
A SERVICE ORIENTED ARCHITECTURE

PERFORMANCE SUPPORT SYSTEMS

A SERVICE ORIENTED ARCHITECTURE

FOR

PERFORMANCE SUPPORT SYSTEMS

By

SYED ASGHAR ALI BOKHARI

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

©Copyright by Syed Asghar Ali Bokhari, May 2007

DOCTOR OF PHILOSOPHY (2007)

(Computing and Software)

McMaster University

Hamilton, Ontario

TITLE: A Service Oriented Architecture for Performance Support Systems

AUTHOR: Syed Asghar Ali Bokhari

M.S.E.E. (University of Oklahoma)

MSc. (McMaster University)

SUPERVISOR: Dr. W. F. S. Poehlman

NUMBER OF PAGES: xx, 192

iii

To My Dear Parents

Abstract

This thesis documents research encompassing the design of dynamic electronic per

formance support systems. Essentially, an Electronic Performance Support System

(EPSS) is complex distributed software that provides on-the-job support in order to

facilitate task performance within some particular target application domain. In view

of the rapid pace of change in current business and industrial environments, the con

ventional practice of issuing a new release of Electronic Performance Support System

(EPSS) every few years to incorporate changes, is no longer practical. An EPSS is

required to adapt to the changes as soon as possible and without the need for major

code modification. This is accomplished by creating a design in which task specific

knowledge is not hard coded in the software but is extracted on the fly. The design

also enables a loose coupling among different modules of the system so that function

alities may be added, removed, modified or extended with minimum disruption.

In this thesis we show how to combine service-oriented architecture with the con

cepts of software agents to achieve a software architecture that provides the required

agility. Traditionally Unified Modeling Language (UML), which lacks formal seman

tics, has been the tool of choice for design and analysis of such systems and that

means formal analysis techniques cannot be used for verification of UML models,

whereas Software Engineering practices require analysis and verification at an early

stage in the software development process. In this thesis we present an algorithm to

transform UML state chart models to Object Coloured Petri (OCP) nets that have

a strong mathematical foundation and can be implemented by standard tools such

v

as Design/CPN for simulation and dynamic analysis in order to verify behavioural

properties of the model. We show how to apply this technique to verify some of the

desirable behavioural properties of the proposed EPSS architecture. To demonstrate

the feasibility of our approach we have successfully implemented a prototype of an

EPSS based on the proposed design.

The main contributions of this research are: 1. Proposed an anthropomorphic ar

chitecture for a dynamic PSS. 2. Combined the concepts of services oriented archi

tecture and software agents to achieve dynamic updating of task specific knowledge

and minimal coupling between different modules of complex software to allow pain

less evolution. 3. Brought formal methods to the design phase in the development

of agent based software systems by proposing an algorithm to transform UML state

diagrams to OCP nets for dynamic analysis. 4. Modelled the dynamic creation and

deletion of objects/agents using OCP net concepts and Design/CPN. 5. Proposed an

architecture that can be used for creating families of agile PSS.

vi

Acknow ledgments

First of all I would like to thank my servisor Dr. W. F. S. Poehlman, who initially

encouraged me to persue doctoral studies and over the past several years, has been a

great source of motivation and inspiration. Without his continuous support this work

would not have been possible. I am very fortunate for having him as my supervisor

for this work.

I am also fortunate for having an exceptional supervisory committee and wish

to thank Dr. Norman Archer, Dr. Emil Sekerinski, and Dr. Ridha Khedri for

their support and assistance in completing this research. All of them have provided

invaluable feedback and have played a key role in shaping this document. I would

like to extend special thanks to Dr. Ridha Khedri who freely spent time to discuss

and clarify ideas whenever the need arose.

Many thanks are also due to my wife Andleeb and my children for their un

derstanding and acceptance of my continuous absence from home even on weekends

for several years, to enable me to carry out my research. I could not have continued

with this work without their cooperation and support.

I also thank Dr. Ryszard Janicki for his support during this research. His

valuable suggestions have greatly contributed to improve the quality of this work.

Thanks are also due to John Nakamura for his ongoing assistance, particularly for

his help on Latex. Finally I thank everyone at the Department of Computing and

Software, McMaster University, for providing an excellent environment for research.

vii

Contents

Abstract

Acknowledgments

List of Tables

List of Figures

List of Acronyms

Chapter 1 Introduction

1.1 Motivation.

1.2 Challenges.

1.3

1.2.1 Research Problems

1.2.2 Research Objectives

Contributions ..

1.3.1 Conceptual Model

1.3.2 Adaptability .

1.3.3 Flexibility ..

1.3.4 Accessibility .

1.3.5 A Sound Architecture

1.3.6 Implementation of a Prototype

1.3.7 Publications .

viii

v

vii

xiv

xv

xviii

1

1

3

3

4

4

4

5

5

5

5

6

6

1.4 Organization

Chapter 2 Performance Support Systems

2.1 Introduction

2.2 What is Performance and Performance Improvement?

2.3 Interpretations of the Term EPSS

2.4 Our Understanding of the Term

2.5 Dynamic / Adaptive Systems .

2.6 Essential Characteristics of EPSS

2.7 Recent Research.

2.8 Summary

8

10

10

11

12

17

19

20

22

23

Chapter 3 Service-Oriented Architecture and Software Agents 24

3.1 Service Oriented Architecture 24

3.2 Software Agents. 27

3.2.1 Relationship between Agents and Objects 28

3.2.2 Verification and Validation Issues

3.2.3 Formal Methods in Specification.

3.2.4 From Theory to Implementation.

3.2.5 Alternative Approaches. . .

3.3 Unified Modeling Language (UML)

3.3.1 Simple States

3.3.2 Pseudo States

3.3.3 Composite States

3.3.4 Transitions ...

3.4 Modeling by Petri Nets.

3.4.1 Object Oriented Petri Nets.

3.4.2 Modeling a Multi-agent System using Petri Nets.

3.4.3 Nets within a Net

ix

28

29

32

32

33

34

34

35

36

36

37

37

38

3.4.4 Object Coloured Petri (OCP) Nets 39

3.5 Design/CPN ... 40

3.5.1 Language 40

3.5.2 Data. 41

3.5.3 Places 41

3.5.4 Markings 42

3.5.5 Transitions 42

3.5.6 Guards ... 43

3.5.7 Fusion of Places . 43

3.6 Summary 43

Chapter 4 Design Considerations 45

4.1 Abstraction 45

4.2 How to Achieve Flexibility? 46

4.2.1 Monolithic Applications 47

4.2.2 Two-tier Client/Server Applications. 49

4.2.3 Three-tier Client/Server Applications 52

4.2.4 Web-enabled Applications 53

4.3 Salient Features of the Design 54

4.3.1 Anthropomorphic Model 55

4.4 Starting with a Specific Case. . 59

4.5 Agent Oriented Software Engineering (AOSE) 62

4.6 UML Model of the System 63

4.7 Summary 63

Chapter 5 From UML to Petri Nets 64

5.1 Overview of the Approach 66

5.2 Background 67

5.2.1 Object Model (OM) 67

x

5.2.2 Translation of UML State Diagrams to OCPN

5.2.3 Class Net (CN)

5.2.4 Communication Between Objects

5.3 Algorithm

5.3.1 Algorithm 1

5.3.2 Algorithm 2

5.3.3 Comments.

5.4 Illustrative Example

5.5 Handling of Composite States

5.5.1 Use of EHA for Handling Composite States

5.5.2 Use of Axioms for Handling Composite Sates.

5.5.3 Comparison of Results

5.6 Extension of the Algorithm to Software Agents.

5.7 Summary

Chapter 6 Model Simulation And Analysis

6.1 The Model Hierarchy

6.1.1 Global#1

6.1.2 User#6

6.1.3 LocalAgent#5 .

6.1.4 RemAgent#4

6.1.5 InfAgent#3

6.1.6 Director#2

6.1.7 Communication Channels

6.2 Analysis of the Model.

6.3 Generation of the Occurrence Graphs

6.3.1 Strongly Connected Components

6.4 Behavioural Properties of the Model

6.4.1 Statistics........

xi

68

70

71

71

72

74

75

75

77

80

83

83

85

87

89

89

90

92

96

97

98

100

100

102

104

108

108

109

6.4.2 Boundedness .

6.4.3 Home Markings

6.4.4 Reversibility..

6.4.5 Deadlock-Freeness

6.4.6 Fairness

6.4.7 State Space Explosion Problem

6.5 Summary

Chapter 7 Implementation of Prototype

7.1 Selection of the Middleware

7.2 Platform-specific Model ..

7.3 Salient Features of Working System

7.3.1 Agent Communication

7.3.2 Message Structure

7.3.3 Content Language

7.3.4 Ontology

7.3.5 Jade support for Ontology

7.3.6 EPSS-Ontology ...
7.3.7 Interaction Protocol

7.4 Summary

Chapter 8 Summary, Conclusions and Future Work

8.1 Summary .

8.2 Conclusion.

8.3 Future Work.

Bibliography

Appendix A UML Design

A.1 Use-case Model

xii

110

115

115

115

116

116

118

119

119

123

124

126

127

128

128

129

130

131

132

133

133

139

140

143

158

158

A.I.l Use-case Specifications

A.2 Class Diagrams . . .

A.3 Interaction Diagrams

xiii

160

170

171

List of Tables

2.1 EPSS vs Help Systems

2.2 EPSS vs CBT

5.1 State Diagram Table A .

5.2 State Diagram Table B .

5.3 Collection Object State Diagram Table A .

5.4 User Object State Diagram Table A .

5.5 User Object State Diagram Table B .

5.6 Transition System for the EHA of Figure 5.10

5.7 Transition System for the Flattened State Chart Figure 5.11

16

16

72

72

77

77

77

82

83

5.8 Modified Table 5.7 According to Notations Discussed in Section 5.5.3 84

5.9 Result of Combining Transitions in Table 5.8 into Fork/Join Transitions 85

6.1 Boundedness Properties

6.2 Boundedness Properties Continued ..

6.3 Boundedness Properties Continued ...

6.4 Fairness Properties

7.1 A Partial List of Agent-Building Tools.

xiv

110

111

112

117

120

List of Figures

3.1 Basic Building Blocks of Service-Oriented Architecture. 25

3.2 Different Types of States 35

4.1 Monolithic Applications 48

4.2 Two-tier Fat Client Applications. 50

4.3 Two-tier Thin Client Applications. 51

4.4 Three-tier Client/Server Applications 52

4.5 Anthropomorphic Model 56

5.1 Overview of the Design and Analysis Process . 67

5.2 Communication Channels 70

5.3 State Diagram of Collection Object 76

5.4 State Diagram of User Object 76

5.5 Collection Object Model 78

5.6 User Object Model ... 78

5.7 Class Net of Class User. 79

5.8 Class Net of Class DVD_Collection 80

5.9 State Chart Example Reproduced From [1] 81

5.10 ERA Equivalent to State Chart in Figure 5.9 reproduced from [1] 82

5.11 Flattened State Diagram 84

5.12 State Diagram of Information Agent 86

xv

6.1 Hierarchy Page of the Model .

6.2 Page Containing Declarations

6.3 OCPN of the User Interface

6.4 OCPN of the User Agent Class Net

6.5 OCPN Class Net for the Local Agent

6.6 OCPN Class Net for the Remote Agent.

6.7 OCPN Class Net for the Information Agent

6.8 OCPN Class Net for the Director Agent

6.9 Occurrence Graph of the Basic Model ..

6.10 Part of the Occurrence Graph (One User, Two Agents of Each Type)

6.11 Part of the Occurrence Graph (Two Users, One Agent of Each Type)

7.1 Platform Specific Model.

7.2 User Agent (UA)

7.3 Client Agent Local (CAL).

7.4 FIPA Request Protocol . .

8.1 How Agility can be Achieved.

A.1 Use Case Model

A.2 Logon Use Case Specifications

A.3 Create User Account Use Case Specifications.

A.4 Configure Use Case Specifications

A.5 Compare Sales with Budget Use Case Specifications

A.6 Get Customer Information Use Case Specifications

A.7 Get Inqueries Received Use Case Specifications

A.8 Get Inqueries Status Use Case Specifications .

A.9 Get Orders Received Use Case Specifications.

A.lO Get Orders Status Use Case Specifications

A.11 Get Sales Amount Use Case Specifications

XVI

90

91

93

94

96

98

99

101

103

106

107

124

125

126

132

134

159

160

161

162

163

164

165

166

167

168

169

A.12 Logical Model of the EPSS

A.13 Logon Use Case Sequence Diagram

A.14 Logon Use Case Collaboration Diagram.

A.15 Create User Account Use Case Sequence Diagram

A.16 Create User Account Use Case Collaboration Diagram

A.17 Remove User Use Case Sequence Diagram ...

A.18 Remove User Use Case Collaboration Diagram.

A.19 Compare Sales with Buget Use Case Sequence Diagram.

A.20 Compare Sales with Buget Use Case Collaboration Diagram

A.21 Get Customer Info Use Case Sequence Diagram ...

A.22 Get Customer Info Use Case Collaboration Diagram.

A.23 Get Enquries Received Use Case Sequence Diagram.

A.24 Get Enquries Received Use Case Collaboration Diagram

A.25 Get Enquries Status Use Case Sequence Diagram . . .

A.26 Get Inqueries Status Use Case Collaboration Diagram.

A.27 Get Order Status Use Case Sequence Diagram ...

A.28 Get Order Status Use Case Collaboration Diagram

A.29 Get Orders Received Use Case Sequence Diagram .

A.30 Get Orders Received Use Case Collaboration Diagram

A.31 Get Profit Loss Use Case Sequence Diagram ...

A.32 Get Profit Loss Use Case Collaboration Diagram

A.33 Get Sales Amount Use Case Sequence Diagram .

A.34 Get Sales Amount Use Case Collaboration Diagram

xvii

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

List of Acronyms

ACL: Agent Communication Language

ADAPTS: Adaptive Diagnostics and Personalized Techincal Support

AI: Artificial Intelligence

AOSE: Agent Oriented Software Engineering

AUML: Agent Unified Modeling Language

BDI: Beliefs, Desires, Intentions

BKD: Blended Knowledge Delivery

CAL: Client Agent Local

CAR: Client Agent Remote

CBT: Computer Based Training

CCPN: Conditional Coloured Petri Nets

CO-OPN: Concurrent Object Oriented Petri Nets

CPN: Coloured Petri Nets

CRM: Customer Relations Management

CSV: Comma Separated Value

xviii

DSS: Decision Support System

EHA: Extended Hierarchical Automaton

EIS: Executive Information System

EOS: Elementry Object System

EPSS: Electronic Performance Support System

ERP: Enterprise Resource Planning

ES: Expert System

FIP A: Foundation of Intelligent and Physical Agents

GSPN: Generalized Stochastic Petri Net

GUI: Graphical User Interface

HOL: Higher Order Logic

nop: Internet Inter-Orb Protocol

JADE: Java Agent Development Environment

JITIR: Just In Time Information Retrieval

KIF: Knowledge Interchange Format

KM: Knowledge Management

KQML: Knowledge Query and Manipulation Language

MAS: Multi Agent System

OCPN: Object Coloured Petri Nets

OMG: Object Management Group

XIX

OPN: Object-oriented Petri Nets

OOPN: Object Oriented Petri Nets

OOPr IT: Object Oriented Predicate Transition

PCD: Performance-centered Design

PN: Petri Net

PROMELA: Process Meta Language

PSS: Performance Support System

PVS: Prototype Verification System

RMI: Remote Method Invocation

RS: Request Supervisor

SCC: Strongly Connected Component

SOA: Service Oriented Architecture

SPIN: Simple Promela Interpreter

SPN: Stochastic Petri Net

SRA: Service Registry Agent

TPN: Timed Petri Net

VA: User Agent

VML: Unified Modeling Language

VCM: Virtual Class Manager

xx

Chapter 1

Introd uction

1.1 Motivation

The Information Organization of the 21st century is very different from the Indus

trial Organization of the past. "Supporting workers in modern businesses has become

increasingly complex in recent years" [2]. Today business processes require an em

ployee to interact with data typically scattered "between four and twelve systems" [3]

in order to perform his/her task. These systems are normally divided by functional

boundaries and employ different user interfaces and different methods of representing

data. Sometimes even similar terms have different meanings on different systems.

The main hurdle to performance is that "in order to do the work the performer has

to develop a mental model of the entire corporate system architecture, where the

data reside, what screen they reside on, how to navigate to that screen, and how

to integrate information that is in multiple places" [3]. The time to develop new

products and deliver them to customers is very short. Customer satisfaction often

requires designing products and services to meet individual customer needs. New

customer-focused production paradigms that stress quality, flexibility, and new tech

nologies are just some of the factors that have increased competency requirements

of shop floor work [4]. Even the production of traditional products like cars results

1

PhD Thesis - A. Bokhari McMaster - Computing and Software

in much higher pressures on the proficiency of workers due to requirements of new

procedures and skills demanded by the introduction of new technology in production

processes. Electronic Performance Support System (EPSS) is software that extracts

task specific knowledge from different systems possibly distributed over a number of

functional areas and provides the right information to the user at the right time in

a much shorter time compared to that taken by conventional means to extract it. A

thorough survey of the current use of this term is presented in Chapter 2.

The information needs of employees at different levels of an organizational hierarchy

are not the same even when they are dealing with the same project. A line manager

needs to monitor the day-to-day running of the business to achieve the goals set for

the current financial period. His/her needs for information may be different from

those of a sales/marketing executive working in the same unit. In a manufacturing

environment, the information needs (relating to the same project) of the production

manager, the design engineer, the production supervisor and production workers are'

different. If an EPSS is to meet its promise of enhancing the performance of its users

then each individual should obtain the information he/she needs according to the

nature of his/her duties, and this information must be as current as possible reflect

ing most, if not all, recent changes. During several years that the author worked as

a corporate manager he frequently faced the frustration of knowing that data were

available within the firm but we could not access such data in a desired integrated

form, because doing so required changes in the software systems that could not be

easily accomplished. Researchers and experts have strongly expressed the need for

flexible, dynamic and adaptive EPSS's [5]. Can a software system be designed such

that it meets the information needs of employees at different levels of an organization;

where the output is not in a fixed format but can be changed according to the needs

of users; where the information is not hard coded and is always current?

2

PhD Thesis - A. Bokhari McMaster - Computing and Software

1.2 Challenges

1.2.1 Research Problems

Change is the only constant factor in today's business and industrial environment.

Organizations are faced with the challenge of rapid change. Data that are a year

out of date may not be valid in today's changed environment. Business and industry

leaders previously planned five years ahead but this period has been shrinking and

in some cases a year is too long a time horizon. Performance Support Systems must

present a systems' view and coordinate the activities of an organization by acting as

the nervous system of the organization, and must react to any positive or negative

change immediately. As described by Bill Gates [6], only those corporations that have

more rapid access to information will outperform the competition. The conventional

method for dealing with various changes is to issue a new release of EPSS, updated to

incorporate these changes. This method of discrete releases, however, cannot keep up

with the rate of change in modern businesses. Often the new version is outdated before

it is released. It is widely recognized that adaptability of an EPSS is severely limited

due to hard-wired content and support. There is a need for "something dynamic

that evolves continuously to support performance, without the need for significant

developer intervention" [3].

In this thesis we investigate problems such as:

• Can we build an EPSS without hard-wired content such that the desired infor

mation is retrieved on the fly from original sources of information so that the

user always receives the latest information?

• Can we modify parts of the sytem without shutting down the complete system

and without the need to re-test the entire system?

• What is an appropriate architecure for such a system during the design phase?

3

PhD Thesis - A. Bokhari McMaster - Computing and Software

• Can we verify some of the desired properties such as liveness, boundedness,

deadlock-freeness, fairness etc for such a system?

• What is the technical feasibility of building such a system?

1.2.2 Research Objectives

• Examine the feasibility of partioning the application into discrete units of func

tionality and implementing each unit as a software agent.

• Use Service Oriented Architecture to achieve a loose coupling between different

agents implementing various services, resulting in an agile EPSS.

• Create a conceptual model and various UML models such as a use-case model,

interaction models, a logical model and state diagrams.

• Examine the possibility of transforming UML state diagrams to some type of

formal model for simulation of the model and for verification of desired proper

ties.

• Build a prototype to verify the feasibility of creating such a system.

1.3 Contributions

1.3.1 Conceptual Model

We have created an anthropomorphic design detailed in Chapter 4, in which different

components of the system are given human like attributes such as Director, Request

Supervisor, and Agent depending upon the responsibilities they are assigned to carry

out. This human-centric approach creates a better understanding of the system and

may reduce distance betwee man and machine, between design and implementation

and between client and developer.

4

PhD Thesis - A. Bokhari McMaster - Computing and Software

1.3.2 Adaptability

An important contribution of this research is the design of EPSS in which information

is not hard-coded but is extracted from different sources distributed over an organi

zation, on the fly. This ensures that the user always has access to the most recent

information to help improve his/her performance.

1.3.3 Flexibility

Another important contribution is that domain specific functionalities may be added,

removed, modified or extended with minimum disruption as the core application

is partitioned into small discrete units of functionality based on related business

rules or function points called "services". These services are loosely coupled via a

service-oriented architecture. An autonomous software agent implements each service.

The requirement of an additional service means implementing another autonomous

agent that does not necessitate any change in the main system. If a service needs

modification due to changed business rules or user requirement, only that service is

disrupted and rest of the system remains in tact.

1.3.4 Accessibility

A user is able to access the system remotely via a desktop or a lap top computer from

anywhere on the corporate intranet.

1.3.5 A Sound Architecture

In order to build a system that has the characteristics mentioned above it is necessary

to have a strong architectural foundation ~ an architecture that has most of the de

sirable properties such as fairness, liveness, deadlockfreeness, boundedness and home

state. Traditionally UML (Unified Modeling Language) or AUML (Agent UML) mod

els have been used for the design and analysis of multi-agent systems [7]. However

5

PhD Thesis - A. Bokhari McMaster - Computing and Software

UML is based on semi-formal semantics and formal methods for analysis cannot be

directly applied to these models. Although formal methods have been frequently used

in requirements specification and analysis phase their use to create formal models at

the design stage is limited [8]. On the other hand current software engineering prac

tices require dynamic analysis at an early stage in the design of a software system so

that its behavioural properties may be verified. This led us to focus on the possibility

of using Coloured Petri Nets (CPNs) for modeling the proposed EPSS design, in or

der to carry out dynamic analysis. A strong mathematical foundation, along with a

graphical representation, makes Petri nets ideally suitable for dynamic analysis. One

of the most significant contributions of this research is an algorithm that transforms

UML state chart models for object-oriented systems to Object Coloured Petri Nets

(OCPNs). This algorithm was extended to agent-oriented systems in order to verify

the desirable properties of the proposed EPSS design.

1.3.6 Implementation of a Prototype

In order to validate the concept a prototype was successfully implemented using

JADE (Java Agent Development Environment) as middleware. Tests were carried

out to examine the performance of the system under different loads and by changing

the content of the data sources, with excellent results.

1.3.7 Publications

This research has resulted in one journal paper, five conference papers and three

technical reports as detailed below:

Journal Paper

"A Distributed Agile Electronic Performance Support System with Software Agents

and Service Oriented Architecture from Design to Implementation", accepted for

6

PhD Thesis - A. Bokhari McMaster - Computing and Software

publication in the International Transactions on System Science and Applications

2007.

Conference Papers

• "In Per suit of an Agile Performance Support System Design with SOA and

Softare Agents", in the Proceedings of the IADIS International Conference e

Society 2006, Dublin, Ireland, July 13-16, 2006.

• "Translation of UML Models to Object Coloured Petri Nets with a view to

Analysis", in the Proceedings of the Eighteenth International Conference on

Software Engineering and Knowledge Engineering (SEKE'06), San Fransisco,

CA, USA, July 5-7, 2006.

• "Validation of Information Systems using Petri Nets", in the Proceedings of the

8th International Conference on Enterprise Information Systems (ICEIS'2006),

Paphos, Cyprus, May 23-27,2006.

• "Performance Support System: a Knowledge Management Tool", in the Pro

ceedings of the 26th McMaster World Congress, Hamilton, Ontario, Canada,

January 19-21, 2005.

• "Design of an Agile Performance Suport System", in the Proceedings of the

42nd Annual ISPI International Performance Improvement Conference and Ex

position, Tempa, Florida, April 20-23, 2004.

Technical Reports

• "Design/CPN Analysis Reports for EPSS", Tech. Rep. CAS-06-07-SP, McMas

ter University, Computing and Software Department, 2006.

• "Formalization of UML Statecharts: Approaches for Handling Composite States" ,

Tech. Rep. CAS-05-07-SP, McMaster University, Computing and Software De-

7

PhD Thesis - A. Bokhari McMaster - Computing and Software

partment, 2005 .

• "What is a Performance Support System?", Tech. Rep. CAS-03-15-SP, Mc

Master University, Computing and Software Department, 2003.

1.4 Organization

This thesis is organised as follows: Chapter 2 presents an introduction to performance

support systems. Here we also examine different interpretations of the term by various

researchers and give our point of view. We then briefly discuss related work on

performance support systems carried out by researchers in the recent past. Chapter 3

introduces the main features of service-oriented architectures and various concepts

related to software agents. It also distinguishes the strong notion of agency from the

weak notion of agency used in this research. We briefly examine the use of formal

methods in Agent Oriented Software Engineering (AOSE) and present a rationale

for using higher-level Petri Nets as a formal dynamic analysis technique. A brief

introduction to UML, with explanation of terms later used in this thesis, is presented

next, followed by an introduction to Object Coloured Petri Nets that we have used

for modelling of EPSS.

Chapter 4 presents design considerations and gives details of a conceptual de

sign. We then focus on creation of a UML model for the prototype. Chapter 5

examines recent research on transforming UML models to formal models amenable

to dynamic analysis, and presents an algorithm to transform UML state diagrams to

Object Coloured Petri Nets. It also gives examples to highlight how the algorithm

can be extended from object-oriented systems to agent-oriented systems. Chapter 6

provides the simulation details of the proposed OCPN based model, using the De

sign/CPN tool. It also gives results of dynamic analysis carried out by building

occurrence graphs. Chapter 7 contains implementation details of a prototype, and

we discuss our choice of JADE as the middleware for its implementation. We ensure

8

PhD Thesis - A. Bokhari McMaster - Computing and Software

that the agents developed by us are FIPA (Foundation of Intelligent and Physical

Agents) compliant by using FIPA agent communication language (ACL) and FIPA

agent interaction protocols with an application specific ontology called EPSS-ontology

developed in this research. This chapter also discusses the relevance of agent commu

nication languages, interaction protocols, and ontologies. Chapter 8 describes details

of a methodology that can be followed to design a dynamic performance support

system. We then present conclusions of this research and guidelines for future work.

9

Chapter 2

Performance Support Systems

2.1 Introduction

In this chapter, we briefly trace the history of Performance Support Systems and

examine how different research groups have interpreted or used the term according to

their research interests and backgrounds. We then present our understanding of the

term and highlight the fact that the experts in the field strongly believe that a perfor

mance support system must be dynamic to support the ever-changing environments

of today's business and industry, which is the focus of our current research. Finally

we examine the essential characteristics of a dynamic performance support system in

the light of requirements that they place on the software architecture.

A Performance Support System (PSS) or an Electronic Performance Support

System (EPSS) as it is more commonly called today, is a software system that en

hances the performance of its users. "Understanding the EPSS vision remains far

from common" [5] even a decade after Gloria Gery [9] published her groundbreaking

book in which she coined the new term. Towards the end of 1980's she worked with

a group from AT&T to determine what tools could be added to workstations to give

users precise information just in time to support their performance at work. The

term "electronic performance support systems" emerged from this project to describe

10

PhD Thesis - A. Bokhari McMaster - Computing and Software

integrated suites of these tools.[IO] Gery [9] defines EPSS as:

"an integrated electronic environment that is available to and easily accessible

by each employee and is structured to provide immediate, individualized on-line access

to the full range of information, software, guidance, advice and assistance, data,

images, tools, and assessment and monitoring systems to permit job performance

with minimal support and intervention by others. "

Gery's definition covers a wide area. Some examples of commercial EPSS

packages listed by [11] are: Auxilium Performance Builder - A web-based application

that is designed to increase the performance of departmental or functional groups

that perform activities focused on achieving shared goals. Epiplex - a software to

help large companies improve the performance of their enterprise application-enabled

business processes. Step 7 Lite - is intended for use by automation specialists to

engineer and program solutions to automation problems.

People have different perceptions about Performance Support Systems or even what

they should be called. This largely stems from the manner by which terms such as

performance, and performance improvement or performance support are interpreted

as discussed in the following sections.

2.2 What is Performance and Performance Improve

ment?

Dictionary meanings of performance are:

n; any recognized accomplishment

n; the act of performing; of doing something successfully; using knowledge as dis

tinguished from merely possessing it

The following definitions of Performance Improvement were taken from the John

Hopkins University's Web site:[12]

11

PhD Thesis - A. Bokhari McMaster - Computing and Software

1. Performance Improvement is a process for achieving desired institutional and

individual results.

2. Performance Improvement (PI) is a process for enhancing employee and orga

nizational performance that employs an explicit set of methods and strategies.

Results are achieved through a systematic process that considers the institu

tional context, describes desired performance, identifies gaps between desired

and actual performance, identifies root causes, selects, designs and implements

interventions to fix the root causes, and measures changes in performance. PI

is a continuously evolving process that uses the results of monitoring and feed

back to determine whether progress has been made and to plan and implement

additional appropriate changes.

It is obvious that Performance can be interpreted in many different ways. It can be:

1. A measurable output of an employee's work in terms of number of units pro

duced per unit of time

2. Time taken to complete a job.

3. Accuracy with which a job is performed.

4. Efficiency in handling an assignment.

5. Making the appropriate decision under given circumstances.

2.3 Interpretations of the Term EPSS

The term Performance Support System has been used for a wide variety of different

systems, for example:

On-line help:

• With ease of software use (Macros etc),

12

PhD Thesis - A. Bokhari McMaster - Computing and Software

• With how to use software,

• With finding information.

Manipulation of information in order to learn:

The focus in these applications is on the reduction of training time, reduction of costs

associated with training and improvement of training quality. They include:

• Video, audio, image and text representation of information;

• Use of hypermedia and multimedia for presentation of information. For exam

ple, to explain assemblies and maintenance of complex mechanical systems [13];

• On-line technical documentation; for example, on line manuals to support man

ufacturing processes;

• Some enterprise software is highly customized (e.g. Enterprise Resource Plan

ning (ERP) Systems and Customer Relations Management (CRM) systems).

Therefore the generic software from a vendor of such systems may not be use

ful and the use of performance support systems has been suggested in such

cases [14];

• On-line reference material. For example, a performance support system that

provides tutorial and reference for bodily injury claim investigators [15];

• Learning systems. For example, flashcard software for product knowledge mem

orization [16].

Manipulation of information for performance support:

• Systems that address configuration problems for companies that sell multiple

products/services [17];

• Systems for fault diagnosis and support on the shop floor [4];

13

PhD Thesis - A. Bokhari McMaster - Computing and Software

• Systems for Management Decision Support [18];

The merging of traditional Expert Systems (ES) with EPSS was a natural fit.

Carr [19] brought knowledge into the equation for EPSS. These systems offer a fertile

field for knowledge-based technology. According to him:

"A PSS is a computer-based system that uses knowledge-based systems, hyper

text, on-line reference, extensive data bases, and allied technologies to provide support

to performers on the job, where they need it, when they need it, in the form most

useful to them."

He argued that because of the emphasis that Performance Support Systems

put on performance improvement, they eliminate the feeling of threat and strangeness

associated with expert systems, as improving on the job performance is important to

everybody. PSS's are more tightly wired to the needs of the performance situation

and they perform in a much broader variety of roles. PSS's, therefore, he predicted

will be highly successful and widely accepted. There has been much progress in both

the research and the applications of EPSS during the past few years. Gery also shares

these ideas as she says, "When designers have the point of view of the performer sit

uated in a real work context, success is inevztable" [10]. AI (Artificial Intelligence) is

an essential characteristic of an EPSS according to Carr, but not according to Gery.

Flexibility is another important feature of Performance Support Systems. Carr sug

gests that a PSS can assume one of the following four basic roles:

• It can act as a librarian. In this role, it helps the performer find, organize, and

interpret the information required to carry out a task.

• It can function as an advisor. It embodies and shares some specialized expertise

that the performer needs to carry out the task.

• It can be an instructor. In this role, it trains the performer in some aspect of

the work to be done. Just as the advisor role is closest to that of an expert

system, the instructor role is an outgrowth of Computer Based Training (CBT).

14

PhD Thesis - A. Bokhari McMaster - Computing and Software

• It can serve as a doer. In this role, it does the work with or without assistance

from the human performer.

Advocates of EPSS can generally be divided into three groups:

a) those arguing in favour of training and learning as a means for performance

improvement;

b) those who believe the EPSS is to support performance when required to

do so (just-in-time approach); and

c) those who want to see everything combined in one platform.

There has been an interesting debate on whether this performance improve

ment can be achieved by providing just enough information, just in time to handle a

situation or by additional training about a new situation or both. Rosenberg [20] is of

the view that "performance rather than learning is the direct goal. " Raybould [21] sug

gests that: "The purpose of the EPSS is to provide just-in-time performance support

at the moment of need. The support could be in the form of procedural assistance or

granular training. " Kevin Cloe says, "The focus is not knowing, it is performing" [22].

This thinking led to the building of systems that enable employees to complete

an assignment without prior training in which "Task-specific templates and job aids

assist users in performing to an organization's 'best practices' standards. Wizards

and cue cards walk users through an approved procedure" [23] This also included user

assistance for a particular software product. Performance in this case is the ability

to use the product efficiently and with minimal training.

Equally interesting is the discussion about what can be called an EPSS and

what should not be categorized as such. According to Debrough [24] an EPSS must

provide specific information related to doing a domain specific job when it is needed,

on demand by the user. Otherwise it will be no different from traditional training

that provides information but not when it is needed and that is not specific and may

include irrelevant data. Also the trainee cannot choose what he/she needs. Tables 2.1

15

PhD Thesis - A. Bokhari McMaster - Computing and Software

and 2.2, reproduced from [25], highlight the difference between performance support

systems, help systems and Computer based training (CBT).

Table 2 1· EPSS vs Help Systems ..
EPSS Help Systems
Support a broad range of job tasks. Support software-related tasks.
Provide "what if' type of advice. Provide passive information only.
Can support complex, interrelated Provide descriptions of procedures.
tasks.
Accept and process user input. Present information as a result of menu

options.

Table 2 2· EPSS vs CBT ..
EPSS CBT
Hypertext environment with multiple Infobase structured within predeter-
access. mined presentation sequences.
Contains a range of support mecha- Outlines procedures to be followed by
nisms to assist user in performing a the user. Does not actually help with
task. execution.
Accepts and manipulates user input. Checks user input against model an-

swer or calculated answer.
Available on demand and in context. Forms an event in a larger teaching pro-

cess. Available when its turn comes up.
Emphasis on user construction of indi- Structured according to design of the
vidualized learning sequence, based on developer.
need.
Granular Modular

Raybould [26] felt that the previous definitions of EPSS were too restrictive

and resulted in "misconceptions of EPSS as intelligent job aids or as the cue card,

coach or wizard structures. " He advocated a systems-thinking approach and redefined

EPSS as follows:

"An EPSS is the electronic infrastructure that captures, stores and distributes

individual and corporate knowledge assets throughout an organization, to enable an

individual to achieve a required level of performance in the fastest possible time and

with the minimum of support from other people. "

16

PhD Thesis - A. Bokhari McMaster - Computing and Software

Raybould advocated that an EPSS is distinct from traditional systems devel

opment as well as from expert systems development in that the former focuses on

data, not on knowledge and the latter focuses on knowledge but not on enabling

performance. He brought individual and corporate knowledge assets in the realm of

EPSS. His methodology suggests extracting, organizing, and storing knowledge and

making it available to employees at their time of need.

Today the corporate memory is subject to so many and so frequent changes

that extraction of knowledge is required on an on-going basis. Recently a number of

other researchers have also advocated the merging of EPSS and KM fields [3, 27, 28],

although there is a natural tilt towards training/learning or performance, depending

upon the background of the researchers.

2.4 Our Understanding of the Term

We agree with Jim Elsenheimer [28] that the information overload that corporations

in the 21st century are facing, has made it paramount to make all the information

available in corporate memory meaningful in terms of the performance we want to

achieve. If EPSS provides this information, it should distill information into usable

chunks. He advocates a training approach and recommends extraction of tacit as well

as explicit knowledge, and making it available to users. His tapping of tacit knowledge

and the approach for doing so, sound similar to that advocated by proponents of

expert systems and in our opinion suffers from the same difficulties and disadvantages.

Based on an Artificial Intelligence (AI) and Expert Systems (ES) background,

we developed a performance support system for the secondary water system of a

nuclear power station [29, 30, 31] during the early 1990's. Our understanding of the

term matches the explanation of Bill Miller [32]. He believed that an EPSS should

support the performance of an employee on the job by enabling him/her to perform

a task in less time, with fewer errors, with better results and with less training or

17

PhD Thesis - A. Bokhari McMaster - Computing and Software

external support. We are of the view that: A performance support system is a suite of

software tools that an employee can use to perform his/her job effectively, efficiently,

and accurately within a time that enhances the employee's performance. It caters to

the needs of an individual user by presenting the perspective of information that is

just sufficient and just in time for the performance of that particular user, on demand

by the user.

A PSS extracts relevant knowledge from information that may be distributed

over a number of functional areas and provides it to the user in a much shorter time,

compared to that taken by conventional means to extract it. This is analogous to

reviewing each piece of information separately and connecting the relevant informa

tion in a human brain. The focus in this research is on user performance rather than

learning or training. The user must have prior training to handle the kind of job that

he/she is trying to do and should be able to do it without a PSS. In such a case, that

will require much time and cognitive effort, and the results may not be satisfactory.

The PSS is there to support performance, and not to provide performance. In this

context, the PSS can be thought of as suite of productivity tools. On request from

a user, it can also find information that the user may provide to others as part of

his/her job (e.g., providing order status to a client). Also it should be user tunable,

so that each user may arrange the toolbox in a manner that best meets his/her per

formance needs. Therefore the PSS must present a perspective that is relevant to the

user's job.

The Blended Knowledge Delivery model (BKD) of Andy Zolper [27] provides

a view that helps clarify the overlapping domains of KM (Knowledge Management),

EPSS, HPS (Human Performance Support) and IK (Internalized Knowledge). In

his effort to segregate KM and EPSS, however, he limited EPSS to a system whose

content is organized in advance. Although traditionally this has been the case, we

strongly believe that in order to meet the ever changing environment of business

and industry in the 21st century, KM and EPSS must constructively cooperate if

18

PhD Thesis - A. Bokhari McMaster - Computing and Software

the goal is to provide a solution in which the vast innate abilities of employees are

complemented by our efforts, not complicated or confused. We, therefore, would

modify his definition of EPSS to:

The practice of searching and extracting task specific knowledge from disparate

knowledge sources distributed over the organization, and delivering it to employees

when they need it, where they need it, and in the form that will best support their

performance.

With this definition EPSS can include information that supports the perfor

mance of a worker, a supervisor, a business executive, or a manager and can overlap

with Executive Information System (EIS) and Decision Support System (DSS) tech

nologies. Such a system will iiextend cognitive ability by abstracting the procedure

or task from irrelevant details", and will iiextend memory by relieving people of the

necessity of remembering details, or even of the necessity of learning." [33]

2.5 Dynamic / Adaptive Systems

Supporting workers in modern businesses has become increasingly complex in recent

years [2]. Researchers and experts have strongly expressed the need for dynamic

or adaptive EPSS's [5]. The conventional method for dealing with various changes

in business processes is to issue anew/updated release of EPSS incorporating the

changes. This method of discrete releases, however, cannot keep up with the rate

of change in modern businesses. Often the new version is outdated before it is re

leased. It is widely recognized that adaptability of EPSS is severely limited due to

hard-wired content and support. There is a need for iisomething dynamic that evolves

continuously to support performance, without the need for significant developer inter

vention." [3]

Another problem highlighted by Gery [3] is the fact that today's business

processes require an employee to interact with data scattered "between four and

19

PhD Thesis - A. IBokhari McMaster - Computing and Software

twelve systems" i~ order to perform his/her task. These systems are normally divided
I

by functional bOfndaries and use different user interfaces and different methods of

representing dat1. Sometimes similar terms have different meanings on these systems.

The main hurdle to performance is that

liin order to do the work the performer has to develop a mental model of the

entire corporate fystem architecture, where the data resides, what screen it resides on,

how to navigate Ito that screen, and how to integrate information that is in multiple
I

places. "[3]

An EPSS. can greatly support the performance of a worker by transparently

presenting a view of the relevant latest data that he/she needs. We used an anthro

pomorphic model and the concept of agents in OPUS [29] and we strongly agree with

Gery that the Mw agent technology is a fundamental aspect of dynamic PSS.

2.6 Essertial Characteristics of EPSS

Debrough [34] e+mined different characteristics of EPSS and Gery [10] listed 19 char

acteristics of a PFrformance-centered design (PCD). We examine the main features of

EPSS in the ligltt of requirements that they place on software architecture.

Graphical User Interface (GUI): The user interface should follow the principles

of PCD elrtborated by Gery [10]. Recognizing that the performance needs of

different users are not the same, customizability is the key design feature for

the GUI so that the system presents the information according to the mental

model of Ire user.

Flexibility: T~e system should have minimum coupling between the modules that

extract ch~nks of relevant knowledge and the sources of knowledge to facilitate

mOdificatitn to a part of the system without the need to re-test the entire

system.

20

PhD Thesis - A.IBokhari McMaster - Computing and Software

I
I

Adaptability: ~t should be possible to easily adapt the system to meet particular

informatiOl~ needs of a user. It should also be possible to update content without
I

code level ihanges.

Response: In ~rder that the user obtains the support he/she needs just in time,

the systeml should respond within a time frame that enhances performance.

This meant mechanisms should be in place to avoid deadlock due to different

processes c mpeting for the same resource.

Transparency: i The user should not be required to know where the information is

located an~ whether it is retrieved sequentially by a single process or concur
i

rendy by ~ number of processes. He/She also does not need to know if others

are using the system.

A vailability: ~s the user needs the system just in time to perform a task it should be

available ,hen required. It should be fault tolerant so that in case of breakage

of commuqication, messages are not lost. It should also provide alternatives to

guard agairst the possibility of non-availability of a machine in the system.

Solicited inforFation: The system should provide only relevant information, dis

crete and to the point - just enough information to carry out the task.

System PerfoI!mance: Performance is determined by a number of factors, for ex

ample: REjsponse time - how quickly the system responds to user interaction.

Throughpl!J.t - number of jobs handled per unit of time, and Network Capacity

used.

Incremental ~rowth: It should be possible to add new functionality easily.
!

Security: As tte system provides access to corporate information, safeguards should

be built i1 to prevent unauthorized uses.

21

PhD Thesis - A. jBokhari McMaster - Computing and Software

2.7 Recept Research
I

Sen [35] studied the distance learning paradigms involving both synchronous (such as

online distance l~ctures over the Web) and asynchronous (such as independent learn

ing from web maferials) techniques and noted the need for distance learners to access

information on 1istributed machines in different formats. He also noted that the

presentation of ~he same information to different users may be different, depending

upon the level o~ understanding of the individuals using the information. Sen imple

mented a VirtU1i Class Manager (VCM) that provides an asynchronous, distributed,

open informatio access and management environment to particular users, including

supervisors and learners. In order to make the system flexible and adaptable, he

proposed a multli-tier architecture in which the front end is the client and the back

end is the data~ase. Note that his focus was on learning whereas our focus is on

performance.

Brusilovsky et a . [36] explored some possible scenarios for using adaptive hypermedia

for adaptive per ormance support systems, in the context of the Adaptive Diagnostics

and Personalize, Technical Support (ADAPTS) project that provides an intelligent,
,

adaptive electro:p.ic performance support system for maintaining complex equipment.

ADAPTS adjusts the diagnostic strategy to the identity of the technician and what

is being done, dynamically, adapting the sequence of setups, tests, and repair/replace

procedures based on the technician's responses. The technician receives dynamically

selected technical support information appropriate for the contexts of the setup, test,

and repair /repl~ce procedure being performed. The focus of this approach is on per

formance imprOf' ement similar to ours. However the system adapts to the information

currently coded into the software but does not dynamically handle any changes to

the information content. For example, any change in diagnostic procedure or use of

a new kind of s~b-system will result in issuing a new release of the software. They

do not discuss ~ossibilities of formal verification of the properties of their EPSS.
I

Banerji [37] h~ identified the need for just in time support to improve the perfor-

I 22

I

PhD Thesis - A. ~okhari McMaster - Computing and Software

mance of knowle<Jge workers and has proposed a four-layer architecture for electronic

performance sup*ort systems. The system he proposed is limited to providing on-the
I

job support to f~cilitate task performance within some particular target application
I

domain. It doestnot dynamically handle change in information content and is not

adaptable. It is i tegrated software for use on a stand-alone system.

Rhodes [3 1 proposes a class of just in time information retrieval agents named

JITIRs that canJ based on the local context of a person, extract and present useful
,

information. JnjIRs continuously watch a user's environment, and present informa-

tion that may b~ useful without any explicit action on the part of the user. The

information a JITIR provides can come from any number of pre-indexed databases of

documents (e.g. lemail archives, notes files, or documents from commercial databases

such as the INSPEC collection of technical paper abstracts). However, JITIRs are

software agents +nly, in the sense that they do not represent distributed agent archi

tectures or agen~ oriented programming models.

I

2.8 Sumfnary

This research exlplores the design of a dynamic EPSS. In this chapter we described

what an EPSS]s and discussed different interpretations of the term by various re

searchers. We also gave our interpretation of the term and listed some of the essential

characteristics that an EPSS must have. At the end we briefly discussed some of the

recent work on 18pSSs by other researchers.

In order ~o fulfil the need for a dynamic and adaptive EPSS as pointed out in

section 2.5 of thO chapter, we propose that the concepts of software agents and service

oriented archite ture be combined for application towards the design of that EPSS.

The next chapte presents a brief introduction to some of these concepts and examines

different modeli g possibilities for analysis of an agent based software system.

23

I

Chapter 3

I

Servic¢-Oriented Architecture and
I

Software Agents

3.1 Serv~ce Oriented Architecture

Service-oriented larchitecture (SOA) is a sofware architectural concept where appli

cations are part~tioned into discrete units of functionality called "services". Each

service impleme*ts a small set of related business rules or function points. These

services are made available to consumers/client applications. Whenever a business

rule must be modified to support changing business requirements, only the service

which implements that business rule needs modification, while the remainder of the

application rem*ns intact. The most importannt aspect of SOA is that it provides

a loose couplingl between different services that are composed into an application

by the applicatitn developers or system integraters, without needing to know their

implementation retails.

As shown I in figure 3.1 the basic building blocks of SOA are:

Service Providers: Processes that can provide specific services.

Service Client~: Processes that need a particular service.

I
I

I 24
I

PhD Thesis - A. $okhari McMaster - Computing and Software

I

i

P~ovider
Re~ istration

I (1)

Service Broker

Discovery
Request

(2)

Servic Provider

CI ient Contacts
Provider and Data
Exchange Occurs

(4)

Broker Publishes
Provider Location

(3)

Service Client

Figure 3.11: Basic Building Blocks of Service-Oriented Architecture.

Service Broker$: Processes responsible for registering and categorizing published

services anc~ providing search facilities to clients for locating the desired services.
I
I

SOA, like ~ny other architecture, is not tied to a specific technology. A wide
I

range of technolo~ies such as CORBA, RPC, DECOM, RMI or Web Services can be

used for its impI~mentation. According to [39] a service is a behavior that is pro

vided by a comppnent for use by any other component based only on the interface

contract. A serv~ce has a network-addressable interface. A service stresses interop

c!ability and mal bc dynamically discoven.! and ,,,cd. The services have the ability

! 25

PhD Thesis - A.I Bokhari McMaster - Computing and Software

to be invoked 0ler a network and this can be accomplished in many different ways.

The technologie used to invoke the interface of the services stress interoperability.

Location transp rency is also stressed so that services may be discovered and used

dynamically. I

Although I SOA does not need Web Services for its implementation, their use

is so common t at often SOA is assumed to be equivalent to Web Services [40].

Web Services co bine four technologies for implementing SOA i. e. HTTP jHTPPS as

the primary net ork protocol, SOAP jXML for the payload format, UDDI(Universal

Description and Discovery Interface) for service registry, and WSDL(Web Services
I

Description Lan~uage) to describe the service interface.

Web Serv~ces allow packaging of applications using hetrogenous services owned

by different orgjlllizations and implemented on different platforms in different lan

guages. Such a~plications can only work if they are properly coordinated such that

the sender and receiver of a message know, and agree in advance, the format and

structure of the (SOAP) messages that are exchanged, and the sequence and condi

tions in which t e messages are exchanged [41].

The first lobjective is realized by WSDL and its extensions, however it does

not define the sequence and conditions in which messages are exchanged. This is

accomplished by WS-CDL(Web Services Choreography Language) that produces a

shared common or "global" definition of the sequence and conditions in which mes

sages are exchanged. This describes the observable complementry behaviour of all the

participants involved. Each participant can then use the definition to build and test

solutions that conform to the global definition. Choreography is typically associated

with the public Imessage exchanges that occur between multiple web services, rather

than a specific *usiness process that is executed by a single party [42].
I

Generall ,corporate entities are not willing to delegate control of their business

processes to th ·r integration partners. Orchestration, also called executable process

in BPEL(Busin ss Process Execution Language), deals with the description of the

26

PhD Thesis - A.: Bokhari McMaster - Computing and Software
I

!

interactions in which a given service can engage with other services, as well as the
I

internal steps bftween these interactions. Orchestration always represents control

from the perspeptive of one party. This differs from choreography, which is more
I

collaborative an allows each involved party to describe its part in the interaction

[42]. Much resea ch is currently underway to explore different aspects of choreography,

archestration an other related issues [43, 44, 45].

It is pos ible represent the global flow of messages specified by interaction

protocols using S-CDL by global calculus and the end point behaviour by a typed

7r calculus. Botti calculi are based on a common notion of structured communication,

called a session. ~ A session binds a series of communications between two parties into

one, distinguishtng them from communications belonging to other sessions. Using

such formalizati~n, a UML interaction diagram representing interaction between Web

Services can be ~ormally analysed for verification of protocols [46].

I

I

3.2 Softtare Agents

A software agent is an autonomous program that operates on behalf of another entity.

It has the abilit~ to communicate, interact, and collaborate with other entities and

may have the ability to learn, reason, adapt, and take initiative in pursuing goals.

A mobile agent has the additional capability of being able to migrate under its own

control within heterogeneous networks. Although the agent paradigm came into ex

istence as a res4lt of research within the AI community, both the AI community and

computer scienCie researchers have studied agents and agent systems for a number of

years from theirl own different perspectives. Agents considered by the AI community

have the folloWi~g properties:

• autonomors

I

• proactive I

27

PhD Thesis - A. i Bokhari

• may be mpbile (i.e.

network) I

McMaster - Computing and Software

it may have the ability to move around an electronic

• can comm nicate with other agents including humans, and

• are most ften intelligent; i.e. they have knowledge, and they can learn and

reason wit their own knowledge to perform complex tasks.

From a compute science systems point of view, agents are running code with data and

state [47]. The are autonomous, proactive, interacting and may be mobile. Their

functionality ca~ be described in terms of human behaviours [48] such as beliefs,

desires and intentions.

3.2.1 Relationship between Agents and Objects

There are a nU~ber of obvious similarities between agents and objects but there are

significant differ nces also. A detailed discussion on this topic appears in [49] and a

summary is rep oduced below:

• Agents e~ody a stronger notion of autonomy than objects, and, in particular,

they decide for themselves whether or not to perform an action on request from

another agent;

• Agents are capable of flexible (reactive, pro-active, social) behavior, and the

standard object model has nothing to say about such types of behavior;

• A multi-agent system is inherently multi-threaded, in that each agent is assumed

to have atlleast one thread of control.

!

3.2.2 Veri cation and Validation Issues

The use of for al methods has recently been one of the most active areas of agent

oriented softwar engineering research. Efforts have been made to apply formal meth

ods to specify s stems, for directly programming the systems, and for verification of

28

PhD Thesis - A. i Bokhari McMaster - Computing and Software
!

the systems, wit only limited success [49].

It is widely reco nized in software engineering community that interaction is one of

the most compl characteristics of software systems. A system that changes its ac

tions, outputs a d conditions/status in response to stimuli from within or outside, is

called a reactive I system. The work carried out by Manna, Pnueli and colleagues [50]

for specification land verification of reactive systems using temporal logic appears to

be most relevan to multi-agent systems. Their work is based on the notion that the

computations of reactive systems can be considered as infinite sequences which corre-
I

spond to models I for linear temporal logic. Temporal logic can be used both to specify
I

systems, and to I axiomatize programming languages. This axiomatization can then

be used to syst~matically derive an abstract model of a program from the program

text. Both the specification and the program model will then be encoded in temporal

logic, and verificlation therefore becomes a proof problem in temporal logic. Compar

atively little wo k has been carried out within the agent-based systems community

on axiomatizing multiagent environments [49]. For agent systems, which fall into the

category of Pnu lian reactive systems, refinement from abstract models to concrete

implemetation i not so straightforward. This is because such systems must be spec

ified in terms of their ongoing behavior - they cannot be specified simply in terms of

pre- and post-conditions. In contrast to pre- and post-condition formalisms, it is not

easy to determine what program structures are required to realize such specifications.

As a consequence, researchers have only just begun to investigate refinement and

design techniqu¢s for agent-based systems [49].

3.2.3 Fornjlal Methods in Specification

Most of the resEtarch by the AI community is focused on the problem of conceptual

izing agents i. el· formal representation of their properties, and reasoning about these

properties. Atti udes that have been considered for representing agents can be divided

into two import nt categories: information attitudes like beliefs and knowledge, and

29

PhD Thesis - A.I Bokhari McMaster - Computing and Software

pro-attitudes lik~ desire, intention, and choice, etc. [51]. Information attributes repre

sent an agent's k~OWledge or beliefs about the world, including itself and other agents.

The pro-attitudt guide an agent's actions in a certain way. For example, "desire" rep

resents ObjectiV; that the agent would like to accomplish, the "intentions" represent

what the agent as chosen to do in order to achieve some of the objectives. Although

it is not clear w ich combination of attitudes is most suitable to represent an agent,

the most commln representation involves at least one information attitude and one

pro-attitude. I

The most commfm approach for specifying agents is to treat them as intentional sys

tems that have ~ental states like beliefs, desires and intentions. The problem is that

rules of first ord~r logic do not apply to intentional notions because they are referen

tially opaque. T~ey set up opaque contexts, in which the standard substitution rules

of first order log~c do not apply as illustrated in the following example:

Let E and F be expressions and x be a variable. The notation E(x := F) represents

an expression t at is the same as E except that all occurrences of variable x are

replaced by F. ccording to Leibniz, for the two expressions X and Y:

X=Y
E(x := X) = E(x := Y)

However this aXiiom does not apply to intentional notions as shown in the following

example from [511].

The staement: Janine believes Cranos is the father of Zeus, may be translated into

first order logic as:

Bel(Janine, Father(Zeus, Cronos))

The constants Zeus and Jupiter by any reasonable interpretation, denote the same

person: the sup erne deity of classical world. Therefore, in first order logic we may

write:

(Zeus = Jupitor)

30

PhD Thesis - A.I Bokhari McMaster - Gomputing and Software

The application pf Leibniz's axiom will result in the following derivation:

Bel (Janine, Father (Jupitor, Gronos))

:

which is intutiv ly invalid as believing that the father of Zeus is Gronos is not the

same as believin that the father of Jupitor is Gronos.

As the cl ssical logics are not suitable in their standard form for reasoning

about intention 1 notions, alternative formalisms are required. Two basic approaches

can be used to tlake care of problems in representing intentional notions by classical

logic: the use o~ modal logic that contains non-functional modal operators, and the

use of a meta-la~guage. On the semantic front, the most common approach is the pos

sible worlds sem~ntics originally proposed by Hintikka [52] and now most commonly

formulated in a formal modal logic using the technique developed by Kripke [51]. Ac

cording to Hinti ka, an agent's beliefs can be characterized as a set of possible worlds.

This approach s ffers from two problems: Rules developed using this notion require

that an agent ows all valid formulae. This means, in addition to other things, it

knows all prepo itional tautologies, which is counter intuitive. The rules also require

knowledge/belie be closed under logical consequence. These two problems together

are referred to a$ the logical omniscience problem and make the possible worlds model

unsuitable for r~source bound agents. Some researchers have suggested modifications

to the possible worlds model, for example by making a distinction between explicit

and implicit be~iefs [53]; however, others [54] have criticized such modifications. A

number of met4-language formalisms have been proposed [55, 56]; however, meta

language forma 'sms have been criticized due to inconsistencies [51].

The abo e paragraphs provide a brief account of formalisms attempted to

conceptualize a agent. However, a complete theory of agency must show how an

agent's informa ion and pro-attitudes are related, how the time and environment

affect the cognit"ve state of an agent, and how an agent decides what action to take. A

number of atte pts have been made using different combinations of information and

31

PhD Thesis - A. :Bokhari McMaster - Computing and Software

pro-attitudes: fo~ example Cohen and Levesque [57] used beliefs and goals whereas

Rao and Georg~ff [58] used beliefs, desires and intentions resulting in well known

BDI agents that !have been used by other researchers in their attempts to implement

agents and multitagent systems with varying success. Formalism has also been used to

represent comm1nication between agents based on speech act theory and has resulted

in two related larguages: the knowledge query and manipulation language (KQML)

and the knowle~ge interchange format (KIF). Foundation of intelligent and physical

agents (FIPA) hF also developed an agent communication language (ACL).

3.2.4 Froni Theory to Implementation
,

Efforts have beer made to construct computer systems satisfying properties specified

by agent theorie~. The two main problems identified in [51] are: 1) that of translat

ing the real wor d into an accurate, adequate symbolic description, in time for that

description to be useful, and 2) that of how to symbolically represent information

about complex r al world entities and processes and how to get agents to reason with

this informatio in time for the results to be useful. Despite much research, these

two problems re ain unsolved.

3.2.5 Alternative Approaches

There are so mi'}ny unsolved problems related to representation of agents with sym

bolic AI that sqme researchers became disenchanted and questioned the viability of

the whole paradigm. Most noted among them was Rodney Brooks [51] who argued

that:

!

• Intelligentl behaviour can be generated without explicit representation and ex-

plicit reasfning of the kind that symbolic AI proposes .

• Intelligenle is an emergent property of certain complex systems.

I
!

!

32

PhD Thesis - A. IBokhari McMaster - Computing and Software

• Intelligent ~ehaviour arises as a result of an agent's interaction with its envi

ronment. I

Brooks b ilt a number of robots based on his so-called subsumption architec

ture, which is a h erarchy of task accomplishing behaviours. A major criticism of most

of the formal or theoretical work is that while it is important and contributes to a

solid underlying oundation for practical systems, it is not clear how to use this work

to develop comp ete systems (no direction is provided as to how it may be used in

the development of these systems [59]). Although several powerful formalisms exist,

finding the right formalism is a nontrivial challenge as noted by Singh [47].

An agent /from a CS perspective is often considered to be just a process [48],
I

a piece of runni*g code with data and state. The functionality of these agents can
!

most often be d1scribed in terms of human behaviour. Agents are processes that are

autonomous andl pro-active (capable of making" their own" decisions when they like,

within the limit~f their design), interacting, and they may be mobile.

In short t ere is no agreed definition of what an agent is. The existing agent

theories are divi ed broadly into two categories; the AI community normally follows

the strong notio~ of agency whereas computer science researchers follow a weak notion

of agency. The ifirst approach considers an agent as a white box while the second

considers it as a black box and defines an agent only in terms of observable properties

such as autonomy, reactivity, pro-activity and social ability [60]. We follow the weak

notion of agency in this research.

3.3 uni~ed Modeling Language (UML)

In general, mostl of the implemented multi-agent systems are based on principled but

informal design methodologies; predominant among them is the use of Unified Mod

eling Language (UML) suitably adapted for agent-oriented design. The advantage

of using UML i its familiarity to users of object oriented analysis and design. The

33

PhD Thesis - A. iBokhari McMaster - Computing and Software

importance of d~namic analysis based on some formal model with powerful analysis

techniques, espe1ially at early stages of software development, has been steadily in

creasing in the recent past. UML does not provide a dynamic model to evaluate the
I

system at an ear~ stage. It lacks formal semantics and hence it is not possible to ap-

ply, directly, mathematical techniques on UML models for system validation [61]. In

this research we ropose to transform UML state diagrams to Object Coloured Petri

Nets (OCPNs) a d use the resulting Petri Net model for dynamic analysis to verify

certain behaviou al properties of the system. Details of the algorithm developed are

given in Chapter! 5. However, some of the terms relating to UML state diagrams that

are used in the aagorithm are described below:

3.3.1 Simp~e States

A simple state ~epresents one of the finite number of abstract states in which the

object modeled iy the state diagram may find itself. It is a state of the object during

which it satisfiesl some conditions, performs actions and waits for events. As shown

in figure 3.2, suc~ a state is represented by a rounded rectangle, usually has a name,

and may have an entry action, a do-activity and an exit action.

3.3.2 Pseupo States

A state diagram. starts with a pseudo initial state shown by a small solid circle. The

solid circle is in fact marking the initial state, and that is why it is a pseudo state.

A bull's eye circle represents the final pseudo state. A state diagram must have the

initial pseudo state although the final pseudo state is optional. There could be other

pseudo states su~h as history states.

34

PhD Thesis - A. IBokhari McMaster - Computing and Software

i
Initial Sta~e Simple State

" __ ~i ____________ ~

I
I
I

I

~trib"t"Type)[g"nI]Iacuon

Concurrent
Composite
State

!

Sub state 2

State A

do:activity

Transition

•
Super State

.·---1~PI

Final State

Figure 3.2: Different Types of States

3.3.3 COII1iposite States
I

Sub state 3

A composite st~te is composed of more than one sequential or concurrent sub-state.
I

It is a convenie9t grouping of states and must be "flattened" to a set of simple states

before a state d~agram can be transformed to a Petri net. An algorithm to do so can

be found in [62'163]. In this research we assume that any composite state in the state

diagram has bet flattened.

I 35

PhD Thesis - A. IBokhari McMaster - Computing and Software

3.3.4 Tran~itions

A transition reprfsents an allowed change from a source state to a target state. Tran

sitions from one I state to another are represented by a directed edge. A transition

may have an evert, a guard, and an action associated with it. An event is the cause

of a transition afd is sometimes called a trigger. A guard is a Boolean expression,

presented in squtre brackets, that prevents a transition from being taken unless the

condition evalua~es to true. An action is a function that represents the effect of a
I

transition and is !invoked on the object that owns the state machine as a result of the

transition. The ~vent, the guard and the action are shown as a label on the arrow

representing thel transition in the format: event [guard] I action. A state can source

many different ttansitions and can be the target of many transitions. Instead of go

ing to a different! state, a transition may have the same source and target state. Such

transitions repre~ent situations where a message is received but does not result in a
!

change of state. These transitions are called self-transitions. Transitions without an

associated event are called triggerless transitions. An action resulting from a transi

tion or a state e try I exit action can result in sending a message to another object. In

such a case, the. action is preceded by A, e. g. A Target. Action. Communication be

tween objects cain be synchronous (blocking) or asynchronous (non-blocking). We are

mainly interesteti in distributed systems and discuss asynchronous message passing

only although the model allows synchronous communication also. An asynchronous

call does not block the calling process and does not require an acknowledgement by a

return value. The acknowledgement, if necessary, can be sent as another asynchronous

message.

I

3.4 Mo1eling by Petri Nets
I

If the weak notipn of agency is accepted and hence agent behaviour can be described

by appropriate iprograms, then the experience of applying formal methods gained

I

36

i

PhD Thesis - A. IBokhari McMaster - Computing and Software
I

in the theory of imodeling and analysis of distributed systems can be used for the

formal descriptior and analysis of multi-agent systems [64]. Petri nets (PN) provide

an excellent for . al modeling tool for this purpose. Such a model gives both static

as well as dyna ic representations of systems. Different higher level Petri nets have

been used for th s purpose. E.g. CPN (Coloured Petri Nets) [65, 66], TPN (Timed

Petri Nets) [67], SPN (Stochastic Petri Nets) [68], GSPN (Generalized Stochastic

Petri Nets) [69, 0]' Object Petri nets [71], and G-Nets [72] etc.

I

3.4.1 Objeft Oriented Petri Nets
!

The integration ~f object-oriented concepts with Petri Nets has drawn the attention
I

of many researc ers and a number of approaches such as OBJSA-nets [73], CO-

OPN [74], OOP [71], EOS [75] and OPN [76] have been proposed. Most of these

approaches with the exception of the last two assume a fixed number of objects at

the design stage. This approach presents a major hurdle in using the technique to
I

develop softwar for complex systems, where objects need to be instantiated and

deleted multiple times during the run time of the system and the number of objects

of a particular t pe should not be constrained as a constant at the design stage [77].

Although all of hese approaches result in Petri Nets that are behaviorally equivalent

to CPN and other lower level Petri Nets, special purpose analysis tools for these nets

are available at pifferent stages of implementation [78].

3.4.2 Modeling a Multi-agent System using Petri Nets

Although petrif· nets have been extensively used for modeling distributed systems,

some researcher have only recently modeled agents and simple agent systems using

Petri nets. It·s possible to use a PN to model a single agent and the same PN

can be used to tOdel a complete multi-agent system, depending upon the semantics

that describe tenet behaviour (for example, by associating an agent with each

transition). A other approach is to model different agents by separate Petri nets

37

PhD Thesis - A. lf30khari McMaster - Computing and Software

and then the pr1blem of combining these nets can be handled by following one of

the several apprdaches in Petri net theory (e.g. place merging, transition merging or

using hierarChicaf nets). It is not clear, in these approaches, how to accommodate

agents that are pawned for a particular task and then terminate themselves after

completion of a ask assigned to them. One alternative is to represent an agent by

a Petri net and then use this net as a token for the net representing the complete

system. Anothe~ possibility is to represent the agent as a data structure and then

use this data st~ucture as a token that moves within a net representing a class to

which this agent I belongs. Details of these alternatives are discussed in the following

subsections. I

3.4.3 Nets I within a Net

As mentioned e~rlier, in many of the object-oriented Petri net approaches, it is not

clear how to acc9mmodate objects that are created and destroyed several times during

a run of the softtare and are, therefore not suitable for normal software development.

For the purpose I of the current research, we are interested in representing agents as

objects that are $pawned and de-spawned as required. As mentioned earlier, one of the

alternatives is to represent an object by a token consisting of a Petri net. Valk [75, 79]

proposed the concept of "Nets within a Net" in modeling software systems that use

dynamic creation and destruction of objects/agents. In this approach, objects are

represented by ~ets, which are token objects in a general system net. The complete

system is modeled by a system net and one or more object nets. The creation of an

object is then apalogous to creation of a token as a result of firing a transition, and
,

deleting of an 9bject is the same as consumption of a token by firing a transition.

Objects modele by this approach have an external behaviour with respect to the base

system and an i ternal behaviour as they change their internal state, when interacting

with other obje ts or when they are subjected to system transactions. These objects

can therefore ad quately represent the autonomous agents that we use for the dynamic

38

PhD Thesis - A. pokhari McMaster - Computing and Software

performance sup~ort system. Further research indicated that, although a prototype

tool called RenevJ, has been developed for simulation of these Petri Nets, the analysis

tools are not yet I available. As our main purpose of modeling the proposed system

with Petri nets i~ not only to be able to simulate the system but also to be able to

verify its propertfes like fairness, liveness, boundedness and deadlock-freeness etc., it

was decided not to pursue this approach any further.

I
3.4.4 Objeft Coloured Petri (OCP) Nets

I

Recently some r~searchers have noted that one of the most common problems in the
I

area of object-orirnted Petri nets is that in most cases previous experience is not taken

into account in t~e development of novel approaches [77]. Proposals such as OOPr /T

Models [77], CCWNs [80] and OCP nets [81], consequently, build on existing work. We
i
I

chose OCP nets or our work because they can be implemented using existing design,

simulation and nalysis tools for CPNs such as Design/CPN. We now present some

details of these n ts. OCP-nets adapt the concepts of object-oriented programming to

Petri Nets and re formally defined in [81]. They can adequately model concurrency

and they lend t emselves to a prototype-based approach to software development.
I

Just as the sta~ic structure of a system consists of classes in an object -oriented

programming lap.guage, the static structure of an OCP net consists of Class Nets,

each representiTIlg a class of the system. The dynamic structure consists of object

nets, which are! instances of the class nets. Objects communicate by exchange of
I

tokens through r' ommunication channels. Both asynchronous as well as synchronous

communication s supported using the concepts of fusion places [82] and synchronous

channels [83] re pectively. The class nets are suitably enhanced so that they behave

as a set of obje t nets. The colours of the places in class nets are enhanced with the

type OlD of th object identifier so that a place in a class net can contain tokens

representing di erent objects of the class. The class nets generate and delete these

tokens on recei t of requests for services that are identified by the reserved identifiers

39

PhD Thesis - A. f30khari McMaster - Computing and Software

new and del.

3.5 Desi~n/CPN
I

Several commerc~al as well as research tools are available for building, simulating and

analyzing of Petti Net Models. A comprehensive overview is available at [84]. In

this research, w~ used Design/CPN as the simulation and analysis tool. It is one

of the most c04monly used tools in Petri Net research. It was developed at the

University of Aathus in Denmark and consists of a graphical editor for constructing

and manipulatinf CP nets, including syntax check for validating the resulting nets.

A built-in simulftor allows execution of CP nets with interactive monitoring and

debugging capa1::1ilities. Large models can be organised into a hierarchy of nets. It
I

also has an integrated analysis tool with a large number of built-in functions to verify

desirable properties of a model. A 665-page reference manual available from the

Design/CPN we site [82] describes various aspects of the tool in detail. Here we

mention some of its basic features.

3.5.1 Lang~age

Design/CPN uSEts the CPN ML language for data declarations, defining arc inscrip

tions and guard$, and communication between a CP net and its environment. This

language is based on Standard Meta Language (SML) - a well known functional pro

gramming language. SML is a special version of typed lambda calculus, therefore

it is possible to define all kinds of mathematical functions as long as they are com

putable [82]. SML has been extended to CPN ML such that the language is easier to

use even for peqple who are not familiar with all details of SML. Creating graphical

CPN structure equivalent to writing language statements in a program.

40

PhD Thesis - A. pOkhari McMaster - Computing and Software

3.5.2 Data

CP nets use dat~ types called colorsets and data objects known as tokens that are

somewhat like ob~ects in an object-oriented language. In this research we have used

tokens as instanc~s of different agent classes. All datatypes and variables in a CPN

model are declarFd in a global declaration node. Figure 6.2 will show the global

declaration node ~or our model.

!

3.5.3 Places
,

A place in a CP i net is a graphical object usually represented by an ellipse that is

used to hold zer~ or more tokens of a particular colorset. It has a colorset assigned

to it that is one tf the colorsets defined for the net in a global declaration node. All

tokens in a placei must be of the same color as that assigned to the place. It has an

optional name tolindicate what the place means as a part of a model. The name and
I

color set is displated inside or next to a place. A group of tokens is represented by a

multiset defined r follows [82]:

A multiset m, bver a non-empty set S, is a function m E [S ----> N]. The non

negative in~eger m(s) E N is the number of appearances of the element s in the

multiset m., The multiset m is usually represented by a formal sum:

Lm(s)'s.
BfS

A set of all multi-sets over S is denoted by SMS. The non-negative integers

{ m(s) I s E IS} are called the coefficients of the multi-set m, and m(s) is called

the coeffici~nt of s. An element s E S is said to belong to the multi-set m iff

m(s) =I- 0 apd we write s E m.

i

41

PhD Thesis - A. iBokhari McMaster - Computing and Software

3.5.4 Mar~ings
i

A multiset in a ~lace is called marking of a place. Markings of all places in a net is

called the state rf the net. The state of a net before start of execution is called the

initial state and farkings of different places corresponding to an initial state are called

initial markings.! As the net executes, tokens are added or consumed from different

places changing the state of the net. A state at any given time during execution of a

net is called the Icurrent state and corresponding markings as the current markings.

The initial mar~ing and the current marking of a place are shown beside the place
!

during executio~ of the net. For example, Figure 6.3 will show initial and current

markings of placFs, instance1 and instance2 as l'U(l) and l'U(2) respectively.

3.5.5 Tran~itions

A transition rep esents an activity, the occurrence of which may change the number

of tokens at one or more places. It is usually represented graphically by a rectangle

and may have i s name displayed inside or beside it. An arc provides a connection

between a place! and a transition. It is graphically represented by an arrow with a

head indicating its direction. An arc that connects a place with a transition is called

an input arc and the place that it connects is called the input place as opposed to

the arc that connects a transition to a place, which is called an output arc with the

place being callet! the output place. An arc may have an associated inscription which

for an input arc inscription, is a multi-set expression that determines the number

of tokens requir~d to be present in an input place for a transition to enable. These
i

tokens will be r1moved from the input place if the transition occurs. For an output

arch inscription, I it determines the number of tokens that will be put into the output
I

place if the tranrition occurs.

I

42

PhD Thesis - A. IBokhari McMaster - Computing and Software

3.5.6 Guarrs

A guard is a boolfan expression associated with a transition that defines an additional

constraint that tust be fulfilled before a transition is enabled. Guards are shown

inside square brrkets next to associated transitions.

3.5.7 Fusi9n of Places
i

DesignjCPN alltws a user to specify that a set of places may be considered identical

in a sense that ~ll of them represent a single conceptual place even though they are
I

drawn as indiviqual places. When a token is added or removed at one of the places

in a fusion set, &n identical token is added or removed at all the places in the set.

3.6 Summary

In this chapter, we introduced main features of service oriented architecture and

briefly discusse the strong and the weak notions of agency. An important feature

of this research s the use of formal methods at the design phase in the development

of agent based ~oftware systems. In this chapter, we examined the use of formal

methods in research related to software agents and agent based systems. We pointed

out the difficultlies in using formal methods for development of complete systems.

Our aim in this research, is to be able to carryout dynamic analysis of the proposed

EPSS model at the design stage. We note that most of the implemented multi-agent

systems use UML for design and analysis. Our initial design in this research is also

based on UML.I In ths chapter, we briefly introduced UML and some of the related

terms that are 1ubsequently used in this research. We also examined the possibility

of using Petri nfts for modeling multi-agent systems and briefly introduced OCPNs

and presented al rationale for using this type of higher level Petri nets in this research.
I

In the end we d scussed some details of the DesignjCPN tool used for simulation and

analysis in this research.

43

PhD Thesis - A. fJokhari McMaster - Computing and Software
I

In the next chapttr, we discuss some of the design considerations and examine how the

issue of flexibilit~ in software, is tradionally handled. We then present a conceptual

model of the pro~osed system and the initial UML based design.
!

44

Chapter 4
i

Pesign Considerations
!

I
Designing a sof~ware system that performs satisfactorily in a heterogeneous dis-

tributed environ~ent is a complex task. In order to cope with this complexity, new
I

paradigms are nfeded that facilitate the design of distributed and open systems.
I

4.1 Abstraction

Abstraction has played a key role in capabilities to develop software for complex sys

tems. During t~e 70's the concept of abstract data types was introduced. Object

Oriented Progr3lmming provided a new abstraction during the 1980's. Recent devel

opments allow developers to view their systems with granularity larger than objects

by thinking in terms of components that may consist of hundreds of objects. New

abstractions such as aspects [85], actors [86], and agents [87] have been introduced. It

is increasingly ftlt both within academia and industry, that software agents will be a

key technology {ts computing systems become ever more distributed, interconnected,
,

and open [88]. (I

I

45

PhD Thesis - A. f30khari McMaster - Computing and Software

4.2 How ~o Achieve Flexibility?

Software fleXibili~y refers to the ease with which a software system, or one or more of

its comonents, mty be modified in a timely and cost effective manner. One of the keys

to achieving flexi~ility has always been the clear separation of different perspectives.

Most computer 4pplications - regardless of what they do or with which technology

they are implem,nted - generally have three general areas of functionality:

!
1. Interfaces tllow applications to communicate with users as well as with other

applicationf and data resources. Traditionally, people interacted with com

puter appl~cations using character terminals or graphical user interfaces (e.g.,

Microsoft '!vindows). Recently new interfaces such as telephones, web browsers,

hand-held ~omputers and wireless devices have been introduced.

2. Business r ·les support the business processes that are followed by organizations.

They auto ate the process, defining what must be done and how it must be

done. The e is no standard format for specifying business rules. One might give

a very co plex procedure as a business rule to carry out a task, while someone

else might I divide it into several steps. It is however clear that as the business

processes qhange, the business rules in the applications that support them must

also be chljtnged. An example of a business rule would be:

Issue la check IF (a) an invoice has been presented AND (b) the invoice

is for work for which a purchase order was issued AND (c) the work

has been performed AND (d) there is enough money in the bank to

coverl the check.

I

Another efample could be:

This I student is eligible for early graduation IF (a) she or he has

com1leted the required work AND (b) she or he has achieved a grade

I

46

PhD Thesis - A. ~okhari McMaster - Computing and Software

point 1verage of 3.0 AND (c) it is not yet time for her jhim to graduate

AND ~d) she or he is at least 16 years old.

Business ru~es are processes followed when business events occur (i.e., business

events are ~riggers for business rules). If business rules define what to do,

business evtnts define why it should be done.

3. Data acces1. Data access code automates the storing, searching, and retrieving

of data by fomputer applications.

The ways in whith these application functions are assembled, determines:

• The fleXibitity of the application.

• How quickl~ the application can be modified to support changes in business and

technology.j
!

• How easil1 the application interfaces with people and with other applications.

Middleware pro ides links among the functional levels of the application, as well as
I

with the compoqents supporting the application. Application architectures should be

independent of ~ny specific technology or set of development tools. Its components

(the interfaces, business rules, and data access code), should be implementable with

any developmen1 tool in any language on any platform supporting the business needs

of the applicatiqn.

4.2.1 Mon lithic Applications

Monolithic appl cations are applications where the code that implements the business

rules, data acc s, and user interface, are all tightly coupled together as part of a

single, large co puter program. A monolithic application is typically deployed on

a single platfor ,often a mainframe or midrange computer. There are, however,

examples of mo olithie applications running on smaller systems - or even distributed

47

PhD Thesis - A. fJokhari McMaster - Computing and Software

across multiple mrchines. The determining characteristic of a monolithic application

is that the code ir tightly coupled and highly interdependent.

!

User In~erface
I

Business Rules Data Access

IRM 1 I 1R*21
I R",.31 1·,.41

Figure 4.1: Monolithic Applications

Monolithic applications have several drawbacks:

• It is costlYfand time consuming to modify monolithic applications. Changing

one piece 0 code that, for example, implements a business rule, accesses data,

or provides an interface to users or other systems can have side effects on other

code in th~ application. When any code in monolithic application changes, the

entire appl~cation must be re-tested and re-deployed.

• It is difficult to integrate monolithic applications to share services and data.

Most mon<J)lithic applications do not have well-defined interfaces that can be

accessed by other applications or new user interfaces.

• There is little reuse of redundant code between monolithic applications, mak

ing them $ore expensive to build and maintain. Many monolithic applications

contain fu~ctionality already replicated in other applications. Monolithic ap-
I

plications 'are slower and more costly to build because existing functionality

must be r invented many times. Monolithic applications are more expensive to

operate, si ce the same data often have to be gathered, entered, and stored in

48

PhD Thesis - A. ~okhari McMaster - Computing and Software

• It is difficu~ to have monolithic applications communicate with other applica-

tions. I

• There is lit Ie flexibility in where monolithic applications can be deployed. Most

monolithic pplications must be deployed on a single machine type, for example

a mainfra e. One of the reasons for doing this could be that the software code

is tightly 1UPIed to that machine type. Another reason could be the need to

get enough processing capacity to process all parts of the application (i.e. the

user interf ce, the business rules, and the data access code).

I

4.2.2 Two-~ier Client/Server Applications
,

In order to achiete greater flexibility and to reduce unwanted side effects, client/server

technology was· dopted for new applications. Client/server applications are con

structed of soft are "clients" that, in order to perform their required function, must

request assistan e - "service" - from other software components known as "servers."

Middleware pro ides communication between the client and server. Early client/server

applications use architectures dictated by the tools employed in their construction.

As a result, mO$t of the early applications used two-tier client/server architecture.

The "tiers" of cHent/server applications refer to the number of executable compo

nents into which the application is partitioned, not to the number of platforms where

the executables are deployed. Sometimes the tiers into which the application is parti

tioned is called 'flogical partitioning" , and the number of physical platforms on which

it is deployed is ,called "physical partitioning."

Fat Clients

In two-tier client/server architecture, application functionality is partitioned into two

executable part, or "tiers." In one model, one tier contains both the code that im

plements a grap ical user interface (GUI) and the code that implements the business

49

PhD Thesis - A. i Bokhari McMaster - Computing and Software

rules. This tier 1xecutes on PCs or workstations and requests data from the second
!

application tier, ~hich usually executes on the machine where the application's data
I

are stored. This model is referred to as two-tier, fat client, because, while the appli-

cation is partiti ned into two tiers of executable code, most of the application's code

is contained in t e tier executing on the workstations - the "fat client."

User In 'terface Business Rules Data Access

I
I

1 Rule 1 I IRuIe 2 I I
I
I
I
I I Rule3 I 1 Rule 4 I I
I
I

1
Middleware

Figure 4.2: Two-tier Fat Client Applications

Since bU~iness rules are tightly integrated with user interface code, the code

implementing tie business rules must be deployed on the same platform(s) as the

user interface. This means that the entire workstation-resident portion of the appli

cation must be re-deployed when either a business rule or the user interface changes.

Whenever the number of workstations is high or the workstations are geographically

dispersed, the maintenance costs for two-tier, fat client applications can escalate

quickly.

Thin Clients,
I

A second mod~l for two-tier client/server applications has much of the code that

implements the ~usiness rules tightly integrated with the data access code, sometimes

in the form of drtabase stored procedures and triggers. This model is called two-tier,

fat server. I

I 50

PhD Thesis - A. !Bokhari McMaster - Computing and Software

User Inter. ace Business Rules Data Access

1
Middleware

Figure 4.3: Two-tier Thin Client Applications

Since the Ibusiness rules in two-tier applications are tightly integrated with ei-
,

ther the user inttrface code or the data access code, two-tier client/server applications

have the followi g drawbacks:

• Two-tier c ient/server applications are difficult and expensive to modify when

business r quirements change. The business rules still tend to be monolithic.

Changing ny business rule may, therefore, impact other business rules as well

as the resti of the application.

• There is little reuse of redundant code in two-tier client/server applications. It is

difficult to reuse business rules elsewhere (e.g., in other computer applications

that require similar services or in batch processing that is part of the same

applicatio:ll) if they are still tightly coupled to each other and to either the user

interface (fat-client) or the data (fat-server).

• There is li1tle flexibility in selecting the platforms where the two-tier client/server

apPlicatiot' s will be deployed. In two-tier, fat client applications, the business

rules mus execute on the same platform as the user interface because the code

they are i plemented in is tightly coupled with the interface. Likewise, in two

tier, fat s rver applications, the business rules can only execute on the machine

51

PhD Thesis - A. jBokhari McMaster - Computing and Software
i

I

that hosts tlhe database because they are implemented either with the database

or inside th~ database.
i

• Two-tier cl~ent / server applications can be more difficult to manage than mono

lithic applifations. Changes to either business rules or the GUI often means

that the enjtire workstation-resident portion of the application must be redis

tributed ar¥ reinstalled on every workstation that uses the application. Such
I

software di~tributions can be time-consuming, costly and logistically difficult to

manage.

4.2.3 Thre+-tier Client/Server Applications

Three-tier client/server applications are partitioned into three executable tiers of

code: the user ~nterface, the business rules, and the data access software. This

does not mean t at the three tiers execute on three different platforms. Often, the

business rule tier is deployed on the same platform as the data access tier, or on the

same platform(s) as the user interface. Properly implemented three-tier client/server

applications can achieve higher performance efficiency by providing more flexibility

in where the app~ication executables can be deployed.

User Inter.fiJce Business Rules Data Access

1 I
Middleware Middleware

I Figure 4.4: Three-tier Client/Server Applications

Three-tierl client/server applications offer the following advantages:

• Three-tier lient/server applications can be easier to modify to support changes

in business rules.

52

PhD Thesis - A. lBokhari McMaster - Computing and Software

• With threer tier client/server applications, there is less risk in modifying the

code that irplements any given business rule.

• Three-tier flient/server applications can be made to support multiple user in

terfaces: ciaracter, graphical, web browser, telephones, and others.

Frequentl~ the scope of these 3-tier architectures is too narrow, and is most fre

quently used in t~e context of a single application - enabling its parts to be physically

deployed across the network. While this architecture provides advantages and flexi

bility, there is oqen some direct coupling between the client and the server. Different

parts may often remain 'hard-wired' to one another with, for example:

• Single bus~ness processes dispersed across client and server, making them in
!

separable, ~nd hence unusable in alternative situations.

• Related b1siness rules distributed to client and server, often with the best in

tentions of improving performance, e.g. client side validation to reduce network

overhead.
I

• Technologt dependencies, e.g.

are embedhed in the client.

specific database technology calls to the server

This means any changes made in the client usually require that corresponding changes

be made in the server. In a rapidly changing world, this approach does not allow

architectures and policies to be implemented that enable adaptable systems.

4.2.4 we4enabled Applications

Web-enabled a plications are a special case of client-server applications where the

"client" is a st dard Web browser like Netscape Communicator or Microsoft Internet

Explorer. The rowser serves as another type of user interface (thin client) in the

3-tier applicatio . Use of a standard Web browser as the client offers the opportunity

53

PhD Thesis - A. pokhari McMaster - Computing and Software

to provide the ustr with a familiar, intuitive interface and significantly simplifies the

process for devel~ping and distributing the user interface.
!

I

4.3 saliert Features of the Design

The design of E~SS presented in this research, groups the information needs of em

ployees accordin~ to business processes of an organization. For example, information

needs, related to Isales and distribution, are handled in one category and information

needs related to plant maintenance in another category. We call the module of soft

ware handling e~ch category, a support process (SP). That means there are support

processes corresdonding to different business processes that are responsible for pro

viding related information to users of the EPSS. Each support process is partitioned

into discrete uni~s of functionality called "services." Each service implements a small

set of related b siness rules or function points based on the information needs of

employees. Whe ever a business rule must be modified to support changing business

requirements, on y the service that implements the business rule needs modification,

while the remai der of the application remains intact. Use of service-oriented archi

tecture provides i a loose coupling among different services such that the system is

never out of operation while a new service is being added or an old service is being

modified.

In order tp achieve agility, services are implemented as software agents, which

can be spawned lor de-spawned according to requirements. User requests are passed

on to special agents who obtain the location of services desired, from the published

directory and communicate with the agents that implement these services to extract

and deliver the desired information to the user. As the desired information is not hard

coded in the software and is extracted on the fly by agents responsible for supplying
i

such informatioi' the information supplied to a user is always current and reflects any

changes to the crntents of information source. Agents can be mobile, if necessary, to

54

PhD Thesis - A. aokhari McMaster - Computing and Software
I

move from one ,urce of data to another.

Common frcilities required for the management of services, transport of mes

sages and publis ing the availability of services are grouped separately. These com

mon services are ·mplemented by middleware. The prototype discussed here uses Java

Agent Developm nt Framework (JADE) as the agent-oriented middleware to provide

management an directory services.

For this drsign, a software agent is an autonomous program that operates on

behalf of anothe1 entity. It has the ability to communicate, interact and collaborate

with other entitits, and may have the ability to adapt and take initiative in pursuing

goals (within a predefined scope). It is created by another module in the application

for a specific pu~pose. It can terminate itself once it has achieved its goal.

4.3.1 Antbjropomorphic Model
I
!

We have createl an anthropomorphic design that separates the common services

such as processi g requests from different agents, establishing communication links,

spawning/ de-spwning agents, tracking the activities and status of agents, and other

administrative matters, from application specific services. The common services are

the responsibility of two main modules called the Director and the Request Supervisor;

the application-specific services are implemented by a number of agents that are

created and destroyed according to the needs of the system. A conceptual view of

the system is shown in Figure 4.5. It consists of a support process corresponding to

each business pnocess of an enterprise. A support process starts with the interaction

of a user with ~he application through a GUIon his/her computer or laptop by

selecting the desired support process. An interface displayed on the user's machine

requests the selection of a process of interest. It is possible to choose more than

one support prqcess or more than one instance of a particular support process with

different option1 for simultaneous access to different information. Selecting a support

process with su table options spawns a client agent local (CAL) that interacts with

I 55

I

PhD Thesis - A. ~okhari McMaster - Computing and Software

[I AgilePSS
User Machine Software

Other Local Architecture
Agents

Service egistry Agent (SRA)

~

CAL =Client Agent
Local

CAR=Cllent Agent
Remote

1-+---4- Information PISP1 =Published
Source Interface Support

Process 1

~ other Users

Other Machines WIth
Client Agents for Different

Support Processes

I Other Registry Agerts

Other ~
Information = =

Sources --

Figure 4.5: Anthropomorphic Model

I

the Director so that a client agent remote (CAR) is spawned. CAL and CAR then

establish direct Icommunication during which the service requested by the user is
I

passed on to th CAR. On obtaining the relevant information, CAR next contacts

the Request Su ervisor (RS) to obtain the details about the published interface for a

particular servic related to the support process. With this information, CAR is able

to contact the gent responsible for providing the service called the service-registry

agent (SRA) an sends the request for the service to it. The desired information is

extracted by th SRA and is passed on to the CAL through the CAR. The duties of

various agents re detailed below:

56

PhD Thesis - A. ~okhari McMaster - Computing and Software

User Agent (UA):

• Receives co~figurable options from the user and saves user queries for immediate

or subsequert use.
!

• Contacts t~e platform director to request that a suitable client agent local

(CAL) be srawned to take care of the current request of the user.

Client Agent L~cal (CAL):

• Contacts t~e platform director to request that a suitable client agent remote

(CAR) be spawned to work cooperatively with CAL to fulfill the current request

of the user.:

• Passes clie*s' queries to CAR.

I

• Displays pr gress in processing of user request.

• Displays in ormation for the user on receipt from CAR and requests termination

of CAR.

Client Agent ~emote (CAR):

• communiJtes with request supervisor (RS) to obtain details about the pub

lished intedace for a particular service in order to access it.

• Requests the published interface to provide the service.

• In case of ¥sconnection with CAL, informs the 'director' and while waiting for

resumptio~ of communication, stores any information received from SRA for
I

subsequen~ transmission.
,

• On comPI+ion of service, passes the information obtained to CAL.

• Terminatel itself after CAL receives the information.

57

PhD Thesis - A. f30khari McMaster - Computing and Software

Service Registr~ Agent (SRA):

• Provides in~erface with the data source.
I
I

• Has access to all data in the data source.

I

• Registers t~e services that it can provide with the Request Supervisor.

• Has an inte~ration layer to format data from different sources to a format suit

able for th~ proposed system. (The data format within the system is always
i

in the sam~ format. Integration layers at SRAs or CALs will take care of any
I

changes re9uired at the source/destination.)
i
I

Request Superyisor (RS):
I

• Keeps trac~ of the published sources that provide different services.

• At the req1est of CAR provides information on where a service is available and

how to conI act it. If multiple sources are available informs the requester about

all sources.

Platform Director:

• Establishes and maintains all links among different agents.

• Spawns a QAL when requested by a UA.

• Spawns a QAR when requested by a CAL.

• Keeps trat of all active agents.

• Updates rlc0rds if an agent terminates.

I

• Receives i~formation about any unplanned disconnection and tries to reestab-

lish it. I

I
I

58

PhD Thesis - A . .f3okhari McMaster - Computing and Software

• Provides anti maintains all common services.

• In case of a large system, RS can be distributed and the director administers it.

• Allows acce~s to middleware by authorized IT personnel.
I

I

4.4 Startrng with a Specific Case

The goal of this ~esearch is to design a service oriented architecture for performance
!

support systems ~hat is easily adaptable to the changing needs of organizations, with
I

very loose coupli~g among different modules. The architecture is able to handle a

number of proce~ses; however, in order to start with a specific case, we decided to

work with one ofl the most common processes - sales and distribution. This process

typically consists I of the following activities:
!

1. Receive inqririeS from customers and submit quotations.

2. Receive a prrchase order.

!

3. Accept the Ipurchase order after clarifications of technical and commercial con-

ditions (if rtecessary) and issue an order confirmation to the customer.
I

4. Select a stajndard design or a standard design with minor modifications.

5. Get the sel~cted design approved by customer's engineer.

6. Schedule janufacturing at the shop floor.

7. Test the prpduct and arrange inspection by customer's engineer, if required.

I

8. Pack the ptoduct and send it to the finished goods store for onward delivery to

9. Raise an i voice and obtain payment according to agreed commercial condi

tions. (In s me cases this step may overlap with above steps when, for example

59

PhD Thesis - A. 'okhari McMaster - Computing and Software

progress pa~ments are involved. For this simple case, we are assuming that full
!

payment wil~ be made on delivery of the product. After sales service, warranties

and other p<l>ssible variations in the process are also being ignored for the time

being.)

,

The process outli1ed above involves a number of functional units of an organization

such as:

(a) Sales Department: where sales agents interact with customers and receive in-

quiries. !

I

(b) Estimation ~epartment: for preparation of quotations.

(c) Design Dep~rtment: for selecting a suitable design and obtaining technical ap-
I

proval from fustomer's engineer.

(d) Production fepartment: for producing the product as per approved design.

(e) Testing/ins~ection/qUality control Department: for ensuring that the product

meets the d1sign specifications.
I
I

(f) Inventory C~ntrol Department: for safe keeping of the finished product.

(g) Shipping Department: for arranging shipment to the customer.

(h) Accounts D{/partment: for raising the invoice according to agreed commercial

conditions.

Each of the abov~ departments may have its own computer system and its own

way of keeping re¢ords of information. Supervisors/engineers/managers in different
!

departments freq~ently need information that is available on the computer system
,

60

PhD Thesis - A. iBokhari McMaster - Computing and Software

i

from another de artment, for efficient discharge of their duties and for planning and

smooth running f their own sections/departments.

ERP (ent rprise resource planning) systems provide one alternative to handle

such needs, by c nsolidating data into one central database and discarding the ex

isting legacy sys ems. However, according to some [89, 90], the main project aim for

implementing E P is reducing data redundancy and redundant data entry. Difficul

ties with custom zation have been cited as another factor contributing to the failure

of ERP systems. It has been argued that some customization may involve changing

of the ERP soft are structure, which may not be allowed and the re-engineering of
I

business process,s to fit the "industry standard" prescribed by the ERP systems may
,

lead to a loss of pompetitive edge. Although costs of ERP systems have come down,

it still is a majot factor for many of the medium to small enterprises not being able

to implement E*P solutions [89].

EPSS dojs not propose to replace any of the existing transaction processing

systems and pr vides a flexible means to employees of a corporation for extracting

desired informa ion from different sources. The main focus of EPSS is not to gen-
,

erate reports bafsed on transactions but to provide "how to" information to enable

the employees db their job more efficiently. It extracts related information not only

from databases but also from spreadsheets or text files. This means any changes

to procedures or policies are available to employees without delay, improving their

performance. As stated by Sleight [24]: "An EPSS extends cognitive ability by ab

stracting the procedure or task from irrelevant details, and that extends memory by

relieving people· of the necessity of remembering details, or even of the necessity of

learning. A fa iliar example of a job support tool is the list of instructions for pump

ing gasoline. It is not necessary to remember how to use the gas pump because the job

support is alwa s there, and only the details necessary to run the pump are included

in the instructi ns." In summary, some of the design considerations for an EPSS are:

• Requirem nts of different individuals are not the same.

61

PhD Thesis - A. Bokhari McMaster - Computing and Software

I

• Procedure, within similar functional units of various organizations are different.
I

• Processes Jonstantly change to keep up with market demands and technological
I

innovation~ resulting in modifications of procedures of which the employees need

to be awar' .

• The propo ed service oriented architecture must provide easy and fast adapt

ability.

4.5

I

Age*t Oriented Software Engineering CAOSE)
!

In order to design a system at the level of granularity of agents and to construct

a model in terms of interacting agents, traditional tools are not sufficient. Most of

the research relljtted to analysis and design of agent oriented software development

is based on "prtnciPled but informal" methodologies [49]. Most of the time they

have used objec oriented analysis and design methodologies as the basis and have

proposed extens ons or adaptations to make these methodologies applicable to agent

oriented develo~ment [87, 49, 91, 92, 93]. In some cases adaptations of knowledge

engineering tec~niques have also been proposed [49]. One of the main problems in

using object-oriJnted approaches is that an agent is a much coarse-grained abstraction
I

compared to an object. In fact, a multi-agent system may consist of several thousand

objects but only a few agents. Object oriented methodologies also do not support

certain concepts that are specific to agents like autonomy and pro-active and dynamic

reactions. As U!ML is a de facto standard for object-oriented modeling, a number of

attempts have b en made to adapt the UML notations for agent oriented modeling [93,

94] in order to support the concepts of agent, ontology, and interaction protocol.

However, a uni ed approach has not yet emerged. In the meantime a good model

can be constru ted for the architecture of an agent-based system using an existing

mechanism of 'stereotypes" in UML to associate an agent oriented semantic with

class and collab ration diagrams [93]. This approach has been used in our model.

62

PhD Thesis - A. !Bokhari McMaster - Computing and Software

4.6 UM~ Model of the System

Rational Rose ~rofessional edition was used to produce use-case models, use-case

specifications, se~uence diagrams, collaboration diagrams, class diagrams and state

chart diagrams. fhese documents are reproduced in Appendix A. Instead of building

a prototype basef on the UML model, we wanted to investigate its dynamic properties

at the design st ge. However, because of the semi-formal nature of UML it is not

amenable to dyn mic analysis. We therefore looked at the possibilities of transforming

the UML modell to a formal model so that dynamic analysis could be carried out

before coding th1 implementation of the model. Chapter 5 examines recent research to

transform UML fnodels to some kind of formal models amenable to dynamic analysis,

and presents out algorithm to transform UML state diagrams to Object Coloured

Petri Nets. It afso gives examples to highlight how the algorithm can be extended

from object-orierted systems to agent-oriented systems.

4.7 Sum~ary
I

In this chapter, we examined some of the design considerations and discussed some of

the approaches tradionally used to achieve flexibility. We then presented details of a

conceptual modH for the proposed EPSS and focussed our attention to a UML model

for a prototype. Details of the UML model consisting of use-case model, use-case

specifications, interaction diagrams, and class diagrams are given in Appendix A.

Since U11L is based on semi-formal semantics, a UML model is not amenable

to dynamic anatysis and must be transformed into a formal model for analysis and

verification of dfsirable properties of the system. The next chapter examines some

of the approach s proposed by various researchers for such transformations. We then

present one of t e most important contributions of this research by giving details of

an algorithm th t transforms UML state diagrams to OCPN models, where dynamic

analysis may b carried out.

63

Chapter 5

FJom UML to Petri Nets

I

Unified Modelinf Language (UML) is the Object Management Group (OMG) stan-

dard for object oriented analysis and design and is widely used by software developers;

however, it is b~ed on semi-formal semantics and lacks analysis capabilities whereas

Software Engine ring (SE) practices require analysis and validation at an early stage

in the software evelopment process. The popularity of UML stems from its sim

plicity and grap ical syntax. Therefore researchers have concentrated on improving

its semantics to provide the software analyst with a dual approach of using UML

to create differe~t models that may be transformed into formal models for verifica-
I

tion/validation. i The development of approaches for analysis of UML models is a

significant step for developers who routinely employ UML to create models for their

systems. There JS a strong interest among researchers to provide a formal foundation

for UML, recogJflizing its popularity in the software industry. Earlier attempts con

slating UML models to mathematical models using formal languages

like Z, HOL an PVS [95]. In [96], the authors use vUML to translate UML state

MELA, which is the input language to the model checker SPIN. They

do not seem to ave investigated dynamic creation or deletion of objects although the

current version f SPIN provides these facilities. Latella et. al. [1] propose a conver

sion of the hiera chical representation of UML state diagrams to extended hierarchical

64

PhD Thesis - A.jBokhari McMaster - Computing and Software

automaton (EH~) as an intermediate step and then translate it to PROMELA. More

recently it has b en recognized that formal methods must be adapted such that de

velopers without deep mathematical knowledge may also use them [95, 97]. Coloured

Petri Nets [82] a e well known for their formal foundations, their graphical appear

ance, their simu ation and analysis capabilities, and their support for modeling of

concurrent syste s [77]. This has generated much interest in the translation of UML

models to Petri ets. Most of these proposals suggest algorithms based on a set of

rules that can b followed step by step to translate UML models into Petri Nets.

Merseguer et. al [61, 98] present proposals for translating UML models to GSPNs

for performance evaluation. Zhao et. al. [99] propose a set of rules using a series of

graph transformftion steps. Saldana [63] gives algorithms for translating UML state

diagrams to Ob~ect Petri nets. We have followed some of their approaches in this
!

research; howev r, they translate the UML diagrams into Object Petri Nets, which

are based on a fi ed number of objects that must be determined beforehand. This ap

proach presents major hurdle in using the technique to develop software for complex

systems where 0 jects may need to be instantiated and deleted multiple times during

the run time of he system and the number of objects of a particular type should not

be constrained f,' a constant value at the design stage [77]. Their Object Net Models

(ONMs) represe ting individual objects are linked via an Intelligent Linking Place

(ILP) but no d tails are given as to how the ILP handles communication between

objects. It also (foes not bode well for extending such work to model agent systems,

which must int~rcommunicate as well as be able to be spawned and de-spawned on

demand during oftware execution. We propose a set of axioms based on strong intu

itive motivation, to transform a UML state diagram to Object Coloured Petri Nets

(OCPNs) [81]. hese axioms lead to intermediate results [100] that are identical to

those obtained y [1] using extended hierarchical automaton.

We note hat an OCP-net for an object-oriented system can be created by first

constructing an object net for each class. These object nets are then transformed into

65

PhD Thesis - A. ~okhari McMaster - Computing and Software

class nets by addi' ng facilities to create tokens corresponding to the requests for new

objects and to d lete/consume tokens corresponding to the requests for deleting the

objects. The cla s nets are connected together through communication channels, to
I

create a Petri ne model for the system. Since our interest is mainly in distributed

systems where c mmunication between objects is by message passing, we implement

asynchronous ch nnels by creating sets of global fusion places. A set of global fusion

places conceptu lly represents one place even though individual places may belong

to different classl nets. Addition or removal of a token at one place corresponds to

addition or remolval of identical tokens at all places in the set.
i

5.1 Overlview of the Approach
i

The goal is to d fine a step-by-step method that transforms a UML behavioral spec-

ification, rep res nted by UML state diagrams, to an OCPnet that represents the

behavioral speci cations of the system formally, so that the currently available tools

for CPN may b used for simulation and analysis of the system. This is carried out

in the following , teps:

a) We assum¢ that a state diagram exists for every class in the system and trans

form each ~tate diagram to a corresponding OCPN. We call the net, so obtained,

an object model.

b) Each obje¢t model is then converted into a class net by adding necessary facili

ties. Class nets are then integrated into an OCPN representing the system, by

two sets of communication channels for asynchronous messages.

Different stages! of the design and analysis phase are shown in Figure 5.1.

66

PhD Thesis - A. ~okhari McMaster - Computing and Software
I

UMLEdfto,

Fi~ure 5.1: Overview of the Design and Analysis Process

I

5.2 Back round

In order to spell ut the rules for the conversion, it is necessary to understand different

parts of a state iagram with their functions and how to map the functionality to a

Petri net. A st,te diagram models the behavior of a single object. It specifies the

possible abstract states of the instances of a class [101]. Some of the basic terms
I ,

related to UML! state diagrams were presented in Section 3.3. We now define the

terms used in the algorithm and present the background and justification for some of

the steps requir~d to transform a UML state diagram into an OCPN.

5.2.1 Obj ct Model (OM)

An Object Mod 1 is a tuple <BM, MP> where BM is a CPN that models the lifetime

behavior of an object as specified by the corresponding UML state diagram and

interaction dia rams and where MP = { mS9-in, mS9_inv, mS9_out, mS9_rec } is

a set of four p aces. The place mS9_in contains all tokens representing messages

requesting som service of the current object. The place mS9_inv contains all tokens

67

I

PhD Thesis - A. iBokhari McMaster - Computing and Software

representing mesbages sent by the current object requesting some service. The place

msg_out contain, all tokens representing messages sent by the current object as an

acknowledgement or a return value for a message received earlier from another object.
I

The place msg_r c contains all tokens representing messages sent to the current object

by another obje t as an acknowledgement or a return value for a message sent earlier

by the current 0 ject.

5.2.2 Tran lation of UML State Diagrams to OCPN

We observe tha~ UML transitions can be represented by Petri net transitions on a

one-to-one basis) A UML transition indicates a possible change in the state of an
I

object from the Icurrent state to the next. If the current state is represented by an

input place and ~he next state by an output place of a Petri net, then the edge between

the current statl and the next state can be represented by a Petri net transition. A

UML transition, however, may have a label indicating the event(s) that caused the

transition, guar s and actions, that must be accounted for while transforming it to a

Petri net transitfon.

Transition Evfnts

I

Events represent conditions that must be fulfilled for a transition from one state
I

to the next; therefore, they are translated as input places for the corresponding

Petri net transitions. A token in one of these places represents the occurrence of

an event. Howeter, if an event consists of a message received from another object, it

is represented b the existence of a token in a special input place connected to the

communication channel. This place is given the name msg_in if it contains tokens

representing ser ice requests to the currrent object by other objects. The place is

named msg_rec if the tokens represent an acknowledgement or a return value as a

result of an earl er message sent to another object by the current object.

68

PhD Thesis - A. iBokhari McMaster - Computing and Software
I

Transition Actrons

Actions represe~ the results of a transition and therefore correspond to Petri net

output places. ~ token in one of these places indicates a request for the service

implemented by a transition that has an input arc from this place. However, if an

action consists 0 a message that invokes a service in another object, it is represented

by the existence f a token in a special output place connected to the communication

channel. This lace is given the name msg_inv if it contains tokens representing

outgoing messag s that invoke services in other objects. The place is named msg_out

if it contains to*ens representing outgoing messages that send a return value or an

aCknowledgeme+ to another object as a result of an earlier message received by the

current object. I

Guards, Entr and Exit Actions

Guards represen constraints that must be satisfied for the transition to take place and

are translated t corresponding guards for the Petri net transitions. A UML state's

exit action can e considered as a transition action on every outgoing transition from

the state and an) entry action is similar to a transition action on each of the incoming
I

transitions to tl~e state [101]. A self transition consists of an exit action followed by
I

an entry action. Therefore the entry/exit actions of a state are translated in the same

way as the tran~ition action discussed above.

Parameters

If the invocatio of a service needs parameters, they must be passed as part of the

message, i.e. th message cannot be sent until the parameters become available. In

other words, th Petri net transition cannot be enabled without input parameters.

We transform t e parameters to input places for the Petri net transition with initial

markings of the e places representing the parameter values. A parameter representing

a return value i translated as an output place of the Petri net transition.

69

PhD Thesis - A. !Bokhari McMaster - Computing and Software

5.2.3 Clas~ Net (CN)

A Class Net is ar enhanced version of OM that meets the formal definition of class

net given in [81]'1 It is obtained from the OM by adding:

I

1. Four trans' ions (T~n' T;,nv, Tout, Tree) and four places (Pin, Pmv , Pout, Pree) to han-

dIe comm nication between objects.

2. Two trans tions Create and Delete to handle creation and deletion of tokens

representi~g objects of the class

3. A finite set of instance fusion sets, if necessary, for the class attributes.

We use tHe terms input place, output place, input transition, output transition,

input arc and o,!dput arc as defined in [82], i.e. a node x is called an input node of
i

another node y, I iff there exists a directed arc from x to y. Analogously, a node x is

called an outpu node of another node y, iff there exists a directed arc from y to x.

Figure 5.2: Communication Channels

70

PhD Thesis - A.jBokhari McMaster - Computing and Software

I

5.2.4 ComJjnunication Between Objects

The class nets di cussed above must be connected together so that messages may be

passed between ifferent objects. This is done by creating two channels, using the

concept of globa fusion places. A set of global fusion places, consisting of Pm and

Pinv places in all class nets, is created to act as channell. Channel 2 consists of global

fusion places Po t and Pree of all classes. Here we have used the modeling guidelines

proposed by [82]/ for asynchronous communication with acknowledgement, as shown

in Figure 5.2. ,ith this discussion, we are now ready to provide the algorithm.
I
I ,

I

5.3 Algorithm

Precondition: A !UML2.0 state diagram is available for each class in the UML2.0 class

model of the SYftem that needs to be transformed into an OCPN and DesignjCPN

4.0 or an equiv lent software for graphically creating and analysing CPNs is also

available.
I

Begin 1. Fori each state diagram

Begip. Using DesignjCPN

($,) Convert the state chart into an object model using Algorithm 1

(b) Transform the object model to a class net using Algorithm 2

End
I

2. Con1ect the class nets by a set of global fusion places defined as

Inn
I Channell = (U Pin- t) U (U P;nv-i)
I i=1 i=1

n n

C hannel2 = (U Pout-i) U (U Prec- i)
i=1 t=1

Wheje n is the total number of class nets.

I
71

PhD Thesis - A. I Bokhari McMaster - Computing and Software

End

5.3.1 Algo ithm 1

Converts a UM state diagram to OM based on the background and justification

presented in Sec ion 5.2.1.

Begin For each state diagram

!

1. If thete are any composite states, "flatten" them to simple states
!

2. Examline the state diagram and assign a unique identifier to each state
,

trans~ion
I

3. Creat~ two tables similar to Tables 5.1, 5.2 and fill in data for all state

trans~tions.

Table 5.1: State Diagram Table A
I State TransltlOn# I Input State I Output State I Transition Events I Transition Guards I

I I I I I I

Table 5.2: State Diagram Table B
I State TramltlOn# 1 Input State EXit Action(s) I Output State Entry ActiOn(s) I TransitIOn ActIOn's) I

I I I I I

4. Start! with a new CPN page and create four places named msg_in, msg_inv,

msg_(Jut and msg_rec and position them close to the top, bottom, left and

right lof the page.
I

5. For e ch state transition

(a) reate a CPN transition and transform the guard conditions to CPN

(b) reate a CPN input place for the input state and a CPN output place

~or the output state. If a state already exists, do not duplicate it.

72

PhD Thesis - A. iBokhari McMaster - Computing and Software

!

(c) Ifl there is a state transition event

t~en If this is a local event create a CPN input place for it
I

! Elself the event is a message received from another object re-

questing a service of this object

then create an input arc from msg_in place to this transition and

another from a place containing a token of the object receiving

the message.

Elself the event represents a returned value from a previous ac

tion

then draw an input arc from the msg_rec place to this transition

and create an output place for the value returned. Also draw an

input arc from a place containing a token of the object receiving

the message, to this transition.

EndIf

ndIf

(d) 4 there is an action for the state transition or an entry action for the

I output state or an exit action for the input state

then If it is a local action create an output CPN place for it.

ElseIf this action is a message (M) for another object

then draw an output arc to msg_inv place from the transition.

Create CPN input places for all parameters and draw arcs from

these places to the transition. Specify initial markings for these

places to represent the parameter values.

ElseIf an action results in sending of a return value or acknowl

edgement to another object

then draw an output arc to msg_out place.

EndIf

73

PhD Thesis - A. IBokhari McMaster - Computing and Software

End

5.3.2

I
I

I ,

i

AlgO~ithm 2

Converts an OM to a CN as discussed in Section 5.2.3.

Begin 1. Crefte four CPN transitions named Tm , T inv , Tout and Tree and four CPN
I

End

place~ named P tn , P mv , Pout and Pree

2. Draw i an input arc to T inv and Tout from mS9_inv and mS9_out places of
i

the o~ject net respectively
I

3. Drawloutput arcs from T inv to P inv and Tout to Pout

4. Drawi an output arc from Tm and Tree to mS9_in and mS9_rec places of the
I

objec net respectively

5. Draw input arcs to Tin from P tn and to Tree from Pree

6. Add acilities to create and destroy objects in the class by adding a create

and delete transition with input arcs from the mS9_in place and in case

of th¢ create transition, an output arc to a place (AllIDS) that contains

all o~ject ids for the class and in case of the delete transition an input arc

from Ithis place.

7. Dra~ an input-output arc between Tm and AllIDS and another between

Tree nd AllIDS to ensure that a message is passed on to an object only if

or delete message is handled by the class and it places a to

ken epresenting the newly created object in the initial place of the net

repr senting the class. In case of deletion, the token is consumed by the

tran ition implementing this message.

74

PhD Thesis - A. ~okhari McMaster - Computing and Software

!

5.3.3 ComrPents
I
I

Several example~ of UML statecharts and corresponding Petri nets are reported

in [63]. We test d the above algorithm on these statecharts and successfully trans

formed them to nown Petri nets. The size of the Petri net obtained by application

of this algorithm compares favourably with the size of the input UML statechart as

discussed below:

The size of a P can be measured by the number of transitions and the number of

places [102]. The~e are a number of metrics for measurng the size and complexity of a

UML statechart such as the number of entry actions, the numner of exit actions, the

number of activi1ies, the number of states, the number of transitions and the number

of guards [103]. trhe algorithm transforms each UML statechart transition to a cor

responding PN transition. The resulting PN transitions can sometimes be combined

to reduce the to~al number of transitions by using simple reduction rules specified

in [82]. This me~ns the number of PN transitions resulting from the transformation

are at most equat to the number of UML statechart transitions. The number of guards

for the Petri netl transitions equal the number of guards for UML transitions. Each
!

event, entry/exi~ action, and simple state in the UML statechart is transformed into a

place in the resulting PN. Events that are in the form of messages received from other

objects and acti~ns that result in sending messages to other objects are represented
i

as tokens contai ed in special places that are not duplicated for every event/action

is means that the total number of places in the resulting PN is at

most equal to t e total number of events, entry/exit actions, and simple states.

5.4 Illus rative Example

Application of t e above algorithm is now illustrated by an example that consists of

two classes: a u er class acting as the root class and a DVD_Collection class whose

objects have an integer attribute that holds the number of DVDs. This example has

75

PhD Thesis - A. $okhari McMaster - Computing and Software

been adapted frofn an example in [104, Page 148]. The User creates two objects of
i

DVD_Collection ype and stores the number of music DVDs in one object and the

number of movie DVDs in the other. Figure 5.3 and figure 5.4 show the UML state

diagrams for the DVD_Collection and the User classes respectively. Tables 5.3, 5.4

and 5.5 collect th information required by the algorithm from the two state diagrams.

Figure 5.5 shows the collection object model and the figure 5.6 shows the user object

model. Finally t e figures 5.7 and 5.8 show the user class net and the collection class

net respectively. The parts of these diagrams enclosed in a dashed box represent

the correspondi g object models. The complete CPN model was simulated using

Design/CPN.

• I

I

~ 2

[Idle C~~ AddingDVD 1
"Obj.Add(int)

Figure 5.3: State Diagram of Collection Object

•
CreabngCollecbon

entryl ACo/Iectlorl create(obJ}

Figure 5.4: State Diagram of User Object

76

PhD Thesis - A. pOkhari McMaster - Computing and Software

I

Tlp,ble 5.3: Collection Object State Diagram Table A
State ansltlOn# Input State Output State TransitIon Events Transition Guards

1 Idle AddingDVD 'Ob] Add(mt) Nd

2 AddmgDVD Idle Nd Nil

Table 5.4: User Object State Diagram Table A
State Transl t'on# Input State Output State TransItion Events TranSItIon Guards

1 Idle CreatlngCollection Nd Nil

2 Crea.tmgCollectlon Wait Nil Nil

3 Walt Idle created(obJ) Nil

4 Idle AddmgMovle Nil Nil

5 AddmgMovie Idle Nil Nil

6 AddingMusic Idle Nil Nil

7 Idle Addmg MUSIC Nil Nd

8 DeletlngCollechon Idle Nil Nil

9 Idle DeletlngColIection Nd Nil

Table 5.5: User Object State Diagram Table B
State Transl ion# Input State EXit ActIon(s) Output State Entry ActlOn(s) Transition Action(s)

1 Nil ~CollectlOn Create(abJ) Nd

2 Nd Nil Nil

3 Nil Nil Nil

4 i Nil ACollectionObJect Add(m mt) Nil

5 Nil Nil Nil

6 Nil Nil Nd

7 Nil ACollectlOnObJect.Add(n·mt) Nil

8 Nd Nil Nil

9 Nil 'Collectlon del(ob]) Nil

5.5 Hanfiling of Composite States

UML state diagrams are based on state charts introduced by Harel [105] as a visual

formalism for c mplex reactive systems. They extend state machines by hierarchy,

concurrency, an communication. While inclusion of these features has helped greatly

in specifying co plex reactive systems, they interact in intricate and unexpected ways

with the result hat various formal semantics of state charts and state chart tools in

terpret their in eraction in different ways or impose different constraints [106]. For

77

PhD Thesis - A. ~okhari McMaster - Computing and Software

II ~ - - - - - - - -OBJIiSG - ,
I

1 I

'I
,I

MS~

~

"5G

OBJMSG~

~

Figure 5.5: Collection Object Model

MSG~

~
DID

{c::::c1,obj=OJ

MSG I
I MSG g: I
I I

MSG

,L ____________________________ _

Figure 5.6: User Object Model

model checking of state charts, it is necessary to interpret the state chart model as

a transition sys em. A number of different techniques, for this purpose, have been

reviewed in [10]. These proposals can be classified into two groups: techniques that

use a set ofaxi ms to flatten any composite states in the state chart model and then

translate the st te chart descriptions directly into some kind of textual descriptions

78

PhD Thesis - A. ~okhari McMaster - Computing and Software

MSG

,--- -~~-------, __ I I

I I
I DID

{c=c1, obj=CI}

I m(f;j' I
FP MSG

I
II Cha§j2 i
I FG

I MaG

I
I

I
I

rMU-out I MSG

I

I

____________ -.1

MSG

I Ch[f;r I
FG

Figure 5.7: Class Net of Class User

of a formal lang~age, and those that transform the state charts to a formal graphi

cal structure surh as an extended hierarchical automaton (ERA) and then use this

structure to tra slate the state charts to a formal language such as PROMELA. The

resulting interp etation of the state chart model as a transition system is next used

as input to a del checker such as SPIN. In this research, the resulting transition

represented as a set of tables and the transformation of the state

chart model in 0 an Object Coloured Petri Nets (OCPN) model undertaken. The

interpretation o~ the state chart model as a transition system assumed that any com

posite states in the state chart model have been flattened by using a set of axioms as

79

I

PhD Thesis - A.1okhari
I

McMaster - Computing and Software

\C~'I
FG MSG 010

OfIJMSG

MSG

lc~'1
FG

Figure 5.8: Class Net of Class DVD_Collection

proposed by [63]1. We now show that following an alternate approach proposed by [1]
I

instead of our a~gorithm results in the same transition system.

5.5.1 Use bf EHA for Handling Composite States

Latella et. al. [1 use the state diagram shown in Figure 5.9 to discuss the translation

of composite st te diagrams to ERA. The diagram consists of three states sl, s2 and

s3. The state s1 is a concurrent composite state consisting of concurrent states s4

and s5 which i turn are also composite states. The state s4 consists of s6 and s7

while s5 consis s of s8 and s9. The state s7 is also a composite state consisting of

s10 and sl1. lthough a transition can be labeled by a trigger event, a guard and

a sequence of a tions, the authors use only trigger/action pairs to label transitions.

80

PhD Thesis - A. $okhari McMaster - Computing and Software

At a given time ~he system can be in any of the following sets of states referred

to as "configurations": {sl, s6, s8}, {sl, s6, s9}, {sl, slO, s8}, {sl, sl1, s8}, {sl,

slO, s9},{sl, sl1,s9}, {s2}, {s3}. As a result of a trigger from the environment and

provided the guard is satisfied, a transition can fire if and only if its source state is

in the current cOlnfiguration. If the transition is fired, the source state is left, the

actions are execuited, and the target state is entered. Inter-level transitions can be

fork transitions that, in general, have more than one target state or join transitions

that have more than one source state all of which must be in the current configuration

for the transition to be enabled. The authors propose a syntactical translation of the

statechart into a hierarchical automaton that describes the essential aspects of the

statechart. An ERA consists of simple sequential automata related by a refinement

function. A state is mapped via the refinement function into the set of automata that

refine it. The statechart of Figure 5.9 is mapped into the hierarchical automaton of

sO

s1

• s4 : v.. ~1/a1

~ s6

Fligure 5.9: State Chart Example Reproduced From [1]

Figure 5.10 whi~h is an alternate representation of the statechart. Initial states are

shown by thick I boxes and the refinement of a state into one or more sub-states is
I

represented by the refinement function Pi in the above example p sl = {AI, A2}, p

81

PhD Thesis - A. Bokhari McMaster - Computing and Software

s7 = {A3} and fCilr any other state s, p s = O. This refinement is shown by dashed

arrows in Figure 5.10.

t1 t4

A1 t6 A2 t8

t7 t9

1"8 :,0 { '") I

Figure 5.10: tRA Equivalent to State Chart in Figure 5.9 reproduced from [1]

Talble 5.6' Transition System for the ERA of Figure 5 10
Transition t1 t2 t3 t4 t5 t6 t7 t8 t9 tlO tll

SR
I

{s6} a a {s8} a a a a a a {slO}
EV rl al el r2 a2 el f1 e2 f2 e2 e2
AC I al r2 € a2 el f1 rl el € e2 e2
TD a {s6, s8} a a {s6, s9} {sla} a a a a a

The representation of the statechart of Figure 5.9 as a transition system is

given in Table 5.6 where SR is the source restriction that indicates the actual origin

of a transition, fD is the target determinator that lists all the basic states that must

be reached whe~ a transition is fired; EV is the event that triggers a transition and AC

is the corresponkiing actions to be performed when the transition fires. The notation
!

adopted by the iauthors is that when a source or a target state is part of a composite

state, they are ~xplicit1y listed, however a basic source or target state is represented

by a 0 in the t~ble.

82

PhD Thesis - A. lBokhari McMaster - Computing and Software

5.5.2 Use of Axioms for Handling Composite Sates

Saldana et. al. propose an algorithmic approach to flatten a composite UML stat-
I

echart [63]. They further define a process for deriving a state transition model to

handle the basic issues related to the hierarchical structure of composite states [107].

We used their alg?rithm to flatten the statechart of Figure 5.9 to that shown in Figure

5.11 where, to en~ure clarity, the transition T4 represents a transition from any state

to S2 as a result :of trigger el. We then used the algorithm proposed by us [108] to

transform this stMechart into a transition system represented by Table 5.7.

Table 5.7: Transition System for the Flattened State Chart Figure 5.11
Thansition Tl T2 T3 T4 T5 T6 T7 T8 T9 TlO T11 T12 T13 T14

SR S6 S2 S2 Any S8 S3 S3 S6 SlO S11 S8 S9 SlO SlO
EV rl al al el r2 a2 a2 el f1 f1 e2 f2 e2 e2
AC al r2 r2 Nil a2 el el f1 rl rl el Nil e2 e2
TD S2 S6 S8 S2 S3 S6 S9 SlO S6 S6 S9 S8 S11 S3

Our table lis more detailed because we treat each transition separately without

regard to whether it is a simple or a complex transition because any composite states

have already betjn flattened whereas Table 5.6 focuses on composite states.

5.5.3 Comparison of Results

In order to comIi>are the results, we note that there are different types of transitions.

A simple transition has only one source state and one target state and these are simple

states. A complex transition on the other hand has a composite state as its source or

the target state, A boundary transition is a complex transition that starts from or

ends at, the boundary of a composite state. A cross-boundary transition, sometimes

called an inter-level transition, is a complex transition that starts from, or ends at,

one of the nested states of a composite state.

In case of a boundary transition, if the target is a concurrent composite state,

all default stattjs of concurrent regions are active when the transition fires. On the

other hand, if the source of such a transition is a composite state, the transition can

83

PhD Thesis - A. lBokhari McMaster - Computing and Software

T2

S6

T6

a2/e1
T7

e2/e2

r21 a2 }13 r1/a1 a11 r2

a2/e1 e2/e2

a11 r2
FromAnySla Ie

I T4
T14 e1/·

T3 T1

Figure 5.11: Flattened State Diagram

Table 5.8: Modified Table 5.7 According to Notations Discussed in Section 5.5.3
Transitior T1 2 T3 T4 T5 T6 T7 T8 T9 TlO Tll T12 T13 T14
SR {S6} b Sb Sb {S8} Sb Sb Sb Sb Sb Sb Sb Sb {SlO}
EV r1 ~1 a1 e1 r2 a2 a2 e1 f1 f1 e2 f2 e2 e2
AC a1 *2 r2 Nil a2 e1 e1 f1 r1 r1 e1 Nil e2 e2
TD Sb {S6} {S8} Sb {S6} {S9} {SlO} Sb Sb Sb Sb Sb Sb Sb

fire with any of ~he nested states active. For a cross-boundary transition that targets

a specific nestecjl state of a concurrent region, the default states of other concurrent

84

PhD Thesis - A. Bokhari McMaster - Computing and Software

Table 5.9: Result of Combining Transitions in Table 5.8 into Fork/Join Transitions
Transition t1 t2 t3 t4 t5 t6 t7 t8 t9 tlO t11

(T2+T3) (T6+T7) (T9+TlO)

SR {S6} Sb Sb {S8} Sb Sb Sb Sb Sb Sb {S10}

EV r1 a1 e1 r2 a2 e1 f1 e2 f2 e2 e2

AC a1 r2 Nil a2 e1 f1 r1 el Nil e2 e2

TD Sb {S6, S8} Sb Sb {S6, S9} {SlO} Sb Sb Sb Sb Sb

regions are also active on firing of this transition. We adopt the following notation:

When a source or a target state is a basic state, it is denoted by Sb. In case of

cross-boundary transitions the specific nested state at which the transition starts or

ends are listed using set notation. When more than one transition has the same

source state but different target states, they are combined into one fork transition by

showing the target states as a set of states. Transitions that have the same target

state but different source states are combined into a join transition with the source

states shown as a set of states. Following this notation we transform Table 5.7 into

Table 5.8 and then to Table 5.9 which is essentially identical to Table 5.6 reported

by Latella et. al.

5.6 Extension of the Algorithm to Software Agents

The behaviour of an agent can be described as a sequence of states that the agent

is in, changing from one state to another, as response to external events consisting

of interaction with other agents or with its environment. Each state may represent

one of its activities including when it is idle waiting for something to happen in its

environment. The change of state may be accompanied by the execution of an action

that could consist of a local action by the agent or sending a message to another

agent. Since we want to transform the UML model of an information system to a

Petri net model in order to simulate the system and study its dynamic properties such

as fairness, boundedness, liveness, deadlock-freeness and reversibility etc., we use a

higher level abstraction of each agent in the system, similar to the concept of the

85

PhD Thesis - A. Bokhari McMaster - Computing and Software

skeleton in [47], where an abstract state may correspond to a number of computation

states considered alike for dynamic analysis of the system. Based on this abstraction,

behaviour of an agent can be represented by the UML state diagram. For example,

the UML representation of the behaviour of an information-processing agent is shown

in Figure 5.12.

3

Error

2

Incomplete

Idle

AID.Get(X)
1

Processing

do:Filtering

Complete

4

Completed

entry: AUA.ErrorMsg entry:AUA.Send(lnf)

Figure 5.12: State Diagram of Information Agent

The algorithm is applied to agents in the following steps:

5

1. Different types of agents are represented by class diagrams using the mechanism

86

PhD Thesis - A. Bokhari McMaster - Computing and Software

of "stereotypes" as discussed in Section 4.5.

2. UML state diagrams representing the behaviour of agents belonging to different

classes are constructed at the level of abstraction discussed above.

3. The Object Model (OM) in the above algorithm is extended to the Agent Model:

An agent Model is a tuple <BM, MP> where BM is a CPN that models the life

time behavior of an agent as specified by the corresponding UML state diagram

with MP = { msg_in, msg_inv, msg_out, msg_rec }, a set of four places.

4. State diagram of each agent is transformed to an Agent Model by following the

algorithm given in Section 5.3.

5. Each Agent Model is converted into a Class net by adding necessary facilities.

6. Class nets are integrated into an OCPN representing the system, by two sets of

communication channels for asynchronous messages. These messages represent

the internal events within an agent as well as the external events created by

other agents in the system.

5.7 Summary

We began this chapter by examining some of the recent research aimed at transforming

UML state diagrams to a model amenable to formal analysis. One of the most

important contributions of this research is an algorithm to transform UML state

diagrams to an OCPN model that was presented next. In order to confirm validity of

our algorithm it was applied to a set of UML state diagrams used in recent research

by Latella [1]. It was shown that our algorithm results in a transition system that is

identical to that obtained by Latella et. aI, who used extended hierarchical automaton

(ERA) to obtain an intermediate transition system. The algorithm was then extended

for application to software agents.

87

PhD Thesis - A. Bokhari McMaster - Computing and Software

In the next chapter, we discuss simulation of the OCPN model obtained by

transformation of UML state diagrams of EPSS using the algorithm presented in

this chapter. We used the Design/CPN simulation tool and carried out analysis of

the model by creating occurrence graphs for verification of some of its behavioural

properties.

88

Chapter 6

Model Simulation And Analysis

In this chapter we give a brief description of the CP nets used for each type of

agent class in the OCPN model of the EPSS. We then present analysis of the model

carried out by building various occurrence graphs and by generating reports to verify

some of the desirable properties of the model such as boundedness, liveness, fairness,

deadlock-freeness and home properties.

6.1 The Model Hierarchy

The OCPN model of EPSS consists of CP nets distributed over six pages. De

sign/CPN has a facility to create a hierarchy of different nets which as a whole,

model the EPSS. In order to keep track of the pages and their relationships to each

other the model contains a special page called a hierarchy page as shown in Figure 6.l.

In this page, every page in the model, including the hierarchy page (Hierarchy#10)

is represented by a small oval called the page node. Each page node has a name and

a page number. Design/CPN facilitates incremental development by executing only

those parts of the net that appear on specially designated pages called "Prime" pages

or in someway referenced by a prime page. A prime page has additional information

about the page by designations "M" and "Prime" next to the page node. A net may

89

PhD Thesis - A. Bokhari McMaster - Computing and Software

have any number of prime pages, however it must have at least one prime page to be

able to execute.

(Hierarchy#1 0)

I «No errors»
I
L-- ______ I

,._._,
\ p!:~t~~ _" ~ I Prime

,-----,
\ User#6 " ~ I Prime

.-.-~

r<.--..a-_· _.,
\ ~s!!:S,!-l~a.g:.,"

User1
User2

Figure 6.1: Hierarchy Page of the Model

The hierarchy page is also an active device by which the user can manipulate

the pages. For example a page can be opened by double clicking on the corresponding

page node or it can be deleted by deleting the corresponding page node. The function

of different pages in the model, is as follows:

6.1.1 Global#l

Figure 6.2 is the global declaration page where all colorsets and variables are declared.

The first line of the page ensures that the latest occurrence graph generation algo

rithm is used by the analysis tool and the second line takes care of a bug relating to

representation of date that caused the tool to stop functioning on January 10, 2004.

As the EPSS can be used by any number of users simultaneously, a user number

is represented by the indexed colorset U. A user action may result in one or more

agents and an agent number is represented by the indexed colorset a, where the range

90

PhD Thesis - A. Bokhari McMaster - Computing and Software

NewOGGeneration:= true;
use I/home/bokhari/tod.sml";

color PARAM = int with 0 .. 5;
color integer = int with 0 .. 9;
val n =5 :PARAM;
val m = 2 :PARAM;

color contents = string;
color USER = index U with O .. m declare ms;
color AGNTN = index a with O .. n declare ms, index;
color CID = with usr I car I cal I cia I cdr;
color AID = record ur:USER * c:CID * ajd: AGNTN declare ms;
color MID = with crtcall delcall crtcar I delcar I crtifa I delifa I finfo I getinfo I error I aknw I
deltd I crtd;
color COL = product AID * PARAM;

color MSG = record Sender:AID* Receiver:AID* Service:MID * Parameter:PARAM ;
color AGNMSG = product AID * MSG;
color UNIT = unit with e;
color AGENT = record ag:AID * inf :PARAM;
color FIL T = with x I y;

val dir= {ur=U(O), c=cdr, ajd=a(O)} :AID;
val calc={ur=U(O), c=cal, ajd=a(O)} :AID;
val carc={ur=U(O), c=car, ajd=a(O)} :AID;
val ciac={ur=U(O), c=cia, ajd=a(O)} :AID;
varcl:CID;
var msg,rec_msg:MSG;
var id: AGNTN;
var in_msg:AGNMSG;
var out_msg: AGNMSG;
var aid, sid, aic, aid1, aid2:AID;
var i, k :PARAM;
var j :integer;
var u :USER;

Figure 6.2: Page Containing Declarations

of indices is 0 to m and 0 to n respectively. A class is represented by the colorset C I D

that can have one of the agent class {usr, car, cal, cia, cdr} as its value. A particular

91

PhD Thesis - A. Bokhari McMaster - Computing and Software

agent is identified by a composite colorset AID, which is a tuple consisting of a

user number, class ID and an agent number. Color set MID defines different types

of messages that are exchanged between the agents. The message format consists

of identifiers of the sending and receiving agents, type of message and a parameter

that is used to specify additional information e.g. the criteria to be used to filter the

information. Some constants and variables are also declared for use in different net

inscriptions of the model.

6.1.2 User#6

Figures 6.3 and 6.4 show typical implementations of the User Interface and the User

Agent class nets respectively. The system allows for one or more users to be logged

into the system concurrently and each user can cause one or more Local Agents to

be spawned concurrently by selecting different options presented by the User Agent,

which is an instance of the User Agent Class. This can result in countless possibilities

that are limited by the User Inteface net which, for the purpose of analysis, allows

a limited number of users that can log into the system concurrently. Such users are

represented by places of color USER and named Instance(n), where n is the user

number. For example, the net shown in Figure 6.3 shows two such places making

it possible for two users to log into the system concurrently. The number of Local

Agents that a particular user can spawn, can be limited by inscriptions on the output

arcs of the transition named 'login'. The output arc inscriptions in Figure 6.3 allow

user U(l) to spawn two Local Agents while the user U(2) can spawn only one Local

Agent.

The User Agent class net shown in Figure 6.4 is shared by each user currently

logged into the system. This is implemented by building a hierarchical net using the

concept of substitution transitions detailed in [82]. The transitions named Userl and

User2 in Figure 6.3 represent the substitution transitions linking the User Interface to

the User CLass net of Figure 6.4. This is highlighted in the diagram by the existence

92

PhD Thesis - A. Bokhari McMaster - Computing and Software

I «No errors» MSG

USER Pin

l' U(1)

1'U(1)

l' U(2)

: UserS~bPage#7- -,
, Instance1->lnst

~ : login11->log1

rnsg

'-----__ ----1 1 HS I' Us~rSubP~g~#7 - :
'login12->log1 ,

l' U(2) : Instance2->lnst ,
L _______ _

Figure 6.3: OCPN of the User Interface

MSG
msg

of a small HS-tag adjascent to the transition. The dashed boxes beside the HS-tags

define the details of the substitution and are called hierarchy inscriptions. The first

line of the hierarchy inscription specifies the page that the substitution transition

connects to, e. g. UserSubPage#7 in Figure 6.3. This page is called the subpage

whereas the page containing the substitution transition is called the superpage. It can

be seen in Figure 6.3 that the two substitution transitions share the same subpage.

93

PhD Thesis - A. Bokhari McMaster - Computing and Software

aid

[#ServJC6 r8C_msg '" crtd]

*---------1 Userlogln

{ur=u, c=usr, 8Jd=a(O)}

a~ r

If #uralc = U(1) then (1' a(1) ++ l' a(2» else l' a(1)

'* Receiver msg = SId]

~~ AGNTN

lout

~ L§] ..
done

AGNTN

UNIT

~Out

~
$

msg

MSG

AID
gMSG

[(#SelVlce l'eC_msg = dettd) andalso a('Parameter r8C_msg) = tdJ

MSG

{Sender=alC, RecelV9r=dir, SeMce=crtcal, Parameter= (case tel of a(1) =>1 18(2) => 21 a(3) => 3)}

{Sender = llIe, Aac8lver= dr, 8eMce=<WcaI, Parameter = (case td of a(1) => 1 18(2) =>2 I a(3) :> 3)]

{Sender = SIC, R6C8Iver={ ur: jureK:, C=Ca1, 8Id= (case td of a(1) => a(1) I 8(2) => 8(2) I a(3) => a(3))}. SeI'VlC8=finfo, Parameter:::O}

Figure 6.4: OCPN of the User Agent Class Net

This means that when the model is simulated there will be two page instances of

the subpage each with their own private markings independent of the markings of the

other instances. During simulation, the Design/CPN simulator has a separate window

94

PhD Thesis - A. Bokhari McMaster - Computing and Software

for each page instance showing the marking of one page instance at a time and allowing

the user to switch from one window to another. The remaining lines of the hierarchy

inscription contain information on the port assignment and describe how a subpage

is connected to the superpage. Each line relates a socket node on the superpage to

a port node on the subpage. Port nodes on a subpage are identified by an In-tag,

Out-tag or I/O-tag next to it. An In-tag beside a port node indicates that it must be

related to a socket node on the superpage that is an input place for the substitution

transition, an Out-tag indicates that the port node must have a corresponding socket

node on the superpage that is an output place for the substitution transition. An

I/O-tag indicates that the port has a socket node in the superpage that can be both

an input as well as an output place for the substitution transition.

In Figure 6.4 the place named logl is an input port that has the input socket

loginll on the superpage for substitution transit on User1 and the input socket login12

for the substitution transition User2, the place inst is an I/O port connected to the

corresponding sockets Instance1 and Instance2, the port lout is an output port

connected to the socket named lout in the superpage and the ports Pm, Pree are other

examples of the input ports while Pout is another example of the output port. When

a user logs into the system, it is represented by existence of a token in the socket node

Instance1 (or Instance2) in the User Inerface net and that means a corresponding

token is available in the port node inst in the User Agent class net. Also, occurrence

of the transition login places tokens in the input socket loginll and that means these

tokens are available in the input port logl. This causes the transition User Login of

the User Agent Class to occur thereby placing tokens in the places AllI Ds and Idle

corresponding to the number of Local Agents a particular User Agent is allowed to

spawn. A User Agent can now create a Local Agent, ask an existing Local Agent to

get a particular information, delete an existing Local Agent or log out of the system.

The rest of the User CLass Agnet net implements these choices.

95

PhD Thesis - A. Bokhari McMaster - Computing and Software

6.1.3 LocalAgent#5

I' ur SId = , ... aid andalso'afd SId = 'aJdald)

['uraId1 =, Ufaldandalso.aJdflld1 = , aJd ald[

(' urSld=. ur aid andalsolf aJd SId = 'aJd aida

1«Noefrors»

I cha§j1J
FG

MSG

=caJ,afd=a(O)1

{ur= fur ('Sender msg) e=fc aid, aJd= a('Parameter msg) Yn
(IJI"EU(O),

AID

"'. =1Odex'AGNlN ('8Jd 8Idj)

{Send9r=8id, REICEI!V8f={'" ~ #ur ald, C=U!If, ajd= &(0)), Service=getinto, Paramelef=O

Figure 6.5: OCPN Class Net for the Local Agent

Figure 6.5 is an implementation of the Local Agent class net. The place All! Ds

has an initial marking of one token {ur = U(O), c = cal, ajd = a(O)} indicating the

existence of a class that is not associated to any user and with no agent instances.

When the User Agent wants a Local Agent created, it requests the director to spawn

it. The Director sends a message to the Local Agent class asking it to create an

96

PhD Thesis - A. Bokhari McMaster - Computing and Software

instance of the Local Agent. The existence of an initial marking described above

ensures that the message is received and acted upon by the Local Agent Class only,

although it is broadcast on a channel shared by all agent classes in the system. The

class net creates a token representating a Local Agent, places the token in the place

named Idle with a copy in the place AllI Ds and sends this agent's identifier to the

User Agent through the Director. The newly created agent waits in Idle state until

a query is received from the User Agent when this agent moves on to the Processing

state and requests the Director to spawn a Remote Agent. On receipt of confirmation

about the creation of a Remote Agent, this local agent communicates with it to get

the information desired by the User Agent.

6.1.4 RemAgent#4

Figure 6.6 shows the Remote Agent class net. To begin with this class also has a

single token {ur = U(O), c = car, ajd = a(O)} indicating the existence of a Remote

Agent class with no association with a particular user. This class creates tokens rep

resenting Remote Agents on receipt of requests from different Local Agents through

the Director. A Remote Agent represented by a newly created token stays in the

place Idle while a message is sent to the requesting Local Agent about the Remote

Agent's creation. The Local Agent sends details of the desired information to the

newly created Remote Agent who gets the location of the Information Agent that

provides the desired service, then communicates with it to get the information. It

waits for a message from the Information Agent which could be the desired informa

tion or an error message if the information could not be found and after it passes on

the contents of the message to the Local Agent, it returns to the Idle state. As soon

as the Local Agent gets the message from the Remote Agent, it asks the Director to

delete the Remote Agent. The Director sends a message to the Remote Agent class

which deletes the specified Remote Agent by removing the corresponding tokens from

the places Idle and AllI Ds.

97

PhD Thesis - A. Bokhari McMaster - Computing and Software

D .d

I ch[f;j2 I
FG MSG

[(# ServICe msg ., crtd) andal60 (# ReceIVer m

MSG

[. ur 1lid1 _ fur aid aodaIso Iatd aid 1 • It aJd aid]

(INr sid _lNt ad andaIso 'SId sid - hid aid]

, Recelver-dit,
bfa, Parameter _lI'Idex'AGNTN("8fc:I atd)}

'1@'11
MSG FG

10

(Ut_U(O c-car,aJd-a(O)J

(Sender- aid, R_ {ur- fur aid,
Serw::e_ gebnfo, Paramewr. OJ

~
MSG ~

Figure 6.6: OCPN Class Net for the Remote Agent

6.1.5 InfAgent#3

ICTIir I FG
MSG

Figure 6.7 is the Information Agent class net. The instances of this class interact with

the source of information and based on the criteria received from the user through a

Remote Agent, tries to find out the desired information. It then sends the retrieved

information to the Remote Agent and if the information is not available, it sends

98

PhD Thesis - A. Bokhari

aid

I CTIillC1 I
FG MSG

[# ReceIVe rnsg = aid)

msg

MSG

McMaster - Computing and Software

MSG

10

'" CIS, stet = i~~)l .ur(#Sender msg), c=l#c aid, a.td= a(#Parameter msg)}

Sender= (u = jur(#Sender msg). c=ic aid, ald= a('Parameter msg)},
meter msg)} 8C91Ver = Ir, SeMce = detld, Parameter= 'Parameter msg}

aid

{Sender= (r = #ur(#Sender ms). c= 4#c Bid, aJd= a(#Pa
RecelVer= r, ServICe:: crtd, Pa meter= 'Parameter msg

AID

[#Servlce msg = flnfo andalso ,Receiver msg = Bid]

COL

[# BJd aid = # ajd sid andalso fur Bid = ## ur sid]

MSG

I C'ffij" I
FG

aid

[Sander= aid, Raca!ver= sid,
ServlC8= gallnfO, Parameter = OJ

MSG

Bootl ., ur aid = # ur SId]

Figure 6.7: OCPN Class Net for the Information Agent

an error message back to the Remote Agent. Initially the class has just one token

{ur = U(O), c = cia, ajd = a(O)} representing the class itself. On receipt of a message

99

PhD Thesis - A. Bokhari McMaster - Computing and Software

from a Remote Agent through the Director, the class creates a token representing an

Information Agent and puts it in the places Idle as well as AllIDs. The existence of

a token in the place All! ds ensures that a message is received by and acted upon by a

specific instance of an agent represented by a token that is identified by an instance of

a User Agent, an agent class and an agent number. As soon as the Remote Agent that

requested the creation of the Information Agent in the first place, receives the desired

information, it asks the Director to delete the Information Agent. The Director sends

a message to the Information Agent class and the agent is deleted by removal of

specific tokens identifying a particular agent from the places I die and All! Ds.

6.1.6 Director#2

The agent class net that represents the Director is shown in Figure 6.8. This agent

coordinates the activities of all other agents. It also has just one token { ur = U (0), c =

cdr, ajd = a(O)} when the system first starts. Whenever an agent needs the services

of another agent it requests the Director to spawn such an agent. An agent that is no

longer required is also deleted through the Director. The Director keeps a record of

all agents present in the system at a given time by storing a token corresponding to an

agent when it is created at the place AliI Ds and by removing the corresponding token

when an agent is deleted. It plays a crucial role in keeping track of the associations

of different agents in the system. It ensures, on the creation of a new agent, that it

has a unique identifier that associates the agent with a particular User Agent and

a particular Local Agent working for this User Agent. It also ensues that when a

request to delete an agent is received the specific agent is suitably identified by the

class responsible for deleting the agent.

6.1.7 Communication Channels

Communication between different agents is implemented using the guidelines dis

cussed in Chapter 5. The places Pin and P.nv of all class nets are members of a place

100

PhD Thesis - A. Bokhari McMaster - Computing and Software

I L;j11 IMSG
'G

It R8C8fVermsg;aId]

~ AID l'{ur= U(
O),C = cdr,

~
C":)8

(ur:U(O), e=cdr, 8jd=a(O)}

md

AID OJ
(ur=U(O),e=cdr,81d;;a(O)}

m ..
m ..

) Ofelse ('SttMC8 msg =crtcall]

----C;;;:]t::===--"
It SeMoe mag ofdelrfa => CIa I delcar => car I deIcaI => cal, aid '" a(' Parameter msg)}

AID~
~

I oha§j~ I
'" MSO

A1llds1 CD

" ur='ur(' Sender msg), c",caae I SeMCe msg ofdellfa;>aa I delcar =>C8l[delcalz:> cal ~d za('Paramew mag)}

MSO

case 'ServIce mag of c:rtIfa;> {Sender", {ur:.: fur (I Sender msg), c=cdr, ajd=a(O)). RecerveracJaC, ServIOr-Crtda, Param 'Ptvameter mig} I
crtcar => {Sender: {u~ur (t Sender msg), C;: cdr, ap..a(O)}, ~rv.,:rean;:. Servlce=crtcar, Parame.", 'Paramelllilr mIg} I
crtcaI;> {Sender:: {urz fur (I Sender mig), e=edr, ap:a(O)},R~ ... -caIc, SeMc:e =crtcaI, Paramelllr '" 'Parameter mag}

{Sender :(ur= fur aid, c=cdr, aJd-....a(O)}, Recetver =(Uf= lur aid, e=(case Ie IIId of CIa => car I car =)0 call cal ;;> usr),
ajd= (If leaK! = cal then a(O) elselfa,d SId)), ServICe = deItd Parameter '" Index'AGNTN('JItd aId)1

Figure 6.8: OCPN Class Net for the Director Agent

fusion set named channell and the places Pout and P ree constitute a fusion set named

channel2. Simulations were performed using the Design/CPN simulator to validate

the model and to conduct initial analysis. First the interactive (single step) simu

lation was used to investigate if an execution of the model results in desired states.

101

PhD Thesis - A. Bokhari McMaster - Computing and Software

Initial markings were changed to simulate more than one user with each user having

one or more Local Agents. The simulator randomly picks up which user takes what

action and graphically displays markings after each step. This provided insight into

the operation of the system. After the model was validated, the behaviour of the

system was investigated using automatic simulation. The number of steps for auto

matic simulation can be selected for its termination and were gradually increased to

1 million steps in order to check repeatability of operations.

6.2 Analysis of the Model

State space methods are one of the main approaches for checking correctness of a

concurrent system. They are suitable for automatic analysis and verification of a

system's behaviour. In their basic form, they construct a structure that consists of all

states that a system can reach, and all transitions that the system can make between

those states. This structure is called a state space, occurrence graph, reachability

graph or reachability tree. The Occurrence Graph tool of Design/CPN allows a fully

automated construction and analysis of the occurrence graph of a CP net. It is

possible to specify whether a complete occurrence graph is to be constructed or or

only a part of it, by using stop and branching criteria. The stop criteria is used to stop

the construction of the graph when a certain amount of real time has been used or

when a certain number of nodes have been constructed. The branching criteria imply

that it is possible to develop some of the immediate successors of a given marking

if desired. Once an occurrence graph has been constructed, the tool generates a

standard report providing information about all standard CPN properties.

102

PhD Thesis - A. Bokhari McMaster - Computing and Software

f73-;-;'1~>73 -
, I:n.fAg e:n.t·T3

:L. {e id._ {'->.=
1- U(1) ,e -
c_=,_jct __ <

11) }.i_o,ai.d._{
1'-1= - U(1).=
I::(~;-}}_jd. _

Figure 6.9: Occurrence Graph of the Basic Model

103

PhD Thesis - A. Bokhari McMaster - Computing and Software

6.3 Generation of the Occurrence Graphs

A number of occurrence graphs corresponding to different initial conditions were

generated, however here we discuss four cases:

1. the basic case, where it is assumed that there is one user and only one agent of

each type is spawned in the system.

2. the second case extends the basic case by allowing the user to spawn two agents

of each type in the system.

3. the third case extends the basic case by allowing two users to log in concurrently

and have one agent of each type in the system.

4. the fourth case corresponds to one user with three agents of each type.

Figure 6.9 shows the occurrence graph for the basic case. There are 111 reachable

markings (or nodes), represented by rounded boxes in the figure. Each marking has

an identification number located at the top. Also, there are two numbers separated

by a colon that represent the number of input and output arcs, respectively. The

node that has the identification number 1 in the figure is the initial marking. It is

possible to see details of each marking if desired, in which case the details relating

to a particular node are shown in a dashed box next to it. The details of binding

elements, represented by arcs of the graph, can also be shown on the arcs, which we

have done for some of them in Figure 6.9. Also included is the identification number

of the arc (located in the upper left corner) and the related node numbers (nl ---t n2,

indicates that the marking n2 is reached from marking nl when the binding element

occurs). For example, the binding element 47, represented by arc number 47 in the

figure shows a transition from the current markings represented by the node 46 to

those represented by the node 1.

The occurrence graph for the second case has 11,258 reachable markings and

although we were able to construct a full occurrence graph we show only the initial

104

PhD Thesis - A. Bokhari McMaster - Computing and Software

and the final part of the graph in Figure 6.10 as the complete graph is too large

and complex for a meaningful presentation here. We calculated the full occurrence

graph for the third case also, which has 16,491 reachable markings and its starting

and ending part is shown in Figure 6.11. A full occurrence graph for case 4 could not

be generated due to limitations of the software system and/or the computer system

available for this research.

105

PhD Thesis - A. Bokhari McMaster - Computing and Software

Figure 6.10: Part of the Occurrence Graph (One User, Two Agents of Each Type)

106

PhD Thesis - A. Bokhari McMaster - Computing and Software

Figure 6.11: Part of the Occurrence Graph (Two Users, One Agent of Each Type)

107

PhD Thesis - A. Bokhari McMaster - Computing and Software

6.3.1 Strongly Connected Components

A strongly connected component (of a directed graph) is a maximal subgraph in

which all nodes are reachable from each other [82]. It is possible to calculate a

strongly connected component SCC) graph for every occurrence graph generated in

Design/CPN. Such a graph has a node for each strongly connected component and an

arc for each occurrence graph arc starting in one component and ending in another.

An SCC without incoming arcs is called the initial SCC, and a SCC without outgoing

arcs is called a terminal SCC. For a cyclic CP net the SCC-graph is usually much

smaller and often consists of only one node while the occurrence graph may consist

of several thousand nodes. Some of the behavioural properties can be investigated

very efficiently by using the SCC-graph. For example the existence of home markings

can be determined by counting the number of terminal SCCs. By checking whether a

transition instance appears in each terminal SCC, it can be determined if the instance

is live or not. The model under discussion is completely cyclic as depicted by just

one SCC component for various occurrence graphs constructed. This means that

all mrkings including the initial marking are home markings as discussed further in

section 6.5.3.

6.4 Behavioural Properties of the Model

Behavoural properties that describe the expected behaviour of the model are intro

duced in an informal way in this section. Formal definitions and further details can

be found in [82]. Once the occurrence graph and the associated SCC-graph have been

generated by the Occurrence Graph Tool of Design/CPN, a standard report can be

generated. This report consists of a text file that contains key information about the

occurrence graph and the dynamic properties that can be deduced from it. We now

present different parts of the reports for the three occuurrence graphs discussed above.

In oder to save space, essential features of the three reports have been combined in a

108

PhD Thesis - A. Bokhari McMaster - Computing and Software

tabular form.

6.4.1 Statistics

This part of the report contains statistical information about the size of the occurrence

graph and the size of the SCC-graph and is shown below:

Statistics

Case 1

Occurrence Graph

Nodes: 111

Arcs: 113

Sees: 0

Status: Full

Sec Graph

Nodes: 1

Arcs: 0

Sees: 0

Case 2

Occurrence Graph

Nodes: 11258

Arcs: 22534

Sees: 23

Status: Full

Sec Graph

Nodes: 1

Arcs: 0

Sees: 2

Case 3

Occurrence Graph

Nodes: 16941

Arcs: 34483

Sees: 35

Status: Full

Sec Graph

Nodes: 1

Arcs: 0

Sees: 2

Case 4

Occurrence Graph

Nodes:886729

Arcs:2615164

Secs:54160

Status:Partial

Sec Graph

N/A

N/A

N/A

It can be seen from this part of the report that we have calulated the entire graph in

less than a second for case 1 and it contains 111 nodes and 113 arcs and that there

is only one strongly connected component. This shows that every marking can be

reached from any other marking in the model. For case 2, the occurrence graph has

11,258 nodes and 22,534 arcs and the graph for the case 3 consists of 16,941 nodes

with 34,483 arcs. The SCC-graph for these two cases also has only one node. For

case 4 only a partial graph was generated with 886,729 nodes and 2,615,164 arcs in

54,160 seconds, however the report generated for this case did confirm that all places

109

PhD Thesis - A. Bokhari McMaster - Computing and Software

in the OCPN model for this case also were within the expected bounds as can be seen

in part of the report discussed in the next section.

6.4.2 Boundedness

The next part of the occurrence graph report deals with boundedness properties that

characterise the finiteness of the state space. The bound of a place is the maximum

number of tokens that it may contain. A place is bounded if its bound is finite. A

Petri net model is bounded if each place in it is bounded [79]. The report shows the

best upper and lower integer bounds as well as the best upper and lower multiset

bounds. The upper and lower integer bounds indicate the maximal and minimal

number of tokens at individual places as shown in Tables 6.1, 6.2 and 6.3 below:

Table 6.1: Boundedness Properties
Case 1 Case 2 Case 3 Case 4

Best Integers Bounds Upper Lower Upper Lower Upper Lower Upper Lower

Director' AliiDs 1 4 1 7 1 7 1 10 1

Director' AllIDs1 1 4 1 7 1 7 1 10 1

Director' AllIDs2 1 4 1 7 1 7 1 10 1

Director'Busy 1 1 0 2 0 2 0 3 0

Director'Busy1 1 1 0 2 0 2 0 3 0
Director'Pin 1 1 0 2 0 2 0 3 0

Director'Pinv 1 1 0 2 0 2 0 3 0
Director 'Pout 1 1 0 2 0 2 0 3 0

Director 'Prec 1 1 0 2 0 2 0 3 0

Director'idle 1 1 1 1 1 1 1 1

Director'msg-1n 1 1 0 2 0 2 0 3 0
Director'msg-1nv 1 1 0 2 0 2 0 3 0

Director'msg_out 1 1 0 2 0 2 0 3 0
Director'msgJec 1 1 0 2 0 2 0 3 0

Director'spp 1 1 0 2 0 2 0 3 0

InfAgent' AliiDs 1 2 1 3 1 3 1 4 1
InfAgent'Complete 1 1 0 2 0 2 0 3 0

InfAgent' Error 1 1 1 1 1 1 1 1 1

InfAgent'Incomplete 1 1 0 2 0 2 0 3 0
InfAgent'Info 1 1 1 1 1 1 1 1 1

InfAgent'Pin 1 1 0 2 0 2 0 3 0

InfAgent'Pinv 1 1 0 2 0 2 0 3 0
InfAgent'Pout 1 1 0 2 0 2 0 3 0

InfAgent 'Prec 1 1 0 2 0 2 0 3 0

InfAgent'Processing 1 1 0 2 0 2 0 3 0
InfAgent'idle 1 1 0 2 0 2 0 3 0
InfAgent'msg-1n 1 1 0 2 0 2 0 3 0

110

PhD Thesis - A. Bokhari McMaster - Computing and Software

Table 6.2: Boundedness Properties Continued ..
Case 1 Case 2 Case 3 Case 4

Best Integers Bounds Upper Lower Upper Lower Upper Lower Upper Lower

InfAgent'msg-inv 1 0 0 2 0 2 0 0 0
InfAgent'msg_out 1 1 0 2 0 2 0 3 0
InfAgent'msgJec 1 0 0 0 0 0 0 0 0
InfAgent'requester 1 1 0 2 0 2 0 3 0

LocAgent' AllIOs 1 2 1 3 1 3 1 4 1
LocAgent'Pl 1 1 0 2 0 2 0 3 0
LocAgent'P2 1 1 0 2 0 2 0 2 0
LocAgent'Pin 1 1 0 2 0 2 0 3 0

LocAgent'Pinv 1 1 0 2 0 2 0 3 0
LocAgent'Pout 1 1 0 2 0 2 0 3 0
LocAgent 'Prec 1 1 0 2 0 2 0 3 0
LocAgent'cars 1 1 0 2 0 2 0 3 0
LocAgent'complete 1 1 0 2 0 2 0 1 0
LocAgent'idle 1 1 0 2 0 2 0 3 0
LocAgent'msg-in 1 1 0 2 0 2 0 3 0
LocAgent'msg-inv 1 1 0 2 0 2 0 3 0
LocAgent'msg_out 1 1 0 2 0 2 0 3 0
LocAgent'msgJec 1 1 0 2 0 2 0 3 0
LocAgent 'processing 1 1 0 2 0 2 0 3 0
LocAgent'query 1 1 0 2 0 2 0 3 0
LocAgent'senders 1 1 0 2 0 2 0 2 0
LocAgent 'wait 1 1 0 2 0 2 0 3 0
UserSubPage'AliiOs 1 1 0 1 0 1 0 1 0
UserSubPage'AliiOs 2 0 0 0 0 1 0 1 0
UserSubPage'Busy 1 1 0 2 0 1 0 2 0
UserSubPage'Busyl 1 1 0 2 0 1 0 2 0
UserSubPage'Busyl 2 0 0 0 0 1 0 1 0
UserSubPage'Busy 2 0 0 0 0 1 0 1 0
UserSubPage'Qry 1 1 1 1 1 1 1 1 1
UserSubPage'Qry 2 1 1 1 1 1 1 1 1
UserSubPage'done 1 1 0 2 0 1 0 2 0
UserSubPage'done 2 0 0 0 0 1 0 1 0
UserSubPage'idle 1 1 0 1 0 1 0 1 0
UserSubPage'idle 2 0 0 0 0 1 0 1 0
UserSubPage'linl 1 1 0 2 0 1 0 2 0
UserSubPage'linl 2 0 0 0 0 1 0 1 0
UserSubPage'lin2 1 1 0 2 0 1 0 2 0
UserSubPage'lin2 2 0 0 0 0 1 0 1 0
UserSubPage'log2 1 1 0 2 0 1 0 2 0
UserSubPage'log2 2 0 0 0 0 1 0 1 0
UserSubPage'msg-in 1 0 0 0 0 0 0 0 0
UserSubPage'msg-in 2 0 0 0 0 0 0 0 0
UserSubPage'msg-inv 1 1 0 2 0 1 0 2 0
UserSubPage'msg-inv 2 0 0 0 0 1 0 1 0
UserSubPage'msg_out 1 0 0 0 0 0 0 0 0
UserSubPage'msg_out 2 0 0 0 0 0 0 0 0
UserSubPage'msgJec 1 1 0 2 0 1 0 2 0
UserSubPage'msgJec 2 0 0 0 0 1 0 1 0

111

PhD Thesis - A. Bokhari McMaster - Computing and Software

Table 6.3: Boundedness Properties Continued ...
Case 1 Case 2 Case 3 Case 4

Best Integers Bounds Upper Lower Upper Lower Upper Lower Upper Lower

UserSubPage'quit 1 1 1 1 1 1 1 1 1

UserSubPage'quit 2 1 1 1 1 1 1 1 1

UserSubPage'wait 1 1 0 1 0 1 0 1 0

UserSubPage'wait 2 0 0 0 0 1 0 1 0

RemAgent'AllIDs 1 2 1 3 1 3 1 4 1

RemAgent'Complete 1 1 0 2 0 2 0 2 0

RemAgent'Info 1 1 0 2 0 2 0 3 0

RemAgent'Pl 1 1 0 2 0 2 0 3 0

RemAgent'P2 1 1 0 2 0 2 0 2 0

RemAgent'Pin 1 1 0 2 0 2 0 3 0

RemAgent'Pinv 1 1 0 2 0 2 0 3 0

RemAgent'Pout 1 1 0 2 0 2 0 3 0

RemAgent'Prec 1 1 0 2 0 2 0 3 0

RemAgent'Processing 1 1 0 2 0 2 0 3 0

RemAgent'idle 1 1 0 2 0 2 0 3 0

RemAgent'ifas 1 1 0 2 0 2 0 3 0

RemAgent'location 1 1 1 1 1 1 1 1 1

RemAgent'msg..in 1 1 0 2 0 2 0 3 0

RemAgent'msg..inv 1 1 0 2 0 2 0 3 0

RemAgent'msg_out 1 1 0 2 0 2 0 3 0

RemAgent'msgJec 1 1 0 2 0 2 0 3 0

RemAgent'senders 1 1 0 2 0 2 0 2 0

RemAgent'wait 1 1 0 2 0 2 0 3 0

RemAgent 'waitloc 1 1 0 2 0 2 0 3 0

usr'Instancel 1 1 0 1 0 1 0 1 0

usr'Instance2 1 1 1 1 1 1 0 1 0

usr'Pin 1 0 0 0 0 0 0 0 0

usr'Pinv 1 1 0 2 0 2 0 3 0

usr'Pout 1 0 0 0 0 0 0 0 0

usr'Prec 1 1 0 2 0 2 0 3 0

usr'loginll 1 1 0 2 0 1 0 2 0

usr'loginl2 1 0 0 0 0 1 0 1 0

usr'lout 1 1 0 2 0 2 0 3 0

It can be seen that the place All! Ds in the Director class net has 1 to 4 tokens

in case 1: 1 token representing the Director Class and the 3 tokens representing the

Local Agent, the Remote Agent and the Information Agent spawned by the Director.

This matches with the corresponding information at the places All! Ds of InfAgent,

LocAgent and RemAgent each of which has 1 to 2 tokens: 1 token representing the

corresponding class net and the other representing the instance of an agent. The

same place has 1 to 7 tokens in case 2 as well as case 3: 1 token for the Director

class and the remaining 6 tokens for 2 agent instances of each type matching the

112

PhD Thesis - A. Bokhari McMaster - Computing and Software

munber of tokens representing instances of InfAgent, LocAgent and RemAgent at

their respective places named as All! Ds. It is also noted that although there are two

instances of UserSubPage with corresponding places AllI Ds1 and AllI Ds2, the place

AllI Ds2 is not active as it shows a zero token in both the upper and the lower integer

bounds both in case 1 as well as case 2 however, it shows 1 token in case 3. This is

expected because only one user is logged in for the occurrence graph in case 1 and 2

but 2 users are concurrently logged in for the occurrence graph in case 3. It is also

noted that most of the places in case 2 and case 3 have identical number of tokens

except for the places in the U serSubPage. This shows that most of the interactions in

the model are symmetrical. Finally in case 4 the place AllI Ds in the Director class

net has 1 to 10 tokens, which is exactly as expected as there are 9 agents of different

types in the system for this case and one token is for the Director class net. Although

it was not possible to construct the full occurrence graph in this case, it is clear that

the system behaviour is in line with expectations and all places are bounded since the

maximum number of tokens that can be present at All! Ds place of the Director class

net is equal to 3n + 1 where n is the number of local agent instances in the system.

The multiset bounds provide information about the values of the tokens that

the places can carry. In order to save space, only the multiset bounds for the place

AllI Ds of the Director are shown below; complete details are available in [109].

Case 1

Best Upper Multi-set Bounds

Director'AllIDs 1 l'{ur U(O),c cdr,ajd a(O)}++

l'{ur U(l),c car,ajd a(1)}++

l'{ur u(1), c cal,ajd a(1)}++

l'{ur U(1) ,c cia,ajd a(1)}

Case 2

Best Upper Multi-set Bounds

Director'AllIDs 1 l'{ur = U(O),c cdr,ajd a(O)}++

113

PhD Thesis - A. Bokhari McMaster - Computing and Software

1'{ur U(1) ,c car,ajd a(1)}++

1'{ur U(1) ,c car,ajd a(2)}++

1'{ur U(1) ,c cal,ajd a(1)}++

1'{ur U(1) ,c cal,ajd a(2)}++

1'{ur U(1) ,c cia,ajd a(1)}++

1'{ur U(1),c cia,ajd a(2)}

Case 3

Best Upper Multi-set Bounds

Director'AllIDs 1 1'{ur U(O),c cdr,ajd a(O)}++

1'{ur U(1) ,c car,ajd a(1)}++

1'{ur U(1) ,c cal,ajd a(1)}++

1'{ur U(1) ,c cia,ajd a(1)}++

1'{ur U(2),c car,ajd a(1)}++

1'{ur U(2),c cal,ajd a(1)}++

1'{ur U(2),c cia,ajd a(1)}

Case 1, 2 and 3

Best Lower Multi-set Bounds

Director'AllIDs 1 1'{ur = U(O),c = cdr,ajd = a(O)}

The upper multi-set bound of a place is defined as the smallest multi-set which is

larger than or equal to all reachable markings of the place. The lower multi-set

bound of a place is defined as the largest multi-set which is smaller than or equal to

all reachable markings of the place [82]. In the model under discussion, the places

that have AID as their colour have tokens that represent instances of agents and the

places that have M se as their colour have tokens that represent instances of different

messages only. The lower multiset bounds show tokens only in those places that have

initial markings. This information was very useful while debugging as it gives details

of a particular instance of an agent or a message that may be causing some problem.

These tokens can then be traced in different places to pin point and remove the bug.

114

PhD Thesis - A. Bokhari McMaster - Computing and Software

6.4.3 Home Markings

A home marking is a marking that can be reached from all other reachable markings.

The existence of a home marking indicates that it is possible to reach the home

marking although it is not guaranteed. This means there may exist infinite occurrence

sequences which do not contain the home marking. In the case of our model, all

markings are home markings as shown in the next part of the report below:

Home Properties

Case 1

Home Markings: All

Case 2

All

Case 3

All

This in fact is a much stronger property as it is not only possible to return to the initial

marking, it will always happen. This means that when a user initiates a query it will

always result in some message returned to the user. This establishes the soundness

of the system.

6.4.4 Reversibility

This property characterises the recoverability of the initial marking from any reach

able marking. Since the system has all markings as the home markings, it means the

initial marking is also a home marking and the model is reversible, so it is always

possible to return to the initial marking.

6.4.5 Deadlock-Freeness

The liveness property indicates that it is possible for each reachable marking to find

an occurrence sequence starting at that marking. In other words, the transition

never loses the possibility to fire. The liveness condition is stronger than deadlock

freeness and guarantees that there are no deadlocks. As shown in the next part of

115

PhD Thesis - A. Bokhari McMaster - Computing and Software

the occurrence graph report, the analysis of our model shows that there are no dead

markings or dead transitions.

Liveness Properties

Case 1 Case2 Case3

Dead Markings: None None None

Dead Transitions Instances: None None None

Live Transitions Instances: All All All

6.4.6 Fairness

The final part of the report in Table 6.4 shows that all of the transitions in the model

were either impartial or fair or just. Transitions that are not constrained to oc

cur are impartial. In case of a conflict it is necessary to ensure that all conflicting

transitions eventually occur, if the conflict appears again and again. Fair transitions

eventually occur in an infinite occurrence sequence if they are enabled infinitely of

ten. Just transitions eventually occur in an infinite occurrence sequence if they are

persistently enabled [79].

6.4.7 State Space Explosion Problem

Although one of the main approaches to checking the correctness of a concurrent

system is the space state method, it has a fundamental problem that almost any

practical system of reasonable size results in a huge number of states. Often the

size of state space tends to grow exponentially in the number of its processes and

variables. Limiting the state space explosion is the topic of much research, however

as pointed out by Jensen [110] although the occurrence graph of a CP-net grows very

fast with an increase in the size of the coloursets involved, in practice it is often

sufficient to consider rather small colour sets in order to verify the logical correctness

116

PhD Thesis - A. Bokhari McMaster - Computing and Software

Table 6.4: Fairness Properties
Transition Fairness Transition Fairness
Director'RecInfo 1 Fair Director'Tin 1 Impartial
Director'Tinv 1 Impartial Director'Tout 1 Impartial
Director'Trec 1 Impartial Director'createAGT 1 Impartial
Director'created 1 Impartial Director'deleted 1 Impartial
Director'deleting 1 Impartial Director'seperate 1 Impartial
InfAgent'Tl 1 Fair InfAgent'T2 1 Just
InfAgent'T3 1 Fair InfAgent'T4 1 Just
InfAgent'T5 1 Fair InfAgent'Tin 1 Fair
InfAgent'Tinv 1 Fair InfAgent'Tout 1 Fair
InfAgent'Trec 1 Fair InfAgent'create 1 Fair
InfAgent'delete 1 Fair LocAgent'Tl 1 Fair
LocAgent'T5 1 Fair LocAgent'Tin 1 Impartial
LocAgent'Tinv 1 Fair LocAgent'Tout 1 Impartial
LocAgent'Trec 1 Fair LocAgent'carcreated 1 Fair
LocAgent'cardeleted 1 Fair LocAgent' create 1 Impartial
LocAgent'delcar 1 Fair LocAgent'delete 1 Impartial
LocAgent'display 1 Fair LocAgent'recinfo 1 Fair
LocAgent'reqinfo 1 Fair UserSubPage'RecInfo 1 Fair
UserSubPage'RecInfo 2 Fair UserSubPage'ReqInfo 1 Just
UserSubPage'ReqInfo 2 Fair UserSubPage'Tin 1 Fair
UserSubPage'Tin 2 Fair UserSubPage'Tinv 1 Impartial
UserSubPage'Tinv 2 Fair UserSubPage'Tout 1 Fair
UserSubPage'Tout 2 Fair UserSubPage'Trec 1 Impartial
UserSubPage'Trec 2 Fair UserSubPage'UserLogin 1 Impartial
UserSubPage'UserLogin 2 Fair UserSubPage'UserLogout 1 Impartial
UserSubPage'UserLogout 2 Fair UserSubPage'create 1 Impartial
UserSubPage'create 2 Fair UserSubPage'created 1 Impartial
UserSubPage'created 2 Fair UserSubPage'delete 1 Impartial
UserSubPage'delete 2 Fair UserSubPage'deleted 1 Impartial
UserSubPage'deleted 2 Fair UserSubPage'deleting 1 Just
UserSubPage'deleting 2 Fair RemAgent'Tl 1 Fair
RemAgent'T31 Fair RemAgent'T41 Fair
RemAgent'T5 1 Fair RemAgent'Tin 1 Fair
RemAgent'Tinv 1 Fair RemAgent'Tout 1 Fair
RemAgent'Trec 1 Fair RemAgent'create 1 Fair
RemAgent'delcia 1 Fair RemAgent'delete 1 Fair
RemAgent'ifacreated 1 Fair RemAgent'ifadeltd 1 Fair
RemAgent'recinfo 1 Fair RemAgent'reqinfo 1 Fair
usr'login 1 Impartial

of a given CP-net. Having convinced ourselves that the EPSS model has the correct

behaviour for the 3 to 9 agents active concurrently in the different cases discussed in

this chapter, there is a strong likelihood that the design also works correctly for any

larger number of agents. This, in fact proved correct when a prototype of the model

was constructed and then tested with 50 agents concurrently active in the system

117

PhD Thesis - A. Bokhari McMaster - Computing and Software

without any problems.

6.5 Summary

In this chapter, we presented details of the OCPN model of EPSS for simulation.

Relevant details of various occurrence graphs and reports generated by Design/CPN

were discussed. This analysis showed that the system has desirable properties such as

boundedness, reversibility, liveness, deadlock-freeness, and fairness. This capability

provides another important contribution of this research by bringing dynamic analysis

to the design phase in the software development cycle.

In the next chapter we discuss some details related to implementation of a

prototype.

118

Chapter 7

Implementation of Prototype

7.1 Selection of the Middleware

Much research activity related to software agents is reported in the current literature.

Most of the researchers have produced some sort of multi-agent framework to act as

a test bed for their ideas. Although a number of commercial agent construction tools

are available we give a partial list of research tools that can be freely downloaded

from various research sites. More detailed information is available at [111] and [112].

From the list shown in Table 7.1, the following systems were installed on our

machines and various example agents were run on these systems.

FIPA-OS

The Foundation for Intelligent Physical Agents (FIPA) was formed in 1996 in Switzer

land with a goal to produce software standards to enable interoperability between

various Multi Agent Systems. FIPA have produced standards for agent communica

tion (based on speech act theory), management, and service discovery (yellow and

white pages). FIPA specifications focus on the interfaces for agent communication,

specific internal agent architectures are not mandated. A number of independent

implementations of the specifications have been built, which have been used to vali-

119

PhD Thesis - A. Bokhari McMaster - Computing and Software

Table 7.1: A Partial List of Agent-Building Tools.
Research Organization Project Name Language Used
Carnegie Mellon University RETSINA C++
Stanford University ProcessLink Java
The University of Texas at Austin Sensible Agents Java, C, Lisp
MIT Artificial Intelligence Lab Sodabot Proprietary
SRI International Open Agent Architec- Java, C, Lisp

ture
University of West Florida NOMADS Java
University of Massachusetts Java Agent Frame- Java

work
Stanford University JATLite Java
University of Cincinnati JAFMAS Java
University of California San Infospiders Java
Diego
The Media Lab, MIT Hive Java
University of Delaware DECAF Java
Dartmouth University D'Agents Tel
Purdue University BOND Java
University of Toronto Agent Building Shell Proprietary
University College Dublin, Ire- Agent Factory VisualWorks
land
Air Force Institute of Technology agentTool Java
Foundation of Intelligent Physical FIPA-OS Java
Agents
CSELT S.p.A., University of JADE Java
Parma
British Telecommunications Labs Zeus Java
University of Parma LEAP Java
University of Bologna SOMA Java
University Wrzburg SeSAm Java
Technical University of Madrid MAST C++
University of Stuttgart MOLE Java
Columbia University Mobiware Java
Technische Universitat Berlin JIAC Java
University of Otago JatLiteBean Java
Technical University of Vienna Gypsy Java
Toshiba Corporation Bee-gent Java

120

PhD Thesis - A. Bokhari McMaster - Computing and Software

date the standards. First released in August 1999, FIPA-OS is the world's first Open

Source implementation of the FIPA standards developed by Nortel Networks UK. It

is a component-based toolkit that can enable rapid development of FIPA-compliant

agents. It is available in two flavors: A standard FIPA-OS based on Java 2 and a

MicroFIPA-OS based on Java 1.1 but designed to execute on PDA's. The installa

tion of FIPA-OS on a Windows 95 machine required a number of changes in different

batch files. However it ran smoothly on a Windows 2000 machine. Example agents

that sent a ping message to other agents running on the same machine or running

on two different machines received responses from other agents successfully. It has a

GUI to manage the activities of agents but does not provide many facilities. It uses

RMI for intra-platform communication.

RETSINA

RETSINA is multi-agent system (MAS) developed at the Intelligent Software Agents

Lab - The Robotics Institute - Carnegie Mellon University that supports communities

of heterogeneous agents. The system uses C++ for coding and sockets for inter-agent

communication. Each agent acts as a server that listens to messages at a particular

port. An agent naming service (ANS) is used to locate the address of an agent along

with a port number. It also has a Matchmaker that serves as a "yellow pages" of

agent capabilities, matching service providers with service requestors based on agent

capability descriptions. RETSINA was installed on two Windows 2000 machines and

a number of example agents were successfully run. Although the documentation

provides good tutorials and source code for examples, it does not provide source code

for the main engine (only dlls are provided). Also the software license is restricted and

forbids installation on more than two machines or any modifications to the system.

121

PhD Thesis - A. Bokhari McMaster - Computing and Software

JADE

JADE (Java Agent DEvelopment Framework) is a software framework to develop

agent-based applications in compliance with the FIPA specifications for interopera

ble intelligent multi-agent systems. The goal is to simplify the development while

ensuring standard compliance through a comprehensive set of system services and

agents. JADE can then be considered an agent middleware that implements an Agent

Platform and a development framework The agent platform can be distributed across

machines (which do not even need to share the same OS) and the configuration can

be controlled via a remote GUI. JADE is completely implemented in Java. It uses an

agent communication language (ACL) that is a subset of the knowledge query and

manipulation language (KQML) for messages. It uses a content language (CL) for the

contents of messages. JADE was installed on two Windows 2000 machines. It uses

the notion of a container that contains AMS (agent management system), DF (direc

tory facilitator) and RMA (remote monitoring agent) and other agents. A number of

containers can be created on a machine. In our software evaluation experiments up

to four containers were created on one of the machines and two on the other machine.

Messages were successfully exchanged between different agents. The platform pro

vides a Graphical User Interface (GUI) for the remote management, monitoring and

controlling of the status of agents, allowing, for example, the stopping and restarting

of agents. The GUI also allows creating and starting the execution of an agent on a

remote host, provided that an agent container is already running. JADE uses RMI for

intra-platform communication and http or nap for inter-platform communication.

It has a news group and regular support is provided to the users. It conforms to

FIPA standards and issues a open GL licence. Both the source code and binaries are

available and there are no restrictions on modifications or additions. We, therefore,

decided to use JADE as the middleware for implementation of the prototype. It was

noted that the following two extensions of JADE have also been implemented, and

that boosted our confidence in JADE.

122

PhD Thesis - A. Bokhari McMaster - Computing and Software

LEAP

Lightweight Extensible Agent Platform (LEAP) is a project based on JADE that

has developed an agent platform, which is: lightweight, executable on small devices

such as PDAs and phones; extensible, in size and functionality; supporting wireless

communications and TCP /IP. The project is a joint effort of the University of Parma,

Italy and a number of commercial organizations like Motorola, ADAC, BroadCom,

BT, Telecom Italia Lab and Siemens.

ZEUS

This is a multi agent development environment based on JADE and developed by

British Telecom Lab. It provides a highly graphical user interface and a library of

software components and tools that facilitate the design, development and deployment

of agent systems.

7.2 Platform-specific Model

The prototype was implemented in Java with JADE as the middleware. Figure 7.1

shows the platform specific model. The middleware resides on computer 0 as shown

in the figure and provides management and communication services between agents.

The agent management system can be requested to spawn a new agent or kill an

existing one as dictated by needs of the system. It also has an agent that acts as

the request supervisor - an agent that keeps track of all currently registered services

and provides details of the location of a service to a requesting agent. CARs are

also spawned on this machine as and when requested by various CALs. A service

registry agent is associated with each data/information source covered by the system.

A computer can have one or more data /information sources, for example in figure

7.1, computer 2 has two sources of information with one service registry agent (SRA)

for each, while computer 3 has just one source of information along with its SRA. A

123

PhD Thesis - A. Bokhari McMaster - Computing and Software

user can log into the system using a separate computer such as computer 4 shown in

the diagram or he/she can use a computer with one of the information sources on it

such as computer 3 and may have more than one local agent, if required as shown in

the case of user 1.

7.3

SERVICE
REGISTRY

Computer 3

~
User 1

Computer 4

~
User 2

EPSS Main Server

COMPUTER 0
r--..~~ JADEAMS

CONTAlNER3

CLIENT AGENT LOCAl,1 (CAU)

CLIENT AGENT LOCAl,2 (CAl2)

CONTAlNER4

Figure 7.1: Platform Specific Model.

EPSS Agent
Architecture

(JADE)

META DATA
TABLE

Salient Features of Working System

When a user logs in, a UA-gui is displayed as shown in figure 7.2. The user has two

options: to configure the system for the kinds of queries the user would like to use, or

to select a previously created query and request updated information corresponding to

124

PhD Thesis - A. Bokhari McMaster - Computing and Software

Quit I
. New Query-l Get Info I

Select a Support Process Select Desired Query

i i

(sales and Distribution 1"-:

Get CAL

newQry5

qr4

q1
q1
n~wQry

~l~wQry1

~VlQJyfi

~ewQlY-i1

newQry52

Figure 7.2: User Agent (UA).

-

=

-...

it. The latter option results in spawning of a CAL. A graphical interface for this agent,

shown in figure 7.3, displays the progress of search and the extracted information on

its completion. Behind the scenes, CAL requests the agent management system to

create a CAR and on receipt of confirmation that CAR has been created, sends a

message to it passing details of criteria according to which information is desired.

At this stage neither CAL nor CAR knows if the requested service is available and

if so, where the information source is located. CAR tries to find from the Request

Supervisor where it can find the desired service if it is available. If the service is

not available, a message is sent to CAL to inform the user about it. If the service is

available, CAR passes on the criteria to the relevant SRA who searches the desired

information and sends results to CAR for onward passing to CAL to display it for

the user. The source of information can have a number of different formats. It can

125

PbD Tbesis - A. Bokbari McMaster - Computing and Software

be in a database or in a worksheet or in a comma separated value (CSV) file. Once

·g.,.Client Agent Local: ca1138438B304 ~-~~ Hi'SI!If
...... ! , ,~- jJ~

~~~I --------------------------------------~I~: 

Figure 7.3: Client Agent Local (CAL). 

CAL receives the desired information it requests the agent management system to kill 

CAR to save system resources. The user can also kill CAL after reading the displayed 

information. 

7.3.1 Agent Communication 

One of the basic properties of a multi-agent system is that different agents interact 

with one another by exchange of messages. JADE supports asynchronous message 

passing between agents. For this purpose each agent has a message queue and the 

126 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

JADE runtime posts all messages for an agent into its message queue. Each time a 

message is posted the runtime also informs the agent about it, however if or when a 

particular message will be picked up from the queue for processing entirely depends 

on how an agent is programmed to handle it. Interaction between agents requires that 

they understand the messages passed on to them and that means a standard format 

and semantics must be followed for these messages. Agent communication has been a 

hot topic of research and has resulted in a number of agent communication languages. 

Most of these languages are based on the speech acts theory of Searle [113]. A first 

attempt that resulted in a standard agent communication language came forth from 

the ARPA knowledge sharing project and is called KQML (Knowledge Query and 

Manipulation Language) [114]. A recent attempt from the Foundation for Intelligent 

Physical Agents (FIPA) is called FIPA-ACL. JADE messages comply with (FIPA) 

standards that ensure communication with agents created in other languages and 

running on other platforms. ACL specifies the format of messages exchanged between 

agents. 

7.3.2 Message Structure 

An ACL message usually consists of: 

• Sender 

• Receiver 

• Performative (INFORM, QUERY, PROPOSE etc.) 

• Content (the main content of the message) 

And may consist of one or more of the following attributes: 

• ConversationID - links messages in same conversation 

• Language - the language is used in the content 

127 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

• Ontology - the ontology is used in the content 

• Protocol - the protocol followed by conversation 

• ReplyWith - a field to help distinguish answers 

• InReplyTo - used to help distinguish answers 

• ReplyBy - used to set a time limit on an answer 

7.3.3 Content Language 

In order to specify content of a message some kind of language is required. JADE 

supports three possibilities. The most primitive is to use simple strings as contents 

of messages. This method is useful only if the content of a message does not consist 

of abstract concepts, objects or data structures, i.e. the content does not need to be 

parsed to access its parts. The second approach is to transmit serialized java objects 

directly as content of a message. This requires that all agents are implemented in 

Java and in this method the contents are not human readable. The third and most 

versatile approach is to use a specific content language to code and decode a message 

in a standard FIPA format. Jade supports the FIPA-SL family of languages for this 

purpose. 

7.3.4 Ontology 

An ontology is a domain specific vocabulary for content elements, their semantics, 

their properties and relationships between them are defined by ontology. As described 

by Grimshaw [115] it is a description (like a formal specification of a program) of the 

concepts and relationships that can exist for an agent or a community of agents. 

Ontologies can be represented by a number of different languages; however at present 

JADE does not support these directly. Instead, ontologies are encoded as Java classes, 

either written by hand or generated automatically using tools like Protege [116]. 

128 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

7.3.5 Jade support for Ontology 

Agents exchange information among themselves by ACL messages, however this infor

mation may have different representations inside an agent compared to that used in 

the message. For example, the message may contain some attributes of a Java object 

as a string, whereas inside the agent those attributes are part of an object. It is not 

convenient to represent them as strings inside the agents. This means that every time 

an agent needs to send some information to another agent, it must convert it from its 

internal representation to a string and the receiving agent must convert it back to the 

internal representation. Additionally the receiving agent needs to check that the re

ceived information is meaningful in that it complies with the rules of agreed ontology 

for communication between the two agents. JADE supports content languages and 

ontologies by providing facilities in the form of jade. content package to automatically 

make the above conversions and checks. According to JADE documentation, exploit

ing the JADE content language and ontology support included in the jade.content 

package, to make agents talk and reason about "things and facts" related to a given 

domain goes through the following steps. 

1. Defining an ontology including the schemas for the types of predicate, agent 

action and concept that are pertinent to the addressed domain. 

2. Developing proper Java classes for all types of predicate, agent action and con

cept in the ontology. 

3. Selecting a suitable content language among those directly supported by JADE. 

4. Registering the defined ontology and the selected content language to the agent. 

5. Creating and handling content expression as Java objects that are instances 

of the classes developed in step 2 and let JADE translate these Java objects 

to/from strings or sequences of bytes that fit the content slot of ACLMessages. 

129 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

7.3.6 EPSS-Ontology 

For the implementation of prototype, we created a simple ontology named EPSS

Ontology described below: 

public class EPSSOntology extends Ontology { 

/ / The name identifying this ontology 

public static final String ONTOLOGY ~AME = "EPSSOntology"; 

/ / The singleton instance of this ontology 

private static Ontology instance = new EPSSOntologyO; 

/ / Method to access the singleton ontology object 

public static Ontology getlnstanceO { return instance; } 

/ / VOCABULARY 

public static final String RECORD = "Record"; 

public static final String RECORD-FIELDS = "fields"; 

public static final String DATA_SET = "DataSet"; 

public static final String DATA_SET -RECORDS = "records"; 

public static final String FIND-.lNFO = "Findlnfo"; 

public static final String FIND-.lNFO-.PROCESS = "supportProcess"; 

public static final String FIND-.lNFO_QUERY = "desiredQuery"; 

/ / Private constructor 

private EPSSOntologyO 

{ super(ONTOLOGY ~AME, BasicOntology.getlnstance()); 

try { 

/ / Add Concepts 

add(new ConceptSchema(RECORD), Record.class); 

add(new ConceptSchema(DATA_SET), DataSet.class); 

add( new AgentActionSchema(FIND-.lNFO), Findlnfo.class); 

/ / Structure of the schema for the Record concept 

ConceptSchema cs = (ConceptSchema) getSchema(RECORD); 

130 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

} 

cs.add(RECORD_FIELDS, (PrimitiveSchema) 

getSchema(BasicOntology. STRIN G), 1, 0 b jectSchema. UNLIMITED); 

cs = (ConceptSchema) getSchema(DATA_SET); 

cs.add(DATA_SET ~ECORDS, (ConceptSchema) 

getSchema(RECORD), 1, ObjectSchema. UNLIMITED); 

/ /The RECORD slot has cardinality> 1 

AgentActionSchema as = (AgentActionSchema) getSchema(FINDJ:NFO); 

as.add(FINDJ:NFO_PROCESS, (PrimitiveSchema) 

getSchema(BasicOntology.STRING) , Ob jectSchema.MANDATORY); 

as.add(FIND J:NFO _QUERY, (PrimitiveSchema) 

getSchema(BasicOntology.STRING) , ObjectSchema.MANDATORY); 

} catch (OntologyException oe) { 

oe.printStackTraceO; } 

} / / End EPSSOntology 

7.3.7 Interaction Protocol 

Agent communication is usually a conversation between two roles, initiator and re

sponder(s). Initiator may request the responder to do something. The responder may 

choose to refuse or may act on the request and in turn inform the initiator about the 

result of carrying out the request. FIPA have standardized protocols for different 

types of conversations such as REQUEST, PROPOSE, QUERY, CONTRACT NET, 

DUCH AUCTION etc. JADE supports FIPA Interaction protocols by a number of 

classes defined in the jade.proto package. We commonly used FIPA REQUEST pro

tocol in implementing the prototype. A graphical description of this protocol is given 

in Figure 7.4. 

131 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

Fipa-Request interaction protocol (FIPA 97 spec) 

7.4 Summary 

request 
action 

'll~~~ 
__________ o 

Figure 7.4: FIPA Request Protocol 

In this chapter, we discussed some of the agent-development software available as free 

downloads from various research sites. We also discussed salient features of JADE 

that we have used as middleware for implementation of the prototype. A platform

specific model was presented and some of the main features of the prototype such 

as its working, agent communication, message structure, content language, ontology, 

and the FIPA request interaction protocol were discussed. 

In the next chapter, we summerise the work documented in this thesis along 

with conclusions and future directions. 

132 



Chapter 8 

Summary, Conclusions and Future 

Work 

8.1 Summary 

The goal of this research is to explore the design, technical feasibility and usability of 

an architecture for Electronic Performance Support Systems that promises to meet the 

challenges of rapid and continuous change in the business and industrial environments 

of the 21st century. As noted in Chapter 1, the conventional method of dealing 

with various changes by issuing a new release of EPSS, updated to incorporate these 

changes, cannot keep up with the rate of change in modern businesses. We have 

proposed a flexible and agile architecture that can continuously evolve without the 

need for significant developer intervention. We have focused on the design of an 

agile performance support system that extracts current information from sources 

distributed over the intranet of an organization on the fly when requested by a user. 

In this research, we followed a model driven approach to design an agile performance 

support system with these desirable features by combining SOA and software agents. 

Users of this system can expect to obtain updated information in time to perform 

efficiently without waiting for a new release of the software. It is also possible to add 

133 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

Sales DB1 

Production 
DB 

Accounts 
DB 

Machine 1 

PO 5emcelAgeM 

~
PubI,.ned InlOffac,," for: 

Order statJS Ser,rC-f Agef'lt 
C.lSt Info ServICe Agefl.t 
L.cco,J'1m Service Agent 
PO Ser"'lce 2 A9ent :"few; 

Machine 
5 

t, User1 

Figure 8.1: How Agility can be Achieved. 

new sources of information or new user requirements for information with minimum 

disruption to the system. 

Figure 8.1 shows how the system architecture enables information updates to 

occur without requiring any changes to be made to its central code and how a new 

source of information or a new service is added without affecting the rest of the 

application. A user request is handled by a Client Agent Local (CAL) that requests 

the middleware to spawn a Client Agent Remote (CAR) and passes on the user 

request to it. CAR interacts with the Request Supervisor to obtain the location of 

134 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

the relevant service agent and communicates with it. The service agent searches for 

the latest information that is passed on to the user through CAR and CAL. As the 

information is not hard coded into the software, the user always accesses the current 

updated information. 

The anthropomorphic model of the system handles the availability of a new 

source of information, perhaps due to certain changes in business rules, in a way 

analogous to how a corporation would handle the need for additional expertise by 

hiring a new employee who either has the requisite knowledge or can be trained to 

acquire the aditional expertise before assigning him/her the reponsibility of providing 

addtional expertise. Note that during this time, the main operations of the corporate 

entity remain untouched operationally. In case a new source of information needs to 

be added to the system, for example, Sales DB 2 in figure 8.1, all that is required is 

to write code for an agent that provides a related service based on the new source 

of information and to add its interface in the list of the Request Supervisor. The 

new agent can be tested independently before its interface is added into the list. The 

same logic applies if some additional service is required based on an existing source 

of information. 

Two of the main activities involved in the development of a software system 

are the software requirement specification and the software design [8]. Whereas the 

current software engineering practice requires the requirements specification phase to 

ensure unambiguous documentation of the desired behaviour of the system, it requires 

the design activity to translate the requirements into a representation of the software 

that can be assessed for quality before coding begins. It is widely recognised that the 

development of a complex software system not only requires a complete, consistent 

and unambiguous specification, but also a correct design that meets certain require

ments. This observation motivated the initial work in this research by exploring the 

use of formal methods in concurrent object-oriented design, and further derived our 

model-based approach for development of agent-oriented software systems. There 

135 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

has been much activity to formally define agents and their behaviour. Also, formal 

methods have been frequently used in requirements specification and analysis phase, 

however their use to create formal models at the design stage is rare [117]. Tradition

ally UML has been the tool of choice for design and analysis of such systems. UML 

has no facilities for dynamic analysis whereas Software Engineering practices expect 

analysis and verification of desirable properties at an early stage in the software de

velopment process. The main contribution of this research is the development of an 

algorithm to transform a UML state diagram representing the behaviour of an agent 

class at a suitable level of abstraction, to an OCPN class net. We have also shown 

that an agent based software system can be modelled using CP nets by transforming 

the state diagrams representing the behaviour of all agent classes in the system to 

OCPN class nets and then combining these class nets using communication channels 

into one CP net model of the system. Such a model can then be subjected to val

idation and verification. Validation is an activity during the analysis of the design 

that is used to convince others (and ourselves) about the soundness of the system's 

behaviour, whereas verification is an activity to rigorously prove that a formal de

sign has a formally stated property. The two common approaches to verification are 

model checking that involves exhaustively checking that a property holds in a fnite 

representation of the design, such as a state space and theorem proving that involves 

automatic or semi-automatic proof search [118]. We have used the simulator of De

sign/CPN for validation and its occurrence graph tool with associated reports for 

verification of properties such as reachability, liveness, deadlock-freeness and fairness 

as detailed in chapter 6. There are a number of other formal methods that can be 

applied for model checking as mentioned in chapter 5. However, CP nets are more 

focused on pragmatism than most other commonly known formal methods and are 

one of the most commonly applied kinds of Petri Nets among practitioners [118]. This 

popularity stems from their graphical nature and good tool support. 

We would like to mention here that the dynamic analysis of the model not only 

136 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

provided insight into the working of the actual system, it also helped in identifying and 

rectifying potential problems particularly when both the manual as well as automatic 

simulations were running smoothly but generation of the occurrence graph showed 

that some of the places in the system were unbounded. An investigation revealed that, 

since the occurrence graph examines all possible bindings occurring randomly, it was 

possible for a user to kill a Local agent before the results of a query were received 

from other agents thus leaving the corresponding Remote agent without an agent to 

respond to. Suitable changes were made to ensure that a Local agent can only be 

killed when the corresponding Remote agent has first been killed. In order to identify 

which Remote agent is spawned on the request of which Local agent, each agent in 

the system is uniquely identified by a Colour consisting of the user Id, the class Id 

and the agent number. It is not possible to reuse the agent number of an agent that 

was previously in the system and was killed after it performed its task, because the 

JVM loads the class representing several agents only once and keeps track of all the 

agent-identifiers used in a particular session. Therefore, we randomly generate agent 

identifiers during run time of the system so that different instances of agents can be 

created and deleted as required. 

The use of JAVA as the programming language for implementation of the 

system ensures that the User Agents as well as the Local Agents can run on any 

platform that has Java runtime available, without the need to recompile the code. We 

used Linux, MS Windowes 2000, MS WindowsXP and Sun Solaris operating systems 

on different machines with data sou crees in different formats e. g. as spreadsheets, 

databases and CSV files. The compliance of PIP A standards by different agents means 

that agents implemented with middleware other than JADE can easily communicate 

with the system. It is interesting to note that current literature, while discussing 

scalability issues of SOA, points out that scalability can be achieved by simple web 

server scalability options if the services are stateless, autonomous, short running and 

non-CPU intensive [119]. We have used software agents to implement services that 

137 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

have all these characteristics making the architecture easily scalable. 

It may be noted that according to Web Services Architecture W3C Working 

Group [120] "Using Web services technologies to implement a distributed system does 

not magically turn a distributed object architecture into an SOA. Nor are Web services 

technologies necessarily the best choice for implementing SOAs ~ if the necessary in

frastructure and expertise are in place to use COM or CORBA as the implementation 

technology and there is no requirement for platform neutrality, using SOAP /WSDL 

may not add enough benefits to justify their costs in performance, etc. 

In general SOA and Web services are most appropriate for applications: 

• That must operate over the Internet where reliability and speed cannot be 

guaranteed; 

• Where there is no ability to manage deployment so that all requesters and 

providers are upgraded at once; 

• Where components of the distributed system run on different platforms and 

vendor products; 

• Where an existing application needs to be exposed for use over a network, and 

can be wrapped as a Web service." 

In contrast to this view, we have designed via this research an architecture 

for an agile performance support system for the employees of an organization that 

will run on its intranet and not the Internet. All services in the system are owned 

by the same organization. They are all implemented with the JAVA programming 

language. By the use of the middleware JADE and implementation of services as 

software agents, the specific aspects outlined in the W3C document with respect to 

Web Services, in our case, need not be considered. 

138 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

8.2 Conclusion 

In this thesis we have proposed a software architecture for Electronic Performance 

Support Systems and have demonstrated that it results in an agile EPSS that pro

vides its users updated information without waiting for a new release of the software. 

We have also shown, in section 8.1, that new sources of information or new user re

quirements for information could be added with minimum disruption to the system. 

The research reported in this thesis presents a complete development strategy based 

on a model driven approach. The research was not limited to just a conceptual or 

platform specific model but a prototype was also successfully implemented. It was 

demonstrated that with the use of higher-level Petri nets it is feasible to integrate 

formal methods for dynamic analysis of a complex system at the design stage in the 

software development cycle. A unique characteristic of this research is the demonstra

tion that when such a system is designed with appropriate tools and transformations, 

its complexities can be dealt with at an early stage with an architecture that possesses 

the desirable dynamic properties in accordance with appropriate software engineer

ing practices. As part of this process we proposed an algorithm to transform UML 

state diagrams to Object Coloured Petri (OCP) nets. This provides the software 

analyst with a dual approach of using UML to create different models as usual and 

to create formal models for dynamic analysis by transforming UML state diagrams. 

This algorithm was extended for application to software agents and it was shown how 

an existing Petri net tool (Design/CPN) can be used to detect design errors, and 

how model checking techniques can support the verification of some key behavioral 

properties of agent-oriented software systems. We have demonstrated that the re

quirements of current software engineering practices can be fulfilled while developing 

an Electronic Performance Support System by following the steps listed below: 

• Create a UML use case model for the application being designed. 

139 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

• List the services that the system is expected to provide to its users by examining 

the use case model. 

• Implement services through software agents located at the sources of relevant 

information. 

• Identify any common facilities that may be required for management or commu

nication between different agents and for making the interface of these agents 

publicly available. Implement these common facilities by middleware. 

• Create UML class diagrams as well as interaction diagrams. 

• Create a UML state diagram at a suitable level of abstraction, for each class 

representing an agent. 

• Convert the state diagrams to OCPN class nets. 

• Combine the class nets to obtain an OCPN model for the system. 

• Simulate the OCPN model using Design/CPN. 

• Carryout dynamic analysis by using the simulation and the occurrence graph 

tools of Design/CPN. 

• Construct an application specific model. 

• Develop the prototype using a suitable programming language. 

8.3 Future Work 

We were able to generate a partial graph with 886729 nodes and 2615164 arcs that 

represents a very satisfactory result using the current version of the Occurrence Graph 

Tool [121]. Future versions of the tool are expected to be able to handle much larger 

140 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

graphs and it will be interesting to attempt to generate full occurrence graphs with 

10 or more agents concurrently present in the system. 

U sing the prototype, we were able to create up to 50 local agents on different 

machines used by clients limited by the available RAM. It will be interesting to study 

the relationship between complexity and performance of the system, in terms of time 

constraints, with increases in the number of users and corresponding agents. This 

will require more powerful machines with large RAM and a newer version of the 

Design/CPN Tools software. 

For the prototype, a user interface was created with just enough capability 

to handle simple queries. A number of improvements are possible to handle more 

complex user requirements. The current version uses a text file to provide options 

to the user for building a query. It may be possible to use the system to obtain 

meta information about the data available in each information source in the system 

dynamically and use this information to build queries. This will also mean that the 

meta information will be automatically updated if a new source of information is 

added to the system. 

The prototype can extract information provided by one service at a given time. 

If a user requires information that is scattered over several information sources that 

have different services for information extraction, separate queries will need to be 

generated for each service. It may be possible to modify the user interface such that 

a user request is automatically parsed by it and sent to different Service Registry 

Agents. The results can then be synthesized before presentation to the user. 

Knowledge Management (KM) is viewed as one of the most important topics for 

academic research and industrial practice encompassing a variety of disciplines like 

general management information systems development, information resource man

agement, decision support systems, artificial intelligence, and human resource man

agement [122, 123]. An Electronic Performance Support System (EPSS) is a good 

candidate to act as a vehicle for dissemination of the right knowledge to the right 

141 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

person at the right time, provided it can dynamically adapt to the rapid changes in 

the knowledge contents of the organization. This opens up a whole new avenue of 

research where the use of strong notion of agency may be explored so that the agents 

may have the capabilities to dynamically search the knowledge sources according to 

specific knowledge representations used in different sources. 

142 



Bibliography 

[1] Latella Diego, Majzik Istvan, and Massink Mieke, "Automatic verifcation of a 

behavioural subset of UML statechart diagrams using the spin model-checker," 

Formal Aspects of Computing, vol. 11, pp. 637-664, 1999. 

[2] Bezanson W R, "Performance support: Online, integrated documentation and 

training," in Proceedings of the 13th annual international conference on Systems 

documentation: emerging from chaos: solutions for the growing complexity of 

our jobs, February 1995, pp. 1-10. 

[3] Dickleman Gary J, "Performance support in internet time: The state 

of the practice on the eve of the new millennium," http://www.pcd-

innovations. com/PsinInternet Time/PSinInternet Time.pdf (Accessed 

03/26/2006), pp. 1-14,2000. 

[4] Kasvi Jyrki J J and Vartiainen Matti, "Performance improvement on the shop 

floor," Performance Improvement, pp. 40-46, July 2000. 

[5] Malcolm S, "Where epss will go from here," Training, pp. 64-69, March 1998. 

[6] Gates Bill, Business At the Speed of Thought, Warner Books Inc., New York, 

1999. 

[7] Giorgini J, "Modeling deployment and mobility issues in multiagent systems 

using auml," in Giorgini P and Mller J P and Odell J, (Eds.): AOSE 2003, 

LNCS 2935, pp. 69-84, Springer Verlag, Berlin Heidelberg, 2004. 

143 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

[8] Xu Haiping, "A model-based approach for development of multi-agent software 

systems," Ph.D. dissertation, University of Illinois at Chicago, USA, 2003. 

[9] Gery G, Electronic Performance Support Systems, Ziff Communications, Cam

bridge, MA, 1991. 

[10] Marion C, "What is performance centered design?," http://www.chesco.com/ 

rvcmarion/PCD/WhatlsPCD.html (Accessed 09/29/2006). 

[11] Gery Associates, "Performance centered design competition," http://www.pcd

innovations.com/samples.htm (Accessed 01/09/2007). 

[12] McCaffery J, "What is performance improvement?," http://www.jhpiego.org/ 

global/pi.htm (Accessed 09/29/2006). 

[13] Greenough R, "Electronic performance support systems," http://www.drive. 

cranfield.ac. uk/rgreenough.htm (Accessed 09/29/2006). 

[14] Platt E, "Developing e-Iearning and performance support systems," 

http://www.cherryleaf.com/developing_performance5iupporL 

tion.htm (Accessed 09/29/2006). 

documenta-

[15] Malcolm S E, "Reengineering corporate training," Training, pp. 57-61, 1992. 

[16] Malcolm S E, "Case study: Low-budget reusable flash card shell," 

http://www.performance-vision.com/articles/case-screen-saver.htm (Accessed 

09/29/2006). 

[17] Malcolm S E, "Case study: Performance support for product configura

tion," http://www.performance-vision.com/articles/case-howell.htm (Accessed 

09/29/2006) . 

[18] Malcolm S E, "Case study: Performance support for manage-

ment decision-making," http://www.pcd-innovations.com/whaLis_epss.htm 

(Accessed 09/29/2006). 

144 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

[19] Carr C, "A new horizon for expert systems," AI expert, pp. 44-49, 1992. 

[20] Rosenberg M J, "Performance technology, performance support and future of 

training: A commentary," Performance Improvement Quarterly, vol. 8, no. 1, 

pp. 94-99, 1995. 

[21] Raybould B, "Making a case for epss," Innovations in Education and Training 

International, vol. 32, no. 1, pp. 65-69, 1995. 

[22] Cole K, Fischer 0, and Saltzman F, "Just in time knowledge delivery," Com

munications of the ACM, vol. 40, no. 7, pp. 49-53, July 1997. 

[23] Kilby T, "What is WBPSS?," http://www.webbasedtraining.com/primer 

_whatiswbpss.aspx (Accessed 10/02/2006). 

[24] Sleight D A, "What is electronic performance support and what isn't?," 

http://www.msu.edu/ sleightd/epssyn.html (Accessed 10/02/2006). 

[25] Johannes C, "Electronic performance support: Appropriate technol-

ogy for the development of middle management in developing countries," 

http://hagaLup.ac.za/catts/abc/epss.html (Accessed 09/29/2006). 

[26] Raybould B, "Performance support engineering: An emerging developing 

methodology for enabling organizational learning," Performance Improvement 

Quarterly, vol. 8, no. 1, pp. 7-22, 1995. 

[27] Zopler A, "First cousins once removed: Knowledge management and perfor

mance support," http://www.pcd-innovations.com/what_is_epss.htm (Accessed 

10/02/2006). 

[28] Elsenheimer J, "The performance support bridge to knowledge management," 

http:j /www.pcd-innovations.com/whaUs_epss.htm (Accessed 10/02/2006). 

145 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

[29] Poehlman W F S, Garland W J, Bokhari A A, Wilson R J, and Baesten C 

W, "Performance support systems and artificial intelligence considerations," in 

Proc. International Nuclear Congress - INC93, October 1993. 

[30] Poehlman W F S, "The OPUS approach to domain/software/hardware map

ping," in Workshop on Performance Support Systems, McMaster University, 

Hamilton, Ontario, Canada, June 15-17 1994. 

[31] Wilson R J, Bokhari A A, Garland W J, Poehlman W F S, and Beasten C W, 

"The design and implementation of an operator's performance support system," 

in Proc. International Nuclear Congress - INC93, October 1993. 

[32] Miller B, "EPSS: Expanding the perspective," http://www.pcd-innovations 

.com/whaUs_epss.htm (Accessed 10/02/2006). 

[33] Sleight D A, "Use of just-in-time performance support tools for learning on 

demand in a work practice," http://www.msu.edu/ sleightd/jit.html (Accessed 

10/02/2006). 

[34] Sleight D A, "Types of electronic support systems: Their characteristics and 

range of design," http://www.pcd-innovations.com/whatjs_epss.htm (Accessed 

10/02/2006). 

[35] Sen Mehmet, "Distributed open asynchronous information access 

environment.," Ph.D. dissertation, Saracuse University New York, 

USA, http://aspen.ucs. indiana.edu/collabtools/senthesisdraft.doc (Accessed 

10/02/2006), 2000. 

[36] Brusilovsky P and Cooper D W, "ADAPTS: Adaptive hypermedia for a web

based performance support system," in Proceedings of the 2nd Workshop on 

Adaptive Systems and User Modeling on the WWW, Toronto, Canada, May 

11-14, 1999, pp. 41-47. 

146 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

[37] Banerji A, "Designing electronic performance support systems," Ph.D. 

dissertation, University of Teesside, UK, http://homepage.ntlworld 

.com/philip.barker2/ISRG/banerji.htm, (Accessed 10/02/2006), 1995. 

[38] Rhodes B J, "Just-in-time information 

Ph.D. dissertation, Massachusetts Institute of 

http://www.bradleyrhodes.com/Papers/rhodes-phd-JITIR.pdf. 

10/08/2006), 2000. 

retrieval," 

Technology, 

(Accessed 

[39] Stevens M, "The service-oriented approach," http://www.developer 

.com/ services/ article. php/10928_1010451..2 (Accessed 10/02/2006). 

[40] Wikipedia, "Service oriented architecture," http://en.wikipedia.org 

/wiki/Service-oriented-architecture (Accessed 01 /09/2007). 

[41] Choreography-Working-Group W3C, "From WS chore-

ography model overview editor's draft 24 march 2004," 

http://www.w3.org/2002/ws/chor/edcopies/model/ModeIOverview.html 

(Accessed 01/09/2007). 

[42] Chris Peltz, "Web services orchestration and choreography," Computer, vol. 

36, no. 10, pp. 46-52, 2003. 

[43] William B. Bradley and David P. Maher, "The nemo p2p service orchestration 

framework," in HICSS '04: Proceedings of the Proceedings of the 37th An

nual Hawaii International Conference on System Sciences (HICSS'04) - Track 

9, Washington, DC, USA, 2004, p. 90290.3, IEEE Computer Society. 

[44] Foster H, Uchitel S, Magee J, and Kramer J, "Leveraging eclipse for integrated 

model-based engineering of web service compositions," in eclipse '05: Proceed

ings of the 2005 OOPSLA workshop on Eclipse technology eXchange, New York, 

NY, USA, 2005, pp. 95-99, ACM Press. 

147 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

[45] Michael Stollberg, Dumitru Roman, and Juan Miguel Gomez, "A mediated 

approach towards web service choreography," in Proceedings ofthe workshop on 

Semantic Web Services: Preparing to Meet the World of Business Applications 

held at the 3rd International Semantic Web Conference, Hiroshima, Japan, 11 

2004. 

[46] Carbone M, Honda K, Yoshida N, Milner R, Brown G, and Ross-Talbot 

S, "A theoretical basis of communication-centred concurrent program

ming," http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf (Accessed 

01/09/2007). 

[47] Singh M, "Synthesizing coordination requirements for heterogeneous au

tonomous agents," Autonomous agents and multiagent systems, vol. 3 No. 

2, pp. 107-132,2000. 

[48] Wijngaards N J E, Overeinder B J, van Steen M, and Brazier E M T, "Sup

porting internet-scale multi-agent systems," Data and Knowledge Engineering, 

vol. 41, pp. 229-245, 2002. 

[49] Wooldridge M and Ciancarini P, "Agent-oriented software engineering:the sate 

of the art," in Proc. 1st Int. W/S (AOSE-2000), Springer-Verlag: Berlin, Ger

many, 2000. 

[50] Zohar Manna and Amir Pnueli, Temporal verification of reactive systems: 

safety, Springer-Verlag New York, Inc., New York, NY, USA, 1995. 

[51] Wooldridg M and Jennings N, "Intelligent agents: Theory and practice," The 

Knowledge Engineering Review, vol. 10(2), pp. 115-152, 1995. 

[52] Hintikka J, Knowledge and Belief: An Introduction to the Logic of the Two 

Notions, Cornell University Press, Ithaca New York, 1962. 

148 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

[53] Levasque H J, Cohen P R, and Nunes J H, "On acting together," in In 

Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI-

90), pp. 94-99, Boston MA, 1990. 

[54] Reichgelt H, "Knowledge for reasoning about knowledge and belief," The 

Knowledge Engineering Review, vol. 4(2), pp. 119-139, 1989. 

[55] Konolige K, "A first order formalization of knowledge and action for a multi

agent planning system," in In Hays, J.E., Michie D., Pao Y.eds Machine Intel

ligence 10, pp. 41-72, Ellis Horwood, Chichester, England, July 1999. 

[56] Hass A, "A syntactic theory of belief and action," Artificial Intelligence, vol. 

28(3), pp. 245-292, 1986. 

[57] Cohon P R and Levesque H J, "Intention is choice with commitment," Artificial 

Intelligence, vol. 42, pp. 213-261, 1990. 

[58] Rao A Sand Georgeff M P, "A model theoretical approach to the verification of 

situated reasoning systems," in In Proceedings of Thirteen International Joint 

Conference on Artificial Intelligence (IJCAI), pp. 318-324, Chambery, France, 

August 28-September 3 1993. 

[59] Sampath P, "Modeling multi-agent reactive systems," in International Confer

ence on Logic Programming (ICLP), LNCS Vol. 2401, pp. 476, Springer Verlag, 

Berlin Heidelberg, 2002. 

[60] Lind J, "Issues in agent-oriented software engineering," in Ciancarini P and 

Wooldridge M J, (Eds.): AOSE 2000, LNCS 1957, pp. 45-58, Springer Verlag, 

Berlin Heidelberg, 2001. 

[61] Bernardi S, Merseguer J, and Donatelli S, "From UML sequence diagrams 

and statecharts to analysable Petri net models," in Proceedings of the third 

149 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

International Workshop on Software and Performance (WOSP'02), pp. 35-43, 

Rome Italy, July 2002. 

[62] Hu Z and Shatz Sol M, "Mapping UML diagrams to a Petri net notation for 

system simulation," in Proceedings of the International Conference on Software 

Engineering and Knowledge Engineering (SEKE) , pp. 213-219, Banff, Canada, 

June 2004. 

[63] Saldana J A and Shatz Sol M, "Formalization of object behavior and interac

tions from UML models," International Journal of Software Engineering and 

Knowledge Engineering (IJSEKE) , vol. 11 No.6, pp. 643-673, 2001. 

[64] Lomazova I A, "Multi-agent systems and petri nets," in Proceedings of Interna

tional Workshop on Distributed Artificial Intelligence and Multi-Agent Systems 

(DAIMAS97), pp. 147-152, St. Petersberg, Russia, 1997. 

[65] Bakam I, Kordon F, LePage C, and Cois F, "Using coloured petri nets for the 

study of an hunting management system," in LNAI (Lecture Notes on Artificial 

Intelligence) 1871, pp. 123-132, Springer Verlag, Berlin Heidelberg, 2001. 

[66] Patrick C K and Hung M, "Modeling e-negotiation activities with petri nets," 

in Proceedings of the 35th Hawaii International Conference on System Sciences, 

pp. 379-88, 2002. 

[67] Zuberek W M, "Timed petri nets and preliminary performance evaluation," in 

ISCA '80: Proceedings of the 7th annual symposium on Computer Architecture, 

pp. 88-96, ACM Press New York, USA, 1980. 

[68] Ballarini P, S Donatelli, and G Franceschinis, "Parametric stochastic well

formed nets and compositional modeling," in In Nielsen M., Simpson D. (Eds.): 

Lecture Notes in Computer Science (LNCS) 1825, pp. 43-62, Springer Verlag, 

Berlin Heidelberg, 2000. 

150 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

[69] Chiola G, Marsan M A, Balbo G, and Conte G, "Generalized stochastic petri 

nets: A definition at the net level and its implications," IEEE Trans. Softw. 

Eng., vol. 19, no. 2, pp. 89-107, 1993. 

[70] Marsan M A, Conte G, and Balbo G, "A class of generalized stochastic petri 

nets for the performance evaluation of multiprocessor systems," ACM Trans. 

Comput. Syst., vol. 2, no. 2, pp. 93-122, 1984. 

[71] Bohuslov K, "Object-oriented Petri nets and their application and type anal

ysis, in: Information technologies and control," Information Technologies and 

Control, Vo1. 1, No.1, Sofia, BG, vol. Vol. 1, No.1, pp. 27-31, 2003. 

[72] Perkusich A and deFigueiredo J, "G-nets: A petri net based approach for 

logical and timing analysis of complex software systems," Journal of Systems 

and Software, vol. 39, no. 1, pp. 39-59, 1997. 

[73] Battiston E, De Cindio F, and Mauri G, "A class of high level nets having 

objects as domains," in G. Rozenberg (Eds.):Advances in Petri Nets, Lecture 

Notes in Computer Science (LNCS 340), BSpringer Verlag, Berlin Heidelberg, 

1988. 

[74] Buchs D and Guelfi N, "A concurrent object oriented Petri nets approach for 

system specification," in Application and Theory of Petri Nets, Proceedings of 

the 12th International Conference (ICATPN'91), pp. 432-454, Gjern, Denmark, 

1991. 

[75] Valk R, "Petri nets as token objects: An introduction to elementry object nets," 

in J. Desel, M. Silva (Eds.): Proceedings of the International Conference on 

Application and Theory of Petri Nets (ICATPN'98), pp. 1-24, Springer Verlag, 

Berlin Heidelberg, 1998. 

[76] Lakos C, "Object oriented modeling with object Petri nets," in Agha et 

151 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

a1.(Eds.):Concurrent OOP and PN, LNCS 2001, pp. 1-37, Springer Verlag, 

Berlin Heidelberg, 2001. 

[77] Philippi S, "Seamless object-oriented software development on a formal base," 

in Proceedings of the Workshop on Software Engineering and Petri Nets, 21st 

International Conference on Application and Theory of Petri Nets, June 2000. 

[78] Baresi L., "Some preliminary hints on formalizing UML with object Petri nets," 

in Integrated Design and Process Technology, IDPT-2002, June 2002. 

[79] Girault C. and Valk G., Petri Nets for System Engineering, vol. 1, Springer 

Verlag, Berlin, 2003. 

[80] Barros J. P. and Gomes P., "On the use of coloured Petri nets for object oriented 

design," in Proceedings of the International Conference on Application and 

Theory of Petri Nets (ICATPN'98),Lecture Notes in Computer Science (LNCS 

3099), Springer Verlag Berlin Heidelberg, 2004. 

[81] Maier C and Moldt D, "Object coloured Petri nets - a formal technique for 

object oriented modelling," in Agha et a1.(Eds.):Concurrent OOP and PN, 

LNCS 2001, pp. 406-427, Springer Verlag, Berlin Heidelberg, 2001. 

[82] Jensen K, Coloured Petri Nets Basic Concepts, Analysis Methods and Practical 

Use, vol. 1, Springer Verlag, Berlin Heidelberg New York, 2nd edition, 1997. 

[83] Christensen S and Hansen N D, "Coloured Petri nets extended with channels for 

synchronous communication," in International Conference on the Application 

and Theory of Petri Nets, Lecture Notes in Computer Science (LNCS 815), pp. 

159-178, Springer Verlag, Berlin Heidelberg, 1994. 

[84] Germany University of Hamburg, "Petri nets tools database quick overview," 

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html (Ac

cessed 11/18/2006). 

152 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

[85] Agha G, "Abstracting interaction patterns: A programming paradigm for open 

distributed systems," in Najm E and Stefani J B, Eds, Formal Methods for 

Open Object-based Distributed Systems, Chapman and Hall, New York, 1997. 

[86] Beraldi R and Nigro L, "Distributed simulation of timed petri nets: A modular 

approach using actors and time warp," IEEE Concurrency, vol. 7, no. 4, pp. 

52-62, 1999. 

[87] Wooldridge M, Jennings N R, and Kinny D, "A methodology for agent-oriented 

analysis sand design," in Proc. 3rd Annual Conf. On Autonomous Agents, 1999. 

[88] Jennings N R, Sycara K P, and Wooldridge M, "A roadmap of agent research 

and development," Autonomous Agents and Multi-Agent Systems, vol. 1, pp. 

7-38, 1999. 

[89] Exforsys Inc., "The advantages and disadvantages of erp," 

http://www.exforsys.com/content/view/2478/1133/ (Accessed 01/12/2007), 

2006. 

[90] Davenport T H, "Putting the enterprise into the enterprise system," Harvard 

Business Review, pp. 121-131, July - August 1998. 

[91] Kinny D Georgeff M and Rao A, "A methodology and modelling technique for 

systems of bdi agents," in W. Van de Velde and J. W. Perram, Eds, Agents 

Breaking A way: Proceedings of the Seventh European Workshop on Modelling 

Autonomous Agents in a Multi-Agent World, (LNAI Volume 1038), pp. 56-71, 

Springer-Verlag, Berlin, Germany, 1996. 

[92] Odell J, Parunak H, and Bauer B, "Representing agent interaction protocols in 

uml," in P. Ciancarini and M. Wooldridge, Eds, Agent-Oriented Software En

gineering, Proc. 1st Int. W/s (AOSE-2000) , Springer-Verlag, Berlin Germany, 

2000. 

153 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

[93] Elizabeth A K, "Agent software engineering with role modelling," in P. Cian

carini and M. Wooldridge, Eds, Agent-Oriented Software Engineering: Proceed

ings of the First International Workshop (AOSE-2000) , Springer-Verlag, Berlin 

Germany, 2000. 

[94] Papasimeon M and Heinze C, "Extending the uml for designing jack agents," in 

In Proceedings of the A ustralian Software Engineering Conference (AS WECO 1), 

pp. 89-97, Canberra, Australia, August 26-272001. 

[95] Rysavy 0, "A survey on approaches to formal representation of UML," Tech. 

Rep., Brno University of Technology, Czech Republic, 2003. 

[96] Lilius J and Paltor I P, "Formalizing UML state machines for model checking," 

in Robert France and Burnhard Rumpe (Eds.):UML'99, Lecture Notes in Com

puter Science (LNCS 1723), pp. 430-444, Springer Verlag, Berlin Heidelberg, 

1999. 

[97] Varro N, "A formal semantics of uml statecharts by model transition sys

tems," in ICGT '02: Proc. 1st Int. Coni. on Graph Transformation, pp. 378-392, 

Springer-Verlag, London UK, 2002. 

[98] Merseguer J, Campos J, Bernardi S, and Donatelli S, "A compositional seman

tics for UML state machines aimed at performance evaluation," in Proceedings 

of the sixth International Workshop on Discrete Event Systems (WODES'02), 

pp. 295-302, Zaragoza, Spain, October 2002. 

[99] Zhao Yu and Fan Y, "Towards formal verification of UML diagrams based on 

graph transformation," in Proceedings of the IEEE International Conference 

on E-Commerce Technology for Dynamic E-Business (CEC-East'04), 2004. 

[100] Bokhari Asghar and Poehlman Skip, "Formalization of uml statecharts: Ap

proaches for handling composite states.," Tech. Rep. CAS-05-07-SP, McMaster 

University, Computing and Software Department, 2005. 

154 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

[101] Deacon J, "A developer's guide to UML 2," http://www .john-

deacon.net /UML/UML_Appendix/ Generated /UML...A ppendix.asp (Accessed 

12/08/2006). 

[102] Morasca Sand di Milano P, "Measuring attributes of concurrent software spec

ifications in petri nets," in Proceedings of the Sixth International Metrics Sym

posium (METRICS'99), pp. 100-110, 1999. 

[103] Genera M, Miranda D, and Piattini M, "Defining metrics for uml statechart 

diagrams in a methodological way," in Jeusfeld M A and Pastor 0 (Eds.): ER 

2003 Workshops, LNCS 2814, pp. 118-128., Springer Verlag, Berlin Heidelberg, 

2003. 

[104] Lewis J and Loftus W, JAVA Software Solutions: foundations of program 

design, Addison Wesley Longman, Inc., USA, 2nd edition, 1998. 

[105] Bhaduri P and Ramesh S, "Model checking of statechart models. survey and re

search direction," http://arxiv.org/abs/cs.SE/0407038 (Accessed 12/08/2006). 

[106] Sekerinski E and Zurob R, "istate: A statechart translator," in M. Gogolla 

and C. Kobryn (Eds.): UML 2001, LNCS 2185, pp. 376-390, Springer-Verlag, 

Berlin Heidelberg, 2001. 

[107] Hu Z and Shatz S M, "Explicit modeling of semantics associated with composite 

states in uml statecharts," Intl Journal of Automated Software Engineering, 

vol. 13, no. 4, pp. 423-467, 2006. 

[108] Bokhari Asghar and Poehlman Skip, "Translation of uml models to object 

coloured petri nets with a view to analysis," in Proceedings of the Eighteenth 

International Conference on Software Engineering and Knowledge Engineering 

(SEKE'06) pp. 568-571, San Francisco, CA USA, July 5-7 2006. 

155 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

[109] Bokhari Asghar and Poehlman Skip, "Design/CPN analysis reports for EPSS," 

Tech. Rep. CAS-06-10-SP, McMaster University, Computing and Software De

partment, 2006. 

[110] Jensen K., "Distributed data base," http://www.daimi.au.dk/designCPN/exam 

/Examples /Distri butedDataBase /DistributedDataBase. pdf (Accessed 

12/08/2006). 

[111] "Agent construction tools," http://www.paichai.ac.kr/habin/research/agent

dev-tool.htm, (Accessed 10/14/2006). 

[112] "Europeon co-ordination action for agent-based computing," 

http://eprints.agentlink.org/view/type/software.html, (Accessed 10/14/2006). 

[113] Searle John Rogers, Speech Ads: An Essay in the Philosophy of Language, 

Cambridge University Press, London, UK, 1969. 

[114] Chaib-Draa Band Dignum F, "Trends in agent communication language," 

Computational Intelligence, vol. 2, no. 5, pp. 1-14,2002. 

[115] Grimshaw David, "Ontology," http://www.ryerson.ca/dgrimsha/courses 

/cps720_02/courseTopics.html, (Accessed 10/14/2006). 

[116] Cliffe 0, "Ontology support in jade," http://agents 

.cs.bath.ac.uk/cm30174/jade/contentJanguages.shtml, (Accessed 10/14/2006). 

[117] Saldana J A and Shatz Sol M, "UML diagrams to object Petri net models: 

An approach for modelling and analysis," in Proceedings of the International 

Conference on Software Engineering and Knowledge Engineering (SEKE) , pp. 

102-110, July 2000. 

[118] Mortensen K H, "Coloured petri nets: a pragmatic formal method for de

signing and analysing distributed systems," Ph.D. dissertation, University of 

156 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

Aarhus, Denmark, http://www.daimi.au.dk/PB/522/PB-522.ps.gz .• (Accessed 

12/10/2006), 1998. 

[119] Anderson R Wand Ciruli D, "Scaling sao with distributed computing," Dr. 

Dobb's Journal, pp. 22-26, November 2006. 

[120] Architecture WG, "Web services architecture w3c working group note 11 febru

ary 2004," http://www.w3.org/TR/ws-arch/wsa.pdf (Accessed 01/09/2007). 

[121] Arhus University Denmark, 

http://www.daimi.au.dk/CPnetsj. 

"Design/CPN and CPN tools," 

[122] Wang Sand Ariguzo G, "Knowledge management through the development 

of information schema," Information and Management, vol. 41, Issue 4, pp. 

445-456, 2004. 

[123] Bokhari Asghar and Poehlman Skip, "Performance support system: a knowl

edge management tool," in Proceedings of the 26th McMaster World Congress, 

Hamilton, Ontario, Canada, January 19-21, 2005. 

157 



Appendix A 

UMII Design 

A.I Use-case Model 

158 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

Manage User Accounts 

Logon 

} 
Configure 

I ?' , Sys Administrator 
~// I Get Order Stalus' _ " 

/ 
./ 
I 

T>_ 
User 

"b1\ 
71'\~ 
I \ 
I, \ 

/ I \ I \ 
I [ \ 
/ \ 

! I \ / l \ 
i (--J \, 
I \ 
l T \ 

J '~I _ 

j -r ==--_ 
(I Employee 

T Manager 

Corporale Manager 

" «Include» 

Gel InqUiry Slalus 
«Include» 

'-

------------

--'(:'el Customer Info 

--~-------

"\GetlnqU\rIeS Rece\V!!d 

\, 

-- .... --

, I 

/ 
/ 

«llIcludji» 

Get Orders Received 

-~---

~--, 

___ ~ ) ,I 

Gel Sal:s ATounl 

= I 

,I 
Get Profit or L\lss 

~----, -~--... 
--',' 

----

/ 

/ 
;' 

Compare Sales With Budget 

/ 

Figure A.l: Use Case Model 

159 

I 
/ 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

A.1.1 Use-case Specifications 

lficatlOn 

1. Login 

1.1 Brief Description 

ThIs use case describes how a user logs Into the EPSS. 

1.2 Flow of Events 

1.2.1 Basic Flow 

This use case starts when the actor wishes to Login to the System. 

The system requests that the actor entel hIslber name and password 

2 The actor enters his/her name and password 

Version' 2002 
Issue Date' 10/29/06 

The system valIdates the entered name and password and logs the actor into the system. 

4. If the user is a system adnumstrator an additional option 'create user accounts' IS presented. 

5. If this IS the first login by the user tben configurations opllons are presented as delalled In configure 
use case 

6 The system presents an opllons screen accordmg to tbe preferences of a parllcular user If prevIOusly 
configured In tbe 'configure' use case. 

1.2.2 Alternative Flows 

1.2.2.1 Invalid Name/Password 

If m the Basic Flow, the actor enters an invalid name and/or password, the system displays an error 
message The actor can choose to either return to the beginmng of the Basic Flow or cancel the login, at 
which POInt the use case ends. 

1.3 Special Requirements 

None 

1.4 Pre-Conditions 

The user must have a valid user account and pass word. 

1.5 Post-Conditions 

If the use case was successful, the actor IS flOW logged mto the system If not, the system state IS 
unchanged 

1.6 Extension Points 

None 

Figure A.2: Logon Use Case Specifications 

160 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

SODSS VerSIOn. 2002 
Create User Account Use Case S ificatIOn Issue Date: 10129/06 
Accounts.doc 

1. Create User Account 

1.1 Brief Description 

This use case describes how a system admimstrator creates new user accounts or deletes the ones not 
required 

1.2 Flow of Events 

1.2.1 Basic Flow 

1 ThIS use case starts when the actor wishes to create a new user account or delete an existing one 

2. The system requests the actor to speci!) the funCl10n he/she wants to perform If "create a new 
account" is selected, Create New Account sub-flow IS executed. If "delete account" IS selected, Delete 
Account sub-flow is executed. 

I 2 I I Create New Account 

The system requests that the actor enter the name and password of new user 

2 The actor enters the name and password. 

3. The system validates the entered name ,md password creates a new user account. 

I 2 1.2 Delete Account 

For deletmg an eXlsl1ng account, the sy,.tem asks the actor to enter the user id. 

2 The actor enters the user Id and selects delete opl1on. 

3. The system deletes the user account 

1.2.2 Alternative Flows 

1.2.2.1 Invalid Name/Password 

If m the Basic Flow, the actor enters an invaJld name and/or password, the system displays an error 
message. The actor can choose to either return to the beginning of the Basic Flow or cancel the logm, at 
which pomt the use case ends. 

1.3 Special Requirements 

None 

1.4 Pre-Conditions 

The actor must be logged in as adJrnmstratoI. 

1.5 Post-Conditions 

If the use case was successful, the new user account IS created If not, the system state IS unchanged 

1.6 Extension Points 

None 

Page I of I 

Figure A.3: Create User Account Use Case Specifications 

161 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

Version' 2002 
ificalIon Issue Date: 10/29/06 

1. Configure 

1.1 Brief Description 

Tills use case descnbes how a user configures different options to use the system 

1.2 Flow of Events 

1.2.1 Basic Flow 

This use case starts when the actor selects ,m oplIon to configure the System 

The system requests the actor to choose a process relalIng to options he/she wants to configure. 

2 The actor selects a process from a list presented to himlher 

The system presents all the mformalIon avrulable relalIng to the process 10 a list, from which the actor 
can choose Items of mterest. 

4. The system requests the actor to choose a name for the inqutry 

The actor enters the name and chooses the 'save' oplIon 

6. The name IS shown in a list under the process name 

7 The actor IS gIven an oppourtumty to select another process for configuration or to tenrunate the use 
case 

8 If the actor wants to conlInue configuralIon, steps I to 6 are repeated. 

9 If the actor opts to end configurahon, the use case tenrunates 

1.2.2 AlternatIVe Flows 

1.2.2.1 Invalid Name/Password 

If in the Basic Flow, the actor enters an Invalid naroe, the system dISplays an error message The actor can 
choose to either return to the begInmng of 1he Basic Flow or cancel the configuralIon, at which point the 
use case ends 

1.3 Special Requirements 

None. 

1.4 Pre-Conditions 

None. 

1.5 Post-Conditions 

If the use case was successful, the actor preferences are saved for future use of the system. If not, the 
system state IS unchanged 

1.6 Extension Points 

None 

Page I of I 

Figure A.4: Configure Use Case Specifications 

162 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

VerSIOn. 2002 
Issue Date: 10/29/06 

1. Compare Sales with Budget 

1.1 Brief Description 
This use case describes how a user can compare sales dunng a penod with budget for the same penod. 

1.2 Flow of Events 

1.2.1 Basic Flow 

This use case starts when the actor wishes to get a companson of actual sales during a specified time penod 
with those projected in the budget for the same penod 

The system requests that the actor enters start date of the penod. 

2 The actor enters the start date 

3. The system requests that the actor enters the end date of the penod 

4. The actor enters the end date 

The system validates the entered dates and access nghts of the actor and dIsplays a companson of 
actual sales and budgeted sales during the specified period 

1.2.2 Alternative Flows 

1.22.1 Invalid Name/Password 

If 10 the Basic Flow, the actor enters an mvalld date or helshe does not have access nghts to this 
mfonnation, the system dIsplays an error message. The actor can choose to either return to the beginning of 
tbe Basic Flow or cancel the login, at winch pomt the use case ends 

1.3 Special Requirements 
None. 

1.4 Pre-Conditions 
The actor must have access nghts to this infonnatIon (Corporate Manager) 

1.5 Post-Conditions 
If the use case was successful, a companson of actual and budgeted sales over the desIred penod IS 
dIsplayed. If not, the system state IS unchanged. 

1.6 Extension Points 
None. 

Page I of I 

Figure A.5: Compare Sales with Budget Use Case Specifications 

163 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

SOPSS VersIOn. 2002 
Get Customer Info Use Case S ificatlOn Issue Date: 10/29/06 
Customerinfo 

1. Get Customer Info 

1.1 Brief Description 
ThIS use case describes how a user can get the current status of an order prevIOusly confirmed by a 
customer 

1.2 Flow of Events 

1.2.1 BasIc Flow 

This use case starts when the actor WIshes to get some lOformation relating to a customer. 

I. The system requests that the actor enter the customer number. 

2 The actor enters the customer number. 

The system checks the valIdity of customer number and asks the user to select type of lOformatlOn 
deSlfed (DetaIls, Pendmg Inquiries, Pending Orders, CredIt Status or Other). 

4 The actor selects an ophon 

The system dJsplays the desrred lOformation. 

1.2.2 Alternative Flows 

1.2.2.1 Invalid Name/Password 

If in the Basic Flow, the actor enters an lOyalid customer number, the system dIsplays an error message. 
The actor can choose to eIther return to the beginmng of the Basic Flow or cancel the operation, at which 
pomt the use case ends 

1.3 Special Requirements 
None 

1.4 Pre-Conditions 
None 

1.5 Post-Conditions 
If the use case was successful, the desrred informatIOn about a customer IS dIsplayed. If not, the system 
state IS unchanged 

1.6 Extension Points 
None 

Page I of I 

Figure A.6: Get Customer lnformation Use Case Specifications 

164 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

Version: 2002 
clficatlOn Issue Date· 10/29/06 

1. Get Inquiries Received 

1.1 Brief Description 
This use case describes how a user can get a hst of a1lmqumes receIved during a particular tlIne penod. 

1.2 Flow of Events 

1.2.1 Basic F/ow 

This use case starts when the actor wishes to get mfonnation about mqumes received during certain time 
period. 

The system requests that the actor enter the start date 

2 The actor enters the start date 

3. The system requests that the actor enter the end date 

4. The actor enters the end date. 

5 The system checks the vahdIty of date:; and dIsplays a hst of a1lmqumes receIved dunng the penod 
covered by the start date and the end date 

1.2.2 AlternatIVe Flows 

1.2.2.1 Invalid Name/Password 

If in the Basic Flow, the actor enters an inyalid date. the system dIsplays an error message. The actor can 
choose to eIther return to the begmrung of Ihe Basic Flow or cancel the operatIon, at whIch pomt the use 
case ends 

1.3 Special Requirements 
None 

1.4 Pre-Conditions 
None. 

1.5 Post-Conditions 
If the use case was successful. a hst of all inquiries received dunng the tIme period specified IS dIsplayed 
If not, the system state is unchanged 

1.6 Extension Points 
None. 

Page 1 of 1 

Figure A.7: Get Inqueries Received Use Case Specifications 

165 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

Version' 2002 
clfication Issue Date: 10129/06 

1. Get Inquiry Status 

1.1 Brief Description 

Tlus use case descnbes how a user can get the current status of an mquiry prevIOusly submitted by a 
cllstomer 

1.2 Flow of Events 

1.2. 1 Basic Flow 

This use case starts when the actor Wishes to get the current status of an inqurry 

I. The system requests that the actor enter the inqurry number 

2. The actor enters the mqmry number. 

The system checks the validity of lOqutry number and dIsplays the status If the number is valId. 

1.2.2 Alternative Flows 

1.2.2.1 Invalid Name/Password 

IflO the Basic Flow, the actor enters an imalid inquiry number, the system displays an error message. The 
actor can choose to either return to the begmnmg of tbe Basic Flow or cancel the operation, at wluch point 
the use case ends. 

1.3 Special Requirements 

None 

1.4 Pre-Conditions 

None 

1.5 Post-Conditions 

If the use case was successful, the current status of the mqurry IS dIsplayed If not, the system state IS 
unchanged 

1.6 Extension Points 

None 

Page I of I 

Figure A.8: Get Inqueries Status Use Case Specifications 

166 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

SODSS VersIOn' 2002 
Get Orders Received Use Case S clficaUon Issue Date· 10129/06 
OrdersReceived 

1. Get Orders Received 

1.1 Brief Description 

This use case descnbes how a user can get a report on all orders receIved dunng a specified penod. 

1.2 Flow of Events 

1.2.1 Basic Flow 

Tins use case starts when the actor WIshes to get the details of all orders receIved dunng a gIven tune 
period 

I. The system requests that the actor enter the start date 

2. The actor enters the start date 

3. The system requests the actor to enter Ihe end date 

4. The actor enters the end date 

5. The system dISplays a hst of all orders received during the penod covered by the start and end dates. 

1.2.2 Alternative Flows 

1.2.2.1 Invalid Name/Password 

If in the Basic Flow, the actor enters an imalld date, tbe system displays an error message. The actor can 
choose to either return to the begInrnng of the Basic Flow or cancel the operation. at whICh point the use 
case ends 

1.3 Special Requirements 

None. 

1.4 Pre-Conditions 

None. 

1.5 Post-Conditions 

If the use case was successful, a hst of all orders receIved 10 the deSIred Ume period is displayed. If not, the 
system state IS unchanged. 

1.6 Extension Points 
None 

Page I of I 

Figure A.9: Get Orders Received Use Case Specifications 

167 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

SOPSS VersIOn: 2002 
Get Order Status Use Case S cification Issue Date· 10129/06 
OrderStatus 

1. Get Order Status 

1.1 Brief Description 

This use case describes how a user can get the current status of an order previously confirmed by a 
customer. 

1.2 Flow of Events 

1.2.1 Basic Flow 

ThIs use case starts when the actor wishes to get the current status of an order. 

The system requests that the actor enter the order number 

2 The actor enters the order number 

The system checks the validity of order number and displays the status If the number is valid 

1.2.2 Alternative Flows 

1.2.2.1 Invalid Name/Password 

If in the Basic Flow, the actor enters an Imalid order number, the system displays an error message The 
actor can choose to either return to the begmmng of the Basic Flow or cancel the operabon, at which pomt 
the use case ends 

1.3 Special Requirements 

None 

1.4 Pre-Conditions 

None 

1.5 Post-Conditions 

If the use case was successful, the current status of the order is displayed. If not, the system state IS 
unchanged 

1.6 Extension Points 

None. 

Page I of I 

Figure A.lO: Get Orders Status Use Case Specifications 

168 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

sOPSS Version: 2002 
Get Sales Amount Use Case S ecificatIOn Issue Date: 10129106 
Sales Amount 

1. Get Sales Amount 

1.1 Brief Description 
This use case describes how a user can get total sales amount 10 a specified ttrne period 

1.2 Flow of Events 

1.2.1 Basic Flow 

Tins use case starts when the actor WIshes to get total sales figures for a time period. 

The system requests that the actor enters the start date for the period 

2 The actor enters the start date. 

3 The system requests that the actor enters the end date for the period. 

4 The actor enters the end date. 

5 The system validates the entered dates aod the access rights of the actor and illsplays the total sales 
amount for the desired penod 

1.2.2 Alternative Flows 

1.22.1 Invalid Name/Password 

If m the Basic Flow, the actor enters an invalid date or he/she IS does not have access rights to tins 
information, the system illsplays an error message The actor can choose to either return to the begmnmg of 
the Basic Flow or cancel the logm, at winch pomt the use case ends. 

1.3 Special Requirements 
None. 

1.4 Pre-Conditions 
The actor must have access nghts to tins mformatIOn (Manager level) 

1.5 Post-Conditions 
If the use case was successful, the actor gets the total sales figures for the tIme penod demed by Inm. If 
not, the system state IS unchanged. 

1.6 Extension Points 
None 

Page 1 of I 

Figure A.ll: Get Sales Amount Use Case Specifications 

169 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

A.2 Class Diagrams 

LogonForm 
(from Use Case View) 

«Agent» 
UA 

'(from Use Case VL ) 

I 

«Agent» : 
CAL 

l(ffom~_~CaaeVi.) , 

I 

«Agent» 
ConflgMgr 

(frornUseCaMVl) 

«Agent» 
CAR 

!(fromUseC.MVL) , f------
I 

<<Agent» 
Director 

(from Uae Case VL ) 

«Agent» 
Requesr Supervisor 

(from Use Case View) 

«Agent» 
SRA 

(from Use Case VL ) 

Figure A.12: Logical Model of the EPSS 

170 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

A.3 Interaction Diagrams 

User 

I 

I 

L 

Logon Form 

Logon Form 

1: Logon 

. 2: Enter user ID and Passwor 

3: Get ID and password 

4: I_ogon User 

Conflg Mgr 

Con/ig Mgr 

I 

~ 
I 

Validate( ) 

UserAgent (UA) 

UserAgent (UAI 

~ 
I 

I 

I 
. ___ J 

6: Show Options 

Figure A.13: Logon Use Case Sequence Diagram 

171 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

: User 

1: Logon 
3: Get ID and password 

2: Enter user ID and Password 

5: Validate( ) 

Iconfig~ . 
1 ... M9L ... 
I 

4: L:.ngon User 

13: Show Options 
UserAgent' 
, __ (UA) __ 

Figure A.14: Logon Use Case Collaboration Diagram 

172 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

: Sys ... OptIons Form ConfigMgr 

: Sys Administrator 

~-------

i Options Form l ConfigMgr 

2: Create New Account 1 

3: Enter User 10 and Password 

T 4: User Id and Password 

5: Create User 

1 

I 

1 
1 

6: Validate 

7: Create Account 

8: Account cr~ated 

Figure A.15: Create User Account Use Case Sequence Diagram 

173 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

: Sys Administrator 

1: User Accounts 
2: Create New Ac:count 

4: User Id and Password 

3: Enter User ID and Password 

Options 
Form 

8: Account Created 5: Oreate User 
6: Validate 

7: Create Account 

ConfigM 
_--9L 

Figure A.16: Create User Account Use Case Collaboration Diagram 

174 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

: Sys ... OpllOns Form: UA 

: Sys Administrator 
IOPtionSF()~m ~. 
1 UA 

1 .__1~_~etUs~~ACS_( _) _ _ _ 1 

2: RmUserAc() .T 

31 G'ltUserID( ) 

4: SetUserlD( ) 

T 
5: RmUserAc() 

ConfigMgr 

Config Mgr 

I 

I 

I 

I 

I 

J 
6: Validate( ) 

I. 8: AccountRemoved( ) 

Figure A.17: Remove User Use Case Sequence Diagram 

175 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

1: User Accounts 
2: Delete an Account 

4: User Id and Password 

3: Enter User ID and Password 
: Sys Administrator 

6: Validate 

Options Form 

7: De'lete Account 
5: Delete User 

8: Account Deleted 

C9.nfigMgr i 

Figure A.18: Remove User Use Case Collaboration Diagram 

176 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

User( UAgent UA 

User(u) . User 

iic--~..u 
'r W 
I r 

I 

I 

I I 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

15- Done j 

I 

I 

I 

4 GetCSB 

LAgent : CAL RemAqent CAR RSAgent Request Su Director Director SRegAgent SRA 

LAgent·CAL 

~2. Spawn CAL 

b CAL Spawned 

I 5 SpawnCAR 

I 
6 CARSpawned 

I'- I 
l I ,1 7. GetCompansonSEi 

I 

I 

I 

I 

I 

I. t 2: CSBtoCAL 

i, 
I 

14 DlsplayCSB 

16: DeleteCAL 

8· FmdURlofCSB 

9 URlofCSB 

13· DeleteCAR 

: Director' Director 

I 

I 

I -r-
I 

I 

I 

I 

I 

I 

10 GlveCSB 

11 CSBtoCAR 

I 
1 

T 

SRegAoent SRA 

Figure A.19: Compare Sales with Buget Use Case Sequence Diagram 

177 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

User(u) : User 

.. 13: DeleteCAR 

IRemAgent: 
CAR I .. 

10: GlveCSB 

1: CSBtoqAR 

SRegAgent. 
'SflA . 

8: FindURlofCSB 

9: URlofCSB 

1 : CompareSBSelected 

15: Done 

12: CSBtoCAL 

. __ --~~~D~t~ i 

3: CAL Spawned 

: Director' 
,~ 

2: Spawn CAL 

I 

5: SpawnCAR 6: CARSpawned 

4: GetCSB 

14. Display 

7: GetComparisonSB 

RSAgent : Request 
Supervisor LAgent: 

CAL 

16: DeleteC 

Figure A.20: Compare Sales with Buget Use Case Collaboration Diagram 

178 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

User .. UAgent. UA LAgent: CAL RemAoent : CAR RSAgent: Request Su ... Director. Director 

User(u) User ~ 

::~"~~ 
LAgent: CAL 

I RSApe"!: Reauest 
~ 

I 

~2 Spa~CAL : 

I Director Director 

I 
---- ----- -- ----1--

~ CAL Spawned 

---'I 

l 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

15' Done j 

I 

I 

I 

4: GetCustomerlnfo 

1 7 GetCustomertnfo 

I 

I 

I 

I 

I 

I. 12: CltoCAL 

14 Dlspla;C1 

16. DeleteCAL 

5: SpawnCAR 

6 CARSpa~ed 

8' FmdURlofCI 

9 URlofCI 

13 DeleteCAR 

I 

I 

I 
I 

I 

I 

I 10 GlveCustomerlnfo 

11 CltoCAR 

l 

1 

1 

I 

i 
I 

T 

Figure A.21: Get Customer Info Use Case Sequence Diagram 

179 

SRegAgent SRA 

SRegAgent SRA 

T 
I 

I 

I 

I 

I 

I 

I 

I 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

1: GetCustomerlnfo 

f 

User(u) : User 

Director: 
2: Spawn CAL 

Djr~ctol 

13: DeleteCAR 
15: Done 

, 

I . 

: R~~Agent ~ : 
CAR . 

6: CARSpawned 

1: CltoCAR 8: FindURlofCI 12: CltoCAL 

" 5: Spawn<;:AR 

9: URlofCI 

10: GiveCustomerlnfo 

7: GetCustomerlnfo 

4: GetCustomerlnfo 

14: DisplayCl 
16: DeleteCAL 

:SRegAgent 
I :SRA l---

RSAgent : IRequest 
Supervisor 

LAgent: 
CAL 

Figure A.22: Get Customer Info Use Case Collaboration Diagram 

180 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

User UAgent: UA lAgent CAL RemAgent . CAR RSAgent Request Su Director: Director 

User(u) : User RSApe"' : Reauest 
~ 

r o;;9CtQ~eCtOr 
I 

"f"-'-~r 
LAgent'CAl 

~2 Spawn CAL 

T 

15 Done 

GetlnqunesRecelved I 
I 

I 
I 

b. CAL Spawned 

5' SpawnCAR 

6: CARSpawned 

V· GetlnqunesRecelvE~ I 

I 

I 

I 

I 

I 

I. 12 IRtoCAl 

14 D'splaylR 

16 DeleteGAl 

8 F,ndURloflR 

9 URloflR 

13' DeleteGAR 

10. G,YelRlnfo 

11 IRtoCAR 

L 

1 

J 

SRegAgent : SRA 

SRegAgent: SRA 

T 
I 

I 

I 

I 

I 

I 

I 

I 

Figure A.23: Get Enquries Received Use Case Sequence Diagram 

181 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

1: Inqueries Received Selected 
r . - -
! UAgent: 
I UA L .. 

3: CAL Spawned 
User(u) : User 

13: DeleteCAR 2: Spawn CAL 

Director: 
Director. J 4: Getlnqur 

10: f3ivelRlnfo ' 8: FindURloflR 
1:~: IRtoCAL 

I 

11: IRtoCAR 

iSRegAgent 
. ..:.SRA 

9: URloflR 7: Gel:lnquriesReceived 

RSAgent : Request 
.SURf,rvisQf 

6: CARSpawned 

5: SpawnCAR 

LAgent: 
C.AL 

Figure A.24: Get Enquries Received Use Case Collaboration Diagram 

182 

14: Di! 
16: Del 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

User 

User(u) . User 

UAgent UA 

15 Done 

r ,-
! 

I 
I, 

4: GetlS 

LAgent CAL RemAqenl . CAR RSAgent . Request Su Director - Director 

LAgent:CAL 

1 7: GetlnqUiryStatus 

1 

I 

I 

I. t2 IStoCAl 

14 DlsplaylS 

16 DeleteCAL 

RSApent . Request 

~ 

~2' Spawn CAL 

b CAL Spawned 

5. SpawnCAR 

6 CARSpawned 

S' F,ndURloflS 

9 URloflS 

13 DeleteCAR 

... 1 

! 

I 10 GlvelnqUiryStatus 

11 IStoCAR 

Figure A.25: Get Enquries Status Use Case Sequence Diagram 

183 

SRegAgent : SRA 

SRegAgen! SRA 

T 

I 

I 

I 

I 

I 

I 

I 

I 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

User(u) . User 

,13: DeleteCAR 

I 

rR~~Age~~ 
,-"CAR 

1: InqueryStatusSelected 

15: Done 

r UAg~;;t ~ 
-~--

3: CAL Spawned, 

2:' Spawn CAL 

Director: I 4: GeliS 
_DJrectQt ! I '! 

i 

6: CARSpawned 

, ,8: FlndURtoflS 
1 0: Givel~qUlryStatus 12: IStoCAl 

11: IStoCAR I 

SRegAgent, 
:SRA 

9: URloflS 

7: GellnqlJlryStatus 

RSAgent : Request 
__ ,J)uJteN!l>Qf 

5: SpawnCAR 

LAgent: 
_kAl 

14: DisplaylS 
16: DeleteCAl 

Figure A.26: Get Inqueries Status Use Case Collaboration Diagram 

L84 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

User ... UAgent· UA 

User(ul : User 

,i orderStatusSelect~ 
I U 
I [ 

.1_ 

'[ 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
15' Done I 

I 

I 

I 

4 GetOS 

LAgent CAL RemAgent : CAR RSAgent Request Su.. Director Director SRegAgent SRA 

1

'--RSAgent ReQUest I o;eckzr . Director SRegAgent : SRA 
~ 

LAgent CAL I RemA,lru:!' : CAR 

~ ~2' Spawn CAL 

I 

I 

l 
I 

~. 7 GetOrderStatus 

, I. 12: OStoCAL 

14 DlsplayOS 

16: DeleteGAL 

~ CAL Spawned 

I 5 SpawnCAR 

j 6 CARSpawned 

B' F,ndURlofODR 

9. URlofODR 

13 DeleteGAR 

--j---

.J 

'I 10 G,veOrderStatus 

11' OStoCAR 

1 

I 

T 
! 

Figure A.27: Get Order Status Use Case Sequence Diagram 

Jl85 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

1: OrderStatu:,Selected 

User(u) : User 

13: DeleteCAR 

I RemAgent : ' 
_ CAR ' 

11: OStoCAR 
8: FlndURlofODR 

I, 9: URlofODR 10: qlveOrderStatus 

r SRegAg~nt : 
:SRA 

3: CAL Spawned ' 

UAgent: 
_!JA 

2: Spawn CAL , 

15: Done 

12: OStc,cAL 

Director: 
_ DirectQf _ 

4: GetOS 

6. CARSpawned 

5: SpawnCAR 

7: GetOrderStatus 

RSAgent : Request 
SupelYis2L 

14: DlsplayOS 
16 DeleteCAL 

LAgent. 
CAL 

Figure A.28: Get Order Status Use Case Collaboration Diagram 

186 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

User. UAgent UA LAgent. CAL RemA(lent . CAR RSAgent . Request Su .. Director Director 

User(u) User 

1:: ~rdersRecelvedsel~ 
~. W 

LAgant CAL 

I 

.1 

I 4 GetOrdRecelved 

15 Done 

I 

I 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 

1 Lr 7 GetOrdRecelved 

12 OrRtoCAL 

14 DlsplayOrR 

16 DeleteCAL 

RSAgen\ : Request 
~ 

Y2. Spawn CAL 

b 8Al Spawned 

-[ 

I 

I 
~). SpawnCAR 

I,: CARSpewned 

8 FtndURlofOrdrecelved __ 1 

9 URlofOrderRecelved: 
I. 

I 10 G,veOrdRecelved 

I 
, 11. OrdRecelvedtoCAR 

I 

13 DeleteCAR 

Figure A.29: Get Orders Received Use Case Sequence Diagram 

187 

SRegAgent SRA 

SRegAgent : SRA 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

1: OrdersReceivedSelected 

User(u) : User 

\ 13: DeleteCAR 

15:1)011e 

8 FlndURlofOrdreceived 12: OrRtoCAI_ 

1 0; GI~e9rdReCeiVed 

11: OrdRed,eivedtoCAR , 7: GetOrciRoceived 
9: URlofOrderReceived 

I 
SRegAgent ' 
. ;_SFlA..-_ RSAgent : R,9quest 

...Supeeiilior 

3 CAL Spawned 

Director: 
Director 

UAgent: 
_ UA 

4: GetOrdReceived 

! I 

6: CARS pawned 

5: Spav.-nCAR 

I 
- " 

LAgent: 
.CAL 

14: DisplayOrR 
16: DeleteCAL 

Figure A.30: Get Orders Received Use Case Collaboration Diagram 

188 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

User 

User(u) . User 

UAgent UA 

I 

T 

I 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
15 Done j 

I 
I 
I 

4 GetPLS 

LAgent.CAL RemAgent . CAR RSAgent . Request Suo D,rector : Director 

LAgent:CAl 

r 7 GetProfitLoss 

12' PLStoCAL 

14' DlsplayPLS 

16. DeleteCAL 

RSAgent . Request 

~ 

1~2' Spawn CAL 

6: CAL Spawned 

5 SpawnCAR 

6 CAASpawned 

8. FlndUAtofPLS 

9. UAlofPLS 

: 

I 10. G,vePLS 

I 11 PLStoCAA 

1 3 DeleteCAA 

", 

I 
1. 

I 
l 

Figure A.3l: Get Profit Loss Use Case Sequence Diagram 

189 

SAegAgent : SAA 

SAeaAoent: SAA 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

User(u) : User 

,13: DeleteCAR 

\" : 
I RemAgent: ! 

I CAR I --- -

1: ProfitLossSel ected 

15: Done 

,10: GlvePLS 8: FlndURlofPLS 12 PLStoCAL 

7: GetProfitLoss 

11: PLStoC~R 9: URlofPLS 

ISRegAgent 
! :SRA 

i RSAgent : Request 
I .5.upIID'!llJ)T 

_ I UAgent: 

l,.~~- ___ 

3: CAL Spawned. 

2. Spawn CAL 
-~-~ ---; 

Director: 4' GetPLS 
QirE!l;\QL 

6: CARSpawned' 

5: SpawnCAR 

i LAgent: 
, _CPL 

14: DlsplayPLS 
16: DeleteCAL 

Figure A.32: Get Profit Loss Use Case Collaboration Diagram 

J.90 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

User ... 

User(u) : User 

UAgent. UA 

I' 

I 
I 

I 
I 
I 

I 

I 
I 

I 
1 

I 

1 

I 
15 Done I 

I 
1 

1 

I 

4: GetSA 

LAgent: CAL RemAnent· CAR RSAgent: Request Suo Director; Director 

I RSAg8nl: Request 
r- - - ---
I DIrector: Director 

LAgent:CAL 

o 
I 

I 
I 

11 Spawn CAL 

b: GAL Spawned 

5SpawnGAR 

6 CARSpawned 

7 GetSalesAmount .1 

8 FlndURlofSA 

9. URlofSA 

12. SAtoCAL 

13. DeleteGAR 

14: DlsplaySA 

16: DeleteGAl 

~ I 

I 

I 

r 

I 
\ 10: GlVeSalesAmount 

II:SAtoCAR 

l. 

I 
L 

Figure A.33: Get Sales Amount Use Case Sequence Diagram 

191 

SRegAgent SRA 

SReoAgent: SRA 



PhD Thesis - A. Bokhari McMaster - Computing and Software 

1: SalesAmountSelected 

! UAgent: . -1 _.UA_ 

User(u) : User 
3: CAL Spawned 

15. Done 
13: DeleteCAR 

2: Spawn CAL 

\R~mAgerrt: 
l CAR . 

'I -Di~~ctor: 
I DireClOL 

6: CARSpawned 

10: GiveSalesAmount 1 ~~: SAtoCAL 
, 8: FlndURlofSA 

11: SAtoCAl=! 
9: URlofSA 

I SRegAgent . 
! :SRA 

7: GetSale,sAmount 

RSAgem : Hequest 
. Su.l2IIDis9r. 

5.SpaWnCAR 

4: GetSA 

14· DisplaySA 

16: DeleteCAL 

Figure A.34: Get Sales Amount Use Case Collaboration Diagram 

192 


