site in the first config-
uration; (B) the ROC curves of GP4Rate and Rate4Site in the second configuration;
(C) the losses of GP4Rate and Rate4Site in the first configuration; (D) the losses of
GP4Rate and Rate4Site in the second configuration. In the ROC curves, the solid
lines correspond to the performance of GP4Rate while the dotted lines correspond
to the performance of Rate4Site. In the plots of losses, each point corresponds to a
simulated alignment. The losses of the two methods are calculated by Equation 3.1.
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10−6 for both of the two configurations). The improved accuracy originates from

GP4Rate’s ability to model the spatial correlation of site-specific substitution rates,

since the performance gap between GP4Rate and Rate4Site becomes smaller in the

second configuration which consists of smaller conserved and variable patches.

GP4Rate has two hyperparameters, i.e. the characteristic length scale l and the

signal standard deviation σ, which model the strength of spatial correlation of sub-

stitution rates and the marginal variation of substitution rate at a single site, re-

spectively. An advantage of GP4Rate over the sliding window methods is that the

hyperparameters can be learned from the data. In contrast, the window size of the

sliding window methods must be predefined before analyses. To show that GP4Rate

can learn the hyperparameters from the data, we plotted the estimated median hyper-

parameters of the simulated alignments. As shown in Figure 3.4A, the characteristic

length scales l estimated in the first configuration are about 3 fold larger than those

estimated in the second configuration. Because the patches are much larger in the

first configuration, the result suggests that GP4Rate can learn the magnitude of the

spatial correlation of substitution rates from the data. The estimated signal standard

deviations σ in the two configurations are similar, which matches the intuition that

the two configurations are similar except in the strength of spatial correlations of

substitution rates.

In summary, when spatial correlation of substitution rates exists in proteins,

GP4Rate always outperforms Rate4Site. However, the spatial correlation of site-

specific substitution rates may be insignificant in some proteins. Therefore, we also

evaluated both GP4Rate and Rate4Site in simulated alignments in which the spatial

correlation of site-specific substitution rates is absent. These simulated alignments
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Figure 3.4: The hyperparameters estimated by GP4Rate in the 2D toy protein
simulations. The unit of the characteristic length scale is Å while the signal standard
deviation is unitless. (A) the estimated characteristic length scale; (B) the estimated
signal standard deviation.
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were generated by randomly shuffling the columns in each alignment in the first spa-

tial configuration of substitution rates (Figure 3.2A). The permutations of alignments

destroyed the spatial patten of site-specific substitution rates. Here we only summa-

rize the performance of GP4Rate and Rate4Site in the permuted alignments and more

details can be found in the Supplementary Material. The absence of spatial correla-

tion results in close-to-zero characteristic length scales in GP4Rate, which confirms

that GP4Rate can detect the absence of spatial correlation when there is none. Plots

of ROC curves show that GP4Rate and Rate4Site have effectively the same power

to distinguish slowly evolved sites from the other sites. In contrast, when we use the

loss function (Equation 3.1) to measure the accuracy of estimated substitution rates,

GP4Rate is less accurate than Rate4Site. Nevertheless, GP4Rate and Rate4Site have

similar power to find slowly evolved functional sites, since in practice it is the relative

rankings of sites instead of their absolute substitution rates tell us which sites may

be more likely to be functional.

3.3.2 Realistic Simulations

We generated a second set of simulated alignments based on more realistic assump-

tions. The basic idea is that if we have a large number of highly diverged sequences,

a simple method which does not consider the spatial correlation of substitution rates

may accurately estimate the site-specific substitution rates because of the rich infor-

mation in a very large dataset. We may generate simulated alignments based on the

real protein tertiary structure and the presumably accurately estimated site-specific

substitution rates. These simulated alignments may have similar features as real

proteins.
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In this set of simulations, we used the same phylogenetic tree (Figure 3.1A) and

the JTT substitution model (Jones et al., 1992; Kosiol and Goldman, 2005) used in

the 2D toy protein simulations. The protein tertiary structure and the site-specific

substitution rates were based on a real protein, B-cell lymphoma extra large (Bcl-

xL). This protein has been studied using Rate4Site and the two predicted conserved

patches coincide with the regions with known functions (Glaser et al., 2003). We

downloaded the protein tertiary structure of Bcl-xL from Protein Data Bank (PDB

ID: 1MAZ (Muchmore et al., 1996)). The site-specific substitution rates estimated by

Rate4Site were obtained from the ConSurf-DB database (Goldenberg et al., 2009).

In ConSurf-DB, 131 unique homologs of Bcl-xL were automatically collected and

then Rate4Site was applied to estimate the site-specific substitution rates. Because

of the very large number of sequences in the dataset, the estimation of site-specific

substitution rates may be relatively accurate. We generated 20 simulated alignments

based on the above assumptions and both GP4Rate and Rate4Site were applied to

the simulated alignments using the same setting described in the 2D toy protein

simulations.

To evaluate the performance of GP4Rate and Rate4Site by ROC curves, we di-

vided the sites into two categories before generating simulated alignments: slowly

evolved functional sites and others. Based on the site-specific substitution rates re-

ported by ConSurf-DB, the 10 percent most slowly evolved sites were considered to

be functional while the others were not. As shown in Figure 3.5A, GP4Rate is more

powerful to distinguish slowly evolved sites from the other sites, since the area un-

der the ROC curve of GP4Rate is larger than that of Rate4Site. In addition, based

on the loss function defined by Equation 3.1, GP4Rate produces lower losses in 18
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Figure 3.5: The quantitative comparison of GP4Rate and Rate4Site in the realistic
simulations. (A) the ROC curves of GP4Rate and Rate4Site in the realistic simula-
tions; (B) the losses of GP4Rate and Rate4Site in the realistic simulations. In the
ROC curves, the solid line corresponds to the performance of GP4Rate while the dot-
ted line corresponds to the performance of Rate4Site. In the plot of losses, each point
corresponds to a simulated alignment. The losses of the two methods are calculated
by Equation 3.1.
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out of the 20 simulated alignments (Figure 3.5B) and the median loss of GP4Rate is

significantly smaller than that of Rate4Site (paired Wilcoxon test, p value < 10−4).

Therefore, GP4Rate still outperforms Rate4Site in the realistic simulations.

3.3.3 Case Study of B7-1 Genes

The B7-1 (CD80) family is a member of the immunoglobulin superfamily (IgSF) and

is critical for the regulation of immune responses (Collins et al., 2005). The protein

tertiary structure of the human B7-1 protein has been determined (Ikemizu et al.,

2000; Stamper et al., 2001). The human B7-1 protein consists of two IgSF domains

(IgV and IgC), each of which shows an anti-parallel β sandwich structure (Ikemizu

et al., 2000). We applied GP4Rate and Rate4Site to 7 mammalian B7-1 sequences

downloaded from the NCBI HomoloGene database (Sayers et al., 2012) and compared

their performances. The N-terminal and C-terminal sequences were trimmed in the

alignment, because the corresponding atoms are absent in the X-ray crystal structure.

The resulting alignment consists of 199 amino acid sites. Then the phylogenetic tree

was inferred by PhyML with the JTT+Γ model (Guindon and Gascuel, 2003). The

protein sequences in the alignment are very similar to each other as evident by the

lack of gaps in the alignment (data not shown). Therefore, the information in each

site in the alignment is very limited and it is hard to infer site-specific substitution

rates accurately.

We used the human B7-1 protein structure (PDB ID: 1I8L (Stamper et al., 2001))

to calculate the pairwise Euclidean distances between the α-carbon atoms of amino

acids. Then, we applied GP4Rate to the B7-1 alignment to infer site-specific sub-

stitution rates. We ran two independent MCMC chains for 106 iterations, and the
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Figure 3.6: The empirical marginal density functions of the hyperparameters in the
case study of B7-1 genes. The unit of the characteristic length scale is Å while the
signal standard deviation is unitless.

54



Ph.D. Thesis - Yifei Huang McMaster - Biology

A B

IgV

IgC

IgV

IgC

E162

L163D158

Q157 F106

P111

I113

E162

L163D158

Q157 F106

P111

I113

Figure 3.7: The locations of the 20 most conserved sites in the protein tertiary
structure of the human B7-1 protein (PDB ID: 1I8L). The blue sites are the 20
most conserved sites and the space-filled atoms correspond to the experimentally
verified functional sites in the IgC domain (Peach et al., 1995). The experimentally
verified functional sites in the IgV domain are not shown. The protein structures are
visualized by Jmol (Willighagen and Howard, 2007). A list of the most conserved
sites can be found in the Supplementary Material. (A) the 20 most conserved sites
predicted by GP4Rate; (B) the 20 most conserved sites predicted by Rate4Site.
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first 30% of the iterations were discarded as burn-in. We first estimated the pos-

terior marginal distributions of hyperparameters based on the MCMC samples. As

shown in Figure 3.6, the estimated characteristic length scale l is significantly higher

than 0, which confirms that the substitution rates are correlated in real proteins.

The presence of spatial correlation of substitution rates may facilitate the discovery

of slowly evolved functional regions. To test this hypothesis, the mean site-specific

substitution rates of the MCMC samples were calculated and the 20 most slowly

evolved sites were considered to be functional. Then, the 20 most slowly evolved

sites were superimposed onto the protein tertiary structure (PDB ID: 1I8L (Stam-

per et al., 2001)). As shown in Figure 3.7A, the slowly evolved sites predicted by

GP4Rate are not randomly distributed and instead form a single large region in the

IgC domain. A systematic mutagenesis study has suggested that the IgC domains

are important for binding CTLA-4 and CD28 (Peach et al., 1995), even though the

effects of the IgC domain may be indirect (Stamper et al., 2001). To test whether

the predicted slowly evolved sites overlap with the experimentally verified functional

sites (Peach et al., 1995), the 7 experimentally verified functional sites in the IgC

domain were mapped onto the human B7-1 structure (Figure 3.7A). Clearly 4 ex-

perimentally verified functional sites in the IgC domain, i.e. Q157, D158, E162, and

L163, are within the slowly evolved patch predicted by GP4Rate, which highlights

the potential usefulness of GP4Rate.

To compare GP4Rate with Rate4Site, we also applied Rate4Site to the same

dataset. The superimposition of the 20 most slowly evolved sites predicted by Rate4Site

is shown in Figure 3.7B. The sites predicted by Rate4Site are present in both the IgV
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and IgC domains and do not form clearly bounded regions. Even though 2 experimen-

tally verified functional sites in the IgC domain, i.e. F106 and I113, overlap with the

sites predicted by Rate4Site, the 4 experimentally verified functional sites detected by

GP4Rate do not overlap with the sites predicted by Rate4Site. Therefore, GP4Rate

and Rate4Site can provide complementary insights to real data.

To investigate which model, GP4Rate or Rate4Site, fits the B7-1 dataset bet-

ter, we performed a Bayesian model comparison. The direct comparison between

GP4Rate and Rate4Site is impractical, because Rate4Site is based on the maximum

likelihood principle instead of the Bayesian principle. However, it is not very difficult

to develop a Bayesian version of Rate4Site by specifying a prior distribution over

parameters. Therefore, we developed a Bayesian version of Rate4Site and compared

it with GP4Rate. Details of the Bayesian model comparison can be found in the

Supplementary Material and we only summarize the results here. We compared the

site-specific substitution rates estimated by the original Rate4Site and its Bayesian

version and found that the two programs produced essentially the same result. There-

fore, the marginal likelihood estimated by the Bayesian version of Rate4Site may be

used to evaluate how good the original Rate4Site fits the B7-1 dataset. The log

marginal likelihood of GP4Rate is equal to −1705.1 while the log marginal likelihood

of the Bayesian Rate4Site is equal to −1710.9, which suggests a very large Bayes fac-

tor of GP4Rate compared with the Bayesian Rate4Site (BF = e−1705.1+1710.9 = 330.3).

Therefore, GP4Rate fits the B7-1 dataset much better than the Bayesian Rate4Site.
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3.4 Discussion

Many phylogenetic methods have been developed to identify slowly evolved amino

acid sites which may be functional. However, the most widely used methods, e.g.

Rate4Site, ignore the spatial correlation of site-specific substitution rates. Some other

methods use the sliding-window framework to capture the spatial correlation of sub-

stitution rates, but the statistical method for choosing the optimal window size is

largely unknown. Since the strength of the spatial correlation of substitution rates is

unknown in most of proteins, the sliding window methods are problematic in real data

analyses. In GP4Rate, both of the two issues are solved under a Bayesian statistical

framework. By using the Gaussian process to define the prior distribution of the site-

specific log substitution rates, GP4Rate can naturally model the spatial clustering of

functionally important sites and the hyperparameters which measure the strength of

spatial correlation can be inferred from the data instead of being manually specified

before the analyses.

In simulated datasets, GP4Rate significantly outperforms Rate4Site. The power

of GP4Rate is mainly derived from the fact that GP4Rate has the added ability to

model the spatial correlation of substitution rates. By borrowing statistical infor-

mation from neighbor sites with similar substitution rates, GP4Rate can estimate

the site-specific substitution rates with a much higher accuracy than Rate4Site. In

the case study of B7-1 genes, GP4Rate predicted a slowly evolved functional patch

in the protein tertiary structure and 4 sites within the region are well supported by

experimental evidence. In contrast, the slowly evolved sites predicted by Rate4Site

are scattered and do not form clearly bounded regions. In addition, we have shown

that GP4Rate fits the B7-1 dataset much better than Rate4Site based on Bayesian
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model comparison.

The performance gap between GP4Rate and Rate4Site will be maximized when

the protein sequences are very similar to each other and the spatial correlation is

strong. Therefore, GP4Rate is most suitable to analyze small gene families, e.g. new

genes or small gene families derived from recent gene duplication events. When the

spatial correlation of substitution rates is weak, GP4Rate and Rate4Site may generate

similar results. For example, we applied GP4Rate to 38 RH1 genes (Yokoyama et al.,

2008) and found that the spatial correlation of substitution rates is much weaker in

the RH1 dataset than that in the B7-1 dataset (data not shown). In this case, the

difference between GP4Rate and Rate4Site is subtle. Therefore, a rigorous model

comparison as shown in the case study of B7-1 genes may be important in data

analyses.

Because GP4Rate is based on MCMC simulations, it is slower than Rate4Site.

For example, it took about 1 CPU day for GP4Rate to analyze the B7-1 dataset.

However, GP4Rate is still very useful for small scale problems, e.g. guiding mutagen-

esis experiments, since the experimental time is much longer than the execution time

of GP4Rate. The time cost of GP4Rate can be reduced in the future using advanced

algorithms, e.g. more efficient MCMC sampling algorithms or sparse approximations

of the Gaussian process (Vanhatalo and Vehtari, 2007). The most time consuming

step of GP4Rate is the Cholesky decomposition whose time complexity is a cubic

function of the number of sites in the alignment. In practice, a simple method to

reduce the computational time is to perform the analyses based on a selected subset

of amino acid sites. For example, it is well known that surface residues are more likely

to be involved in interactions with other proteins or ligands. If these interactions are
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most interesting to users, a fast analysis based only on the surface residues may be

appropriate.

In addition to modeling the spatial correlation of site-specific substitution rates,

protein tertiary structures have been used to improve phylogenetic models and the

estimation of site-specific substitution rates in a few other studies (Robinson et al.,

2003; Rodrigue et al., 2005, 2006; Conant and Stadler, 2009; Meyer and Wilke, 2013;

Meyer et al., 2013). These methods can be roughly divided into two categories. The

first category of models assumes that the fixation probability of new mutations is

determined by how the mutations influence the stability of the protein (Robinson

et al., 2003; Rodrigue et al., 2005, 2006). Typically it is assumed that mutations

which stabilize the protein structure are more likely to be fixed than mutations which

destabilize the protein structure. Unlike this category of models, the Phylo-GPM

framework does not provide a mechanistic interpretation for the estimated substitu-

tion rates. However, GP4Rate may be more powerful to identify functional regions

which are not directly relevant to the stability of proteins. The second category of

models assumes that the site-specific substitution rates or dN/dS ratios are influenced

by the local environment of the focal site in the protein tertiary structure (Conant

and Stadler, 2009; Meyer and Wilke, 2013; Meyer et al., 2013). For example, it has

been shown that the dN/dS ratio of a site is influenced by its relative solvent ac-

cessibility (RSA) (Conant and Stadler, 2009; Meyer and Wilke, 2013; Meyer et al.,

2013). It is relatively straightforward to combine the Phylo-GPM framework with

local features of amino acid sites. For example, in this study we assume that the

site-specific log substitution rates follow a zero-mean Gaussian distribution. We may

replace the zero-mean rate vector by a new one in which the mean of log substitution

60



Ph.D. Thesis - Yifei Huang McMaster - Biology

rate at a site is a linear function of its local features, e.g. RSA. It is very interesting

to investigate whether adding local features to the Phylo-GPM framework improves

model fitting in the future.

The Phylo-GPM framework proposed in this paper may be used as a general

tool to model the spatial correlation of patterns in the protein tertiary structure.

The phylogenetic hidden Markov model (Phylo-HMM) is a popular method which

combines the hidden Markov model and statistical phylogenetics (Siepel and Haussler,

2004). It has been used to model the spatial correlation of evolutionary patterns along

primary sequences (Yang, 1995; Felsenstein and Churchill, 1996; Siepel et al., 2005,

2006; Mayrose et al., 2007; Huang and Golding, 2012; De Maio et al., 2013). The

Phylo-GPM framework may be viewed as an extension of the Phylo-HMM to the

protein tertiary structures. In the future, new methods based on the Phylo-GPM

framework may be developed to identify functional divergence or positive selection in

proteins.

3.5 Models

3.5.1 Overall Design of the Phylogenetic Gaussian Process

Model

GP4Rate is an open-source software application written in C++ and its source code

is freely available from http://info.mcmaster.ca/yifei/software.html. GP4Rate com-

bines the protein alignment and the protein tertiary structure to infer groups of

close-located functional sites evolved at low rate. We assume that the protein align-

ment, the phylogenetic tree, and the tertiary structure of one protein in the alignment
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are provided by users. In GP4Rate, both the topology and the branch lengths of the

phylogenetic tree are fixed to improve the speed of the program. In addition, we as-

sume that the protein sequences in the alignment belong to the same gene family and

have very similar functions, which implies that the functionally important sites do

not vary among sequences and the site-specific substitution rates do not change over

time. However, we do assume that the substitution rates can vary across different

sites. The site-specific rates are used as proxies of functionality: very low substitution

rates suggest the corresponding sites are functionally important.

In most molecular phylogenetic programs, e.g. Rate4Site (Mayrose et al., 2004),

PAML (Yang, 2007), and PhyML (Guindon and Gascuel, 2003), the site-specific

substitution rates are assumed to be i.i.d. and follow a simple discrete distribution,

usually the discrete Gamma distribution (Yang, 1994). Recently, Dirichlet process

pirors have been used to model the variable substitution rates over sites to overcome

the inflexibility of the simple discrete distributions (Huelsenbeck and Suchard, 2007),

but it is still assumed that the site-specific substitution rates are i.i.d. The i.i.d.

assumption implies that slowly evolved functional sites are scattered in the protein

tertiary structure. The major contribution of this paper is to relax the i.i.d. assump-

tion using the Gaussian process (Rasmussen and Williams, 2005) which can naturally

capture the spatial correlation of site-specific substitution rates in the protein tertiary

structure.

In GP4Rate, the parameters are estimated using the Bayesian principle. In

Bayesian statistics, the parameters are random variables and the conditional distribu-

tion of parameters given data, i.e. the posterior distribution, gives us an estimation of

parameters. For simplicity of presentation, first we focus on the vector of site-specific
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log substitution rates, which is the collection of log values of substitution rates at all

amino acid sites, and defer the discussions on the other parameters. The posterior

distribution of the vector of log site-specific substitution rates can be defined by the

following equation,

P (Φ|X, T ) ∝ P (Φ)
N∏
i=1

Li(Φi; Xi, T ). (3.2)

In the equation, Φ is the vector of site-specific log substitution rates, X is the protein

alignment while Xi is its i -th column, and T is the phylogenetic tree with the asso-

ciated branch lengths. Li(Φi; Xi, T ) is the site-specific likelihood at site i, which is a

function of the site-specific log substitution rate at site i. P (Φ) is the fundamentally

important prior distribution of site-specific log substitution rates.

A realistic P (Φ) should be able to describe the spatial correlation of site-specific

substitution rates. In GP4Rate, P (Φ) is specified by a zero-mean Gaussian process.

A Gaussian process is a probability measure defined over a function space. In the

statistical modeling of site-specific substitution rates, we are only interested in the

marginal distribution of the Gaussian process over a finite set of spatial locations

which correspond to the locations of residues in the protein tertiary structure. By the

definition of Gaussian processes, the marginal distribution of a zero-mean Gaussian

process is a zero-mean multivariate Gaussian distribution (Rasmussen and Williams,

2005). Therefore, P (Φ) may be rewritten in the following format,

P (Φ|D, l, σ) =
1

(2π)
N
2 |Σ(D, l, σ)| 12

exp(−ΦTΣ(D, l, σ)−1Φ

2
). (3.3)
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The correlation of site-specific substitution rates is determined by the covariance ma-

trix Σ(D, l, σ), in which D is the pairwise distance matrix which measures the Eu-

clidean distance between the α-carbon atoms of amino acids in the protein tertiary

structure. Furthermore, the covariance function is parameterized by two hyperpa-

rameters, l and σ, which measure the strength of spatial correlation and the variation

of substitution rates across sites, respectively. By plugging P (Φ|D, l, σ) and P (l, σ),

the prior distribution of the hyperparameters, into Equation 3.2, it can be expanded

to the following format,

P (Φ, l, σ|X,D, T ) ∝ P (l, σ)P (Φ|D, l, σ)
N∏
i=1

Li(Φi; Xi, T ). (3.4)

In the following sections, we will provide more details on the specifications of the

right-hand side terms of Equation 3.4 and the MCMC algorithm for the sampling of

parameters, i.e. Φ, l, and σ.

3.5.2 Gaussian Process as a Prior Distribution of Site-specific

Log Substitution Rates

As mentioned above, Φ follows a zero-mean multivariate Gaussian distribution (Equa-

tion 3.3). In the multivariate Gaussian distribution, the covariance matrix Σ is spec-

ified by a covariance function. By default, GP4Rate uses the Matérn 1.5 covariance

function,

Σij = σ2(1 +

√
3dij
l

) exp(−
√

3dij
l

) + Ii=j(i, j)J2. (3.5)

In the equation, Σij is an element in the covariance matrix Σ(D, l, σ) while dij is an

element in the distance matrix D which measures the Euclidean distance between site i
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and site j in the protein tertiary structure. Ii=j(i, j) is an indicator function which is

equal to 1 if site i and site j are the same site and equal to 0 otherwise. The covariance

function contains two free parameters, l and σ. l is the characteristic length which

determines the strength of the spatial correlation of substitution rates. If it is small,

the spatial correlation is weak and only nearby sites have similar log substitution rates.

Instead, if it is large, the spatial correlation is strong and distant sites can have similar

log substitution rates. σ is the signal standard deviation which measures the marginal

variation of log substitution rates at a single site. Small σ implies that the variation

of log substitution rates is small. J is a fixed “jitter” term which introduces a small

amount of noise to the diagonal elements in Σ(D, l, σ). The “jitter” term ensures that

the Cholesky decomposition, a critical numerical algorithm in the MCMC simulations,

is numerically stable and improves the mixing of the MCMC simulations (Neal, 1997).

The “jitter” term is usually a small positive number (e.g. J = 0.1), so it does not

significantly change the behavior of the covariance function (Neal, 1997). Clearly

Equation 3.5 implies that the covariance of log substitution rates are decreasing with

increasing Euclidean distance between two amino acid sites, which is compatible with

our intuition that nearby sites tend to have similar substitution rates due to similar

functions.

In addition to the Matérn 1.5 covariance function, GP4Rate has two alternative

covariance functions for users to choose. One is the Matérn 2.5 covariance function,

Σij = σ2(1 +

√
5dij
l

+
5d2

ij

3l2
) exp(−

√
5dij
l

) + Ii=j(i, j)J2. (3.6)
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The other is the widely used squared-exponential covariance function,

Σij = σ2 exp(−d
2
ij

2l
) + Ii=j(i, j)J2. (3.7)

The three covariance functions are all special cases of the general Matérn covari-

ance function (Rasmussen and Williams, 2005). The major difference between them

is that the three covariance functions describe different levels of smoothness in the

spatial distribution of site-specific log substitution rates (Rasmussen and Williams,

2005). In the squared-exponential covariance function, the site-specific log substitu-

tion rates are smoothly distributed in the protein tertiary structure. Therefore, it is

most suitable to model proteins with relatively large functional regions. In contrast,

the Matérn 1.5 covariance function is the least smooth one and is suitable to model

proteins with small functional patches. In this paper, we used the Matérn 1.5 co-

variance function in all analyses to allow for proteins that may have relatively small

functional patches and could have nearby sites with very different substitution rates.

The hyperparameters in the covariance functions, i.e. l and σ, follow a prior distri-

bution P (l, σ). We assume that the characteristic length, l, and the signal standard

deviation, σ, are independent and follow exponential distributions. Therefore, the

prior distribution is defined by the following probability density function,

P (l, σ) = m−1
l m−1

σ exp(− l

ml

) exp(− σ

mσ

). (3.8)

We choose ml and mσ to be large so that the prior distribution has relatively weak

information.
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3.5.3 Approximation of the Phylogenetic Likelihood Func-

tion

To fully define the unnormalized posterior distribution (Equation 3.4), the likelihood

L(Φi; Xi, T ) must be specified. We follow the standard phylogenetic model first de-

scribed by Felsenstein (Felsenstein, 1981). We assume that the substitution model

in the phylogenetic likelihood function is fixed to the JTT model (Jones et al., 1992;

Kosiol and Goldman, 2005) while the phylogenetic tree is fixed to the one provided

by the users. The likelihood can be calculated by the pruning algorithm and the

gaps in the alignment may be treated as missing data (Felsenstein, 1981). However,

the calculation of the likelihood function can easily become the most time consuming

step in the MCMC sampling, because we need to evaluate the likelihood millions of

times. We have applied a simple linear interpolation method to reduce the compu-

tational time of the likelihood evaluation (Press et al., 1992). GP4Rate calculates

the site-specific log likelihoods at a set of evenly spaced substitution rates and then

approximates the site-specific log likelihoods at other rates by interpolation. Note

that the linear interpolation is performed based on the site-specific substitution rates

while Φ is the vector of their log values, so an exponential transformation, i.e. exp(Φi),

must be performed for each site i before the interpolation. By default, GP4Rate cal-

culates and caches the site-specific log likelihoods at 4000 evenly spaced substitution

rates, ranging from 10−6 to 20. In each step of the likelihood calculation, if exp(Φi)

is between 10−6 and 20, the corresponding site-specific log likelihood is approximated

by the following formula,

log(Li(Φi; Xi, T )) = log(Li0) + (log(Li1)− log(Li0))
exp(Φi)−Ri0

Ri1 −Ri0

. (3.9)
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On the right hand side, Ri0 and Ri1 are the two cached substitution rates which are

closest to exp(Φi), while log(Li0) and log(Li1) are the site-specific log likelihoods of

Ri0 and Ri1, respectively. In practice, exp(Φi) is rarely bigger than 20 or smaller than

10−6. If it is indeed outside this, the log likelihood at the closest boundary is used as

the approximate log likelihood.

3.5.4 Markov Chain Monte Carlo Sampling

GP4Rate uses MCMC simulations to sample parameters from their posterior distri-

bution. The algorithm follows previous studies by Neal (1997, 1999). As described

in the previous sections, the parameters in GP4Rate have two components. The

first one is Φ and the second one consists of σ and l. In each iteration, the two

components are sequentially updated by the Metropolis algorithm with symmetric

proposals (Metropolis et al., 1953; Hastings, 1970).

To update Φ, GP4Rate uses a proposal distribution suggested by Neal (Neal,

1997),

Φ′ = Φ + εLz. (3.10)

In the equation, Φ is the current vector of site-specific log substitution rates while

Φ′ is the new proposal. L is the Cholesky decomposition of the covariance matrix

Σ(D, l, σ) and z is a vector of independent standard Gaussian variables. The proposal

distribution is tuned by the constant, ε. A large ε leads to large changes of Φ while

small ε leads to small changes. ε is chosen to make the acceptance rate of new

proposals close to 0.25.

Instead of updating σ and l in the original scale, we transform them to the log scale.

The use of a log scale removes the boundaries of the two parameters and makes the
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MCMC sampling of σ and l independent from the scale of the data (Neal, 1997). The

two parameters are updated by a sliding window method with a bivariate Gaussian

proposal (Neal, 1999). The Gaussian proposal is tuned so that the acceptance rate

of new proposals is close to 0.25.

In practice, the update of Φ is much faster than the update of σ and l, because

the update of σ and l requires a Cholesky decomposition whose time complexity is

O(N3), in which N is the total number of sites in the alignment. Therefore, it is

reasonable to update Φ more often than σ and l (Neal, 1997). In each iteration Φ is

updated 50 times while the pair of σ and l is updated once. After every 10 iterations,

the values of l, σ, and exp(Φ) are recorded.
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Chapter 4

FuncPatch: A Web Server for the

Fast Bayesian Inference of

Conserved Functional Patches in

Protein 3D Structures

4.1 Abstract

A number of statistical phylogenetic methods have been developed to infer conserved

functional sites or regions in proteins. Many methods, e.g. Rate4Site, apply the stan-

dard phylogenetic models to infer site-specific substitution rates and totally ignore the

spatial correlation of substitution rates in protein tertiary structures, which signifi-

cantly reduces their power to identify conserved functional patches in protein tertiary

structures. The 3D sliding window method has been proposed to infer conserved
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functional patches in protein tertiary structures, but the window size, which reflects

the strength of the spatial correlation, must be predefined and is not inferred from

data. We recently developed GP4Rate to solve these problems under the Bayesian

framework. Unfortunately, GP4Rate is computationally slow. Here we present an

intuitive web server, FuncPatch, to perform a fast approximate Bayesian inference of

conserved functional patches in protein tertiary structures. Both simulations and two

case studies of the MAPK1 genes and the SMAD genes suggest that FuncPatch is a

good approximation to GP4Rate. However, FuncPatch is orders of magnitudes faster

than GP4Rate. In addition, simulations demonstrate that FuncPatch is more robust

and generally more powerful than Rate4Site and the 3D sliding window method. The

functional patches predicted by FuncPatch in the two case studies are supported by

experimental evidence, which corroborates the usefulness of FuncPatch. FuncPatch

is freely available from http://info.mcmaster.ca/yifei/FuncPatch.

4.2 Introduction

Because of the fast development of sequencing techniques, the amount of sequence

data is increasing exponentially. The best ways to extract biological insights from

massive sequence data have become important questions in biology. Comparisons

between homologous sequences from different species are very common strategies

to analyze biological sequences. For example, given a set of homologous protein

sequences from different species, we can compare these sequences to identify conserved

amino acid sites. These conserved amino acid sites are more likely to be functionally

important, since mutations at these sites are more likely to be deleterious.
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To infer the conservation levels of amino acid sites, we need evolutionary mod-

els to describe the substitution process of amino acids in the evolutionary history.

The simplest idea is to use the standard statistical phylogenetic models (Felsenstein,

1981) to infer the site-specific substitution rates and the sites with low substitution

rates may be considered to be functional. For example, a widely used web server,

ConSurf (Glaser et al., 2003; Ashkenazy et al., 2010), uses the site-specific substi-

tution rates estimated by the Rate4Site program (Mayrose et al., 2004) to infer the

conservation levels of amino acid sites. Then, the conservation scores are mapped

onto the protein tertiary structure to get insights on the possible functions of the

highly conserved sites (Glaser et al., 2003). While the standard phylogenetic models

are useful tools for inferring conserved sites in proteins, they typically model the sub-

stitution rate variation by some discretized distributions, e.g. the discretized Gamma

distribution (Yang, 1994), and ignore the spatial correlation of substitution rates in

protein tertiary structures. However, it is well known that functional amino acids are

clustered together in protein tertiary structures in many proteins and modeling the

spatial clustering can improve the prediction of functional sites (Madabushi et al.,

2002; Panchenko et al., 2004). The independence assumption of site-specific substitu-

tion rates in the standard phylogenetic methods makes it difficult to infer conserved

functional patches in protein tertiary structures.

A few methods have been proposed to relax the independence assumption of site-

specific substitution rates to predict conserved protein patches in protein tertiary

structures (Dean and Golding, 2000; Nimrod et al., 2005; Landgraf et al., 2001; Capra

and Singh, 2007; Panchenko et al., 2004). These methods are useful tools for inferring

conserved protein patches. However, most of these methods are based on the 3D
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sliding window framework (Dean and Golding, 2000; Landgraf et al., 2001; Capra

and Singh, 2007; Panchenko et al., 2004) or other heuristic algorithms (Nimrod et al.,

2005). The common problem of these methods is that they cannot infer the strength of

the spatial correlation of substitution rates which in turn makes the inference of site-

specific substitution rates unreliable. For example, the window size in the 3D sliding

window method is typically predefined before analyses. However, the strength of

spatial correlation may vary in different proteins, which suggests the optimal window

size may vary in different datasets (Suzuki, 2004).

Recently, we developed a phylogenetic Gaussian process model, GP4Rate, which

combines standard phylogenetics and Gaussian processes to infer conserved functional

regions in protein tertiary structures (Huang and Golding, 2014). Using the Gaus-

sian process as the prior distribution of log values of site-specific substitution rates,

GP4Rate naturally captures the spatial correlation of substitution rates in the protein

tertiary structure. In addition, GP4Rate can infer the strength of the spatial corre-

lation of substitution rates based on the Bayesian principle. Therefore, it overcomes

the drawbacks of the 3D sliding window method and other heuristic methods.

However, GP4Rate is based on Markov chain Mote Carlo (MCMC) methods to

generate samples from the posterior distribution of parameters. Because MCMC

methods are generally very slow, it typically takes a few hours to a few days to

analyze a gene family using GP4Rate. In addition, the command-line interface of

GP4Rate may not be intuitive to many experimental biologists. Here we report a

new algorithm, FuncPatch, which is designed as a fast approximation to GP4Rate.

This method is fast enough to be implemented in a web server. Using a simplified

likelihood function and a Laplace approximation, FuncPatch is orders of magnitudes
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faster than GP4Rate and the analyses of most gene families can be finished in a

few minutes. Simulations and two case studies of the MAPK1 genes and the SMAD

genes demonstrate that FuncPatch is a very accurate approximation to GP4Rate and

FuncPatch outperforms Rate4Site and the 3D sliding window method. The two case

studies also suggest that the spatial correlation of substitution rates is present in real

data and that the strength of spatial correlation may vary in different protein families.

4.3 Models

4.3.1 Overview of FuncPatch

We developed FuncPatch, an algorithm for the fast Bayesian inference of conserved

patches in protein tertiary structures. FuncPatch is designed as a fast approximation

to GP4Rate (Huang and Golding, 2014) which combines phylogenetics and Gaussian

processes to infer conserved functional patches in protein tertiary structures. In this

section, we describe the basic idea of FuncPatch in simple terms and ignore mathe-

matical details. Thereafter, we describe technical details of the parameterization and

implementation of FuncPatch. Readers who are not very familiar with computational

statistics may read this section but skip these technical sections. FuncPatch assumes

that the users provide an alignment of proteins and a representative protein tertiary

structure. Similar to GP4Rate (Huang and Golding, 2014), it combines the informa-

tion from the protein alignment and the protein tertiary structure to infer site-specific

substitution rate at each amino acid site. The estimated substitution rates are used

as proxies of functionality: lower substitution rates suggest that the corresponding

sites are more likely to be functionally important.
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If conserved functional sites form tertiary patches, e.g. protein-protein interaction

interfaces, the site-specific substitution rates may be positively correlated over the

protein tertiary structure. Thus physically closely located sites are more likely to

have similar substitution rates. Modeling the spatial correlation of substitution rates

may in turn improve the prediction of conserved functional patches, since the inference

of substitution rate at a focal amino acid site can borrow “statistical information”

from closely located sites with similar substitution rates (Huang and Golding, 2014).

FuncPatch uses the Bayesian statistical principle to infer site-specific substitution

rates. To apply the Bayesian principle, we need to specify a prior distribution over

site-specific substitution rates and a likelihood function which describes the proba-

bility of the observed data given the site-specific substitution rates. In FuncPatch,

the protein tertiary structure is used to specify a prior distribution of substitution

rates. Similar to GP4Rate, we assume that the prior distribution of the log values of

site-specific substitution rates follows a Gaussian distribution guided by the protein

tertiary structure. The Gaussian prior distribution has a very useful property that

the log substitution rates of two physically closely located sites are strongly correlated

while the log substitution rates of two distant sites are weakly correlated. Therefore,

the Gaussian prior distribution encourages the site-specific log substitution rates to

be smoothly distributed over the protein tertiary structure.

To fully define the Bayesian model, we also need to specify the likelihood func-

tion. In our previous work of GP4Rate (Huang and Golding, 2014), we used the

standard phylogenetic likelihood function (Felsenstein, 1981). However, the phyloge-

netic likelihood function is too computationally expensive for a web server. Therefore,

FuncPatch uses a simpler likelihood function. Firstly, we use the parsimony method

75



Ph.D. Thesis - Yifei Huang McMaster - Biology

implemented in the PROTPARS program in PHYLIP (Felsenstein, 1989) to estimate

the most parsimonious number of substitutions at each site. Then, this number of

substitutions is used as a summary statistic in the likelihood function. The likelihood

function, which measures the probability of the most parsimonious number of substi-

tutions at a site given its site-specific substitution rate, is assumed to follow a Poisson

distribution. The Poisson likelihood function significantly simplifies the computation

and, more importantly, makes it easy to design efficient approximation algorithms to

infer the posterior distribution of site-specific substitution rates. The combination of

the Poisson likelihood function and the Gaussian process priors has been studied in

the area of Bayesian disease mapping (Vanhatalo et al., 2010; Vanhatalo and Vehtari,

2007). We developed a customized C++ program to implement this model and then a

user-friendly web server based on BioPerl (Stajich et al., 2002) and Jmol (Willighagen

and Howard, 2007) was developed to make FuncPatch easily usable to biologists.

4.3.2 Poisson Likelihood Function

We assume that a protein alignment, a PDB file of a representative protein tertiary

structure, a query PDB chain name, a query sequence name, and an optional phy-

logenetic tree are provided by the users. The query sequence name should be the

exact name of a sequence in the protein alignment and the query sequence should

correspond to the query PDB chain. If the users do not provide a phylogenetic tree,

FuncPatch generates a neighbor-joining tree automatically (Saitou and Nei, 1987).

The phylogenetic tree used in FuncPatch is denoted by T . Then FuncPatch uses

MUSCLE (Edgar, 2004) to align the query sequence with the query PDB chain to

generate a guide alignment. A set of informative sites are chosen from the original
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alignment based on the guide alignment. An informative site must meet three con-

ditions: 1) it must match an amino acid in the query PDB chain; 2) it must contain

at least 3 amino acids; 3) the number of gaps at the site must be less than a half of

the number of sequences in the original alignment. The informative sites form a new

alignment denoted by X and the number of sites in the alignment X is denoted by N .

Then, FuncPatch uses the PROTPARS program in PHYLIP (Felsenstein, 1989) to

estimate, C, a vector of the most parsimonious number of substitutions for each site

in X, in which a single element Ci is the most parsimonious number of substitutions

at site i.

FuncPatch assumes that, given λi, the expected number of substitutions at site i,

Ci follows a Poisson distribution,

P (Ci|λi) =
λCi
i

Ci!
e−λi . (4.1)

4.3.3 Gaussian Prior Distribution

Given the alignment X, FuncPatch calculates, β, the average number of substitutions

over all sites,

β =

∑N
i=1Ci
N

. (4.2)

Based on the 3D coordinates of the α carbons of amino acids in the user provided

PDB file, FuncPatch then calculates a distance matrix D in which an element Dij

measures the Euclidean distance between site i and site j in the alignment X. Similar

to GP4Rate (Huang and Golding, 2014), we assume that the prior distribution of

Φ, the vector of site-specific log substitution rates, follows a zero-mean Gaussian
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distribution,

P (Φ|D, l, σ) =
1

(2π)
N
2 |Σ(D, l, σ)| 12

exp(−ΦTΣ(D, l, σ)−1Φ

2
), (4.3)

in which Σ(D, l, σ) is the covariance matrix. We assume that the covariance matrix

Σ(D, l, σ) is parameterized by the Matérn 1.5 covariance function,

Σij = σ2(1 +

√
3Dij

l
) exp(−

√
3Dij

l
), (4.4)

in which Dij is the Euclidean distance between site i and site j, l is the characteristic

length scale, and σ is the signal standard deviation. l is a positive number which

measures the strength of the spatial correlation of the site-specific log substitution

rates over the protein tertiary structure. A large l implies that the spatial correlation

is strong while a small l implies that the spatial correlation is weak. σ is a positive

number which measures the marginal variation of site-specific log substitution rates

at a single site. It is easy to show that, in Equation 4.4, Σij decreases with increasing

Dij, which implies that closely located sites are more likely to have similar substitution

rates than distantly located sites. Therefore, the Gaussian prior distribution naturally

captures our intuition that site-specific substitution rates are smoothly distributed

over the tertiary structure. Similar to GP4Rate, FuncPatch introduces a very small

amount of noise (“jitter” term) to the diagonal elements in the covariance matrix to

ensure that its Cholesky decomposition is numerically stable.

To connect the Poisson likelihood function with the Gaussian prior distribution,

we assume that the relationship between λi, i.e. the expected number of substitutions

at site i, and Φi, i.e. the log substitution rate at site i, can be described by the
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following equation,

λi = β exp(Φi), (4.5)

in which β is the average number of substitutions calculated by Equation 4.2. In this

parameterization, the site-specific substitution rate, i.e. exp(Φi), is a scaling factor as

the substitution rate parameters in statistical phylogenetic models.

By inserting Equation 4.5 into Equation 4.1 and then combining Equation 4.3 and

Equation 4.1, we obtain the posterior distribution of Φ,

P (Φ|l, σ,C,D)︸ ︷︷ ︸
Posterior

∼ P (Φ|D, l, σ)︸ ︷︷ ︸
Prior

N∏
i=1

P (Ci|β exp(Φi))︸ ︷︷ ︸
Likelihood

. (4.6)

Note that the right-hand side of Equation 4.6 is proportional to the posterior dis-

tribution up to a constant Z which is the marginal likelihood of the observed data

given the hyperparameters, i.e. l and σ. The posterior distribution is log concave,

so it has only a single stationary point which is also the global maximum. Func-

Patch uses the L-BFGS-B algorithm (Zhu et al., 1997) to find the global maximum

of the posterior distribution and then uses a Laplace approximation to calculate the

approximate posterior distribution of Φ and the approximate marginal likelihood

Z (Rasmussen and Williams, 2005). The Laplace approximation uses the location of

the global maximum in the posterior distribution and the second order derivatives

at the maximum to construct a Gaussian distribution to approximate the posterior

distribution of Φ (Rasmussen and Williams, 2005). For each site i in X, the Laplace

approximation can calculate Ei and Si based on the approximate posterior distribu-

tion, where Ei is the approximate posterior mean of Φi and Si is the approximate

posterior standard deviation of Φi. We use exp(Ei) as the estimated substitution rate
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at site i and the interval (exp(Ei− 0.6745Si), exp(Ei + 0.6745Si)) as the approximate

50% credible interval at site i, in which 0.6745 corresponds to the 25% quantile of the

standard Gaussian distribution.

4.3.4 Inference of Hyperparameters and Bayesian Model Com-

parison

The descriptions in the previous sections assume that the two hyperparameters, i.e. l

and σ, are known. In real data analyses, we need to estimate these hyperparameters

from data. FuncPatch performs a grid search to generate a point estimation of pa-

rameters. We choose 20 representative l, evenly spaced between 1 Å and 39 Å, and

20 representative σ, evenly spaced between 0.1 and 3.9. Therefore, there are 400 dif-

ferent combinations of hyperparameters based on these representative values. Then,

FuncPatch performs a Laplace approximation for each combination of hyperparam-

eters to calculate the approximate marginal likelihood Z (Rasmussen and Williams,

2005). The combination of hyperparameters with the largest marginal likelihood Z is

chosen as the point estimation of the hyperparameters. The average of the marginal

likelihoods over all combinations of hyperparameters is used as the overall marginal

likelihood of the model, which implies that we put a uniform hyperprior over hyper-

parameters.

To evaluate whether the spatial correlation of substitution rates is significant

in a dataset, we developed a test based on the Bayesian model comparison. The

model described above is the alternative model (model 1) in the Bayesian model

comparison. We also designed a null model (model 0) in which any spatial correlation

of substitution rates is absent. In model 0, we assume that the characteristic length
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scale l is always equal to 0, which essentially removes the spatial correlation from the

Gaussian prior distribution. Twenty representative signal standard deviations σ are

evenly spaced between 0.1 and 3.9 as model 1. The average marginal likelihood over

the 20 combinations of hyperparameters is used as the overall marginal likelihood of

model 0. We suggest that 8 may be used as a conservative cutoff for the log Bayes

factor (model 1 vs model 0). If the estimated log Bayes factor is larger than 8 in a

dataset, we consider that the spatial correlation of site-specific substitution rates is

significant in the dataset.

4.4 Simulations and Case Studies

4.4.1 Simulations

We evaluated the performance of FuncPatch and compared it with the performances

of GP4Rate (Huang and Golding, 2014), Rate4Site (Mayrose et al., 2004), and a

customized 3D sliding window program based on the Bio++ library (Dutheil et al.,

2006; Gueguen et al., 2013). In the comparison, Rate4Site is used as a representative

of methods which ignore the spatial correlation of site-specific substitution rates in

protein tertiary structures. The 3D sliding window program is similar to the methods

described in previous studies (Dean and Golding, 2000; Suzuki, 2004; Berglund et al.,

2005). In the 3D sliding window program, the JTT substitution model (Jones et al.,

1992) is used to describe the substitution process of amino acids. We assume that

a window size and a reference phylogenetic tree have been provided by the users.

For each site in the protein tertiary structure, the 3D sliding window program firstly

collects the set of sites whose Euclidean distances to the focal site is smaller than
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the window size to generate a local alignment and then optimizes the scale of the

reference phylogenetic tree given the local alignment. The tree scale is considered to

be the estimated substitution rate at the focal site. We used two window sizes in

the 3D sliding window program. The small window size (7 Å) may be more powerful

to capture small conserved patches while the large window size (15 Å) may be more

powerful to capture large conserved patches. The use of two window sizes also let us

explore the robustness of the 3D sliding window method.

We used 4 simulated datasets (A, B, C, and D) described in our previous study

of GP4Rate (Huang and Golding, 2014). The spatial correlation of substitution rates

is present in dataset A, B, and C while it is absent in dataset D. We briefly describe

these simulated alignments in this work and more details can be found in Huang and

Golding (2014). All the simulated alignments were based on a simple phylogenetic

tree with 4 species and the total branch length is equal to 1. On average there is

only 1 substitution at each site, which makes it difficult to infer site-specific substi-

tution rates accurately. Therefore, the 4 sets of simulated alignments are excellent

to benchmarking the statistical powers of different methods in the scenario of weak

information. The 4 sets of simulated alignments are different in the representative

protein tertiary structures and the “true” site-specific substitution rates used in the

step of generating simulated alignments.

• The 20 alignments in dataset A were based on a 2D toy protein structure in

which amino acid sites corresponded to points in a 20 by 20 2D grid. The

Euclidean distance between each site to its closest site is equal to 5 Å in the 2D

grid, which is comparable to the average distance between physically interacting

amino acids. The 20 by 20 2D grid was divided into 4 blocks each of which was
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a 10 by 10 2D grid. Two blocks were assigned to a lower “true” substitution

rate, i.e. 0.2, and were considered to be conserved functional patches while the

other two blocks were assigned to a higher “true” substitution rate, i.e. 1.8, and

were considered to be functionally less important.

• The 20 alignments in dataset B were based on the same 2D toy protein structure

used in dataset A. However, the 20 by 20 grid was divided into 16 blocks each

of which was a 5 by 5 2D grid. A half of the blocks were assigned to the lower

“true” substitution rate, i.e. 0.2, while the others were assigned to the higher

“true” substitution rate, i.e. 1.8. The blocks with the lower substitution rate

were considered to be conserved functional patches.

• The 20 alignments in dataset C were based on the tertiary structure of the

human Bcl-xL protein (PDB ID:1MAZ; Muchmore et al., 1996) instead of

the 2D toy protein structure. In addition, the “true” substitution rates used

in the step of generating alignments were downloaded from the ConSurf-DB

database (Goldenberg et al., 2009) which automatically collected a large num-

ber of homologs of the human Bcl-xL protein and then used Rate4Site to esti-

mate site-specific substitution rates. The 10% of sites with the lowest “true”

substitution rates were considered to be functional.

• The 20 alignments in dataset A were permuted randomly to generate the align-

ments in dataset D. The permutations destroyed the spatial correlation of sub-

stitution rates but kept all other features of the alignments. The half of sites

with lower “true” substitution rates were still considered as the functional sites

in dataset D. This dataset was designed to test the performance of different
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Figure 4.1: The performances of different methods in the simulation study. A: the
performances of different methods in the simulated dataset A; B: the performances
of different methods in the simulated dataset B; C: the performances of different
methods in the simulated dataset C; D: the performances of different methods in the
simulated dataset D. Solid black lines: the ROC curves of FuncPatch; dashed red
lines: the ROC curves of GP4Rate; dashed green lines: the ROC curves of Rate4Site;
dashed blue lines: the ROC curves of the 3D sliding window method with the small
window size (7 Å); dashed brown line: the ROC curves of the 3D sliding window
method with the large window size (15 Å).

methods when a spatial correlation of substitution rates is absent.
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We applied FuncPatch, GP4Rate, Rate4Site, and the customized 3D sliding win-

dow program to the 4 sets of simulated alignments. The “true” phylogeny with branch

lengths were used as the reference tree in all analyses. For GP4Rate, two independent

MCMC chains were implemented for each alignment and the first 30% of samples were

discarded as burn-in. We used the ROCR package in R (Sing et al., 2005) to plot the

receiver operating characteristic (ROC) curves to evaluate the statistical powers of

the 4 programs for identifying conserved functional sites as defined above. As shown

in Figure 4.1, FuncPatch and GP4Rate have very similar powers in all the 4 simu-

lated datasets. More importantly, FuncPatch and GP4Rate are always among the

most powerful methods. When the spatial correlation of substitution rates is present

(Figure 4.1A, 4.1B, and 4.1C), the 3D sliding window method can be more power-

ful than Rate4Site but FuncPatch and GP4Rate always outperform the 3D sliding

window method. In addition, the performance of the 3D sliding window method is

sensitive to the choice of the window size. For example, in dataset B and C, using the

small window (7 Å) is better than using the large window size (15 Å). In contrast,

in dataset A, the difference of the performances between the two window sizes is

marginal. When the spatial correlation of substitution rates is absent (Figure 4.1D),

the performance of Rate4Site is very similar to the performances of FuncPatch and

GP4Rate. In contrast, the performance of the 3D sliding window method is much

worse than these three methods in this scenario.

The simulations demonstrate that FuncPatch is a good approximation to GP4Rate

and that FuncPatch is always among the most powerful methods regardless of the

assumptions of the simulated alignments. In contrast, the performances of Rate4Site

and the 3D sliding window method depend on the assumptions of the simulated
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alignments and the performance of the 3D sliding window method is sensitive to the

window size. In summary, FuncPatch is a robust method and generally outperforms

Rate4Site and the 3D sliding window method.

4.4.2 Case Study of MAPK1 Genes

To demonstrate the power of FuncPatch in analyses with real data, we applied Func-

Patch to two signal transduction related gene families to predict conserved functional

patches. As shown in the previous section of simulations, the performance of the 3D

sliding window method is sensitive to the choice of the window size and it can lead to

misleading results when the spatial correlation of substitution rates is absent. There-

fore, we only compared the performances of FuncPatch, GP4Rate, and Rate4Site

while the 3D sliding method is not included in the comparison. In this section, we

report the results of the MAPK1 (ERK2) gene family which is a central player in

signal transduction. The MAPK1 gene family is a member of the mitogen-activated

protein kinase (MAPK) superfamily. In the activation of the MAPK/ERK pathway,

cell surface receptors are first activated by extra-cellular ligands and then the cell

surface receptors activate a series of factors, including MAPKs (Seger and Krebs,

1995). MAPKs thus activate a variety of downstream transcriptional factors.

We downloaded the protein sequences of 17 MAPK1 orthologous genes from the

NCBI HomoloGene database (HomoloGene ID: 37670; Sayers et al., 2012). We only

included the MAPK1 subfamily in the analysis and excluded other MAPK subfami-

lies, because the biological functions of the MAPK1 subfamily may be different from

the functions of other MAPK subfamilies and the locations of conserved functional

patches might be different in different subfamilies. Therefore, the level of sequence
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divergence is relatively low in this dataset, which makes it difficult to accurately infer

site-specific substitution rates in individual sites. The 17 MAPK1 protein sequences

were aligned using MUSCLE with default parameters. The phylogenetic tree was

inferred using PhyML with the JTT+Γ model (Guindon and Gascuel, 2003). We

used the X-ray crystallographic structure of the rat MAPK1 gene (PDB ID: 1ERK;

Zhang et al., 1994) as the representative structure.

We applied FuncPatch with default parameters to the MAPK1 dataset. As shown

in Table 4.1, the best estimation of characteristic length scale is equal to 21 Å,

which is much larger than 0. It suggests that spatial correlation of substitution

rates is extended over a very long distance. The statistical significance of the spatial

correlation of substitution rates is supported by the Bayesian model comparison.

The approximate log Bayes factor (model 1 vs model 0) is equal to 148.7 which is

significantly larger than the cutoff 8 (Table 4.1). To furthermore demonstrate that the

cutoff 8 is valid, we randomly permuted the MAPK1 alignment 1000 times to generate

a set of new alignments. The potential spatial correlation of substitution rates has

been destroyed in these permuted alignments and we applied FuncPatch to them to

generate a null distribution of the log Bayes factors. As shown in Figure 4.2A, only

2.6% of permuted alignments’ log Bayes factors are greater than 8, which confirms

that the cutoff 8 is conservative. Therefore, the spatial correlation of substitution

rates is statistically significant in the MAPK1 dataset via both the Bayes factor and

the permutations.

We superimposed the 35 most conserved sites predicted by FuncPatch onto the

protein structure of the rat MAPK1 gene (PDB ID: 1ERK). Because the MAPK1

dataset consists of 357 sites, the 35 sites correspond to the 10% of most conserved
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Table 4.1: Estimation of parameters and log Bayes factors in the two case studies of
the MAPK1 genes and the SMAD genes.

Dataset l σ Log Bayes factor
MAPK1 21 1.3 148.7
SMAD 9 1.1 9.19

sites in MAPK1. As shown in Figure 4.3A, the 35 most conserved sites form a clearly

bounded patch in the protein tertiary structure. The result is not surprising be-

cause the estimated characteristic length scale is very large. We further investigated

whether this predicted conserved patch is related to MAPK1’s activities. Interest-

ingly, previous studies suggest that Asp-147, the second most conserved site predicted

by FuncPatch, acts as the catalytic base (Zhang et al., 1994; Canagarajah et al., 1997;

Turjanski et al., 2009). Therefore, the predicted conserved patch corresponds to the

catalytic site of MAPK1.

We also applied GP4Rate and Rate4Site to the MAPK1 dataset and mapped

the 35 most conserved sites onto the protein tertiary structure of the rat MAPK1

gene (PDB ID: 1ERK). As shown in Figure 4.3A, GP4Rate reported essentially the

same conserved patch as the one reported by FuncPatch. The consistency between

FuncPatch and GP4Rate is not surprising, because the simulation study has already

demonstrated that FuncPatch and GP4Rate have similar powers to identify conserved

functional patches. However, FuncPatch took only about 1 CPU minute to analyze

the MAPK1 dataset while GP4Rate took about 33 CPU hours to analyze the same

dataset. Therefore, FuncPatch is orders of magnitudes faster than GP4Rate in the

MAPK1 dataset.

In contrast, the most conserved sites predicted by Rate4Site are very different

88



Ph.D. Thesis - Yifei Huang McMaster - Biology

from the conserved sites predicted by FuncPatch and GP4Rate (Figure 4.3A). Indeed,

the most conserved sites predicted by Rate4Site are scattered in the protein tertiary

structure and do not form any clearly bounded 3D patch. In addition, Asp-147, i.e. the

catalytic base, is not included in the 35 most conserved sites predicted by Rate4Site,

even though it is invariant across all sequences in the MAPK1 alignment. The reason

that Asp-147 is not included in the set of most conserved sites predicted by Rate4Site

is that there are a number of invariant sites in the MAPK1 alignment. Therefore,

it is difficult to know which one is more conserved than the others based on the

information at individual sites. In contrast, FuncPatch models the spatial correlation

of substitution rates and the invariant sites in the core regions of the conserved patches

tend to have lower estimated substitution rates than other invariant sites scattered

in the protein tertiary structure.

4.4.3 Case Study of SMAD Genes

SMAD genes are important factors which mediate the transduction of signals from

extracellular ligands to downstream factors (Attisano and Tuen Lee-Hoeflich, 2001).

We downloaded the protein sequences of 11 SMAD1 genes (HomoloGene ID: 21196),

9 SMAD5 genes (HomoloGene ID: 4313), and 10 SMAD8 genes (HomoloGene ID:

21198) from the NCBI HomoloGene database (Sayers et al., 2012). All these sequences

are receptor-regulated SMAD (R-SMAD) genes regulated by bone morphogenetic

proteins (BMPs) (Attisano and Tuen Lee-Hoeflich, 2001). MUSCLE (Edgar, 2004)

with default parameters was used to generate an alignment based on the 30 SMAD

proteins and then PhyML with the JTT+Γ model (Guindon and Gascuel, 2003) was

used to generate the reference phylogenetic tree. We did not include other SMAD
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Figure 4.2: The null distributions of approximate log Bayes factors in the two case
studies of the MAPK1 genes and the SMAD genes. The The null distributions are
generated by applying FuncPatch to the permuted alignments. A: the null distribution
of the approximate log Bayes factors in the case study of the MAPK1 genes. B: the
null distribution of the approximate log Bayes factors in the case study of the SMAD
genes.
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Figure 4.3: The 3D locations of the most conserved sites in the two case studies of
the MAPK1 genes and the SMAD genes. A: the 35 most conserved sites predicted by
FuncPatch, GP4Rate, and Rate4Site in the MAPK1 dataset (PDB ID: 1ERK). The
blue sites are the predicted conserved sites while the yellow sites are not conserved.
The space-filled atoms belong to Asp-147, the catalytic base. B: the 12 most con-
served sites predicted by FuncPatch, GP4Rate, and Rate4Site in the SMAD dataset
(PDB ID: 3KMP). The blue sites are the predicted conserved sites while the yellow
sites are not conserved. The space-filled atoms belong to an experimentally verified
binding site (Scherer and Graff, 2000). The protein structures are visualized using
Jmol (Willighagen and Howard, 2007).
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genes in the NCBI HomoloGene database (Sayers et al., 2012), because these SMAD

genes are either not R-SMAD genes or not regulated by BMPs and may have different

functions from the BMP-regulated R-SMAD genes (Attisano and Tuen Lee-Hoeflich,

2001). The R-SMAD proteins consist of two domains, i.e. MAD homology 1 (MH1)

and MAD homology 2 (MH2), connected by a disordered peptide (Attisano and Tuen

Lee-Hoeflich, 2001). We used the X-ray crystallographic structure of the MH1 domain

in the mouse SMAD1 protein (PDB ID: 3KMP; Baburajendran et al., 2010) as the

representative protein tertiary structure.

We applied FuncPatch to the SMAD dataset to infer conserved functional patches

in the SMAD MH1 domain. FuncPatch analyzed 124 sites in the SMAD alignment.

As shown in Table 4.1, the estimated characteristic length scale is equal to 9 Å in

the SMAD dataset. Because the estimated characteristic length scale is larger than

0, a spatial correlation of substitution rates may be present in the SMAD dataset.

Indeed, the approximate log Bayes factor reported by FuncPatch is greater than

the cutoff 8 (Table 4.1), which suggests that the spatial correlation of substitution

rates is statistically significant in the SMAD dataset. To test whether the cutoff 8

is valid in the SMAD dataset, we again generated 1000 permuted alignments based

on the SMAD alignment and then applied FuncPatch to these permuted alignments

to generate a null distribution of the approximate log Bayes factors. As shown in

Figure 4.2, none of the 1000 permuted alignments has a log Bayes factor larger than

8. Therefore, the cutoff 8 is conservative in the SMAD dataset.

We superimposed the 12 most conserved sites predicted by FuncPatch onto the

tertiary structure of the MH1 domain (Figure 4.3B), which correspond to the 10%

of most conserved sites in the 124 analyzed sites. Obviously the most conserved
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sites predicted by FuncPatch are physically close to each other in the protein tertiary

structure. In addition, most of these conserved sites overlap with the α-helix 4 of

the MH1 domain. A previous experimental study has already demonstrated that this

region is a binding site which may interact with calmodulin and may contribute to

the crosstalk between the calmodulin pathway and the SMAD pathway (Scherer and

Graff, 2000). Therefore, the conserved region predicted by FuncPatch is supported

by experimental evidence.

We also applied GP4Rate and Rate4Site to the SMAD dataset. As shown in

Figure 4.3B, the 12 most conserved sites predicted by GP4Rate largely overlap with

the 12 most conserved sites predicted by FuncPatch. Therefore, FuncPatch is a good

approximation to GP4Rate. However, FuncPatch took only about 6 CPU seconds

to analyze the SMAD dataset while GP4Rate took about 4 CPU hours. Again,

FuncPatch is orders of magnitudes faster than GP4Rate. In contrast, the 12 most

conserved sites predicted by Rate4Site are scattered in the protein tertiary structure

and do not overlap with the sites predicted by FuncPatch (Figure 4.3B). Therefore,

FuncPatch identified an experimentally verified conserved region in the SMAD dataset

which is overlooked by Rate4Site.

4.5 Discussion

Recently, we developed GP4Rate, a phylogenetic Gaussian process model which com-

bines statistical phylogenetics and Gaussian processes to infer conserved functional

regions in protein tertiary structures (Huang and Golding, 2014). Our previous study

has already shown than GP4Rate is a powerful method to infer conserved functional

regions and outperforms Rate4Site, but GP4Rate is a slow MCMC program. In this
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work, we present a new statistical method, FuncPatch, which is designed as a fast

approximation to GP4Rate. While it takes from hours to days for GP4Rate to ana-

lyze a protein family, FuncPatch can finish a similar analysis within a few minutes.

An intuitive web based graphical interface of FuncPatch is available and makes it

more accessible to experimental biologists. Both simulations and the case studies of

the MAPK1 genes and the SMAD genes suggest that FuncPatch is a very accurate

approximation to GP4Rate. The simulations also show that FuncPatch is more pow-

erful and robust than Rate4Site and the 3D sliding window method. The conserved

patches predicted by FuncPatch in the two case studies are supported by experimen-

tal evidence. Therefore, we believe FuncPatch is a useful tool for analyzing protein

families and guiding mutagenesis experiments.

Unlike many other alternative methods, e.g. the 3D sliding window method, Func-

Patch uses a Gaussian prior distribution which naturally captures the spatial corre-

lation of substitution rates in protein tertiary structures. Therefore, it can infer

the strength of the spatial correlation of substitution rates. In addition, a Bayesian

comparison method has been implemented in FuncPatch to test whether the spatial

correlation of substitution rates is significant in a dataset. The two case studies of the

MAPK1 genes and the SMAD genes suggest that the strength of the spatial correla-

tion may vary in different protein families and our preliminary analyses on a few other

protein families also suggest that the spatial correlation of substitution rates may be

insignificant in some protein families (data not shown). We believe that the ability of

inferring the strength and significance of the spatial correlation of substitution rates

is a significant advantage of FuncPatch over the 3D sliding window method.
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Our case studies in this work focus on two empirical datasets in which the di-

vergence levels of sequences are relatively low. However, it is by no means the case

that FuncPatch cannot be used to analyze datasets in which the sequence divergence

level is high. Indeed, it is always helpful to include more sequences in the analy-

ses, if it is believed that the sequences share the same conserved patches. However,

functional divergence may happen after gene duplication (Gu, 1999; Knudsen and

Miyamoto, 2001; Huang and Golding, 2012), which makes it risky to include remote

homologs with different functions in the analyses. FuncPatch may alleviate the prob-

lem, because the remote homologs may be removed from data without significantly

reducing the statistical power of the analyses. Therefore, FuncPatch is particularly

useful for analyzing small gene families or gene families that have undergone recent

gene duplications.
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Chapter 5

Conclusion

In this thesis, we report new statistical phylogenetic models for predicting functionally

important regions in protein tertiary/primary structures. These models are based on

the intuitive assumptions that functionally important protein regions may be under

strong purifying selection in the whole gene family or under different selection pres-

sures in different subfamilies. A large number of classic models have been developed

to infer functionally important sites in proteins based on these assumptions. How-

ever, most of these classic methods assume that evolutionary patterns are independent

and identically distributed (i.i.d.) over sites and focus on the inference of function-

ally important sites instead of regions. As far as we know, the underrepresentation

of rigorous statistical models for inferring functionally important protein regions is

mainly due to the difficulty of modeling the spatial correlation of evolutionary pat-

terns in protein tertiary/primary structures. In this thesis, Gaussian processes and

hidden Markov models have been used as priors to model the spatial correlation of

evolutionary patterns in protein tertiary structures and protein primary structures,
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respectively, and then these priors are combined with Felsenstein’s phylogenetic like-

lihood function (Felsenstein, 1981) to infer functionally important protein regions.

To demonstrate that these new models are powerful and robust, we performed

systematic simulation studies to evaluate the performs of these new models and the

classic models based on the i.i.d. assumption. The simulation studies suggest that,

in general, these new models which explicitly model the spatial correlation of evolu-

tionary patterns in protein tertiary/primary structures significantly outperform the

classic models based on the i.i.d. assumption when the spatial correlation of evolu-

tionary patterns is present. Furthermore, when the spatial correlation of evolutionary

patterns is absent, these new models still have similar powers as the classic models.

Therefore, the simulation studies suggest these new models are potentially more pow-

erful than the classic models and are very robust.

A number of case studies have also been performed to compare the results from

the new models with those from the classic models. The case studies clearly show

that the new models which explicitly model the spatial correlation of evolutionary

patterns in protein tertiary/primary structures can lead to results which are very

different from the results of the classic models. More importantly, the functionally

important regions predicted by these new models are supported by experimental

evidence. Therefore, the new statistical models developed in this thesis can provide

new insights on the functionally important protein regions which cannot be detected

by the classic models.

The new methodologies described in this thesis can also be used to study other im-

portant questions in phylogenetics and molecular evolution. The phylogenetic Gaus-

sian process framework is particularly interesting, since it is one of a few rigorous
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statistical methods which can capture the spatial correlation of evolutionary patterns

in protein tertiary structures. For example, the framework of phylogenetic Gaussian

process models may be used to infer protein 3D patches under positive selection. To

develop such a model, we may firstly use a Gaussian process to define a prior distri-

bution of dN/dS ratios over a protein tertiary structure. Then, the prior distribution

may be combined with a codon model (Goldman and Yang, 1994; Yang et al., 2000)

to infer protein 3D patches under positive selection. It is interesting to develop such a

phylogenetic Gaussian process model and then compare it with a recently developed

codon model in which the Ising model is used to to capture the spatial correlation of

dN/dS ratios in protein tertiary structures (Watabe and Kishino, 2013).

In summary, in this thesis we describe a number of new statistical phylogenetic

models to infer functionally important regions in proteins. The usefulness and ro-

bustness of these models have been demonstrated by simulations and case studies.

In addition, the new methodologies developed in these models, e.g. the phylogenetic

Gaussian process framework, may open new avenues to develop biologically realistic

models for studying important questions in phylogenetics and molecular evolution.
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Appendix A

Supplementary Material for

Chapter 2

A.1 Proof of the Stationary Distribution

As shown in the main text, the transition probabilities between two states can be

parameterized by the following three equations:

P (ri′j′ |rij) =



(1− 2p0) · (λ0 + 1−λ0

k
)

if rij, ri′j′ ∈M0 and rij = ri′j′ ,

(1− 2p0) · 1−λ0

k

if rij, ri′j′ ∈M0 and rij 6= ri′j′ .

(A.1)
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P (ri′j′ |rij) =



(1− p1) · (λ1 + 2(1−λ1)
k(k−1)

)

if rij, ri′j′ ∈M1 (M2) and rij = ri′j′ ,

(1− p1) · 2(1−λ1)
k(k−1)

if rij, ri′j′ ∈M1 (M2) and rij 6= ri′j′ .

(A.2)

P (ri′j′|rij) =



p0 · 2
k(k−1)

if rij ∈M0 and ri′j′ ∈M1 ∪M2,

p1 · 1
k

if rij ∈M1 ∪M2 and ri′j′ ∈M0.

(A.3)

In this section, we prove that if the Markov model of k2 states are parameterized by

Equation (A.1), (A.2), and (A.3) , its stationary distribution follows

π(rij) =


p1

(2p0+p1)k
if rij ∈M0,

2p0
(2p0+p1)(k−1)k

if rij ∈M1 ∪M2.

(A.4)

It’s trivial to show that π(rij) ≥ 0 for every rij and
∑

0≤i,j<k π(rij) = 1. Therefore,

we just need to prove that

π(ri′j′) =
∑

0≤i,j<k

π(rij)P (ri′j′|rij). (A.5)

Due to the symmetry of the one-step transition matrix, we prove the above theory in

two cases. In the first case ri′j′ ∈M0, and in the second case ri′j′ ∈M1

⋃
M2.
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If ri′j′ ∈M0,

∑
0≤i,j<k

π(rij)P (ri′j′|rij) =
∑

0≤i=j<k

π(rij)P (ri′j′ |rij)

+
∑

0≤i 6=j<k

π(rij)P (ri′j′ |rij)

= { p1

(2p0 + p1)k
· (1− 2p0) · (λ0 +

1− λ0

k
)

+ (k − 1) · p1

(2p0 + p1)k
· (1− 2p0) ·

1− λ0

k
}

+ k(k − 1) · 2p0

(2p0 + p1)(k − 1)k
· p1

k

=
p1

(2p0 + p1)k

= π(ri′j′).

(A.6)

Therefore, the stationary probabilities of states in M0 follow Equation (A.4).
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Similarly, if ri′j′ ∈M1 ∪M2,

∑
0≤i,j<k

π(rij)P (ri′j′|rij) =
∑

0≤i=j<k

π(rij)P (ri′j′|rij)

+
∑

0≤i 6=j<k

π(rij)P (ri′j′|rij)

= k · p1

(2p0 + p1)k
· 2p0

k(k − 1)

+ { 2p0

(2p0 + p1)(k − 1)k
· (1− p1) · (λ1 +

2(1− λ1)

k(k − 1)
)

+ (
k(k − 1)

2
− 1) · 2p0

(2p0 + p1)(k − 1)k
· (1− p1) ·

2(1− λ1)

k(k − 1)
}

=
2p0

(2p0 + p1)(k − 1)k

= π(ri′j′).

(A.7)

Therefore, the stationary probabilities of states in M1 and M2 follow Equation (A.4).

In conclusion, the one-step transition probabilities defined in Equation (A.1),

(A.2), and (A.3) imply stationary probabilities defined in Equation (A.4).

A.2 Supplementary Figures

102



Ph.D. Thesis - Yifei Huang McMaster - Biology

Figure A.1: The phylogenetic tree of G protein α subunits in animals.

103



Ph.D. Thesis - Yifei Huang McMaster - Biology

0 2 4 6 8 10 12 14

0
10

0
30

0
50

0

Figure A.2: The distribution of log likelihood ratios in parametric bootstrap. The
parameters in the null model described in table 1 in the main text were used to
generate 1000 simulated alignments. The X axis represents estimated log likelihood
ratios in simulated alignments, while the Y axis represents the number of cases in
each bin.
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Figure A.3: The performance of HMMDiverge in the set of 50 simulated alignments.
The alignments are simulated using parameters in the alternative (full) model in
table 1 in the main text. The right-side chart represents the cutoffs used in the
identification of sites relevant to typ-I functional divergence. Representative cutoffs
are also labeled on the ROC curve directly. ?: the cutoff used in the case study of G
protein α subunits.
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Figure A.4: The spatial distribution of the second region under type-I functional
divergence in the 3D protein structure of G protein α subunit. The G protein α
subunit consists of two domains, a GTPase domain (left) and a helical domain (right).
The dark region is the second candidate region under type-I functional divergence,
which overlaps with the α-4 helix and the α4-β6 loop in the GTPase domain. The
protein structure is visualized using Jalview (Clamp et al., 2004).
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Figure A.5: The performance of HMMDiverge in the first set of additional simula-
tions. X axes represent false positive rates while Y axes represent true positive rates.
Each row consists of the ROC curves of multiple simulations having the equal length
of divergence relevant regions (L1), which are 5 aa, 10 aa, 20 aa, 50 aa, and 100 aa,
increasing from top to bottom. Each column consists of the ROC curves of multiple
simulations having the equal length of divergence irrelevant regions (L2), which are 50
aa, 100 aa, and 200 aa, increasing from left to right. Three types of curves represent
three pairs of branch scale parameters. Dotted curves: the scale factor is 1.5 in the
rapidly evolved subfamily and 0.5 in the slowly evolved subfamily. Dashed curves:
the two scale factors are 1.75 and 0.25 respectively. Solid curves: the two scale factors
are 1.875 and 0.125 respectively. The shape parameter α is 0.2 in all simulations.
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Figure A.6: The performance of HMMDiverge in the second set of additional simula-
tions. X axes represent false positive rates while Y axes represent true positive rates.
Each row consists of the ROC curves of multiple simulations having the equal length
of divergence relevant regions (L1), which are 5 aa, 10 aa, 20 aa, 50 aa, and 100 aa,
increasing from top to bottom. Each column consists of the ROC curves of multiple
simulations having the equal length of divergence irrelevant regions (L2), which are 50
aa, 100 aa, and 200 aa, increasing from left to right. Three types of curves represent
three pairs of branch scale parameters. Dotted curves: the scale factor is 1.5 in the
rapidly evolved subfamily and 0.5 in the slowly evolved subfamily. Dashed curves:
the two scale factors are 1.75 and 0.25 respectively. Solid curves: the two scale factors
are 1.875 and 0.125 respectively. The shape parameter α is 1.0 in all simulations.
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Figure A.7: The comparison of HMMDiverge and DIVERGE2 in the reference sim-
ulations. X axes represent false positive rates while Y axes represent true positive
rates. Each row consists of the ROC curves of multiple simulations having the equal
length of divergence relevant regions (L1), which are 5 aa, 10 aa, 20 aa, 50 aa, and 100
aa, increasing from top to bottom. Each column consists of the ROC curves of mul-
tiple simulations having the equal length of divergence irrelevant regions (L2), which
are 50 aa, 100 aa, and 200 aa, increasing from left to right. The shape parameter α
is 0.5 in all simulations. The scale factor is 1.5 in the rapidly evolved subfamily and
0.5 in the slowly evolved subfamily in all simulations. Solid curves: the performances
of HMMDiverge. Dashed curves: the performances of DIVERGE2.
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Figure A.8: The comparison of HMMDiverge and DIVERGE2 in the reference simu-
lations. X axes represent false positive rates while Y axes represent true positive rates.
Each row consists of the ROC curves of multiple simulations having the equal length
of divergence relevant regions (L1), which are 5 aa, 10 aa, 20 aa, 50 aa, and 100 aa,
increasing from top to bottom. Each column consists of the ROC curves of multiple
simulations having the equal length of divergence irrelevant regions (L2), which are
50 aa, 100 aa, and 200 aa, increasing from left to right. The shape parameter α is 0.5
in all simulations. The scale factor is 1.75 in the rapidly evolved subfamily and 0.25
in the slowly evolved subfamily in all simulations. Solid curves: the performances of
HMMDiverge. Dashed curves: the performances of DIVERGE2.

110



Ph.D. Thesis - Yifei Huang McMaster - Biology

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

False positive rate 

Tr
ue

 p
os

iti
ve

 ra
te

Figure A.9: The comparison of HMMDiverge and DIVERGE2 in the reference sim-
ulations. X axes represent false positive rates while Y axes represent true positive
rates. Each row consists of the ROC curves of multiple simulations having the equal
length of divergence relevant regions (L1), which are 5 aa, 10 aa, 20 aa, 50 aa, and
100 aa, increasing from top to bottom. Each column consists of the ROC curves of
multiple simulations having the equal length of divergence irrelevant regions (L2),
which are 50 aa, 100 aa, and 200 aa, increasing from left to right. The shape pa-
rameter α is 0.5 in all simulations. The scale factor is 1.875 in the rapidly evolved
subfamily and 0.125 in the slowly evolved subfamily in all simulations. Solid curves:
the performances of HMMDiverge. Dashed curves: the performances of DIVERGE2.
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Figure A.10: The comparison of HMMDiverge and DIVERGE2 in the third set of
additional simulations. X axes represent false positive rates while Y axes represent
true positive rates. The length of ‘functional divergence relevant regions’, L1, is fixed
to 1, which implies individual sites are units of functional divergence. L2: the length
of ‘functional divergence irrelevant regions’. Rho1: the branch length scale factor in
the slowly evolved subfamily. Rho2: the branch length scale factor in the rapidly
evolved subfamily. The shape parameter, α, is set to 0.5.

112



Ph.D. Thesis - Yifei Huang McMaster - Biology

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Figure A.11: The comparison of HMMDiverge and DIVERGE2 in the third set of
additional simulations. X axes represent false positive rates while Y axes represent
true positive rates. The length of ‘functional divergence relevant regions’, L1, is fixed
to 1, which implies individual sites are units of functional divergence. L2: the length
of ‘functional divergence irrelevant regions’. Rho1: the branch length scale factor in
the slowly evolved subfamily. Rho2: the branch length scale factor in the rapidly
evolved subfamily. The shape parameter, α, is set to 0.5.
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Appendix B

Supplementary Material for

Chapter 3

B.1 2D Toy Protein Simulations in the Absence of

the Spatial Correlation of Site-specific Substi-

tution Rates

Because the strength of spatial correlation of site-specific substitution rates may be

very weak in some protein families, we compared the performance of GP4Rate and

Rate4Site in simulated alignments in which the spatial correlation of site-specific

substitution rates is absent. The simulated alignments were generated by randomly

permuting the sites in each alignment in the first spatial configuration of the 2D toy

protein simulations. The random permutations destroyed the spatial correlation of

site-specific substitution rates but kept the other features of the data. We applied both

GP4Rate and Rate4Site to the permuted alignments following the settings described
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in the Main Text. Because the spatial correlation of site-specific substitution rates

is absent in these permuted alignments, we expected that the characteristic length

scales estimated by GP4Rate would be very close to zero. As shown in Figure B.1A,

the estimated characteristic length scales are indeed close to zero. The result suggests

that GP4Rate can detect the absence of spatial correlation of substitution rates in

the permuted alignments.

Because GP4Rate is mainly designed for identifying slowly evolved functional

sites in the presence of spatial correlation of substitution rates, it is interesting to

test whether it has a similar statistical power as Rate4Site, which explicitly assumes

the absence of spatial correlation, in the permuted alignments. Therefore, we plotted

the ROC curves to visualize the performance of GP4Rate and Rate4Site. Similar

to the 2D toy protein simulations described in the Main Text, we divided the sites

into two categories, functional sites and nonfunctional sites, and these two categories

were used as true positives and true negatives, respectively, in the ROC curves. The

sites that evolved at the lower rate (0.2) were considered to be functional where these

that evolved at the higher rate (1.8) were considered to be nonfunctional. As shown

in Figure B.2A, GP4Rate and Rate4Site have similar powers as the areas under the

ROC curves of GP4Rate and Rate4Site are effectively identical.

As mentioned in the Main Text, ROC curves may not be able to estimate the

potential systematic bias of the estimated substitution rates. Therefore, we compared

GP4Rate with Rate4Site using the simple loss function proposed in the Main Text.

As shown in Figure B.2B, GP4Rate has a lower accuracy than Rate4Site. The higher

systematic bias in GP4Rate might be due to the inflexibility of the Gaussian process

prior when a spatial correlation is absent. If the spatial correlation of substitution
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Figure B.1: The hyperparameters estimated by GP4Rate in the 20 permuted align-
ments. The unit of the characteristic length scale is Å while the signal standard
deviation is unitless. (A) the estimated characteristic length scale; (B) the estimated
signal standard deviation.
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Figure B.2: The quantitative comparison of GP4Rate and Rate4Site in the 20 per-
muted alignments. (A) the ROC curves of GP4Rate and Rate4Site; (B) the losses of
GP4Rate and Rate4Site. In the ROC curves, the solid blue line corresponds to the
performance of GP4Rate while the dotted black line corresponds to the performance
of Rate4Site. In the plot of losses, each point corresponds to a permuted alignment.
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rates is absent, the estimated characteristic length scale will be very close to zero.

In this scenario, the site-specific substitution rates are effectively independent and

identically distributed (i.i.d) and the Gaussian process prior degenerates to a simple

isotropic multivariate Gaussian distribution. Recalling that we assumed that the log

values of site-specific substitution rates follow the Gaussian process prior, it means

that the site-specific substitution rates effectively follow i.i.d. log-normal distributions.

In contrast, Rate4Site assumes that site-specific substitution rates follow i.i.d. discrete

Gamma distributions. It is well-known that Gamma distribution is very flexible and

can model a variety of distributions with different shapes. In contrast, the log-normal

distribution is not as flexible as the Gamma distribution. Nevertheless, in the practice

of identifying functional sites, the absolute substitution rates are rarely interesting to

researchers, since it is the relative substitution rates that tell us which sites may be

functionally important. Because the ROC curves are equivalent between GP4Rate

and Rate4Site, GP4Rate should have the same power as Rate4Site for identifying

conserved functional sites if the spatial correlation of substitution rates is absent.

B.2 Bayesian Model Comparision in the Case Study

of B7-1 Genes

As mentioned in the main text, it is impractical to compare GP4Rate with Rate4Site

directly, since GP4Rate is based on the Bayesian principle while Rate4Site is based

on the maximum likelihood principle. Therefore, we developed a Bayesian version

of Rate4Site. Because we assumed that both the topology and branch lengths of

the phylogenetic tree were fixed in analyses, the only free parameter in Rate4Site is
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the shape parameter of the discrete Gamma distribution. In the Bayesian Rate4Site,

we assumed that the Gamma shape parameter follows a uniform distribution ranging

from 0.05 to 5. The lower boundary was set to 0.05, because very small Gamma shape

parameters, which suggest very large variations of site-specific substitution rates, are

very unlikely to fit real data well and the discrete Gamma distribution is numerically

instable when the Gamma shape parameter is very close to 0. The upper boundary, 5,

corresponds to the scenario in which the variation of substitution rates is very small.

Because there is only one free parameter in the Bayesian Rate4Site, we numerically

integrated it out to calculate the log marginal likelihood of the Bayesian Rate4Site.

More specifically, in the numerical integration we divided the range of the Gamma

shape parameter into small bins whose sizes are all equal to 0.01. The marginal

likelihood may be calculated by the following formula,

ML =

∑K
i=1 LMid

i

K
. (B.1)

In the equation, K is the total number of bins in the numerical integration while

LMid
i is the phylogenetic likelihood when the Gamma shape parameter is equal to the

middle-point of the i-th bin. The site-specific substitution rates were also calculated

using the same numerical integration algorithm.

To test whether Rate4Site and its Bayesian version lead to similar estimations

of the site-specific substitution rates, we applied both the two programs to the B7-

1 dataset described in the main text. As shown in Figure B.3, the correlation of

estimated site-specific substitution rates is very strong (ρ > 0.999). Therefore, the

two programs generated essentially the same result and we may use the estimated

log marginal likelihood of the Bayesian Rate4Site to measure how good the original
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Rate4Site fits the B7-1 dataset.

To calculate the log marginal likelihood of GP4Rate, we applied the steppingstone

sampling (SS) algorithm Xie et al. (2011). It has been shown that the SS algorithm

is a very accurate algorithm to calculate the log marginal likelihood of phylogenetic

models Xie et al. (2011). The SS algorithm calculates the log marginal likelihood by

performing a series of MCMC simulations based on a family of distributions,

P (Φ, l, σ|X,D, T , β) ∝ P (l, σ)P (Φ|D, l, σ){
N∏
i=1

Li(Φi; Xi, T )}β. (B.2)

The extra parameter β reflects the “temperature” of the system. If β = 0, we

essentially sample from the prior distribution. If β = 1, we essentially sample from

the posterior distribution. We choose 21 β values which correspond to the quantiles

of the Beta(0.3, 1) distribution as suggested by the previous study Xie et al. (2011).

Then, 20 simulations were performed based on the chosen β values, each of which ran

106 iterations. The first 30% of samples were discarded as burn-in. Finally, the log

marginal likelihood was calculated based on the 20 simulations Xie et al. (2011).

The estimated log marginal likelihood of GP4Rate is equal to −1705.1 while the

estimated log marginal likelihood of the Bayesian Rate4Site is equal to −1710.9.

Recall that the Bayes factor is defined as the ratio of the marginal likelihoods of the

two alternative models. The Bayes factor of GP4Rate compared with the Bayesian

Rate4Site is equal to

BF = e−1705.1+1710.9 = 330.3, (B.3)

which is significantly greater than 1. Therefore, GP4Rate fits the B7-1 dataset much

better than the Bayesian version of Rate4Site.
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Figure B.3: The site-specific substitution rates estimated by Rate4Site and its
Bayesian version in the case study of B7-1 genes. The x-axis corresponds to the
site-specific substitution rates estimated by the Bayesian Rate4Site while the y-axis
corresponds to the site-specific substitution rates estimated by the original Rate4Site.
The Spearman correlation coefficient of the estimated substitution rates is greater
than 0.999.
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B.3 List of Conserved Sites Predicted by GP4Rate

and Rate4Site in the Case Study of B7-1 Genes

Table B.1: List of the top 20 most conserved sites predicted by GP4Rate and
Rate4Site in the case study of B7-1 genes.

Conserved sites (GP4Rate) Conserved sites (Rate4Site)
site rate site rate
157 0.404 75 0.494
164 0.414 131 0.494
158 0.418 156 0.494
156 0.423 167 0.494
163 0.426 168 0.494
154 0.452 57 0.512
133 0.454 153 0.512
165 0.458 154 0.512
159 0.463 175 0.512
132 0.463 55 0.521
162 0.466 144 0.521
166 0.470 173 0.521
131 0.471 106 0.531
167 0.472 30 0.532
153 0.473 113 0.532
155 0.473 8 0.540
134 0.476 39 0.540
168 0.497 100 0.540
161 0.498 191 0.540
160 0.510 96 0.547
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Glossary

Bayesian Inference Bayesian inference is a statistical framework to estimate pa-

rameters given an observed dataset. Unlike maximum likelihood inference,

Bayesian inference combines the information from both a likelihood function

and a prior distribution to generate a posterior distribution which is used to

estimate parameters.

Gaussian Process A Gaussian process is a stochastic process whose marginal dis-

tributions are Gaussian (normal) distributions. Gaussian processes are widely

used in machine learning and geostatistics.

JTT Substitution Model The JTT substitution model is a protein substitution

model firstly described by Jones and colleagues (Jones et al., 1992).

Laplace Approximation A Laplace approximation uses a Gaussian (normal) dis-

tribution to approximate a complicated probability distribution. The Gaussian

distribution is typically constructed by a second-order Taylor expansion at the

global maximum of the distribution.

Likelihood Function A likelihood function is a function of parameter vectors. It

is equal to the probability (or probability density) of the observed data given a
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parameter vector.

Markov Chain Monte Carlo Markov chain Monte Carlo (MCMC) methods are a

collection of algorithms to generate dependent samples from probability distri-

butions using customized Markov chains.

Markov Model A Markov model is a stochastic process which assumes that the

probability of each state at the current time point is only dependent on the

state at the immediately previous time point. Markov models are widely used

in phylogenetics to model the evolutionary processes of biological sequences.

Maximum Likelihood Inference Maximum likelihood inference is a statistical frame-

work to infer parameters by maximizing the likelihood function with regard to

unknown parameters.

Phylogenetic Hidden Markov Model A phylogenetic hidden Markov model (phylo-

HMM) combines a phylogenetic model and a hidden Markov model to model

the spatial distribution of evolutionary patterns along biological sequences.

Pruning Algorithm The pruning algorithm is a dynamic programming algorithm

to calculate the likelihood function of a phylogenetic model. In machine learn-

ing literature, it is also known as the sum-product or the belief-propagation

algorithm.

Receiver Operating Characteristic Curve A receiver operating characteristic (ROC)

curve is a plot to visualize the performance of a binary classifier. The power of

a binary classifier can be quantitatively measured by the area under its ROC

curve.
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Relative Solvent Accessibility The relative solvant accessibility (RAS) is the ra-

tio of the measured solvent accessibility of a residue X in a PDB structure and

its solvent accessibility in a typical tripeptide, i.e. Gly-X-Gly.

Type-I Functional Divergence After gene duplication, some protein sites/regions

may evolve at different substitution rates in the two duplicate gene copies, which

is referred to as type-I functional divergence.

Type-II Functional Divergence In duplicate genes, the substitution rates at some

protein sites/regions may increase at the early stage of duplication but decrease

at the late stage of duplication, which is referred to as type-II functional diver-

gence.
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