
Completing the New Periodicity Lemma

Widmer Bland

A thesis submitted to the School of Graduate Studies in partial fulfilment of the
requirements for the degree of Master of Science

Master of Science Department of Computing & Software
Computer Science McMaster University
2014 Hamilton, Ontario, Canada

Title: Completing the New Periodicity Lemma

Author: Widmer Bland

Supervisor: Dr W.F. Smyth

Number of pages: iv, 45

MSc thesis — W. Bland Computing & Software, McMaster University

Abstract

The “Three Squares Lemma” (Crochemore and Rytter 1995) famously ex-
plored the consequences of supposing that three squares occur at the same
position in a string. Essentially, it showed that this phenomenon could not
occur unless the longest of the three squares was at least the sum of the
lengths of the other two. More recently, several papers (Fan et al. 2006;
Franek, Fuller, et al. 2012; Kopylova and Smyth 2012; Simpson 2007) have
greatly extended this result to a “New Periodicity Lemma” (NPL) by sup-
posing that only two of the squares occur at the same position, with a third
occurring in a neighbourhood to the right. The proof of the NPL involves
fourteen subcases, twelve of which have been proven over the last seven years.
In this thesis, we prove the final two remaining.

i

MSc thesis — W. Bland Computing & Software, McMaster University

Acknowledgements

Bill Smyth imparted his enthusiasm for strings, and provided direction and
encouragement that enabled my work. I feel greatly fortunate to have had
his mentorship.

Michael Soltys offered helpful comments on this thesis and was kindly sup-
portive on many occasions over the last few years.

Thanks.

ii

Contents

List of Figures iv

1 Introduction 1

2 Background 3
2.1 Strings . 3
2.2 String data structures . 3
2.3 Periodicity . 6
2.4 Repetitions and runs . 8

2.4.1 Algorithms for finding repetitions and runs 9
2.4.2 The combinatorics of runs 10

2.5 Three overlapping squares . 11
2.5.1 The New Periodicity Lemma 11
2.5.2 The general case characterized 14

3 Completing the New Periodicity Lemma 16
3.1 Subcase 3 . 16
3.2 Subcase 7 . 26

4 On to the General Case 38

Bibliography 40

iii

List of Figures

2.1 STx for x “ abaababa . 4
2.2 SAx and LCPx for x “ abaababa 5
2.3 Three overlapping squares, as postulated in Lemma 13. 12
2.4 The 14 subcases . 13
2.5 Structure of x for the 14 subcases 14

3.1 String u in Subcase 3 . 17
3.2 String u in Subcase 3 when (3.5) holds 18
3.3 Subcase 3 when (C1) holds . 19
3.4 Subcase 3 when (C2) holds . 20
3.5 Subcase 3 when (C2) holds and z ă g 21
3.6 Subcase 3 when (C2) holds, z ă g, g1 ă g2, and g1 ď z 22
3.7 Subcase 3 when (C2) holds, z ă g, g1 ą g2, and g1 ď ` 23
3.8 Subcase 3 when (C2) holds, z ă g, g1 ą g2, and ` ă g1 ď z . . 24
3.9 Subcase 3 when (C3) holds . 24
3.10 String uu1 in Subcase 7 . 27
3.11 Subcase 7 when (C1) holds and g ą 0 29
3.12 Subcase 7 when (C1) holds and g ă 0 31
3.13 Subcase 7 when (C2) holds . 31
3.14 Subcase 7 when (C3) holds . 32
3.15 Subcase 7 when (C3) holds, g1 ă g2, and g ď z 33
3.16 Subcase 7 when (C3) holds, g1 ą g2 and g ď z 34
3.17 Subcase 7 when (C4) holds . 35

4.1 Case [db] . 38

iv

Chapter 1

Introduction

There has for several years been considerable interest in the limitations
that may exist on periodicity in strings. The “Three Squares Lemma”
(Crochemore and Rytter 1995) showed that three squares could exist at the
same position in a string only if the longest of the three was at least the
sum of the lengths of the other two. A sequence of papers (Fan et al. 2006;
Franek, Fuller, et al. 2012; Kopylova and Smyth 2012; Simpson 2007) greatly
generalized this result by considering two squares u2 and v2 at the same
position, with however the third square w2 offset a distance k ě 0 to the
right. First stated and proved as the “New Periodicity Lemma” (NPL) in
Fan et al. (2006), the main theorem has since been made more specific: the
existence of three neighbouring squares in certain well-defined configurations
has been shown to cause a breakdown into repetitions of small period. The
statement of the NPL includes 14 subcases, with 12 previously proven. This
thesis contributes proofs of the two that remain.

Interest has been added to this research by a parallel development over the
last dozen years or so: the attempt to specify sharp bounds on the number of
maximal periodicities (“runs”) that can occur in any string of given length n.
Kolpakov and Kucherov (2000) showed that the maximum number of runs—
usually denoted ρpnq—is linear in n, and moreover they described a linear-
time algorithm to compute all the runs in any given string. But their proof
of linearity was nonconstructive: the maximum number of runs was shown
to be O

`

n
˘

but no constant of proportionality was specified. Subsequent
research has shown that ρpnq is at least 0.9445757n (Kusano et al. 2013;
Simpson 2010) and asymptotically at most 1.029n (Crochemore et al. 2011),
or, in other words, more or less the string length n.

1

MSc thesis — W. Bland Computing & Software, McMaster University

What links these two streams of research is a simple observation:

If the maximum number of runs over all strings of length n is
itself approximately n, then on average there will be about one
run starting at each position. Thus, if two runs start at some
position, there must be some other position, probably nearby, at
which no run can start — “probably nearby” because the interfer-
ence of overlapping squares typically precludes periodic behaviour
at one or more positions within the range of the double period-
icity. More generally, determining combinatorial constraints on
the occurrence of overlapping squares (runs) may lead to a better
characterization of ρpnq.

There is a third avenue of research that relates closely to overlapping
squares: the computation of all the runs/repetitions in a given string. At
present the only way that this can be done involves global data structures
(suffix array, longest common prefix array, Lempel-Ziv factorization) that
need to be computed in an extended preprocessing phase. This seems uneco-
nomical considering that runs are generally a local phenomenon, and it has
been shown (Puglisi and Simpson 2008) that the expected number of runs in a
string is much less than the string’s length (i.e. runs tend to occur sparsely).
Another “local” problem, string searching, has local solutions: there exist
many string searching algorithms that only preprocess the query, not the full
text to be searched. Thus the current global approach to computing runs
might be unnecessary but for the absence of a detailed understanding of the
combinatorics of overlapping runs. A local approach would be desirable for
space efficiency, particularly as string data, such as biological sequences, gets
larger.

In Chapter 2, we review terminology, notation and the relevant back-
ground. Then, in Chapter 3, we prove Subcases 3 and 7 of the NPL. We
conclude in Chapter 4 with a discussion of future research directions, namely,
the general case of three overlapping squares (no two constrained to begin at
the same position).

2

Chapter 2

Background

2.1 Strings
We begin with some basic terminology1. A string is a finite sequence of sym-
bols (letters) drawn from some (possibly infinite) set Σ called the alphabet.
The alphabet size is σ “ |Σ|. To reduce notational clutter, we write a string
x in mathbold and its length x “ |x| in plain math font. We represent a
string x as an array xr1 . . xs for x ě 0. For x “ 0, x “ ε, the empty string.
If x “ uvw, then u, v, and w are substrings of x, and furthermore, u is a
prefix and w is a suffix of x. If vw ‰ ε, then u is a proper prefix. Similarly,
if uv ‰ ε, w is a proper suffix. If x “ uv “ wu for u ă x, then u is a
border of x, that is, a proper prefix that equals a proper suffix. (Note that
every nonempty string has an empty border.) If x “ uv, 0 ď u ă x, then
vu is said to be the uth rotation of x, written Rupxq.

2.2 String data structures
In this section, we briefly describe a few commonly-used string data struc-
tures that, as explained in Section 2.4.1, help motiviate our work:

• suffix tree

• suffix array

• longest common prefix array
1Our usage generally follows Smyth (2003).

3

MSc thesis — W. Bland Computing & Software, McMaster University

8 3

6 1 4

7 2 5

a ba

ε ababa ba

ε ababa ba

ε ababa ba

Figure 2.1: STx for x “ abaababa

• LZ factorization

The suffix tree is an instance of a more general data structure, the trie.
Used to index a set of strings, a trie (also known as a radix tree or prefix
tree) is a tree in which the root is associated with the empty string, leaves are
associated with strings in the set, and each internal node is associated with
the longest common prefix of all the strings associated with its descendents
(Fredkin 1960). The suffix tree STx of a string x is a trie containing all the
suffixes of x. The leaves of a suffix tree are labeled with the starting position
of the associated suffix, and a node’s children are ordered lexicographically.
Figure 2.1 shows the suffix tree of x “ abaababa.

Weiner (1973) introduced the suffix tree, along with a O
`

n log σ
˘

time
construction algorithm. A few years later, McCreight (1976) presented an-
other O

`

n log σ
˘

construction algorithm that is significantly more time- and
space-efficient in practice (Giegerich and Kurtz 1997). Nearly twenty years
passed before a third algorithm appeared (Ukkonen 1995). Ukkonen’s algo-
rithm is on-line and simpler than its predecessors, but in practice marginally
slower than McCreight’s (Giegerich and Kurtz 1997). Though not practical
for large strings, a O

`

n
˘

time (independent of σ) algorithm has also been
conceived (Farach 1997).

Suffix trees enable many linear-time string algorithms (Gusfield 1997,
Chapter 7) and have been memorably lauded for their “myriad virtues”
(Apostolico 1985). Nevertheless, large (though linear) space requirements
limit their usefulness. A space-efficient implementation might require 10n
bytes on average, and twice as much in the worst case (Kurtz 1999). Because

4

MSc thesis — W. Bland Computing & Software, McMaster University

1 2 3 4 5 6 7 8

x “ a b a a b a b a
SAx “ 8 3 6 1 4 7 2 5

LCPx “ 0 1 1 3 3 0 2 2

Figure 2.2: SAx and LCPx for x “ abaababa

of this significant drawback, the suffix tree has been mostly superceded by
the more economical suffix array (Abouelhoda et al. 2004).

The suffix array SAx of a string x is a sorted list of the suffixes of x, suc-
cintly encoded: for i, j P r1 . . xs, SAxrjs “ i, where i is the starting position
of the jth suffix of x in lexicographic order (Manber and Myers 1993). Figure
2.2 shows the suffix array of x “ abaababa. (Comparing Figures 2.2 and 2.1,
note that performing a depth-first traversal of a suffix tree while printing leaf
node labels produces the corresponding suffix array.) Whereas tree traversal
is used to query suffix trees, suffix arrays can be queried by binary search.
The original suffix array construction algorithms were O

`

n log n
˘

-time, but
linear algorithms were later developed (Kärkkäinen and Sanders 2003; Kim
et al. 2003; Ko and Aluru 2003; Nong et al. 2009). However, according to a
survey of suffix array construction algorithms (Puglisi, Smyth, et al. 2007),
the fastest algorithm in practice (Maniscalco and Puglisi 2006) actually has
worst-case O

`

n2 log n
˘

time complexity. The most space-efficient algorithms
in practice (Maniscalco and Puglisi 2008, 2006; Manzini and Ferragina 2004)
use as little as 5n bytes on average for a string of length n.

The suffix array is enhanced by other data structures, most notably the
longest common prefix array, in which LCPxr1s “ 0 and for j P r2 . . xs,
LCPxrjs is the length of the longest prefix between the jth and pj ´ 1qth

suffixes in SAx. Figure 2.2 shows an example LCP array.
The Lempel-Ziv (LZ) factorization (Lempel and Ziv 1976) partitions a

string into substrings: x “ w1w2 ¨ ¨ ¨wk, where for all j P r1 . . ks, wj is

1. a single character that does not occur in w1w2 ¨ ¨ ¨wj´1; or

2. the longest substring that occurs twice in w1w2 ¨ ¨ ¨wj .

In case 2, the first of the two occurrences may overlap with wj . Note
that w1 “ xr1s. As an example, the LZ factorization of x “ abaababa
is x “ paqpbqpaqpabaqpbaq. Al-Hafeedh et al. (2012) compares the many LZ

5

MSc thesis — W. Bland Computing & Software, McMaster University

factorization algorithms, some of which are linear-time, and which together
offer various tradeoffs between time and space. All LZ factorization algo-
rithms use an ST, SA, LCP, or other global data structures.

2.3 Periodicity
If xris “ xri` ps for all i P r1 . . x´ ps, then x has period p. Every period of
a string corresponds to a border:

Lemma 1 (Lothaire 2002, Section 8.1.1). If v is a border of w, then w has
period w´ v. Conversely, if w has period p, then it has border wr1 . . w´ ps.

For example, the string

1 2 3 4 5 6 7 8 9 10

x “ a b a a b a b a a b
(2.1)

has borders abaab and ab, hence corresponding periods 5 and 8, respectively.
The analysis of periodicity often involves strings of more than one period,

or periodic strings that overlap. The next few lemmas express some possi-
ble consequences of coincident periodicities. The first follows readily from
Lemma 1.

Lemma 2 (Lothaire 2002, Lemma 8.1.1). If x has periods p and q such that
q ă p ď x, then the border of x of length x´ q has period p´ q.

Another basic lemma applies to strings of one period with a substring of
another period:

Lemma 3 (Lothaire 2002, Lemma 8.1.3). If x has period p and there exists
a substring u of x with p ď u that has period q, where q divides p, then x
has period q.

The next lemma, known as the Periodicty Lemma, is one of the most
important in combinatorics on words, featuring in many correctness proofs
of string algorithms. For strings of two periods p and q, the Periodicity
Lemma provides the minimum length for which all strings of at least that
length also have period gcdpp, qq.

Lemma 4 (Periodicity Lemma (Fine and Wilf 1965; Lothaire 2005)). If x
has periods p and q, and p`q ď x`gcdpp, qq, then x also has period gcdpp, qq.

6

MSc thesis — W. Bland Computing & Software, McMaster University

For example, the string

1 2 3 4 5 6 7 8 9 10 11 12 13

x “ a b a a b a a b a a b a a

has length n “ 13, and periods p “ 6 and q “ 9. Since d “ gcdpp, qq “ 3 and
p ` q “ 15 ă n ` d “ 16, the Periodicity Lemma allows us to infer that the
string also has period d “ 3.

In practice, the Periodicity Lemma is often applied via one of the following
two corollaries. The first applies to overlapping strings of the same period,
the second to overlapping strings of different periods.

Lemma 5 (Lothaire 2002, Lemma 8.1.2). If x “ uvw, and uv and vw
have period p ď v, then x has period p.

Lemma 6 (Simpson 2007, Section 1). If x “ uvw, where uv has period p,
vw has period q, and p` q ď v ` gcdpp, qq, then x has period gcdpp, qq.

The Periodicity Lemma has been generalized to three periods (Castelli
et al. 1999), an arbitrary number of periods (Constantinescu and Ilie 2005;
Holub 2006; Justin 2000; Tijdeman and Zamboni 2009), multiple dimen-
sions (Simpson and Tijdeman 2003), and the case in which the length of a
string with two periods does not satisfy the bound given by the Periodicity
Lemma (Fraenkel and Simpson 2005). In particular, the generalization of
the Periodicity Lemma to three periods uses the function

fpp1, p2, p3q “
1
2 rp1 ` p2 ` p3 ´ 2 gcdpp1, p2, p3q ` hpp1, p2, p3qs (2.2)

where h is a function derived from Euclid’s algorithm for computing the
greatest common divisor of three integers.

Lemma 7 (Periodicity Lemma for Three Periods (Castelli et al. 1999)). If
a string x has periods p1, p2 and p3, with p1 ď p2 ď p3 and fpp1, p2, p3q ď x
(f as defined by 2.2), then x also has period gcdpp1, p2, p3q.

As we will see, the New Periodicity Lemma also deals with three periods
imposed by three “overlapping squares”. In a sense, Lemma 7 is more general
than the New Periodicity Lemma because it only requires three periods rather
than squares. On the other hand, the New Periodicity Lemma provides more
information and covers a wider range of cases.

7

MSc thesis — W. Bland Computing & Software, McMaster University

2.4 Repetitions and runs
If x “ vuew, where e ě 2 is an integer, and u is neither a suffix of v nor
a prefix of w (e is maximum), then ue is said to be a repetition in x. The
integers u and e are the period and exponent2, respectively, of the repetition.
The string (2.1) has repetitions pabaq2, pabaabq2, a2, pabq2, pbaq2, each of which
is a square. In general, every repetition has a square prefix. We say that a
square u2 is irreducible3 if u is not itself a repetition, regular if u has no
square prefix, and minimal if no proper prefix of u2 is a square. Note that
minimality implies regularity, which in turn implies irreducibility.

If v “ xri . . js has period u, where v{u ě 2, and if neither xri ´ 1 . . js
nor xri . . j ` 1s (whenever these are defined) has period u, then v is said to
be a maximal periodicity or run in x (Main 1989) with a (now fractional)
exponent e “ v{u. All of the repetitions in (2.1) are runs except for pabq2 and
pbaq2: these are substrings of the run v “ ababa “ pabq5{2. In general, every
repetition is a substring of some run; thus computing all the runs implicitly
computes all the repetitions.

From Lemmas 1 and 4, it follows that if a string x equals its uth rotation,
then it is a repetition of period gcdpu, xq.

Lemma 8 (Smyth 2003, Theorem 1.4.2). For any string x, x “ uv “ vu if
and only if x is a repetition of period gcdpu, vq “ gcdpu, x´ uq “ gcdpu, xq.

The following lemma, used in Chapter 3, also connects repetitions and
rotations.

Lemma 9 (Kopylova and Smyth 2012, Lemma 8). Suppose both x and
Rvpxq, 0 ă v ă x, have period u. Let ` “ x mod u ą 0, r “

X

x
u

\

, and
d “ gcdpu, `q. Then:

(a) if r “ 1 and v ě `, Rv´`pxqr1 . . 2`s is a square of period `;

(b) if r “ 1 and v ď `, xr1 . . v ` `s has period `;

(c) if r ą 1 and v ă u, xr1 . . v ` `s has period `; if moreover v ` d ě u,
then x is a repetition of period d;

(d) if r ą 1 and u ď v ď x ´ u, xr1 . . u ` `s, hence x, is a repetition of
period d;

2We use uphq (with the exponent in parentheses) to denote the hth occurrence of u.
3Others use the term primitively rooted.

8

MSc thesis — W. Bland Computing & Software, McMaster University

(e) if r ą 1 and x ´ u ă v, where v1 “ v ´ px ´ uq, xrv1 ` 1 . . u ` `s has
period `; if moreover v1 ď d, then x is a repetition of period d.

2.4.1 Algorithms for finding repetitions and runs
Three classical algorithms for computing all the repetitions in a string were
proposed in the early 1980s:

1. Crochemore (1981)

2. Apostolico and Preparata (1983)

3. Main and Lorentz (1984)

Smyth (2003, page 340) points out that Crochemore’s algorithm basi-
cally constructs a suffix tree. The Apostolico algorithm uses a suffix tree
explicitly. Main’s algorithm uses LZ factorization. All of these algorithms
execute in O

`

n log n
˘

time, asymptotically optimal since the Fibonacci string
fk, defined by

fk “

$

’

&

’

%

b, k “ 0
a, k “ 1
fk´1fk´2, k ě 2

contains O
`

fk log fk

˘

squares (Crochemore 1981, Lemma 10; Fraenkel and
Simpson 1999; Iliopoulos et al. 1997). To obtain a lower time complexity,
Main (1989) introduced a new encoding of repetitions, the “maximal period-
icity” or run, and described an LZ-factorization-based algorithm to compute
all the “leftmost” runs in O

`

n
˘

time. This was extended in Kolpakov and
Kucherov (2000) to compute all runs O

`

n
˘

time.
All of these algorithms for computing repetitions and runs use a suffix

tree or LZ factorization, both global data structures with significant mem-
ory requirements. More efficient algorithms for computing runs have been
proposed — for example, Chen et al. (2007) — but still with extensive pre-
processing and the same general approach. (For a survey of algorithms for
computing repetitions and runs, see Kopylov (2010, Chapter 3).)

While asymptotically optimal, the heavy-handed global approach seems
inappropriate because runs are local and often sparsely occurring. Puglisi
and Simpson (2008) derives a formula for the expected number of runs in a
string as a function of its length n and alphabet size σ. This value is largest

9

MSc thesis — W. Bland Computing & Software, McMaster University

for binary alphabets, for which the expected number of runs per unit length
is 0.41. This value decreases with increasing σ: 0.24 for DNA strings (σ “ 4),
0.04 for protein (σ “ 24), and 0.01 for English-language text. Experiments
confirm that these values are good predictions of the average number of runs
in real-world data.

A future runs algorithm might dispense with global data structures, in-
stead taking advantage of some combinatorial properties of runs to detect
them during a single left-to-right scan.

2.4.2 The combinatorics of runs
The linearity of the Kolpakov and Kucherov (2000) algorithm was established
by a complex proof that the maximum number ρpnq of runs (irreducible and
not extendible to the left or right) in any string of length n satisfies

ρpnq ď K1n´K2
?
n log2 n (2.3)

for some universal positive constants K1 and K2. The method of proof al-
lowed no bounds to be placed on K1 and K2, but based on computational
evidence up to n “ 60, it was conjectured that ρpnq ă n (for large n). This
is known as the “Runs Conjecture”. Over the last decade, the bounding of
ρpnq{n has become a growth industry. Rytter (2006) provided the first up-
per bound, showing that ρpnq{n ă 5. The bound improved successively, first
to 3.9 (Rytter 2007), then to 3.48 (Puglisi, Simpson, and Smyth 2008), 1.6
(Crochemore and Ilie 2008), 1.52 (Giraud 2009, 2008), 1.048 (Crochemore
et al. 2008), and most recently to 1.029 (Crochemore et al. 2011), the last
result achieved using three years of CPU time on a supercomputer. The
lower bound has progressed from 0.927 (Franek, Simpson, et al. 2003), to
0.944542 (Matsubara et al. 2008), to 0.944575 (Kusano et al. 2013; Simpson
2010). So, for sufficiently large n, we know that

0.944575 ă ρpnq{n ď 1.029.

This work has confined the possible values of ρpnq{n to a narrow range,
but it seems not to have yielded the combinatorial knowledge needed for a
new runs algorithm. Another approach, the subject of this thesis, has sought
to find a combinatorial basis for estimating the maximum number of runs in
a string by considering the consequences of three overlapping squares.

10

MSc thesis — W. Bland Computing & Software, McMaster University

2.5 Three overlapping squares
The Runs Conjecture provides a simple motivation for studying overlapping
squares (Fan et al. 2006). If ρpnq ď n, then the average number of runs
starting at each of the n positions is at most one. When two runs occur
at the same position, there must be another position at which no run oc-
curs. Perhaps a proof of the Runs Conjecture is to be found in a detailed
understanding of how two overlapping runs combine to make a third run im-
possible. Runs always have a square prefix, so analyzing overlapping squares
seems a promising way to proceed4. It seems plausible that a position at
which a third run is precluded lies within the range of the overlapping square
prefixes. If this is true, a thorough understanding of the restrictions imposed
by overlapping squares could lead directly to a proof of the Runs Conjecture,
as well as a new paradigm for the computation of runs.

Recent research on overlapping squares extends the earlier “Three Squares
Lemma” (Crochemore and Rytter 1995) that shows if three squares occur at
the same position in a string, one of them must be long:
Lemma 10 (Three Squares Lemma (Crochemore and Rytter 1995)). Sup-
pose u is irreducible, and suppose v ‰ uj for any j ě 1. If u2 is a prefix of
v2, in turn a proper prefix of w2, then w ě u` v.

The Fibonacci string has three square prefixes of lengths 6, 10, and 10`
6 “ 16, respectively, showing the Three Squares Lemma is best possible:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f “ a b a a b a b a a b a a b a b a

The Three Squares Lemma has been generalized to the case with two of the
squares occurring at the same position in a string and the third nearby, some-
what to the right, producing a result called the “New Periodicity Lemma”.

2.5.1 The New Periodicity Lemma
Here is the original NPL, as stated and proved in Fan et al. (2006):
Lemma 11. If x has regular prefix u2 and irreducible prefix v2, u ă v ă 2u,
then for every k P 0..v ´ u ´ 1 and every w P v ´ u ` 1..v ´ 1, w ‰ u,
xrk ` 1..k ` 2ws is not a square.

4Though not because the maximum number of irreducible squares in a string of length
n might be n; as mentioned in Section 2.4.1, the optimal bound is known to be O

`

n log n
˘

.

11

MSc thesis — W. Bland Computing & Software, McMaster University

v v
u u

w wk

Figure 2.3: Three overlapping squares, as postulated in Lemma 13.

The proof required consideration of 14 subcases based on the magnitudes
of k and w (see Figure 2.4), each of which led to a proof by contradiction of
the regularity of u. Subsequent work has split the range u ă v ă 2u into two
sections pu, 3u{2s and p3u{2, 2uq, while eliminating the regularity condition
altogether, as we now describe.

In Kopylova and Smyth (2012) it was shown that for u ă v ď 3u{2, the
requirement that x “ v2 with prefix u2 necessitates

x “ tm
1 t2tm`1

1 t2t1, (2.4)

where t1 “ v ´ u, t2 “ u mod t1, m “ tu{t1u ě 2 and t2 is a proper prefix
of t1. It was shown further that, except for m ` 5 precisely identified runs
that always occur in x, there could be no other runs of period greater than
t1. Thus for u ă v ď 3u{2, the structure of x is well defined, even without
reference to w.

On the other hand, for 3u{2 ă v ă 2u, there is a different breakdown:
Lemma 12 (Fan et al. 2006, Lemma 9). If x “ v2 has prefix u2, then

x “ pu1u2u1u1u2q
2, (2.5)

where u1 “ 2u ´ v ą 0 and u2 “ 2v ´ 3u ą 0, if and only if 3u
2 ă v ă 2u.

Observe that u “ u1u2u1 and v “ u1u2u1u1u2.
Note that setting t1 “ u1u2, t2 “ u1 converts the form (2.5) into (2.4),

but with m ă 2. For this case, Kopylova and Smyth (2012) provided, with
the assistance of a computer program, conjectures for the breakdown of x
in each of the 14 subcases. In half of the subcases (1, 2, 5, 6, and 8–10), x
was conjectured (and, in the same paper, proved) to always be a repetition
of period d. In the other cases, x was conjectured to have a different but
still highly repetitive structure. An earlier paper (Simpson 2007) had already
provided proofs for subcases 5, 6, and 10, as well as results for subcases 11–14
that were later refined in Franek, Fuller, et al. (2012). The latter also proved
subcase 4, leaving only two of the 14 subcases unconfirmed. In this thesis, we
prove the remaining two, subcases 3 and 7. Thus after much experimental
and theoretical work, the revised NPL can be stated as follows:

12

MSc thesis — W. Bland Computing & Software, McMaster University

Su
bc

as
e

Sp
ec
ia
l

S
k

k
`
w

k
`

2w
C
on

di
tio

ns
1

0
ď
k
ď
u

1
k
`
w
ď
u

k
`

2w
ď
u
`
u

1
k
ě
u

2
2

0
ď
k
ď
u

1
k
`
w
ď
u

k
`

2w
ď
u
`
u

1
k
ă
u

2
3

0
ď
k
ď
u

1
k
`
w
ď
u

k
`

2w
ą
u
`
u

1
—

4
0
ď
k
ď
u

1
u
ă
k
`
w
ď
u
`
u

1
—

—
5

0
ď
k
ď
u

1
u
`
u

1
ă
k
`
w
ď
v

—
—

6
0
ď
k
ď
u

1
v
ă
k
`
w
ă

2u
—

—
7

u
1
ă
k
ă
u

1
`
u

2
k
`
w
ď
u
`
u

1
k
`

2w
ď

2u
—

8
u

1
ă
k
ă
u

1
`
u

2
k
`
w
ď
u
`
u

1
k
`

2w
ą

2u
—

9
u

1
ă
k
ă
u

1
`
u

2
u
`
u

1
ă
k
`
w
ď
v

—
w
ă
u

10
u

1
ă
k
ă
u

1
`
u

2
k
`
w
ď
v

k
`

2w
ď
u
`
v

w
ą
u

11
u

1
ă
k
ă
u

1
`
u

2
k
`
w
ď
v

u
`
v
ă
k
`

2w
ď

2v
´
u

2
—

12
u

1
ă
k
ă
u

1
`
u

2
k
`
w
ď
v

2v
´
u

2
ă
k
`

2w
—

13
u

1
ă
k
ă
u

1
`
u

2
v
ă
k
`
w
ď

2u
—

—
14

u
1
ă
k
ă
u

1
`
u

2
2u
ă
k
`
w
ă

2u
`
u

2
´

1
—

—

Fi
gu

re
2.
4:

T
he

14
su
bc

as
es

id
en
tifi

ed
in

Fa
n
et

al
.(
20
06
),
sli
gh

tly
m
od

ifi
ed
,f
or

th
re
e
ne
ig
hb

ou
rin

g
sq
ua

re
s

u
,v

,w
(w

ith
v
´
u
ă
w
ă
v
,w
‰
u
,0
ď
k
ă
v
´
u
).

13

MSc thesis — W. Bland Computing & Software, McMaster University

Subcases S Conditions Breakdown of x

1, 2, 5, 6, 8–10 p@x, σ “ d) x “ dx{d

3, 4, 7 p@xq x “ d
u{d1
1 d

v{d1
1 d

pv´uq{d1
1

specified cases x “ dx{d

11–14 σ “ d or d2 ď 2u´ v x “ dx{d

otherwise x “
`

pd
d2{d3
3 qv{d2

˘2

Figure 2.5: Structure of x for subcases S P 1..14: σ is the largest alphabet
size consistent with u, v, k, w (Franek, Fuller, et al. 2012); d, d1 and d3 are
prefixes of x with d “ gcdpu, v, wq, d1 “ gcdpu´w, v´uq, d2 “ gcdpu, v´wq,
d3 “ v mod d2.

Lemma 13. Suppose that a string x has prefixes u2 and v2, 3u{2 ă v ă 2u,
and suppose further that a third square w2 occurs at position k ` 1 of x,
where v ´ u ă w ă v, w ‰ u, and 0 ď k ă v ´ u. Then for each of the 14
subcases S identified in Figure 2.4, the corresponding structure of x is given
in Figure 2.5.

In other words, x breaks down into repetitions of small period — essen-
tially, the postulate of three such squares cannot be satisfied.

2.5.2 The general case characterized
The proof of the New Periodicity Lemma now complete, we believe that
further generalization is of interest: what happens when the three squares
u2,v2,w2 are merely constrained to be “neighbouring”, without the require-
ment that u2 and v2 occur at the same position? What is an appropriate
formulation of such a problem? What relative values of k, u, v, w are of com-
binatorial interest?

The following lemma, to appear in a forthcoming paper (Bland and Smyth
2014), begins to address these questions. It states the consequences of a
square u2 beginning at some position i in a string and overlapping with a
second square v2 at position i` k, k ě 0, to its right.

Lemma 14. Suppose x has prefixes u2 and kv2, k ě 0, where x “ maxp2u, k`
2vq, k ď u ă 2v.

14

MSc thesis — W. Bland Computing & Software, McMaster University

(a) k ` v ă u ă 2v pk ă minpv ´ 1, u´ vqq :

x “ ppezq2 “ peqfqf´e
“ peqfprk ` 1 . . u´ vs,

where p “ ur1 . . u ´ vs, e “ k`v
u´v

ą 1, z “ vr1 . . u ´ pk ` vqs, q “
Rkppq, f “

u
u´v

ą 2, f ´ e ď 1.

(b) k
2 ` v ď u ď k ` v p1 ď u´ v ď k ď 2pu´ vqq :

x “ pzpe
q

2
“ pqr1 . . k ` v ´ uspe

q
2
“ pkpe´1

q
2,

where z “ ur1 . . k ` v ´ us, p “ vr1 . . u ´ vs, e “ 1 ` u´k
u´v

ě 1, q “
Rcppq, c “ pu´ kq mod pu´ vq.

(c) v ă u ă k
2 ` v pk ą 2pu´ vqq :

x “ pqype
q

2y,

where p “ vr1 . . u ´ vs, e “ 1 ` u´k
u´v

ą 1, q “ Rcppq, c “ pu ´
kq mod pu´ vq, y “ vr2u´ pk` vq ` 1 . . vs. Moreover, both x and kv
have border qy.

(d) 2pk`vq
3 ď u ă v pk ď 3u

2 ´ v ă
v
2q :

x “ pkpe
q

2qkp,

where p “ vr1 . . v´us, e “ u´k
v´u

ą 1, q “ Rcppq, c “ pu´kq mod pv´
uq. Both x and kv have border kp.

(e) k`v
2 ă u ă 2pk`vq

3 ă v p3u´2v
2 ă k ă 2u´ v ă uq :

x “ kppekpq2,

where p “ vr1 . . v ´ us, e “ u´k
v´u

ą 1.

(f) k ď u ď k`v
2 pu2 a prefix of kvq :

x “ kppezq2,

where p “ urk ` 1 . . usur1 . . ks, e “ 2u´k
u
ě 1, z “ vr2u´ k ` 1 . . vs.

Because every instance of three overlapping squares can be seen as two
pairs of two overlapping squares, this lemma can characterize three overlap-
ping squares in any configuration. We first use this lemma in Chapter 3 to
prove the two remaining subcases of the NPL, then in Chapter 4 we discuss
its application to the general case of three overlapping squares.

15

Chapter 3

Completing the New
Periodicity Lemma

In this chapter1, we prove the two remaining subcases of Lemma 13.

3.1 Subcase 3
We first deal with the general case valid for all occurrences of Subcase 3, then
go on to identify circumstances in which x is constrained to be a repetition
of small period d “ gcdpu, v, wq.

Lemma 15 (Subcase 3). Suppose that a string x has prefixes u2 and v2,
3u{2 ă v ă 2u, and suppose further that a third square w2, w ‰ u, occurs at
position k ` 1 of x, where

0 ď k ď u1 ă u1 ` u2 ă w ă v (3.1)

k ` w ď u (3.2)

k ` 2w ą u` u1 (3.3)

and u1 “ 2u ´ v and u2 “ 2v ´ 3u. Then x “ d
u{d1
1 d

v{d1
1 d

pv´uq{d1
1 , where

d1 “ gcdpu´ w, v ´ uq.
1This chapter is to appear in a forthcoming paper (Bland and Smyth 2014).

16

MSc thesis — W. Bland Computing & Software, McMaster University

u
p1q
1

u2 u
p2q
1

k w w

pe z

Figure 3.1: String u in Subcase 3

Proof. By Lemma 12, the overlap of u2 and v2 forces x “ pu1u2u1u1u2q
2,

with u “ u1u2u1. By Lemma 14(a), u “ pez, where z “ wr1 . . u´pk`wqs,
p “ ur1 . . u´ ws and e “ k`w

u´w
ą 1.

We first show that if u has period p “ u´w, the lemma holds. Note that
u has period u1 ` u2 and

u1 ` u2 ` p “ u` u1 ` u2 ´ w ă u

since u1 ` u2 ă w from (3.1). Therefore, assuming u has period p, u “

xr1 . . us has period d1 “ gcdpp, u1`u2q by Lemma 4. It follows that u1u2 “

xru ` v ` 1 . . xs, a prefix of u “ u1u2u1, has period d1 as well. Finally,
xru ` 1 . . u ` vs “ u1u2u1u2u1 has period u1 ` u2 and prefix u of length
u ą u1 ` u2 with period d1. Since d1 “ gcdpu ´ w, u1 ` u2q divides u1 ` u2,
xru` 1 . . u` vs has period d1 by Lemma 3. Thus the lemma holds assuming
u has period p.

Note first from (3.1) and (3.2) that u1u2 ă w ă u, hence that u1 ´ p “
u1´pu´wq ą 0. Then to see that u in fact has period p, consider two cases:

u1 ě k ` w ´ pu1 ` u2q ě p (3.4)

and
k ` w ´ pu1 ` u2q ă p ă u1. (3.5)

In the first case, the prefix kw “ pe of u extends at least p positions into
the suffix u

p2q
1 . Since u1 is a prefix of kw, u1 has period p, and therefore u

has a prefix and suffix of period p which overlap by at least p. Consequently,
by Lemma 6, u has period p.

The second case (3.5) is more complicated (see Figure 3.2). Both p and
u1 are prefixes of u, so p is a proper prefix of u1. Both u1 and z are suffixes
of u, and

z “ u´ k ´ w ď p ă u1,

17

MSc thesis — W. Bland Computing & Software, McMaster University

u
p1q
1

u2 u
p2q
1

k w w

pe z

k z ` t k `1 t1 `

p p

Figure 3.2: String u in Subcase 3 when (3.5) holds

so z is a proper suffix of u1. The prefix p and the suffix z of u1 must overlap
because (3.5) is equivalent to u1 ă p` z. Noting that p “ u´ w “ k ` z so
that p “ kz, we have (Figure 3.2)

z “ `1t1 “ t1` (3.6)

and
u1 “ p` “ kz` “ k`1z “ k`1t1`, (3.7)

where ` and `1 are respectively the proper suffix and proper prefix of z of
length ` “ `1 “ u1´ p, and t1 is the border of z of length t1 “ z´ `. Since by
(3.6) z has border t1, it therefore has period `, as does `1z` “ `1`1t1` “ `1t1``.
Since u1 has period p, p has prefix `; p “ kz also has suffix `, so that p has
border `. Observe also that because k ` w ´ pu1 ` u2q “ k ` `, k`1 is the
prefix of u1 that overlaps w.

Let t be the suffix of u1u2 of length t “ t1. Then w has suffix tk`1 in
which k`1 is a prefix of u1. Recall u1 “ k`1t1` has period p “ k ` t ` `. If
t “ t1, then tu1 has period p; moreover, kw “ pe and tu1 share substring
tk`1 of length p, so u has period p, as desired. Hence, it will suffice to show
t “ t1.

From kw “ pe, where e ą 1, a complete copy of p occurs h “ teu times
in kw. Three cases arise based on where in u the hth occurrence of p ends:

(C1) pphq ends inside the suffix t of u2.

(C2) pphq ends inside the prefix k of u
p2q
1 .

(C3) pphq ends inside the suffix `1 of w.

We will see that t “ t1 in each of these cases.

18

MSc thesis — W. Bland Computing & Software, McMaster University

u
p2q
1

g1 t k `1 t1 `

k `1 t1 g p

pphq pr1 . . cs z

Figure 3.3: Subcase 3 when (C1) holds

(C1)
Suppose (C1) holds; that is, pphq ends inside the suffix t of u2. We introduce
the “gap” g “ u1`u2´ph, a measure of the overlap between t and the suffix t1

of pphq. Note that if g “ 0, then t “ t1 immediately. Let g “ trt´g`1 . . ts “
pr1 . . gs be the suffix of t that follows pphq, and let g1 “ t1r1 . . gs be the prefix
of t1 that precedes t. Also, let

c “ pk ` wq mod p “ g ` k ` `

and observe that kw has suffix pr1 . . cs “ gk`1 “ k`1g1.
Thus pr1 . . cs has border k`1 and therefore period g. String `1g1 has period

` as a prefix of z “ `1t1, and period g as a suffix of pr1 . . cs, so by Lemma 4
it has period gcdpg, `q. Then pr1 . . cs has period g and suffix `1g1 of period
gcdpg, `q � g and length ` ` g ě g, so that by Lemma 3 pr1 . . cs itself has
period gcdpg, `q. Both pr1 . . cs and `1z have period ` and share substring
`1, so pr1 . . csz has period ` by Lemma 6. It also has substring p, so p has
period `. Because p has border ` as well as period `, any power of p has
period `. It follows that kw “ pe has period ` and, since pr1 . . csz has period
` and shares with kw a substring of length c ą `, u has period ` by Lemma
6. Recall that u has substring pr1 . . cs of period gcdpg, `q � `, so u itself has
period gcdpg, `q by Lemma 3. Recalling that t is a suffix of t1g and that both
are substrings of u, we find that t and t1 have period gcdpg, `q and suffix g,
so t “ t1.

(C2)
Suppose (C2) holds; that is, pphq ends inside the prefix k of u

p2q
1 . Let

g “ ph´ u1 ´ u2

19

MSc thesis — W. Bland Computing & Software, McMaster University

g g

u
p2q
1

`1 t k `1 t1 `

pphq pr1 . . cs

p

`

Figure 3.4: Subcase 3 when (C2) holds

be the overlap of pphq with k, and let g “ kr1 . . gs. Note that if g “ 0, then
t “ t1 immediately. Otherwise, g is a border of p. Let

c “ pk ` wq mod p “ k ` `´ g

and observe that, from the overlap of the suffix pr1 . . cs of kw and the prefix
p of u1, pr1 . . k ` `s “ k`1 has period g. Also note that since by (3.7)
p “ k`1t1 and since kw “ pe has period p, therefore pphq has suffix `1tg.
Consider four cases: 0 ă g ă `, g “ `, ` ă g ď z, and z ă g.

If 0 ă g ă `, then since ` is a prefix of u1, ` has period g as a prefix of
k`1. Recall that ` is also a suffix of p, so ` has border g and period ` ´ g.
Hence, by Lemma 4, ` has period gcdpg, ` ´ gq “ gcdpg, `q. Recall also that
`1z has period ` and substring ` of period gcdpg, `q � `, so by Lemma 3, `1z
has period gcdpg, `q. Prefix `1 of `1z then has period gcdpg, `q � g, and since
`1 is also a suffix of the string k`1 of period g, k`1 has period gcdpg, `q by
Lemma 3. Since `1z and k`1 have period gcdpg, `q, u1 “ k`1z has period
gcdpg, `q by Lemma 6. Both tg and t1g are substrings of u1, so t “ t1.

If g “ `, then p has suffixes t` and z “ `1t “ t1`, so immediately t “ t1.
Note that k`1 and `1z have period g “ `, so by Lemma 6, u1 “ k`1t1 has
period `.

If ` ă g ď z, then since ` is a border of g, g has period g ´ `; it also
has period ` as a substring of the suffix z of p, and thus by Lemma 4 period
gcdpg, g ´ `q “ gcdpg, `q. String g is a substring of k`1, which as we have
seen has period g, so that by Lemma 3, k`1 has period gcdpg, `q. Since `1z
and k`1 have period gcdpg, `q, u1 “ k`1z has period gcdpg, `q by Lemma 6.
Both tg and t1g are substrings of u1, so t “ t1.

20

MSc thesis — W. Bland Computing & Software, McMaster University

g g1

u
p2q
1

g1 `1 t k `1 t1 `

k z kr1 . . cs z

pphq pr1 . . cs k

g2

Figure 3.5: Subcase 3 when (C2) holds and z ă g

If z ă g, then, as shown in Figure 3.5, the suffix z of pphq is a substring
of the prefix k of u1, and `1t is a substring of the prefix k of pphq. k also has
two borders g1 and g2: g1 is the border of k of length g1 “ k ´ g resulting
from the overlap of the prefix k of u1 with pr1 . . cs “ kr1 . . cs, while g2 is
the border of k of length g2 “ g´z resulting from the overlap of the prefix k
of pphq with the prefix k of u1. We then have k “ g1`1tg2 “ g2`1t1g1. Also
recall that ` is a prefix of p “ kz, so that either ` is a prefix of g1 or g1 is a
prefix of `.

If g1 “ g2, then t “ t1 immediately. If g1 ‰ g2, then several cases arise:

1. g1 ă g2

Let g1 “ g2 “ g2 ´ g1, let g1 be the prefix of g2 such that g2 “ g1g1,
and let g11 be the suffix of g2 such that g2 “ g1g11. Observe that g1 is
a border of g2, so g2 has period g1.

(a) g1 ď z (Figure 3.6)

The demonstration requires several steps:
‚ g1` has period ` as a suffix of z`; it also has border ` and
period g1, so by Lemma 4, g1` has period gcdpg1, `q.

‚ z` has period ` and suffix g1` of period gcdpg1, `q � `, so by
Lemma 3, z` has period gcdpg1, `q.

21

MSc thesis — W. Bland Computing & Software, McMaster University

`

k `1

g1 `1 t g2

g2 z g1

g11 g1 `

`1

Figure 3.6: Subcase 3 when (C2) holds, z ă g, g1 ă g2, and g1 ď z

‚ g2 has period g1 and prefix g1 of period gcdpg1, `q � g1, so by
Lemma 3, g2 has period gcdpg1, `q.

‚ z` and g2 have period gcdpg1, `q and share substring g1, so by
Lemma 6, zg1 has period gcdpg1, `q.

‚ g11`1 has border `1 and period g1 “ g2; it also has prefix g11

which, as a suffix of g2, has period gcdpg1, `q � g1, so by Lemma
3, g11`1 has period gcdpg1, `q.

‚ g2 and g11`1 have period gcdpg1, `q and share substring g11, so
by Lemma 6, g2`1 has period gcdpg1, `q.

‚ g2`1 and zg1 have period gcdpg1, `q and share substring `1, so
by Lemma 6, k “ g2zg1 has period gcdpg1, `q.

Since `1t and `1t1 are substrings of k, therefore t “ t1.
Note that g11z` has period gcdpg1, `q, so that k “ g1`1tg1g11 and
g11z` have period gcdpg1, `q and share substring g11, so by Lemma
6, u1 “ kz` has period gcdpg1, `q.

(b) g1 ą z

k has period k ´ g2 “ g1 ` z, so k has a prefix g1`1tg12 “ g12zg1,
where g12 is a prefix of g2 and |g12 ´ g1| ď z, so one of cases 1(a)
and 2(a) applies.

2. g1 ą g2

22

MSc thesis — W. Bland Computing & Software, McMaster University

g1 `

k `1

g1 `1 t g2

g2 `1 t1 g1

z `

Figure 3.7: Subcase 3 when (C2) holds, z ă g, g1 ą g2, and g1 ď `

Let g1 “ g1 ´ g2, and let g1 be the suffix of g1 such that g1 “ g2g1.
Observe that g2 is a border of g1, so g1 and g2 have period g1.

(a) g1 ď z (Figures 3.7 & 3.8)

Again several steps are required:
‚ g1`1 has period ` as a prefix of z` and also shares prefix `1

with z, so it has border `1 and period g1.
‚ g1`1 has periods ` and g1, so by Lemma 4, g1`1 has period

gcdpg1, `q.
‚ g1 has period g1 and suffix g1 of period gcdpg1, `q � g1, so by
Lemma 3, g1 has period gcdpg1, `q.

‚ z` has period ` and prefix g1 of period gcdpg1, `q � `, so again
by Lemma 3, z` has period gcdpg1, `q.

‚ z` and g1 have period gcdpg1, `q and share a substring of
length at least minpg1, `q, so by Lemma 6, zg1 has period
gcdpg1, `q.

Since `1t and `1t1 are substrings of zg1, therefore t “ t1.
Note that g1 and zg1 have period gcdpg1, `q and share substring
g1, so by Lemma 6, k “ g2zg1 has period gcdpg1, `q. g1z` then
has period gcdpg1, `q, so that k “ g2zg2g1 and g1z` have period
gcdpg1, `q and share substring g1, so by Lemma 6, u1 “ kz` has
period gcdpg1, `q.

23

MSc thesis — W. Bland Computing & Software, McMaster University

g1 `

k `1

g1 `1 t g2

g2 `1 t1 g1

z `

Figure 3.8: Subcase 3 when (C2) holds, z ă g, g1 ą g2, and ` ă g1 ď z

(b) g1 ą z

k has period k ´ g1 “ g2 ` z, so k has a prefix g2zg11 “ g11`1tg2,
where g11 is a prefix of g1 and |g11 ´ g2| ď z, so one of cases 1(a)
and 2(a) applies.

(C3)

u
p2q
1

k `1 t1 `

g t p g

pphq g

`

Figure 3.9: Subcase 3 when (C3) holds

Suppose (C3) holds; that is, pphq ends inside the suffix `1 of w. Let
g “ k ` w ´ ph and let g “ `1r` ´ g ` 1 . . `s be the suffix of `1 that follows
pphq. Because kw (of which `1 is a suffix) has period p, g is a prefix of p.
Recall that ` is a prefix of p, so g is also a prefix of `. From pphq and the
occurrence of p that prefixes u1, we have

p “ gtkp`1r1 . . `´ gsq “ kp`1r1 . . `´ gsqgt1

24

MSc thesis — W. Bland Computing & Software, McMaster University

and p has period t` g.
Consider the string `1t1g, which occurs near the end of u1 as a prefix of

`1t1` “ `1z. As a substring of `1z “ `1`1t1, it has period `. Since p has period
t ` g and suffixes `1t1 and gt1, `1t1g also has period t ` g. `1t1g has periods
t`g and `, so by Lemma 4, it has period gcdpt`g, `q. Now p has period t`g
and suffix gt1 of period gcdpt`g, `q � t`g, so p itself has period gcdpt`g, `q.
Because p has border ` as well as period gcdpt ` g, `q, any power of p has
period gcdpt`g, `q. Thus kw “ pe has period gcdpt`g, `q and, since `1z has
period gcdpt` g, `q and shares with kw a substring of length `, u has period
gcdpt ` g, `q by Lemma 6. Since t` and t1` are substrings of u, therefore
t “ t1.

This completes the proof of Subcase 3.

Lemma 16. Suppose the conditions of Subcase 3 hold (Lemma 15). Then
x “ dx{d, except possibly for

1. k ` 2w ě v or

2. k ` 2w ă v and

(a) v ´ u “ hpu´ wq or
(b) v ´ u “ ph´ 1

2qpu´ wq,

where d “ gcdpu, v, wq and h “
X

k`w
u´w

\

.

Proof. Note first that conditions 1 and 2 are simply reformulations of in-
equalities (3.4) and (3.5), respectively, found at the beginning of the proof of
Lemma 15, where v´u and u´w replace u1`u2 and p, respectively. These
inequalities constitute the two main cases considered in the proof, and so the
result holds for condition 1.

Condition 2 however breaks down into cases (C1)-(C3). For both (C1)
and (C3), it is shown that u1 has period ` (all symbols used as defined in
the proof of Lemma 15). The same is true also for the various subcases of
(C2), except when

(a1) the gap g “ 0 or

(b1) z ă g and g1 “ g2.

25

MSc thesis — W. Bland Computing & Software, McMaster University

In all other cases, it is shown that u1 “ kz` “ p` has period `. Then, by
Lemma 15, u “ u1u2u1 has period d1 “ gcdpp, u1 ` u2q. Hence p is a suffix
of u1, thus a border of u. Therefore u2 has period d1, as well as period u,
so that by Lemma 4, u2 has period gcdpu, d1q “ gcdpu, gcdpu´w, v ´ uqq “
gcdpu, v, wq “ d. This periodicity clearly extends to all of x.

Next observe that in the proof of Lemma 15, g “ u1 ` u2 ´ ph, so that
the condition g “ 0 given in (a1) converts to the condition of (a) using the
indicated substitutions for u1`u2 and p. Again from the proof of Lemma 15,
we find that when z ă g, g1 “ k´g, g2 “ g´ z, from which we conclude that
p “ k ` z “ 2g in (b1). This in turn implies that h copies of p (2h copies of
g) cover u1u2g of length v ´ u` g, from which (b) follows.

3.2 Subcase 7
Here we give results for Subcase 7 corresponding to those for Subcase 3:

Lemma 17 (Subcase 7). Suppose that a string x has prefixes u2 and v2,
3u{2 ă v ă 2u, and suppose further that a third square w2, w ‰ u, occurs at
position k ` 1 of x, where

u1 ă k ă u1 ` u2 ă w ă v (3.8)

k ` w ď u` u1 (3.9)

k ` 2w ď 2u (3.10)

and u1 “ 2u ´ v and u2 “ 2v ´ 3u. Then x “ d
u{d1
1 d

v{d1
1 d

pv´uq{d1
1 , where

d1 “ gcdpu´ w, v ´ uq.

Proof. By Lemma 12, the overlap of u2 and v2 forces x “ pu1u2u1u1u2q
2,

with u “ u1u2u1. By Lemma 14(b), u “ zpe, where z “ ur1 . . k ` w ´ us,
p “ wr1 . . u´ ws, and e “ 1` u´k

u´w
. See Figure 3.10.

We first show that if u has period p “ u´w, the lemma holds. Note that
u has period u1 ` u2 and

u1 ` u2 ` p “ u` u1 ` u2 ´ w ă u

since u1 ` u2 ă w from (3.8). Assuming u has period p, u “ xr1 . . us has
period d1 “ gcdpp, u1 ` u2q by Lemma 4. It follows that u1u2 “ xru ` v `

26

MSc thesis — W. Bland Computing & Software, McMaster University

u
p1q
1

u2 u
p2q
1 u

p3q
1

k w w

z pe z p

p z r t1 `

r t t1 ` ` y

`1

Figure 3.10: String uu1 in Subcase 7

1 . . xs, a prefix of u “ u1u2u1, has period d1 as well. Finally, xru` 1 . . u`
vs “ u1u2u1u2u1 has period u1`u2 and prefix u of length u ą u1`u2 with
period d1. Since d1 “ gcdpu ´ w, u1 ` u2q divides u1 ` u2, xru ` 1 . . u ` vs
has period d1 by Lemma 3. Thus the lemma holds assuming u has period p.

We now embark on a demonstration that u has period p. Notice (Fig-
ure 3.10) that u1u2, k, and zp are prefixes of u. Given that z “ k´ p, that
k P pu1, u1 ` u2q by (3.8), and that z ď u1 by (3.9), we have

k “ zp “ zrt “ u1t, (3.11)

where r “ u1rz ` 1, u1s, and t “ u2r1 . . k ´ u1s.
Observe that

z ´ p “ pk ` w ´ uq ´ pu´ wq “ k ´ p2u´ 2wq ď 0

by (3.10), so that p ě z. Also, by (3.8)

z “ k ` w ´ u ą k ` u1 ` u2 ´ u “ k ´ u1 ą 0,

so that in fact z ě 2. Note further from (3.8) that

p “ u´ w ă u´ pu1 ` u2q “ u1,

while from (3.10) and (3.8),

p “ u´ w ě k{2 ą u1{2. (3.12)

Thus u1{2 ă k{2 ď p ă u1. Putting these inequalities together, we find

2 ď z ď p ă u1 “ z ` r, (3.13)

27

MSc thesis — W. Bland Computing & Software, McMaster University

from which we conclude that r ą 0.
Also, since

z ď p “ r ` t ă u1 “ r ` z,

and recalling from (3.8) that t “ k ´ u1 ą 0, we see that 0 ă t ă z, where
since k “ z ` p ě 2z, z ď k{2. Hence

0 ă t ă z ď k{2 ď p ă u1.

Let t1 be the prefix of z of length t. Since t1 “ t ă z and u1z is a suffix of
wp1q, there exists within w a complete occurrence of u1t1.

Since wp1q has prefix p, so also does wp2q, with p “ rt. Furthermore
k “ zrt “ zp, so that p is a suffix of k with nonempty prefix r that is a
suffix of u1. Since u1 is a proper substring of wp1q and p ă u1, it follows
that u1 has period p. In fact, the string

u1 “ Rzpuq “ pez “ pw “ ru2u1z

has period p. Then u1 “ zr, rz and u1z “ zrz all have period p.
Again by the periodicity of u1, there exists a possibly empty y1 such that

p1 “ zy1 is a prefix of u1, and a y, with y “ y1 “ p´ z, such that p2 “ zy
is a suffix of u1, where p1 and p2 are both rotations of p.

Now consider u1z, a suffix of u1 with period p: this string has prefix zy1z
and suffix zyz which overlap each other by

p̂ “ u1 ` z ´ 2u1 ` 2p “ p` pp` zq ´ u1 ą p

positions. We may therefore conclude that all substrings of length p in zy1z
and zyz are rotations of each other. Then u1 and Rzpu1q both have period
p, and so, since ` “ u1 ´ p “ z ´ t ă z, we can apply Lemma 9(a) (with
px, v, uq „ pu1, z, pq) to conclude that Rtpu1qr1..2pz´ tqs is a square of period
`. Thus we may write u1 “ t1`2 ¨ ¨ ¨ , where t1` “ z. In fact, since p “ z`y “
u1 ´ `, so that u1 “ z ` `` y, we find that u1 “ t1`2y with z “ t1`, r “ `y
and p “ `yt.

Since u1 “ pw has period p, w is a prefix of u1. As we see from Fig-
ure 3.10, this prefix w ends distance r` t “ `` y` t1 “ y` t1` ` before the
end of wp1q, from which we conclude that w has suffix t1`` as well as suffix
z “ t1`. Thus t1 is a border of z. Now let `1 be the prefix of z of length `,
so that z “ t1` “ `1t1 has period `. Note further that since w has suffix yz,
which in turn has suffix t1`` “ `1t1`, therefore `1 is a suffix of y.

28

MSc thesis — W. Bland Computing & Software, McMaster University

Assume t “ t1. Then k “ zrt “ zrt1 occurs in w, and as w has period
p, so does k. u then has prefix k “ zp and suffix pe both of period p and
both including p, so by Lemma 6, u has period p, as desired. Hence it will
suffice to show t “ t1.

From (3.13) it follows that a complete copy of p occurs h ě 2 times in u1.
Several cases arise, based on the position of the suffix t of the hth occurrence
of p:

(C1) t ends inside the prefix z of u
p3q
1

(C2) t is a substring of the suffix y of u
p2q
1 , but t` is not.

(C3) t` is a substring of the suffix y of u
p2q
1 .

(C4) t begins to the left of the suffix y of u
p2q
1 and ends inside y.

We will see t “ t1 in all of these cases.

(C1)

q1 q2

u
p2q
1 u

p3q
1

z ` y z ` y

` y t

pphq

`1 g

`1

Figure 3.11: Subcase 7 when (C1) holds and g ą 0

Suppose first that (C1) holds, and write z “ q1q2, where q1 is a nonempty
suffix of p and, by the periodicity of u1, q2 is a prefix of p.

We have shown that u1 “ phq2, where p “ `yt, and so u1 “ ph´1p`yqptqq2.
As in the proof of Lemma 15, we introduce the “gap” g “ q1 ´ t, a measure
of the overlap between the prefix q1 of u

p3q
1 and the suffix t of pphq. If g ě 0,

29

MSc thesis — W. Bland Computing & Software, McMaster University

then t is a substring of z; otherwise, t ends inside z but begins before it.
Note that if g “ 0, then q1 “ t “ t1 and the remainder of the proof follows.

Suppose then that g ą 0 (Figure 3.11), so that q1 “ gt for some string g
of length g. In this case, note that `1t and `1t1 are substrings of `1z “ `1`1t1,
as we have seen of period `, and so both these strings also have period `,
implying that t “ t1, as required.

We now show further that for g ą 0, u1 has period gcdpg, `q. Since t
is a substring of z “ t1`, g ď `. Therefore, since `y is a suffix of u1 and
p “ `yt, `y and ` both have period g, as does `1, since it is a suffix of `y.
Observe that `1g has period ` as a prefix of `1z, as well as period g as a suffix
of `y, so that by Lemma 4, `1g has period gcdpg, `q. z` then has period
` and a substring `1 of period gcdpg, `q � `, so by Lemma 3, z` has period
gcdpg, `q. `y has period g and suffix g of period gcdpg, `q, so by Lemma 3,
it has period gcdpg, `q. z` and `y have period gcdpg, `q and share substring
`, so by Lemma 6, u1 “ z`y has period gcdpg, `q.

Suppose next that g ă 0, so that t “ gq1 for some string g of length |g|,
as shown in Figure 3.12. Again `y and ` both have period |g|. If |g| ď `, then
t` is a substring of `1z, so t “ t1. However, when g ă 0, it is possible that
|g| ą `. In general, let g1 be the suffix of z of length |g|. The suffix q2 “ `g1

of z has border ` and thus period q2´ ` “ |g|. It also has period ` as a suffix
of z, so by Lemma 4, it has period gcdpg, `q. `1z then has period ` and suffix
`g1 of period gcdpg, `q � `, so that by Lemma 3, `1z has period gcdpg, `q.
Also by Lemma 3, `y has period gcdpg, `q since it has period |g| and, by the
periodicity of u1, substring g1 of period gcdpg, `q � |g|. Both `y and `1z have
period gcdpg, `q and share substring `1, so that by Lemma 6, `yz has period
gcdpg, `q. Since t` and t1` are both substrings of `yz, therefore again t “ t1.

Note finally that since z` and `y both have period gcdpg, `q and share
substring `, therefore by Lemma 6, u1 “ z`y again has period gcdpg, `q, as
it did also for g ą 0.

30

MSc thesis — W. Bland Computing & Software, McMaster University

q1 q2

u
p2q
1 u

p3q
1

z ` y z ` y

` y t ` g1

pphq `

`1 g

`1

Figure 3.12: Subcase 7 when (C1) holds and g ă 0

(C2)

`1

u2 u
p2q
1 u

p3q
1

z ` y z ` y

` y t ` y

pphq g1 g

Figure 3.13: Subcase 7 when (C2) holds

Suppose (C2) holds; that is, t is a substring of y and ends within distance
` of the end of y. By the periodicity of u1, a prefix of p “ `yt follows pphq.
Let g be the suffix of ` that overlaps u

p3q
1 , and let g1 be the possibly empty

prefix of ` such that ` “ g1g. `y has period t ` g1 because the suffix `y of
u
p2q
1 and the prefix `y of pphq are offset by length t` g1. g1z is a prefix of `y

since, by assumption, y ě t` g1 “ z ´ g.
g1z has period t`g1 as a prefix of `y and period ` as a suffix of `1z, so by

lemma 4 it has period gcdpt` g1, `q. Thus `y has period t` g1, and a prefix
g1z of period gcdpt` g1, `q � t` g1, so `y has period gcdpt` g1, `q by Lemma
3. Since z` has period ` and prefix z of period gcdpt` g1, `q � `, therefore by
Lemma 3, z` has period gcdpt ` g1, `q. z` and `y have period gcdpt ` g1, `q
and share substring `, so by Lemma 6, u1 “ z`y has period gcdpt ` g1, `q.

31

MSc thesis — W. Bland Computing & Software, McMaster University

Remarking that `1t and `1t1 are both substrings of u1, we again conclude
that t “ t1.

(C3)

t1

u2 u
p2q
1 u

p3q
1

z ` y z ` y

` y t ` y

pphq g2

g2 z g1

Figure 3.14: Subcase 7 when (C3) holds

Suppose (C3) holds; that is, t` is a substring of y. In this case, z “ t1` is
also a substring of y because y ě t` ` and the prefix `y of pphq ends at least
z and at most y positions from the end of u

p2q
1 “ `1t1`y.

Let g1 and g2 be the (possibly empty) substrings of y immediately before
and after t` such that y “ g1t`g2. Since u1z has period p, g1 and g2 are
borders of y such that y “ g1t`g2 “ g2t1`g1.

Recall that `1 is a suffix of y, so `1 is a suffix of `g2. Since the prefix `g2
of p occurs before the substring z of y, `1 also occurs before z.

If g1 “ g2, then t and t1 occur at the same positions in two copies of y,
so that t “ t1. If g1 ‰ g2, several cases arise:

1. g1 ă g2 (g “ g2 ´ g1)

Let g “ g2 ´ g1, and let g be the nonempty prefix of g2 such that
g2 “ gg1. g1 is a border of g2, so that g2 has period g.

(a) g ď z (Figure 3.15)

The proof requires several steps:

32

MSc thesis — W. Bland Computing & Software, McMaster University

`

` y

g1 t ` g2

g2 z g1

`1 g

Figure 3.15: Subcase 7 when (C3) holds, g1 ă g2, and g ď z

‚ As a suffix of `1z, `g has period ` and suffix `, hence border
` and period g, therefore by Lemma 4 period gcdpg, `q.

‚ Then `1z has period ` and a suffix `g of period gcdpg, `q � `,
so by Lemma 3, `1z has period gcdpg, `q.

‚ Since g2 has period g and prefix g of period gcdpg, `q � g,
therefore by Lemma 3, g2 has period gcdpg, `q.

‚ Since prefix g2 of y and `1z have period gcdpg, `q and share
substring `1, therefore g2z has period gcdpg, `q by Lemma 6.

‚ Thus t` and t1` both have period gcdpg, `q as substrings of
g2z, implying that t “ t1.

Note that g2z and g2 have period gcdpg, `q and share substring g,
so that by Lemma 6, y “ g2zg1 has period gcdpg, `q. Since `g2
has period gcdpg, `q as a substring of y, and since g2 is a prefix of
y, therefore by Lemma 6, `y has period gcdpg, `q. z` “ `1z and
`y have period gcdpg, `q and share substring `, so by Lemma 6,
u1 “ z`y has period gcdpg, `q.

(b) g ą z

y has period y ´ g2 “ z ` g1, so y has a prefix g1t`g12 “ g12zg1,
where g12 is a prefix of g2 and |g12 ´ g1| ď z, so one of cases 1(a)
and 2(a) applies.

2. g1 ą g2 (g “ g1 ´ g2q

33

MSc thesis — W. Bland Computing & Software, McMaster University

`1

y`

g1 t ` g2

g2 z g1

`1 g g1

`

Figure 3.16: Subcase 7 when (C3) holds, g1 ą g2 and g ď z

Let g “ g1 “ g1 ´ g2, let g be the nonempty suffix of g1 such that
g1 “ g2g, and let g1 be the nonempty prefix of g1 such that g1 “ g1g2.
Since g2 is a border of g1, therefore g1 and g2 have period g “ g1.

(a) g ď z (Figure 3.16)

Again there are several steps:
‚ `1g has period ` as a prefix of `1z and shares suffix `1 with `g1;
accordingly, `1g has border `1 and period g, hence periods g
and `, thus by Lemma 4 period gcdpg, `q.

‚ `1z has period ` and prefix `1g of period gcdpg, `q � `, hence
by Lemma 3, it also has period gcdpg, `q.

‚ g1 has period g and suffix g of period gcdpg, `q � g, so again
by Lemma 3, it also has period gcdpg, `q.

‚ g1 and `1z have period gcdpg, `q and share substring g, so
that by Lemma 6, g2z has period gcdpg, `q.

‚ Prefix `g1 of `g1 shares suffix ` with t`, so `g1 has border `
and period g. Moreover `g1 has suffix g1 which, as a prefix of
g1, has period gcdpg, `q � g, implying that `g1 also has period
gcdpg, `q by Lemma 3.

‚ g2z and `g1 have period gcdpg, `q and share substring `, so
by Lemma 6, g2zg1 has period gcdpg, `q.

34

MSc thesis — W. Bland Computing & Software, McMaster University

‚ Then g2zg1 and g1 have period gcdpg, `q and share substring
g1, so that by Lemma 6 the entire string y “ g2zg1 has period
gcdpg, `q.

‚ Therefore t` and t1` both have period gcdpg, `q as substrings
of y, so that t “ t1, as required.

Since, as a substring of y, `g1 has period gcdpg, `q, and since g1
is also a prefix of y, it follows from Lemma 6 that `y has period
gcdpg, `q. Note then that z` “ `1z and `y have period gcdpg, `q
and share substring `, so that by Lemma 6 u1 “ z`y has period
gcdpg, `q.

(b) g ą z

y has period y ´ g1 “ g2 ` z, so y has a prefix g2zg11 “ g11t`g2,
where g11 is a prefix of g1 and |g11 ´ g2| ď z, so one cases 1(a) and
2(a) applies.

(C4)

u2 u
p2q
1 u

p3q
1

z ` y z ` y

` y t ` y

pphq `1 `1 g1

g

Figure 3.17: Subcase 7 when (C4) holds

Suppose (C4) holds; that is, t begins to the left of y and ends inside it.
Let g be the suffix of t that is also a prefix of y. Let g1 be the suffix of y
of length g1 “ g. By the periodicity of u1, a copy of ly follows t, extending
`` g positions into u

p3q
1 . `1 is a suffix of `y, so `1`1g1 is a suffix of `y.

35

MSc thesis — W. Bland Computing & Software, McMaster University

The suffix `y of u
p2q
1 and the occurrence of `y that follows t are offset by

length ``g, so `y has period ``g. Since `1`1g1 has period ``g as a suffix of `y
and period ` as a prefix of `1z, it therefore has period gcdp``g, `q “ gcdpg, `q
by Lemma 4. `y has period `` g and suffix `1`1g1 of period gcdpg, `q � `` g,
implying that it has period gcdpg, `q by Lemma 3. z` has period ` and
substring ` of period gcdpg, `q � `, so by Lemma 3, it has period gcdpg, `q. z`
and `y have period gcdpg, `q and share substring `, so by Lemma 6, u1 “ z`y
has period gcdpg, `q. Since t` and t1` are substrings of u1, we conclude finally
that t “ t1.

This completes the proof of Subcase 7.

Lemma 18. Suppose the conditions of Subcase 7 hold (Lemma 17). Then
x “ dx{d, except possibly for

(a) v ´ u “ ph´ 1qpu´ wq or

(b) v ´ u “ ph´ 1
2qpu´ wq,

where d “ gcdpu, v, wq and h “
Y

u
p

]

.

Proof. (All symbols used as defined in the proof of Lemma 17; refer to Fig-
ure 3.10.) Notice that in the proof of the lemma, u1 has period ` in all cases
except when

(a1) (C1) holds and g “ 0 and

(b1) (C3) holds and g1 “ g2.

Suppose then that u1 “ zr “ z`y does indeed have period `. Since z “ `1t1

is a prefix of u1, it follows that t1r “ t1`y is a suffix of u1. Since u1 has period
`, r “ `y has prefix y, and so u1 has border t1`y of length p “ t` `` y, as
therefore u does also. By Lemma 17, u has period p, so that by Lemma 15,
u “ u1u2u1 has period d1 “ gcdpp, u1`u2q “ gcdpu´w, v´uq. Since u has
a border of length p, it follows that u2 also has period d1, as well as period u,
so that by Lemma 4, u2 has period gcdpu, d1q “ gcdpu, gcdpu´w, v ´ uqq “
gcdpu, v, wq “ d. This periodicity clearly extends to all of x.

Now consider the exceptional cases. For (a1), recall that in (C1) the gap g
is the difference between the two prefixes of x, zph and u, where p “ u´w,
so that g “ 0 implies hp` z “ u` t. Substituting z “ k `w´ u, t “ k ´ u1
yields

hpu´ wq “ u´ k ` pu´ wq ` k ´ u1,

36

MSc thesis — W. Bland Computing & Software, McMaster University

from which, with a little manipulation, (a) follows. For (b1), from Figure 3.14
g1 “ g2 in (C3) implies

z ` ph´ t´ pu1 ` u2 ` z ` `q “ u´ pz ` ph` `q,

which since z “ `` t and ` “ u1 ´ p becomes

2ph “ u` u1 ` u2 ´ u1 ` p.

A bit more manipulation yields (b), completing the proof.

37

Chapter 4

On to the General Case

In this thesis, we have proven the last two remaining subcases of the New Pe-
riodicity Lemma, which describes the regularity that must result from three
overlapping squares of which two begin at the same position and the third be-
gins to the right. Future work should generalize this result to cases in which
three squares occur close to each other, but with no two of them necessarily
at the same position. As explained in Section 2.5.2, Lemma 14 provides six
cases (a–f) covering all possible configurations of two overlapping squares.
This allows the characterization of any instance of the general case of three
overlapping squares u2,v2,w2 as a pair rijs, i, j P ra . . f s, in which case i
corresponds to the overlap of u2 with v2, j the overlap of v2 with w2.

u u
v v

w w
k1

k2

Figure 4.1: u2 overlapping v2 (case (d)) that in turn overlaps w2 (case (b)):
what is the combined effect?

As an example, we present a lemma that combines cases d and b (il-
lustrated in Figure 4.1). According to our computational experiments, this
lemma applies to about three-quarters of cases in which the maximum al-
phabet size σ “ gcdpu, v, wq.

Lemma 19. In case rdbs, if k2 ď 2u´v´k1`d1, then x has period d, where
d “ gcdpu, v, wq and d1 “ gcdpv ´ u, v ´ wq “ gcdpu´ w, v ´ wq.

38

MSc thesis — W. Bland Computing & Software, McMaster University

Proof. We use subscripts 1 to identify variables for u and v, subscripts 2 for
those of v and w. Observe then that for e1 ą 1, e2 ě 1,

v “ pe1
1 k1p1 “ z2pe2

2 ,

where the variables subscripted 1 relate to case (d) of Lemma 14, those
subscripted 2 to case (b). The substring v1 “ vrz2 ` 1, v ´ k1 ´ p1s has two
periods, p1 “ v ´ u and p2 “ v ´ w. To apply Lemma 4, we must have

p1 ` p2 ´ gcdpp1, p2q ď v ´ k1 ´ p1 ´ z2

k2 ď 2u´ v ´ k1 ` d1

Thus if k2 ď 2u ´ v ´ k1 ` d1, then v1 has period d1. Moreover, v has
a prefix of period p1 that includes v1, as well as a suffix of period p2 that
includes v1, so v itself has period d1. Since p1 is a border of v, v is a repetition
of period d1. Because u is a substring of v2, u has period d1. Therefore x
has prefix u and suffix v2 both of period d1 that include vr1..u´k1s. In case
(d), 2pk1`vq

3 ď u which implies d1 ď u´k1, so x has period d1. The substrings
u2 and w2 then have periods gcdpd1, uq and gcdpd1, wq, respectively, and so
x itself has those periods. Finally, x has period gcdpd1, u, wq “ d.

The preceding lemma is a sample of the combinatorial information that
may be obtained from considering all cases rijs as specified above. Much work
remains to be done to state and prove similar results for all 36 rijs pairs. To
date, all the results given for the New Periodicity Lemma (Crochemore and
Rytter 1995; Fan et al. 2006; Franek, Fuller, et al. 2012; Kopylova and Smyth
2012; Simpson 2007) deal only with the special cases rijs, i P ta, du, that arise
for k1 “ 0. Kopylova and Smyth (2012) used computer simulations for small
values of k, u, v, w to help generate conjectures, and it seems that similar
techniques can profitably be used for the general case.

Once the combinatorics of overlapping squares is well understood, we may
find new and more combinatorially-sophisticated approaches to the bounding
of the number of runs in any string of given length. Moreover, it may be
possible to design an algorithmic approach to the computation of runs in a
manner consistent with their sparseness of occurrence.

39

Bibliography

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch.
Replacing suffix trees with enhanced suffix arrays. Journal of Discrete
Algorithms, 2(1):53–86, 2004 (cited on page 5).

[2] Alberto Apostolico. The myriad virtues of subword trees. In, Combi-
natorial Algorithms on Words, pages 85–96. Springer, 1985 (cited on
page 4).

[3] Alberto Apostolico and Franco P. Preparata. Optimal off-line detection
of repetitions in a string. Theoretical Computer Science, 22(3):297–315,
1983 (cited on page 9).

[4] Widmer Bland and W.F. Smyth. Three overlapping squares: The gen-
eral case characterized & applications, 2014. Submitted (cited on pages 14,
16).

[5] M. Gabriella Castelli, Filippo Mignosi, and Antonio Restivo. Fine and
Wilf’s theorem for three periods and a generalization of Sturmian
words. Theoretical Computer Science, 218(1):83–94, 1999 (cited on page 7).

[6] Gang Chen, Simon J. Puglisi, andWilliam F. Smyth. Fast and practical
algorithms for computing all the runs in a string. In Combinatorial
Pattern Matching, 2007, pages 307–315 (cited on page 9).

[7] Sorin Constantinescu and Lucian Ilie. Generalised Fine and Wilf’s the-
orem for arbitrary number of periods. Theoretical Computer Science,
339(1):49–60, 2005 (cited on page 7).

[8] Max Crochemore. An optimal algorithm for computing the repetitions
in a word. Information Processing Letters, 12(5):244–250, 1981 (cited
on page 9).

40

MSc thesis — W. Bland Computing & Software, McMaster University

[9] Maxime Crochemore and Lucian Ilie. Maximal repetitions in strings.
Journal of Computer and System Sciences, 74(5):796–807, 2008 (cited
on page 10).

[10] Maxime Crochemore, Lucian Ilie, and Liviu Tinta. The “runs” conjec-
ture. Theoretical Computer Science, 412(27):2931–2941, 2011 (cited on
pages 1, 10).

[11] Maxime Crochemore, Lucian Ilie, and Liviu Tinta. Towards a solution
to the “runs” conjecture. In Combinatorial Pattern Matching, 2008,
pages 290–302 (cited on page 10).

[12] Maxime Crochemore and Wojciech Rytter. Squares, cubes, and time-
space efficient string searching. Algorithmica, 13(5):405–425, 1995 (cited
on pages i, 1, 11, 39).

[13] Kangmin Fan, Simon J. Puglisi, William F. Smyth, and Andrew Turpin.
A new periodicity lemma. SIAM Journal on Discrete Mathematics,
20(3):656–668, 2006 (cited on pages i, 1, 11–13, 39).

[14] Martin Farach. Optimal suffix tree construction with large alphabets.
In Proceedings of the 38th Annual Symposium on Foundations of Com-
puter Science. IEEE, 1997, pages 137–143 (cited on page 4).

[15] Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for pe-
riodic functions. Proceedings of the American Mathematical Society,
16(1):109–114, 1965 (cited on page 6).

[16] Aviezri S. Fraenkel and Jamie Simpson. An extension of the periodicity
lemma to longer periods. Discrete Applied Mathematics, 146(2):146–
155, 2005 (cited on page 7).

[17] Aviezri S. Fraenkel and Jamie Simpson. The exact number of squares
in Fibonacci words. Theoretical Computer Science, 218(1):95–106, 1999
(cited on page 9).

[18] Frantisek Franek, Robert C.G. Fuller, Jamie Simpson, and William
F. Smyth. More results on overlapping squares. Journal of Discrete
Algorithms, 17:2–8, 2012 (cited on pages i, 1, 12, 14, 39).

[19] Frantisek Franek, R.J. Simpson, and William F. Smyth. The maximum
number of runs in a string. In Proceedings 14th Australasian Workshop
on Combinatorial Algorithms, 2003, pages 26–35 (cited on page 10).

41

MSc thesis — W. Bland Computing & Software, McMaster University

[20] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–
499, 1960 (cited on page 4).

[21] Robert Giegerich and Stefan Kurtz. From ukkonen to mccreight and
weiner: a unifying view of linear-time suffix tree construction. Algorith-
mica, 19(3):331–353, 1997 (cited on page 4).

[22] Mathieu Giraud. Asymptotic behavior of the numbers of runs and mi-
croruns. Information and Computation, 207(11):1221–1228, 2009 (cited
on page 10).

[23] Mathieu Giraud. Not so many runs in strings. In, Language and Au-
tomata Theory and Applications, pages 232–239, 2008 (cited on page 10).

[24] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer
science and computational biology. Cambridge University Press, 1997
(cited on page 4).

[25] Anisa Al-Hafeedh, Maxime Crochemore, Lucian Ilie, Evguenia Kopy-
lova, William F. Smyth, German Tischler, and Munina Yusufu. A com-
parison of index-based Lempel-Ziv LZ77 factorization algorithms. ACM
Computing Surveys, 45(1):5, 2012 (cited on page 5).

[26] Štěpán Holub. On multiperiodic words. RAIRO — Theoretical Infor-
matics and Applications, 40(04):583–591, 2006 (cited on page 7).

[27] Costas S. Iliopoulos, Dennis Moore, and William F. Smyth. A charac-
terization of the squares in a Fibonacci string. Theoretical Computer
Science, 172(1):281–291, 1997 (cited on page 9).

[28] Jacques Justin. On a paper by Castelli, Mignosi, Restivo. RAIRO —
Theoretical Informatics and Applications, 34(5):373–377, 2000 (cited
on page 7).

[29] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array
construction. In, Automata, Languages and Programming, pages 943–
955. Springer, 2003 (cited on page 5).

[30] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park.
Linear-time construction of suffix arrays. In Combinatorial Pattern
Matching. Springer, 2003, pages 186–199 (cited on page 5).

[31] Pang Ko and Srinivas Aluru. Space efficient linear time construction
of suffix arrays. In Combinatorial Pattern Matching. Springer, 2003,
pages 200–210 (cited on page 5).

42

MSc thesis — W. Bland Computing & Software, McMaster University

[32] Roman Kolpakov and Gregory Kucherov. On maximal repetitions in
words. Journal on Discrete Algorithms, 1(1):159–186, 2000 (cited on
pages 1, 9, 10).

[33] Evguenia Kopylov. Computing repetitions in strings: Current algo-
rithms & the combinatorics of future ones. McMaster University, 2010
(cited on page 9).

[34] Evguenia Kopylova andWilliam F. Smyth. The three squares lemma re-
visited. Journal of Discrete Algorithms, 11:3–14, 2012 (cited on pages i,
1, 8, 12, 39).

[35] Stefan Kurtz. Reducing the space requirement of suffix trees. Software—
Practice and Experience, 29(13):1149–71, 1999 (cited on page 4).

[36] Kazuhiko Kusano, Kazuyuki Narisawa, and Ayumi Shinohara. On mor-
phisms generating run-rich strings. In Prague Stringology Conference
2013, 2013, page 35 (cited on pages 1, 10).

[37] Abraham Lempel and Jacob Ziv. On the complexity of finite sequences.
IEEE Transactions on Information Theory, 22(1):75–81, 1976 (cited on
page 5).

[38] M. Lothaire. Algebraic Combinatorics on Words. Cambridge University
Press, 2002 (cited on pages 6, 7).

[39] M. Lothaire. Applied Combinatorics on Words. Cambridge University
Press, 2005 (cited on page 6).

[40] Michael G. Main. Detecting leftmost maximal periodicities. Discrete
Applied Mathematics, 25(1):145–153, 1989 (cited on pages 8, 9).

[41] Michael G. Main and Richard J. Lorentz. An O
`

n log n
˘

algorithm for
finding all repetitions in a string. Journal of Algorithms, 5(3):422–432,
1984 (cited on page 9).

[42] Udi Manber and Gene Myers. Suffix arrays: A new method for on-
line string searches. SIAM Journal on Computing, 22(5):935–948, 1993
(cited on page 5).

[43] Michael A. Maniscalco and Simon J. Puglisi. An efficient, versatile
approach to suffix sorting. Journal of Experimental Algorithmics, 12:1–
2, 2008 (cited on page 5).

43

MSc thesis — W. Bland Computing & Software, McMaster University

[44] Michael A. Maniscalco and Simon J. Puglisi. Faster lightweight suffix
array construction. In Proceedings of the 17th International Workshop
on Combinatorial Algorithms, 2006, pages 16–29 (cited on page 5).

[45] Giovanni Manzini and Paolo Ferragina. Engineering a lightweight suffix
array construction algorithm. Algorithmica, 40(1):33–50, 2004 (cited on
page 5).

[46] Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai,
and Ayumi Shinohara. New lower bounds for the maximum number of
runs in a string. In Prague Stringology Conference 2008, 2008, page 140
(cited on page 10).

[47] Edward M. McCreight. A space-economical suffix tree construction al-
gorithm. Journal of the ACM, 23(2):262–272, 1976 (cited on page 4).

[48] Ge Nong, Sen Zhang, and Wai Hong Chan. Linear time suffix array con-
struction using d-critical substrings. In Combinatorial Pattern Match-
ing. Springer, 2009, pages 54–67 (cited on page 5).

[49] Simon J. Puglisi and Jamie Simpson. The expected number of runs in
a word. Australasian Journal of Combinatorics, 42:45–54, 2008 (cited
on pages 2, 9).

[50] Simon J. Puglisi, Jamie Simpson, and William F. Smyth. How many
runs can a string contain? Theoretical Computer Science, 401(1):165–
171, 2008 (cited on page 10).

[51] Simon J. Puglisi, William F. Smyth, and Andrew H. Turpin. A taxon-
omy of suffix array construction algorithms. ACM Computing Surveys,
39(2):4, 2007 (cited on page 5).

[52] Wojciech Rytter. The number of runs in a string. Information and
Computation, 205(9):1459–1469, 2007 (cited on page 10).

[53] Wojciech Rytter. The number of runs in a string: Improved analysis
of the linear upper bound. In Proceedings of the 23rd Symposium on
Theoretical Aspects of Computer Science. Volume 3884, 2006, page 184
(cited on page 10).

[54] Jamie Simpson. Intersecting periodic words. Theoretical Computer Sci-
ence, 374(1):58–65, 2007 (cited on pages i, 1, 7, 12, 39).

44

MSc thesis — W. Bland Computing & Software, McMaster University

[55] Jamie Simpson. Modified Padovan words and the maximum number
of runs in a word. Australasian Journal of Combinatorics, 46:129–145,
2010 (cited on pages 1, 10).

[56] R.J. Simpson and Robert Tijdeman. Multi-dimensional versions of a
theorem of Fine and Wilf and a formula of Sylvester. Proceedings of
the American Mathematical Society, 131(6):1661–1671, 2003 (cited on
page 7).

[57] Bill Smyth. Computing Patterns in Strings. Pearson Education, 2003
(cited on pages 3, 8, 9).

[58] Robert Tijdeman and Luca Q. Zamboni. Fine and Wilf words for
any periods II. Theoretical Computer Science, 410(30):3027–3034, 2009
(cited on page 7).

[59] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–
260, 1995 (cited on page 4).

[60] Peter Weiner. Linear pattern matching algorithms. In Proceedings of
the 14th Annual Symposium on Switching and Automata Theory. IEEE,
1973, pages 1–11 (cited on page 4).

45

	List of Figures
	Introduction
	Background
	Strings
	String data structures
	Periodicity
	Repetitions and runs
	Algorithms for finding repetitions and runs
	The combinatorics of runs

	Three overlapping squares
	The New Periodicity Lemma
	The general case characterized

	Completing the New Periodicity Lemma
	Subcase 3
	Subcase 7

	On to the General Case
	Bibliography

