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ABSTRACT

Modern  advances  in  biometeorological  monitoring  technology  have  improved  the  capacity  for

measuring  ecosystem  exchanges  of  mass,  energy  and  scalars  (such  as  CO2).   Translating  these

measurements into robust and accurate scientific information (and ultimately, understanding) requires

careful assessment of operations throughout the biometeorological data life cycle.  In response,  this

research analyzed and optimized aspects of data collection, management and filtering for an ecosystem

exchange measurement program over an age-sequence of temperate white pine forests. 

A comprehensive data workflow and management system (DWMS) was developed and implemented to

support the entire data life cycle for all past, present and future measurement operations in our research

group, and meet the needs of a collaborative, student-led data management environment. Best practices

for  biometeorological  data  management  were  introduced  and  used  as  standards  to  assess  system

performance. 

Roving  eddy  covariance  (rEC)  systems  were  examined  as  a  means  of  producing  reliable

time-integrated  carbon  exchange  estimates  at  multiple  sites,  by  rotating  an  EC  system  in  a

resource-mindful approach.  When used with an optimal gap-filling model and rEC rotation schedule 

(2 sites with 15-day rotations), the results suggested its viability, as annual NEE estimate uncertainties

ranged between 35 and 63% of  the annual  NEE flux magnitude at  our  study sites – even though

approximately 70% of half-hours were filled.

Lastly,  a data-driven approach was used to investigate the effects of different friction velocity and

footprint filtering methods on time-integrated carbon exchange estimates at our fetch-limited forests.

Though  predicted  flux  source  areas  varied  considerably  between  footprint  models,  our  objective

analyses identified the model (Kljun et al., 2004) and within-fetch requirement (80%) that optimized

reliability  and  representativeness  of  carbon  exchange  estimates.  Applying  this  footprint  model

decreased annual NEE by 31 to 129% (59 to 207 g C m-2 y-1) relative to no footprint application, and

highlighted the importance of objective analyses of EC flux filtering methods.
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List of Abbreviations and Symbols

Table 1: List of Abbreviations and Symbols

Abbreviation 
or Symbol Description

TPFS
TP39
TP74
TP89
TP02
TP_PPT
EC
rEC
CPEC
OPEC
ACS
BACON
DWMS
CFS

Turkey Point Flux Station
TPFS flux study site, planted in 1939
TPFS flux study site, planted in 1974
TPFS flux study site, planted in 1989
TPFS flux study site, planted in 2002
TPFS precipitation measurement site
Eddy covariance
Roving eddy covariance
Closed-path eddy covariance
Open-path eddy covariance
Automated Chamber System
Biometeorological Analysis, Collection, and Organizational Node
Data workflow and management system
Central file system 

CO2 
Fc

ΔSc

NEE
GEP
RE

Carbon Dioxide
Turbulent carbon flux
Air column CO2 storage change flux
Net Ecosystem Exchange
Gross Ecosystem Productivity
Ecosystem Respiration

Ta 
Ts

PAR
PPFD
GDD
VWC30

WS, (u)
u*

u*
Th

Air temperature
Soil temperature
Photosynthetically active radiation
Photosynthetic photon flux density
Growing degree days
30 cm depth-weighted volumetric water content
Horizontal wind speed, (velocity)
Friction velocity
Friction velocity threshold

σw Standard deviation of vertical wind velocity

L
zm

z0

d
ζ 

Obukhov length
Measurement height
Roughness length
Displacement height
Atmospheric stability parameter
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Table 1: List of Abbreviations and Symbols (continued)

Abbreviation 
or Symbol Description

Fin

fpm

fpTh

LES

Within-fetch integrated footprint function
Footprint model 
Footprint threshold
Large eddy simulation

ф
фRE, GEP

IQR
rΦ

CI95

Available data fraction
RE- and GEP-parameterizable available data fraction
Inter-quartile range
Pearson's correlation coefficient
95% confidence interval

MPT-G
MPT-P
CPD
SP90
HS00
KM01
KL04
ANN
MDS
NLR-FC
NLR-HL

Moving point test method described by Gu et al. (2005)
Moving point test method described by Papale et al. (2006)
Change points detection method described by Barr et al. (2013)
Footprint model of Schuepp et al. (1990)
Footprint model of Hsieh et al. (2000)
Footprint model of Kormann and Meixner (2001)
Footprint model of Kjun et al. (2004)
Artificial neural network
Marginal distribution sampling gap-filling model of Reichstein et al. (2005)
Fluxnet-Canada non-linear regression gap-filling model
Howland forest non-linear regression gap-filling model of Richardson et al. (2007)
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 1 Introduction

Modern advances in environmental monitoring technologies have revolutionized the way in which 

researchers observe and understand natural phenomena (Benson et al., 2010; Campbell et al., 2013; 

Porter et al., 2009). In the field of biometeorology, these technologies have improved both the temporal

and spatial resolution at which ecosystems may be monitored, providing estimates of the distribution 

and exchanges of mass, energy and scalars (such as CO2) (Baldocchi et al., 2001; Hamilton et al., 2007;

Kao et al., 2012).   Among these advances is the development and wide implementation of the eddy 

covariance (EC) method to study the terrestrial carbon cycle (Baldocchi, 2003). Together with 

micrometeorological towers and chamber measurements, EC flux installations have served a wide 

range of interests in ecological studies, including: the quantification of global carbon sources and sinks 

(Coursolle et al., 2012b; Janssens et al., 2001; Valentini et al., 2000); investigations of environmental 

and biological controls on terrestrial carbon exchanges (Barr et al., 2007; Falge et al., 2002; Richardson

et al., 2010, 2007); monitoring of ecosystem growth and health (McLaren et al., 2008; Richardson et 

al., 2013); evaluation and information on management practices (Olajuyigbe et al., 2012; Saunders et 

al., 2012; Son et al., 2004); and, parameterization and validation of simple empirical to complex 

process-based models of ecosystem exchange dynamics (Schwalm et al., 2010).

Though these technologies exhibit unmatched potential for understanding ecosystem-atmosphere 

interactions, it is important to note that their 'real-world' operation is accompanied by practical 

challenges and limitations. For example, when operated above forested sites, the simplifying 

assumptions of the EC method are not always met, leading to measurements that may not be 

representative of the true ecosystem-atmosphere carbon exchange (Aubinet, 2008; Göckede et al., 

2004; Gu et al., 2005; Massman and Lee, 2002; Paw U et al., 2000). These ideal requirements include 

stationarity of the data, homogeneity of the underlying surface, fully-developed atmospheric 

turbulence, and the absence of horizontal and vertical advection (Aubinet et al., 2001; Baldocchi, 2003;

Foken and Wichura, 1996).  Since the derived knowledge of EC flux studies is dependent on the nature 

of the measured data, it is crucial that EC data be properly quality-controlled to identify and 

subsequently remove or correct non-representative measurements (Aubinet, 2008; Barr et al., 2013; 

Foken and Wichura, 1996; Xuhui Lee et al., 2004). In particular, when EC study sites are fetch-limited, 

it is often necessary to consider the potential contamination of EC flux measurements by non-target 

surfaces (Göckede et al., 2004; Neftel et al., 2008; van de Boer et al., 2013).
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At a larger scale, the intensification of high-frequency measurement systems such as EC – and their 

continuous operation at annual to decadal time scales – has led to a substantial increase in the diversity 

and quantity of data that must be collected, managed, processed, transferred, stored and shared properly

throughout its entire data life cycle (Benson et al., 2010; Campbell et al., 2013; Porter et al., 2012).  

Those responsible for this data must be able to manage large quantities of data in various formats, and 

ensure that it is downloaded, processed and stored in an efficient and reliable manner (Campbell et al., 

2013; Strasser et al., 2012) .  

When the aforementioned challenges are considered in the context of single research groups – often the

organizational units responsible for implementing and maintaining these systems – it is also necessary 

to acknowledge the presence of resource constraints on their operations. Considering both a general 

lack of ideal measurement sites, and an operational environment of funding uncertainty, short grant 

cycles, restrictions on technical staff, and high graduate student turnover rates, compromises must often

be made between approaches that are ideal, and those that are feasible. In such cases, it is prudent that 

researchers take efforts to quantify and subsequently minimize the effect of such compromises on 

research outcomes.

Following these recommendations, the research presented in this thesis aims to quantify and minimize 

the effect of operational compromises on the results and derived knowledge of an ecosystem exchange 

measurement program over an age-sequence of temperate white pine forests. 

 1.1 Turkey Point Flux Station

The foci of this study are the Turkey Point Flux Station (TPFS) research sites, located in proximity to 

the north shore of Lake Erie in Norfolk County (42.71 °N, 80.36 °W), southern Ontario, Canada.  TPFS

is comprised of an age-sequence of planted and managed eastern white pine (Pinus strobus L.) forests, 

planted in 1939, 1974, 1989 and 2002, and herein referred to as TP39, TP74, TP89 and TP02.  EC and 

continuous meteorological measurements commenced at these sites in 2002. A closed-path 

eddy-covariance (CPEC) system has been operated at the primary site (TP39) from 2002 until the 

present.  Between 2002 and 2007, a single roving open-path eddy covariance (OPEC) system was 

moved between the younger sites (TP74, TP89, TP02) at semi-regular intervals of 2 weeks to 1 month. 

In 2008, permanent CPEC systems were installed at TP74 and TP02, while the TP89 site was retired 

from all measurements. In the context of forest micrometeorology studies, these sites may all be 

classified as area-limited, ranging between 0.40 km2 at TP39 and 0.07 km2 
 at TP02 ; these fetch 
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limitations are a consequence of the intensively fragmented and managed nature of the greater region. 

Detailed description of site characteristics may be found in Arain and Restrepo-Coupe  (2005), Peichl 

and Arain (2006), and Peichl et al., (2010a, 2010b).  

 1.2 Objectives of this Research

This set of works aims to address the most important considerations for obtaining accurate, 

well-constrained characterizations of ecosystem carbon exchanges in our age-sequence of temperate 

white pine forests.  Three objectives have been developed to address these challenges and achieve the 

research goal.

The quantity and diversity of data collected through biometeorological and ecological measurements at 

our site presents substantial data management and processing challenges.  In order to ensure integrity 

and accuracy of analyses and disseminated results, it is critical that data be collected, managed, 

processed, transferred, stored and shared properly throughout its entire data life cycle. In research 

groups such as ours, where there does not exist a dedicated data manager, an added challenge is to 

develop a data system that operates effectively in a collaborative setting.  As such, the first objective of 

this research is to develop and implement an effective and sustainable data workflow and management 

system to enable collaborative data management in biometeorological research. 

The application of a roving eddy covariance system at our youngest study sites between 2002 and 2007

extended the number of sites that could be covered by a single EC system.  However, this was done at 

the cost of significant challenges to extracting reliable carbon exchange information for any given site 

from such temporally-fragmented EC measurement time series.  Quantifying the uncertainties in 

time-integrated carbon exchanges for these ecosystems provides important context and insights into 

these data and their utility.  Additionally, if reliable estimates are possible, then such an approach may 

be applicable to other sites, in order to increase EC measurement coverage while requiring limited 

resources. Therefore, the second objective of this research is to estimate the uncertainty in 

time-integrated carbon estimates associated with roving EC operation at our sites, and assess its 

potential for wider use.

Given the fetch limitations at all of our measurement sites, it is necessary to consider the extent of EC 

measurement source areas when conducting analyses or producing ecosystem exchange estimates. 

Though numerous footprint models have been developed to estimate the EC measurement source area, 

comparisons have shown considerable variation among predictions (e.g. Kljun et al., 2003; van de Boer
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et al., 2013).  Without tracer experiments to assess footprint model predictions, it is important to 

characterize differences between each model, understand their implications on analyses, and seek 

secondary approaches to select the most appropriate footprint filtering application.  In response to this 

need, the third research objective is to compare a number of analytical footprint models for predicting 

EC measurement source area at our sites, characterize their influence on intermediate and final analyses

results, and develop a data-driven approach to evaluating footprint model performance.  

 1.3 Thesis Structure 

The aforementioned research objectives are addressed in Chapters 2 through 4, which have been 

written as standalone research papers.  In the interest of providing a cohesive and fully-referenced 

document, a small number of references are made between chapters.  This has been done in respect to 

the chronological order in which these papers will be submitted. The following paragraphs provide a 

brief outline of each chapter.

Chapter 2: A system for collaborative data workflow and management in a long-term, 

multi-site biometeorology measurement program.

This paper documents the background, design and implementation of a comprehensive data workflow 

and management system for a long-term, multi-site biometeorological research program at our study 

sites. This system was designed and implemented between 2008 and 2011, to accommodate all 

biometeorological and ecological data collected by our research group.  The system was also designed 

to facilitate collaborative data management amongst multiple group members.  In this chapter, the data 

workflow and management system is critically evaluated by discussing the successes and limitations of 

this system, and assessing the long-term sustainability prospects of collaborative data management 

using this tool. 

In the interest of providing thorough documentation to current and future researchers using this tool, 

this chapter has been made comprehensive in nature.  This chapter is not submitted to an academic 

journal. 

Chapter 3: Assessing the suitability of roving eddy covariance systems to produce 

reliable time-integrated carbon exchange estimates at multiple sites

This paper evaluates the roving eddy covariance (rEC) approach that was applied to our study sites, for 

its usefulness in deriving reliable time-integrated carbon exchange estimates both at our site and 
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generally. Monte Carlo analyses are used to quantify the net ecosystem exchange (NEE) uncertainty 

associated with different rEC measurement schedules (number of sites, rotation period, schedule 

timing), as well as the effects of different gap-filling models, and the application of a variety of 

proposed NEE uncertainty mitigation strategies.  This chapter has been written for submission to 

Agricultural and Forest Meteorology. 

Chapter 4: Implications of commonly-used footprint and friction velocity filtering 

methods on data availability and carbon exchange estimates in a fetch-limited 

temperate forest

This paper uses a data-driven, factorial analyses approach to characterize the differences among, and 

interaction between four analytical footprint models, and three u*
Th estimation methods. These effects 

were evaluated in terms of their consequences for EC data quantity and distribution at our fetch-limited

temperate forest, as well as subsequent implications for annual carbon exchange estimates for the TP39

study site. In this paper, we compare NEE estimates across different footprint models and footprint 

stringency specifications and evaluate the performance of these filtering approaches.  A novel, 

data-driven approach is introduced, which uses internal gap-filling model performance metrics as a 

means of evaluating the consistency of filter-passing EC-measured data, and thus the ecosystem- 

representativeness of different footprint filtering approaches. The filtering approaches deemed most 

suitable for our site are applied to NEE time series, and subsequently gap-filled to produce best 

estimates of annual NEE, ecosystem respiration (RE) and gross ecosystem productivity (GEP) values. 

Differences between the new values and previous EC-and biometric-based estimates at this stite are 

critically investigated, and the nature of environmental control on carbon exchange – as inferred from 

our results – is discussed. 

This chapter has been written for submission to Agricultural and Forest Meteorology. 

Chapter 5: Conclusions

This chapter summarizes the findings of the three papers included in this thesis, discusses the results in 

the context of contributions to scientific understanding, and recommends directions for future research 

that follow from these works.
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 2 A system for collaborative data workflow and management 
in a long-term, multi-site biometeorology measurement program
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 2.1 Abstract

Modern investigations of biosphere-atmosphere interactions have benefited from developments in 

measurement equipment, as well as data storage, analysis and transfer technology. These technologies 

have permitted the long-term and continuous collection of many variables at high or very high 

frequencies and, as a result, have led to dramatic increases in biometeorological research data 

production. In order to address the issue of the so-called 'data deluge', there has been heightened focus 

on developing and implementing proper data management operations through all stages of the 

biometeorological data life cycle. Though such actions are necessary to ensure integrity and quality of 

data-derived results, implementing effective and sustainable data workflow and management systems 

presents numerous data- and resource-related challenges.  In this descriptive paper, we document the 

background, design and implementation of a comprehensive data workflow and management system 

for a long-term, multi-site biometeorological research program.  The biometeorological data life cycle 

is first presented to provide context to the work, and is followed by an assessment of the requirements 

and challenges associated with implementing effective data management and processing workflows in 

biometeorological research programs.  Following this, we describe the design and operation of our data

workflow and management system, which was designed to facilitate collaborative data management 

amongst multiple group members.  We discuss the successes and limitations of this system, and assess 

the long-term sustainability prospects of collaborative data management. 

 2.2 Introduction

In the field of biometeorology, advances in instruments and systems over the past 20 years have 

provided researchers new tools for investigating atmosphere-biosphere interactions, fostered new ways 

in which these tools may be applied, and have allowed researchers to pose new hypotheses and 

evaluate them experimentally (Baldocchi, 2003; Benson et al., 2010).  The development of instruments 

such as fast-response anemometers, gas analyzers and data loggers provide researchers with continuous

(or at least, continual) ecosystem exchange measurements over a wide range of time scales.  

Simultaneously, increasing amounts of automated meteorological instruments provide more 

comprehensive and higher resolution information about the state of the environment where these 

exchange measurements are taken (Campbell et al., 2013; Peters, 2010; Porter et al., 2012).  At larger 

scales, the establishment of research programs and networks at national and international levels has 

provided the infrastructure needed to study these interactions in more places and at longer time scales, 
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improving understanding of ecosystem-atmosphere energy and mass exchange dynamics across both 

space and time (Baldocchi et al., 2001; Coursolle et al., 2012a; Kao et al., 2012; Keller et al., 2008; 

Melaas et al., 2013). 

Accordingly, measurement intensification and the application of systems over longer periods and more 

sites has greatly increased the quantity and diversity of data that must be managed at the level of the 

research group unit (principal investigator, research students and staff). Those responsible for this data 

must be able to manage large quantities of data in various formats, and ensure that it is downloaded, 

processed and stored in an efficient and reliable manner (Campbell et al., 2013).  At a larger scale, the 

development of e-science and extra-institutional research networks has increased the need for sharing 

scientific data, which may be used for such activities as research collaboration, synthesis studies, data 

mining and data re-visitation (Baker and Barton, 2009; Uhlir and Schröder, 2008).  As a result, research

groups in biometeorology must devote considerable resources to data stewardship activities, in order to 

ensure that their data is collected, managed, archived, accessed and shared correctly (Campbell et al., 

2013; Hamilton et al., 2007).  

Determining best-practices for a research group's data management activities depends on the data need 

and the existing research environment.  In an ideal situation, all data management activities are 

overseen by a permanent, highly-skilled and dedicated data manager, who is responsible for designing 

and implementing data management plans and systems.  This individual ensures that data operations 

are consistent, and that top-quality data products are shared with end-users for their analyses.  

However, dedicated data managers are not always employed within research groups – a result of high 

position turnover, funding limitations (by both monetary amounts and term length), or a lack of 

compelling incentive for administrators to employ dedicated data managers and carry-out proper data 

management (Barton et al., 2010).  

In response to this, it may be necessary for data management to occur in a collaborative framework, 

where each member of the research group is tasked with independently managing all data pertaining to 

their own research and making their final data products available to internal and external end-users.  In 

this setting, data stewardship arises from the combined individual efforts of all members, either with or 

without the presence of a coordinating framework.  Though this framework allows for division of the 

data management workload, there are a number of potential drawbacks to this approach, which may 

have negative consequences for data quality within the research group:  

The regular turnover of research group members and their discrepancies in data management skills can 
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lead to inconsistent quality across the research group's data products.  Furthermore, data quality 

inconsistency can also arise from varying levels of incentive across members towards developing data 

beyond what is necessary for their individual research (Peters, 2010).   

Second, unless methods and formats are standardized across members, data products will suffer from 

inconsistencies and incompatibilities, making it difficult to assimilate different outputs into a single, 

coordinated product.  Particularly, standardized methods should restrict members from managing data 

through manually-driven means (e.g. spreadsheets), as such approaches are prone to manipulation 

errors that are commonly latent, untraceable and unreproducible in nature (Cook et al., 2001; Hook et 

al., 2010; Strasser et al., 2012).

Third, in cases where members are carrying out data operations on separate, distributed computer 

systems, problems can arise from poor data and methodology coordination.  Version discrepancies can 

arise in situations where processing methodology and data are shared among a number of systems, 

which increases the likelihood of processing errors and data loss due to mismanagement.  Such 

situations also result in higher operational redundancy, and lag times for assimilating data products.

Finally, the lack of a permanent overseer of data management activities has negative consequences for 

its sustainability and future development.  Without a centralized individual to facilitate effective 

communication between members and to provide leadership for data management activities, there 

exists less capacity for the collaborative management framework to function optimally in the present or

the future.

Though a collaborative framework may be necessary in many settings to yield an acceptable amount of 

dedicated data management time for all members (Buneman et al., 2011; Ives et al., 2008), the potential

for one or many of these aforementioned problems to arise should be addressed within the research 

group, as they may prove detrimental to productivity, data quality and quantity, and researcher 

reputation.  In such cases, it is imperative that research group members collaborate to develop a data 

management plan that considers all data operations, and seeks to employ a data workflow and 

management system (DWMS) that incorporates best-practices at all stages (Lyon, 2007; Sallans and 

Donnelly, 2012; Strasser et al., 2012).  An effective DWMS coordinates and standardizes data 

management activities, and facilitates communication of data management details between the 

research-group members and with the external scientific community, to promote proper data use and 

leverage multi-institutional collaborative learning opportunities.
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Addressing such a need, this article details the development and application of a collaborative, research

group-maintained DWMS used in biometeorological research.  The role of data management in the 

biometeorological data life cycle is first introduced, along with design considerations for creating a 

DWMS to implement data management best-practices.  The DWMS is then presented, with all 

components described in detail within the context of the data life cycle in biometeorological research.  

A discussion of the DWMS follows, with an assessment of its benefits, shortcomings and long-term 

success potential, as well as recommendations for future development and refinement. 

 2.3 Data management in biometeorology

 2.3.1 The biometeorological data life cycle

Data is an integral part of the scientific process – it consists of the observations that form the basis for 

the scientific method.  As such, effective data management is critical to measurement-based research, 

as it enables the development of raw, collected data into refined data products that may be used to 

evaluate specific research hypotheses, from which knowledge is ultimately gained.  The data life cycle 

serves as a context for data management in scientific research, as it outlines the flow and development 

of data in scientific research activities.  Data is collected (created), processed, analyzed, stored and then

shared with other users, where it is subsequently incorporated into new data life cycles.  The adaptation

of the data life cycle framework in biometeorological research is shown in Figure 2.1; specific 

activities are listed for each stage, and are described further below.
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Figure 2.1: A diagrammatic representation of the biometeorology data life cycle. The cycle is initiated with the act of
data creation, and re-initiates when shared data products are incorporated into new data collection procedures. 
Though data analysis represents the third stage of the data life cycle, it does not need to immediately succeed the 
data processing stage, as it may be undertaken at any subsequent point in time.  Preservation and access (sharing) 
operations are applied to data products of both processing and analysis stages.



Ph.D. Thesis - J. Brodeur; McMaster University - School of Geography & Earth Sciences

Data creation (box 1, Figure 2.1) is initiated by research design, where the theoretical and operational 

details of the project are addressed and formalized.  Considerations made during the design process 

include:  research site selection, equipment setup, and the meteorological, gas exchange and ancillary 

data variables that are to be measured.  In addition, research design also necessitates the development 

of a data management plan, which specifies the means and media by which field-collected data will be 

captured, stored, collected and processed, and ultimately shared with data users (Van Den Eynden et al.,

2011).  A data management plan should consider not only the equipment, protocols and documentation 

needed to deliver high-quality data products, but also the responsibilities and time commitments of 

individuals involved in data management.  Once instruments are employed in the field, measured data 

is collected from all systems at appropriate intervals, and transferred to the desired file systems for 

processing.

Processing collected data makes up a considerable fraction of the operational and time requirements in 

the biometeorological data life cycle (box 2, Figure 2.1), as considerable intermediate data operations 

are required to refine raw data into end-user-sharable data products.  The prevalence of measurement 

errors and non-ideal measurement conditions require raw and calculated data to undergo a number of 

quality assurance (QA) operations (Foken et al., 2004; Göckede et al., 2008; X. Lee et al., 2004; 

Mauder et al., 2008; Zeri and Sá, 2010).  Quality-assured data may also need to be gap-filled to suit 

end-user requirements for continuous variables (Falge et al., 2001; Moffat et al., 2007).  The succession

of operations results in a hierarchy of data quality 'levels', which culminate in final data products that 

are made available to end-users for analysis.  Creating thorough metadata is critical at this stage of the 

data life cycle, as documents describing both data operations and products serve to improve data 

reproducibility and end-user usability.

Analyses conducted on processed data are specific to the goals and objectives of the study, as well as 

the quantity and quality of available data (box 3, Figure 2.1).  Analyses typically involve the integration

and detailed assessment of meteorological, remotely-sensed, flux and ancillary data products, at  

timescales of days to years.  Processed data may be used to drive or assess ecological models, or 

incorporated into model-data fusion approaches.  Data products from this step are typically 

incorporated into published results and figures, and are available for insertion into new data life cycles. 

Preservation activities ensure short- and long-term file organization, archival and backup for all 

data-associated systems (box 4, Figure 2.1).  Preserved files include all levels of data (raw, intermediate

and final), as well as processing scripts, documentation and metadata.  Data backups protect against 
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losses due to user error, software bugs, data corruption, or hard disk malfunction.  Files may be backed 

up using automated or manual means, to a number of possible storage media types, including magnetic 

and optical discs, as well as online and hard copy repositories.  In addition to the file system of the data

processing computer, backups may also be carried out on data collection devices in the field, to 

preserve data as it is created.  Appropriate file organization is another important consideration for all 

devices that collect or store data; well-organized file systems help to streamline and simplify manual 

and automatic data operations, creating a more robust data workflow and management system.  

Depending on file system storage capacities, user and data manager needs, and file access preferences, 

the file system may archive all files on the original file system, or selected data files only. 

Data and metadata products are shared with end-users located within and (commonly) outside of the 

research group (box 5, Figure 2.1).  End-users within a given research-group may access data and 

metadata products via a variety of methods, including manual transfer on removable media, or through 

Internet- and network-accessible shares.  Sharing data at the research-network scale can be 

accomplished by the transfer of data to interested parties via physical or digital means, or by uploading 

files to an external, centralized data server, which is operated at an multi-institutional national or 

international level.  Interested end-users with the proper data permissions may then download files 

shared on the centralized data server for use in their own analyses.  The format, type and amount of 

data and metadata shared with local and external end-users may be specifically tailored to individual 

and organizational requirements.  

Data that is shared with end-users can be re-used in novel applications (box 6, Figure 2.1), which 

include independent analyses, large-scale synthesis studies, and cross analysis and data revisitation 

efforts (Hook et al., 2010).  Shared data products may also be used in training applications within the 

research group, or in classroom teaching and learning activities.  The provision of high quality 

metadata is integral to the success of data re-use activities, as it is critical to ensure that end-users 

understand and use the shared data properly. 

 2.3.2 Design considerations for a biometeorology DWMS

In the context of the biometeorological data life cycle at the research-group scale, a successful DWMS 

provides the framework and the tools necessary to efficiently and effectively move data through each of

the previously-described stages.  Such a system consists of a number of integrated components, 
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including: a) hardware devices (instruments, data loggers, data servers, communication devices, etc.) 

that create, move and transform data, b) software routines that provide instructions for hardware 

operations, and c) the various forms of media, upon which the data is stored and moved.  For successful

and effective operation, an appropriate DWMS must be capable of implementing data management 

best-practices at each stage of the data cycle.  Incorporating such guidelines into a comprehensive data 

management plan improves the performance of the DWMS, and maximizes the consistency, quality, 

longevity and usability of its generated data products.  In biometeorological research, a number of 

established data management best practices should be used to guide DWMS development.  A summary 

of these guidelines, and their benefit to DWMS operation is provided below, alongside a review of 

considerations for operating such a system in a collaborative-management framework.

 2.3.2.1 General design

DWMS design should be initiated by careful consideration of the desired functionality, its operating 

environment, and the resources (equipment, time, funding, people, etc.) available for system 

development and maintenance.  Consultation between potential DWMS operators and data end-users is 

an important step in the design stage, as it helps to define system expectations and constraints, and set 

developmental time lines (Zowghi and Coulin, 2005).

Important general considerations for biometeorological DWMS design include provisions for long-term

system consistency, flexibility and scalability;  an effective DWMS should accommodate expansion in 

any or all of its components, permitting the straightforward integration of new instruments, data inputs, 

software operations, and data products.  DWMS hardware and software should address needs for 

long-term device compatibility, as well as archival and backup requirements.  All components of the 

DWMS should support data diversity, acknowledging that data may be collected from a wide range of 

devices on various media types, and may be comprised of an assortment of data formats, quality levels 

and measurement frequencies.

 2.3.2.2 Field data collection and organization

A primary consideration for implementing best-practices in field operations is the standardization of 

hardware, data files and operational activities.  Standardizing instruments, collection hardware and 

storage media across all measurement systems serves to streamline data collection operations, while 

reducing the likelihood of data collection errors.  Similarly, the use of standard collection software, data

formats and storage structures improves the efficiency and effectiveness of data processing functions, 

reducing the occurrences of data incompatibilities, and diminishing the need for additional, customized 
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processing steps (Cook et al., 2001; Strasser et al., 2012).  To complement hardware and software 

considerations, field data collection protocols should also be explicitly documented and standardized, 

to minimize (or eliminate) variations in field data collection methods, which may have negative 

consequences for data processing and management operations.  

Furthermore, effective field data collection and organization requires comprehensive documentation of 

all standardized elements of field operations, as well as thorough logging of all field activities (Strasser 

et al., 2012).  Such actions ensure communication between all involved field measurement personnel, 

and provide a means of tracking potential operator or equipment errors. 

 2.3.2.3 Data operations and software 

Prior to developing and implementing DWMS software, it is important to define the scope of data 

operations that are required.  This includes soliciting the research group's data-specific needs, and any 

constraints or special considerations that will need to be addressed (Wiegers, 2003).  Software design 

involves specifying the general (architectural) structure of the program, as well as the operational 

details of each of its components and their interfaces (IEEE Computer Society, 2004a).  Common basic 

principles should be adhered to during software design, namely: data abstraction through 

parameterization and specification; cohesion within modules and coupling between them; 

modularization of large programs into smaller, independent operations; encapsulation of software 

elements where needed; separation of the operator interface from internal processes; and construction 

of sufficient and concise programs (Abelson et al., 1996; IEEE Computer Society, 2004b; Kazman et 

al., 1994).  In biometeorological DWMS applications, the implemented software should allow the 

operator to perform all necessary organizational, quality assurance and data calculation operations that 

are needed to create sharable data products from raw input data (Campbell et al., 2013; Cook et al., 

2001).  Although software design details will vary with the specific characteristics of a research 

program, a number of design considerations should be commonly shared among all implemented 

biometeorological DWMS software:

DWMS software operations should be as modular as possible, where independent and separate data 

processes may be individually executed, modified, updated or replaced without significantly affecting 

the rest of the software.  Software should also be extensible and compatible, permitting it to incorporate

new data sources, types and operations into the system with minimal modifications.  Furthermore, 

DWMS software should provide utilities that check for errors in datasets and processes (either 

manually or automatically), and subsequently report all problems encountered in DWMS software 
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operation via log files or real-time (command-line) warnings.   DWMS checking and reporting 

functionality allows operators to promptly identify and remediate problems with data collection, 

storage or processing. Finally, software should be usable, robust and intuitive, to ensure that it can be 

easily learned and used correctly by DWMS operators. 

To achieve such functionality, all eligible data processing operations should be constructed and 

implemented using a scripted programming language, (Fortran, R, SAS, SPSS, MATLAB, etc.), as this 

approach offers numerous advantages over manual, graphically-driven data processing (Campbell et 

al., 2013; Hook et al., 2010).  The textual commands of scripts and functions comprehensively 

document the operations carried out during data processing, which provides the DWMS operator with 

methodological consistency, traceability and reproducibility (Borer et al., 2009; Hook et al., 2010).  

The accessible and editable nature of processing scripts increases the efficiency with which 

methodological changes may be made and recalculations performed.

 2.3.2.4 File organization and documentation

Data files should be structured and stored on the DWMS file system in a logical and consistent manner 

that clearly separates different data products and quality levels (Hook et al., 2010).  The DWMS file 

system should exist at a single, centralized location, to ensure that data organization and processing 

methods are standardized across DWMS operators.  Using a single, shared system promotes 

operational consistency, and eliminates potential divergence of software versions, data processes, 

metadata and data sets that occur over time in distributed systems.  A centralized system also eliminates

process and data redundancies, which saves operator time and reduces the chances that data will be 

unintentionally overwritten. Centralization provides a foundation to perpetually build upon 

collectively-gained group knowledge and experience, and it ensures that a legacy of documentation and

consistent data is left to future users.

Data should also be be organized clearly and consistently within individual files; files containing 

similar information should be formatted as similarly as possible to increase end-user familiarity and 

maximize interoperability and consistency within the DWMS software (Cook et al., 2001).  A 

consistent and descriptive directory and file naming convention should also be implemented, based on 

common identifiers such as data type, quality level, measurement date and site (Hook et al., 2010).  

This organization enables automated file retrieval by DWMS software, and  makes file searching and 

identification much easier for end-users and data managers. 

To further improve usability, information regarding data file contents should be provided in the form of 
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a descriptive header at the top of the file, or in complementary metadata files, which give information 

on the units, data quality levels and other measurement details of the included variables (Borer et al., 

2009; Hook and Christensen, 2005).  Additionally, the structure of the DWMS file system and the 

expected contents of its directories should be thoroughly documented and made available to DWMS 

operators (Karasti and Baker, 2008; Van Den Eynden et al., 2011).

 2.3.2.5 Data backup, archival and sharing 

Effective data preservation requires regular backup and archiving of the DWMS file system.  All files 

(programs, data, documentation, etc.) that are likely to be used in future operations should be archived 

on the DWMS file system to provide prompt access to data.  To protect against potential data loss, 

backup operations should be implemented on all data and programs at every stage of the data life cycle.

If feasible, data logged onto a collection device should be backed up to an additional location in 

real-time, to avoid data loss from logger malfunction.  All levels of data and supporting documentation 

(internal and shared) on the DWMS file system should be backed up to one or more additional media 

devices; preferably, this data should be backed up and stored at locations that are remote to the central 

file system.  All files associated with DWMS operation should be backed up in the same manner, 

especially all data processing scripts and functions.

Shared data products should be made available through means that allow convenient access for the 

intended end user. For example, a network-accessible server may be used to provide data access to 

research-group (local) end-users, while external end-users may need to access data through external 

(FTP, SSH) servers, or via content that is uploaded to an external data server.  Data may also be shared 

among local end-users by external media such as flash drives, but care should be taken to ensure that 

harmful software (i.e. viruses and malware) is not transferred to the DWMS file server.  In many cases, 

providing access to data through shared Internet collections is an effective way to serve both local and 

external end-users, while ensuring long-term and reliable data accessibility (Borer et al., 2009).  To 

maximize long-term compatibility and interoperability, data and metadata products should be provided 

to end-users in non-proprietary, stable formats, such as CSV, PNG, ASCII text formats (Hook et al., 

2010).  Additionally, data managers should archive all previously shared data products, in order to trace

any errors that may be discovered in previous versions, and communicate potential problems to 

affected end-users and data stakeholders.
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 2.3.3 Considerations for collaborative DWMS application in 
biometeorology

Operating a DWMS in an environment where multiple users share data management responsibilities on

a centralized system presents a number of challenges beyond those considered for more traditional 

settings, where only one or a limited number of experienced and dedicated data managers are 

responsible for dealing with data.  In such cases, the following requirements for DWMS operations 

should be implemented: 

Executing data operations within the DWMS must be straightforward, understandable and accessible 

for all operators.  By providing a simple and intuitive graphical user interface (GUI) to execute 

programs, data managers are able to perform consistent data operations regardless of their experience 

and skill with scripted languages, thus removing a barrier to successful DWMS operation.  In addition, 

restricting inexperienced users or users-in-training to GUI-driven processes only (no process 

modification) reduces the potential for many common processing errors, including: syntax errors, 

operations executed improperly or in an incorrect order, and the introduction of programming bugs.  

Furthermore, the GUI may be used as a training tool, through which the trainee can visualize and 

understand processing operations while simultaneously learning how to decipher the detailed 

operations contained within the scripted programs.  

Where possible, eligible data operations should be automated, so to be executed at regular intervals 

without the requirement of operator supervision.  In cases where consistent rules are applied to data, the

process may be executed automatically by the DWMS data processing software; this saves time for the 

data manager, ensures that operations are executed at proper intervals, and provides end-users access to

data more promptly.  Effective automation requires that processes have proper error-checking 

mechanisms implemented, where a data manager can review program activities via log files and inspect

the data output from the automated processes.

Effective communication between DWMS operators is a crucial aspect of successful operation of a 

collaborative DWMS.  Roles and expectations in DWMS operation should be clearly stated and 

documented for all involved individuals;  this facilitates timely operation of data management 

activities, and reduces operational redundancy among data managers.  Incoming DWMS operators 

should be provided with proper training to ensure that all aspects of the DWMS and their 

responsibilities are clearly understood.  Proper training includes hands-on instruction by existing 
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DWMS operators and access to thorough DWMS documentation.  

Thorough documentation for all system components should be made available to DWMS operators.  

Documentation should include a description of each component of the DWMS and instructions for its 

operation and modification, as well as thorough commenting in all data processing scripts.  These 

documents should be shared with the entire group in a manner that allows collaborative editing, and 

should be actively updated by operators as changes are made to any aspect of the DWMS. 

 2.4 DWMS design and implementation

 2.4.1 Rationale and motivation

The following section outlines the design features and operational details of a DWMS created for use in

biometeorological research by the Hydrometeorology and Climatology Research Group at McMaster 

University in Ontario, Canada.  The DWMS development project was initiated in mid-2008, motivated 

by a critical evaluation of existing data operations and previously-prepared data sets.  The evaluation 

produced concerns with previously-prepared data products, which included processing and matrix 

organization errors, missing or inconsistent data operations, and minimal documentation for data 

management and processing.  Without the services of a dedicated data manager, a group-wide initiative 

was undertaken with the goal of centralizing, standardizing, streamlining and documenting all 

components of the data life cycle for our field observation sites (see section 2.4.3.1), to develop a 

DWMS capable of being maintained in a collaborative graduate-student-managed framework.  

The following subsections describe the components, methodologies, operations and functionalities of 

the DWMS in the context of the biometeorological data life cycle (see section 2.3.1).  The creation of a 

data management plan to guide DWMS development is described first, followed by the details of 

DWMS design and implementation to facilitate the advancement of data through the biometeorological

data life cycle.  Design considerations and advanced functionalities of the DWMS are then presented, 

ending in a description of all types of supporting documentation that is used and generated by the 

DWMS.
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 2.4.2 DWMS needs assessment and data management plan

A data management plan was developed by the research group in mid- to late-2008 as the formative 

stage of DWMS development.  The purpose of this plan was to characterize the scope and operations of

data management in the research group, and to design the systems (media, instruments, hardware, 

software, etc.), operations (processing methods, transfer and sharing, etc.), protocols (data formats, 

manual operations), and documentation (manuals, metadata, etc.) of the DWMS.  The biometeorology 

DWMS considerations presented in section 2.3.2 were used as guiding principles for DWMS 

development, defining the desired characteristics of the completed system.  

DWMS components were created and integrated in response to the research group's data management 

needs, and the data product requirements of internal and external end-users.  The DWMS was designed 

to preserve the nature of data management responsibilities within the research group, where each 

member was tasked with managing the data for particular systems and sites, though data collection 

could be carried out by any member during a field site visit.  This management structure required that 

data collection methods be standardized, documented, and streamlined, and that downloaded data be 

collected to a centralized location.  In addition, data processing and archival operations needed to be 

centralized and standardized to ensure compatibility between data products originating from different 

systems and users.  It was pertinent that data processing operations be repeatable, streamlined and easy 

to implement, so that data could be readily updated to allow field quality-assurance inspections, and to 

regularly provide end-users with up-to-date data.  To serve end-users' diverse data needs, it was critical 

that the DWMS was capable of successfully integrating data from a variety of sites and systems, and 

that it could conveniently and robustly export these data into products in an assortment of desired data 

formats.

The data management plan also recognized that in order to remain viable and sustainable, it was 

important for the DWMS to operate within the system and human resources that were presently 

available, and those that were anticipated to exist in the future.  The most important of these 

considerations was the need for the DWMS to be operable and sustainable without the services of a 

dedicated data manager; the DWMS needed to function in an environment where research group 

members (i.e. approximately 6 graduate students) can maintain and implement all aspects of data 

management in a consistent and organized manner.  Ensuring that this need was met in the DWMS 

required the incorporation of the considerations outlined in section 2.3.3.  A central file system and 
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operational software were deemed necessary for development, so that data managers (i.e. research 

group members) could incorporate and manage previous and existing data files from all sites and 

systems.  For other components of the DWMS, the existing operations and systems were to be retained 

or modified, in order to optimize DWMS functionality and minimize time and equipment costs.  

 2.4.3 DWMS design and implementation

The DWMS was developed between late-2008 and early-2011, during which time it was expanded to 

incorporate progressively more of the research group biometeorological data operations.  A schematic 

diagram of the DWMS is presented in Figure 2.2, which depicts the integrated components and 

operations that advance data through all stages of the biometeorological data life cycle.  

A variety of media and methods are used to transfer raw field measurements from their associated data 

loggers to the DWMS central file system.  Using automated and operator-guided means, customized 

software routines in the DWMS central file system process raw data into quality-controlled, sharable 

products for end-users.  Selected data products are then made available to internal (research 

group-based) and external end-users through a variety of different data-sharing protocols.  New data 

and software products that have been created from end-user analyses may then be incorporated into the 

central file system for further processing, if desired.  Data is archived and preserved throughout the 

data life cycle, protecting against data loss at any stage of data development.  

In the context of Figure 2.1 and the biometeorological data life cycle, these components and their 

integration into a collaboratively-managed DWMS is detailed in the subsections below.  
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Figure 2.2: Schematic diagram of the biometeorological data workflow and management 
system (DWMS) designed and implemented in this study.  Data flow (solid arrows) initiates 
with instrument measurement and continues through each stage of the data life cycle (large,
dashed-outline coloured boxes) via an assortment of associated system components 
(solid-outline rounded boxes).  
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 2.4.3.1 Data creation: Study sites, measurement, field data collection and upload

  Study sites and instrumentation description 

Field data collection is carried out at the Turkey Point Flux Station (TPFS) research sites, located in 

proximity to the North Shore of Lake Erie in Norfolk County (42.71 °N, 80.36 °W), in southern 

Ontario, Canada.  TPFS is comprised of an age-sequence of planted and managed eastern white pine 

(Pinus strobus L.) forests, planted in 1939, 1974, 1989 and 2002, herein referred to as TP39, TP74, 

TP89 and TP02.  Complete site descriptions may be found in Arain and Restrepo-Coupe (2005), Peichl 

and Arain (2006), and Peichl et al. (2010).  EC and primary meteorological measurements commenced 

at these sites in 2002, and have continued to the present, with the exception of TP89, which was 

discontinued in the summer of 2008. 

Primary meteorological systems consist of instrument assemblages specified by Canadian Carbon 

Program (formerly Fluxnet-Canada Research Network) measurement guidelines and standards 

(Fluxnet-Canada, 2003).  Table 2.1 provides a detailed summary of instrument types, logging devices 

and operational periods for each site.  Common meteorological variables (air temperature, Ta; relative 

humidity, RH; photosynthetic photon flux density, PPFD; wind speed, WS; wind direction, WD; net 

radiation, Rn) are measured above the forest canopy, from measurement towers installed at each site.  

Soil temperature (Ts), soil volumetric water content (VWC) and soil heat flux (G) are measured in 

separate, replicated depth profiles beneath the forest floor (see Table 2.1 for instrument details).  All 

data is collected and logged to data logging devices (models CR10x, CR23x, CR1000, Campbell 

Scientific Inc., Edmonton, AB, CA) as half-hourly averages.  Prior to 2008, these data loggers (at all 

sites but TP39) were operated in a standalone fashion, but are now connected to field desktop personal 

computers (PCs), which download and store data files at short, regular intervals.  A full description of 

meteorological instrumentation at each site is provided by Peichl et al. (2010).  

A number of supplementary meteorological systems have been installed and operated at sites to provide

additional measurements (Table 2.2).  A water table measurement system was implemented in 2010 to 

monitor groundwater table height at TP39; a water level pressure sensor (model PLS, OTT, Kempten, 

DE) was positioned 8.53 m below ground level, in a 10 cm diameter steel-cased water monitoring well,

which was installed in 2009.  Half-hourly water table height and temperature data were recorded by a 

standalone data logger (CR10x).  Sap velocity measurement systems have been installed and operated 

at TP39 and TP74 since 2008 and 2009, respectively.  Thermal dissipation probes (model TDP-30, 

Dynamax, Houston, Texas, USA) were installed in representative trees at both sites, and values are 
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recorded by standalone data loggers (CR10x at TP39, CR1000 at TP74).  Further discussion of thermal 

dissipation probe installation and operation at TP39 is provided in Mackay et al. (2012) 

An additional site (TP_PPT), has been operated from 2008 to the present, in order to provide reference 

ground-based precipitation measurements for TPFS.  Cumulative rainfall is measured by an all-weather

accumulation precipitation gauge (model T200B, Geonor Inc., Milford, PA, USA) and is recorded 
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Table 2.1: Primary meteorological system details at TPFS

TP39 TP74 TP89 TP02

Years of 
Operation

2002-- 2002-- 2002--2008 2002--

Thermometer/
Hygrometer

HMP45C (3) (CSI) HMP45C (CSI) HMP45C (CSI) HMP45C (CSI)

Anemometer 05 103-10RE (RMY) 05 103-10RE (RMY)
05 103-10RE

(RMY)
05 103-10RE (RMY)

Pyranometer PAR-LITE (3) (KZ) PAR-LITE (2) (KZ) PAR-LITE (2) (KZ) PAR-LITE (2) (KZ)

Net 
Radiometer

NR-LITE (KZ) NR-LITE (KZ) NR-LITE (KZ) NR-LITE (KZ)

Component 
Radiometer

CRN1 (CSI) ---- ---- ----

Precipitation 
Gauge

52202 (RMY, 2002-2007)
CS700 (CSI, 2008--)

---- ----
TE525 (CSI, 2002-2008)

52202 (RMY, 2008--)

Barometer 61205V (RMY) 61205V (RMY, 2008--) ---- 61205V (RMY, 2008--)

Soil 
Thermistor

107B (15) (CSI) 107B (12) (CSI) 107B (12) (CSI) 107B (12) (CSI)

Soil Moisture 
Reflectometer

CSI-615/616 (16) (CSI) CSI-615/616 (14) (CSI)
CSI-615/616 (10)

(CSI)
CSI-615/616 (10) (CSI)

Soil Heat 
Flux Plate

HFT3 (2) (CSI) HFT3 (2) (CSI) HFT3 (2) (CSI) HFT3 (2) (CSI)

Sonic Snow 
Depth Ranger

SR50 (CSI) ---- ---- ----

Data Logging 
Device

CR23x (2), (CSI)
CR10x (CSI, 2002-2007)

CR1000 (CSI, 2008--)
CR10x (CSI)

CR10x (CSI, 2002-2009)
CR1000 (CSI, 2009--)

Data Format CSV, no headers
CSV

w/o headers (2002-2007)
w/ headers (2008--)

CSV
w/o headers

CSV
w/o headers (2002-2007)

w/ headers (2008--)

Data Backup 
Device

Desktop PC, USB
SM16M (CSI, 2002-2007)

Desktop PC, External
Hard Disk (EHD, 2008--)

SM16M (CSI)
SM16M (CSI, 2002-2007)

Desktop PC, External
Hard Disk (EHD, 2008--)

Data 
Download 
Method

USB or 
USB → Laptop

SC532A (CSI) → Laptop
(2002-2007)

EHD → Laptop (2008--)

SC532A (CSI) →
Laptop

SC532A (CSI) → Laptop
(2002-2007)

EHD → Laptop (2008--)

Abbreviations: 
CSI: Campbell Scientific Inc., Edmonton, AB, CA
RMY:  RM Young Co, Michigan, USA
LCI: LI-COR Biosciences, Lincoln, NE, USA
KZ: Kipp and Zonen, Ltd., Delft, NL
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Table 2.2: Ancillary measurement system details at TPFS

TP39 TP74 TPPPT

Sap Velocity Measurement Systems

Years of Operation (2008--) (2009--) ----

Thermal Dissipation Probe
TDP-30 (22) (Dynamax,
Houston, Texas, USA) 

TDP-30 (12) (Dynamax,
Houston, Texas, USA) 

----

Soil Thermometer 107B (10) (CSI) ---- ----

Soil Moisture Reflectometer CSI-615/616 (6) (CSI) CSI-615/616 (6) (CSI) ----

Data Logging Device CR10x (CSI) CR1000 (CSI) ----

Data Format CSV, w/o headers CSV, w/ headers ----

Data Backup Device SM16M (CSI) SM16M (CSI) ----

Data Download Method SC532A (CSI) → Laptop SC532A (CSI) → Laptop ----

Water Table Measurement Systems

Years of Operation 2009-- ---- ----

Water Table Level Pressure 
Sensor

PLS (OTT, Kempten, DE) ---- ----

Data Logging Device CR10x (CSI) ---- ----

Data Format CSV, w/o headers ---- ----

Data Backup Device SM16M (CSI) ---- ----

Data Download Method SC532A (CSI) → Laptop ---- ----

Ground-based Precipitation Measurement Systems

Years of Operation ---- ---- 2007--

Anemometer ---- ---- 05 103-10RE (RMY)

Tipping Bucket 
Rain Guage

---- ---- TE525 (CSI)

Accumulation Precipitation 
Rain Guage

---- ----
T200B (Geonor Inc., Milford,

PA, USA)

Data Logging Device ---- ---- CR10x (CSI)

Data Format ---- ---- CSV, w/o headers

Data Backup Device ---- ---- SM16M (CSI)

Data Download Method ---- ---- SC532A (CSI) → Laptop

Abbreviations: 
CSI: Campbell Scientific Inc., Edmonton, AB, CA
RMY:  RM Young Co, Michigan, USA
LCI: LI-COR Biosciences, Lincoln, NE, USA
KZ: Kipp and Zonen, Ltd., Delft, NL
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alongside supplementary meteorological data at half-hourly intervals by a standalone data logger 

(CR10x).

A CPEC system has been operated continuously at TP39 since 2002 (Arain and Restrepo-Coupe, 

2005).  The system consists of a CSAT-3 sonic anemometer (model CSAT-3, Campbell Scientific Inc., 

Edmonton, AB, CA) and infrared gas analyzer (IRGA, model LI-7000, LI-COR Biosciences, Lincoln, 

NE, USA), operated and logged at high frequencies (20 Hz) on a desktop PC, using custom software 

created by the Biometeorology & Soil Physics Group at the University of British Columbia (British 

Columbia, CA).  Similar systems have been continuously operated at TP74 (CSAT-3; model LI-6262, 

LI-COR) and TP02 (CSAT-3; LI-6262) since 2008.  During years 2002-2008, a single, roving OPEC 

system was rotated amongst TP74, TP89 and TP02 at two-week to one month intervals.  The sonic 

anemometer (CSAT-3) and IRGA (model LI-7500, LI-COR) were operated and logged by a standalone 

data logger (model CR3000, Campbell Scientific Inc.), which recorded EC variables at high-frequency 

(20 Hz) along with 10-minute-averaged meteorological variables and calculated fluxes (Table 2.3). 

An automated soil chamber system (ACS) has been operated at TP39 since 2008 to measure forest 

floor CO2 efflux and its components.  The ACS consists of eight spatially distributed, non-steady state 

chambers that close sequentially to draw head space air into an infrared gas analyzer (model LI-840, 

LI-COR), which is controlled and logged at 1 Hz by custom software on a mini-desktop PC (Table 2.3).

The hardware and software of the ACS system were designed by the Biometeorology & Soil Physics 

Group at the University of British Columbia (Vancouver, BC, Canada), and are described in detail by 

Drewitt et al. (2002) and Jassal et al. (2005).  

Each of the presently-operated main sites (TP39, TP74 and TP02) are provided Internet access via a 

mobile broadband router (model MBR 1210, Netgear, San Jose, CA, USA), to which each collection 

PC is connected.  To verify the proper operation of CPEC, ACS and primary meteorological systems, 

sites are accessed daily using remote access software (LogMeIn, Woburn, MA, USA), where output 

variables from each system are checked and noted in an Internet-based, operator-edited log file.
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Table 2.3: Eddy-covariance and automated chamber system details at TPFS

TP39 TP74 TP89 TP02

EC Systems

Years of Operation 2002-- 2002-- 2002--2007 2002--

EC Type CPEC
OPEC (2002-2007)

CPEC (2008--)
OPEC 

OPEC (2002-2008)
CPEC (2008--)

Sonic
Anemometer

CSAT-3 (CSI) CSAT-3 (CSI) CSAT-3 (CSI) CSAT-3 (CSI)

Infrared Gas 
Analyzer (IRGA)

LI-7000 (LCI)
LI-7500 (LCI, 2002-2008)

LI-6262 (LCI, 2008--)
LI-7500 (LCI)

LI-7500 (LCI, 2002-2008)
LI-7000 (LCI, 2008--)

CO2 Profile Gas 
Analyzer

LI-800 (LCI)
LI-820 (LCI)

LI-820 (LCI) LI-820 (LCI) ----

Data Logging 
Device

Desktop PC CR3000 (CSI, 2002-2007)
Mini Desktop PC (2008—)

CR3000 (CSI)
CR3000 (CSI, 2002-2008)
Mini Desktop PC (2008--)

Data Format
Half-hourly (HH)

Binary Files

Single Binary + CSV w/
headers (2002-2007)
HH Binary (2008--)

Single Binary +
CSV w/ headers

Single Binary + CSV w/
headers (2002-2008)
HH Binary (2008--)

Data Backup 
Device

USB Flash Drive
Compact Flash (CF) Media

(2002-2007)
External Hard Disk (EHD,

2008--)

CF media
Compact Flash (CF) Media

(2002-2008)
EHD 2008--)

Data Download 
Method

USB or 
USB → Laptop

CF → Laptop (2002-2007)
EHD → Laptop (2008--)

CF → Laptop
CF → Laptop (2002-2008)
EHD → Laptop (2008--)

ACS Systems

Years of Operation (2008--) ---- ---- ----

Gas Analyzer LI-840 (LCI) ---- ---- ----

Data Logging 
Device

Mini Desktop PC ---- ---- ----

Data Format HH Binary ---- ---- ----

Data Backup 
Device

USB Flash Drive ---- ---- ----

Data Download 
Method

USB or 
USB → Laptop

---- ---- ----

Abbreviations:
CSI: Campbell Scientific Inc., Edmonton, AB, CA
LCI: LI-COR Biosciences, Lincoln, NE, USA
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  Field data management

The nature and operational considerations of measured data across the TPFS is diverse, as systems vary

in terms of their logging device, data format, transfer media type and downloading requirements 

(Tables 2.1 through 2.3).  An operational goal of the DWMS is to ensure that despite these differences, 

data on all logging devices are consistently backed-up and are transferred from the devices to the 

DWMS central file system (CFS) consistently, reliably and effectively. 

Tables 2.1 through 2.3 provide information regarding the data formats, as well as collection and backup

devices used for each field measurement system.  CPEC and ACS systems log data to collection PCs as

similarly-formatted binary files.  Specifically for the CPEC system, separate raw data files are created 

for each measurement device (e.g. CSAT, IRGA, thermocouple).  Individual files are created for each 

half-hour of the day, and all files from a given day are placed into a single directory.  Newly-created 

raw data directories are backed-up to external media (USB or hard disk drives) on a consistent basis, as

described later in this section.  During site visits, data on the external media is copied to a reserved 

directory on a field laptop computer to be transferred to the DWMS central file system.

Data that is collected by the OPEC system data logger is simultaneously written to a removable 

Compact Flash (CF) card.  Due to limited data logger storage capacity, a limited amount of recent 

high-frequency binary data is retained on the device, while a single, accreting file is stored on the CF 

media.  Much smaller ASCII files of data logger-calculated 10-minute averages are stored on both 

media.  Data is transferred from the system via the removable CF card to an appropriate field laptop 

directory.  The CF card is then formatted and replaced into the data logger.

Primary meteorological system data loggers at each site are connected to CPEC system PCs.  Data is 

automatically downloaded from the data loggers at hourly intervals, and is appended to 

comma-separated ASCII files on the PC hard disk.  Data logger files are automatically backed up to 

attached  external media (see below), which are used to transfer files to the field laptop computer.  All 

ancillary meteorological data is logged onto standalone data loggers.  Comma-separated ASCII data 

logger files are downloaded to a field laptop through serial connection between the devices (model 

SC532A, CSI).

All data downloaded to the field laptop hard drive is subsequently uploaded to the appropriate 

destination on the CFS, which allows raw data to be processed and continued through the data life 

cycle.
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  Data management in the DWMS central file system

All measured data is collected to a linux-based central file system (CFS) that resides on hard disks in an

accessible and centralized PC within the Hydrometeorology and Climatology Research Group 

laboratories at McMaster University.  All subsequent data life cycle operations are initiated within the 

CFS, which provides data organization, documentation, processing, sharing and backup activities for 

all DWMS data.  The CFS file structure reflects a desire to organize data in a consistent and 

straightforward manner, using common directory rules to ensure that data is accessible to, and readily 

located by DWMS operators and processing programs alike.  At its primary level, the CFS file structure

organizes data according to its role in the data life cycle; while at subsequent levels, data is structured 

according to common characteristics such as measurement system, site and year of measurement, and 

data quality level.  Figure 2.3 provides a summarized view of the CFS file structure, where selected 

locations are shown in a directory tree format to allow elaboration of its eight primary level directories 

and the organization within each.

The /DUMP_Data primary directory serves as a repository for all field-downloaded raw data that will 

be extracted and incorporated into appropriate permanent locations on the CFS. Raw data is uploaded 

here from the field laptop, and placed in an appropriate sub-directory; primary and ancillary 

meteorological data are placed inside the /Met sub-directory, while CPEC, OPEC and ACS data are 

placed into the sub-directory that corresponds to collection site (e.g. /TP39, /TP74, etc.).  Automated 

processing software (see section 2.4.3.2) extracts relevant raw data from these sub-directories, and 

moves the original raw data files to archival and backup locations when finished.

The /To_Burn primary directory is a destination for post-extraction raw data, as automated software 

moves data into site-specific sub-directories within.  Data in each sub-directory is twice copied by the 

operator to optical media (e.g. CD, DVD, Blu-ray Disc) for long-term data backup.  After copying, raw 

data files in this directory are removed from the CFS.
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Figure 2.3: DWMS centralized file system structure and contents.  
Entries enclosed in '< >' are placeholders for each site (e.g. TP39, TP74, etc.) or eddy 
covariance system (CPEC, OPEC). 

/1/fielddata

-/Documentation

-/Programs

-/DUMP_Data
-/Met
-/<site>

-/Raw_Data_Archive
-/OPEC
-/<site>

-/SiteData
-/<site>

-/MET-DATA

-/hhour
-/data

-/annual
-/OPEC

-/HF_data
-/hhour_data

-/To_Burn
-/<site>

-/EdiRe
-/CardConvert
-/OPEC_Calculations

-/Matlab
-/Scripts

-/Data

-/Figs
-/ubc_PC_setup

-/mcm_data_mgmt
-/Flux
-/Met
-/Gapfilling

-/Met

-/Calculated4/<site>

-/Docs

-/Final_Cleaned/<site>
-/Final_Filled/<site>

-/Raw1/<site>
-/Organized2/<site>
-/Cleaned3/<site>

-/Flux

-/Final_Calculated

-/<EC_type>

-/Final_Cleaned
-/Final_Filled

-/Docs
-/<site>

-/Cleaned

-/Master_Files
-/Docs
-/<site>
-/Latest_Data-To_Post

←  Repository for field data
     ←  All meteorological (primary and ancillary) data placed   
           in /Met.  Other data is grouped by site
← Temporary location for data to be burned to optical disc
     ← Organized by site

← Location for 1-year data archival of flux and ACS data
     ← all OPEC data in /OPEC
     ← CPEC, ACS data grouped by site

← Raw and organized OPEC, CPEC and ACS data 
     ← Data grouped by site
          ← CPEC and ACS data
             ← Raw, high-frequency binary data files
             ← Calculated half-hourly averaged files
             ← Organized annual half-hourly master files
          ← OPEC data
             ← Raw, high-frequency binary data files
             ← Raw, 10-minute average ASCII data files

← Directory for EdiRe-based OPEC flux calculations
← Converted data files
← EdiRe-calculated half-hourly fluxes

← Location for processing functions and all processed data
     ← Master directory for processing functions (BACON)
          ← Data management functions
          ← Flux calculation functions
          ← Meteorological calculation functions
          ← Gap-filling functions
     ← Processed data
          ← Meteorological data
             ← Processing documents, .ini files 
             ← Raw meteorological data files
             ← Organized annual meteorological master data files
             ← Threshold-cleaned annual met master data files
             ← Quality-assured, cleaned met master data files
             ← Filled meteorological master data files
             ← Calculated meteorological variables
          ← Flux data
             ← Organized by CPEC or OPEC data
                ← Processing documents, .ini files
                ← Organized by site
               ← Threshold-cleaned annual flux master data
               ← Quality-assured, cleaned met master data

     ← Gap-filled flux data products
     ← Calculated flux data products

          ← Location of all-years-compiled site master data files
             ← Data compilation documents, .ini files
             ← Data products, grouped by site
             ← Master files to share with internal end-users
     ← Location for processing figure output 
     ← .ini files for CPEC, ACS flux calculation program

← Metadata, protocols, manuals, ancillary site information  

← Field data logger programs, additional software 
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Post-extraction raw data from CPEC, OPEC and ACS systems are also copied to the 

/Raw_Data_Archive primary directory, where data is organized and subsequently retained in archives 

for one year.  This archive allows the operator to promptly reprocess raw data if a processing error is 

discovered up to a year after extraction.  To avoid excessive hard disk use, raw CPEC, OPEC and ACS 

data files are permanently deleted from the CFS one year after extraction.  Conversely, the much 

smaller raw meteorological system data files are archived permanently on the CFS following 

extraction.

Extracted CPEC, OPEC and ACS data are managed within the /SiteData primary directory.  Data is 

grouped first by site, and then into structures required by their respective flux calculation programs.  

CPEC and ACS data are placed into similar directory structures, where extracted data is stored 

alongside sub-directories that contain higher-processed calculated and organized flux data files.  OPEC 

data is organized in a unique sub-directory that is required by OPEC flux calculation software.  

Calculated OPEC fluxes are outputted to the /EdiRe primary directory, from where they are 

incorporated into subsequent data products.

The /Matlab primary directory contains all data processing software programs, data products 

(intermediate and final), and figures that are produced by software operation.  Processing functions are 

organized within the /Scripts sub-directory by their operational purpose.   The /Data sub-directory is 

organized by data product type, as intermediate meteorological data is separated from intermediate flux

data and end-user master files.  The /Data/Met and /Data/Flux sub-directories are similarly structured, 

as data is organized according to its data quality level and the site of collection, while /Data/Flux is also

organized by EC system type.  Quality-controlled, calculated and filled data from a given site are 

compiled into master files and output for end-user sharing in the /Data/Master_Files sub-directory.  

Files in this sub-directory are organized by site, with a separate folder (/Latest_Data-To_Post), which 

contains data products to be made available to local and external end-users.  The /Config subdirectory 

contains the operator-editable configuration files that provide situation-specific instructions to 

processing operations.  Configuration files are organized into meteorological and flux-specific  

subdirectories, which specify such details as raw and output data formats, data cleaning thresholds, and 

site- and year-specific processing parameters.   Figures produced during data inspection, cleaning and 

filling operations are saved to appropriate locations in the /Figs sub-directory.  

Metadata, protocols, data processing logs, manuals and ancillary information for DWMS and field site 

operations are maintained within the /Documentation primary directory (see section 2.4.5), while data 
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logger programs and ancillary software installation files are located in the /Programs primary 

directory.  Both primary directories serve as centralized locations for operational files that are created, 

edited and used collaboratively by DWMS operators.

 2.4.3.2 Data processing & the BACON software package

All data processing and management operations are conducted using MATLAB software (The 

Mathworks Inc., Natick, MA) and custom-designed MATLAB program packages.  The 

Biometeorological Analysis, Collection, and Organizational Node (BACON), is a collection of over 

250 custom-made MATLAB functions and scripts (representing over 30000 lines of code), which have 

been implemented on the DWMS central file system to perform all necessary data processing 

operations.  

An accompanying graphical user interface (GUI, see section 2.4.4.1) provides an accessible front-end 

to BACON operations (Figure 2.4).  Thus, all primary functions can be executed either graphically 

through the GUI, or textually through the MATLAB command line.  BACON is designed to process 

data from all measurement and logging systems (meteorological, CPEC, OPEC, ACS, etc.), and 

standardize the processing steps for each type of data into a clear and consistent methodological 

framework.  The BACON package uses separate programs to carry out processes on each data type, 

however, these programs all share parallel operational methodologies and general file structures. 

The details of data processing implemented by BACON to produce quality-controlled, sharable data 

sets from uploaded raw data is represented schematically in Figures 2.5, 2.6 and 2.7 for meteorological,

CPEC and OPEC systems, respectively.  Data operations, data flow, and input/output directory 

structures are very similar between systems, aside from small differences that accommodate 

discrepancies in raw data formats and processing requirements.  In each system-specific 

implementation, data is  sequentially processed from lower- to higher-quality levels;  quality-assured, 

filled and calculated data products are ultimately produced, and are compiled into comprehensive 

master files, from which sharable data sets are created for end-users.  System-specific BACON 

operations accommodate data measured from any TPFS field site and are expandable to incorporate 

new measurement sites, provided that appropriate initialization files are created (see section 2.4.4.4).  

The following sections introduce the general steps that are used for all BACON data processing, and 

details the system-specific implementation of these processing steps. 
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Figure 2.4: The BACON GUI in its initial state.
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Figure 2.5: A schematic diagram of data flow and BACON operations for meteorological data 
processing
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Figure 2.6: Schematic diagram of data flow and BACON operations for CPEC data processing
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Figure 2.7:  Schematic diagram of data flow and BACON operations for OPEC data processing
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  Reading raw files and incorporating new data into organized, master files or 
directories

In the first stage of data processing, BACON programs open raw data files that have been uploaded to 

the CFS (following section 2.4.3.1), compare the data with content existing in master files or master 

directories, and extract the desirable data to the organized master files or directories.

When organizing raw meteorological data, the objective is to read raw data logger files, identify the 

location of variables within the raw files, and then extract all previously unextracted data to the 

appropriate location in an organized master file, which collects all data from a given system over a 

predetermined period of time (e.g. year).  Unfilled, organized master files are created at the beginning 

of each year, as the processing program (mcm_metloader.m, Figure 2.5) creates a matrix of 

Not-a-Number (NaN) values.  The number of rows created in the matrix corresponds to the expected 

number of observations for the year, based on the time interval of variable measurement and the year of

consideration.  For example, 17520 rows are required to contain all possible half-hourly measurements 

collected in a non-leap year.  The number of columns created exceeds the existing number of variables 

by 10 to 20%, to accommodate instrument addition.  

A variable's destination column in the master file is determined by an operator-editable master template

flat file.  New variables may be appended to the template file, but existing variables may not be moved,

in order to ensure variable consistency for columns of the master matrix within and between years.  

Information regarding the column position of variables in the raw data logger files are relayed by 

operator-editable header documents (for all data logger types; see Appendix A for example).  For 

CR1000, CR3000 data loggers, header information is provided by the file's own header.  Variable 

names in the master template file are set to match those in the header metadata documents, which 

provides a means to inform the program of the corresponding columns in the raw and master files, and 

accommodates changes to variable locations in the raw data logger files.  Corresponding row locations 

in the raw and master files are determined by finding equivalent timestamps (in the form of a date 

vector) between both files.  By ensuring that only data with an appropriate destination row and column 

are inserted into the master file, problems that may be encountered during manual matrix manipulation 

(e.g. incorrect row and column attribution) can be effectively eliminated.  Command-line output 

informs the operator of its progress and relays information regarding successes or errors that are 

encountered.  Specifically, a warning message is issued when a variable listed in the master template 

file is not updated when processing the raw data logger file. 
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Organizing high-frequency data files from ACS and CPEC systems requires that each raw 

high-frequency binary data file (created each half-hour for each EC instrument) be inspected for errors 

and duplicates, and then, if permitted by the user, copied into the appropriate master directory in the 

/SiteData primary directory.  Raw data files are first checked by the data processing program 

(mcm_extract_CPEC.m, Figure 2.6), to ensure that empty or corrupted files and directories are flagged 

and not copied to the master data directories.  A list of problematic files or directories are 

communicated to the user via warning messages on the command window interface and recorded to 

processing log files.  The program also checks and flags redundant data files, avoiding unnecessary 

data copying.  Desirable and acceptable binary files are copied to the correct location in the master 

directory, according to the date, site and system of measurement.

At the end of this operation, a separate function scans the appropriate master data directory to assess 

the completeness of raw binary files for a specified year.  This operation creates a log file in 

spreadsheet format, detailing the types and numbers of data files per day in the in the master 

directories.  Using this document, DWMS operators can inspect data completeness and manually 

retrieve any missing data files or directories from the field collection PCs.  After organized binary files 

are used to calculate fluxes (section 2.4.3.2), output data files for each half-hour are read by a separate 

organization program (mcm_CPEC_mat2annual.m, Figure 2.6), and organized into half-hourly master 

files for each site and year.

Organizing raw OPEC data requires separate considerations for each of its two types of data outputs: 

binary data logger files with 10-minute flux and meteorological variable averages, and binary files of 

high-frequency (20 Hz) gas concentration, temperature and wind velocity measurements.  After being 

manually converted from a binary to ASCII format, the 10-minute-average data logger files are 

organized into a master file using a processing program (mcm_process_10min.m, Figure 2.7), which 

operates similarly to the meteorological extraction program described above.  Header files and time 

vectors are used to extract desired data from raw files, and insert them into an organized master file.  

Raw OPEC high-frequency data files are manually converted to a binary format that is readable by the 

flux calculation program, and placed into an appropriate source directory prior to calculation. 

Following flux calculation (outlined in section 2.4.3.2), an organization program 

(OPEC_process_EdiRe, Figure 2.7) reads files containing half-hourly averages, and extracts data into 

organized master files in the same manner as used for 10-minute files.

After data is organized into master files, the processing programs copy the raw data files and directories
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to appropriate locations in the /Raw_Data_Archive primary directory, which stores raw data files on the

DWMS file system for a year, as described in section 2.4.3.4.  Raw data files and directories are then 

moved from the /DUMP_Data primary directory to the /To_Burn primary directory, where they are 

written to optical media and deleted from the DWMS file system (section 2.4.3.4). 

  Calculating fluxes (for CPEC, OPEC systems; ACS)

Flux calculations for CPEC and ACS systems are performed using MATLAB packages developed by 

the Biometeorology & Soil Physics Group at the University of British Columbia, which are evoked 

through BACON.  The flux calculation programs (new_calc_and_save.m, Figure 2.6) read 

high-frequency data from the organized master directories for a period specified by the operator.  All 

necessary EC- and chamber-specific processing is completed, and high-frequency data correction and 

quality control operations are implemented (following Lee et al., 2004) to produce output of 

half-hourly flux and environmental averages. The specific operational parameters of the flux 

calculation programs are set in initialization files on the DWMS file system, which may be customized 

by the operator (see section 2.4.5). 

OPEC fluxes are calculated by the EdiRe software package (Mauder et al., 2008), developed by the 

Institute of Atmospheric and Environmental Science at the University of Edinburgh, UK. Organized 

binary files are processed and calculated in batch mode to produce output data files with half-hourly 

averages of flux and ancillary data.  EdiRe batch processing is initiated by the user outside of BACON, 

after which, its products are incorporated into organized master files, as described in section 2.4.3.2.

  Conducting interactive, threshold-driven data checking and cleaning 

Organized master files for all data types are interactively screened for obvious outliers/erroneous data 

by linear threshold cleaning.  Upper and lower acceptable threshold values are applied to each variable,

and values above (below) the high (low) threshold are removed from the time series and replaced by 

NaN (data gap).  Thresholds are customized to each variable, and each set of thresholds are saved in 

separate matrices for each year.  Cleaning programs (mcm_metclean.m, Figure 2.5; mcm_fluxclean.m, 

Figure 2.6; OPEC_10min_cleaner and OPEC_EdiRe_cleaner.m, Figure 2.7) load the threshold matrix 

if it exists, otherwise prompting the operator to load and edit the previous year's threshold values, or 

manually enter new thresholds for each variable.  The operator uses keyboard hot keys to scroll through

plots of each variable and its existing thresholds, with the option of accepting or adjusting these high 

and low cut-off values.  This operation provides a means of removing obvious erroneous data in a 

quick and consistent manner.  Once the operator is satisfied with cleaning operations, the threshold 
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matrix is saved to the /Matlab/Config directory of the CFS, where it can be applied or edited during 

successive program runs.  Cleaned variables are structured into a single, annual matrix, and are 

packaged into a MATLAB structure array with a data header list that contains variable and matrix 

location information.  This master file is then saved on the CFS to be used for further quality-control 

operations.  

  Carrying out detailed manual screening, calibration, correction, spike-detection 
and final inspection

After threshold cleaning, data is screened and corrected in a detailed manner, to create 

quality-controlled data sets.  Detailed screening programs (mcm_metfixer.m, Figure 2.5;  

mcm_fluxfixer.m, Figure 2.6; OPEC_10min_fixer.m and OPEC_EdiRe_fixer.m, Figure 2.7) allow the 

operator to individually scroll through and inspect time series for all variables, noting data points that 

are questionable, erroneous, or in need of correction/calibration.  Errors in the data are corrected 

manually within the scripting of the BACON function, which provides complete documentation of data

changes and allows data fixes to be revised or reversed in the future.  In addition, system-specific 

quality control and quality assurance tests are incorporated into screening programs and are 

automatically performed on the data, informing the operator of such potential issues as instrument 

calibration problems, instrument errors, and the presence of error/caution flags.  In particular, primary 

meteorological systems are tested and corrected for any user-, program- or instrument-caused data 

logger time shifts away from the desired UTC time code, by comparing measured shortwave radiation 

time series with predicted sun times (sunrise, solar noon and sunset) during cloudless days.  In addition,

CPEC and OPEC system timing at a given site is checked against and aligned to its primary 

meteorological system by cross-correlation analysis between the wind direction time series for both 

systems.  These operations ensure that meteorological and EC systems are all properly aligned to the 

UTC time code.

Time series that are prone to data spikes and sharp magnitude changes (such as EC-measured fluxes 

and sapflow velocity measurements) are subjected to a rigorous, automated spike-filtering algorithm, 

adapted from Papale et al., (2006).  This algorithm is used in place of an operator-assessed outlier 

removal approach, with the aim of reducing subjectivity and inconsistencies between operators when 

quality-controlling data.

After all data corrections are made, the detailed screening programs allow the operator to review their 

changes by interactively browsing overlaid plots of corrected and original (uncorrected) time series.  
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The master files of screened data created in this stage represent the quality-assured data to be shared 

with local and external end-users, and is the data to be used in data filling and calculation operations.

  Completing necessary data calculations and producing secondary data products

In both meteorological and EC applications, a number of secondary data products are calculated from 

quality-controlled observational data.  Performing these operations on quality-assured data ensures that 

calculations are carried out on screened, high-quality data, and makes possible the incorporation of 

properly time-aligned data across different master files (e.g. CPEC, OPEC and meteorological data).  

As data locations in the CFS are static, programs provided in BACON allow the operator to perform 

these calculations through simple command-line input or through the GUI, requiring only site and year 

inputs to run.  Any time series-specific settings are passed to processing programs by configuration 

files located in the /Matlab/Config directory, and a single, operator-updated parameter file (params.m) 

supplies the calculation functions with operation-specific parameters for each site and year. 

Calculating Net Ecosystem Exchange (NEE) for sites requires adding EC-measured, non-spike-filtered 

half-hourly CO2 fluxes (Fc) to calculated CO2 storage changes in the air column beneath the EC sensor 

array (ΔSc, Finnigan, 2006).  CO2 storage changes are calculated within BACON 

(mcm_CPEC_storage, Figure 2.6; mcm_OPEC_storage, Figure 2.7) by vertically integrating changes 

in EC-measured CO2 concentration above the canopy and meteorological measurements of the CO2 

concentration profile beneath it.  Following calculation, NEE is spike-filtered according to methods 

defined above, and NEE and ΔS data products are saved to a directory containing derived data 

products. 

Estimating EC flux footprint also requires the integration of EC-measured fluxes with meteorological 

variables.  With operator initialization, the footprint calculation program (mcm_footprint, Figure 2.6) 

loads the required variables and executes a variety of flux footprint estimation schemes (Hsieh et al., 

2000; Kljun et al., 2004; Kormann and Meixner, 2001; Schuepp et al., 1990) providing an assortment 

of model predictions at a half-hourly timescale.

Meteorological data calculations may also be implemented through BACON; programs are provided 

for soil heat flux (mcm_SHF), sapflow measurement calculations (mcm_sapflow_calc), vapour 

pressure deficit (VPD_calc.m) and growing-degree days (GDD_calc.m, Figure 2.5).

  Filling gaps in variables, where continuous time series are required

A number of different methods are employed by BACON to fill gaps in time series. that are required to 
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be continuous.  For meteorological variables that are highly correlated between sites for simultaneous 

measurements (Ta, PPFD, SWdown, RH, WS, atmospheric pressure and precipitation), gaps in data from 

the target site are filled by linear regression-modeled values from other (source) sites.  The source site 

used to fill gaps in target data is determined by the coefficient of determination (R2) for the given 

variable between sites for the year of interest.  Data gaps are filled preferentially from the source site 

with highest R2, where data is available.  Any remaining gaps are filled from sites with next highest R2, 

where data exists.

When filling gaps in meteorological variables that show poorer correlation across sites, a number of 

different approaches are used.  Gaps in Ts measured at 2 cm and 5 cm depth are filled using a linear 

regression model based on air temperature data. Gaps in top-30 cm averaged VWC ( VWC30) are filled 

in a similar manner as methods described above for highly-correlated variables, except that an attempt 

is first made to fill data gaps for a given soil pit by a linear regression model with other soil pits from 

the same site.  Rn at each site is filled using an artificial neural network (ANN), created with the 

MATLAB neural network toolbox and conditioned with Ta, PPFD, WS and RH inputs.  Since 

performance of soil moisture and net radiation filling activities is often marginal, end-users are 

encouraged to use non-gap-filled, QA products where possible. All meteorological data filling 

operations are executed simultaneously for all sites through a single program (mcm_metfill.m, Figure

2.5); this ensures that filling operations are rerun for all sites when any revisions are made to QA data, 

as it may affect filled data for all sites. 

Ecosystem flux gap-filling is implemented by a pair of separate BACON programs: one to fill sensible 

heat (H) and latent heat (LE) fluxes (mcm_Gapfill_LE_H_default.m, Figure 2.6), and one to fill NEE 

and its components (mcm_Gapfill_NEE_default, Figure 2.6).  As a vast array of data filtering and 

modeling options are available for gap-filling ecosystem fluxes (see Falge et al., 2001; Moffat et al., 

2007; Desai et al., 2008), the BACON programs allow the operator to specify one or a number of 

combinations to use in gap-filling application.  An editable initialization file permits the operator to 

perform numerous gap-filling operations for each site, with customized settings for: years to fill, u
*
 

threshold estimation model, gap-filling model, error estimation model and the minimum acceptable 

within-fetch flux proportion criteria used in footprint filtering.  Separate BACON programs provide 

operators options for u
*
 threshold determination methods (including those presented in (Barford et al., 

2001; Barr et al., 2013; Gu et al., 2005; Reichstein et al., 2005), as well as footprint estimation method 

(see above).  
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Fluxes of H and LE are filled using ANNs created with the MATLAB neural network toolbox. LE is 

modeled and filled using Rn, Ts5cm, WS, VWC30cm and vapour pressure deficit (VPD) as training and 

modeling variables.  In the same manner, H is modeled and filled using PPFD, Rn, filled LE and Ta as 

training and modeling variables.  Any remaining gaps in these variables are subsequently filled using 

either windowed linear regression or windowed mean diurnal variation approaches, following Amiro et

al. (2006).

NEE and its components (Gross Ecosystem Productivity, GEP; Ecosystem Respiration, RE) may be 

filled using a number of different gap-filling models that have been created and implemented in 

BACON.  These models include non-linear regression approaches described by Barr et al. (2004), 

Richardson et al. (2007), Lasslop et al.(2010) and Richardson and Hollinger, (2007), as well as the 

marginal distribution sampling approach of Reichstein et al. (2005).  Also included is a 

custom-designed ANN-based method, which models RE using Ts,5cm and VWC30cm as training and 

modeling variables, while using inputs of PPFD, Ts,5cm, VWC30, Ta, VPD and GDD to model NEE.  

Gap-filling models, u
*
 thresholds and footprint filtering methods may be combined by the operator as 

desired. Results of all gap-filling model runs are saved to a common directory in the DWMS file 

system, and may be supplied to end-users to suit their data preference or to allow for model 

inter-comparison analyses.  

Since data from a number of different systems (CPEC, OPEC, primary meteorological) must be 

incorporated to gap-fill ecosystem fluxes, data for a given site must be initially compiled (using the 

process described below), to create an all-data, all-years master data file for each site.  This 

intermediate all-data master file is used as input to gap-filling operations, and the compiling program is

again run after gap-filling is accomplished.

  Compiling data products for end-user access

Once data is quality-controlled and products have been generated, all variables from all systems at a 

given site are compiled into a single half-hourly 'site-wide' master file that spans all relevant variables 

and measurement years.  A data aggregation program in BACON (mcm_data_compiler.m, Figures 2.5 

to 2.7) automatically and sequentially loads all data files for each year at a given site, and copies the 

needed output variables to its desired location in the site-wide data master output file.  From the 

all-data master file, any combination of variables may be extracted to produce additional data products 

for sharing with local and external end-users.  These operations are guided by a site-specific, 

operator-editable configuration file (located in /Matlab/Config/Master_Files, which specifies the 
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variables from each system that will be incorporated into a site's site-wide master file, as well as the 

amount, size, contents, structure and format of generated data products.  The desired structure of the 

site-wide data master and generated data products may be altered or updated at any time by modifying 

the configuration file and re-running the compiling program.

In cases where the same variable is recorded by different systems at a site, variables from each system 

are saved and separately identified in the master file.  In the case where coincident time series of 

unfilled, quality-assured flux data exists for OPEC and CPEC systems, additional, aggregated 

'all-systems' time series are generated to produce flux variables with a reduced amount of data gaps.  In 

all cases, CPEC data is used as the base for these aggregated variables, where available OPEC data is 

used to fill NaNs in the CPEC data file.  Both aggregated and individual variables are made available to

the end-user, which they may select from to suit the needs of their application.

Data products intended for internal end-users are placed in a network-accessible location on the 

DWMS file system and are subsequently uploaded to an Internet-accessible shared collection by the 

DWMS operator.  Data to be shared with external end-users are formatted by BACON to conform to 

the individual's or external association's submission standards, and are then zipped separately by site to 

allow easy uploading to the target file server.  Further explanation of data sharing is provided in section

2.4.3.5.

 2.4.3.3 Data analysis

Analyses outside of those included in the aforementioned data processing steps are, by design, not 

included in DWMS operations.  To avoid the incorporation of unstable, untested or unreliable analysis 

products (data and methods) into the DWMS, generated data products are made available to end-users 

to   conduct analyses outside of the DWMS.  With its ability to provide consistent, high-quality and 

timely data products, the DWMS facilitates and augments end-user analysis capabilities.  In cases 

where analyses are shown to generate reliable results and provide added-value to DWMS operations, 

their routines are incorporated into data processing operations.  

 2.4.3.4 Data preservation

Data preservation within the DWMS is accomplished through a number of backup and archival 

operations that occur both within the DWMS file system, and at distributed locations.  The objectives 

of DWMS preservation activities are to a) ensure that data is structured in a logical and intuitive 

manner, and b) that all essential data files exist on at least two separate media at all times.
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Data collected on ACS, CPEC and primary meteorological systems are automatically backed up onto a 

removable media drive by the field data collection PC.  Upon insertion of a formatted external drive 

into the PC, all CPEC and ACS data collected during the previous 14 days are copied to the removable 

drive, along with the complete primary meteorological data logger file. These precautionary actions 

create overlap in successive data downloads, reducing the likelihood of data collection gaps.  At the end

of each day, data collected for the preceding day is transferred to the removable drive, keeping the data 

backup current.  After the external drive is removed and used to transfer files to the DWMS file system,

a formatted drive is reinserted into the field computer, and the redundancy and backup operations 

continue.  Auxiliary meteorological data loggers are automatically backed up using a connected data 

storage module (model SM16M, Campbell Scientific Inc., Edmonton, AB), while OPEC systems are 

backed up to attached CF media.  These backup methods maintain duplication of raw data not yet 

uploaded to the DWMS file system, protecting against data loss associated with failure of any 

individual media device.

All data on the DWMS file system (system files, processing software, raw, intermediate and finished 

data products, etc.) are incrementally backed-up by a remotely-located, network-accessible server.  

Incremental backup of the system occurs nightly, and provides protection against large-scale data loss, 

while also permitting restoration of file system elements to their previous states if files become 

damaged due to corruption or mismanagement.  To reduce the likelihood of time-costly large-scale data

loss events, a redundant array of independent disks (RAID) is used on the DWMS file system, where 

identical copies of the DWMS file system are maintained on separate but parallel hard disks. Such a 

setup reduces the likelihood that failure of a single hard disk would require complete restoration of the 

file system from the network-accessible backup server.

Due to finite storage space on the DWMS file server and the redundant nature of field-collected data, 

raw data files and directories are copied to optical media and eventually removed from the file system 

after they have been read and extracted by data organization programs (see section 2.4.3.2).  Processed 

raw data collects in site-specific directories on the file system, and are moved by the operator to an 

appropriate optical media (DVD, DVD-DL, Blu-Ray Disc).  Two copies of each disc are made, and are 

stored at separate locations to reduce likelihood that catastrophic events (such as fires) cause complete 

loss of raw data archives.  To allow for quick and easy reprocessing of recent data, all raw data files for 

the current year are maintained in an archive directory on the DWMS file system (see section 2.4.3.4), 

and are deleted after data for the entire year has passed QA screening.
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 2.4.3.5 Data access

All data products to be shared with internal and external end-users are stored within a single directory 

on the DWMS file system (see section 2.4.3.1).   Data products are created from site-wide data master 

files in customizable structures and formats.  In this manner, different data collections may be made 

available to different end-users, to suit their specific data needs.  To optimize the usefulness of data 

products for end-users, a number of data sharing considerations have been made in the DWMS:

Data is shared in multiple file formats to accommodate the diversity of software that may be used in 

end-user analyses.  Data products intended for internal end-users are primarily made available as binary

MATLAB (.mat) data files.  Saving data in this format offers a number of advantages, including 

substantial data compression improvements over traditional ASCII files, and the ability to save 

hierarchical file structures.   As all research group members use this software for their analyses, these 

data products can be shared alongside 'value-added' Matlab processing programs that allow them to 

structure data files to suit their own needs.  For external end-users, Matlab format files are shared in 

parallel with files using the traditional comma-delimited (.csv) ASCII format.  Data is often required to 

be submitted in this (or a similar) format by research networks and data repositories, as its ubiquity 

ensures compatibility with all types of analysis software.  

The wide range of end-user requirements for data file structures and content is addressed in the DWMS

by two separate approaches.  The first approach is to provide end-users with comprehensive data sets 

containing all possible variables, at all data quality levels and measurement periods.  In this case, 

end-users would be required to restructure data files to suit their analysis needs.  In cases where internal

or external end-users express interest in receiving particular data products, BACON processing 

software and its associated configuration data can be quickly modified to create customized data 

products.  This DWMS functionality has been utilized on numerous occasions to provide end-users 

with data files that can be immediately incorporated into their analysis routines.

Internal (research-group) end-users may access data collections directly on the DWMS file system via 

Secure Shell File Transfer Protocol (SSH SFTP) from within the McMaster University domain, or by 

connecting to its Virtual Private Network (VPN).  Data products are also made available via 

Internet-accessible collections shared through a research-group-owned Google Documents account.  To

facilitate on-line sharing, the BACON data aggregation program creates compressed archives of 

sharable data products and saves these files to a ready-to-upload folder on the CFS.  To share this data, 

the operator simply has to upload the archives to the target Google Documents collections to make files
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accessible on-line.   

Selected external end-users may access data products through the Canadian Carbon Program on-line 

data information system (DIS).  Specially formatted data products are uploaded from the DWMS file 

system to the DIS via SFTP.  DIS data managers are responsible for incorporating data into a 

research-network-wide database, and making data available to prospective users under appropriate 

fair-use guidelines.  Files are also shared with specific external end-users by granting access permission

to Internet-accessible shared collections;  availability and permissions for these shares are controlled by

the DWMS operator.

 2.4.3.6 Data reuse 

Data is extensively reused within the DWMS, where intermediate data products are further processed 

within BACON to create higher-quality data products.  In addition, ancillary site data, including forest 

biometric and inventory information, are uploaded and incorporated into the DWMS to permit data 

operations (such as sapflow and EC footprint calculations), which require stand-specific parameters.  

Furthermore, the compartmental, expandable and flexible design of the BACON software permits 

operators to run multiple approaches of the same processing steps (e.g. NEE gap-filling methods) in a 

parallel fashion.  Data products from each unique run can be compared inside of BACON, to assess the 

effect of different data treatments on processing output.  In addition, the provision of thorough 

documentation through metadata, processing scripts and initialization files provide the means for data 

revisitation/recalculation activities within or outside of BACON.

 2.4.4 DWMS design features and operational functionality 

 2.4.4.1 The BACON graphical user interface

A Graphical User Interface (GUI), designed and implemented in MATLAB, allows the DWMS 

operator to implement all BACON data operations through a graphical front-end controller on the CFS 

(Figure 2.4).  The GUI is designed to provide an intuitive and accessible means of data processing and 

management, while ensuring that data management best-practices are followed.  Drop-down menus 

allow the operator to specify the desired data process to be implemented, as well as any required input 

parameters (i.e. site, data type and year to be processed).  Input selection is outlined as sequential steps,

and the selected inputs are displayed for operator review in a dialogue box beneath the drop-down 

menus (step 5, Figure 2.8).  The DWMS operator executes the selected operation with a click of a push 
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button (step 6).  

Background functions implemented within the GUI provide additional functionality, which assist the 

operator in data processing and help to reduce errors associated with improper operation and input 

selection.  As the operator selects inputs from drop-down menus (through steps 1-4), background 

functions query an initialization file (mcm_mgmt_ini.m) to determine the input options available for 

the subsequent drop-down menu, given the selected inputs.  Thus, the GUI ensures that only 

appropriate selections are displayed on subsequent drop-down menus, as determined by selections 

made in previous drop-down menus.  For example, when a site and data type (i.e. system) combination 

is selected from drop-down menus during steps 1 and 2, a list of data processes available for this site 

and data combination is retrieved and displayed as options in the third drop down menu, for use in step 

3 (Figure 2.8).  Additionally, the processes listed in the step 3 menu are presented in the desired order 

for processing the specified data, following the operational methodology outlined in Figures 3-5, and 

described in section 2.4.3.2.  Therefore, the DWMS operator may sequentially execute the listed 

operations to develop data from raw files to quality-assured, sharable datasets.

To ensure that the proper inputs are being selected for a given function, a background function verifies 

that chosen input parameters fulfill requirements for the selected data operation each time a drop-down 

selection is made  (Figure 2.9).  In the case that all necessary inputs have not been selected, the 

execution button (step 6) is disabled and displays a textual error message, informing the operator of the 

specific missing inputs.  When all inputs are satisfied, the execution button is activated, and the 

operator may click to run the desired process.  
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Figure 2.8: The BACON GUI during data process selection.
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Figure 2.9: The BACON GUI in "ready to process" state.
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Additional, 'value-added' DWMS and BACON processes are accessible through the bottom frames of 

the GUI.  The bottom-left frame provides a means of opening commonly-used BACON configuration 

and initialization files directly from the GUI.  By selecting an option from the drop-down menu and 

clicking the execution button, BACON opens the specified supporting documentation-containing file, 

directory or MATLAB script.  

The bottom-middle frame provides help and error reporting capabilities for BACON.  By clicking the 

help button at the top of the frame, an on-line version of BACON documentation (accessible at 

http://goo.gl/Vewv0, see section 2.4.5) is opened in the browser of the CFS PC.  DWMS operators are 

able to report potential data errors and programming bugs by clicking on the error reporting button at 

the bottom of the frame.  When this occurs, the DWMS operator is prompted to enter a description of 

the problem in a pop-up dialog box; this error description is then emailed alongside a descriptive log 

file to internally-specified DWMS administrators.  The attached log file contains a history of the 

BACON operations and commands executed during the current session, and lists each input variable 

and its value at the time of error reporting.  This provides the DWMS administrator with a means of 

thoroughly investigating and recreating the operator's processing environment, in order to trace and 

correct any system errors.  The bottom-right frame allows the DWMS operator to initiate a selected 

BACON batch operation from the GUI (see below).  

 2.4.4.2 Automated and batch processing in BACON

Though operator control and guidance is necessary for most DWMS processing steps, a select number 

of time-intensive processes may be run automatically and inconspicuously without operator 

supervision.  In particular, standalone batch processing options on the BACON GUI allow the operator 

to initiate automated extraction and organization of raw CPEC and ACS data for all sites , as well as 

automated calculation of half-hourly fluxes from raw data for the past 30 days at all sites (following 

section 2.4.3.2).  All operations and errors that occur during batch processing are recorded to detailed 

log files, which are automatically emailed out to DWMS operators at its conclusion (using the 

sendmail.m command in MATLAB).  In addition, automated extraction operations are followed by the 

production of spreadsheet-type logs that detail the completeness of organized data files at each site for 

a given year (as discussed in section 2.4.3.2), which are also emailed to DWMS operators. Log files 

provide the operator with a detailed description of all data operations, and the current state of raw and 

organized data within the DWMS.  As a result, operators may initiate these time-intensive processes to 

run without supervision, and review the processing results at a later time via log files. 
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To further streamline DWMS operations and ensure data processing remains up-to-date, these batch 

programs (mcm_automated_extraction.m, mcm_automated_calc_fluxes.m) are automatically executed 

in the background operations of the CFS PC on a weekly basis.  The Unix scheduling program cron is 

used to execute the batch programs at midnight on consecutive weeknights, after which log files are 

emailed to data operators for review.  

Automated scheduling is also used to execute a number of additional BACON operations at regular 

intervals.  A support documentation-compiling function (mcm_documentation_compiler.m) is executed

automatically at monthly intervals to compile all supporting data files (e.g. documentation, metadata, 

manuals, configuration and initialization files; see section 2.4.5) within the CFS into a single, zipped 

archive.  This archive is maintained with previous archives in the /Documentation primary directory of 

the CFS to provide operators quick access to backup versions of supporting documentation used in the 

DWMS.

 2.4.4.3 Data quality monitoring in BACON

Regularly and thoroughly monitoring all recently-collected data is an essential quality-assurance 

component of biometeorological research, as it allows the researcher to identify and address many of 

the instrumental and operational problems that are common in this type of fieldwork.  Damaged or 

improperly calibrated instruments, data logger malfunctions, site power problems and data download 

gaps are examples of measurement problems that can be diagnosed and promptly remediated by 

collecting, plotting and inspecting data at short intervals.  

Remote access to field collection PCs permit daily checks, where the DWMS operator checks the 

general state of the field site and its measurement systems, and records observations to an 

Internet-shared log file.  As both the remote client software and the log file are web-browser-accessible,

operators can assess field site status from any location with an active Internet connection.  Daily checks

serve to identify large-scale, conspicuous measurement problems, and should be complimented by 

more thorough data inspection of collected datasets.

By streamlining data collection and processing operations, the DWMS and BACON provide the 

operator a means of inspecting collected data in a timely manner.  To serve this specific requirement, 

GUI-accessible variable plotting programs allow the operator to plot annual time series of all measured 

variables for a given site, system and year;  a pop-up dialog box prompts the operator to choose the 

data quality level to be plotted – either organized or threshold-cleaned data.  To avoid excessive plot 

production, and improve inspection efficiency, the number of figures produced for meteorological 
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variables is condensed by dividing each figure into six subplots with different variables.  Each figure is 

saved in the CFS /Matlab/Figs directory and manually shared to Internet-accessible Google Documents

collections as raster (.png) and MATLAB vector figures (.fig); raster images allow for quick browsing 

at low resolution, while MATLAB vector figures support higher-resolution inspection.  Figures saved 

on the CFS may then be accessed and inspected by any or all DWMS operators on the file system, or at

remote locations.

 2.4.4.4 DWMS and BACON expansion

The DWMS provides expansion capabilities to accommodate the addition of new sites, measurement 

systems, processes, and years of operation, with relatively little setup time required.  As the DWMS 

was designed and implemented for use with long-term biometeorological measurements, the BACON 

software package and the CFS directory structure are capable of processing and storing data from any 

measurement year.  All required year-specific directories are created at the time of BACON processing;

a custom sub-function (jjb_check_dirs.m) checks the CFS for desired output directories, and prompts 

the user to approve of their creation if they do not exist.  

New sites (and their measurement systems) are incorporated into DWMS operations by adding site and 

system details to the BACON initialization file (mcm_mgmt_ini.m), as well as a number of additional 

system-specific initialization files.  In the same manner as adding years, a custom MATLAB function 

(via jjb_check_dirs.m) automatically creates all necessary CFS directories when needed during 

BACON operation.  

The ease at which additional measurement systems may be added to sites depends on the nature of the 

newly installed system: Systems that operate similarly to those already managed by the DWMS (i.e. 

CSI-based meteorological systems, similar CPEC, ACS or OPEC systems), are incorporated into the 

DWMS by modifying system-specific initialization files, as discussed above.  Incorporating systems 

that are novel to the DWMS would require new sets of BACON processing programs, CFS directory 

structures, and initialization files to be developed and implemented.

The expansion capability of the DWMS was assessed when a new TPFS measurement site (temperate 

deciduous forest; site label: TPD), was initiated in early 2012.  Site instrument setup included a primary

meteorological system similar to those described for other TPFS sites (section 2.4.3.1), except for the 

use of a different data logger (model CR3000, Campbell Scientific Inc., Edmonton, AB, CA).  The 

implemented CPEC system used a familiar sonic anemometer (model CSAT3, Campbell Scientific 

Inc.), and a different IRGA (model Li-7200, LI-COR Biosciences, Lincoln, NE, USA), though data 

59



Ph.D. Thesis - J. Brodeur; McMaster University - School of Geography & Earth Sciences

collection systems and formats were comparable to other TPFS sites.  To incorporate this site into the 

CFS and BACON processing, data collected from this site was placed into a newly-created 

subdirectory in the /SiteData primary directory, and all necessary meteorological and flux-related 

configuration files were created.  Following this preparation – which required less than 8 working 

hours by DWMS operators -- all BACON data processing functions were successfully applied 

sequentially to the new data, confirming that TPD had been seamlessly incorporated into the existing 

data management operations. 

 2.4.4.5 Retroactive data incorporation and reprocessing

In addition to accommodating subsequent measurement years, the DWMS is also capable of 

incorporating previously-measured data in a retroactive manner through simple modifications to 

initialization files.  This provides a means of incorporating and reprocessing any data that was collected

before the current DWMS was implemented.  Following implementation of the current DWMS in 

2008, raw data files that were collected during previous measurement years (2002-2007) were extracted

from archives stored on optical media, and placed in the /DUMP_Data primary directory on the CFS.  

After all required initialization files were created, these files were processed using BACON, and 

incorporated into existing data directories and data products on the CFS.  As data from this period 

previously existed on the CFS only as undocumented, end-product spreadsheets, retrieving and 

incorporating these raw data through the current version of BACON ensured operational equivalence 

and consistency among all data products on the CFS for all years.

Processing these data through BACON also revealed a considerable number of problems in the 

previous end-product spreadsheets.  Identified and corrected issues included: undetected and 

uncorrected instrument and measurement errors (calibrations, improper sensor labeling); inconsistent 

data processing methodologies (data cleaning,  normalization, calculation of derived values), and 

incorrect spreadsheet manipulation (row and column mismatches, missing data).  By reprocessing the 

raw 2002-2007 data in BACON, these problems were effectively documented, addressed, and 

corrected.  The methods used to detect and correct these problems led to the implementation of 

error-checking subroutines within BACON data processing operations, which serve to identify such 

data problems in all newly-processed data.  

As all quality levels of data (except for raw data) are retained on the CFS, data can be reprocessed in 

BACON at any time by selecting and running the desired process on the GUI.  Data organization on the

CFS allows simple and efficient recalculations in the case that processing operations are modified or 
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augmented in the future.  The data that is generated from this process overwrites the previous data on 

the CFS, which allows for subsequent data processes to be re-run to incorporate this newly-created 

data.  Raw data files may be reprocessed by re-adding them to the /DUMP_Data primary directory 

prior to running the necessary BACON operations.  

 2.4.5 DWMS supporting documentation 

DWMS operations require and create a wide array of supporting documentation, including metadata 

documents, processing scripts and functions, initialization and configuration files, operational 

protocols, as well as instrument and system manuals.  As displayed in Figure 2.10, supporting 

documentation is maintained at a number of locations within the CFS.  

BACON processing scripts and functions are located in the /Matlab/Scripts directory, in subdirectories 

that correspond to their BACON functionality.  Commenting included in each MATLAB file provides 

documentation of its overall functionality, its procedural methodology, and allows DWMS operators to 

observe and trace the changes made to the script over time.    

Parameter and configuration files specific to BACON operations are stored in the /Config and /Scripts 

subdirectories of the /Matlab primary directory.  Configuration files are organized in the /Config 

subdirectory according to the process that uses them.  Descriptive names are given to these directories 

to assist the DWMS operator in identifying the appropriate configuration file.  This organizational 

structure maintains consistency between directories used for data products and support supporting 

documentation, which allows operators and processing functions to efficiently locate desired 

supporting documentation.

All protocol documents, site metadata, instrument manuals, calibration information and processing logs

are located and maintained within the /Documentation primary directory of the CFS.  The 

/CCP_Metadocs subdirectory includes thorough site-specific metadata documents that were created 

according to Canadian Carbon Program (CCP) standards.  These standards and all other CCP protocol 

documents are maintained in the /CCP_Protocols subdirectory, while research group-created protocols 
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Figure 2.10: Summary of DWMS centralized file system structure and contents for 
documentation, support and metadata.

/1/fielddata
-/Matlab

-/Config
-/Met

-/Calculating-SapflowParameters

-/Cleaning-BadDataTrackers
-/Filling-SoilPitKeepLists

-/Organizing-Header_OutputTemplate
-/Cleaning-Thresholds

-/Flux
-/CPEC/Cleaning-Thresholds
-/OPEC/

-/Gapfilling/Defaults
-/Master_Files

-/Scripts

-/ubc_PC_setup
-/Site_Specific/<site>

-/mcm_data_mgmt

-/Met
-/Flux
-/Footprint
-/Gapfilling
-/Curve_Fitting
-/Error
-/genfuns

← All BACON processing scripts and functions
     ← All top-level BACON processing scripts and functions 

        ← Threshold files for cleaning all CPEC data (all sites)
        ← Header documents and Master file templates for 

organization;  Threshold files for cleaning OPEC data
        ← Initialization files that specify gap-filling preferences
     ← Initialization files for all-years Master files; Specification 

of format and contents of end-user-shared datasets

     ← Header documents; Templates for data organization
     ← Thresholds files for meteorological cleaning operations
     ← Tracker files for problematic time series
     ← Tracker file for soil temperature average calculation
     ← Site-specific parameter files for sapflow processing

     ← Meteorological calculation scripts/functions
     ← Secondary flux processing & calculation functions
     ← Footprint calculation functions
     ← Gap-filling functions
     ← Curve fitting & optimization functions 
     ← Flux random error calculation functions
     ← General processing functions

Site-specific calculation parameters stored in params.m;  BACON processing and GUI settings in 
mcm_mgmt_ini.m;  ACS, CPEC data settings in mcm_get_fluxsystem_info.m;  Manual corrections 
to data in mcm_metfixer.m, mcm_fluxfixer.m, OPEC_10min_fixer.m and OPEC_EdiRe_fixer.m

-/Documentation

-/Protocols
-/Biomass
-/Data_Management

-/BACON_Documentation_Archive
-/Logs

-/Fine_Root_Biomass
-/Sapflow

-/CCP_Metadocs

-/CCP_Protocols
-/IRGA_Calibrations
-/Manuals

-/cron_processing
-/mcm_auto_extractor
-/mcm_automated_calc_fluxes
-/mcm_checkfiles
-/mcm_data_compiler
-/mcm_documentation_compiler
-/mcm_Gapfill_main

← Metadata documents for each site's EC and primary                        
     meteorological data, as uploaded to the Canadian Carbon               
     Program DIS
← Canadian Carbon Program protocol manuals
← Calibration records for all IRGAs
← Instrument manuals 
← Research-group protocols and systems documentation
     ← Biomass measurement protocols
     ← DMS protocols, organizational documents
     ← Fine Root Biomass measurement protocols
     ← Sapflow measurement protocols and metadata
← Destination for automated support file backup

     ← Log files for Linux automated scheduler
     ← Log files for automated flux data extraction 
     ← Log files for automated flux calculation
     ← Inventory lists for downloaded and processed flux data
     ← Log files for entire-site data compiling     
     ← Log files for automated documentation collection      
     ← Log files for gap-filling operations

 ← Initialization files for CPEC and ACS flux calculation
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are located in the /Protocols subdirectory.  All processing log files created during BACON operation 

are saved to folders in the /Logs subdirectory that correspond to the name of their creating processing 

functions.  As described in section 2.4.4.2, compiled and compressed backups of supporting 

documentation are regularly and automatically generated by BACON, and saved to the 

/BACON_Documentation_Archive.

A research group-authored manual for TPFS field and BACON operations is collaboratively edited and 

maintained as a shared, Internet-accessible Google Document. The TPFS Field and Data Management 

Manual (FDMM), which may be accessed on-line at http://goo.gl/jk3Fe, provides documentation, 

description, operational instructions, and troubleshooting for all DWMS components.  The accessibility

of this manual provides DWMS operators with important instructional and organizational material at 

all times during field-site visits, and all other data management-related activities. 

 2.5 Discussion 

 2.5.1 Critical evaluation of DWMS components and operations

  Field data management 

The nature of field data management operations at TPFS reflects the integration of idealized 

best-practices with the extant systems and operations at each site, and the equipment and human 

resources available to the research group.  An example of this compromise is the fact that field 

measurement systems are not completely standardized within and between sites; although standardized 

methodological protocols guide the general site configuration, a number of different instruments, data 

collection devices and formats are used.  For the most part, these discrepancies have developed from 

the replacement and upgrade of discontinued components at sites with newer, improved models.  Such 

an issue is expected in any long-term measurement program, as measurement devices and collection 

components have limited lifespans, and equipment manufacturers regularly develop new products to 

improve on older models.

Despite differences in the composition and contents of raw data, field collection systems are capable of 

connecting to each system, retrieving data, and later uploading it to the CFS for processing.  Disparate 

raw data formats, structures and contents are accommodated in the DWMS by the development and 

incorporation of metadata into data processing activities.  Whether embedded in data files, or created 
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by a DWMS operator, these metadata files allow for all existing and future raw data files to be 

incorporated into management operations, regardless of their characteristics.  This functionality is 

critically important to DWMS success for any similar research program, as raw data file changes are 

generally an inevitable part of long-term measurement activities. 

As part of an effective DWMS, all field systems and operations are extensively documented by the 

research group.  Protocol documents guide the data collector through all aspects of managing data in 

the field, which includes connecting to logging devices, downloading data, naming files appropriately, 

filing the data on the transfer device, and uploading the data to the CFS.  Operator-initiated quality 

assurance operations, such as daily field system checks and weekly data checks help to ensure 

high-quality measurement data.  In addition, detailed field visit and data download logs provide a 

means of tracking past activities and changes to field measurement systems.

By accommodating all forms of raw data and standardizing its collection and processing methodology, 

the DWMS enables any member of the research group to collect and incorporate data into subsequent 

DWMS data activities.  To streamline this process further, future DWMS development will aim to 

automate data download, leveraging Internet connectivity at the field sites to regularly and 

automatically upload data directly to the CFS via its FTP server.  Automating these tasks ensures that 

data is downloaded from systems at regular, short intervals, reduces the field time requirements of 

research group members, and eliminates the potential of operator-caused data download errors 

(Campbell et al., 2013).

  DWMS software (BACON)

The BACON software package standardizes, streamlines and automates data processing and 

organization activities within the DWMS, allowing operators to manage data collectively on a 

centralized system.  The software is implemented in a scripted language and data operations are 

executed according to explicitly-stated commands, therefore eliminating errors associated with manual 

matrix manipulation such as spreadsheet processing (Borer et al., 2009).  In addition, the scripted 

programs clearly describe the operations applied to the data, and effectively document the history of 

changes made to the programs – two types of supporting documentation that are typically not supplied 

by spreadsheet or other manual operations.  The centralized implementation of the software ensures 

that all DWMS operators process data in a consistent manner, and that any changes made to programs 

will be applied to all necessary data with no version inconsistencies.  

BACON is compartmentalized into separate, independent functions, so that changes can be made to 
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any operation with only minimal changes to other software components.  However, editing scripted 

BACON programs or changing the way they are implemented requires medium- to high-level 

knowledge of the software and MATLAB programming; thus, the processing changes that may be 

available to operators via a spreadsheet program are restricted to experienced program users.  Although 

such restrictions may inhibit short-term program development and innovation, it promotes long-term 

software usability and consistency, by restricting program modifications to users with a thorough 

understanding of both the software and its programming language.  This functionality is aligned with 

general elements of software design best-practices, as software operations should be inaccessible to 

common users, and should be modified only by qualified operators, after appropriate planning and 

discussion with other data managers (IEEE Computer Society, 2004a). 

Processing data to ultimately develop a finalized product is a relatively straightforward task with 

BACON, and especially so through the use of the GUI.  The GUI is easy to access and implement, as it 

guides the operator through each processing step, and provides feedback to ensure that operations are 

being executed in the correct manner.  While requiring minimal operator-input, the provided functions 

allow the operator to sequentially organize raw data into consistent structures and formats, visually and 

interactively inspect and clean data, fill and calculate required variables, and share the data products 

with end-users.  

In addition, eligible data processes are run in batch mode and/or are automated within BACON to 

further streamline processing operations and ensure they are executed at regular intervals.  The 

implementation of this software package is essential to DWMS success, as effective biometeorological 

data management and processing requires the careful application of a great deal of complex processing 

operations, which are mostly automated within the software.  By providing operators with robust, 

comprehensive but easy-to-use programs, the software helps to reduce the likelihood that data 

management will be negatively affected by shortcomings in the operator's software or methodological 

knowledge.  An important consequence of this accessibility, however, is that DWMS operators may be 

able to process data before having extensive knowledge of the details of the operations taking place.  In

such situations, the thorough supporting documentation provided by the DWMS – and especially 

comments within the processing scripts – provide a means for operators to gain knowledge of the 

processing steps that are implemented.  By reducing encapsulation restrictions and providing 

operators-in-training read-only access to processing functions, BACON and its GUI may function as a 

training tool, where trainees can simultaneously process data while observing the details of data 
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processing methodology.  

While most data operations are explicitly defined in processing programs, a select number require the  

application of 'operator judgment'.  Data processes such as detailed manual data cleaning and 

calibration (see section 2.4.3.2) often require the operator to assess the quality of a selected number of  

data points by subjective means; this assessment may be based on previous knowledge of the site's 

environment and equipment, theoretical or experimental knowledge of the variable of study, or the 

coincident values of other variables.  A concern with such subjective data management methods is that 

the relative ease in which they may be applied in BACON (where permitted), may misrepresent the 

level of care that must be taken when imparting operator judgment on data.   To address this concern, it 

is important that operators receive appropriate training for all data management methods, and that 

operators-in-training are supervised by experienced data managers.  As all manual actions are recoded 

in supporting documentation or in processing scripts, such data operations can be reviewed and 

potentially modified as desired, after which the data may be reprocessed to reflect the desired changes 

to subjective means. 

DWMS central file system

As presented in section 2.3.3, effective DWMS operation in a collaborative framework requires a 

number of data organization features to be realized.  Included in these requirements are the concepts of 

data centralization, logical and consistent data structure, standardized file formatting, naming and 

organization, the provision of data headers, and thorough data documentation (see Cook et al., 2001; 

Borer et al., 2009; Hook et al., 2010; Van Den Eynden et al., 2011).

The DWMS file system effectively organizes and maintains data, documentation and programs at a 

centralized file system that is accessible to all data operators.  The file structure on the CFS is highly 

compartmentalized; files are sorted into top level directories according to their type (documentation, 

raw data, archived data, processed data, etc.), and are further named and grouped into subdirectories 

according to the details of its measurement site, system and year, as well as data quality level (Figure

2.3).  The logical and consistent file organization and naming structure serves a number of purposes:  

Primarily, it increases the effectiveness and compatibility of processing software, as programs use 

consistent rules and notations to load, process and save data files, thus reducing the number, diversity 

and complexity of required program inputs.  Additionally, in cases where the DWMS operator needs to 

extract a specific data file, they can be located efficiently based on the characteristics of the sought 

data. 
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Although raw data files are maintained in their native formats, and end-user data products are made 

available in non-proprietary, universally-accessible (ASCII) format, most intermediate data products 

(e.g. master files) are stored in proprietary MATLAB binary format.  This procedure is in contrast to 

general best-practices guidelines presented by such authors as  Hook et al. (2010) and Borer et al. 

(2009), who raise concerns for the eventual incompatibility of legacy formats with newer program 

versions, or the abandonment of the format altogether.  Though the history of computing has provided a

number of examples of such problems, the estimated risk for this application is greatly outweighed by 

the advantages offered by storing data in this proprietary binary format.  An advantage of this approach 

is a greater than ten-fold reduction in file size, greatly reducing the hard disk (and backup) 

requirements for the numerous intermediate data products that are created.  Additionally, the propriety 

format supports hierarchical file structures, which permits numerical data arrays and their metadata to 

be contained within a single file, as opposed to generating and managing separate flat files for data and 

metadata.  As BACON software operates on the MATLAB platform, data that is produced within its 

environment in proprietary binary format will remain readable by its operations, and readable by any 

newer version of MATLAB that is implemented.  In the case that migration from a MATLAB 

environment is required in the future, functions available for C/C++ programming languages may be 

used to convert these files to another desired format. 

Currently, all data, documentation and software files are maintained permanently on the CFS, except 

for raw field-collected data, which are retained in the file system for a limited time (one year) before 

being removed to ensure sufficient free hard disk space.  Research activities and data operations result 

in a net hard drive-use increment of 50-100 GB per year – a rate of data increase that is sustainable 

considering the current 3 TB capacity of the CFS.  Considering the current rate of technological 

advances in hard disk capacity, it is very likely that the current PC-based CFS system will provide 

adequate functionality to accommodate current measurement activities and any potential expansions for

the foreseeable future.  

Data preservation and sharing

As is the case with any data-intensive research operation, long-term storage and backup is a critical 

issue in data management, which must be addressed on a recurring basis as data requirements change 

and storage technology advances.  Currently, all essential data, programs and supporting data are 

backed up at regular, short intervals (i.e. hourly to daily) on all DWMS file systems (field collection 

systems, data loggers and the CFS).  With this approach, essential files are kept redundant on separate 
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media at all stages of the data life cycle.  On the CFS, the use of RAID and incremental backups to a 

remote server ensures that files on the CFS are protected from independent hard drive failure as well as 

catastrophic data loss events.  Wherever possible, automated backup systems have been implemented in

favour of manual operations such as optical discs and flash drive backups, as they are generally less 

vulnerable to read/write errors, interoperability conflicts, media mishandling problems and have better 

error-checking functionality.

In field-based operations, backup media are currently physically connected to the source file system, 

and therefore, must be maintained in its close proximity.  This setup protects field-measured data from 

system failure or hard disk corruption, but leaves it vulnerable to large-scale, catastrophic 

data-destroying events, such as floods and fires.  To address this problem, data is collected from the 

field at frequent, regular intervals.  Future plans call for Internet access to the field sites, and automated

data download to the CFS.

As described in section 2.4.3.4, raw CPEC and ACS data files are excluded from automated CFS 

backup operations; instead, these files are manually recorded to optical media and are deleted after their

contents have been incorporated into the CFS and verified.  In this manner, all relevant raw data is 

maintained both on the CFS (in an organized manner), as well as optical media (in unorganized 

field-downloaded structures).  These steps are taken to avoid unnecessary backup of disk 

space-intensive collections whose data is effectively redundant with extracted and organized CFS data 

repositories.  As a result, a total of 100-200 GB of optically-archived data is created annually.

Sharing high-quality data with end-users represents the culmination of DWMS operation, as the 

products of careful data management and processing are used in analyses to generate new information 

and knowledge.  Described in section 2.4.3.5, the flexible and extensible nature of BACON processing 

makes it possible to readily create and share customized data products to internal and external 

end-users.  This functionality reduces end-users' likelihood for making data manipulation errors, and 

reduces the time required for data preparation and analysis setup.

  DWMS supporting documentation

In a collaboratively managed DWMS, creating and maintaining support documentation is critical to 

operational success, as it facilitates communication between research group members and helps to 

coordinate and standardize DWMS operations.  To support collaborative maintenance of high-quality 

support documentation, these documents should be sufficiently thorough, protected against 

unintentional branching of its versions, and easily accessed by all DWMS operators.
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Shown in Figure 2.10, DWMS supporting documentation encompasses a variety of different files, from

those providing BACON-specific information (processing scripts, metadata, and configuration and 

initialization files) to those describing general DWMS operations (manuals, protocol documents, and 

log files for manual and automatic processes).  Through this documentation, DWMS operators have 

access to information regarding all aspects of DWMS processes.  Furthermore, its use as training and 

informational resource serves to make data operations more transparent and understandable.  However, 

a significant challenge with this implementation is ensuring that the documentation itself is accessible 

and navigable.  Support documents that cannot be easily located, accessed and understood by all 

research group members risk being ignored and neglected.  These concerns have been addressed in the 

current DWMS by ensuring that documentation is centralized, organized effectively, and can be 

accessed as simply and freely as possible. 

As outlined in section 2.4.5, the DWMS's supporting documentation exists at centralized locations in 

the CFS and in Internet-shared collections;  within these locations, support documentation files are 

structured into different subdirectories and collections that correspond to their specific function within 

the DWMS.  A well-organized and centralized documentation repository permits the user to find 

desired documentation promptly by navigating to a single, consistent location.  This structure also 

increases the likelihood that operators are accessing the most up-to-date version of support 

documentation.  By maintaining the TPFS Field and Data Management Manual (FDMM, see section

2.4.5) as an on-line document, DWMS operators are able to view and modify it from any device with 

Internet connectivity.  Resultantly, the FDMM can be accessed and modified as-needed in the field via 

Internet-connected PCs or personal smart phones, or in any other setting where it is required.  Access to

all supporting documentation is further enhanced by their integration into BACON, as DWMS 

operators can access these documents through GUI operations.

 2.5.2 Evaluating the collaborative DWMS framework for 
biometeorological research

  The viability of a collaborative framework in biometeorological data management

As has been displayed in the preceding sections, a collaboratively-operated DWMS is a feasible and 

viable method of managing data in a biometeorological research programs where a dedicated, 

long-term data manager does not exist.  By making it possible for research group members to assume 
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roles as DWMS operators, the substantial time requirement for effective data management can be 

spread out among all members.  

A successful and long-term sustainable collaborative DWMS is viable only with continual commitment

by all research group members to ensure that they partake in data management best-practices.  

Achieving research group-wide support for large-scale data initiatives can prove difficult, as not all 

members share the same awareness or motivation for committed, long-term data management 

operations (Ives et al., 2008).  Indeed, there may often be little incentive for researchers to develop data

beyond what is immediately needed for their own research and publications.  To address this concern, it

is critical for individuals in leadership roles to stress the importance of thorough data management, and 

to actively educate research group members on the benefits of applying best-practices – or conversely,  

demonstrating the negative consequences of improper data management (Strasser et al., 2012).  Beyond

this, the most effective means of ensuring researcher engagement in the DWMS is for the system to 

provide an overall benefit to their personal data management needs.  Functionality that streamlines and 

automates data procedures provides immediate incentive for researchers to use the system and 

participate in DWMS operations (Campbell et al., 2013).  This functionality has been incorporated into 

the current DWMS by ensuring that data operations and products accommodate the needs of each 

research group member, and that these services are provided in a manner that is more straightforward, 

reproducible and time-efficient than can be achieved by working outside of the DWMS.  These 

advantages of DWMS operation are demonstrated and reiterated regularly, so that research group 

members are made aware of the benefits of their participation.

Training incoming research group members to be effective DWMS operators is a critical requirement in

a collaborative framework, as data management responsibilities are regularly passed-down from senior 

members upon the completion of their research requirements.  Making sure that incoming members 

have access to thorough and complete documentation is paramount to ensuring a smooth transfer of 

responsibilities.  Manuals must include detailed protocols for operating field instruments and collection

systems, collecting data, as well as managing data through all components of the DWMS and the data 

life cycle.  Documentation and processing scripts should describe the data processing operations that 

are used in the DWMS, and include appropriate background and methodological references, while logs 

should describe all DWMS-related activities.  Creating and maintaining these many information 

sources requires a significant time commitment on behalf of all research group members, and it is 

difficult to ensure that details within documents are relevant and accurate.  Overcoming these 
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challenges requires diligence on behalf of all DWMS operators, as well as original solutions that 

streamline documentation and training processes.  To this end, a number of such solutions have been 

implemented in the current DWMS.  Operations manuals and logs are maintained as on-line 

documents, which promotes collaborative development and editing of material, and encourages 

research group members to update information whenever possible. (section 2.4.5).  Instructional videos

for field and BACON operations have also been created and shared on-line, to provide DWMS 

operators with an information-dense, and quickly browsable audio-visual manual. The BACON GUI 

also serves as an important training tool, as its organization, step-wise implementation and integration 

with support documentation provides an interface that educates as it operates.  

Perhaps the most important consideration for long-term collaborative DWMS success is the prompt and

effective administration of changes to system components. As biometeorology research programs are 

dynamic in nature, it is expected that both trivial and significant DWMS modifications and upgrades 

will be needed over time, to accommodate changes in data collection, processing, archival and sharing 

operations.  The purpose of a collaborative DWMS is to allow data management responsibilities to be 

shared amongst all research group members.  However, it is likely that in most settings, DWMS 

administration will need to be undertaken by a select number of research group members with adequate

skill and DWMS knowledge to make important changes to system components.  Though the 

collaborative DWMS framework requires all operators to make small changes to the system when 

needed to maintain functionality, it should also discourage or restrict unskilled operators from making 

large changes that may have substantial implications for the entire DWMS operation.  Therefore, it is 

crucial that there exist capable and committed administrators that can make higher-level changes when 

needed, and communicate these updates to the rest of the research group.  Administration is particularly

crucial for DWMS data processing operations (e.g. BACON), as the complexity of programs to 

manage, process and share data  will likely be beyond the skill and experience of most DWMS 

operators.  In the TPFS DWMS, the system is administered by a few, senior research group members, 

who are responsible for high level changes to data management operations.  The use of a GUI to run all

data processing operations allows effective control of the DWMS modifications that are available to 

operators.  The GUI provides DWMS operators the opportunity to modify settings such as 

configuration and site parameter files, but does not permit them to make fundamental or large-scale 

changes to the file system structure or processing programs, which may only be carried out by system 

administrators.
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Despite its apparent successes, however, it is apparent that such a framework will only be successful if 

it can be operated in environments where: a) all research group members are engaged in the data 

management process; b) appropriate training programs and support documentation are developed and 

maintained; and c) operations can be administered by a group member with adequate skills and 

experience.  Considering that research group member turnover rates are relatively high, and that 

members vary greatly in their motivations, skills and capabilities, it is paramount that those in 

leadership positions work diligently to ensure that these requirements are met within the research group

at all times.

  Considerations for DWMS use with other research groups and measurement 
programs

In a general sense, most biometeorology research programs share similar data management 

requirements, as a result of similar research goals, methodologies and measurement equipment.  In this 

respect, the general DWMS framework and operational methodologies developed in this research 

should be immediately transferable to other groups conducting similar research.  However, the 

feasibility of applying this study's entire DWMS to another research program will undoubtedly be 

determined by how the specific needs, resources and implementational details differ between the 

prospective program and that which is presented in this study.  A wide variety of potential 

inter-program differences can be expected, each with specific challenges to implementation and 

proposed adaptation solutions.

Differences in data collection and transfer devices (data loggers, logging computers, transfer media, 

etc.) will result in field protocol discrepancies between research groups.  In response, field protocols 

will need to be modified to serve the situation of the prospective research group, though these protocols

will continue to be guided by the same general principles (e.g. data redundancy, documentation, 

archiving, etc.) that have been established in the current DWMS. 

The current field data collection protocol requires regular, weekly to bi-weekly visits to field sites to 

collect data from logging devices.  Collecting data at this interval keeps data integrity by ensuring that 

logging devices do not exhaust their writable memory, and allows DWMS operators to organize and 

check data regularly.  At more remote field measurement sites, however, data may not be able to be 

downloaded as regularly.  To avoid the potential problems listed above, it would be necessary to equip 

sites with Internet connectivity to broadband, satellite or mobile networks, to allow system connection, 

inspection and data download either by DWMS operators, or by automated means (Benson et al., 2010;
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Campbell et al., 2013; Peters, 2010). 

The number of potential data characteristic differences that may exist represents a barrier to data 

extraction and checking efforts, as formats would not be immediately understood by the DWMS and its

processing software.  For meteorological data, such differences can be accommodated 

straightforwardly by updating the associated metadata and configuration files that are already required 

by BACON processing.  Since much of meteorological measurement has been standardized in terms of 

its raw data format, (e.g. CSV), collection devices (e.g. CSI data loggers) and instruments, there is high

confidence that the adaptation process would be straightforward.  

The modifications and resources required to incorporate different flux (OPEC and CPEC) systems into 

the current DWMS will be determined by the characteristics of the systems' raw data files.  Data 

characteristics such as file encoding and organization will depend on whether data is logged onto a data

logger or a PC, as well as what type of logging software is used.  Generally, flux systems record 

binary-encoded data, which is either written to a single, accumulating flat file, or into separate, 

time-partitioned (e.g. half-hourly) files.  Data files of either type can be incorporated into DWMS 

operations by modifying the existing extraction/checking operations.  For systems that create 

accumulating raw files, the OPEC operations would be modified for this purpose, while the CPEC 

processes would be modified in the case of time-partitioned files.  By making minor processing script 

modifications and providing BACON with necessary configuration and metadata files that describe the 

flux systems' raw data file configuration, data from these systems can be incorporated into the existing 

DWMS' extraction and checking processes in a relatively straightforward manner.

The current DWMS is built upon a presumed static CFS structure, which is leveraged by BACON to 

access and write data files during processing.  The migration of the current DWMS to one or more 

systems with different organization and sharing characteristics would have implications for most of its 

operations.   Since BACON relies on a fixed file structure (data and configuration files), it would need 

to be reconfigured by: a) modifying all processing scripts to read and write to the updated directories, 

or; b) removing static references and instead require BACON to load a configuration file that contains 

file address information for all data types and levels for each site.  The latter approach is suggested, as 

it would provide more flexibility for DWMS operators to quickly and easily change directory locations 

at any desired time in the future.  

The data processing operations used in BACON may need to be modified to accommodate the 

methodological preferences of the prospective research group.  New BACON processes may be 
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directly substituted for existing processes when they are mutually exclusive and operate on data at the 

same quality level; such operations would require only minimal modifications to the DWMS, as 

directory locations could be maintained, while processing lists on the GUI would need to be updated.  

If possible, any process that is unique and additional to those currently in BACON should be 

incorporated by inserting the operations within existing processing scripts.  This approach requires 

minimal DWMS modifications, as it operates within the extant processing methodology and file 

structure.  In cases where novel processing scripts would need to be constructed and incorporated into 

the existing sequence of BACON operations, it would be necessary to create new file system 

directories to accommodate these data, and to update data directory references for all processing scripts

that are run immediately before and after these processes.

Since the DWMS has been designed to work within a fully collaborative management framework, a 

wide range of research group time- and work-partitioning strategies can be used with it to deliver 

acceptable data management.  Though it is likely that operations would be more time efficient with 

fewer DWMS operators, responsibilities can be spread among any number of operators to reduce the 

workload for any particular user.  This approach is viable with the provision that collectively, DWMS 

operators ensure that all protocols are followed, supporting documents are regularly updated, and that 

data is processed, checked and shared at acceptable frequencies.   

Operating the DWMS requires a baseline understanding of the theoretical background and operational 

details of the DWMS, as well as basic knowledge of the software that is used during these operations.  

It is possible that members of any given prospective research group may not meet the research 

program-specific requirements.  To overcome this problem, it is important that research 

group-maintained manuals and tutorials should be available to members at all times, to ensure that new 

DWMS operators can gain the required knowledge prior to operating the DWMS, and that existing 

operators can review and update documents where needed.  By creating a research environment that 

strongly emphasizes thorough documentation and support, research groups can help to ensure 

sustained, proper DWMS operation.  

 2.6 Conclusions

In this study, we presented the guiding principles, motivating factors, developmental methods and 

operational details for a comprehensive, collaborative biometeorological data workflow and 

management solution.  The TPFS DWMS is an invaluable tool for all data operations within the 
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research group.  Complemented by support documentation, the DWMS supports data management at 

all life cycle stages – effectively streamlining, coordinating and standardizing data-related activities.  

The DWMS explicitly prescribes the activities, systems, management protocols and processing 

operations undertaken in the field and the laboratory.  These characteristics reduce the data 

management time requirement for researchers, and reduces the likelihood of data errors due to 

mismanagement. 

Data and software are centralized in the DWMS, enabling multiple data managers to collaboratively 

process and share data at a single location to create consistent products.  Processing methodologies are  

robust and aligned across all data types, promoting data consistency and processing transparency.    The

DWMS file system and software are extensible and flexible, and can be readily updated to include 

additional processes and data inputs into existing management operations.  Furthermore, its capacity to 

create customized data products and share them by a variety of means increases data usefulness and 

accessibility for end-users. The BACON GUI substantially improves the DWMS operator's 

accessibility, usability and understanding of data processing operations in the DWMS.  The simplicity 

and organization of the GUI streamlines program execution, and provides a framework for learning 

more about the DWMS data processing methodology.   

The success of this study demonstrates that provided appropriate system design and maintenance, as 

well as a continual commitment of research group members to best practices, a 

collaboratively-operated DWMS is a feasible and viable method of managing data in a 

biometeorological research program where a dedicated, long-term data manager does not exist.  By 

distributing research data management requirements in a thoughtful, streamlined manner, our results 

show that it is possible to achieve effective and ethical data practices in a sustainable and 

resource-mindful operational framework.
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 3 Assessing the suitability of roving eddy covariance systems
to produce reliable time-integrated carbon exchange estimates

at multiple sites
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 3.1 Abstract

As an alternative to traditional, continuous eddy covariance system operation at a single site, roving 

eddy covariance (rEC) approaches rotate a single system through numerous proximal sites to maximize

flux measurement site coverage given limited resources. A drawback of the rEC approach is the 

creation of long gaps in annual net ecosystem exchange (NEE) time series, which challenge gap-filling 

models and potentially lead to large uncertainties in time-integrated ecosystem carbon exchange 

estimates. In this study, we used simulated NEE time series from two temperate forest sites to assess 

the feasibility of an rEC approach to produce reliable time-integrated NEE estimates. To do this, we 

quantified the uncertainty associated with different rEC measurement schedules (number of sites, 

rotation period, schedule timing), as well as the effects of different gap-filling models, and the 

application of a variety of proposed NEE uncertainty mitigation strategies.  

Results showed that NEE estimate uncertainty was least when implementing the shortest rEC rotation 

period among the fewest number of sites, and was greatest for the opposite case.  The length of rotation

had a much larger effect on NEE measurement uncertainty than the number of sites involved.  

Uncertainty was minimized by implementing gap-filling approaches that incorporated multiple years of

information into parameterization processes. When the optimal gap-filling model was applied to the 

optimal rEC scenario (2-site, 15-day rotation), the resulting total uncertainty was between 35 and 63% 

of the annual NEE flux magnitude at our study sites, even though approximately 70% of half-hours 

required filling. Annual uncertainty could be further reduced by alternating the rEC schedule between 

years, thus ensuring that no time of year experienced rEC gaps for all years. Applying this strategy – 

which must be implemented at the time of rEC operation – reduced the uncertainty by an average of 28 

and 73 g C m-2 y-1 in comparison to standard NLR-HL output for our TP39 and TP74 sites, respectively.

The results of this study suggest that the rEC approach has potential to expand the ecosystems that can 

be investigated by research programs with limited resources, while still providing time-integrated NEE 

estimates with an acceptable amount of uncertainty. The methodology provided in this study provides a

framework with which the rEC approach may be further investigated for suitability at a greater number 

and variety of study sites. 

 3.2 Introduction

The eddy covariance (EC) method is currently used at over 500 sites to quantify ecosystem-atmosphere

exchanges of energy, momentum and trace gases, such as CO2 (FLUXNET, 2013).  This global network
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of EC systems provides near-continuous information on the magnitude of net ecosystem carbon 

exchange (NEE), as well as the biological and environmental controls on the components of this 

exchange.  EC carbon flux measurement data serves a wide range of interests in ecological studies, 

including: the parameterization and validation of ecosystem models; investigation of ecosystem 

exchange dynamics; and the management of ecosystem carbon resources through long-term accounting

of ecosystem carbon budgets (Baldocchi, 2003; Barr et al., 2013; Moffat et al., 2007). 

EC measurement networks (e.g. FLUXNET, Baldocchi et al., 2001; NEON, Kao et al., 2012 and Keller

et al., 2008) have expanded over the past decade, with a goal of increasing carbon exchange 

quantification and understanding across ecosystem types, time, and space.  This desire to increase EC 

measurement networks is met with the acknowledgement that such systems are costly to purchase, 

require personnel for their installation, maintenance and calibration (Foken, 2008), and pose logistical 

challenges, such as the implementation of long-term, year-round measurement programs in remote 

locations. Therefore, it may be relevant for research networks and groups to explore and assess means 

of maximizing ecosystem exchange information collection given their available resources.  This may 

include activities such as initiating new study sites, strategically decommissioning existing ones, or 

implementing occasional (or part-time) measurement programs.  

In this study, we investigate the roving eddy covariance (rEC) approach as a non-traditional alternative 

to continuous year-round flux measurements. With rEC, a single, portable EC system is rotated at 

regular intervals (e.g. weeks to a month) amongst two or more proximal measurement sites.  The 

benefit of such an approach is that it permits the use of a single EC system to measure ecosystem 

exchange at multiple sites, effectively increasing the number of ecosystems that may be surveyed by a 

research program.  The predominant drawback of an rEC method, however, is that NEE measurements 

at a given site are limited in both quantity and temporal consistency, as EC measurement periods are 

flanked by continuous long gaps that are equal to, or longer than the measurement period itself. 

In comparison to the short data gaps (half-hours to a few days) common to typical EC operation (for 

causes, see:  Aubinet, 2008; Goulden et al., 1996; Moncrieff et al., 1996; Papale et al., 2006; Ruppert et

al., 2006; Falge et al., 2001; Moffat et al., 2007), long NEE gaps are generally more detrimental to the 

amount and quality of extractable ecosystem carbon exchange information for a given site (Moffat et 

al., 2007; Richardson and Hollinger, 2007). As gap length increases, so increases the likelihood that 

underlying ecosystem exchange characteristics will change during the period. This includes changes in 

respiration sensitivity to temperature (Reichstein et al., 2005) and soil moisture (Borken et al., 2006); 
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intra-annual effects of foliar nutrient status on photosynthetic capacity (Huang et al., 2011); and, 

changes in phenology, including bud-burst, leaf area index evolution and senescence (Barr et al., 2004).

Without parameterizable data during these periods, methods that characterize environmental controls 

on carbon exchange and fill NEE gaps (gap-filling models) are prone to greater uncertainty and bias 

error, leading to errors in time-integrated NEE estimates.  For example, a study by Richardson and 

Hollinger (2007) found that depending on the ecosystem and time of year, a single month-long gap 

could increase uncertainty in annual NEE estimates by as much as 35 g C m-2 y-1.  This effect is 

substantial considering that a site synthesis study by Moffat et al. (2007), estimated that the total annual

uncertainty due to typical NEE gaps (comprising between 10 and 60% of the total annual time series) 

was approximately +/- 25 g C m-2 y-1.  

Considering the effects of single, long gaps on NEE estimate uncertainty, it is anticipated that the 

numerous, regular long data gaps introduced by the implementation of an rEC program would represent

an extreme test of gap-filling model performance. This fragmented data presents challenges for 

obtaining reliable time-integrated (daily to yearly) carbon exchange estimates for each site – values that

are desirable for applications such as estimating ecosystem carbon budgets; evaluating process-based 

model predictions; and, comparing EC estimates with other, lower-frequency (e.g. biometric) carbon 

exchange estimates (Barr et al., 2013; Falge et al., 2001; Moffat et al., 2007; Richardson and Hollinger, 

2007). Therefore, assessing the appropriateness of an rEC approach requires that the impacts of their 

associated data gaps on time-integrated NEE estimates be understood and quantified.

Between the years 2003 and 2007, we employed an rEC approach among three forested, age-sequence 

sites, in order to maximize the site coverage of a single EC system.  The rEC system was moved 

between sites at intervals of 2 weeks to 1 month throughout this time, creating NEE measurement 

periods that were bounded by 1-2 month long data gaps.  To quantify the NEE estimate uncertainty 

associated with rEC operation at our sites, and to assess the larger potential for rEC application at other 

sites, we assessed both the feasibility and value of this approach in an objective manner.  Considering 

these needs, the objectives of this study were as follows:

1. Quantify the effect of rEC operation on bias & uncertainty of ecosystem NEE estimates in a 

temperate white pine forest age sequence, and compare the effect of rEC gaps to that of shorter 

gaps created by standard data loss causes (i.e. operational problems, footprint and u*
Th filtering);

2. Investigate a number of possible rEC system rotation schedules, to identify those that are most 

appropriate for rEC application;
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3. Evaluate the robustness of various commonly-applied gap-filling methods to produce reliable 

estimates of rEC-measured NEE at inter-annual, annual and intra-annual timescales; and,

4. Quantify and evaluate potential strategies for mitigating the negative effects of rEC data loss on 

NEE estimates. 

To address the study objectives, we employed a Monte Carlo (MC) approach, where a variety of rEC 

measurement scenarios were applied to hundreds of simulated annual half-hourly NEE time series. A 

number of gap-filling models were applied to the simulated rEC time series, and the differences 

between gap-filled estimates and the synthetic NEE at different time scales (daily to inter-annually) 

were quantified. Using the approach, a thorough estimate of both the mean (bias) and spread 

(uncertainty) of error caused by different rEC scenario and gap-filling model application could be 

quantified.  Both gap-filling model error and statistical metrics were used to compare and assess the 

performance and robustness of gap-filling models. The effects of rEC application were also compared 

with those simulated for standard-type gaps (operational problems, friction velocity filtering, etc.).  We 

then evaluated the performance of a set of strategies hypothesized to improve gap-filling model 

performance and reduce overall error in time-integrated NEE estimates produced in rEC measurement 

programs.
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 3.3 Methods

 3.3.1 Study sites and rEC operation

The focus of our study was the Turkey Point Flux Station (TPFS) -- an age-sequence of four planted, 

managed eastern white pine (Pinus strobus L.) forests, within a 10 km radius near the north shore of 

Lake Erie in Southern Ontario, Canada (42.71°N, 80.36°W). The forests use a naming convention 

relating to their year of establishment:  TP39 (planted in 1939, 74 years old in 2013), TP74 (planted in 

1974, 39 years old), TP89 (planted in 1989, 24 years old), TP02 (planted in 2002, 11 years old). All 

forests are actively managed and were planted on deep, sandy, Brunisolic Gray Brown Luvisolic soils 

(Gleyed at TP89; Presant & Acton, 1984) of former marginal agricultural lands (TP89, TP02) or 

cleared oak-savanna ecosystems (TP74, TP39).  Detailed site measurements conducted by Peichl and 

Arain (2006) reported mean tree heights to be 2.8, 11.1, 13.1 and 21.8 m and tree densities to be 1683, 

1325, 1633 and 421 trees ha-1 at TP02, TP89, TP74 and TP39. Maximum respective leaf area indexes 

were estimated as 1.0, 12.8, 5.9 and 8.0 m2 m-2. Complete, detailed description of site characteristics 

may be found in Peichl and Arain  (2006), and Peichl et al. (2010a, 2010b). 

At the three youngest sites (TP74, TP89, TP02), an rEC system was implemented between the years 

2003-2007.  The rEC system used an open-path eddy covariance (OPEC) system, comprising a 

3-dimensional sonic anemometer (model CSAT-3, Campbell Scientific Canada Corp., Edmonton, AB), 

and an open-path IRGA (model LI-7500, LI-COR, Lincoln, NE, USA).  Both components were affixed 

to a portable boom, which could be readily mounted to the top of triangular measurement towers 

located at each site at heights of 3, 15 and 16 m at TP02, TP89 and TP74, respectively.  The system was

connected to an electrical power supply and a data logger (model CR5000, Campbell Scientific Canada

Corp., Edmonton, AB), which were housed in waterproof containers at the tower base.  Data was 

logged as both high frequency (20 Hz) raw measurements, as well as calculated 10-minute average 

fluxes.  The CO2 concentration profile was estimated for each of these sites by supplementing the 

half-hourly average concentration measured by the OPEC IRGA with a measurement made at half the 

OPEC system height, using a separate closed-path IRGA (model LI-820, LI-COR).  

The rEC system was moved between sites at semi-regular intervals of 2 weeks to 1 month.  Since the 

system was rotated between three sites, the EC data coverage at a given site consisted of 2 weeks to 1 

month of data, followed by a 1- to 2-month data gap, as the system was cycled through the other sites.  
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Rotation intervals were occasionally longer during the winter months, increasing the duration of 

measurement or data gap at the sites during such periods.  The open-path IRGA was calibrated  

monthly, and internal chemicals were changed on a bi-annual basis. The use of rEC was discontinued in

early 2008, as permanent CPEC systems were installed at TP74 and TP02, and the TP89 site was 

retired from all measurements due to resource constraints.

 3.3.2 Data

A closed-path eddy covariance (CPEC) system has been operated continuously at TP39 from 2002 to 

the present, producing half-hourly fluxes of momentum, sensible heat, latent heat, and CO2. The CPEC 

system consists of a 3-dimensional sonic anemometer (model CSAT-3, Campbell Scientific Canada 

Corp., Edmonton, AB), and a closed-path infra-red gas analyzer (IRGA; model LI-7000, LI-COR, 

Lincoln, NE, USA) housed inside of a temperature-controlled box . In order to estimate the air column 

CO2 storage flux,  ΔSc, CO2 was measured at three points in the canopy profile: at the top (via the 

CPEC IRGA), as well as at the tower midpoint and near the surface using separate closed-path gas 

analyzers (model LI-800, LI-820, LI-COR).  Concentrations at each height were recorded as 

half-hourly averages. A full description of this CPEC system can be found in Arain and 

Restrepo-Coupe, (2005).  Comparable CPEC systems were installed at TP74 (20 m) and TP02 (3 m) in 

2008, and have been operated to the present. 

Meteorological measurement towers were installed at all TPFS sites between 2002--2003.  All towers 

were equipped with identical instruments to provide continuous measurement of meteorological and 

edaphic variables, according to Fluxnet-Canada guidelines (Fluxnet-Canada, 2003) .  Meteorological 

variables were measured as half-hourly averages from the top of each tower.  Measured variables 

included: air temperature and humidity (model HMP45C, Campbell Scientific Canada Corp., 

Edmonton, AB), wind speed and direction (model R.M. Young 05103-10, Campbell Scientific Canada 

Corp., Edmonton, AB), net radiation (model NR-LITE, Campbell Scientific Canada Corp., Edmonton, 

AB), down- and up-welling photosynthetic photon flux density (model Kipp & Zonen PAR-LITE, 

Campbell Scientific Canada Corp., Edmonton, AB).  In addition, rainfall was measured using 

tipping-bucket rain gauges at TP39 (model 52202, R.M. Young, Traverse City, MI) and TP02 (model 

TR-525USW, Texas Electronics, Inc., Dallas, TX).  Soil temperature (Ts) profiles were measured at two

different locations using thermistor probes (model 107B, CSI) placed at depths of 2, 5, 10, 20, 50 and 
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100 cm.  At the same two locations, volumetric water content (VWC) profiles were measured using 

water content reflectometers (model CS-615/616, CSI) inserted horizontally at depths of 5, 10, 20, 50 

and 100 cm.  The VWC profiles were used to calculate depth-weighted, upper root-zone averages 

(VWC30) for the top 30 cm of each profile.

All flux and meteorological data were quality-controlled following data collection.  Erroneous 

half-hourly meteorological data were removed using static thresholds, followed by more detailed visual

scrutiny, which was implemented to remove only occasional, obvious data problems.  Quality control 

measures for half-hourly carbon flux (Fc) data included Webb-Pearman-Leuning density corrections for

the OPEC system (Webb et al., 1980), coordinate rotation (Tanner and Thurtell, 1969), and outlier 

removal using an automated detection algorithm method, similar to Papale et al., (2006).  Net 

ecosystem carbon exchange (NEE) was calculated at all sites as the sum of eddy covariance-estimated 

CO2 flux (Fc) and ΔSc.  ΔSc was estimated following Barr et al., (2004), using the aforementioned 

half-hourly CO2 concentration profile data. Across all measurement years, operational-type gaps 

(caused by equipment malfunction and quality-assurance measures) resulted in the loss of an average 

10% of nighttime and 8% of daytime NEE half-hourly values. (Table 3.1). 

In order to improve confidence that measured NEE reflected the true ecosystem exchange, a friction 

velocity threshold (u*
Th) was applied to all nocturnal (PPFD < 15 μmol m-2 s-1) NEE measurements, 

removing data from periods where CO2 transport by non-turbulent means (i.e.  horizontal and vertical 

advection attributed to density flows and breezes) was non-negligible (Aubinet, 2008; Barr et al., 2013;

Gu et al., 2005; Papale et al., 2006) .  Nocturnal half-hourly NEE values were removed when measured

u* was below thresholds estimated using the Moving Point Test u*
Th determination method described by

Papale et al., (2006), which estimated u*
Th from the relationship between nighttime Net Ecosystem 

Exchange (NEEn) and u*.  For this methodology, data from each year was stratified into four, 

equally-sized 3-month seasons (nS=4: JFM, AMJ, JAS, OND), and then sub-stratified into six 

temperature classes (nT=6) within each season.  Each nS*nT strata was split into 20 equally-sized u* 

classes, and the u*
Th for a strata was estimated as the lowest u* class that had an average NEEn value 

within 99% of the average NEEn at all higher u* classes.  Seasonal u*
Th was calculated as the median of 

predicted values across the temperature substrata.  To increase estimate accuracy, the estimation 

procedure was bootstrapped at the seasonal level, to produce 100 separate u*
Th estimates, and a single, 

annual u*
Th value was obtained from the median of the seasonal estimates. Estimates of u*Th obtained 

using this method ranged between 0.42 to 0.47 m s-1 for TP39, and 0.38 to 0.41 m s-1 for TP74. 
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Table 3.1: Summary statistics of annual proportions of half-hourly NEE data availability following 
quality- assurance measures for both daytime and nighttime at TP39.

Available NEE Proportion

 NIGHT DAY

mean 0.901 0.922

std 0.0307 0.0189

max 0.947 (2006) 0.950 (2010)

min 0.8511 (2009) 0.889 (2008)

For the purposes of estimating the rEC-related error and uncertainty associated with time-integrated 

carbon exchange estimates, this study used four years (2008-2011) of continuous CPEC flux 

measurements from two sites in the age sequence (TP39, TP74).  Data from these years and sites were 

selected to incorporate the largest period of simultaneous, continuous measurements at multiple sites, in

which the ecosystems and measurement setup remained consistent throughout.  A thinning operation at 

the TP39 forest in early 2012 altered the ecosystem by removing approximately 30% of dominant and 

co-dominant trees.  As a result, data from this year was not included in the study, in order to remove 

error associated with anticipated changes in ecosystem carbon exchange rates and dynamics.  Flux data 

collected from the TP02 site was not included in these analyses, as a variety of instrument problems 

resulted in a number of long (weeks to a month) flux and meteorological data gaps during 2008 and 

2009.  Preliminary tests on this data suggested that such gaps would introduce considerable error into 

analyses, by affecting both the generation of synthetic data, and the application of gap-filling models to

provide time-integrated estimates.  The implications for excluding the TP02 site data from these 

analyses will be discussed later.
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 3.3.3 Synthetic NEE time series

To investigate the four study objectives in a comprehensive manner, synthetic half-hourly NEE time 

series were created for each year and used in analyses.  Ensembles of synthetic series were generated 

by combining a single modeled NEE time series (NEEm) with multiple iterations of random error time 

series, in order to simulate the “true signal + noise” that is measured by EC systems.  These gap-free 

synthetic NEE time series were used in analyses instead of the measured values, as they offered a 

number of analytical advantages: First, the continuous nature of the synthetic series allows gaps to be 

inserted at any desired location, so that an ensemble of possible gap distributions can be assessed, and 

their effects be quantified.  Second, the synthetic series represent an ensemble of measurement noise 

realizations.  As has been shown by Richardson and Hollinger (2007), the magnitude and distribution 

of inherent measurement random error affects gap-filling model performance, and thus, final gap-filled 

values.  Therefore, using an ensemble of synthetic series generates a distribution of gap-filled values, 

from which confidence intervals can be estimated.  Finally, using complete time series allows for NEE 

estimate uncertainty to be partitioned and attributed to causes such as: random measurement noise, 

normal operational data gaps, and rEC data gaps.

For both study sites, all years (2008-2011) of NEE and primary meteorological variable data (PPFD, Ts 

Ta, VPD, VWC30), were assimilated into an artificial neural network (ANN), in order to produce 

continuous and noise-free estimates of NEEm (Figure 3.1, top). The ANN was developed and 

implemented using the neural network toolbox in MATLAB (The Mathworks Inc., Natick, MA). A 

general two-layer feed-forward network was used, which contained a sigmoid transfer function in a 

30-node hidden layer, and a linear transfer function in the output layer. Post-hoc analyses of the ANN 

output supported its use, as it fulfilled the two necessary criteria for implementation in our study: a) 

low random and bias error in comparison to the original NEE time series, and b) model errors that were

poorly-correlated to those produced by the gap-filling models being evaluated.  Satisfying the latter 

criteria helps to ensure that gap-filling metrics obtained through MC analyses reflect the true 

performance of the models, and not their functional similarity to the ANN.
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Time series of half-hourly random error were generated using an approach similar to that used by 

Richardson and Hollinger (2007).  Since random error associated with eddy covariance measurement is

heteroscedastic (see Hollinger and Richardson, 2005; Richardson et al., 2006), it was first necessary to 

estimate the potential dispersion associated with each half-hourly measurement, in order to generate 

random error time series that are representative of the actual nature of error.  Measurement random 

error was approximated using the model residual approach of Richardson et al., (2008), where 

half-hourly error was estimated as the residuals between the measured NEE and the predicted NEE 

values generated using a relatively simplistic non-linear gap-filling model.  In contrast to the 

aforementioned studies --  which determined that error was best described by a Laplacian 

(double-exponential) distribution -- our analyses were consistent with those of Lasslop et al., 

(2008), which showed EC measurement error to be normally distributed and heteroscedastic, with a 

standard deviation that scaled with the expected magnitudes of the component fluxes of ecosystem 
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Figure 3.1: A sample of the components used to create synthetic NEE time series. An annual 
synthetic NEE time series (shown in panel c) is created by adding a randomly-generated 
measurement noise time series (panel b) with the ANN-predicted 'modeled' data (panel a). The 
regions highlighted in grey are shown in more detail in panels d through f, respectively. 
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respiration (RE) and gross ecosystem productivity (GEP).  Our methods also differed from previous 

studies in the parameterization and prediction of EC measurement error.   As a modification to the 

original method, model residuals were stratified into 20 quantiles across the ranges of observed PPFD 

and Ts, and the standard deviation of error values were calculated for each PPFD x Ts strata..  A 

multilinear regression was run to fit σi values to the mean PPFD and Ts of the strata, and this 

relationship was used to generate estimates of σi across all half-hours (Figure 3.2).  This approach 

provided considerable improvement to the single-variable scaling approaches methods presented in the 

literature, as it better related error to the combined magnitude of component fluxes (RE, GEP), rather 

than the magnitude of measured NEE, which is prone to issues of equifinality.  

A total of 100 half-hourly NEE error time series were generated for each year and site by drawing 

random values from a normal distribution with standard deviations provided by σi (Figure 3.1, middle). 

Each error time series was added to NEEm to create a total of 100 synthetic half-hourly NEE data sets 

for each year and site (Figure 3.1, bottom).
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Figure 3.2: Two perspectives of the multi-linear fit of bin-averaged NEE measurement
error (σ NEE) to soil temperature (Ts) and photosynthetic photon flux density (PPFD) 
for data measured at TP39 between the years 2008-2011.
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 3.3.4 rEC scenarios

The effect of rEC application on NEE estimation bias and uncertainty was investigated by imposing 

each of 10 different rEC measurement scenarios on all synthetic time series.  The scenarios (Figure

3.3), reflect the implementation of rEC schedules that vary across three characteristic dimensions: 

number of sites in rEC rotation, length of measurement cycle, and timing of measurement periods and 

gaps throughout the year.  Scenarios 1a and 1b simulate the rotation of an rEC system between two 

sites at monthly intervals, which varies only in terms of the timing of measurement/gap periods.  A 

similar approach is used for Scenarios 2a and 2b, though the measurement interval is reduced to 15 

days. Scenarios 3 and 4 simulate a three-site rEC rotation operating in different phases, cycled either 

monthly (Scenario 3) or every 15 days (Scenario 4).

Half-hourly template files were created for each of the 10 rEC scenarios by creating column vectors 

consisting of ones during half-hours where the rEC schedule indicated measurements to be taken, and 

NaNs otherwise.  rEC scenarios were imposed on the data by multiplying synthetic NEE time series 

with the template file, effectively removing NEE values for undesired periods. 

The amount of half hourly NEE data retained after rEC scenario application was expressed on an 

annual basis as the proportion of remaining half-hourly data points (nR) to the total number of 

half-hours in a year (nT).  This ratio is termed the available data fraction and is expressed by:

φ=
nR

nT

. (3.1)

This measure spans between 0 (where no data points are retained), to a maximum of 1, and is used to 

express the general available fraction of all data (ф), as well as data available specifically for RE and 

GEP model parameterization (фRE  and фGEP, respectively).

Generally, 15 to 30% of annual data remained after rEC scenarios were applied to the u*
Th -filtered 

synthetic data (Figure 3.4).  Typical ф values were approximately 0.3 for scenarios using a 2-site 

rotation (rEC scenarios 1 and 2), and 0.2 for those implementing 3 sites (rEC scenarios 3 and 4).  Due 

to the application of u*
Th filtering to nighttime data, the fraction of available RE-parameterizable data 

was considerably lower (фRE range of 0.11 to 0.24) than for GEP (фGEP of 0.23 to 0.44). The removal of 

nighttime data by u*
Th application was more substantial for TP74 than for TP39.
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Figure 3.3: The ten rEC scenarios tested in this study, superimposed 
on a single year of synthetic NEE.  The numbers associated with each
scenario denote consistent number of sites and rEC rotation period, 
while sub-scenarios are indexed according to a change in rEC gap 
timing. Scenario 1 (a and b): two sites, one month; Scenario 2 (a and 
b): two sites, 15-days; Scenario 3 (a, b and c): three sites, one month;
Scenario 4 (a, b and c): three sites, 15-day measurement length. Data
for TP39 is shown.
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Figure 3.4: Mean (bar) and standard deviation (error lines) of 
available data fraction (ф) of all NEE, RE- and 
GEP-paramaterizable data for each rEC scenario applied to 
simulated (artificially-gapped) data for both TP39 and TP74.
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 3.3.5 Operational and filtering gap scenarios

Acknowledging that the simulated rEC schedules cause data gaps that are extreme in two aspects – 

overall proportion of gaps, and temporal clustering – we applied two additional types of gap scenarios 

to the synthetic data, with the intention of partitioning error in rEC to each of these characteristics.  The

scenarios simulated gaps that result from more common data-loss causes, in that gaps are distributed 

more evenly in time for a given available data fraction (ф, see Eq. 3.1). 

The first of the additional gap scenarios was constructed to remove data from NEE time series in a 

manner that reflects the nature of operationally-induced gaps at our sites.  Such “operational gaps” may

result from occurrences such as short-term equipment failure, data spikes, stationarity test failure, 

calibrations, etc.).  A total of 100 operational gap scenarios were generated, with each scenario 

removing a larger proportion of data than the previous.  The resulting scenarios spanned data fractions 

(ф) between 0.95 and 0.1, while preserving the day-to-night ratio of gaps observed in measured NEE 

(Table 3.1).  Gaps were inserted randomly into the template files (represented as NaNs), while the 

length of each gap was determined by randomly drawing from a population containing a list of all 

actual operational gap lengths experienced at TP39 between 2004 and 2011. This operation was 

repeated continually until the desired ф value was reached.  Daytime and nighttime gaps were removed 

separately, in order to preserve the distributions of daytime and nighttime gap lengths.  Gap lengths 

were assigned in this manner and not by sampling from parametric distributions (e.g. negative binomial

distribution), since they were not able to appropriately recreate the population distribution of gap 

lengths observed in NEE data. 

A second scenario was generated to simulate the effect of data removal by flux filtering operations, 

such as footprint and friction velocity threshold filtering. In a similar fashion to the operational gaps, 

100 “filtering gap” scenarios were created to span data fractions between 0.95 and 0.1. Data gaps were 

inserted randomly into template files, though the proportion of retained respiration-parameterizable 

data to overall ф was controlled, in order to preserve the relationship between these two values that 

occurs as a result of application of these filtering processes on real NEE data.
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 3.3.6 Gap-filling models

Synthetic NEE time series that were subjected to rEC, operational or filtering gap scenarios were filled 

using three different commonly-used gap-filling methods: The Fluxnet-Canada Research Network 

method (NLR-FC) described by Barr et al. (2004); a modified version of the nonlinear estimation 

model used by Richardson et al. (2007) for the Howland Research Forest data (NLR-HL); and the 

Reichstein et al. (2005) Marginal Distribution Sampling (MDS) method.  These methods were selected 

due to their common use in studies on temperate forests, and history of use for gap-filling purposes at 

this site (e.g. Arain and Restrepo-Coupe, 2005; Peichl et al., 2010b). Each method is described in 

further detail below:  

 3.3.6.1 NLR-FC

In the NLR-FC method, measured RE is assumed to be equal to NEE during periods when GEP is zero 

(i.e. at night and during daytime periods when both air (Ta), and 5 cm soil (Ts) temperatures are less 

than 0°).  The NLR-FC method fits RE to an empirical logistic relationship with Ts as:

RE=
r 1

1+exp [r2(r3−T s)]
r w( t) , (3.2)

where RE is model-estimated ecosystem respiration, and r1, r2, and r3 are fitted empirical parameters.  

rw(t) is an additional fitted parameter that varies according to the slope of a linear regression (forced 

through the origin) between modeled and measured RE in each 100-point moving window.  The 

time-varying parameter corrects for the presence of sustained (autocorrelated) biases in modeled 

estimates of RE.   Values of RE are used in the place of gaps in the annual measured RE time series 

(caused by equipment malfunction, quality-assurance testing, filtering, etc.), as well as to estimate 

respiration during periods of non-zero GEP (when RE cannot be directly measured).

GEP was determined as the difference between gap-filled RE and measured NEE, and subsequently set 

to zero for all nighttime periods and daytime half hours when Ta,Ts < 0.  A rectangular hyperbolic, 

Michaelis-Menten relationship is used to model GEP as:  
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GEP=
αQd β

αQ d+β
pw(t ) , (3.3)

where Qd is down-welling photosynthetic photon flux density (PPFD, μmol m-2 s-1), and the fitted 

parameters α and β represent the quantum yield and photosynthetic capacity, respectively.  To correct 

for sustained autocorrelated bias in model predictions, pw(t) is a time-varying parameter that varies 

according to the slope of a linear regression (forced through the origin) between modeled and measured

GEP for each 100-point moving window.

 3.3.6.2 NLR-HL

The NLR-HL gap-filling method is a modified version of the model described by Richardson et al., 

(2007), which was later modified and applied to TP39 by Peichl et al. (2010).  RE measurements are 

identified from NEE using the same conditions as NLR-FC (NEE nighttime and daytime with Ta,Ts < 

0).  RE is modeled as a function of Ts and top-30 cm integrated volumetric water content (VWC30) 

according to the relationship:

RE=R10×Q10

(T s−10)

10 × f (VWC 30) , (3.4)

where R10 and Q10 are fitted temperature response parameters that describe the relationship between RE

and Ts. f(VWC30) is a sigmoidal function that characterizes the role of VWC30 in modifying the 

temperature response of RE as:

f (x )=
1

[1+exp(θ1−θ2 x)]
. (3.5)

θ1 and θ2 are fitted parameters that allow this term to range between [0,1] as a function of the 

independent variable x (VWC30 in this case), thus actings as a scaling function on the Ts-RE 

relationship.  Including a VWC30 control on the RE model was found to provide a statistically 

significant improvement to model performance during periods of low VWC (typically mid-summer, 

data not shown).  The two-parameter Q10 temperature response model was chosen instead of 

three-parameter functions (e.g. logistic or  Lloyd and Taylor, 1994), to increase model parsimony and 

address issues of over-fitting and equifinality (Richardson et al., 2007).
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GEP was estimated in the same way as for NLR-FC (RE - NEE; zero during nighttime periods, and 

daytime half hours when Ta,Ts < 0).  GEP is modeled by adding additional controlling variables to the 

formula used in the NLR-FC method (eq. 3.3) as:

GEP=
αQd β

αQd+β
× f (Ts)× f (VPD )× f (VWC30) . (3.6)

The first term in eq. 3.6 defines a Michaelis-Menten relationship between Qd and GEP.  The second 

through fourth terms describe sigmoidal-type [0,1] scaling responses of GEP to Ts, atmospheric vapour 

pressure deficit (VPD) and VWC30, respectively.  In contrast to Richardson et al., (2007), a scaling 

response to Ta was not applied in our model, since parameter analyses indicated that Ts and Ta were 

strongly correlated, and model explanatory power was not affected by the exclusion of Ta. 

 3.3.6.3 MDS

The Marginal Distribution Sampling approach of Reichstein et al. (2005), which builds upon methods 

presented by Falge et al. (2001), seeks to fill gaps in NEE time series by utilizing covariance between 

fluxes and meteorological variables, as well as an auto-correlation of fluxes with respect to time.  The 

method applies a heuristic approach, where NEE gaps are filled with the average of NEE measurements

recorded under similar environmental conditions (global radiation, Rg; Ta, Ta; VPD), within a specified 

number of days surrounding the occurrence of the gap.  The algorithm defines a hierarchy of condition 

sets for environmental conditions and time difference that should be applied to find valid NEE 

measurements.  Initial preference is given to the average of all NEE measurements made using data 

collected within 7 days of the gap, where differences in environmental conditions are small (ΔRg < 50 

W m-2,  ΔTa < 2.5 K,  ΔVPD < 5 hPa). If no suitable NEE measurements meet the criteria, the search 

continues by broadening the time window of consideration and/or loosening environmental condition 

restrictions until an estimate for the half hour in question can be made. A complete description of the 

algorithm may be found in Appendix A of Reichstein et al. (2005). This method was modified for the 

purposes of this study by applying the NEE estimation algorithm to all half hours, rather than only to 

those in which NEE gaps existed.  For half hours where measured data existed, NEE values were 

temporarily removed prior to algorithm implementation, in order to produce the same gap-filling 

conditions for all data.  The purpose of this modification was to create a complete half-hourly time 

series of model-predicted NEE, which could be used to assess gap-filling model performance across all 

data.
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 3.3.7 rEC uncertainty mitigation strategies

In addition to quantifying the effect of rEC operation on NEE estimates, we formulated and evaluated 

three strategies to reduce the potential negative consequences of such a measurement program on these 

time-integrated values.  The strategies differed between operational and data-based implementations, 

but shared a common purpose of increasing the information available to the gap-filling models during 

periods of rEC-induced gaps.  It was hypothesized that providing information to the gap-filling models 

during these periods would improve model parameterization and performance, thus reducing bias and 

uncertainty of time-integrated estimates.

The first strategy sought to improve the performance and robustness of the NLR-HL model by pooling 

all years of data together, and parameterizing the gap-filling model based on a single functional 

relationship between environmental conditions and each the component fluxes (RE, GEP).  This 

“pooled” strategy, used and presented first by Peichl et al., (2010b), extends the approach of NLR-HL, 

where single response functions of both RE and GEP to secondary-effect variables (VWC30 for RE, Ts, 

VPD, VWC30 for GEP) are derived at-once, according to Richardson, 2007).  The aim of data pooling 

is to increase the data available for model parameterization, thus avoiding model-fitting problems that 

arise from a lack of sufficient data points and poor coverage of measurements throughout the entire 

range of controlling environmental variables. 

The second strategy was implemented by filling rEC-imposed NEE data gaps with regression-corrected

NEE values from another site in the rEC rotation that is actively measuring NEE during that period.  

This “filled” approach represents one that might be applied in cases where rEC sites are in close 

proximity (and thus, experience similar environmental conditions), and are functionally-similar – 

requirements that are met for our research setting.  To approximate such a cross-site filling, gaps in 

synthetic data from the 'target' site (either TP39 or TP74) were filled from measured data from the 

'source' (other) site.  These two time series of NEE data were linearly regressed, and NEE values from 

the source site were scaled by this linear factor prior to insertion in the target data file. The true, 

measured NEE data from the source site was used, in order to avoid any erroneous correlations 

between synthetic data due to co-generation by similar ANNs. Thus, results of this test are likely to 

represent the 'worst-case' expectation for this approach.  The filled 'target' NEE data set was then used 

in standard gap-filling operations, as described above. 

A third tested strategy was the use of annually alternating rEC schedules, where the system was moved 
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in a manner that ensured that any given time of year did not experience rEC gaps on consecutive years. 

Since the NLR-HL gap-filling method leverages multiple years of information to inform model 

parameterization, the performance of these models are affected by the timing of rEC gaps over 

successive years.  Whereas the original rEC scenarios assumed identical rotation through the study sites

for all years, this “alternating” approach shifts the measurement/gap periods for each successive year, 

so that at least one measurement from each time of year is included in model parameterization.  To 

investigate the potential improvement afforded by providing NEE data from all times of the year, four 

additional rEC scenarios were generated and tested:  Each of these scenarios represents an 

amalgamation of the original scenarios s1, s2, s3 and s4, where the sub-scenarios of each are alternated 

for each year.

 3.3.8 Monte Carlo simulations and analyses

Factorial Monte Carlo simulations were used in this study to quantify the effects of the aforementioned 

data treatments on time-integrated NEE estimates. Given the random nature of NEE measurement 

error, and the inconsistent interaction of this error with gap-filling model outputs (Richardson and 

Hollinger, 2007), this approach provides a means of comparing and evaluating different data treatments

using an appropriate number of input data samples.

Evaluations were performed by inserting gaps into synthetic NEE data to simulate the desired 

measurement scenario, and subsequently applying each of the gap-filling models to the simulated data 

to produce continuous NEE estimates.  For evaluation of the rEC scenarios and the proposed mitigation

strategies, each of the 100 four-year synthetic NEE time series were first subjected to simulated 

operational gaps (see section 3.3.5), and were then u*
Th-filtered according to the measured u* values 

(using u*
Th values of 0.5 and 0.4 m s-1 for TP39 and TP74, respectively).  Following this, each of the 10 

rEC keyfiles were applied in a factorial fashion to each synthetic time series, in order to simulate the 

effect of rEC system operation.  Data from each combination of synthetic data and rEC scenario were 

then used as input data to the gap-filling models described in section 3.3.6, resulting in a total of 12000 

annual time series of gap-filled, half-hourly NEE.  These values were summed at daily, weekly, 

monthly, seasonal and annual increments.  An additional step was necessary for the evaluation of the 

“filled” mitigation strategy: gaps in the NEE time series (following application of the rEC key file), 

were filled by a linear regression-adjusted value from the other site, where data was available, prior to 
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execution of the gap-filling models. 

For operational and filtering gap tests, each of the 100 gap scenarios (representing a given ф value), 

was applied to 10 randomly-assigned synthetic NEE time series.  The number of synthetic NEE data 

sets used for each gap scenario was reduced to 10 in the interest of computational efficiency, after 

initial tests showed this to be an acceptable amount, given that the gap scenarios are closely spaced 

along ф values.  Results of these factorial simulations yielded 12000 annual gap-filled NEE time series,

which were time-integrated as described above. 

All Monte Carlo simulations were executed on remote computing clusters provided by the Shared 

Hierarchical Academic Research Computing Network (SHARCNET).  MATLAB functions were 

compiled as standalone C-language programs (using function mcc.m in MATLAB), which were then 

submitted and executed using the SHARCNET computing environment.  

Simulation results were assessed using a number of evaluation metrics. Time-integrated NEE sums 

(weekly, monthly, annually, etc.) produced for each gap-filled simulation run (NEEf), were expressed as

a deviation from the sum of modeled NEE (NEEm) over the same period, according to  

ΔNEE = NEEf  – NEEm.  Comparisons between rEC scenarios, mitigation strategies and/or gap-filling 

model results were made by assessing the average bias (via central tendency) and uncertainty (via 95% 

confidence interval) of all ΔNEE within a treatment group of interest. Due to the presence of outliers in 

the results, both statistics were calculated non-parametrically, as the median and 95% quantile range 

were used for each, respectively. 

The ability of gap-filling models to predict the point-to-point variability in NEE was evaluated by 

comparing values of absolute root mean square error (RMSE), which was calculated for each year of 

gap-filled half-hourly data as:

RMSE=√(
1

N−2∑ (p i−oi)
2) , (3.7)

where  pi are the gap filling model-predicted half-hourly NEE estimates, oi are the observed NEE 

values, and p̄ and ō are mean values of these respective time series. RMSE was used as a 

complementary metric to ΔNEE, as it provides a relatively robust indcation of the magnitude and 

distribution of individual errors in gap-filling model estimates. Using (initially) gap-free modeled and 

synthetic data instead of real observations provided an opportunity to expand RMSE calculations to 

assess model goodness-of-fit for three different data subsets. These were: 
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a) “internal” RMSE values, where pi and oi consisted of all half-hours where observed data was 

available; 

b) “external” RMSE, calculated using all half-hours where gaps existed in the observed data; and 

c) “modeled” RMSE, calculated using all half-hourly predicted NEE for pi, and using all original 

modeled (noise-free; NEEm) in place of oi. 

Used together, these RMSE estimates provided complementary information: the internal value 

represented the only metric that would be available during genuine gap-filling model application 

(where values for data gaps would be unknown), while the external value provided an assessment of 

the model's performance for only data points where information is unavailable.  The modeled value 

assessed the ability of each model to simulate the true NEE signal in the presence of measurement 

noise and data gaps.

Box plots (box and whisker plots) were used throughout this study to demonstrate the distribution of 

time-integrated NEE estimates and RMSE across different gap-filling models and rEC scenarios. This 

study uses standard box plot notation to display group distributions. The median of all values within a 

group is represented by a  horizontal line, while triangular markers above and below the median 

indicate the standard error on the median estimate, calculated as:

SE=q2±1.57(q3 – q1) /√(n) , (3.8)

where n is the number of values in the group, q1 and q3 indicate the first and third quartile of the data, 

q3 - q1 is the interquartile range, and q2 is the median. 

Boxes around the median indicate the extents of the upper and lower quartiles.  The extent of the 

whiskers are calculated as:

wlow=q1 – 1.5 (q3−q1)

whigh=q3+1.5(q3−q1)
. (3.9)

Outliers – indicated as circles outside the extent of the whiskers – were not excluded from analyses, 

since these values indicated notable failures of gap-filling models. 
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 3.4 Results

 3.4.1 Annual sums and interannual variability of synthetic NEE 

As outlined in section 3.3.8, annual NEE values obtained from synthetic time series were used as a 

baseline to quantify error in gap-filled NEE derived after application of rEC-, filtering- or 

operational-type scenarios (Table 3.2). Though both forests were consistent annual sinks of carbon, the 

magnitude of uptake was greater at TP74 (range of -311 to -486 g C m-2 y-1 ), than at TP39 (range of 

-188 to -293 g C m-2 y-1 ).  This difference is consistent with well-established coniferous forest lifecycle 

carbon exchange patterns, where productivity in intermediately-aged forests (such as TP74) increases 

more rapidly over this period than does respiration, which generally approaches productivity values at 

maturity (Coursolle et al., 2012).  The 95% confidence interval (twice the uncertainty bounds) of these 

estimates were comparable between sites, ranging between 26 and 34 g C m-2 y-1;  this uncertainty is 

due to the inherently noisy nature of NEE measurements. On an interannual scale, trends for TP39 and 

TP74 were very similar for years 2008, 2009 and 2011, but were entirely opposite for 2010, where the 

extreme maximum annual NEEm value for this period occurred at TP39 (-188 g C m-2 y-1), while TP74 

experienced its extreme minimum value (-486 g C m-2 y-1). This discrepancy is attributed to differing 

responses of the forests to a mid growing-season dry event.  During this period, productivity was 

predominantly negatively affected at the TP39 forest, while respiration was predominantly suppressed 

at TP74. 

Table 3.2: Median and uncertainty bounds of annual NEE estimates at
TP39 and TP74, as derived from synthetically produced data. Uncertainty

bounds are derived from the 95% confidence interval on estimates.

NEE (g C m-2 y1)

Site 2008 2009 2010 2011

TP39 -242 (+/- 15) -256 (+/- 13) -188 (+/- 17) -293 (+/- 17) 

TP74 -311 (+/- 14) -335 (+/- 13) -486 (+/- 15) -391 (+/- 13) 
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 3.4.2 Effects of rEC and operational gaps on time-integrated NEE 
estimates

As a first step of investigation, we compared annual gap-filled NEE error (ΔNEE) of the rEC scenarios 

to those obtained for operational and filtering gap simulations (Figure 3.5). To facilitate comparison, 

ΔNEE for each scenario or simulation was plotted as a function of its available data fraction value (ф).

Analyses of results from operational and filtering gap simulations showed minimal bias error (within 

+/- 5 g C m-2 y-1 ; Figure 3.5, panel c) associated with these types of gaps, and a general increase in 

NEE uncertainty (greater ΔNEE spread) with reducing data availability (Figure 3.5, panel b). The 95% 

confidence interval (CI95) for operational gap scenarios was slightly larger for operational gaps (range 

of 34 to 150 g C m-2 y-1 for ф between 0.9 and 0.1) than for filtering gaps (range of 33 to 140 g C m-2 

y-1). 

To establish a baseline relationship between data availability and annual (non-rEC) NEE uncertainty, 

we combined the operational and filtering gap results, and fit trend lines through the relationship with 

ф. A second-order polynomial showed good fit to the data, and estimated the relationship as:

CI 95=131.29(1−φ)
2
−6.35(1−φ)+36.47, (R2

=0.973) (3.10)

A simpler, linear relationship was also generated, though was valid only over the interval of

0.2⩽φ⩽0.9 : 

CI 95=101.9(1−φ)+19.1, (R2
=0.963) (3.11)

The slope of the linear model suggests that for conventional NEE operation (over the appropriate range 

of ф), uncertainty increased at a rate of 1.02 g C m-2 y-1 per 1% of data removal. At ф values less than 

about 0.2, however, uncertainty increased at an accelerated rate.  

Results from rEC simulations at both TP39 and TP74 also showed increasing uncertainty of NEE 

estimates with ф reduction, and the magnitude of uncertainty for a given ф value was greater than those

experienced for operational and filtering gap simulations.  Uncertainties for separate rEC scenarios 

varied widely (Figure 3.5, panel b), and were 45 to 328 % larger than those established for 

operational/filtering gaps at a given ф value. Much less variability in uncertainty was observed for the 

2-site rEC rotation scenarios, in comparison to those simulating 3-site schedules, as the rate of 

106



Ph.D. Thesis - J. Brodeur; McMaster University - School of Geography & Earth Sciences

uncertainty increase with data loss appeared to be greater for rEC scenarios than for simulations using 

standard-type gaps.  Median NEE biases (Figure 3.5, panel c) showed variation among rEC scenarios. 

Bias for most scenarios was within +/- 10 g C m-2 y-1, and all but two extreme values were within +/- 25

g C m-2 y-1. The spread of rEC simulation NEE biases was greater for 3-site rotation scenarios (lower ф)

than the 2-site cases.  These results demonstrate that although NEE estimate error for a given ф was 

consistently greater for rEC application than for traditional-type gaps, there is considerable variation 

among rEC scenarios in the magnitude of this error. 

To further  investigate these differences, we compared NEE estimate uncertainty and bias  between 

each rEC scenario.  In terms of annual NEE estimates, total uncertainty (CI95,TOT; Figure 3.6, panel b) 

was generally less for simulations of 2-site rEC application (scenarios 1 and 2; CI95 range of 134 to 223

g C m-2 y-1), as compared to the 3-site simulations (scenarios 3 and 4; 162 to 433 g C m-2 y-1). 

Uncertainty was also generally less for 15-day rotation schedules (s2 and s4) than for corresponding 

month-long application (s1 and s3).  For both sites, uncertainty was highest for the three iterations of 

scenario 3, corresponding to the rEC application experiencing the most, and longest gaps. Results also 

showed a general reduction in NEE estimate uncertainty for scenarios structured to begin 

measurements later in the year (scenarios 1b, 2b, 3b, 4b) in comparison with scenarios where 

measurements began on the first day of the year. Overall, uncertainty was less for TP39 than for TP74, 

though the differences between the two sites were minimal for most scenarios, with the exception of 

scenario 3, where NEE estimate uncertainty was as much as 50% greater at TP74. These results imply 

that rEC scenario characteristics such as number of sites, rotation length and rotation timing influence 

the resulting error on rEC NEE estimates. 

To provide insight into the components that contribute to the uncertainty values shown in Figure 3.6, 

total uncertainty (CI95,TOT) for each scenario and site was decomposed into two elements: uncertainty 

due to the effect of random error associated with ф (CI95,ф), and uncertainty due to the temporal 

structure of rEC gaps (CI95,rEC).  This was done by first estimating the former according to Eq. 3.11, and

then subtracting this value (in quadrature) from CI95,TOT.  Results showed that the contribution by CI95,rEC

ranged between a factor of 1 to 3.5 times larger than CI95,ф, and was minimized at both sites with the 

application of rEC scenario 2b (Tables 3.3 and 3.4). 
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Figure 3.5: Distribution, uncertainty and bias of annual ΔNEE for all rEC 
simulations at TP39 and TP74 as a function of ф. Results are presented 
alongside values obtained for operational and filtering gap scenarios. The 
compiled output of each simulation run is shown is panel a), while the 95% 
confidence interval and median of these values are shown for each 
individual rEC scenario in panels b) and c), respectively.  TP39 results are 
shown in black text, while TP74 in grey. Bin-averaged values for 
operational and filtering simulations are shown in panels b) and c). 
Asterisks accompanying labels in panel c) indicate values well above (41.7)
or below (-75.5) the range of the figure. NEE is reported in g C m-2 y-1
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Figure 3.6:  Annual ΔNEE distribution (a), uncertainty (b) and 
bias (c) displayed for each rEC scenario.  Data from both sites are 
aggregated for panel a), and are separated for panels b) and c).  
Standard errors for median estimates are indicated by error bars in
panel c).  NEE is reported in g C m-2 y-1
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To gain a better understanding of the effect of rEC rotation schedules on NEE estimates and their 

uncertainty, ΔNEE was calculated at a weekly timescale, and subsequently grouped according to its 

rEC scenario and ensemble-averaged over each week of the year (Figure 3.7).  Across all rEC scenarios

and both sites, a general, temporally-autocorrelated trend in weekly ΔNEE was observed: Values of 

weekly ΔNEE tended to be relatively small (near zero) during the wintertime, moderately negative 

(model underestimation of NEE) in the spring and autumn months, and strongly positive (model 

overestimation of NEE) in the summer season. Considering this inherent bias tendency, the timing of 

rEC gaps exerted a large influence on the magnitude of weekly biases in two observable ways. First, 

the magnitude of biases were substantially higher during weeks experiencing rEC-induced gaps, as 

opposed to those during typical measurement.  This result is anticipated, since gap-filled NEE would 

consist entirely of modeled data during periods of rEC-induced gaps – thus the effect of gap-filling 

model bias would be summative for all half-hours of these periods. Secondly, a positive correlation was

observed between the length of rEC gaps and the magnitude of weekly ΔNEE, suggesting that 

gap-filling model performance for periods of rEC-induced gaps (in terms of bias error) worsens with 

the length of the gap. 
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Table 3.3: Decomposition of total annual NEE uncertainty (CI95,TOT) into components representing
uncertainty due to random gap error (CI95,ф) and due to temporal structure of rEC-induced gaps

(CI95,rEC), for all rEC scenarios at TP39. Results are shown for the average of all gap-filling models,
and individually for NLR-HL. All values of CI are in units of g C m-2 y-1

.

rEC
Scenario

ALL NLR-HL

Ф CI95, ф CI95, TOT CI95, rEC CI95, TOT CI95, rEC

1a 0.303 95.81 185.62 158.98 146.80 108.22

1b 0.302 95.95 155.65 122.56 184.21 155.47

2a 0.304 95.67 168.94 139.25 154.34 119.37

2b 0.301 96.10 137.63 98.52 108.19 40.89

3a 0.201 115.22 283.85 259.41 145.11 86.25

3b 0.199 115.70 218.40 185.24 143.99 81.30

3c 0.206 114.24 292.38 269.14 164.98 116.58

4a 0.203 114.72 184.31 144.25 187.89 147.47

4b 0.199 115.70 162.46 114.05 150.34 92.25

4c 0.203 114.74 173.34 129.92 165.16 116.42

Table 3.4: Decomposition of total annual NEE uncertainty (CI95,TOT) into components representing
uncertainty due to random gap error (CI95,ф) and due to temporal structure of rEC-induced gaps

(CI95,rEC), for all rEC scenarios at TP74.  Results are shown for the average of all gap-filling models,
and individually for NLR-HL.  All values of CI are in units of g C m-2 y-1

.

rEC
Scenario

ALL NLR-HL

Ф CI95, ф CI95, TOT CI95, rEC CI95, TOT CI95, rEC

1a 0.284 99.20 223.53 200.31 203.42 177.59

1b 0.286 98.79 182.07 152.94 170.76 139.28

2a 0.292 97.83 182.53 154.09 134.66 92.53

2b 0.279 100.16 134.39 89.60 134.30 89.47

3a 0.194 116.69 432.92 416.90 229.71 197.86

3b 0.183 118.85 338.68 317.14 310.67 287.03

3c 0.194 116.74 349.51 329.44 145.75 87.27

4a 0.195 116.43 225.63 193.27 221.64 188.60

4b 0.184 118.71 160.09 107.41 134.82 63.91

4c 0.192 117.14 187.09 145.88 185.30 143.58
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Figure 3.7: Annual ensemble median of weekly ΔNEE resulting from NLR-HL 
gap-filling application across all years (2008-2011) and simulation runs.  Results 
are shown for all rEC scenarios, applied at both TP39 (left panels) and TP74 (right 
panels).  Greyed backgrounds indicate rEC gap periods.
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 3.4.3 Evaluating gap-filling model performance

To evaluate the performance of the three selected gap-filling models (see section 3.3.6), we employed 

three different measures: uncertainty and bias of annual gap-filled NEE; point-to-point (half-hourly) 

goodness-of-fit to the measured data; and, preservation of trends in interannual variability.  The 

uncertainty associated with application of each gap-filling model to simulated data from individual rEC

scenarios was quantified by the magnitude of the 95% confidence interval in ΔNEE (Figure 3.8, panel 

a).  Results showed that application of the MDS gap-filling was favourable across both sites for 

scenarios 1, 2 and 4, with 95 % confidence intervals in the general range of 100-200 g C m-2 y-1. 

NLR-FC results were comparable to MDS for TP39 data, though NLR-FC uncertainties were generally

higher for TP74 NEE. Both these methods experienced substantial increases (100 to 200 g C m-2 y-1) in 

CI95 when applied to rEC scenario 3, indicating a notable performance drop for this scenario.  Though 

NLR-HL uncertainties were moderately higher for scenarios 1, 2 and 4, they were relatively stable 

across all rEC scenarios, with the exception of scenario 3b at the TP74 site. This indicates that 

NLR-HL is more robust to the range of rEC scenarios simulated in this experiment.  

In terms of estimate bias (Figure 3.8, panel b), the application of each of the gap-filling models to 

simulations of different rEC scenarios generally produced annual NEE estimates within 50 g C m-2 y-1 

of the 'true' sum established by NEEm. Application of the MDS method resulted in a consistent negative

bias (increased C uptake) in estimated annual NEE, ranging between -25 to -50 g C m-2 y-1.  Biases 

associated with application of the NLR methods were less consistent, though they were smaller in 

magnitude than MDS, and tended around zero.  In accordance with uncertainty results, biases were 

generally highest for scenario 3; this was especially true for application to TP74 data.  

In addition to their effects on annual sums, gap-filling models were evaluated on their ability to predict 

the point-to-point variability in half-hourly NEE values, in order to better quantify the capacity of each 

model to describe the short-term controls on NEE. As outlined in section 3.3.8, models were evaluated 

against three different reference data groups to create separate RMSE values that relate to internal 

(model-known), external (model-unknown) synthetic data, as well as the entire annual time series of 

modeled (noise-free) NEEm data.
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Figure 3.8: Uncertainty (top panels) and median bias (bottom panels) associated with 
application of each gap-filling model across each rEC scenario.  Results are shown 
separately for TP39 (left panels) and TP74 (right panels). NEE is reported in g C m-2 y-1
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Across gap-filling models and rEC scenarios (Figure 3.9, panels a, b), median internal RMSE values 

ranged between 2.78 and 3.09 µmol CO2 m-2 s-1. Between models, internal RMSE was lowest using 

NLR-HL on TP39 data, and MDS for TP74.  Internal RMSE measures were generally lower for 

scenarios 1 and 3 (1-month rotations), implying that model parameterization and performance improves

for given periods with the length of measurement period.  
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Figure 3.9: Box plots of root mean square error (RMSE) values for each gap-filling model, 
calculated using different reference data groups: 'internal' – model-visible data; 'external'– 
model-invisible (gap) data; and, 'modeled' – entire NEEm (noise-free) time series. Results are 
reported in units of µmol CO2 m-2 s-1 for TP39 (left panels) and TP74 (right panels).
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As a benefit of using gap-free synthetic data for these analyses, it was possible to compare the internal 

RMSE values with estimates of 'external' RMSE (Figure 3.9, panels c, d), which expresses the 

goodness-of-fit of model predictions to all points that have gaps at the time of parameterization and 

filling. In comparison to internal measures, external RMSE for the MDS approach increased 

significantly across all scenarios, highlighting a strong performance decrease when modeling NEE not 

included in its parameterization scheme.  For the NLR-FC method, RMSE was generally consistent 

between internal and external measures, except for a significant increase for rEC scenario 3. In 

comparison, external NLR-HL RMSE values showed either no change or a significant improvement 

from internal values, indicating no diminishing performance between predictions of points that are 

included and not included in parameterization.By evaluating RMSE in reference to the 'modeled' NEEm

time series, it was possible to investigate the performance of each gap-filling model to the noise-free, 

original signal that it was seeking to reproduce. It is relevant to note that RMSE values were lowest for 

this measure, as the effect of random noise on goodness-of-fit was removed. When evaluated with this 

metric, the NLR-HL model performed significantly better than the other methods across all rEC 

scenarios, further supporting the use of this model to gap-fill rEC-measured data.

The relative consistency of NLR-HL model performance across all RMSE measures provoked further 

investigation, in order to confirm that these results reflected a genuine performance advantage, rather 

than one that was induced by correlation of this specific model to the ANN used to generate the NEEm 

time series. To investigate this effect, the same Monte Carlo simulation methodology was applied, 

however, measured NEE data was substituted for NEEm.  As a result, RMSE estimates for internal, 

external and all data points reflected the true goodness-of-fit of model output.  Simulation results (not 

shown), were consistent with those achieved using NEEm, confirming that our results reflected a 

genuine performance advantage of the NLR-HL model. 

116



Ph.D. Thesis - J. Brodeur; McMaster University - School of Geography & Earth Sciences

Gap-filling models were also evaluated to ensure that annual NEE estimates preserved year-to-year 

trends and interannual variability observed in the original input time series (Figure 3.10).  For both 

sites, the median annual values follow the same general year-to-year trend as those observed in NEEm 

and synthetic NEE time series.  Most median values fell within the 95% confidence interval of the 

synthetic NEE data, with the clear exception of MDS model output, which produced annual estimates 

with a persistent negative bias (consistent with Figure 3.8).
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Figure 3.10: Interannual variability of the median annual gap-filled NEE 
estimate for each gap-filling model for TP39 and TP74. Results are shown 
alongside the 'modeled' value of NEEm, and the 95% confidence interval 
estimated from synthetic time series. NEE is reported in g C m-2 y-1
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 3.4.4 Evaluating strategies to mitigate rEC gap effects

The three rEC gap effect mitigation strategies, described in section 3.3.7, were evaluated for their 

ability to improve gap-filling model uncertainty, bias and point-to-point variability prediction, while 

also preserving interannual trends in NEE estimates.  Results are shown only for the application to the 

NLR-HL model, due to the fact that this was the sole model for which all strategies could be applied, 

and also because previous analyses indicated that this model was most robust to rEC-imposed effects 

on NEE estimates.

Results showed that variability in annual NEE estimates for a given site and rEC application were 

similar between the original NLR-HL results and those for each of the applied strategies (Figure 3.11, 

panels a, b). However, application of the “pooled” approach resulted in an increased number of extreme

(outlier) values in comparison to the original. Conversely, application of both the “filled” and the 

“alternating” strategies reduced the overall number of outliers; in this way, application of these two 

strategies appear to stabilize the NLR-HL method from producing extreme annual NEE estimates.

The 95% confidence intervals associated with the application of these strategies (Figure 3.11, panels c, 

d), showed that when averaged across rEC scenarios, annual NEE uncertainty increased when either the

“pooled” or “filled” strategies were applied. Confidence intervals increased by an average of 3.9 and 

15.2 g C m-2 y-1 for pooled and filled applications for TP39, respectively, and 3.6 and 18.3 g C m-2 y-1 

for TP74.  In contrast, application of the “alternating” rEC mitigation strategy reduced uncertainty on 

annual estimates by an average of 27.6 and 72.8 g C m-2 y-1 at TP39 and TP74, respectively.  

Comparing the median annual NEE bias of estimates across strategies and rEC scenarios (Figure 3.11, 

panels e, f), application of the 'pooled' rEC strategy provided small but consistent improvement to the 

biases associated with the original NLR-HL model (with the exception of rEC scenario 1 for TP74). In 

comparison to the bias associated with the original NLR-HL model, application of the 'pooled' strategy 

reduced the absolute value of bias by an average of 5.8 and 3.6 g C m-2 y-1 across rEC scenarios for 

TP39 and TP74, respectively. When the 'alternating' strategy was applied, the absolute bias across rEC 

scenarios increased moderately by 7.1 and 11.5 g C m-2 y-1 for these sites. In contrast, implementing the

'filled' strategy introduced large and consistent negative bias to NEE estimates across all rEC scenarios,

and absolute values of bias are increased relative to the NLR-HL approach by 28.0 and 74.0 g C m-2 y-1 

at TP39 and TP74.
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Figure 3.11: Annual ΔNEE distribution (top panels), uncertainty (middle panels) and bias (bottom
panels) associated with the application of rEC mitigation strategies to the NLR-HL gap-filling 
model. Results are aggregated for each rEC scenario, and shown for TP39 (left panels) and TP74 
(right panels).  Dashed horizontal lines in panels c and d indicate the mean uncertainty for a 
given strategy treatment, across all rEC scenarios. NEE is reported in g C m-2 y-1
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rEC strategies were also evaluated for their ability to improve the point-to-point goodness-of-fit for the 

NLR-HL model output (Figure 3.12).  Similar to investigations presented earlier, these evaluations used

both internal and external RMSE measures to evaluate model performance, to explore discrepancies 

that may arise between the evaluations that can be provided within the model (internal RMSE) and 

those that better reflect the ability of the model to predict values (external RMSE).  

Comparing internal RMSE estimates across strategy applications (Figure 3.12, panels a, b) indicated 

that data subjected to 'pooling' and 'alternating' strategies was comparable to the original results of the 

NLR-HL model, though the 'alternating' strategy reduced the number of extreme positive outliers in 

TP74 results.  Internal RMSE results obtained by application of the 'filled' strategy showed significant 

improvement (RMSE reduction) when compared to values for the original NLR-HL model and the 

other mitigation strategies. Similar results were obtained through comparison of external RMSE values 

(Figure 3.12, panels c, d), as only the application of the 'filled' strategy showed a significant 

improvement in gap-filling performance.  As for internal measures, application of the 'filled' strategy 

reduced external RMSE consistently across all rEC scenarios, and the effect was more pronounced at 

TP74. The results indicate that in our setting, the 'filled' strategy is effective at reducing point-to-point 

error in gap-filled rEC time series. 

We also investigated the impact of these rEC mitigation strategies on interannual variability (Figure

3.13). In contrast to RMSE results, application of the 'filled' strategy generated greatly unsatisfactory 

results, as little to none of the interannual NEE trend was preserved.  In correspondence with Figure

3.11, this result demonstrates that although using the filled strategy reduces the point-to-point error 

associated with NEE gap-filling, the error is systematically biased, which leads to marked cumulative 

errors when NEE values are integrated over time. 

Overall, the 'alternating' strategy was the most effective at maintaining the true interannual trends; 

deviations from the annual NEEm values were small, and for TP39, these deviations were smaller than 

observed for the original NLR-HL output. Application of the 'pooled' strategy also resulted in 

satisfactory preservation of interannual trends – an unexpected result given that for this strategy, RE 

and GEP models were forced to implement a single functional form for all years. Since the use of static

parameters for functional relationships did not lead to considerable differences between years, it can be 

inferred that most year-to-year differences in annual estimates are due to interannual variation in 

meteorological drivers of ecosystem carbon exchange.
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Figure 3.12: Box plots of root mean square error (RMSE) values for the NLR-HL gap-filling 
model, and each of the three tested rEC mitigation strategies. Top and bottom panels show 
estimates made using different reference data groups: 'internal' – model-visible data; and, 
'external'– model-invisible (gap) data. Results are shown in units of µmol m-2 s-1 for TP39 (left 
panels) and TP74 (right panels).
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Figure 3.13: Interannual variability of the median 
annual gap-filled NEE estimate for NLR-HL and each 
rEC mitigation strategy applied to this model for TP39 
and TP74. Results are shown alongside the 'true' value of
NEEm, and the 95% confidence interval estimated from 
synthetic time series. NEE is reported in g C m-2 y-1
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 3.5 Discussion

 3.5.1 Effects of rEC application on time-integrated NEE estimates- 
comparison to effect of standard-type gaps

In addition to the rEC simulations run in this study, two standard-type gap scenarios were also 

developed and simulated, in order to provide points of reference for uncertainties associated with rEC 

scenarios.  Both reference ('operational' and 'filtering') scenarios were similar to each other – and 

different from rEC scenarios – in that the gaps were much smaller in length, and were distributed 

nearly evenly throughout the year (with slightly greater amount of gaps during RE-parameterizable 

half-hours).  The uncertainty associated with these simulation runs showed a negative correlation with  

the amount of available data, as uncertainty increased with the amount of gaps. This general 

relationship is consistent with findings of other studies that investigated NEE data gaps and gap-filling 

performance (Moffat et al., 2007; Richardson and Hollinger, 2007); however the rate of uncertainty 

increase with the number of gaps (1-ф) differs in comparison.  For example, Richardson and Hollinger, 

(2007) found random uncertainty (2σ in their study, similar to CI95 in ours) to be less sensitive to data 

gaps (for the range of 0.4⩽φ⩽0.8 ), reporting a relationship of: 2σ = 21.3 + 15.9(1-ф). In 

comparison, the relationship derived from operational and filtering gap simulations for our sites is 

CI95 = 19.1 + 101.9(1-ф) for a range of 0.2⩽φ⩽0.9 .  While these relations share similar estimates 

of baseline (gap-free) uncertainty, the rate of uncertainty increase in our study is approximately 6.5 

times greater. This discrepancy may be due to a number of factors: smaller investigated span of ф, and 

the generalization across numerous forest types in the Richardson and Hollinger (2007) study; as well 

as discrepancies in methods used to describe and simulate random error. 

By quantifying annual NEE estimate uncertainty associated with standard-type (operational and 

filtering) gaps across a wide range of ф (Figure 3.5), it is possible to separate the total uncertainties 

reported for each rEC scenario application into that which is attributable to the number of gaps present 

in the time series, and that which is a result of the gap structure imposed by rEC operation (Tables 3.3 

and 3.4).  This process revealed that random uncertainty due solely to the amount of gaps (1-ф) 

accounts for 97 and 116 g C m-2 y-1 of the uncertainties estimated for 2-site (scenarios 1, 2) and 3-site 

(scenarios 3, 4) rEC scenarios, respectively.  Removing these amounts (in quadrature) from the 

uncertainties recorded for rEC simulations (CI95,TOT), the resulting gap structure-attributable 

123



Ph.D. Thesis - J. Brodeur; McMaster University - School of Geography & Earth Sciences

uncertainties (CI95,rEC) range between 89.6 to 417 g C m-2 y-1, with most values (excluding scenario 3) 

between 100 and 200 g C m-2 y-1.  These results compare favourably to estimates made by Richardson 

and Hollinger (2007), who developed a month-specific relationship between longest gap length during 

the month, and the total increase to annual NEE estimates for Howland forest.  When their relationship 

is applied additively to our rEC scenarios, the amount of uncertainty attributable to rEC gaps ranges 

between 110-158 g C m-2 y-1 – comparable in magnitude to the uncertainty we have estimated in our 

study. 

By testing 10 different rEC scenarios, we were able to investigate the effects of rEC schedules across 

three dimensions of system operation: number of sites, measurement period length, and the rotation 

timing. Among these operational factors, the length of rEC system measurement period had the greatest

influence on overall NEE uncertainty, and scenarios implementing a 15-day rotation period 

experienced less overall uncertainty than those implementing month-long periods (Figure 3.6).  From 

the perspective of gap-filling model parameterization, shorter rEC rotation periods result in better 

temporal spacing of input information, which reduces the degree to which underlying ecosystem 

exchange dynamics may change between measurements, thus reducing model deviation from the 'true' 

flux.  The use of a three-site rEC rotation instead of two has little influence on uncertainty when a 

15-day rotation period is used; however, when applied to month-long rotations, uncertainty in annual 

NEE estimates is increased 2- to 3-fold. This effect was demonstrated in Figures 3.6 and 3.7.  This 

interactive effect between rotation period length and number of sites indicates that gap-filling model 

performance diminishes significantly and drastically as gap lengths are increased from one to two 

months. There was also a small effect associated with the timing of rEC rotation, as NEE estimate 

uncertainty was smaller (both on weekly and annual scales) when measurement periods coincided with 

periods of rapid changes in phenology (e.g. growing season start and end), or controlling environmental

variables (mid-summer soil moisture deficit).  This result suggests that the performance of rEC 

measurement programs could be optimized by modifying the rotation frequency and timing to 

maximize data capture at all sites during these periods. 

Though the general uncertainty associated with rEC implementation was shown to be substantial, there 

also existed clear differences in outcomes between rEC scenarios, study sites and gap-filling models. 

Overall, application of rEC scenario 2 (two sites, two-week rotation period) resulted in the most 

favourable and consistent annual NEE estimate performance, especially when the NLR-HL gap-filling 

model was applied.  Considering application of this scenario at TP39 and TP74 during the study years, 
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results could be expected to have minimal overall bias  (<8 g C m-2 y-1), and the estimated total 

uncertainty (95% confidence interval) could be expected between 108-154 g C m-2 y-1 for TP39, and  

around 135 g C m-2 y-1 for TP74.  When normalized by the 4-year mean 'true' NEE magnitudes for these

sites (-245 and -381 g C m-2 y-1 for TP39 and TP74, respectively), the noise-to-signal ratio ranged 

between 44 to 63% for TP39 and 35% for TP74. Due to relatively large annual NEE magnitudes, these 

ratios are surprisingly comparable with values obtained over a variety of forests where only single (or 

no) long gaps were inserted (Richardson and Hollinger, 2007), and virtually assure that the direction of 

net annual NEE will be preserved with rEC operation at our sites. Results also provide evidence that 

interannual variability is preserved, and that deviations from the 'true' annual NEE are correlated across

all years of individual rEC simulation runs.  This is especially true for the NLR-HL model, which 

incorporates information across all years during parameterization.  Therefore, despite persistent 

uncertainty in absolute value, evidence suggests that relative differences between years will be 

preserved. 

 3.5.2 Gap-filling model performance and selection

The general variability in gap-filled NEE estimates observed across rEC scenarios and gap-filling 

models demonstrates the challenges associated with obtaining reliable time-integrated NEE estimates 

from rEC operation.  The large, frequent gaps introduced by rEC operation present a formidable 

challenge for the gap-filling models required to fill these gaps to create accurate, continuous and 

time-integrable estimates. rEC gaps increase uncertainty in gap-filled time-integrated NEE estimates by

two means: a) by negatively affecting gap-filling model parameterization and the accuracy of predicted 

values, since the underlying dynamics of ecosystem exchange may change significantly during the 

period of a long gap; and b) by increasing the number of gaps that need to be filled, therefore 

increasing the number of half-hours containing biased estimates.  

Overall, the NLR-HL model was chosen as the most favourable gap-filling model for rEC application 

at our sites, as a result of its relative consistency across different rEC scenarios, its preservation of 

point-to-point and interannual variability, and the possibility for mitigating strategies to be applied to it,

in order to reduce uncertainty. Contributing to the consistency of the NLR-HL model is the fact that it 

incorporates information across all years to parameterize the response of RE and GEP to all secondary 

controlling environmental variables (all but Ts for RE; PPFD for GEP).  Though generalizing these 
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responses over all years may lead to small year-to-year errors, this approach helps to ensure that the 

basic form and magnitude of these relationships are properly modeled.

The NLR-FC model is a more simplistic version of NLR-HL, in that both RE and GEP depend only on 

a single variable (Ts and PPFD, respectively).  A time-varying factor is used to correct predicted values 

for linear offsets from measured values over all periods of the year, which in effect accounts for 

changes in exchange capacity, phenology, and the influence of other environmental variables.  The 

magnitude of this time-varying factor is interpolated between periods in which data exists, in order to 

create a gradually-changing value, as would be expected throughout the course of a year. However, in 

situations where gaps are large, the interpolation of this correction factor over one or two months can 

lead to large inaccuracies. This effect is especially pronounced for results of rEC scenario 3, where the 

presence of 2-month-long gaps led to large uncertainty estimates (> 250 g C m-2 y-1 for most scenario 3 

outcomes), that were also largely biased in their central tendency, effectively increasing the inaccuracy 

of NEE estimates.  

Both the NLR-HL and NLR-FC models showed a strong tendency to overestimate NEE (lower carbon 

sequestration estimates) during the peak summer season (Figure 3.7), an effect that was augmented 

when coincident with rEC-induced gaps.  This likely reflects an overestimation of the RE response to 

Ts at its maximum values.  In reality, the magnitude of respiration plateaus during the mid-summer in 

response to decreases in soil moisture availability in the sandy soil of our sites.  If data from this period

is not available to the gap-filling models during parameterization, then these models are not be able to 

account for this feature, and simply extrapolate from the increase of respiration with temperature 

during non-water limited periods (spring and autumn).

In terms of annual NEE estimates, the MDS model performed reasonably well for all scenarios, with 

the exception of rEC scenario 3. For the remaining scenarios, estimate uncertainty is comparable or 

marginally lower than the other models examined. Consistent with the findings of Moffat et al. (2007), 

however, MDS results showed a consistent negative bias among estimates; this should be considered as

additive to estimate uncertainty when quantifying the absolute deviation of model predictions from the 

'true' value. The decreasing performance of MDS with increasing gap length is a consequence of the 

look-up-table algorithm used by this method.  The structure of the algorithm is to continuously expand 

the time window and loosen restrictions on acceptable environmental conditions  until acceptably 

similar conditions can be found.  As a result, values in the middle of long gaps must be filled with the 

average of measurements up to months removed from the half-hour of interest.  Treating such 
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temporally-distant values as a representative replacement likely extends beyond the period for which 

assumption of temporal correlation is valid. 

The shortcomings of the MDS model in filling long rEC-induced gaps is demonstrated further by the 

discrepancy between 'internal' and 'external' measures of RMSE shown in Figure 3.9, which shows a 

greatly reduced capacity of the model to predict point-to-point variability during periods where 

information does not exist. The poor performance of this model to provide accurate NEE estimates at 

sub-annual timescales has implications for its usefulness beyond estimating annual and inter-annual 

NEE sums, for applications such as parameterizing, comparing or validating ecosystem models that 

operate at hourly to daily time steps. 

The significant differences between 'internal' and 'external' RMSE estimates also have important 

implications for all gap-filling operations, as they demonstrate that 'internal' metrics obtained by 

comparing the model-predicted values to existing measurements (typically the only performance 

information available during gap-filling), are not necessarily reflective of model performance for data 

gaps.  Thus, caution should be taken when interpreting 'internal' estimates, and more robust model 

validation practices should be used. 

 3.5.3 Evaluating rEC gap-effect mitigation strategies

Of the three strategies tested for reducing the uncertainty of gap-filled NEE estimates in rEC 

applications, our results indicate that alternating rEC schedules for successive years is the best 

approach for improving the accuracy of these estimates.  Though the 'pooled' method showed minimal 

improvements in bias error, and the 'filled' strategy improved point-to-point prediction, both 

demonstrated limitations in other important metrics of performance.  Although applying the 'alternating'

rEC strategy to these sites slightly increases the potential overall bias of estimates (Figure 3.11), this 

effect is outweighed by an uncertainty reduction that is a factor of 4 to 6 times greater, thus providing a 

large reduction in overall deviation of estimates from 'true' values. Though half-hourly NEE values 

from TP39 and TP74 were strongly correlated (r = 0.82), using data from one site to fill in gaps in the 

other ('filled' strategy) produced results that were worse than the original NLR-HL model outcomes 

across all measures. As interannual trends showed for 2010 (Figure 3.10), despite the fact that these 

two ecosystems are in close proximity, are the same species, and grow on similar soil conditions, they 

differ in terms of carbon exchange dynamics and response to environmental drivers.  These forests 
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differ in terms of understorey growth, surrounding land-uses that are included in the flux footprint, and 

responses to mid-summer dry periods, which contribute to the observed differences between the sites. 

These results indicate that for the study sites in question, actions must be taken at the time of rEC 

operation, in order to minimize negative effects on NEE estimates; the post-collection strategies 

examined here do not provide any substantial benefit to NEE estimates made at any timescale.

 3.5.4 Practical considerations and challenges for rEC operation and 
NEE uncertainty estimation at TPFS

Before the simulation results of this study can be considered representative of expected outcomes of 

past or future rEC measurement programs at TPFS, a number of additional, practical considerations 

must be made.

First, it is important to consider the impact that footprint filtering would have on gap-filling model 

performance and NEE uncertainty, had it been applied to these sites.  While each site in the TPFS 

age-sequence occupies a space in a larger forested region, the age-specific, monoculture sites 

themselves may all be considered fetch-limited, due to the fragmented nature of land plots in the 

region. Though a footprint filtering scheme was not applied in this study – fluxes from a given site 

were inclusive of possible contamination from outside sources – it is reasonable to anticipate that such 

an application could be required when comparing fluxes among age-sequence forests. Applying such a 

half-hourly footprint filtering scheme would result in approximately as many data points removed as 

for u*
Th filtering. Therefore, it can be expected that ф values for each rEC scenario would be reduced 

between 0.05 and 0.1 further than is reported in this study.  This increased data reduction is likely to 

have negative effects on gap-filling model performance – especially since the rEC program 

implemented at TPFS used a 3-site rotation, which was a mix of rEC scenarios 3 and 4. 

A second consideration to be made when extending these findings to actual rEC implementation at 

TPFS concerns the consistency of NEE measurement random error estimation.  For the purposes of this

study, random NEE measurement error was modeled and estimated for all synthetic data prior to rEC 

simulation runs, using the original measured NEE time series at both TP39 and TP74.  This approach 

increased consistency in NEE estimates, and ensured that differences in values were due to the 

application of rEC gaps. However, in real rEC application, the amount of data available will also affect 

estimates of the relationship between Ts, PPFD and σi. This has implications for the weights used in 
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parameterization, and adds increased uncertainty to estimates. In order to stabilize gap-filling model 

parameterization, it may be necessary to remove the estimation and consideration of variable NEE 

measurement error altogether, by reverting to the more robust ordinary least squares cost function, in 

place of weighted-error sum of squares or mean absolute weighted error.  As demonstrated by Wijk et 

al. (2008), changes to the gap-filling model parameterization cost function can impose systematic 

biases on gap-filled NEE estimates.  

A third TPFS-specific consideration is the applicability of rEC results and recommendations obtained 

using TP39 and TP74 data to the other two (younger) age-sequence sites. In contrast to the relatively 

stable and consistent nature of the more mature TP39 and TP74 sites, the nature of ecosystem carbon 

exchange is much more dynamic at TP89 and TP02.  This consideration is particularly relevant for the 

years in which rEC was implemented at TP02 – the first five years after site establishment. During this 

period, NEE was influenced both by rapidly growing seedlings, and extensive and dynamic understorey

growth and senescence – all of which responded quickly to environmental controls, due to their shallow

rooting depth on sandy soils.  As a result, it is anticipated that the presence of rEC-induced gaps at 

TP02 (and to a lesser extent, TP89), would increase the uncertainty associated with time-integrated 

NEE estimates during this period.  However, the noise-to-signal ratios of these two sites would differ 

significantly, as the magnitude of annual NEE is substantially lower at TP02 than TP89.

 3.5.5 General considerations for rEC implementation

An important general consideration for rEC program implementation is the length of time (i.e. number 

of years) in which the rEC program will be carried out.  For the purposes of our study, we simulated a 

four-year measurement program, which is similar in length to that which was carried out at our sites 

(2003-2007).  As demonstrated in the results, acquiring multiple years of measurement data at each rEC

site affords opportunities to improve gap-filling model performance and reduce uncertainty in 

estimates.  Specific examples of this include the use of multiple years of data in NLR-HL model 

parameterization, and the application of annually-alternating rEC schedules to improve overall 

temporal measurement coverage.  Though not explicitly tested in this study, it is anticipated that 

increasing the number of rEC measurement years will lead to more constrained and accurate estimates 

of time-integrated NEE.  Conversely, if the total length of the rEC program is less than that simulated 

in this study, it is quite possible that one of the other gap-filling models tested (NLR-FC or MDS) 
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would become the favourable choice.  Since both of these models incorporate data and 

parameterize/operate on a year-by-year basis, the results reported in this study for these two models are 

expected to be representative of their performance for any given length of rEC program. 

The results of this study suggest that rEC-induced NEE estimate uncertainty can be minimized by the 

application of a 2-site rotation at a period of 15 days. Investigations show that reducing the time period 

of rEC rotation provides the most substantial benefit to time-integrated NEE estimates; however, there 

are a number of pragmatic and logistical challenges to rotating an rEC system at 15-day (or shorter 

intervals).  A short rotation period increases the demand for personnel to remove, transport and 

re-install equipment at a new site, which increases cost, and the need for establishing sites in close 

proximity, so that such a rotation is logistically feasible.  Furthermore, increased rEC system transport 

increases not only the amount of overall measurement half-hours lost due to take down and set-up (an 

additional source of gaps not included in this study), but also increases the risk of problems associated 

with instrument damage and  poor/inconsistent instrument setup.  Such practical concerns should be 

considered at the time when rEC measurement schedules are being designed. 

 3.6 Conclusions

In this study, we quantified the potential effects of rEC program operation on time-integrated NEE 

estimate uncertainty. Results showed that the uncertainty in these estimates varies greatly across the 

numerous dimensions of implemented rEC schedules (number of sites, rotation period, schedule 

timing), measurement sites and gap-filling methods.  As anticipated, NEE estimate uncertainty was 

minimized by applying the shortest rotation period among the fewest number of sites (15-day rotation 

between two sites, respectively), and was greatest for the opposite case (one month rotation between 

three sites).  Surprisingly, however, the length of rotation had a much larger effect on NEE 

measurement uncertainty than the number of sites involved, since uncertainties associated with the 

15-day, 3-site application were only minimally larger in magnitude than that involving two sites. These 

findings suggest that rEC measurement programs should minimize rotation period among sites – a 

consideration that has implications for the logistical feasibility of such a program.  

Among the gap-filling models investigated, the NLR-HL model showed the best overall performance, 

as it minimized uncertainty, introduced minimal bias, and preserved both intra- and inter-annual 

variability.  The advantage provided to this model is the incorporation of multiple years of information 

into parameterization processes, thus improving robustness of estimates.  Our results showed that when
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NLR-HL was applied to the optimal rEC scenario (2-site, 15-day rotation), the resulting total 

uncertainty was between 35 and 63% of the NEE flux magnitude at our study sites – an encouraging 

result given that approximately 70% of annual half-hours required filling, and that numerous 

month-long gaps existed in the data. 

Of the rEC uncertainty-reducing strategies that were tested in this study, only the act of alternating 

annual rEC schedules was able to reduce NEE estimate uncertainty.  Applying this strategy – which 

must be implemented at the time of rEC operation – reduced the uncertainty by an average of 28 and 73

g C m-2 y-1 in comparison to standard NLR-HL output for our TP39 and TP74 sites, respectively. 

The results of this study suggest that the rEC approach has potential to expand the ecosystems that can 

be investigated by research programs with limited resources, while still providing time-integrated NEE 

estimates with an acceptable amount of uncertainty. Despite the promise of these results, questions 

remain as to the applicability of rEC outside of the investigated sites, especially those that demonstrate 

more rapidly changing exchange characteristics – whether intra-annually (e.g. temperate deciduous 

forests) or inter-annually (e.g. young, rapidly-growing forests). Futhermore, the methodology provided 

in this study should be viewed as a mean by which the rEC approach may be investigated at a greater 

number and variety of study sites. 
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 4 Implications of commonly-used footprint and friction
velocity filtering methods on data availability and carbon

exchange estimates in a fetch-limited temperate forest
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 4.1 Abstract

When operated above forested sites, the simplifying assumptions of the eddy covariance (EC) method 

are not always met, leading to measurements that may not be representative of the true 

ecosystem-atmosphere carbon exchange. It is important to identify and filter out non-representative 

measurements from EC time series to ensure accurate carbon exchange estimates. Among the most 

relevant and unresolved filtering approaches are the application of the friction velocity threshold (u*
Th) 

filtering to remove low-turbulence periods, and footprint filtering to identify potential source-area 

contamination by non-target surfaces.  In this study, we use a data-driven, factorial analyses approach 

to characterize the differences among, and interaction between four analytical footprint models, and 

three u*
Th estimation methods at a fetch-limited temperate forest.  Methods were assessed in terms of 

their consequences for EC data quantity and distribution, as well as their effect on gap-filled ecosystem 

carbon exchange estimates. In general, u*
Th methods varied in terms of their estimates, due to the use of

dissimilar data aggregation statistics (i.e. mean, median, maximum), as well as their different 

sensitivities to the nature of input friction velocity values, which was influenced by the preceding 

footprint filtering application. In addition, our results showed substantial, fundamental differences 

between analytical footprint models – both generally, and in response to different assigned filtering 

stringencies.  Our results also showed that footprint filtering had a significant effect on ecosystem 

carbon exchange estimates at our site.  Over the years 2006 – 2011 , annual net ecosystem exchange 

was reduced between 59 and 207 g C m-2 y-1 by application of our desired footprint filter in comparison 

to no footprint filtering. Among the footprint models and stringencies investigated, differences in 

performance metrics and annual carbon exchange estimates were of a comparable magnitude to the 

effect of applying footprint filtering altogether.  A decrease in annual ecosystem respiration and net 

ecosystem exchange with increasing footprint model stringency indicated differences in 

carbon-exchange dynamics between the study site of interest, and the surrounding non-target 

ecosystems. This difference was primarily driven by respiration discrepancies, since footprint filtering 

activities had the greatest effect on nighttime data availability and thus, respiration model 

parameterization.  Our findings support further investigation and evaluation of footprint and u*
Th 

filtering methods at our forest, and generally across EC measurement sites.   Comparisons with other 

estimation methods – such as Lagrangian or large eddy simulation for footprint models – are needed to 

further evaluate and compare these methods, and understand their implications for EC-derived 

ecosystem understanding.
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 4.2 Introduction

The eddy covariance (EC) method has proven an unparalleled tool for studying the magnitudes and 

controls of ecosystem-atmosphere carbon exchanges at hundreds of sites across the world (Baldocchi et

al., 2001).  When operated in restrictive, ideal conditions, the true net ecosystem carbon exchange 

(NEE) is well-represented by the sum of EC-measured turbulent carbon dioxide (CO2) exchange, Fc, 

and the change in CO2 storage in the air column beneath the instrumentation, ΔSc (Barr et al., 2013; 

Finnigan, 2006).  These ideal requirements include stationarity of the data, homogeneity of the 

underlying surface, fully-developed atmospheric turbulence, and the absence of horizontal and vertical 

advection (Aubinet, 2008; Baldocchi, 2003; Foken and Wichura, 1996). In practical, long-term 

application, however, the simplifying assumptions of the EC method are not always met – especially 

when measurements are being made above complex, laterally-limited surfaces (Göckede et al., 2004; 

Rebmann et al., 2004; van Gorsel et al., 2009).  In such conditions, NEE estimates produced by EC 

systems are not representative of true ecosystem fluxes: the failure to compensate for these effects (by 

data correction or removal) introduces systematic error and uncertainty into time-integrated NEE 

estimates and relationships derived between NEE and environmental controls (Foken and Wichura, 

1996; Xuhui Lee et al., 2004; Moncrieff et al., 1996; Paw U et al., 2000).  

Among the most important quality control considerations for forested sites is the identification of 

periods in which EC-fluxes are likely to be underestimated due to poorly developed atmospheric 

turbulence  (Aubinet, 2008; Aubinet et al., 2000; Gu et al., 2005; Massman and Lee, 2002).  Especially 

at night, the development of stable layers within and above a forest decouples it from the atmosphere 

above and increases the likelihood that CO2 is transferred by non-turbulent mechanisms such as 

horizontal and vertical advection (Aubinet et al., 2003; Feigenwinter et al., 2008; Staebler and 

Fitzjarrald, 2004).  Most commonly, these periods are identified using a friction velocity threshold 

(u*
Th), where NEE measurements are filtered out for all periods where friction velocity (u*) is below 

this critical value.  A number of methods have been developed to estimate the value of u*
Th using EC 

measurement time series (Barr et al., 2013; Goulden et al., 1996; Gu et al., 2005; Papale et al., 2006), 

and recent comparisons have shown considerable discrepancies between u*
Th estimates produced by 

these methods (Barr et al., 2013). By controlling the number of potentially non-representative flux 

measurements that are excluded prior to gap-filling model parameterization, the value of u*
Th exerts a 

significant control on time-integrated sums of NEE and its component fluxes (ecosystem respiration, 

RE; gross ecosystem productivity, GEP; Barford et al., 2001; Papale et al., 2006).  
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In settings where the surface of interest is limited in fetch and bounded by dissimilar ecosystems, it is 

often necessary to consider the potential contamination of EC flux measurements by non-target 

surfaces. 

Since this technique relies on transport by turbulent atmospheric eddies, the source area of the 

measurement varies with changes in the prevailing wind direction, the underlying surface roughness, 

and the nature of atmospheric turbulence and stratification (Foken and Leclerc, 2004; Kljun et al., 

2002; Leclerc et al., 2003; Schuepp et al., 1990; van de Boer et al., 2013).  The variability of the 

so-called “flux footprint” is a reasonable concern for forest measurement studies in a number of ways: 

Where heterogeneity exists within the surface of interest, estimates of time integrated NEE sums and 

their relationships with environmental variables commonly need to be considered in the context of the 

prevailing footprint climatologies (Chen et al., 2011, 2009; Göckede et al., 2004).   Footprint variability

is also a concern where carbon exchange characteristics are sought for a specific forest stand that is 

areally-restricted (ie. fetch-limited), and bounded by dissimilar land uses or ecosystems. Constraining 

for ecosystem-representative carbon exchange estimates requires footprint filtering, where periods of 

non-representative measurements are predicted and removed prior to analyses.

Many types of footprint models have been developed to estimate the areal extent and source strength 

distribution of EC-measured fluxes; types of these approaches include analytical solutions (Hsieh et al.,

2000; Kljun et al., 2004; Kormann and Meixner, 2001; Schuepp et al., 1990), Lagrangian models 

(Kljun et al., 2002; Leclerc and Thurtell, 1990), and large eddy simulations (Leclerc et al., 1997). For 

footprint filtering applications, these models can be used to estimate the within-fetch integrated 

footprint function (Fin) for a given time period; periods (typically half-hours) are filtered out when Fin 

falls below a selected footprint threshold (fpTh). There currently exists no universally accepted and 

applied footprint model or fpTh level, and numerous studies have shown considerable variability 

between these models in terms of their estimated footprint, and the response of these footprints to 

environmental influences (Kljun et al., 2003; van de Boer et al., 2013). This inter-model variability has 

important implications for fetch-limited ecosystems, as the selection of footprint models and fpTh can 

have significant influence on which (and how many) data points remain after footprint filtering is 

applied.  Thus, it is expected that the nature of, and confidence in carbon exchange information 

extracted from EC-measured data will vary according to footprint filtering specifications.

Furthermore, the reliability of flux partitioning methods (to extract component fluxes of ecosystem 

respiration, RE, and gross ecosystem productivity, GEP), and gap-filling models (to provide 
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time-integrated carbon exchange estimates), has been shown to degrade with increasing data gap size 

and length (Moffat et al., 2007; Richardson and Hollinger, 2007).  In a fetch-limited setting where data 

removal may be substantial, the adequacy of data for these operations is an added constraint when 

considering appropriate footprint filtering specifications. 

In the absence of difficult-to-implement artificial tracer experiments, a number of studies have 

successfully shown footprint models and source area appropriateness may be assessed using 

data-driven approaches.  This includes the use of 'natural tracer' experiments, where distinct adjacent 

surfaces and multiple EC tower installations can be used to deduce source area contributions of EC 

measurements (Foken and Leclerc, 2004; Leclerc et al., 2003; Neftel et al., 2008; van de Boer et al., 

2013). Integral turbulence characteristics and internal consistency tests (Göckede et al., 2004; Neftel et 

al., 2008; Thomas and Foken, 2002), have been suggested and applied to provide information on EC 

measurement quality and the degree to which they are influenced by multiple heterogeneous surfaces. 

Considering an absence of universally-accepted footprint and friction velocity filtering methods, and 

the incomplete understanding of their applicability for all sites, it is important to investigate these 

filtering methods in a site-specific context.  Doing so provides information on the sensitivity of 

ecosystem estimates to changes in source area data characteristics, and allows for further investigation 

of the performance and interactions of footprint and u*
Th filtering methods.  

To this end, this study develops and uses a data-driven approach to compare footprint- and friction 

velocity-filtering methods in terms of their classification of ecosystem-representative data in a 

fetch-limited temperate forest. Building on these approaches, this study also presents and implements 

methods to evaluate a number of analytical footprint models and footprint threshold levels against 

multiple, competing criteria: a) maximizing the ecosystem-representativeness of time-integrated 

ecosystem carbon exchange estimates; and, b) minimizing gap-filled estimate uncertainty as a result of 

insufficient data. Specifically, this study addresses the following questions:

1. How is the quantity and distribution of NEE time series data affected by the application of 

different footprint and friction velocity filtering approaches?

2. What is the sensitivity of annual ecosystem carbon exchanges (NEE, RE, GEP) to changes in 

footprint- and friction velocity-filtering applications in this fetch-limited temperate forest?

3. What footprint filtering approaches best satisfy the simultaneous requirements for maximizing 

ecosystem representativeness while minimizing gap-filling model error?
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4. What are the implications of various footprint filtering specifications on derived ecosystem 

carbon exchange estimates and environmental relationships? 

In this study, we applied four commonly-used analytical footprint models to estimate the effective 

upwind source area for six years of half-hourly flux measurements at a fetch-limited, monoculture 

forest.  For each footprint model (fpm), a range of footprint threshold (fpTh ) values were applied to 

investigate the effect of footprint model stringency on footprint filtering. A factorial experiment was 

carried out, where EC carbon flux measurements were filtered according to each fpm * fpTh 

combination, and the effect of each filtering specification was characterized for subsequent processing 

steps.  The effect of footprint filtering on u*
Th determination was investigated across three different 

friction velocity threshold estimation approaches.  For each fpm * fpTh * u*
Th method filtering 

combination, a gap-filling model was run to produce continuous half-hourly estimates and annual sums

of NEE, RE and GEP.   

The impact of footprint and friction velocity filtering on estimated carbon exchanges were 

subsequently explored, as two different non-linear gap-filling models were run on the filtered data to 

produce annual estimates of NEE, RE, and GEP, as well as statistical metrics of goodness-of-fit and 

bias error.  Analyses of variance (ANOVAs) were performed on factorial results to estimate controls on 

annual estimates, and the statistical performance metrics obtained for each filtering combination run.  

Using gap-filling model performance metrics as an evaluation criteria, we then determined the most 

appropriate filtering parameters (fpm, fpTh level) for our fetch-limited forest site. Following this, we 

explored the implications of this selection by comparing carbon exchange estimates and environmental 

relationships derived using the ideal filtering parameters to those obtained using different 

combinations.
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 4.3 Description of filtering methods

 4.3.1 Footprint models

Four different commonly-used analytical footprint models were selected to provide half-hourly 

diagnostic estimates of effective upwind source area for this study.  These methods seek to solve the 

advection-diffusion equation through analytical means, and are based on semi-empirical relationships 

and Monin-Obukhov similarity theory.  As such, these models are well-supported by 

surface-layer-based experimental comparisons with field measurements (e.g. tracer experiments), or 

simulation experiments such as Lagrangian stochastic or large eddy simulations (Kljun et al., 2003).

These four specific footprint models were chosen based on the following three criteria: a) their 

relatively simplistic nature, which, unlike Lagrangian or large eddy simulation (LES) models, allow the

models to be run over many simulations in a realistic computing time frame; b) their frequent use as 

diagnostic tools in flux measurement research; and, c) the availability of pre-constructed footprint 

model code for these models (supplied either by the original author, or researchers that have used the 

model to create published results), thus increasing the likelihood that the model outputs are comparable

to those published in other studies.  These models are summarized in Table 4.1, and discussed in further

detail below:

Table 4.1: Description of footprint models compared in this study

Model Denoted as Inputs Output

Schuepp et al.,
(1990)

SP90
 u, u*, H, Ta, RH, 
APR, zm, htree, z0, r

1-dimensional crosswind-integrated
cumulative flux contribution

Kljun et al.,
(2003) 

KL03 zm, z0, hBL, σw, u*, r
1-dimensional crosswind-integrated

cumulative flux contribution

 Hsieh et al.,
(2000) 

HS00 u*, H, Ta,  zm, htree
1-dimensional crosswind-integrated

cumulative flux contribution

Kormann and
Meixner, (2001)

KM01,
KM01-2D

zm, z0, u, u*, σv, L

2-dimensional (along- and
cross-wind) footprint flux

contribution;
1-dimensional crosswind-integrated

cumulative flux contribution
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The footprint modeling approach of Schuepp et al. (1990; SP90) builds upon an analytical solution to 

the advection-diffusion equation provided by Gash (1986).  This approach uses an approximate 

characterization of the diffusion equation developed by Calder (1952) to estimate a one-dimensional 

footprint as the relative contribution of upwind sources at distance x, to fluxes measured at point (0,z)  

(Eq. 9 in Schuepp et al., 1990).  By integrating this function in the upwind direction, the proportional 

contribution of all sources within a specified distance may be estimated; this value is defined as the 

cumulative normalized footprint of the flux measurement (CNF; Eq 13 in Schuepp et al. (1990)).  Since

this function is restricted to thermally neutral stratification and a uniform wind field (constant U and 

K), a momentum stability correction function, taken from Dyer (1974) and Dyer and Hicks (1974) is 

applied to the cumulative footprint function. The correction is expressed as:

Φm=[1−16
( z−d )

L
]
−1

4 (4.1)

, where z is measurement height, d is displacement height, and L is the Obukhov length. Though this 

correction factor adjusts the footprint function peak and relative upwind contributions in a manner that 

corresponds to to atmospheric stability conditions, its application has been criticized as mathematically 

baseless (Kormann and Meixner, 2001).  The predicted shape and length of the footprint function is 

controlled by changes in measurement height, surface roughness and atmospheric stability.  

Comparisons with Lagrangian stochastic simulations (Leclerc and Thurtell, 1990) showed acceptable 

analytical model performance over short and tall vegetation, though discrepancies generally increased 

with measurement height.  

The footprint model described by Kljun et al. (2004; KL04) is an approximate analytical model 

developed through parameterization of a previously-developed and tested Lagrangian stochastic 

dispersion model (see Kljun et al., 2003; Kljun et al., 2002).  The analytical model uses a scaling 

procedure to collapse the crosswind-integrated flux footprint for all stability conditions (from stable to 

convective) and a given roughness length, into an ensemble of similar curves that can be constructed 

from a few, commonly-measured environmental variables (Kljun et al., 2004).  As a result, model 

predictions of the one-dimensional cumulative footprint function are algebraically estimable and 

physically valid for all types of stratification, and calculations may be carried out with relatively little 

computational cost.   

As an improvement to approximate analytical models of Gash (1986) and Horst and Weil (1992 and 

1994), Hsieh et al. (2000; HS00) developed an approximate analytical model based on a combination 
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of dimensional analysis and testing against a Lagrangian stochastic dispersion model (Thomson, 1987).

The resulting model provides a simplistic, accurate and computationally-efficient estimate of the 

one-dimensional crosswind-integrated flux footprint as a function of atmospheric stability, 

measurement height and roughness length.  Assessment of the model-estimated footprint showed good 

agreement with field-based measurements, as well as with outputs from more complex analytical and 

Lagrangian dispersion models (Hsieh et al., 2000). 

The Kormann and Meixner (2001; KM01) footprint model produces a two-dimensional analytical 

solution to the advection-diffusion equation by using a stationary gradient diffusion foundation with a 

height-independent crosswind dispersion function.  The KM01 model – based on modifications of the 

analytical models of Van Ulden (1978) and Horst (1999) – assumes independence of vertical and 

crosswind dispersion, in order to reduce the continuity equation to two dimensions, where the 

crosswind dispersion is represented as a Gaussian plume (Kljun et al., 2003; Kormann and Meixner, 

2001; van de Boer et al., 2013).  The simplifying assumptions of the KM01 model allow it to be 

applied to long-term measurement data with minimal computing resources. 

In a comparison test with a Lagrangian stochastic dispersion model, Kljun et al. (2003) found 

satisfactory correspondence between the KM01 model and Lagrangian footprint estimates when the 

receptor was located within the surface layer (zm = 20 m in their study); however, the KM01 estimates 

for footprint distance and distance to peak were consistently longer, an effect attributed to the exclusion

of longitudinal turbulent dispersion in the analytical model.  Considerable discrepancies arose when the

receptor was mounted above the surface layer (zm = 100 m).  Assessment of KM01 against a 

field-based artificial tracer experiment (van de Boer et al., 2013) similarly found the model to 

overestimate footprint distances (effective fetch), and the distance to footprint peaks. 

 4.3.2 Friction velocity threshold estimation methods

This study implemented and tested three commonly-used methods for estimating friction velocity 

threshold (u*
Th). Each model is described below: 

The Moving Point Test method (MPT-P), introduced by Reichstein et al. (2005), and developed further

by Papale et al. (2006) was used in this study to estimate u*
Th from the relationship between nighttime 

Net Ecosystem Exchange (NEEn) and u*.  For this methodology, data from each year was stratified into 

four, equally-sized 3-month seasons (nS=4: JFM, AMJ, JAS, OND), and then sub-stratified into six 
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temperature classes (nT=6) within each season.  The purpose of creating separate nS*nT strata was to 

reduce the confounding effect of seasonality and environmental temperature on the u* vs NEE 

relationship.  Within each nS*nT strata, data was split into 20 equally-sized u* classes, and the u*
Th for a 

strata was estimated as the lowest u* class that had an average NEEn value within 99% of the average 

NEEn at all higher u* classes.  Seasonal u*
Th was calculated as the median of predicted values across the 

temperature substrata, while a single, annual u*
Th value was estimated as the largest of the seasonal 

estimates.  For the purposes of this study, alternative annual u*
Th estimates were generated by also 

recording estimates obtained by using the median and mean as the value selection statistic for the 

seasonal values.  To obtain information on the potential variability in u*
Th prediction, the estimation 

procedure was bootstrapped at the seasonal level, to produce 100 separate estimates of mean, median 

and maximum u*
Th.  As distributions of these values were normal, the mean of each of these 

bootstrapped sets was taken as the final annual u*
Th value.

The Change Point Detection (CPD) method described by Barr et al. (2013), is based upon a similar 

theoretical approach as MPT-P, though with modifications to the stratification and u*
Th detection 

procedures.  To improve temporal resolution of the estimates, annual half-hourly data was subdivided 

into more seasonal strata (than MPT-P) by shortening the window size, and prescribing a 50% overlap 

between adjacent windows.  For the purposes of this study, a total of nS=12, 2-month “seasonal” 

windows were used, as a reasonable value within the range of nS=7-17 used in Barr et al., (2013).  

Within each seasonal window, data was further stratified into nT=4 temperature classes.  For each nS*nT 

substrata, data was split into 50 u* bins with at least 5 data points per bin.  The value of u*
Th within each

substrata was estimated using the CPD technique originally developed by Solow (1987), which was 

later refined by Lund and Reeves (2002) and Wang (2003), and subsequently applied to u*
Th 

determination by Barr et al, (2013).  This technique attempts to identify u*
Th as the 

statistically-optimized “change-point” (xc) where the linear relationship between u* vs NEE changes 

from non-zero (at lower u* values) to zero (at all higher u* values).  Multiple quality assurance tests 

were applied to remove nS*nT estimates where the change-point selection showed poor goodness of fit, 

or where the non-zero slope was of opposite sign to the majority of the nS*nT estimates.  Two different 

annual u*
Th were created by using two different value selection statistics: the mean of all quality-assured

nS*nT substrata estimates (as used in Barr et al., 2013); and, by the median of these values (our 

modification).  Similar to the MPT-P approach, this procedure was bootstrapped 100 times at the 

seasonal level, and the means of these bootstrapping results were used at the final annual u*
Th estimates.

145



Ph.D. Thesis - J. Brodeur; McMaster University - School of Geography & Earth Sciences

The Gu et al. (2005) Moving Point Test method (MPT-G) was also applied in this analysis, providing a

third estimate of u*
Th using a methodology that is relatively unique from those of MPT-P and CPD.  The

method uses similar techniques to estimate two friction velocity thresholds: a low-turbulence threshold 

for removing flux data measured during low-u* conditions; and, a high-end threshold, for removing 

data measured during exceptionally high u* conditions, where “pressure pumping effects” may occur 

(Gu et al., 2005; Rogie et al., 2001).  Since no pressure pumping effects were observed at our site, the 

remaining description concerns only the low-turbulence u*
Th value, which is physically equal to the 

threshold estimated by MPT-P and CPD.  MPT-G uses a nested loop, iterative approach to calculate 

seasonal (nS = 4) u*
Th values.  In the outer loop, NEEn is normalized by a temperature response function 

developed using data from all half-hours in which u* was between the current low- and high- u*
Th 

values (initially 0 and 9999).  Data was then ranked from low- to high-u*, and exported to the inner 

loop.  In the inner loop, a moving window progressed point-wise from lowest to highest u* data.  At 

each step, the median of normalized NEEn within the window was tested (via a t-test) for statistical 

equivalence to the median of all available NEEn.  The u*
Th was calculated as the median value of u* for 

the first moving window that was not statistically different from the median of the entire set.  This u*
Th 

value was exported to the outer loop, and used to filter the data available for developing the 

temperature response function (u* < u*
Th removed).  The process described above continued until the 

inner and outer loop u*
Th values converged, at which point the process ended with a seasonal u*

Th 

estimate.  Estimates for annual u*
Th was extracted by calculating the mean and median of the four 

seasonal estimates.  This process was repeated 100 times by bootstrapping seasonal data, and the means

of the two types of estimates were used as the final annual u*
Th estimates. 

 4.4 Methods

 4.4.1 Site description

Data used for this study were collected at the TP39 forest of the Turkey Point Flux Station research 

sites (referred to as CATP4 in global FLUXNET notation).  TP39 is a 74-year old planted and managed

eastern white pine (Pinus strobus L.) forest, established in 1939 after the clearing of former oak 

savanna lands for afforestation purposes (Peichl, Arain, et al., 2010a).  The site is located near the 

North Shore of Lake Erie in Norfolk County (42.71°N, 80.36°W), in southern Ontario, Canada.  

The TP39 forest stand is approximately rectangular (see Figure 4.1), with an average length of 650 m 
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(in NNW-SSE direction), and width of 610 m (in WSW-ENE direction).  Three adjacent 1 ha blocks of 

Q. vultina exist within the rectangular outline of the stand, located directly east of the measurement 

tower.  The TP39 forest (outlined in Figure 4.1) is part of the Turkey Point tract of the St. Williams 

Conservation Reserve.  The Conservation Reserve is a stretch of managed forests stands of white pine, 

red pine (Pinus resinosa), Eastern black oak (Quercus vultina), and Red oak (Quercus rubra), placed 

within a region of predominantly cash-cropped agricultural fields and scattered Carolinian Hardwood 

forests. In its immediate vicinity, TP39 is bordered by forest stands that vary in terms of their areal 

extent, shape, tree age and species, and the management practices undertaken within.  For the purposes 

of this study, the “target” surface for tower-based flux measurements is defined as the combined extents

of the white pine forest of TP39 and the 79-year old forest (established 1934) located to its immediate 

west;  all other stands and land-uses are considered out of bounds.  As both included stands are 

comparable in terms of site and management history, soil characteristics, topography, tree age and 

species assemblage, amalgamating these for the purpose of this study expands the fetch available for 

tower-based flux measurements.  Such an approach has been used in previous studies that have 

reported EC fluxes from this location (Peichl, Arain, et al. 2010a; Arain and Restrepo-Coupe, 2005).  

Forest overstorey at this site is dominated by planted Eastern White Pine (P. strobus) trees, while 

naturally-generated Balsam fir (Abies balsamea L. Mill), Oak (Quercus velutina L., Quercus alba L.), 

Red maple (Acer rubrum L.) and Wild black cherry (Prunus serotina Ehrh.) comprise the intermediate 

and understorey layers (Peichl and Arain, 2006).  As reported in Peichl and Arain (2006), mean 

co-dominant tree height at this site is approximately 22 m, with a leaf area index (LAI) of 8.0 (Chen et 

al., 2006) and a tree density of 421 ± 166 trees ha-1.  This spatial distribution of co-dominant trees 

within the forest has been influenced by a thinning application in 1983, where 105 m3 ha-1 of wood 

volume was removed from the forest, leaving distinguishable, regular gaps in the canopy (Peichl and 

Arain, 2006).  The site is located on predominantly flat topography, with a mean elevation of 184 m asl,

and a maximum elevation variation of 2 metres.  The soil is a well-drained Brunisolic Gray Brown 

Luvisol (Presant and Acton, 1984) that rests upon deep (> 10 m) eolian-deposited medium and fine 

sands.  The water table typically resides between 6 and 8 metres below the soil surface.

The long-term wind rose included in Figure 4.1 indicates that westerly wind patterns dominate at this 

site, with winds most commonly originating from the southwestern quadrant.  In general, the most 

common wind directions correspond well to the directions that have the largest fetch from the 

measurement tower to the forest boundary.  
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Figure 4.1: Land use map of the region surrounding the flux tower used in this study.  Managed forest 
plots are labeled with their date of establishment.  Inset map a) shows the location of the study region 
in southern Ontario.  Inset map b) displays the long-term (2006-2011) mean wind rose.
a establishment date unknown, but estimated using historical land use records. 
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 4.4.2 Ecosystem flux and meteorological measurement 

Meteorological and flux smeasurements for the forest stand were collected from a 26 m walk-up tower 

located near the centre of the TP39 forest plot (Figure 4.1).  The tower-based meteorological system 

consisted of instrument assemblages specified by Canadian Carbon Program (formerly Fluxnet-Canada

Research Network) measurement guidelines and standards (Fluxnet-Canada, 2003).   Primary 

meteorological variables were measured continuously throughout the year from instruments mounted 

on booms extending 1-3 m horizontally away from the tower, at 28 m above the forest floor.  The 

measured variables included: air temperature and relative humidity (Ta, RH; model HMP45C, 

Campbell Scientific Inc. (CSI), Edmonton, AB, CA); wind speed and direction (u, WD,  model 05 

103-10RE, RM Young Co. (RMY), Michigan, USA);  down- and up-welling Photosynthetic Photon 

Flux Density (PPFD, PPFDu,  model PAR-LITE, Kipp and Zonen Ltd. (KZ), Delft, NL); net radiation 

(Rn, model NR-LITE, KZ); down- and up-welling short and long wave radiation (model CRN1, CSI); 

atmospheric pressure (model 61205V, RMY).  Secondary meteorological variables (e.g. Vapour 

Pressure Deficit, VPD), were calculated from primary variables during data processing (see below).

Precipitation was measured from two monitoring locations: The primary ground installation was 

located at a nearby station (2 km from the tower), where an all-weather accumulation precipitation 

gauge (model T200B, Geonor Inc., Milford, PA, USA) was operated in the centre of a 4 ha clearing.  

Data was recorded at half-hourly intervals by a standalone data logger (model CR10x, CSI). A 

secondary system consisted of a tipping-bucket rain gauge (model 52202, RMY; model CS700, CSI) 

affixed to the top of the measurement tower; measurements from this system were used as a validity 

check for precipitation events recorded at the primary location. 

Soil temperature (Ts) profiles were measured at two different locations using thermistor probes (model 

107B, CSI) placed at depths of 2, 5, 10, 20, 50 and 100 cm.  At the same two locations, volumetric 

water content (VWC) profiles were measured using water content reflectometers (model CS-615/616, 

CSI) inserted horizontally at depths of 5, 10, 20, 50 and 100 cm.  The VWC profiles were used to 

calculate depth-weighted, upper root-zone averages (VWC30) for the top 30 cm of each profile.  Soil 

heat flux plates (model HFT3, CSI) were installed at 3 cm depth at each location to estimate heat 

exchanges (G) across the atmosphere-soil boundary; 2 cm soil temperature was used to correct the 

estimates for soil heat storage changes above the sensor.

Half-hourly averages (and precipitation sums) of all atmospheric and edaphic variables were recorded 
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by data loggers (models CR23x, CSI), and downloaded automatically by an on-site desktop computer.  

Raw data was collected from the field at weekly intervals, and subsequently processed by custom 

programs in MATLAB (The Mathworks, Inc, Natick, MA) that organized, cleaned and quality-assured 

data.  For micrometeorological data used in analyses operations (i.e. Ta, RH, Ts, VWC30, PPFD) small 

data gaps were gap-filled using a linear regression with values measured at the nearby (<1 km distance)

40 year-old age-sequence study site.  

A closed path eddy covariance (CPEC) system was operated continuously at TP39 to measure mass and

energy exchanges throughout the study period.  The system consisted of a CSAT-3 sonic anemometer 

(model CSAT-3, CSI) and infrared gas analyzer (IRGA, model LI-7000, LI-COR Biosciences, Lincoln, 

NE, USA), which were operated and logged at high frequencies (20 Hz) on a desktop PC, using custom

software created by the Biometeorology & Soil Physics Group at the University of British Columbia 

(British Columbia, CA).  High-frequency flux data were collected from the field computer at weekly to 

bi-weekly intervals; this data was used by customized MATLAB programs to calculate half-hourly 

fluxes.  Outliers in flux data were removed according to Papale et al. (2006).  Net ecosystem carbon 

exchange (NEE), was calculated as the sum of eddy covariance-estimated CO2 flux (Fc), and air column

storage flux ( ΔSc).  ΔSc was estimated following Barr et al., (2004), using half-hourly CO2 

concentrations measured at the top (z = 28 m), middle (z = 14 m) and bottom (z = 2 m) of the tower.

 4.4.3 Flux footprint model standardization

All footprint models (outlined in section 4.3.1) were evaluated using MATLAB software (The 

Mathworks, Natick, MA). The 1D footprint models (SP90, KL04, HS00) were standardized to output 

half-hourly estimates of the crosswind-integrated, within-bounds cumulative flux footprint proportion 

(Fin), for years 2006-2011.  This was calculated by integrating the footprint function in an upwind 

direction between the measurement tower and the forest bounds.  The distance from the tower to the 

forest bounds was estimated using a look-up table of measurement fetch distances computed for every 

0.1 degree of wind direction.  The fetch distance look-up table was developed using remotely sensed 

imagery and Geographical Information Systems.  

The KM01 model was configured to output flux source strength (2-D footprint function) at a 2 m grid 

resolution, within a 2 x 2 km grid centred around the flux measurement tower location.  The 2-D KM01

model was run at a half-hourly time step for years 2006-2011.  The proportion of flux footprint 
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contained within the forest bounds (Fin) was calculated for each half-hour as the ratio of summed source

strength in all grid cells located within the forest bounds, to the total sum of the footprint function.  A 2 

m resolution digital map of the forest bounds was used to delineate cells within and without the forest.  

In addition to its 2D footprint output, the KM01 model was configured to estimate half-hourly, 

one-dimensional, crosswind-integrated Fin (modified model denoted as KM01-1D).  This was 

calculated by summing the 2D footprint estimate over the entire lateral (crosswind) extent, for cells 

spanning the distance from the measurement tower to the upwind extent of the forest bounds.  Creating 

this 1D output allowed for a more direct comparison with the other (1D) models, particularly since it 

enables an investigation of forest boundary-induced discrepancies between the 1D and 2D estimates of 

within-bounds flux proportion.  

As demonstrated in Figure 4.2, the orientation and shape of a footprint plume relative to the boundaries

of the surface of interest may lead to non-negligible over- or under-estimation of crosswind-integrated 

Fin for a given period of interest, depending on boundary shape, and dynamic variables such as wind 

direction, atmospheric stability and turbulence conditions.  By comparing the half-hourly Fin estimates 

between the 1D and 2D KM01 models, it is possible to estimate the sign and magnitude of this effect, 

and subsequently correct one-dimensional estimates for this error. 
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At the highest level of data aggregation (Figure 4.3), half-hourly Fin estimates of KM01 and KM01-1D 

are strongly correlated (R = 0.958 for Fin > 0.05; R2 = 0.916; mean slope of 1.03); however non-random

discrepancies are observed between the two estimates.  The systematic modifying effect of wind 

direction on this relationship is apparent when data is stratified into 5° wind direction bins (Figure 4.4).
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Figure 4.2: Schematic diagram demonstrating over- and 
underestimation of crosswind integrated (1D) Fin resulting from the 
orientation of the footprint plume to the forest boundary. Two 
theoretical flux footprints are shown here to display the discrepancy 
between the two-dimensional (ellipse) and crosswind integrated 
(mid-line and perpendicular chord) estimates of Fin. In comparison to 
the 2D footprint estimate, the crosswind integrated estimate of a) shows
an overall underestimation of Fin, while  b) demonstrates an overall 
overestimation.
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Within each strata, the KM01-KM01-1D relationship is highly-correlated and strongly linear (mean R 

= 0.972; mean R2 = 0.934), with intercepts (-0.1 to 0.1) and slopes (0.8 to 1.2) that vary systematically 

and considerably with wind direction.  Though the presence of outliers in the KM01 versus KM01-1D 

relationship degrades linear regression R2 values at higher Fin values, the improvement resulting from 

wind direction stratification becomes increasingly evident, as R2 improves from 0.49 to 0.62 with 

stratification for periods with Fin > 0.5.  Using these wind direction-specific linear relationships, a 

look-up table of correction factors was generated, and each half-hourly one-dimensional footprint 

estimate was adjusted to align with the 2D model output. Application of the correction resulted in 

changes to Fin that ranged from a 25% reduction to a 22% increase, with a mean reduction of 4% 

(Figure 4.5).  Overall, nearly 80% of all half-hours were corrected to a smaller Fin value, implying that 

applying the (uncorrected) 1D foootprint model commonly leads to overestimation of Fin.   
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Figure 4.3: Scatter plot comparing half-hourly Fin estimated using 
the crosswind integrated KM01-1D and two-dimensional KM01-2D 
footprint models.  The dashed line indicates a 1:1 relationship.
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Acknowledging that the other 1D footprint estimation models (SP90, KL04, HS00) are subject to 

similar boundary-induced discrepancies, the correction method developed for KM01-1D results were 

applied to these model outputs as well.  Though each of these 1D models assumes different (or no) 

analytical representations of the crosswind footprint component (and thus, their crosswind footprint 

plume shape likely differ), sensitivity testing with the KM01 models revealed that the crosswind width 

of the plume had minimal effect on the wind-controlled relationship between the 1D and 2D estimates 

(data not shown).  This is further supported by the high coefficient of determination for the 1D-2D 

relationship for each wind-direction strata (Figure 4.4), despite a wide range of predicted plume widths 

(controlled by σw) contained within. As a result, it was determined that application of this correction 

factor would have a net positive effect on the inter-comparability of the footprint model estimates.
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Figure 4.4: Two perspectives of the fitted linear relationship between KM01-1D and 
KM01-2D Fin estimates, calculated for each 5° wind-direction bin.
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Figure 4.5: Histogram (bars, left axis) and cumulative 
proportion (black line, right axis) of corrections applied to 
KM01-1D footprint estimates to align with KM01-2D 
predictions.  Corrections are stated as absolute values.
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 4.4.4 Data Filtering 

The corrected footprint model Fin estimates were used to generate model-specific filtering keyfiles by 

comparing half-hourly values to a specified minimum within-bounds footprint threshold (fpTh).  Key 

files consisted of annual column vectors of half-hourly entries corresponding to flux measurements.  

Key file entries were set to 1 during periods where the model-estimated Fin was greater than fpTh, and to

NaN otherwise.  Flux data were effectively footprint filtered by multiplying relevant data columns with

the footprint key file – thereby replacing data entries for unacceptable half-hours with NaN values, and 

excluding them from further operations.  Multiple keyfiles were created for each footprint model, 

corresponding to the selection of different fpTh values during filtering.  A total of 10 keyfiles were 

created for each model: one for the no-footprint case (nofp, fpTh = 0), and one for each 0.05 increment 

between fpTh = 0.5 to 0.9, inclusively.  

The annual u*
Th estimates of each method were used to create u* filtering keyfiles.  Similar to the 

footprint filtering approach, the keyfiles consisted of annual files of half-hourly entries that 

corresponded to flux measurements.  Key file entries were set to 1 for half hours where measured u* 

was greater than the predicted threshold, or to NaN for all other periods.  Multiplying a column vector 

of flux measurements by this key file effectively removed all half hours with u* below the indicated 

minimum threshold.

 4.4.5 NEE gap-filling and random error estimation 

Annual datasets of quality-controlled and filtered NEE were filled using two common non-linear 

regression gap-filling models: The Fluxnet-Canada Research Network method (NLR-FC), described by

Barr et al. (2004); a modified version of the nonlinear estimation model used by Richardson et al. 

(2007) for the Howland Research Forest data (NLR-HL).  These methods were selected due to their 

common use in studies on temperate forests, and history of use for gap-filling purposes at this site (e.g. 

Arain and Restrepo-Coupe, 2005; Peichl et al., 2010b). Each method is described in further detail 

below:  

In the NLR-FC method, measured RE is assumed to be equal to NEE during periods when GEP is zero 

(i.e. at night and during daytime periods when both air (Ta), and 5 cm soil (Ts) temperatures are less 
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than 0°).  The NLR-FC method fits RE to an empirical logistic relationship with Ts as:

RE=
r 1

1+exp [r2(r3−T s)]
rw (t ) (4.2)

where RE is model-estimated ecosystem respiration, and r1, r2, and r3 are fitted empirical parameters.  

rw(t) is an additional fitted parameter that varies according to the slope of a linear regression (forced 

through the origin) between modeled and measured RE in each 100-point moving window.  The 

time-varying parameter corrects for the presence of sustained (autocorrelated) biases in modeled 

estimates of RE.   Values of RE are used in the place of gaps in the annual measured RE time series 

(caused by equipment malfunction, quality-assurance testing, filtering, etc.), as well as to estimate 

respiration during periods of non-zero GEP (when RE cannot be directly measured).

GEP was determined as the difference between gap-filled RE and measured NEE, and subsequently set 

to zero for all nighttime periods and daytime half hours when Ta,Ts < 0.  A rectangular hyperbolic, 

Michaelis-Menten relationship is used to model GEP as:  

GEP=
αQd β

αQd+β
pw(t ) (4.3)

Where Qd is down-welling photosynthetic photon flux density (PPFD, μmol m-2 s-1), and the fitted 

parameters α and β represent the quantum yield and photosynthetic capacity, respectively.  To correct 

for sustained autocorrelated bias in model predictions, pw(t) is a time-varying parameter that varies 

according to the slope of a linear regression (forced through the origin) between modeled and measured

GEP for each 100-point moving window.

The NLR-HL gap-filling method is a modified version of the model described by Richardson et al., 

(2007), which was later modified and applied to TP39 by (Peichl et al., 2010a).  RE measurements are 

identified from NEE using the same conditions as NLR-FC (NEE nighttime and daytime with Ta,Ts < 

0).  RE is modeled as a function of Ts and VWC30 according to the relationship:

RE=R10×Q10

(T s−10)

10 × f (VWC 30)
(4.4)

, where R10 and Q10 are fitted temperature response parameters that describe the relationship between 
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RE and Ts. f(VWC30) is a sigmoidal function that characterizes the role of VWC30 in modifying the 

temperature response of RE as:

f (x )=
1

[1+exp(θ1−θ2 x)]
(4.5)

θ1 and θ2 are fitted parameters that allow this term to range between [0,1] as a function of the 

independent variable x (VWC30 in this case), thus acting as a scaling function on the Ts-RE 

relationship.  Including a VWC30 control on the RE model was found to provide a statistically 

significant improvement to model performance during periods of low VWC (typically mid-summer, 

data not shown).  The two-parameter Q10 temperature response model was chosen instead of 

three-parameter functions (e.g. logistic or  Lloyd and Taylor, 1994), to increase model parsimony and 

address issues of over-fitting and equifinality (Richardson et al., 2007).

GEP was estimated in the same way as for NLR-FC (RE - NEE; zero during nighttime periods, and 

daytime half hours when Ta,Ts < 0).  GEP is modeled by adding additional controlling variables to the 

formula used in the NLR-FC method (Eq. 2) as:

GEP=
αQd β

αQd+β
× f (Ts)× f (VPD )× f (VWC30) (4.6)

The first term in eq (5) defines a Michaelis-Menten relationship between Qd and GEP.  The second 

through fourth terms describe sigmoidal-type [0,1] scaling responses of GEP to Ts, atmospheric vapour 

pressure deficit (VPD) and VWC30, respectively.  In contrast to Richardson et al., (2007), a scaling 

response to air temperature (Ta) was not applied in our model, since parameter analyses indicated that 

Ts and Ta were strongly correlated, and model explanatory power was not affected by the exclusion of 

Ta. 

Parameters for each gap filling model relationship were estimated using the Nelder-Mead downhill 

simplex algorithm (function fminsearch in MATLAB), which sought parameter combinations that 

minimized the Weighted Error Sum of Squares (WESS) cost function, defined by:
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Ω=WESS=∑ ⟦ ( pi−o i)
2

σi
2 ⟧ (4.7)

, where pi and oi are model-predicted and observed half-hourly fluxes, and σi is the estimated standard 

deviation for each value.  The WESS cost function was selected for use in optimization, based on 

investigation of EC measurement errors using the model-residual approach of Richardson et al., (2008).

Consistent with findings of Lasslop et al., (2008), analyses showed EC measurement error to be 

normally distributed and heteroscedastic, with a standard deviation that scaled with the expected 

magnitudes of the component fluxes (RE and GEP).  In such situations, WESS is the maximum 

likelihood estimator for model parameters.  The use the WESS cost function differs from many recent 

studies, which assume EC measurement error to be best described by a double-exponential distribution 

(see: Hollinger and Richardson, 2005; Richardson et al., 2006; and, Barr et al., 2013); in which case the

Mean Absolute Weighted Error (MAWE) is the maximum likelihood estimator for model parameters.  

σi was estimated for each half-hour following the model residual approach of Richardson et al., (2008). 

A reduced parameter version of the NLR-HL model was used to estimate fluxes for all filter-passing 

half hours, from which observed values were subtracted to generate residuals.  As a modification to the 

original method, model residuals were stratified into 20 quantiles across both Qd and Ts, and the 

standard deviation of error values were calculated for each Qd x Ts strata..  A multilinear regression was

run to fit σ values to the mean Qd and Ts of the strata, and this relationship was used to generate 

estimates of σi across all half-hours.  This approach provided considerable improvement to the 

single-variable scaling approaches previously presented in the literature, as it better related error to the 

combined magnitude of component fluxes (RE, GEP), rather than the magnitude of measured NEE, 

which is prone to issues of equifinality.  See section 3.3.3 for a complete description of the method.

Investigating this random error estimation method revealed both its output and performance to be 

highly consistent across most specifications of flux filtering (footprint and friction velocity), though 

performance declined for cases where large proportions of data were removed (e.g. > 85% of data 

removed).  In these cases, unrealistic error estimates caused the general failure of gap-filling model 

parameterization.  To address these issues, a single time series of estimated σi was generated and used 

across all model runs, in order to standardize gap-filling model performance metrics.  This σi time 

series was created from non-footprint-filtered flux data, which was friction velocity threshold filtered 

according to the moving point threshold method of Papale et al. (2006).

159



Ph.D. Thesis - J. Brodeur; McMaster University - School of Geography & Earth Sciences

 4.4.6 Factorial experiments and analyses

The study objectives were addressed by executing a factorial analysis using TP39 flux and 

meteorological data collected between 2006 and 2011.  Each year of flux data was subjected to all 

possible footprint-filtering combinations (fpm * fpTh), thus creating 50 footprint-filtered time series per 

year (5 models * 10 fpTh levels). Each set of footprint-filtered data was subsequently inputted into each 

of the three u*
Th estimation techniques.  As noted in section 4.3.2, multiple metrics (value selection 

statistics) were used to extract annual estimates from substrata estimates produced by each of the u*
Th 

estimation methods. The mean and median of these substrata results were taken for each method, and 

the maximum was also recorded for MPT-P. Each realization of these filtered data sets were then filled 

using the NLR-HL model. As a result, 150 annual data series of filtered and gap-filled half-hourly 

NEE, RE and GEP were generated for each year (1800 realizations in total).  Combinations are 

displayed in Table 4.2.  

Table 4.2: Data years, filtering and gap-filling method combinations used in factorial analyses.

fpm (5) fpTh  (10) u*
Th techniques (3) Years (6)

KM01, KM01-1D

SP90, KL04,HS00

0 (control)

0.5:0.05:0.9

MPT-P, CPD

MPT-G

2006, 2007, 2008,

2009, 2010, 2011

The amount of data removed or retained by a specific filtering application was described by the 

available data fraction (ф), which was calculated as:

φ=
na

n p

(4.8)

, where na is the number of data points available to the gap-filling model for parameterization, and np is 

the amount of data points that would be available for parameterization in a case where no filtering was 

applied, and no gaps exist.  Thus, the value of ф spans from 0, where no data points are retained by 

filtering methods for parameterization, to a maximum of 1, where all possible parameterizable data 

points are kept and used.  Ф may be expressed generally for all NEE, or used more specifically to 

describe separately the data availability for respiration (фRE) and photosynthesis gap-filling models 

(фGEP).

Binary time series (gap = 0; no gap = 1) were generated for each factorial combination, to allow 
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similarity comparisons between model filtering output via the phi statistic, which is defined as:

rΦ=
(P00 P11−P01 P10)

√P1Q1 P2Q2

(4.9)

, where values of P in the numerator indicate the proportions of data points where the compared time 

series have values that correspond to the the listed subscripts (e.g. P00 is the proportion of data points 

where both time series of interest have a filtering-induced gap).  In the denominator, P (Q) represents 

the marginal proportion of non-gaps (gaps) in the time series indicated by the subscript.  The value of 

phi is equivalent to the calculation of Pearson's correlation coefficient (r) on the binary time series. 

Though the attainable maximum and minimum values of the rΦ statistic are constrained by the 

marginal proportions of the binary variables being correlated (Ferguson 1941; Guilford, 1965), these 

effects are notable only in cases where the marginal proportions are extremely high or low. 

In the first stage of investigation, analyses of variance (ANOVAs) were used to quantify the influence 

of different data treatments to values of u*
Th. Variance in estimated u*

Th values were attributed to factors 

representing main data treatments, namely: footprint model (fpm), footprint threshold (fpTh), u*
Th method

and year; all first-level interaction terms were also included in the ANOVA model.  The measurement 

year was included as a factor in analyses in order to quantify the influence of inter-annual variability in 

u*
Th determination.  Post-hoc multiple comparison tests (function multcompare in MATLAB, with 

Bonferroni correction) were applied to ANOVA results to compare population marginal means between

factors, and test differences in marginal means for statistical significance (α = 0.05). ANOVA residuals 

demonstrated homoscedasticity and were approximately normal, supporting the use of this tool for the 

given analysis.

A second stage of investigation was undertaken to quantify and describe the interacting effects of fpTh 

and u*
Th values on time-integrated carbon exchange estimates (NEE, RE, GEP). For each footprint 

model, NLR-HL was used to fill flux data that was filtered for incremental combinations of fpTh (nofp,  

0.5, 0.55 , ..., 0.85, 0.9) and u*
Th (0.2, 0.22 , ..., 0.68, 0.7).

The third stage of investigation used ANOVAs to quantify the influence and first-level interactions of 

different filtering factors on annual gap-filled NEE, RE and GEP sums. The measurement year was also

included as a factor in analyses in order to quantify the influence of inter-annual variability in u*
Th 

determination.  Post-hoc multiple comparison tests (function multcompare in MATLAB, with 

Bonferroni correction) were applied to ANOVA results to compare population marginal means between

factors (footprint model, fpTh level, u*
Th method, year), and test differences in marginal means for 
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statistical significance (α = 0.05). ANOVA residuals demonstrated homoscedasticity and were 

approximately normal, supporting the use of this tool for the given analysis.

Preliminary analyses indicated that gap-filling model statistics and gap-filled sums were confounded by

interannual variability, as well as a non-linear relationship with ф. Therefore, directly comparing these 

quantities across multiple years and filtering treatments required they be standardized to remove the 

effects of year and ф.  This was accomplished by first estimating 'expected values' for statistics and 

sums, according to each year and ф by running gap-filling models for a series of semi-randomly 

filtered input data sets that spanned a wide range of ф values.  As a result, comparing model statistics 

and gap-filled sums across differing filtering treatments required that they be corrected by subtracting 

an 'expected value' from each of these quantities to remove interactions between year and ф.  The 

expected sums and statistical values were generated from year-specific regression curves fit between 

each of the estimated quantities and ф (Figures 4.6 and 4.7, respectively).    Each input data set was 

created by randomly removing the required number of data points from the flux time series, while 

maintaining the proportion of respiration-parameterizable data (фRE) found in the original footprint- and

u*
Th -filtered datasets (Figure 4.8).  The procedure was repeated 10 times, and all results were 

aggregated to constrain final regression curves.  

For each filtered data set, the standardized statistics and sums were expressed using both original 

(unstandardized) values, and in the form of:

δ x= xabs−xexp (4.10)

, where x denotes the statistic or sum of interest, and δx expresses the difference between the absolute 

value of this quantity obtained from the filtered data set (xabs) and the ф-predicted 'expected' value of 

this quantity (xexp).  Thus, δx is a measure of the deviation in carbon exchange sums or gap-filling 

model statistics for filtered datasets as compared to the results expected if filtering had been applied by 

random decimation of data.
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Figure 4.6: Year-specific expected values for annual carbon exchange estimates as a 
function of available data fraction for respiration-parameterizable data (фRE). Results 
are separated by those for the NLR-FC gap-filling model (left panels) and for the 
NLR-HL gap-filling model (right panels).
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Figure 4.7: Year-specific expected values for gap-filling model statistical performance 
metrics as a function of available data fraction for respiration-parameterizable data (фRE). 
Results are separated by those for the NLR-FC gap-filling model (left panels) and for the 
NLR-HL gap-filling model (right panels).
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Figure 4.8: Relationship between available data fraction for 
RE-parameterizable data (фRE) and all NEE data (фNEE) 
obtained for all factorial combinations of footprint model, fpTh 
and u*

Th estimation method over all years. A second-order 
polynomial curve is fitted to the data.
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To provide an additional metric for footprint model performance, we used the vertical wind speed 

integral turbulence characteristic (σw/u*) for each half-hour, as described by Göckede et al. (2004). 

Based on assumptions of flux-variance similarity (Stull, 1988; Wyngaard et al., 1971), values obtained 

from measurement may be compared with parameterized standard functions to assess data quality; 

differences between measured and parameterized values indicate not fully formed turbulence or 

disturbances in turbulent flow fields (Foken and Leclerc, 2004; Göckede et al., 2004; Thomas and 

Foken, 2002). Parameterized functions are calculated according to Thomas & Foken, (2002) as:

σw

u*

=1.3(1−2ζ)
(1 /3 ) , −3<ζ<−0.2

σw

u*

=0.21 ln (
z + f
u*

)+3.1 , −0.2<ζ<0.4
(4.11)

, where σw is the standard deviation of vertical wind velocity, ζ is the stability parameter (calculated as 

(z-d) /L, where z is measurement height, d is displacement height, and L is the Obukhov length), f is the

Coriolis parameter, and z+ is a normalizing factor equal to 1 m. 

All factorial experiments and analyses were carried out using MATLAB software.  Simulations were 

compiled as standalone C language programs and executed using the Shared Hierarchical Academic 

Research Computing Network (SHARCNET).  
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 4.5 Results and discussion

 4.5.1 Footprint model filtering comparisons

As a first means of footprint model evaluation, a comparison was made of the quantity and distribution 

of gaps created by footprint application for each tested value of fpTh.  Post-filtering ф differed most 

between models at the least stringent footprint threshold value tested (fpTh = 0.5; Figure 4.9).  The 

crosswind-integrated (SP90, KL04 and HS00) footprint models retained between 65 and 90% of the 

original data, while both versions of the KM01 model (1D and 2D), retained less than 40% of data at 

the least stringent fpTh setting.  Overall, this discrepancy lessened as fpTh increased (though unevenly 

and at different rates).  At the highest footprint threshold (fpTh = 0.9), all models retained less than 15% 

of data; ф values declined rapidly above fpTh=0.7 for SP90 and above fpTh=0.8 for KL04 and HS00.  

The KM01 model removed the greatest proportion of data across the entire tested fpTh range, while 

HS00 removed the least for all but the most-stringent fpTh values. ф values for KL04 displayed a 

negative bias compared to other model output (especially at lower fpTh values), as a result of the 

application of an automatic rejection criteria to all half-hours with u* < 0.2 m s-1.  This feature, in 

combination with relative less sensitivity to fpTh, caused ф for the KL04 model to decrease more 

gradually with fpTh than was observed with the SP90 and HS00 models.  

Model filtering outputs showed similar trends when examined for differences between day and 

nighttime ф (Figure 4.9c).  All models removed a larger proportion of nighttime data than daytime data;

however, the difference between these two values were relatively smaller for the crosswind-integrated 

footprint models (day/night ф difference of 0.05 to 0.1), than for the KM01 model (ф difference up to 

0.2).  When examined over the course of a year for a given fpTh value (Figure 4.9b), KL04 and HS00 

exhibited very similar intra-annual trends, with relative ф peaks in the winter and mid-summer months.

In comparison, ф of KM01 and SP90-filtered data reached a single maximum in mid-summer, with the 

seasonal difference much more prevalent for SP90. 
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The significantly greater data removal by KM01 is consistent with results obtained by previous 

investigations (Kljun et al., 2003; van de Boer et al., 2013), which suggested that the KM01 model 

overestimates footprint length across all conditions. Sensitivity tests conducted on this model (not 

shown), revealed a strong sensitivity to friction velocity – periods with low friction velocities (< 0.2 m 

s-1) are particularly prone to footprints that extend greatly upwind, with considerable portions of the 

total flux signal emanating from far beyond the bounds of the forest.  Even during periods where u* was

relatively high (0.35-0.5 m s-1), footprints still commonly stretched well past the forest bounds.  Tests 

also showed this model to be sensitive to the height of measurement above the surface, as the model 

became less selective for simulations where the sensor was placed a few metres from the ground. 
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Figure 4.9: Available NEE data fraction (ф) resulting from the application of each 
footprint model (fpm).  Panel a) shows ф as a function of the assigned footprint 
threshold (fpTh) for individual years between 2006-2011 (dots) and the all-years mean 
(line).  Panel c) displays the daytime (line, no markers) and  nighttime (line with 
boxes) difference in the all-years average value for each fpm and fpTh, while panel b) 
shows monthly variability in ф resulting from application of each fpm at fpTh=0.8.
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Footprint model outputs were also investigated for their sensitivity to changes in atmospheric 

stratification (Figure 4.10). Results showed that models performed similarly for unstable and neutral 

conditions (ζ < 0), as median Fin values during these conditions ranged between a low of 0.72 for 

KM01 models to a high of  0.84 for HS00.  The amount of unstable- and neutral-period data retained 

by application of these models across fpTh values generally reflected trends in Fin, as ф was highest for 

HS00 and lowest for both KM01 models.  Due to its automatic removal of data for periods where u* < 

0.2 m s-1,  ф for KL04 was negatively biased, especially at low fpTh values. Models showed a much 

more varied response during stable (ζ > 0) conditions.  The KM01 models were highly sensitive to 

stable conditions, and rejected data for most or all half-hours across fpTh. HS00 and KL04 models, 

conversely, were relatively little affected by changes to stable stratification, and produced ф values 

similar to that observed for neutral and unstable conditions. SP90 showed a moderate response to 

changes in stratification. The strong sensitivity of the KM01 model to stratification found in our study 

contradicts the findings by van de Boer et al. (2013), who found the KM01 model to be relatively 

insensitive to such changes.  A potential explanation for this disagreement arises from differences in 

measurement heights between these two studies (between z = 2.5 and 6 m in van de Boer et al., 2013;  

z = 28 m in our study).  An investigation of this model by Kljun et al., (2003) found the magnitude of 

stable/unstable discrepancies increased with height from the surface. 

We furthered the temporal characterization of model filtering differences by investigating half 

hour-specific ensemble ф averages (Figures  4.11 and 4.12).The day-night distinction was strongest for 

KM01 results, as most nighttime data was removed, and nighttime ф values differed distinctly from the

daytime.  The tendency for ф to be higher during all daytime hours explained the mid-summer peak 

observed in Figure 4.9b, as a longer daytime resulted in relatively more filter-passing half-hours. 

Comparing Figure 4.11 to Figure 4.12, increasing fpTh from 0.6 to 0.8 had the largest overall effect on 

SP90 filtering, where ф was substantially reduced.  Also apparent in SP90 results was a consistent 

tendency to remove data during day-night transitional periods.  This effect was attributed to the model's

use of a momentum stability correction (Eq. 1), which approaches infinity asymptotically as the 

Obukhov length (L) approaches 16(z-d) during the transition from unstable to stable conditions and 

vice versa. This characteristic has important negative implications for the use of methods that require 

measurements during this transitional period to estimate nocturnal and daytime respiration rates 

(Griffis, 2003; van Gorsel et al., 2008).  An increase in fpTh also had a substantial effect on the 

daytime-nighttime ф ratio of the HS00 model output, as a considerably higher proportion of nighttime 
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data was removed at fpTh = 0.8 than for fpTh = 0.6.
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Figure 4.10: Footprint model results presented for unstable (z/L < 0; left panels)
and stable (z/L > 0; right panels) periods of atmospheric stratification.  Top 
panels show available data fraction (ф) resulting from application of each model
across all fpTh. Bottom panels use box plots to show the general distributions of 
within-fetch flux footprint proportion (Fin) for each model in unstable (left) and 
stable (right) conditions.
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Figure 4.11: Half-hourly structure of data retained following footprint filter application for 
each method at fpTh=0.6.  Each pixel represents the proportion of specific half-hours that are 
retained for years 2006-2011; darker colours represent an increased occurrence of 
footprint-filtering gaps for the given half-hour.  Pixel columns span the course of each day 
(bottom to top), over each day of year. 
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Figure 4.12: Half-hourly structure of data retained following footprint filtering, as described in 
Figure 4.11, but for fpTh=0.8.
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The binary outputs created for each footprint filtering method output were used with Eq. 2 to quantify 

the degree of similarity between footprint filtering methods (Figure 4.13). Values of rΦ typically ranged 

between 0.2 and 0.6, and correlation between models was generally greatest at low-to-mid fpTh values.  

Correlation scores decreased rapidly at the highest fpTh values, due to the constraints imposed on 

maximum values of rΦ when binary datasets consist mostly of zeros (Davenport and El-Sanhurry, 1991;

Guilford, 1965).  Among notable results was the anticipated strong correlation between both KM01 

models (1D and 2D), and a moderate to strong correlation between KL04 and HS00 model outputs, 

which tended to increase with increasing fpTh values.  When the analysis was expanded to consider the 

lagged correlation between model outputs at differing fpTh values (cross-correlation), the relationship 

between the KL04 and HS00 models further improved, as footprint-filtered data from the HS00 model 

was most similar to KL04 output obtained with fpTh lagged by 0.1 to 0.15 (Figure 4.14).  Considered 

along with similarities in intra-annual ф trends (Figure 4.9) and responses to atmospheric stratification 

conditions (Figure 4.10), this result provides more evidence that both footprint models remove much of

the same data; though the KL04 model is more stringent for a given fpTh value, likely due to its 

pre-filtering of half-hours with u* < 0.2 m s-1.  The similarity in estimates between KL04 and HS00 

reflects the fact that both models were developed as parameterizations of more complex Lagrangian 

simulations (Hsieh et al., 2000; Kljun et al., 2004; van de Boer et al., 2013). 
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Figure 4.13: Value of Pearson's correlation coefficient,  rΦ , calculated between the binary
gap/no-gap outputs from each footprint model (indicated in the bottom-left of each panel) 
and all others at equal fpTh values.  

Figure 4.14: Cross-correlation values between HS00 
and KL04 model output for all levels of fpTh



Ph.D. Thesis - J. Brodeur; McMaster University - School of Geography & Earth Sciences

 4.5.2 Comparing friction velocity threshold estimation methods 

To investigate differences in u*
Th resulting from the selection of estimation methods and value selection 

statistic, factorial analyses results were aggregated across all runs, and grouped according to their u*
Th 

method application (Figure 4.15). The classification of value selection statistic (mean, median, max) 

refers to the statistical metric used within a given estimation method to produce a single, annual u*
Th 

estimate from numerous estimates produced during data stratification (see section 4.3.2).  

175

Figure 4.15: Box plot representation of u*
Th distributions calculated for all 

factorial combination runs, organized by u*
Th determination method (CPD, 

MPT-P, MPT-G) and value selection method (mean, median, max).
x indicates the standard value selection statistic for each determination method.
a,b indicate groups with statistically similar means (α=0.05), as determined using a 
post-hoc comparison test of ANOVA results.
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In terms of u*
Th estimate variability, the CPD method showed the greatest spread in predicted values 

across factorial runs, indicating a greater sensitivity to input data treatments (year, footprint model, 

fpTh). The interquartile ranges (IQR) of CPD estimates were greater than 0.22 m s-1, in comparison to 

values between 0.05 to 0.11 m s-1 for the MPT-P method and 0.1 m s-1 for the MPT-G method.  CPD 

estimate dispersion was slightly greater (IQR = 0.25 m s-1) when the median was used instead of the 

mean (IQR = 0.22 m s-1) as the value selection statistic. For MPT-P, estimate dispersion was 

comparable across mean and median (IQRs of 0.053 and 0.058 m s-1, respectively), but increased 

considerably (IQR of 0.11 m s-1) when the maximum value selection statistic was used.  

u*
Th estimates produced using the MPT-G method were significantly and substantially lower than those 

estimated by the CPD and MPT-P methods.  Regardless of value selection statistic, the application of 

the MPT-G resulted in a u*
Th estimate value of 0.19 m s-1, which was between 0.24 and 0.42 m s-1 lower 

than estimates from all other methods (Table 4.4).  The predominance of outliers in the MPT-P results 

is a consequence of a varied response between methods to situations where there was insufficient input 

data to provide an appropriate estimate of u*
Th. This situation generally occurred when footprint 

filtering applications removed a very large proportion (greater than 90-95%) of nighttime data points 

prior to u*
Th estimation. When operated in such situations, the CPD method experienced an outright 

algorithm failure (returning a NaN value), providing immediate feedback on the suitability of input 

data.  MPT-P and MPT-G estimates were realized, though MPT-P estimates were strongly positively 

skewed, creating positive outliers , while MPT-G results were variable and unpredictable.  The varying 

degrees of feedback that each method provides following algorithm failure is an important 

consideration when evaluating the suitability of any of these methods, given that latent erroneous 

results can introduce both random and systematic errors into u*
Th estimates. 

In general, the majority of CPD and MPT-P results suggested the use of a u*
Th value between 0.4 and 

0.6 m s-1. Within and between these results, the choice of value-selection statistic had a statistically 

significant impact on estimated u*
Th value (Table 4.4). Though the selection between median or mean 

had little effect on MPT-P and MPT-G results, the CPD method was considerably more sensitive to this 

choice, as mean-derived u*
Th estimates were an average of 0.09 m s-1 higher than median-derived values

(Table 4.4). Such a difference between mean and median values suggests that the collection of stratified

u*
Th estimates – which the CPD method aggregates to derive annual estimates – may not be normally 

distributed, or are contaminated by extreme outlier values. Further investigation of this phenomenon 

revealed a tendency for the CPD method to create a bimodal distribution of u*
Th estimates for individual
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nS*nT strata (Figure 4.16a).  This bimodal distribution was caused by a consistently high u*
Th estimate 

for the lowest of the four temperature strata used. The non-normality of CPD strata estimates led to the 

discrepancy between calculated mean and median values (Figure 4.16a).  In the case of our study, the 

mean cannot be expected to provide an accurate estimation of the central tendency of u*
Th for CPD 

estimates, and thus, should not be used. As the mean is the standard statistic used by the CPD method 

to estimate u*
Th, this result suggests that other studies using the standard CPD method closely examine 

strata estimates to ensure normality, or otherwise switch to a non-parametric estimate of central 

tendency (i.e. median).

Use of the median value selection statistic for CPD, however, results in u*
Th estimates that are, on 

average, comparable to those produced using the MPT-P method with either of the mean or median 

value selection statistics (differences of 0.028 and 0.016 m s-1, respectively; Table 2).  In comparison, 

estimates for MPT-P strata passed normality tests, and u*
Th estimates were similar for both mean and 

median value selection statistics (Figure 4.16b). Paired t-tests between treatments (method * value 

selection statistic)  indicated that the means of these three distributions (CPD-median, MPT-P-mean, 

MPT-P-median) were one of only two sets of estimates that were not statistically different from each 

other. Despite similarity of means, however, the variance of estimates was considerably larger for CPD 

than for MPT-P. 

For MPT-P, the use of the maximum value selection statistic, which is the standard value for this 

method, produced the highest mean estimate of u*
Th (0.58 m s-1), and increased u*

Th estimates by an 

average of 0.148 and 0.160 m s-1 relative to the use of mean and median, respectively. The maximum 

value selection statistic was originally used with MPT-P by Papale et al. (2006), who applied it to a 

multi-site synthesis analysis.  In such a multi-site application, the use of the maximum value selection 

statistic provides extremely conservative (high) estimates of u*
Th values in order to ensure consistency 

across sites, and increase confidence in the robustness of analysis results.  However, results from this 

study suggest that the median is a more appropriate estimator for u*
Th, as the use of the maximum value 

leads to estimates that are not representative of the majority.  The use of such a high value may also 

have unintended and considerable effects on flux estimates and relationships derived using u*
Th-filtered 

data. In addition, the results of these analyses indicate that the use of a consistent value selection 

statistic is necessary to permit a meaningful comparison of u*
Th estimation methods, since considerable 

variation between methods may be explained by different approaches to selecting a representative value

from a sample of estimates. Given the limitations of the CPD-mean approach and the desire for the use 
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of a common value selection statistic across u*
Th estimation methods, this paper used the median value 

selection statistic for all following analyses of factorial runs and u*
Th estimation methods.

Table 4.3: Mean differences in predicted u*
Th between estimation models and value-selection methods 

across factorial run combinations.  Results from the KM01 footprint model have been excluded from 
calculations, due to destabilizing effects on u*

Th estimation methods. Superscripts indicate groups with 
statistically similar means (α=0.05), as determined using a post-hoc comparison test of ANOVA 
results.   

CPD 
mean

CPD 
median

MPT-P 
mean

MPT-P 
median

MPT-P 
max

MPT-G 
mean

MPT-G 
median

CPD mean 0.090 0.063 0.075 -0.086 0.332 0.337

CPD median -0.090 -0.028a -0.016a -0.176 0.242 0.247

MPT-P mean -0.063 0.028a 0.012a -0.148 0.270 0.275

MPT-P median -0.075 0.016a -0.012a -0.160 0.258 0.263

MPT-P max 0.086 0.176 0.148 0.160 0.418 0.423

MPT-G mean -0.332 -0.242 -0.270 -0.258 -0.418 0.005b

MPT-G median -0.337 -0.247 -0.275 -0.263 -0.423 -0.005b

178

Figure 4.16: Histograms of Monte Carlo intermediary u*
Th 

estimates for all ns*nT strata for 2006 (no footprint applied), 
obtained using the a) CPD, and the b) MPT-P u*

Th estimation 
methods. The solid black vertical line indicates the median value of 
all estimates, while the mean of estimates is represented by the 
vertical dashed line. 
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Our results showed large and varied differences from analyses performed by Barr et al. (2013), who 

implemented and compared the CPD and MPT-P methods over a large collection of eddy covariance 

measurement sites. These analyses included our site, though their study used data measured between 

2003 and 2007, while ours used 2006 to 2011 data. In their study, TP39 was identified as one of a 

handful of irregular sites, which commonly demonstrated an “excess” situation during CPD estimation 

(NEE magnitudes decreased as u* increased up to u*
Th).  CPD estimates were comparable to those 

generated in our study, but had a high degree of associated uncertainty (CPD-estimated u*
Th was 0.5 +/- 

0.38 ms-1). Applying the MPT-P-mean method, however, their estimates were substantially lower than 

ours (0.2 m s-1 in their study, compared to 0.4 - 0.5 ms-1 in ours).  

The causes of these discrepancies are likely numerous: investigations by Barr et al. (2013) were carried

out on older data that was known to have some integrity and structural issues. This data has since been 

updated and improved considerably; thus it would be advisable that these analyses be repeated using 

the new (and expanded) data sets. Indeed, our analyses indicated that CPD operated in a manner more 

consistent with most other sites in Barr et al. (2013), as “deficit” situations were almost exclusively 

experienced. Another likely cause of these noted differences is the use of the mean value selection 

statistic with CPD by Barr et al. (2013) instead of the median.  As shown in our study, the use of 

CPD-mean is invalid at our site, as assumptions of normality and unimodality are violated.  

In this study, we used a single, static u*
Th value for the entire year.  Results of Barr et al. (2013) 

suggested that our site experiences a considerable seasonal variation in estimated u*
Th – results that 

were confirmed by our own analyses.  Though all the u*
Th methods we implemented in this study were 

capable of producing seasonal estimates, we used a single annual value in the interest of simplifying 

the tasks of classifying effects on u*
Th estimates and to reduce issues related to missing/poorly estimated

seasonal values.  Further work should expand this comparison to consider the effect of seasonal 

estimates.

 4.5.3 Controls on u*
Th estimates: Footprint filtering and inter-annual 

variability

As a first investigation of u*
Th estimates controls,we aggregated and compared factorial runs results 

according to the following data treatment groups: footprint model, u*Th estimation method, input data 

year and fpTh level (Figure 4.17).  Factorial analyses indicated problems estimating u*Th values using 
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KM01-filtered data, since the highly-restrictive model commonly removed a greater amount of data 

than tolerable by the u*Th estimation methods.  As a result, many estimates associated with this 

method were NaN values, or were otherwise highly variable outliers.  Due to the broad failure of this 

model to produce unusable data sets, all results associated with application of the KM01 model were 

discarded for the remainder of analyses, as it was concluded that this model cannot be applied 

practically to data at our site.  

All groups – with the exception of MPT-G estimates – showed a general increase in estimated u*
Th  with

fpTh; this relationship was especially pronounced for high fpTh values (fpTh > 0.7).  Additionally, 

dispersion between and within groups increased with fpTh, showing a correlation between u*
Th estimate 

variability and the amount of input data available to estimation methods.

Among footprint model groups (Figure 4.17, panel a), application of KL04 generally resulted in higher 

u*
Th estimates for given fpTh values up to a level of fpTh = 0.85.  The SP90-filtered data showed the 

greatest sensitivity to changes in fpTh levels, as group u*
Th means ranged between 0.35 for the 

no-footprint (control) case, to 0.73 m s-1 for the highest fpTh level. HS00 results were least sensitive to 

changes in fpTh, with a u*
Th mean range of 0.35 to 0.58 m s-1. Within-group variability of u*

Th estimates 

was greatest for the SP90-filtered data, while lowest for data filtered with the KL04 model. 

Year-to-year variation was observed in u*
Th estimates, but the apparent discrepancies between years was

much smaller than those observed among levels of other groups (Figure 4.17, panels c, d).  The relative

difference between u*
Th for different years was generally consistent over all fpTh values, and the 

interaction effect of these two factors was not significant.
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Figure 4.17: Group mean u*
Th estimates (symbols) and standard deviation 

(vertical bars) across dimensions of footprint model (panel a), u*
Th estimation 

method (panel b), and year (panels c and d). Results obtained through 
application of the MPT-G method are only included for demonstrative purposes
in panel b) – they are removed from all other panels in order to reduce 
unwarranted group biases and error. 
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When grouping and comparing between u*
Th estimation methods (Figure 4.17, panel b), MPT-P 

estimates were typically higher than those produced by the CPD method, though predictions of the two 

tended to converge for fpTh between 0.75 and 0.85.  The MPT-G method, in contrast, consistently 

produced much lower u*
Th values than the other methods, while also showing little sensitivity to 

changes in fpTh. 

Consistently, the MPT-G method results differed from those of the other estimation methods, both in 

terms of the magnitudes of u*
Th estimates produced, and the response of these estimates to differing 

methodological and input data treatments.  In-depth investigation of MPT-G method operation and 

performance indicated that estimates produced by this method were closely related to the minimum 

values of u* included in the input data.  Since the algorithm showed a tendency to exit (returning a u*
Th 

estimate) after a short number of outer loop repetitions (between two and five), the final estimate from 

this method was much more correlated to the median u*
Th value of the initial inner-loop evaluation 

window, than to specific data treatments. Considering these questionable features, results associated 

with MPT-G application were discarded for other panels in Figure 4.17, and for all subsequent 

ANOVAs, since their inclusion confounded results, and diminished the importance of footprint 

filter-related treatments on u*
Th values. Thus, the remainder of analyses consider only the CPD and 

MPT-P u*
Th estimation methods. 

An ANOVA was conducted on factorial results, in order to identify significant controlling factors on 

u*
Th estimation, and diagnose interaction effects that explain inconsistencies among and between group 

responses in Figure 4.17. Results of this analysis are shown in Table 4.4 (ANOVA table), and results 

from post-hoc multiple comparison tests are displayed  in Figure 4.18. ANOVA tests indicated that all 

four main effects (footprint method, fpTh, u*
Th method and year) had statistically significant impacts on 

the estimated value of u*
Th, while four two-factor interactions were also significant. The largest mean 

effect (as denoted in Table 4.4 by Effect Mean Square) was contributed by the choice of u*
Th method, 

followed in importance by the choice of footprint model. Though fpTh level explained the largest 

amount of variability in u*
Th of any factor tested (24 % of total variability explained), its mean effect on

u*
Th was spread among many fpTh levels.  Investigating the marginal means predicted for each fpTh level 

(Figure 4.18, panel c), showed that estimates for fpTh levels between 0.5 and 0.7 are not statistically 

different, while the estimated marginal mean u*
Th values for the control (no footprint) case and fpTh > 

0.7 differ significantly and considerably from these middle values.  Considered along with relatively 

small mean effects for fpTh-associated interaction terms, these results suggest that the effect of fpTh level
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on u*
Th is relatively minimal at low to mid-level fpTh values, and is greater at the lowest (no footprint 

case) and highest values. In order to investigate interactive effects, redundant fpTh levels were not 

amalgamated, and instead retained for the remaining analyses.

Table 4.4: Simplified ANOVA results table, displaying factors with significant effect on u*
Th value, and

the amount of overall variation explained by each. Values for interaction terms are shown individually
and grouped. All listed factors are statistically significant for α<0.001.

Factor Effect Sum
of Squares

d.f. Effect
Mean

Squares

F-score %  Variability 
Explained

fpm 0.289 2 0.145 64.889 9.85

fpTh 0.713 8 0.089 39.981 24.27

u*
Th

m 0.286 1 0.286 128.337 9.74

Year 0.103 5 0.021 9.238 3.51

fpm x fpTh 0.124 18 0.008 3.491

32.07

4.24

fpm x u*
Th

m 0.222 2 0.111 49.901 7.57

fpTh x u*
Th

m 0.257 9 0.032 14.432 8.76

u*
Th

m x Year 0.338 5 0.068 30.318 11.50

Error 0.604 295 0.002 ---- 20.56
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Figure 4.18: Marginal means (circle) and standard errors (line) for group-wise 
u*

Th estimates, calculated using post-hoc multiple comparison tests from ANOVA 
results. Top left: Interannual u*

Th marginal means for both MPT-P and CPD 
estimation methods.  Bottom left: u*

Th marginal means for footprint model x u*
Th 

method combinations.  Right: u*
Th marginal means for each fpTh level.  
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As demonstrated in Figure 4.18, u*
Th estimates were subject to interannual variability. When only the 

primary effect was considered, the year-to-year effect was statistically significant, but its magnitude 

was relatively small (+/- 0.04 m s-1) in comparison with other first-level factors.  The influence of 

interannual variability was further realized by a significant interaction effect between u*
Th method and 

year (Table 3), indicating that the amount of interannual variability observed in u*
Th was dependent on 

the u*
Th method applied. CPD and MPT-P values differ significantly and considerably from each other 

for years 2008-2011 (Figure 4.18, panel a), both in terms of mean u*
Th estimate, and year-to-year trends.

Comparing the methods, the MPT-P showed less interannual variability (CV = 6.1% ) than did CPD 

(CV = 12.9% ). This result contrasts the findings of Barr et al. (2013), who reported that the application

of the CPD method reduced the magnitude of interannual variability as compared to MPT-P.  Their 

result, however, was derived from aggregation across 38 different sites, and therefore, doesn't 

necessarily reflect the nature of interannual variation at our site. Reasons for the interannual variability 

observed at our site may be attributable to year-to-year differences in flux source areas (due to wind 

speed, direction and turbulence regimes), variation in canopy structure and density (e.g. leaf area 

index), as well as changes in the nature and magnitude of ecosystem respiration.

The strongest interaction was observed between footprint method and u*
Th estimation method selections

(fpm x u*
Th

m; Table 3; Figure 4.18). Applying the CPD method to SP90- or HS00-filtered data resulted in

markedly lower u*
Th estimates than obtained when applying the KL04 method – or when MPT-P was 

applied to any footprint filtered data. In an attempt to diagnose a previously unidentified influence on 

u*
Th estimates, we further investigated the relationship between footprint filter-passing half-hourly u* 

values for each footprint model and fpTh combination, and the u*
Th estimate produced by CPD and 

MPT-P.  Results showed a wide difference in the distribution and mean of u* values remaining after 

different footprint applications (Figure 4.19).  Among footprint methods, half-hours retained by 

application of the SP90 model had consistently lower overall u* values, while those produced from 

KL04-filtering (which applies an internal u*
Th of 0.2 m s-1) were consistently highest.  Increases in fpTh 

had little effect on the mean filter-passing u* value for KL04, but coincided with mean u* value 

increases for HS00.  Mean u* of SP90 filtered data increased with fpTh up to 0.65, but then decreased 

afterwards, becoming increasingly variable as the number of filter-passing half-hours rapidly decreased

beyond this point (Figure 4.19).  The similarity between relative differences of mean filter-passing u* 

values for each footprint method and the differences in fpm x u*
Th

m marginal means (Figure 4.18, panel 

b) suggests a potential relationship between input u* values and the u*
Th values estimated by the CPD 
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and MPT-P methods. 
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Figure 4.19: Cumulative frequency analysis of u* values among footprint filter-passing 
half-hours, for different footprint models and fpTh values. Cumulative frequencies are 
shown as the number of half-hours with a value greater than that values on the 
abscissa. Cumulative amounts shown are average amounts across years 2006—2011. 
Vertical lines indicate the mean u* value for all footprint filter-passing half-hours for 
the specified footprint model and fpTh value. Mean u* values are coincident for KL04 
and HS00 in panel d).
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Furthering this analysis, a linear regression was performed between mean input u* and predicted u*
Th for

each method.  Results revealed a differing response of CPD and MPT-P methods to variability in input 

u* values (Figure 4.20).  The CPD u*
Th estimates showed a significant, strongly positive response (R2 = 

0.96, p~0) to mean input u* value; on average, each unit increase in mean input u* caused a 1.8 fold 

corresponding increase in the estimated u*
Th.  The relationship between mean input u* and output u*

Th 

was also significant and positive for MPT-P, though the relationship was weaker (R2 = 0.47, p < 0.001),

with a much smaller slope (0.43) than observed for CPD.  Considered alongside the differences in input

u* values produced by each footprint model (Figure 4.19), this differential response between u*
Th 

estimation models explains the strong fpm x u*
Th

m interaction observed (Table 4.4, Figure 4.18).  The 

mechanism for the apparent sensitivity of the CPD method to mean input u* value is presently unclear.  

Further analyses are required to determine whether the CPD method is providing appropriate estimates 

of u*
Th (that coincidentally scale with the mean value of input u*), or whether this phenomenon 

represents a limitation of the CPD method itself.  This finding does, however, prompt an important note

(and caution) regarding inferences drawn from generalized data: Results shown in Figure 4.15 

indicated that CPD-median and MPT-P-median estimates were equivalent in terms of mean estimated 

value; however subsequent analyses demonstrated fundamental differences between the estimation 

methods. 
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Figure 4.20: Scatter plot of the mean input u* for each footprint 
filtering combination versus u*

Th estimates produced by the CPD 
(grey circles) and MPT-P (black diamonds) methods. Both trend 
lines are statistically significant for α < 0.001.
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 4.5.4 Combined effects of footprint and u*
Th filtering on annual carbon

exchange estimates

The effects of footprint filtering methods and u*
Th estimates on annual ecosystem carbon exchanges 

(NEE, RE, GEP) were investigated through a factorial simulation, which calculated gap-filled sums for 

a wide range of possible u*
Th values (0.1 to 0.7), for all fpTh levels and footprint models (see section

4.4.6).   The results are presented as surfaces in Figure 4.21, which depict the mean deviation of annual 

carbon exchange sums (ΔNEE,  ΔRE,  ΔGEP)  for each footprint model, fpTh and u*
Th combination.  

Deviations were calculated as the difference between the estimate of a given pixel (fpTh, u*
Th 

combination), and the value corresponding to the bottom-left pixel of the surface (no footprint, u*
Th = 

0.1); this approach was used to standardize results against interannual variability. Superimposed on 

these surfaces are actual u*
Th estimates for each u*

Th method, year and fpTh combination (see section

4.5.3), which provides a means of quantifying the implications of these treatments on annual carbon 

exchange sums. 

The general effect of u*
Th on annual carbon exchange values is demonstrated as north-south variation in

the panels of Figure 4.21. Across footprint models, increasing u*
Th generally resulted in corresponding 

increases to annual RE estimates.  The rate of RE increase with u*
Th was strongest between 0.2 and 0.4 

m s-1, and lessened above this value. The net effect of increasing u*
Th from 0.1 to 0.5 m s-1 was to 

increase annual RE by as much as 250 g C m-2 y-1 for a given footprint model and fpTh value.   

A notable deviation from general trends was observed when the SP90 footprint model was applied to 

data with a fpTh greater than 0.7. In these cases, the proportion of data removed by footprint- and u*
Th 

filtering applications was beyond the tolerance limits of the NLR-HL gap-filling model, resulting in RE

(and subsequently, NEE) estimates with large uncertainty and a strong negative bias.  The extensive 

data removal in these cases were attributed to combined effects of stringent SP90 footprint filtering 

(Figure 4.9), and its tendency to retain low-u* values (Figure 4.19), which were removed as u*
Th 

increased (demonstrated in Figure 4.22). The effect of a u*
Th increase was also positive for annual GEP, 

though the rate of increase and strength of the effect were both less than for RE. Net increase in GEP as

a result of u*
Th increase was similar across all fp models and as much as 120 g C m-2 y-1.  As a result of 

the partially-offsetting increases in both RE and GEP, NEE increased with u*
Th at a lower rate and to a 

lesser amount than found for RE. An increase of u*
Th from 0.1 to 0.5 m s-1 generally had a net positive 

effect on NEE (meaning less ecosystem carbon sequestration) in the order of 120 g C m-2 y-1.  
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Figure 4.21: Pseudocolour surfaces representing mean deviation of annual 
carbon exchange sums (ΔNEE,  ΔRE,  ΔGEP) across all fpTh and u*

Th 
combinations, for each footprint model. Deviations represent the difference 
between estimates for a given fpm, fpTh, u*

Th combination and the value 
corresponding to the bottom-left pixel (no footprint, u*

Th = 0.1).  Actual u*
Th 

estimates for each footprint model, fpTh level, and year are superimposed on 
surfaces as coloured dots (CPD, black; MPT-P, blue; MPT-G, red)
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Figure 4.22: Effect of applied u*
Th value on the available data fraction of

respiration-parameterizable data (фRE). Values are shown separately for 
each footprint model type at two fpTh levels: fpTh=0.6 (no markers), and 
fpTh=0.8 (square markers).
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When these surfaces were considered in the context of actual u*
Th estimates (included in Figure 4.21), 

the large discrepancies between u*
Th methods resulted in NEE, RE and GEP sums that were consistently

larger for MPT-P than for MPT-G, with NEE differences generally ranging between 50 and 100 g C m-2

y-1.  Estimates associated with the CPD method ranged between these two extremes, due to the strong 

interaction effects of this method with footprint model and fpTh.  

The effects of fpTh value on annual carbon exchange estimates (west-to-east trends in Figure 4.21), 

showed a variable effect.  Increasing fpTh from the control case (no footprint) to moderate values (0.5 to

0.7) resulted in a strong positive increase in annual RE. For SP90 and KL04, the effect was most 

pronounced between the control case and fpTh = 0.5, where RE increased by approximately 100 g C m-2 

y-1; subsequent increases in fpTh through 0.7 had little effect on RE.  For the HS00 model, the 

magnitude of RE increase was similar, but the rate was more gradual, peaking around fpTh = 0.75. 

Disregarding problematic results for SP90, annual RE decreased sharply with fpTh at high values ( fpTh 

> 0.7 for KL04, and > 0.75 for HS00), as estimates were as much as 200 g C m-2 y-1 lower at fpTh = 0.85

than at the mid-value peak.

GEP demonstrated a similar, but muted relationship with fpTh as observed for RE; annual values 

increased up to 50 g C m-2 y-1 at moderate fpTh values, and decreased by approximately the same 

magnitude at the highest values.  The combined effect of these RE and GEP trends are demonstrated in 

the fpTh relationship with NEE (Figure 4.21, top panels): The greater amplitude of RE changes relative 

to GEP resulted in a pattern of annual sums that increased between low and medium fpTh, reaching a 

peak deviation of approximately +100 g C m-2 y-1.  This trend reversed at high fpTh, and ΔNEE became 

negative for fpTh > 0.7 and 0.8 for KL04 and HS00, respectively.  Overall, KL04 and HS00 showed 

similar responses to changes in fpTh and u*
Th, though the trends in HS00 results were shifted along the 

dimension of fpTh by approximately 0.2. 

The relationships shown here between fpTh, u*
Th and annual carbon exchange sums provide substantive 

information about the nature and representativeness of carbon fluxes measured at our site.  A general 

increase of annual RE with u*
Th is consistent with findings of other u*

Th studies (Barr et al., 2013; 

Goulden et al., 1996; Papale et al., 2006; van Gorsel et al., 2009), and the general plateau of this 

relationship above approximately u*
Th = 0.3 m s-1 means that differences between u*

Th estimation 

methods above this value will have minimal implications for annual carbon exchange estimates – 

though this value is not attained in all scenarios. 

Perhaps a more interesting and important relationship is the increase and subsequent decrease of RE 
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(and subsequently NEE) with increasing fpTh.  This effect suggests that footprint applications are 

capturing real differences in carbon exchange magnitudes between the TP39 forest and the larger 

region.  With the exclusion of SP90 results, high fpTh are coincident with considerable decreases in 

annual RE and NEE, implying that regions in proximity to the EC measurement tower (i.e. the TP39 

site), have a greater net productivity than the surrounding ecosystems. This result further supports the 

use of a footprint filter at our site, and establishes the need for an objective method of evaluating which

filtering approach is most appropriate and physically correct at our site.

When considered in the context of actual results, the carbon exchange sums that emerge from changing 

fpTh values represented an interplay between two influences: the direct effect of fpTh levels on the 

annual sums (demonstrated by the non-linear west-to-east trends in the surfaces of Figure 4.21); and the

positive relationship between fpTh and estimated u*
Th value.  These two effects were positive and 

reinforcing for low to medium fpTh values (0 to 0.7), leading to strongly positive deviations in NEE, RE

and GEP.  Above this level, however, the direct effect of fpTh transitioned to negative, and served to 

offset the positive indirect effect on u*
Th.  This effect is particularly strong for CPD estimates, due to the

sensitivity of its u*
Th estimates to the applied fpTh (Figure 4.20). 

These results demonstrate that the selection and application of a footprint method and fpTh value affects

final carbon exchange sums in three different ways:

1. Footprint application selectively removes flux data that is deemed non-representative of the 

ecosystem of interest.  Considering that these excluded points are contaminated by fluxes from 

differing ecosystems, the resulting values used for parameterizing gap-filling models and 

deriving annual sums will differ according to which method and fpTh is used.

2. Footprint application affects the magnitude of u*
Th estimates. As seen in Figure 4.19, footprint 

models vary in terms of the distribution of retained u* values.  Figure 4.20 shows that the nature

of input u* influences the estimates of u*
Th created (much more so for CPD than for MPT-P), and

Figure 4.21 demonstrates that the value of estimated u*
Th influences annual sums of carbon 

exchanges.

3. Footprint applications remove data from NEE time series, thus affecting the performance of the 

u*
Th estimation methods and gap-filling models that utilize this data. Both these applications 

show a considerable resilience to data gaps (see Chapter 3; Barr et al., 2013); however, data 

removal above 90% of nighttime data (as seen for SP90 at high fpTh), causes failure in both u*
Th 
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estimation and gap-filling models, thus resulting in unrealistic and erroneous annual estimates.

 4.5.5 Effect of filtering on annual carbon exchange estimates 

To further investigate the relationship between EC filtering and annual carbon exchange estimates at 

our site, we standardized estimates for each factorial run with expected values for given ф and year (see

section 4.4.6). Results were structured according to фRE to investigate the effect of increasing data 

removal by filtering.  Results showed that filtering operations had a strong, non-negligible effect on 

annual values (Figure 4.23). Compared to annual values expected for the same фRE and year, NEE, RE 

and GEP were all positively biased by filtering operations, with median increases at the largest фRE 

values of 131, 265 and 126 g C m-2 y-1, respectively (Figure 4.23, right panels).  Since the highest фRE 

values corresponded to the no-footprint (fpTh = 0) case, this initial offset in carbon exchange estimate 

deviations was completely the result of u*
Th filtering application. As фRE decreased (primarily due to 

footprint filtering), deviations of annual carbon exchange sums varied in response. NEE deviation 

(δNEE) generally decreased with decreasing фRE, while both δRE and δGEP increased and then 

decreased over this range.  As фRE decreased, δRE increased by an average of 62 g C m-2 y-1, to peak in 

the range 0.35 < фRE < 0.4, while GEP peaked at a lower фRE (0.25) with a similar average increase (57 

g C m-2 y-1). The spread in annual estimates was negatively correlated with фRE, and was most 

pronounced for δRE values.  

We also aggregated gap-filling model performance metrics (section 4.4.6) according to фRE, to explore 

potential changes in model goodness-of-fit and bias with filtering applications.  Though spread existed  

in results, the average goodness of fit measures (WESS, R2) reached distinct optimal values in the 

vicinity of 0.15 < фRE < 0.20 (Figure 4.24, right panels). From this peak, a gradual decrease in 

performance was found for increasing фRE, while goodness-of-fit worsened abruptly and markedly for 

фRE <0.15.  Similarly, bias (approximated by AE) was not substantially negatively affected until фRE fell

below 0.15. Results for both annual gap-filled sums and gap-filling model performance statistics 

suggest that, on the whole, the filtering operations applied to the EC-measured data have a considerable

effect on ecosystem exchange estimates, and the correspondence of the filter-passing data to the 

parameterized models. Trends in annual sums across фRE imply a source-area control on these values, 

and trends in statistical performance metrics suggest that filter-passing data is most consistent with 

model estimates when footprint filtering is relatively stringent. 
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Figure 4.23: Annual carbon exchange estimates aggregated for all factorial filtering runs 
and all years, presented as a function of фRE. The left panels show absolute results 
(uncorrected for interannual and фRE effects), while the right panels present the results as 
standardized deviations from expected values.
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Figure 4.24: Gap-filling model performance metrics aggregated for all factorial filtering 
runs and all years, presented as a function of фRE. The left panels show absolute results 
(uncorrected for interannual and фRE effects), while the right panels present the results as 
standardized deviations from expected values. Desired statistical results are minimized 
WESS, maximized R2, and an AE value of zero.
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 4.5.6 Flux filtering and controls on annual exchange estimates

Considering the numerous factors (footprint model, fpTh level, year and u*
Th estimation method) that 

may affect the observed trends in annual NEE (Figure 4.23), we conducted ANOVAs to quantify their 

influence on annual estimates, and to characterize any first-level interactions between them.  

Results showed that interannual variability had the largest overall effect on annual gap-filled NEE 

estimates, explaining 50 and 41% of the total variability for NLR-FC and NLR-HL outcomes, 

respectively (Tables 4.5 and 4.6).  The selected footprint model (fpm) and fpTh level each exhibited 

strong, relatively similar mean effects on annual NEE values; however, due to its greater degrees of 

freedom, fpTh level explained more of the total variability (21 and 18 % for NLR-FC and NLR-HL) 

than fpm (5.5% for each). The fpm * fpTh factor was the strongest of the interaction terms; taken together,

all interaction terms accounted for approximately 15% of total NEE estimate variability.  Though the 

application of u*
Th filtering was shown to have a considerable effect on NEE estimates (Figure 4.23), 

results showed that the selection of a particular u*
Th method was insignificant to the resulting annual 

NEE estimates (p = 0.96 for NLR-FC; p = 0.2 for NLR-HL). All first-level u*
Th interaction terms were 

insignificant or very small, suggesting that both of the tested methods (CPD, MPT-P) produce 

equivalent effects.  Overall, the ANOVA findings reinforce the need to standardize annual results for 

the effect of interannual variability, and demonstrates the importance of footprint model and fpTh level 

on NEE values estimated for this site. 

Post-hoc multiple comparison tests were run on ANOVA results to test for significant differences in 

marginal means of RE, GEP and NEE sums between years, footprint models and fpTh levels. Results for

RE (Figure 4.25) showed interannual variability to have the largest effect on annual gap-filled 

estimates, as variation was as much as 280 g C m-2 y-1 between the year with the lowest value (2011) 

and the highest (2010).  In comparison, annual RE was less sensitive to the selection of footprint 

model, as variability was less than 50 g C m-2 y-1 between the all models.  RE estimates were highest 

when the HS00 model was applied and lowest for SP90.  In terms of fpTh level, applying a fpTh of 0.5 

resulted in a step increase of 75 g C m-2 y-1 compared to the no-footprint case.  This effect remained 

with increasing fpTh up to values equal or greater than fpTh = 0.7, at which point the annual estimates 

were negatively affected.  Relative to the no-footprint results, application of fpTh=0.8 caused a net 

reduction in annual RE estimates.  
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Table 4.5: ANOVA results table of effects on annual NEE estimate obtained using the NLR-FC 
gap-filling model. Factors with p-values listed as zero are statistically significant for α<0.0001.

Factor

Effect
Sum of
Squares

%
Variability
Explained d.f.

Effect Mean
Squares F-score p-value

fpm 157102 5.5 2 78551.1 84.47 0

fpTh 597433 20.7 8 74679.1 80.30 0

u*
Th

m 3 0 1 2.9 0.00 0.96

Year 1451125 50.4 5 290224.9 312.08 0

fpm x fpTh 219284 7.6 16 13705.3 14.74 0

fpm x u*
Th

m 786 0.0 2 393.2 0.42 0.66

fpm x Year 32971 1.1 10 3297.1 3.55 0

fpTh x u*
Th

m 22191 0.8 8 2773.9 2.98 0

fpTh x Year 188083 6.5 40 4702.1 5.06 0

u*
Th

m x Year 8540 0.3 5 1708 1.84 0.11

Error 197156 6.8

Total 2881314 309

Table 4.6: ANOVA results table of effects on annual NEE estimate obtained using the NLR-HL 
gap-filling model. Factors with p-values listed as zero are statistically significant for α<0.0001.

Factor
Effect Sum 
of Squares

% Variability
Explained d.f.

Effect Mean
Squares F-score p-value

fpm 127369 5.5 2 63684.7 65.78 0

fpTh 408502 17.8 8 51062.7 52.75 0

u*
Th

m 1624 0.1 1 1623.9 1.68 0.2

Year 931414 40.6 5 186282.7 192.42 0

fpm x fpTh 156084 6.8 16 9755.2 10.08 0

fpm x u*
Th

m 9682 0.4 2 4841 5.00 0.01

fpm x Year 36714 1.6 10 3671.4 3.79 0

fpTh x u*
Th

m 4202 0.2 8 525.2 0.54 0.82

fpTh x Year 147424 6.4 40 3685.6 3.81 0

u*
Th

m x Year 8050 0.4 5 1610 1.66 0.15

Error 200394 207 968.1

Total 2295037 304
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Interannual variability was comparably strong for GEP (Figure 4.26), however year-to-year trends in 

annual values were somewhat discordant (low value in 2007; high in 2011). Annual GEP was less 

sensitive to footprint model selection than RE, as all marginal mean estimates were within 25 g C m-2 

y-1.  Variability in GEP due to fpTh level was less than for RE as well.  Though a similar step increase 

occurred from the no-footprint case to fpTh = 0.5, this effect was maintained for most of the fpTh range; 

only a small decrease occurred at fpTh = 0.8, and values remained higher than the no-footprint case. The

results and trends for annual NEE values (Figure 4.27) were considered in the context of its component 
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Figure 4.25: Marginal means (symbols) and standard errors (line) 
for group-wise RE estimates, calculated using post-hoc multiple 
comparison tests from ANOVA results. Top left: Interannual RE 
marginal means.  Bottom left: RE marginal means for footprint 
model selection.  Right: RE marginal means for each fpTh level.  
Note that marginal means for fpTh are only shown up to 0.8, as a 
result of non-normality of higher-level results due to gap-filling 
model failure with SP90-filtered data above this fpTh level.
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fluxes (RE, GEP).  Inter-annual variability was less pronounced for NEE than for either RE or GEP, 

suggesting compensating effects of component fluxes.  Footprint model-related effects were similar in 

magnitude to that of RE, and NEE was most negative for SP90 application, followed by KL04 and 

HS00. As a result of the strong RE decrease at high fpTh levels and the relative consistency of GEP 

estimates over this range, NEE was strongly negatively influenced by increases in fpTh above 0.65.  

Estimates for fpTh = 0.8 were as much as 150 g C m-2 y-1 lower than the no-footprint case, indicating 

that the strictness with which footprint filtering is applied has large implications for annual NEE 

estimates. 
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Figure 4.26: Marginal means (symbols) and standard errors (line) for group-wise GEP 
estimates, calculated using post-hoc multiple comparison tests from ANOVA results. Top 
left: Interannual GEP marginal means.  Bottom left: GEP marginal means for footprint 
model selection.  Right: GEP marginal means for each fpTh level.  Note that marginal 
means for fpTh are only shown up to 0.8, as a result of non-normality of higher-level 
results due to gap-filling model failure with SP90-filtered data above this fpTh level.
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Figure 4.27:  Marginal means (symbols) and standard errors (line) 
for group-wise NEE estimates, calculated using post-hoc multiple 
comparison tests from ANOVA results. Top left: Interannual NEE 
marginal means.  Bottom left: NEE marginal means for footprint 
model selection.  Right: NEE marginal means for each fpTh level.  
Note that marginal means for fpTh are only shown up to 0.8, as a 
result of non-normality of higher-level results due to gap-filling 
model failure with SP90-filtered data above this fpTh level.
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 4.5.7 Evaluating performance of flux filtering applications

Extending the results of the previous sections, we conducted additional ANOVAs and multiple 

comparison tests on both carbon exchange sums and gap-filling model performance metrics, in order to

identify the most appropriate footprint filtering specifications for our site.  These specifications were 

evaluated on the constraints that methods should maximize goodness-of-fit metrics, while maintaining 

low annual estimate uncertainty and bias. We constrained our analyses by removing non-significant 

factors, and removing the effects of interannual variability and ф by performing tests on deviation 

values of sums and statistics (see section 4.4.6).  Multiple comparison tests showed consistent and 

significant differences in performance metrics between footprint models and fpTh levels across both 

gap-filling methods (Figure 4.28). Goodness-of-fit measures (WESS, R2) were relatively similar across 

footprint models at low fpTh values, but deviated at higher levels.  Across both gap-fulling models and 

for both R2 and WESS, KL04 results consistently had the best performance metrics. HS00 showed 

similar responses of goodness-of-fit metrics to fpTh, but at a fpTh lag of approximately 0.1.  Both KL04 

and HS00 showed similar, consistent bias estimates across fpTh.  Conversely, performance of SP90 

results diminished rapidly beyond fpTh = 0.7, suggesting a rapid increase in gap-filling model 

uncertainty and bias at high fpTh values. 

In order to investigate the effect of increasing fpTh (and therefore, removing additional data points) on 

the uncertainty and reliability of annual estimates, we also used multiple comparison tests to compare 

the inter-quartile range (IQR) of annual carbon exchange estimate deviations across footprint models 

and fpTh levels (Figure 4.29).  For both gap-filling models, RE IQR demonstrated a greater sensitivity 

to fpTh (and thus, data removal), than GEP or NEE, due to the fact that footprint filtering removed a 

relatively larger proportion of RE-parameterizable (nighttime) data.   IQR was typically lowest for 

KL04, and was relatively consistent (between 50 to 100 g C m-2 y-1) for fpTh levels less than 0.85.  IQR 

of SP90-associated estimates increased rapidly above fpTh = 0.7, indicating that the degree of data 

removal surpassed the tolerance of the gap-filling models to produce reliable estimates.  Similar effects 

were seen for the remaining models, though at higher fpTh values (greater than 0.8 for KL04; above 

0.85 for HS00).  

Considering the competing constraints for ecosystem-representativeness and gap-filling model 

reliability, it can be inferred from the combined results of these tests that the optimal footprint 
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specification is the KL04 applied at a fpTh level of 0.8.  This combination maximizes the 

goodness-of-fit, while ensuring consistency of gap-filling model estimates. 
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Figure 4.28: Marginal means (symbols) and standard errors (lines) of standardized 
gap-filling model statistical performance metrics for each footprint model, as a function of 
fpTh level. Group-wise means were calculated using post-hoc multiple comparison tests from
ANOVA results. Results are separated by those for the NLR-FC gap-filling model (left 
panels) and for the NLR-HL gap-filling model (right panels).
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Figure 4.29: Marginal means (symbols) and standard errors (lines) of inter-quartile 
range of standardized gap-filled annual carbon exchange estimates for each footprint 
model, as a function of fpTh level. Group-wise means were calculated using post-hoc 
multiple comparison tests from ANOVA results. Results are separated by those for the 
NLR-FC gap-filling model (left panels) and for the NLR-HL gap-filling model (right 
panels).
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 4.5.8 Effects of footprint filtering specification on estimated carbon 
exchanges

To characterize the implications of footprint model and fpTh level selection for carbon exchange 

information extracted from EC-measured data, we furthered our investigation to explore the differential

effects on annual estimates, intra-annual trends and half-hourly relationships derived from filtered data.

Comparison of annual carbon exchange estimates showed RE was the most sensitive to changes in 

footprint specification (Figure 4.30). Across all footprint and gap-filling models, annual RE deviation 

peaked and then declined with increasing fpTh, though these trends were offset in terms of fpTh levels. 

The rapid decline of RE estimates for SP90-treated results beyond fpTh = 0.7 corresponds with general 

gap-filling model failure described earlier.  Applying the recommended footprint model and fpTh 

specification of (KL04, 0.8) resulted in RE estimates that were on average 50 to 80 g C m-2 y-1 lower 

than the no-footprint case, and approximately 120 g C m-2 y-1 lower than HS00 applied at the same fpTh 

level.  All RE deviations in this case were considerably higher than the control estimates, which 

demonstrates the strong positive influence of u*
Th application on annual RE estimates, since u*

Th 

filtering was not applied to control case estimates. 

Differences between GEP estimates among footprint models were comparatively less, suggesting that 

estimates for this component are more robust than for RE.  Interestingly, the 200 g C m-2 y-1 offset 

introduced into RE estimates from u*
Th application was halved for GEP estimates, although RE 

estimates were added to NEE measurements to produce GEP estimates, from which gap-filling models 

were parameterized and used to fill. In contrast to RE, applying the (KL04, 0.8) footprint filter 

specification resulted in a net GEP increase of approximately 40 g C m-2 y-1 relative to the no-footprint 

case.  Effects of filtering specification on NEE estimates reflected the combined effects on RE and 

GEP.  At low-to-medium fpTh levels, trends in GEP estimates compensated for changes in RE in a 

manner that resulted in consistent estimates for fpTh up to 0.65.  Above this fpTh level, however, 

decreases in RE were not matched by similar changes in GEP, and as a result, NEE estimates were 

markedly lower than the no-footprint case.  Applying (KL04, 0.8) resulted in NEE estimates that were 

between 100 and 120 g C m-2 y-1 lower than for the no-footprint scenario.  These results suggest that 

appropriate footprint application resolved ecosystem non-representativeness to a greater extent for 

RE-parameterizable (nighttime and non-growing season) measurements than those for 

GEP-parameterizable (daytime, growing season) data. 

205



Ph.D. Thesis - J. Brodeur; McMaster University - School of Geography & Earth Sciences

206

Figure 4.30: Marginal means (symbols) and standard errors (lines) of standardized 
gap-filled annual carbon exchange estimates for each footprint model, as a function of 
fpTh level. Group-wise means were calculated using post-hoc multiple comparison tests 
from ANOVA results. Results are separated by those for the NLR-FC gap-filling model 
(left panels) and for the NLR-HL gap-filling model (right panels).
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In terms of absolute values of carbon exchange, application of the (KL04, 0.8) specification resulted in 

annual NEE sums that ranged from a high of -249 g C m-2 y-1 (smallest sink) in 2007 to a low of -418 g 

C m-2 y-1 (greatest sink) in 2011 (Figure 4.31). Annual sums of RE (range: 1065 to 1249 g C m-2 y-1) and

GEP (range: 1348 to 1603 g C m-2 y-1) showed similar interannual trends, and were distinct from those 

observed for NEE.  Instead, trends in NEE were dictated by relative differences between GEP and RE, 

rather than by one of the two component fluxes.  This result demonstrates that the year-to-year values 

of component fluxes respond differently to driving variables, whether they are biotic, phenological or 

meteorological in nature.

We extended these comparisons by investigating inter-annual carbon exchange effects for the preferred 

specification (KL04, 0.8), versus a number of other possible filtering combinations. Results showed 

that application of the (KL04, 0.8) footprint filter produced annual estimates for RE, GEP and NEE that

were regularly lower than those predicted using other footprint models, or when no footprint was 

applied (Figure 4.31); differences were greatest for RE and least for GEP.  On average, annual NEE 

estimates made using (KL04, 0.8) were  94 g C m-2 y-1 lower than with (HS00, 0.8), and 134 g C m-2 y-1 

lower than when no footprint filtering was applied. Annual differences between filtering specifications 

were not consistent across years, as deviations between the (KL04, 0.8) specification and others 

generally increased with time, suggesting that the typical measurement source area may have changed 

with time, or the carbon exchange characteristics between the target and non-target surfaces has further 

diverged.  The application of different u*
Th methods, or the use of a static value (i.e. u*

Th = 0.325 m s-1) 

had minimal impact on annual estimates, suggesting that the differing u*
Th values estimated by these 

methods were more or less equivalent in effect. 

Differences between footprint filtering specification were also investigated at intra-annual scales, by 

comparing daily-averaged and cumulative carbon exchange estimates (Figure 4.32).  Results indicated 

that most all of the differences between model specifications were embodied by mid-summer 

reductions in RE, which translated to similar reductions in NEE. This difference was also observed in 

the annual Ts-RE logistic curves produced during parameterization of the NLR-HL model on different 

footprint-filtered data (Figure 4.33). RE estimates for a given Ts value were consistently lower for the 

(KL04, 0.8) specification, with the largest difference occurring at highest soil temperatures. In cases 

where footprint filtering removed more data than tolerated by the gap-filling model (Figure 4.33, panel 

d), response curves became irregular and inconsistent. These results suggest that the land uses 

surrounding our study site have a stronger respirative response to soil temperature and a higher 
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capacity than our site, and that incomplete or improper footprint filtering will result in 

misrepresentation of carbon exchange response relationships. 
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Figure 4.31: Annual gap-filled carbon exchange estimates obtained by application of 
various footprint filtering and u*

Th filtering approaches.  The preferred specification 
(KL04, 0.8, MPT-P) is included in all plots (black squares and line).
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Figure 4.32: Ensemble averages of gap-filled carbon exchange daily sums (left panels), 
and cumulative exchanges (right panels), obtained by application of various footprint 
filtering and u*

Th filtering approaches.
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Figure 4.33: Modeled logistic functional relationships between RE and soil temperature 
(Ts), as predicted for each year by the NLR-FC model for various footprint filtering and 
u*

Th filtering approaches.



Ph.D. Thesis - J. Brodeur; McMaster University - School of Geography & Earth Sciences

 4.5.9 Implications of footprint filtering specification on estimated 
carbon fluxes

In this study, we found that selection of footprint filtering parameters – both footprint model type and 

fpTh level – had a substantial and significant effect on annual ecosystem carbon exchange estimates; 

data-derived environmental variable - carbon exchange relationships; and, statistical performance of 

gap-filling models at our fetch-limited forest site. By seeking optimized gap-filling model performance 

metrics, we were able to identify the Kljun et al., (2004) model with an fpTh level of 0.8 as the footprint 

filtering parameter combination that yielded the most ecosystem-representative set of filtered EC 

measurement data, while maintaining a necessary amount of data to ensure gap-filling model reliability.

Through factorial experiments, we showed that applying footprint filtering at our site strongly affected 

the carbon exchange estimates and relationships derived from EC-measured data.  These results 

indicate that the carbon exchange characteristics of our study forest are considerably different than the 

areas that surround it.  This difference was greatest for RE, as a result of a greater discrepancy between 

target and non-target ecosystems in the exchange capacity and environmental responses of this 

component, as well as a tendency for more RE-parameterizable data to be contaminated by non-target 

surfaces.  

As shown in Figure 4.1, the TP39 forest is bounded by different forests and land-use types.  In the 

prevailing westerly wind direction, the site is bordered primarily by comparably-aged pine forests, 

which are expected to demonstrate similar exchange characteristics.  At a distance beyond 

approximately 1 km from the tower, however, the landscape is dominated by cereal crop agricultural 

use.  As a result of its intermediate distance from the tower, the agricultural area to the southwest 

contributes minimally to measured daytime fluxes, but is regularly incorporated into the flux footprint 

during nocturnal periods, when turbulence diminishes and flux footprints extend. When no footprint 

filter is applied to EC measurement data, signal contamination from these agricultural systems resulted 

in higher estimates of nighttime NEE (and thus, estimates of RE) than was experienced when stringent 

footprint filtering was applied. This, in turn, led to positively-biased partitioning and gap-filling 

models, and thus, higher estimates of RE at daily to annual timescales. This finding is supported by 

studies of cereal crop carbon exchange in similar climates, which have shown greater cumulative 

amounts and higher peak rates of respiration during the growing season than found in temperate 

forested ecosystems. For example, Verma et al. (2005) found peak respiration rates of 9 – 11 μmol CO2 
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m-2 s-1 in rain-fed maize and soybean fields in Nebraska, approximately double that of rates observed in

temperate forests.  Consistent with this, the cumulative RE reported for these fields over the course of 

the 150-day growing season (1154 and 826 g C m-2 y-1 for maize and soybean fields, respectively) are 

similar in magnitude to RE values reported for temperate coniferous forests over an entire year 

(Suyker, 2005). Considering the systematic source area discrepancies that occur at our site and the 

differing carbon exchange characteristics between these areas, it is important to identify and apply 

accurate footprint filtering strategies to remove the potential for bias to EC-derived NEE estimates. 

When our preferred footprint parameters were applied (KL04, fpTh = 0.8), annual NEE decreased 

between 31 and 129% (59 to 207 g C m-2 y-1) relative to the no-footprint application. These results 

indicate that our target site sequesters significantly more carbon than has been previously reported 

(Arain and Restrepo-Coupe, 2005; Peichl et al., 2010a, 2010b). When these revised estimates are 

compared with biometric carbon exchange estimates made for this site (Peichl et al., 2010b), the 

deviations in annual RE estimates are substantially reduced in comparison to the original, non 

footprint-filtered EC-derived estimates.  Since GEP was only minimally affected by footprint filtering 

application, the discrepancy reported between these methods persists for this exchange term.  

Consequently, as RE and GEP errors were compensatory in the original comparison, applying footprint 

filtering increases the differences in NEE estimates between methods, and EC-derived values indicate 

the forest to be a greater carbon sink by as much as 200 g C m-2 y-1. Such a discrepancy is commonly 

found in comparisons of EC and biometric estimates, and may be the result of measurement errors 

associated with either method, or due to the fact that sampling areas are weighted differently due to EC 

footprint tendencies. Further investigation of these differences are required.  Interestingly, updating 

EC-derived values in Peichl et al. (2010b) with these new estimates would sharply reduce the deviation

this site showed from the other TPFS age-sequence sites in terms of annual stem volume increment 

versus annual NEE relationship (their Figure 2). Of equal importance to annual estimates, footprint 

filter application also affected shorter-interval time-integrated estimates, as well as functional 

relationships between environmental controls and carbon exchanges. Thus, for this site – and all others 

where fetch-limitations exist – the fundamental understanding of ecosystem exchange dynamics may 

be influenced by application of flux footprint filtering.

Of equal importance to ecosystem carbon exchange estimates at our site is the selection of a specific 

footprint model and a desired stringency (fpTh) with which to carry out footprint filtering operations.  

As has been shown, footprint models differ greatly in terms of their half-hourly flux source area 
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estimation, which in a fetch-limited forest leads to large discrepancies in the amount and type of data 

removed for a given fpTh level.  As a result, the variation between disparate footprint models and fpTh 

levels were commonly of similar magnitude to the effect of applying footprint filtering in the first 

place.  This has important implications not just for our study and other similar studies that deal with 

fetch limitations, but for all investigations where analytical footprint models are used to quantify the 

effects of spatial heterogeneity on EC-measured fluxes.  For example, results of footprint climatology 

studies that use analytical models to inform spatial flux partitioning operations (e.g. Chen et al., 2012, 

2009; Foken and Leclerc, 2004; Göckede et al., 2004; Rebmann et al., 2004) are equally vulnerable to 

discrepancies in source area estimation.  Therefore, the results of this study suggest that investigations 

using analytical footprint models to characterize EC flux measurement source areas consider means of 

evaluating footprint model performance (e.g. via tracer experiments, Lagrangian or Large Eddy 

Simulation comparisons or through data-driven exercises), or at least consider their results across a 

number of footprint models. 

In this study, we used a novel approach to evaluate the filtering quality of footprint models; gap-filling 

model goodness of fit was used to indicate the consistency of footprint filter-passing data.  This 

approach is based on the assumption that carbon exchange measurements will be more consistent when

fluxes originate mostly (or completely) from within the surface of interest, than when source area 

contribution is spread among numerous diverse surfaces outside of the forest bounds.  This assumption 

is likely to be valid in the case of our study, given that the target forest exhibits consistency in many of 

the traits used to characterize degree of homogeneity, in that it is a planted and managed monoculture 

forest growing on nearly flat, extensive sandy soils, with co-dominant trees that are of the same (or 

very similar) age, density and management history (Peichl and Arain, 2006).  Furthermore, the forest of

interest is bounded by forests of considerably different ages or species, or different land uses altogether.

Though our study site may represent a best-case end-member for assessing this approach, this method 

may prove useful for studies in similar settings, where relatively homogeneous surfaces are bounded by

distinctly dissimilar ones.  Though our footprint model evaluation approach is new, it shares similarities

with methods that evaluate EC flux quality and source area consistency by use of integral turbulence 

characteristics (Göckede et al., 2004; Thomas and Foken, 2002).  Between these methods, a 

characteristic of EC-measured data is compared to modeled values to infer the degree of surface 

similarities (in roughness or energy and scalar exchanges). In fact, when integral turbulence 

characteristics were used to assess the footprint models in our study (Figure 4.34), results showed the 
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KL04 model retained data with markedly lower deviations than the other models, thus further 

supporting our selection of the KL04 model.  

In a fetch-limited study site such as ours, obtaining “ecosystem-representative” time-integrated carbon 

exchange estimates is a challenging task.  Successful filtering approaches must constrain measurements

to achieve maximum representativeness of the target forest fluxes, while simultaneously ensuring that 

enough data is retained to maintain gap-filling model consistency and reliability.  To accomplish this 

task, we relied on indicators associated with gap-filling model output variability and goodness-of-fit to 

evaluate both constraints.  Our resulting “best” solution – using the KL04 model with a fpTh level of 0.8

– therefore, represents a compromise between these competing requirements.  For any site using this 

approach, the optimal solution will depend on a number of factors, including: the robustness of the 

selected gap-filling model to measurement gaps; the complexity of the surface of interest and its carbon

exchange dynamics; and, the nature of gaps that are induced in flux data by filtering operations. As a 

result, our gap-filled annual sums should not necessarily be viewed as the definitive ecosystem values, 

but rather as further-constrained estimates for our site.  Without the input of multiple tower installations

or artificial tracer experiments, future work would benefit from the operation of Lagrangian or large 

eddy simulations, to further understanding of analytical footprint model performance, and the true 

extents of half-hourly flux source areas. 
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Figure 4.34: Median difference (in percentage) 
between measured and predicted integral 
turbulence characteristics for data grouped 
according to footprint model and fpTh level.
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 4.6 Conclusions and outlook

In summary, our work revealed marked variation among, and important interactions between, footprint 

and friction velocity filtering methods at our fetch-limited forest site. Furthermore, our results show 

that the selection of footprint model, footprint threshold (fpTh) and u*
Th method have implications for 

annual gap-filled carbon exchange estimates. The key findings of our study can be described as 

follows:

• The analytical footprint models evaluated in this study vary substantially in their half-hourly 

flux source area estimates, as indicated by the differences in filter-passing ф among models.  

Discrepancies existed in terms of time of day, atmospheric stratification conditions, and the fpTh

level applied to filtering.  The KL04 and HS00 models generally removed less data than KM01

and SP90, and were the most similar of those tested. When operated at our site, the KM01 and 

SP90 models tended to remove such a large proportion of flux data that parameterization of u*
Th

methods and gap-filling models commonly failed. 

• Results among the tested u*
Th estimation methods varied in two aspects. The first was due to the

standard selection statistic (mean, median, maximum value) used to estimate a single u*
Th value

from a number of substrata estimates. Our results suggest that comparisons between these 

methods should be made using a single, consistent selection statistic.  Specifically for our site, 

the use of the mean value selection statistic with the CPD method is invalid due to 

non-normality in substrata u*
Th estimates. Future applications of this method to other sites 

should be considerate to this potential biasing characteristic, and take appropriate action to 

address it, where required. 

• u*
Th estimates from both the MPT-P and CPD methods were sensitive to changes in both the 

selected footprint model and fpTh level.  The underlying mechanism for this relationship was 

found to be differences in the u* value distribution of footprint filter-passing data that was used 

to parameterize u*
Th estimation methods. The CPD method was considerably more sensitive to 

input u* values, and hence, showed a greater variability to changes in footprint model and fpTh.  

This result exposes a potential weakness and bias source in both u*
Th estimation methods, and 

its wider existence and causes should be explored further.

• Annual ecosystem carbon exchange estimates are sensitive to both the selected fpTh level for a 

given footprint model, and the estimated u*
Th value.  Increases in estimated u*

Th has a large, 
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positive effect on annual RE estimates, particularly for u*
Th estimates below 0.35 m s-1; above 

this value, estimates are relatively consistent.  Conversely, high footprint model stringency 

(fpTh) leads to relative decreases in RE estimates.  Since GEP is less sensitive to both 

parameters, annual NEE estimates are decreased (more carbon sequestration) when footprint 

filtering is strictest.  This result suggests that our study forest has carbon exchange dynamics 

that are significantly different than the surrounding area, and that implementing accurate 

footprint filtering models at our sites is critical to achieving ecosystem-representative carbon 

exchange estimates. We recommend further analysis of this effect at our site, in order to better 

contextualize the control of flux filtering on carbon exchange estimates, and to evaluate the 

performance of these differing analytical models. 

• The footprint filtering specifications (footprint model and fpTh level) that were applied to 

EC-measured data at our fetch-limited forest had a substantial, significant effect on carbon 

exchange estimates and data-derived dynamic relationships.  Factorial experiments showed that

the application of footprint filtering caused universal reductions in annual ecosystem NEE 

estimates (increased sequestration) that were between 50 and 130% of the magnitude of 

original, non-footprint filtered estimates. These findings demonstrate the sensitivity of 

data-derived carbon exchange information at our site to the specification of the flux footprint 

source area, and highlight the differences among the analytical footprint models that were 

tested. Using gap-filling model performance metrics to evaluate ecosystem-representativeness 

of different footprint specifications, we identified the footprint model developed by Kljun et al.

(2004) as the most appropriate for our site. The optimal stringency of this footprint model was 

achieved at fpTh = 0.8, which reflects a compromise between the need for extracting 

maximally-representative measurements, while retaining enough data points to ensure 

gap-filling model operational reliability.  The footprint filter evaluation method introduced in 

this study is a novel and effective data-driven approach to assessing flux source area estimates 

at our site, and should be considered for other sites where a relatively similar 'target' surface is 

fetch-limited and bordered by distinctly different ecosystem types. 

In conclusion, our results identify fundamental differences among methods of footprint and friction 

velocity filtering that are commonly used for EC measurement studies at forested sites.  These 

differences have important consequences for carbon exchange estimates at our fetch-limited site, and 

the strength of our results suggest that these effects be considered at other sites with similar EC flux 
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filtering needs. As demonstrated in this study, the differences between analytical footprint models, and 

the marked consequences of their selection, suggest that further work should be undertaken to compare 

these models with independent – or at least, additional – information about flux footprint source areas, 

such as: Lagrangian and large eddy simulations, or natural or artificial tracer experiments.  
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 5 Conclusions 

As outlined in the introduction and highlighted throughout this work, the development and widespread 

implementation of advanced biometeorological measurement systems – including eddy covariance 

(EC) and complementary environmental sensor arrays – over the past two decades has greatly 

improved scientific understanding of momentum, mass and energy exchanges in forested ecosystems 

(Baldocchi et al., 2001; Kao et al., 2012).  Specific to the carbon cycle, these developments have 

helped researchers better characterize and quantify the magnitudes, drivers and complex dynamics of 

forest carbon exchanges over timescales ranging from seconds to decades (Barr et al., 2007; Falge et 

al., 2002; Richardson et al., 2010; Richardson, et al., 2007).  Such advances have, in turn, led to 

improved process understanding, model construction, and outcomes for practical applications such as 

forest monitoring and management (e.g. McLaren et al., 2008; Richardson et al., 2013; Schwalm et al., 

2010; Saunders et al., 2012). 

Despite the utility of biometeorological measurement systems, obtaining valid, robust and 

ecosystem-representative characterizations of forest carbon cycle dynamics from the raw measured 

data requires a considerable amount of data management, careful processing, and interpretation of the 

physical phenomena represented by the data.  By documenting, critically assessing and improving the 

processes used to achieve these goals, it is possible to improve the quality of scientific understanding 

obtained from measurement studies.  Through the preceding chapters, this thesis has addressed 

important considerations for research operations at the Turkey Point Flux Station (TPFS), as well as 

those that are meaningful to the greater research community. Specifically, this research addressed the 

following challenges:

• Managing and processing large and diverse quantities of biometeorological and ecological 

measurement data in a graduate student-run, collaborative framework;

• Operating a roving eddy covariance system to increase site coverage at the expense of 

measurement temporal continuity at any given site; and, 

• Performing eddy covariance measurements in fetch-limited forests, which are bordered by 

multiple, dissimilar surface types. 

Properly managing measurement data throughout the entire data life cycle is a considerable challenge 

in biometeorological studies, given the quantity, diversity and complexity of data, and the need to 

perform a variety of complicated post-collection operations.  To successfully facilitate all needs in this 

225



Ph.D. Thesis - J. Brodeur; McMaster University - School of Geography & Earth Sciences

context, a data workflow management system (DWMS) must be robust to data and format variability, 

extensible to new processes and input data, and be able to document and standardize processes (and 

products) for all past, present and future operations.  The collaboratively-run DWMS introduced in 

Chapter 2 provides a comprehensive solution to these various needs, and does so in the context of a 

research group with minimal technical support.  A conceptualization of the biometeorological data life 

cycle was developed, and then integrated with practical considerations for data management within the 

research group.  Over its developmental and operational lifetime, this system has served as the data 

management solution for many research projects, including published papers (e.g. Mackay et al., 2012; 

Peichl et al., 2010a; Peichl et al., 2010b), and numerous theses. Though recent software products have 

been developed to facilitate specific parts of the biometeorological data processing (e.g EdiRe, 

EddyPro), the significance and novelty of this DWMS is that it provides a larger framework that 

accommodates all stages of the data life cycle.  In addition to standardizing and streamlining data 

processes within the research group, this system also facilitates data re-visitation and replication 

activities, thus increasing the integrity of scientific processes and results. In this setting, the most 

substantial challenges are not technological, but are related to operations and adequate training; 

leadership within the research group is a critical component to ensure that members continually partake

in, learn and teach best management practices. 

Further DWMS work should focus on the increased automation of data checking and analyses 

operations. Improving the ability of the DWMS to actively investigate data against an established rule 

set, and communicate potential problems to research group members, has potential to further improve 

data integrity, while decreasing the human time requirements of data management.  Next steps should 

also seek to develop and assess advanced DWMS training materials, through interactive 

documentation, or digital (or blended) learning modules. The expansion of this system to operate in 

other research groups should be viewed as an ultimate goal of DWMS development, as an impetus to 

increase system abstraction, modularity and interoperability.

A second, more general challenge addressed by this work was the relatively high cost associated with 

the purchase, maintenance and operation of EC and biometeorological equipment for long-term carbon 

exchange measurement studies.  Expanding the carbon exchange measurement network to include a 

greater diversity of ecosystems, therefore, either requires funding increases, or depends on the 

development of unique strategies to maximize information collection with a fixed set of resources.  In 

response to this, Chapter 3 investigated the roving eddy covariance (rEC) approach as a strategy with 
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potential to expand the site coverage of biometeorological research programs with limited added 

resource requirements.  To investigate the carbon exchange estimate uncertainty associated with the 

rotation of a single rEC system among multiple sites, this chapter extended and built upon methods 

previously used to quantify net ecosystem exchange (NEE) uncertainty in response to EC data gaps 

(Richardson and Hollinger, 2007; Moffat et al., 2007).  The act of rotating an rEC system among two or

three sites in schedules of two weeks or a month was shown to negatively impact time-integrated 

estimates of NEE in two distinct ways: First, long data gaps masked changes in carbon cycle dynamics 

during these periods, and thus reduced the quality of gap-filling model parameterization; and, second, 

the effect of model bias was augmented by increased amounts of gaps to be filled.  Gap-filling errors 

were largest during the active growing season, and increased substantially for rotation scenarios where 

measurement gaps were larger than a month, suggesting that any future rEC application would benefit 

from minimizing measurement gap length as much as possible during the growing season.  

Additionally, multiple-year measurement programs should ensure orthogonality of measurement 

periods between years, in order to further reduce annual NEE uncertainty. Results for our forest sites 

indicated that the gap-filling model of Richardson et al. (2007) is the preferred method for rEC gaps, 

since it prescribes relatively robust relationships between environmental variables and carbon exchange

components, and it is capable of incorporating multiple years worth of data to improve model 

parameterization.  When the best-performing rEC scenarios and gap-filling models were applied to our 

forested sites, the resulting noise-to-signal ratio for annual NEE ranged between 35 and 63%, 

translating to annual errors in the magnitude of 100 to 150 g C m-2 y-1.  Though annual NEE estimate 

error is notable, it is encouraging that a single rEC system could be operated in the specified context to 

provide reasonable NEE estimates for up to three ecosystems, while generally preserving interannual 

trends, and still providing detailed short-term exchange information during measurement periods.  In 

summary, results of this study generally supported the use of rEC at our site to obtain reliable carbon 

exchange information, and suggested that such an application may also be suitable for other 

measurement sites. These findings support the further investigation of non-traditional ecosystem flux 

measurement programs, to better assess the trade-offs between spatial and temporal measurement 

distributions. 

Building on the encouraging results of Chapter 3, future research – both within the research group and 

the wider research community – should embrace investigations of non-traditional EC and 

biometeorological measurement programs.  This should be done by further exploring the interacting 
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trade-offs between the three components that determine the accuracy of gap-filled carbon estimates: the

complexity of the underlying carbon exchange signal to be modeled; the amount of data available to 

parameterize the model; and, the performance capability of the gap-filling model itself. Exploring these

dimensions has the potential to maximize the information acquisition capacity of ecosystem flux 

measurement programs given fixed resources. 

A final challenge addressed by this research was the need to determine and implement appropriate 

methods to filter out EC-measured carbon exchange estimates that are unrepresentative of the 

ecosystem of interest. In order to accurately characterize the nature of the carbon cycle in a given 

forest, it is necessary that EC measurements are representative of the true carbon fluxes occurring 

between the atmosphere and the target ecosystem.  Among the various tests available for filtering EC 

data, much discussion and investigation remains in regards to the application of footprint and friction 

velocity (u*
Th) filtering operations.  With current work toward standardizing these filtering approaches 

at the research network level, there is a need to better understand the nature of the various available 

filtering approaches, in terms of their scientific merit, and their impact on carbon exchange information

that is obtained from EC measurements.  In response, Chapter 4 investigated footprint and friction 

velocity filtering operations at the fetch-limited TP39 study site.  This was accomplished through 

quantification of the differences among, and interaction between four analytical footprint models and 

three u*
Th estimation methods, in terms of their consequences for EC data quantity and distribution, as 

well as subsequent implications for annual carbon exchange estimates.  Novel approaches were used to 

quantify the relative importance of footprint and friction velocity filtering to gap-filled ecosystem 

carbon exchange estimates at our fetch-limited TP39 forest.  

A number of deficiencies and shortcomings of commonly-used friction velocity filtering methods were 

exposed, and it was concluded that the u*
Th determination method of Papale et al. (2006) – slightly 

modified to aggregate substrata estimates using its median – performed best at our site. The tendencies 

of the investigated u*
Th methods to vary with aggregation statistic (mean, median, maximum) and input 

data provides a topic for further investigation and re-visitation by the larger research community.  Since

results showed that the selection of footprint model and stringency had significant effects on annual 

estimates, this study also developed and presented a data-driven, internal footprint filtering evaluation 

approach.  Such an approach may be used to evaluate the ecosystem-representativeness of different 

footprint filtering treatments at fetch-limited sites where no external evaluation information (e.g. 

multiple-tower installations, tracer experiments) are available. Reinforcing the findings of a limited 
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number of previous studies (e.g. van de Boer et al., 2013), results showed substantial variation in 

footprint model predictions for our site – prompting further work to evaluate these analytical footprint 

models.  

Furthermore, the choice of footprint model and stringency had considerable effects on both friction 

velocity threshold estimates, and annual carbon exchange estimates. Our analyses identified the 

footprint model of Kljun et al. (2004), applied at a footprint threshold of 0.8, provided the most 

consistent and reasonable estimate of EC measurement source area at our forested site.  Applying this 

footprint filtering specification to EC measurements at our site resulted in annual NEE values that 

were, on average, 134 g C m-2 y-1 lower than estimated when no footprint filtering was applied. 

Deviations in NEE estimates between footprint specifications were almost entirely due to changes in 

RE, which was attributed to frequent flux footprint extension beyond the forest – and into surrounding 

agricultural land – during calm nighttime periods.  The strong control of footprint specification on 

carbon exchange estimates at our site highlights the importance of assessing the differences between 

approaches, and evaluating them against objective criteria.

In general, the results of this chapter suggest that future work should continue to investigate friction 

velocity filtering as a means of identifying and removing potential periods of poorly-formed 

turbulence, and further compare methods that attempt to establish these thresholds. More studies are 

needed to compare the multitude of available analytical footprint models, to assess their suitability over

a wide range of operational environments; this includes comparisons of analytical footprint outputs to 

Lagrangian and large eddy simulations, as well as natural and artificial tracer experiments. 

Furthermore, the data-driven footprint model evaluation approach that was introduced should also be 

further investigated using these more rigorous footprint determination methods. 
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