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"ﬂhis thesis investigates 5due'hspects.of the theory of'convolution'

and Fourler transforms on q-adlc and mu1t1p11cat1ve abellan groups

—~

'_well -as the1r appllcatlons for solv1ng varlous 51gna1 proce551ng and -

' system problems.

A brlef introduction to the 1mportance and ba51c theory of con-

_volutzon and Fourier transforms on. locally compact abellan groups is g1ven,
r . ]
followed by four major sections' ’ I S

~

-

tl.; Subsequent to a comprehen51ve 1ntroduct10n of.general1zeg,Walsh
'functlons WalshtFourler analyszs and harmonlc dlfferentlatlon on q—ad1c
‘groups, a presentatlon is made of the theory of q-eolc translation invari-
ant’ 11neat systems from the\p01nt of view of both input- Output and state--
"space descrlptlon. "This. is followed by an analys1s of the structure of
,Nalsh~transforms, so that it becomes p0551b1e to pOlnt to (and cr1t1ca¢}y
brev1ew) those engmneerlng problems for whlch Walsh functions are su1ted to. -

br1ng an optlmal solutlon, as well as those problems for whlch they may

bring suboptimal but eff1c1ent solutlons. . }" . “

. . L

2. Slgnal process;ng in spaces of . f1n1te fleld-valued"functlons
on f1n1te abellan groups is 1nvestlgated emphaszs belng placed on the
study of those linear operators whose elgenfunctlons are the group char-

ecters. A harmonlc d1fferent1a1 oalculus 1n flnlte flelds is. 1ntroduced

-
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t . 3, A study of the concept of frequency is undertaken with the
: deectlve of general121ng it to functlon spaces other than that of com-

v

plex-valued fvnctlons on the real 11ne. A generallzed concept of frequency }'
\&s proposed © An. ana1y51s of the relatlonshlp between the concepts of

E sequency and frequency proves unfbunded the clalms ‘that the former is a.
generallzatlon of the latter. ‘j_ ’ R - _"" N

Y

. h 4, The problem of analy21ng 51gnals formed of 11near combinations

/ 1

:of components haV1ng the same shaﬂe and locatlon but dlfferent ampldtude

~and wldths parameters 15 1nvest1gated w1th the obJectlve of prOV1d1ng a

-
N

,techﬂique for its numerlcal solutlon. It 1s shown that th15 problem can

“be modelled as a convolut1on transform on a mu1t1p11cat1ve abelian’ group.-

lA brlef 1ntroduct10n to the theory of Fourler transforms on multlpllcatlve
groups is presented followed by the deSCTlpthn of an . effic1ent algorlthm )
for performlng the analy51s. The problems perta1n1ng to the practlcal
”{1mplementat10n of thls algorlthm are dlscussed both in general terms and

:;.w1th reference tp the‘analyszs of multl-component exponentlalxdecays.

~ ) . v
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_ INTRODUCTION

IR . ) . . ! 9

1.1  AIM AND MOTIVATION -
. T |
. \——__ ]

\\\,- ‘This dlssertatlon doncerns some aspects of the theory and

appllcatlons of 11near transformatlons on spaces of funct1ons hav1ng a

) locally compact abelian group - G ‘as domaln and a f1e1d K as co- domaln.

‘ K may be either the f1e1d of complex numbers ¢ Teal numbers R, or a .,

. by two factors

f1n1te Ga101s f1e1d GF(q ) ' The‘ch01ce_of research.toplc‘was motiratedf

1) the need for 501V1ng certain problems essent1a1 for the

L

'extractlon of 1nformatlon from 51gnals encountered in varrous experl-

R - ' .
mental 51tuat1on5' in the1r turn, these problems can be grouped in tw;\&\fﬁﬁﬁ~=_;_m

’

categorles - (a) separat10n of 51gnals from noise (sen51t1v1ty enhance-

‘ ment], and (b) separat1on of concurrent 51gnals (resolutlon enhancement)

(11) an 1nte11ectual curiosity with respect to understandlng a,
varlety of signal proce551ng technlques and ‘the de51re of extractlng

the common, essent1a1 mathematlcal structure layrng at. thelr foundatlon,

S0 that these techn1ques may be optlmally applled to solv1ng englneerlng

problems. -

[ . ' 3 ) . . R

ThlS 1ntroductory chapter serves a twofold purpose, in the flrst‘_

' place, it attempts to present, 1n broad llnes, the general mathematlcal

framework within whlch the 1nvest1gat10n has been conducted and,



B . A B : . . . . ,;
. P ‘ . |
. . . i
g - : o . - i

) -~ ! ‘ . ' . i

the second place, 1t0attempts to eluc1date the personal mot1vat1on behlnd

thls study whlch, in turn explalns the 11ne of thought adopted ~

The plvotal 1dea of the d1ssertat1on is that of convolutlon and -

- ° 0

Fourler—type transforms whlch reallze a mapping between functlon algebras -

'w1th convolutlon product and functlon algebras with p01ntw1se multlpllc-

-;‘atlon product. It would be dlfficult to underestlmate the 1mportance of

‘the concept of convolutlon, espec1a11y when 1t is regarded from an eng-.
.1neer1ng perspectlve, 1 e. from the p01nt of view of obtaln1ng 51mple,
"mathematlcally manageable models of real world phenomena and relatlon—
sh1ps Mlkus1nsk1 [l] con51dered this concept fundamental enough to lay
.1t at the foundatlon of operatlonal calculus. Its preaemlnence is due.”
to the fact that 1t appears ‘as a natural’consequence of the two most

ba51c restrlctlons assumed in bu11d1ng such 51mp1e modeIS' 11near1ty and

-

translation invariance. = - . o ; .

L1near1ty 1mp11es usually a functlon space w1th a fleld (or at

”most a r1ngl_as_co_doma;nfandrthe+restr1ction”to only those operators

v

thch are linear on thls functlon space. In 1ts turn, translatlon in-
‘variance 1mp11es a functlon domaln whlch is a locally compact abelian
(LCA) group [2] A group is an ordered pa1r (G, +), where G is'a set .
of. elements wh1ch is closed under the single’ valued blnary operatlon +,

: whlch is assoczatlve, and relatlye to which G contalns a;neutral ele—l
nent_ eG;‘and.withheach element x another element x”“&alled its
inverse) such that their conposition'produces therheutral element [3,4]f

If the law of comp051t10n is commutatlve the group is sald to be ."

abelian., The c1a551c ‘example of such & group is the group of real
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numbers under usual arlthmetlc addition - (+) Classical/analysis,

system_theory and151gna1 proce551ng are almost exclusively concerned“'

- with the'space ¢[R] of complex-valued functlons on the group of addl—

tive real numbers..: Thls the51s' concern 1185, partly, somewhere else,

gfnwlth spaces of funct1ons other than. ¢[R] o o _ L o ?l

o 4,_. ; N
The study of spaces other than ¢[R] is- warranted, in the first _'} .

place, by ‘the fact that there are real llfe s1gnals and systems whlth

are naturally modeled as functions and respectlvely, relatrpns between

?functlons on abellan groups other than R, taklng values in fields other

than ¢. 'In‘the_second place,_the structure 1mp11ed-by_the axiomatlza-

tion of an abelian'group'asldomain permlts Very_elegant‘mathematical |

treatments;' In addition, this axionatization has the advantage, from

'an englneerlng p01nt of view, of leadlng to- faster and more efflclent use

of dlgltal technlques and hardware whlch due to a cont1nuous 1ncrease ”

1n-speed and decrease in cost size and power consumptlon have come to

. a Hllbert space,’ because, as empha51zed by Lorch [5], this is, ofiall

play a maJor role 1n smgnal proce551ng The other maJor restrlctlon
(motlvated by the same kind of con51derations) is that the function oo

B sPace be a. llnear Banach space which, wherever possibie, will be also

\
spaces, the' one that presents the greatest order11ness and greatest
plenitude of’mathematlcal-results. In the. sequel an attempt ‘is made at « .
1ntroduc1ng some of the basic eoncepts of harmonlc analy51s thCh will ‘ S

be later employed throughout the dlssertatlon. | : .
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1.2 MATHEMATICAL BACKGROUND: CONVOLUTION AND FOURIER TRANSFORMS |

Slnce this d1ssertat10n adopts an englneerlng polnt of v1ew, P ﬂ}*

being concerned Hlth the d1g1ta1 applrcatlon of transform technlques,

1t w111 be mostly . 1nterested for ObVlOuS reasons, in flnlte groups

whose order, #(G], will be denoted by N. Nevertheless whepe¥er warr-

anted the mathematical treatment w111 be generallzed to locally compact

abellan groups since local compactness is the natural exten51on of

'f1n1teness {6]. The idea behlnd u51ng LCA groups is that it is p0551b1e

\

o construct on them a Haar measure [7] ST ~with the property of being |

. translatlon 1nvar1ant in the sense that u(x+V) u(V) for any X cG

and any Borel set V in G. ThlS measure is unaque, up to a multlp;l- -

--cat1ve positive constant, w1th the;customary normallzatlon that
Coue). = 1 1f G is compact, whlle, 1f G 'is dlscrete, every 51ng1e

_element set in. G 1§ a551gned a unlt measure Wlth thlS in mind,

functlon integration on G w111 always be con51dered w1th respect to

" the Haar measureirand-waii—h

oted by J-f(x) dx; if the d1s5y551on

is limited to discrete groups, the symbol- EGf(x] - will be‘used ins

N —

Consider a function. space K[G], the right and left translation- e

. e
e

Operators Ty and Ty are def1ne?ffi;/”’;fff,;Q«/’f" S
" Ty{f(x) } = f(x+yf)/ : ' | '

™

L ' . yeG, YfeX@l. S ¢ 0535 B

Ty{f(x)} - f(y+x )

Pa
[}

The set of all these operators {Ty}‘ 'forms a group T with respect tol"
e

.‘multlpllcatlve comp051t10n of operators; the neutral element belng T
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The set of all rlght translatlon operators forms the right, translatzon U
'osubgroup T,. The set of all left translatlon operators together w1th

the neutral translatlon form the left translatlon subset T T, whloh has
A,the 1nterest1ng oroperty that’ each element is 1t5 ‘own’ 1nverse Ino

other . 1mportant theorems concern normed 11near spaces of K-valued func- |
" tions on 6 (such: spaces will be denoted as . LP[G])

(a) 1f G is LCA the norm of LP[G], where 1£p£w is trans—'

latlon 1nvar1ant, and ;e . , < . :

(b) the mapplng y -+ Ty{f} 1s a unlformly contlnuous mapplng of

G 1nto any LP[G] . ;_ : j_ | .“- i ’

In this context, the'coﬁcept of convolution can be’viewed as a -
genera11zat10n of the process of taklng welghted 11near comblnatlons of o o
a functlon‘s translates. Formally, generallzed convolutlon 15 the

I - . mapping * 1 'K[G]*K[G] ~+ K[G]_deflned by

e

cf*g)(x) fT fEmdy. . a2

(We shall attempt to streamllne the notation whenever poss1b1e, for

i stance, we write T£ instead of (T{f})(x), or f*g 1nstead of . .o ,:' :

(£*g) (x), etc. ) The olutlon is comnmtatlve, associa-

tive and d1str1but1ve Wlth respect to K-addltlon in L
S Vo 1. S - R

f*g = g*f, v f, g £ L7[G}; , , - 7. (1.2.3a)

f*(ag) = (af)*g = a(f*g), V £, g E‘. Ll[G], ‘Y a !.':'K;- (1.2.3b) "

fr(g+h) = £rg + £*h, V £, g, he L'[6); | (1.2.3c)



v

.:'has a unit_denoted Gtx),.‘,~’

ERL L TS ST VIR RN TTAPIRE D ERE

s . } . -

L 2
\ £*(g*h) = (f?g)*h, v £, g-lie L e1; B (1.2.3d)

such that L;[G] 15 a commutatlve Banach algebra if mltiplication is

defined by:; convolutlon product. Moreover, 1f G 1s dlscrete, L [G]

. N . 1, . o
. s =f, ¥YEeLT[G]. - o - S (1.2.8)

For nondiscrete _G;]the.role‘of unit'is played by the‘Direc distribution
{8,9,10]." | | - N
_Convolution Banach algebras owe thelr role in srgnal proce551ng
and system theory to the fact thatjany 11near translatron 1nvar1ant
transformatlon can be represented by a’ convolutlon product [11,12].

: Nevertheless, it 1s\xhget1mes more advantageouo to operate in p01ntw1se

\‘multlpllcatlon algebras, -and it is w1th respect to such 51tuatlons that

]

P .- S i

: characters and Fourier transforms play a determlnant role. It 15, of’

‘course, p0551b1e to dlscuss classical Fourler analy51s (on ¢[R] or

¢[T], where T, the c1rc1e group, is- the quot1ent group of real numbers

. modulo. the. group of integers Z) wlthout ever mentlonlng the word group

- character, but thelr 1ntroduct10n 111um1nates certaln algebralc, and

.hence, fundamental, structural features of Four;er trensform theory._

.o

C

leen the functlon space [G], a character of a LCA group G is

N

ﬁdeflned as a homomorphlsm into the group of unit absolute ‘value complex

\ -
numhers.under the: operation of.multlpllcatlon. : e
x| =1, ¥Yxe6 R -
: . " . . ._-,"A‘/ . .
&X (xty) = X fx) - X, (0)s ¥'x, ¥y G, . ST (1.2.5)
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;” * The set of a11 contlnuous characters of G form the dual group of G
| denoted by (F @), w1th the 1mportant property [13] that every LCA gr Ip
" is (up to 1somorphlsm) the dual-: group of 1ts dual group. Moreovex; if 'G
is dlscrete,‘ T is compact and v1ce-versa 1f G 'is f1n1te, Iis also
"flnlte and 1somorph1c to it.’ Because of thlS duallty,.lt is nctatioaally
radvantageous te denote a character by x(v x) where X e G and ;e .

Some essentlal features of the characters follow ea511y from their def-

»

-1n1t10n

et . '

-

x(v x +x2) = x(v x1) xO),xz) x(vleuz,x) =, x(vl,x) vaz,x), (1 2. 6a)

-

X(vseG)'= X(ef.X) =1, iV X € G,l Vv er; - o ‘ .(i.Z.Gb)
: . S S ST
XO7,X) = x(,x7) = 1/x(v,x). =')((v,'x), D (r.2.6c)

'where '(*) denotes’ complex conjugatlon. If mG_nisdcempact; the integral
Lo bfa non—constant character 1s equal to zero. S .
By ' T Two theorems [2] ef’ceafeguence or this dlssenatlon refer to the' :

" case when G "’5? a set of groups {G }, i.e., when the set - G

o i cartesian product of the’ sets G, and the group operation is per4
) I
,,,/f’f//i}ii’i:;:ed coord1natew1se. In short, the theorems state that (1) 1f G is
" the dlrect sun of {G } 1, and {P } is the set of dual groups, the dual h

group of G is the dlrect sum of {P it

. . ‘ e . - ' . O i
;G.= G 9:"“9 Gn' +, r _ 1‘.1 @ - 7] Pn L (1.2.7)uu o

and (2) if ¢ is the complete d1rect sum of a’ famlly of compact abellan_

groups {G } then T.is the direct sum of the correspond1ng dual "groups
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I'i: and
Xx) = I x(v;,%;) R - ‘ Lo T(r.2.8) —
— i - _ g ) L . e
'(Fi ST v ‘ \ ‘
: The Fourler transform (abbrev1ated FT) of any absolutely summable

‘functlon f e Ll [G] is deflned as

‘(f{f(x)ﬂ(v) = %(9)'F J;f(x)x(v,x')dn, vel,  (1.2.9)
and the mapping f - % is a complex homomorphlsm of. L [G]. Some of the
. most essential propertles of the Fourier transform thus deflned con51st

'm the fact that [2]

ay” the set A[F] of all Fourler transforms f(u) is a’ dense sub-
‘_algebra of the space C [P] of contlnuous functlons on r whlch vanlsh at’

1nf1n1ty, ‘ L

-_w(b) A[F]—is~1nvarlant underutranslat1on—and_under multlpllcatlon

"‘by any character 1n the sense that

Flg,x) €0} = £0ven); -‘ o (1211)
(c) the Fourler transform of the convolutlon of two functlons

is equal to the p01ntwlse multlpllcatlon of the FT's ‘of the respectlve

'-_funct;ons,

© Fif*g} = fog; I l T aza2).
(d) . the FT.may be'interpréted as -a convolution,

F) = (B ) (eg). - R (1.2.13)



." Provided it $itisfies certain conditions [2; sec. l 5], a function

+ S

‘f“einl[G]-céh'he"recotered through an 1nyerse FT deflned as
f(x) = fr JOICE x)dv Vx e G N ' : (1.2.14)‘

If the functlon space is restrlcted to (L nL )[G] the Plancherel .
theorem states that the FT deflned by (1 2 7) and (1. 2, 14) 15 an 1sometry

between 1 [G] and L [r] A corollary of thls theorem is the Parseval

fornmla - o I e -.'_‘_7‘
.’.fsf(xl B8(x) dx =1}fcv3 gtv)__dv';"‘ L (1.2.15)
1t may be lnterpreted as expre551ng the 1nvar1ance of the inner product

under a "complete orthonormal expanSIon" in the Hilbert space L [G], 1n'

whlch the inner product has been defined as

'2; "f N ,pg: ='J;f(x) g(;) gx, i o -fa . B (l.Z.lG)'

The cla551cal examples "of functlon spaces ‘are’ ZRr], ¢{T], where
T is alternatlvely v1ewed as the group of addltlve reals modulo 21 or
the multlpllcatlve group of complex numbers of unit absolute value, ‘and
T_\ ¢{Z].. In all these cases, the characters appear to be expressed as

.-exponential functlons:.

ons: .
o ‘ oA s : ’ '
' {'G=R,..=r:‘ =R, f£(v) = f Fx)e I ax, - - (1-2.17a)
== : . : /
_ : AN
x(v,x) = eIVX | &1, Tez, fm)= /zm) [t Mde,  (1.2.17h)
. . . i : - . I o ] X
. - . - . o . . R . '
N\ &=z, a1, £ = £ fm)e I, (1.2.17¢)
' : ' ‘ T ’ n= -o R L . o .
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q]: o
I £(he Jz“kn/q (1.2.17d),
k=0 '

S A L
= = fh = =
G2y T  (_)_ 5

-
8

| where Zq is the set of smallest q inteéers (a group,with,addition mbdulo'q).

Rudin [6] considers thé ex?onential fﬁnétion (élso céiléd-ﬁhe éuier
function, espec1a11y if the argument is a complex number) as the most
ﬁlmportant functlcn in mathematlcs he does 50 for good measure because,
v; be51des belng a character and hence. deflnlng a FT the exponentlal func—'-
tlon has many extremely 1nterest1ng and 1ntr1gu1ng propertles
@) for any complex number z,,[zlsm, e;p{z) is'a continuous .
.ponvﬁerb function which‘can‘bé feprésenfed'ﬁ}‘tﬁé absélutély.uniformly
'cohvérgent sefiés' |
N ..- :~ o ‘ . o ¢ s ' . ] .
@) = 3. Sy - e (28
- n=0 . o : : ey S e

[

and for any W .E ¢ {0} there isaze ¢ such that w*exp(z),

-{b) there exlsts a p051t1ve transcendental number Y such that .
exp(§n/2) ='j;aﬁd‘ezl=,1 ifE (2/27) js an integef, o (1.2.19)

~ the exponentlal function belng per1od1c of perlod ZJn (ﬁhe number 2

also plays.an 1mportant role in the normallzatlon of the Haar measure on

-

‘R as G~T. ),

(c) it achleves an homomorphlsm of 8dd1t10n into multlpllcatlon,__

exp(zI+zz) ;.exp(zl) exp(zz);< ST g _V (1;2.20)

the mapping x -+ e ™ maps the real axis onto the unit circle in the -complex
plane, and the restriction e* to the real axis is a monotonically in- '

“
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creasing positive function which realizes'anfisomorphismxhetween.the,group )
of‘multiplicative reals R+-and_thergroup ofhadditive'real numbers;3
. (d) it is the eigenfunction of'the_differential operator,

.(exp(?)]' = exﬁ(z)- : L _ R o '(t.2.21)

-r

Any one of these propertles may be used as a deflnltlon of the exponent1a1

functlon, startlng from Wthh it is p0551b1e to derlve all the other.

propertles._ The intimate relatlonshlp between Fourler transform and

- dlfferentlat1on is no. acc1dent Fourler series. were purposely. anvented

: _1n the elghteenth century as a tool for solving d1fferent1a1 equatlons.

~

The algebraic deflnltlon of. the exponentlal as a character related as it

is to the concept of translatlon 1nvar1ance, seems to be the more fundamental

one [2 14]. A ma;or and often recurrent theme of 1nvest1gat10n throughout

1

Uthls d1ssertat10n conslsts in attempts at der1v1ng 51m11ar propertles for

characterslln functlon spaces other than ﬁ[G], where G =.R’.T or z.

' The engineering interest in FT on finite groups was kindled.by

the realization [15,16] that if the order of ‘the group, N, is a highly

_ comp051te number (;nltlally 1t was N=2" ), then the corre5pond1ng dls—

.:crete finite Fourler transform (DFT) can be computed much faster than .

A
was prevlously thought p0551b1e.. The 1dea is that 1nstead of computlng

by 2 X k) f(k), xci;kj = exp(j'zﬁk/u), Ger-6 222
: keG . ‘ - - I

- - ) . LN

' directly,-one can conpute'it in-stages, over subgroups of G. Alterna-

tively, the computatlon of a DFT can be v1ewed as a multlpllcatlon of

the function vector [sequence of numbers) w1th the orthonormal matrlx of
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”character values, whlch -can ‘be accompllshed much faster 1f thls matrlx is
represented as a product of sparse matrlces Wlth certaln precautlons
'the DFT" may be used to approxlmate efflclently a continuous 1nf1n1te
Fourier transform.[IT 18], and the - speed of the fast Fourler transform
dalgorlthm (FFT), coupled with the decrease in cost and .the 1ncrease in
speed and storage capaclty of d1g1tal hardware led to a tremendous boost
in_ the theoretlcal development and pract1cal appllcatlons of d1g1ta1

“51gna1 proce551ng [19,20 21]

1.3 PERSONAL INVéLVEMENT: PREVIQUS AND‘PRESENT.RESEARCH

My personal 1nteractlon w1th thls vast tich and. stlmulatlng

1

field of sc1ent1f1c 1nvest1gat10n has been 1n1t1ated and condltloned by

- . '

my flrst research work envrronment - that of a magnetic resonance, more .

qnec1£1ca1lyg-an—elactron—paramagnet1c»resonence—{EPRﬂ“iaboratory As—

is the case w1th1n any other measurement/exper1mental env1ronment the

b L]

.main task faced by an englneer 15 that of 1mprov1ng the performance of

the 1nstrumentat1on i. e., its capablllty of extractlng 1nformat10n about
- a certain phenomenon in the presence of sources of error, generatlvely
calied noise. This def1n1t10n of performance encompasses two parameters

descrlblng the 1nformatlon extractlon process in a restrlctlve sense..

One of these parameters called sen51t1v1ty, .1s. a2 measure of the mrnnmnn :

‘phenomenon "1ntens1ty" for whlch 1nformat10n can be extracted with a ‘

nonnzero probab111ty, the other one is the resolutlon, whlch is a measure o

of the ab111ty to d15t1ngu1sh between "adjacent” phenomena. there are

51tuations when sen51t1v1ty can be 1mproved only at the expense of resolu--
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tion and vicekversa. The economic cost of extracting information isﬁ
,.//,_-_another very 1mportant parameter character121ng an experlment and usu-L

~ally, a compromlse mist be achreved between performance and cost.

As a branch of magnetrc resonance spectroscopy, EPR studies -

,tran51t1ons between electron1c energy levels whose energy separatlon is

L]

a.functionaoffan external magnetlc fleld,,.An EPR experlmentrlnvolves
‘three basic unitst : .
| 1) the system to be 1nvestagated
2j-;the electromagnetlcxexc1tat10n,.and
3)i;the detection system..-'
-‘A block dlagram of an experlment 1s glven in Fig. 1. 1, and Fig. 1. 2 L
presents a schematlc conflguratlon of a superheterodyne EPR’ spectrometer.

'The complex1ty of EPR experlments can be understood only by consrderlng |

‘both the varrety of samples studled (whlch Tanges from metals, semlcon—:

. ductors, d1e1ectr1cs gases, 11qu1ds -and SOlldS to c0mp1ex blOlOglC .

compounds) and that of the numbers and magnltude dlstrlbutlon of para-‘

>

‘- meters inyolVed: pseudostationary magnetrc field 0 - 3T,_Hlth stablllty
of 107> « 107 and‘modulation freQuencyfof 10 - 106Hz}.e1ectromagnetic o

,'eXcitation”field pouer.of 10“12 —hldw at frequencies of 106‘- 101182
,(stablllzed within 10 - 10 ), ‘sample temperature of 1 - 10%k and -
1pressure of 10™. 7. 10 atm; etc. Sen51t1V1ty and resolution requrrements

-1mpose a time base which usually SWeeps the pseudostatlonary magnetlc

f1e1d at a. frequency of 10 -4 10 Hz, whlcn means_that the‘output 51gnals
have a very 1ow "frequency content”. Another characteristic'of these

51gnals is that they have known selfvconvolvlng shapes - usually Gaussian

[}

e
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. or Lorentzian bEIlS.v and‘they may be extremeiy.complex,-with up to 1000

individual peaks leen “this complexlty, it 15 no wonder that 1t ds -

practlcally 1mp0551b1e to determlne a def1n1te exper1menta1 conflguratlon

yleldlng max;mum of 1nformatlon. In pr1nc1p1e, the sen51t1v1ty may be

improved.by:_‘ | )

(@), increasingfthe_a{gnal‘via'ﬁudacioue uae‘of varioos:physical
phenopenat‘ | o - | | | t
l (bj decreastng‘the hoise'via'earefol‘designIof‘the }nstrumen-w
tatlon and reduetlon of: no1se sources, , |

(e) separatlng the 51gnal from n01se, elther by experlmental

de51gn or by proce551ng the, 51gna1 at the output of the spectrometer.
L1kewlse,‘the resolutlon can be enhanced either by Jud1c1ous de51gn ‘of

the experiment and 1nstrumentat10n, or by processzng of ‘the outpit sxgnal

P

The maln idea behlnd my- research work [22] was to employ dlgltal

: sxgnal proce551ng methods in an attempt at solv1ng some of the abovéx;F_\.
mentloned problems. To be more prec1se, the chosen tool’ was a d1g1ta1 o
Fourier analyzer, i.e. a general purpose computer and a FFT algorlthm
‘.whlch can serve a twofold purpose - ‘that of measurlng nolse spectra in
the low frequency reglon, and that of couvenlently simulating certa1n
"; llnear 51gna1 processors. The ch01ce of a d1g1ta1 FOurler analyzer was
motlvated by: ‘p - o
(a) the presence of ea511y repeatable s1gnals at very low freﬁ
quency reglons where analogue technlques are costly and, much less

eff1c1ent'

- (b] the COMPlBXltY of 1nstrumentatlon and the large varlety of



s best supplled by OFFallne proce551ng ‘with a general purpose computer,

'trlbutlon of noise in order to determrne experlmentally the optlmal

2

=5

parameters; requiring humanfintervention and ertreme versatility‘which Iy

(c) the low cost and avallablllty of m1n1computers and FFT

algorlthms. The actual 1nstruments employed were a coc 6400 and a PDP :'

11/20° computer for. 51mu1at10n and a HP 5450A d1g1tal Fourler analyzer

for the n01se measurements.

In order to achieve noise réduction, a systematic analysiS‘of
b3

. the microwave conflguratlon and the n01se sources has been made, and then

" the dlgltal Fourler analyzer has been used to measure ‘the spectral dlS— :

e

1nstrumentat10n structure [23, 24] As a bY?prOduCt a new, 1n 51tu,

Tmethod for measurlng the performance of m1crowave detectors 1n the 1ow

frequency reglon has been developed [24] -The separatlon of. 51gna1~from :

nolse via proce551ng of output 51gnals can be V1ewed as a’linear estima-

& o

3t10n problem [25,26] and, by maklng full use of the EPR s;gnal_pecullar—. ‘

S

ities. (e 8. the known self«convolv1ng shape of the 1nd1v1dua1 Gausslan

. . Lorent21an peaks), it' has ‘been shown [27 28] that DFT technlques
‘could be very efflclently employed towards obtalnlng‘thls obJectlve A

- linear fllten whlch convolves its 1mpulse response WIth the 'signal, can

L

- be similated by a 51mp1e multlpllcatlon of 1ts frequency transfer func-

tion with the FT of the srgnal followed by an rnverse FT The decrsrve _

advantage of thlS procedure over ON line d1g1ta1 proce551ng is that it-
Q.

- has a greater versatility which is. essent1a1 in the- context of spectro~

r . o . o

scapic 51gnals.”
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The problem of resolutlon enhancement has two maJor asnects
= | One is to. separate 51gnals of s1m11ar characterlstlcs whlch, although
p:»;: :' ooncu;rent and overlapp;ng eaoh other, haye their energy (amplltude)
o ‘peate dietribeted in time,'VThis‘ptOElen may be modeled as an integrali

convolution equation . L v - o - .

r_ “x‘(t) =‘--J'Ru('r.) k(t—T)dT, t‘E,R, . .. ' : _ . (1.3.1)‘; .

wher””x(t}_is the experimental signal, k(t)'is the kernel shape function - .-
- of .the indiwig\\i signal and u(t) is the "spectrumn'denoting'the dis--.

: trlbutlon of k(t-\51gnals in time. Agaln, ! dlgltal Fourler analyzer

i K a

A has been provan to be an\eft1c1ent and valuable tool for solv1ng such a
Tt problem [29]. TN T

N

The .other aspect of résolution enhancement concerns the separa-
. - X . . ‘ I- - ‘l ) B ) \.V\H l : . . . h .
“tion (analysis) of signals which‘occur simulfhneously but have other \‘

\

parameters dlstr1buted A p01gnant example is the case of 51gnals'

—— T D —— ———— e e T [ —— e

havxng the- same shape and t1me or1gln, ‘but various W1dth/dura510n

Il

characterlstlcs, 1n whlch case the problem may be modeled as a multlpllc-

.atlve_(sometlmes called Mellln) convolutlon 1ntegral equation \\\<\

x(t) f u(w) k(tw) dw, t e'R, . (1.3.2) R

where, again, x(t] is theféxeerinental signal; k(t) islthe keenel shape
. function and 9(;1 is the "spectrum" aenoting the disttioution;of'signalsfk'Q
v - anplitudes vereus’slgnal widths. Although an elegant mathematlcal _
solution of (1.3, 2) has been known for a long tlme [30], at the tlme of o

2

‘my M.So. thesis, no eff;c1ent numer:cal method had been'deV1sed. Tt was
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then dec1ded to dedrcate at least part of the _Ph. D. 1nvest1gat10n towards -

elaboratlng a dlgltal srgnal proce551ng teohnlque permlttlngnthe comput—'
W
’ atlon of u(w) [311. 1t should be mentloned here that Such problems of .f‘_ -

generallzed speotral analysrs of (multl—component) 51gnals appear not

only in magnetlc Tesonance spect;oscopy,_but in’ umercus. other flelds of _
i
sc1ent1f1c 1nvest1gatlon, e. g 'electrlcal englneerlng, blology, chem15-'7
‘ .
try, phy51cs radar etc. — A

~
~

A}

_ The other maJor 1nterest concerns the theory_and appllcatlons of

orthogonal transforms other than the- dlscrete Fourler transform of com-

plex'valued functlons. At the tlme of my rnvestlgatlon into the use of

©

DFT technlques for 1mprov1ng the performance of EPR spectrometers, a’

host of other discrete transforms began to be' elaborated and dlscussed
. aj
. - . r‘?
In
predom1nant1y the Walsh transform ‘Its net, advantagescon51sts in the
\ i . .
_fact that the Walsh functions form a complete set of functions-which take

)

S

'““”““‘r"rr**r**“only the” values*%l or’ -1 such“that the corresponalng transfbrm can be:

CEEEY

.computed’ drgltally very qulckly and accurately ‘ It was natural then to

embark upon the study of the Walsh transform in the hope that 1t may
|
-prove benef1c1al to use it for solv1ng the same type of problems as- the

L
. a i

ones ‘mentioned above.
k

The.investigations into and the 11terature o1, the subject- of
\;\;\\;\;",‘ Nalsh analysis can be grouped into two classes: one deallng ‘with abstract
o . l .

, mathematrcal theory, dlrected malnly at exp101t1ng the 51m11ar1ty
\\\\\. between the Walsh and Fourler transforms, the\other one dealing with
practlcal appllcatlons of the transform | Much of this latter work COon-~ -

|
s1sted, and Stlll consists, in.'"rough" attempts at usin the Walsh
4 : _ ’ oug mp E _

i
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Fourler transform (NFT) for the same pESZIEEE‘in whlch DFT proved

successful [32] . But, desplte 1ts much vaunted computatlonal accuracy
| and speed the WFT wés proved experlmentally to be much less successful

in many cases, _ In a sense, thrs was a paradoxlcal 51tuat10n, one of-

hav1ng a beautlful tool but w1thout knowrng-prec1se1y for ‘Which partlc-'
' ular Jobs it can. be usefully employed _This: 15, 1n general, a rare

occurrence*in app11ed sc1ences where it is customary to be faced flrst

_»_,férf’f”w1th a problem and only afterwards w1th the methods and. tools for solv- T

e
LN .

mg it, - SO _ o R S .

It was dec1ded then to‘dlrect 1nvest1gat1ve efforts not towards
- as part1cu1ar//pp11cat10n ef the WFT but towards obtalnlng a fundamental

: explanatlon ofzthe experlmental results reported in the 11terature -an

-~ —

.

///;/egplanatlon which would also point to those englneer1ng problems whlch

/ N

et . . are optimally (or even suboptlmally but advantageously) sulted to be-

——

solved “Slng WFT teChﬂlU_ues ' Three mathemat1ca1 concepts play a funda— ) ,f*’““

e

i

.mental role in this study into the 1nner~structure of the WFT; they . = - S
/ *

_1nvolve the relatlonshlp’GhIEh convolutron ‘and group characters have -

T

*~ N

(a) harmonic differentiation,;

“\\' . ' (b) translatlon 1nvar1ant systems (11near operators), and '
(c) generalized frequency

What‘drfferentlates the present study’ from others’ deallng with the same

[ '\ '

T subJect is. that it is more comprehen51ve and general not being llmlted
. : : ~

N
-‘to a particular species of Walsh.functlons and, more 1mportant,'1t is

gurded not by the des1re to- develop the theory for its own sake, “but
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for extractlng its englneerlng 51gn1f1cance.' Concernlng Walsh functlons

- S

the conc1u51on 15 51mple and in. fact; has, been mathematlcally ev1dent

* Ly

' all along the NFT is nothlng else but (1somorph1ca11y equ{yalent to) a
multlvdlmen51onal dlscrete Fourler transform.‘ It follows that the only
'problems to whlch it may brlng an optlmal solutlon are those whlch may
‘be modeﬂed 1n a space of K—valued functlons over a multl—dlmen51ona1
domaln (whlch of course, has to be a LCA ‘group [33]) There are, never-
theless, certaln other problems in 51gna1 proce551ng or system and coh-

v

: trol theory whére the WFT might br1ng a solutlon which, although not

opt1mal (1n the sense of mlnlmum error accordlng toa glven crlterlon of '

goodness h e. norm on the respectlve functlon space), may be cheaper
and faster and hence advantageous from a practlcal p01nt of "view.

A 51m11ar approach has been adopted w1th regard to 51gna1 pro-
6e551ng and system theory in K[G], where K isa flnlte field and G-
is a f1n1te abe11an group 'The advantage of modeﬂlng signal f11ter1ng

by convolutlons in such a functlon space re51des solely in the fact that

under certaln condltlons it is p0551b1e to perform very fast. and error

free proce551ng via Four1er transform technlques [34 35] Agaln the .

1nvest1gatzon has been dlrected ‘towards obtalnlng a deeper understandlng

e

of convolutlon processors. A harmonlc d1fferent1a1 calculus is defxned
thus permlttlng a "harmonlc" state—space descrlptlon of certaln f1n1tea‘
: va}hed s1gna1 processors [36] It 15 hoped that this may fac111tate
advantes towards the long range obJectlve of freelng optlmal dlgltal

proce551ng from the constraints of referrlng it to some 1deal optlmum

. analogue model Last but not least the meaning of Fourler coefflclents

21

-
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'a complete set of orthogonalzfunctlone. This is how the concept ofy

if not always a p051t1ve one) in the development and prollferat1on of

-appllcatlons of the Nalsh transform Part of thls dlssertatlon.ls con-i

e m e e ——_—— e rL Ly e L e e e et

-.\ '

1n f1n1te flelds is e1uc1dated through the 1ntroductlon of the concept

of generallzed frequency. \

The word "frequency" is well entrenched_in-engineefing vocabulary @ .

A

“in eonnection ﬁith Fourier analysis and complex'exponentials, and the

e_appearanee and w1de5pread appllcatlon in 51gna1 proce551ng of d1screte

transfbrms other than the FT saw many dn 1nd15cr1m1nate use of thls '

“word. . At the same t1me attempts have been made’ at deflnlng a fJequency

concept general enough.to encompass the ordering of all fumctlon. formlng

sequency [37],'i@e._the'ordering of‘Walsh functlons aecordlng tpzthelr

- number of zerowcrossings, came to be devised, fThe claim that it isa A

-+

. generallzatlon of the concept of. frequency played an 1mportant role (even

eerned wlth this clalm and, more generally, wlth the’gggblempof—defenlng__;____

" a concept of generallzed frequency to be both con51stent w1th the applled ot

— e
sc1ent15t's view of frequency as : a measure of the speed of - varlatlon of

a functlon,and general enough to permlt .a meaningful, wunzque_order1ng of

* “ te

~ any group of characters def1n1ng a Fourier transform. In order to . . C

attain thls obJectlve it was felt necessary to deterulne first those

features of the Euler functlons whlch are essential to the understandlng

‘of the concept of frequency as used by engineers, so that they-can be ~

]

a%iomatited in the definition of the concept of generalized ffequency [38].

The analysis to be presented herein concludes that frequency'should be

viewed as (formallyj the eigenvalue'correspondingLto'the-characterlas
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eigenfunction of the. harmonic differentiator, (locally)-as.the'everywhere

o

equal slope of - the character s phase functlon, and (globally).as the .

"unlt tﬂhe" w1nd1ng number of the character 5 graph wlth resnect to the

orlgln of.the.anleld It is also concluded that the sequency concept
.‘h:. i_ does'not fulflll.all of these condrtlons and that the clalm that it rep-

‘resents a generalization of frequency is unfounded: -

In one way. or another, all the topics discussed in this dissert-
‘ation are concerned with convolution and.FouIier transforms on LCA -

-groups. It~was necessary to achleve a compromlse between the number of
: e

I

topics and the depth of 1nvestlgat10n 1nto each of then: Chapter II is
devoted to the- presentat1on of Walsh functlons and the essentaal—features;r |

of Nalsh ana1y51s and dyadlc (Glbbs] dlfferentlatlon. Empha51s is placed -

‘on the 1somorphlsm between the WFT and multl-dlmen51ona1 dlscrete Fourier -

transforms. Chapter I1I is. concernéd with the theory of 11near g-adic

..‘ . | ; ) " invariant systems, both from the. polnt of view of 1nput-output'relat1on-'
Tﬂf&ﬁﬁ&fﬁ]-. f‘ sh1p aﬁd”ﬁf‘harmonlc state space-descrlptzon. The computatlonal g .
| - advantages ‘of the WFT are analyzed ln the flrst sect1on of Chapter IV,

whlle the other sectlons Teview some 1mportant appllcatlons of WFT
techn1Ques in. 51gnal processrng and system theory,.and p01nt to those
P ‘ problems whlch_are—amenable to optlmal solutlon via such treatment.

-S:Lgnal process:.ng in f1n1te fJ.elds is discussed in Chapter Y. Chapter\VI

is devoted entirely to- the concept of genera11zed frequency and a criti

L AETE R LY AR UL R

cal ana1y51s of the concept of sequency. Chapter VII is concerned w1th 2

‘,

the Mellin convolution; it presents a Fourier transform technique whlbh

leads to the solution-of the prohlem.of,analyzing certain multicomponent”

ST A Al R B WAy
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‘51gnals. It also 1ed to an algorlthm for a fast and accurate computa-: R

24

'-tlon of Hankel transforms [33] ‘Besides general theory and some computeri,

simulated examples most of the chapter is devoted to the analy51s of.'

vmultlccmponent -exponential decays. Conc1u51ons and 1d§as for further

£ -

1nvest1gat10n ‘are dlscussed in Chapter VIII.

e



e

CHAPTER II

WALSH FUNCTIONS AND THE HALSHvFOURIER'TRANéFORM‘f.

N\

2.1 - INTRODUCTION
Ul . .l;/
The 1ntcrest in -sets. of orthogonal functlons flrst arose in

-,the context of mathemat1ca1 phy51cs whene they play a fundamental role‘

in solv1ng differential equatlons w1th-boundary condltlons (Sturm-

1 - o L]

appearance, and thls is how most of the oth T sets’ of orthogonal functlons
(Bessel Lame or Mathleu, t0'name a few) . e to be dev1sed But it was’
only at the beginning of this century that a comprehen51Ve theory of
rthogohal functions has been formallzed. ThE'flISt step was made‘by '
Hilbert {(in hlS study of integral equatlons), who deflned the important
concept of a complete orthogonal system of functlons HlS work, con--

\

tinued by. Riesz and Fisher, led to the foundation (Frechet and Schmldt)

\ and development (ma1n1y by Banach Wiener and von Neumann) of functlonal

ana1y51s.[40] L.

‘\ o . | B e
The basic 1dea behlnd the study of complete systems of orthogonal

,funct1ons {¢} (on an 1nterval 1, in c1a551ca1 analy51s) is that any
: funct1on Whlch is square summable on'thls interval can be approxlmated
by means of an orthogonal prOJectlon on the' subspace M spanned by the

. first n elements of {9},

25
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£laf = 2 <£;4,> 51;" . N o . A @11
_w1th the essentlal property (Bessel 1nequa11ty) that the mean square.
: error can be made arbltrarlly small by- chooszng n suff1c1ently large
 Two other 1mportant advantages of functlon representatlon by such gener- |
.‘alized Fourier series refer to 1nvarlance of the inner product and the. |
uﬁease of extendlng the pro;ectlon to a’ subspace M 1‘t:mt:e the pro;ectlon_
“on M, is known [11] . In addition, formulae for repxesentlng ﬁany
functlons with respect to varlous systems of orthogonul functlons have'
‘been tabulated . _.i o ..-_ | N |
\
The study of non-contlnuous orthogonal funct10ns made 1ts debut

N
with the wcrk of Haar [41] who at the beg1nn1ng of this century, deflned

. a eomp&ete system of orthonormal functlons which can. take only-three N

r -

'_‘values and whose points of dlscontlnulty are related to the dyadlc
ratlonals on the [0 1] interval (see Fig. 2. 1)

1 x e”[O,%]

' haro(x) =1 harl(x)_=‘ e
. Y .\-1 IR ) | _1 xE(!‘E,I]
s kel 2kel L -
.'/2!1'_‘1. . e(:nvl oy ) oo 1.,2, |
) ' (B Xk = : n-l -
harIEk) (x) = _,/Zn-l‘ . - e(zn 3 zn'-l) xk = 1,2‘, ., 2 |

o ,_ea,[,k;;l) ( Ao e
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Given their obv1ous advantage for numerlc commutatlon of - Fourrer ot
coeff1c1ents,'a very concentrated effort has been lately spent into
deV151ng and studying other such: plecewlse constant funct1ons (Levy [42]
calls them 'fonctions a pallers'], which are 11near1y 1ndependent whose

‘only polnts of dlscontlnulty.are the qaadlc,ratlonals,.and whlch are{
-noreover, orthogonai‘and-normal | q-adic retional is any nunber x
| whlch can be- brought to the form kq s where q, k and n are inte-
gers. Any real number can be wrltten in a rad1x q expan51on
.x‘=l“$ gl w:.thx £ 7, orP - C2.1.3)
‘where it is customary to retaln only the finite. expan51on for q-adlc— J)
ratlonals (see [43] and [2] for a d15cussron of the relatlonshlp hetyeen
q—adlc ratlonals and the Cantor set) P denotes the set of q smallest
non—negatlve 1ntegers Levy also 1nd1cated the p0351b111ty of
u51ng a sequence of dlStlﬂCt 1ntegers as a radlx for number representa-
tions in order to deflne the’ dlSCOHtlnu1tleS of a yet more. general form :ﬂ

" of piecewise constant.orthogonal functlons.

~ This chapter is concerned with the pree;ntatlon of such a class
of complete systems of orthogonal functlons - the set of Walsh functlons,
first defined by Walsh in.1923 [44]. Besides hav1ng the properties_

i : T , " o o )
mentioned above,.the sy%tem originally defined by Walsh has the remark-

N _' . able characterlstlcs of (1) contalnlng functlons which are not only

" realwvalued but. simply blvvalued and (2) helng closed under the opera—

( ‘ " tion of p01ntwise mu1t1p11cat1on, in the sense that the-product of any

t28
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two Walsh functions is another Welsh function{ In fact ‘as we shall

see later, the‘Walsh functions, as any other set of. orthogonal functlons

closed under multlpllcatlon form a group [45 ,46]. The fact that *
their bl-valueness matches very well] the nature of loglc c1rcu1try and

dlgltal computers explalns the 1nten51f1cat10n of research into the

rtheory and appllcatlons of Walsh functlons after the mld—51xt1es

1
.

There are many ways‘of defining the Walsh functlons, as there are .

many ways of def1n1ng ‘the exponentlal functlons.. One could use - dlffer-

ence equatlons to obtaln a recur51ve deflnltlon [44 47] " or they can

| be deflned as products of some other, 51mp1er functlons [48 49] or -

resultlng from Hadamard matrlces [50]. Also, they can'be‘shown to'be

related to symmetry analys1s [51 52] or, which' is after all equiva~ .

lent they can be shown to be the characters of certaln groups [53 54] .

Alternatlvely, they may be deflned Aas elgenfunctlons of certaln dlffer—f

'entlal operators [55,56], or via polynom1a1 con51deratlons [57], these

latter definitions belng Just‘some other facets of their being the

. eharacters of e\group. Again, the presentation may'coneider either the

analog Halsh functions or only the dlscrete finite (1n the sense of fln-
[ . . 4

1te domaln) funct1ons, or both of them From an engineering point of

Vlew we are 1nterested mainly in the dlscrete f1n1te ones, whlch are ‘

R

1mp1ementab1e by dlgltal computers and ﬁhose theory is malnly algebraic

in nature, whereas mathemat1c1ans are attracted by the analog case, w1th
all its wealth of analyt1c con51deratlons. Hlstorlcally, this latter

case has-been the one studied first (and exc1u51Ve1y untll the late

sixtlesl, and the mathematlcians‘ penchant on defining and analyzlng the

29



-'ana1y51s. Slnce part of th1s dlsseratlon is concerned

2.2 ANALYTIC DEFINITION .OF WALSH/FUNCTIONS -

'separate}y,'te Kaczmarz [471, wasuconfined'ro t

-was made via a recursive relation:

TSI S ek aRE S T L L T D AR e AT T TR LR T e e ey e, .

- s

Walsh functlons ‘as any other functlons on an interval bears some blame .

for much of the unsuccessful englneerlng attempts at 1oy1ng Walsh

i'th analyzlng : :-f
these attempts, 1t was con51dered essentlal .to present t.e Walsh funct—
1ons not only through thelr fundamental deflnmtlon as c'aracters of a
certain group, but also through the other deflnltlons ven if only
shortly. (At this poznt, it may be worthwhlle mentlonl'g that even 1n
1975 there were st111 people tryIng to f1nd yet anothe ,"new" def;nltlon

of Walsh functlans [58] )

The initia1>definition'of Walsh functions  due to Walsh-[44] and;

é/interval[ojl] and

2?0(3)

1
o 1 xe[0,172]
‘ ¢1(X) = o ',.'/
o L oxE U/ 7
| g1 x ¢101/8 U (3/4,1]
. ¢§1)(x) = ‘ n
‘ ‘ x ¢ [1/4,374]
‘ ‘x € [0,1/8) U '-.[1/2,'3/4)
CZJ(XJ . N :

W x e [/6,1/2) U G/4,1]
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e ‘ (-1)7 e Rxe1) x € (1/2,1] . L
K "’r&k)'-@xl x ¢-[0,1/2) .
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‘ n+1 (x) = . | .
. (*1)%&1.().(2:(;1) xe /2,11 "(2.2.1)
y ' . e 7 ' o
| ‘n o= 1, 2, ! a
k=1,2, ..., 2™1

Startlng from thls definltlon, Walsh was able 'to prove the orthonormallty
Pand completeness of thlS system of functlons and, hence the p0551b1ﬁity
of using them fbr representlng functlons which are summable on-the‘same

‘ 1nterva1 1 The notatlon and equatlons usedfby Walsh may seem somewhat
arbltrary unt11 1t is reallzed that a’ lexicographic orderlng of the sub-
scrlpt (prderlng by paekets of funetlons) and superscrlpt (orderrng
w1th1n the packet) leads to an orderlng of the functlons accordlng to
thelr number of dlSCOﬂtlﬂUltles {(which are called,_sometlmes, zero-

-crossings or szgn-changes) Lately, it has becomehcustomary to index the

~ Walsh functlons by only one parameter° a tradltlon whlch Wlll be followed
here. In general, the functlons wrll be noted by. wal(l x) where ‘x 15
the free variable and A is the 1ndex1ng parameter " This parameter may l o
belong to the. set of p051t1ve 1ntegers (when the d15cussron is conflned '
to-a f1n1te 1nterva1 domaln) (seetFlg 2. 2) or to the set of Teal numbers
(when discussion is generallzed to_the_entlre real line), ‘or to a flnlte

1

.yset'ef‘integers (when the discussion is confined to the discrete finite Walsh
[ — - M - ) . i '

D

functions). AU j." .



. Sometlmes, it is useful to use "1nteger letters" 1nstead f 'A .when‘the

: wherever necessary, the subscrlpt, K “for. Walsh Kaczmarz ordering and

- -

.index is obv1ously an 1nteger The 1mportance (and the 1nf1uence on the

4]
prollferatlon of englneerlng appllcatlons) of orderlng the Walsh

functlons accordlng to their number of d15cont1nu1t1es (thus resembllng
the orderlng of the complete orthogonal system of slnu501ds accordlng to_
thelr number of zero cr0551ngs) will be analyzed at large in a 1ater

chapter' In the .Same context it should be mentloned that Walsh.was also

\

the flrst to notlce the alternately even'and odd symmetry (w1th re5pect

to the niddle of the 1nterva1) of ‘the functlons he deflned
! .

|
Walsh who studied in detail the relatlonshlp between the system
(2 2. l) and the Haar system (2 1.2) was not aware of the fact that his
system cf functlons LS the completion of the’ orthogonalysystem of Rade—

nacher. functions [59]. - N
radd(x) =1, rad(x) '=‘-'sgn(sin(2].(;'12nx)j; 'k~f—_-' 1,2, ... (2.2.2)

- ’ - "o
. R

It Was Paley [48] who fmrst reallzed this fact, although his. completlon

|

of the Rademacher system lef to a dlfferent ordering of the set of

' i
Walsh functlons To d15t1ngulsh between the two orderlngs, ye shall use,
P 3

¥ .
,': \

the subscript, P, “for Paley orderlng (See Fig. 2.3 for an 111ustrat10n
: kN

of three spec1es (dlfferent orderlngSD of Walsh functlons on the domaln Loon

L}’3..] Paley deflned the Walsh functlons as products of an arbltrary

number of Rademacher_functlons,

v

]

o

Wal,‘(;k',i) = ];fl rad, Ci)'; " =22 T (2.2.3)
A 3 i A

.\i
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. . :
1 -,

Later on, Ton1 [49] showed how to obtaln the Walsh systemhln 1ts.or1g1ne1

4*4fth~¢ﬂ ft"order dlrectly from products of Rademacher functlons (see also Yuen [60]

| for the relatlonshlp between. the orderlngs) These functlons, wh;ch
are?,as requlred, plecewlse'constant, real valued éﬁd with disoontinui—..

""ties oocurfiﬁg.at the dyeoic rationels;;g;e.calied;dyedie'weish fuhctions.'

Levy [42] and Chrestenson [61] extended the dlscu551on to systems
of q-adlc Walsh functions, i.e. tomplete-orthonormal systems of plece- .
‘wise constant functlons whlch have thelr d1scont1nu1t1es at thewq sadic -

..ratlonals | This’ generallzatlon from 2- adic to q-ad1c Walsh functlons

./_

.j;entalls their loss of real-valuedness leen q 2 i’/fﬁf,3225~°f/ﬁﬁlty,
T exp(2ﬂ1/q), and the expan51ons of 2. 1 3) . and x,the Rade- .

q .
macher functlons of order q can be defined as

_,——*""’—'FF—r‘——_—_—‘;;;—E;;_:::: [q x] k=20,1, ;.; ' ‘ .ﬂ | B '(2,2:4)

where [ ] represents the greatest 1nteger functlon ' Then, the qfadio

Walsh functlons are deflned as

‘waitk;x) = H,(tad (x)) 1.k }E:k q 0 < kifs a;
Ce i oA

1 :
. ng > ny, (2.2.5)
Alternatively; it can be written that
. : radk(x] = u o ,.': eal(k,x) ;_wq;,. e [2.2.61
1 . - . .
'“;EEte - B - - ' L B

— 0 .
= k= 3 kiqfl
‘. . ’ ‘ iz‘N' . ' -
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z =‘.E k“ixi+1, : . 7 .‘. . 3
150 S :
S0 tﬁatrit appearstimmedietely'that .raok[x)i has.periodl q;k- and
yaltk;r} has‘period 1._1No distinetiOQ‘shall be made in notetiqn be;.x
tween q—adic-and dyadie Walsh finctions becausé they_hareythe same besic.s
R ‘properties; withetherexeeption of the.fact that in.the‘dfadic case the -

L functioos‘ere N real«valued -with alternatlng even—odd symmetry
instead of the usual complex conjugate symmetry, 2) self-lnverse, in
'the-sense that the square of,any 2-adic Walsh function is the unit Walsh
functlofyffgl(o x] = 1. Whenever p0551b1e; the presentatlon will be
‘generallzed to q- adlc Walsh functlons although, for obvious reasons,‘

practleally only the, dyadic Walsh'functlons.have‘ oen the subject of.'

engineering applications.

Much of the mathematlcal work related to Walsh functlons concee-
- srated on studylng the 51m11ar1ty between thls system of functlons and

the system of 51nu501ds by establlshlng the analogues of the main. results
of the transformatlon theory of trlgonometrlc series. In the maln,
;these results indicate that'

~ the Walsh functlons form a complete system of orthonormal
functlons on the 1nterva1 (o, 1],

. « this system is closed under mpitiplication;

wal(k,x) wal(i,x) = wal(n,x): any k, icp, kK@i=nep (2.2.7'5'

-where 0 deootes dyaeic add;;ioo; i.e. componentsﬁse.modulo Zladdition -

of the dyadic expansions of the respective numbers;

Ay M —— e o e gn s

i



37

-« for auy summable funotioh*f(x) £ L[O,l], the Halsh«?ourier

series
S (x) = kZ ¢ wal(k,x); ey = f £(x) wal(kxjdx - (2.2.8)
‘ : L . ‘o ‘ - .

converges To f almost everywhere the convergence being uniform in
‘an 1nterva1 of contlnulty or at a g-adic ratlonal Wlth polnts of dlverg—‘
ence located (1f £ is of bounded varlatlon) at the q—adlc 1rrat10na1

points of d15cont1nu1ty, and continuity of f(x] is a sufficient con-

‘ _d1t10n for uniform Cesaro-summabllzty of the Walsh- Fourler serles,

- if 5_(x) converges everywhere to an integrable functlon f,.
'then it 1s.the Walsh Fourler ‘series of f
-~ there are dlfflcultles in dupllcatlng the results’ concernlng
the local- global dual1ty of'Fourler serieés and 1ntEgrals, that is, the
.Sreflectlon of local features of f (such as smoothness) 1nto global fea-
tures of the transform {such as rapld decay at 1nf1n1ty), for 1nstance,
;'unllke in the trlgonometrlc case, the only ab501ute1y contlnuous functlons

{on.[O 1] whose Walsh- Fourler _coefficients are 0(1/k) are the constants.

ThlS problem of estlmatlng orders of magnxtude for Walsh coeff1c1ents

'_ is compounded by the difflculty of u51ng c1a551ca1 d1fferent1al calculus

" in relatlon to Walsh- functlons (1t will be seen in Sectlon 2 5. how th15

'dlfflculty mlght be c1rcumvented).

%ﬁe proofs of these statements were rather cumbersome (belng
.based on the LebeSgue 1ntegral on the un1t interval), and the results

.concerniug-both-cont1nu1ty (and convergenee) with respect to the usual

~ . —
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‘ topologf of the real line{ras well as the.cioeoreiof~the Nalsh sfsteﬁ

under‘ﬁultiilicatioﬁ eppear to.be.sooehow arbitrdry. The sitoation has .

been’radically changed.since Fine{'in'1946; had shown that the Walsh .
functions .are the characters of a certain group,rand‘Viienkin {62]‘had

establlshed in 1947 the’ general theory of Fourler transforms on “topo- .

[ St A L AU

10g1ca1 groups.. Although it was the group theory of analog Walsh functions

on a flnlte 1nterva1 or on the entire real llne thch was developed flISt
-we shall start w1th ‘the theory of f1n1te dlscrete Walsh functlons because
it presents the- greatestulnterest from the v1ewp01nt of numerlcal appll—
C&FIOHSL and because,“belng porely‘algebralc,.lt is not egcuqbered by -
aﬁy considerarions of existeoce;‘cohtinuity or.convergence‘(of,Walsh
rtransformSX. A more gradual,‘logical‘ouild;up of Waish.dhdiysrs,‘is thus

enabled.

2.3 DISCRETE FINITE WALSH FUNCTIONS AND TRANSFORMS -

[V

Bf defrnitioh, the g-adic disorete finite Walsh fuhcfioﬁs are‘.

rhose elements of the space of complex-valued fﬁncrioné having'e finite

" set of integers‘t;et:us sa? Pﬁ) as domadn; which are. pieceﬁise constent‘
and which form a complete orthonormal basis closed under the operatlon
- of multlpllcatlon.\ It has been customary [63] to view them as the end
Tresult of the process of equldlstant samp11ng the analog Walsh functlons
.on a f1n1te 1nterval 1ndeed this process can be laid on a proper
mathematlcal foundatlon thanks to Kluvanec's abstraCt sampllng theorem
.[65lf Unfortunetely, this approach is unnecessarlly.cumhersome because.

it requires a preliminary~pa$tering of the difficult analytic considera- -
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tions concernlng Halsh ana1y51s on an interval and makes at best, very
"poor use of the puwerful algebraic methods sultable for treatlng discrete
‘-Walsh functlons nor does 1t make clear the fundamental algebralc ﬁp

‘structure of the d1screte Nalsh transform. '

’ Another approach [64] to dlscrete dyadlc ‘Walsh ana1y51s is to -
1ntroduce the. dyadlc Walsh functlons dlrectly through a (rathe; arhltrary)

def1n1t10n in terms of the blnary representatlon of the 1nd1ces

-

'n.1 ki -, " n-1 CHIC SR
wal(k,i) = GDTT or wal(k,i) = [ (- -1y ,
r-O . _ _ r-'O L B .
PP o . S 2.3.1)
where N = n, i= 0, 1, ..., N 1 k= 0 1, ..., N L and 1 . and
fkr ‘are the binary bltS of 1 and k; i.e.
: n-;l' g
i= 3 12,
r=0

Following this.definition,,fhe-usual procedure is to provide 'direct"
-prdbf5~of their pfope;ties,jviz;; their orthogonality,

Nel =~ . N3 x=hn

2: wal(k,i)wai(h,i} Z'Nﬁkﬁ = o o ‘.f“.l‘ (2.3.2)‘:

i=0 : 7 0 k'#h

“their completeness,

Nzl e .
" wal(k,i)wal(k,j) = N6 ., (2.3.3)
: k=0 “ . IJ . v -

\;héir'symmetrf ' ' _ - e A N

')Wal(k,i) = wal@,k) - L I Q.s.4)

kL
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“and, finally,ftheir'?roductﬁformuln

40

L

co - o .  N-1
wal(h,i) wal(k,i) = wal(h®k,i); hek= > z (h +K )mod z
; . ) ool r=0 ‘ dﬂ
N ) B R . T (2.35.8)

~

Then, the finite Walsh transform of a function (sequenco} fe ¢[PN]'

is defined as

N..1 ‘ ' T a . N o
f@c) =3 Z £(1) —waﬂk_ﬁ £(i) = > £(K) wal(i,k)  (2.3.6) -
- k=0 L

after whlch follow (hard) proofs regardlng the 11near1ty ['] of this

transform, 1ts symmetry propert1es, its translatlon propertles, etc...,

u

.f1n1sh1ng with’ the remark that the f1n1te Walsh transform is not Tes-

trloted to one dlmen51on, the results_belng generallzable to any number .

of dimensions.,.:

N " o e e
~Since all results concerning linear transformatlons on finite

" dimensional normed'lineér‘snaoes are independent of any considerations
-of continuity and so they are essentially 'algebraic, it is much more

"elégant and fﬁndamentai and, in the end, moch more advantageous to imtro-

.

" duce an algebralc deflnltlon of Walsh functlons and the f1n1te Walsh

transform from’the'beglnnlng Thls can be done accordlng to the general

‘theory of f1n1te d1screte Fourier transforms [66], or in the context of

unltary matrix theory Because of the essentlal role played by the

jf1n1te Walsh transform in the flISt part of thrs dlssertatlon, its group

"theoretlc def1nit1on w111 be the one presented in more detailed form
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As stated in-the introduction we consider the space of compiek-
valued functlons whose domain is an abellan group, in thls case a\flnlte
_abellan group G of order N.. The flnlteness of the group 1mp11es a
dlSCIEte topology, with respect to whlch any complex-valued functlon on.
it is cont;nuous-[G?].‘ In fact the functlon space ¢[G] is an N-
‘dimensionai linear'Space, 1somorphlc to. ¢N. Provided that the fUnctlons
are restricted to be bounded [e reesonobleienglneerlng condltlon), thls

functlon space is tr1V1a11y a Lebesgue Lp spabe which can be made into

a [tr1v1al) Hllbert space by 1ntroduc1ng the inner product
<o ® =‘¢,[G].>é. RS

defined as

<f‘1,f2=t.'=x§;_f_1(x) 56 | ’ ;(2.3.7)“-

Accordlng to the structure theorem of group algebra {4] any

finite abellan group can be represented as a d1rect sum (some call it :

- product) of a finite number of cycllc groups Our 1nterest Wlll be Jin

_lprlnclpal dlrected to those groups Whlch are (1somorph1c to) a direct .
sum of n coples of the same cycllc grOup of order q. CThe Levy gen-'
eral1zat10n to the case of a sum of cycllc groups of various orders is
condltloned only by notat10na1 difficulties and 15 of 11tt1e 1nterest in )
practlce ) A cyc11c group of order q is 1somorph1c to elther of the
-groups‘ (Pq, ) or ’(;q,g), uhere 3 denotes add1t1on‘moduloAq; for |
‘simplicity,_we shall choose-.Pq. Then, G 3is isomorpﬁic'to‘JPn, inAthe

sense that any element of G can'be represented by an nntuple.f

41

e
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5 =_(xn;,;,.; 1) and the group operatlon can be V1ewed as component-
W1se addltlon modulo q (also denoted as +) From‘new_on, we-shall call

_ thlS group the (flnlte) q-adic grOup (S 3).. As subh'- Gq is an n-

q
.additlon and multlpllcatlon modulo q. If q is'a prime number,' Pq' is
a fleld and Gq is an n«dlmen51ona1 vector space  Any element of G_ - '
, S
can then be represented as a llnear comblnatlon of n llnearly 1ndepend- '

(=

dimensional module over- ? [4]; where P %s.con51dered a rlng, with

'ent n&tuples Such a set of n«tuples ,{e }

0 is called a b351s, and ; -

B

'the P «scalars X, whlch determlne

O . - L o
A .E' Xg& : o . (258
S S

are called the coordinates: of. X with respect to the baszs RCR A&di-
tlon of elements of Gq and the1r multlpllcatlon by P —scalars can be
~ performed coord1nate-w1se with respect to any such b351s Three examples

. of bases of n- tuples are:’

{gﬁ}“%i\;‘
| '_l-i———o'

[}
o

eik' i;k;' k=01, ..oyl . .- (2.3.92) -

n-1 o o jly Tk>ds o x o
fd, CRV T W ' | N (2:3.9b)
0; ‘kgi; k=0,1, ..., n-1 '
{11_1}:;‘(1) s h, =4 k=0, 1, _...J,Ar“l—l‘ S (2.3.90)

ik = “i,nek-1 ?
- - where it is evident'fhat {h } 1s, apart from an 1nverse orderlng,
idenﬁical‘fo {Eﬁ}' Flgure 2., 4 111u5trates these hases for a 3~ and 4-

‘ diﬁensional dyadie space. The 1nf1uence which these bases have on the

orderlng of discrete Walsh funct1ons will be d1scussed in Chapter VI A
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more detailed ana1y51s of the vaodule for q—i can be’ found 1n [68].
' For the moment ue shall limlt ourselves to mentlonlng that’ the mapplng
. M _Il.x n+¢ !
(,_a.,rq, Pa™ @
. defined. by
(x .ZJ Exy o L S (2.3.10)

fulfllls all the requlrements for being an inner- product om P ‘The
‘same symbol ¢ , i is used for the mapplng deflned by
-~ s. n~l . R - '
(x, ): (x; y)modq | e

: whete :za- 1mp11es summatlon modulo q, thls mapplng belng a pseudo 1nner

._product because (=, _) 0 does not imply x = Q:
The so-called sum-invariance lemma [6s] > f(xiz) 2: f(_)
" .. xeG_ xeG :

-appears as an 1mmed1ate consequence of the fact thatq G is a q- -

group, and shows that by 3551gn1ng to each element of G -an equal mea-

sure we obtaln a Haar (translatlon 1nvar1ant) measure. ' Since G ' is both
dlscrete and compact we are faced w1th a contradlctlon between the
_de51re of normallzlng the Haar measure to-be 1 for both the entlre
‘group and each p01nt of 1t . The solutlon 1s elther to a551gn each point

- .a measure l/N or to accept :3 total measure of N (the "problems of

ﬁ.measure normallzatlon" on both dual groups can be balanced by 3551gn1ng a

measure N~1/2 to each poxnt of both - groups)

N

N
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‘The function space ‘z[Gq] 'appear§'as;

~a cemmutatlve Banach algebra [G ],+, ,1) if multlpllcatlon
;s defiaed ;01ntwlse and the unit is the functlon 1dent1cal 1 every—
‘where, and

~a commutatlve Banaca algebra (E[Gq],f;:,d) if ﬁultrplicaeipn ' U. |

is deflned as the convolutlon product

(fl.gfzj(’-‘).’yi; f'l'c,v_j Tffztx) =<Tif, L Ep, (2.3.11)

and the role of unit is,piayed by the function

f | 1 | if ’ 5 = —0- . . .
5(5) =1 ‘ . CL _ . :
_ 0 otherwise o C o (2,3.12)_

P
N

.. . - The characters of the group G are deflned as the homomorphlsms
: of G 1nto the unlt magnltude complex numbers (see Eqn 1. 2 3) " They

, . E form the dual group F Because G is flnlte, T is 1somorph1c to it,

o+

- T ~ q Slnce Gq is 1somorph1c to P q - P » it follows (Eqn.
. 1 2, 8) that ‘a character of Gq can be represented by a product’ of char-

f acters of P

A . - ‘ ) n"\l . ] ) ) . . | .. . )
X (A,x) = ‘ HO X (x; ,x DY = (g veind ) er; o SR
. ! o E - '
f! _x__ = (xo: vy xn"-\l) £ G. (2 3 13)

o A qﬁaracter_of P . can be represented as ' o o

—_— . . . . -
~r

. S A:x. - -
N 11 [ . . . .
| X(A5,x%5) = exp[;lzm X, /q) = wq S N S Lo
0~_ Csee Eqn. 1.2.17c1 S _ 3
: .- —
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such that L nel’ N , &A % ; 5
L T e ZA“ '120 Pilnod ¢
XD = m  EE = w
'(— % i=0 ~ 9 . q q. '
Sw Q8 P ‘ L @231

i

Note: Concerning Harmuth's assertlo ' [88] that unllke the 51nu501d

'functlons the Walsh functlons canno be expressed 1n terms of a product )
between the 1ndex A and the free Varlable X, 1t can be seen that. a’
deflnltlon is posslhle in terms of j nner products ‘The dlfference be— -
. \

‘tween 51nusolds and Walsh functlon is that in the 1atter case the domaln
" is not one— but multlvtdlmBHSIOHal (a fact whlch is stressed in Chapters
IV and VI)..'In‘fact, in- nelther case is the word: product qu1te proper0
because"h‘ and x belong to dlfferent sets, such ‘that the operatlon

(_‘, x) should be defined as a mapp1ng rox Gy e (or P ¢ PTOdUClﬂg the .

nPhase" (see Chapter VI) of the character L “«-

The 11berty taken for ‘dispensing W1th thlS "halr spllttlng"‘fs a

warranted by the 1somorph15m between Gq and P and by the force of

tradltlon whlch for example flnds acceptable the products of Eqn. 1.2.17.. -
Another fact worth ‘mentioning here refers to the facl that .51nce1_i

and X belong to dlfferent groups whlch are both 1somorph1c to Pn

'the "product" (_ h) may be calculated wlthout restrlctlng the n-tuples

' A and x to be represented wlth resPect to the same b351$ hence,

the varlety of spec1es (i.e. dlfferent orderings of sets) of Walsh

functions . R _ .\f

hiB
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- As any other‘cﬁaraCters the functlons deflned above enJoy all
_“the group (symmetry) propertles described by Eqns. 1, 2 6 In addltlon,.'

- as characters of a finite’ group (whlch is: 1soﬂgrph1c to its’ dual},

Th. 2.4:a . they form'a~comblete "orthonormal? basis in fheﬁﬂilbertﬁﬂrl
 _'§pace ¢[G']- Iﬁdeed the set of characters ils complete because they
form a set of N 11near1y 1ndependent funct%~ns (w1th respect to ey@her

of the spaces’ ¢[G ] or ¢[r]).

X ch) Nam, 2

.-iqu CAeT - ~
and the characters are mutually orthogonal |because, “~ '

ES

CxQyex) , xQg,x)> = <xQ1,*A'2, ), 1>

.-'=A‘ZG ‘Xfllﬁiz,i) = N 5(1 +12) . . (2.3.16)
. XE . . :

. B ' ' - -
‘Then, : . . , k
' B T

1

‘ _ _ b ‘ o .
Th. 2.4.b any function f e ¢[G ] eah be-repr&sented as a linear'cbm-'
b1nat10n of characters, the sequence of coeff1c1ents representlng the

Fourler transfbrm f(_)

fo = T Eoraw - 4 ) xans LFRWN @i
Ae . - ) . . " ' . .
e e P D X R ) x> - 2.5.178)

e

G . .
Xe q ../ o4

(243.15)

N

/—"‘_" \\_./ ’
. . -



_-pertles as those presented by Eqns 1.2.12n1.2.13. Whence,_

‘(where, - for 1nvarlance of the 1nner product we' 1gnore the norﬁal—

‘1zatlon factor 1/N)

48

‘Immedlate corollarles of these theorems 1nd1cate as expected the

. . \I,. 1

‘::1nvar1ance of the 1nner product under thlS Fourier transform mapp1ng

(Eqn. 1.2, 15) and the ex1stence of the same translatlon 1nvar1ance pro~

~

-Th.‘2.4.¢ the FT of Eqn. 2.3.17 realizes an isomorphic'napping;between :

the Benach algebras  @[7l,v,+,1) and @[FR1.+8,8),

R S o
£91, ‘_;:1 B & 5 TUof%5 0 (2319

- Y

= '

" The 1somorph1c b13ect1Ve relatlonshlp between the characters ‘

_x(l F) (and their correspondlng Fourler transform) on one 51de and the‘,,~w@

. dlscrete flnlte Walsh functlons (Walsh transform) on the other 51de _ . ',{i‘

2

appears evident once we reallze that it 15 p0551b1e to dev1se a mapplng

(many, in fact) P -+ P n" e.g. Jﬁ

. al®) 9‘23,%1 TExep, L rsag VY

N

-

-(w1th an obv1ous inverse o ) whlch performs an 1somorph1c gorrespondence

between ‘the group (P 3). and ‘the set of first N—q-~non;negatxye

-1.1ntegers on whlch there is defined an addltlon 2 (also!)

x1y=dﬁg a@*o)if%n) IR @

.Thisfmapplng'is by no means;uniQue,..Giﬁbs and his colleegues have called

-
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~

it .a’ contractlon (expan51on ~ for the 1nverse) mapplng, and they prOV1ded
various generallzatlons of thls concept [70,71, 72 73] Most elegantly,~
‘_the mapplng % .can be V1ewed as a norm on Pq’ assoc1at1ng WIth each x i

.n—tuple a dlstlnct length X. The fact that we ‘want dlstlnct -norms. for
. n*_l

d1$t1nct nmtuples ‘exludes the usual 1sotrop1c (}taxlcab") norm- E: [xkl

0 :

whlch assigns to each of the basis vectors’ g; or E_ an equal (—l)

i ey

: '_,___;__m;ﬂnorm._nihe_contraction—mappings' G and

1 2’
. | nnl ; 4 . . - | .
@y (x) = > q. X, ‘
] 1:0 o
. . } - (2.3.21)
" n-1 - SR
' L x= n-i-l
%ZCEJ - ;E:< i’ N
‘ i=0_
"\. -

" which are seen to be anisotropic norms (assigning to'e%ﬁh,basis'n—tuple
T . : . . . .. . ' ) : ‘e n
" E; 8 dlstlnct length) reallze' a bljectlve correspondence betwéen P

and P n’. and S0 they are the ones most often used. Then, 1f we replaee'
. ., X andq k 1as elements of P by. X and A as elements of P we
e . obtain 'the entlre theory of dlscrete f1n1te q—adlc Halsh funcglans
V Equatlons 2.3, 1-2.3.6 appear as a partlcular case for q=2; then w, = -1

. and ""31(A x) is real, bivalued and self-inverse. = e

)
~

Hhat has ‘been gained by adoptlng thlS deflnltlon of dlscrete

‘\ Walsh functlons and the correspondlng Walsh transform? For one~th1ng, '
Lo _,-——-"’ﬂ_—#_. -
Ty generallty 1s achleVed through an embedding of Walsh. ana1y51s 1n the

.— ’ I

ﬂ?arger‘c;ass qf Fourier analysis on (flnlte).groups; secondly, the arbi-

trariness of definition 2,3.1 fis aybided; and; very important, the

4 intrinsicaMy multi-dimensiocral character of . the Walsh transform is

! , R . . . .
./. . . ' ) 4 - L . ’
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'brought'forward‘ This latter aspect 1s fundamental to the problems .
dlscussed in Sectlons 3. 4 4,2, 4.3 and 6.5. and w111 be con51dered anew
there. Alsn to be mentloned at this p01nt, 15 the fact that the f1n1te-
ness of G ‘and P (apart- from thelr multladlmen51on§11tyj precludes any
p05515111ty of a natural orderlng of their elements . with the consequence
‘iithat there is no unique ordering of the set of Nalsh functlons. There

are as many orderlngs as there are permutat1ons [66 74]. However no

'; partlcular orderlng has any bearing upon the fundamental propertles dls- )
cussed above There' are, nevertheless* extraneous features llke, e. g._

. computational advantages [75 76] whlch may d15t1ngu1sh certaln 5pec1es

of Walsh functlons

2.3 THE GROUP 'I'HEORETICAL.DEFINITI(N OF"ANALOG WALSH‘I'-‘UNC.'I\“IONS

The 1ntroductlon by Flne [53, 54] (for the dyadlc case) and
Chrestenson [61] (for the q—adlc case) of a group theoretlc approach to
Walsh analy51s has freed it from the stranglehold 1mposed by the con—.
51derat10n of an 1nterval as the domaln of definition for Walsh functlons
Instead as it w111 appear presently, it 1s more natural ‘to. con51der

that by def1n1t10n .

Def. 2. 4 a the Walsh functlons are the characters (hence thelr contln-
uity) of the q«adlc group Gq represented by the ‘set of all sequences

'IE‘a (O""fi-o' st£’ veey X 1, e ), X5 € Pq, ulth termwrsehaddlg

_ tion modulo q-
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\f . "The "infinite! dimensionality:of Gé_‘requlres verf careful
'treatment “The translates of the nelghbourhood of the 1dent1ty ' )
(deflned as the set of all sequences X w1th Xy =0 for i 4 r) provrde'
an open ba51s and hence a topology for Gq' Then, Gqﬁ may be shown B
. [53] to be a totally dlsconnected LCA topological group . Thus, ‘the

Fourier transform on the qnadlc group G (see Eqns 1 2.5<1.2,17).
_The equrvalence between theSe characters (and thelr correspondlng Fourler '
transfbrm) on one srde and the Walsh functlons (and the Walsh transform)

_on the other 51de may be establlshed in two stages.

Flrst, 1t is necessary to establlsh the almost everywhere (a e.)
.

onevtovone corre5pondence between the set of sequences X and the set
‘of non«negatlve reals R, . Thls correspondence is achieved via the

(contractlon) Fine mapping [53, 71] a: Gq +> R

5 . |
ax) = x=.3F x'q" o S (2.4
' . i=TNx . — e . H . L. '

‘and its inverse o“} : R;,+.Gq, whlch is. restrrcted to selectlng only the

A}

frlght ended (zeroﬁstatlonary to the rlght) sequences for g-adic ratlonals.‘
Moreover, thls mapplng is an 1somorph15m between the group G and the

set R£ to which attach an operatlon of addltlon (also denoted by 1)

deflned as ’ "-% o d

' : . . .

 x2Y?anﬂ a@™ ) Folgn. . - e

no

“To achieve an lsomorphlc a.e, bijective mapping between Gq- and the group "

T of all Teal numhers it is suff1c1ent for q > 2, to requlre that
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x; .€ Z insteadiof Pq. Alternativelx; this.corfespondence can he
reaifzed even fof q=2 -and/or k. € ? at.the expense_of adding a sign

term s, € Pz- to every sequence x sﬁch that x = (s ot xvl,'xo,...)

. the operatlons between sign terms heing carrled modulo 2. The napping :

L} :'Gq-+ R, deflnes a norm and hence, a metric (contlnuous] on- G [77

. 78] which, in its turn, lnduces a copology on. Gq eqolvalent to the

Oriéinal'c Indeed | d(;‘zj'= o(x%zj has all the characterisﬁics of a

distance . functlon.. The QX1stence of the mapplngs ‘@, and a 1 .leads

7'1mmed1ate1y to the invariance of the Lebesgue 1ntegral on R {or R OT ’

1

any subgroup of it, as for example, the 1nterva1 {o, 1] 1) with respect :

to the qsadlc translatlon operator Ty where Tyf(x] = f(x$y),
'ff(x-ty).dxsf'f(x) dx. . S (2.4.3)

Because of this correspondence Gq + R, 1t is not always necessary to
‘%rry on dlstlngulshlng between real numbers X and sequences X; in these

cases, the underbar will not be used Notwlthstandlng thls remarkahle

correspondence, 1t 15 ev1dent that contlnulty of functlons on G does

q

' not 1mp1y contlnulty on R (w1th its usual topology) fact which ex- -

"plains why the Nalsh ctions whlch are, by def1n1tlon, continuous with -

respect to Gq (and are 1nf1n1te1y harmonic | dlfferentlable [79 80]) seem

A

to be anythlng‘but‘contlnnous or d1£ferent1ab1e when viewed -as funct1ons'

]

of a real variahle.

s

The‘second stage for showing the equivalence between the chara- .
cters on G, dnd the Walsh functions entails proving the fact that

e
5

.
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'Th 2. 4 a the characters of the subgroup (X,%) are 1dent1ca1 wlth the

Halsh functlons [of Sec, 2 2 Eqns 2,2.1-2. 2 6).

r
~ -

The proof TUNS as fbllows-r

(I) The suhgroup (I 1} is qmlsomorphlc to the subgroup Ga

'contalning all the sequences X with xi~0 for i % 03 hence it is

“the complete dlrect sum of a countably inf1n1te set of coples of ?

"-Since Pq is a compact abellan group, S0 IS (I +).

2 The dual group of a complete dlrect sum of . compact abellan
groups {G } is the dlrect sum of the correspondlng dual. . groups fFK,.
- 50 that a character is representable by a f1n1te product of characters

N N

Coxx) =g oxQGx) e BN CRENOR

N

-

R

(3) * Since Gk is 1somorph1c to 'P . 1ts characters can be ex-
) LA Xt ¢

Tessed as w K-k which appear as Rademacher functlons 1f con31dered
P q ’ PP

with respect to the entlre group Ga, i.e, the interval 1

The characters thus obtalned form the denumerablerset of Walsh

: Ifuncticms on the umt mterval regarded as funct:.ons on the real llne,
they are the periodlc Walsh functlons of perlod 1. Thelr index spans o |
" the set of (non-negatrve) 1ntegers E or, alternatlvely, the’ set of qQ.
~adic rationals (less than 1) [70, 79] 'As the characters of a (sub -)
 group, they form a group under multlplicatlon More.generally, Fine [46,

81] showed that
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) .any orthonormal system of functlons (on a measurable space}

~ Which is simultaneously a group under multlpllcatlon can be essentzally

derived from characters of compact abellan group5j and -

(2] if 6 is. any countable abelian. group, there exlsts on the
unit 1nterva1 I an orthonormal group  (of functlons) G? isomorphic to

QG and if G is inflnite, ‘then G? 1s.complete in L% [Iﬂ.

Slnce the denumerable set of Walsh functlons on the’ 1nterval .1
“'appears as: 1ts~subgroup (of.functlons of perlod 1), the group of.charac—

| ters on G - (R ) 15 called by extrapolatlon, the. group of general-
“1zed Walsh functlons [54], they shall be also denoted as wal%A,x).  Two o

'1mportant equatlons relatlng ‘them tq the perlodlc Walsh functions are |

wal(mq™,x) = wal(mq ™, x+kq™; k,m, ne P, L (2_4;531

-and ' ' | ' : |
- wal(A,x) = wal([A],x) wal(l;[x]). : ERE _ (2.4.5b) /ff

In his dlsseratlon [82], Pichler prov1ded a dlfferent but 1nterest1ng :;5; '

' deflnltlon of general1zed dyadlo Walsh functlons by making full ‘use of

' the even/odd part1t1on of the denumerable set of Walsh functlons 'In the

name of 51m11ar1ty with the c051ne and 51ne functlons, he called the '
even and odd Walsh functlons cal and sal functlons respectrvely, and :

then extended them per1od1oally and aperlodlcally Cthe term aperlodlc . : }/7

L

._exten51on is, 1ndeed a tour de force - 1t 15 assoc1ated with the use of //////i

a counterpart of the a -1 mapplng which relates a dyad1c ratlonal to /x

its infinite dyadic representation), In %rat concerns the Nalsh trans“

M Al
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:form, Plchler (and after h1m) Harmuth partltlons it into two real parts
according to the even (eal] ‘and odd (sal) symmetry. Thls procedure
g becomes less appealing for q > 2 when Halsh functions are complex qn

~valued, and it will not be followed here. A polynomlal counn\?part of

N Pichler's definitlon ‘was given by Butln [57]
An'interesting eipression relnting NEIShvfonetions to a'"product?
- of the 1ndex ‘and the free variable has been proven by Flne for the |

.dyadlc case, - It can easilx-be f generallzed tOrany q-adic case for which

q 'is a prime mumber, ' | S ‘t ' _ | -
wal(x, x) = wa.l(l A°x) = q E S (2.4.6)
L e

because then'phe set of sequences x is not only a group Gq under

o

'addition i but*also'a field Fd 1f multlpllcatlon is deflned poly- .

nomlally, as 1f X were a formal power series X =§: X, l The mapping
i .
. reallzes -an 1somorph15m between Fq and (R+, ,.), The Note to

R Eqn. 2. 3 14 exp1a1ns why the word "product" has been put in. quotatlon

" marks above L
. Following'pne precepts of harmonic analysis sunmarized in the
" introduction, the Walsh-Fourier transform (WFT) of a LP-summable function

is-defined as ' , R _ L T a

(2.4.7a)

Def. 2.4.b Wi£} &%) 2 [ £(x) VELORT dx,

with'an inverse transform computable (when it exists) as



'q—adlc convolutlon and po1ntw1se multlplmcatlon Banach algebras,
" Th, 2.4.4 e * o} = e wig,

The proof which makes use of Th: 2.4.c, of Fubanl‘sl epre@'and*of Pont~ ';"

g 56
gl e A e s aa o i
W {%}_= f(x) = .jf£CA] wal(},x} dj, | L . @)
where the domain of int.egraticmli‘s either Gq or R, or R. If the X~ N
. ) B '.', . . ' N ' - ' .
' domain is the unit interval, 3 spans the.set of\integers, and we ‘are .
.‘faced with-the Nalsh series of Eqﬁ;rz 2.8, As any ourier transform on
a group, the HFT is characterized by certain translat 1nvariance Pro~
-m¥pe;tleé which are essential ‘in our study of 11near systems and numerlc
épp;icatlons of convo;ut1on transforms.
T o o
Th. 2.4.c WPE(X)} = wal(Ay) WLE)} = wal(h,y) BV ... .- (2.4:82)
The ﬁroog.is trivialiyaﬁased bn;ths. 2,4.3 and the multiplicatioﬁ rule -
-of Wélsh‘fupdtioﬂs as charactpfs. Sim{iarly;-one,éan‘prové
Th. 2 4.d5 W{wal(y,x) f(x)} f(kgy). . R oo (2.4:8b)
As for the éounﬁerpart of the classical cgnﬁolutién theo;eﬁ; if wefﬁgfipe
a q-adic convolution product = *#7: ¢[Gé] x gl6,] > ¢{Gq]- ‘as
Def. 2.4.c (£¥ g).A [£0) 5GP dy = [£0) Tig(y) dy, L (214:9)
it can_be immédiately seen that this-operatidn-is éssociétive and commu;
tative and that the Walsh-Fourier transform is an 1somorph15m between B .

,_t2.4;10) q

ety ] . /
. S .
SR . -

/ N

‘ _ryagin*s duality~1s simple In additlonr s/h ea@y mentloned if the a

. function space haq'a domain whiii;ij/@ea

s S /\,
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Th, 2.4.e’ the correspondlng Nalsh functlons .are 1ntegrab1e and form a _.
' (complete) orthonormal basis for the Hllbert space of’ complex«valued

'functions on that domalnr

'
f
i
I

" . The derumerable set ofiperiodlc Walsh functlons .can_be embedded ' S .

".1n a much larger class of orthogonal functlons. ThlS becomes more evi

.dent when they are presented as the TOowS (tolumns) of certaln orthogonal
- matrices’ [83 84, 86 86,87] obta;nable through Kronecker products B
Regardlng the dyadlc d1screte Malsh functlons Harmuth [88] has shown -
.that they can be. related to Hadamard matrlces whose order is a. power of
2.‘ A Hadamard matrlx of order N is an N x N matrlx HN w1th 1
lelements whlch obeys an orthogonallty equ?tlon of ‘the form HN HN
‘N IN,‘where H denotes the Franspose of H and I 1s the 1dent1ty ..
matrlx. More 1nterest1ng1y, Crlttenden [89] and recently, Larsen and -

. .
Madych [s0] have shown how to obtaln the analog Halsh functlo 5 from ”
countable Kronecker—llke products of Hadamard matrlces. Of course ‘not
all the sets of orthogonal functlons obtarned 11kew1se are Walsh type
. functlons because not a11 of them are closed under multlpllcatlon Al-_"
'though it may be possible to prove most (if not the entlre) Walsh theory
startlng from a matrlx deflnltlon, it would be a rather contortuous way\\
of reveallng the symmetry and translat1on propertles of Walsh functlons, .
‘whereas they\are 50 readllg and fundamentally ev1dent once a’ group - -
| theoretic definitlon is adopted Also, although 1t 1s p0551b1e to deflne
the Nalsh functions as’ elgenvectors of certaln matrlces [90 72] the
'essential fact that these matrlces represent 11near operators resembllng
the NGNtOHvLelbniZ dlffeéentlal operator is not S0 ev1dent as when a |
: .,'-
/ .

~7



\”\Qf harmonic differentiation in which, by definition,

;group deflnltlon is forwarded . The presentatlon of Walsh functlons as
“elgenfunctlons of certarh llnear operators forms the subject .of the next
section,

2.5 NALSH- FUNCTIONS AND WONIC:DIPFERENTIATIOEQ

~,

© L J.E Glbbs, in. 1967 -had the 1ngen10us 1dea of emulatlng the
‘classical approach of deflnmng systems of orthogonal functlons from
dlfferentlal equatlons wlth boundary condltlons by constructlng a 11near

operator w1th propertles 51m11ar to those of ‘a NewtonnLelbnlz dlfferent—

B

" iator s0 that the (dlscrete dyadlc) Walsh functlons appear as its elgen—
. :

functlons The theory of such operators Ccalled "loglcal" ”dyadlc" or
-/

: /’"Glbbs" dlfferent1ators in connectlon with dyadlc Walsh ana1y51s) was

Later developed to apply to any space of complex—valued functions on a
”;compact (or eyen'aylocally <compact) abelian group [73].  Thus the theory

~

Def 3.5.a a harmonlc d1fferent1a1 operator D on G[G] is any llnear
: operator on" ¢[G] whose set of elgenfunctlons is the set of characters
of G. Slnce there are many ‘such operators in each space unlqueness is

assured by relatlng the elgenvalue correspondlng to each character to °

the character‘s index v,

‘.__.-_

. Dfx(v xJ}— chv) x(v x) . . B L o . (2.5.1)

L The mapplng c(v) depends on the structure (as groupsl of the domains

"G cand T [71 72 ,73,38], - Since, for the moment . we are not 1nterested

vy

- in the structure of U bit in its formal relatlonship with Walsh functions



'lon "unldlmen51onal" domalns llke ,?'ﬁ; [O 1) or R;}l'q(y) wiil be ™

D has many of the pr0pert1es of the c13551ca1 dlfferentlator includlng

“ /
the follow1ng

N

*con51dered as’ ‘the natural 1nJection of v inthe éomplex.ﬁﬁmber_field,h

. 50 that we: may write ' L L . e,

Px(v,x) = v'xc\'»,n'c)'.- L asas

/ . ' |
noa functlon has zero harmonlc derlvatlve 1ff ‘it is constant,

«~ the relatlonshlp harmonlc derlvatlve - Fourler transform on

group'is_the_same as in c13551;al analysis
08 =y? “and Df= F‘l{vf};

- the harmonlc der@vatlve of the convolutory product of two’
]
functlons is equal to the convolutlon of one functlon w1th the derlvatlve

of the other one,:‘
O{f *'8.} =@f) *g =£* 0f)

o

- the extension to higher order harmonic derivatives can be made

either by induction (for~integer‘ofders) or via the definition of deriv-"

"atlves of the harmonic "delta" functlon (i.e. the unit of the convolutlon

functlon algebra),
' af_:a A 1:«1{.\,1:} pte s £ » vta, - . (2.5.5)

" so that the harmonic dlfferentlator appears as a convolut10na1 operatoﬁ>

A

[91 92 72]; .

59 .

—"

o R : L (2.5.4)
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'“' the harmonlc deriyatlve may be glven a gepmetrlc 1nterpreta“

-“tion, and-may be computed as a linear comblnatlon of some of the functlon!s -

“values [73 93]

Since, as we have seen, the: Halsh functlons are characters of a
-certaln LCA group, it f;\)ows that they are the elgenfunctlons of the

harmonlc dlfferentlator on the same group. Thls is rather triV1al be-

/

_cause it was the operator whlch has been deflned accordlng to thls
'frelatlonshlp. Nevertheless, the Walsh func}xons’can be properly defaned
as. the elgenfunctlons of the harmonlc dlfferentlator provided we follow

Glbbs' or1g1na1 path and construct the operator from con51derat10ns other

than Def 2.5.a, for 1nstanoe, from con51derat10ns of functlon varlatlon
. along dlrectlons 1n the multlvdlmen51onal q-adlc %?oup (See [701 for a’
. ‘r!

very suggestive comparlson between the role played 1n physics by dlffer-
oW .
entlal equatlons with boundary condltlons and the role played by harmonlc

C e o
polychotomous" dlfferent1a1 equatlons 1n 1nformat10n sciences. ) _Many

{
other systems of orthogonal functlons can be obtalned as.’solutions of
2 .
harmonlc dlfferentlal equatlons. An example is ‘the system of dlscrete

H

- complex Walsh functlons {94] which appear from a second order equatlon. '.i»‘
Also, by generallzlng the 1dea of a loglcal (dychotomous) d1fferent1a1 :
equatlon, it is p0551b1e to constfuct the orthogonal q&stem of Takayasu

ItD functlons [95 96], of which the dyadlc Walsh system is but a sub— ,'

class [70] C “

Alternatlvely, one can dlspense Wlth any heurlsticvgeometrlc"

interpretatlon of harmonlc dlfforentlatlon and start wath an advhoc

. a'-__



-line [56,80,97,98]. Ihey start from an 1nf1n1te series.

elgensolutlons of the first order dyadlc dlfferentlal equatlon

61

e A

'definition; this is the path foilowedlhy Butzer and Wagner who (subsequent

to an 1dea of Plchler [91]) have extended from the v1ewp01nt of ana1y51s
and approxlmatlon theory, the concept of dyadlc d1fferent1at10n to

functlons on e1ther the unit interval or the entlre nonvnegatlve real :

/fmfc Py MR ECAR e
k-«m . ) o ml = -1, mz' -+ mfor stl[O!]‘] -

‘and if this serles converges p01ﬂtw15e they define its 11m1t as the

polntwlse dyadic derlvatlve of f£; whereas if the Series converges to a .

_‘functlon ¢ “ with respect to the nofm of the functlon space, they call

3 Al
this functlon ¢ the ‘strong’ dyadldiderlvatlve of £ (much in the sense

of a Frechet derlvatlve.[gg]) Then they are able to prove'that the

operator thus’ deflned obeys all the formal propertles of a harmonlc dlff-

-

erentiator and that the perlodlc (aperlodlc) Walsh functlons are the

f'bf = vf with .lfm‘f(x) =

x+0+ 4 - : :(2'5'7) .

—~t
-

'Much of thelr interest has been dlrected towards problems concernlng the

existence of dyadlc derlvatlves, the approx1mat1on of Walsh series -

coeff1c1ents by means of dyadlc derlvatlves, and  the solution. of dyadic

_wave equations, o : . R

_ We'shali not go into any of these‘details‘hecause oﬁr main inter«
est concerns only the possiblllty of deflning the Walsh functions as' the

eigenfunctlons of a linear operator hav1ng some of the formal propertles'

' I
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. 55 the'classical differehtiatdr. These Will suffice to forhiliie a:

Th., z" 5 -'a  The q,a'dic

harmonlc statevspace ana1y31s of cértain linear systems in Chapters -II1

and V, For the moment,iwe shall prove two' uery 1mportant theorems con~

f
cerning the qvadic har7on1; differentlator. T e

rmonic differentiator7commu;es with the gq-adic-
. . ' ». . - n‘ -‘_i

S . 1

translat1cn operator,

(_T)"Df) ) = (vTYf) (x) '_}'_‘ L @5

. The theorem can be, pr ved simp1y~5y using Eqns-'z 5;3 and-2 4'20 to eom- .

: pute the (Halsh) Fourler transforms of both 51des of Eqn. 2 5.8, whlch

'\' AR

turn but to be 1dentical

o - R P
. . g,»

Th. 2. S b The q—ad L harmonlc dlfferentlator is not, in general' a tht-
- B,

4

;Kblchln'operator [1?0], i.e. it does not,pbey thesproduct rule

5

. A T .

DR T o .
This fact was notlced by Butzer and Wagner {96} who were able to g1ve

D{fg}=f'(v’g)+_(vf)g. T _(2.5.9)

a counter example, and 1ndependent1y, by Cohn-Sfetcu [101], who showed

that of all harmonic dlfferentzators on cowplexrvalued functlons only the

c1a551ca1 one obeys the produizsrule

[}
e

tht [102] and Kolchln [103] generallzed the igycept of derzvatlve

by ta ng the préduct\rple of the Newton»Lelhnltz operator as fhgafmental*

property " In the context 0of thelr dlfferentlal algebra a derlvatlve

operator on & r1ng R (fleld K) is, bx.deflnltlon,'any oper&;gr‘ D
, "! ‘ . - " . hd . . L + ‘.\‘.

: satiszlng S ® : ( e ‘ ' co '9":f'
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D(a+b) Da + Db

Mo

D(a . b) a @Ja) b+ al tobl, Ya,be R@q @ '5'.191,'

Of course, as for the hamonlc‘ differentiator not all ‘the properues :

- of the classic d:.fferential operator are charactenst;l.c ta the Ritte

o

Kolchin operators '

3 -,

The proof of the theorem ma.kes use of the fact that- the Haar

d.ntegral (and hence the Fourler transform and the a.nner product as well)

. is a linear operator w:Lth respect to (ar:.thmetlc] additidn in the fz.eld

of complex numbers\but it is.not 11near with respect to q-adlc addition,
.

Again, the proof is made i the "tra.ns!orm domam" For classical diff-

erent:.ators and Founer ana1y51s -one has that (wntten fomally and

dls'regardmg the 2rj. factol) o - ‘ o

FIO(ER)} = v(E.* @) ﬂf(n) g(v=n) «dn
N SEN . f(\h-nm) £(n) g(v-n), dn | |
- - _/“ f(n) g(v*n) dn +ff(n) (v-n) g(v—n) dn A'
= (Df) 8 + f * (DS)

Lo

= F{ng + ng}

wh:.le for q-adlc dlfferentlators and Nalsh—Four:Ler transforms one has

tha.t

WID{£g}} = veF ¥ §) =fv £() gen) dn.

.,,f@,s\mn) f(n) gvin) dn

I~

Ay

Fon iR o
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The faot that the q$ad1c harmonlc differentlator is not a R1ttholch1n

operator helps to explaln some of its pecularltles [104,105 106]

.lo'nut it in different words, Th.-ZLS b is n'corollary of the .?
~fact‘thot of‘all LCA groupvdonains for ¢[G}, R is the only one uhloh

is also the additlve group of the. field -of complex numbers whlch consti-

-

‘tute5the co—domaln of the funct1on space, Of course for functlon

opaces, K[G], in whlch the cowdomaln is a field other than ¢, there 1s

a dlfferent (1 e.lnot the th dlfferentlator) operator whlch is bOth a
- harmonic and a Ritt-Kolchin dlfferentlator Thls observatlon [101] |

prompted Gibbs [107] to SEflne d1fferent1at10ns for dyadlc functlons,

thus Tecapturing the Boolean d1fferent1a1 operators of THayse and Davro

7[103]

Hany researehers thB,lQ?] have also'orawn attention to tne\fact .
that, while the clossical oifferentiator‘is oonterned wlth local behafiour |
‘of functlons, the dyadlc dlfferentlator con51ders thelr global behav1our
This .is correct only as long as we regard the functlons' domaln as-a
unledlmen51ona1 space, disregarding the fact ‘that the Walsh functions are
choﬁacters of the dyadlc group,‘w1th its multl—dimensronal structure and
’ topology [110 22] Thls problem, as well as thexrelatlonshlp betwaen
harmonlc dlfferentlators and local. varlatlon ("slope") d1£ferent1ators is-

l -

dlscussed in more detail in Chapter VI \\

i
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'CHAPTER ITI

q-ADIC TRANSDATION INVARIANT LINEAR SYSTEMS

R P K3 -N‘IN;FRODUCTION: TRANSLATION INVARTANT. LINEAR SYSTEMS

This chapter is. concerﬂed with one aspect\of .the application of
Walsh ana1y51s to the development of system theory, namely, the theory
of qvadlc translatlon invariant linear (q«TIL) systems These are the
: systems for whlch the WT plays the role which the FT plays with respect :
*to "t1me"-1nvar1ant llnear CTIL) systems The chapter is preoccupled

; mostIy w1th an 1nvest1gat1on of the formal and (very 1mportant) conceptual *

' ,51m11ar1ty between the theory of TIL systems and that of q-TIL systems

The study of such systems (another "1nstance of the grOW1ng algebralc
presence in systems englneerlng" [112]) 1s motlvated both by purely
theoretlcal Teasons and by the need for prov1d1ng a'system theoretzcal

-

framework to appllcatlons of#Walsh analysls 1n communlcatlons and contrcl

1

: Also, thz/eiistence of natural phenomena which could be best modelled as

q-TIL syst cannot be excluded a pr10r1 [113 114,115].

‘ Tne'study of relatienships between phenenena‘(cailed.eigneis) is
difficnlt if not'imppssibie unlees_theee relationsﬁ;ps are approximated
by mnthematicai modeie,‘systens,.peeseeéing speciai properties. In its
most abstract form\[116 117 118], a system S can be defined as a trlplet
,' {u,¥, A}‘awhere U. and Y _are sets and 4 is a blnary (input-output)

" relation in U % Y ; the domain of the relatlonshlp ;s_the input set

A

6s- o
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u C.UP and the coodomaln is the output set Y)MC, Y In general, .U and

Y are .sets of mapplngs having domalns D, . and DT respectlvelyI and
co-domalns. c, and Cy‘ respectrvely.' Defined likewmse, the systém ig
much too abstract, providing a model which is hardly tractable at alI _ 5

The situatlon can be alleV1ated by imposing certaln structures on the

‘input and output sets, as well as on’ the relatlon 4 1tself.

" This can be done flrst by structurlng both the domalns and co- - A

'domalns of U and V.- Dynamlc systems require that the domalns D, and
" Dy' be ordered sets (ealled tlme sets) In practice, - 1t is- customary to

‘con51der the same time set for both 1nput and output sets (a counter-

example is'a sampllng dev1ce), the normal ch01ce belng elther R [contln--

‘uous systems) or 7' (dlscrete systems) W1th their usual order relatlon

1

é; The nature of the order relatlon plays a fundamental role 1n
connection wlth the concept of causaIlty [118 119] The structures of
the co-domalns C and C may, 1n thelr turn, vary: from that of a
group [120] to that of a vector 5pace Or even an algebra [121 117 119 112]
Most of the cla551cal appllcatlons con51der the field of complex numbers
¢ as the c0wdomarn_£br_hpth the 1npuf and output sets of 51ng1e input -
51ng1e output systems (a counter—example is a quantlzer] ‘For k-multlple
1nput ~ m-multiple output systems the covdoma1n5 C and 'Cy ‘are the .

finite dlmen51onal vector spaces @ and ¢m respectiuely It 15 also

'customary to restrict the input and output sets to be spaces of pvsummable

: functlons, and, moreover, to give them ‘the structure of Banach or, even.

hetter, Hilbert spaces,
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The second stage in the spec1f1cat10n of a. system 1nvolves the :
. / ' Y
structurlng of the relatlon 4 _1tse1f The usual flrst step in this

dlrectlon is to make & a morphlsm, that is to make. 1t a map H : Uy

compatlble Wlth the structure of 1nput and output sets. 'In the classi-
cal contex of llnear (usually complex-valued functlon) spaces Uand Y

. this translates as the requlrement that the system be linear, i. e.

. l. .. o - . N . . . L | ) ‘ | - :: . - I T K
- . H {ulu + uz'uzj' = alH{ul'-}’ + u'z'H{u'f}' = .al)-r]r"*; ezzyz_- _ (3.1.1)
wherel" 1,-32 € f1eld K (usually ¢}, ui, ué e U (usually ¢iRrR]),s and' -;

‘ o : i
yl, Y, € y (usually Z[R]) ‘ :

!
l»
|
{

'The next step is to specialize the 1nvestlgatlon to the linear «

) systems posse551ng certaln symmetrles, For. 1nstance, systems descr1bed

' by llnear operatprs whlch commute wlth certaln other operators\ The

) c13551cal example is the class of llnear’“tlme"alnvarlant systems whose’
operators commute w1th the (arlthmetlc) translat1on operatOr T. The
name t1me~1nvar1ant reflects the fact that in this case the transform- ‘

™ -

ation reallzed by the system 1s essentlally 1ndependent of the "time"

at whlch the excltatlon is applled

Hu(tet) = M uge) = T2 Hu(t) =TTy(t) = y(t W (6.1.2)

S S The word "tlme" has been put in quotatlon marks to underline the fact

' that 1t is used generlcally, there are systems whlch are space -invariant -

but obey the same formal relatlonshlps as the TIL systems. Ttanslatlon

PRy



1nvar1ance precondrtlons ‘a group structure for the functlons' domaln,,'

e

otherwlse the translation operators would not form a group,.and the—"

unctlon space would not be closed under the operation of translatlon.r
In c13551cal system theory, the role of D andﬂ.Dy is playjz, as

“already mentloned, by either of the groups : +J or '(Z +), br their

subsets This chapter is concerned w1th a 51m11ar class of systems -
the systems for thch D = D ‘=’ g- ad:Lc group (gener:.cally denoted G ),

and the operators are llnear and commute with the q-adlc translation

‘ operator These systems are 'said to possess- q—adlc symmetry and are-

called q adlc translation 1nvar1ant systems

The“studf of q—TIL systems evolved almost exclusrvely in connect— '
don with. the dyadrc Walsh transform and, hence, was oonf1ned to the
partlcular case of dyadlc 1nvar1ant systems Much of the development .“
(of thelr theory can be traced ‘to the work of-Pichler [91 92,74 122] -
although 1n1t1a1 steps had been takedﬂearller by Nallor [123] and La--
Barre [1243 Lately, theoretlcal contr1but1ons were made by Yuen [125], : N
Cheng and L1u [126,127], Gethoffer [128 129], Le Dinh et al [130,131],

: Morettln f132, 133] Pearl [134], Hook [135] and Cohn;Sfetcu t135'106]

L amongst.many others Harmuth [88 136] -played an essentlal role wrth
' regard to the reallzatlon, dlssemlnatlon ‘and applrcatl of dyadlc :);/ ‘
TN
Systems ~ In general the theory 0 dyadlc systems has been developed \

separately for dlscrete and contlnuous ones, although the formallsm is e

N

1dent1cal [106] qvadlc systems were also dlscussed by Sev1ora 1n hlS

N
~J
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_—". study of generalized filtering [138] viewed as a multiplicative-shapihg-
of (generallzed Fourier) spectra of functlons on LCA groups but- he
was less preoccupled with the theory of the system per se as with the

p0551b111ty of its reallzatlon by sequentlal circuits.

AlI these contrlbutlons may be c1a551f1ed as. homogeneous appllc- _
“"atlons of Halsh analy51s to 11near system theory because, as. w111 be :
shown shortly,,the elgenfunctlons of a q—TIL system are Just the Walsh
.functlons ~ The heterogeneous appllcatlons of Walsh ana1y51s to system
theory. refer to studies of non—q-TIL systems and w111 be dlscussed in - .
Chapter IV - Of this chapter Sectlon 3.2 is devoted to the 1nput/output
_(I/O) descrlptlon of q-TIL systems Sectlon 3. 3 to their 1dent1f1cat10n,:

. and Sectlon 3 4 is concerned with a "harmonlc" state- space descriptlon )

of such systems

3.2 1/0 DESCRIPTION OF qa'fIL SYSTEMS

- : : '; 1 For s:mp11c1ty and clarlty of exposltlon, the flrst part of this
‘ sectloh Wlll be concerned only w1th 51ngle 1nput ; 51ngle output 11near
xsystems. The exten51on to multlple 1nput - multlple output systems is
'formaIly 1mmed1ate and 1nvolves merely notatlonal con51deratlons AsA
in the precedlng chapter, the "medlum" w111 be the space of summable
“complexvvalued funictions on a q-adlc abellan group. (whlch for genera1~

1ty, may take any of the forms dlscussed in Chapter II) On thls ’
11near space an inner product hence a norm, is deflned in the usual

‘ . 2

way (Eqn 1.2, 16) The Hllbert space thus obtalned w111 be’ denoted K

\ B
-

Q.
f\\
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generlcally as ¢[G ], and Will be con51dered as both input- and Output

set for the systems to bé dlscussed CThe condltlon of a Banach 1nput/

"output space would sufflce fbr the forthcomlng dlscu551on, nevertheless

\
the ChOICe of restrlctlng the space to be a H11bert one is uarranted by

Athe fact that it has a rlcher structure which neverthele/s sufflces to

cover all pract1ca1 appllcatlons- also, it perm1 a notat10na1 un1f1c—

ation of’ the presentat1on by replaclng eit

or integration with that of the-inner oduct. ¢[G ] 1s also a Banach _

algebra if multiplication:is a Sq
dlscrete the algebra has-2 un1t 4, if Gq' 1s not dlscrete a unit

3

'(aLso 5) may be ad ed in a manner 51m11ar to that' in [119]

¢ h T . .
rom now on, a llneaf\system w111 be con51dered as the trlplet
G s

¢[G ], H) where H is a linear operator on ¢[G 1. The .o

"dlscuss1on will be 11m1ted to bounded 11near operators, whose theory is

very ‘well establlshed [138 99] and whlch are a better refléctlon of

~

natural relatlonshlps.' The above deflnltlon covers only the zero“state

11near1ty in the sense of [139] To make it more general and not limig

-

. linearity to the zerowstate condltlon would have meant to con51der

4

1nput/output spaces contalnlng functlons defined only on subsets (not

subgroups) of Gq, a fact which. would lead to unnecessary compllcatlons
. for def1n1ng translatlon 1nvar1ance (51nce the functlons' domaln is no

‘longer a group), Be51des, as we shall see, ‘the concept of state as

- . . . \

ed as q—adlc convolutlon. If. G, 1is -

of the symbols of summation

 well’ as that of causallty are not so readlly deflnable in our case, and _7
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the generallzat1on to nonrzero state 11near1ty 1s not warranted by any

L

'pract1cal 1mp1emeytat10ns ‘-_' . . . s -

A
e
R A

From the. ba51c Rlesz representatlon theorem and ltS -extension

to dlstrlbut1ons and measures [139 99], the actlon of the operator H

re

on an input functlon u(t) can be represented formally as

-Hutr)‘é <h(t -) ’ u( » . | R -J: I - (3.2.1)'

[="

Def.: 3 2a A q—ad1c translatlon lnvarlant system is- a system whose opera-

-

" tor is 11near and commutes w1th any elément ‘of the group of q adlc

' translatlon operatdrs,

CH TTu(t) ='ﬂ_u(t21),¥ TfHu t): = TTytt)’= y(£25). _“ " fs.z.z);

R

The follow1ngﬁtwo theorems are the fundamental results of the

,_I/O theory of q-TIL systems.

»

Th. 3.2a A q—TIL'system is uniquely Tepresented by.a qvedie”convolution'

'operator, i.e, by a llnear operator H whose kernel "hx, E) depends

only on (tvE), o

Hu = <h(tls) .'_u(-_)> =h ¥y o (3-2;3) -

The kernel h is celled the impulse response of the system because

H&=h%s§=h o S (3.a2:4)

"Th. 3.2b A q-TIL system is unlquely represented by a p01ntw1se multl-

l .
pllcatlon fhnctlon relatlng the Halsh transforms of the 1nput and output
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]
signals th15¢funct10n is the WT of the 1mpulse response and is called

" the transfer functlon of the system

y = Hu + ‘y‘}:"—‘ -h':V'U. S : LT ) . (3.2.5)
An 1mmed1ate corollary of these theorems states that the q- adlc

Walsh functlons are the elgenfunctlons of a q-TIL system,

H wal(l t) = h(A)-waI(A t). o ' -“ - ,(3.2'.6)

‘=; _ | ‘ ."bThis corollary, together w1th Th., 3. Zb represents a varlant of the
theorem: Statlng that the Walsh (Fourler) transform is an 1somorph1c
mapplng between a Banach functlon convolutlon algebra and a Banach polnt—
‘wise multlpllcatlon algebra. . Fig. 3 1 111ustrates dlagramatlcally these

‘relatronshlps. For multlple input - multlple output systems u and y
.are vector functlons wh11e h and h appear as matrlx functlons but L
_} o otherw1se the formal relatlonshlps are the same as above. The comp051-

tion, (serles or parallel) of q—TIL systems obeys the same laws as those

" for tlme-lnvarlant llnear systems - o b

- The two theorems above appear as partlcularlzatlons of theorems '
-1 3.8.3 and 3, 8 4 in [2] whlch state that glven any space L [G] where

u‘?G 15 a LCA group,
: e for any hounded 11near operator Py on t! [G] commut1ng wlth'

|
. a translatlon operator there is a funct1on ¢ on the dual greup T

Lsuch that (wf) (v) = ¢ (v)e f(v) for any~.f e Ll [G] and,'conversely;
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1f’ ¢ obeys the above equatlon, then it commutes w1th any translatlon

operatory

o

[N

I - the bounded 11near operators on L [G] whlch commute w1th
all translatlon operators are prec1se1y the transformatlons of the form
wf = f * qu, where: u is a regular measure on. G [99] A more abstract

theory of translatlon 1nvar1ant operators on LP spaces is presented

in [140] ," | N | o '

The'va11d1ty of these theorems for any LCA’ groups shows that the

» N
formal parallellsm between the I/O descr1pt10n of tlme-lnvarlant and :

.q- -adic translatlon 1nvarlant 11near s}stems is total because 1n both

:cases, one deals w1th bounded 11near transformatlons and Fourler trans-

‘ forms on LCA groups w1thout any reference to the partlcular structure of

‘the groups 1nvolved Hence, the entlre I/O theory of q-TIL systems

9

may. be developed along the same llnes as for tlmeslnvarlant linear
systems Unfortunately, thlS fact was not fully recognlzed 1n the eng-

1neer1ng commnnlty from the beglnnlng, so- that there were many contrlbu—

tlons each treatlng only partlcular aspects of thlS formal parallellsm.

-.As mentioned before Harmuth [88] and Pichler [91, 122] have treated ~

-ma1n1y continuous dyadlc systems, while Cheng and Liu [127] and Pearl
L—‘—‘—-—-_-_'*"—-__

£

[134] and others pald attentlon to. dlscrete ones; also, Gethoffer [129]

who developed a theory of transformatlons between varlous dyadlc systems. :

" Le Dlnh et al [131] were concerned w1th the response of discrete dyadlc

systems to "bandwldth" 11m1t8d 51gnals, i, e. 51gnals hav1ng WI's whose

Y

g
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f;cé ;lp“x . systems [132 135] because

e “m*ﬁﬂmmm : e . W‘Iﬁmt.u.l
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.« . .
‘support is a proper subset of the dual group T.
) . R ) . . . ) \, .
' &
Of more practlcal 1nterest i5 the problem of 1dent1fy1ng q—TIL

e

(1) although no real—llfe q-ad1c system has been yet dlscovered

there 15‘need for 1dent1fy1ng manﬁmade dyadlc systems, and E

(2 q-adlc system 1dent1f1cat10n may play a useful

role as an 1ntermed1ate stage in a more economlcal procedure for 1dent—

LY

1fy1ng tlme-lnyarlant systems [141 142 143] As an’ example, the next

~
-

"sectlon con51ders the 1dent1f1catlon of dyadlc invariant systems w1th
I the help of random 51gnals, the generallzatlon to q- adlc systems 1s
. x
. formal aud 1mmed1ate.- The 1dent1f1cat10n of 11near systems (tlme-

1nvar1ant or not) via estlmatlon of 1ntermed1ate dyadic models is d1s-

cussed in Sectlon 4 5

To-

3.3 DYADIC- STATIONARY RANDOM PROCESSES AND THE IDENTIFICATION OF
A ' -TIL SYSTEMS -~ -

‘,A prerequlslte to the I/0 1dent1f1cat10n of dyadlc 1nvar1ant

systems is the theory of dyadlc stat1onary random processes and their -
1nteract10n w1th dyadlc systems. Dyadlc statlonary random processes
were dlscussed by Welser [144] and ‘more recently, by Gibbs [79],‘
Pearl [109], Maqu51 [145], and Morettln [132 133] The1r work should
be dlssoc1ated from the work of Gibbs and Plchler [146], Roblnson [147],
 Pearl [134} and Ahmed et al [143] who, amongst others, used Walsh

o ana1y51s in an‘ effort to obtaln a more (computatlonally) advantageous

o representatlon of ergodlc (arlthmetlc) statlonary random processes

i
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r_Their work, uhich may be classificd as a "hotorogonoous" approach to ) ~
' random processes theory, is paralleled (with greater dopth) by the work 7
© of Sawicki [148] with regard to the Hasr transform, and will be anaiyzedi
-in the next chapter. For tho,momont, attontion will bo directed to a

:"homogeneous" approach in which both signals and linear systcms havo ' '!\
© dyadie symmetry. ' Since the discussion is- Iimited to the dyadic caso,

_it is sufficient to consider real input and output fhnction spaces. The

:”_dyadic addition operator (identical tolthat of subtraction) is symboiizcd'

by'@, while the operation of dyadic convolution‘is symbolized by 8. .’

:Def 3 Sa A random process [149] hasldyadic symmetry (i.e. it is strictly
dyadic stationary) if it is characterized by a probability structuro
whose (k, L)—th element is strictly a fimction of kef. This exprosses
the fact that the probability of transition between events k and 2is.

{nvariint under a dyadic translation of the events [109].

A_'random process (denoted' liberally as v(t)) is said to be.
weakly dyadic stationary if its first and,seéond order statistics are
indepe?dent of dyadic shifts. This trsnslotos into the requirement that -
the éxpected value ' b |

Ty £ 4 Etv(t)} T . (3.3.1)

- is a constant (assumed henceforth, Hlth no great loss, of gcnorality, to
be zero), and that the autccorrelation function depends solely on the

« ~dyadic difference of itsiarguments,[lss],



condition of joint weakly dyadic stationarity Tequires that

. e .' N

DTt 8 Eviey) UCREES T AR - (3.5.2)

" For two random processes defined over tho samo probability §pac

rvz'(tl_, T K E{v(tIJ z(t; 0 T} = 1 (3).

As expected the propsrtios of dyadic stationary random processes:;';

~are similar to those of (arithmetic) stationary random processes For .’T?"
instance, the relations . - .
-I}'W.(-r)_l O | T\ Gy
£ 2@ s r (0 5 (0) o | (3.3.40)
vz V7T Tyy zz ' . o T

are also valid. The notions of correlation, orthogonality and independ- &
ence appiyiasywell to dyadic tafionsry random processes,’ Likewise,A

one can define spectral density functions. .

The Walsh transform of the autocorrelation functidh r T) of
a dyadic stationary random process is called the Walsh power spectral
density function . .}‘. : /

A . -~
P SWE () =T
It is evident that

Evi @)} =z, (0) = % . (3.3.6)

vv ’

1> .




| Similquy, the Walsh crossespectral deﬁsity'functionfis defined as

T k_‘énm 2 w rvz(t)':, | } o - B < = %)
with the cofc;llarjr' that Lo | L . o L /31
PrvA) .a '0,  | . IO S _ o (3.3.8a)
/ ’ 2o s pwcxj P, (). S = (3.3.80)

¢ ) }’ .
These results can be summarized by stating that the Valsh transforn
cOﬁstitutes a Kafhu1§n-Loeve expansion'for'dyadic stationary random

a

processes, : . - S S

Gn the basis of the fundamedtal theorém reéarding the commutat-
ivity of the expected valde operator and any linear\operator, it- can be
shown that the degree of dyadic stationary characterizing ‘the input
process to a linear system is reflected in the output process. Moreover,

&
the follou1ng theorem is va11d for dyadic convolution systems* .and weakly
\

Y

dyadic stationary processes.
. T}l- 3-3a v - ’ - --- ' . i ’ ‘
A N | . | :
ruy(t) = h(t) 8 1 (t) « Py, (A) = hg) Piyy ) ‘. (3.3.9a)

- ; . o .
rw(t) = h(t) 8 ruy(t) ++ 'pyy(l) = h*"(A) puu(l) | (3.3.9b)"

Only the first equation will be proved; the others follow immediately.

::::



Tuy () = Elut @ 1) y()}

Elu(t 0 1) <Tth() , x(o)}

<Th(o) ., Elu(t @ 1) u(n)p

“h@ @), 1, (t 010 a)

TThw et @) , T (0@t 09>
N ) : ) ' i

| h(‘FJQr @ T L (3.3.10)

where use was made of. the definition of dyadic invariance fbr both systems

and random processes.and of the fact that 1t @ 1. = g, ' ‘5, T,

A white noise process has a'correiation fhnction wﬁich is non- _'
zero only for equality of the arguments and is related to the unit

function in the convolution Banach algebra, . .
rw*(tl, tz) = Po G(tl, tz), ‘ . . | (3.3.11)

so tﬁat the process is also dyadic stationary and has 2 wniform Walsh
power spectral density function

Py = P, < (3.3.12)

Accordingly, any dyadic stationary process can be viewed as the response

of a dyadic invariant system to a white noise excitation.

 As for the identification of single input - single “ output linear
dyadic systems the problem can be formulated as follows' Given two
signals- u(t) and y(t), find the linear dyadic invariant system which
can -hest describe the relationship u(t) » y(t). If u(t) and y(t)

=




-are deterministic signals with definable Walsh transforms, then Eqn. 3. 2 5

readily provides an answer since

h(A) = Y(A)IGCA).“ : ' . 3 T (3.3.13)

.'Butﬂ if u(t) and y(t) are realizations of random processes, then it
T is necessary to define a criterion with regard to which one can look for
a best approximation of a linear system relating any realizations of
.the random processes u(t) and y). In practical situations when an
' unknown Physical system has to be identified the use of random signals

‘ has the advantage of not impairing the normal operation of the system
~ (plant), o
c; o o g e e I
The criterion most widely used is the minimm mean squared/error
criterion. Then, the problem can be formulated as follows. Given two
random signals ‘u(t) and ytt) Telated by an ideal mapping H find
the 11near mapping system H such that the mean squared error ‘¢ be-

" tween' y(t) and the output z(t},

| 2(t) = Hutt) -; ' o " . (3.3.14)
of the-system- H- is minipum

e By - x(B. ' (3.3.15)

The solution is similar to that provided by the Wiener-Kolmo-
‘gorov theory [11]. 1Indeed, if the two processes u and y are weakly
dyadic stationary, then the optimm linear system is a dyadic invariant

system with a transfer function
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B(A) = 9, (M) /auumf - _ | , (3.3.16)
. the expression for the m;nimﬁm mean square&‘error being
. ' , |~ 5 ‘ .
¢ in ™ <pyi£1) s 1 ’f*uy(13> ’ (3.3.17) !

" whete Yiy(l}'is the coher?nca function
[
2 Puyty
Y, A) =
uy™ PP ,.niaw(?t)
Proof: ‘ | A ?
e.= Eily(tj-z(t)lzﬂj-'E{yzct)}-ZE{ycé) z(t)} + E{z;(t)}.
\l\ ' . - : '

| T @) s hE) e . D

¢ = <h(t,s) , <h(t,0) , T, (5,0)>>

I
-2 <h(t,3), ’uycs.’F)’ + 18,1,

The stationary points withlrespect to h(t,s) of the functional ¢.
. . l "

given by the equation & -
' L
1 .

<h(t,r] y Ty (55 r)‘> - T, (s,t).

s - o

(3.3.18) -“\\

\.

—_———

' (3.3.19)

(3.3.20)

(3.3.21)

are

(3.3.22) -

If rhe processes are weakly dyadic stationary, then EBgn. . 3.3.22 beéﬁmes

Eqn. 3.3.9a, and the solution is 1mmcdiately obtained as Eqn. 3.3.16

with the mean squared error glven by Eqn. 3.3.17.

1f 7 (1) a 1 for all A, then there. is full coherence between -

the input and autput processes and the mean squared error is{null.

Otherwise, the error is greater than zero. ThlS may signify either
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that (a) the mapping is not ‘linear dyadic invariant, or (b) extraneous
noise is present in the measurement, or (¢) y(t) 1s an, output due to
‘other inputs besides tnfbbignal u(t). 'Hence, the coherence function

' Yiy may be interpreted theoretically as the fractional portion of the
mean squared value at the output which is contributed by the input u(t)

at the wave index A it plays an essential-role as a measure of the

goodness of estimation of linear system transfor functions [150,135].

. The problem of identifying multiple input - multiple output
‘dyadio invariant linear systems can be formulated identically as for the
case. of single input - single output systems, with the exception that
now we are dealing with, for generality, a k- dimensional input signal
and an m-dimensional output signal. Due to the linear restriction of
the probiem, it is evident that the identification of such a system can
.be reauoed_to m k-input - 1 output system identification problems. The
;identification algorithm {135] closely.resembles that for time invariant
systems [150] and is’ presented in Apfendix‘A together with a computer

" implementation of a numerical example,

There are methods for identifying linear systems which do not
make extensive use of fast Fourier transforms [151,152,153]. These a¥xe
ot discussed here because they are not of practical interest in the
context of q-TIL systems, which are exclusively realized through the
intermediary of fastr&ansform algorithms (their only proven raison d'etre) .

_and multiplicative-shaping of signals’ speotra. T

i

—..



3.4 HARMONIC STATE-SPACE nascnlprrmu-oﬁ q..'rn. SYSTEMS

[ 3
L)

i The preceding sections have explored the 1/0 description of q-TIL C
systems and showed that it resembles very closely the theory of linear ‘
time-invariant systems. In fact, as long as the theory is concerned only ' .

_with the.ﬁﬁct tﬁat the functions' domains are LCA groups, the baré;;elismf.

between the two classes of‘systems is total. ‘But if the structures of ‘the
reSp;ctive LCA'grbups enter in#o'consideratign, this parallel;gﬁ ﬁreak;‘ : /
" down and the resemblance ends. The most pertinent-example of such an
occurrence is tﬁ; problem of causaI%ty and statevspacé description of -
q—TIL systems. The continuous or discrete "time" sets usually considered '
in the “theory of Iinear systems are 'R and Z, and both of them are tor-

\
sion free groups [137] such that it is possible to induce on ‘them an

order relation < _which is translation invariant

. ' \ '
. X<y * x+u<y+u ¥ x,y,uelR or Z, _ *(3.4.1)

-

e

so'that R and. Z are ordered LCKWgr;ups and the concepts of causality
and state may be consequently- defined'rllg 129,154]. Unlike these two

- groups, a q-adic group is mot an ordered g;;Lp because it is not torsion
free, hecause all of its elements are of finite (q) order {3]. It is
‘true that an order may be induced on the set -Gq (by alFine'mapping,,
for instance) but this order relation is not‘translﬁtion invariant.

' \
Hence, there is no meaningful possibility of\introducing the (intertwined) /

concepts of causality and state of a sys;eﬁ;[116].

/ )
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. Two attitudes with, respect to the ‘concept of state and its.caﬁsal

-meaning are manifested in the literature on dyadic systems |

~one is of ignoring 'pur et simple" the problem [91 105 127],

= the other one is to circumvent the problem by amalgamating
" dyadic and\time invariance characteristics [92]. Pichler s definition of
a linear dyadic invariant system [Def. 4 1in {92]) as a quadruple
(U Y,X,n) where U, X, Y are Banach q-adic convolution algebras and is
amap n: U x'x +Y defined by y = q(u, x) =. cxx + d¥u is open to
* question, This is so because there is no mention of state evolution
‘(without which the concept of state has no sense), and the state is set up
to be independent of the input and to play a role indistinguishable from .
that of a second Jinput. Also debatable is: the definition of "dyadic in-
variant time systema" (Def. 6.1 and 'Eqn. 26 in [92]), at best, they can
be viewed as a particular example of a 2" discrete time invariant
system uith 2" inputs and 2" ‘ outputs. It is rather difficult to ’
understand the meaning of their spectral regresentation (Eqn. 27 in [92])

via a Walsh transfbrm, because it merely achieves a "scrambling" of

inputs, outputs and "states" as iffﬁyadic translations_could be perfcrmed:H

" on the "group" of inputs (or states, or outputs).f:*

It is nevertheless true that ‘harmonic differential calculus
‘supplies a tool for developing a formalism similar to the state-space
theory of linear time invariant systems The adJective "harmonic" will
be used to qualify this "state"-space description of q-TIL systems in

- which’ the Newton-Leibnitz differentiator, or the unit 1ncrement operator

,A.- | . ‘ )

kg

]
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'differential systems [91]. In all following discussions .the groip" G

and its dual Pq will be viewed as the images of Fine mappings into the’

| is replaced ‘by a harmonic differentiator It is Pichler's merit for

V

. being the first to recognize the role which the dyadic differentiator

may play with regard to-a subclass of dyadic variant systems Later‘

Hook [105] had the briliidnt idea of defining a matrix function wal(A,t) ~ T—

~

in a manner similar to thb classic definition of the matrix functidn

exp(At) 50 that he couldbinitiitéﬁa theory of discrete,. finite (in the -
sense of finite dé) dyadic systems. His work has been continued and
generalized by Cohn- Sfetcu [106] who showed .that the formal resemblance
between the state-space theories of TIL and q—TIL systems is not all-. )
pervasive and does not translate into a conceptual resemblance, as. is the
case with the I/O description. The main results oftthe "harmonic" state~

space theory of G-TIL systems are summarized in the following paragraphs

starting first with a formal géneralizatidh of Pichler s theory of dyadic o

q

real mumber field. ' S ﬁ:

e
F'\

Def. 3 4a A g-adic differential system is ‘the linear system whose input !
Kand output signals are related through 2 lipear q-adic differential
:equaticn ) S : -

Aoy - BOw, J L G

where 0 is the qeadic differentiator and Al-) and B(+) are polynomial§

£

. k ] ) ‘
FACY = X a, -(- B(+) = z b; ( ot (3.4.3)

S 1=0 . 1=0
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~ . ' . . / &
e . . - ' ' -
As in classical cilculgs,,the general solution vy can be found as the
sum of the_qdlution y;i (ze:g input response) of the homogeneous equa- s

—

boundarf conditions,

. . . 1
tion A(D)y = 0 with boundary conditions {DV(‘oJ}g-o' and any partic-

ular solutidn yis (zero state rasponse) of the Equation 3.4.2'with zero

(. _ N
Y=Yy * Ve -' . (3.4.9)

In order to find Y,q oOme looks for the roots of the character-
istic polynomial A(A). If the Toots {i }i o &re distinct and belong

to Fq Cnecessarily viewed as its req} number representation), then tbo

homogeneous solution is S I . ' L

ok '
Yac© 1};‘0 ciwa;(xi,ﬁ), : . . . (3.4.5)
o . (

where thehconstantb' <4 depend on the boundary conditions (let us assume
t,=0,. so that they are the "initial" conditions) and can be found by

solviﬁ; the algebraic system of equations.

s

{20 cg A= WO 5 n=0,1, .o, ko (3.4.6)
o | ; \ .

&Y
The particular solu€1on can be found very simply by applying
the WT to Eqn. 3.4.2, from which it follows that

3 i .
‘wyzs () e =+ ¥

B‘ "-‘ - 2 | = -1 B A { n
zs M0 > y=h®*u + h=w ) (3.4.7)

.’ ' 5



L TXE®) = A@KE) + B(D)-UC)
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Pichler defines the vector X(O) - (c1 vos ck} as the’ 1nitial state
i
vector, and the vector function ¥(t) = (waI(Al,t) wal(lk,t)) as a
state transition vector, so that the total response can be expressed as
y(E) = ¥(t) X(0) + B(e) P uce). ‘- O (3.4.8)

A

This formal similarity between dyanmic systems and harmonic
differential systems can be elevated to a more geﬁei'al form by defining a

system as the usual quintuple of input U, output VY, and state X spaces,

coupled with maps U x X + X and UxX + Y expressed by harmonic differ-

ential operators: : . ;

Def. 3.4b

DX} (t) = E(X(t),U(t},t) |
o ' ' ' (3.4.9)
Y(t) = G(X(t),U(t),t), |
where ﬁ., X, Y represent the input vector, gﬁe "state" vector and the

output vector respectively, and E(*) and G(’) are vectorial functions.

t belongs to G q' in its real number representation. For linear systems,

these "dynamical” equations take the form
/ (3.4.10)
Y(t) = C(t):X(t) + D(t)-U(t), ‘

where A(t), B(t), C(t) and D(t) are matrix functions of the variable t.

~

g
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, If they are constant matrices, the system is said to be q-adic translation

" invariant, being characterized by the equations

DX (L) . AX(t) + BoU(L) L. | o o
. ) . o ‘ o, (3.4,11)
© T Y(E) = C-X(t) + D-U(t) |

The solutions of these q-adic differential equations are based}on the
.,proof that wal(A,t) and wal(A, t-t ) are the fundamental and state- -

transition matrices respectively. The proof due to Hook [105] for the

'particular case - P and later generalized by Cohn- Sfetcu [106],

q
starts from the definition of the matrix function wal(A,t).

»

Given the k by % square matrix A with distinct eigenvalues
{Zi}:_l .all in the dual group, Pq, there exists a modal matrix Q

which can diagonalize A through a similarity transformation,

L= QaQl a=qQll Q. (3.4.12)
i - _ < -

i .
where L, is diagbnallwith li as non-zero elemehts. By similarity
i B

v with the classical defihition of

|

* ' -1 ' -1 « :
. exp(At)  Q 'exP(Llit)'Q Q Lexpflit) Q (3.4.13)
the matrix function wal(A,t) is defined as . «
’ . _1. . A . _1. . '
Def. 3.4c wal(A,t) = Q™ +wal (Lli,t) Q_ Q L"’aﬂ-(%irt) Q. (3.4.13b)

N
—
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‘Similarly, it is r'elaltively -easy ,to l/prmr_é that

LI . ) . Il
- -"(.‘_‘.-\-

It is simple to prove that the set of matrices {wal (A';t) }teG with the

operator of matrix multiplication is isoﬁbrphic to the group Gq; i_ndeed,‘

wal(A, 0) = wal(_Q,t} =1; 0= null matrix, I= identity matrix
) (3.4.14a)

wal(A, t1) . wal(A,t,) = wal(A, t;% t,). St (3.4.14b)

i

Th. 3.4a the matrix functlon wal(A, t) is the eigensolution of the first

-

order q- adlc d1fferent1a1 matrlx equatmn

-‘j‘.\.-'_f'.;'ufm,t) = A-£(A,T) - ' T (3.4.15)

the derivative of a matrix being defined as usually, UC = U[cij'] = [Dcij]-

The proof runs as follows: .
14,8) =@ L Q =q Y 3@
wal(A,t) = D(@Q wal(l.,t]Q) =Q I’Uwal(li,t)
. . 1 . .

= Q 'Lliwal(li,t} Q.

u

-1 .Q'll.L: -Q
Q liQ wal (li,t)

A-wal(A,t). ' - ' (3.4.16)

Alternatively, one may use Eqn. 3.4.15 as definition of wal(A,t) and

then prove Eqns, 3.4.13 and 3.4.14.

e
4

If A has all the eigenvalues in I‘q, but they are not necess-

arily distinct, a similarity transform can bring A .at most into a
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Jordan canonical form oy ,
- . A "
A= Q-l.lﬂ .-Q = Q-l . : Q, ~o // (3.4-17)
- AL J ’ <
- . i . A ]
. | : ) R i ‘ -
. - where "Jl is a n, xn, Jordan block
. 3 i i
: i - v
A- Il * -
‘ i )
e Y RV
. R e | ' | (5.4.18)
x ‘ . : . - " D
such that £ n, = k. Then, the Walsh matrix function may be defined as
- . i=1 - ) ) . .
', val(A,t) = Q.l'.Lwa.l(JJ., 0 IR (3.4.19)
. ) ’ N - FN i . s
"ﬁere _ /
' wal(A;,t) ... ] . | '
/ | wal(JAi’t) a ] U L (3.4.20)

so that Eqns. 3;.4.14'and 3.4.15 contimue to be valui.dl.
A different problem arises when A has some eigenvalues not in
l‘q (obvicusly, Gq and 1‘q are not aigebraically' complete), but the
' difficulty may be circumvented by realizing that the q-adic differential -
equation Uf(t) = lif(t) has no nqh-triﬁél-s.olution if li does nat
belong to l‘q, in which case 1t jcan be Hi'itten symbolically that -
wgl(li,t) = 0. Conéequently, the matrix Lwal (11, ) has zexo values in

place bf wal(li,'F). “*fd}\_
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. . - - P ) o K ..|
~._ In general, the matrix A may appear as a combination of the
- “ . . N - .
three cases mentioned above Qdistinct eigenvalues a11 in rq. multiple
eigenvalues in gq or dzstlnct exgenvalues not in T ) and the matrlx
functzon wal(A t) is defined accordlngly. Eksent1al is the fact that
‘ the propert1es expressed by Eqns. 3.4.14 and 3.4. 15 are always valid.
| / -
We are now in a position to solve Eqn. 3.4.11. First, it can be
verified that the homogenecus equation’ : ’ R
1 , o ) ".' v 's
DX(t) = A-X(t); X)) =X, ‘ r (3.4.21)
admits as (zero input) solution the vector 3-
. ‘ . e
X, () :‘walca,tﬂto)-xo. ’ . (3.4.22).
‘As before, the partieuler‘solution can be found by applying the Walsh
transform to both sides of Eqp. 3.4.11,
. i . .
AT-X(X) = A-X(A) + B-UQA) ' | 3 (3.4.23)
from which it results that
X(A) = (1~ A)"HB-U). L (3.4.24)

A condition for the validity of this solution is that U(t) satisfies

certain orthogonal:ty candltlons [104,105]. Referred to a scalar equa—'

tion " Ux = a'x + u, these COﬂdlthﬂS requ1re that either a ¢ Gq (in '
the ca:eof Plne mapplng), or if ae Gq, u(a) = Q.

+

" Let us denote the inverse Walsh trinsform of (1IrA)'1



W
@ -
N .
—_—

'9(A,t). Then, the (formal) solution of the "dymamic" equations 3.4.11 is

X() = ualcn;tztd)‘XO + 8(a,t)-B * U(E) ' . (3-4.253)

o : . ‘~. : e | o .

Y(t) = C-wal(A,tt)-% + [C-8(A,t)-B + D5(£)] # U(t). . (3.4.25b)
: : ‘ : - -

[y

. The"input-Output relationship ("'zero-state' response) can be o

described by a matrix impulse.response function H defined as g
H(t) = C-8(A,t)-B + D-5(t) > (5.4;26?
- or, alternatively, by a matrix transfer function ‘ T

H(A) = C-(AI - A T-B + D. | o L (3.4.27)
| - L

The theory of gq-TIL systems may ?e continued by developing the -
same pattern of relationships as for linear time-invariant systems; for
_:*tjnstance, equations describing cancnical decompositions of "dynamical"
| équations, the tandem, parallel or‘feedback composition of systems, or
irreducible‘realizafions of ratiénal transfer function matrices aré
formally the same for both classes of linear systems [106]. )

The.results obtained so far represent a q-adic image of those ; -
obtaine& for TIL gystemﬁ [12], but there'are.some aspecfsruhich make the
similarity to be less than perfect {and motivate a Cromos-like behaviour).
One such aspect refers ﬁo the fact that the excitation vector U(t)
mst satisfy éertain orthogonality conditions with respect to the modes

of the system. Another concerns the fact that for'q§?IL systems the

W ' -
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nﬁmber\of columns of wal(A,t) which are linearly independent 501utibns'
of TDX(t) = A-X(t) is not equal to the dimension of A but to the

. nurber of disrinct eigenvalues of Arriﬁ rq, More significantly yet,
there is-no simple relationship between o{A,t) and wal(A,t) as was

the case for TIL systems, where one does not use the Fourier but the La-

s place transform with regard to which exp(At) and (sI-AJ form a’

transfbrm pair. Even 1f a Laplace transform operator L were deflned
along the lines advocated by Mackey [155,156] (1 e. by defining generalized
characters fbrmed as the product of a gemuine character taking values on

_ . P . _ _
the unit circle with another "characrpr" taking values on the positive

-

real axis) we would still not he'ﬁble\to write

A,

LOGE )Y = ALLEEE)Y - £0)
) !

because ¥ is not (2) a2 Ritt-Kolchin differentiator, and (B) a local

-~

(3.4.28)

but a global operator, in the sense that the q-adic derivative of £
camot be defined unless f is known for values of its argument spread

all-over the domain, ) ¥

v

This is another facet of the 1mp0551b111ty of def1n1ng causallty
due to the fact that Gq is not am ordered group. (Kalman [121] has
also remarked, in a different context, upon the antithetic character of

causality and the concept of differential equatioms.)

It is this impossibility -of defining causality and the concept

of state which constitute the greatest imggdigent go the &evelopment of



a harmonic state space deséfiption of.q-TIL systems. The q-adic diffg:fné
tial calculus is indeed a fascinatiﬁg (and aimost virgin) subject for |
mathematical research. It préiides a tool for.devéloping a theory similar
to the state-space_description of TIi Systems, but the simiiarity is

only formal, lacking conceptual mening such that it is not conducive to

engineering applications. This raises a barrier which, although only

"psychological™, has proven to be a rather formidable one.

3.5 CONCLUDING REMARKS

54

This chapter has presented a unitary theory of g-adic translation

invariant linear systems with Tespect to both external (input/output)
.. ' bl
and internal (harmonic state-space)} representations. The I/0 theory is

formally and conceptually similar to the I/0 theorf of (zéro-ﬁtate) linear

time invariant systems, both of them being ‘subsumed by the theory of

translation invariant bounded linear operators on the space of complex-

valuéd functionlhawing a LCA group as domain. It is élso possible to

develop a harmonic state-space formalism which is similar, up to a certain

point, with the state-space theory of TIL systems;'but this formal simil-

arity between the two theoretical bodies does not reflect a conceptual

'similarity. Indeed, this similarity between the theory of TIL and q-TIL

systems is meaningful only as long as the structure of the underlying

group domain does not enter into comsideration. This is an essential

conclusion, which was not realized umtil now because the subject has been

treated mostly in'an engineering context, where apﬁlica@goﬂs dealt
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'exclusively with offblzne 1mp1ementat10ns of q’TIL systems via fast
‘Halsh transforms, and where previous theoretzcal contributions concentra-
) ted upon treatxng the functions' domain as a,subset of the reals or the |
integers without realizing that fundamentally, it 15 a group whzch can
not be ordered. '

A someuhét similar analysi§ caﬁ be made for systems with fumction
spaces having finite field; as co.domains; this subject is tieéted in-
Section 5.3, beIOW1ng the introduction of harmonic differentiation in
- 631015 fields. The next chapter is concerned with englneerlng appllcatlons
of Walsh analy517 and q-TIL systems theory 1n\comp1ex-va1ued function \

spaces.
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- © CHAPTER IV.

ON THE ENGINEERING USE OF WALSH FUNCTIONS AND THE WALSH TRANSFORM

4.1 INTRODUCTION -

Simultaneous with the proiiferation of digital §0mputers and the
development of more sophisticated computer languazes there came a
tremendous effort at devising, developing and applylng numer1cal methods
~ to solving a multitude of engineering problems, An important part of this
effort has been‘directedlpowards the use of various'discrete fini;e
transforms in Coﬁmhnications Sighal Processing, and Automatié Control [19,
20,157]. The attractiveness and exten51ve use in eng1neer1ng practlce |
of orthogonal transforms for representlng data can be expla;ned by the -
fact that, in many cases, it is ﬁore advantageous to manipulate the data
in" the ‘transform domain. "Advantageous manlpulatlon of data" 1s_under-
stood either in the Sané of more econémical and safér.:epresqntatioﬁs '
(and transmission/reception) of data, or in.the sense Qf perﬁitting
- simpler rel#tionships between, and classifications of, various sets of
data. Tﬁp first aspect refers ko.data.coding and compression, while the

‘second refers to pattern recognition, signal processing and system theory.
. v u R ‘ o '

. Of the many transforms proposed and applied, the two predominant
dnes have been the discrete Fourie; tiansfbrm,(DFT) and the disd;ete
Walsh transform (DWT); the first one becaise of its-éffinity to real-

world problems viewed through the prism of linear (arithmetic) translation ‘

96



invariant systems,;thé second because of its affinity with nuﬁeriéal
computatioﬁs on digital binary cdmpﬁters. fhe computational advantage
a;sociateq’qith the Walsh traﬁsfbrm have induced ﬁany‘applied scientists
to forego the better suitability of the di#creie Fourier (or other)
tranéforms in solving certain p;qbleﬁs, and to Teplace these transfofms
by the Walsh or ofherhtﬂaar,:fsr eiample) computationally attractive |
ones. In many such cases, the results have been rather disappoinéin;; a

fact which led to seve;al attémpts at discussing the "goodnéss" of the-

' Walsh transform " Unfortunately, many of the explanatlons offered 'in - the
'ienglneer1ng 11terature remain at the surfhce of the matter; in the sense

that they are limited to a (often empirical) comparison of the usefulness -
of various trénsforms for certain pa:ticulér problems. 'Thelaughor is

not aware of any attempt to présent the fundamental reason for the frequenf
unsuitability of Walsh analysis or, more significantly, to indicate the
"probiems for which the Walsh transform ieéds to a theoretically optimal

¢

solution.

" As mentioned 1n the 1nxroductory chapter, it was one of the
major goals of this dissertation to provxde Such a comprehens1ve analysis.
éln the main, thls is the subject of Chapter IV: a construcg1ve1y cr1t1cal -
‘assessment of the englneering usefulness of Walsh fimctions and the |
Walsh transform. Chapters IT and III have made a mathemat1ca1 presenta— ’
t;on of the Nalsh tramsform and q-TIL systems, respectlvely, precisely
‘ ip order to lay a theoretical foundation for the forthcoming:discussion.

From the multitude of attempted (reported) and possible applications of 4
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Walsh analysis to.engineering problems, 6ﬁ1y those clearly related to

t

/signal processing or system theory have been selected for discussion.

3

First of all, attention will be directed towards the computational
h-advantagés of tﬁe discgéESIWalsh trﬁnsform because these were the driving
force Jbehind the use of Walsh functions in the m#jority of cases. This
is done‘in Section 4.2. Section 4,3 is devoted to anﬁlfzing and present:

_ing (in fact, reviewing) the true character of the Walsh transform as a
multi-diﬁensional discrete Fqﬁrier.transform. This fundamental fact has
'already beeﬂ mentioned in Chapter if}‘but it is in Section 4.3 that
'conclusioﬁs.are drawn with respect to tPe préct?cal applications of Walsh’
functions. Some of the problems which are suited to an optimal solution
with the aid of Walsh analysis are presented in Section 4;4,.togethér‘
with a succint review of the literature on this subject. The follo:;ng
éectiqn is dbvoted'tolan analysis of other (by no means all) problems ’
" in signallproccssing, system theory énd automatic control ?bm‘which the
Walsh tranéfbrm may be useful in the sense'that,,alfhough it does not
léad fo a the&retically optimun solution; it provide§ the ﬁest'(or at
least a good) one from a praétical peint §f view. IQ other words, it
prpvides‘a solutipn characterized by a felicitous compromise between
mathematical goodness and real cost- and time-efficient implemenfability.
This matter of choosing a'compramise between abstract goodness and X
implemen;?hility is another aspect of the primordial engineering problem
of coexistence, correlation‘and-balance between mathématical models

(systems) and the real world which we can know,'measure or manipulate

|
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.only in a finite, discrete and "rational number" sense,[lSS]. This latter
| N i '
fact explains why in the‘foll&wing'chapters attention will be mainly
directed towards’ function spaces on finife,-d%screte domains and their
. *]

corresponding finite discrete transforms.

. o -
4.2 . COMPUTATIONAL ADVANTAGES OF WALSH TRANSFORMS

First and foremost, the Walsh functions form 2 complete ortho-
normal set in . the Hilbert space of ccﬁplex-valuéd functions on a compact
abelian group, which may (but need not) be seen as a finite interval on
‘the real line. As such, a Walsh function répréSentation enjoys all the

advantages ‘of slgnal representatlons with respect te a complete ortho- ;> '

normal set of functlons.

- the (finite) representation ‘is optimum in a least §Quare sense;
- the representation converges, the error decreasing with

increaselin the.humher of basis functions copsidered;
| - the inner-producl i; invariaﬁt uﬂder the'representafion (hence,
‘the energy is too); |
- the coefficlents of the representatlon are 1ndepéndent of each
other, belng dependent only on the correspondlng bas1s function, such
that the improvement of the representation by considering a larger mumber
of terms does not require the recomputation of all coefficients butxﬁnly

of the new ones. The coefficients are computed as the immer products

between the data function and the corresponding basis functions.
. \ . '
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Fp:_dat;.which can be described by explicit analytic functions,
it is usually possible to.obtain analytic_formulaé for the coefficients ' v
of cértain representations as, for exﬁmple, fhe Fourier, Lagrange, J
Ghebyshev, etc. representatlons. But, in practlce, the data is gathered !
expérimentally and is contamlnated by noise, such that there is no
que;tlon of clased f;rm formulae for the representation coeffxcients,
they have to be computed ‘mmerically. Hence, the adVantage of complete

orthogonal sets of piecewise constant functlons 11ke the Haar or q-adlc

Walsh functions. : /'“7‘*““‘—ﬂ"'--@—~-H__._

Within the class of q-adic Walsh functioms, the dyadic ones
enjoy the additional advantage of being real-valued. Accordingly, there
is a marked increase in computatlonal efficiency because the analy51s need

not be concerned with complex-valued functions, such that there is no

. need to store the 1mag1nary components of the (transfbrmed) data vector,

and computations are performed (faster) in real and not complex arith-

metic. More than that, dyadic Walsh functions take only values of +1 or

© -1, such that there is no need to perform any multiplications for comput-

ing the coefficients. ) \ .

There is yet another advantage associated with the use of dyadic
or 4;adic Walsh functions; it refefg to the fact that these are the |
only q-adic Walsh functions which can be computed by rationai mumbers -
the only numbers which we can measure or represent exactly [158] This

fact was first noticed by Rader [159] who proved two 1mportant theorems, .

;-
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which were later generalized and completed by Cohn-Sfetcu [160]. Besides
their theoretical significance, these theorems have the merit of draw-

“ing attention to an often overlooked source of errors in the computafion

of discrete transforms.

Th. 4.23\\Either the real or imaginary part of. g ™ exp(j2n/q) is an

irrational number, with the exception of the trivial cases q =1, 2 or

4. ' \

Rader has ﬁsed reductio ;d absurdum to.prove this theorem (only)
for q=p =/ prime. The proof is based on the fact that conditions
(wq)q =1 fnd' wq‘é aj/c + jb/c, where a, b and.c \aré integers not.all
divisible ﬂy the same mmber, arg i:feconcilable- As for the case,

q-= 2np, we offer the follouing‘proof:

- if the pfime p is greater than. 2, then qua (w?)llzn, /
and since 5 is not a rational ‘number, neith?r is " (because the
inféger root of an irrational ﬁumber is also i}rational); |
- if p=1 and q is greater than 4, then q = 8-2", and
'since' Wg is irrational, so ;s wq = (wa)llzm. g,'
irhe theorem concerns the ‘discrete Fourier transform as well,
because a DFT-over N - points is nothing else but a "1-dimensional™ N-adic

Walsh transform.

The second theorem is,more general because it refers to z-

transforms [161].

- a
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Th. 4.2b The z-transform of a sequence of length N, where N e P,

camnot be evaluated exactly in a rational representation with less than

—

N digits for values of 2z on the unit circle, with the exception of

s

the trivial case when 2z = tI or +i. - e

) - ‘
The proof is based on the derivation of an integer number equation
‘ . [

whose solution represents all possible arithmetic bases and all péssihle ’
initial values.of "z on the unit circle. This problem can be viewed as

one. of obtaining the aritlmetic radix A such that the complex number z

Al

can be represented by at most k digits.

A

xe (2,3, ...} =P - {0,1}

z = n_k(iaijb) where k.s.{l,Z,‘...} =P - {0} " t4.2.1)

‘&b e {0,1,...,451} =P,
. . ) ) 1

Since z has unit modulus, Eqn. 4.2.1 can be rewritten as

122 = 1 = @M%, | (4.2.2)

or as 5

2=."9th2- o . ' (4.2.3)

az'; b

" .

Hence, our problem:reduces to the famous one of finding all the Pythai
gorean triples. For each possible 4, the solution corresponding to
k=1 is caliqd the fundamental solution. The simplest and most immed-

!
jate fundamental solutions are the following:

¥

&
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any 1, 2z, can be either +1 or 3,
0 .

X =5, z. can be either (23/5:j4/5) or (:4/5%j3/5)

0
2=10, z, can be either -(£6/10+j8/10) or (£8/10%j6/10)
=13, z, can be either - (£5/13:j12/13) or (+12/13:i5/13).

But, siﬁce fbr representing the m-th power (m being an inféger) of Zz,
one needs k to be at least equal to m, with the exception of the
. trivial case, it is 1m90551b1e to evaluate the z-transform of a sequence

of length N using a finite arlthmetlc representatlon with at most k

1 N-1
Zy s -ees Z, is cycllc

with a period less or equal to k. In its turn the requlrement that

digits unless k3 N, or the sequence Z =

the sequence Z is cyclié'implies that z, must 'be a ratlonal root of
-unity, which, as prcvenrin Th. 4.2a, is clearly_imp0551ble with the -
_ exception df_;he already excluded trivial case. This concludes the proof

of Thf”4.2b.

The major co%puta£i0nal/advantage which characterizes éhe finite
discrete Hilsh transform, and which it shﬁres withisome‘of the discrete
Fourier transforms, comsists in the possibility of performing- it via a
fast algorithm. This is an inherent property of any q-adic Walsh b
transform, wherea§ for a N-point DFT to hgve it, it is néceséary that N
‘bea highly composite‘number. The idea of fast tfansfﬁfﬁ algorithms
originated with Geod [16] and Cooley and Tukey [1S]. Such algdrithms

. can be, and have been, devised and analyzed from two points of view
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(whlch ofkcourse, are. ultlmately'ldentlcal in the case of discrete
Walsh-Fourier transforms). One point of view regards the transformation
as a multiplication of the data vector by a nighly rednndant orthogonal
matrix express1b1e either as a Kronecker product of some elementary ortho-
gonal matrlces of much smaller d1mens1ons, or as a (usual matr1x) product
of very sparse matrices, such that fewer operatlons are requlred to imple-
ment the’ transformat1on [162,83,84,85]. If theematrix is of rank; N = qn:

/
the matrlx mult1p11cat1on can be perfbrmed in only about nq 1nstead qf

_N2 operatlons . The other point of view con51ders the transformation as
2 Fourler transform on a finlte abelxan group which is (or can be regarded)
as a direct sum of groups of smaller order.. Then, for N = q » instead

- of perfbrming a N-point Fourier transform, it is sufficient to perform

l

n q-po1nt Fourler transforms followed by a recomb1nat1on/re-order1ng of T

the coefficients [63,66]. Fast transfbrm algorlthms have been. exten51ve1y
and exhausqively discussed in the literature [164,165}-50 that there'is
7b need to present them anew, A

The first fast Walsh-Hadamard transform algorithms were described

by Greene [166], Vardivere and Carrick [167], Whelchel and Guimn [168]

and Shanks [169]. Other papers followed [170,171,172,173], most o
belng preoccupled with the problem of efficient ordering/re-order;ng of
the transform coefficients, This is a problem that is characterlstlc

(but not exclusively) to f1n1te transfbrms; 1t can be viewed as a con-

~ sequence efther of the invariance of orthogonality to (matrix) row or

’ column shlfts oT of the fact that finite abellan groups do not admlt a

/
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unique order. Whereas it may be compntationally more advantageous to

- -obtain the coefficients in a certain order, another order may be prefer-

ahle from the point of view of data interpretation‘[as 75] The sig-

o nlficance of transform coefficients and ‘the concept of generallzed

-frequencx.are analyzed in Chapter VI. As for re-ordering algor1thms ¢ 

Nicholson [66] has presented a comprehensive: analysis of all of them.
Computatlona{;skrors related to finite Fourier transform algorithms have
been analyzed in {174,19,175]. |

It ﬁould be erronecus to conelqde from the preceding discussion -

that the q-edic ‘and especially'the dyadic, Walsh transforms are the

Y

best dlscrete transfbrms, -they are so but only from a computatlonal p01nt
of V1ew (thj Haar transform can ‘be implemented even faster, but it is not

a generallzed Four1er transform). In truth, the resolutlon (flnesse)

. with which 2—ad1c and 4-ad1c Walsh transforms can represent a large

variety of funct;ons (signals} is poor and qulqp inadequate; so that a
DFT 15 preferable even if it cammot be evaluated by ratlonal numhers or

if the transform takes longer to be computed. This concept of resolution

of representat:on may be best understood if it is referred to the varia-

tion and the total mumber of possible values uh1ch the characters take o
in the complex plane. In a q-adic Walsh transform the characters take
q values (Andrews and Caspari [162] call them quantum’ levels) equl—

dlstant/equlangularly distributed on the unit circle. From this point

. of view, the essentlal difference between what is usually called a Walsh

transform and a dlserete Fourler transform oon51sts in the fact that in ‘ :
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~ the first eaae the’resolutida is inéependeat of -the mmber of peints in
~ thesdomain (length of data vector), whereas in the second case it is
directly dependent of this mmber. This is the ‘explanation of the asymp-
totrc convergence/dlvergence of DFTYDHT tuwards the Karhunen-Loeve _ ‘
transform in the case of stationary signals {176]. Figure 4.1 illustrates
this situation for N = 2, 4, 8 and 16. If the characters corresponding
to discrete finite tranSfoms. are viewed as sampled, step-like appro.xi-‘
mations of the characters on the un1t interval, it is evident that an |
. 1ncrease 'in the number of sampllng pornts (1 e. a decrease of the sampling
a 1nterval) has no effect on the "quantlzatron" of Walsh functlons (uhlch
TS are step-like anyway), whereas it leads to a much better approxrmatlon
of continuous functions like the srnu501ds or complex exponent1als. In
.algebralc terms this phenomenon can be even better explalned Yy the fact
that a N~p01nt DFT is a '1-dimensional Fourier transform on an ahellan
group of order N such that an increase of N zucreases the order of the
éroup and improves the resolutlon' whereas a N-point (N = fl) dyadlc
Walsh transfbrm is a n-dimensional DFT on an abelian group. of order 2,
such that an increase of N has no bearing upon the order of thé/éroup,
or the resolutlon, but only upon .the dimensionality of the space. EThis,
then, 1s the fundamental explanat1on of the difference between dlscrete

Fourier and Walsh transforms,-rt was mentioned in Section 2.3, and it

will be analyzed at lenéth in the next section.



108

4.5  THE WALSH TRANSFORM AS A MULTI-DIVENSIONAL DISCRETE FOURIER
TRANSFORM ]

~Ever since it was realized that a 2_point Nalsh transforn
' admits a faster implemenfation‘than a 2" = N-point DFT ‘there héve been
MUMEeYous attempts at supplanting the latrer with the first, and then | |
Mmg the efficiency of the "neu" transform [168]. More often than
not, these su:dies'ier_e done in an empirical way, simply by comsidering -
_ ceftain particular signals and comparing the efficiency with which either
the‘ DNT or the DFT could represent them. ‘Since the signals chosen were
usually stationary.randdﬁ processes or/ﬁéry #mooth éantinuous fhncti&ns,
the canc1u51ons were, of course, unfavourahle to the Nalsh transfbrm
This was the attitude of Blachman [32] in hls dlscu551on of “S1nu501ds
versus Walsh fhnctlons" ‘ Not only does he.develap a comparison of the
o goodness of NT and FT in representlng freqﬁencx-bandllmlted 51gnals (an g
unnecessary. exercise since the result is predlctable at the outset), but
he also attaches an 1nord1nate 1;portance to hardware synchronization
'problems, ignoring the essential use of Nalshx ransfbrms in a digital
environment, oﬁ.alyeady sampled fhnq?ions, or in the software implement-
ation, where no quéstion of synchronization arigés. Besides, nowhere
does he expléin (nor do his opponents in [177]) the fundamental reasons

‘fo: the different behaviour of Walsh and Fourier/transfbrms.
. . b,

It seems that only Pearl attempted to introduce a quantitative,
mathematical comparison between the two transforms; he studied the

Walsh processing of random signals [134] and introduced thel!concepts of



. 109

basis~restricted'transfbrm#tioﬁc and perfbrmancc measures for spectfcl
representatlans, hoth from thc po1nt of view. of filtering and of codlng 7
[178, 179] These concepts (to bc discussed in Section 4.5) were later
partly 1ncorparated in the concept of generallzed Wiener. f11ter1ng [180]
.Slgnlflcantly, Pearl showed that, independent of the performance criterion -
‘be it rate dlstort1on or Hllbert-Schmldt decorrelation measure, thghzié-
tance in performance petween discrete Fourier and Halsh‘transfbrms does
not bccome‘negligible as N > =, althocgh either one of them may tend
asymptot1cally to the 1deal Karhunen—Loeve, transfbrm dependlng on the
nature (arlthmetlc or dyadlc statlanary) of the random process. But he
did not explaln why it is 50, although he mﬁ& have been aware of ‘the
mn1t1-d1men51onal character of the DNT [109], and tried to look fbr

, . communlcatlan problems uhlch_cculd‘be dcscr1bed by dyadically symmetric

| - models. | |

\ - . ! N
As mentioned in Section 2.3, the multi-dimensional character of

the discrete Walsh transform was known to m;themaficians ever since the
~ publication of Fine's and Morgenthaler's papers. ‘It was also known to
Lechner who used it in combinational logic [181], to Green and Posner
who used it in coding theoxy [182]; to Gibbs who defined logic differen-
tial calculuc [55], to Yuen 160,75] who was mostly preoccupied with
generating Walsh functions and comparisons‘becween different ordericgs
to Koenig and Zolesio [183] and, possibly to Pichler [74]. But, this
essential feature of the Walsh transform was not ‘known, or was simply

ignored in the fields of sigmal processing, ‘commmications, or systenm



T
. 1[ E
'—“__}.“\‘_‘“ ° .
. _f.’ -
in Yoo oelic, o foc, 1ef1e , 1e
in {e;l} = ] L N B e | B M
. e Hp 0 1 2 - J
020 '0 +1 +1 +1 .+l
=1 R
1
Sfrf s | o | 1.
- r)g_l
PEO 2 +1 +1’ -1 S
le
= -1
P ls | «a -1 -1 +
ey
/_' ‘ e=(0 1) (.0)
: go'(l.l) 51_1'.(1.0)
in Foe  ge he . e, foe . 1c,}1e , 1e
ANJei) o' "1 'S0 T | TS0 RS0 2
in <
* (5§ 0 1 2 3.
0510 0 +1 +]-,' +1 *1
od, ‘
l‘—lo 1§ +1 +1 -1 -1
0d,
o,
2 +1 -1 -1 - +1
lil )
-lgo .
15!-1 3 +1 -1 +1 -1 -

Figure 4.2. Walsh function values

for different bases of the domains.



X

111

_theory and automatic control where the majority of engmeermg usages of
‘Walsh transforms took place, zmd ‘where the Walsh tmsfom was cans:.de'red

as any other one-dimens1ona1 discrete trzmsfom [88,187].

Cur a.tt/e_g}:’mn will be concentrated mainly on dyadic Nalsh analys:.s
because’ 1f';;eup1es a preponderant position and has been almost exclus:.vely
used in applications. 'I"h_e reason for this is the fact th_at the functions'
domain P, is a self-inverse abelian group with eac'h”'#eleqent being its
own merse (being of order 2) such that the operations of addition and
subtraction are indistinguishable (denoted by ) hence, its other
particularities: (1) Ath.e characters are real, raiioﬂal-valued l(2) ﬁie
alternately even and odd symmet:ry of cha.racters replaces the usual

S complex-conjugate symmetry, and (3) the hamonic d1fferent:|.a1 and slope

operators are proportional (see Chapter vI).

.&ﬁ&msionﬁl vector space Pzn' is homogeneLus in the sense

_that its local structure and propertles are the same at each pomt..
.Once an origin and a set of n linearly mdepcmdemt vectors are chosen,
any pg;nt (vector from the origin) of the space can be uniquely rep-
resented by a:n n-tuple of co-ordinates along each direction. There are
' many possible sets {Ei}i;o of basis vectors (27! if their permuta-

tions are also considered). Of these bases, the omes ‘most often used are
fesh; ey = 43¢ , _ ‘(4.3.1a)
i,e. the set of edges (of a unit hypercube) concurrent at origin, and

‘ Q k< i
;15 4y =41

- we

i,
—

L

P el
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i.e. the set of'maximél diagonals of order n-i of thé‘upit hypercube' -

with vertex at or1g1n (By "diagonal of order i it is meant a diagonal /
‘of an 1-d1mens1ona1 ' sub-hypercube, "maximal" being meant in the sense of

the -cl—norm of Eqn. 2.3.21. - see Flg. 2.4). The 1mpartance of these '

bases stems ftum the fact that _they are inductive [184179] and are used

to deflnc the W-P and W-K Walsh funct1ons respect1ve1y. A displacement

in th?Vspace Pz_ can be described by the usual laws of vector addition,

i.e. co-ordinate-wise addition modulo 2.

;
i
!

. For finite transforms ‘Pzn represents both the group G and its“\\\ .
dual T, and the value of characters at points x and A depend on - "/

the inner product of the two vectors (seé‘Eqn.'2.3.14)

wal(d,X) = &0 - o , (—4 (432)
. - . . B ,\ B . § - L
but' A and x need not be represented with respect to the same basis.
it'is customary to usé the basis {Ei} for x; if {Ei} is used for A
as well, then one gets the,HvP functions; but if {gi} is used, one gets

the W-K functions, This is illustrated in Fig. 4.2.

It has been showm in Section 2.3 that imjective norms (for ..
example «, and - o, norms f£rom Eqn. 2.3.21) may be attached such that
a one-to-one correspondénce is set up between this m#lti-diﬁensional‘
space and a subs;t of the one-dimensional space of real numbers . The
existence of'suéh an injective map‘ﬁakes possible the‘description and
.analysis of Walsh functions and WFT theﬁry in_te?ms of functions defined

-

on a one-dimensiongl domain. This being so, it might be argued that
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there were no reasoﬁg'fafﬁothef_éithvthe spatial, multiQdimenéioﬁal view.

It is, indeed, perfécq}y possible to dispensé with this ccncépt,-as do

most of the“researchers;ih the field; mnlti-dimensipnality is,‘hogefer,

an essential feature 'of the gfbﬁp.sﬁeration (aﬁdition,Jdisplacement, _'/
,translation) in the domain of fhe functions, and there are problems that

cannot be adequately tTeated unless the full spatial fzgure is used.

- Among such problems is that of determlnlng those tasks fbr which the DNT

might be optimal (Section 434), that of explalnlng‘the unpromlslng results
of many attempted applications of Walsh aﬂalysis (Section 4.5), and that v

of finding a consistent and umique criterion for ordering the. dyadic

. Walsh functions so that it is also applicable to q-adic omes (Section 6.5).

5
.

4.4 OPTIMAL APPLICATIONS OF WALSH ANALYSISI ' -

This section is intended as a succiﬁt Teview of those engineering
problems fbr(;hlch the Nalsh transfbrm may brlng an optlmal solution.
Due to the mlti-dimensional character of the Walsh transform, these are ‘ /
the problems which can bg modelled in spaces of.complex-valued functions -
having as domain a_multivdimensional discrete space. On the surface, this
is equivalent to requiriﬁg that the signals to be processed or the
systems to be analyzed have ﬁ;adic symmetry; this was the point of view |
adopted by Pichler {122] and by Pearl [134] when they discussed optimum
filters for dyadic stafionhry signals, but without conditioning the
existence of dyadi§ signalé or systems to a multi-dimensional structure
of the‘fﬁnction space. In other papers, they.seem to be aware of this

connection, but they do not state it clearly in unequivocal terms. For
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instance, Pichler [74] 1nd1cates the (optlmal) usage of NT in the field

of switching functions, but sets it on a par w;th the non-optlmal usage

in the field of image retrieval. Pearl appears to be closest to thlS
mterpretat:.on of the nature ®f l\‘a.lsh transforms in his study of spect‘ral
analyses of probability d15tr1but10n functlons [109], where he does search
for anr"envixonment where the dyadic sum is the gatural process offcam-

B}ning variables", althougﬁ he continues to compare the DFT and DWT in

N=2" points as if they were alike.

N R

What was, and still is, the most difficult obstecle to the pro-
liferation of optimal solutions via}Walsh transforms is neither the lack
of understanding of Walsh analysis, n;; our "penchant' on time-invariance.
The obstacle is more fundamental because it resides in (1} the non-
existence {at least according to ‘preeent-day knewledge) of natural
phenomena which could be best mpjelled on n-dimensional q-adic sﬁaces
and [2) an immutably linear flow of time as we know it {88]. The most
noteworthy attempts at flndlng such phenomena were those of Rosenbloom _
[114], uith respect to magnetism and systems of spins, and of Harmuth {115},
with regard to elementary particles, To ﬁy khowledge, their pioneering
work has not been followed by others,lalthoegh there seegs‘to be a new
interest in the Ising model of magnetism {a private commmication from
Dr. J.E. Gfibs]. Nota bene: all this work represents a look out -for
the phenomena to be described by our model and not vice-veérsa, as it is

the custom in applied sciencesl
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. ’ Théjsituation is totally different in’theArealm of man—m%de
tgchnical world, beﬁause people have had since long an affinify for
binary logic [185] and bistable devices (the later affinity being forced
by technolﬂgical means). The first example occurs in the field of
transmiésion of bina¥y signals over noisy channels, where the Reed-
Mueller codes [186,187] represent nothing but a coding of a binary n-
dimensional vector signal by the 2"-tuple of the cémspd;lding Walsh-
Ha&amarq character [188]. The real computational advantage of Reed- |
Mﬁéller codes became apparenf only after fﬁe deve}oﬁlng of fast transfoqm
algorithm%‘[163,166],.which permitted real-time implementations of
cbding/decoding'operations of signals af least up to 6 digits long even
' ‘iﬁ\1968 [182]; If was then that a (32,6)-biorthogohél code (represented
by the concatenation of two Zsfﬂadamard matrices of 0pposité sign)lhas
been successfully uSed for the Mariner '69 Hiéh Rate System (16.2Kbits/

second, with bit rate error of less than 5x10-3);

A par#llel development téok place in relation with Boolean logic
and switching functions, where Ninomya [189] continued Mueller's work in
studying the analytic properties of certain exéansions of functions-
j?thout being aware §f their églafionship to Fourier analysis. The main
interest of the early,resgarch‘into Fourier.expansions of switching
functions was directed towards studyiﬁk functional equivalence. Starting
in 1963 [190,191], this wprﬁshas been developed and set on a firm theoret-
jical basis by‘Lechner,-who produced a comprehensive study ;n‘ihé harmonic
.analysiﬁ of Boéléén fhncti;ns t181]. Hurst [192] and Edwards [193% have

4 !
IR 4
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extended the theory to threshold Iogic, whereas the MBLE-LouvainFgroup

have related it to the Boolean differential calculus [108,194] and have

extended the theory to multiple-valued logic [195,196,197,198]. . (

Lechner [181] realized the strong relationship between Fourier

transforms on Boolean vector spaces and Wai%h transforms, but considered

them to be disjoint from the point of view of applications: the signal
processing ones for WT, and ;he FT on Boolean vector spaces for switchingﬁ
functions. Hé uses the latter transforms with two objectives in mind:

- one is related to. combinatorial applfcations, specificaldy to
prlme 1mp11cant extract;on, |

u

-: the other is related to prototype equlvalencewrilatlons (under

i
restricted affine group transformatlons) and their use for the synthe51s

of LSI circuits via éncoded logic. . .

His maiﬂ tools for reglizing the first objective are the-convdlutioﬁ
theorem, the quotient group character theorem, and the Poisson summation ;
theorem. ‘%he_gonvolution theorem has been discussed throughout this b
dissertation. The qQotient group character theorem [2]‘concerns a gub-
groﬁp H of a LCA group G 'and its amihilator A; i.e., the set of

all v el such that x(y,x) =1 for all x ¢ H. It can be shown that

A and the quotient group T/A are the dual groups of G/H and H

‘'respectively, and a function £ is concentrated on H if amdonly 1f

its transfbrm f is constant on the cosets of A This is the most

impdrtant tool for detecting prime implicants, .The Poi%son.summation

theorem refers to the felationship between the summation of a function

-
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on a.subgroup H and the sumation of its‘transform on the annihilator
of H; for f-e‘?z[Pzn] and H = sz,.this relationship reads
| : k-n v ., ; '

2 F@ =22 8. . (4.4.1)
xep . veA | .
Lechner could not find a FT method for detecting the minimal cdvering

selection of prime implicants of a logic function, but he was able to

_prov1de an algorithm whlch can detect simultaneously all the 1mp11cants '

of a fully defined functlon (and of its complement), the algorithm having
the advantages “of - (f) being independent of the size of the vector x
for which .f =1, and (2) detecting the impliéants in decreasing order
such that the séaréh can be stopped imﬁediately aftgf the function has
been covered (this is‘not nécessafilyra 1ea§t cost covéfj. Of course,

the complexity of the algorithm depends on the dimension of the function

" space and on the size of the subgrdups on which the function .is concen-

-

trated, such that a computaticnally optlmal algorlthm should comblne
F
this. approach Nlth the classical ones of Qulne—McCIuskey and Horreale-

quula.

o S R
The other problem to which Lechner provides a harmonic analysis
solution is that of prototype equivaience classification of Bocolean _

functipn§ and their synthesis via encoded logic, a problem which is of

great value for LSI cjrcuits. The basic idea behind this approach is

elegant;-it‘purpprts to classify all Boolean functions of n variables
so that any function can be implemented via simple transformations of

an equivalent prototype function. qugfb-[199] considered equivalent



>

~.
; xbtad h
f
— e ey
B i
- ¢
- “:4
* N ) 0 . /’__
L b2 I ‘
baghi g '
8 *
Figure 4.3. Block diagr;m of encoded-logic realizations of Boolean .
- functions. ' :
)
1!
AN
hY t -
.‘\ ‘ . |
N\
N
- !



o S 119

" all functions whlch are ;hara;;‘tefized by a c%ﬁ:?.ténientation/permtation

of their variables Lechn‘er generalized this equivalence to one uﬁder .'
| any restricted affin'e group (RAG) trahsfomations. Two functions.f,
g€ PZ[P;’] are sgid"to be ' related by \e RAG transformation if [ISIj

£(x) = g(xABc) ® xb' @d Y aa

where A As a 'nen-eingelar nxn "fnetrix over Pz'(as tllel Galois field
" GF (2)),. b and ¢ are e:rbitrary binjary n-tuples, d € PZ' -‘an.d @ clenotes.
- add1t1on in both Pz and P2 . ARAG t'rarisformation is composed of a
domain encodmg transfomatmn Y. = XA8c and a raege encoding transform—
ation f = g@xh ed Fourier enaly51s may be applied to relate the
ffansfbrms of these Boolean functions. Tﬁeltelatlonships are more:
elegaﬁt and symetric’ if they are.referred to the fmxct;ons “
LB gyt Pzn - {-1, ll where £,&x) = 1/2 - f(_), euch\that i N
-‘N(L) = GL) - f(__] Lechner's fundamental 1r;va.r;ance theorem states
that, given the relatlonshlp 4.4.2 hetween\ £ and g2, thelr transfbrms_~

ere related as. follovIs
xb Od

£, = (-1) D) R | . \('4.4_.3a)-
‘_ifand_.enlyifl o T
@ CGET foaten) ‘ :  4.4.3)

: . ~ ‘ N
- The advantage of considering equivalence under RAG transfomations )
J
cons:.sts in the fact that the number of classes it defines grows mich

moTe slowly with the number of vanables than in the case 7f other-r
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equivalence relatlons P For 1nstance, 1t can be shown [181] that there are

8, 48, an&\apprgxlﬁ;tely 10° RAG classes for n = a, s, and 6, whereas

the correspondlng numbers of equlvalence classes under the full linear

group/transformatlons are 92, 2744, and approximately 109 respectively.
////It would then bj/gconomzcal to devise LSI circuits only for prototype )

// functlons of each class, the other fUnctlons of the same class belng

~
-

//,////- _ realized by the respective domain and range encodings (see Fig. 4.3))
whose design and 1mp1ementat10n is relatlvely much easier. The problem -
\\15 to find (1) to which equlvalence/class does a functlon belong, (2)
to de51gn a cost-efficient 1mp1ementat10n of a prototype fhnctlon (thls
step 1rp11es the search for a simple prototype),_and (3) to flnd the
S requ;red trgnsformatron relating the desired function to its class
' | prototypo. Lechner 555 shown how to use the fundamental inwériance _
" theorem, and harménic analyszs in general for solv:ng thls problem 1;\f'
an efflcxeéi\\fy. The sheer size of equlvalence classes makes practlcallyv”/"t
impossible an exhaustive search for the optlmal prototype if n >_4, but’
some heuristic criteria ba§ed.on Fourier coefficients may lead to good

selections.

-

1

e
-

A sinilar approach has been‘hdopted by Edwards [19§‘with respect
to thr;;hold logic. Dertouzos [200] had shoun that the Chow‘parameter§s
used for specifying a threshold function are the speotral coefficients;
corresponding to the Radohacher functrcns.' Edwards® interest is oot
manifested towards the stud} of threshold functions por se, but towards

the synthesislof binary functioos using thresholq!lokic.. With this
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.objective in mind;.he studied the sigﬁifiéancé of spéctfal coefficieﬂts.
and equifalence relations under cértain trangfbrmaticns (which tuxn éut C
to be Lechner's RAG transformations) in order to come up with the same
‘idea of encoded iogic'synthesis. He has the merit of (1) recogn1:1n§ .
that threshold functions could be efflczently used for implementing a
-large number of prototypes (for instance 7 out of 8 for n = 4), and

(2) de51gn1ng such 1mp1ementat10ns using optimized ver51ons of the unl— '

- versal_threshol7 gate of Hurst [201].

' 4.5 .} EFFICIENT ENGINEERING APPLICATIONS OF WALSH ANALYSIS

“The probiems which admit a theo;etically optimal sﬁlution via
the.use of Walsh analysis are, as we have just seeh,.preciseiy those
described by-models in function spaces having q-adic translatlonal
symmetry; i.e. having multi—dimensional‘domains. With the ;xception of
the field of switchihg functions,ﬁsuch cases are a fare oéch:rence iﬁ
applied scieﬁce; and engineering practice, where phenomena are depend-
eq on time, spaée, etc.;in'théir usual eucliﬁeanjarchimedean acceptance
~as variables on the real line, plane, etc.... True then, Walsh.analysis
‘cannot provxde a theoretlcally qptimal’ solution, but it can procure an’
engineeringly optimal one in the sense of cumpromising between theoret-
ical goodness and efficiency (cost - and time-wise) of implémentation.
All these cases are more or less related to the problem of appro;imating

functions with the help of Walsh series and polyncmials.
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Approx1mat10n theory based on the Stone—ﬂelerstrass theorem [67]
is not very helpful in the case of Halsh funct1ons bechnse they are not

-~

,rcontznuous w1th respect to the usual topology of the real line (or

plane) [77 97]. But interest in the use of Walsh polynom;als for appror:
1matxons-has been strong ever since they pere dlscovered most of the -
.:'theoretlcal 1nvestlgat10ns being dlrected thards uncoverlng the parallel- '
ism between trlgonometrrc and Nalsh ser;es, w1th particular accent on

~ the problems of sumability, CODtlDUltY and é?ae§ of coeff1c1ents. Some

of thé basic results are mentloned in Chapter II the conclusions belng
that, evidently, Walsh functions are mot particularly suitable for
approximeting smooth, continuous functionms. what about efficiency -

of computation?

The flrst attempt at considering efficiency of computation with -
respect to. Nalsh polynomial approximations is due to Polyak and Schreider
- [202]. Their study was somehbﬂ\premature becanse_iﬁ‘preceded;the'intro-
~duction of fast transform algorithms “a fact which explains their
‘negative conclusion regarding the efflclency of computing Halsh coeff-

icients. But they show that Ne;sh polynomials may be useful for data
compress1on; in the sense that less storage may be needed to characterize
data (of course,‘not perfectly, but sufficiently well) in a Nalsh
representation than eitoer in a simple tabular form or_in'an algebraic -
polynomial representation. (An example of their correct conclusion 1is
the successful use of Hadamard transfornm for the compression of_pertiele

count data [203].)
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The work of Polyak and Schreider has heen‘ continued by C.K. Yuen -
[2_04,76,111] . “_H.is':i.s'.a rqoré systematic studj because he sets the pfbblem ‘- |
in a more geﬁeral form:'_ given a function f, find the index set M and:

the coefficients <, such that I cmwﬂ(m,t) is a good approximation

- to f£(t) over a certain finite interval. The particular scheme dis-

" cussed by Polyak and Schreider involved the selection of ¢ as the

m
, Walsh. coefficieng_g_\%(m)' =-‘<'f(-), .wal(:ln,-)>-, and__tl;e restrii:ﬁon of M

to containing oniy those indices for which I.f(m)'[ 1s greater than a
certaln threshold (uheiu:e .the name "“thr‘:eshold—san_:pliﬁg_" schemeg [205]) R

the crit.eﬁon of goodness being éit_her cdmiergé;xce in the mean or uniform
conférgence.' _Conceming this procedure, Yuen shows that the. -ﬁ_b_sblute :

. er"r.;or ‘bound obtained.b?r‘Po:l}'raJ_t and Schreider is overly pes’Simistié.

- He propose; a different scheme in whiéh the tnméation is not done
according to ma_gnitudeof coéfficien‘ts but according to their rank and
degree. This scheme is no longer optimal in the least mean square error
sense, but has the &pméuhat doubtful) advantage of having an error bound
that is easy to compute due to its relﬁﬁionsl;ip nth the derivative of .
the s;';gnal. Yuen al:;.o shows thé absence of Giﬁbs‘ -oscillatdiylphenomena .
:in relation to finite Nalsh apﬁroximation. More interesting is his work

- on mini-max Nalsh series. A first ,Stage considers a fixed set M, but,
iml;;ofes the approximation by an itéi-ativé search for the best coeffic-

" ients e The second stag.e att‘e'mpl't‘s an optimizatiou of the index set

M in the sense of finding the smallest set for a fixed maximm error.

But, again; the ‘conclusion is that Walsh polynmi:ials are advantageous
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f;ily for detc'camptescion and wsmall machines low«precision fhnctioﬁi
evaiuaticn by means ef‘special Walsh series hacdiare" [76].
Applxcat1un-or1enc5d studies concernlng the relatlonshlp between
Fourier and Walsh series coefficients haye Qeen ca:rled an by Harmuth
and. .de Buda [206], and by Sxemens and Kitai [207 208 209] The conversion
__between the (~-dimensional) vectors of Fourier and Nalsh' coefficients |
of periodic wavefbrms is descrzbed by a non-singular square =-dimensional
;'matrlx multlplxcatlon thch has relatlvely few non-zero elements. Later
on, Kltal [210] showed that it is p0551b1e to truncate the vector of
Halsh coeff1c1ents to 2% terms and st111 obtain the correct Fourler
coefflclents of a frequency bandlimited waveforn provided the (now
f1n1te1y dimensxonal) conversion patrix is multlplled by a 51mp1e dia-
gonal compensatlon matrix which tends to the: 1dent1ty matrix as n + =,
TA pract1ca1 use of this fact has been made in the constructzon of a wave-

form synthe§izer [211] which- uses only.8 of\the first 32 ﬂalsh functions.

The conversion theorem between Walsh and Fourzer coefficients has
also bemused in the design of a frequency response analyzer [212] .
: Systems may be identified by exciﬁing then with a sinueoid (at various
frequencies), but instead of performing a ﬁirect Fourier analysis of the
response, it is poscible-to perfbrm a Walsh analysis follcwed by a con-
verSion“of‘the Nalch coefficients'into Fourier coefficients. Experi-

entally, it was found [212} that a hardware (16 coefflcients. 8 bit

uords) implementation using standard TTL dev1ces perforns satisfactorlly

in providing real-time frequency-response identification up to 60kHz; -
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a performance which was considered to be commercially attractive.

+

Identfgicatioﬁ of systems via intermediate domain processing have

been studied even before by de Hars:.ly, Emsel].em and Poitrinal [213, 214]

| uho ‘were unaware until recently [215] of the fact that they were using
the Walsh transform. Faced wlth ‘the problem of 1dent1fymg the - mpulse ‘

‘ response of hydrologzcal ('bas:.n) systems from input u (ra:mfall on the
entire basin) - output Yy (nm-off at the outlet) data whose measurement |
had been contaninated by noise, they model the problem as one of linear
dec&ﬂvolution, ;(t) = f utﬁ— T) h(‘r).dt. | Restrict:éd to s#mplé&, finite
data, the problem appears in matrix form as: . . ' L

£ T R 1]
y]_ l - “an o ' -
. Q-Y."‘U E'g C e s . (4.5.1)
. L -J‘\l “can w - - \\
’_Yn_a" : _ﬁ;n cer Up g }“«.J

where, given the output data vector y and the input data matrix u,

it 1s ngessary to find. a best approxmation‘ for the impulse response
-vector h. For n = m, one is faced with a simple matrix i;wersion pro-
blen. The solntidn can be efficiently computed by using the FIT algo:l:ithm, '
but it":)is msatisfaétory &ue to its noise-induced instability (see also
Chapter VII) The - sn:uatmn is less ‘eritical for n <m, uhere there 1s
plenty of redundancy to reduce the effect of noise. Emsellem and de Marsily
had the ingenmu§ idea of lookmg for a least mean square error

I
t
p
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- optimal response h via its representation/in a basis of orthogonal
fdnctions.. For tﬂz.sake of computational efficieﬁcy,tthéy chose a system
of step«like orthogonal fhnétions'vhicﬁ thrned_cuf to be the Walsh one; 
The interest of -their approach conmsists in the fact éhat the representa- .
tion is not éompﬁted at once, but iteratively, by. successive projections,
on Nalsh functlons of higher index, so that constraints (e.g., non-
'negatlvxty and smofthness) can be’ 1mposed on the solutlon after each step™
of the projection process. - In a Semse, this procedure is similar to the
mlnl‘max representatzon of Yuen. but with an additional dimension 1mposed
by the cons;ralnts. The method has been proved to be very successful in
practice,ﬂand &e Marsily and Poxtrlnal have 1nd1cated its potent1a11ty
for studying nonfsfationarylproﬁléms as well. o

In fact, this had been already done, indepcnd;nfly. in [216],
where Walsh series éxpan;ions'were.used for identifying the dynamic
characterlstlcs of weakly osclllatory systems The approach is somehow
dxfferent nonetheless, because (1) it starts from the sampled veréion of

the Nlener-Hopf equation

Ty ® = Eo T en); k=0, 1, .oy N,  (4.5.2)

where M is the regularizatibn-pa;amete:, an& (2} it projects both the
cutput data Eky and the unknown system function h onto the subspace
of first N Nalsh functions, thus obtaining the following system of

. equations

" a N N -
A, (@) = v _(§); A;. = ¥, r_ (p-s) wal(i,s) wal(j,p). (4.5.3)
B x 1 ggh'sao = o
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' It is worth mentioning that experimental results [216] proved to be better
for Walsh repteséntations‘than other (Fourier, Chebyshev, Legendre and
Laguerre) representatioﬁs. As for a general discussion of lihear time

1nvarlant system identification using random data and the Walsh transfbrm,

o _1t is postponed until after the discussion of randam data spectral

' analysxs and basis restricted transfbrmatlons.

Turning our attention from systsm identification to system control,
an slegant and useful ussgé'of Naish anaiysis‘iﬁ a practical application
'has been mide by Chen and Hsiao {217,218]. They are not so much inter-
estsd in ques;ions of gbstract optimality but in prdblems of worksblg.
implementations qf control theory. Given the often impracticability‘of
_ theoretical solutions,. they consider the frbblem of &atermining sub- -
optimal feedback laws fer ligear systems yith quadratic performance crit-
eri#a asd propose fhs implementation of (often tiﬁe-varyiﬁé) feedback
gaips by means of piece-uise constant gains obta?nedlthroggh Nalsh
representatibns.' First, a Kronecker product formulation of the solution

to the linsar dynamic equations

2=Ax+Bu | (4.5.4)
is obtained in terms of Walsh functions. Such an approach is based on
the fact thatlﬁhe integral of the (Zna) N-dimensional vector w of

Nalsh functions can he expressed appfoximstely as a multiplication with:

a sparse matrix Py,

f_w_ dt = Py~ ¥ ' (4.5.5)

q



128

which makes it more' advantageous to consiger the Walsh repregentatioh of
x raﬁher‘than x. Then, given the Nalsy répresentafionsioﬁlfhe m-"

' dimensionﬁl vegtorS X and Ax, ,and'the k-dimensional_vectof' u via
the XN matrices c and E and kXN matrix D.fe;pectively;‘_

. / . . -
X = C-w A'l‘.o = E'w . us=Dw (4.5.6)

the solution is simply
x=CPu+x, | : ' (4.5.7)

where C is obtained frﬁm the matrix equation C = ACP + E + BD. Due
to fhe sparsity of P and E, Chen andiﬂsiao were‘able to p}ovide an
elegant and efficient Fortran subrouiine for solving this matrix equa-
tion. Alternatively, block pulse funcpiohs [88} codiﬂ be u#ed in place

of Walsh functions [219,220].

Chen and Hsiao addpt a Similar approach to the optimal control
problem with qnﬁdratiq performance index'
. RS : \ | |
1 t tR :
=5 (x'Qx *+-u Ru)dt. | - (4.5.8)
o ‘ e . : N
Their selution is notationally too éomplicated to warrant reproduction;
: . ¢
fact is that the method which they propose proves to be much simpler in

analysis and easier in implementation than previous ones.

The same p&obrem has bﬂgp studied independently by Burkhardt
{221,222]. He considered a quadratic timelvariant cost functional and

used Walsh functions as basis in a Ritz-method solution in order to
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obtain a suboptimalvextremal problem rather than be faced:nith a non-

linear matrix Ricatti equation. He provides a solution similar to that

of Chen and Hsiao, but his is a more complete study because he is also

' concerned with the-éonvergence of the solution (1t does converge), and

he extends the results both to tracking problems (when the cost-funct1onal
uelghs the devzataon of the state vector from a prescribed tra;ectory)

and;to problems with final state constraints.

! L

Before proceedzng, it is necessary to review the theory of
spectral representataons of random processes, because it is essent1a1
for the forthcomang d15cussaon concerning spectral estlmatzon, SYStED
1dent1f1cat10n and f11ter1ng. Partly, this subject has been already
discussed in Chapter III where it was seen_that the Walsh transfbrm is .
a Karhunen-Loeve expanszon for q-adic statlonary random processes because
1t dxagonallzes the. antoeovarlance of the process 50 that the spectral
coefflclents are uncorrelated, and each of them can be estxmated or pro-

cessed independent of the others;‘ In practlcal applications, it is

}
. rather seldom that one fznds q-adlc statlonar1ty, but, in general, the

corresponding Karhunen—Loeve transformation may be prohibrtlvely compli-
cated to implement‘[ll] It is then customary to perform some other
transfbrmations,which are preferred to be unitary because the energy is
‘invariant under them. They do not diagonalize the autocovariance matrlx,
and hence, do not decorrelate the spectral” coefficients. But, if the
erTors 1ntroduced by neglect of off-diaongal coefflcients are small,

then what has been 1ost in theoretlcal goodness may be compensated by the
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L]

practicability (efficiency) of impiementation, with its gain in simplicity

"and speed of processing. This is the fundamental idea of basis restricted

transformations (BRT) [134,178]. Figure 4.4 describes this process in
.which the random data vector is‘first transformed by the unitary. trans-.
formation - U,ethen‘a-processing (not necessarily linearj ishperfo;meo on
the-diagonal elements of the transgorm tector, followed by tno inVerse

nnitary transfonnation In principle, one could use two separate unitary

. transformations [223], but,"it is more customary to use only one. The

' -proce551ng in the transform domain is described-by a diagonal mnfrix

operator

z=1r1-Q Utz S a  (4.5.9)

{

< } . I

- ) . / | '
" - The rastriction is tuofold' (1) it imposes a suboptimal but.computation-
’ic ally efficient transformntion which is more or less independent of the

‘ signal, and (2) it presupposes a diegonal processing operator & If

Q isa&inear. then one recaptures the concept of generalized Niener

‘.filtering [137, 180]

S

Following the same steps as in classical Niener filtering theory,

i/

‘,'nit 1s eaS?‘to ‘show that for a 1inear diegonal matrix Q to provide the

bast estimate (in a mean- square sense) of a vector 'z based on the
observation of the vector X .'(both z and .x are supposed to be of

‘zero mean), it is necessary that its components should be

[‘,'“Xi"" 134

q = o o . (4.5.10)

'.[U"Rxx"”‘lln

3
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where sz and R denote theé cross- and auto-correlation matrices -

‘s

for z and x. The residual error is found to be [134]

. . ! . -1 N
. . [U. -U ] ‘ ‘
2 . trace R, \<2 ez - | N " (4.5.11)

The erret ;s. of course, a_function of both U .and the signals, and ‘one
can compare the theoretical efficiency of various unitary transforms

(for estimat;ng the same kind of signals !) by eoﬁparing the correspond-
ing residual errors. As regards a comparisonhuith the unrestricted optimal
‘ ﬁeae square error estimator, 1 = Ry, Rxx » the suboptimality of the
BRT scheme resides in the fact that it employes a @ designed as if u
would diagonalize both sz and Rx¥

“The vectet ferped of. the diagonal compoﬁents of‘!lex'U‘l' is
cslled the' U-eower sbecttum of the random process x. If the ortho- -
normal fhnctions defining the transfbrmation u form a group und:r 7
multiplication;, then the U-spectrum admits a conrolution interpretation,
i.e. it may be considered £o be the U-transform of a correlation function.
This was the basic idea behind Gibbs' definition of "logical autocorrela-‘.

tion function" as a mean of local dyadic adtocorrelation functions [55],

its NWalsh transform being the Halsh-power 3peetrum P

B 2!1-1_1 o I . . )
R () = 11’“"? z:Tz‘“lz T x(te0x(x) + P ). N (4.5.12)
tae =0 . - R ' 3

/ -

With resfact to the above definition. it is important to. stress the fact

- that it refers not to dyadic stationary prqcesseJ but to discrete real-
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valued niﬁmMﬁy anes which are (usually) described by the
arithmetic autooorrelation funotion RA(t) and its Fourier transform. .

the (Fourier) power spectrum P

\ T2 F SRR, =
Ry (t) = lim 3 ° 3 x(t+r)x(r)v': PO (4.5.13)

T =0

The relationship between the two autocorrelation fhnotions has

been studied by Gibbs-and Pichler [146]; they shoﬁed that it can be

—.__

expressed by a linear (non-singular) transformation T It can be

generalized to g-adic analysis and the mean RQ of local q-adic auto-

correlation functions.

Th. 4.5a . 3
‘ n-l : o . I >
RQ(t) = q "/ 2 5:: Ry [(x2t)-1]; RQ -.TAQ- ~ Ry '(4.5.-14) .

In fact, the theorem can be generalized even further to any\onitary
transformation'and any random processes having enocugh symmetry to permit
a reoonstruotion of the autooovarianoe matrix from its diagonal elements

Ina unitary representation.

Robinson {147] has studied the séruoture'of the matrix 'TLA
(i.e. TAQ‘I for the dyadic case) and found that it can be r?presented

as a product of*diagonal or at most block diagonal matrices

n

1Y

T H'C(kl)-IN‘EN o | T (4.5.18)

k=l
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2.
. -

where E“ is diagonal 'IN is the identity matrix of order N and C(k) '

k-1

o are block diagonal matrices with 2 identical entries. each block

- being itself a sparse non-singular square matrix of order 2%~ k+1 Fest;
‘algorithms have been developed [142 143] for implementing the matrix
, _multiplication by TLA (or ThL)’ so that it becomes computaticnally

| efficient to estimate the arithmetic autocorrelation of stationary data
via an intermediate estimation of the _Nalsh power spectrum P" followed

~ by the reqnired matrix conversion::

_ a - nn-1'~~06 oy tMAA lu-xn

,P“()\) vy & | Pw | (A) = m E - PD x(i-tkN)ual(A i)]

L | (4.5.162)
S g - - :
RA = 1&JCRL = TLA‘H'f‘Pﬂ' B ‘ | (Q.S.lﬁb)

_This procedurefis, indeed, much fester.than any other method; fcr'exdmple.
it is ehown.in'BAQ that for N = M = 2048 the approximate numbers of
multiplicationslcdditions necessar? with this methcd are 6'103/6-104,
 compared with 2+10°/2*10° for the FFT method and 210%/2°10% for the
. direct lagged product method. An extra stage could be added to obtain

an estimate of .the Fourier power spactrum
| ‘ ~pe el . o | | e
Py -‘FRA = FTiA? P" : | o §4.S.17)

which, for N sufficiently high, still proves to be more efficient than
-the FFT method especially if M is greater than N.
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As presented above, the relationships Ry ++ Ry ‘are exact and-
not approximate. it is true that P" considers only the diagonal el%ents

o£ the Halsh BRT transformation of the covariance matrix, but due to the ‘

‘ symetry (anthmetic stctiona.r ty) of the. process and due to the abelian

group structure of the transfom, no infomtion is lost such that the
entire covariance matrix is recoverable (through the TLA transfom)

from P". But there remains the problem of detemining the efrors involved
in estimating Py and their propagation through the intermediate trans-

B al

B Since it is possible, in principle, to estimate the secondary

‘ statistics of stationary data via an internf' iate domain processing. it

should also be possible to estimate TIL. systems via estimates of inter-

M" o

medtate models. - The study of this problem was initiated by Pearl [141]

- He cor’:_centrated his attention o_n a dyadic Walsh’ ir_\temediate processing B

| shd a finite discrete case ‘(N = 2® points), for which TiL an_d 2-TIL

systems are describable by matrix equations _
=T [y = D . T @sasa)
PAL o]y = hD(in) S - @:5.18)

! In a first stage. the problem consists in searching the set {n}

of dyadic ma.trices for the element D0 which best epproximates the

- matrix T. The cri.terion of optimslity is the minim:l:ation of the euclid-

ean distance betwaen the ocutputs of D and T over an ensemble of

uniformly distributed input signals. The theory is similar to the cne
. ] . o , : ‘\

-
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: conoemi_ng BRT estimations, and Pearl proves the diagoxial-matc'hing
thoorom. ‘ o v >

 Th. 4.5b DO(‘I‘) is the dyadic.matrix having the same ,didgonal_ .elements

"as T under a Holsh similarity transformation
| A‘L.' o
wLo (T)N = diagiwlTN] . (4.5.19)

the residual error boiog determined by the off-diagonal elements of _N"_lm
Tho theorem,--which is in .'fa‘ct valid for any unitary tronsformation
U, shows that a 2-TIL model may be obtained directly by measuring the res-
‘ponso of tho system to Nalsh £unotions or dyadic stationary processes. )
But it must be mentioned that thls projoction from T ‘onto D J.S not,
in genoral. a ono-to-—ono ‘correspondence and, ‘moreover; it is not an

' isomorphio mapping of TIL operator algebra intoq-TIL oporator algehm

. beoausa, 8.8., tho cascade of two TIL systems does mt imply a casoading

~of q-TIL models. - —

,." Tho second stago of the problom concerns the rolationship botwoon

. the “time" reprosontation of the systom and its intemodiate domain-

-

‘ modol, and for the case of time-invariant and’ dyadio systems, Pearl has

-

showed tboj_:’i-* -

: N-l | - -
hDU)-}T & h-r[(mﬂj)-m] S (4520

This idea can be -generalized to any unitary transformation which has an
| 1 -
)
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abelian'group'struotnre, i.e. tﬁe sets of.rows‘or'columns of the metrix” u
_are closed under “element-wise“ mnltiplication (to put it succintly - the
Zlunitary transfbrmation has to be a generalized Fourier transform). For .
‘q—adic Halsh transfbrms (including ‘the DFT as the l-dimensional N—adic

case), let us ‘denote by Q- the q-adic system matrix having [Q]ij = h @@= j).
(See, Fig. a6, ) Then, '

L : ‘ . ,
- ITh. 4.5¢ the relationship between the impulse response of a LTI system
 and the‘inpulﬁg response of its optimal o-LTI modei is

N-l 'y Nel .
hQ(jJ = - h-r[(m?»j)-m] . — 20 hplm-@ti)l (4.5.20)

\ .
The thizd stage of the problem concerns the recovery of the

original system from its intermediate model. ‘As mentioned above, the
projection (4.5.19) fron {T} onto {Q} is'not a one-to-one correspond-"
ence, such that it is not always possible to (uniquely) obtain T. from

- Q. Pearl was able to show hat recovery is possible for

: =
a) TIL symmetric systems for which
- . P

“hp(e) = RECUED; t e - Nel L, _1.’-0\,w N-1, . (4.5.21a)

such that _ _ .‘ : \\7“\\\\\\\ |
- 48 I 5 -
hy = Hp B3 = T B3 ;T | (4,5.21b)

and

b) TIL causal systems, for which

hi=0 for tgo0, . .  (4.5.22a)
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‘such that o _ _ _ : _ .
l By = " “T‘“(T . (4.5.2éb)
xuhere ThL }s Robinson $ conversion matrlx; and C isa sparse eatrxx
having 1's in the first column and 0's elsewhere.

. Coneerﬁing fhis preplep, it‘is pessible to offer a ﬁore generel_

statement:

-

Th. 4. Sd the- projection QOCT) {T} + {Q} 1is a one-to-one correspondence

L
"~ for any-TIL matrix T having at most N distinctive elements.

] The proof is simple,'ﬁaking(nse of the fact'thet, by definition,
T has'at most. 2N-1 ‘eistinct eleﬁente {because . Tij hT(i -j)), whereas
Th. 4.S¢ provides only N . equations {because there are only N distinct
. elements in Q). Some extre N-1 hT—s;ructure equations-(like the
symmetry ox fhe causality conditions) are necessary to permit the complete
determination of T from Q. As presented here, EE}S theoren invalidates
Pearl's assertion that one cainot recover a TIL syetem ffom its circular
(DFT) projection; hie statement shéuld have been qualified by specifying
its validity eniy in}the abfence of the additional N-1 etrueyure con=-
ditions for T.. There.remains, ef course..the open problem ef deterﬁining
the'goedness (b{es‘end variance error) of estimates of dyadic (or“q-adie)
models (and hence the goodness of TIL system estimates) from finite and

noisy measurements,
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Intermediéte'ﬁnlsh domain pfocessing of signals is another field (i

_of applications for Walsh analysis .lTne underlying theory nas been -
enunciated in the context of basis restricted transforms [134 178} and -
of generalized Niener filtering [137], but there were numerous applications
preceding the formulation of the theory [224]. As shown before, the pro-
oessing,is definitely suboptimal unless the data has q-adic symmetry,

its only redeeming feasure being the lower cost and the higher speed of
implomentation. 'This is why such Walsh domain processinés weré applied
almost exclusively to those problems where the factors of oost and speed
s:e of paramount'importance; the most notoworth examples being speech snd
inage processing.;'Apait from considerations of efficient implementation..
the use of N&lsh transforms ‘has Pproven to be rnthor disappointing This
can be explained first and foremost by the lack of "affinity“ between the
signals studied and the multi-dimensional structure of the Walsh trans-

/"
form, Seoondly,-the mean square error oriterion with respect to which it

has been customary to optimize processors using intormedinte unitary /
transforms is not a good fidelity eriterion from the noint of view of
human perception of sither spoeoh or image infornation contont. It is
‘\“‘“‘expected tnatrtho introduction of adaptive control of processors will
improve their capability. Some contributions in this direction have besn
already announced [224,225]l ‘Also, attention has been brought recently

to the importance of'phase in'image processing'[zzﬁl;

Thero are three clearly defined classes of objectives for inter-

modiate domain processing.
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(1) Data compression. This was discussed theoretically by Pearl.
[134] and Ahmed and Rao [184] amongst others, It oncompasses two problens -

one seeking an increased Tate oftdata transmission/reception (see the

‘example in [203]), the other seeking bandwidth compression. This is

+ especially important for TV signals where real-time constraints are so

stringent as to render unusable tronsforms which, although more suitable
theoretically. are too slow to implement [227]. An intoresting applica-
tion of Walsh transform to adaptive bandwidth compression of video signals
has been recently reported in [228]. Results on 5peech data compression
were reviewed in [229]. The subjoct of signal multiplexing [230 231,232]

should be also part of this class of .applications. p

(2) Signal recovery. This can be subdivided into two distinctive
subclasses: one concerning noise reduction (the "convolution" problem),

the other concerning distortion reduotion and'signal restoration (the

- "deconvolution - Fredholm,intogral equation" problem). Both aspects are

" important for image processing, and the use of Walsh transforms for

achieving these objectives has been discussed by numerous researchers,

among whom Andrewsgans the groatost contribution [233].

(3) Signal analysis. This refers to pattern recognition and
feature extraction; also to the already discussed subject of spectral

anal?sis.‘ The use o£ Nalsh transforms in. such problems has been discussed

in [234] Unless the signal has affinity with q-adic symmetry, the pros-

pects for Walsh analysis are not very encouraging. The Walsh transform

has been used with some success for the-study of gastro-intestinal signals -
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a ‘ - :
_ [235]; and recently, a report has been made [236] on the use of Walsh

(and .other) transforms for textual measurements in connection with the

analysis of satellite images of the earth. B

There are many other engineering problems for the solution of
which it is possible to use Walsh analysis Most interesting among‘them
| are those concerning the analysis of non-linear systems [237 238]. The
efforts\ of Harmuth and his- oollaborators for the use of walsh analysis-
in radar (concerning not the prooessing of the received signal but the

emission and reception of Walsh waves) -should also be mentioned [239.240;
241]. | ' - o

bric . . &
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"ON SIGNAL PROCESSING USING FAST CONVOLUTIONS IN FINITE FIELDS

;'/:" ) . , ' ) <‘ {5 . B \.g:ﬁ.

5.1.  CONVOLUTIONS AND FOURIER TRANSFORMS IN FINITB FIBLDS

s ‘ e’ “ﬂ‘; .. ;-{"'.
" This chapter presents an invostigation into somo'aspocts concern-

"ing both tho thoory of convolutions in finito rihgs (or fiolds) and
 number thoorotic transforms, woll as their applications in signal
'_procossing. As ovorﬁshoro olse throughout this dissertation, attention

is concentrated oxolusivoly towards OFF~1ine, transform-basod methods of

signal procossing, with onl

scant remarks conoorning sequential ON-1line

finite rings are sometimes calls ’in"onginooring'Iiteraturo) for signal
.procossiné represents, in avsonso. a third soago in the atoempt to simu-
iatovlinoa;'procosoors via fast and error-free numorioal_oomputations of
~convolutions of functions in ¢R]. The firot stage of this attempt |
consisted of tho use of Fast Fourier iranoforoﬁoigorithms to implomont
dtsoroto finito Fourior transforms of oomplox-valuod functions [24]. o
This implies the use of a finito group G as domain. or oquivalontly,.;/{
the imposition of poriodioity to’all functions considered; whence tho name

of poriod (cyclical) oonvolutions [243]. But spood waéuaomotimos insuff-

. icient and tho oomputational errors @oro prohibitivo for certain ;%plica- y
tions. To incroaso the first and to decrease the latto:s, there were '

1
attempts to roplnco the DFT with the Walsh or other, faster, transforms.

144
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In the specifio case of Nelsh transforms:-this?implied the oonsiderstion

. of q-adio ‘translation invariant systems. or, equivalently, the existence
fTOf a finite abelian group domain having the ohsraoteristies of a- muiti-
dimensional spaoe. ‘AS, shown ‘{n the preoeding chapter, the HT is definitely
-~ faster and less error-prone than the DFT, btut its ranae of spplioations
(and the effectiveness o£ its sdvantaseS}is ettenuated due to its isok :

of affinity with.real-world processing needs. .

Nhiie the first stage of tJ effort to _perform fast convolutions
implied the use of a finite domain function space, the seoond stage :
" implies the use o£ a finite oo-domain function spaoe. Restrio:ed to an
rinfinite domain. this case presents 1itt1e interest from the point of
view of fast numerioal transform methods and has been little. if at ali.
,discussed from the perspeotive of signai prooessing in the sense of
-flltering. - The topio has been ampiy disoussed in the context of coding
and finite state maohinos (see the review articie by Jury and’ Tsypkin [244].
_ the book chspters ‘of Gil11 in [117] and Kslman in [121]. as well as ehe -

;+ Tecent. nrticie of Sain {112]).

The third atage, the one to be. disoussed‘presently. impiies the

7 uge of a £unotion space heving both a finite domain end a finite co-
~ ‘domain. ,The domain is an abelian group. G, 30 thne one can associate

translation invariance with the function space. Also, the domain is

&

finite, s0 that oonvolutions osn‘ge performed. in oertain cases, via fast
transforms, The oo-domain is given the structure of a finite field K

'or! more 3enern11y. of a finite ring‘ L. 3o that numeric computations are

L
I

¢
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~ performed exactly, with no-tfuncatioh or rouhd-off orrors But. ‘of oourso.

in a finite signal spaco K[G] For ono thing, the domain ia finito and
‘discroto. such that tho conyolutions are pericdic. In addition.ﬂif one
deals with sampled vorsions of analog signais. it is noooasary to take a.
into account tho phenomenon of £roquoncy alia:ing [17,245). For ‘another
'thing. numeric computations oannot bo performed with real numbors but

4"on1y with rationol ones. Also. tho £initonoss of the co-domain imposes

an "amplitude aliasing" in the sense that: the corrospondonco between the

finite ring L and the infinite ring of rationals or intogors (tho only'

numbers to aamit finite roprosontations) is not bijootivo. oach;oiomont
of LY reprooonting an ontiro infinito (rosiduo-) class of rationals or
intogora. CTho "naturai" injoctivo mopping of tho olomonts o£ a finite .

set A into the set o£ intogora Z will be denoted by iA( }.) Never-
| thoioss. if the signals are bounded, it 1s possible to choose L such

that tho phonomonon of amplitude oliasing does not affect the end rasult

J
| !

- of tho convolution. a

.+ The mathomaticoi thoory roiatod to convolutiona and Fourier trons-

forms in £inito rings or in Galois £io1ds [246] haa baen dovolopod sinoo '

©.long in the- context of aigobra and fumber theory [247 248]. but its
engineering signifioanoo has become apparent only within the recent |

development of numorio'siznai proooasing._ The idea of porforming aigﬁai

proooaaing'in finite fields has been suggoatod by Knuth [249j and Gaod [250)

"”'thoro are errors assoclated with simuiating a @R)-convolution by one ftlu

C -

_ \ _ , O
amongst others. Pollaxd [251] and .especially Nicholson [66] have formu-

-

="

.-'/,_
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‘elated the self-conteined algebraic theery ef Feurier.treneferma in finité

rings or £ie1ds and discussed. the possibility ef implementing them via
fast- algerithns. e . b

Nichelsen considered the funetion epece J[G], where J is an
‘integral domain with identity and G i3 an abelian group of order N
and exponent m. This function space is an algebra if additien is defined
pointwise and multiplication is defined as a convolution |

e 0m - 5 Hm teeo - S fmsety ((5.1.1)

TeG o €@ ' ' o
| £, g c J[G)

The existence of an isomorphism F (called Fourder tran:form) of this

algebra into a peintwiee multiplieation algebra is conditioned (?ecese-

arily and sufficiently) by"

(1) the existence of an inveree of i (N) in J, wh ch is

'trivinl if 7 is a finite field 9 centaining i (N); and
Fl

. @) the exietenee of a primitive m-th root of 1 in J
multiplicative monoid of J.

* The. characters of G ever Jx are the hememerphiems x 'G,* J*m
They form the dual sroup r whiehlie isomorphic to G. They can be
viewed as forming a eemplete set of “orthogonal" veetore. t Feprier
transform being just a representatien with respect to the chraetere as

baeis. The eymmetriee of Xy and the propertiee of the Rourier transform |




plication by <.

e T e
S S
v .
_____ S
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they define are formally the same as those expressed in Chnpter I for -
the £unotion spaoe zﬂi] If J is a Galois field X isomorphio fo Zk
{k has to be a prime), the existence of F is conditioned by the fequire- :
qent that m be a divisor of (k-l).. If -G 1s a finite oyolic group |
isomorphio'to_ohe additive group ZN.‘uhere "N divides k-1, the char-
acters can be expressed as . - L | - -
ot | (5.1.2)
where % is an arbitrary, but fixed, primitive N-th root of ‘1 e K, and”
"vt" is understood as 1 (v)ic(t) The iodexing'of the characters by
Ve 2 will be discussed in Section 6.4, If G is-a qeadic group.'
then ono deals with a "finite field Walsh-Fourier tfansform“ If the

‘ r
co-domain is a ring isomorphio to 7y where M - II andrthe pi's

N : i-l _
w 1 roquires N to divide 0M) =

are primes, then the condition ¢
tho-greoteae common divisor of {pl-l, vy pm-l}; A £inite ring Fourier
transform oaq'be implomented by a fast algorithnm, o£ which the precise

naoyre depende on whether or not- N is highly composite)

The fivst engineerins paper oonoerning the use of auch transforms

for siunal prooeesing purpooes is due to Rader [159]. He showed that

finito fleld Fourier transforms are enginooringly ottnactive i£ Q) N

is highly oompoaite to pormit fast algorithm implementntions. (2) multi-

k is simple, and (3) the co-domain is chosen to.

"faoi;itdto binary implementations of “arithmaticH operations, Givon.

these considerations, Rader proposed the use of fields modulo a Merserine
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bt

» and hardware._-#e t numbers are of _the ferm 2

5

- prlme (nhieh are of the form 2P-l and are eloaely Telated to Euclid'

lperfeet numbere [248])er modulo a Fermat number. He was alse concerned |

with the werd-lenath constraints neeeseary to avold amplltude alieslnz.

use of ﬁFermet number transforms", and implemented then both in’ software

t
2 +1, and they are primea«
L -

for twl, 2,3, and 4, Computations medule Fermat primea lend them-

splves ‘to simple lmplementatione via binary logieﬁn\/t there remaln the

‘problems of Q) amplitude aliasing if only moderate length registers are

used. (2) representation of (-1) by 2t =long registers. and (3) the \
restriction to relatively short eonvolutlone (N small). The latter

difficulty may be allevinted by implementing a onesdimensional convolution

via mulei-dimeneiennl Fourier transforms IZSS];

In a later review papen [35], A&arwnl and Burrus broadened the

discussion to rings other than those modulo a Fermat number in an attempt

to obtain more eonvenientﬁimplementetlena and'to avoid amplipude aliasing

problems. Concerning these>}etter problems, Brule'[zsdl has proposed

an 1ntereat1ng acheme in yﬁieh amplitude aliasing ia avoided noe by

performing a diffleult-to-implement eenyolutlon and Fourier transform in

a very large ring, but by performing many eney-toglmplement‘traneforme

. . &
in small fielda or rings, fellowed by use of the Chinese remainder

theorem to reconstruct the result in the large eo-domaln. In eeeenee,-
the Chineee remainder theerem {248] states that any pesltlve integor can

m
be determlned medulo a number M= Ju py if the p;'s ave distinect
al

e

'Hls work has been continued by Agarwal and Burrus [252], who detailed the o

Ve
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_.primes and the residues of :ﬁé unknown 1nte§ef with respect to each of

them are known. Reed and Trucng [255]. who showed how to perform coh-

'volutions between sequenchs of complax numbers via fast Fourier trans-

forms in Galois fields GF(kz), have also proposed a similar scheme [256]
based on the Chinese renainder thecrem. Recently, Justessen proposed the

use.of number theoretic transforms for decodink'Roed-Solomoq codes [217].

The analysis to be presented in the following -sections of the

chnptef i3 not concerned with problems pertaining to-simple hérdwn:o or

software implomoﬁtations of number theoretic transforms, but with con- .

" ceptual problems pertaining to the significance of filtering and the
' theoiy of 11nedr processors in fiﬁite rings.orlfields. Sectlon 5.2 dis-

" cusses signal processing‘inlfinite'fiulds. while Section 5.3 introduces

hhrmonicAdifferential cq}culﬁs in finiéo fields,

: . \
3.2 _ SIGNAL PROCESSING IN FINITE RIELDS

The problems of signal proceasing in the space of functions into

a Galois fleld resemble, up to a certaln point, those of coding thoory - ‘

‘or the ﬁheory of finite state automata. This fi 10 because fhoir under-

\

on a signal space K([S] whose elements are functions from.a countable set

S 'ihto-a finite fileld K (or'into a finite xring . in a more goneral

treatment). In practice, S dis either the set 2 of integers (with

oxdinary addition, isomorphic.to the infinite cyclic group) or a‘hubsot

-
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ZN (with addition modulo N, %, isomorphic to a £in1te cyclic group).

“_\.The feature distinguishing between the two theories mentionad above is

conceptual. and hence major: it consists in the different nature (origin
and quality) of tho information content of the signal to be procesaed.

In coding theory [258]. ‘the signals are (at least initially) "determin- ”
istich, being_created“asnelpgpntg of a £ixed-alph§pg§ (subset ofithe
signal space), ﬁccording to'cort;in-stringent procedures. it is only
afterwards. in the courso of being propagated along the channel, th&t
these signnls are corrupted by nolse; so the task of information extract-
ion is to identify each recoivoé signal with ono of the elements of tHe ’
prescribod alphabet. The situation is totally difforont in the céntext
of filtoring theory, where the information cnrried by the aignal does not
pertain to its original creation but to the “distortion" (ahaping) intro-
duced by the phonomonon or system undor investigation; so tho task of
processing the signals consists in separating Efor anulysis) the “deter-
ministic distortion" introduced by that particular system from some othor.

unwanted, distortions (noise).

A pre-réquiaite to anyrmeaningful diﬁcusaion of fiitoring’in‘an
_optimal sense requires the formulation of an exror Critorigp.- Upfort- -
unately, th§ error criterion based on the Hamming distance [188], which -
is the cornerstone of coding theory is of no use in £11tering theory, -
whero there is no finite proscribed alphabet. Attempts at defining a
mean square error criterion have been, so far, unsuccesaful, because it

has not been possible to define h functional p :%r[S] x K[S] = K
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fulfillins tho reqniraments for an innar product, 30 that it could be. used
to obtain a norm, and hence a metric, on the signal space. The functional :
dofined by S o \

<, 8>'- Es _f(t‘)'act) - - - (8W2.)
has some of thi properties of an-innqr‘product.-but.it doas not\sqtiafy

fhe postulate that <x .'xS'- 0 should imply x = 0. The rdot of‘tﬁe

V,: problem resides in the fact that it is not pdsﬁiblelio‘define a\concept.‘”
of distance within Y finite‘fiold unless the'injectiﬁe mﬁpping ik ﬁ K~2
is employad to transcond the problen to the realm of "non-finite" numbor§_

In that case, a potential candidate is the Leo metric [259]. defined by |

e = & -ab*cixcfltt»‘-_i,ccfzce)n, - san
c ‘ o ‘

whero”labdt-)_ denotes .the absolute vaiuo'fﬁnctién; Similarly, one can
define a mean square distance, Another possible avenue appears if K is

‘a Galois field -GR(p™), in which case, the trace tryp ! ¥ +F & GF(p),

- S n-1
trgp() = (1 + (P e (0F . G2y
has all the properties of a norm, with the trjangular inequality replaced
by equality {248]. This Teprosents a generalization of(the dyadic norm . '
[107] introduced by Gibbs for p.s 2, There remains mu wofk to be done
concerning the use of such error criteria for aeaignin optimnl processora
in finite fields. No mention has been made in the 1iterature with regard

to this problem of optimﬂl procossihg (with the obvious excoption of [34]),
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. the genéral attitude being thit-of,daing finite field transforms only for
simulating convoldtiqns between‘r§a1-~of complex-valued £Unctiona. Thus,
attention has been accorded not to the problem of findin the optimal

finite £ield processor. but to that of £indin3 the £inito leld ox ring

'.which pernits a convenient (implementations-wise) simulation 0 al number

Eonvolutions; whence all the efforts to avoid amplitude aliasing.

As for the analysis of finita aystehs {117,121], a state space |
description i3 very powerful. Massey and Sain [260] vere ahong the fifst_
to attempt finding explicit 1n;erconnéction; between the theories of
-error-correcting codes, £in;to state méchinqs and continuous systems.

But a state space dgscriptién‘implios cauaalify, which pieauppoaoa an
ordefed doﬁ;in;‘this'is not tho.casa for processors which have been speég
1fically designed to take advantage of fast Galois field Fouriai trnnsform;
algorithms, Altefnatively. one can ﬁsa aitrnnsform'approneh with the

help of the finite discrete Laplace transform [261,262,263]. Tha re1a-
tionship between such a tronsform and a Fouriér transform-in a finite =;

field has boon onalyzed by Cohn-Sfetcu and Gibbs [34].

Systems in a finite signal sphce K[G]. which are characterized

. e . P y
by linenr operators commuting with aach translation operator T are said
to be linear translation invariant syatems, and the relationship batween

input u and output_  y can bo described by a convolution product of the
form (5.1.1), |

ye) = (hrwe) & o, The, | - (5.2.4)
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where h 1; called'tho impulse response of the system.‘ As is to be

‘orpootod..tho tnput-output analféis ofldaloisffioldzlinear translationf
.‘invariant'systoms appoors_to be closely analogous to tho.classical'analysis"
~ of linear "time invoriant“‘systoms dosoribtng relationships between |

. complex-valued signolo:

(1) tho system response to an 1mpulso s, dofinod by §() = 1,
S(t) =0 (£A0),ds hy |

(1) the Fourier trunsforo maos the convolution product y = h *u
into the pointwiso product y - h . u, whers h is called the transfer
function lof the systen; '

(iii) tho characters are the eigenfunctions of the systom. in the °
sense that oaoh is undistorted by it apart from a constant £aqt6§ gndo-

. pondoht of t¢ if uw Xy then y= ﬁ(v) '

{
!

. Rnﬂdom aigﬁals can be oooily'inoorporntod into this tronaform

| approach, especlally weakly (N-adic) stationary signals, that is, stsnals
characterized by o:conotant expected value and by covurionoo.functiono
that depend only on‘tho difforonoo modulo N of tho arguments; for

oxanple,
npltypty) & Elvi) viep) = ry (%), (5.2.5)

Power= and croaa-spoctral density functions are defined as the Galois-
fiold Fourier transforms of tho auto- ond orosa-covarianco functiona.
| rospootivoly. and input-output relationships for linear (N-odio) shift

variant aystoma take classical forms, for oxnmplo.

3



§ r . =h*y & -~ S U
uy -Tuu F-I UV uu

At first sight, these N-adié stationary processes may seen nothiﬁg more
than mathematical éuiio;ities; this is not s6; such a proce:s-mny_ba
viewed as the outpdt 6£ a linear (N-adic) translation-invariant systeﬁ‘
oxcited bf a white noise process (uhdse éovariancg function is non-zero

. for equality of arguments: rww(tl’tz) = PO G(t;!tl)j.

‘Tﬁé problem is that all theée :elationshipi in the “transfer
domain", aithough vefy simple from‘u qathemat%éal-point'of view. have
not acquired any direct ongineeriﬁg significance [35]. This explains why,
~ unlike compiéx-field filters, which are usugii? @esikﬁed iﬁlthe.fraquency :
domnin..fiﬂite field filtéfs are designed in tho time_@omﬁin. by speci-
fying the impulse respons& h {obtained from complex-field model con-
siderations in the frequency domain); and meaéures (painful as regards
complication and cost oflhgrdwn;o and aoftﬁare) have to Be'taken.to avoid
amplitude aliasing. It was this search for an onkiﬂeoring significance
of irnnsform doﬁpin operations which prompted tho-dqyplopmunt of harmonic*
‘differontial calculus in Galois £ields which is to bo presented in the
néxt~aqption. It also prompted the exploration of the concept of gen-
anlized frequency aQ a measure of the speed of variation of a function
(Chnﬁtpr.vi). Since each dharghtor is an-éigenfﬁnction of a linear
tpaﬂslation invariant system, it is natur;i-(and important) to look fox

the linear operators whose eigenfunctions are the characters.

b

-
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5.3 .HARMONIC-DIFFERBNTIAL CALCULUS IN FINITE FIELDS
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Thereihave been numerous attempts at defining differentiation in

- finite fields. or, more gonerally. to define it for any spaces of discrete-

valued functions. For instance, Nathanson [264.265]. whd has been pre- 

- occupied mostly with the study of periodicity in discrete sequences,

has defined some difference and integration operators for binary agquencds.

More interesting and of & much wider range and scope has been the research

carried by Thayse, Deschamps and their collaborators. They made contri-

butions not only in developing Akers' original idea [266] of Boolean
difforence [267.108] (see also the indopenden; work of Reed [268] and
Rudeanu [269]), but also in developing a unitary theory of discrete

.
2

functions and difference opérutogs [270] given either a lattice [195] or

- & ring or field structure [196] for the functions® co-domain. Thayse ot

al consider the functions' domain to be a (finite) direct sum of finite
ya - - .

‘sots S;; and thoy view a difference operator as a measure of tho function's

variation due to a certain shift of the variable. "Variation" should be

understood in the spnse‘of the strhctuf% of the co-domain: conihnction or

'disjunctibn i# the co-domain is a lattice, difforoncofmcdulo m if the

co-domain is the ring Pm; etc.... In genoral, Thayse and his collabor-
ators are mostly interested in goneralizing aspects of Boolean calculus

to the thoory of multible-vnlued switching'circuita'[197.198]. For ins-

tance, they provide counterparts of the concopts of prime implicants and

prime implicates, and discuss their extraction by a technique very similar

to that of Loéhnor. but not in the transform domain. It is interesting

to note that, although he was aware of the rolationship between Boolean

Y
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differenetelcalculus and hefmenie'anaiysis (108,194], Thayse, who -
deveioPedla theory of operators on functions from GF(p“) 'into_ GR(p)
wﬁich'have many'prepeft{ea similar to those of the elasaical differentia-

tor [271], did not pursue the ::xter of the relationship differentiation -
"_harmonic analysis beyend the ‘case GR(2™). This overlook may be explained-
by the perspective adopted - that of awitchins circuits. where there is

more intereat in Tnylor-Manuxin type expansions og/functions rathex than

in convolutions or their Fourier vepresentation. The same is true regnrd- o

" ing the work of Benjauthrit and Reed [2?], who, independently of Thayse
et al, have extended the concept of Boolean difference to apeces of
functions from (GF(#“))m into GR(EY). ‘The outlook a@oﬁted herein is
different because, as mentioned befofe, wa ere ssecifically interested in
eonvoiutione. ﬁourier trnnsfo;;e and pperetieﬁs in the ﬁfensform domain,
‘looking'as we are, for those operators whose relationship with the char-
aceers‘is sinmilar to the one between the Newton-Leibniz differontiater

and the exponeneiul_funetions.

The harmonic differential calculus-in £1uite'£ie1da has beeh
developed £e110wiﬁg-the samo principles as those adopted by Gibbs in his
definition of harmonie differeneial caleulus 1n the complex=number £ield.
In fact. given tho exlatence of a similar £ormnlism describing Fourier
transfarms in either the complex-numbqp f£ield or in a finite field. 1t
is to be expeeted that a formal aimilnrity extata between the harmenie
differential calculus in the complex-number £ield,und that in a finite

£ield.i This is indeed the case, as it has baeon proven by Cohn-Sfotcu and

K
DY IS

-

L
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~
':ﬁiﬁbs t34] The presentation to.follow is restridtad to only anunctatiﬂ{
' ftho baaie theorems. thair proofs. which are. simplo enough. beina. at

moat. only akotgped.

Def. S.3a A harmonic differontial oporator , ¥ in K[G] is any linear |
operator 1n K[G] whose sot of eigenfunctions is the set of characters
of G over K. There are many such opnrntors in oach such apace.
.Uniqueneas is ensurod bx-requiring that the eigenvalue corresponding to

, ~ ouch character X, i3 uniquely Telated to the index v of the character,

Ox, TSR R (5.3.1)

‘ ' ' L)
The map B G-+ K is analogous to the contrnction mappins 1ntroduced by

Gibbs and Ireland in dofining hnrmonic difforentiation for complox-valuod
functions on a finite abelian group [78]. It is customary to define 8

- - via tho natural injections i, and i,

L 8es) = 4,7 g T s
this londs "cradibility" to tho usual notation |

3

va ] V‘xvu ' ) ' | . " ’ ESISIS)

»

Th. 5.3a . The harmonic derivative 02 of a function £ ¢ K[G] whose

Galois~fleld Pourder transform-is f can be computed by-

6 ) = 0N T B xo(0) = N1 T weEm)xge),  (5.8.4)
| ve@ v ‘ G v

vE
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Th 5 3b The harmonie dorivative of a £unction fc K[G] ia 0 c K[G]

1£ and only ig f is a constant function.

-

- Th;'S;Sc The_harmonie difforen#iator cohmut;s with each tranalation

operatort - ' -

for each t ¢ G, - } ) - ?  . | S | »
- '...' B m-‘;" T'ro | : . - (535)

. Th. 5 3d Aa an 1mmed1ate corollary of Th. 5.3a, i€ the Rourdor tranaform .
_iof f 1: f. then that of Uf is the funetion ¢ definod by f'

.l@(\.a_},u-_v-ftv)_. T e

R TR . " . . A ) g? .

- Th. $.3¢ The harmonie dorivativo of the eonvolution product o£ tWo

@ .
functiona 1: equal to the convolution produet of eithor,pf the functions

and Ehe*derivativo of thu‘gthor (thia- followa casily from Theorom 5. SdJ.-' 4
vcf-s) cv,ez.'s'-f*cvs_)- T '_ | css.n
~ ' . @ :
The harmonie derivativo can be extondod to arbitrary orders s e 2
w via the definttion of the harmonio dolta funetiué' 8, \
o B a1 | ies0 S
RICE N ‘EG I N
and 1tk dpjvatives of ordors . e
SR . N R DL N £ Y65 R
S veGefO} Y- R o
-, o y . .. ' y S~ IR
thoij; oo - TNy
. .“ ) K E@;‘ t ~ :\‘S
~— ‘/)T . N : '\7 "-‘ -
2 "‘" - . ‘é T - . ) ¢ « ,
',&13 - .o )
E A . . ’
s ) v TN -
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' . D¢ -’cD‘a) JF N N DR f(u)x“. ST 880y
e | s ch-{O} T

A3 can bo seen. harmonie difforentiation has many of the £eaturos
of Nuwton—hoibni: differentiation._ But, in seneral, harmonic difforont- -
lation on' K[G] . does not oboy the product wule o ‘

S '_ SGCULE URE L N _;f_ C '(5;3.11) |

—_ ~—-—-_*A,,________L_T_
<y ) . » ; “_——_;___‘

——

Gibba [107] has provcd that harmonic_difforentiation in the dyadie fifii)
_ obeya a nenoraliaed forn” of tho produet rulo._ It 1a condecturod hore
. that a generalt:ed produet rulé holds whenevor G (GF(p“)a and

K= (GFQp“ib, whoro n, a and b are 1ntugars and p isa primo number.‘

A . -a"‘.
*

' | o2
“As for the relntionahip batween the harmonic difforentiator in a

finite fleld and tho 1neremont oporator INEE-X K[G] - K[G]. .‘

N 1) -\t:f(t) - £(8), o '_‘\ O saag
4¢.con be shown that, | ..

-

Th \E 3£ the harmonic derivative on. K[ZN] can be oxpreased as

o £ a%e, T (5.3a3
| o “zN {-"—‘-tﬁcfle J_. zﬁ'N“’ o 3

££é?  vhere 2t w ZN-{Oi. and,’M‘denotoa the roliduo class- containing the .
Y m.;gz?g;eatol 1ntesor losl than’ﬁgﬂ;qunl to !-(NﬁlJ. To prove Theorom 5.3¢,

" one has to shok that exprosaion 5.3.13 satisfloes Def. S, 3a. "The case
g :

7 e 0 df'trivial becsuse x(0,t) « 1, and the derivative of a vonstant,
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v
D

_ function i3 0. In case that’ v ¥ 0:. then

ey % [ vy 840 ok (v, )] s B
| | n-c1+§n(n))/2_ |
- w(-1¥8gnn)) /2

(1«x(v,1)]

3
.

- XLt} 2 x04T) X{M,¥gn (n)
. 1:2& L

u <x(v,t) 2 - %N X (4 34, T )gn (n) .
. u’llll I . ‘

e (141 (1))/2,

< ax(ut) 3 -
N-(-l n(n])lz

1 Gl gn ()

= (V) x(v,t)
~ vhere o & i(v) and y & ign). In this caleulation, wo have i.uogl the -
. facts - '
T @) that
xit) = xDE e xeeY T (33
. (i) that, for o dn any fleld, and for n ¢ 2 ~{0),
L nelegnm)/z . o
Cleal s (lea) odgr () (3.3.18)

. yu(=143n (n)) /2
o ,\

and - (444) that o L 5\ - S
| Z;N i(v.t)‘. QK'I(NG(\;)-D. . j _ - (5.8.18)
.oveay o S ¢ SRR

b



For G, an n-dimonlionnl q-adic group, an expression aimilnr to that in

'[72] can be proven 1ikewise,

' Aa can be seen from Th. 5. 3£,-the harmonic differantiator 1: &
"elose cousin" of the difforcntial operntors dofined by Thayse ot al or
by Benjauthrit and Reed for £ : GF(p ). GF(p). In a sense, it is botp
a paxticulari:ltion and a generalization of them: a particularization
bocause it iz a weighted average of the £unction's "varintion" precisely
"alons_tho.untt directions in the multi-dimensionnl'domain Pp ; and a
- goneralization because it is valid for function spaces other than those
in which the domain and co-domain nre'io directly related as in the e#io

~of multiple-valued logic differential calculua,
. L

Nith resard‘to"hnrmonic.diffﬁroﬂtial equations, we have the casy

-

Th, S.3% the homosenedui.linoar'firat-order'harmgnic differential ‘equas

tion (initial value problem) ' S i . ]
Dx . oax ®x(tg) = x ¥ 0 ek o ‘ - (5. 3.£3
is soluble if and only 1£ there is 1n G an element aqual to 10 (1K(a)
if a solution oxists, it il unique and is given by - - ‘ /
x(t) = xox(u.t-tol. - . , ; (3.#.18)
_ . » ]
Th. S.3h The n;n-hoﬁogenequi harmenie di!forcntialziquntion:Ti-' -.-f |
| rwaggru - O Easdn

il lolublo tf and. only if eithor of the followins eonditionl holdsy

s
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_ Fo
" (1) there is no olement of G such that it ia equal to iG (iK(n)J.
(41) thore is  such molement n, but uﬂ1) = 0; if a solution exists,

it is given by

o

x= X (vaﬁ)‘?‘ﬁcu)xv. | | (5.3.20)

In the £irst case, the solution is unique while in the second one the .

. indeterminate coefficient of xQ is fiké&‘by an appropriate initial

condition. The same npproach‘dan be applied. to equations of higher order,

It i3 also _poaaible to'dovolop a harmonic ltato-apace analysis of
;linest processors in K[G] Thil las haen done by Cohn-Sfetcu and Gibba
| [34], who uolvod tha multiple 1nput-mu1tiple nutput lyatom equutiona ﬁ

Dx » Ax . Bu

o o . | (s.8.21)
y = Cx ') . ' S :

Ay
y ‘\-.;.-.‘
.~ BN

The roaults wore £ormully the same os tholo 19 Soation 3.4, and will not.

- be ropoated here. .There remains tho problom!of intorproting theao ralulta.
' ‘boenuso. as in the case of proualsors in ¢[G 1, the Einito order of the
functions' domain makes difficult the intiSEGEiion of the eonoapt of
causality and, hence, of the concept of state al it is geuoraily under-

stood in systoms luienee.

5.4 CONCLQSIONS

‘Tho inveltiuuﬁionl prosented in this chapter should be viewed |
only as a probing into the problems of linnﬁl processing in finite
~ f£ields; as an initial step on the way towards the long-range objective |



164

U
‘ Ve
of £reoing optimnl digitnl signal procoaaing from the constraint of
roferring 1t to some ideal optimal analozua model, Thu prosent objoct-*«
- 1ve waa to clarify the concepts of filtering signals which are elomenta

of function spaces in which botq_tho‘domain and the co-domain are finite

ng
significance for operations performed in the transform domain rolnted to.

discrete sets, albeit having the structure of an abellian group anji:
. #leld rhaphctively. It was ih the scope of pfoviding some engined

certain Fourier trunsfqrms that the harmonic difforential calculus haa
baen developed. Much work rom@ina to be.done. On one hand, thoro lhculd.
be an exploration £or thoao roal 1life phonomona which may be beat modelled

| las aystoma oparating in finite fields. An oxample is the work of Remler
(273] who studied pattern recognition by convolution tachniéués in finite |
ficlds as a medel for lonaory pcrcoption of human bodiel. -On the. othor
hand, both the relationship hctwocn harmonic differontial caleulul and

the differential cnlculus o£ Thayse, -as woll as their utility in connect-
ion with the analysis and synthosis of multiple-valuod loain circuits or.
othor sinilar circuitl oporatins with discrote £unqtion| Tomain to bo

. explorcd.



ON A CONCEPT OF GENBRALYZED PREQUENCY

| - ;
6.1  INTRODUCTION

The dovelapment of digital aignnl'ptocolains'techniquos and the

| tntroduetion of "naw!! dilcrnto £inite transforma ‘have been associated

by an efiort at p:ovidins moaning to the spectral coofficienta obtained

through such tranaforn rcprnaeututionl. As usual, this mennins has been

lought in tcrma of familiar concopta. emphaais being’ plneed on ‘the coneopt :
of froquency. This is only nntural. given the reaemblnneo betwoen many-\

of theuo new trnnsforml and the clagsical Fourder rapreaentntion. 0f

'thqse transforma, tho most diacusaed in the abovo-mentioned sonse i3 the

Walsh transform, in eonneution'with which Harmuth {37,88] has dofineg,tho
soncept of anquency. 1.0, tho ordciinu of the dyadic Walsh fundtidna
secording to their number of aian-chansoa. The claim that sequency is a
generalizatian of the ‘goficept of froquency has played an ioportant Tole

in the development and proliferaticn o£ upplientions of tho Walsh trans-

" gorm. The problem of meaning and ordering of spaetral coe!ﬁleient: has

been also ruiled in uonneetion uith numher theoretic transforml {35].

The uoncopt of frequoney is neldom the concern of mathemutietnni.

_but it is a fundamental tool for upplied scientists and onsineerl. Unfort-'

unately, the word nfyequoncy" is one of the most taken-for-granted words

168
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| in onginoorins termtnolosya assuned to ho known from elementary trigono-l
:motry. it 15 almost never defined or oxplnined in a general mathomatical
context, Applicd acientista conaider frequency as a measure of the spood
. of variation of a function; but thisAcomqa about only indirectly; through

the fact tha; & rapidly varying signal hgs'a Fourder t;hnlfo:m ropresont-

ation with large coofficiohtl for the complu& oxponentials of large index.

~ This chaptor analy:os the concept of frequency as it is currently
undorstood. and providos & conaistent and unique criterion for gonornlt:ins
~ this concupt to £unction apacos othor than the customary space of complex-
valuod functions on the real lino. ‘The crucial starting point of the . 1
~ analysis conaists in nccepting the applied scientists' consideration of
£roqué;;; ﬁs a pnramoter which, by ordorins the set of Eulex functiona.
{oxp(jzwvt); v,t c R}, sorves to measure the apeed of variation of a

 aignu1.

A

The thosos oxpounded in this dhaptor are: *"”’f“—l"
1) that the conuopt of frequenoy gannot b¢ dofinod 1n torma of
'slobal charactoristiel of an __zlfunetion. but onlyﬁin torms of,ordering a
sot of functions forming the basid of a trnnlform reprulontntion; o
2) that the concopt of generaliaod £requeney should bu dofined
anly with respoct to the group charnutorl £ormina the orthosonul sot used
| for the appropriato type of Fourier transform, so as to provide & unique

and consistent ordorins of theae funettona;

et
I

3) that the gonarallaation should bo made R oxtrapoﬁition oE

the most ollontial features of the eonenpt.of frequenqxxgguit is alroady

t “"-‘.‘“—-_



BT

unnutuguuo%uo
?u&ﬂuﬁuﬂuuuﬂﬂmnu_mug nhﬂﬂuﬂuﬂuuuﬂoﬂuonﬁg: -ouﬁuw_

&




168

undorstood and used in connectiou with the sot of eomplox oxponontinla and

clnaaical Fourier analysis.'

The infinitq‘varintf'og functions'procludes from the oﬁtset any
possibility of.genoralizing tho\bqncept of frequency on the basis of some.
basic aloﬁal charactoristic of any\‘ nction. All attempts at achieving

. this objective while preserving the uﬂderatandins of freduency as § moasure
of the aﬁoed of variation have mot Qith cﬁrtnin failure. ”Sﬁch an atiempt
has been made recently hy Ahmed ot al (63], who propoaod to define
“goncruli:od Eroquuncy as ona~half the average number of zero crosainua _

“"‘H?hhﬂ&\ﬁﬁhggfggffjc:::f" Firat of a11§ a function may vary wildly and atill hava
© No zoro sing. Honce, a first roatriction must be 1mposod on tho tlass

- of functions uhioh may bo ordored by such a critexrion. Let this restrict«
ion bo ‘that of :ero-moan. But even thon, the dofinition i3 £n11&ctoua. \
To 300 thia. it il suffieiont to 1ook at Rigure 6 1 and notice that

L althounh the £unetion £ has a hishor number. of noro crosainns. it haa a

- much lower spoed of vnrintion than the £Unation g

e
-

e

s It i3 more appropriato to defino a concept of generalized frequency _'

| only with respect to the ordering of n‘(iqatriqtod] sot of funatiqns‘
which may ﬁo eomparaﬁle from the point of viow of speed of variation. In
, thelr turn, these functions should form a basis for the reprosentation

z// and eharacturiaation of a.sufficiently larau class of signals.

“ Such an nttompt at definins generalized frequency has been made )
by Naylor [123] in connection with‘thé anniysla'of timewvarying, discrote-
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;iimo lincar systoms. Ho used two orthogonal transforms to obtain a diasonnl
"gonoralized frequency trnnsfer function matrix". The koylyq his idon _
of generalized frequency is the “nasocintion of a frequdnqy incroment 4V
with cach of the functions (column vectors) £oru1ns the basis of the
"direct transformation. But no mdaﬁing is ioﬁght or given to such an
arbitrary ordering of the bniiarfunctioﬁa (it i3 arbitrary because the
orthogonality of the transform is an 1nvnrinqt under any permutation of

the basis functions). / | |

. 1# moaning is to be nlvon to an ordering of the basis funcﬁiona.
then this moanina should be aousht in connoction with the principlo of

erention of the respeetivo sot of baaia functiona. This reasoning, togother .

~ with the relationshipa betweon sroupa. linear displacemonts, charactoers

| and Fourier-typo function roprosontationa lie at the foundation of the

aoeond thesis onuneiatod above.

.

- In additionﬁ,nnd subsequent to Harmuth's offoita. there have been
fumerous othor attempts at studying the concept of soqueney and dofining

a eoncopt of soneraliaed froquoney [04,75,274, 275 276, 36 87,107,79]. At

- beat; all of theso offorts havo mot with only pnrtinl success because

sither thoy wore not prooeded by a propor and/or complote analysis of the

concept of frequency as it is preaontly-underatood. or thoy Noru restricted.

\\*w.\ to transforn ropro:antationa which |1mply do not admit & froquoncy-tyye

1ntorprotution for the orderins of its bnais functions. Ancordinaly. it

is firat noeosaury to invostignto the sot of eomplox exponentials nnd the

'ooneopt of £roquonuy to reveal what it roally means; i.0. to,doturmtnc :
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which of its proportios are oasential onough to act as invnriantn under

b gqgernli:ntion.

Such a'atud}, pgsqd on thé pravious paréial ann;ysoa of [79] and
{276], has been recently reported by Gibbs and Cohn-Sfoteu [17], and forms |
the subject of Section 6.2, Section 6.3 is concerned with a dofinition -
of ﬁonhruii:ed frequency. Eection 6.4 studlies tho’cﬁlo 6£‘6ne-dimensionu1
diae:oté‘Fourier.:ranaforma in complex number and finite number fields,
whild Section 6.5’13 prooccupiod.with the relationship eiia;ing betwoen
' aoquohcy'undv:ho concopt of nendralitod froquoncy dofinod in Section 6.2.

6.2 CLASSICAL FOURIBR ANALYSIS. coupnzx BXPONBNTIALS AND FRHQUBNCY

N . ‘*x‘:b

- In-an olomontary sonso, the word "froqponcy" haa tho meaning o£
the inverse of tho poriod of. any periodie £unution. whorous in applied -
“scionces, this word is nore 1nt$matoly oonnoetod with the trisonomotric

or qomplex exponontinl funetions. »

Appliod scientists usuaily dosaribe nutural'phonomnna vin‘rodl
or eomplox-valuod £unutions of a continuous varinblc (onlled. hencoforth,
with no loss of aenerality. time), This variable spans the roal line,

_ which has the struoture of an additive group, the oberntion of addition'
=§,:epreuent1n3 the physical concppt of dlsplacoment in a homegencous (one=
Elimeﬁaiondn spaco. It has been shown in the previcus section that the .
_concept o£ Eroquonqy can not be dofiued*ua a global parameter of any type |
:o£ funetion. ‘Such a ooneept can be dofined only relative to a mngningful
ordering of a iet of Eunetiona_fbrmtns'thé basis for a funetion represente



ation. The ;rimacy of the set of complex oxpon;§:inls emong all the lota‘
of brthonoﬂnl-funetions rosidollin the fact that, in-a firat |tng§ ‘
[158], the relationships between ﬂutgral phenomena were (and are) modelled
by linoar timeinvariant 'a:utomn in the functicn spaco- £{R]. These.
iystepa aro described by eonvolut;on‘dquﬁiioﬁl.\hnd.thoir eigenfunctions.,
are the comﬁlox oxponéntiuli. A roproqont;tién in terms of complex oxpanJ'
' :ontiald is. very convenlent because, as eigonfunctions of linear timo-
invariant systoms, thoy are not modified by such systoms upart from an
"nmplificntion" of thair modulus and a ahift of their phaso. both 1ndopond-
~ont of the time. o T
. . . ' . N

From a mathomatioal viowpoint. these properties of the complex
onponontiuls appoar as & eonaequoneo of thair Eeing the ehnrautors of the
additive real sroup. As such, they form- ;hn baais for a Fouriorrrepruaent-|
ation which performs an iaomorphtq mapping hetwoon uoﬁmutggtvo fﬁnu€;§n
algobras with éonvolution and éointﬁtan muit;pliuutéon és"thu respective

produetu.

Linear timc-invuriant ayutemu are ulfo described by 11nenr
di!ferontial equations with constant euo!!icien@a. 'The oigenfunctions of

the Nawtonqhéibﬁlta differential operator are the oxponentinlufunngionat
veee) e a— HOR M) 4 0EO) '-”’"1' - £t) = o“. 8.2
The additional restriction that tho oinenfunution be bounded eompola A

" to be imaginnry and #(t) to be a Quler functicn with(qn abaoluto vuluel-
identically equal to 1 |

171 -
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a These complox’cxponentinl functions aro ordered according to the
renl number 0 called thedr Ernqueney. It is cultomary to call w é 2y
tho ansularAfrequonuy and ¢ 8 ute zﬂvt the phase of the complex
exponontial 6xpresnian oxp(j:nvt) More gonornlly. nny complox-valucd
function can be reprosonted in polar form as '

' _ jeplt)
£(t) = Afctje
where. the modulua Af is'a non-negative real-valued. funation and the
. phase .73 18 a funution whoso range 1is eithur tho intorval (-n w] oxr .
[0, 2w3.| The: number oj is viowod as tho 2n=th order root of unity,

j)N | -

sinuo (o i,

i

NOTR1 For roasons o£ mathematical elogance nnd oonslutoney wtth Walsh«

fourier reproaontationa a8 well as with Fourior roprescntations of £unettons'
in finite fields, it 1: ndvtsablo to qonsider the polar repzounnﬁation in
torms of an imaginary phuao funution % A jég and the eorrespondina
tmaainnry angular frequency A 8 3w & 52301 and to regard the numbor ]

as tho jonth root o£ Ie Thus, £ = Afa #. Thts gontention is aupported
by the fact thn&.&n all.relattona exproaaing I'T properties tho fuctors b]

| nnd v (or W) are indﬂssolubly connncted and aﬂwnyn appoar togethcr. ‘
Thts fagt has beegvreoognlnod in Laplaqe transform theory, where & Fourier L
transform 1s viewed as tho restriction of the Laplauo tranuform 0 the

1mnninary axis.

Y



‘: From the point of view of polarvform expressionslof cowplex-velued
functions, \\he\Euler functions enjoy the distinction of being the only |
functions of unit modulus having a constant local frequency The locad
fangular frequency is defined as the slope (infinitesimal relative variation)
of the phase function with respect to time [11] There have been many
discussions regarding the concept of instantaneous frequency [277,278],

wg

but the controversy does not apply in this caSe-because the analysis is

o

restricted to functions which are group-characters and have a non-zero
constant (=1) modulus. This linear variation of the phase is one of the -
‘remarkable features of the complex exponential and' can .be used for de-
fining ""generalized characters" [79]; as well as for deflnlng generallzed'

frequency as a scalar proportional,to—the slope of the phase. )
. : 7

\ : ? (t+t)-? (t) | s
v %‘1?3" (‘it x)(t) : 53-,- 1113 —4 g (82,)(c)  (6.2.4)

-

(Use is made of the two symbols [, and' A to'distinguieh between the | ‘\\ ‘
) harmon1c d1fferentlal operator and the slope operator, which in general
do-not coincide.) Defined 11kewi§e, frequency can be viewed as a measure
of the speed of variation of thefcharaeters,;and_can be used:for ordering
. them.aecordingly.

. Alternatively, since all the complex exponentials have identical,
'unit modﬁlus, their speed of oariationrean be described by the number of
rotations around.tne‘origln.whieh their polar vectors make in 2 unlt‘gf
time. This concept of frequency as the mmber of rotations of the polar )

vector in the complex plane is strongly comnected with the "winding mumber"
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concept This concept is used in complex analysis {279] to indicate the
. number of times a closed (piecewise differentiable) curve vy in the

complex plane z \ginds around a fixed point w mot on the curve; 7

annW]""-"f——"-Ii‘E—-Y,W)- R (6.2.5)

- Sometimes called "the index of the point w with respect to the curve

¥", this concept is needed in the enunciation of Cauchy's residue theorem,

" As for the frequency of a complex exponential it is its ‘winding number

with respect to the origin of a segment of 1ts graph described in a unit w

of time, )
o V(x) = n(x,0)- = 3-,‘;3— f %3 ' | (6.2.6)
R ) X

But, since dz/z = d(lnz) and Iny = ?x,
SRRLERS {d("x)' : B CER)

~meaning that the frequency of a complex exponential is the number of times
the phase function spans its range in a unit of time. |
{ “'.

To conclude, the analysis carried out ebove has shown that the
preponderence of the set of complex exponentials among all other complete
orthonormal sets of functions used for representing complex-valued functions
stems from the fact that it is the set of characters of the group of real

-numbers with arithmetic ‘addition, Consequently, the complex exponentials
are. lso the (bounded) eigenfhnctions of linear time-invariant systems

.
described by either convolution or linear differential equations. It is N
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i.

, very important to notice that, as characters the complex exponentials
_ have identical (unit) modulus, such that their speed.of varietion may be

_,uniquely determined in terms of variation of their phase.

As for the concept of frequency, it exhibits the followink prin-

cipal features:
- /

~a) the imeginery angular frequency A = jw --jva is the eigen-

value corresponding to the complex exponentiel as eigenfunction of the

~

_ classical differentiator (harmonic);

b) the imaginary angular frequency is equel to the local fre-

_ quency (defined as the slope of the phase)_ which is a characteristic

constant (independent of time) of each c0mp1ex exponential
c) the frequency v is the winding number with respect to the

origin of ‘the complex plane of the segment of graph which the complex

exponential describes in unit time; i.e. it is equal to the number of times

. & .
the phase function covers its range in unit time Since the modulus of

a character is always 1, this property eppears as & generalization of the
concept of frequency as the inverse of the period, to be used if possible
even in case that the characters are not periodic, e.g. in the case of

Walsh functions.

6.3 A CONCEPT OF GENERALIZED FREQUENCY

Following the analysis of the classical concept of frequency, it
is now possible to*extrapolate its essential features,end'define them as

the features characterizing the concept of generalized.frequéncy. Such a

3
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concept is general only in the sense that it appliés to all (and only to)

~ the spaces of fugctions hafing a LCA group as domain and a field as co-
N } . / .

domain, For each such function space, this donéepf is instrumental in

1o;§ering, in a sensé'of increased‘speed of variation, the set of charact-

ers spanning the space. The ordering of the character set is possible

only_subsqqugnt‘to';he definition of an order on the domain of the funétionl '

- set.

. ) Ve ‘ : ) . . .
Then, the generalized frequency of a character can be defined:

a) formally, as the eigenvalue corresponding to the character

as eigenfunction 6f the harmonic differential operator;

b) locally, as the everywhere-equal slope of the character's
phase function; and
L ‘ / -~

c} globally, as the "unit-time" winding number of the character's

N -

. The next two sections deal with the application of this concept
to function spaces other than the space of complex-valued functions on

the real line. A systematic approach consiéting of the following three .

' stages is adopted.'

1 Givén.a space of functions defined on a LCA'group G with
values in a field K, determine the set of characters fdrminé the basis

for a Fourier transform. The discussion will be mainly concerned with

‘functions on finite, discrete domains [66,251] because this is the case

imglemeﬂghble through numeric analysis, and because its concepts are
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easier to grasp, The definitioﬁ and analysis can be fgirly'easily extended
-to infinite, continﬁous domains. ' ' 7 | i |
| | 2) Define & harmonicigifferéﬁtial opefgto: such that the charact-
ers are its eigenfnmctioﬁs. This/ has been done .t_»y‘Gibbs and others [73,
80,39], their work being discussed. in Sections 2.5 and §5.3. Also,‘dqfine
the cérresponding slope oferétor. | N |
3) Define the generalized frequency ac;ordihg to the three

criteria enunciated above, and show that they all lead to the same order+

ing of the characters. L .

6.4 GENERALIZED FREQUENCY AND ONE-DIMENSIONAL FINITE DFT's .

/ .
The problem of defining the ffeqﬁeﬁcy of -discrete complex expon- |
-éntialsnhas been discuﬁsed ﬁany times.before.' Tﬁo oppoéite approaches °
can be'distinguishe&.‘ One accepts the ho;ion of "'digital” frequency .
without any questi&n; this is the approach generally édopted by applied
' scientists who regard discrete signals as samples of continﬁous ones, |
‘such that the concept of digitallfrequency is a_haturag extension of tﬁat
in classiecal FouriLf analysis [280,21], for example. Hence, the numerous
instances of disbussingziand propd?ing algorithms for) the reordefing of
DFT spectral coefficients according to increasing ftequehgy, without
giving much thought to the meaning of‘frequancy for signals whicﬁ are
défined on a finite abelian group. In contfast, the other approach con-

siders this prbblem from an abstract, mathematical point of view [282].

Its conclusion is that, since there is no unique ordering of finite abelian

o
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gro;ps; there is no point'1h;even.ﬁaﬁti;ning'the Qdfd frequency. The
'properties'OE'the_fransform are invariant to changes in the order of the
domain (i.e. permutations of Tows or columns in the transfo:m‘matrlx)
Lsucﬁ that, wherqas‘it:is ﬁofmallto talk about a transform domain, it is.

not acceptable to give it a frequéﬁcy interpretation, -

These two divergent approaches can be feconciled once 2 fixed

. "time-ordef" and a principal N-th'root'of>unity, EN’ are-accepted. (The
latter is necessary to define a unit of‘variation - the variation from

the value 1 to the value EN.) Then, fhé concept of gdﬁer;zz;ed-fr;guenby
defined in the preceding section is applicable and bfingé a meaﬁingfui
order to the transform domain. ‘The fixed ti?e-order is normally suppliad
by the natural injecfion mappin iG : G *_ZN {or PN) discuSsed:in
Chapter V. | ‘ ' ] . L :

For the space of complex-valued functions on a finite abelian
group, the complex exponentials of Section 6.2 are replaced by the

characters (called sometimes discrete complexuexponeqkialsj

X\J: ZN""K Xv—=' £, B . 7 . (6'4']:) bo ‘

where .EN = erw/N is the principal N-th roof of unity. The phase

function ?x;(t) is the exponent modulo - ﬁ‘ f\“EN;\;}el,rsymbolically,

‘va(t) 2 vt = 1ogEN(xv(t)), . | ‘ o \ (6.4.2)

In general, any function f : ZN + K can be expressed in polar form as

Ve

.
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S 71¢5)
) = Ag)Ey T

Ag i Zy+R, & [0,%) and" ¥ : Zy+ (-N/2,N/2) (6.4.3)

As for the concept of frequency, it is straightforward to show
; that the parameter v characterizing the discrete complex exponentials
‘ meets critefia (a), (b) and (c) of Section 6.3 for defining generalized

frequency. Indeed,
D &= v g"" (by definition of D);i - (6.4.48)

AN?xv(t)'u AT(vt? = ((tgl)“'tv)nod N_B'&a (iijependent of't); (6.4.4b)

Z} AN(logE X, (1)) =5 Z AN ¥ (t) = v, | | (6.4.4¢c)
teZN . teZN - T

AN is the relative variation (or slope) "differential" operator -
it serves to measure the variation of the fhnction fbr the smallest ~
linear displacement of its argument. For a finite {discrete) abelian

group domain, the smallest displacement is a unit translation: t - t%1.

!
i

A similar analysis can be‘carriedlout £6r the space of functions
- defined on 7, and with values in a field isomorphic to’ ZF,.with addi-
'tdon and multiplication modulo F (since there cannot be any confusion,
these operations will be denoted by the same symbols as those used for

real numbers). The characters are now ) e

. ) e N
¥
g (t); N

Xy} Iy + Zps x, (&) = £°F ¢ = 1(mod F) v e Zy (6.4.5)

1
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' aﬁ& the phase function ?(t) is also to be taken modulo N; As shown in

Chapter V, the expressions fcr'the harmonié_differential and -the slope

operators are formally the séﬁe'gs for a space of complex-valued functions

on ZN, such that, as above, it may be concluded that the parameter v

belonging to the dual group, which multiplies the varigbie nt Jto produ&e

the.character'é phase function (defined ésAa.certain‘Iogarithm of the

. character) fulfills all the requireﬁents for Eeing called the generalizea

frequency of that character.

I715\;'1: . eVt

vE (by definition of D) ! '  (6.4.6&}
| AN?xv(t).ﬂ ) - (V) - v | (6.4.6b)
NN oV ‘ |

In fact, for one.dimensional Fourier transforﬁs,‘the characters
are periodic fimctions such that. they could have beehlordered according

to the inverse of their period, with no need for a conceptual discuSsion

N

and definition of frequency. It has been introduced here first, to show.
. that this'inverse of the period of a character has all the essential
features of the cqnéept of frequency, and, secondly, to pave the way for .

..the more difficult discussion of Walsh finctions and their ordering.

—*——‘____‘_E__
——— . PR

6.5 SEQUENCY AND GENERALIZED FREQUENCY

The ordb:ing'of Walsh functions (especially the existence of many

possible'orderings and their inter—relationsh;bs) has been the subject of



mdny investigations ever since their -introduction by Walsh [49,285, 75 52, 51
284, ete. J. It is one of the main points of this dissertation to stress'
the fact that, because of their "multi—dimensionality"A there can not be

| any unique ordering of Walsh functions. 'Their domain is 'a LCA group whose
elements {even in the case of non-finite groups] are all of-(same) finite'»”
order q. such that the domain can be viewed as a q-dimansional space, tho
points of which can not be: uniguelx ordered ‘The fact that this domath °
can be mapped on a subset of the real line has no bearing upon the essent-
ial fact that the sot.of charactors of_this LCA group admits many equally
significant ordér criteria, none of which fulfills all the requirements

for being d generalized frequency in the sense of Section 6.3.

0f the'various Walsh functions orderings proposed and discussed,

the one most related.to the concept of frequency 1is’ that of ordering the
cal and sal subsets of Walsh functions according to their number of sign-
_changes (zero—crossings) pe period or unit "time interval”. This |
criterion of ordering the Walsh'functions, together with its resembiﬁoce
with the ordering of cosine ahd sine fuhctions according to their nombar'
.of zero-crossings per unit interval, lie at the foundation of the concépt
of sequency. This concept has played a catalytic role in the development‘
of Walsh analysis and the proliferation of its numerical applications
ever since its definition by Harmuth in -1968,. It was also the subject of
controversy, most of it telated to claims tﬁat this concept is a general-~
ization of the concept of frequency. |

—
~
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Most of the objections raised‘were concerﬁed not with its ”evident" '
'relarionship with the concept of frequency, but with the fact th%t the
f cencep:\of eequency, ds defined by Harmuth, was not general_enough‘to be
applicable even to q-adic Walsh functions. Hence, the numeroue attempts
at generalizing the. concept of sequency itself [94,276,275 274] The fﬂ
maip point raised was that the relationship sequency - frequency'should
not be based on an analogy cal/sal - cosine/sine functiens in the space
of real-valued functicns, but on an anaiogy Walsh fdﬁction -~ complex ‘ |
.exponentials in the space of complex-valued functions, so that the criter-.
ion of ordering should not be the number of sign-changes but the variation
qf phase. Thie is, of course, correet, but the formulae.provided for the
computation of generalized sequency are of lirtle use, either because they
are incomplete [275,276] (in the sense of'censidering the.phase variation
.along an-unclosed segment of the character's graph; a result of disregard-
: ing the phase jump from the point N-I to the point N), or because the
. formulae provided had beLn forcefully contrived to permit the recovery of

the character's index as its generalized sequency (see [274], in which

the choice of basis vectors and certain multplicative factors is rather

arbitrary).

A different approach to the generalization of sequeney has been’
adopted by Gibbs [79], who, instead of considering the total variation of
the phase of a Walsh function, considered its local variation, defined
as its harmonic derivative. Correctly, it should have been the ""slope"

derivative; the fact that no majer difficulty arose for dyadic Walsh
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.functions. can be explained by the. proportionality which exists botween the
two kinds of difforential cporators in (but only in) dyadic analysis
Apart from this aspect, the generalization had not been conclusive because
it led to (at least) two equally talid otdorings in the oense;ofrincreased
local sequency. ' \ '

. Neithot‘of these attempts at providing.generali;ations of the
concepts of sequency and froquoncy have been successful because, as ment-

toned before, .

~

i) they were not based on 4 systematic study of the concept of

frequency, and

-

11) they disregarded the multi-dimonsionol character of the Walsh
‘transforﬁ. | ’ .

The faect thotlooguency is’notra goneralized frequency can be proved by
showing that although it fulfills tho raquirements (a) end- (b) of Section
6.3 (as any othor ordering of Walsh functions can be made to dol), it

_ does not fulfill the last requirement.

Indeed, in q.adic Walsh analysis, any complex-valuod function on

Pq can be reprasonted by a polar expression
Y

?f(t) ' '
f(t) = Af(t] Eq : . . B (6.5.1) o

where Eq is the principal q-th root of 1, and the phase function ¥e

takes values. in the intervald [O,q) The Walsh functions have unit
amplitude their phase being expressed in terms of the product between

the modules, v = (v ne1’ cc** Vo) anj '§_= Ftn_ <y Tyt
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jury

‘e

a1, () v, =

|
Q

& Vit e Py R | (6.5.2)

-As in the case of classical vedtor analysis, the multi-dimensionnlity of

1

Pq" permits the introduction df a module difforential operator
D= (00, ciey n-l) to describe the "bohaviou:“ of a function along each
of the basis directions. The characters‘are the eigenfunctions of ? with

module eigerivalues E

Dx, = ¥, = (1, '-";."o)"g e \ (6.5.3)

The eigenvalue ‘;1 -is also the "mbdulcislope" (gra&ient) of the phase of

the character

-A' .. . | . 6--
vy | (6.5.4)

Y, _ A

The existenle of non-trivially distinct bases of P implies the exist-
ence of more than one kind of module harmonic differentiator and slope
operator, each kind having a different (according to ordering) species

of Walsh functions as eigenfunctions.

The two eqﬁhtions above may be put into 2 scalar (one-dimensional)
form by using the invertible norm which effects the bijective mapping

between Pq and P n’ For instance, denoting
q

) 8 Z "1 o,6 ) | (6.5.5a)
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. Y :
| n-1 C s -
(4f) (z) & ;20‘ qi 1(6 ), | . (6.5.5b)
; ' el g . |
it is possible to conclude that the index v = EE: q "7 v, fulfills
o comeit e = .

_ the requirements (a) end (b) of Seétion'ﬁxi for the Wnlsh;xaczmafz spocieu'

of Walsh functions, and could bc called the generalized frequency of the

corrospouding character.

But this would be a rash conclusion, because the soquoncy
does not satisfy ‘the third requirement, the one concerning the totnl vnri-
ation of the character's phase along its closed graph If 1t were truo
that sequency is a generalized frequency, then one should be able to prove
that | N | |
n-l

g gy () = : z Wy ¥ D5 @] =0 (6:5.6)

.DIH

where, as usual, N = q", % reprosents addition modulo q, nnd t and
v aré non-negative integers less than N boing equal to the norms of
the respoctive n-tuples t and v, (5) - EE: q (v]I 1f the point N
is identified with the origin 0 as it is cusgomary for finite one-
qimensional ‘domains (they are finite abelian groups), this conjecture
éurns out to be false. What one can provéi given the Walsh-Kaczmarz

. ] . |
phase function : : ) , ‘ v

n- . o .
n ¥ |
"’walKC"J ?: RS WL (6.5.7)
=0

is that [33]

—————— o bl




=

. -2
o A1
E,=— ¥ [
2 q-1 £=0

pd =
?ualv(tfl)’?walv(t)] Py
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N (6.5.8)

Thebpfoof makes use of the fact thaﬁ as t spans the set {0, 1, ..., N-2},

- the n-tuple y = (t+1)%t = (...,'(tQI)iﬁti, ...) takes the form

0, ..., 0, 1, 1, ..., 1) with i 1's at the #ight in (q-1)¢" > occasions.

~ Then,

N-2

s 1 X
F2 7 g1 éE%

- LY
a-1 o

]
il
|-
(=]
MT
1
(48]

£=0
. N-2

.
q-1 gg%
_1
—-CFT[...

n-1
° . e
5;%(”n-171‘“n-1%(t*1)i

E?walx(t+1)g?walK(t)1

n;l L '
;Z% AN [ (G PR
i= ;

n-1

] o
S O g% )y

i=0

' o . o, .
+{vn-1““n)g e ¥ (Vn-i’vn-

n-i . i_
"n_i(Q"l)q “‘Z; viq' =

ized frequency, one had that

o - L T TV,
.

A

1=

(v

o
sg=V L
n-i-1 "n-i

5]

n-i
j+10@-1)q" T+ L

V.

El B %-[(q’l)E2+Ywa1v(N)gvual;tN-l)] = %‘[(q-1)52+vp].

)]

(6.5.9)

o
Then, instead of having E; = v, as it should be if v were a general-

(6.5.10)
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This means that E, =V only provided that'oné abcepts the convention that

~ the phase Jump from the point N<1 to the point N is not v, but

v = E v, q For one-dimensional domalns “0 is v, and hence, E1 = v
1=

as it should be. For multi.dimensional domalns and non-trivial Walsh

functions, taking the final phase Jump as being equal to v would be an

‘unjustified artifice because it leads to the admission of phase jumps

greater than q.

/

The above considerdtions can be easily extended to Walsh-type
functions with values in finite fields. At the same time, an extension
‘ n, : n,
to the "inhomogeneous" space P °a P 1lg...@p *, for which a
9 9% q13 .
harmonic differentiator may be defined along the prlnclples exposed in [72],

involves some merely notat1onal compllcatlons.

This,-theh, explains thé limitations of the concept of séquency
and the difficulties encountereg ip its generalization to q-adic Walsh
functions. Of courép, one can use the ad-hoc formula "generalized |
sequency v = E,", but its significance is minor. The definition and
acceptance of the concept of sequency as a generalized frequency was fac-
jlitated in dyadic analysis by the felicitous ﬁarticularity of the case
q = 2, when the: (real-valued) characters exhlblt that alternately even

and odd symmetry, and the role played by the factor {(q-1) - in Eqn /6.5.8

is obscured by the fact that it is equal to 1. It is only surprlslng

that nobody has questioried the use of the formula E, instead of E;s

”

i.e. the_use of the unclosed graph Tf the character (Ez ignores the

/£
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. m' ) ' | '-..\
_ /'hxxié?t_phase'jﬁmp to the point N]'for'measuring the total phase variation.
Again, it %Should be stressed that the'concept of sequency is a valid and’

a p;oven-to-ﬁe-useful tool in the contei; of dyadic Walsh analysis. The
objections raised in this section were not, directed against it per se,

but against the claims that it represents a. gemeralization of the concept

. ! \\ . ) -

R

of frequency. - ‘ ‘ g /

" After this ahalysis of the concepts of sequency and frequency,
the inﬁésﬁigation will be directed towards the study of spectral analysis

" techniques in function spaces no longer having as domain an additive,group

but a multiplicative one.



be less concerned with theo?eticalldethiis, the accent being put on théj,

CHAPTER VII ,
MULTIPLICATIVE CONVOLUTION: FAST NUMERIC -IMPLEMENTATION

AND SPECTRAL.ANALYSIS OF MULTI-COMPONENT SIGNALS

P

-

7.1 INTRODUCTION -

Kl

This chapter investigates the use of digital signal processing

technigques, specifiéally the discrete Fourier transform and digital‘filters;

for performing fast convolutions and’ deconvolutions in the space‘of
complex-valued fimctions having 2 multiplicative.abelian group as domain,

\ . f
As mentioned in the introductory chapter, this investigation was prompted

i ' N

by the need to analyze ~a certain class of multi-component signals appear-

ing in magnetic resonance experiments. Accordingly, the presentation will

practical solution of the problem at hand.

?,

This problem -~ the'analysiﬁ of multi-component signals - is not an

. 1 )
easy one; in fact, it is one of the most time consuming, critical and

frustrating stages in the collection and interpretation of eiperiméntal"

-

data., Multi-component signals carry information encoded in the néture

(shape) of their components, their amplitudes, widths, locations and their

&

/ -
mmber. Assuming linearity, the ppocess of extracting this information
is mathematically equivalent to that of representing the signal x(t) in
a functional space spanned by a set of basis functions {k(t,s)}. 4

189

—
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T x(t) =.!‘u(s)k(t,.s)ds; teT, - . : 7(7.1.1)
where .T and S are, usually, intervals on the real line. Of course, in

'practice,'thié-éfteh takes the discrete form

\

x{n) = Y u@k(m,n). / , . L (7.1.2)
m=]1 : :

- 'In principrle., it is always possible to use an _iteréti.ve curve
fitting procedure, but such an' approach is painstakingly Jabourious, and
requires good a.p&iori mmerical information in order to guarantée conver-
gence in an acceptafaly finite t‘;ime/[?gs_,zsél.' In co_ntrast, transform
techniciues, if they exist, ‘dd\noﬁ require any. a}- priori mmerical informa-
‘tior_x, are independent of the n:imber of components in the sigp;d, and can

'be made amenable to automation.’ g

- In many cases, the problem is simplified ﬁy assuming that the set
of kernels {k(t ,5)} is generated by §ome opergt&n performed c;n an. miﬁhe
basic waveform k(t). The claséic example is the case of k{t)-generation
by continuocus (additive) translation on the real line, when Eqn.77.1.1

becomes a convolution representation:
/- L]

x(t) .=fu(s_)k(t-s)ds su(t) *k(); teT. | _ (7.1:3)
S \ W
Such a represeni:htion has many interpretations lin pfactice. The filtering
problem "requires ‘the computation of the integrad (7.1.3) in order to find
the output x(;,t) of the TIL system with impulse response k(t) to an

excitation ﬁ'(t). The spectral analysis problem, on the other hand, requires

\
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to soive (7.1.3) as an'integial equation in'order to comédté fhe density
function u(t) 'des;ribing the disg?ibution (in ffime";'of the kernels
{k(t]} . composing éhergiven signal x(t).' Alternatively, the system
identification problem requires ihe'idenfification of the system function

k frcm input (u) - output (x)-data. For TaS=R=(~=,=), the solution to _
these problems can be readlly computed by applying Fourier transform tech~ .

niques, ' S ‘ .-
p : A :

Cx= FURwFEn w = FUEGFO, C(7.1.8)

A

which have become "numerically attractive since the introduction of FFT

algorithms,
. o

This chapte# is concerned with problems adﬁitting a'represehtation-

. of the form'(7.1.1) in which the basis functions are also generated ffom';

Nt

a unique kernel, but by a muitiplicative translation process:
x(t) =fu(s)k(ts)ds; telT. ‘ ‘ : (77.1..5‘)‘
| s - . o

Equation 7.1.5 can be viewed as'thé representation of the Signal x(t)ﬂ 

[

by a linear‘sﬁperposition of componenté.having the same nature and locg-_
~ tion but different uidthé and ;mplitﬁdes. Such‘signéls appear frequenfiy '
in applied sciences, where basic components may take such varied forms as
simisoids, exponent1a15 gau551ans 1orentz1ans, 51n(t)/t - type curves,
- etc... Characterlstlc is the fact that the kernel k depends on the
product.of the afguments. The most obviou§ and ﬁieqﬁently used represent-,
o : )

ation of this Eind is the Fourier transform, forfwhich k(t,s) = exp(j2nts).

i
L . . {
! . C SN
j . . A
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o |
A mumeric Four_iér"trahsform has ceased to be a problen since the advent
of the FFT [15' 18]. However, when k is not a complex exponentlal or
a smusoid the mmerical computaticn of the transform and, especmlly,
the‘nmnencal 1nver51on~ of (7.’1'5) is-a d1ff1cu;t problem.. For example,
' considerable ‘wbrk has been done on the mmericallinversion_ of the L_aplace
.trmsfom on the real line, for which the basic waveform is ‘an exponential

e oo .
decay [287,288]. Other well known: transforms of the form (7.1.5) are the

‘ Hankel transforms [289,290]. _ N
w = [ 12 oonne. R .
x(t) —] u{s) (st) Ja(st)ds, t € (0,°) . (7.1.6)
. o . . ’ | |

t

where . J a is the a-th order Bessel function.

‘The representation (7.1.5) is sometimes called a Mellin convolution :
transform because, in certain conditions, it admits inversion by a trans-

form of the same type.
s u(s) =f x(t)h(ts)dt; s € 5; T,S= (0,=) = R_, (7.1.7)
T S ‘ '

. having a kernel h(s, t) related to the kernel k(t,s) via their Hellm

transfoms [289, 290]

H{k;'v}/-‘M{h;l—v} =1; | ) . . (7-.51'.8)

-

where the Mellin transform is defined as

M{x:v} =‘( x(t)tv"'1 t. , T (7.1.9)

+
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Widder [291] pre;onts an  elegant solution to the Mellin convolution
integral eqoation in terms of an operator E which is related'to the bi-
lateral Laplace transform of the kernol‘ k. Besides its theoret1c31
interest, Widder's approach leads dlrectly to the inversion of (7. 1 5} via
a power serres_representat1on ofl x(t). Finite Mellin oonvolutlon trans-
fbrms (S ; T are finite) ;s'w§11:as bilateral Meliin convolution trans--
forms (S, T cover the entire real line) have been studied by Perry [282,

293], while the generalized transform has been studied by Zemanian [10]

All of these studzes are purely analyt1c neither of them bezng
concerned with the problem of obtaining eff1c1ent algorithms for perfbrmlng
elther the convolutlon of (7 1, 5) or, 1ts deconvolut1on with functlons :
descr1bed by sets of data. Fron a numeric p01nt of v1ew, a more appeallng

.approach woulo be to relate the solutlon of (7.1.5) to the Fourler trans-
form and its fast and relat1vely accurate numerical 1mp1ementatlon. This :
rs feas;ble by mapplng the multlpllcatlve convolutlon representatzon
(7.1:5) into the "normal" convolutlon equation (7.1.3). This is the
iprlnciple of the spectral analySis‘teohnique‘to be discussed later in the
chapter. The idea of mapping the Mellin convolutlon into a normal one
can be traced back to the work of Titchmarsh [30]. Gardner et al [294]
were the first to attempt its use, in a laboratory situation, for the
ana1y51s of multl-component exponential decays but the; met w1th 11m1ted
lsuccess due to the difficulty of performing a numerical Fourier transform

at that time (1956-1959). The1r method has been revived by Schlessingar

[295] and, independently, by Smith and Cohn-Sfetcu [296] who made use of
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the FFT algorithm Tﬁe latter have also showed the necessity of coupling
'the transformation with an adequate low-pass filtering to decrease the

. effect of computational noise and of high frequency noise usually present

in experimental data.; Cohn-Sfetcu et al [297, 51] 'have shown that the

same technique canxge“general1zed and used in connection with basis fumct-
ions other than exponential decays Following their work, Slegman [39] has ’
dev1sed a fast algorithm for the computatzon of Hankel transfbrms, whlch

are particularly useful in opt1cal beanm pPropagation problems A 51milar
technique for perfbrmlng discrete Me111n transforms has been used independ-

ently in an attempt to recover 1mages affected by Coma-type aberrations [298]
Section. 7 2 presents the theory on wh1ch the fbst numeric transform
and Spectral ana1y51s algorlthms are based, - wh1le Section 7.3 is con-
cerned with problems affbctlng an efficient 1mp1ementat1on of these algor-
-ithms, A practlcal example is detalled in Sectlon 74. Conc1u51ons and e
,1deas fbr p0551ble 1mprovements and research into this topic a:e dlscussed

<

in Section 7. S

7.2 FOURIER TRANSFORMS ON MULTIPLICATIVE ABELIAN GROUPS
: | Kﬁ7ﬁE5ETﬁEr?6E1ﬁﬁﬁTﬁETﬁﬁijﬁ‘éaﬁﬁﬁxﬁﬁﬁﬁ§““"“

The basic proﬁiem for which this investigation has been started is

that of devising a numerical algorithm for compdting the spectrum u(s)
describing a signal- x(t) as'a superposition of components having the d

same shape and location but different amplitudes and w1dths

x(t) d/ﬂ u(s)k(ts)ds' teR, g ' (7.2.1)
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where R is the positive real ?ine.' The solution is sought in terms of

mapping this muxfblicative'convolution into a normal one.

A coﬁparison of the argumentg of the two kernels in (7.2.1) ane
(7.1. 5) reveals that this can be achieved via a multiplicatioe of both
" sides of (7.2,1) by .t and a subsequent transformatlon of variables. The
 required transformatlcn is the isomorphic mapping of the multiplicative -
group of positive real mumbers R* to the additive group of real numbers
R, which is performed by the iogarithmic function:

a = logrt ) 3 = - logrs. . (7.2.2)
. P _ , _ N

Then, (7.2.1) transfofms ihte

Ko

x(a) = u(a) * k(o) =[&(s)i'(];-s)ds; aeR, (7.2.3)
where |
x@) = %@ u(e) = uE™; k@ = amkE®). o 7.2.4)
‘/‘

- Therefore, given the signal x..and the basic waveform k, the

v

specttum u of the representation‘(7.2f1) can be1ebtained in the form
u@™®) = u(e) = FHFIx/Fk}};. o (7.2.5)

the fuhctional relationship between u(u) and o beiﬁg'equivalent to

that between u(;)/s and logr(lls) Figure 7.1 indicates the‘bffect which
the transfermatlon of varlables has upon ‘an exponentlal function, and
Figure 7.2 illustrates a 6-component Gaussian signal and itseepectrum .

obtained via this teclmique. There is normally no disadvantage in using

4
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. natural logarithms (r=e) and all‘the”examples in this chapter have been

computed with this choice of. 'r.

A condition for the existence of the solution (7.2.5) is that the
. » . _

functions tx(t) and tk(t) belong to L(0,=); i.e., they are integrable.
If this is not the case, it is still possible to use this method provided

1/n

that 2/ x(r) and tYPk(t), where n>1, belong to L(0%). In such ,

cases, the change of variables should be
o = logrt ' B = -n logrs. ' : (7.2.6)

The relationship between ;(a) and o 1is now equivalent to that between
'u(s)/sllp and logrclls). Figure 7.3 present; the spectrum obtained by
analyzing a 5-c6mﬁonent sin(t)/t 'signal using such a change of vafiables
" (n=2). Also, 1t is obvious that this approach to solving (7.2.1) can be

generalized to kernels of the form
k(t,s) =x¢&""; % m,meR, O (7.2.7y
with the corresponding change of vafiapleg .

| BN
o = m log (t); " B=-n log;{s).

If. there is interest not in the inversion of (7.2.1) but in ob-
taining a fast multiplicative convolution transform, then the 'solution is

immediately obtained in the form

I(_ra) - I:QF—]'{F{;!}'F{{C'}}. . . | . (7.2.8) TN
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. As mentloned earlier, the computational advantages of this method
lie in the p0551b111ty of 1mp1ement1ng elther (7.2.5) or (7.2.8). by using
lthe DFT and 1ts|assoc1ated FFT algorlthm. Before discussing the problems
‘1nv01ved with alpractlcal 1mp1ementat1on of these solutions, it may be
1nte;qst1ng to sketch a dlffergnt ‘and more general approach to the solutions
(7.2.5) and tT.é.B). This can be-done via the general theory of Fourier
transforms on”g;Lups. The benefit is doublefold. First, it embeds this
chap;er's investigation into the avowed subject of the dissértatidq: -
--topicé on the theory and aﬁplications_of generalized convoluinn trangforms
‘in digifﬁ;?signallprocessing and system theory;- Secondly, and most imppr—
tant, it permits a generaliiafion to domains other than the positive realrf\
line,a fact which is essential for developing a coﬁsistentftheory of finite

and discrete Mellin convolution transforms.

The function 5pacé of interest is thé space of complex-valued
functions on a multiplicative LQA group G. HO:E-generally, the functions’
-may take values in any.field K. The domain of greatest interest is the
multiplicative group of positive Teal numbers h+. (The dot above "under-
lines" the multiplicative and not additive nature of the group 0perétiqn.)
'kRight and left multiplicative,translafiqn operators are defined as part-
icular éaSes of general, abstract translation operators on LCA groups

(see Eqn. 1.1.1).

@) & xe/m; TR & xery;

‘l ' - teb; ¥xeK[E]. ' (7.2.9)
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L
A-multiplicative-convolution can be viewed as a generalization of
the process of taking weighted linear combinatiomns of a function's multi-

‘plicative‘translates. Formélly, a multiplicative convolution {denoted

m-convolution) is the mapping * : K[G] x K[G] > K[G] defined by
(£ * g) () ézé-fff(ﬂ g(t) dr. : g . (7.2.'10)

‘In contrast with Eqn. 1.1.2, Eqn. 7.2.10 uses the symbol dt. This is
done to ‘stress the difference between-fhé measure on the miltiplicative
group ﬁ; and the measure on the additive g;oup' R. dt refers to the
Haar measure on é, and for the'particular'case of ﬁ+, the re}ationsﬁip
between dt and dt on R is ‘dt = dt/t, such t;mt &Etitz) = &(tl) +
é(tz) /a‘s‘required, and (7.2.10) takes the Lésbegue form expression

(£ * () 2{ f(%) g(t) %dt. : o . (7.2.11)

As any convolution on a LCA group, the m-convolution is commutative,
associative and distributive with respect to K-addition in L{(G), which .
becomes a commutative Banach algebra if mulfiplication is defined by a

m~convolution product. ’

This multiplicative convelution algebra can be mapped into a
pointwise multiplication algebra via the corresponding multiplicative
Fourier transform, By definition, the group's characters are the homomor-

phisms i:éﬁﬁsuﬁﬁmg

yi

[
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[xv,t)| =1: Vte6 ' (7.2.12)
RO, DR M,1,) = Xt ) ¥r,t, e G.

1'72

They form the dual group . For G =‘§+, the dual group is also (iso-

morphic to) ﬁ+, and the role of characters may be played by the funétions
- . _ . j2n _ .
x(v,t) = exp(G2uin(tv)]) = (vt) . ‘ - (7.2.13)
It is also evident that

X(1-9,,8) = X(v7,8) X (5,1).

. We define thé”multiplicative Fourier transform (m-FT) of any function

fe L(é] .as
Fiey & %(v) =ff’(t)i(p,1/t)dt, o (7.2.14)
G . .
with the corresponding inverse transform p
-1 % N . _
F7o £} =) £)xX(v,t)dv = £(t). (7.2.15)
T . .

|

The fact that the m-fT of the m-convolution is eqﬁal to the
poin;wise miltiplication of the m-FT's of the respectife functions can
be viéwed as a trivial particularization‘of theorem (1.1.10);’0r it
‘can be proved following a similar proof-path-as for the classicallFourier
or Laplace transforns. Indeed, using the Lésbegue form for E = ﬁ;, it
is easy to-see that, if

"x(t) = u(t) * k(t) =_[ U(F:)k(t/S) (ds/s),

R,
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then ‘ ‘ )

X ) =J.‘ X(t)x(v,:c-) ——f x(v,— ac f u(s)k( ) ds

' R+ + +

%
v

={ u(s)x(v._f, = f kO, £ad
+ -— "_ B
s a)ke). | . (7.2.168)

\
Such a presentatlon of the theory of multlpllcanve convolut:.ons

and Fourier transforms can be contlnued within the same pattern of parti-
culanzmg to nmluphcatlve LCA groups all the results of the general
theory o;:' Fourier transforms on abstract LCA groups, (s\o much about the
‘po'wer of going from the abstract and general to the concrete and particu-
lar case, in contrast with the purely analytic‘ épproach of proviné separate

theoréms for all particular cases). We shall continue no longer although

this approach may prove to be rich in new analytic results.

For the moment, ‘our interest.lies with the numerical solution of
(7.2.1). It is evident that this equation can be rewritten as an m-

convolution

S x(t) =J: u+(s)k¥(-§—) %3; ut(s) = s-u(s); ki‘(g-) = k(ts) - (7.2.17)
U £y . . \
whose_imediate Soluticm can be written, following (7.2.16), as

ut(a) = F-HFx}/ECD, . (7.2.18)
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Figure 7.4. Illustration of interned1ate linear realzzat:ons of
generalxzcd superposition systems. - :
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which is equivalent with (7.2.5). Similarly, it is possible to oﬁtain‘

the m-FT equivalent of (7.2.8).

i
~ The gain obteined by adooting fhis approach to the‘solution of
(7.2.1) is, for the moment, mostly theofeficol: the transformé:ion involved
in mapping (7.2.1) inteo (7.2'3) loses any traces of arbitrariness; and,
more important, the theory covers more general spaces than Q(R ), and is

emhedded in the context of Fourier transforms on groups.

\

. As for the numerical implementation of the solution, although it
is not difficult to prov1de a fast algorithm for the m-FT, it 1s more
convenient to con51der the solutions in the form (7 2.5) and (7.2.8), and
thus make use of the vast knowledge avallable concernlng the 1mplementa—

. tion of the Fourler.transform v1a DFT and 1ts fast algorlthms

| But, before discussiog in detail .the numerical implementation,- it

.ls worth makiﬁg another parenthesis and‘point to the relationship between
the transform method described above and the generallzed superp051t10n
theory of Oppenheim [299], Wthh has found use in the non- llnear filtering
of multlplled and convolved 51gnals [300]. Generalzzed superposition
(homomorphic) systems (mappings) are described in F1g. 7.4 together with
Oppenheim's idea of perfbrm;ng (or 1nvert1ng) the mapping via an inter-
medlate linear .System (mapping). In order to obtaln the llnear image of
the homomorphlc system, he proposed the use of certain transformatlons PA ‘
and P affectlng the co-domaln of the working functlon space. The

transform described here can be viewed in s1mllar terns, with the difference
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that we are now concerned with the domain of the funciion space and not

its co-domain. In contrast with the principle of generaiized superpositioﬁ
we may talk now.about a priﬁciple of generalized time-invériancé (Figure
7.5 - rémeqber q-TIL systems also), whete L} signifies a convolﬁtioﬁ_
operator in a space of functions on an abstract LCA group ‘{G,+}, whereas
L, signifies a convolution operator CfIL‘systém) in thé space of functions .
on an additive LCA group {G,+}, which usually, is the set of either .addi-

tive reals or integer numbers.

7.3 NUMERICAL IMPLEMENTATION: GENERAL DISCUSSION

- The numerical imblaméntation.of solution [7;2.5) involves, mainly,
aﬁ éxpoﬁential change of'variabies followed by the inversion of a (additive)
convolution integrél equation (i.e., a deconvolution) followed by another
transform to obtain the final result u. The lastltransform is not ab-
solutely necessary because the graph of u(a) versus a is equivalent

to that of u(s)/s versus In(i/s). j

f

The change o vaiiables may not be necessary either, if data;'j.e.
the signai x(t), / gathered at ekponeﬁtially increasing intervals, and
the kernel k is known analytically and is calculdted by the compgtér.
If, as is usual, the signal is sampléd at equidistant iﬁtervals, then it
is necessary to perform an interpoiation which is by no meﬁns a simﬁle '
procedure in this case. This is so because, as it will be seen, the de-
convolution is extremely sensitive to the presence of noise (éomfutational

errors) in the data. The subject of correct interpolation is a problem in
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: | i : Ve
itself, and will not be treated in depth here, although some rTemarks will

-be made ih.connection with the spectral analysis example to be presented

in Section 7.4.

The problém of performing a numeric deconvolution or convolution
is by;fg;,theééne of greatest importance for a successful implementation
QEHET.Z.S) aﬁd (7.2.8). For p£¥e1y ﬁumeric data, it is possible to perform
a deconvolution via a Monte Carlo approach [301]‘or by using de Marsiily's
method as outlined in Chapter IV. If the analytic form of the kernel k
is pét known bﬁt it may be safely assumed that it is séparated in frequency
" from theispectrum u (i.e. their Foﬁrier transforms have non-intersecting
supports), then é homomorphic deconvolution [300,19,22,302,303] may be
atteﬁpteé. If ﬁot, thﬁre remains to tr} a blind deconvolution [304]:
But, usually;‘ k_lis known analytiqall&; and it makes much more sense to

use straight DFT techniques in conjunction with the FFT algorithm.
e * . /-

-

literature on the DFT and FFT is abundant [174,305,164] and the -
compufational techniques have been thoroughly discussed and refined.
Nevertheless,.fhe implementation of a deconvolution proééé§ remai;;HE’h)
delicate problem [29,306,307]. For low-frequency signals, as is u#ﬁafi;
the case, the deconvolution favours the high-frequency components of the
data and, hence, of ;ﬁe noise accompanying the signal. What is worse, even -
if the original data are pure of any ﬁoise, the dig%gal‘proceSSing {includ-
ing the FFT [308,19]) is bound to produce some noise dﬁe to inherent
computational inaccuracies; and this noise is subsequently enhanced by the-

deconvolution process. : , !

-
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To alleviate n01se enhancement phenomena, the deconvolutlon must - .
be coupled with a IOvaaSS f11ter1ng performed in.the final stages of the
proce551ng Unfbrtunately, lowrpass fllterlng has the effect of broadening
the final spectrum; i.e., of d1m1n15h1ng the resolutlon. It is a fact of
- life that-fne always has to ‘strike a compromise between noise purifiéatiqn
and resolution enhancemént. Comﬁﬁtati;nally, this low-pass filtering poses .
no problems, 51nce 1t can be 1mp1emented by a 51mp1e point-wise multlpllca-
tion of F{x} Wlth the transfer. fnnctlon h(v) of the filter. The opti-
mum fllfer to be;used is dependent on the signal, the noise, and the ‘f v

criterion for opiimalitx_[ZS,Zﬁ].

However for signals composed of dlscrete Peaks, good prellmlnary
results may be normally obtained by employing a fllter with a Gaussian

transfer function A -
ﬂé(“) = exp(puzlvgz). -_ - ‘ ' ‘ (7.3.1)

For separate pulses and white noise, this filterkpruvides the best com-

. promise between noise,reduction and loss of resolution because it is

characterized by the minimum duration-bandwidth producg [11] In practice,

one would start with a hard fljzarlng (v small - low resolutlon but high

S/F) and then go to lighter fllterlngsr(vg larger - h;gh resolution buy

reducgd S/ﬁ)? selecfing the comﬁf&ﬁise between resoluti&n and S/N which

- best guitglboth his purpose and his cost function; i.e., the measure of the

relative cost of not noticing small signal components versus cost of

accepting false components. Figure 7.6a illustrates the effect of chanéing
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the filter farameter vg when anélY:ing_a 3-component Lorentzian
signal. ‘ ,; - ‘

The numerical impiementation of (7.2.5) is also affecteé by data
window effects and'by the fact that the convolution associatbd with the
DFT is cyclic rather than aperiodic, as required by (7.2.5). It is only
natural to be so because instéa& of ; FT on the entire real line we per-
form a DFT, which is a FT on a finite discrete group of order N. To
avoid these problems, it is necessary to make sure that the functions
x(r¥) and 1n(#}ruk(rp) have, for all computationalrpurposgs, a.finite
support which is included in the a-interval (-A ,A] over which they
: (andlthe:DFT) are computed. An increase of A, beyond certain limits is

detrimental since it ieads to longer computation times and larger compu-
tationéi errors (N is proportional to A ); instead, it is advisable
to perform an 'aﬁasing (folding over) of the data inside the (-A,A 1
_intervai with data valggs outside the interval [37]. As an illustrationm,

Figuie 7.6b presents the spectra of the 3-Lorentzian signal computed with

and without such an .aliasing.

‘ As for the numerical implementation of (7.2.8), this is a much
simpler proﬁibm since it involves a convolution rdéherﬁfﬁén\the inversion
of one. Siegman [39] has discussed the problem of implementing (7.2.8)

for thé pérticular case of pefforming Hankel transforms:

glp) = 2n¢ f r £(x)J , (ZnpT) dr T i?_.s.za)
N 0 .

'
LY L]
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2

&

& . ::"l' 0
£(r) =2% [ og(p)s 2(2mpT)dp. & (7.3.2b)
N [a ] ’
After the change of variables ' , /
aa ag ‘
T f T e p=p.e, (7.3.3)

a/ ’ ‘ V
where Tyr Pgs and a are scaling parameters; and a subsequent equi-
distant sampling in the a- and B-domains, Egs. 7.3.2 transform into,

the disgrete correlations

g“m =§ fn m+n ‘ fn =%:glzljw:m °. (7.3.4)
where ' ' < 1B
: ' e

- o p e

. . - am :

8 = Pp8lr ) Pp = Pge

7 . . °

n = o flr); - r = roean ' (7.3.5)

- am
.Jm = 2ma PoToe JK(prdroeam).

" Given the N-point vector £, its N-point Hankel transform g can-
/’

be obtained by performing only two DFT's of %y points each, #rovided the
2N-point inverse DFT of .3 is already stored: in memory. It is neceséary
" to perform 2N-point DFT's and not N-point DFT's in order fo_simulate
linear convolutions by performing cyclic DFT‘coﬁvolutions. The_sequehce

of operations is straightforward:
. -

- padd the N—pbint‘ f vector with N extra zefoes, and perform

its 2N-point direct DFT;
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. - multiply the result by the 2N-point inverse DFT of J;
. )
- perform a 2N-point DF'I‘- the first. N points ‘of the Tesult _

represent the vector g.
\ '

The sﬁccéss ‘of the operation 15 Mteed _5)’ ‘a proper scalihé of |
“.t.he signal to be transformed; i.e., by ensmi.ng that the sampling is
) sufficiently dense, a:rid \that' it is dome in a m:fficie;ntly-la_rge n@er
of points’ (N) to enmx_re‘the negligibility of both £ and ; beyond-
that interval. Siegman Il:rovides a heuristic analysis for determining N
and the scaling parameters 'ro'; P o’ and' a in function of two sampling' .
cogfficieﬁ;s ‘Kl and K,  (both to be chosen greater than ,2) and a Spaceﬂ_- o
- bandwidth prc;duct T oxPmaxe- MheTe T and Prax o€ the values #bqfe .
which £ ‘and respectively ; becone negligiﬁle:

N = Kzrmaxpmaﬁzn(xlrﬁaxpmak_)_’_

= 1 0T P [ S (X X5

Lt VS |
. : . /
The experimental Tesults which’ Siegman provides are verf'y encou:l%‘
. ‘agmg, ‘and the speed and memory savings obtalned through the use of the
| fast Hankel transform VerSus the use of a direct integration transfom
' a_re impressive proofs of the value of the numeric solution of m-convolution
_ transforms describe& in Section 7.2. "I‘he advantages and problems involved

| in usmg this technique for the decqmposxtion of multi component exponent:.al

_/

signals are discussed at large in the next section.
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7.4 ANALYSIS OF MULTI-COMPONENT EXPONENTIAL DECAYS

The impulse for studying means of solving the jntegral equation

(7.1. Sj has been the need for

e _
decomposing (m the- sense of spectral

analysm) mtlt:.-companent signals which appear in pulsed MR experments

(F:.gure 7.7). As with most other apphcatmn onented invesugatmns,

. the" problem was initially set

type signals; 1.e., g:wen the

e.xclusively in terms of exponentxal decny

expenmental signal x(t), £find the para-
i

meters M, Al wanss 1\4 and 11’ .M [whlch describe it in the follow:mg

manner: R

x(t) = 21 Aem(At). _ | T (7.4.1)

It was only later that the full potential ‘of the spectral analysis tech-

niqué (henceforth called the

some of the results obtained

exponential transform téclxxliqué) has been

fully recognizéd {297]. This section will present 2 succint review of

by M.R. Smith and the suthor [309], concemmg

the analysis of signals of the form (7.4.1). Although only exponentfial

type. signals are discussed, most of the problems encomn:ered apply as well

" to other types.

The problem of analyz:mg nmlu-component exponential signals 1s

\
one of long standing in applied sciences, part:.cularly beuanse the

transfer funct:l.on of a linesr time invariant system may be determined by

expandm‘g.\ its transient response in terms of expanential cumponents.
AN

Analysis pf\a single_’exponantial decay is fairly straightfornard but .

-
-

ST SRRt S RP I R
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' ,that of multr-component decays is. dlfflcult, espec1ally when the number of
exponentta;s is unknown (or large), exponentlals with similar decay
constants are’ present. and Ihen data is contamsnated by‘norse and baseline
_offsets. Successrve e11m1nat10n of the slowest decay [310] is a8 simple l\
technrque wh;ch is sat1sfactory as long as there are few exponcntral com~

-ponents and’ they are well resolved.

N ‘ \ .
. There are iterative technlques whlch syntheszze mu1t1~component

o exponent:als and compare them to. the or:g1na1 data untll some goodness-

rd

. . of-fit crzterlon is met [31 »31 ], but. the1r appllcabllrty 1s lrmlted by

the finlte computer time ava;lable, partrcularly since the presence of

. noise may 1nf1uence thelr convergence. More sophxttrcated‘rterative tech-

niques based on optlmum least-squares approxlmatlons have been developed
generallzatlons of Prony's method (dated 19751) which separates the-

search for the 11near parameters Ay from that for the non-llnear parae

meters A The main dlffrculty wlth this technrque conszsts in the fact

n_that it requires ‘the’ solutron to a non-llnear ‘eigenvalue problem. McDonough

-and Huggins. [313] have proposed a hardware implmenetation.of such a solu—

tion. Goluh and Pereyra [285] and Osborne [286] present generalizatlons

of Prony 5 technlque in which the compouent 51gnals have non-lrnear para-

meters, but not necessarily of the’ multiplicative type'
-x(t). a_mgl %km(t;bl,bz, sees bp) L . L (1.4.2)

But, as with all other iterative techniques, their solutions are strongly

dependent on .a good initial guess of the unknown'parameters, and they are
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practicaily useless'if. M is unknewe and-or reiatieeljlarée; It ia'true,,>
nevertheless, that. glven a close:nltlal guess of the parameters snd a
correct choice of M they usually provide results which are more accurate
than those obtalned through other methods. (In'addltlog, theyrare appllc-
able even for 51gnals uhlch are camposedlof dlfferent types of kernels; _.‘.

but this is not-o£-1nterest in the present case.)

It weuid be ideal if all these i:mblems could be avoided by using.
a method which generates a spectrum (amplitudes Aﬁ versus distribution
Cof parameters A ) much in the same way the Fourler transform generates ‘
' the spectrum of complex exponentials forting a s1gna1. The advantages
of such an approach are that.

- noa pr10r1 numeric information On'the parameters is requared.

"= all the parameters are determined simultaneously,(wzthout any
'1nterference), ' - | _ |
| - broadened peaks weuld 1ndicate the presence of (exponentlal)
' components with close (decay-) parameters withoet interfering with the
‘analysis of other ‘components;

- reliable analysis could ‘be performed by personnel unskilled in
‘curve-fittlng (this is an important desideratum in the context of attempts
.at laboratory autemation),

- even when net very accurate, the results may be used as a good

initial set of parameters for a more_refined-iterative technique.
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Three:cahdidates fbr‘éuch exponentral spectral analysrs technxqpas
‘have been consrdered in [309], where it was found thar the only acceptable
g ~one is that descrlbed in the prevzous two sectlons. The transfbrm based
on the~orthonormalrzatlon of a set of exponent1a1 functlons [314 11] has
heen implemented, but the results proved %o be drscouragrng The‘dlstrl-
bution obtained prov1ded a good gitting of the data, but the results weTe
correct only if the non-11near parameters were 1ntegers. In ay case,
the oethod'is not_computapronally efflClent, and it requlres to operate
with extremely high-procision arithmetic (the use of double preclsron
wordlengths proved often not to be enough) . e‘same negative conclusion
" has been drawn concerning the use , of vario 1gorithms for solving (7.4.1)
through an inversion of -a Laplace transform us1ng only real-valued input

‘data [388}.

There remalns the exponential transform spectral technique whose
theory was descrlbed 1n_SECt10n 7 2, and whose practlcal 1mp1ementat10n
was diecussea 15 Section 7. 3. It is evident from the examples presented
there that the teohnlque js satisfactory when confronted with theoretically
generated (simulated) data. But what about experimental datal The three
- major problems affecting the proper application of the technique refer to

. " approximation of an aperiodic (1inear) convolution by a cyclic
one, '

- the enhancement of noise present in the data, and

- the errors introduced by the interpolation and extrapolation
procedures used to calculate the signal values at exponentially‘increas1rg

-

jntervals and over an extended range.
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"The f1rst of these problems has been alread& discussed in a géneral

. context in-Sectlo? 7.3, Ccncern:ng the p051t10n1ng of the sxgnallin the
7a-intérva1; 5t has been found experlmentally that, for a single exponential’
'anaiysis, data must be gathered - ofer at least 22 time ccnstants, and the
peak of the transformed data must not be too close to | '

- gither of the u-1nterval boundaries. The ch01ce of samplzng density (the -

wo?d rate has a connotation of equidistant sampl:ng) ‘and total number of

polnts N haS't"be made through a compromise; 2 large N is necessary

. " for a good approx;matmcn of the FT by a DFT, but a large N also jmplies

, L

larger computational erTOrs, pgxtlcularly those assoclated Hlth the inter-
polation ‘and extrapolaxlon necessary to calculata b x(r ) Also, large
N means longeTr computation times, N = 256 and A, "= 12.8 proved to be

4 satisfactory compromise.

Usually x(t) ié gaxherad over a time 1nterval of typlcally 6 to

10 times ¢he longest time constsnt of the exponentlal present in the
: 4

signal; such that an extrapolatlan is necessary to cover the entire 22

time constants interval msntioned above. It was fbund experlmentally that -

a poor extrapolation is better than none. Unfortunately, such an extra-
polation involves the pqrtlon of the data characterized by the poorest

§/N, and it is rather critiéal.

Indeed, the major difficulty faced in the implementation of a
digital spectral analysis is that of overcoming the noise problem. Real’

expa:imental‘signals are seldom free of any noise, and this noise may make
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/the flnal results meanlngless' hence, the nece551ty of ellmlnﬂtlng it one N
way or the other. By thls, it is meant that the noise may be dealt u1th,
e1ther at the source (by improvements of the experlment itself) or by an
adequate proce551ng of the flnai experimental data.. Regarding pulse NHR'
and exponent1a1 decays, the latter can be obtalned either in the form of

signhal averaging or in the fbrm of digital fllterlng.

A particularity of exponential decay signals is that they decresse
”ﬁonotonicaliy in time, and so does their S/N ratio. Smith and Cohn-Sfetcu
[315] have shown that this partlcularlty can be used to advantage if the

signal is RC-filtered in Teverse tzme direction. By reverse time filtex-

ing,‘it‘shoold be,undezstood thet, given a Sigoel 7 -
x(®) = mzal Amexp( xmt), O<tst =, C(7.4.3)

the input sequence to the_digital filter is

2(kte) = (BT = 3 Amexp(—xm(l(—k)bt) (7.4.49)

m=1
A digital RC filter with a “time coastant Tfﬁt can be characterlzed by
the difference equation ' l

YEAY) = (1-)z(KAt) + cy((k-1)At), . (7.4.5)

.johere t = ekp(-l/bet). The edvantage of such a reverse time filtering
over a normal forward filtering consists in the fact that, irresPective of

the filter bandwidth, (1) it does not distort the exponential nature of
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the decays, and {(2) no- startlng transients are produced because the :
51gnal increases smoothly from zero rather than startlng ahruptly How-
evcr, there is one d;stortlac in the scnse that the exponential decays
composing the sigﬁal are dnevenly,enhanced,rbut in a known way: the longeT
. their time constants, the more their relative amplitude is increased.
Fbrtuhately, this is to oﬁc advantage, because thé lccgltimc constant
components are the ones most affected by the noise. Consequently, pulsed
NFNMR data with S/N better than 103 in the initial portion of the signal may
. beucbtalned c1ther_d1rect1y from the spectrometer and/oT through an appro-

priate digital processing of the collected data. )';
It remains to discuss the jnterpolatidn of the experimental signal

in order to-estimate ifs values at cxponentially increasing_intervals;'

In priﬁciple, these values could be obtained without any intctpolation via

a direct exponentlal sampling. However, the pulse séquencé'applied dnring

the NMR experiment and the use of digital f11ter1ng make more natural

to sample the experimcntal signal at equidistant points. A simple 11ne

interpolation between the two immediately adjacent points around
tm = exp(mia) makes very inefficient use of the information contained by
the sampled data sincé, for m Iatge, it does not use all the points
between t . and ot Besides, the prescnce of noise drastically rte-
duces the accuracy'of such a simplistic evaluation, especially for m

‘large - exactly where the S/N is already very poor.
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In the end, an adaptlve curve fittlng procedure has been shown to
yield satlsfactory results [310]. This curve f1tt1ng procedure, besides
providing the interpolation, introduces sone smoothing of the data and
increases the effective S/N. A fit in a semilogarithmic space ~ In(x(t))
vs t ~ has been adopted because the data appears qu351 ~lineéar there thus
permitting the use of.a low~order polynomlal fit without 1ncnrring excess-
* ive interpolation errors. A cubic fit interpolation is performed umtil
there is an ihdication that only a singié éipon#ntiai component.remains ih
 the data [316]. the remalnlng data being fitted to a single exponential
curve [317] The cubic fit 1nterpolat10n parameters are monitored, and

if it is concluded that, because of decr3851ng S/N, the fit is dev1ating
from that expected for a multl-component exponentlal decay (e. g, the first
derlvatlve becomes positive), the curve fittlng 1nterva1 is 1ncraased and/
or the cubic fit is replasgd by a quadratzc one. However, such an 1nter-
polation procedure placesino constraints upon the continuity of adjacent
cubic fits. This has the effect of introducing discontinuities into the
interpolated functlon Wthh are 1nterpretad by the spectral analyszs as
fast exponential components and produce noise in the corresponding part
| of‘the,final‘spéctrum This effect could be attenuated or avoided com-
pletely by employing a spline-fitting interpolation procedure which would
ensure the continuity of the fits and their derivatives [318].

As mentioned earlier, more detaileq discussions and results upon

interpolation and spectral analyses of noisy data are presented in [309].
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. absence of digital p;efiltering, the S/N %n the‘initiai-portién of the

| data has to be of the order of 10° to ensure accep;able end results. The
‘influence of sampling jitter has also been investiga#éﬂ, and it was con-
cluded that‘it is of little concern. Experimentall;: it was found thaF'l
a 10% ;ﬁs error in time is equivalenf t& only 0.01% amplitude noise, since, .
for expdnential decays, jitter produces-amélituﬂe-dépendeht noise, such
that the effective S/N of the signai remzins constant as time increases,

whereas the'S/N for normal amplitude noise decreases monotonically.

F1gure 7. 8 presents the 51gnal proce551ng flow chart wh1ch was. used
at the University of Calgary for amalyzing’ pulsed MR exper1mental data,
The exponent:al transform spectrum of a set of NMR data of a breast biopsy
sample tissue is shown in Figure 7.9. - The data ﬁad.been préfiltered by
a diéital low-pass filter in the mannér de$§¥ibéd earlier. It can bg
clearly'seen:that there are four expopegtial components présent; each
corresponding to a different environment of the proton nuclei in the tissue
sampie.' The.effect of increasing the fllter time constant can be also
observed: there is an enhancement of the slower exponentlal decays as 1t
is evident from the increase in the relatlve amplitude of the left side
spectral peaks. Better results are expected once "the NMR instrumentation
is improved; mainly, there is need for a detection system which is linear
over a w1der dynamic range, and which permits a better compensation (or,

_at‘least, determination) of baseline offsets.
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A future\practical implementation o:E ‘the’ exponential transform
technique is pla:nnod at Mddaster University in connection with photon :
correlation and light beating spectroscopy [320 298]. where data may be ' '

collected in the fom ‘of either a mlti-component exponential decay or a

wlti-component Lorentzian signal..:

7.5 concx.unmc REMARES . . =

The investigati.on presemtedﬂih this. chapter has had the objectite
of providing an efficient spectral analysis technique for deeomposing .
signals formed by 8 lineax superposition of kemels (basic wavefoms) of
the same shape and location “but various amplitudes and widths. In main.

b
this ohiective has been attained. ' :

_ First, 'the problem has been j modelled as a mu;tiolicative (Melﬁn)
convolution integral equation. Solfving such equations through a method
amenah;le to an efficient nuperic im"plementation forms the subject of
Section 7. 2 where a transformation of variables is used to map an m-
comrolution equation into a normal ; comrolution one, solvable through
Fourier transfom techniques. 'l‘hqf theory is presented both from an heur-

istic point of view and from the perspective of Fourier transforms on

i_r'-‘.;‘.' abstract: abellan groups. As a bygroduct. a new, fa.ster and mors accurate

algorithm has been devised [39] for performing Hankel transforms,

a0

: * .. Section 7 3 has been cot{cemed with general problems affecting the

( numeric implementation of both the fast m-convolution and the m-deconvolution'_



. (i.e., the mltiplicative sperctral analysis technique) The latter 'is‘a

. much more delicate operation because of its sensitivity to noise, due to

of variables. which enhance the noisiest part of the data. Also, it requires

'. the collection or computation (interpolation] of the signal at increasingly
large intervals. A correct interpolation is a rather difficult problem in
itself and this is the area where most o£ the improvements over present
results could be achieved. In the end, the antagonism resolution versus

- SIN is the limiting factor in an experimental application of the technique ‘
'described. a fact which is, nevertheles_s, characteristic to all spec_tral
' anal')}sis technioues. ' T - | |

Compared to other procedures for analfzing multi-component signals.
the spectral analysis technique described here has tho advantages of being

-fast. relatively accurate and easy to implement, and, most important, of .

not requiring any a priori numeric infomation tegarding the composition

of the signal. i

v C e

In addition, it is not limited to the analysis of discrete sums of
components, since it is also capable of analyzing signals formed by a
continuous distribution of such components. It was with this in mind that
restraint =~ was exerted from £omulating the problem in terms of £inding
the amplitudes and widths of components in x(t) -Z %k(ti'l‘ ); and the

-forumlation in terns of the integral equation (7 2. 1) was preferred instead.
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" The. absence of a definite peak in a spectrum * u(s) - may indicate either a
continuous distribution of k(t)-type components, or the 1nadequacy of X
considering_a k(t)ptype basic waveform. . The distinction between these -
_two casés is rather fuzzy, but in real life applications, it can be made
on account of the prosence or not of a well-beheved spectrum u. This
'fact can be advantageonsly employod for determining the type of basis
function when no theoretical model of the process under investigation is
'certain and k(t) is unknown. In such cases, the investigator should .
‘snalyze the signal as a composition of various ‘types of.basis functions ‘4f“\§i
i,and-decide on the most cdequate one. Fox instance. suppose that there is
:uncertainty with Tegard to the correct k(t), and the investigator applies
~ both an exponentia; decay and a Gsussian spectral analysis to a signal '
which is actually cOmposed ofuseteral Gaossicn components. The exponential .
decay spectral cnalysis'will yield a very noiseQIike continuous cistribu- N -
tion of both positive and negative amplitude exponential decays. while
the Gaussian transform spectrum Nill exhibit uelk—definod peaks. In such
glear-cut cases, the investigator should of course, choose the Gaussian
model. : . . ; ' o | .

—

The applicaticn‘of this spectral analysis technique in connection
with pulsed NMR‘experiments and enponentiel decays is discussed in Section -
7.4. Pending disseminetion, it is expected that this technique will find |
' applications in other areas of scientific investigetion (biology. chemistyy,

physics, radar, electrical engineering. optics, etc, ...) where multi-

-
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7
‘- componmxa&a,/o tha type malyzable by this teclmique occur Also,
the use of the expmential transfomation for providing fast m—convolution
' .transfoms is expected to become advantageous ‘neyond Siegman s applicat:ion
for fast Hankel transfom algorithms |




CHAPTER VIII

.SUMMARY AND SUGGESTIONS FOR FUTURE WORK

The 1nvestigation presented in this dissertation dealt, in broad
lines, with engineering applica#ions (signal processing and system theory)
of convolution and Fourier transforms on locally compact abelian groups.
Emphasis was placed on the study of such transfbrms on finite discrete
groups because of the important role which they play in numeric applica-
| tions. The purpose of this investigation was twofold a fact which mani-
~ fests itself in the structure of the thesis. On one hand, it contains a
broad theoretical study of tho significancc of convolution and. Fourier -
(-Nalsh) transforms on q-adic groups. their character. and their applica-
bility to'a varied clasa'of engineering problems. On the-other. it
descrioes.an efficient practical soltition to a well-defined signal process-
ing problen, which also admits a modelling as & convolution transform on

" an gbelian group, albeit a muitiplicative one.

The wide range of possible applications of convolution and (Walsh-)
Fourier transforms in. signal processing and system identification and
control leads to a conflict. between the number of topics covered and the
detail achieved in each topic. The compromise solution which has been
attempted.presenta investigationa of large areas of interest, but they

 are less rigorous than initially intended.

232
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 The diéser;ation begins ﬁith an introductory ¢h§pter which serves -
two functions. First and foremosf,‘it lays the theoretical groﬁndwork
upon which the body of the thesis' investigation rests. Secondly, it
acquaints the reader with the past research activity of the author [22],
motivating thus the topics of resparch‘chosen, and explaining the line of
thought addpﬁed. The chagter starts £ro§ the two most basic assumptions
mado-in constructing simple,lmathemaxically manageabie nodels of real-world
- phenomena and relationships: linearity and translation invariance. Linear-
ity usually implies a function space with a field as co-domain and & *
“restriction to linear operapors, while translaticn invariance implips a
funétion'space with a domain which is an abelian group. Chﬁracteristically,
the research reported in this dissertation is not éirected to problems
concefning the usual space oflcomplex-valugd functions of real variables,
" but to problems in other functIon spaﬁes. ﬁpécifically to cémplex-valued
functions aon either q-adi§ or multiplIcativé abelian groups and to finite-
field-valuadlfuhétions on fini;e and discrete abelian grdups. From
necessity (and for 5Ieganco). the mathematical background iérpresented in
terms of functions an_an abstrgcg LCA group, with émphasis'on the concepts‘

of translation‘operators, convolutions, characters and Fourier transforms.

., The fixst part of the thesis (Chapters I, II and III) deals
oxclusivoly with spaces of. complex-valued functions on q-adic groups, and .
with Walsh functions and transforms, The rvesearch into this fleld vas
initiated-in the hope of applying the dyadic Walsh transform for solving
~ signal analysis_ahd system i&eﬁtification problems tgla;ed'to magnetic .
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~ resonance spectrosc0py._ These problems admit elegant and efficient solur
tions via discrete Fourier transform techniques, and it was hoped that
Walsh transform techniqnes could provide moTe. (computationally) efficient
solutions. This was not the case, and since similar results (in various
‘other fields of research) were reported in the’ literature, it was decided
to direct the investigation not towards a particular qpplication of Nalsh

| transforms but towards obtaining a fundamental explanation of the sxperi- '
” mental rosults alroady reported. -The final objective of such an investi- -
gation is to delineate those engineering problems which are optimally suited
to be soivod using such techniquos. The study is centered around three
concepts (two mathsmatical and one engineering) which are fundamental to
the theory and applications of Fourier transforms: harmonic differentia-

tion, translation invariant 1ipenr operators, ond generalized £requency.

Chapter Il is dedicated to a presentation of Walsh functions and
Walsh transforns. Tho-presontation is rather lengthy,'bnt..given tne
stated objective of the investigation and the wide range of guises under |
which Nalsh-functions appear in engineering applications,.it was considsred _‘.
essential to introduce them from different points of view. Their classical.
analytic definition is discussed first because this is how Walsh functions
came to be devised, and how most of their properties were first proven.
This is followed in Section 2.3 by a discussion of dscrete finite Walsh
fhnctions (and Nslsh'transgorms). After*summariri g their usual detinition |
‘through sampling of the itcontinuous" Walsh functions. attention is directed

. U . .
exclusively towards an algebraic definition of them as characters of 3
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-finite q-adic group. This definition is much moTe. elegant, and, in the end

" much more advantageous because it leads to a natural embedding of Halsh

enalysis into the uell-developed field of harmonic analysis on abelian

' groups. Ax the same time, this definition is more fundamental than others

 because it points directly to the characteristic structure of the Walsh

SR

.-_transform and leads immediately to the explanation of experimental results

: concerning the engineering use of Halsh,functions.

Following a group-theoretic definition, such ‘an explanation is

- simple and straightforward: the Walsh functions are the characters of a

function space having a multi-dimensional domain. The fact that they can

. be presented as functions on a one-dimensional domain is due to the exlst-

~_ence of a bijective mapping between a q- -adic group and Y subset of the

‘real 1line.

: Section 2.5 1s concerned with yet another definition of Walsh' _

'functions - as the eigenfhnctions of certain linear operators which share

" some of the properties of classical Newton-Leibnitz differential operators, |

Two thedrems are proved-after a brief presentation of past-results con-
cerning these operators called harmonic (Gibbs) differentiators. -One
theoren shows that a harmonic differentiator. commutes with a translation
operator, while the other ene proves that this type of’differential operators

are not of the Ritt-Kolchin cldss because they do not obey the product

/I"UIO [101]
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Chapter III deals with the theory of q-adic translation invariant
linear systems. As such, it rbpresenfs.a géneralizﬁtion of past work-
concerning dyadic linear systems [106]. The input - output dpscfiptibn
of q-TIL systems is analyzed in chﬁion'3.2;f This-deﬁcription concerns._.
- bouﬁded linear_ttanﬁfbrmations and Fquriaf traﬁsform; which'mép convolution
functiuﬂ:aigebpaé into pointwis§ maltiplication function,dlgebras,‘and.
hqnce,!ié fbrmaily:identical with that pf_zéro—state"timd' invariant
linear systems.. This is a consequence of the fact th#t the I/O formalism
is determined dolely by the (ldcally‘compaCt) abelian group character of
the domain, with no refbrence to the particular structure of the group

. nvolved.

I

‘The situation is different if one dttempts\to develop a state-space
) analysisggf q-adic translation invafiaht ﬁystems Fomally, it is possible.
. to construct a"harmpnic state—spacd' theory of such systems, with the |
harmonic differentiator taking the place of the classical one. Section 3.4
'does. indeed, present such ag analysis. but its merit lies mainly not in i
_developing this fbrmalism, bu:;in pointing out that such a formalism lacks
;onceptual ‘significance. This is so becauso q-adic groups_do not admit | /..
‘a group order, without which it is impossible to‘define a meaningful con-

copt of state.
) ~~. o 8

-

Apart from theséitheoretical‘considqrations. Section 3,3 considers -'f«\'

‘the problem of identifying (mostly man-made) dyadic systems. It is shown -
y o ;
that, as expected, the I/0 identi?ication can be performed by algorithms ‘.

! T
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similar to those for idantifying time invariant linear systems, only that _
- Walsh functions take the place of complex exponentials, tha Walsh transform-
' replaces the classical Fourier transform, and stationary ‘random processes
'. ara‘replaced by dyadic stationary ones. The identification of multiple - ’
inpui‘-_multiplevoutput q-adic:;ystems is presented in Appendix A, together‘
with a computer simlation exgnple. i

] Follawing the theoretical developments of Chapters II and III, it
was the role of Chapter IV to provide the answer to the question of optimal
‘engineering usage of Walsh functions and the Walsh trhnéform After 8
brief introduction, the chapter continues with an analysis of the computa-
qional advantages of the Walsh transform. Two theorems are proyed in the

- course of tnis analysis. One concerns the fact that of all the discrete
F;;;ier transforms the dyadic and 45adic Walsh transforms are_the'only.ones
with coefficients representable by,ratibnal numbers. The other theorem

' prbves that no non-trivial z-transform of ‘a sequence of length N can be’

evaluated by rationalvngmbers of less than N digits [160].

Section 4.5 describes in depth the "multi-dimensicnal' character
of the Walsh transform, and shows that this is an essential feature
Jtemming from the q-adic group-sfructure nf the fﬁncticns'ldomain. In its
_‘furn, this featnne explains the unsuccessful attempts at employing the
Walsh transform in place of the discrete Fourier transforn for solving
TVarious éignal procnssing pfoblems [33). chtiona4.4 shows that, oBviousiy,

the problems which admit an optimal solution via Walsh analysis are ekagtly‘“
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’those which can be modelled in spaces of functions on: q-adic groups. 'A
succinctreview ‘of such applications of Walsh analysis is presented, with
emphasis on coding and on the classification and synthesis of switching
fhnctions. -

Besides'the above .menticned problems to which Walsh functions may
bring a theoretically optimal solution, there dre many other engineering _

problems for which’ Walsh analysis may bring a computationally efficient

solution. Section 4.5 reviews critically some applications of the Walsh

transform in which its computational advantage offsets its " theoretical
‘unsuitabilitf'. These problems can be classified into three majer classes:
signallrepresentation and analysis,'signal recovery, and systenm identifi-
cation and control. Several enamples of Walsh solutions to such problems
are discussed emphasis being placed on the concept of intermediate domain )
procossing.. An original contribution is made with respect to the possi- |
bility‘of using intermediate q-adic models for identifying translation
"invariant systems [320] Also, it is shoun that this is the area where
much work remains to be done.especially concerning the goodness of such

estimates.

Chapter V is concerned with signal processing and system theory on
spaces of functions taking values in finite fields. The point of view

adopted is original and different ftom that prevalent in other investiga-

'ttions into this topic. Interest is manifested not towards problems per-

‘taining to simulations of complex~va1ued processors via convolutions in
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‘finite fields, but towards an analysis of finite field systems per se.
Specifically, a study is made of those Operators whose eigenfunctions are
the characters defining the Fourier transform on the respective function
space. Harmonic differential operators .in finite fields are defined and
some of their-essential properties are studied [34].. Linear translation
inwariant systems in K[G] function 5paces are analyzed from the point of
view of both input-output and state-space description. The study presented
in this chapter is only preliminary - an initial step towards an elaboratiou
‘of a comprehensive theory of optimal signal processing in function spaces

v in which both the domain and the co-domain are finite and discrete sets.

-

The concept of frequency plays a fumdamental role in. applied

sciences, and Chapter VI provides a consistent and unique criterion fi

complex-valued functions on the real line- This generalizati- is made °
to concord with the applied scientists' view of frequency 35 a parameter
which, by ordering the set of complex exponentiels, servesito. measure the
speed of variation of & signal. The first step on the way to obtaining the
general concept consists in an analysis of the features of the classical
concept in order to extract those which are.essentiel enough to be features
of the general concept. This is done -in Section 6.2, The concept of
generalized frequency [17] is defined in Section 6.3. Section 6.4 applies

this concept to one-dimension\l discrete Fourier transforms, while Section

6.5 applies it to Walsh transforms. It is concluded [33] that, not with-

4

Ia
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standing previous claims sequency is not a generalized frequency according ° |
to the criteria established in this chapter. This should not come as a
surprise, because the mlti- dimensional structure of a q-adic group pre-
cludes any possibility of associating a concept of generalized frequency
to a set of Walsh functions. . \

. Chapter VII considers a specific signal processing problem: that
of analyzing multi-component signals in which the components have the same
' location and shape, but different amplitude and "width" parameters. The.
analysis of such signals is essential for interpreting data gathered in a
variety of erperimental Investigations. Methods.for performing such B
analyses had already been suggested, .but'they are either computationally
inefficient. or they require a priori numeric information concerning the “
composition of the signal. It is the purpose of this chapter to devise a
technique which does not require any a prio#i information 'and which is, at
the same time,.computationally-efficient [$l]. The theory of the technique
is presented in Section 7.2, where it-is shown that the prohlem ¢an be
modelled as a convolution transform ina space of compler;valued functions

~on a multiplicative abelian group. Some elements of the theory of Fourier

transforms on such groups are introduced.

A suitable transformation of variables is proposed to map a multi-
plicative deconvolutien problem into a (normal) deconvolution problem in
the ¢£[R] function space so that use can be made of the considerable

knowledge available with respect to the use of discrete Fourier transform
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techniques for solving such problems [297] Section 7. 3.discusses the
* numeric implementation.of the algorithm‘proposed with emphasis on the
compromise which has to be made between loss of. resolution and decggfse :

" in signal to noise ratio. ' | ~X
\ . N .

Section 7 4 is dedicated to the particulag‘case of multi-component

t ) o

exponential decays. It is shown that the technique proposed is suitable
for analyzing experimentalhdata -{pulsed NMRJ which is not excessively
contaminated by noise [309]. The use of reverse-time digital RC filters.
[316] for enh§ﬁcing the signal to noise ratio of such signals is aiwp di;:
.cussed.’ Attention is drawn to problems pertaining to, the collection or
colculation (through interpolation) of data at exponentially increasing

intervals.-- 7

\ The research into the_ subject of multiplicative convolution trans-
forms is by no means completed. and work remains to be done ooncerning
both their theory as well as their efficient numeric implementation. The
elaboration of a theory, and of fast algorithms for performing finite.
discrete multiplicative Fourier ‘transforms may prove to be an interesting
and fertile field of research. The success of the snalysis technique pre-
sented in Chapter VII relies heaviiy on+the success of performing numericel
deconvolutions. This" is still an open problem, and more efficient and
1ess noise-sensitive deoonvolution algorithms are actively investigated.
Another delicate operation inyolved is the interpolation of erperimental

data, and more research islneedeobto obtain interpolation procedures which.. .

)
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lead to less dietortions. This problemfis compounded by the faot that the

interpolation is. depondent on. the ‘type of components in the signal.and no

"‘universa;1Y' good interpolation procedure can be envisaged. Aleo. the

transformation of noise under the required change of variableo deserves a

closer look although this may prove to be a difficult problem to tackle.

due to the large numher of variables hvolved.

Tho use of the analysia tochnique desoribed in Chapter VII "should
Ye extended to experimontal data formed of’ aignal formed of components

other than exponential decays, and obtained through experiments otheﬂ‘than

CNMR., It has been already shoun that this teohniquo enables a fast and

offioiont computation of Hankel transforms. Other aimilaritransforms should

'be also invostigated. |

- Anoohor idea whieh may prove fruitful and deserves a desper invest-
igotion i3 that of generali:ed oranslétion 1nvarianoe, eapeoially problems
portoiuing to tne realization and/or eatimation of generalized tronslation
haa been seen how linear time invariant ayetems can be 1denti£ied via

estimates of q-TIL systema. S : -
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APPENDIX A | L

IDENTIFICATION OF MULTIPLE INPUT-MULTIPLB OUTPUT
LIN D C_SYST

.

The preblem of identifying multiple input-multiple output linear

dyadic systems can- be formulated identically as for the case of single

: input-eingle output linear dyadic systems wiéh the only exeeption that

NOW we are dealing with, for generality, a k-dimensional input signal o
and a m-dimeneional output_signal. Due to the linear restriction of the

preblem..it is evident Ehat-a,k-input-mAOutput“identifieatlonrpreblem~

“can be reduced to m k-input-l-cutput system identiftcetigﬁ,preblems.

. .‘J .

Co : J ' & - -
We shall, then, present the algorithm for identifying the linear

_dyadic eonvolutien e?stem charaeterl:ed by‘u k-dimenelenal (column)
'epereter' HQt) such thnt the output z(t) to a k-dlmenslenal (column) _

random process X(t) 1s the best nppreximnte in the mean aquared sense

toﬂthe one-dimenelenal ‘random procaess Y(t). The proof follows the same |

logical steps as for the single input case and it will bo omitted hete‘

‘duf to lack of time and. space, For coneielon. the algorithﬁ;ie,preeented
-using matrix notation (a matrix ie'marked‘by a capital character). The

~ interaction between the input elsnal and the model (system) is given byr

the following two equations:

2(t). = HI(e) © X(e) = ?:1 ) 8 x8)]  (AJd.8)
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S 2z) = HT(R)‘X(U' - Pl ) xyMN] S (A.1.b)
~ - . o

Let Ry (T) and P”(-'r) be the autocorrelation and the'érosscorrelatioﬂ .
matrices, respectively | '

pum - E[x(t)-x (e o 1)) (A.2.8)

ny(?\) - E[X(t) Yy (t ¢ V] (A.2.b)
and also loet Syy(t) nnd %(y (<) be the .input Walsh power donsity

spectral matrix and the Walsh croaavspectrnl density matr:lx. respectively.
e ' -

- . g ® o gy ®
sxkxlcl) . ) 'sxkx#(l)

AR _

1. . (A.3.b)

Ty oue T %
Similarly, we can define an augmented spectral matrix Sy“,(k) as followay

»

) B W )

L™ G @ e S B
syxx(A) " ‘ . . - b
B (N ’?xkxlu) 3 ‘U'\)

Y




2 | susnncauenaw=an .- . | / \.\,_. . ' - (A.4)

o sum Sxxm

The optimum linear dyadic conyolution system ralating the eutput signal

y(t) to the input signal‘-x(t) _13 3ivgn by

LORE Wyt e
e . '
The goodness of the eatimate is meaaured with the help of partial

aﬁd multiple coherence functions. A partial coheranco function reprosonts
~ the fractional portion o£ fho mean square value at the output y(t)
which is contributed by the input xitt) at the sequency A when the

presence of all the other inputs is taken fully into account.

. ? . ' s
- 20-) | ’xiy‘x-(?«) | - '(A.e)
¥ n . : . .
Xy X= T e (A (A _ |
v ®y%y X SRS . .
where sxiy‘x_ 3*1"1"“‘ and . Sypx. 87O the elements of the residual
spoctral matrix defined as .
’ s

yrX sﬂi X ] ,
T

s T8
RR=s RgEy R

and where ‘Ai,' Bi,‘ ahd Ci arj matrices obtdined cﬁrouah the £olloﬁ1na
‘partitioning of the augmonted spectral matrix

C ’y; o |7 .
AL = : L (A8

{

*x,¥ ‘:1x1
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The multiple cohoronco function is an overall monaure of the

goodness of the model (systo?) SR | o

gy (A). _ o

where 'lsl denotoes the determinant of the mntrix S, It can be proved
that the mﬁltipleycoheronco function represents the Walsh cross-;pﬁatral
.doﬁaity matrix betweon z(t)}, the model qutput.‘and y(t), the aﬁtun;
output, ije,, it ﬁonyuroa the fraction of power in the actual qutpuﬁ

accounted for by tho model.
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For exemplification purposes, we present here the identification

_in a noisy environment of a 2 input-1 output lineaf dyadie-invarianf

system. As it is shown in Fig. A, tho output y(t) of the dyadio
system, consisting of a sequonoy low-pass filtor. h1 and a sequoncy

bandpass filtor_ h2' ;a obso;vod in a noisy signal xn(t). This sotup was

~ ‘simulated on a COC 6400 computer via the aquation

RN TOR ﬁchJ;wxzcc)] ex @ A0

whoro t and A take vnluos from 0 to 31. The transfer‘funotiona woro'-

gonerated and stored in tho computer. The Walsh tronaform % has been

computed by a Fast Walsh Transform algorithm [88] For idontifying this

‘dyadic- systom. we hava used as input signals, xltt) and xztt). two

soquenoos of normally diatributodarondom numbors which uero gonoratod by

standard subroutinos -from the Fortyan 1V aciontifio iibrary package. The

noise sequonoo xn(t} was generated likowiso, its rms amplitude ‘being

1/100 that of either input signal. The sequency spectral-density functions .

:of the input and cutput signals wore estimated by computing the average of

100 corresponding Walsh pericdograms using Welch's direct mothod_ (321}

with suitable variation for the Noish transform. For instance,

0 | _
£, * c;noon'}; (PO TEPINCI N (A1)

where xl.r(t) and xz‘r(t) denote the kth x; and x5 ‘signals,

rospoctively (each signal 1s a sequence of 52'numbors) This ovoroglng

reprasents an opproximntion of the oxpeotation oporator E. Tho idonti-

gication proooduro has beon carridd on according to Bqs. A.5, A.6 and A.9.
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‘:The total compﬁfation'fime ﬁis li 705.sdconds tthe éomputafion-bf:eaéh sot

- of Walsh periodograms requires the generation of tho three random number
'sequences, 4 _Walsh transforms. ‘8 point by point vector multiplicntiona.
and 9 vector additions). The modol ayatem resultinz from this identi-

- fication is pfeseﬂted-in Fig. A.2(a), for codparison. the theoretical
system is also reprdiented By continuous lines. Fig: A.2(b) presents the
coherenco £unctions chnracteri:ing the 1donti£ication and it shows that.

" as expected, the departure from unity of the cbherance functions is a

good local indication of the degree of faithfulness with which the model

system estimates the real one.

A detailed_annlysis'of the errors associated with the idoﬁtific-}g
ation of dyadic cpnvolutioh systems via Walsh spectral anaiysis exceeds
the purposé set for this Appendix. It suffices to say that it follows

- closely the similar analysis for the identification of linear time-
; inynriang sySioms. 'A:genofal discus;ion of thésb exrors can be found in

© [150] while a more detailed ono i3 presented in [133, 322},

Ne wogld like to conclude b% mqntioning ;he fact that while many
14inéar dyadically symetric systems have been artifically_créated and then
used for a variety of purposes (hence the need:of.dpvelpping adequate
methods for their identification), the Qﬁestioﬁ r iﬁg thg exigtencp “
of natural dyadic systems (or phenomenn).still remains dﬁconvinciﬁaly

answered. |

-
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Sequency coherence functions character
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