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Abstract 

Solitons are solutions to a special class of nonlinear partial differential equations repre­

senting certain nonlinear systems. Solitons possess some very interesting transmission 

properties through nonlinear systems. In this thesis, we examine the properties of 

Toda solitons and Toda circuits. The time-frequency characteristics, time-bandwidth 

product, and energy of the single and composite solitons are studied. The response 

of the Toda circuit to both deterministic and stochastic inputs are analysed and ex­

amined via Volterra series and Runge-Kutta method. The application of the Toda 

solitons as a message carrier in a data communication system is then proposed. Both 

single user transmission and a multiplexing scheme exemplified by a two-user trans­

mission scenario are considered. The bandwidth efficiency of the soliton communica­

tion system is studied and compared with other systems. The detection performance 

of the soliton communication system is studied and compared with traditional sig­

nalling schemes. Theoretical analysis and numerical results demonstrate that soliton 

system offers high bandwidth efficiency and high robustness against channel noise for 

amplitude detection due to the special properties of the soliton and the Toda circuit. 

The response of mismatched Toda circuit to input soliton is studied and the detection 

performance of soliton system with mismatched Toda circuit is also examined. It is 

shown that the slightly mismatched Toda circuit may not affect the detection per­

formance of soliton system, while the mismatched Toda circuit with large mismatch 

coefficient may deteriorate the system performance seriously. 
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Chapter 1 

Introduction 

1.1 History of Solitons 

Solitons[13] are stable solitary waves, which are exact solutions to a class of nonlinear 

partial differential equations (PDE) representing some particular nonlinear systems. 

The phenomena of solitons was first observed by a Scottish engineer named J. S. 

Russell on the Edinburgh-Glasgow canal in 1834. The discovery was described in his 

own words as following [46]: 

"I was observing the motion of a boat which was rapidly drawn along a narrow 

channel by a pair of horses, when the boat suddenly stopped - not so the mass of 

water in the channel which it had put in motion; it accumulated round the prow 

of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled 

forward with great velocity, assuming the form of a large solitary elevation, a rounded, 

smooth and well-defined heap of water, which continued its course along the channel 

apparently without change of form or diminution of speed. I followed it on horseback, 

and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving 

its original figure some thirty feet long and a foot to a foot and a half in height. Its 

height gradually diminished, and after a chase of one or two miles I lost it in the 
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windings of the channel. Such, in the month of August 1834, was my first chance 

interview with that singular and beautiful phenomenon which I have called the Wave 

of Translation" . 

Russell made some further experimental investigations of these waves and he no­

ticed some key properties of these waves: 

(1) Unlike normal waves which would tend to either flatten out, or steepen and 

topple over, the waves are stable, and can travel over very large distances without 

distortion . 

(2) Assuming the depth of water is h, the velocity of the wave having amplitude 

a is given by v = Jg(a + h), where 9 is the acceleration of gravity. 

(3) A sufficiently large initial mass of water produces two or more independent 

solitary waves. 

The observation of J. S. Russell appeared to contradict the wave theory at the 

time, which predicted that a wave of finite amplitude could not propagate without 

distortion and it could tend to steepen or break. This contradiction was resolved 

by J. Boussinesq and L. Rayleigh in 1880, who showed that a wave might propagate 

stably if the velocity increase of the local wave resulted from the nonlinearity was 

compensated by the decrease from the dispersion. 

Later in 1895, the mathematical model of the water wave Russel observed, i.e. the 

unidirectional propagation of long waves in shallow water region was derived by D. 

J. Korteweg and G. de Vries and named after the authors. This was the Korteweg-de 

Vries equation or KdV equation for short, the solution of which turned out to be a 

stably propagating pulse. 

Since the derivation of the KdV equation, few further research work on soliton 

had been done until 1955 when Fermi, Pasta and Ulam (FPU) investigated how the 

equilibrium state could be approached in a one-dimensional nonlinear lattice. It was 

expected that the nonlinear interactions among the normal modes of the linear system 

2 
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would lead to the energy of the system being evenly distributed throughout all the 

normal modes. Surprisingly, the system did not tend to share the energy among 

different modes, but returned to the initial state after some periods. 

To pursue an explanation of the FPU experiment, Zabusky and Kruskal studied 

the continuum limit of the experiment in 1965 and obtained the Korteweg-de Vries 

equation. More importantly, they found that the solitary wave solutions of the KdV 

equation exhibited extremely stable properties and preserved their identities even 

after nonlinearly interacting with each other. To emphasize this particle-like property, 

they named the nonlinear wave "Soliton". 

1.2 Solitons in Nature and Technology 

During the long history of the development of soliton theory, many solitons phenom­

ena have been observed in a variety of areas. The water wave observed by Russell can 

be classified as a type of surface solitary wave which rises from the shallow water re­

gion. Other solitary waves have also been observed in different water regions. In deep 

water region, for instance, in the ocean, internal solitary waves [41] which are gener­

ated by the nonlinear deformation of internal tides have been observed. These waves 

vertically displace the thermocline and cause internal currents with near-surface flow 

convergence and divergence. A well-known ocean phenomena, the Tsunami has also 

been shown to be related to soliton [15]. It is indeed generated by a large enough sea 

soliton. 

Besides water region, solitons can also be observed in plasma and fluid. In plasma 

of hot electrons and cold ions, the ions with low-frequency fluctuate near the ion 

plasma frequency, while the electrons follow the motion of the ion and preserve an 

approximate local charge neutrality. Due to the balance of the inertia of ions and the 

pressure of the electrons, an ion-acoustic solitary wave [5, 60], which describes the 
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density of the iOllS fluctuation, can be observed. 

A typical example of long-surviving advection of materials in fluids is the motions 

of a single vortex filament in background fluid [21, 31], which have been observed 

to exhibit a stable propagation of a loop or a hump of helical motion along a line 

vortex. This is called vortex soliton, which is indeed a large class of solitons and 

have also been found in superfluid, superconductors, high energy physics and optical 

lattice, etc. Particularly, the vortex solitary waves formed while propagating along 

the lattices are classified as vortex lattice solitons or simply lattice solitons. 

The first lattice soliton observed in a discrete lattice is the Toda soliton in the 

nonlinear Toda lattice [54], the soliton solution of which describes the local displace­

ment of the equilibrium positions of particles in a one-dimensional lattice. Lattice 

solitons are also found in molecular chain with anharmonicity [12] and in the energy 

transport of protein chains [38], etc. 

The most significant technical application of the soliton is as an information carrier 

along optical fibers. The optical soliton is governed by the nonlinear Schrodinger 

(NLS) equation, and exhibits a balance between the effects of optical dispersion and 

nonlinear self-phase modulation. In 1973, Hasegawa and Tappert [4, 20] were the 

first to show theoretically that in an optical fibre, solitary waves can be generated 

and that the NLS equation description of the combined effects of dispersion and 

nonlinearity self-phase modulation give rise to envelope solitons. Mollenauer and 

his co-workers first described the experimental realization of the optical soliton in 

a low loss single-mode fibers in 1980. Over the past twenty years, there has been 

rapid developments both in theoretical and experimental research on optical soliton 

communication [19, 52]. 

4 
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1.3 Motivation and Scope of Thesis 

Solitons possess some very interesting transmission properties through nonlinear sys­

tems, e.g. (a) Solitons propagate stably through a nonlinear medium properly matched 

to the characteristics of the solitons. (b) Solitons with different parameters propagate 

with different velocities along the nonlinear system. (c) Solitons preserve their identi­

ties after nonlinearly interacting with each other during the propagation. These and 

other properties of the soliton are explored in this thesis for their use in a wireless soli­

ton communication system yielding advantages including high bandwidth efficiency 

and robustness against channel noise and timing error. 

We employed the Toda soliton [53] in our consideration because of the ease with 

which it is generated and processed by a LC Toda circuit. The application of Toda 

solitons in communication was first proposed in [50J and [51 J in which experimental 

investigations were reported on the modulation and multiplexing of a pair of soliton 

trains which are either amplitude or phase modulated. It was suggested that the re­

currence phenomena could be used for secure communications. A much more detailed 

soliton mUltiplexing system model was presented and studied in [49] with particular 

consideration on applications in a wireless channel environment. 

In this thesis, the properties of Toda solitons and Toda circuit are further studied. 

Applying these properties to data transmission, we propose an on-off keying Toda 

soliton system, which can be regarded as the special case of the system model proposed 

in [49]. We focus on the detection performance of a soliton transmission system 

through additive white Gaussian noise (AWGN) channel. The problem of mismatched 

Toda circuit response to input solitons are also studied. 

In Chapter 2 of this thesis, we give a brief overview of solitons and soliton sup­

porting systems. In Chapter 3, we discuss several properties of single solitons and 
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composite solitons, including the time and frequency domain characteristics, time­

bandwidth characteristics and signal energy. In Chapter 4, the characteristics of 

Toda circuit response to deterministic and stochastic inputs are studied. We show 

that the circuit responses at early stages exhibit weak nonlinearity and can be an­

alyzed by the third order Volterra series. If the Toda circuit is relatively long, at 

the later stages of the circuit, for higher accuracy, we should apply the Runge-kutta 

method to examine the circuit response to the combination of soliton and Gaussian 

noise. In Chapter 5, we apply Toda soliton in data transmission and propose the 

soliton communication system model, including the single user system and the mul­

tiplexed system. The detection performance of the soliton systems are studied and 

compared with other systems. In addition, the time bandwidth efficiency of soliton 

multiplexing system is also studied and compared with the other systems. In Chapter 

6, the problem of mismatched Toda circuit response to input soliton is examined. In 

the case of small perturbation, the circuit output can be assumed to be a soliton. We 

study the dependence of the output soliton parameters on the input soliton, mismatch 

coefficient and circuit stages. The detection performance of soliton system with mis­

matched Toda circuit is also examined. In Chapter 7, we draw main conclusions and 

discuss possible extensions of our work. 

1.4 Main Contributions of Thesis 

A soliton multiplexing system model was proposed and studied in [49] and [48] with 

particular consideration on applications in a wireless channel environment. In the 

proposed two-user multiplexing and binary modulation system, the information of 

each user is represented by two single solitons with different amplitudes. The com­

posite solitons formed from two constituent solitons representing information of each 

user are applied as information carrier and the detection are performed on each single 
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soliton after the composite is separated into two individual solitons while propagating 

along the Toda circuit at the receiver. The Cramer-Rao bound for the single soliton 

detection was derived and that for the composite soliton was evaluated numerically. 

The properties of both the Toda solitons and Toda circuit are not fully stud­

ied in [49] and [48]. The examination of the Cramer-Rao bound is based on the 

assumption that the composite soliton will separate into two individual solitons with­

out distortion after passing through the Toda circuit. However, this is only satisfied 

under the noise-free scenario. In this thesis, we will show that under the effect of 

channel noise, the composite soliton may not be able to separate into original two 

constituent solitons; even though the composite soliton separates to two solitons, the 

distortion of each soliton may be large resulting in detection errors. 

In this thesis, after a quick review of several commonly-used solitons and soliton 

supporting systems, we start the study of the properties of the Toda solitons. We 

examine the time and frequency domain characteristics of the single and the composite 

Toda soliton and show the dependence of the characteristics on its parameters. The 

time-bandwidth (T-B) product of both single and composite Toda soliton are studied. 

We proved that the T-B product of the single Toda soliton turns out to be a constant 

independent on the parameter of the soliton. The closeness between this constant 

and the optimal T-B product achieved by Gaussian pulse indicates that the single 

Toda soliton has high energy localization and therefore, is suitable to be carrier of 

information. The T-B product of the composite soliton is examined numerically and 

we show that the optimal T-B product of the composite soliton can be as small as 

that of the single soliton. The condition for the composite Toda solitons achieving 

the optimal T-B product is also described. We also calculate the energy of the Toda 

solitons. The exact energy formula of the single Toda soliton is given. The energy of 

the composite soliton is calculated numerically and we show that the energy of the 

composite soliton is always smaller than the sum of two single solitons. The condition 
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of the maximum energy saving of the composite soliton is examined. 

We then tum to the examining of the properties of Toda circuit. In particular, 

we study the circuit responses to stochastic inputs, i.e., the combination of the single 

and the composite soliton with Gaussian noise. We propose to apply Volterra series 

in the Toda circuit analysis. Volterra series is known to be an efficient mathematical 

tool in calculating responses of weakly nonlinear circuits. We verify that at the 

early stages, Toda circuit exhibits weak nonlinearity and can be analyzed by the 

third order Volterra series. Applying this method, the statistical characteristics of 

the circuit outputs are calculated and the circuit output noise is modelled. We also 

observe that the nonlinearity of Toda circuit becomes stronger as the stage number 

increases resulting in large approximation error of the Volterra series. Therefore, for 

high accuracy, Runge-Kutta method is applied in this case. We show that for circuit 

input being noise corrupted solitons, high nonlinearity of the circuit results in the 

circuit output being the combination of soliton(s), transients and oscillations. 

Applying Toda solitons in data transmission, we propose the on-off keying soliton 

communication system model, including the single soliton system and the soliton 

multiplexing system. While this system can be regarded as a special case of the system 

model proposed in [48], we can show that this system achieves much better detection 

performance compared to that proposed in [48J. The time bandwidth efficiency of 

the soliton multiplexing system is studied and compared with that of other systems. 

The results show that the new multiplexing system enjoys much higher bandwidth 

cfficicncy than the FD~I system. Applying both maximum likelihood (ML) detection 

and amplitude detection (AT) methods, we study the detection performance of soliton 

system and compare the results with that of traditional amplitude shift-keying (ASK) 

system. We show that while the ML detection performance of soliton system is similar 

to that of the ASK scheme, the AT detection performance of the soliton system is 

better than that of the ASK scheme. This is resulted from the high bandwidth 
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efficiency of the soliton pulse and the special filtering effects of the receiver Toda 

circuit. We also study the detection performance of the ASK scheme using soliton 

pulse under small timing error. We show that compared to other pulses, such as 

Raised Cosine and Rectangular, soliton is more robust in performance against timing 

error. 

As we will show in later chapters, Toda circuit with linear inductors and nonlinear 

capacitors supports the stable propagation of the Toda solitons with same inductor 

and capacitor parameters. If the parameters of the input soliton are different from 

those of the Toda circuit, an input soliton might be distorted while propagating along 

the Toda circuit. In this case, we designate this to be a mismatch between Toda 

circuit and input soliton occurs. The problem of examining the mismatched Toda 

circuit response to input Toda soliton is of particular importance because in practice, 

due to circuit technology or imperfect knowledge of the Toda circuit, the parameters 

of the inductors and the capacitors of the Toda circuit may not be exactly accurate. 

In this thesis, we study a relatively common situation, such that the parameters 

mismatch in the Toda circuit is relatively small. In this case, the circuit output 

can still be assumed to be a soliton. Based on KdV approximation method, Runge­

Kutta method and inverse scattering transform, we study the dependence of the 

parameters of the output soliton on the characteristics of the input soliton, mismatch 

coefficient and circuit stages. We show that for small mismatch coefficient and for 

input soliton with small amplitude, the perturbation only results in small distortion 

of the output phase shift, while the amplitude of input soliton remains unchanged. 

For large mismatch or large input soliton, both the amplitude and phase shift are 

distorted and the amplitude distortion increases with the increase of input soliton 

amplitude and mismatch coefficient, thereby will affect the accuracy of detection. 

The detection performance of the soliton system with mismatched Toda circuit is also 

examined. We show that for both single user and multiplexing soliton system, the 
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effects of the slightly mismatched Toda circuit on the system detection performance 

is relatively small, while the mismatched Toda circuit with large mismatch coefficient 

may deteriorate the system performance seriously. 

10 



Chapter 2 

Solitons and Soliton Supporting 

System 

Similar to the KdV equation, many other nonlinear equations have been shown to 

support soliton solutions, including the Nonlinear Schrodinger (NLS) equation, Sine­

Gordon (S-G) equation and the Toda lattice (TL) equation, etc. These equations 

are key equations describing a wide variety of physical phenomena and are called 

"Integrable Equations" as the solutions of these equations can be obtained exactly 

by means of inverse scattering transform (1ST) [8]. These solutions typically consist 

of solitons plus some transients decaying to zero as time goes to infinity. In this 

chapter, we will discuss the mathematical expressions of some of these typical soliton 

equations, then we focus on the 1ST of the KdV soliton and the TL soliton and study 

their relationship. 

11 
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2.1 Mathematical Descriptions of Solitons 

2.1.1 Korteweg-de Vries Equation 

As we have mentioned in Chapter 1, the KdV equation was derived by Korteweg 

and de Vries in 1895 to describe weakly nonlinear shallow water waves [28J. It is a 

nonlinear, dispersive partial differential equation (PDE) for a function 'U of two real 

variables, x and t: 

(2.1) 

where 'U(:r, t) is the amplitude of the travelling wave and 'Ut ~~, 'Ux ~~ and 

'Uxxx = ~:~. In Eq. (2.1), the second and third terms represent the nonlinear and 

dispersion effects respectively. The nonlinear effect causes the steepening of the 

waveform, while the dispersion effect makes the waveform spread. The waveform 

steepening or dispersion may occur both in time and space, such that if the time is 

fixed, we observe the waveform change in space, conversely, if the space is fixed, we 

would be able to observe the change of the waveform in time. Due to the compensa­

tion of these two effects, a stationary solitary waveform called the KdV soliton exists 

and can be expressed as: 

(2.2) 

where (3 is a parameter characterizing both the amplitude and the width of the soliton 

and cPo is an arbitrary constant representing the initial phase shift of the soliton. 

It is clear from Eq. (2.2) that if at t = 0, if input an initial waveform 'U(x, 0) = 

~2 sech2 (~(x - cPo)) into the system characterized by the KdV equation, then at any 

t = to, there exists a stable propagation of the input wave without any distortion. 

For an arbitrary initial condition, the solutions of the KdV equation can be exactly 

specified by means of the inverse scattering transform, as we will show in Section 

2.2.1. 

12 
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2.1.2 Nonlinear Schrodinger Equation 

The nonlinear Schrodinger (NLS) equation [62] is a nonlinear version of Schrodinger's 

equation. It was first proposed and solved by Zakharov and Shabat in 1972. The 

equation is expressed as: 

- 00 < x < 00, t > 0 (2.3) 

where j = J=T. In contrast to the KdV equation, where the real travelling wave 

solution is obtained, the dependent variable in NLS equation can be complex, that 

is, the evolutions of two quantities, i.e magnitude and phase, are governed by the 

equation. It can be shown that the localized stationary single soliton solution of the 

NLS equation is given by: 

u(x. t) = psech(j3(x - TO)) exp (j~2 t + jcPo) (2.4) 

where p is the parameter characterizing the amplitude and width of the soliton, Xo is 

the central position of the soliton pulse and cPo denotes the phase. 

NLS soliton has been observed in fluids, such as the shallow water wave and the 

motion of the vortex filament. It is also observed in optical fibre [4. 20] and has shown 

promising application in optical communication [19]. 

2.1.3 Sine-Gordon Equation 

The sine-Gordon equation [31, 32] is a partial differential equation in two dimensions. 

For a function u of two real variables, :1' and t, it is 

Utt - U XI + sin U = O. (2.5) 

While Eq. (2.5) cannot be solved analytically in general, several classes of solutions 

can be found by making the assumption that the solution is of the form U(T, t) = 

13 
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arctan ~,~~?, The single soliton solution can be expressed as: 

( (
X - f3t ) 

u(x, t) = 4 arctan exp v' ) 
1 - f32 

(2.6) 

where /J = v'n:~-1, Iml > 1 is a constant. For rn being positive, the solution is a 

soliton known as the "kink solution". For m being negative, a similar solution can be 

obtained by replacing x by -T. This solution is known as "antikink solution". 

Sine-Gordon equation arises in a variety of problems including the propagation of 

ferromagnetic domain walls, self-induced transparency in nonlinear optics, and the 

propagation of magnetic flux quanta in long Josephson transmission lines, etc. 

2.1.4 Toda Lattice 

n-1 n 

Figure 2.1: Model of Spring Toda Lattice 

The Toda lattice [53] as shown in Fig. 2.1, is a nonlinear one-dimensional model 

which describes the motion of a chain of particles with nearest neighbor interactions. 

Denoting Qn the displacement of the nth particle, mn denotes the mass of the nth 

particle. Defining r n = Qn+1 - Qn The equations of motion for the lattice of particles 

can be written as: 

(2.7) 

where fn is the force of the spring on the nth particle. In 1966, Morikazu Toda [54] 

found the nonlinear lattice with exponential potential admit analytical solutions. 

Choosing the force to be 

f(n) = a(e-brn - 1) 

14 
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where a, b are constants s.t. ab> 0, Eq. (2.7) transforms into: 

(2.8) 

or equivalently, we obtain 

d
2 

( j~(t)) b 
dt210g 1 + -a- = m (fn-l(t) - 2In(t) + In+l(t)) (2.9) 

It can be proved [53] that Eq. (2.9) supports soliton solution, as shown in the following: 

2 2 (;;J; 
In = a{3 sech ({3tv -:;;; - Pn - LO) (2.10) 

where (3 = sinhP, P is the parameter determining both the amplitude and the width 

of the soliton, LO is an arbitrary constant representing the initial phase shift of soliton. 

Eq. (2.8) describes a single bump travelling trough the lattice stably with constant 

speed sm~(P). 

2.2 Solution of Soliton Equations - Initial Value 

Problem of Soliton Equation 

A systematic development of the mathematical theory of solitons began in 1967 when 

Gardner et al. [8] devised a method for constructing solutions of the KdV equation 

emerging from arbitrary initial conditions. Known as the inverse scattering transform 

(IST), this approach was later extended to solve the initial-value problem of many 

other soliton supporting equations [16, 39, 62]. While the mathematical manipulation 

of applying 1ST for treating different soliton equations are quite different, the basic 

procedures are very similar and can be summarized in following three steps. 

Step 1: The nonlinear dynamics of the soliton equations are mapped onto an 

associated linear scattering equation, each discrete eigenvalue of which corresponds 

to a particular soliton. Given the initial condition of the soliton equation, i.e. the 
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solution at time t = 0, the scattering data of the linear scattering equation can be 

calculated. 

Step 2: The time evolution of the associated linear scattering data is computed. 

Step 3: Applying the inverse scattering calculation, the time evolved solution of 

the soliton equation can be obtained from the evolved scattering data. 

In this chapter, we introduce the 1ST of the KdV equation and the TL equation, 

since they are of particular importance to this thesis. For a detail description of the 

1ST and applying 1ST for solving some other soliton equations, interested readers can 

refer to [2]. 

2.2.1 Inverse Scattering Transform of the KdV Equation 

The 1ST of the KdV equation starts from relating the KdV equation to the one­

dimensional Schrodinger equation. After some tedious mathematical manipulations, 

it can be shown [8] that the solution of the KdV equation is the compatability con­

dition of a pair of linear equations (Lax) on V;(x, t) satisfying: 

-'ljJxx + U(:T, t)V; = )..'lj) 

V;t = AV; 

(2.11) 

(2.12) 

where).. and V; are the eigenvalue and the eigenfunction of Eq. (2.11) and Eq. (2.12) 

respectively and A is the operator. It can be proved that the spectrum of the 

Schrodinger operator consists of the continuous spectrum corresponding to ).. > ° 
and a finite-dimensional discrete spectrum, i.e. )..n < 0, n = 1,2· .. ,N. The contin­

uous spectrum characterizes the oscillation and transient component of the solution, 

while the discrete spectrum represents the soliton component of the solution with 

each eigenvalue characterizing a soliton. 

Taking into account the boundary condition of the equation, i.e.u(x, t) --+ ° 
as x --+ 00, we can obtain the eigenfunctions corresponding to both continuous and 
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cliscret~ eigenvalu~s. For the continuous spectrum, we define k = vi),. , the solution of 

the eigenfunction 7/;(x; k) can be written as following: 

{ 

e-Jkx+b(k)eikx asx----+oo 
1j)(x;k) rv . 

a(k)e-Jkx as x ----+ -00 

where a( k) and b( k) are complex constants for a fixed k and are referred to as the 

transmission and reflection coefficients respectively. Similarly, defining "'n = V-An, 

n = 1, 2 . . . ,N, the discrete eigenfunction 7/;n (x) can be written as: 

as x ----+ 00 

where Cn is the normalization coefficient, such that .f~oo 7/;; (x) = 1. For a given initial 

condition u(x, 0), the scattering data, b(k), "'n, Cn, n = 1,2··· ,N can be determined 

uniquely. 

It can be shown that whenu(x, t) evolves obeying Eq. (2.1), the discrete eigenvalue 

An does not depend on time, that is Kn also remains constant. The time-dependence 

of other scattering data can be determined from Eq. (2.12): 

b(k; t) 

cn(t) 

b(k; 0)e-8jk3t 

cn(0)e4K~t 

Based on these scattering data, the solution of the KdV equation at arbitrary time t, 

i.e. u(x, t) can be determined uniquely. It can be shown that u(x, t) can be obtained 

by: 

u(x;t) = _28K(~~x;t) 

where K(x; z; t) is the solution of the Marchenko equation [8J: 

K(:r; z; t) + F(x + z; t) + 100 

K(x, y; t)F(y + z; t)dy = 0 

and F(x; t) is defined as 

N 1 100 

F(:r; t) = L c~(t) exp (4ti;~t - ti;n X ) + 27r b(k; t) exp (jb:)dk 
=1 -00 
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2.2.2 Inverse Scattering Transform of the Toda Soliton 

The normalized Toda lattice equation Eq. (2.8) can be rewritten as: 

(2.16a) 

(2.16b) 

where n = 1· .. N. The initial value problem for the TL equation solves the problem of 

given all the lattice states Qn at time t = 0, obtaining Qn at arbitrary time t. Similar 

to the KdV equation, an inverse scattering transform exists for the TL equation and 

it was developed by H. Flaschka in 1974 [16]. 

The 1ST of the TL equation starts from the connecting of the soliton equation 

with a pair of Lax equations by introducing new variable an and bn, such that 

1 
an - _e-(Qn+l-Qn)/2 (2.17a) 

2 

bn - ~P, 
2 n (2.17b) 

Introducing N x N matrix Land B, we obtain an eigenvalue problem for a discrete 

Schrodinger equation and an evolution problem for the eigenvector tp: 

(Ltp)(n) = an-ltp(n - 1) + bntp(n) + antp(n + 1) = Atp(n) 

dtp( n) 
~ = (Btp)(n) = an-lif(n - 1) - anr.p(n + 1) 

(2.18) 

(2.19) 

where scalar A is the eigenvalue of Eq. (2.18), and N x 1 vector tp is the eigenfunction 

of the equation, if(n) is the nth element of if. 

The expression of an infinite Toda lattice can be obtained from Eq. (2.18) and 

Eq. (2.19) by letting INI -----+ 00. Assuming that the motion of the lattice is confined 

in a finite region Inl s No, we obtain the boundary condition of the TL equation: 

bn = 0, for Inl > No 
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For convenience, introducing variable z, such that). = z+r 1
, it can be proved that 

the corresponding boundary solution of the eigenfunction tp( n) can be expressed as: 

n -----t 00 

n -----t-OO 

where w = z-2~-1. ¢(n, z) and 'ljJ(n, z) are denoted as wave functions and for Izl = 1, 

satisfy: 

'ljJ(n, z) -----t z-n, n -----t -00 

Defining the scattering function as: 

'ljJ(n, z) 
S(n, z) = a(z) = ¢(n, Z-l) + R(z)¢(n, z) 

The asymptotic forms of S(n, z) are: 

n -----t 00 

n -----t-OO 

where l/o:(z) is defined as transmission coefficient. The poles of o:(z) correspond to 

the discrete eigenvalues of the TL equation and are denoted by zz, i = 1 ... N, where 

N is the total number of the solitons. R(z) is defined as the reflection coefficient. 

Defining ~(n, Zi) = ci¢(n, z~) as the normalized wave function, the normalization 

constants Ci can be obtained from L~=_(X)[~2(n, z~)J2 = 1. 

The scattering data of the TL equation include R(z), z~ and C~, i = 1··· N. 

Given lattice states, i.e. a( n), b( n) at t = 0, the scattering data can be determined. 

It can be proved that the time evolution of the scattering data can be expressed as: 

zJ (t) 

c] (t) 

R(z, t) 

zJ(O) 

c] (0)et (Zk
1

- Zk )/2 

R(z,O)et(z-l-z) 
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Lattice states at arbitrary time t can then be obtained based on time evolution of 

scattering data. Defining function F(m, t) as: 

1£( n, m, t) can be obtained by solving the following discrete integral equation: 

00 

f£(n, m, t) + F(n + m, t) + L f£(n, n', t)F(n' + m, t) = 0, 
n'=n+l 

Defining K(n, m, t) such that 

00 

K(n, n, t)~2 = 1 + F(2n, t) + L f£(n, n', t)F(n' + m, t) 
n'=n+l 

( ) 
_ K(n, In, t) 

1£ n, m, t - T"'( ) 
I}, n,n, t 

Lattice states an(t), bn(t) can then be computed from 

an(t) = K(n+1,n+1,t) 
2K(n, n, t) 

( ) 
_ K(n, n + 1, t) K(n - 1, n, t) 

bn t - - ---,-'------
2K(n, n, t) 2K(n - 1, n - 1, t) 

m>n 

Based on un(t) and bn(t), lattice displacement at time t, i.e. Qn(t) can then be 

obtained. 

2.3 From KdV Soliton to Toda Soliton 

Both the KdV and the TL equations are integrable and the form of the solutions is 

quite similar indicating some close relation between them. In fact, it can be shown 

that KdV equation is a continuous approximation of the Toda lattice equation. 

Under the condition of small fn(t), the nonlinear term in TL equation, i.e. Eq. (2.9) 

can be approximated to 

log(l + fn(t)) ~ fn _ f~ 
a a 2a2 (2.20) 
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Denoting l'm [ii, 1L = - :a V and applying the Gardner-Morikawa transform a-

tion [8J: 

c = £1/2(n _ v t) T = £3/2 Vmt 
'" m , 24 (2.21) 

Substituting Eq. (2.20) and Eq. (2.21) into Eq. (2.9), and choose v = 1, we obtain 

the original KdV equation [36]: 

(2.22) 

Comparing Eq. (2.9) and Eq. (2.22), it is clearly seen that the governing equation of 

the Toda circuit can be transformed into the KdV equation by introducing new time 

variable T and displacement variable~. We have shown that the single KdV soliton 

solution of Eq. (2.22) is [13]: 

(2.23) 

Using Eq. (2.21), the corresponding Toda soliton solution of Eq. (2.22) can be ex­

pressed as: 

(2.24) 

Under the condition of small input, i.e., f3 « 1, we obtain, f3 + ~3 ~ f3 and f3 ~ 

asinh(;3) = P, Eq. (2.24) reduces to the Toda soliton of Eq. (2.10), which means the 

KdV soliton can approximate Toda soliton accurately in this case. 

2.4 Summary 

In this chapter, we introduce the mathematical description of several classes of com­

mon solitons, including KdV soliton, NLS soliton, Sine-Gordon soliton and Toda 

soliton. The corresponding supporting equations, i.e., the KdV equation, the NLS 

equation, Sine-Gordon equation and the governing equation of the Toda lattice are 
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also introduced. The method of solving initial value problem of soliton equation, i.e., 

1ST is then discussed through the examples of the KdV equation and the Toda lattice. 

The relationship of the KdV soliton and the Toda soliton is then studied. We show 

that the KdV soliton is indeed a continuous approximation of the Toda soliton. 
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Chapter 3 

Signal Properties of the Toda 

Soliton 

Solitons enjoy rich transmission properties through nonlinear systems. In this thesis, 

we apply these properties in data transmission and propose a soliton communication 

system. In this soliton system, Toda soliton is employed as information carrier in 

linear channel and the corresponding soliton supporting system is employed as both 

the transmitter and the receiver. 

Among many kinds of solitons [40J, Toda soliton is chosen to be the carrier of infor­

mation in our soliton communication system for its being relatively easily generated 

and processed. l'vlotivated by Toda's work on the particles chain with exponential 

interaction, Hirota and Suzuki proposed a nonlinear LC electrical network [23J equiv­

alent to the original Toda lattice and verified the generation and propagation of Toda 

soliton through the circuit. In this chapter, the structure of the LC Toda circuit and 

its soliton solutions will be discussed. 

To apply the Toda soliton as information carriers, we need to examine some signal 

properties of the Toda solitons important to applications to communications. In this 

chapter, we examine the time and frequency domain characteristics, the time duration 
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and frequency bandwidth and the signal energy of both single and composite Toda 

soliton [10]. 

3.1 The LC Toda Circuit and Toda Solitons 

We now introduce the LC Toda circuit which can be used to generate and propagate 

Toda solitons [23]. The LC Toda circuit is a multi-stage circuit comprised of cascaded 

individual sections of linear inductor and nonlinear capacitor as shown in Fig. 3.1 

where In and Vn denote respectively, the current passing through the inductor with 

constant inductance L and the voltage across the nonlinear capacitor at the nth stage. 

Figure 3.1: The LC Toda circuit 

The charge of the nth nonlinear capacitor in Fig. 3.1 is of the form 

Qn = Co Volog(l + ~) (3.1) 

where Vo and Co are constants representing the DC bias voltage and the nominal 

capacitance, respectively. In practice, the bias voltage Vo is usually chosen to be 

around 10 Volts [50, 51], thus hereafter, we will assign Va = lOV unless specifically 

indicated. The governing equation of LC Toda circuit is given by [23, 53] 

(3.2) 

Comparing this nonlinear LC circuit with the Toda lattice introduced in Section 2.1.4, 

it is clear that these two systems are equivalent. More specifically, the charge of the 

nonlinear capacitor in the LC circuit is equivalent to the particle displacement of the 
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original lattice and the voltage across the capacitor is equivalent to the force between 

two nearest particles. 

It can be easily verified that the single soliton solution of this system representing 

the voltage at the nth stage of the Toda circuit is given by: 

(3.3) 

where T = t/ vi LCo is the normalized time variable, (3 is the parameter governing the 

behavior of the soliton represented by Eq. (3.3), and ¢ is the initial phase shift of 

the soliton. It can be shown [53] that Eq. (3.3) is the only class of single solitons 

supported by the Toda circuit. Hence we call this class Toda solitons. Similar to 

most other soliton supporting systems, the Toda circuit can be employed to generate 

Toda solitons simply by having narrow rectangular pulses as its input. It has been 

shown [53] that after a number of stages of the Toda circuit, the pulse is a close 

approximation to that given in Eq. (3.3). Vn(T) in Eq. (3.3) also tells us that the 

soliton propagates along the Toda circuit without changing its shape or its amplitude. 

This is a fundamental property of the propagation of a soliton in a nonlinear medium 

matched to its characteristic. Fig. 3.2 shows the soliton of amplitude Vo/p = 4 

measured at different stages of the Toda circuit, and it can be seen that the pulse 

measured at a later stage is merely a delayed version of the earlier ones. 

From Eq. (3.3), we see that Vo{32 governs the amplitude of the Toda soliton, the 

parameter {3 also governs the spread of the soliton in the time domain and the velocity 

of propagation which can be calculated to be {3/ sinh -1 {3. Thus, {3 characterizes not 

only the amplitude and width of the Toda soliton, but also its velocity of propagation 

along the Toda circuit. The larger is (3, the faster the soliton propagates along the 

circuit. Consider two solitons having different parameters {31 and {32 ({31 > (32) such 
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Figure 3.2: Circuit response to single soliton, Vo,82 = 4 

that at the nth stage of the circuit, they are given by 

v2) (T) = Vo,8isech2 (;31 T - n sinh -1,81 - 4Jl) 

v2)(T) = Vo,8~sech2 (,82T - n sinh-1,82 - 4J2) 

where 4Jl and 4J2 are the respective phase shifts of the two solitons. Now, if the two 

solitons propagate along the Toda circuit starting at the input n = 0, with V20 (T) 

preceding VlO (T), then at some subsequent stages of the circuit, Soliton 1 will catch 

up with Soliton 2, since it propagates with higher speed along the circuit. Under such 

condition, the two solitons will start "merging", forming an interacting soliton. The 

general interacting soliton can be represented by the equation [23, 53]: 

(3.4) 
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where 

f3m T - n sinh -1 f3m - ¢rn, m = 1, 2 

! 10 (sinh
2
[(Sinh-1f31 - sinh-1(32)/2]) 

2 g sinh2[(sinh-1f31 + sinh-1(32)/2] 

sinh ~ [(f3i + ,BDsinh~ + 2;31,B2cosh ~] 

When (P1+ns~:h-1 fh - p2+ns~~h-1 (32, the two solitons will completely merge and the 

interacting soliton in Eq. (3.4) will become a composite soliton denoted by 

Sc( T) = sa( T, n, ¢b ¢2) 14>1 +n sinh- 1 ;31 
01 

This complete merging will happen at the stage 

(3.5) 

(3.6) 

Therefore, if ¢1 and ¢2 are properly chosen such that n is an integer, we will be able 

to extract a composite soliton at the output of the nth stage circuit. We note that the 

composite soliton is symmetric at the instant TO = (t>I+ns~:h-1 (31 = (P2+nS~h-l /32. The 

amplitude of this composite soliton is defined as the maximum point of its function in 

time. Now, as the composite soliton so formed is allowed to further propagate along 

the circuit, the two constituent solitons start to separate since soliton 1 propagates 

with higher speed than soliton 2. This separation continues until the two constituent 

solitons separates completely returning to their original individual forms. 

Fig. 3.3 illustrates the propagation of two solitons of amplitudes Vo,Br = 9 and 

Vo,Bi = 1 along the Toda circuit. It can be seen that at stage n = 1, the two solitons 

start to interact with each other as they propagate along the circuit. The interaction 

is complete at stage n = 72 when the composite soliton is formed. The merged 

solitons then start separating as they further propagate along the circuit and at stage 

n = 143, the two constituent solitons can be clearly recognized in their original forms. 

For this pair of constituent solitons whose difference in amplitudes is relatively large, 
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Figure 3.3: Circuit response to composite soliton, VaJ3? = 9, VaJ3~ = 1 

it takes approximately 72 stages of circuit for the composite soliton to form and 

completely re-separate. On the other hand, when the difference in the amplitudes of 

the two constituent solitons are relatively small, since the velocities of propagation 

of the two are close, it will take a much larger number of circuit stages for them to 

catch up and merge and again take a large number of circuit stages to re-separate. 

This is illustrated in Fig. 3.4. Here, we observe that for the constituent solitons of 

amplitudes 5 and 4, the forming of the composite soliton takes a total of 397 stages of 

the circuit and then takes another 397 stages to separate again into the constituent 

solitons. 
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Figure 3.4: Circuit response to composite soliton, Vo,6? = 5, Vo,6~ = 4 

3.2 Time and Frequency Characteristics of the Toda 

Soliton 

In this section and next section, we examine some signal properties of the Toda 

solitons important to applications to communications. From Eq. (3.3), the single 

soliton with zero phase shift at the initial stage (n = 0) of the Toda circuit is 

(3.7) 

which is an even function symmetric to 7 = O. Applying the Fourier transform to 

this soliton, the frequency characteristic of this soliton is given by 

(3.8) 

where f = 1/7 is the normalized frequency. The waveform of the soliton with ampli­

tude Vo,62 = 2 in the normalized time domain and its characteristics in the normalized 
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frequency domain are shown in Fig. 3.5. It can be seen that the Toda soliton has a 

"low-pass" frequency characteristic. 
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Figure 3.5: Time and frequency characteristics of a single soliton, Vo,82 = 2 

Now, let us examine the time and frequency characteristics ofthe composite soliton 

Se (T). Since the formation of a composite soliton is a result of nonlinear interaction 

between two single solitons, the superposition principle does not apply to either the 

time or the frequency domain characteristics of the composite soliton. As an illus­

tration, we show in Figs. 3.6 and 3.7 the normalized time and normalized frequency 

characteristics of two different composite solitons formed from the combination of 

constituent solitons having amplitudes 3 and 2, and 8 and 2 respectively. It is evident 

tha,t the results of the merging arc entirely differcnt in the two cases, depending on 

the relative parameters of the constituent solitons. 

From Fig. 3.6, we observe that if the parameters of the two constituent solitons 

are close in value, the resulting composite soliton may have multiple peaks in both 

30 



Ph.D. Thesis - Rong Chai McMaster - Electrical & Computer Engineering 

2 
(II 

"tJ 
~ 15 
c.. 1 E 
or:( 

0.5 

o~----~----~----~----~----~----~ 
-30 -20 -10 0 10 20 30 

Normalized time 
30,---~--~----~--~--~----~--~---, 

(II 

-g 20 
~ 

c.. 
E 10 

or:( 

OL---~--~-=~~~~~~~=-~--~--~ 

-0.8 -0.6 -0.4 -0.2 0 0 2 0 4 06 0.8 
Normalized frequency 

Figure 3.6: Time and frequency characteristics of a composite soliton, Vo/:Ji -
3, Va/1i = 2 

the time and the frequency characteristics. Since the time- and frequency-domain 

expressions of the composite soliton are symmetric, the twin peaks are always equal 

in amplitude. It is also observed that the amplitude of the twin peaks always lies 

between the values of the two constituent soliton peaks, i.e., Va/1i < Ac < Vo/1i with 

Ac being the value of one of the twin peaks. This fact is used later in our application 

of the solitons as a message-carrying signal. On the other hand, if the parameters 

are very different, the resulting composite soliton may turn out to be unimodal as 

shown in Fig. 3.7. Thus, the resulting composite soliton shape depends on the ratio 

of /11//12: Let /32 < /11, in general, it can be shown that for a fixed /32, a threshold of 

th, denoted by (3th, exists such that for (31 < {Jth, the composite soliton will have twin 

peaks as exemplified in Fig. 3.6, while for /11 > /1th' the composite soliton has only a 

single peak in time and frequency similar to that in Fig. 3.7. It should be noted that 

for different fixed values of /12, the value of /1th will be correspondingly different. This 
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Figure 3.7: Time and frequency characteristics of a composite soliton, Vo13? 
8, Va;]i = 2 

is shown as a ratio 8th/;32 plotted against the amplitude Vo;3j in Fig. 3.8 for the usual 

biased voltage Va = 10. However, for a different choice of the biased voltage, this 

ratio of ;3th/ (32 will be different. 1 This is also illustrated in Fig. 3.8 for Vo = 1. We 

note that for ;]1 < ;3th, while the resulting composite soliton maintains its twin-peak 

structure, as PI is increased and approaches f3th, the separation between the two peaks 

of the composite soliton decreases and the peaks become less pronounced. Finally, 

when PI = f3th, the two peaks merge to form a single peak. This is illustrated in 

Fig. 3.9 in which Va;3j = 4 and Vof3i is varied from 5 to beyond Vaf3;h' The effect of 

the merging twin peaks are clearly demonstrated. 

1 Similar result has been shown in KdV(Korteweg-de Vries) soliton, which is the continuous version 
of Toda soliton (having n replaced by a continuous variable). The threshold ratio (3th / th for KdV 
soliton has been proved to be a constant equal to 2.6. 

32 



Ph.D. Thesis - Rong Chai McMaster - Electrical & Computer Engineering 

1.95 r-----,r-------,-----,--~-----.--_____r_-____,_-___._-_. 

1.9 

1.85 

1.8 

1.75 

1.7 ~~_-----"_~ _ __'__---'-_ ______L _ ___'_ _ _'__ _ ___' 

1 2 3 4 5 6 7 8 9 10 
2 

VO~1 

Figure 3.8: (3th/ (32 

3.3 Energy and Time-Bandwidth Product of the 

Toda Soliton 

In the application of solitons to communications, another important characteristic to 

consider is the pulse energy defined as 

(3.9) 

Substituting the expression of the single soliton in Eq. (3.3) into Eq. (3.9), we obtain 

the energy of the Toda soliton s(r): 

Es = 1: s2(r)dr = Va2(341: sech
4((3r)dr 

- Va2 (33 (1 - tanh2 ((3r)) dtanh((3r) = - Va2 (33 100 4 

-00 3 
(3.10) 

It is clear from Eq. (3.10) that the energy of the single Toda soliton depends on its 

parameter (3. For larger (3, the soliton has larger energy. 
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Figure 3.9: Composite soliton, VOIB~ = 4, VofJi = [5 9 12 13 15] 

For a composite soliton, we can evaluate the energy in a similar way by substi­

tuting the square of Se(T) in Eq. (3.5) into Eq. (3.9). The resulting integral cannot 

be expressed in a closed form; however, it can be evaluated numerically by divid­

ing the "duration" of the composite soliton into M segments of width b..T and sum 

up such that Ee c:::' L:;;;'=o s~(mb..T)~T. Since the composite soliton is not a linear 

sum of its constituent solitons, the superposition principle does not apply to the 

energy of the composite soliton. If we denote the energy of the individual solitons 

having parameters fJl and fJ2 by ESI and Es2 respectively, then the energy ratio of 

the composite soliton to the two individual constituent solitons can be defined as: 

rE = Ec/(Es1 + Es2). It has been shown [23] that if the composite soliton is formed 

by having the constituent solitons merged while propagating in the same direction 

of the nonlinear medium, then r E ::; 1. To find out a more detail relatioll of r E and 

fJl, fJ2, we fix Va = 10 and vary fJl and (32 (fJl > fJ2) in the region such that fJd fJ2 

is between 1 to 10 and calculate the corresponding rEo In Fig. 3.10, rE is plotted 
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versus the ratio (31/(32 with Va!)~ being 2, 5 and 8, respectively. It can be seen from 

Fig. 3.10 that while rE varies for different (31 and (32, the ratio (31/(32 corresponding to 

the minimum rp; for different fh is very close to a constant, which is approximately 

equal to 2.94. Similar result can be obtained for different value of Va. As an example, 

Fig. 3.11 shows rE versus p1/ (32 for Va = 1. It can be seen that for different (32, the 

ratio (31/(32 corresponding minimum energy ratio is still a constant, but this ratio, 

i.e. 2.69 is slightly different as the case of Va = 10. It can also be shown that if the 

composite soliton is formed by merging two constituent solitons propagating through 

the nonlinear medium in opposite directions, then rE 2: 1 [23]. 
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Figure 3.10: Energy ratio of composite soliton and constituent solitons, Va = 10 

The fact that the energy of the composite soliton is always less than the sum of 

the energy of two constituent solitons may seem to violate the Law of Conservation of 

Energy. However, in the Toda circuit, the energy includes both the electrical energy 

of capacitors and the magnetic energy of inductors. Denoting the power on stage 

n by: Pn = In - 1 Vn , it can shown [23] that the energy of the nth stage, defined as 
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Figure 3.11: Energy ratio of composite soliton and constituent solitons, Va = 1 

En = J~ Pndt is a constant independent on the circuit stage number, which is indeed 

the Energy Conservation Law of the Toda circuit. 

Now, from the general expressions of the soliton and the composite soliton in 

Eqs. (3.3) and (3.5), we note that their supports range over the entire normalized 

time domain T E (-(Xl, (Xl) (and likewise in the normalized frequency domain). How­

ever, we also note that the signals approach zero very quickly (both in the time and 

frequency domains). Therefore, to come up with a definition of effective duration 

and bandwidth for the signals, we use the "99% energy" [42] concept such that the 

essential duration T E of the signal centered at T = 0 is defined as 

(3.11) 

where Es is the total energy of the signal. Similarly. the essential bandwidth FE of 

36 



Ph.D. Thesis - Rong Chai McMaster - Electrical & Computer Engineering 

the signal centered at .f = 0 is defined as 

(3.12) 

Substituting the time domain expressions of the soliton into Eq. (3.11), we obtain: 

Denoted tanh(JJ;E) by a new variable x, from Eq. (3.13), we obtain 

1 3 
X - -x - 0.66 = 0 

3 
(3.14) 

Eq. (3.14) is a cubic function of x and can be solved analytically [55). We obtain 

x = 0.917, from which the essential duration for a single Toda soliton can then be 

calculated, which is inversely proportional to the soliton parameter /3: 

Substituting the frequency domain expressions ofthe soliton into Eq. (3.12), we obtain 

The analytical solution of the integral in Eq. (3.15) is unavailable, therefore, we solve 

the equation numerically using Jzero function in mathematical software Matlab and 

obtain 
7[2 FE 
-(3- = 3.8797 =? FE = 0.3931,8 (3.16) 

It is clear that the essential bandwidth for a single Toda soliton is proportional to 

the soliton parameter ,8. 

The exact 99% duration and 99% bandwidth of the composite soliton, however, 

do not have simple relationship with the ,8-parameters of the constituent solitons 
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and therefore have to be evaluated numerically from its expression. To evaluate the 

essential duration of the composite soliton, we divide the time domain "duration" 

of the composite soliton into M segments of width ~T and find out the index C 

corresponding to the center of the waveform, that is 

C-l AI 

L s~(i) ~ L s~(i) (3.17) 
i=O ~=C+l 

We then calculate the index I, such that 

I 

s:(C) + I)s:(C + i) + s:(C - i)) ~ 0.99Ec 
i=l 

The essential duration of the composite soliton can then be calculated as TE = (21 + 
l)~T. The essential bandwidth of the composite soliton can be calculated in a very 

similar manner. As examples, the values of the essential duration and the essential 

bandwidth of the composite solitons shown in Figs. 3.6 and 3.7 are calculated and 

are given respectively by TE = 11.908, FE = 0.174 for the soliton shown in Fig. 3.6 

and TE = 7.414, FE = 0.171 for that in Fig. 3.7. 

Associated with the duration and bandwidth is the important factor of time­

bandwidth (T-B) product which characterizes the time and frequency domain effi­

ciency of a signal. The T-B product of a signal s(t) is the product of the root-mean­

square values of the duration and the bandwidth of a signal and is defined as [42J: 

(3.18) 

where S(J) is the Fourier transform of s(t) and Es is the total energy of the signal. 

The T-B product of a single Toda soliton can be calculated by directly substituting 

the time and frequency expressions of the Toda soliton from Eqs. (3.7) and (3.8) into 

Eq. (3.18) as described in the following lemma: 

Lemma 3.1 For a Toda soliton, the T-B product is a constant and is equal to 0.5066. 
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Proof: From the time and frequency expressions of the Toda soliton of Eqs. (3.7) 

and (3.8), the mean-square duration and mean-square bandwidth of the single Toda 

soliton are given respectively by: 

(3.19) 

and 

(3.20) 

where B4 = j~CX) sin:lUddh = - 10 is a Bernoulli number [17]. Substituting Eqs. (3.19) 

and (3.20) together with the energy Es given by Eq. (3.10) into the definition of T-B 

production of Eq. (3.18), we obtain IITBs = 0.5066. D 

It is well-known [42] that, of all the signals, the Gaussian pulse possesses the 

smallest T-B product of 0.5. From Lemma 3.1, it can be seen that the single Toda 

soliton has a T-B product very close to that of the Gaussian pulse and thus, like the 

Gaussian pulse, it also has high time and frequency localization abilities, i.e., it has 

a high energy concentration in both time and frequency domains. 

Unlike that for a single Toda soliton, the T-B product for a composite Toda 

soliton cannot be evaluated in a simple form because of the mathematical complexity 

in its time-domain expression, and therefore has to be calculated numerically. In 

spite of this, the composite Toda soliton can also be shown to enjoy a high energy 

concentration (i.e., a compact T-B product) as long as the parameters of constituent 

solitons are chosen properly. To calculate the values of the T-B product numerically, 

we divide the "duration" of the composite soliton into 1\11 segments of width 6.T 

and also divide the "bandwidth" of the composite soliton into M2 segments of width 

6.f. Similar to the calculating of index C in Eq. (3.17), we examine the indices 
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corresponding to the center of both the time and frequency waveform, denoted by C1 

and C2 and then evaluate the discrete version of Eq. (3.18), i.e. 

IITBs 

Ml-l 
-2-

( L (C1 ± i~T)2ISc(Cl ± i~T)12 + CiISc(Cl)12)~T 
1=1 

1\I2- 1 
2 

( L (C2 ± i~T)2ISc(C2 ± i~T)12 + CiISc(C2)12)~f 
i=l 

where Ah and A12 are assumed to be odd numbers, for M1 and 1\12 being even number, 

similar calculation can be performed. For illustration of the variation of the T-B 

product of the composite Toda solitons, we form the composite solitons by having 

the amplitude of One of the constituent soliton being held at 1, 5 and 10 respectively, 

while having the amplitude of the other constituent soliton varying from 1 to 10. The 

values of the T-B product are shown in Fig. 3.12. For comparison, we also plot the 

constant T-B product of the single soliton. It can be easily seen from Fig. 3.12 that 

the T-B product of a composite soliton depends on the relative amplitudes Vol3i and 

Vo/3i of the constituent solitons. For example, for Vo!3i = 1, if Vo/3i 2: 3, the two 

constituents will yield a composite soliton the T-B product of which is very close to 

that of a single soliton. On the other hand, for Vo,6i = 10, then Vo,6~ :'S 3 will make 

the T-B product of the resulting composite soliton close to that of a single soliton. 

In contrast, if the amplitudes of the two constituent solitons are relatively close, say, 

Vo,6i = 5 and Vo,6i = 4, then the T-B product of resulting composite soliton is equal 

to 1.5, a value much larger than that of a single soliton which is 0.5066. In Fig. 3.13, 

we fix Vo,6i to be 1, 5 and 10 and plot the T-B product of the composite soliton 

versus ,62/,61. It can be see that for same ,62/,61, the T-B product of the composite 

soliton is different for different Vo,6i, however, the trend of the curves are very similar, 

indicating the dependence of the T-B product of the composite soliton On the ratio 

,62/ fh· From Fig. 3.13, we can also see that for composite soliton with the amplitude of 
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one constituent soliton, i.e., VofJr heing different, the optimal T-B product is achieved 

at similar condition, i.e., f32/f31 ~ 2. 
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Figure 3.12: T-B product of composite soliton and single soliton (1) 

3.4 Summary 

In this chapter, we examine several signal properties of the Toda solitons important 

to the applications to communications. We show that while the single Toda soliton 

is having single peak in both the time and frequency domain, the composite soliton 

may have single peak or multiple peaks in both the time and frequency domain 

depending on the parameter of the constituent solitons. We also study the time and 

bandwidth efficiency of the Toda soliton by examining the T-B product of both single 

and composite Toda soliton, We show that the T-B product of the single Toda soliton 

is equal to 0.5066, which is close to the optimal value achieved by Gaussian pulse. By 
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Figure 3.13: T-B product of composite soliton and single soliton (2) 

numerically calculating the T-B product of the composite soliton, we show that the 

optimal T-B product of the composite soliton can be as small as that of the single 

soliton and it is achieved when f32/ f31 ~ 2, where f31 and f32 are the parameters of 

the two constituent solitons. The energy of the Toda solitons is also examined. We 

show that the energy of the single soliton is a monotonic function of its parameter 

f3. The energy of the composite soliton is always smaller than the energy sum of 

two consitituent solitons and the smallest energy of the composite soliton is achieved 

when i32/ f31 ~ 2.94 (for Va = 10). 
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Chapter 4 

Response Analysis of The Toda 

Circuit 

In this chapter, we examine the processing of signals by the Toda circuit [10J. To this 

end, we seek for accurate representations of the response of the Toda circuit. We first 

assume that the circuit is weakly nonlinear and employ the Volterra series [45, 58J to 

calculate its response. We then take an alternative approach and apply the Runge­

Kutta method to evaluate the complete response of the circuit. The accuracy of the 

two approaches are then compared using the known soliton solution. 

4.1 Volterra Series Analysis 

4.1.1 Introduction of Volterra Series 

Volterra series is a functional expansion of a dynamic, nonlinear, time-invariant sys­

tem. It was first developed around 1910 by Vito Volterra in [18J. In 1930's, Norbert 

Wiener [59J proposed to apply this series in analyzing the input-output relationship 

of certain nonlinear systems with memory. Since then, Volterra series has quickly 
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received a great dectl of ctttcntion in the field of electrical engineering for its feasibility 

and efficiency in the modelling of nonlinear system behavior [6, 7,47]. As a general­

ization of the linear convolution approach applied to linear, time-invariant systems, 

the theory of Volterra series states that the output of many time-invariant, nonlinear 

system can be modelled as an infinite sum of multidimensional convolution integrals 

of increasing order, i.e. given system input x(t), the system response y(t) can be 

calculated as: 
00 

y(t) = LYk(t) ( 4.1) 
k=I 

where 

Yk(t) 1: .. ·1: X(TI)X(T2)··· X(Tk)hk(t - TI, t - T2,··· t - Tk)dTI dT2··· dTk 

(:, X 0 x··· 0 x ® hk (4.2) 

is the system output component of order k, and hk(TI, T2,··· Tk) is the kth-order 

system impulse response, the kth dimensional Fourier transform of which yields the 

kth order transfer function of the system given by, 

It should be noted that although Eq. (4.1) is a sum of an infinite number of terms, 

under the assumption of weak nonlinearity, the first few terms can approximate the 

system output accurately and the high order terms are negligible. Here the term 

"weak nonlinearity" means the nonlinearity departs from the linearity in a small and 

gradual manner and there is no abrupt change in system behavior [45]. 

It is clear from Eqs. (4.1) and (4.2) that the evaluation of the nonlinear system 

output can be viewed as the evaluation of the system impulse responses or, more 

conveniently in general, the transfer function of different orders. A commonly-used 

method for determining the transfer functions of nonlinear system is Harmonic In­

put method [58], by which the transfer functions of different orders are determined 
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recursively through having the sum of complex exponential function with different 

frequency components as input. 

It is well known that the transfer function of a linear system can be calculated by 

exciting the system with the single complex exponential, i.e. eJ27r/lt and examining 

the system output. For a linear system, the output only contains the frequency 

component eJ27rht . It can be shown easily that the coefficient of eJ27rht of the system 

output is exactly the system transfer function. Applying Harmonic Input method to 

calculate different order transfer functions of a nonlinear system, the basic idea is very 

similar to that of linear system. The nonlinear system is first linearized and the linear 

transfer function of the system is determined. Then taking into account second-order 

nonlinearity of the system and choosing the system input to be eJ27rh t + ~27rht, the 

second order transfer function at frequency II and 12 can be determined by examining 

the coefficient of eJ27r(h + h)t of the system output. Similarly, the nth order transfer 

function at frequency 11, 12,··· lk can be determined by inputting eJ27rh t + ~27rht + 
... + eJ27r fkt and examining the coefficient of the term eJ 27r(h + 1'2+---+ fk)t of the system 

output. 

In following sections, we apply Harmonic Input method to calculate the first three 

order transfer functions of the Toda circuit and then calculate circuit response to 

different input based on these transfer functions. 

4.1.2 Transfer Function of Toda Circuit 

To calculate the transfer function of a nonlinear system, it is the usual practice to 

replace a nonlinear device by a combination of a linear device and nonlinear sources. 

The only nonlinear devices in the Toda circuit are the nonlinear capacitors. The 

charge in the nth nonlinear capacitor is given by Eq. (3.1), for convenience it is 
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rewritten in the following: 

Differentiating Q(Vn ) respect to time variable t, we obtain the current through the 

nth capacitor, denoted as ic(Vn): 

. 1 dVn 
lc(Vn ) = Co v, d 

1 + tt t 
(4.3) 

Expanding Eq. (4.3) in a Taylor series, we obtain 

. ( dVn Co dV; Co dV; 
lc Vn ) = C0Tt - 2Vo dt + 3Va2 dt + ... ( 4.4) 

It is clearly seen from Eq. (4.4) that under the condition of -ifo « 1, first few terms 

can represent ic(V,t) with negligible error. Using first three terms to approximate 

ic(Vn), we obtain 

i (V:) ~ C dV,t _ Co dV; Co dV; 
c n 0 dt 2Vo dt + 3V02 dt 

(4.5) 

From Eq. (4.5), we can see that without affecting the topological structure of the 

circuit, the nonlinear capacitor in the Toda circuit can be replaced by the combination 

of the linear capacitor with capacitance Co and two voltage-controlled current sources 

with the current being -~ d:1 and 3~c? d~n3 respectively. The Toda circuit in Fig. 3.1 

can then be redrawn as in Fig. 4.1, where, AC1 represents the second order current 

L 

R 

Figure 4.1: The Equivalent LC Toda Circuit 

source, I.e. i 1 (t) -~ d~l, AC2 represents the third order current source, i.e. 
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i2(t) = ~ d~;. In Fig. 4.1, R = fli represents the equivalent load resistor chosen 

to truncate the circuit without introducing reflection [14, 23]. 

Applying the Harmonic Input method, we can calculate the first to third order 

transfer function of the circuit at different stages, H 1n (fI), H 2n (fI, 12) and H3n (fI, 12, h), 

where n = 1, ... ,N denotes the nth stage of the Toda circuit, 11, 12 and 13 are ar­

bitrary frequency in the interested frequency region. 

Defining the kth order transfer impedance matrix such that 

2+~ 
ZCk 

-1 0 

-1 2+~ 
ZCk 

-1 0 

Zk = 0 -1 2+~ 
ZCk 

-1 (4.6) 

o o -1 

where ZLk, ZCk are the kth order inductive and capacitative impedances defined 

respectively as 

k = 1···3 (4.7) 

To calculate the linear transfer function of the circuit, we replace the nonlinear 

capacitor by linear capacitor with capacitance Co and ignore the two current sources. 

Choosing the circuit excitation to be r(t) = Vln(t) = ~27rht and solving the node 

equations for circuit output y(t) = ~(t), i = 1, ... N, we obtain the linear transfer 

functions Hli (.fl) , i = 1,· .. N: 
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To calculate the second order transfer function at two incommensurable frequency 

11 and 12, we replace the input by x(t) = Vin(t) = eJ27rht + eJ27r /2 t and replace the 

nonlinear capacitor by the combination of linear capacitor and current source AGI . 

Calculating the output voltage, we can obtain the second order transfer function at 

frequency 11 and 12 as shown in the following: 

H 21 (fl,f2) 

H 22 (fl,12) 
(4.9) 

where, with P2 = j27r(h + h), the equivalent input vector J 2 is given by: 

Hn (fdHn (h) 

H12 (fl)H12 (f2) 
(4.10) 

Similarly, choosing input x(t) = Vin(t) = eJ27rht + eJ27rht + ej27rht and replacing 

nonlinear capacitor by the combination of linear capacitor and current source AG1 

and AG2 , the third order transfer function at frequency 11, hand .f3 can be calculated 

as: 

H 31 (h, 12, /3) 

H32 (h, 12, /3) 
(4.11) 
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where, with P3 = j27r(.fl + h + h), the vector J3 is given by: 

Co 
J 3 = ---u- gZL2 

2vo 

Hl1 (.fl)H21 (h, h) 

H12 (.fdH22 (h,13) 

Hl1 (.fl)Hl1 (.f2)Hl1 (h) 

H12(II)H12(h)H12(h) 

(4.12) 

The over-bar in Eq. (4.12) denotes the arithmetic average ofthe permuted terms. For 

example, 

Hl1 (.fl)H21 (h, h) = i[Hl1 (.fl)H21 (h, h) + Hl1 (.h)H21 (.13, h) + Hl1 (h)H21 (II, h) 

+Hll (h)H21 (h, 11) + Hl1 (h)H21 (II, h) + Hl1 (h)H21 (.f2, II)] 

The kth order impulse response of the circuit at stage n, denoted by hkn , k = 

1· . ·3, n = 1··· N can be obtained by applying the k-dimensional inverse Fourier 

transform on the transfer functions H kn . For convenience, the index n denoting the 

stage number in hkn is ignored hereafter and will be indicated specifically in the 

content. Based on hk' k = 1· . ·3, the system output given an input can be calculated 

from Eqs. (4.1) and (4.2). 

4.1.3 Toda Circuit Response Using Volterra Series 

To illustrate the accuracy of employing the Volterra series, we apply a single soliton 

with amplitude Vo,82 = 5 to the input of the Toda circuit. We calculate the exact 

response at the first stage of the circuit by evaluating Eq. (3.3) with n = 1 and this 

is shown in the top of Fig. 4.2. Together, at n = 1, we also plot the first order 

(Yl), the second order (Yl + Y2), and the third order (Yl + Y2 + Y3) Volterra series 

approximated outputs. If we let Yo(m), m = 0",' ,M, be the theoretical output of 

the circuit, which can be obtained by evaluating Eq. (3.3) with n = 1. From Fig. 4.2, 

we can calculate the mean square error (MSE) of the kth order approximation of the 

49 



Ph.D. Thesis - Rong Chai McMaster - Electrical & Computer Engineering 

22 

20 

yo(t) 
15 -::s c.. -::s y 1 (t)+y 2(t)+Y3(t) 0 

;t:: 10 
::s 
C.) ... 
(3 

Y 1 (t)+y 2(t) 
5 

Y1(t) 
0 

0 10 20 30 40 50 
Time 

Figure 4.2: Circuit response to a single soliton, VOp2 = 5 

circuit output, i.e. MSEk = 2:~=0 1(2:7=1 Yi(m)) - Yo(m)12~t. The results obtained, 

with 1\1 = 100, are: MSE1 = 0.6521, MSE2 = 0.1201, and MSE3 = 0.092. From 

Eq. (3.10), we have the total energy ofthe exact output signal Es = ~Vo2,83 = 117.95. 

Thus, the relative approximation errors are given by ek = MSEk / E s , k = 1,2,3, 

giving e1 = .0055, e2 = .0010, e3 = 7.799 x 10-4 . It can be clearly observed that 

in the case of a small amplitude soliton input, i.e., VOp2 = 5, using the third order 

approximation of the circuit output yields a reasonably small error at the early stage 

of the circuit. Fig. 4.2 also verifies that the linear approximation of the output shows 

linear dispersion of the soliton which is compensated by the second-order and third­

order nonlinearity resulting in a stable propagation. The responses at first stage and 

later stages of the Toda circuit to a single soliton with amplitudes 1, 4, and 8 are shown 

in Figs. 4.3 to 4.5. In each figure, the Volterra series output of order 3, i.e. 2:~=1 Yt is 

compared with the theoretical outputs (again obtained by evaluating Eq. (3.3) with 

the corresponding values of n). The output stage numbers are chosen to be 1, 3, 5, 
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7 and 9. It is dear from these figures that in the case of small input amplitude and 

lower stage numbers, third-order Volterra series is an efficient approximation of the 

Toda circuit. The approximation error of Volterra series increases with the increase 

of the input amplitude and increase of circuit stages. This indicates that for larger 

input amplitude and for longer cascade of Toda circuit sections, nonlinearity of circuit 

mcreases. 

Fig. 4.6 illustrates the third-order approximated output of the Toda circuit in 

response to the input of a composite soliton formed by two constituent solitons of 

amplitudes Vo;3i = 4 and Vo;3i = 5. Note that the composite soliton has two peaks 

of equal amplitude. We examine the approximated output at stages 1, 3, 5, 7 and 

9. Theoretical outputs are obtained by evaluating Eq. (3.5) and are plotted for 

comparison. It can be seen from Fig. 4.6 that good approximation is obtained at the 

earlier stages (1 and 3), however, the approximation deteriorates as the stage number 

mcreases. 

The increasing approximation error with the increase of stage number and input 

amplitude shows that higher order Volterra series is required to represent longer cir­

cuits with larger input. However, the exponentially increase in computation complex­

ity makes this unrealistic. Therefore, in this thesis, the Volterra series approximation 

(3rd order) is only applied to the outputs at the first few stages. For circuit output at 

later stages of the circuit, we use the more accurate Runge-Kutta numerical method. 

4.2 Runge-Kutta Integration Method 

In this section, the output of the finite-length Toda circuit is evaluated using the 

numerical integration method of Runge-Kutta [33J. Runge-Kutta method was devel­

oped around 1900 by two German mathematicians C. Runge and M.W. Kutta for 
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Figure 4.3: Circuit response to a single soliton, Vop2 = 1 
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Figure 4.4: Circuit response to a single soliton, Voj32 = 4 
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Figure 4.5: Circuit response to a single soliton, VO)32 = 8 
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solving the initial value problem of the ordinary differential equation: 

Y' = f ( :r , y) , Y ( :r 0) = Yo 

The basic idea of the Runge-Kutta Method is to approximate the solution of y(x) at a 

set of points of :r. For each point at step n + 1, the approximation is constructed from 

a linear combination of approximations at step n and intermediate points. According 

to the number of the intermediate points, Runge-Kutta method can be classified by 

different orders, including order 2, 3 or 4. The commonly-used Runge-Kutta method 

is of the order 4, which is defined as follows: 

hf(xn, Yn) 

1 1 
hf(.Tn + 2h, Yn + 2kI) 

1 1 
hf(.Tn + 2h, Yn + 2 k2 ) 

hf(xn + h, Yn + k3) 

Yn+l 
1 1 1 1 5 

JJn + 6k1 + "3k2 + "3k3 + 6k4 + O(h ) 

where, h is the prescribed step-size. In this thesis, we apply Runge-Kutta method of 

order 4 to solve the problem of the Toda circuit response to input. 

To evaluate the response of the Toda circuit using Runge-Kutta method, we re­

write the governing equation of the Toda circuit, i.e., Eq. (3.2) in terms of the variable 

Qn which is the charge of the nth capacitor. As a result, we obtain: 

( 4.13) 

Defining the new variables Un(t) = dQit(t) , n = 1"" ,N, with N being the total 

number of circuit sections, and taking into account the signal generator at the in­

put section and the terminating load at the final section, then Eq. (4.13) can be 
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reformulated as pairs of first-order differential equations such that: 

dUl(t) 
dt 

dUn(t) 
(it 

dUn(t) 
dt 

dQn(t) 
dt 

(SiV~t) - 2eQ1 (tl/Qo + eQ2 (tl/Qo + l)/(LCo); n = 1 

(eQn- 1(tl/Qo - 2eQn (t)/Qo + eQn+1(t)/QO)/(LCo); 1 < n < N 

(!!aeQn(t)/QodQ;Pl + 1:j;(eQn-l(tl/Qo - eQn(t)/QO))/(LCo); n= N 

Un(t) \j n 

( 4.14) 

Eq. (4.14) is now in the standard form ready to be evaluated by the Runge-Kutta 

integration method. To test the accuracy of the method, we choose the total number 

of stages in the Toda circuit to be N = 100. We normalize the circuit parameters 

such that L = 1 and Co = 1. Given an input voltage signal 8in(t), the output voltage 

at stage n is then Vn(t) = Vo(eQn(tl/Qo - 1), n = 1,··· ,N, and can be obtained by 

solving the above 2N differential equations. 

Fig. 4.7 shows the results of examining the accuracy of the Runge-Kutta method 

for the output of a relatively long Toda circuit with the amplitude of the input being 

relatively large. Here, the input is a single soliton with amplitude 8. The circuit 

response at stages 1, 10, 20, 30, 40 and 50 are plotted together with the theoretical 

outputs obtained, as in the case for the Volterra series approximation, by evaluating 

Eq. (3.3). It can be seen that the evaluation of the output at both lower and higher 

stages of the circuit is very accurate (relative error et < 0.002, 1, = 1, ... 5), showing 

that Runge-Kutta method is suitable to evaluate the output of the Toda circuit for 

both low and high stage numbers. Similar accuracies are observed if the input soliton 

is of relatively low amplitudes. 

We also apply the Runga-Kutta method for the evaluation of the outputs at 

different stages of the Toda circuit when the input is a composite soliton, and similar 

accuracies as in the cases of single solitons are observed, showing that the Runga­

Kutta method is also suitable for the calculation for such cases. Here, we repeat 

the examination of the two cases as shown in Figs. 3.3 and 3.4 in which separate 

constituent solitons of different amplitudes (1 and 9, 4 and 5) propagate along the 
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Figure 4.7: Circuit response to a single soliton, Vo;32 = 8 

Toda circuit, merge to form a composite soliton, and then re-separate after being 

allowed to further propagate. The observations are almost identical (relative error 

e < 0.002) to those theoretical results illustrated in Figs. 3.3 and 3.4, showing the 

high accuracy of the Runge-Kutta method in the evaluation of composite solitons. 

In previous section and this section, we examine the response of the Toda circuit 

using both Volterra series and Runge-Kutta method. We show that Volterra series 

is valid for relative small input soliton amplitude and at the early stages of the Toda 

circuit, while Runge-Kutta method is accurate for both low and high input soliton 

amplitude and for both early and late stages of the circuit. It is obvious that in terms 

of accuracy, Runge-Kutta method is a better option than Volterra series. However, we 

also notice that for each circuit input, Runge-Kutta method has to perform numerical 

routines for calculating circuit output, which results in high computation complex­

ity and difficulty in qualitative analysis especially for examining circuit response to 
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stochastic input. On the other hand, under the condition of weak nonlinearity, ac­

cording to Volterra series, Toda circuit can be characterized by transfer functions 

of the circuit. Circuit response to any input can then be calculated based on these 

transfer functions. For stochastic input, the statistical characteristics of the circuit 

output, including mean, variance, correlation and power spectral density (PSD) can 

be calculated as a function of these transfer functions and the characteristics of the 

circuit input. This offers convenience in analyzing the circuit effects to stochastic 

input compared to that of the Runge-Kutta method, as we will show in next section 

and in the detection of the soliton system in next chapter. 

In next section, we study the Toda circuit response to stochastic input and we 

employ the Volterra series to calculate circuit response at early stages and apply the 

Runge-Kutta method to evaluate the circuit response at both the early and the late 

stages. 

4.3 Response of Toda Circuit to Stochastic Input 

In this section, we consider the response of Toda circuit to stochastic inputs. Specifi­

cally, the inputs we considered are solitons accompanied by additive Gaussian white 

noise commonly encountered in a wireless communication environment. The input to 

the Toda circuit is written as x(t) = s(t) + n(t), where s(t) denotes a general soliton 

signal, i.e., s(t) may represent a soliton of any amplitude, or a composite soliton as 

described in Section 3.1. The noise n(t) is AWGN with zero mean and PSD No/2. 

4.3.1 Response at Early Stages of Circuit 

As shown in Section 4.1, the Volterra series representation is sufficiently accurate for 

the response of the early stages of the Toda circuit. Therefore, we can employ the 

Volterra series for the analysis of the response of the Toda circuit to stochastic inputs 
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at its early stages. We limit the analysis to stages 1 - 5. From Eqs. (4.1) and (4.2), 

the output of the third-order approximation Toda circuit can be expressed as: 

y(t) - t I: .. ·l: (8(71) + n(71))'" (8(7.) + n(7k))hk(t - 7,,'" t - 7k)d71 .. ' d7k 

8(t) + 71(t) (4.15) 

for which, using the notation of higher-order convolution in Eq. (4.2), the 3rd order 

approximation circuit response to s( t) and the output noise sequence can be expressed 

as 

8( t) s ® hI + S 0 s ® h2 + S 0 S 0 s ® h3 (4.16a) 

71(t) - n ® hI + [(n 0 n) + 2(s 0 n)] ® h2 + [(n 0 non) + 3(s 0 non + s 0 son)] ® h3 

(4.16b) 

where 0 is defined by Eq. (4.2). It has been demonstrated in Section 4.1.3 (see 

Figs. 4.2-4.6) that if the input 8(t) is a single soliton or a composite soliton, the 

third order approximation of the early-stage circuit output 8(t) is very close to the 

theoretical output which is the delayed version of the original input signal s(t). Here, 

we examine the statistical properties of the output noise by analyzing the first and 

second moments, the auto-correlation and the power spectral density of the output 

noise 71(t). 

The mean of the output noise can be directly obtained from the expression of the 

output in Eq. (4.16b). At any instant to, the mean Ilii(tO) of 71(t) is given by 

Jlit (to) E[n ® hI + (n 0 n + 28 0 n) ® h2 + (n 0 non + 38 0 non + 38 0 8 0 n) ® h3] 

Nr ;.00 Nr 100 roo -;f -00 h2(TI,TI) dTI+3.-;f _00.J_ooS(tO-TI)h3(TI,T2,T2)dTIdT2 (4.17) 

where the facts that the input noise n(t) is zero-mean and white such that E[n(t)] = a 
and E[n(TI)n(T2)] = ~6(TI - T2), and that convolution of a function with an impulse 
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results in the same function have been used. From Eq. (4.17), the mean fLit (to) of the 

output noise of the Toda circuit can be evaluated at any instant to given a particular 

input soliton. Consider the case of s(t) being a single soliton or a composite soliton, 

we define the signal-to-noise ratio as the ratio of the energy of the single or composite 

soliton to the noise power such that p = E / (No/2) where E can represent either Es 

or Ee. Under the condition p > 1dB, calculations from Eq. (4.17) show that for all 

s(t) of amplitude A such that 0.5 :s; A :s; 10, f-Lit(to) < 10-2 V to. This result indicates 

that f-Ln(tO) is very small compared to the amplitude of the output amplitude and we 

can make the approximation of f-Lii(tO) ~ o. 

On the other hand, the variance of ii(t) at time instance to can also be calculated 

from Eq. (4.16b) yielding: 

<T~(to) = E[ii.2(to)] = ~o (ii, + V, (to)) + ( ~o ) 2 (ii, + V,(to)) + (~o ) 3 ii3 (4.18) 

where ai, i = 1,2,3, are constants and l/i(to), i = 1,2, are functions of hI, h2' h3 

and s(t) (see Appendix A). Since l/i, i = 1,2 are time-dependent functions, we expect 

(J~(to) to be time-varying if the input contains both signal and noise. However, if the 

input consist of Gaussian noise n(t) only, then the output noise variance is a constant. 

The variance of the output signals at different time instants to for various input signals 

are plotted in Fig. 4.8. Here, we plotted the variance of the outputs of the first stage 

(n = 1) for which the input is ..c(t) = s(t) + n(t) with s(t) respectively being 0, single 

soliton of amplitude 4, single soliton of amplitude 5, and composite soliton formed 

from the two single solitons. The PSD of the input noise is chosen to be 1, i.e., !:ft = 1. 

It can be observed that, as expected from Eq. (4.18), the variance of output noise 

is a constant if the input is only Gaussian noise. For the cases when soliton signals 

are mixed with noise, the initial variances of the output noise are marginally higher, 

but quickly settle to the constant value of the variance of the output for which the 

input is noise only. As another example, Fig. 4.9 shows the variance of the first-stage 
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Figure 4.8: Variance of output signal, VOp2 = [4 5] 

outputs of the circuit for which the input is .r(t) = 8(t) + n(t) with 8(t) respectively 

being 0, single solitons of amplitude 1 and 10, and a composite soliton formed from 

the two single solitons. It is clear that for solitons with different amplitudes, similar 

results as shown in Fig. 4.8 can be observed. 

Noise only input: In Section 4.1, we have illustrated that the short Toda circuit 

exhibits weak nonlinearity. Thus, we would expect the responses of the early stages 

of the Toda circuit to be not too different from those for linear circuits. Hence, if the 

input to a short Toda circuit is Gaussian noise only, we would expect the output to be 

almost Gaussian. Fig. 4.10 shows the distribution ofthe output ii(to) calculated from 

Eq. (4.16b) at to = 6.033 for various zero-mean Gaussian noise n(t) with '* = 1,3,5. 

The number of noise samples is chosen to be 1e4. We also plotted the theoreti­

cal values of the Gaussian distribution with mean /1n(tO) and variance O"~(to) from 

Eqs. (4.17) and (4.18) with the various values of '* again evaluated at to = 6.033. 

From Fig. 4.10, the mean-square difference between the actual distribution and the 
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Figure 4.9: Variance of output signal, Vo;J2 = [1 10] 

Input Numerical Numerical Theoretical Theoretical 
PSD output mean output variance Gaussian mean Gaussian variance 

1 0.0002 0.675 0 0.68 
3 0.0008 1.993 0 2.06 
5 -0.0004 3.5180 0 3.52 

Table 4.1: Mean and variance of output noise for input noise only 

theoretical Gaussian curve for each of the values of ~ is "E2 < 0.001 showing that each 

of the distribution can be accurately approximated by a Gaussian distribution. We 

also note that the mean value of the output noise distribution is approximately zero, 

thus confirming our previous observation. The following table shows the comparison 

of the measured means and variances with the theoretical Gaussian approximation 

for different input PSD~. It can be observed that the means and variances are 

indeed very close. 

We now examine the autocorrelation of the output noise when the input is white 
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Figure 4.10: PDF output noise, input noise only 

Gaussian noise. From the expression of the output noise in Eq. (4.16b), the autocor­

relation function of the output noise can be written as 

where R2(tl' t 2), i = 1,2,3, are functions involving the convolutions of hI, h2' h3 

and 8(t) (see Appendix A). Since R 2 , i = 1,2,3 are non-stationary functions, we 

expect Tfifi(t l , t 2) to be non-stationary. However, in a practical Toda circuit, the first 

term in Eq. (4.19) is dominant rendering the auto-correlation function approximately 

stationary. Fig. 4.11 shows the autocorrelation function of the output noise for s = 0 

and it can be observed that along the line tl - t2 = K for K being a constant, the 

autocorrelation function is essentially constant. Thus, if we take the Fourier transform 

of the autocorrelation function along the line tl = K we obtain the spectral power 

density of the output noise. Fig. 4.12 depicts the spectral power density function of 

62 



Ph.D. Thesis - Rong Chai 

08 

06 

0.4 

0.2 

o 

-0.2 
200 

McMaster - Electrical & Computer Engineering 

Noise Only, Output Correlation 

200 

o 0 

Figure 4.11: Correlation of output noise, input noise only 

the output noise and it can be observed that within the normalized bandwidth, the 

noise is essentially white. 

Signal plus noise input: We now examine the output of the circuit when the input 

is s(t) + n(t) where s(t) is a single soliton. Solitons of various amplitudes and noise 

of different power have been tested as input. The general properties of the output 

can be exemplified by the following case in which a single soliton of amplitude 4 

accompanied by additive white Gaussian noise of PSD ~ = 1,3,5 is chosen to be the 

input. The output of the first stage (N = 1) of the Toda circuit at to chosen to be the 

instant corresponding to the peak of s(t) is examined. We calculated to = 6.033 by 

substituting n = N = 1 in Eq. (3.3). Choosing the number of noise samples being 1e4, 

the histograms of the corresponding outputs at to is plotted in Fig. 4.13 juxtaposed 

with a Gaussian distribution with mean JJ = s(to) = 4 and variances calculated from 

Eq. (4.18) with the respective input PSD. It can be observed that the distribution 

of the output noise ii(to) is very close to a Gaussian distribution. The mean-square 
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Figure 4.12: Power spectral density, input noise only 

Input Numerical Numerical Theoretical Theoretical 
PSD output mean output variance Gaussian mean Gaussian variance 

1 3.982 0.698 4 0.708 
3 3.999 2.098 4 2.104 
5 3.989 3.552 4 3.540 

Table 4.2: Mean and variance of output noise for input soliton and noise 

difference between each ofthe histogram and its Gaussian approximation is c2 < 0.003 

which is negligibly small. Table 2 shows the comparison of the measured means and 

variances with the theoretical Gaussian approximation for different input noise PSD. 

Again, it can be observed that the means and variances are indeed very close. 

The autocorrelation function Tfifi(t1, t 2) of the output noise ii(t) with input to the 

circuit being s(t) + n(t) is shown in Fig. 4.14. It is again observed that along the 

line tl - t2 = J( for J( being a constant, the autocorrelation function is almost 

constant, making the process close to stationary. Taking the Fourier transform of the 
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Figure 4.13: PDF output noise, input signal and noise 

autocorrelation function along the line tl = K we obtain the spectral power density 

of the output noise and this is shown in Fig. 4.15. Even though there are small 

ripples within the passband of the noise, the power spectral density function of the 

output noise can still be regarded as essentially fiat, indicating that the output noise 

is reasonably white. 

Similar properties are exhibited by the output noise for the input signal s(t) being 

chosen from single solitons of different amplitudes or from different composite solitons. 

4.3.2 Response at Later Stages of the Circuit 

In this subsection, the response of the later stages of the Toda circuit will be examined. 

For large n, the long circuit exhibits strong nonlinearity. As pointed out in Section 4.2, 

the Runge-Kutta method is suitable for the evaluation of the responses under such 

conditions. Again, we study the effects of various inputs including white Gaussian 

noise only, single soliton and noise, and composite soliton and noise. 
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Figure 4.15: Power spectral density, input signal and noise 
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Noise-only input: The fact that solitons can be generated from rectangular inputs 

indicates the ability of Toda circuit, or more generally, soliton supporting systems, 

transforming a rectangular pulse input into solitons [9J. As a matter of fact, the 

rectangular pulse is not the only input that can be applied to generate solitons. In 

general, we found that under certain conditions, an irregular input such as a noise 

sequence, can also give rise to a soliton. Finding the exact nature of these conditions 

proved to be difficult. In this thesis, we only demonstrate some special cases such 

that the DC component (time average) of the input signal is a) very close to zero, b) 

negative, and c) positive. 

a) DC component approximately zero: Here, we study the effect of a burst of 

random pulses which have an overall mean approximately equal to zero. We vary the 

variance of these random pulses and observe the output of the Toda circuit at the 

relatively early stages and also at the later stages. Fig. 4.16 shows an example of a 

burst of random pulses with mean fJ = 0, PSD !ft = .01. We can observe that the 

output at the various stages are decaying oscillation. At the earlier stages, the initial 

transient is much larger in amplitude while the subsequent oscillations are much 

smaller in amplitude. However, at the later stages, the initial transient decreases 

in amplitude in comparison to those at the earlier stages whereas the subsequent 

oscillations increase in amplitude. Fig. 4.17 shows input bursts of random pulses with 

mean fJ = 0, PSD !ft = 1. Comparing Fig. 4.16 and Fig. 4.17, we can observe that, the 

outputs of the Toda circuit to these different random inputs have similar structures, 

a sequence of oscillations preceded by a transient, the larger is the input variance, the 

larger are the oscillations. Other bursts of random pulses of approximately zero DC 

components have been used for input to the circuit and responses of similar structures 

are observed. 

b) Negative DC component: Now, we test the output responses at different stages 

of the Toda circuit to an input of random pulses with overall mean being negative. 
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Figure 4.16: Circuit response to noise-only input, f.1 = 0, !!f = 0.01 
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Figure 4.17: Circuit response to noise-only input, f.1 = 0, !!f = 1 
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Figure 4.18: Circuit response to noise-only input, JL = -2, ~ = 0.01 

Fig. 4.18 shows the response of the circuit at different stages for the input burst of 

random pulses with overall mean JL = -2 and PSD ~ = .01. Here, we observe 

that at the earlier stages, the response invariably starts with a negative transient 

followed by decaying oscillations. At later stages, the amplitude of the negative 

transient decreases substantially whereas the amplitudes of the oscillations increase 

significantly in comparison to those at the earlier stages. Fig. 4.19 shows the bursts 

of random pulses of negative overall mean JL = -2 and PSD ~ = 1. It can be 

seen that similar transient and oscillations occurring at earlier and later stages of the 

circuit are observed as in the previous case in Fig. 4.18. The larger is the variance of 

the random pulses, the higher is the amplitudes of the oscillations. Other bursts of 

random pulses of different overall mean and variances have also been used as input, 

and similar observations obtained. 

c) Positive DC component: Here, we examine the output responses at different 

stages of the Toda circuit to an input of random pulses with overall mean being 
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Figure 4.19: Circuit response to noise-only input, J.1 = -2, !ft = 1 

positive. Fig. 4.20 shows the response of the circuit at different stages for the input 

burst ofrandom pulses with overall mean J.1 = 2 and PSD !ft = .01. It can be observed 

in this case, that the output is not only comprised of transient and oscillations, 

but also there is a soliton-like pulse preceding them. Unlike the transient and the 

oscillations as in previous two cases, this soliton-like response propagates through the 

various stages of the circuit and, in the stationary state, does not subside nor change 

in shape. Fig. 4.21 shows circuit response to the input random pulse with mean J.1 = 2 

and PSD !ft = 1. It can be observed that, similar to Fig. 4.20, there is an additional 

soliton-like pulse preceding the transient and the oscillations. In both Figs. 4.20 

and. 4.21, the soliton-like pulse at the early stages is very similar to an interacting 

soliton which will then separate into its constituent solitons at the later stages. It can 

be shown that depending on the input random pulses, the soliton-like pulse in the 

response of the early stages may also be a single soliton which will then propagate 

without dispersion along the circuit. These additional soliton-like pulses in the circuit 
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Figure 4.20: Circuit response to noise-only input, JL = 2, ~ = 0.01 

response is an important observation and is entirely different from the previous two 

cases of a) and b). Random pulses of different positive mean and different variance 

have also been used as input for the test and similar observations persist. 

The reason why the DC component of the input signal affects the amplitude of 

output signal can be explained by the property of Toda circuit. Let ~ (t) denote the 

voltage at the ith stage of the Toda circuit. It has been proved [23J that 

100 

~(t)dt = Constant ( 4.20) 

Eq. (4.20) indicates the DC component is conserved in the Toda circuit output. As 

observed in the examples here, all outputs consist of oscillations of which the DC 

component is very small. Since the DC component of a soliton is positive, therefore, 

to generate an output consisting of a soliton necessitates an input of positive DC 

component. Hence, outputs containing solitons are only observed if the input signals 

are of positive mean values. For input signals of negative mean values, the DC 
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Figure 4.21: Circuit response to noise-only input, j1 = 2, ~ = 1 

conservation of Eq. (4.20) also holds. Therefore, the outputs of the Toda circuit for 

inputs having negative mean values will also have a negative DC component. This 

can be observed by the large negative part of the output just before the start of the 

oscillations. However, since the Toda circuit only supports positive-valued solitons of 

the form as shown in Eq. (3.3), this negative part is not supported by the circuit and 

will gradually disperse as the output is propagated along the circuit. This is evident 

in comparing the negative parts of the outputs at the different stages of the circuit 

in Figs. 4.18 and 4.19 in which the negative part gradually stretches out to be longer 

and longer in duration. 

Input consisting of soliton and random noise: Since the amplitude of a soliton is 

positive, under higher signal-to-noise ratio (SNR), the input mixture of soliton and 

zero-mean Gaussian noise will have positive mean. Thus, the input is similar to that 

of Case c) above. Therefore, the output response of the Toda circuit to such an input 

will also be similar to those observed in Case c). 
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Figure 4.22: Circuit response to single soliton with noise input, SNR= 15dB 

a) Single soliton with noise: Figs. 4.22 and 4.23 illustrate the various responses at 

different stages of the circuit for an input being a single soliton mixed with zero-mean 

Gaussian noise. The input soliton in both cases is of amplitude 4. The input SNR are 

respectively 15dB and 5dB. It can be observed that in each case, a soliton-like pulse 

exists at the output followed by transients and oscillations. We also observe that in 

Fig. 4.22, the soliton-like pulse at the output is no longer the same as the input soliton, 

having amplitude of 4.75 instead. For SNR higher than 20dB, it is observed that the 

output soliton remains the same as the input soliton and the effect of the Gaussian 

noise is reduced to small oscillations following the soliton. Other experiments have 

been carried out with different mixtures of single solitons and zero-mean Gaussian 

noise and similar observations are obtained. 

b) Composite soliton with noise: Figs. 4.24 and 4.25 show the various responses 

at different stages of the circuit for an input being a composite soliton mixed with 

zero-mean Gaussian noise. The input composite soliton in both cases is made up of 
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Figure 4.23: Circuit response to single soliton with noise input, SNR= 5dB 

constituent solitons having amplitudes 4 and 5. The input SNR are respectively 15dB 

and 5dB. It can be observed that in each case, the output consists of a composite 

soliton which, after a number circuit stages, separates into the constituent solitons. 

However, as shown in Fig. 4.25 , under lower SNR, the constituent solitons at the 

output are not necessarily the same as those making up the input composite soliton. 

Indeed, it can also be observed that an additional small soliton-like pulse also exists 

at the outputs of both Figs. 4.24 and 4.25 . Due to the much lower amplitude, this 

additional soliton propagates much more slowly than the two other solitons. Inputs 

containing other composite solitons mixed with zero-mean Gaussian noise have also 

been used and similar output responses have been obtained. 

The result that additive input noise sequence may corrupt soliton(s) into soliton(s) 

of different parameters together with some oscillations is indeed a general one. This 

result is parallel to the propagation of an exact soliton in impure nonlinear lattices [29, 

74 



Ph.D. Thesis - Rong Chai McMaster - Electrical & Computer Engineering 

SNR=15dB Stage=10 
10 6 

5 

~~ :J 0 

-5 -2 
0 10 20 0 50 100 150 

Stage=200 Stage=400 
6 6 

4 4 

2 2 

0 o ,----J LP~~~~ 

-2 -2 
150 200 250 300 350 400 450 500 

Time Time 

Figure 4.24: Circuit response to composite soliton with noise input, SNR= 15dB 
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Figure 4.25: Circuit response to composite soliton with noise input, SNR= 5dB 
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35, 57] indicating the inherent similarity between the circuit perturbation and initial 

input perturbation. 

4.4 Summary 

In this chapter, we examine the properties of the Toda circuit and focus on the 

circuit response to stochastic input. We show that the Toda circuit response at early 

stage exhibits weak nonlinearity and can be analyzed by Volterra series. For circuit 

response at late stags, the approximation error of the Volterra series increases due to 

the increase of the nonlinearity of the circuit. To seek for better accuracy, we apply 

the Runge-Kutta method to study the circuit response at both early and late stages. 

Applying Volterra series, the Toda circuit response to stochastic input, including the 

Gaussian noise and the mixture of the noise and soliton signal is studied. The mean, 

variance, correlation and PSD of the circuit output are calculated. Applying the 

Runge-Kutta method, we examine the Toda circuit response to noise input only and 

to noise corrupted soliton signal. We show that for noise only input, the mean of the 

noise plays an important role in generating solitons. The noise with positive mean 

may excite soliton(s), while noise with zero or negative mean may only transform into 

oscillations. For input being the combination of both soliton and noise, we show that 

the noise may distort input soliton to solitons with other parameters. 
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Chapter 5 

Application of Soliton in Data 

Communication 

In previous chapters, we examined the properties of Toda solitons and Toda circuits. 

In this chapter, we apply these properties in data transmission and propose a data 

communication system in which Toda solitons are employed as information carriers 

[11]. The application of solitons in data communications was first proposed in [50] 

and [51] in which experimental investigations on the multiplexing of a pair of soliton 

trains that were either amplitude or phase modulated were reported. It was suggested 

that the multiplexing effected by the transmission of a composite soliton could be used 

for secure communications. A more detailed soliton multiplexing system model was 

presented and studied in [49] with particular consideration given to applications in 

a wireless channel environment and to the system detection and estimation perfor­

mance under an additive Gaussian channel. The Cramer-Rao bound for single soliton 

detection was derived and that for the composite soliton was evaluated numerically. 

In this thesis, we propose a soliton communication system and examine the use 

of solitons for both the single-user and multi-user cases. For the single-user case, we 

employ, at least in concept, the Toda circuit as a signal generator and a modulator at 
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the transmitter, and focus our attention on an On-Off Keying (OOK) scheme which, 

as a special case of the general soliton amplitude modulation schemes [48], yields the 

best detection performance. For the multi-user case, we employ, again in concept, the 

Toda circuit as a signal generator, a multiplexer and a modulator at the transmitter, 

and use the composite soliton formed by the nonlinear interaction of constituent 

solitons as a multiplexed signal. At the receiver, a Toda circuit is also employed as a 

de-modulator. As solitons with different amplitudes represent information of different 

users, we call this scheme Soliton Amplitude Division Multiplexing (SADM). In both 

the single-user and multi-user soliton systems proposed here, we employ the OOK 

scheme. The OOK signals are transmitted through a linear communication channel 

corrupted by additive white Gaussian noise (AWGN) and are detected at the receiver. 

Besides wireless communications, the proposed soliton system can also find particular 

applications in wireless optical and optical fibre systems. In a wireless optical system, 

wide field-of-view point-to-point links in short-range can be assumed to be loss-free 

and the associated noise can be modelled as AWGN [24]. OOK scheme is commonly 

used in the transmission of optical carriers through these channels. In optical fibre 

system [3], a dispersion compensated and low-loss fibre can also be modelled as an 

ideal linear channel with the only noise source (modelled as AWGN) being the optical 

receiver. Both OOK and BPSK modulation-detection schemes can be employed [25] 

in the optical fiber system. While BPSK performs better than OaK, its complexity 

is much higher since coherent homodyne detection must be applied for the BPSK 

scheme. In this thesis, in conjunction with the properties of single and composite 

solitons studied in Chapter 3 and Chapter 4, we examine the bandwidth efficiency of 

the proposed soliton communication system in comparison with other multiplexing 

systems. Two detection schemes for the system are proposed and, applying some 

of the properties of stochastic signals to Toda circuits, the detection performance of 

soliton system is analyzed and evaluated via computer simulations. 
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5.1 Soliton Data Transmission System 

In this section, we propose a data transmission system which employs the soliton as 

a carrier of information. For a single-user system, an on-off keying system using a 

single soliton is employed. For a two-user system, a multiplexed scheme using both 

single and composite solitons is proposed. This multiplexed scheme can be extended 

conceptually for 111 > 2 users. 

5.1.1 Transmitted Signals 

According to the discussion in Chapter 3, at the nth stage of the Toda circuit, the 

voltage of a Toda soliton can be described by 

(5.1) 

where Va is a constant bias voltage and chosen to be 10 Volts, T = t/ J LCo is the 

normalized time variable, j3 is the parameter governing the behavior of the soliton, 

and ¢> is the initial phase shift of the soliton. Eq. (5.1) represents a positive pulse. 

Its shape and amplitude do not change as the soliton propagates along the Toda 

circuit, which was observed in Chapter 3. Therefore, different solitons with different 

parameters (3 can be used to represent different signal levels in a pulse amplitude 

modulated (PAM) system. In this thesis, we consider binary signalling. Since the 

binary signal is distinguished by the relative amplitudes of the two solitons, it can be 

easily seen from a signal space viewpoint [43] that the larger is the distance between 

the two amplitudes, the better will be the detection performance in noise. Since 

negative amplitudes are not admissible for solitons, in this thesis, we propose the 

use of the on-off keying such that the maximum distance between the two soliton 

amplitudes is achieved. 

Single User Transmission: For the on-off keying here, the binary message of a 

single user is represented such that a soliton s with parameter (3 is assigned if user 
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information b = 1, and zero (no soliton) is assigned when b = 0, i.e., the transmitted 

signal is represented by 

° for 

s(t) for 

b=O 

b=1 

(5.2a) 

(5.2b) 

where b is the transmitted bit. At the transmitter, a Toda soliton of a prescribed 

amplitude (and therefore a prescribed value of f3 = (31) is stored, i.e., for simplicity 

of implementation, such a soliton does not have to be generated by a Toda cirucit, 

rather a ready-made soliton waveform is kept ready to be transmitted when needed. 

For a sequence of 1 and 0, a sequence of solitons of this particular parameter and 

zeros representing 1 and ° of the message respectively are selected to be transmitted 

through an AWGN channel. At the receiver, the Toda circuit is employed to restore 

the transmitted sequence of solitons which will then be detected by a maximum 

likelihood (ML) detector or a threshold detector. (In optical communication systems, 

electrical-to-optical (EO) and optical-to-electrical (OE) converters are employed for 

processing information carrying signals [25]. In employing the Toda soliton scheme 

proposed here in optical communications, the Toda circuit at the receiver is applied 

after the OE converter. In this thesis, both the EO and OE converters employed in 

optical system are assumed to be ideal so that the system performance will not be 

affected.) 

Multiplexed Signal Transmission: Messages from several users represented by se­

quences of solitons of different parameters of course, can be time multiplexed, giving 

rise to the SADM system. In a general binary SADM system shared by M users 

[48], the signal of the mth user has two levels represented by two solitons of specified 

values of f3 such that 

Pm = { 
f3ml if bm = 1 

f3rno if bm = 0, 
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where bm is the binary data ofthe mth user and [,em 1 , ,emOl, m = 1, ... ,1\1 are suitably 

chosen values for the mth user parameter Pm to result in non-overlapping ranges of 

amplitudes for the two solitons. In the case of on-off keying system, 13mo = 0, \:j m, i.e., 

no soliton is sent if bm = 0. Although M can be chosen as any number, in this paper, 

for simplicity, we will mainly discuss the case for M = 2. Most of the properties of two­

user multiplexing can be extended to the case of 1\1 users. The transmission of these 

multiplexed user solitons through a linear communication channel can be effected by 

using the composite soliton formed by the merging of the individual solitons which 

represent the different user signals. Consider a two user system employing two soliton 

binary on-off keying signalling, for User m, m = 1,2, soliton 8 m with parameter 13m 

is assigned when bm = 1, while zero (no soliton) is assigned when bm = O. If the 

transmitted bits from the two users are time multiplexed, then a sequence of bit pairs 

{b1 b2 } is formed. These bit pairs can take on values of {00, 01, 10, 11} in which 

the first and the second digits of each word are from the first and second multiplexed 

users respectively. In the On-Off SADM system, these bit pairs can be represented 

such that for the sequence '00', no soliton is transmitted; for '01', a ° followed by 82; 

for '10', 81 followed by a 0; and for '11', instead oftransmitting the linear combination 

of 81 and S2, we propose to transmit the composite soliton of which Sl and S2 are the 

constituent solitons, i.e., to represent {11}, we transmit the signal Sc(T), which can 

be expressed as: 

(5.3) 

where sa( T, n, cP1, cP2) is the general form of the interacting soliton as given in Eq. (3.4). 

It has been shown in Chapter 3 that the composite soliton is symmetric at the instant 

TO = <p1+nS~~h-1 (31. Assuming 131 > 132, it has also been shown that for a fixed P2, a 

threshold, 13th, of 131 exists such that for PI < Pth, the composite soliton will have twin 

peaks on either side of the symmetric point in its time characteristics. Since Sc (T) 
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is symmetric, the two peaks are equal in amplitude. Strictly, the duration of sc( T) 

is infinite, thus we measure its essential duration using the time interval containing 

99% of the energy of the pulse, 

(5.4) 

where Ec = J~oo s~ (T )dT is the total energy of the composite soilton. These integrals 

can be evaluated numerically as shown in Chapter 3. 

We designate these signals representing {OO, 01, 10, ll} by {xo(t), Xl(t), X2(t), X3(t)}, 

l.e., 

xo(t) 0 for b1b2 = [0 OJ (5.5a) 

Xl(t) [0 S2(t)J for b1b2 = [0 1J (5.5b) 

X2(t) [Sl(t) OJ for b1b2 = [1 OJ (5.5c) 

X3(t) sc(t) for b1b2 = [1 1J (5.5d) 

where b1b2 denotes the transmitted bit pair with b1 and b2 being the bits from User 1 

and User 2 respectively. For our two-user multiplexed system, the transmitter will 

store these four different waveforms and select the corresponding one to be transmit-

ted. 

5.1.2 Detection of On-Off Soliton Signals 

For both single user and multiple user soliton system, we apply the amplitude thresh­

old detection and the maximum likelihood detection methods on the signal that is 

transmitted. The two detection methods and the corresponding received signal align­

ment are discussed in this section and the system detection performance is studied in 

Sec. 5.3 and 5.4. 

82 



Ph.D. Thesis - Rong Chai McMaster - Electrical & Computer Engineering 

Amplitude Threshold Detection 

The fact that a single information carrying soliton is characterized by its peak am­

plitude indicates the possibility of distinguishing different solitons according to their 

amplitudes. Thus, a receiver scheme can be derived by passing the received soliton 

signal and noise through a Toda circuit and detecting the peaks of the output solitons 

using a threshold decision. This is designated as amplitude threshold (AT) detection. 

Since the decision is made based on the peak value of the transmitted soliton signal, 

the timing of the detection is very important. 

AT Detection for a Single-user System: For a single user, since the binary digits 

are represented by a soliton of parameter {3 or no soliton, we sample the signal at the 

output of the Toda circuit at the instant when the transmitted soliton is at its peak. 

Assuming that the transmitter and the receiver are synchronized such that the initial 

phase shift ¢ of the received soliton is known, from Eq. (5.1), the peak of the soliton 

at the output of the N -staged receiver Toda circuit occurs at TO = (N sinh -1 (3 + ¢) / {3. 

Thus, the sampling instant is at to = ToJ LCo. The sample value of the received signal 

and noise is then compared with a threshold Ath , the choice of which will be discussed 

later in Section 5.3. 

AT Detection of Multiplexed Soliton System: For a two-user multiplexed signal, 

there are four possible transmitted waveforms: one with no soliton, two with one soli­

ton each (i.e., each waveform will have one peak) and one represented by a composite 

soliton. For the first three cases, AT detection is similar to that of detecting a single 

soliton. For the case when the composite soliton is transmitted, theoretically it can 

be received by a section of the cascaded Toda circuit resulting in the composite soli­

ton being completely separated into its constituent parts which can then be detected 

separately by threshold detection as two single solitons. However, as we have seen 

in Chapter 3, the proper separation of a composite soliton depends on the relative 

amplitudes of the constituent solitons and may take hundreds of stages of the Toda 
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circuit. This causes unnecessary delay and complicates the implementation of the 

receiver. Hence we propose the following AT detection procedure for the composite 

soliton: it has been shown in Chapter 3 that twin peaks of equal amplitude on either 

side of the point of symmetry in a composite soliton will result if the constituent 

solitons have comparable parameters. Since AT detection of soliton signals are based 

on peak signal values, we will focus on the use of such composite solitons having twin 

peaks for representing a multiplexed bit pair of {ll}. Thus, for receiving the two-user 

multiplexed signals, we will use an N -staged Toda circuit where N is stipulated to 

be a small number (say, < 5) which will cause very little change in the shape of the 

composite soliton at the output of the circuit compared to the received twin-peaked 

composite soiliton at the input. We can then apply a threshold at the instants of the 

twin peaks to distinguish the different signals transmitted. For AT detection at the 

twin peak instants, we need to align the transmitted pulses as follows: 

Signal Alignment: For the four possible signals, we can align them such that at the 

output of the receiving N-staged Toda circuit, the peak of the soliton in {1O} occurs 

at the same instant as the first. whereas the peak of the soliton in {Ol} occurs at the 

same instant as the second, of the twin peaks of the composite soliton representing 

{ll}. The alignment of the waveforms can be realized by properly choosing their 

initial phase shifts at the transmitter. Let the parameters of two single solitons be 

respective fJl and fJ2 with fJl > fJ2. Then, we can form the composite soliton as 

indicated in Eq. (5.3). The 99%-energy duration of the composite soliton can be 

calculated numerically, and denoted by Tc as in Eq. (5.4). Assuming the transmission 

time of signals starts from 0, then, the transmitted composite soliton lies within the 

duration of a to Tc and the centre of this soliton is at to = Tc/2. Therefore, to 

synthesize a composite soliton, we have to choose the initial phase shift parameters 

such that cPc1 = f31tO and cPc2 = f32tO' Now, we need to find out the initial phase shifts of 

the two single solitons. To do that, for the given cPc1 and cPc2, we first calculate the time 
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instants of the twin peaks of the composite soliton at the output of the N -staged Toda 

circuit by searching the numerical values of Eq. (5.3). Let these two time instants be 

denoted by i l and i2 respectively. Then, the peak instants of the two single solitons 

81 and 82 should also be i l and i2 respectively at the output of the N-staged receiving 

Toda circuit. If we let the initial phase shifts of 81 and 82 at the transmitter be cPsl and 

cPs2, respectively, then, we have cPsl = f3li l - Nsinh-l,dl and cPs2 = f32i2 - Nsinh- l f32. 

In this thesis, this type of soliton alignment is designated SADM1, in which all the 

signals representing {OO}, {01}, {10}, and {11} have their peaks properly aligned to 

be AT detected at the output of the N -stage Toda circuit. The two sets of ideally 

SADM1-aligned signals at the transmitter and at the output of the N-staged receiving 

Toda circuit are denoted respectively by {Xli(i)} and {xh(i)}, i = 0, ... ,3. Fig. 5.1 

shows an example of a two-user soliton multiplexing system, in which the amplitudes 

of two single solitons are chosen to be respectively Vof3i = 5 and Vo,di = 4 and the 

receiving Toda circuit is chosen to have N = 1 stage. In Fig. 5.1, we show both 

{.rh(t)} and {.7:h (t)}, i = 1,··· ,3, the signals representing 01, 10 and 11 at the 

transmitter and at the receiver output. The duration of the composite soliton is 

calculated to be Tc = 9.7707 so that the initial phase shift of the two constituent 

solitons are respectively cPc1 = 3.4545 and cPc2 = 3.0898. The detection instants of 

the two peaks of the output signals are i l = 3.01 and i2 = 8.63 respectively and the 

initial phase shifts of the two single solitons are calculated to be cPsl = l.4699 and 

cPs2 = 4.8616. 

With additive white Gaussian noise (AWGN) during transmission, the output of the 

short (N ::; 5) receiving Toda circuit will no longer be the ideally SADM1-aligned 

signal, rather it can be approximated (see Chapter 4) by Xli (i) + nh(i), i = 0, ... ,3, 

where nh(i) is the noise at the output ofthe receiver circuit when xh(i) is transmitted. 

Our AT detector will make the decision of the transmitted signal by applying a 

threshold to the measured received signal at i l and i 2 . Analysis of the performance 

85 



Ph.D. Thesis - Rang Chai McMaster - Electrical & Computer Engineering 

of the AT detector will be given in Section 5.4. 
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Figure 5.1: Soliton multiplexing system model 

Maximum Likelihood Detection 

While making use of the peak amplitudes of the solitons yields the AT detection, we 

can arrive at a detection scheme using the maximum likelihood (ML) principle [56] 

by examining the output waveform of the receiver Toda circuit and comparing it with 

the ideal transmitted signals. Unlike the amplitude detection scheme, peak alignment 

at the receiver output is not necessary for ML detection in a multiple user soliton 

system. However, for performing ML detection, while we should limit our detection 

period to the essential duration of the composite soliton of x3(f), we should make the 

distinction between xl(f) and x2(f) representing {1O} and {Ol} respectively as large as 
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possible while assuring that the 99% energy durations of both are within the essential 

duration of the composite soliton. Since the detection period is limited to the range 

of [0, Te], we will then align X1(t) such that the essential duration of the single soliton 

starts at 0, whereas for X2(t), the essential duration of the single soliton finishes at 

Te. This alignment of the soliton pulses at the transmitter is referred to as SADM2 

and is denoted by {X2i(t)}. With AWGN during transmission, the output of the short 

(N ::; 5) receiving Toda circuit will no longer be the ideally SADM2-aligned signal, 

rather it can be approximated by X2z(t) +n2z(t), i = 0, ... ,3, where n2i(t) is the noise 

at the output of the receiver circuit when X2i(t) is transmitted. The received signal 

and noise is then compared with the expected signal pulse shapes, i.e., {X2i (t)}, at 

the output of the Toda circuit and ML detection is applied by choosing the expected 

signal shape closest to the noisy received signal. An example of the SADM2 signal 

alignment system with the amplitude of two single solitons being 5 and 4 respectively 

is shown in Fig. 5.2. The 99%-energy durations of 81, 82 calculated from 3.14/,81 and 

3.14/,82 are given by 4.4406, 4.9648, respectively. The essential time duration of 8e 

can be calculated from Eq. (5.4) and is given by 9.7707. Since 8e is in the duration of 

[0, 9. 7707J, the initial phase shifts of the two constituent solitons are the same as those 

of SADM1. For SADM2 signal alignment, we allocate 81 in the duration of [0, 4.4406J. 

Since the 99%-energy duration of 82 is to finish at the instant 9.7707, we assign 82 

in the duration [4.8059,9.7707J. Thus, at the transmitter, the initial phase shifts of 

the two single solitons 81 and 82 can be calculated as <Ps1 = 4.4406,81/2 = 1.57 and 

<Ps2 = (9.7707 + 4.8059),82/2 = 4.6095 respectively. Fig. 5.2 shows the three SADM2-

aligned nonzero waveforms at the transmitter and at the output of the receiver Toda 

circuit (N = 1). For comparison, we also show the corresponding three nonzero 

waveforms which are SADM1-aligned at the output of the Toda circuit. It can be 

seen from Fig. 5.2 that the differences in pulse positions between the transmitted 

signals and the signal at the output of the received Toda circuit are relatively small. 
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SADM 2, transmitted signals 

SADM 2, received signals 

SADM 1, received signals 

- - -V 132=5 o 1 

Figure 5.2: Transmitted and received signals in SADM 

In this thesis, we apply AT detection to the peak (SADM1) aligned signals in 

noise. We also apply ML detection to both SADM1- and SADM2-aligned signals 

so that the results of two detection methods can be compared. For both detection 

methods, our receiver is equipped with an N-stage Toda circuit. 

5.2 Efficiency of Soliton Data Transmission Sys-

terns 

In Chapter 3, we have shown that the Time-bandwidth (T-B) product of a single 

soliton is a constant close to minimum value of 0.5, and that the T-B product of a 

composite soliton can be made close to the minimum value too if the parameters of 

constituent solitons are properly chosen. We now examine the T-B product of the 

transmission and mUltiplexing schemes of SADMl and SADM2 proposed above and 
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compare it with well-established FDM system. 

For an FDM system, Nyquist pulses are commonly used for transmission [22J. 

The spectral characteristics of the Nyquist pulse has a bandwidth of (1 + a)B where 

a is the roll-off factor, and B = lin with n being the bit period. Apart from 

the bandwidth of the pulse, the FDM signals also require a guard band between the 

adjacent pulse spectra. This guard band is usually taken as 20% of B. Therefore, 

for an FDM system having N multiplexed user signals, the total bandwidth required 

is given by W = (1 + a + .2)BN. For two users, an FDM system using a Nyquist 

pulse with a = .2 has a T-B product of nW = 2.8 while that with a = .5 has a T-B 

product of nW = 3.4. 

For the two-user SADM system, the time-multiplexed signals are {OO, 01, 10, 11} 

which are represented by combinations of zero and single solitons, or by a composite 

soliton which are aligned in two forms: SADM1 and SADM2 as described in the 

previous section. If we denote the essential durations and essential bandwidths of the 

single and composite solitons 81,82, Sc by TEl, T E2 , TEe and F E1 , F E2 , FEe respectively, 

then the required T-B product for either of the SADM systems is the product of 

the maximum duration and the maximum bandwidth required by four representing 

signals, i.e., 

(5.6) 

We carry out the calculation of the necessary SADM T-B product of Eq. (5.6) as 

follow: It has been shown in Chapter 3 that the essential duration and the essential 

bandwidth of a single soliton 8(T) = Vo!32sech2(!3T) are given by TE = 3J4 and FE = 

0.3931;3, respectively, and the T Ec and FEe of a composite soliton whose constituents 

are 81 and 82 can be also readily evaluated numerically (Section 3.3). To study the 

variation of IIDB in Eq. (5.6), we first fix the value ofthe controlling parameter {31 for 

81 so that Vo!3i is a constant and that the corresponding TEl and FE! can be calculated 

right away. We then vary the amplitude Vo!3i of the other single soliton 82' For the 
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fixed value of Vo,B; and for each value of Vo/Jj, we calculate the corresponding TE2 

and FE2 of 52 as well as numerically evaluating the corresponding essential duration 

and bandwidth of the composite soliton 5 c of which 51 and 52 are the constituents. 

Selecting the largest product so obtained as in Eq. (5.6) yields the corresponding 

necessary SADM T-B product. 

Fig. 5.3 shows the variation of TIDB for values of 110,8; = 1,2,3,4,5. It can be 

observed that for any choice of Vo,B;, there are ample choices of Vo,B~ which will 

result in a T-B product substantially less than either of the values (2.8 or 3.4) for 

the FDM system. For example, for Vop'i = 3, we can choose Vopj = 6 to achieve a 

minimum T-B product of 2.5 which is respectively 10.71% and 26.47% less than those 

of the FDM systems with 0.2 and 0.5 as guard-band factors. However, in choosing 

the constituent soliton parameters we have to consider the following: As discussed 

in the previous section, to maintain the twin-peak structure of the composite soliton 

for convenience in detection, it is important to choose the constituent solitons which 

are close in amplitude. However, it can be observed from Fig. 5.3 that for a fixed 

VoP';, the closer is VoP~ to VoP';, the larger is TI DB . Also, as discussed in Section 5.1.1 

above, as long as /32 < P'th, then the resulting composite soliton will retain its twin 

peak structure. Thus, for a given Vop'i, it appears that we should choose P'2 so that 

fIDB is close to the minimum while maintaining /32 < P'th. The values of P'th can be 

found in Fig. 3.8. We also notice that as ,82 moves away from the value of ,81, the 

T-B product decreases quickly to a minimum and gradually increases again. This 

is because as /31 and IJ2 become larger in their difference, the essential durations of 

the two solitons become larger, rendering the product of the maximum duration and 

maximum bandwidth larger. For example, we fix the amplitude of VoP'; to be 5. We 

observe from Fig. 5.3 that a minimum fIDB of value 2.55 is attained when VoP'~ = 7.5. 

Thus, P'2/ P'1 = v'"f.5 = 1.2247 for minimum T-B product. A glance at Fig. 3.8 gives 

fJth/ P'1 = 1.78 for VofJi = 5. Thus, our optimum choice of ,82 is well within the limit 

90 



Ph.D. Thesis - Rang Chai McMaster - Electrical & Computer Engineering 

to maintain a twin peak structure in the resulting composite soliton. On the other 

hand, we also note from Chapter 3 that the closer is (32 to (3th, the closer together 

are the twin peaks in time. This may cause difficulty in the alignment of the signals 

for AT detection as described above. Therefore, for a fixed value of Vo(3l, a good 

choice of Vo!3i has to take into consideration the factors of keeping the T-B product 

low while maintaining the twin peak structure of the resulting composite soliton to be 

well separated and clearly distinguishable. 

D-8 product of SADM 

FDM,a=O.5 
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Figure 5.3: T-B product comparison 

5.3 Detection Performance of the Single User Sys-

tern 

In this section, we investigate the performance of the single user soliton communi­

cation system and apply both the AT and the ML detections to the transmitted 
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solitons. Since the Toda circuit is employed at the receiver, the output signal and 

noise properties developed in Chapter 4 will be applied in the development of the 

analysis. 

In a single user soliton system, the transmitted signals are given by Eq. (5.2) and 

the received signal is expressed as y(t) = Xt(t) +n(t), i = 0,1 with the input noise n(t) 

being zero-mean white Gaussian having PSD No/2. For a relatively short receiving 

Toda circuit, it has been shown in Chapter 4 that the output of the circuit can be 

written as 

i = 0, 1 (5.7) 

where :1:t(f) is the output signal and n't(t) is the output noise of the receiving Toda 

circuit. 

5.3.1 Amplitude Threshold Detection 

AT detection is applied to the output signal y(t) of the receiver N-staged Toda circuit 

at the instant to where the peak of the soliton s(t) is expected to occur. To apply the 

AT detection to the single user system, we set up a threshold to which the receiver 

circuit output sample 'ljJy = fi(to) is compared. Assuming '0' and '1' are of equal 

probability, the optimum threshold can be determined numerically by the intersecting 

point of the probability density functions (PDF) p('ljJyIO) and p('ljJyI1) [43]. We have 

seen from Section 4.3 that if the input sample to a relatively short Toda circuit is 

Gaussian noise or a signal plus Gaussian noise, the output noise is approximately 

Gaussian with the mean being close to that of the input, while the variance may be 

reduced from that of the input noise. Therefore, for the output sample measured at 

to in a single user system in which '0' is represented by no signal and '1' is represented 

by a soliton pulse of amplitude Vo,62, a close approximation to the optimum threshold 

can be located at Ath = Vo,62/2. For circuit input being either white Gaussian noise 

92 



Ph.D. Thesis - Rang Chai McMaster - Electrical & Computer Engineering 

n(t) with zero-mean and PSD No/2, or 8(t) (with amplitude Vo,82) plus n(t), the 

variance of the output noise at the sample instant can be calculated from Eq. (4.18). 

Denoting the output variance at the sample instant by 0"51 and 0"52 corresponding to 

user information 0 and 1 being transmitted, respectively. The probability of "false 

alarm" (a transmitted '0' mistaken as a '1') is given by 

PFA = exp( --2 )d( = Q 1 100 

(2 ( Vo,82 ) 
V27fO"51 Ath 20"01 2a 

where Q(z) I::. Jzoo ~ exp ( - ~)d(. The probability of "missing" (a transmitted '1' 

mistaken as a '0') is given by 

PM = 

Assuming '0' and '1' are equally likely, the bit-error-rate (BER) of the single soliton 

system is 

Effects of Low-Pass Filter 

Instead of employing the Toda circuit directly at the receiver of the soliton system 

to receive the noise corrupted signal, we can apply a low-pass filter (LPF) before the 

Toda cirucit to filter out the noise outside the pass-band of the signal. The output 

of the LPF can then be passed into the Toda circuit. To examine the effects of the 

receiver LPF on the signal detection, we need to compare the bandwidth of the LPF 

with that of the Toda circuit. To allow the signal to pass through without distortion, 

while suppressing the noise component outside the frequency band of the signal, the 

bandwidth of the LPF should be chosen to be the same as that of the signal. We 

have shown that for a single soliton with parameter ,8, the single-sided bandwidth 
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containing 99% energy is given by 

Bs = 0.3931,6 (5.9) 

Therefore, the bandwidth of the LPF employed in a single soliton system is also 

equal to Bs. It has been shown in Chapter 4 that based on Volterra series, the 

response of the Toda circuit at the early stages can be characterized by the linear, 

second-order and third-order transfer functions of the circuit, i.e., Hl(f), H2(fl,12) 

and H3 (fl, 121 fa)· To examine qualitatively the effect of the Toda circuit on the 

input signal and noise, we ignore the higher order terms and treat the Toda circuit 

as a linear filter having transfer suction HI (f). The single-sided bandwidth of this 

approximated low-pass Toda circuit can be calculated as 

(5.10) 

Comparing Eq. (5.9) and Eq. (5.10), we can expect that when j3 < 0.8497, the 

bandwidth of the LPF is smaller than that of the linearized Toda circuit, therefore, 

the effects of the LPF in filtering the noise outside the signal bandwidth will be 

dominant compared to that of the Toda circuit. The corresponding AT detection 

performance can then be approximated by: 

(5.11) 

With the approximation given in Eq. (5.10), the output noise variance of the Toda 

circuit, i.e., 0"5p i = 1,2 in Eq. (5.8) can be calculated as 0"51 = 0"52 ~ 2 x 0.33Wo/2, 
Eq. (5.8) can be rewritten as: 

(5.12) 

Comparing Eq. (5.11) with Eq. (5.12), it can be seen that for single soliton system 

with low soliton amplitude, i.e., f3 < 0.8497, the receiver employing a LPF will give 
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better AT detection performance than the receiver employing only the Toda circuit. 

This will be verified in the section of numerical results. When;3 > 0.8497, the 

bandwidth of the LPF is larger than that of the approximated linear Toda circuit. 

In this case, the output of the LPF is re-filtered by the Toda circuit with smaller 

bandwidth, therefore, the effect of the LPF will be negligible comparing to that of 

the Toda circuit and the AT detection performance can be approximated by Eq. (5.8). 

This can also be observed in the section of numerical results. 

5.3.2 ML Detection 

In a single soliton system, Xl(t) = 0 or a single soliton X2(t) = 8(t) is transmitted 

according to user information. The noise corrupted transmitted signal, i.e., Xi(t) + 
n(t), i = 1,2 is received by a Toda circuit, where n(t) is the white Gaussian noise 

with zero mean and PSD No/2. The output of the N-staged receiver Toda circuit is 

given by 11(t) + P/'/(t). From Eq. (4.15) and Eq. (4.16), we obtain that :£l(t) = 0 and 

for short Toda circuits, :£2(t) can be closely approximated by the soliton output at the 

Nth stage of the Toda circuit which, in turn, can be obtained directly by substituting 

the correct value of N into Eq. (5.1). From Fig. 4.11, it can be seen that within the 

pass-band, i.e., twt < 2, the power spectral density (PSD) of the noise n1(t) can be 

approximated to be a constant, that is, the noise can be assumed to be white. From 

Fig. 4.14, we can see that the pass-band of the noise n2(t) is similar to that of the 

n1(t). While the PSD of n2(t) oscillates slightly within the pass-band, comparing 

Fig. 4.11 with Fig. 4.14, we can see that the difference is relatively small, therefore, 

we can approximate the PSD of fI'2(t) by that of n1(t). Focusing on the pass-band 

of the signal, the problem of the ML detection of the single user soliton system can 

now be formulated as a general ASK scheme with either zero or T2 being transmitted 

and the additive noise being white. The PSD of the noise, denoted by 71n can be 

numerically evaluated according to the procedure in Section 4.3. 

95 



Ph.D. Thesis - Rang Chai McMaster - Electrical & Computer Engineering 

The ML detection of the single user soliton system can be performed by a matched 

filter. The impulse response of the matched filter is chosen to be g(t) = x2(Tb - t), 

where n denotes the pulse duration of signal X2(t). The output of the matched filter 

is sampled at kTb , k = 1,2··· and compared with the threshold Es/2, where Es is 

the energy of the signal X2 (n - t). Assuming '0' and '1' are equally likely in the 

system, the bit-error-rate (BER) of the single soliton system can be obtained as [43] 

(5.13) 

5.3.3 Numerical Experiments 

In this section, we simulate the detection performance of a single user soliton system, 

in which the transmitted signal of the system is selected at random from either x(t) = 

o or x(t) = s(t) where s(t) is a soliton pulse of amplitude Vo,62. The transmitted signal 

mixed with AWGN with zero-mean and PSD No/2 is received by a Toda circuit. The 

signal-to-noise ratios (SNR) at the input of the receiver circuit is defined as 

p = (Es /2)/(No/2) (5.14) 

The operation of the receiving Toda circuit is simulated numerically by the Runge­

Kutta solution of Eq. (5.1). Both the AT and the ML detection methods are applied 

to the output of the Toda circuit. The error rates of the two detection methods are 

then measured. 

Fig. 5.4 shows the BER performance at various SNR of the single-user soliton 

system transmitting zero or a soliton of amplitude Vo,62 = 4 and employing either 

the AT detection or the ML detection at the receiver. The corresponding analytic 

probability of error expressed in Eq. (5.8) and Eq. (5.13) are plotted for compari­

son. It can be observed that for both the AT and ML detections, the theoretical 

results match the numerical results very well. It is also observed that as expected, 
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ML detection performs better than AT detection in general. We also plot the the­

oretical performance of binary amplitude shift keying (ASK) [22] signalling scheme. 

Comparing the ML detection performance for the soliton system with the theoretical 

ASK scheme, we can see that the performance are very close. This is because at the 

early stages, the nonlinearity of the Toda circuit is relatively small and the linear 

part dominates the characteristics of the Toda circuit, therefore, the circuit performs 

similar to a linear low-pass filter, which will not affect the ML detection performance 

of the system. Other simulation tests of the ML detection have also been carried out 

using soliton pulses of various amplitudes for transmission. Similar observations have 

been obtained, indicating that the ML detection performance of single soliton system 

is relatively independent of the soliton parameters. 

SNR vs BER, ML and AT detection, stage=1, Amp=4 
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Figure 5.4: BER of single soliton system, ML and AT detection, vo;J2 = 4, stage=l 

While ML detection performance of the single soliton system is relatively inde­

pendent of soliton parameters, we will show in the following that the AT detection 

97 



Ph.D. Thesis - Rang Chai McMaster - Electrical & Computer Engineering 

performance indeed varies with the parameter of soliton, furthermore, employing a 

LPF before the Toda circuit at the receiver may help to improve the AT detection 

performance. 

We consider the AT detection performance of a single soliton system with the low, 

medium and high amplitudes, respectively. For comparison, we also show the theo­

retical AT detection performance of an ASK system having the baseband waveform 

being a single soliton with parameter (3, a Raised Cosine pulse with the roll-off factor 

Ire = 0.5 and a Gaussian pulse. The time duration of the Raised Cosine and the 

Gaussian pulse is set to be the same as that of the single soliton, i.e. T = 3.14/(3. 

The bandwidth of the Raised Cosine can then be calculated: B rc = (1 + 'rc)/2T. 

The 99%-energy bandwidth of the Gaussian pulse can be calculated numerically. The 

Raised Cosine and the Gaussian pulse are both normalized such that the energy is 

the same as that of the single soliton. A LPF with the pass-band being the same as 

that of the corresponding transmitted signal is employed at the receiver of the ASK 

system. For the ASK system transmitting a single soliton with amplitude being Vo(32, 

the performance of the AT detection with LPF is given by: 

P _ Q ( VO(J2 ) 

es - 2j2(0.3931(3)No/2 

Assuming the amplitude of the Raised Cosine is Are, the performance of the corre­

sponding AT detection with LPF can be calculated such that: 

Assuming the amplitude of the Gaussian pulse is Ag and assuming the bandwidth of 

the pulse is B g , the performance of the corresponding AT detection with LPF can be 

calculated such that: 

P" ~ Q ( 2,)2:;No/2 ) 

The ML detection performance of the ASK scheme is also shown for comparison. 
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Case 1: Low amplitude (Vo,62 = 1) 

Fig. 5.5 shows the AT detection performance of a single soliton system with low 

amplitude, e.g. Vof32 = 1. It can be seen from Fig. 5.5 that the performance of 

the soliton system employing the LPF is much better than that without LPF being 

employed. Comparing to the ASK scheme with LPF, we can see that the soliton 

system with LPF and Toda circuit performs similarly to that of the ASK scheme with 

soliton signal. This is because for input soliton with low amplitude, the bandwidth of 

the LPF is smaller than that of the approximated Toda circuit, therefore, the effects 

of the linear LPF dominates that of the Toda circuit. 

SNR vs BER, AT detection, Amp=1 
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Figure 5.5: BER of single soliton system, AT detection, Vo,62 = 1, stage=l 

Case 2: Medium amplitude (Vo,82 = 4) 

Fig. 5.6 shows the AT detection performance of a single soliton system with medium 

amplitude, e.g. Vo,62 = 4. It can be seen from Fig. 5.6 that similar to Case 1, the 
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performance of the soliton system employing the LPF is still better than that without 

LPF being employed, indicating the effects of the linear LPF still dominates the effects 

of the Toda circuit in this case. However, we can also see that the performance of 

the system employing only Toda circuit has improved comparing to that in Case 1, 

showing the filtering effects of the Toda circuit increases. 

SNR vs BER, AT detection, Amp=4 
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Figure 5.6: BER of single soliton system, AT detection, VotJ2 = 4, stage=l 

Case 3: High amplitude (Vo,62 = 10) 

Fig. 5.7 shows the AT detection performance of a single soliton system with high 

amplitude, e.g. Vo,62 = 10. It can be seen from Fig. 5.7 that different from previous 

two cases, the performance of the soliton system employing the LPF is very close to 

that without LPF being employed. Comparing to the traditional ASK scheme using 

soliton (with LPF), we can see that the soliton system with Toda circuit performs 

much better. This is because for input soliton with high amplitude, the bandwidth of 
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the signal is larger than that of the approximated Toda circuit, therefore, the effects 

of the Toda circuit dominates that of the LPF and filters the received signal with 

smaller bandwidth and results in better detection performance. Comparing to the 

performance of the ML detection in Fig. 5.7, we can see that while ML performs 

better than AT detection in general, the difference can be relatively small. There­

fore, in practice, the AT detection may be desirable for its simplicity in computation 

complexity. 

SNR vs BER, AT detection, Amp=10 
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Figure 5.7: BER of single soliton system, AT detection, 110,82 = 10, stage=l 

It can also be seen that comparing to traditional ASK scheme using Raised Cosine 

pulse or Gaussian pulse, the proposed soliton system with Toda circuit has better AT 

performance. This is partly due to the noise-filtering effects of the Toda circuit. 

Compared to the ASK scheme using Raised Cosine pulse, the better AT detection 

performance of the soliton system is also due to the small T-B product of the single 

soliton pulse. 
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We also try to examine the performance of the single soliton system being detected 

at late stages of the Toda circuit. However, we observe that both the ML detection 

and the AT detection will deteriorate when applied at late stages of the circuit. This 

is due to the distortion in the phase shift of the output signal caused by the input 

noise. Therefore, in this thesis, we only focus on the detection at the early stages of 

the Toda circuit. 

5.4 Detection of Multiplexed Solitons 

In this section, we investigate the detection performance of the two-user soliton mul­

tiplexing system employing the two different signal alignments SADM1 and SADM2. 

Both of the AT and ML detection methods are applied to the SADM1 signalling. We 

also apply the ML detection on SADM2. For a two-user multiplexed soliton system, 

the transmitted signals are given by Eqs. (5.5), where the signals {Xi(t)} are aligned 

either as {Xh(t)} (SADM1 alignment) or {X2i(t)} (SADM2 alignment). We have also 

seen that for a two-user multiplexed signal, the two constituent soliton signals Sl(t) 

and 82(t) should have comparable amplitudes. At the receiver, the transmitted signal 

is mixed with AWGN of zero mean and PSD No/2. For a relatively short receiving 

Toda circuit, we have seen that the output can be written as 

k = 1,2, i = 0"" ,3 (5.15) 

where Xkz(t) and 'f/,kz(t) are respectively the output signal and noise of the receiving 

Toda circuit. 

5.4.1 Amplitude Threshold Detection 

As described in Sec. 5.1.2, we apply AT detection to a SADM1 aligned signal at the 

output ofthe receiver N-staged Toda circuit at tl and t2 corresponding to the instants 
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at which the twin peaks of sc( t) are expected to occur. Two thresholds at each of 

the detection time instants tl and t2 need to be chosen so that the receiver circuit 

output samples Wyl = y( t l ) and Wy2 = y( t 2 ) are compared with these thresholds. The 

purpose of setting these thresholds at tl and t2 is to detect if a single or composite 

soliton peak exists at each of these instants. It has been shown in Chapter 4 that 

at these peak instants, the output noise of a short Toda circuit with input being a 

combination of zero mean Gaussian noise of PSD No/2 and a single (or composite) 

soliton of amplitude VOp2 (or Ac) will have an approximate mean of Vo,62 (or Ac), 

and an approximate variance of calculated from Eq. (4.18). However, the peak value 

at tl may be Vopi or Ac, and the peak value at t2 may be Vo,6i or Ac. These possible 

values have to be distinguished from O. Thus, assuming the four bit-pairs are equally 

likely, a safe threshold for each of these instants is half the average of the two peak 

values, i.e., 

(5.16) 

where Athl and Ath2 are respectively the thresholds at tl and t2 and Ac can be 

precalculated by numerically searching for the peak value in Eq. (3.5). 

To analyze the BER performance for the two-user multiplexed soliton system with 

AT detection, we denote the variance of the output noise by O";J' i = 0, 1, ... 3, .i = 

1,2, where index i corresponds to different signals, i.e., xo, Xl, X2, X3 being transmit-

ted, index j represents information of differen users been detected at time instants tl 

and t2 , respectively. Using the thresholds in Eq. (5.16) and following similar reason­

ing as the case for single user, the probability of false alarm and missing for User 1 

in the multiplexed system are given by 

! [Q ( Ath~ ) + Q ( Ath~ ) 1 
2 a, Vo1 

! [Q (Vo,6i -2
Athl ) + Q (Ac - ~thl)l 

2 ~ ~ 
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Assuming '0' and '1' are equally likely for both users, the probability of error for 

User 1 is 

Pel PPAl . P(O) + PAll' P(l) 

l [Q (~) + Q (~) ] + l [Q (VO~~thl ) + Q ( Ac~thl ) 1 
(5.17) 

Similarly, the probability of false alarm and missing for User 2 are given by 

! [Q ( Ath~ ) + Q ( Ath~ ) 1 
2 ~ /% 

! [Q (Vo~i -2Ath2) + Q (Ac - ~th2)l 
2 ~ ~ 

The probability of error for User 2 is 

Pe2 PFA2 . P(O) + PM2 . P(l) 

l [Q (~) +Q (~)] + l [Q (VO~~th2) +Q (Ac~th2)] 
(5.18) 

5.4.2 ML Detection 

The output in Eq. (5.15) can be generically written as y(t) = x2 (t)+n 2 (t), i = 0, ... ,3 

regardless of whether SADM1 or SADM2 alignment is used. It has been shown in 

Chapter 4 that for a short receiving Toda circuit, xt(t) is closely approximated by the 

ideal (no noise) output signal of the circuit for the corresponding input Xt(t). For a 

given number of stages N, this ideal output can be obtained easily from Eq. (5.1) for 

an input involving single solitons (Xl(t) and X2(t)), and from Eq. (3.4) for an input 

involving a composite soliton (X3(t)). These calculated quantities approximating x2 (t) 

can now be used to facilitate the detection process. Similar to the ML detection of 

the single user system, we approximate the PSD of the output noise nt (t) for i = 1 

104 



Ph.D. Thesis - Rang Chai McMaster - Electrical & Computer Engineering 

to 3 by that of fio(t) and denote the PSD by 'TJii. Applying ML detection on y(t), we 

obtain [43] 

i=0,1,2,3 (5.19) 

To evaluate the probability of error of the SADM system, let CtJ denote the event 

that xJ(t) is detected while Xi(t) is transmitted. For i i=- j, this constitutes an error. 

From Eq. (5.19), this occurs if ft::2[fj(t) - Xt(t)]2dt > ft:s12[fj(t) - Xj(t)]2dt which, by 

substituting f) in, can be written as 

(5.20) 

We now define (0 f':. ~tts2 fit(t)[xJ(t) - xt(t)]dt. Since fit(t) is approximately a zero-
sl 

mean, stationary white Gaussian process (E[fi i(TI)fii(T2)] ;:::j 'rlM(TI - T2)), (0 is a zero­

mean Gaussian random variable with variance given by 

Thus, the probability of Ctj occurring is the probability of ( greater than ~D~, i.e., 

(5.21) 

We note that due to the approximate properties of fit(t), PtJ = Pji , Thus, by eval­

uating Eq. (5.21) for i, j = 0,1,2,3, with i i=- j, we can obtain the probabilities of 

all the error events C tJ . However, since the transmitted symbol from each user is 

represented by only one bit, not all the errors in the bit-pair constitute an error in a 

particular user's transmission. For example, COl represents that bl b2 = {OO} is mis­

taken as bl b2 = {01}; however, since the first bit bl is the same as the transmitted 

first bit bl , there is no error in the detected message for User 1. Hence, the events 

105 



Ph.D. Thesis - Rang Chai McMaster - Electrical & Computer Engineering 

that cause error in User 1 are: {C02, c03, C12, C13, C20, E2l, c30, C3I}, and those that cause 

error in User 2 are: {CQ1,CQ3,ClO,C12,C2l,C23,C30,C3d. From this, together with the 

assumption that the signals x, are equiprobable, i.e. P(xz) = i, the BER of User 1 

and User 2 can be written as 

(P02 + P03 + P12 + P13 + P20 + P2l + P30 + P3l ) /4 

(POI + PQ3 + PlO + P12 + P2l + P23 + P30 + P32 ) /4 

(5.22a) 

(5.22b) 

The overall probability of error is given by Pe = (Pel + Pe2 )/2. Note that with the 

corresponding substitutions of Xki (t) and fib (t), the above analysis is applicable to 

both SADM1 and SADM2 signals. 

5.4.3 Numerical Experiments 

We now examine the performance of a two-user soliton multiplexing system by sim­

ulation and compare the experimental results to the above performance analysis. 

For the two-user SADM system, the transmitted signal is selected at random from 

X z (t), i = 0, 1, 2, 3 which are constructed using two constituent solitons of amplitudes 

VoiJ? and VoiJi and are aligned either in SADM1 or in SADM2 format. The transmit­

ted signal with AWGN (zero-mean, PSD No/2) is received by a one-staged (N = 1) 

Toda circuit. The operation of the receiving Toda circuit is obtained numerically by 

the Runge-Kutta solution of the circuit. At the output of the receiving Toda circuit, 

we apply both the AT and the ML detections if the transmitted signal is SADM1-

aligned, whereas only the ML detection is applied if it is a SADM2 signal. The 

simulation results of the performance of the two-user SADM system are compared 

with the theoretical evaluation of probabilities of error for both User 1 and User 2 in 

Eq. (5.17) and Eq. (5.18) for AT detection and in Eqs. (5.22a) and (5.22b) for ML 

detection. 
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Figure 5.8: BER of the two users in a soliton multiplexing system - AT and ML 
detection 

Fig. 5.8 shows the ML detection performance of the theoretical probabilities of 

error comparing to the BER obtained from the simulations of a SADM system using 

two constituent solitons of amplitudes Vo!3i = 5 and Vo!3i = 4, respectively, for User 1 

and User 2. It can be clearly observed that the simulation results of each user agree 

very well with the theoretical evaluation. In Fig. 5.8, we also plot the average ML 

detection performance of two users of both SADMl- and SADM2-aligned systems 

together with the theoretical ML detection performance of the ASK scheme. As 

expected from Fig. 5.2, the ML detection performance of the SADM1- and SADM2-

aligned systems are very close. The performance of both system is also very similar 

to that of the ASK scheme. This is because the nonlinearity of the Toda circuit 
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is relatively weak at the early stages, therefore the circuit simply exhibits low-pass 

characteristics. It can also be verified that the average ML detection performance of 

the two user soliton system varies very little with the parameters of the solitons. 

10° ~--~--~--'---~--~--~===r==~==~ 
---+-- U1. AT. Theo 
~U1.AT.Nume 

U2. AT. Theo 
, U2. AT. Nume 

--ASK 

10-2 '---__ -'--__ --<--__ -'---__ ---'---__ -'--__ ---'-__ --'-__ ----'--__ ----1 

1 2 3 4 5 6 7 8 9 10 
SNR 

Figure 5.9: Average BER of soliton multiplexing system, stage=1 

Fig. 5.9 shows the theoretical and numerical performance of the AT detection 

(without LPF) for a SADM1-aligned system using two constituent solitons of am­

plitudes Vo,6i = 5 and Vo,6~ = 4, respectively. It can be clearly observed that the 

simulation results of each user agree very well with the theoretical evaluation. Similar 

to the single soliton system, the AT detection performance of a two user soliton sys­

tem may be improved if we apply a LPF before the Toda circuit at the receiver. We 

compare the AT detection performance of the SADM1-aligned system with and with­

out LPF for different set of soliton parameters. The results are shown in Fig. 5.10 to 

Fig. 5.12 with the amplitudes of the two constituent solitons being chosen as [2 1], [5 4] 

and [10 9], respectively. For comparison, the AT detection performance of a soliton 
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multiplexing system without Toda circuit at the receiver is also plotted together with 

the ML detection performance of the theoretical ASK scheme. It can be seen from 

Fig. 5.10 to Fig. 5.12 that the AT detection performance depends on the parameters 

of the soliton system. The system of high soliton amplitudes achieves better perfor­

mance than that of low soliton amplitudes. For the amplitudes of two constituent 

solitons being 10 and 9, respectively, the AT detection performance of User 1 is very 

close to the ML detection performance of the ASK. While the performance of User 2 is 

worse than that of ASK, the difference is relatively small. Therefore, for its simplicity, 

the AT detection may be still desirable in practice. It can also be seen that similar 

to the single soliton system, for the soliton multiplexing system with low amplitudes, 

the LPF plays a dominant role compared to that of the Toda circuit. While for the 

soliton system with high amplitudes, the Toda circuit dominates the LPF and offers 

better performance compared to the system with no Toda circuit being employed. 
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Figure 5.10: Average BER of soliton multiplexing system, stage=l 
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Figure 5.11: Average BER of soliton multiplexing system, stage=l 

5.5 Timing Error of Single Soliton System 

In previous sections of this chapter, we propose a soliton communication system in 

which the Toda circuit is applied at the receiver of the soliton system. We show that 

the multiplexing soliton system enjoys high bandwidth efficiency. The ML detection 

performance of the system is comparable to that of the traditional ASK scheme while 

the AT detection performance of the system is improved due to the noise filtering 

effects of the Toda circuit. In this section, a common problem in digital commu­

nication system, i.e., symbol synchronization will be examined. Focusing on ASK 

scheme, the detection performance of a single soliton system under timing error is 

studied. Aimed at examining the property of the soliton itself, in the single soliton 

ASK system studied in this section, we do not employ the Toda circuit at the receiver. 

The ASK signal is detected using ML method which is performed by a matched filter 

at the receiver. The system performance under the condition that there exists small 
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Figure 5.12: Average BER of soliton multiplexing system, stage=l 

timing error of the matched filter is studied. For comparison, we also evaluate the 

detection performance of the ASK scheme using both the Raised Cosine pulse and 

the rectangular pulse under same timing error and compare the performance with 

that of the soliton system. We will show that in the case that there exists small tim­

ing error at the output of the matched filter, the ASK system employing the single 

soliton waveform is more robust in performance than those using Raised Cosine and 

rectangular waveforms, 

Assuming the transmitted signal of the ASK scheme is given by xaO(t) = 0 and 

Xal (t) = Sa (t), where Sa (t) is the baseband waveform and assuming the channel noise 

na(t) is white Gaussian with zero-mean, PSD No/2, the received signal is therefore 

Ya (t) = .Tai (t) + na (t), i = 0, l. Denoting the time duration of the signal Sa ( t) by Ta, 

the impulse response ofthe matched filter is given by ha(t) = sa(Ta -t), Denoting the 

energy of sa(t) by Ea, in the case of no timing-error, the output of the matched filter 
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is sampled at the multiples of the time instance Ta and compared with a threshold 

Ea /2. In practice, there may exist small timing error at the receiver, in this thesis, 

for simplicity, we only consider the case of constant timing error, i.e., the detection 

time instants shifts to (k - 1)Ta + (1 - ,)Ta, k = 1,2···, where Itl < 1 is a small 

constant. 

For the transmission of a '0', Ya (t) = na (t). Denoting the transfer function of the 

matched filter as Ha(J), the output sampling of the matched filter will be zero-mean, 

white Gaussian noise. The noise variance, denoted by (T~o' is the same for different 

sampling time and is given by 

The probability of "false alarm" is given by 

1 100 

(2 (~s ) PFA = ~ E exp (--2 2 )d( = Q A ~r/2 
21T(T 0 -"- (TaO '±Jvo a 2 

For a '1' transmitted, Ya(t) = sa(t) + na(t). The output sampling of the matched 

filter includes both signal component and noise component. The noise component is 

the same as the case that a '0' is transmitted. The output of the signal component, 

denoted as El is given by 

The probability of "missing" is given by 

1 1E8/2 
((( - El?) (El - Es/2) exp - 2 d( = Q 

J21T(T~o -00 2(TaO J EsNo/2 

Assuming '0' and '1' are equally likely, the bit-error-rate (BER) of the single soliton 

system is 

(5.23) 
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In Fig. 5.13 and Fig. 5.14, the BER performance at various SNR of the ASK scheme 

calculated from Eq. (5.23) are plotted with the receiver timing error being 0.1 and 

0.2, respectively. The system waveform is chosen to be a single soliton with amplitude 

Vo,82 = 4, a rectangular pulse and Raised Cosine pulse with roll-off factor being 0.5, 

respectively. The time duration containing 99% energy of the soliton is calculated 

and those of the rectangular pulse and the Raised Cosine pulse are chosen to be 

the same. The amplitudes of the Raised Cosine pulse and the rectangular pulse are 

normalized such that the energy of these pulses is the same as that of the soliton. It 

can be clearly seen from Fig. 5.13 and Fig. 5.14 that under small timing error, the 

ML detection performance of the ASK scheme employing single soliton is better than 

those of rectangular pulse and Raised Cosine pulse. This result indicates that the use 

of soliton pulse is more robust against receiver timing error. 
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Figure 5.13: BER of ASK, timing error=O.l 
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Figure 5.14: BER of ASK, timing error=O.2 

5.6 Summary 

In this chapter, we apply the Toda soliton to communication and propose a OOK 

soliton communication system for both the single-user and multi-user transmission. 

In a single user system, either a single soliton or zero is transmitted. In a two­

user soliton multiplexing system, a single soliton with two different parameters, a 

composite soliton or zero is transmitted. The communication channel model is chosen 

to be the common AWGN channel. At the receiver, the Toda circuit is employed 

as a nonlinear noise filter. We propose the AT and the ML methods of detecting 

the transmitted solitons. The detection performance of these systems have been 

analyzed and compared with the traditional ASK scheme. We show that while being 

detected at the early stages of the Toda circuit, the ML detection performance of the 

soliton system is similar to the ML detection of the traditional ASK scheme. The AT 

detection performance of the soliton system with large amplitude is better than that 
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of the traditional ASK scheme using soliton pulse, Raised-Cosine pulse and Gaussian 

pulse. The better AT detection performance is due to the high bandwidth efficiency 

of the soliton signal and the noise-filtering effects of the Toda circuit. While the 

performance of the ML detection is better than that of the AT detection in general, 

the difference is relatively small (as shown in Fig. 5.7 and Fig. 5.12), therefore, the 

AT detection is still desirable due to its simplicity. 

We also study the bandwidth efficiency of the soliton multiplexing system and 

show that it is superior to the traditional FDM system using Raised-Cosine pulse. 

The property of high bandwidth efficiency of the soliton system results in a high 

capacity in transmission comparing to the FDIVI system. Focusing on the property 

of single soliton, we also study the ML detection performance of a traditional ASK 

scheme with receiver timing error. We show that compared to other pulses, such as 

Raised-Cosine and Rectangular pulse, soliton pulse is more robust against receiver 

timing error. 

115 



Chapter 6 

Toda Circuit Sensitivity to 

Imperfection 

From the governing equation of the LC Toda circuit, i.e., Eq. (3.2) and the corre­

sponding soliton equation, i.e., Eq. (3.3), it can be seen that the parameters of the 

inductor and the linear capacitor of the Toda circuit also characterize the properties 

of the circuit solution soliton. As a matter of fact, it can be shown that to support a 

stable propagation of the Toda soliton, the parameters of the inductor and the linear 

capacitor of the Toda circuit should be exactly the same as those of the input soliton. 

In the case that there exist parameter difference between the Toda circuit and the 

input soliton, the soliton might be distorted while propagating along the circuit. The 

problem of the Toda circuit response to an input soliton with mismatched parameters 

is designated as a mismatch problem. 

The mismatch problem is of particular importance in the soliton communication 

system we propose in Chapter 5. In both the single user and the multiple user 

soliton communication systems, single solitons and composite solitons of particular 

parameters are stored at the transmitter and are transmitted according to the user 

information. At the receiver, Toda circuit with same parameters of the inductor and 
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the linear capacitor are employed as a nonlinear receiver allowing the propagation of 

the solitons while suppressing the channel noise. In practice, due to the imperfect 

circuit technology or inaccurate knowledge of the circuit information, the parameters 

of the receiver Toda circuit may not be exactly the same as those of the transmitted 

soliton signals. In this case, a mismatch problem may occur when the transmitted 

solitons are received by Toda circuit. In this chapter, we study the mismatched Toda 

circuit response to the input single solitons and analyze the distortion effects of the 

input signals. The discussion can be extended to the case of circuit input being a 

composite soliton in a straightforward manner. 

To study the response problem of the mismatched Toda circuit analytically, we 

need to solve the initial problem of the governing equation of the circuit, which turns 

out to be inadmissible due to the nonlinearity and discreteness of the governing equa­

tion. In Section 2.3, we have shown that Toda lattice equation can be approximated 

by KdV equation under the condition of small input. In this chapter, we will show 

that the governing equation of the perturbed Toda circuit can be approximated by a 

perturbed KdV equation. The response problem of the perturbed Toda circuit can 

then be approximated by the propagation problem of the perturbed KdV equation, 

which can then be solved through some known results. The results calculated from 

the KdV approximation are compared with those obtained from the Runge-Kutta 

method. The amplitude distortion of the input soliton is also verified through the 

inverse scattering transform of the Toda lattice in Section 6.2. In Section 6.3, we 

numerically examine the effects of the receiver mismatched Toda circuit on the per­

formance of both single user and mUltiplexing soliton system. 
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6.1 Korteweg-de Vries Equation Approximation 

The governing equation of the LC Toda circuit with the inductance of the inductor 

being L and the capacitance of the linear capacitor being Co is given in Eq. (3.2). 

For convenience, it is rewritten in the following: 

(6.1) 

Assuming there exists inductor mismatch in the Toda circuit, and the inductance of 

the inductor is perturbed into L(l+EL), where EL is the parameter denoting mismatch 

effects and is assumed to be small in this thesis, i.e., /ELI « 1. Substituting L by 

L(l+Ed in Eq. (6.1), we obtain the governing equation of the perturbed Toda circuit: 

(6.2) 

Similarly, in the case of linear capacitor perturbation, Co in Eq. (3.2) should be 

replaced by the perturbed capacitance of the capacitor, i.e., Co(1 + Ec), we obtain 

the governing equation of the perturbed Toda circuit: 

(6.3) 

It is clear that for EL = Ee, Eq. (6.3) turns out to be in the same form as Eq. (6.2). 

This indicates the inductor perturbation and the linear capacitor perturbation result 

in equivalent effects of the Toda circuit, therefore, the same circuit response to input 

solitons can be expected. For convenience, we only consider the case of inductor 

perturbation in this thesis. The results obtained in this thesis can also be extended 

to both problems of inductor and linear capacitor perturbation. 

As we have mentioned before, it may be mathematically intractable to analyze 

the problem of the perturbed Toda circuit response to input signal directly. In the 

following, we show that the perturbed Toda circuit can be approximated by the 
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perturbed KdV equation, the general propagation problem of which has been treated 

[26,27]. 

Rewriting Eq. (6.2) as 

~log (1 + Vn(t)) = Vn-l(t) - 2Vn(t) + Vn+l(t) _ _ f._Vn-l(t) - 2Vn(t) + Vn+1(t) 
dt2 Va LCaVa 1 + f. LCaVa 

(6.4) 

Similar to the approximation of the Toda lattice equation by the KdV equation in 

Section 2.3, under the condition of small VVat
) , we make following approximation: 

(6.5) 

Denoting Vm = vie
o

' U = - v~o V, where v is an arbitrary parameter, we apply the 

Gardner-Morikawa transformation [8J: 

(6.6) 

Substituting Eq. (6.5) and (6.6) into Eq. (6.4) and choosing v = 1, we obtain: 

(6.7) 

The r.h.s. of Eq. (6.7) can be regarded as a perturbation term, therefore, we call 

Eq. (6.7) a perturbed KdV equation. Recalling the original KdV equation as shown 

in Eq. (2.22): 

(6.8) 

It has been shown in previous chapters that the single soliton solution of Eq. (6.8) 

can be expressed as: 

(6.9) 

where, the parameter (3 characterizes the amplitude and the width of the KdV soliton 

and does not change with time, i.e. 

d(3 = 0 
dr 
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It clear from Eq. (6.9) that the displacement parameter ~ corresponding to the peak 

occurrence of the soliton is: 

Substituting Eq. (6.6) into Eq. (6.9), we obtain: 

(33 
Vn(t) = VotPsech2((tJ + 6 )t/ J LCo - tJn) 

(6.11) 

(6.12) 

Under the condition of small soliton amplitude, i.e. small /3, Eq. (6.12) approximates 

the Toda soliton as expressed in Eq. (3.3) very well. It is shown in [1, 26, 27J that 

under small perturbation, if the input to a system characterized by Eq. (6.7) is a 

single soliton, the output can still be approximated by a single soliton or a waveform 

similar to a single soliton and for a general perturbed KdV equation: 

llT - 6uu~ + u~~~ = ER( u ) 

where R( u) is a given function of u( T, ~), it has been proved in [27] that both the 

amplitude parameter /3 and the phase shift ~ vary with time and the dynamics can 

be characterized as: 

dl3 E 100 

2 
dT = - 4tJ -00 R(us)sech (a)da (6.13) 

d~ 2 E 100 

1 -d =4/3 - /33 R(1Ls)(a+-sinh2a)sech2(a)da 
T 4 -00 2 

(6.14) 

where Uo is the soliton solution of Eq. (6.8), i.e., Uo = -2/32sech2(f3~ - 4/33T ) and 

a = (J~ - 4/33T . Applying the above results in the propagation problem of Eq. (6.7), 

we replace E in Eq. (6.13) and (6.14) by l:~L and substitute 

(6.15) 

into Eq. (6.13) and (6.14). As the integration function of Eq. (6.13) is a odd function 

and the integral is in a symmetric region, we obtain 

(6.16) 

120 



Ph.D. Thesis - Rong Chai McMaster - Electrical & Computer Engineering 

4;32 E 
(1 + E)4(J3 

. (-16,65sech2( a )tanh( a) + 16,65sech4( a )tanh( a))( a + - sinh 2a )sech2( a )da 100 1 

-00 2 

16(35E 100 
1 - 4(32 + ( ) ;33 (asech4(a)tanh(a) + -sech4(a)tanh(a) sinh (2a) 

1 + f 4 -00 2 
1 . 

-asech6(a)tanh(a) - "2 smh (2a)sech6(a)tanh(a))da 

2 f 5 
- 4;3 (1 + 1 + (9) (6.17) 

Eq. (6.16) shows that the amplitude parameter (3 ofthe input soliton is a constant and 

does not change with time. This result indicates that under small circuit perturbation, 

the amplitude of the soliton is maintained at a constant. From Eq. (6.17), we obtain 

2 f 5 
~(7) = 4,6 (1 + --)7 + ~o 

1 + f9 
(6.18) 

where the integration constant ~o is the initial phase shift and can be assumed to be 

zero. Comparing Eq. (6.18) with Eq. (6.11) and taking into account of Eq. (6.6), we 

obtain the expression of the perturbed Toda soliton: 

2 2 ( ;33 fT"'n f 5) Vn(t) = Vo,6 sech (,6 + -)t/ V LCo - (3n - (3---t 
6 1 + f9 

(6.19) 

Comparing Eq. (6.19) with Eq. (6.12), it is clear that the perturbation of the Toda 

circuit affects both the width and the propagation velocity of the soliton. The time 

instance corresponding to the peak of the output soliton at stage n can be obtained 

by setting the term inside sech function to be zero and is shown to be: 

(6.20) 

For input soliton with small amplitude, we can approximate (3 + ~3 ~ ;3, therefore, 

tn can be rewritten as: 

ny'LCo 
tn=--~-1 5£ 

- 9(1+£) 
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Comparing Eq. (6.21) to tn in Eq. (6.12), i.e., tn ~ nvLCo, it is clear that positive fL 

in the perturbed Toda circuit results in a larger tn, which causes a slower propagation 

rate of the soliton. 

We now apply Runge-Kutta method described in Section 4.2 to examine the re­

sponse problem of the perturbed Toda circuit by replacing L in Eq. (4.14) with 

L(l + E). Without loss of generality, we assume L = 1 and Co = 1. Setting the input 

as a single soliton with amplitude 1 and 4 respectively to the perturbed Toda circuit, 

circuit outputs at different stages are examined and the corresponding amplitude of 

the output soliton is plotted in Fig. 6.1. The perturbation coefficient E is chosen to 

be 0.1 and 0.5. It is clear that for small input amplitude, i.e. Vo,62 = 1 and small 

E, i.e. E = 0.1, the perturbation of the soliton amplitude is very small. Denote the 

parameter of the output soliton by ,6', we obtain ~ ~ 0.99. This result is agreement 

with that of Eq. (6.16). Three other curves in Fig. 6.1 show that for larger input 

amplitude or larger E, the difference between input amplitude and output amplitude 

is more obvious and cannot be ignored. This indicates that the approximation of 

the perturbed Toda circuit by the perturbed KdV equation in these cases results in 

larger error. It is also observed from Fig. 6.1 that for positive E, the output amplitude 

of soliton is less than that of input soliton. In Fig. 6.2, we plot the amplitudes of 

the output soliton for circuit mismatch coefficient E being negative. The amplitude 

parameters of Fig. 6.2 are chosen to be the same as those of Fig. 6.1. It can be seen 

that negative E will result in the increase of the amplitude of the output soliton. The 

analysis of the response of the mismatched circuit with positive or negative E is simi­

lar, therefore, in the following, we only focus on the case for positive E for simplicity. 

That for circuit with negative E can be extended in a straightforward manner. 

For the amplitude of the input soliton being 1, the time instants corresponding to 

the peak of the output soliton at different circuit stages are plotted in Fig. 6.3. The 

theoretical results calculated from Eq. (6.20) are compared with numerical results. 
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Figure 6.1: Amplitude of output soliton versus circuit stage, positive E 

The perturbation coefficient E is chosen to be 0.1 and 0.5. It can be seen from Fig. 6.3 

that the theoretical results match the numerical ones perfectly even for large E, i.e. 

E = 0.5, indicating the KdV approximation is very accurate in calculating phase shift 

for small input amplitude. Fig. 6.4 is similar to Fig. 6.3 except the amplitude of 

the input soliton is chosen to be 4. It can be seen from Fig. 6.4 that there is small 

discrepancy between the theoretical results and those of numerical ones for both 

E = 0.1 and E = 0.5. However, the difference is relatively small especially for E = 0.1, 

indicating that the KdV approximation method can still be feasible. 

Fig. 6.1 to 6.4 show that the approximation of the perturbed Toda circuit by the 

perturbed KdV equation is relatively accurate for the amplitude of the input soliton 

being relatively small and for small circuit mismatch coefficient. However, for large 

amplitude of the input soliton or large circuit mismatch coefficient, it introduces 

relatively large error especially in calculating the amplitude of the output soliton. 

From Fig. 6.1, we observe that with the increase of the circuit stage, the amplitude of 
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Figure 6.2: Amplitude of output soliton versus circuit stage, negative E 

the output soliton decreases at the early stages and then settles to a stable value at late 

circuit stages. This observation can be verified by calculating circuit response to input 

soliton with other amplitudes. Applying this result in examining the dependence 

of the amplitude parameter of the output soliton on circuit mismatch coefficient 

E, we focus on the parameter of the output soliton at late circuit stages, i.e., the 

output waveform has become relatively stable, in which case, for a given input soliton 

and a mismatch coefficient E, a stable value is capable to characterize the amplitude 

parameter of the output soliton. Furthermore, for the amplitudes of the output 

soliton at early stages, this stable value can be applied as a lower bound (for positive 

E). Denoting the parameter of the output soliton as 13 and applying polynomial fitting, 

we obtain, 

;3 - 13 ;::j O.2E;31.35 (6.22) 

In Fig. 6.5, ((3 - 13)/(31.35 versus E is plotted for two different amplitude of input 

soliton, i.e. Vo(32 = 1 and Vo(32 = 4. Two curves in Fig. 6.5 is very close to a straight 
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Figure 6.3: Peak occurrence time instance vs stage, 110;32 = 1 

line with slope being 0.2, showing the fitting error in Eq. (6.22) is negligible. 

6.2 Applying Inverse Scattering Method 

We have mentioned in Section 2.2.2 that the inverse scattering method of the Toda 

lattice solves the initial problem of the lattice. In particularly, given the circuit states 

at all the stages n at time t = 0, it can calculate the circuit states in all the stages at 

any time t = to. For the problem of the Toda circuit response to an input signal, we 

are interested in the propagation characteristics of the signal from the early stages 

to the later stages of the circuit, that is, given the time domain characteristics of 

the circuit input at stage n = 0, to calculate the time domain characteristics of 

the circuit output at any later stages n = no. This problem is different as the one 

which the 1ST of the Toda circuit addresses, however, from Eq. (3.3), we can clearly 

observe the duality of the time variable t and the circuit stage n, therefore, we can 
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Figure 6.4: Peak occurrence time instance vs stage, VOp2 = 4 

still expect some qualitative results by applying 1ST. This intuition is verified by 

numerical results. 

The mismatch problem of the LC Toda circuit is similar to the initial problem of a 

Toda spring lattice with the mass of particles perturbed. The perturbed Toda lattice 

is also called impure lattice. Most research works on the solution of an impure Toda 

lattice focus on the lattice with the mass of only one particle being impure, that is, 

the mass of all the particles in the lattice were 1 except the zeroth particle, of which 

the mass perturbed into l~E' i.e. 

n=O 

otherwise 

where E is a small number. The problem has been studied numerically in [35, 37, 57] 

and also analytically in [61], where the author applied the perturbation theory [34] and 

the 1ST of the Toda lattice and proved that under the assumption that the perturbed 

lattice response to a single soliton is still a soliton, the amplitude parameter {3 of the 
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Figure 6.5: ({3 - iJ)/ {3135 vs t 

output soliton can be expressed as 

(6.23) 

where (30 is the amplitude parameter of the input soliton and C is a constant indepen­

dent on time. Eq. (6.23) shows for small f, the variation of input and output soliton 

is linear in f. 

The Toda spring lattice with the mass of one particle being perturbed corre­

sponded to a perturbed LC Toda circuit with one inductor or one linear capacitor 

perturbation. In our mismatch problem, we assume all the inductors are perturbed 

from Lo to Lo(1 + t) or all the linear capacitors are perturbed from Co to Co(1 + t). 

In this section, we will show that as a generalized scenario of the problem treated 

in [61], the result obtained in [61] can indeed be generalized to our problem. Following 

a common practice of the 1ST of Toda lattice [53], we define 

(6.24) 
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where On denotes the derivative of Qn over time. The time derivative of a(71,) and 

b( n) can be calculated and expressed as following: 

o'(n) = [b(n + 1) - b(n)]a(n) ~ (1- f)[b(n + 1) - b(n)]a(n) 
(1 + f) 

b(n) = 2[a(n? - a(n - 1)2] 

Introducing linear operator .c, we rewrite Eqs. (6.24) into the form oflinear Schrodinger 

equation: 

£Q(71,) = a(71, - 1)Q(71, - 1) + a(71,)Q(71, + 1) + b(71,)Q(71,) 

We denote the continuous eigenvalue of .c by .A = z+r1 and corresponding to each 

eigenvalue, we have two eigen-function ¢(n, z) and 1j;(n, z). Using a similar procedure 

as in [61], we can show that a( z), the reciprocal of which is defined as the transmission 

coefficient, changes with time as follows: 

6:(z) = 
2 00 

z _ :-1 L b(n)[a(n - 1){ ¢(n - 1, z)1j;(n, z) + ¢(n, z)1j;(n - 1, z)} 
n=-oo 

-a(n){¢(71" z)1/)(71, + 1, z) + ¢(n + 1, z)1j;(n, z)}] (6.25) 

It has been proved [16] that for un-perturbed Toda lattice 6:(z) = 0, which indicates 

the time invariance of soliton parameter and explains the stable propagation of soliton 

along the lattice. It is difficult to see how the parameters of the solitons are perturbed 

from Eq. (6.25). In the following, we will examine the perturbation of the rth discrete 

eigenvalues of £, which corresponds to the soliton solutions of the system. 
-1 

Denoting the discrete eigenvalue of £ by .Ar = Zr+;r , r = LN, where N is 

the total number of solitons in the lattice, from Eq. (6.25) we can obtain the time 

variation of Zr: 

00 

Zr -_ 4fZr C2 ~ [ ( ) ( ) ( )] '" '" -1 r 6 b( n) a n - 1 ¢r n - 1) - a (n ¢r n + 1 ¢r ( n ) 
;..,Ir - NT 

(6.26) 
n=-oo 
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We assume that only one Toda soliton exists in the lattice, i.e., r = N = 1. Now, we 

introduce C1 and A(n) such that 

00 

n=-oo 

( Z2 _ 1)1/2 A(n) - ___ 1 __ _ 

- DZf + (Dzf)-l 

where D = (zi - 1)1/2/C1 . We can rewrite Eq. (6.26) as 

00 

4EZI C2 ~ 
-------,-1 1 6 b(n)[a(n - 1)<Pr(n - 1) - a(n)<Pr(n + 1)]<Pl(n) 
Zl - Zl n=-oo 

00 

: L [A(n - 1)3 A(n) - A(n - 1)A(n)3] 
~1 n=-oo 

(6.27) 

Applying perturbation theory [34], we express 

(6.28) 

where ziO) is the parameter of the original soliton and ziO) 

Eq. (6.28) and combining Eq. (6.27), we obtain 

O. Differentiating 

00 

Zl = EZ?) + E2Zi2) + ... = ~ L [A(n - 1)3A(n) - A(n - 1)A(n)3] 
Zl n=-oo 

(6.29) 

Applying first order perturbation theory, we obtain, 

(6.30) 

The variation of zi1) in time can then be calculated as: 

It can be proved that (see Appendix B) 
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Eq. (6.32) shows after the soliton becomes stable, i.e., t --* 00, it is first order pertur­

bation coefficient does not change. Denoting zi1
) (00) = zi1

) ( -(0) = C1 , where C1 is 

a constant, we obtain, 

(6.32) 

Under the assumption of small E and recall the relation of Zl and f3 [53J, we can obtain 

(6.33) 

where C2 is a constant. Eq. (6.33) clearly shows that the result presented in [61J can 

be generalized to the Toda lattice with any continuous section of perturbations. In 

the other words, increasing the number of the perturbed components in the Toda 

lattice does not change the form of the dependence of the soliton parameters on the 

perturbation coefficient. The difference of f3 and f30 is still linear in E, this result is 

agreement with that of Eq. (6.22). 

6.3 Detection Performance of Soliton System with 

Mismatched Circuit 

In previous sections, we study the response of mismatched Toda circuit to input 

soliton, and show that the circuit mismatch may result in the distortion of input 

soliton. In this section, we numerically examine the effects of the receiver mismatched 

Toda circuit on the performance of both single user and multiplexing soliton system. 

For the single user soliton system, the amplitude of the single soliton is chosen to 

be 10. For the multiplexing soliton system, the amplitudes of the two constituent 

solitons are chosen to be 10 and 9, respectively. Two cases of Toda circuit mismatch 

are considered, i.e., E = 0.1 and E = 0.5, respectively. 

In Fig. 6.6 and Fig. 6.7, we show the AT and ML detection performance of a 

single soliton system with a mismatched Toda circuit. For comparison, we also show 
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the corresponding detection performance of the system with perfectly matched Toda 

circuit. It can be seen that as expected, for a small mismatch, i.e., E = 0.1, the perfor­

mance deterioration of the soliton system with mismatched Toda circuit is relatively 

small. However, for a larger mismatch coefficient, i.e., E = 0.5, the deterioration 

of both AT and ML detection performance is obvious compared to the system with 

matched Toda circuit. 

AT detection of single soliton system, Vo~2=1 0 

10o~--~--~--~--~--~--~--~==~==~ 
---t--- £=0 

£=0.1 
----6>-- £=0.5 

10-2 '----__ -'---__ -'----__ -'--__ -'---__ ......l...-__ -'-__ ----'-__ ----'-__ ---' 

1 2 3 4 5 6 7 8 9 10 
SNR 

Figure 6.6: BER of single soliton system with mismatched circuit, AT detection, 
Vo,82 = 10 

Fig. 6.8 and Fig. 6.9 show the AT and ML detection performance of a multiplexing 

soliton system with a mismatched Toda circuit. It can be seen from the figures 

that similar to the single soliton system, the effects of the slightly mismatched Toda 

circuit on the system detection performance is relatively small, while the mismatched 

Toda circuit with a larger mismatch coefficient causes severe deterioration in the 

system performance. It can be verified that the results obtained for both single and 

multiplexing soliton system can be extended to the systems with solitons of other 
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ML detection of single soliton system, VOP2=10 
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£=0.1 
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Figure 6.7: BER of single soliton system with mismatched circuit, ML detection, 
110,82 = 10 

amplitude parameters. 

6.4 Summary 

In this chapter, we study the response of the mismatched Toda circuit to input single 

soliton. Applying both KdV approximation method and the 1ST of Toda lattice, 

we show that for small circuit mismatch coefficient, e.g. E = 0.1 and for the input 

soliton with small amplitude, e.g. Vo,82 ~ 1, the circuit mismatch only results in 

small distortion of the output phase shift, while the amplitude of the input soliton 

remains unchanged. For large mismatch coefficient or high input soliton amplitude, 

both the amplitude and the phase shift of the input soliton are distorted and the 

distortion increases with the increase of the input soliton amplitude and the mismatch 

coefficient. The detection performance of the soliton system with mismatched Toda 
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Figure 6.8: Average BER of multiplexing soliton system with mismatched circuit, AT 
detection, Vo,82 = [10 9J 

circuit is also studied. It is shown that the small mismatch of the Toda circuit will not 

affect the detection performance of the soliton system severely, while large mismatch 

of Toda circuit may severely deteriorate the detection accuracy in the soliton system. 
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Figure 6.9: Average BER of multiplexing soliton system with mismatched circuit, 
ML detection, VOp2 = [10 9] 
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Chapter 7 

Conclusion and Future Work 

In this thesis, we examine the properties of the Toda solitons including the time and 

frequency domain characteristics, the time-bandwidth characteristics and the signal 

energy. We show that the single soliton is unimodal in both time and frequency 

characteristics and the characteristics of the composite soliton varies with the relative 

parameters of the two constituent solitons. Depending on the ratio of the parameters 

of the two constitute solitons, the resulting composite soliton might have two entirely 

different shapes. Fixing the parameter of one constitute soliton, the threshold of the 

parameter of another constitute soliton corresponding to the shape variation of the 

composite soliton has been examined. 

The time-domain and frequency-domain efficiency of the Toda soliton pulses are 

studied in this thesis. We show that the T-B product of single Toda soliton is a 

constant close to optimal T-B product which is achieved by Gaussian pulse. The T-B 

product of the composite soliton depends on the parameters of two constituent solitons 

and can be as small as that of the single soliton for properly chosen parameters. 

These results indicate the high energy localization of both single Toda soliton and 

composite Toda soliton. Another important factor of pulses, i.e., pulse energy has 

also been examined for both single and composite Toda solitons. We have shown 
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that the energy of the single Toda soliton is a monotonic function of its parameter (3. 

The energy of the composite soliton depend on the parameters of the two constituent 

solitons and is always smaller than the sum of two single solitons. The condition of 

the maximum energy saving of the composite soliton has been examined. 

We then study the properties of the Toda circuit. In particular, we focus on the 

Toda circuit responses to stochastic inputs at both early stages and late stages. We 

have demonstrated that at the early stages, the Toda circuit exhibits weak nonlin­

earity and can be analyzed by the Volterra series. At late stages, the approximation 

error of the Volterra series increases due to the increase of the circuit nonlinearity. 

For higher accuracy, we apply Runge-Kutta method in this case. We have shown 

that high nonlinearity of the Toda circuit tend to transform circuit input into the 

combination of soliton( s), transients and oscillations. 

These properties of the Toda soliton and the Toda circuit are then applied fun­

damentally in wireless communication system and we propose the single-user and 

multi-user OaK signalling schemes employing Toda solitons as information carriers 

in data communications. The bandwidth efficiency of the soliton multiplexing system 

have been calculated and shown to be superior to the traditional FDM system. For 

the soliton OaK schemes, we also propose the AT and the ML methods of detect­

ing the transmitted solitons. The detection performance of these systems have been 

analyzed and compared with the traditional on-off keying scheme commonly used in 

wireless optical and optical fiber systems. We show that while being detected at the 

early stages of the Toda circuit, the ML detection performance of the soliton system 

is similar to the ML detection of the traditional ASK due to the weak nonlinearity 

of the circuit. On the other hand, the low-pass filtering effects of the Toda circuit 

helps the soliton system to achieve a better AT detection performance compared to 

the systems without the Toda circuit, especially for systems transmitting soliton with 

large parameters. Compared to the ASK system with other waveforms such as the 
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commonly-used Raised-cosine pulse, we show that the soliton system performs better 

in AT detection resulted from the high energy localization property of the soliton and 

the extra noise filtering effects of the receiver Toda circuit. It should be mentioned 

that while the ML detection performance of the soliton system is similar to that of 

the ASK scheme, the high bandwidth efficiency of the soliton signals results in a high 

capacity of the soliton system compared to ASK systems using other waveforms such 

as commonly-used Raised-Cosine waveforms. 

Instead of employing Toda circuit at the receiver of the soliton system, we also 

study a single soliton ASK system without applying the Toda circuit and focus on the 

detection performance under receiver timing error. For comparison, we also study the 

ML detection performance of the ASK system with other commonly-used waveforms 

including a Raised Cosine pulse with roll-off factor 0.5 and a rectangular pulse. It has 

been shown that the ASK system with single soliton has better performance compared 

to those using other waveforms, demonstrating the robustness of the soliton signal 

against receiver timing error. 

The mismatch problem of the Toda circuit is also addressed in this thesis, specif­

ically, we study the response of the mismatched Toda circuit to input single soliton. 

We show that when circuit mismatch coefficient and the parameter of the input soli­

ton are small, the circuit mismatch only results in small distortion of the output 

phase shift, while the amplitude of the input soliton remains unchanged. For large 

mismatch or large input soliton, both the amplitude and the phase shift of the input 

soliton are distorted and the amplitude distortion increases with the increase of the 

input soliton amplitude and the mismatch coefficient. This result indicates that large 

mismatch of Toda circuit may severely affect detection accuracy in soliton system. 

This property in turn can be applied to offers relative information security: From 

Eqs. (3.3) and Eqs. (3.5), it can be seen that a Toda circuit with particular values of 

inductor and linear capacitor only supports stable propagation of solitons of the same 
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parameter values. Departure from these values in the receiver Toda circuit results 

in gross distortions of the solitons in both amplitudes and pulse shapes while prop­

agating along the Toda circuit causing errors in detection. Thus, a soliton system 

may also offer additional security in transmission from users not having the exact 

knowledge of the Toda circuit parameters. 

It can also be shown that soliton multiplexing system also has simpler implemen­

tation comparing to traditional multiplexing system. For the traditional multiplexing 

system, such as FDM or wave division multiplexing (WDM) system, filters are ap­

plied at the receiver to isolate signals from different users. These filters have to be 

different and separated, thus increasing the complexity of the receiver. However, in 

SADM, different soliton waveforms are chosen to represent user information and at 

the receiver, a single relative simple Toda circuit is applied followed by a detector and 

no channel filters are needed to separate signals from different users. This provides 

the advantage of simplifying the receiver implementation. 

7.1 Future works 

A common property of many classes of solitons is that solitons can be generated 

through exciting soliton-supporting systems with rectangular pulses and solitons enjoy 

special propagation properties while transmitting along the system. In particular for 

Toda soliton, its corresponding soliton-supporting system is the Toda lattice which 

can be realized by a LC Toda circuit. In our communication model of the soliton 

system, a Toda circuit is employed at the transmitter to generate Toda soliton and 

at the receiver to filter out noise. Instead of employing an analog Toda circuit, an 

alternative while more convenient way of generating and processing soliton signals 

can be the digital signal processing (DSP) technology [30J. Similar to Runge-Kutta 

method, other algorithms for simulating the Toda circuit can also be realized by 
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computer languages such as C language or Matlab and be embedded in a discrete 

signal processor. The algorithms function in such way that the processor performs 

exactly as a discrete Toda circuit with both of its input and output being discrete. 

In the soliton system model we propose in this thesis, soliton OOK was proposed 

as information carriers because, as can be clearly seen from Eq. (3.3) and Eq. (3.4), 

a Toda circuit only supports positive pulses. Any negative input pulse transmitting 

along the Toda circuit will be distorted. However, if the circuit output is detected at 

the early stages of the Toda circuit, because the circuit exhibits weak nonlinearity, 

we can expect the distortion due to negative input pulses of relatively low amplitude 

will be small. This can be illustrated in Fig. 7.1 in which the input to the Toda 

circuit, a single Toda soliton of amplitude 4, and the output at stage N = 1 are both 

shown. Indeed, it can be observed that the distortion of the pulse within the essential 

duration of the original soliton is relatively small. This observation indicates the 

possibility of employing Phase Shift Keying (PSK) technique in the soliton system. 

It can be expected that the PSK soliton system will performs better than ASK soliton 

system due to its larger distance of separation of the signals. 

In this thesis, we have propose an OOK soliton communication system and demon­

strate its high bandwidth efficiency and relative robustness to channel noise for AT 

detection. The robustness of the single soliton signal to timing error is also verified. A 

laboratory model of a soliton communication system should be built to demonstrate 

its practical feasibility and advantages over conventional schemes. 
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Appendix A 

Correlation and Variance of 

Output Noise 

The output noise of the Toda circuit is given by 

n = n ® hI + [(n 0 n) + 2(s 0 n)] ® h2 + [(n 0 non) + 3(s 0 non + s 0 son)] 

Denoting 

a(t) - n®h1=J~ooh1(t-T1)n(T1)dT1 

b1(t) - (n 0 n) ® h2 = I~Xl J~oo h2(t - T1, t - T2)n(T1)n(T2)dT1dT2 

b2(t) - 2(s 0 n) ® h2 = 2 J~ J~oo h2(t - T1, t - T2)s(Tdn(T2)dT1dT2 

C1 (t) - (n 0 non) ® h3 

- J~x J~ J~ h3(t - T1, t - T2, t - T3)n(T1)n(T2)n(T3)dT1dT2 dT3 

C2 (t) - 3 (s 0 non) ® h3 

- 3 J~oo J~ J~ h3(t - T1, t - T2, t - T3)s(T1)n(T2)n(T3)dT1dT2 dT3 

C3 (t ) - 3 (s 0 son) ® h3 

- 3 J~oo J~oo J~ h3(t - T1, t - T2, t - T3)S(Td s(T2)n(T3)dT1dT2 dT3 
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The correlation of T/, at time instants tl and t2 is given by: 

Tfln(t1, t2) = E[(a(t1) + b1(t1) + b2(t1) + Cl(t1) + C2(t1) + C3(t1)) 

(a(t2) + b1(t2) + b2(t2) + Cl(t2) + C2(t2) + C3(t2))] 

E[a(tl)a(t2)] + E[b1(tl)b1(t2)] + E[b2(t1)b2(t2)] + E[Cl(t1)Cl(t2)] 

+ E[C2(t1)C2(t2)] + E[C3(t1)C3(t2)] + E[a(tl)b1 (t2)] + E[a(t1)b2(t2)] 

+ E[a(t1)cl(t2)] + E[a(tl)c2(t2)] + E[a(t1)c3(t2)] + E[b1(t1)b2(t2)] 

+ E[b1(t1)Cl(t2)] + E[b1(t1)C2(t2)] + E[b1(t1)C3(t2)] + E[b2(t1)Cl(t2)] 

+ E[b2(t1)C2(t2)] + E[b2(t1)C3(t2)] + E[Cl(t1)C2(t2)] + E[Cl(t1)C3(t2)] 

+ E[C2(t1)C3(t2)] + E[a(t2)b1(tl)] + E[a(t2)b2(tl)] + E[a(t2)cl(tl)] 

+ E[a(t2)c2(t1)] + E[a(t2)c3(tl)] + E[b1(t2)b2(t1)] + E[b1(t2)Cl(t1)] 

+ E[b1 (t2)C2(t1)] + E[b1 (t2)C3(t1)] + E[b2(t2)Cl (tl)] + E[b2(t2)C2(t1)] 

+ E[b2(t2)C3(t1)] + E[cr(t2)C2(t1)] + E[Cl(t2)C3(tr)] + E[C2(t2)C3(t1)] 

(A.I) 

Applying the properties of white Gaussian noise [44], the terms in Eq. (A.I) can be 

calculated as: 

[ ;

.00 j.oo ] No ;.00 2 
E[a(tl)a(t2)] E -00 -00 h1(tl - Tl)h1(t2 - T2)n(Tr)n(T2)dT1dT2 = 2" -00 hI (Tl)dTl 

E[b1(tl)b1(t2)] - E [1: .. ·1: h2(tl - Tl, tl - T2)h2(t2 - T3, t2 - T4)n(Tl)n(T2)n(T3)n(T4) 

dTl ... dT,] ~ (~o ) '1: 1: (11.,(71 .Tl)h,( T2, T,) + 2hl( Tl, T2) ) dTl dT, 

E[b2(t1)b2(t2)] 4E [1: .. ·1: h2(tl - Tl, tl - T2)h2(t2 - T3, t2 - T4)",(Tl)n(T2)",(T3) 

] 
No [100 j.oo n(T4) dTl··· dT4 = 4.2" -00 .•. -00 h2(t1 - Tl, tl - T2) 

11., (t, - 73, t, - T2)sh )s( T,)dTl ... dT3] 
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E[Cl(tl )Cl(t2)] E [1:·· ·1: h3(tl - Tl, tl - '2, tl - T3)h3(t2 - '4, t2 - '5, t2 - 16) 

n( Tl)n( T2)n( 13)n( 14)n( 15)n( '6)d'l ... dT6] 

(
Nr ) 31

00 ;.00 - ---l- -00··· _00(9h3(tl-Tl,tl-Tl,tl-T2)h3(t2-T2,t2-T3,t2-/3 

+ 6h3(tl - '1, tl - '2, tl - '3)h3(t2 - '1, t2 - '2, t2 - 13) )d/ld/2d/3 

E[C2(tl )C2(t2)] 9E [1: .. ·1: h3(tl - '1, tl - '2, tl - 13)h3(t2 - T4, t2 - '5, t2 - 16) 

8( 7] )n( 72)n( 73)S( 7,)n( 75)n(T.)d7] ... d76] 

9( ~o ) 2 L: ... L: [h3(1] - 7], I) - 72, I] - 72)h3(12 - 7,,12 - 73, t2 - 73: 

+ 2h3(tl - '1, tl - '2, tl - 13)h3(t2 - T4, t2 - '2, t2 - T3) lc;( Il)S( T4)d/l ... d/4 

E[c,(I,)C3(t2)] 9E [L: ... L: h,(l) - 7], t] - 72, t) - T3)h3(t2 - 74,12 - T5, t2 - 76) 

Sh)8( T2)n( T3)8( 7,)S( T5)n( 76)d7) ... d76] 

Nr roo roo 
9· T } -00 ... } -00 [h3(tl - Tl, tl - '2, tl - T3)h3(t2 - '4, t2 - '5, t2 - 13) 

s( Il)S( 12)S( 14)S( 15)] d/l ... d/5 

E[a(tl)b1 (t2)] E [1: .. ·1: hI (tl - Tl)n( Tl)h2(t2 - '2, t2 - 13)n( 12)n( '3)d'l ... d13] 

E[bl (tl)a(t2)] = 0 

E[a(tl)b2(t2)] 2E [1: .. ·1: hl(tl - Il)n(/l)h2(t2 - '2, t2 - T3)S( T2)n(/3)dTl ... d13] 

2· No [ roo roo hI (t l - Tl)h2(t2 - '2, t2 - Tl)S( T2)dlldT2] 
2 J-oo J- oo 

E[b2 (I)a( 12 ) J 2E [ L: ... L: h) (12 - 7] )n( TIlh2 (I) - 72, t] - 7,)S( 72)n( T3)d7] ... d73] 

2 . ~o [ L: L: h] (12 - 7) )h2( t) - 72, I] - T)S( 7,)d7) d7,] 
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E[a(l, )e, (12)J - E [ 1: .. ·1: h, (I) - 7, )n( 7,)h3(12 - 72,12 - 73, 12 - T,) 

n( T2)n( c,)n( 7,)<17, ... d7'] 

- 3(~O) 2 [1: 1: [hI (7))h3(7), 72, 72)]d7,dT2] = E[c,(IJ)a(12)] 

E[a(IJ)c,(t2)] - 3E [1: .. ·1: h,(t) - 7J)nh)h3(12 - T2, 12 - T3, t2 - T,) 

8( 72)n( 73 )n( 7, )d7, ... d7'] ~ E[e, (I,)a( 12)] = 0 

E[a(l,h(12)] - 3E [1:·· ·1: h,(I) - 7l)n(7,)h3(12 - 72,12 - 73, 12 - T,) 

8( 72)s(7,)n( 7,)dT) ... d7'] 

Nr 100 100 

- 3· i -00 -00 [hl(t1 - Tt} h3(t2 - T2, t2 - T3, t2 - TI)S(T2)S(T3)] dTI ... dT3 

Eh(tda( t2)] - 3E [ I: .. ·1: h) (12 - 7dn( 7, )h3(1, - 72, I, - T3,t, - T,) 

s( 72)S( T3)nh)dT) ... d7'] 

Nr 100 100 

- 3· _0 [hI (t2 - TI)h3(t l - T2, tl - T3, tl - TI)S( T2)S( T3)] dTI ... dT3 
2 -00-00 

E[b, (I) )b2( t2)] - 2E [ 1: .. ·1: h, (I) - 7), I) "- 72)n(rJ )n( 72)h2( t2 - T3, t2 - 7,) 

S(73)n(7,)d7) ... d7'] = E[b,,(I,)b)(12)J = 0 

E[b) (I, )e) (12)] - E [ 1: .. ·1: h2(1, - Tj, I) - 72)n( 7))n( 72)h3(12 - 73,12 - 74,12 - T.,) 

n( 73)n( T,)n( T5)dT, ... de,] = E[e, (t))b, (12 )] ~ 0 
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E[bl (II )C>2( (2 ) [ 3E [ 1: .. ·1: h2 (I] - T], II - T2)n( TI)n( T2) 

h3 (12 - T" 12 - T4, t, - T5)S( T3)n( T,)n( T5 )dT] ... dT5] 

3 (~o r [1: .. -1: [h,(t] - T], h - TIl h3(12 - T3, I, - T" 12 - T2) 

+ 2h2(11 - T], I] - T,)h,(12 - T3, I, - T], 12 - T2)] s(T3)dT, ... dT'] 

E[c,(I] )b1 (12)J 3E [1: .. ·1: h2(12 - T" 12 - T2)n( T] )n(r,) 

h,( I] - T3, tl - T4, I] - T5 )s( T3)n( T,)n( T5 )dTI ... dT5] 

- 3 (~o ) 2 [1: .. ·1: [h2(12 - T1, t2 - TI)h3(1] - T" II - T2, t] - T2) 

+ 2h2(12 - T], t, - T2)h3(11 - T3, t] - TI, tl - T2)] s(r,)dTI ... dT3] 

E[b] (I] )C3 (t2) J - 3E [ 1: .. ·1: h2 (II - T" t] - T2)n( T] )n( T2) 

h, (12 - T3, 12 - T4, 12 - T5 )s( T, )s( T4)n( T5)dT] ... dTS] = E[r, (tl )b1 (12) J = 0 

E[b2( II)c] (12 )[ 2E [ 1: .. ·l: h,(tl - TI, I] - T')S( T] )n( T2) 

h,(12 - T3, t, - T" t2 - T5)n(T,)n(T,)n(T.5)dT] ... dT5] 

6 (~o ) 21: h2(11 - T], II - T2)h3(12 - T2, 12 - T" 12 - T3)dTI ... dT, 
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Eh (t, )b,(t2)] 2E [.l: ... .l: h,(t2 - T" t2 - T2)S( T1)n( 72) 

It, (t, - T3, t, - T4, t1 - c' )n{T, )n( T1)n(T, )d71 ... dc,] 

6 (~ ) , .l: h,(t2 - T" t, - T2)h,(t, - T" t, - ,3, t, - T,)d7, ... dT, 

E[b,(h)c~(t2)1 6E [.l: ... .l: h,(t1 - T" t1 - 72)S( T1)n( T,) 

h3(t, - 7" t, - T4, t, - 75)S(T3)n( T,)nh)dT, ... dTS] ~ E[C2(t1)b2(t2)] ~ a 

E[b2(t1)C3(t2)] 6E [I: .. ·1: h2(t1 - Tl, tl - T2)S(Tl)n(T2) 

h3(t2 - T3, t, - T" t, - T5)s(r,)sh)n(T5)dT1 ... dT'] 

6· ~o [.l: ... .l: h,(t1 - T" t, - T,)S(rJ) 

h3(t2 - T3, t2 - T4, t2 - T2)S( T3)S( T4)dTl ... dT4] 

E[C3(t,)b,(t2)] 6E [ .l:'" .l: h2(t2 - T" t, - 7,)s(T1)nh) 

h3(tl - T3, tl - T4, tl - T5)S(T3)s(T4)n(T5)dTl'" dT5] 

6· ~o [ .l: ... .l: h,(l2 - T1, t2 - T2)S(Td 

h3(tl - T3, tl - T4, h - T2)S(T3)S(T4)dTl ... dT4] 

EicI (t, )c,(t2)] - 3E [.l: ... .l: h,(t, - 71, t, - T2, t1 - T3)n( 71 )nh)n( T3) 

h3(t2 - T4, t2 - T5, t2 - T6)S(T4)n(T5)n(T6)dTl'" dT6] = E[C2(tdCl(t2)] = 0 
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E[e, (t,)e3 (t2)] - 3E [ 1: .. ·1: h3( t, - 7,. t, - T,.t, - 73)n (71 )n( 72)n( 73) 

h3(t2 - T4, t2 - T5, t2 - T6)S(T4)S(T5)n(T6)dTl'" dT6] 

- 9(~O) 21: .. ·1: h3(t, - 7,. t, - 72. t, - T2) 

h3(t2 - Tl, t2 - T3, t2 - T4)S(T3)S(T4)dn'" dT4 

E[C3(t, )C,(t2)] - 3E [1:" ·1: h3(t2 - 7" t2 - 72, t2 - T3)n(Tl)n(72)n(731 

h3(tl - T4, tl - T5, tl - T6)S(T4)8(T5)n(T6)dTl'" dT6] 

- 9(~O) 21: .. ·1: h3(t2 - 7" t, - 7"t, - T,) 

h3(tl - Tl, tl - T3, tl - T4)S(T3)S(T4)dTl'" dT4 

E[C2(t, )C3(t2)] - 9E [ 1: .. ·1: h3(t, - T,. t, - T,. t, - 73)S( 71)n(7,)n( T3) 

h3(t2 - T4, t2 - T5, t2 - T6)S(T4)S(T5)n(T6)dTl'" dT6] = E[C3(t1)C2(t2)] = 0 

Arranging the terms in the order of tft, Eq. (A.l) can be rewritten as Eq. (4.19), 

where, 

R1(t1, t2) - E[a(t1)a(t2)] + E[b2(t1)b2(t2)] + E[C3(tl)C3(t2)] + E[a(tl)b2(t2)] 

+ E[b2(tl)a(t2)] + E[a(tl)r3(t2)] + E[c3(tl)a(t2)] + E[b2(t1)C3(t2)] 

+ E[C3(td b2(t2)] 

11,2(tl' f2) E[b1(tl)b1(t2)] + E[C2(t1)C2(t2)] + E[a(t1)cl(t2)] + E[cl(tl)a(t2)] 

+ E[b1(t1)C2(t2)] + E[C2(t1)b1(t2)] + E[b2(t1)Cl(t2)] + E[Cl(t1)b2(t2)] 

+ E[Cl(t1)C3(f2)] + Eh(tl)rl(t2)] 

R3(t 11 t2) - E[Cl(t1)Cl(t2)] 
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The output noise variance at time instant to is given by Tiiii(tO, to) and can be expressed 

as Eq. (4.18), where 

al - E[a(to)2] 

lI1(to) - E[b2(tO)2] + E[C3(tO)2] + 2E[a(to)b2(to)] + 2E[a(tO)c3(tO)] + 2E[b2(to)C3(tO)] 

a2 E[b1 (to)2] + 2E[a(tO)cl(tO)] 

V2(tO) - E[C2(tO)2] + 2E[b1(tO)C2(tO)] + 2E[b2(to)Cl(tO)] + 2E[Cl(t0)C3(tO)] 

a3 - E[Cl(tO)2] 
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Appendix B 

Proof of Time Invariance ip) 

Proof: Introducing variable 81, such that ~n-1(e - 1)1/2 = exp (81), we obtain 

A(n - 1) 
~n-1(~2 - 1)1/2 exp [(~ - ~-1 )t/2] + ~-n+1(~2 - 1)-1/2 exp [-(~ - ~-1 )t/2] 

(e - 1)1/2 ((~ _ ~-1) ) 
- sech t + 81 

2 2 

Similarly, denote ~n(e - 1)1/2 = exp (82), A(n) can be expressed as: 

A(n) = 

Denoting !.18 = 82 - 81 , we obtain 

I: A(n - 1)3 A(n)dt 

Substituting Eq. (B.2) into Eq. (6.32), we obtain, zi1) (00) - zP)( -00) = 0 
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