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Abstract 

Wavelength division multiplexing (WDM) is the key technology of the 

current generation fiber-optics network. To build agile and intelligent next 

generation optical networks, optical wavelength conversion and signal 

regeneration are crucial new functions under intense research and development. 

These new functions call for innovative, low cost and high performance 

optoelectronic devices. One of such enabling devices is quantum-well 

electroabsorption modulators (EAM) that are appealing in terms of structural 

simplicity and low noise and are potentially advantageous on high-speed 

operation and low power consumption. The goal of this thesis is to systematically 

study EAM for optical signal functions in optical networks from various 

perspectives, including fundamental device physics, comprehensive models, 

innovative design, and experimental prototyping. 

After the first chapter of introduction, Chapter 2 and 3 are devoted to 

device models. In Chapter 2, a self-consistent and physics-based model has been 

developed for two key nonlinear optical mechanisms in quantum-well EAM: 

exciton saturation and electric field screening. Presented in Chapter 3 is a 

simplified but efficient model for EAM with a feature of handling strong electric 

field. 

111 



Next, the fundamental physics relevant to nonlinear EAM are studied in 

Chapter 4 and 5. Exciton state mixing effects on intersubband transitions in 

quantum well have been investigated in Chapter 4 and a drastic different picture 

from that of the previous studies has been revealed. Studies have also been done 

in Chapter 5 on valence band mixing effects in exciton capture and escape in 

quantum well structures. And it is found that much faster capture and escape 

processes can be resulted from the band mixing effects. 

Then, the two key design issues of nonlinear EAM have been addressed. 

In Chapter 6, different saturation dynamics of electrons and holes in quantum 

wells have been thoroughly analyzed and utilized to achieve the best compromise 

between high-speed and low power consumption of EAM in optical wavelength 

conversion and signal regeneration. In Chapter 7, the polarization issue of 

transverse electric (TE) mode and transverse magnetic (TM) mode is addressed 

from two different perspectives: design for the most effective optical saturation by 

using TM mode absorption and design for TE and TM polarization insensitive 

operation. 

Finally, Chapter 8 presents the results of experimental proto typing on the 

design concept to enhance exciton absorption saturation using light-hole 

excitation through TM optical mode. 
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Chapter 1 

Introduction 

1.1 Research Background 

Semiconductor quantum well (QW) and other low-dimensional quantum 

structures have been and will continue to be of great interest, both from physics 

and engineering standpoints [1],[2]. The quantization of electrons states in such 

structures brings out many physics different from those in bulk semiconductors. 

And the control of the material compositions and the geometric dimensions 

enabled by advancing technology allows the engineering of many fundamental 

properties of semiconductor materials and devices. These structures provide a 

platfonn to explore numerous ingenious designs of semiconductor devices for 

various important applications. One example is quantum well electroabsorption 

(EA) modulators that are used for optical wavelength convention and signal 

regeneration in optical networks [3],[4]. Electroabsorption modulators (EAM) in 

such applications, embodying the richness of physics and the ever-expanding 
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2 Chapter 1. Introduction 

frontier of applications of semiconductor quantum structures, form the central 

theme of this thesis. 

The quantum-well EA modulators work on quantum-confined Stark 

effects (QCSE). The energy level in quantum wells can be easily adjusted by 

electric field. As a result, the optical absorption can be readily controlled by 

applied bias. This effect has been successfully utilized in signal modulation in 

optical communication [5]. In signal modulation, the optical intensity inside EA 

modulators is usually low. When the optical intensity is high, various nonlinear 

mechanisms will manifest, most noticeably, exciton saturation and electric field 

screening. Through these mechanisms, the optical absorption of EA modulators 

will saturate, which enable EAM work as nonlinear devices for optical signal 

processing. Our main task will be to systematically investigate the various optical 

saturation mechanisms and how they can be enhanced for optical signal 

processing, especially, in the applications of optical wavelength conversion and 

signal regeneration in optical networks [6J,[7]. 

Optical wavelength conversion and signal regeneration are the new 

functions under intense research and development for next generation optical 

networks. Fiber optics communication has witnessed tremendous progress in 

recent years. In particular, wavelength-division-multiplex (WDM) systems have 

become the backbone of the ever-growing internet. WDM systems opened up the 

avenue to utilize the wavelength resource inherited in optic fibers. At the same 
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time, they also pose the challenge how to agilely and effectively manage the 

wavelength resource in the networks. One of the solutions is to introduce optical 

wavelength conversion and signal regeneration at the network nodes, making the 

network more agile and less dependent on costly optic-electronic-optic 

conversion. Comparing to other alternative components in these applications, an 

EAM based component has the appeal of structural simplicity, requiring no 

interferometer configuration as in semiconductor optical amplifiers (SOA) [8] or 

loop mirror as in nonlinear optic fibers [9). In addition, it has much less noise and 

potentially advantageous in high-speed operation and low power consumption. 

However, how to realize the high speed and low power operation remains a 

challenge that calls for thorough understanding and innovative design of EA 

modulators. 

1.2 Thesis Objectives 

1.2.1 Comprehensive Models 

The perfonnance of quantum-well EAM as optical signal processors is critically 

dependent on the optical absorption saturation. The two most important saturation 

mechanisms are exciton saturation and electric field screening. Extensive research 

has been done on these two saturation mechanisms both theoretically and 

experimentally. On the theoretical side, exciton saturation has been described by 
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phase-space filling theory [10]-[ 13] and the electric field screening by Poisson 

equation [14] or plus drift-diffusion equations [15]. However, the previous 

research either focused on one mechanism of saturation or integrated the two 

interrelated saturation processes in a phenomenological manner [16]. As we will 

show in this thesis, in order to model and design the nonlinear EAM for high 

speed application, only physics-based models that integrate both exciton 

saturation and electric field screening in a self-consistent manner will be adequate 

[17]. 

Comprehensive models are required not only in the sense of the true 

integration of the models of two saturation processes. For each saturation 

mechanism, a comprehensive treatment is also required. For instance, to model 

exciton saturation, we need to know electron states, exciton states, and optical 

absorption. In our treatment of these subjects, we will take into full account of 

advanced physics such as valence band mixing and exciton state mixing. The 

models less than this complexity, as we will show, may miss the physics that have 

significant impacts on some critical device characteristics [18],[ 19]. 

To develop a comprehensive model for nonlinear EAM, many numerical 

Issues also need to be addressed. The electron states of quantum well under 

electric field will become quasi-bound states. The solution for leaky wave remains 

an intrigue mathematical and numerical problem [20]. The exciton equation in 

momentum space is a singular integral equation, how to remove the singularity 
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and speed up the solution of equation with multi-fold integration is also a 

challenge [21 ],[22]. The drift-diffusion equation of carrier transport is well­

known nonlinear problem that is difficult to solve, especially, for the structures 

with high hetero-junction barriers as those we deal with in quantum well EAM 

[23). Finally, the development of model with this complexity itself is quite an 

engineering endeavor. 

1.2.2 Device Physics 

First of all, we will systematically study the various physics processes related to 

optical absorption saturation in the context of their application in optical network. 

We will study how fast photons can be absorbed by electrons/excitons, how many 

electrons/excitons can be accommodated in a given space, how long electrons/ 

excitons can stay in quantum wells, and how the electrons and holes both inside 

and outside quantum wells screen the electric field in well regions, and most 

importantly, how these processes influence the characteristics of EA modulators 

as wavelength converters. Our systematical approach and comprehensive models 

enable us to study the device physics that have not been thoroughly studied before. 

For instance, we will study the different saturation dynamics of electron and holes 

that are important in optimizing EAM design for high-speed operations [17]. 

Secondly, we will investigate new device physics. It has been recently 

proposed to use intersubband transitions for wavelength conversion. We will 
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show that the exciton state mixing effects in intersubband transitions can give a 

drastically different picture of intersubband transitions from what is previously 

perceived [18]. Carrier capture and escape in quantum wells will significantly 

influence the speed and the nonlinearity properties of EAM and other critical 

characteristics of optoelectronic devices such as laser diodes, photo-detector and 

solar cells. We will study the excitonic nature of the capture and escape processes 

and will show that valence band mixing effects can result in much faster exciton 

capture/escape than what the existing parabolic model predicts [19]. 

1.2.3 Nonlinear EAM design 

The key to design EAM for signal processing applications is to enhance the 

optical nonlinearity through all possible means. We will explore the possibility to 

use the exciton absorption associated with light-hole and TM mode instead of the 

conventional exciton absorption associated with heavy-hole and TE mode. Based 

on so-called effective mass reversal, the light-hole has heavier in-plane effective 

mass and heavy-hole has lighter in-plane effective mass, our analysis will show 

that EAM based LH excitonic absorption of TM mode exhibits much lower 

optical saturation intensity, which means they will work at much lower optical 

power [24]. 

As low optical saturation intensity is often inversely related to operation 

speed, careful design has to be carried out to reach the best compromise possible. 
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Our simulation shows the electrons and holes in EAM in commonly-used 

InGaAs/InGaAsP quantum wells have different saturation dynamics that impair 

high-speed operation because of the long tail in its response to optical impulse. 

Also, in such QW structure, holes accommodate more in quantum well than 

electrons do. Since electrons are easier to get saturated, the more electron 

concentration will be desired. To overcome these two drawbacks, we propose to 

use InGaAs/InAIGaAs quantum wells to obtain more favorable dynamics and to 

achieve low optical saturation intensity without severe sacrifice of the operation 

speed [17]. 

We will also design EAM for TE/TM insensitive operation. TE and TM 

polarization insensitive operation will be considered including valance band 

mixing and exciton state mixing. The quantum-well structures in which the first 

HH sub band and the first LH subband are well aligned will be studied and 

designed for TE/TM insensitive operation in optical network applications. 

1.2.4 Experimental prototyping of EAM 

Through the collaboration with CPFC (Canadian Photonics Fabrication Center) 

and Prof. Cartledge's group at Queens' University, we have fabricated and 

characterized the EAM devices based on the design concepts developed in this 

thesis. We will report the experimental results in the end. 
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1.3 Outline of the Thesis 

Comprehensi ve 
Model 
(Ch.2) 

r---------------------

Inter-Subband 

Simplified 
Model 
(Ch.3) 

r--------- --------------------- ---------, 
Transition ~ 

I I 

(Ch.4) 

Exciton 
Capture/Escape ~ 

(Ch.5) 
I 
I 
I 
I 

I I l _____________________ ~ 

EAM Design I 

(Ch.6) 

EAM Design II 

(Ch.7) 

Device 
Proto typing 

(Ch.8) 

' ______ ------------------------------------, 

Figure 1-1 Block diagram of the outline of the thesis 

This thesis contains nine chapters altogether. Figure 1-1 shows the block diagram 

how the chapters are connected and organized. The first chapter of introduction 

and the last chapter of summary are not on the diagram. The chapters in Figure 

1-1 can be categorized as three groups as the dashed blocks indicate: modeling, 

physics and design. 
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Chapter 2 and Chapter 3 are devoted to the modeling of the EAM. Chapter 

2 describes the physics models of nonlinear EAM including both exciton 

saturation and electric field screening. Some fundamental materials are included 

to establish the conceptual frameworks of solid-state theory and carrier transport 

theory, which are the foundation of our theoretical models. Chapter 3 can be 

considered as a scale-down version of EAM model, which is preferred in the 

applications where simplicity and efficiency are desired. In Chapter 3 we have 

also addressed the challenge of modeling strongly tilted quantum well. PerfectIy­

matched-layer (PML) has been used to model the leaky wave of electrons in 

quantum wells with shallow barrier potential or under strong electric field. 

Chapter 4 and Chapter 5 study two physics effects related to nonlinear EA 

modulators. In Chapter 4 we investigate the exciton state mixing effects on 

intersubband transitions in un-doped quantum well structures. Intersubband 

transitions coupled with interband transition in such structures have been 

conceived as a new means of wavelength conversion. In Chapter 5 we study 

exciton capture into and escape out of shallow quantum wells, which can have 

significant influence over the saturation and other characteristics of the devices 

based on such structures. 

In the last three chapters, we deal with various issues regarding the design 

and prototyping of nonlinear EA modulators. In Chapter 6 we have carried out 

systematic simulation and optimization of EA modulators for high-speed network 
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application. In Chapter 7 we have addressed the issue of TE and TM polarization. 

Finally, in Chapter 8 we have reported the fabrication and measurement results of 

the EAM that prototypes some of our design concepts. 



Chapter 2 

Optical Absorption Saturation in 

Quantum Wells 

In this chapter, we will describe the comprehensive models for the optical 

absorption saturation in quantum wells. In order to present a complete picture, the 

basic conceptual frameworks of solid-state theory and carrier transport theory are 

first laid out as the foundations of our saturation models. And then we go on to 

describe the saturation model of exciton absorption based on solid-state theory 

[11],[26] and the saturation model of electric field screening based on the drift­

diffusion transport theory [15],[28]. In the end we will discuss the numerical 

aspects of these models and how the various models are integrated together. 

2.1 Solid-State Theory 

At fundamental level the key subjects in this thesis are electrons, photons and 

phonons. We will study the properties of these particles or quasi-particles and the 

interactions among them in the context of semiconductor quantum-well structures, 

which are the underlying structures of the EAM devices that we have been 

11 
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working on for optical network applications. To achieve these objectives we first 

need to understand the conceptual framework of solid-state theory. 

Solids are an assembly of atoms, held together by chemical bond. The 

particles in solids, electrons and nuclei, can be characterized as two groups: 

valence electrons and lattice ions. Valence electrons are the electrons in outer 

shells of atoms. They are shared by neighboring atoms and contribute to chemical 

bonding. Valence electrons have strong influence on the properties of solids that 

are critically dependent on the way the individual atoms assemble together. The 

lattice ions consist of the atomic nuclei and the electrons in the closed inner shells 

of atoms. The division of the two groups of constituent particles provides an 

important framework to treat the solid-state problems and can be justified by so­

called adiabatic approximation. The approximation is based on the following 

argument. Since electrons have much smaller mass than ions, the ions can only 

respond very slowly to any changes in the electron configuration while the 

electrons respond adiabatically to any changes in the ions positions. In other 

words, we can first treat lattice ions without considering valence electrons and 

deal with electrons assuming fixed positions of the ions. The interactions between 

lattice ions and valence electrons can be later treated as perturbation. 

Even after the division of lattice and valence electrons, the solid remains a 

formidably complex system. It is too complicated for one model to describe the 

rich physical phenomena in solid-state systems. However, one unifying concept 
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that can provide a common ground for the physics studied in this thesis is 

elementary excitations [26], which can give physical pictures and at same time 

simplify mathematics formulation. Phonon is the elementary excitation to describe 

the lattice ions. From the classic mechanics we know how to describe in simple 

term the complex modes of oscillation of a system consisted of point masses. For 

a system with s degree of freedom, we can introduce s new normal coordinates so 

that the system Hamiltonian can be diagonalized for small oscillations. As a result, 

the complex equation of motion of the system can be split into s independent 

equations of free oscillators. We can apply this method in lattice dynamics to 

describe the oscillation of lattice ions about their equilibrium positions. The 

normal modes of lattice oscillation can be further quantized and the associated 

quanta are called phonons. 

The concept of normal modes is effective in decoupling interacting many­

body system of crystal lattice ions. One-electron approximation is the effective 

way to describe the interactions of valence electrons. For the system of valence 

electrons in crystal, the Hamiltonian consists of three terms: the kinetic energy of 

individual electrons, the interaction energies with the lattice ions, and the 

interaction energies among electrons. Under adiabatic approximation, the first two 

terms are sums of corresponding energies of single particles. And thus the system 

equations can be decoupled into sum over of single particle equation if only these 

two terms are present. The problem arises when the electron interaction term 
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couples all the wave function of individual electrons together. One-electron 

approximation is introduced to decouple the interacting system into the sum over 

of non-interacting subsystem of single particles. The idea behind one-electron 

approximation is as follows. If a charged particle move through a "gas" of 

charged particles, it will be repelled by other particles. However, we can model 

the particle as original particle accompanied by a compensating cloud of opposite 

charges. The interaction with other particles can be replaced by the inertia of the 

charge-cloud. The new quasi-particle behaves as if it is free of the interactions 

with others. One-electron approximation serves as the basis of electron states 

description in solid-state crystals. In the quasi-particle sense, one electron actually 

refers to the collective excitation of a group of electrons and is the elementary 

excitation of valence electrons in solids. 

A considerable portion of the thesis will be devoted to exciton, which is 

another elementary excitation related to electrons in solid. Excitons are formed by 

negatively charged conduction-band electrons and positively charged valence­

band holes. The valence-band holes are created when electrons on valance band 

are excited into conduction band. They will have the same momentum but 

opposite charge as that of original electrons and can also be described by one­

electron approximation model. 

The solid-state system consisted of lattice ions and valence electrons (or 

phonon and electron as will be referred later on) can be put under various external 
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influences. The properties of solid-state material are directly dependent upon how 

a solid-state system responds to the external influences. Our central task is to 

study the optical properties of semiconductor quantum-well material. Thus it is 

essential for us to study how electrons/excitons behave under optical field. This 

lead to another important elementary excitation: photon. Under the elementary 

excitation framework, photons can be viewed as electromagnetic excitation of 

vacuum. For the applications in this thesis, however, we do not need to invoke the 

whole quantization theory of optical field. The optical field can still be largely 

described by classical Maxwell theory. More specially, optical field intensity is 

described by classical electromagnetic field, but optical field interacts with 

electrons through its quanta (photon) whose energy and momentum are defined by 

optical field frequency and wavelength. 

Among the above three quasi-particles described, electrons will experience 

profound changes when quantum confinements are presented in semiconductor 

material. On the other hand, phonons and photons will largely remain their three­

dimensional nature. In a large portion of this thesis, we will concentrate on 

electrons and electron-hole pairs in quantum well structures, and how they interact 

with photons and phonons. 

2.2 Electron states and exciton states in QW 
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Based on one-electron approximation discussed in the last section, electrons in 

semiconductor crystal can be described as free particle with effective mass 

different from that of electrons in vacuum. The one-electron approximation 

concept was introduced in the context of riding off the interaction among 

electrons. In real semiconductor crystal, we know there is background potential 

originated from the lattice ions. If we lump the interactions with other electrons 

and the ions together, an electron will see a periodic background potential. The 

state of electron in the periodic potential can be described by Bloch function. And 

the electron energy-momentum dispersion can be obtained using various methods 

such as tight-binding, pseudo-potential and k· P perturbation. The dispersions or 

band-structures as more often called can be very complicate. However, at the band 

edge that is of the most interest in investigating optical properties of 

semiconductor quantum structures, the dispersion can be approximated as 

parabolic function, which is the characteristic of a free particle. This suggests that 

we can replace an electron in crystal by a free electron but with different effective 

mass. The influence of crystal ions and other electrons have all been incorporated 

into the effective mass. One of our main tasks is to model electron states in a 

semiconductor crystal that has quantum confinement along one dimension and is 

under electric field, which now can be simplified as to model a free electron with 

an effective mass moves in the electrical potential brought by the quantum-well 

structure and applied electric field. 
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In the following sections we will present mathematical equations 

describing the electrons in QW based EAM. The formulations are based on k· P 

method that is implemented in Luttinger-Kohn Hamiltonian [29]. 

2.2.1 Electrons in conduction band 

The electrons in conduction bands can be described by Schr6dinger equation as 

(2.1) 

With the electron Hamiltonian being 

(2.2) 

Where Ec is the conduction band dispersion of bulk semiconductor material. Ve 

is the quantum well potential and the third term in equation (2.2) is the potential 

caused by electric field F . '1/, and E;e are the eigen function and eigen energy of 

electrons at i-th subband in quantum wells, respectively. k is the in-plane crystal 

momentum and Ze is the electron coordinate along the growth direction. 

Function '1/, in equation (2.1) represents only envelop of electron wave 

functions. The complete wave functions with periodic Bloch function can be 

written as 

(2.3) 
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In the above equation, the growth direction envelop and the in-plane envelop have 

been separated, because the quantum well confinement and electric field are just 

along z direction as shown in equation (2.2). The angular dependence of electron 

wave function has often been ignored. In fact, it will play an important role in 

exciton state mixing which will be discussed later. With angular dependence 

characterized by momentum quantum number 0' , the electron wave function can 

be expressed as 

(k ) - 1 ik·p. 1"( ) -/(T8 I ) 'l/i ,re --e Ji ze e Uc 27r 
(2.4) 

In equation (2.4), the k dependence of envelop function along z direction has been 

neglected since the bulk dispersion of conduction electrons is very close to 

parabolic. 

2.2.2 Holes in valence band 

Holes in valence band can be described by Schrodinger equations as 

(2.5) 
v' 

With the hole Hamiltonian being 

(2.6) 
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Where H;v' is Luttinger-Kohn Hamiltonian with v being the spin index of the 

hole. Luttinger-Kohn Hamiltonian is a 4 x 4 matrix if only the most significant 

band mixing between heavy-hole and light-hole is considered. IfIjv and EJ are the 

eigen function and eigen energy of holes at j-th subband in quantum wells, 

respectively. Zh is the hole coordinate along the growth direction. 

Function IfIj,' in equation (2.5) represents envelop of wave functions. The 

complete wave functions with periodic Bloch function can be written as 

(2.7) 

Where the Bloch functions luv ) are defined as It, v) 

(2.8) 

The different Bloch functions have different momentum quantum number v (-

3/2, -1/2, 112, 3/2) and therefore different angular dependences. Under axial 
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approximation, the hole wave functions with angular dependence will be modified 

as 

(2.9) 

2.2.3 Exciton states in QW 

The excitons are electron and hole pairs formed through Coulomb attraction 

between them. The exciton states are obtained by the following Schr6dinger 

equations 

(2.10) 

With 

(2.11) 

Where He and H:v' are the electron and hole Hamiltonians in Equations (2.2) 

and (2.6). VCotll is the Coulomb potential. The vectors re ,rh are the position 

vectors of electron and hole, respectively. 
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Exciton wave functions can be expanded on the base of the electron and hole 

envelop functions that have been obtained through solving Equations (2.1) and 

(2.5) as 

(2.12) 

The in-plane polar coordinate is given as P = Pe - Ph. The in-plane wave functions 

have been expanded in momentum space, because it is easier to incorporate 

valence band mixing into exciton formulation in momentum space. We will 

discuss the real-space model in the next chapter. Based on the expansion in 

equation (2.12), exciton equation in momentum space can be written as [22] 

(2.13) 

Where the kinetic energy term is 

T;j (k) = E,e (k) + E~' (k) . (2.14) 

The non-parabolic dispersions due to valence band mixing have been incorporated 

into EJ (k). 

The Coulomb potential energy term is given by 
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(2.15) 

With 

q = (k 2 + k'2 -2kk' cos ()yl2 (2.16) 

Where 1;, fJ are the indexes of exciton states. 

2.3 Exciton absorption and saturation in QW 

2.3.1 Excitonic absorption in QW 

Optical absorption in QW can be described by the perturbation theory of electron-

photon interaction [22],[41 ](Appendix A). Once the exciton wave functions are 

obtained, we can calculate its matrix elements or related oscillator strength. The 

oscillator strength per unit area for l;,fJ state of exciton is [22] 

(2.17) 

Where e is the polarization unit vector and Pc": the momentum matrix elements 

between conduction and valence Bloch functions of bulk semiconductor materials. 

The overlap integral between conduction and valence subbands are given by 
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(2.18) 

The delta function in equation (2.17) means only the contributions from 

~ = a + v are nonzero. 

The excitonic absorption coefficient is finally given by 

(2.19) 

Where c, nr , Lw and r are the speed of light, the quantum well width, the 

quantum well refractive index, and the linewidth due to various scattering, 

respectively. To study the electric field screening of EAM, we need to know the 

electric field dependence of absorption coefficient. F is the electric field in 

equations (2.2) and (2.6), it is implicitly included in the quantities such as f~,/3 

and EQ,/3 
ex . 

2.3.2 Exciton absorption saturation 

The exciton absorption saturation is originated from Pauli exclusion. In the case 

of free carriers generation, an electron in valance band absorbs a photon and 

transits to conduction band, the state in conduction band occupied by the electron 

then will not be available to the subsequently transitions of other electrons from 
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valance band. This is well-known band filling effect. In the case of exciton 

generation, the situation is more complex and can be described by phase-space 

filling theory. Although the theory of phase-space filling is elaborate, it gives a 

simple result that relates the basic exciton parameters to the exciton absorption 

saturation. The exciton saturation are characterized by exciton saturation density 

Ns that is given by phase-space filling as [10],[11]. 

(2.20) 

Where aD is the radius of exciton in quantum well and Eo the binding energy of 

the first excitonic state. Equation (2.20) allows an intuitive physics interpretation. 

After excitons (bound electron-hole pair) are created, they are quickly thermalized 

with free electron-hole pairs generated through the ionizations of the excitons or 

non-resonant carrier excitations. Due to Pauli principle, excitons and electrons 

will exclude each other in the phase space (~1 / aD ). As the carrier density 

increases, the probability to further generate excitons will diminish and thus 

excitonic optical absorption will saturate. Equation (2.20) states that the larger the 

radius of excitons (or the smaller the corresponding phase space), the smaller the 

exciton saturation density. The factor Eo / kbT means only a fraction of electrons 

occupy the phase space the exciton shares. 
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The exciton saturation density is connected to optical absorption saturation 

through 

(2.21) 

Where a o is absorption coefficient obtained in equation (2.19). N is the carrier 

density in quantum well. In equation (2.21) the populations of electron and hole 

are assumed equal. In the case of different populations of electron and hole, the 

exciton absorption saturation can be characterized by [12],[13] 

N Ne N" -=--+--
Ns NSe N s" 

(2.22) 

With 

(2.23) 

Where me and m" are effective mass of electron and holes. And the reduced 

effective mass mr is given by (mem" )/(me + m,,). Equation (2.23) indicates that 

electrons are easier to saturate than holes. This is because electrons have smaller 

effective mass and thus fewer states available at band edge. It also implies that 

from the standpoint to achieve strong saturation, it is desirable to have more 
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electrons rather than holes in quantum wells. The different saturation behaviors of 

electrons and holes will be investigated in details and be utilized to design highly 

nonlinear EAM later in this thesis. 

2.4 General Formulism Carrier Transport 

In this section, we will discuss the general formulation of carrier transport in order 

to pave the way to the carrier transport models we will use in our works, which 

will be described in the next section. 

2.4.1 Conceptual framework 

In the previous sections, we start our description of electrons in solid state with a 

perfect picture. Although an electron see a complex background potential in a 

crystal, it suffers no scattering when it moves through the structure. We have first 

considered the eigen states of electrons, and then the electron transition from one 

state to another through electron-photon interaction. The electrons at different 

states are considered in equilibrium that is established through various scattering 

mechanisms. Up to this point, no non-uniformity of any kind has been assumed. 

In real world environment, however, there is always non-uniformity exists due to 

external conditions such as electric field, carrier injection, heat conduction and so 

on. In this chapter we will address the issue how electrons evolve when non­

uniformities are present: carrier transport. 
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The theoretical description of electrons so far has been based on quantum 

mechanics. But the full quantum mechanics treatment of carrier transport is too 

complicated for practical applications. Thus semi-classical approach will be 

employed for carrier transport problem here. According to the uncertainty relation, 

an electron cannot have well-defined position and momentum at same time. For 

an electron with wavelength of loA in a space region of 1000 A, at micro-space 

level it has a well-defined momentum and an arbitrary position. But at macro­

space level we can treat the electron as ifit has a well-defined position. Figure 2-1 

illustrates this semi-classical picture of carrier transport. An electron's trajectory 

is made up "free flight" and instantaneous scatterings. During the "free flight" the 

electron is assumed a particle governed by the modified Newton's equations. The 

path of "free flight" is not necessary straight since electron is subject to external 

influence such as electric field. In scatterings the electron is assumed waves 

governed by quantum mechanics. The electron's state will change during the 

scattering processes. In the following, we will describe the carrier transport 

processes in terms of Boltzmann transport equation. 
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Collision 

Collision 

Figure 2-1 Schematic of semi-classical picture of carrier transport 

2.4.2 Boltzmann Transport Equation 

The electron system with the presence of non-uniformity can be described by 

distribution function f(k,r) . It represents the local occupation of the electrons in 

the state of k (crystal momentum) and in the neighborhood of r. Boltzmann 

transport equation governs how the distribution function changes with time due to 

the following reasons: 1) electrons move into and out of any volume element 

around r (diffusion); 2) electrons change their momentum under the influence of 

external force like electric field (drift); 3) electrons move from one k state to 
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another during scatterings. Mathematically, the Boltzmann transport equation can 

be written as 

(2.24) 

The Boltzmann equation provides a foundation to treat the carrier transport 

problem. However, it is difficult to solve equation (2.24). For instance, the 

scattering term in equation (2.24) is integration over k of an integrand that itself 

involves the distribution function. The Boltzmann equation can be further written 

in the form of balance equations, which are more often used in practical 

calculations. 

2.4.3 Balance Equations 

To derive the balance equations, we consider a general physical quantity ng 

defined by the average value of function g(k) as 

ng(r,t) = fg(k)f(r,k,t) dk 3 
(2n) 

(2.25) 

Multiply the Boltzmann equation (2.24) with g(k) and integrate over k-space, we 

obtain the balance equation as 

ang(r,t) 
-=----=-V·F +G +R at g g g (2.26) 
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Where the first tenn on the right represents a flux associated with ng and is given 

by 

F (r,t) = fg(k)v f dk 3 
g (2n-) 

(2.27) 

Here v is the group velocity of an electron. The second tern is the generation tenn 

given by 

G =eF·ffV g~ 
g p (2nY 

(2.28) 

Here p is momentum of an electron. The third tern is the recombination tenn 

given by 

1 0 
R = -[ng (r,t) - ng (r,t)] 

g r 
g 

(2.29) 

Where r g is the average relaxation time. Here the relaxation time approximation 

has been used. Under the approximation, the distribution function is not far away 

from its equilibrium. Therefore, the change rate of the distribution function is 

proportional to the perturbation of the distribution function. The proportional 

coefficient is the inverse of the relaxation time. 

Now we derive the two most commonly used balance equations. 

To obtain the balance equation of the carrier density, we can put g(k) = 1 

so that ng = n, the carrier density. The flux tenn will be J I e with J being the 
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electron current density. The generation and recombination terms are zero. The 

balance equation is 

an 1 
-=--V·J at e 

This is simply the current continuity equation. 

(2.30) 

The momentum balance equation can be obtained by setting g(k) = p. 

Substituting this equation into (2.26) and after some mathematical manipulations 

[28], we can obtain the electron current density as 

J =nepF-eDVn-eSVT (2.31) 

Where /-l is the electron mobility. D is the diffusion coefficient and S is the Soret 

coefficient. These coefficients are defined as 

D = kBT p, 
e 

(2.32) 

Equation (2.31) is the drift-diffusion equation. The current continuity equation 

(2.30) and the drift-diffusion equation (2.31) form the core the carrier transport 

model. In the next section, we will apply them to model the carrier sweep-out in 

quantum-well EA modulators. 

2.5 Drift-Diffusion Based Transport Model 

As just shown in the above, the carrier transport can be broken down into three 

components: drift, diffusion and thermal. In our studies, the carrier dynamics in 
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quantum-well regions is of primary interest. Temperature there can be considered 

as constant and thus we need consider the drift and diffusion terms only. As 

shown in equation (2.31), the drift current is determined by electric field. To 

obtain the electric field, the drift-diffusion equations of electron and hole have to 

be solved along with Poisson equation. The drift-diffusion equations and Poisson 

equation are often called semiconductor equations and they have been applied to 

various semiconductor devices. Here we will use them to describe EAM, which is 

essentially a PIN diode from the semiconductor device point of view. However, 

conventional semiconductor equations are only strictly valid for bulk devices. 

Modification needs to be made for quantum-well devices. In QW devices the 

electron and holes can be distinguished as 3D carriers (bulk states) and 2D 

(quantized states) carriers [15],[34],[35]. Two drift-diffusion equations are needed 

for 3D electrons and holes that are distributed through the whole device. Two 

Rate equations are needed for 2D electrons and holes in quantum well regions. 

The 3D carriers and the 2D carriers are connected through capture and escape 

processes in quantum wells. 

In the following, we will discuss these equations one by one. 

2.5.1 Bulk Continuity Equations 

The 3D electron and hole transport are described by two continuity equations as 
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an =~ aJII -R+G 
at e ax n 

ap 1 aJp -=--+R+G at e ax p 

33 

(2.33) 

(2.34) 

Where n and p are the density of 3D electrons and holes, and I n and J p the 

current densities of 3D electrons and holes, respectively. R is the recombination 

term. Gn and G p are the generation terms which will be defined later. The current 

densities are further written as drift component and diffusion component as 

follows 

dn d¢ 
I n = eDIl --ef.1"n-

dx dx 
(2.35) 

dp d¢ 
J = -eD --ef.1 p-

p Pdx P dx 
(2.36) 

with Dn and Dp being the diffusion coefficient and f.1n and f.1 p being mobility 

for electrons and holes, respectively. ¢ is electrical potential. The current density 

cross hetero-junctions are given by [36] 

(2.37) 

(2.38) 
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Where VI/A and V pA are the thermal velocities of electrons and holes. n A and p A 

are the electron and hole density at A side, and n AD and PAD the would-be 

electron and hole density at A side if the quasi-Fermi levels at both sides are 

assumed same. '7 is the coefficient accounting for the tunneling through the 

hetero-barriers. 

2.5.2 Carrier Transport between well and barriers 

The dynamics of 2D electrons and holes in the i-th quantum well can be described 

by rate equations as 

dn~D Gi , i 
--=- I/+R2D +GW dt 

(2.39) 

dp~D = -G' +R' +G' 
dt p 2D 2D 

(2.40) 

Where G,; and G ~ connect equations (2.33) and (2.34) to equations (2.39) and 

(2.40), representing the exchange between 20 carriers and 3D carriers in quantum 

well regions. They are given by 

I i, 

G' =_(nW -~) 
1/ L n 1/ 

W Tesc Tcap 

(2.41) 
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(2.42) 

Where n;D and n I are the densities of 2D and 3D electrons in the i-th well and 

P;D and pi the densities of 2D and 3D holes in the i-th well. The escape times 

are defined as [15],[37] 

Tn = [21[mJ~)X ex (E~ - Et) 
esc k T P k T 

b b 

(2.43) 

(2.44) 

Here Et and Et are the first quantum energy level of electron and holes, E~ and 

E; are the barrier potentials of electron and holes, respectively. The capture times 

T;~p and T:"p can be obtained at the condition where the 3D and 2D carriers are in 

thermal equilibrium. In the dynamic processes we discuss in this thesis, the 3D 

and 2D carriers actually are away from equilibrium. The use the capture times at 

thermal equilibrium for these dynamic processes means that we have assumed the 

capture and escape processes are the linear processes around the equilibrium [34]. 

The carrier escape formulations in equations (2.43) and (2.44) are based 

on thermionic emission of electrons. The thermionic emission model [37] has 
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been widely used to describe the carrier escape out of quantum wells. However, it 

should be pointed out that the thermionic emission description will break down 

when the quantum wells become shallow [38]. In principle, the electron escape 

out of quantum wells is through scattering of optical phonons. Ref. [38] shows 

that for shallow quantum wells, the first principle model instead of thermonic 

emission model has to be used. In chapter 5, we further shows that the Coulomb 

correlation of the electrons and holes has also to be considered in the escape of 

electrons and holes out of shallow quantum wells. In other word, we need to deal 

with exciton escape instead of electron escape. 

In EAM, the carrier generations are through optical absorption as 

(2.45) 

Where a is the material absorption coefficient given by equation (2.19) in the 

previous section. v g is the group velocity S is photon density in the i-th well. 

2.5.3 Poisson Equations 

Finally, Poisson equation that governs the electric field is written as 

d ( d¢) - 8- = e(p-n+ND -NA ) 
dx dx 

(2.46) 
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Where N D and N A are the donor and acceptor concentrations. The electron and 

hole density p and n here refer the summation of 2D and 3D carriers in QW 

regions and 3D carriers only in other regions. When an optical signal is incident 

upon EAM, it will generate 2D electrons and holes inside quantum well. 

Subsequently, these 2D carriers will be swept out of quantum well and become 

3D carriers. These 2D and 3D carriers will generate additional electric field that 

will screen the original electric field in quantum well regions. This electric field 

screening will modify optical absorption through electro-absorption effects. The 

electric field screening is one of most important absorption saturation mechanisms 

to which we will revisit later. 

2.6 Numerical Solutions of Model Equations 

Many numerical techques have been used to solve the above equations. In the 

following, the key points of the numerical techques have been summarized. The 

details of implementations can be found in [20]~[23],[27],[53]. 

2.6.1 Electron state equations 

Electron equations (2.1) and (2.5) are often solved using methods such as transfer 

matrix method (TMM) [30], shooting method [45], finite difference method 

(FDM) and finite element method [46]. We have used finite difference method. 
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FDM has the appeal of straightforward numerical implementation and easy 

adoption to various geometrical structures. Another advantage is that discretized 

equation of FDM can be solved through well-developed eigen equation package, 

eigen value will be fully accounted for. This is contrast to the case of "roots 

searching" in other methods where some close solutions can be easily missed. The 

drawback ofFDM is that it is not as fast as the methods described in [30] [45]. 

2.6.2 Exciton state equations 

The eigen energy and eigen functions E~f3 and ¢,;~f of excitons in equation (2.13) 

can be obtained either variationally [32] or numerically [21][22]. Variational 

methods are often accurate in eigen energy but could induce inaccuracy in eigen 

function as much as 30% [33]. For numerical methods, the difficult is to treat the 

singularity due to Coulomb potential and computation time of multi-fold integrals. 

In our model, the modified Gaussian quadrature method [21][22] has been 

employed to remove the singularity and obtain numerical solutions of integral 

equation (2.13). Some mathematical manipulations are used to speed up the 

computation. 
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2.6.3 Drift-diffusion equations 

Due to the drastical variation of carrier density in semiconductor devices and the 

inherent nonlinearity of the equations, drift-diffusion equations are usually 

difficult to solve, especially for the structure with high hetero-junction barriers as 

we encounter in our structure. Their solution techniques have been studied 

extensively [23],[27]. We have adopted a variation of Newton's method, similar 

to that in Ref. [23]. For 2D electron and hole rate equations, ordinary forward 

Euler method has been used. 

2.6.4 Integration of all model equations 

A self-consistent integration of models in this chapter is achieved as follows. The 

optical absorption is calculated as function of electric field based on the models in 

Section 2.3 (Equations (2.19) and (2.21) ). The carrier transport models in Section 

2.5 will self-consistently calculate the electric field inside EAM using the optical 

absorption obtained in Section 2.3. The optical absorption acts as a generation 

term in quantum well regions in the rate equations of 2D carrier in quantum wells 

(Equations (2.39), (2.40) and (2.45)). 



Chapter 3 

Modeling of Electron States in QW 

UsingPML 

3.1 Introduction 

As discussed in Chapter 2, the modeling of optical absorption in semiconductor 

quantum wells requires the consideration of three physics problems: electron 

states, exciton states and optical transitions. In Chapter 2 these physics have been 

addressed in a comprehensive manner, including full account of valence band 

mixing and exciton state mixing. For many engineering applications, however, a 

simple and efficient approach may be preferable. In this chapter we will develop 

an optical absorption model based on simple parabolic band structure for both 

electrons and holes, apply it to practical device structures and compare the 

simulation results with measured data. 

From the modeling point of view, we will also address the issue of electron 

states in quantum wells with shallow barrier potentials or under strong applied 

electric field. Leaky waves in such structures are of mathematical and practical 

interest [39]~[ 44]. In EA modulators, the electric potentials of the quantum wells 

40 
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and barriers are tilted due to an applied electric field. Consequently, there are 

strictly speaking no bound states like those in a quantum well with flat potential 

barrier. All states are unbound and their energy spectrum continuous. This 

situation poses a significant challenge for the modeling and analysis for the 

electron states in the quantum wells under the electric fields, especially for highly 

tilted and/or shallow quantum well where electron wave leakage is strong. 

Several methods have been used to solve this problem [40]~[ 45]. One of 

the approaches is based on the discrete state representation of continuous states 

[45]. Using a potential barrier of infinite height at the edges of the computation 

window, the continuous unbound states are reduced to a set of discrete states that 

are bounded in the large domain defined by the infinite potential barriers. This 

boundary condition has been applied only to cases from weak to moderate electric 

field where the electron is largely confined by the quantum well barrier potential 

and the leakage due to the tunneling is small. Under this condition, a bound state 

of a flat potential well becomes a little leaky and practically can still be 

approximated by a discrete state obtained through infinite barriers condition (IBC). 

But can IBC be extended to strong electric field case where electron wave leakage 

is large? Theoretically speaking, if the number of discrete states is large enough, 

we can approximate accurately enough continuous unbounded states with discrete 

states. We will examine if this approach is practical, especially in calculating 

excitonic absorption. 
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Another approach is based on the quasi-bound state representation 

[40]-[ 42]. Besides the discrete state representation, it has been shown in [47],[48] 

that in a complex plane continuous unbound states can be represented by a small 

number of discrete complex quasi-bound states plus a branch integral. For many 

applications, the branch integral can be neglected. Thus the discrete complex 

quasi-bound states may serve as a convenient, yet accurate representation of the 

continuous unbound states. Furthermore, the imaginary parts of the complex 

energy eigen values of the quasi-bound states can be considered as the electron 

life time in the quantum wells due to tunneling. The quasi-bound states defined by 

the complex theory, however, are difficult to deal with numerically as the wave 

functions diverge beyond a certain distance away from the wells and cannot be 

readily normalized. The boundary condition employing the perfectly matched 

layer (PML) has been used to obtain the quasi-bound state numerically. 

The PML boundary condition was originally proposed by Berenger [49] 

for the finite-difference time-domain solution of Maxwell's equations in a finite 

computation domain without reflection from the numerical boundaries. It was 

later introduced to solutions of Helmholtz equations in the context of one-way 

propagation [50] and mode solutions [51]. The application of the PML for 

Schrodinger equations leads to complex quasi-bound states, similar to the leaky 

modes in the electromagnetic waveguides. The PML, which is usually terminated 

by the transparent boundary condition, has been used to analyze the electron states 
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and was shown to result in reduction of the computation time in order of 

magnitude over infinite barrier boundary condition and more accurate than the 

absorbing boundary condition (ABC) by a factor of two [52]. The PML can also 

be terminated by an infinite potential barrier [53], in this chapter we will focus on 

this boundary condition and apply it into quasi-state analysis in tilted quantum 

wells. 

The boundary condition of PML backed up with infinite barriers has 

several advantages. Conceptually, the quasi-bound states are well defined in terms 

of orthogonality and normalization of the wave functions. This is in contrast to the 

quasi-bound state in the open structure as obtained using the PML in combination 

with the transparent boundary condition. In terms of numerical computation 

efficiency, the computation algorithm does not need the outer iteration loop 

required for the transparent boundary condition and therefore is more efficient. 

Finally, an infinite potential barrier means the wave function instead of its 

derivative will be zero at the very end of the boundary, which makes it easy to 

extend to the case where multiple electron states such as heavy-hole and light-hole 

and their band mixing are presented. 

In the following sections, first, we will first carry out some fundamental 

studies on the PML boundary condition, and how it affects the bound, quasi­

bound, and unbounded states. It mainly focuses on flat quantum wells where an 

analytical formulation can be used to facilitate the discussion. Then, we apply the 
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IEC and PML+IBC to tilted quantum wells. Next, the different electron state 

representations are incorporated into and compared in the absorption calculation. 

Finally, the numerical results are compared with experiment data. 

3.2 Electron States 

In the following, both electrons and holes are assumed to have parabolic 

dispersion. They differ only in effective mass and potential barrier height. 

3.2.1 Electron wave equation with PML 

In the presence of the PML, the electron wave equation with tilted quantum well 

potential can be written as [53] 

d 1 dqJ 2 
-(--)--(V +eFz-E )rn =0. dz m * dz ti 2 z 't' 

(3.1) 

Where rp is the wave function, m* is the effective mass of electrons or holes, F is 

the applied electric field along z (the growth direction), V is the well potential, 

and E z is the electron eigen energy. The spatial variable z is defined as 

z = r a(zl)dzl (3.2) 

And the parameter a is defined as 
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{
I Non-PML Region 

a= l+(K-l)J(z)-jaoJ(z) PMLRegion 
(3.3) 

Where K is the parameter that can adjust the effective PML length and ao is the 

PML attenuation parameter and fez) is the function for normalized PML profile. 

Equation (3.1) becomes complex equation due to the presence of the PML region. 

E 

PML PML 

d 
I pml I < )( 

Figure 3-1 Band diagram of quantum well without electric field. The infmite potential barriers are 

placed at the end ofPML 

3.2.2 Confined electron states with PML 

It IS instructive to consider a special case with flat barrier potential where 
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analytical solutions exist. For the electron states confined in the quantum well 

with flat potential as shown in Figure 3-1, the analytical solutions for the eigen 

functions are: 

sin[( (z + d)] 

sin[k~(-dw +d)] 
cos(kzz) 

cos(kzd w) 
sin[k~ (z - d)] 

sin[k~(dw -d)] 

Where the d is 

-d < z < -dw 

d > z > d w 

And the complex thickness of the PML is defined as 

d PML = rpML 

a(z ')dz' 

or more explicitly if 1(' and fez) in equation (3.3) are taken as 1, we have: 

And the eigen values are obtained from characteristic equation 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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Where the wave vectors are 

(3.9) 

(3.10) 

The complete set of eigen-states of the quantum well consists of discrete bound 

and continuous unbound states. To better illustrate how the PML affects the 

continuous unbound states, we introduce the total energy and the in-plane energy 

Ell that represents the electron movement in the quantum well plane. Let us first 

examine the bound states for which E - Ell is positive and E - Vo - Ell negative 

(see Figure 3-1). And then kz will be real and k~ be imaginary. Writing k; = ir ' 

equation (3.8) can be re-written as 

(3.11 ) 

It is noted that, when the PML is placed sufficiently far from the well, the first 

tenns in the dominator and the numerator can be neglected. As a result, equation 

(3.11) is reduced to 
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(3.12) 

This is the characteristic equation of the quantum well treated as an open 

structure. We can see that the bound states of the quantum well are not much 

affected by the presence of the PML. 
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Figure 3-2 Eigen spectrum of electron in quantum well terminated by PML plus infinite barrier 

In general, equation (3.8) can be solved by a tracking algorithm for complex roots 

and the eigen values are shown in Figure 3-2 for different PML parameters. The 

quantum well of 100.0 meV deep and 12nm wide are simulated. The electron total 
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energy of 200.0 meV and free electron mass are assumed in the calculation. 3nm 

PML regions are placed at both side and PML regions are terminated by infinite 

barriers. The attenuation of the PML is taken as constant 0.0, 2.0, 4.0 and 8.0. In 

Figure 3-2, the bound state is represented by the point on the real axis above 

1 OOme V. When attenuation of PML changes, the positions of the bound states stay 

fixed and hence not affected by the existence of the PML. When the PML 

attenuation parameter a o is zero, the continuous states fall into the range of O~ 100 

meV, whereas the evanescent states fall below zero. As the PML attenuation 

increases, the energies become complex with decreasing real parts and increasing 

imaginary parts. 

The wave functions of bound state obtained with and without the PML are 

plotted in Figure 3-3. For the bound states, we can hardly see any difference with 

or without the PML in non-PML region. For the unbounded states, we need make 

some distinctions. One category of un-bounded states may be termed as the PML 

states as these electrons have significant presence in the PML region and their 

behaviors are affected strongly by the PML attenuation. Another category is the 

leaky states primarily concentrate in the non-PML region. In the flat quantum well 

case, these leaky states correspond to the continuous states with real k vector. In 

the tilted quantum well, they become the quasi-bound states and will have both 

real and imaginary parts for the k vector. They are in fact similar in the non-PML 
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region to the quasi-bound states in the open structure. It should be pointed out that 

the quasi-bound states in the open structure are mathematically different from 

these quasi-bound states as they are not orthogonal and normalizable in real space. 

For the quasi-bound states in the PML closed structure, they are orthogonal and 

normalizable in real space and form a complete set of base functions. 
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Figure 3-3 Wave functions of various electron states in quantum well without applied electrical 

field 



Chapter 3. Modeling of Electron States in QW using PML 51 

3.2.3 Electron states under electric field 

For the electron states of the quantum well in the presence of the external electric 

fields, analytical solutions are difficult to obtain when the PML layer is included 

and we will have to resort to numerical solutions. Equation (3.1) can be solved 

numerically using the finite-difference method. The attenuation in the PML is 

chosen as 

a = - jaofCz) = - jao(-z-)", 
d PML 

(3.13) 

Where z is measured from the start of PML region. The extent of attenuation is 

determined by a o and the profile function. f(z) is chosen such that the amplitude 

of the wave function decays to a value sufficiently small at the PML boundary. 

The profile function f(z) is usually taken as power function of order m. 

Comparing equation (3.13) with equation (3.3), the parameter K in equation (3.3) 

has been taken as 1. In general, K term can adjust the effective PML length and 

therefore may improve the efficiency of PML for some applications. For the tilted 

quantum well case, we have found that the attenuation in equation (3.13) works 

sufficiently well. For the sake of simplicity, this effective length term has been 

dropped by setting K as 1. 
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Figure 3-4 Band diagram of quantum well with applied electric field lOOkV/cm. The infinite 

potential barriers are placed at both end and PML region in last 30nm 

A quantum well of Alo.7 GaO.3 As / GaAs is numerically solved for the cases with 

the presence of the applied electric field. The quantum well width is 8.5nm. The 

band diagram is shown in Figure 3-4 for the case offield 100 kV/cm. The PML is 

placed at the left side for electrons and the right side for holes. Infinite potentials 

are used at the edges of the computation window on both sides. For moderate 

electric field (i.e., 100 k V /cm) the wave functions of electron calculated with and 



Chapter 3. Modeling of Electron States in QW using PML 53 

without PML are plotted in Figure 3-5. We can hardly see any difference between 

the wave functions obtained for different boundary conditions. For strong electric 

field of 200 kV/cm, the boundary with PML yields only one quasi-bound state 

(Figure 3-6b), yet the boundary with the infinite barrier only produces several 

discrete states. The state with strongest confinement is plotted in Figure 3-6a. We 

have computed this state assuming slightly different window sizes, i.e., I 19.2run, 

120.0nm and 120.8nm, respectively. We note that the wave functions produced by 

the infinite barrier boundary condition are highly sensitive to the computation 

window sizes, a phenomenon not observed for that obtained by the use ofPML. 
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Figure 3-5 Wave function for moderate electric field 100 kV/cm 
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The dependence of eigen-values on the window size is also examined in Figure 

3-7 for two different boundary conditions. The electric field is 200 kV/cm. The 

solid line represents the eigen energy obtained by the infinite barrier and exhibits 

under-damped oscillation as the window size increases. The PML solution gives 

complex energy E = Er - jE,. The real part stands for the center position of the 

energy level and the imaginary part represents the broadening of the energy level 

of the titled quantum wells due to tunneling of electronslholes. 2E, is the full 

width of half maximum of energy broadening and can be further related to 

electron lifetime by r = n 12Ei • The complex energy calculated using different 

computation window size has been plotted in Figure 3-7. The dash line represents 

the real part of the eigen energy for the quasi bound state calculated by the 

addition of the PML, which shows very little variations with the change of 

window size. The small variation of dash line is due to various numerical factors 

and is much less than the energy broadening which is represented by imaginary 

energy: the dotted line in Figure 3-7. Note that the energy levels obtained from the 

solutions without PML are always real and therefore the energy broadening 

effects may not be readily modeled. 
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To validate the model based on PML plus infinite potential barrier boundary 

condition, we have compared the complex energy eigen values obtained by other 

methods, quasi-bound states in open structures calculated by the Airy functions 

[40],[ 41]. The imaginary energies obtained by Airy functions method and by PML 

method are shown in Figure 3-8 and very good agreement has been found for the 

two models. 

3.3 States of Exciton 

The excitons formed through Coulomb attraction of conduction electrons and 

valence holes are governed by the following Schrodinger equations 

(3.14) 

Where He and H" are the conduction band and valence band Hamiltonians in 

equation (3.1). The vectors fe,fk are the position vectors of electron and hole, 

respectively. 

After solving equation (3.1) for electrons and holes, exciton wave 

functions can then be expanded on the base of the quantum well envelop functions 

as 
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<!J(re,rh ) = F(p,ze,zh) = L¢lj (p)!; (zJgj(z,,) (3.15) 
i.j 

The Z e ,Z k are the longitudinal coordinates along growth direction. The in-plane 

coordinate is given by P = Pe - Ph' Index i, j are for subbands of conduction 

electrons and valence holes. 

Substitute equation (3.15) into equation (3.14), multiply 1;*(ze) and g;(Zh) ' and 

integrate over Ze and Zh' We obtain the exciton equation in the real-space as 

(3.16) 

with 

1 1 1 
-=-+-• * 

(3.17) 
mr me// mh!! 

(3.18) 
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m;// and m;'// are the in-plane effective masses of electrons and holes, different 

from the longitudinal effective masses in equation (3.1). Ee;: is the exciton binding 

energy. 

In equation (3.16), the tenns in the summation represent the coupling 

between the sub-bands due to Coulomb potential. They nonnally can be ignored 

when the differences of the sub-bands are much larger than the exciton binding 

energy. In the case where the infinite potential barrier is used as the boundary 

condition for a strongly tilted quantum well, one nonnal sub-band will be 

represented by a number of discrete states. The summation tenns may represent 

the coupling between these discrete states. 

The variational method is often used to solve equation (3. I 6) [32]. For 

instance, in the case where the coupling tenns in equation (3.16) can be dropped, 

we only need to solve for the exciton state associated with one conduction 

subband and one valence subband. For the ground state Is, a simple trial function 

is chosen as [54] 

(3.20) 

where 
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11,= ao 

fJ' 
(3.21) 

fJ is obtained through minimizing 

(3.22) 

where C ex is the normalized exciton binding energy C ex = E ex / R y 

Ry = mr e4 
/ 2tz 2 (41[8.)2 . The function G(x) is an integral defined as 

r te-I 
G(x) = dt 2 2 1/2 

(t +x ) 
(3.23) 

3.4 Optical absorption 

Based on the formulation of optical absorption of semiconductor quantum wells in 

Appendix A, the optical absorption coefficient can be expressed as [54] 

(3.24) 
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where (r (0) is the wave function at the center which represents the probability to 

find the electron and hole in the same cell. I,j is the overlap between electron and 

hole wave functions along z direction. ~?-' (0) is solution of equation (3.16) and I,j 

is of equation (3.1). Other parameters have their normal meanings. 
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Figure 3-9 Optical absorption calculated using electron wave functions from PML plus infinite 

barriers and from infinite barrier only for different electric field strength 

We first calculate the exciton absorption based on the states in Figure 3-5 

and Figure 3-6 and the results are shown in Figure 3-9. For moderate electric field 

of 100.0 kV/cm, there is little difference between the states with and without PML 



62 Chapter 3. Modeling of Electron States in QW using PML 

as shown in Figure 3-5. Consequently, their spectra match well as shown by solid 

and dash lines in Figure 3-9. For strong electric field of 200kV/cm, the complex 

quasi-bound state from PML yields one absorption curve (dash-dot line) whereas 

the states without PML will give a range of solution for the different computation 

window sizes. The dotted curve in Figure 3-9 is calculated using the state in 

Figure 3-6a that from 119.2nm window size (solid line in Figure 3-6a). The dotted 

curve is far away from the PML result. The problem is inherited for the states 

obtaining by infinite potential boundary condition. In the following, we wiIl have 

a close examination of this problem. 

An infinite potential is fully reflective and will make the continuous states 

of tilted quantum wells discrete. The energy spacing between discrete neighboring 

states is roughly inversely proportional to the square of computation domain size. 

For the field of 200kV//cm, we have calculated the energy spreading of quasi 

bound state is about O.2meV. For nonnal window size of hundred nanometers for 

a quantum well at the size of 10nm, the energy space between two neighboring 

discrete states will be a few meV. Thus for accurate description ofO.2meV energy 

spreading using discrete states, we need a window size of 106 nm. The huge 

window size is practically impossible for numerical implementation. In addition, 

to obtain the optical absorption fonnula equation (3.24), it has been assumed that 

the domain of the electron wave is much smaller than the optical wavelength 

(~1 03 nm) so that the optical vector potential in photon-electron interaction can be 
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considered as constant. If the electron waves spread in a domain of size 106 nm, 

the optical absorption formulation will not be valid anymore. In other words, from 

a pure state expansion point of view, the continuous states in a tilted quantum well 

can be either represented by quasi-bound states of PML or a set of discrete states 

of an infinite potential. But the discrete states cannot be used for absorption 

calculation for the strong field case. 

We have also calculated the exciton electro-absorption of a quantum well 

based on GaAslnP IGaAsInP material system. The structure is taken from 

reference [44], which is an InGaAsP quantum well of 1.2% compressive strain 

with 1.1 urn InGaAsP barrier. The well width is 10nm. In general, the well depths 

are shallower in InP material system than in GaAs system. An electric field of 150 

kV/cm can be considered strong for InP system. We have also calculated the 

absorption under various electric fields from 0.0 to 150.0 (kV/cm). The sub-bands 

considered include CB 1, HHl, HH2 and LHl, which are relevant to the 

absorption of interest around the 1.55 urn wavelength range. The calculation is 

done for the quasi-bound state representation only. The results are compared with 

those in [44]. The absorption has been calculated using Landau's model and also 

experimentally measured in [44]. Our simulation results (solid lines) and the 

theoretical results (dashed lines) from [44] are shown in Figure 3-10a and the 

experimental measurements in Figure 3-1 Ob. Good agreement is achieved between 

our simulation and the theoretical/experimental results in the said reference. The 
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PML parameters are 10nm of d PML at 0.5 of ao for the calculation. The exciton 

peaks shift towards longer wavelength and the exciton broadenings under strong 

fields appear to be larger in the calculated spectra which may be attributed to a 

lack of accuracy for the band gap parameters of the strained material and the 

uncertainty of the ratio between the conduction band and valence band 

discontinuities. 

3.5 Conclusions 

The boundary condition of the perfect matched layer terminated by the infinite 

potential is used for the state analysis of electron waves in tilted quantum wells. 

The quasi-bound quantum well under strong electric field can be fast and 

accurately solved using numerical methods such as FDM and are readily 

normalized in real space. The quasi-bound states can be conveniently incorporated 

into the exciton absorption model of quantum wells, and the imaginary part of the 

eigen energy of the quasi-bound state also gives the energy level broadening. The 

boundary condition used here can also be applied to the electron state analysis of 

other nanostructures [56]. 



Chapter 4 

Exciton-State Mixing Effects on Optical 

Transitions 

4.1 Introduction 

The wavelength converters used in optical networks are often based on optical 

nonlinearity of interband transitions. Recently, the idea to enhance the optical 

nonlinearity in undoped semiconductor QW by coupling interband transition and 

intersubband transitions (1ST) has been proposed [57]. By utilizing the 

intersubband transition, higher-order nonlinearity becomes accessible and this 

opens up the potential of ultra-fast optical nonlinearity. To realize such novel 

devices, we need to study photo-induced intersubband transitions (PI 1ST). In n­

type QWs an infrared light can lead to excitation of electrons from the heavily 

populated conduction ground subband to an upper one. In undoped QWs, 

however, such a process requires simultaneous application of an interband optical 

field to excite electrons (and holes). This is called photo-induced intersubband 

transitions [58]. In contrast to the ISTs in n-doped QWs, PI ISTs happen in the 

presence of the photo-excited holes that are simultaneously generated by the 

66 



Chapter 4. Exciton State Mixing Effects in Optical Transitions 67 

interband optical field. Therefore, as shown in [59], Coulomb interaction between 

the photo-excited electrons and holes can drastically influence such transitions. In 

other words, Coulomb interaction makes PI ISTs strongly excitonic in nature. In 

this chapter, we will consider the excitonic nature of PI ISTs. 

In the previous studies [59],[60], the effects of excitonic states on PI ISTs 

were studied considering only excitation of s-state excitons. Just the transitions 

between the 1 sand 2s states of the excitons associated with eland e2 were 

included (Figure 4-1). It is known, however, that when two valence subbands are 

close tegother, exciton states are no longer pure, i.e., they cannot be described by 

a single orbital angular momentum (m). Under such a condition the interband 

selection rules that only allow formation of excitons with zero orbital angular 

momentum (m=O) are relaxed. Therefore, depending on the QW parameters, an 

exciton state can be a mixture of various m (s, p, d, etc.) [61]. Our objective in this 

chapter is to study how such an excitonic angular mixing process influences the PI 

ISTs and discuss how it can characteristically determine the physical nature of the 

interaction between intense infrared laser fields and un-doped QWs. We show that 

when such a mixing process occurs an infrared laser nearly resonant with el and 

e2 can in fact lead to intersubband excitations with different angular momentum 

attributions, imitating the electronic transitions in quantum dots [62]. Under this 

condition, the 1ST between el and e2 can be translated into transitions between s, 

p or d states of the excitons associated and el with those of the excitons associated 
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with e2. It will be shown in the following how the presence of non s-state 

components will affect the oscillator strengths of the PI ISTs and how they can be 

engineered by the strain in QWs. 

4.2 Formulations 

e2 

el 

hhl 
lhl 

(a) 

e2-hhl 

el-hhl 

G 

2s 
Is Ifi 

2s '1/)2 

Is 

G 

(b) (c) 

Figure 4-1 Schematic diagram of the intersubband transitions in an un-doped QW. (a) The 

electronic e l-e2 transition, (b) The transitions between pure s states of the excitons associated with 

el and e2, (c) The transition between mixed exciton states. 

As demonstrated in [59], an important feature of PI ISTs in un-doped QWs is that 

although they happen as electrons are excited from one conduction subband (el) 

to anther (e2) (Figure 4-1 a), they are in fact the transitions between exciton states 
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associated with these subbands (e.g., from Is, 2s of the el-hhl exciton to Is, 2s of 

the e2-hh 1 exciton, Figure 4-1 b). In Figure 4-1 b, however, the exciton states are 

associated with only one conduction subband and one valence subband. This is 

valid only when the valence subbands are well separated from each other. When 

the valence subbands are close to each other, for instance, in the cases of wide or 

properly strained QWs, the exciton states associated with individual valence 

subbands may mix together [61]. In the presence of such a mixing process the 

exciton states associated with the i th conduction subband will be represented as 

[61],[63] 

'¥f (re,rh ) = :L'¥ff = :L¢// (k)~i(k, rJ~j(-k,rh)' (4.1) 
j j,k 

where ,¥~,jJ IS the two-band exciton state associated with the i th conduction '.j 

subband and j th valence subband. q is the total angular momentum along z 

direction (the growth direction) and fJ is the exciton index, i.e., Is, 2p, and 3d. 

The mixed exciton state ,¥,q is characterized by the i th conduction subband and 

q. In contrast to '¥,~/ that represents pure s states or p states, etc. and has been 

discussed in Ref. [59], '1'/ describes mixed states of s, p or d states associated 

with different valence subbands. Under the condition of state mixing, the PI ISTs 

associated with el and e2 (Figure 4-1a) are in fact happening between mixed 

states associated with these two subbands, i.e., from '1'12 to '1'; (Figure 4-1c). 
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The exciton wave functions can be further written as product of three 

functions as the second equation in (4.1). 1jI, (k, fe) and IjIj (-k, f h ) are the 

electron and hole wave functions in quantum wells without Coulomb interaction. 

¢// (k) is the exciton state function in momentum space that describes the 

relative movement between electrons and holes due to Coulomb attraction. The 

wave functions ¢;,k (fe) and ¢j,-k (fh ) have been studied extensively before 

[30],[31]. As shown in equations (2.4) and (2.9), they can be expressed as product 

of the envelope function and Bloch function of electrons and holes. And as 

equation (2.5) shows that the wave function of one valence subband can have 

components of different spinors v. The extent of spinor mixing in a subband can 

be characterized by the valence band mixing factor (VBMF) defined as 

(4.2) 

To study the effect of hole Coulomb mixing effects in the PI 1ST, we need to 

calculate the dipole moment associated with such transitions: 

(4.3) 

To proceed with this calculation, we note that in (2.4) and (2.9), the azimuthally 

angular dependences of electron and hole wave functions are separated out and 

their envelope functions become function of scalar k only. Similarly, we can write 

the exciton envelope function as 
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(4.4) 

This allows us to write exciton states as 

\}I,; == I\}I,:/ == IIF;~j:" , (4.5) 
j j I' 

where 

Fq:fJ = f dk rnq,? eik'(p,-Pb) el(q-CT-V)j (z )u g. (k z )u 
',j,1' (2.71")312 't'1,j , e C j,V 'h v 

(4.6) 

This equation shows m == ~ - () - v. An exciton state as described by equation 

(4.1) can potentially has electron spinor of () = -1/2, 112 and hole spinor of v=-

3/2, -112, 112, 3/2. Because of the total angular momentum conservation, 

however, only the combination giving the same ~ will be allowed. In fact in the 

presence of the hole Coulomb mixing effect, ~ is the only well-defined quantum 

number that can describe exciton states. We are interested in two representative 

states: ~=2 state and ~=O state. We use the designation that at k = 0 heavy-hole 

subband HH1 has only v =312 component and light-hole subband LHI has only 

v = -112 component, and choose () as 1/2. Thus ~ =2 state associated with 

conduction subband e1 (i =1) can be written as 

tTJ2 tTJ2,s + btTl2,p+ 
I J = a IJHH, IJLH2 • (4.7) 
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It consists of s state associated with HH 1 and p + state associated with LH2. 

Similarly, ~=O state associated with conduction subband e1 (i=1) can be written 

as 

U/O aU/o.s + b\T/O,d- + \T/O.p+ 
II = TILHI TIHlfl CT IHH2 (4.8) 

This state consists of s state of LHI, d_ state of HHI, and p+ state of HH2. Here 

a, band c are the coefficients representing the contributions from different angular 

momentum components and will be determined by the quantum well structures. 

Based on equations (4.3) and (4.5), the dipole moment associated with the 

PI ISTs can be written as follows: 

II~ _ '"' ,/.13 
ril' - ~ r"1I',JJ'.l' 

Jj',I' 

where 

1I~,f3 - e(F.~,f3lz I F.~,f3) r,i',j/,v - ijv e i'j'v . 

(4.9) 

(4.1 0) 

Here i,i' and j,j' are conduction and valence subbands indexes, respectively. 

Here i and i' have to be different to yield nonzero value. j and j' , however, can 

be the same or different. For j = j', we will obtain intersubband transitions 

between exciton states of same angular momentum such as s-s, p-p and d-d 

(diagonal components). For j *- j', however, the intersubband transitions can 

happen between exciton states with different angular momentum such as s-p, p-s, 

s-d and d-s (off-diagonal components). As discussed in the following, such 
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diagonal and non-diagonal components can happen simultaneously when a single 

infrared field near resonant with the transition between i and if interacts with the 

QW structure. Compared to those considered previously, this could lead to a quite 

different picture for interaction of intense laser fields with quantum well 

structures. 

4.3 From valance-band mixing to exciton-state mixing 

As studied in [59],[60], the PI ISTs can be influenced by the dispersion of the 

valence subbands. In these references, however, this was studied considering s­

states of the excitons only. In this chapter, we will show how the valence band 

structure affects PI ISTs through the mixed exciton states. The effects of the 

valence band mixing on the exciton states have already been studied before 

[22],[61]. Here we only give a brief account to illustrate their impacts on the PI 

ISTs. 

Strong valence band mixing is the precondition for exciton state mixing to 

happen. At the band-edge (k=O), there is no band mixing. Here one valence 

subband can be characterized by a single spinor index v, i.e., the first heavy-hole 

subband (hhl) by v = 3/2 and the first light-hole subband (lhl) by v = -1/2 . 

Away from band-edge, both v = ±3/2 and v = ± 112 spinors will be present in one 

subband. The degree of mixing of different spinors will be detennined by how 

close the subbands are. The subband positions are characterized by band-edge 
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energies and can be effectively engineered through the introduction of strain by 

varying material composition. To study the PI ISTs, we focus on subbands hhl and 

lhl and examine how they interact with each other and with hh2 and Ih2. The 

band-edge of these four subbands (k=O) of a 12-nm wide Inl_xGaxAs/lnP QW are 

plotted as a function of Ga composition (x) in Figure 4-2. Ga composition varies 

from 0.35 to 0.75, corresponding to compressive strain of 0.9% and tensile strain of 

1.9%, respectively. (The range 0.35~0.75 is chosen for better illustration of the 

exciton mixing effects). Figure 4-2 shows that three crossovers happen for hhl and 

lhl. At x=0.52 hhl (solid line) crosses over with lhl (dashed line), at x=0.68 with 

Ih2 (dotted line). At x=0.47 lhl crosses over with hh2 (short dashed line). Strong 

valence band mixings will happen around these crossovers. 
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Figure 4-3 Valence band structure of 12nm InGaAs/lnP quantum wells. (a) x = 0.4; (b) x = 0.47; 

(c) x = 0.52; (d) x = 0.68. 

The dispersions of holes at these three compositions along with a non-

crossover composition x = 0.4 are shown in Figure 4-3 ((a) x=O.4, (b) x=0.47, (c) 

x=0.52, (d) x=0.68). At x = 0.4, two neighboring subbands are far from each other 

and the dispersion curves are mainly parabolic (Figure 4-3a). This shows that 

valence band mixing is weak. At x = 0.47, 0.52, 0.68, the subbands of interest, 

hh2 and lhl in Figure 4-3b, hhl and lhl in Figure 4-3c, hhl and Ih2 in Figure 

4-3d, are very close to each other. The dispersion curves of these subbands 
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become strongly nonparabolic and nearly degenerate around the zero in k-space. 

This demonstrates that strong valence band mixings happen around these values. 
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Figure 4-4 Valence band mixing factor of 12nm InGaAs/InP quantum wells. (a) x = 0.4, hhl; (b) x 

= 0.4, lhl; (c) x = 0.52, hhl; (b) x = 0.52, lhl. 

Nonparabolic dispersions can be related to spinor mixing of the valence 

bands that is characterized by the valence band mixing factor r; defined in (4.2). 

The VBMF at x = 0.4 are shown in Figure 4-4a for hhl and Figure 4-4b for lhl 

(solid line: v =312; dashed line: v= -112). VBMF at x = 0.52 are shown in Figure 
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4-4c for hhl and Figure 4-4d for lhl (solid line: v= 3/2; dashed line: v= -112). 

We are interested in the region close to zero in k-space, where the exciton wave 

functions are mostly extended. For x = 0.4, the region is dominated by the 

contribution of v = 3/2 for hhl and v = -112 for lhl, respectively. For x = 0.52, 

the contributions of v = 3/2 and v = -112 are both present in hhl and lhl. In 

other words, the valence bands are strongly mixed. We will show in the following 

that such a mixing plays a crucial role in PI ISTs. 
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Figure 4-5 Exciton state mixing coefficients: a. ~=2, i= 1; b. ~=O, i= 1 
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To quantitatively study how such valence band mlxmgs influence the 

exciton states, we calculate the exciton state mixing coefficients in equations (4.7) 

and (4.8). The coefficients for the first state of ;=2 and i=l (\fI1
2) are plotted as 

function of Ga composition in Figure 4-5a. For x away from 0.68, the exciton state 

is mostly s state associated with hhl subband, and around x=0.68 exciton states 

are mixture of s state of hhl (squares) and p+ state of 1h2 (filled circles). As 

shown in Figure 4-2, x=0.68 is the crossover point of hhl and Ih2, demonstrating 

that strong exciton state mixing occurs under the condition of strong valence band 

mixing. It is also interesting to note that there is no exciton state mixing around 

crossover x-0.52 even though strong band mixing of hhl and lhl happens there. 

This is because the exciton state mixing also requires the conservation of total 

angular momentum of exciton states (;). For the ;=2 state, s state of hhl call11ot 

mix with any excitonic states of lhl due to the angular momentum conservation. 

Similarly, the exciton state mixing coefficients of the first state of ;=0 and i =1 

(\fIlO) are calculated as a function of Ga composition and plotted in Figure 4-5b. 

For x<0.47 and x>0.52, the exciton states are primarily s states associated with lhl 

(squares). Around x=0.47 exciton states are strong mixture of s state of lhl and 

p+ state of hh2 (filled circles). And around x=0.52 exciton states are strong 

mixture ofs state oflhl and d_ state ofhhl (filled triangles). Around 0.49~0.50, 

the center region between x=0.47 and x=O.52, the exciton states can be viewed as 
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the mixture s state oflhl, d_ state ofhhl, d and p+ states ofhh2 although the last 

two components are small. 

4.4 Exciton-state mixing in intersubband transitions 

25~----------------------------~ 
..-.. 20 

« -----:r---- 1-m 15 ~ 
-- 10 -HH1 s-s 
N ~ 5 - • - LH2 p-p 
:::t 0 (a)_ _ ~ ~_ "'""" .. ~ 

25~----------------------------~ 
..-.. 20 -a3 15 ~ HH1_s - LH2_p 

-- 10 N 
N ,..- 5 

:::t b 
O~~==~==~~==~==~~~~ 
25r-----------------------------~ 

:;;( 20-
m 15 -...-- LH2_p - HH1_s 
"-

N 10 
N ,..-

:::t 5 (c) 7... o -or? ,. .... _ 

25 
..-.. 20 
~~ 15 t------. __ .... -----y 
_ -- w/o mixing 

N ~ 10 -e- w mixing 
:::t 5 (d,--' e1 - e2 

0"'----,,------..-----..----,----' 
0.4 0.5 0.6 0.7 

Ga Composition 

Figure 4-6 Dipole moments associated with the transitions between \f; and 'I';. (a) represents the 

s-s, p-p; (b) the s-p and (c) the p-s transitions. (d) with and without exciton state mixing 
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To investigate the photo-induced conduction intersubband transitions under 

exciton state mixing, the dipole moment contributions of various angular 

momentum components have been calculated for the 12-nm Inl_xGaxAs/InP QW. 

In Figure 4-6, the dipole moments of PI ISTs from the first state of \fIl2 to the first 

state of 'P; are plotted as functions of Ga composition. Here squares correspond 

to the s-s (Figure 4-6a); circles to the p-p (Figure 4-6a); up-triangles to the s-p 

(Figure 4-6b), and down-triangles to the p-s transitions (Figure 4-6c). The overall 

dipole momentums obtained from the models without and with exciton state 

mixing are compared in Figure 4-6d. Here squares correspond to that without 

exciton mixing which is essentially the s-s transition in Figure 4-6a and circles to 

that with exciton mixing which is the summation of all angular momentum 

contributions. Away from x=0.52 and x=0.68, the dipole moment is primarily the 

contribution from s to s transition (see squares and circles in Figure 4-6d). At 

x=0.52 and x= 0.68 the s-s transition is suppressed. This is because the strong 

valence band mixings around these two points result in the reduction of v = 3 I 2 

components in hhl that are associated with s states of el-hhl and e2-hhl. The 

suppression has been discussed in [59]. But our results show that, accompanying 

with the suppression of s component at x=0.68, there are contributions from the p 

state and its cross terms with s state. These transitions have not been previously 

accounted for and make up the loss of transition strength due to the reduction of s 

component at this x composition. We can also notice that the non s-s terms do not 
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appear at x=O.52, because there is no mixing for the s states of exciton associated 

with hh1 due to the requirement of angular momentum conservation, as explained 

before. Finally, the dipole moments ofthe electron transitions between conduction 

subbands e1 and e2 are also plotted in Figure 4-6d (dashed lines). Such transitions 

occur in n-doped QWs in the absence of photo-excited holes. We can see here that 

the exciton dipole moment is a little off from the electron dipole moment in most 

of regions. Around x=O.52, the PI ISTs strength will be significantly 

overestimated if the electron transition model is used. 
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Figure 4-7 Dipole moments associated with the transitions between \flO and \f~ . (a) represents the 

s-s, p-p; (b) the s-p and (c) the p-s transitions. (d) with and without exciton state mixing 
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Figure 4-8 Dipole moments associated with the transitions between \flO and \f~. (a) represents the 

s-s, d-d; (b) the s-d and (c) the d-s transitions. (d) with and without exciton state mixing 

The dipole momentums of PI ISTs from the first state of '1'1° to the first 

state of '1'~ are plotted in Figure 4-7 and Figure 4-8 as a function of Ga 
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composition. These figures show, respectively, the results of s-p and s-d mixing in 

the dipole moments of the PI ISTs. and comparisons between the dipole moments 

without and with exciton state mixing are shown in Figure 4-7d and Figure 4-8d. 

Similar to the case of ';=2 excitons, away from the two strong valence band 

mixing points x=0.47 and x= 0.52, the dipole moment has primarily contribution 

from s-s transitions. At x=0.47 the p-p, p-s, and s-p transitions and at x=0.52 the d­

d, d-s and s-d transitions become significant. At x=0.47 and x=0.52, the model 

without exciton mixing will significantly underestimate the PI ISTs strength. The 

dipole moments of the electron transitions are also plotted in Figure 4-7d and 

Figure 4-8d (dashed line) as a comparison. 

4.5 Conclusions 

In summary, we have shown that, when the exciton state mixing occurs, an 

infrared laser near resonant with conduction subbands el and e2 can in fact lead to 

intersubband excitations with different angular momentum attributions. This may 

lead to drastically different picture for interaction of intense infrared lasers with 

QWs from that when no exciton effects or only s states excitons are considered. 

We have also shown that the dipole moments of PI ISTs could be drastically 

suppressed when strong valence band mixing happens but the exciton ground 

states remain pure s states. Our results also show that much of the drastic 
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suppreSSIon previously predicted considering only the s states of excitons, 

however, will be compensated by the contributions of other orbital angular 

momenta. 

The above results are important for the design of optical wavelength 

converters [57],[64],[65] that utilize intersubband transition to enhance the 

interband optical nonlinearity. Since intersubband transitions are also the 

backbone of mid- and far-infrared lasers [66], modulators [67], detectors [68], etc., 

an accurate model to account for the transition strength can be also useful in the 

design of those devices. 

In addition, the exciton mixing effects discussed in this chapter can have 

impacts on the way PI ISTs are being used to interpret various physical processes 

in QWs. In general, intersubband transitions between quantized states of low­

dimensional quantum structures have been widely used to study relaxation 

processes, electronic states, carrier-carrier scattering, etc. in quantum wells 

(QWs), wires, and dots. They are particularly appealing for investigation of 

coherent optical processes. Some of these effects include electromagneticalIy­

induced transparency [65], coherent population trapping [69], gain without 

inversion [70], and Rabi flopping [71]. Moreover, characteristic properties, such 

as relaxation processes, electron-hole interaction, and carrier multiplication in 

nanocrystals have been widely investigated using intersubband transitions. [72]. 



Chapter 5 

Exciton Capture and Escape in Quantum 

Wells 

5.1 Introduction 

The carrier capture and escape processes in quantum wells are important to the 

speed and optical nonlinearity of EA modulators. In general, the electron and hole 

transports into and out of semiconductor quantum well (QW) structures are the 

fundamental physical processes that define many critical characteristics of 

optoelectronic devices. The carrier capture into such structures determines the 

efficiency and operation speed of QW lasers and amplifiers [73]. The carrier 

escape out, on the other hand, affects absorption saturation of the electro­

absorption (EA) based nonlinear devices such as optical switches and wavelength 

converters [3]. Such a process also determines the dark current of QW infrared 

photo-detectors [68] and the short circuit current ofQW solar cells [74]. 

85 
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The carrier capture and escape m QWs have been studied extensively 

usmg various experimental techniques and theoretical models [75]~[78]. 

Excitonic nature of these processes has also been investigated [76]~[78]. It has 

been shown that the Coulomb correlation between electrons and holes plays an 

important role in the time scales of these processes. The previous studies, 

however, are based on the hole band structure model that do not include valence 

band mixing [76]. In other words, the hole subband dispersions are simply 

assumed to be parabolic functions characterized by the effective masses defined 

by the Luttinger parameters. It is well known that, however, valence band mixing 

may introduce a considerable modification to the hole band structure. Thus one 

expects that valence band mixing may have impacts on the exciton capture (or 

escape) processes. In this chapter we will address this issue and show that the 

inclusion of such mixing can lead to exciton capture and escape times 

significantly different from those obtained assuming simple parabolic dispersions. 

Quantitatively our results show that the capture and escape times can be one order 

of magnitude smaller than previously reported. We will also discuss the impacts 

of the much faster capture and escape processes due to band mixing on various 

device characteristics. 

To study band mixing effects on exciton capture and escape we consider 

here shallow QWs with separate confinement hetero-structures. Such structures 

are important for ultra-fast optoelectronic device applications [79]. Additionally, 
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since valence band mixing can also happen in other quantum structures, including 

deep quantum wells, quantum wires and quantum dots, the results presented in 

this chapter can also be useful for understanding the exciton-phonon scattering 

processes in such structures [80],[81]. 

In the following, we will start with the formulations of the exciton states 

under band mixing and the exciton capture and escape in the QW. And then 

present and discuss the simulation results. 

5.2 Hole Effective Mass in Excitons 

The QW structure considered here is schematically shown in Fig. 1. A single 

quantum well with width IQIV is sandwiched in two separate confinement hetero-

structure (SCH) layers with the total width of the QW and two SCH regions IsCH ' 

The material system is GaAs / AlxGa1_xAs . Al composition is a few percent so 

that barrier height is comparable to the longitudinal optical (LO) phonon energy 

(~36 meV). The excitons in the QW will be confined along the QW growth 

direction and are quasi two-dimensional (2D). The SCH width IsCH will be 

considerably larger than Bohr radius of AlxGa1_xAs bulk material. Thus the 

excitons in SCH regions can be treated as three-dimensional (3D) bulk excitons. 

We will consider the exciton capture from SCH to QW and the escape from QW 
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to SCH. The capture and escape are through interaction with LO phonons, which 

are assumed 3D phonons in our analysis. 

-

~ IQIV +--'-----"1, I..-------J 

AlGaAs GaAs 

Conduction 
band 

Valence 
band 

Figure 5-\ Band-edges of the separate confinement hetero-structure quantum well 

The exciton states in the QW can be expressed as 

(5.1) 

where h and g) are the wave functions along the growth direction (z) for the ith 

conduction subband and the j th valence subband, respectively. ¢i) (K,k) is the 

exciton state function in momentum space, representing the exciton wave 

functions in the plane perpendicular to the growth direction. K is the wave vector 

associated with the center-of-mass of excitons and k is the wave vector 

associated with the relative movement of excitons. ¢ is the exciton state index, 
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i.e., 1 s, 2p, and 3d. In momentum space representation valence band mixing can 

be naturally incorporated into the exciton state equation. 

Most significant band mixing happens between the heavy-hole and light-

hole subbands, which can be described by Luttinger-Kohn Hamiltonian in the QW 

as [30] 

Here Y!' Y2 are the Luttinger parameters. k is the in-plane wave vector. The off-

diagonal term R represents the band mixing and its detail expressions can be 

found in [30]. Equation (5.2) shows that, without band mixing, the in-plane 

energy-momentum dispersions of the heavy-hole and light-hole subbands will be 

the parabolic functions characterized by effective masses lI(y! + Y2) and 

lI(y! - Y2)' respectively. It also indicates that, with band mixing, the energy-

momentum dispersions can be modified considerably. 

The exciton states function ¢,) (K,k) can be obtained solving the equation 

as follows [81] 

[Et(k e) + EJ(k,,) - E,~ (K)Mj(K,k) + Jdk'V;~(k,k')¢i)(K,k') = O. (5.3) 

Here v,~ refers to the Coulomb potential between the i th conduction subband 

electrons and the j th valence subband holes. Ei~ is the exciton energies. E,e is 
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the energies of conduction band electrons and E;' those of valence band holes. 

Strictly speaking, exciton state mixing will occur when valence band mixing is 

present. However, Equation (5.3) does not include exciton state mixing because 

its effect will be very small in the situations we will consider such as the ground 

state asscocaited with HH1 [82]. 

Equation (5.3) is different equation (2.13) in Chapter 2. To study the 

optical absorption of exciton or exciton-photon interaction, the total momenta of 

the excitons are usually considered as zero due to the relatively small photon 

momentum. As a result, we only need to solve the exciton equation governing the 

relative part of the exciton wave functions. In considering the exciton-phonon 

interaction, the total exciton momentum cannot be ignored. Thus in principle, 

Equation (5.3) needs to be solved for every K . But we can first solve Equation 

(5.3) for the case of K = 0 and define the effective mass of the hole in an exciton 

at the ground state as [82] 

1 d2E"(k) 
_1 = _ fdkl",g (0 k)1

2 
j • g 1. 2 'rl)' dk 2 

m" fI 

(5.4) 

Here ¢,~ IS the ground state envelope function of the exciton. At K = 0, 

ke = -kh = k, so we have only one wave vector in equation (5.4). Based on 

equation (5.4), the effective masses are weighted averages of the second 

derivative of the energy-momentum dispersion over the square of the exciton state 
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function in momentum space. Using this equation we can in fact approximate the 

non-parabolic hole dispersion under band mixing with a parabolic one. Note that 

such an effective mass is different from that defined by the Luttinger parameters, 

i.e., l/(y! + (2) for the heavy hole. 

It is well known that when holes have parabolic dispersion the exciton 

state functions can be written as separable functions of the center-of-mass and 

relative coodinates. Similarly, based on equation (5.4), effective masses of the 

holes are considered here k-independent. This allows us to write the exciton state 

function under band mixing as: 

(5.5) 

For convenience, we convert momentum space function into real space function 

through two-dimensional Fourier transform as [76] 

(5.6) 

Here R IS the coordinate of the center-of-mass of excitons and p is the 

coordinate of the relative movement of excitons. 'II is the in-plane sample length. 

Equation (5.6) describes the bound states of the excitons in the QW. For the 

continuous states of excitons, if we neglect the Coulomb correlation between 
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electrons and holes, they can be described as free in-plane electron-hole pairs, 

confined along z direction as 

(5.7) 

The excitons in SCH regions will be of three-dimensional nature and the ground 

state of 3D excitons can be represented by 

\TJIs N ",Is ( ) 1 IK R ( 1lZ ) 
T 3D = 3D'f/3D r3D - e cos --

iII ISCH 

(5.8) 

Where ¢i~ (r3D ) represent the 1 s state envelope functions of bulk excitons. The 

in-plane movement of center-of-mass is described by a plane wave. And the 

confinement of SCH along the z-direction is described by the cosine term. The 

subscript 3D is used to differentiate the coordinate '3D from R, p that are defined 

in 2D plane. N3D is the normalization constant. The initial states in equation (5.8) 

do not take into consideration the potential discontinuity in the QW region and 

therefore only apply to shallow QW structures. Unlike the case of 2D excitons, 

here we do not consider the continuous states of 3D excitons. 3D Excitons in the 

continuous state are equivalent to free 3D electrons and holes. The simultaneous 

capture from (or escape to) free 3D electrons and holes are much slower processes 

than those related to the states described above in equations (5.6) and (5.7). 
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5.3 Exciton Capture and Escape 

The transition rates of the 3D exciton states and 2D exciton states can be 

calculated based on the Frohlich Hamiltonian of exciton-phonon interaction and 

Fermi's Golden rule. The transition rates between the bound states of 3D excitons 

and the bound states of2D excitons can be given by [76] 

(5.9) 

Here 1/ C p =1/ Coo -lj Co with coo, Co dielectric constants at very high and very low 

frequencies, respectively. nq is the phonon occupation number given by 

nq = [e1iWWlk8T -lr1 
• The plus sign is for the capture from the 3D excitons 

(equation (5.8)) to 2D excitons (equation (5.6)) and the minus is for the reverse 

exciton escape. The in-plane integral factors are given by 

Where 

(5.10) 

(5.11 ) 

me
.
1I is the in-plane effective mass of electrons and holes. For the II 

electrons it is simply their bulk effective mass. For the holes it is given by 

equation (5.4). The effects of band mixing on exciton capture and escape will be 

incorporated through the effective masses and the ratios in equation (5.11). In 
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equation (5.10), the in-plane distributions of 3D exciton wave functions ¢;~ (r3D ) 

in the QW region are considered as its distribution at z = 0 plane ¢;~ (p,O) . 

Strictly speaking this is only valid when the 3D Bohr radius is much larger than 

the QW width. For structures considered here, however, the 3D exciton wave 

function in the quantum well region may fall off to 50% of this peak value at z = O. 

Therefore, considering the in-plane distribution in the QW region as same as that 

at z = 0 will overestimate the integral in equation (5.10) by about 20~30%. Note 

that the same approximation has been utilized in the previous treatments [76] in 

which valence band mixing is not included. With the same approximation here we 

study how valence band mixing relatively influences the capture/escape rate. Also, 

the relative difference of capture/escape rates is quite large as will be shown later. 

The above approximation should be justifiable. qll is the in-plane phonon 

momentum and is given by 

/12 2 
qll (E ls Els) ~ -- = 3D - 2D - rtOJLO ' 

2MII 
(5.12) 

Here we have considered the initial states with zero kinetic energy. /1ww is the 

LO phonon energy and can be taken as constant. E~~ and E~~ are the energy of 

3D excitons and 2D excitons, respectively. qll will be determined by the 

difference of E~~ and E~~ which in turn are determined by the QW width and the 

barrier height. The barrier height is determined by Al composition of AlxGal_xAs . 
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The dependence of the capture and escape rates on the QW width and barrier 

composition are studied through the phonon momentum qll' The z-direction 

integral factors re,h are given by 

r r d 'I'ls ( ) ( ) iq.z, h 
e.h = Ze.h 3D Ze,h Xe,h Ze.h e . , , (5.13) 

where X I represents /" and g. in equation (5.1). e, I J 

The capture rates between the bound states of 3 D excitons (equation (5.8)) 

and the continuous states of2D excitons (equation (5.7)) are given by [76] 

p= LO II q , e K e h Ir I (k )-r I (k )12dk (5.14) e
2
110J mh(n + 1) rm

" k (4k k ) 
411 3 & k + k (k + k)2 e e h "h e e 

0& p e he" 

Where K is the complete elliptic integral of the first kind. The in-plane integral 

factors are given by 

I (k ) - A3D 
e," e,h - [1 (A k )2 ]312 ' + 3D e,h 

(5.15) 

where ~D is the effective Bohr radius of the 3D excitons. ke' k" are the in-plane 

momenta of the electrons and holes, respectively. They are given by 

(5.16) 

Where Ee and E" are the first energy levels of the electron and the hole in 

quantum well, respectively. Given a quantum well structure, Ee and E" will be 

fixed and so is the total kinetic energy. But unlike in equation (5.12) where one 
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kinetic energy corresponds one in-plane momentum of bound excitons (qll)' one 

kinetic energy here in equation (5.16) corresponds to a set of combination of 

electron and hole momentum. This is why we have an integration over electron 

momentum in equation (5.14). 

5.4 Results and Discussions 

To investigate valence band mixing effects in exciton capture and escape, we first 

study how variation of the Al content of the GaAs/AlxGal_xAs QW structure 

considered here affects valence band mixing and, therefore, the effective masses 

of the holes in the excitons. We then calculate the capture and escape times. 
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Figure 5-2 Valence band structure: 15nm, 4%AI, GaAs! AlxGal_xAs quantum well 
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The valence band structures of a typical shallow GaAs I AlxGal_xAs 

quantum well with 15-nm width and 4% Al composition have been calculated 

(Figure 5-2). Since the ground state is of most interest, we will study the 1 s state 

of the exciton associated with HH 1. 

The heavy-hole effective masses associated with the Is states of HHI 

excitons are calculated for a narrow (L=5 nm) and a wide (L=15 nm) QW. The 

results are plotted in Figure 5-3 as function of Al composition. The dashed line is 

for the 5-nm wide QW and the dotted line for the 15-nm wide QW. Solid line is 

1/(rl + r2)' the effective mass without band mixing considered by others [76]. 

Figure 5-3 clearly shows that band mixing results in larger effective mass. We can 

see the smaller the Al composition, the shallower the QW, and eventually the 

larger the hole effective mass. We can also see the wider well, the larger effective 

masses. This can be related to the fact that in both of these cases, the shallower 

and wider QW, the heavy-hole and light-hole subbands are closer to each other, 

resulting in stronger band mixing. 
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Figure 5-3 Effective mass of holes under band mixing (in unit of free electron mass). The solid 

line refers to the case where band mixing is ignored. 

To see the impacts of the effective mass on exciton capture, we calculate 

the capture time using both the parabolic (Luttinger parameters based effective 

mass) and the band mixing models (equation (5.4) based effective mass) for the 

15-nm wide QW at temperature 150 K. Two types of capture have been 

considered: one is from Is state of 3D HH exciton into Is state of the HHI 

exciton and another from 1 s state of 3D HH exciton into the continuous states of 

the HHI exciton. The results are shown in Figure 5-4 as function of Al 

composition. The solid line (parabolic model) and dashed line (mixing model) are 

for the 1 s state capture. The dotted line (parabolic model) and dot-dashed line 
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(mixing model) are for the continuous state capture. We first observe that, 

compared to the parabolic model, the capture time for 1 s-1 s capture is one order 

of magnitude faster when band mixing is included. This is a significant result that 

can be understood by considering the physical mechanism of the phonon-exciton 

scattering process. The strength of such scattering processes is determined by 

equation (5.9). There are three terms in equation (5.9) that vary with the QW 

structure or depend on the calculation model. In the following we will examine 

these terms one by one, especially their relationship with the effective mass of the 

hole. 
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Figure 5-4 Capture times from 3D Is state to 2D Is state and to 2D continuous states 



100 Chapter 5. Exciton Capture and Escape in Quantum Wells 

The first tenn is the interaction matrix element that is represented by the 

integral tenns in equation (5.9). It is detennined by the square of the difference 

between the electron and hole integrals in the equation. To better illustrate the role 

played by the matrix element, we have calculated Ie - I", ignoring the difference 

of re and r". The results are plotted as functions of the nonnalized qll in Figure 

5-5. For a typical shallow quantum well with 15-nm width and 4% Al 

composition in the barrier, the value of the nonnalized qll will be 3.8 for the 

parabolic model and 5.8 for the band mixing model. We can see the value of the 

integral difference of the band mixing model (marked as diamond in Figure 5-5b) 

is about 3 times of that of parabolic model (marked as diamond in Figure 5-5a). 

For the 15-nm wide and 4% Al QW structure, however, the hole effective mass of 

the band mixing model is 3 times that of the parabolic model. Therefore roughly 

speak, the matrix elements is quadratically dependent on hole effective mass 

( oc mil 2). We also note for a given structure qll is smaller for the parabolic model 

than for the band mixing model. This leads us to consider the second tenn in 

equation (5.9) that represents the role of phonon momentum in exciton capture. 

Equation (5.9) states that the capture rate is inversely proportional to in-plane 

phonon momentum (1/ qll)' From equation (5.12) we know that qll oc MIII/2 , where 

Mil = m,f + m
l
;' with ml~ < m

l
;' • Thus we can infer approximately that the 

dependence of capture rate on hole effective mass through the phonon momentum 
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tenu goes as oc m,,-112 . Finally we note that there is a tenu Mil in equation (5.9). 

Combining all these three tenus together, we can conclude that the capture rate is 

critically dependent on hole effective mass as oc mil 2.5 • Therefore, band mixing 

can significantly change the capture rate by modifying the hole effective mass. 
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Figure S-S In-plane mteraction integrals as functions of normalized in-plane phonon momentum 

for the IS-nm wide QW. The diamonds marks the integral values of 4% Al quantum well. They 

correspond to different normalized momentum values in parabolic model and band mixing model 

due to different effective mass of hole 

Regarding the capture times of the 1 s states of the 3D excitons into the 

continuous states of the HHI excitons (dotted line for parabolic model and dot-
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dashed line for mixing model in FigA), we found that the times obtained by the 

mixing model are smaller than those calculated using the parabolic model. The 

difference, however, is much less than the case of the 1 s-1 s capture. In the 1 s-1 s 

capture, electrons and holes are bound together by the Coulomb interaction and 

therefore they coherently interact with lattice/phonons. The net strength of the 

interaction critically depends on the ratio of effective masses as just discussed. In 

the case of the continuous states capture, however, the final state electron and 

hole do not need to move together. The impacts of effective mass will manifest 

through other factors such as the density of states and the partition of the total 

kinetic energy that are implicitly included in equation (5.14) and are not as 

significant as in the case of 1 s-1 s capture. When band mixing is not included, 

continuous state capture is more efficient than 1 s-l s capture [76]. The reason is 

that, given the QW structure, for 1 s- I s capture, the final 1 s state exciton has to 

have a specific momentum, and for the continuous state capture the final electron­

hole pairs can have a range of momentum. In other words, more final states are 

available in the latter case. As the capture time is significantly reduced by band 

mixing, the 1 s-1 s capture becomes more efficient. 

The escape time from Is state ofHHl exciton to Is state of 3D exciton has 

also been calculated. And the results are shown in Figure 5-6. The solid line is 

from the parabolic model and the dashed line from the mixing model. We see here 

characteristics similar to those in the capture processes. Band mixing has a 
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significant influence on the exciton escape. The escape time becomes one order of 

magnitude smaller when band mixing is included. 
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Figure 5-6 Escape times from 2D Is state to 3D Is state 

5.5 Conclusions 

We have studied band mlxmg effects in exciton capture/escape in shallow 

quantum wells. We have shown that band mixing can result in one order of 

magnitude smaller capture and escape times than the previous results that do not 

include such effects. These results will be useful in interpreting the device physics 

and in designing optoelectronic devices where exciton capture/escape plays an 

important role. For instance, they could have significant implications on 
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functionalities of optoelectronic devices such as EA modulators, QW based 

photo-detectors and solar cells. Faster capture and escape result directly in higher 

speed of devices. They also indirectly affect other characteristics, i.e., most 

noticeably the optical nonlinearity of EA modulators which is of central interest 

for this thesis. The shorter the time for excitons to escape from quantum wells, the 

less concentration of carriers will accumulate in the QW structures. This will lead 

to smaller absorption saturation and therefore less optical nonlinearity in EA 

devices. The capture and escape time also influence the thermalization of 3D and 

2D excitons and thus the dark current and noise of photo-detectors and the short 

circuit current of solar cells. 

The results may also be helpful for understanding exciton-phonon 

scattering processes in other quantum structures such as deep quantum wells, 

quantum wires and quantum dots where valence band mixing could be significant. 
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EAM Design: High speed and High 

Saturation 

6.1 Introduction 

As we discussed before, the electro-absorption modulators (EAM) are expected to 

play important roles in optical signal processing such as wavelength conversion 

[3][4] and signal regeneration [7]. Compared to other alternative components such 

as SOA [8] and nonlinear optical fiber [9] in these applications, an EAM based 

component has simpler architecture and less noise. In addition it is also 

potentially advantageous in high-speed operation and low power consumption. 

The last two characteristics are critically dependent on the optical absorption 

saturation mechanisms inside the EAM, which in tum are determined by the 

process of carrier sweep-out in quantum wells. In the following we will exam the 

sweep-out process in detail. 

105 
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p N 

Exciton 

Field screening: i1E 

Figure 6-1 Carrier sweep-out in quantum well and optical absorption saturation: exciton saturation 

and electric field screening 

As illustrated in Figure 6-1, an incident optical pulse creates excitons in 

quantum well, which will subsequently be ionized. The resulting electrons and 

holes will escape out of the quantum well and move through the intrinsic region 

of a p-i-n diode and finally be absorbed in PorN region. For a high intensity 

optical pulse, the excessive electrons and holes in the quantum well will cause 

exciton saturation through the blocking mechanisms originated from Pauli 

exclusion. In addition, the photo-generated electrons and holes both inside and 

outside the quantum well can screen the electric field in the quantum well region 



Chapter 6. EAM Design: High Speed and High Saturation 107 

and thus cause absorption reduction, equivalently, absorption saturation. 

Extensive research has been done on these two saturation mechanisms both 

theoretically and experimentally. On the theoretical side, the exciton saturation 

has been described by phase-space filling theory [1 O]~[ 13] and the electric field 

screening by Poisson equation [14] or plus drift-diffusion models [15]. However, 

the integration of these two interrelated saturation processes is still modeled in a 

phenomenological manner [16]. To overcome this drawback, in Chapter 2 we 

have developed a self-consistent, physics-based model that includes both exciton 

saturation and electric field screening. Here we will demonstrate the importance 

of the comprehensive model in designing a high-speed and nonlinear EAM. 

High speed (fast carrier sweep-out from quantum well) and high optical 

saturation (or high optical nonlinearity) are often closely and inversely related. In 

contrast to the linear application of EAM such as modulation where high speed 

often co-occurs with high optical linearity, for the nonlinear applications of EAM 

such as wavelength conversion, high speed has to compromise with strong optical 

saturation. To achieve the best trade-off, high optical saturation at the highest 

possible speed, accurate modeling of the saturation dynamics is essential. More 

importantly, a physics based model can help us to gain insights into the 

underlying physical processes. In this chapter, we will show how the different 

dynamic responses of electrons and holes in a quantum-well EAM under an 

optical pulse excitation can harm or help in achieving high speed and high optical 
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saturation. We will also show that, by carefully considering the different dynamic 

behaviors of electrons and holes, we can enhance the optical saturation while keep 

avoiding severe reduction of device operation speed. High speed is essential for 

applications in 40GHz and above optical network, and high optical saturation 

results in to low power consumption. 

In the following sections, we will first stimulate the basic characteristics of 

EA modulators, and then focus on the different saturation dynamics of electrons 

and holes. In the end, we will optimize the quantum well structure to improve 

device performance. 

6.2 Basic characteristics 

6.2.1 EA modulators in wavelength conversion 

Figure 6-2 illustrates the basic principle of EA modulators working as wavelength 

converters. Two optical beams of different wavelength are incident upon the EA 

modulator: one is a probe and the other is the signal. When the power of the 

signal is at off level, the probe will be fully absorbed. When the power of the 

signal is at on level, if the power is high enough to cause optical absorption 

saturation, the probe will not be fully absorbed, and thus the pattern of the signal 

at one wavelength will transfer to the probe at another wavelength. To understand 

this process, we are most interested in absorption saturation dynamics. In this 
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chapter we will study in detail the dynamic change of optical absorption under a 

strong optical pulse excitation. How much absorption change can be obtained and 

how fast it can happen. However, to understand these two characteristics, their 

underlying physics and their relationship to device structure and material 

parameters, we need to start with some basic characteristics of EA modulators. 

Probe Ap Probe Ap 

Signal As 

Figure 6-2 Wavelength conversion based on cross absorption modulation in EAM 

The fundamental mechanism that EAM works on is electro-absorption 

effects. The optical absorption can be easily controlled through changing the 

voltage bias. Figure 6-3 shows the optical absorption coefficients for different 

electric fields for a typical Ino.53 Ga0,47 As / Inl_x Ga xAs y~_y quantum well. Here 

the quantum well width is 8 nm, and both the well layer Ino.s3 Gao 47 As and the 
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barrier layer InOgGaozAs0.44Po.56 are lattice-matched to InP. The excitonic peak 

is around 1570nm for zero electric field. Above this wavelength the absorption 

decreases as the electric field decreases. In our following simulations, we choose 

optical pulses at wavelength 1590nm. To use an EAM as wavelength converter, 

the EAM is usually reversely biased and works under certain electrical field, As 

shown later, when excessive electrons and holes are generated by a high intensity 

optical impulse, the electric field in the quantum well region will be screened by 

the photo-generated carriers. The screening will reduce the electric field and 

therefore the absorption. This is equivalent to optical absorption saturation. 
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6.2.2 Exciton saturation 
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Figure 6-4 Exciton saturation as function of electric field in an 8-nm wide lno 53GaO 47As/lnl_xGa, 

AsyP 1_y quantum well. a) exciton radius; b) exciton binding energy; c) exciton saturation density. 

Barrier layer composition: Solid line x = 0.2; dashed line: x = 0.25 and dotted line x = 0.3. 

Another saturation mechanism that is more intrinsic is exciton saturation. As 

discussed before, thermalized excitons (bound electron-hole pairs) and unbound 

electrons and holes in the quantum well are governed by Pauli exclusion 
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principle. When there are excessive carriers in the quantum wells, the electron 

states will be occupied and not available for the creation of new excitons. As a 

result exciton absorption will decrease. Mathematically the exciton saturation is 

characterized by the exciton saturation density defined in equation (2.20). We 

have calculated the exciton saturation density for an 8-nm wide 

In 0.53 Gao 47As / Inl_xGaxAsy~_y quantum well as a function of electric field for 

different heights of barrier potential and the results are plotted in Figure 6-4. The 

solid lines are for Ga composition x = 0.2; the dashed lines x = 0.25; the dotted 

lines x = 0.3. They correspond to the barrier heights for electron and hole of 

1231164,951125, and 69/91. (in meV), respectively. Figure 6-4a and Figure 6-4b 

show the radius and the binding energies of excitons in a QW as function of 

electric field. It can be observed the radius decreases as the electric field decreases 

or the barrier height increases. The opposite is true for the binding energy. 

Equation (2.20) states that the saturation density is determined by exciton radius 

and binding energy. As a result of the oppositely changing behaviors of the 

exciton radius and the binding energy, the saturation density remains relatively 

unchanged as shown in Figure 6-4c. 

6.3 Saturation dynamics 
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Figure 6-5 a) Absorption coefficient changes under an optical pulse excitation of 8-nm wide 

Ina 53Gao47As/lnl_,Ga, AsyP I _y quantum well. Layer Ga composition x = 0.25; b) electron and hole 

concentrations in quantum well; c) electric field in the quantum well region. 

Now we tum to the dynamics. We simulate the time response of an EAM under a 

strong optical pulse excitation. The pulse is a Gaussian pulse with 1.0 ps FWHM 

(full-width at half maximum) and energy 0.3 pJ. It arrives at t = 2.0 ps. The 

quantum well sandwiched by two SCH with typical thickness of O.IS-um. The 

barrier Ga composition is x = 0.25. The optical absorption coefficient changes are 

shown in Figure 6-Sa. The two sources of saturation are clearly demonstrated in 
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Figure 6-5a. The dashed line is obtained when the electric field screening is 

turned off, i.e., a = ao(Fo)/(l + N/ N s ) with a constant background electric field. 

This case corresponds to exciton saturation induced by excess carriers/excitons in 

the quantum well only. The dotted line is obtained by setting the carrier density in 

equation (2.21) to zero, i.e., a = ao(F). This case corresponds to the saturation 

induced by electric field screening only. The electron and hole densities in the 

QW are also plotted in Figure 6-5b. They are correlated with the exciton 

saturation behavior in Figure 6-5a. For instance, both the exciton saturation and 

electron dynamic responses (dashed lines in Figure 6-5a and in Figure 6-5b) show 

relatively sharp peaks at the beginning of the time response. Similarly, the electric 

field change in the QW is plotted in Figure 6-5c and is also correlated to the 

saturation behavior (dotted line in Figure 6-5a). 

We have also performed the simulation varying the optical pulse energy. 

The minimum absorption coefficient (the minimum point of the solid line in 

Figure 6-5a) as a function of pulse energy is plotted in Figure 6-6. It demonstrates 

saturation behavior, i.e., that the absorption coefficient decreases as the pulse 

energy increases. 



116 Chapter 6. EAM Design: High Speed and High Saturation 

..--. 4500 
..--, 
E 
() • -- 4000 
+J • 
C • Q) 
() • 
IE 3500 • 
Q) • 
0 
() • 
C 3000 • 
0 • :;:::; 
0. • I-

0 
en 2500 • 
.0 « 

2000 
0.0 0.5 1.0 1.5 2.0 

Pulse energy (pJ) 

Figure 6-6 Minimum absorption coefficient versus pulse energy of input light 

6.4 Design Optimization of EAM 

6.4.1 Optimization of SQW 

For the quantum well simulated in the above, we observed that electron and hole 

responses are unbalanced as shown in Figure 6-5b. There are many more holes 

than electrons in the quantum well. This is caused by several reasons. First, the 

quantum well barrier potential is higher for holes than for electrons. The splitting 

between the conduction band offset and the valence band offset is about 43/67 for 

the Ino.53 Ga0.47 As 1 Inl_xGaxAsy~_y quantum well. Second, the effective mass of a 
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hole is larger than that of an electron. Third, the electron mobility is much larger 

than the hole mobility and thus moves away fast after escape out of the quantum 

well. Consequently, there are more holes accumulated in the quantum well as 

shown in Figure 6-5b. The responses in Figure 6-5b are undesirable from the 

standpoint of designing a nonlinear EAM. It has a long time tail due to slow hole 

escape. Furthermore, it is predominately holes that accumulate in quantum well. 

As we know from equation (2.23). Electrons have smaller density of states and 

thus easier to saturate. A larger electron concentration will enhance optical 

saturation. These two characteristics work against our goal of high speed and high 

nonlinearity of the EAM. 
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Figure 6-7 Electron and hole responses in Ino 53GaO 47As/lnl_x_yGaxAlyAs quantum well 
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lead us to search for other material systems for fast and highly nonlinear EAMs. 

Basically, we need a material system with a higher barrier potential for electrons 

than for holes. This can be achieved by replacing In1_xGaxAs y~_y with 

Inl_x_yGaxAlyAs as the barrier material. For the Ino.53 Ga0.47As IInl_x_yGaxAlyAs 

system, the conduction band and valence band ratio is around 70/30 (In our actual 

simulation, we have used the lineup theory in [54] to align the band edges of all 

material layers. The lineup theory gives ratios ranging from (66~68)/(34~32) for 

the material compositions used in our simulation). In Figure 6-7 we have plotted 

the electron and hole responses under a Gaussian optical pulse with FWHM 1.0 ps 

and energy 0.3 pJ for a In053Ga047As Ilnl_X_yGaxAlyAs quantum well. Here we 

have used un strained Inl_x_yGatAlyAs, which is the combination of lattice­

matched 1l1052Al04sAs and Ino.53Ga0.47As. The latticed matched Inl_X_yGaxAlyAs 

is usually labeled as (1nO.52 Alo 48). (1n O.53 A 10.47 kz As . In Figure 6-7 z = 0.5 

structure is simulated. We see that the responses of the electrons and holes are 

basically balanced with slightly more electron concentration. As we will show 

shortly, this characteristic is beneficial in designing high speed and highly 

nonlinear EAM. 
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Figure 6-8 Optimization for maximum absorption change for 1110 53Gao47As/1nl_,Gax AsyP I _y SQW 
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Now we optimize both InO.53Ga 0.47As / In1_xGatAsy~_y and 

In 0.53 Gao 47 As / In1_x_yGaxAlyAs quantum well structure for maximum absorption 

changes. In Figure 6-8 we have plotted the absorption coefficient changes for 8-

nm wide InO.53 Ga0.47 As / In1_x Ga x As y ~_ y wells with different x composition. The 

barrier height increases as x decreases. We observe that the absorption change 

increases as the barrier becomes higher, but beyond certain point, i.e., x = 0.25 in 

this example, long tails appear. In other words, beyond this point the absorption 

change increase will come at the price of very slow device operation, making it 

unsuitable for application of 40GHz and above. In this example, the maximum 

absorption change we can obtain without severely reducing the speed is about 400 

em -1 and the corresponding decay time is about lOps. In Figure 6-9 we have 

plotted the absorption coefficient changes for 8-nm wide Ino 53Ga047As / 

(Ino52Alo48)z(Ino.53Alo47kzAs wells with z composition varying from 0.3 to 0.6, 

corresponding to 119~256 meV barrier for electrons and 56~119 meV barriers for 

holes. Similarly, we observe that the absorption change increases as the barrier 

becomes higher. But the turning point appears at the higher barrier. Figure 6-9 

shows long tails appear after the absorption change increase reaches about 800 

em-1. This is more than 2 times higher than what Ino.53 GaO.47 As / In1_xGaxAsy~_y 

quantum wells can attain. 
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The dynamic behaviors in Figure 6-8 and Figure 6-9 can also be plotted as 

decay time versus maximum absorption coefficient changes as shown in Figure 

6-10. Here the decay time is defined as the time interval between the point of 

maximum absorption change and the point when the absorption change falls to lie 

of its maximum value. 
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Figure 6-10 Decay time versus maximum absorption coefficients change 

The above simulations clearly demonstrate that the high optical 

nonlinearity can be achieved through careful design of the dynamic behaviors of 

electrons and holes. The characteristics of Ino.53 Ga0.47 As IInt_x_yGatAlyAs well 

shown here are very important for the high-speed applications of EAMs for 

optical processors such as wavelength converters. 



122 Chapter 6. EAM Design: High Speed and High Saturation 

6.4.2 Optimization of MQW 

We have also simulated the dynamic behavior of multiple quantum wells (MQW). 

The saturation dynamics of MQW EAMs made of both Inl_xGaxAsy~_y and 

Inl_x_yGaxAlyAs barriers have been compared. The MQW structure consists of 

eight 8-nm Ino.53 GaOA7 As quantum wells separated by 10-nm barriers. The SCH 

regions are 0.8um thick. Again, we vary the barrier height to achieve the best 

dynamic behavior. The optimized behaviors (the largest absorption coefficient 

changes without long tails) for both In1_xGaTAs y~_y and Inl_x_yGaTAlyAs (solid 

line) barriers are plotted in Figure 6-11. The solid line is the material absorption 

coefficient averaged over all wells of Ino53Ga0.47As /Inl_x_yGaxAlyAs EAM and 

the dashed line for that of Ino.53 Gao 47As / Inl_xGaxAsy~_y EAM. We observed 

that the maximum absorption change is more than 50% lager for the 

Inl_T_yGaTAlyAs barrier structure than for the Inl_xGaxAsy~_y barrier structure. 

The difference of the maximum absorption changes between Inl_x_yGaxAlyAs 

and Inl_xGaxAsy~_y structures is smaller in the MQW case than in the SQW case. 

This can be attributed to the electric field variation in different quantum wells. 

The electric field variation in different quantum wells are plotted in Figure 6-12 

for z = 0.5 (lno52Alo48L(lno53Alo47kzAs barrier. We see that the electric fields 

in the first three wells actually increase, whereas the electric fields in the other 
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wells decrease. It should be pointed out what we are discussing here is the 

changes to the optical absorption coefficients. The actual absorption is 

exponentially dependent on this coefficient. A 50% improvement in absorption 

coefficients will have significant impact on device performance. 
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Figure 6-11 Optimized absorption change for eight 8-nm 1110 53GaO 47As quantum wells with lO-nm 
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Figure 6-12 Electric field distribution in different quantum wells 

6.S Conclusions 

The physics-based model, developed in Chapter 2 that includes two interrelated 

saturation mechanisms of exciton saturation and electric field screening in a self-

consistent manner, has been applied to the study of electro-absorption modulators 

for nonlinear optics applications such as wavelength conversion and signal 

regeneration. The dynamic behaviors of electrons and holes under a strong optical 

quantum wells have been investigated. For 
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/110 53 Ga047 As I Inl_xGaxAsy~_y quantum wells, it is found that the slow hole 

sweep-out time in the quantum well impedes the device speed by creating a long 

time tail of absorption change and that larger hole concentrations in quantum 

wells is harmful for achieving large absorption changes, because holes are more 

difficult to saturate due to their large density of states. In contrast, for 

Ino,53Ga0.47As l/nl_X_yGaxAlyAs quantum wells, it is found that the electron and 

hole saturation dynamics are more balanced and there is more electron 

concentration in quantum wells. As a result, absorption coefficient change 2 times 

larger than that of Ino53Gao47As I In 1_x Gat As,l ~_y quantum wells can be achieved 

without sacrifice of device speed. Since the actual optical absorption IS 

exponentially dependent on the absorption coefficient, the large change In 

absorption coefficient will significantly enhance the nonlinear behavior of the 

EAM. Strong optical saturation at high speed is essential for applications such as 

wavelength conversion and signal regeneration in 40GHz optical networks. 



Chapter 7 

EAM Design: TE and TM Polarization 

We have just designed EA modulators for high speed and high saturation 

operation in the last chapter. Now we tum to another important issue: polarization 

dependence of EA modulators. 

Different performance for the transverse electric (TE) mode and the 

transverse magnetic (TM) mode has caused problems for waveguide-based 

photonic and optoelectronic devices in many applications. Like other waveguide 

devices EA modulators inherently have a polarization dependence problem. In the 

past, however, relatively little work has been directed to the polarization issue in 

EA modulators. The reason may be that the EA modulators are either 

monolithically integrated with or closely connected to the signal source: the 

semiconductor laser diodes, and thus the polarization of input signal for these EA 

modulators can be well maintained. For in-line applications such as EA 

modulators for wavelength conversion, the polarization state of the input signal is 

random and difficult to control. Therefore polarization dependent characteristics 

have to be taken into consideration [3],[84]~[86]. 

126 
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In this chapter, we will address the polarization issue from two different 

perspectives. Firstly, we will look for the conditions under which EA modulators 

will have polarization insensitive operation. Secondly, we will exam how to 

enhance exciton saturation from the polarization perspective. In other words, 

which polarization is easier to saturate, TE or TM? How can we design EAM to 

achieve low saturation intensity? 

7.1 TE and TM polarization independence 

7.1.1 Lattice-matched quantum wells 

We start with a typical lattice-matched quantum well structure. We consider a 

In,_rGaxAs / InhGaxAs)'~_y quantum well. The well is 6-nm wide and x 

composition is 0.47. The barrier compositions x = 0.21 and y = 0.45. The band 

gaps of the well and barrier layer correspond to 1.55 /lm and 1.2 /lm, respectively. 

Both well and barrier layers are lattice-matched to the InP substrate. Based on the 

band structure model described in chapter 2, valence subbands (equation (2.5)) 

and the excitonic absorption spectrum (equation (2.19)) can be obtained for the 

lattice-matched quantum well and are shown in Figure 7-1 and Figure 7-2, 

respectively. From Figure 7-1 we notice that subbands HH1 and LH1 are far away 

from each other with inter-subband distance 40meV. Correspondingly, the 

excitonic absorption peaks associated with HH1 and LH1 are 70nm apart in the 
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spectrum shown in Figure 7-2. Since the TE mode primarily interacts with the 

excitons associated with HHI and the TM mode with those associated with LHl, 

the absorption of TE and TM modes in a lattice-matched structure are quite 

different. For the normal working range of an EAM located around the first 

excitonic absorption peak, it is apparently impossible to achieve TE and TM 

independent operation in lattice-matched structures. 
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Figure 7-1 Band structure oflattice-matched 6-nm wide GalnAs/GalnAsP quantum well. 
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Figure 7-2 Absorption oflattice-matched 6-nm wide GalnAs/GalnAsP quantum well. Solid line: 

TE absorption; Dashed line: TM absorption 

7.1.2 Strained quantum wells 

To balance TE and TM absorption, it is natural to attempt to put the HHI and 

LHI bands close to each other so that the gap between TE and TM absorption 

peaks can be bridged. This can be readily done through utilization of strain and/or 

adjustment of quantum well width. For instance, we can introduce tensile strain 

into a quantum well by adjusting the x composition of In1_xGaxAs from 0.47 to 

0.55. Then the HHI and LHI band-edge positions will align to each other as 

shown in Figure 7-3. It can be observed that HHI and LHI first sit close to each 
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other and then move away from each other. The characteristics are quite different 

from the parabolic shape that is assumed in the previous model that analyzes 

TE/TM operation of EAMs [86]. Actually, in the situation presented here, there a 

great deal of physics in play, and it is necessary to carefully access the 

applicability of various models with different physics approximations before we 

carry out the actual device design. The discussions of different models not only 

help us to understand the accuracy of various models but also shed some light on 

the physics processes involved. 
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Figure 7-3 Non-parabolic dispersions ofHHl and LHI when they are close to each other 

Since the excitonic absorption is strongly dependent on the exciton 

binding energy, in the work which follows, we will evaluate the binding energy of 
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the ground state of excitons using different models and see how it changes as 

more and more physics details are taken into consideration. To facilitate the 

discussion, we also introduce two intennediate quantities: the effective mass of 

holes and the effective Coulomb potential between electrons and holes. As shown 

in equation (2.13), exciton states are detennined by the kinetic energy and 

Coulomb potential. The kinetic energy is in tum detennined by the energy 

dispersion relations of electron and holes (equations (2.1) and (2.5», and the 

effective Coulomb potential is detennined by the eigen functions of electrons and 

holes (equation (2.15». We can use effective mass to roughly characterize the 

energy dispersion and an effective Coulomb potential to incorporate the wave 

functions imfonnation. Now we will exam how the binding energy changes when 

we include, step by step, valence-band mixing and exciton-state mixing into our 

discussions. 

Models Eb (HH1) (meV) Eb (LHI) CmeV) 

Parabolic 4.12 4.64 

Band mixing (non-parabolic 8.8 7.39 

dispersion) 

Band mixing (mixed wave function) 5.32 5.29 

Band mixing plus exciton coupling 5.32 7.89 

Table 7-1 Binding energies of the first excitonic state associated with HHI and LHI calculated by 

different models 
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The first excitonic binding energies associated with HHI and LHI are 

calculated using four different models and the results are listed in Table 7-1. The 

structure considered is Inl_xGatAs well with x composition 0.55 and width 

6.0nm. The simplest model is the parabolic model where no valance band mixing 

is included. In this model, the first excitonic state will be the Is·state. The binding 

energy of the Is state of the HHI exciton is 4.l2meV and that of the Is state of 

LHI exciton is 4.64meV. The fact that the latter is bound slightly tighter than the 

former reflects primarily the fact that the in-plane effective mass of LH 1 is larger 

than that of HH 1. The hole effective masses used by the parabolic model [86] are 

given by Luttinger parameters m"" = 1 /(YI + Y2) and mill = I/(Yl - Y2) . 

Then we go one step further, including valence band mixing but excluding 

exciton state mixing. Thus the first excitonic state remains the Is state. Valence 

band mixing can be incorporated in the exciton state through non-parabolic 

dispersions only as in Ref. [87]. The Is binding energies under this condition 

increase to 8.8meV and 7.39meV for HHI exciton and LHI exciton, respectively. 

This can be explained by the changes of hole effective mass. From Figure 7-3 we 

can see that both HH 1 and LH 1 subbands are quite flat at the band edge. This is 

equivalent to saying that the effective masses are bigger than those used in the 

parabolic model. 
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If band mixing effects are incorporated also through the wave functions of 

HHI and LHI as the model in Ref. [59], the effective Coulomb potential in 

equation (2.15) will be reduced. The reason is as follows. The 1 s state of HH 1 is 

only associated with the 312 spinor component and the 1 s state of LH 1 only with -

the 112 spinor component. For the structure we study here, due to strong band 

mixing, the 3/2 component in HHI and -1/2 component in LHI are significantly 

reduced as shown in Figure 7-4. This reduces the effective Coulomb potential in 

equation (2.15). Consequently, the binding energies of Is states are reduced to 

5.32 meV and 5.29 meV for HHI and LHI excitons, respectively. 
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Figure 7-4 Valence band mixing in closely setting HHI and LHI subbands 

But the picture of s-state only is not accurate and complete. When valence 

subbands are close to each other, as we discussed in Chapter 4, the first excitonic 
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states associated with HH 1 and LH 1 may not be pure s-state. They can be mixed 

state of different angular momentums [18]. Because of angular momentum 

conservation, the 1 s state of HH 1 will mix with p state of LH2, and the 1 s state of 

LHI will mix with the d state ofHHl. Since the LH2 is far away from HHl, the 

Is state of HHI will largely remain s state with little mixing from p of LH2. But 

the Is state of LHI will mix strongly with d of HH1 as shown in Figure 7-5. 

When the exciton state mixing is included, we find that the binding energy for the 

first excitonic state associated with LH1 change again, from 5.29 meV of the 

previous model to 7.89 meV. This is because effective Coulomb potential 

reduction we have just discussed in the last paragraph is compensated by the 

presence of d component from HH 1. As a result, the binding energies increase. 
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Figure 7-5 Exciton wave function for the mixed state of s state ofLHI and d state ofHHl. 
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In the above steps, we clearly demonstrate that the complete model with 

full account of valence band mixing and exciton-state mixing is required to 

accurately evaluate the first excitonic states associated with HHI and LHl. The 

rigorous exciton absorption model enables us to do reliable design simulations. 

We will analyze the TE and TM characteristics of the quantum well structures in 

which the HHI and LHI are close to each other, for instance, the energy level 

distance between the HH and LH subband edges within I.OmeV. We will vary the 

x composition of Inl_xGaxAs well and correspondingly adjust the well width to 

keep the HH I and LH I aligned close to each other. The pairs of x composition 

and well width will correspond to different excitonic peak wavelengths. Through 

this parameter scan, we can survey the design window of wavelengths applicable 

to optical communications. 

The absolute value of TE and TM absorption are shown in Figure 7-6 and 

the TE/TM ratio in Figure 7-7 for x from 0.5 to 0.55. It is observed that the 

absorption decrease and the TE/TM ratio increase as the x composition decreases. 

The decrease of absorption can be explained through a simple physics picture. To 

keep HHI and LHI close to each other, the well width will increase as x 

decreases. This is shown in the right y-axis in Figure 7-7. As the well width 

increases, the excitons are less confined in the z direction. They become more like 

3D exciton and therefore less bound. We know the absorption is inversely related 

to the binding energy. So the absorption decreases. 
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In Figure 7-7 TE absorption is about 20~30% less than that of TM. The 

difference is smaller for wider quantum wells. These behaviors can be explained 

through the effective Coulomb potential as defined in equation (2.15). In the 

structure we are simulating, the largest contributions of optical absorption come 

from the first excitonic state associated with HH 1 and the first excitonic state 

associated LH 1. The former is the 1 s state of HH 1 and the latter the mixed state of 

LHI-Is and HHI-3d. Due to the contribution of the d component, the latter state 

will have a stronger binding energy and therefore larger optical absorption. Also 

the 1 s state of HH 1 is associated with 3/2 spin or component and therefore 

interacts with TE mode, and the mixed state of the 1 s state of LH 1 and the 3d 

state of HHI is associated with the -112 spin or component and therefore mainly 

interacts with TM mode. This is why TM mode has stronger absorption. We also 

notice the effective Coulomb potential is also determined by the overlap integral 

between electron and holes as shown in equation (2.15). The simulation shows 

that the overlap difference between e-hhl and e-Ihl will be reduced as the 

quantum well width increase, as is the TE/TM ratio. 

Up to this point the discussion has been on material absorption. The 

TE/TM characteristics are ultimately determined by modal absorption. So we 

have to include the optical confinement factors. For the purpose of investigating 

the optical confinement behavior, we study the x=O.51 and w=12.5nrn quantum 
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well since its wavelength is in the C-band to fiber optics communication as shown 

in Figure 7-6. For the material analysis, the single quantum well is often adequate 

since the coupling between neighboring quantum-wells can be neglected for most 

applications. For optical analysis here we will consider the case with different 

numbers of quantum wells. We will vary the number of quantum wells to 

optimize the optical structure. But the separate confinement hetero-structure 

(SCH) layer will be fixed at 40-nm thick and the barrier layer at lO-nm thick. 
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Figure 7-8 Optical confinement factor of IE and IM, the ratio ofTM over IE for the quantum 

well structure ofx composition 0.51 and 12.5 nm 

The optical confinement factors for TE and TM modes as function of 

quantum well number are shown in Figure 7-8. The ratio of TM over TE 
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confinement factors is also plotted in Figure 7-8. The material absorption of TE 

over TM is about 77% as shown in Figure 7-7. Figure 7-8 show that the optical 

confinement of TM over TE is about 77% for the structure with 7 wells. Thus the 

material absorption difference of TE and TM can be compensated by the 

difference in optical confinement. 

7.2 Low Saturation Intensity of TM polarization 

In contrast to their applications in modulation where linear behavior is desirable, 

EA modulators as optical signal processors require a nonlinear response to the 

input optical signal. Low optical saturation intensity is the key for EA modulators 

to generate optical nonlinearity at low operation power, which enables the devices 

to work safely and efficiently in applications such as optical wavelength 

conversion and signal regeneration in optical networks [3][83]. For waveguide 

devices, in particular, high operation power may cause optical damage. In this 

section we study the saturation behaviors of optical transverse electric (TE) mode 

and optical transverse magnetic (TM) mode in waveguide to search for low 

optical power operation of EA modulators in optical wavelength conversion and 

signal regeneration. 

7.2.1 Model formulation 
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Exciton phase-space filling is one primary mechanism responsible for absorption 

saturation in quantum well EA modulators. The exciton saturation density can be 

expressed as [10],[ 11) 

(7.1) 

Where ao is the exciton radius, Eo is the exciton binding energy of the ground 

state. Exciton phase-space filling is based on the Pauli exclusion principle, which 

manifests itself here through the fact that two excitons cannot occupy the same 

space. Equation (7.1) indicates that the larger the exciton radius the smaller the 

saturation density, and the easier it is for the EA modulator to saturate. 

Absorption saturation is usually characterized by optical saturation intensity Is as 

(7.2) 

Where Isis related to exciton saturation density as 

(7.3) 

Where a o is the exciton absorption coefficient, r is the electron lifetime that is 

mainly the time for the electron to escape from the quantum well. Lw and Lb are 

the well width and barrier width, respectively. As equation (7.3) suggests, the 

optical saturation intensity is not only determined by the exciton saturation 

density (N s) that represents how many electrons/excitons can be accommodated 
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in a given space. It is also affected by how fast electrons/excitons are generated 

through optical absorption (ao ) and how long electrons/excitons can stay in the 

quantum well (T). According to (7.3), the obvious way to enhance the optical 

saturation is to increase the carrier lifetime. But the enhancement through this 

approach will be at the price of slow device speed. It is desirable to seek other 

means to strengthen the optical saturation. We note that equation (7.3) shows that 

the optical saturation intensity is also determined by the ratio of N s lao, which 

can be obtained as follows 

a = C ~M2 12 4M(0)r 
o 0 T b 11m 2 2 

-'-'W 1l' aO 

(7.4) 

(7.5) 

In equation (7.4), a o is the absorption coefficient at the first excitonic peak. Co is 

a term that lumps tegother several physics constants. M (0) is the bulk matrix 

element. ml~ is the reduced mass of the exciton and 1 nm is the overlap integral of 

the electron and hole wave functions along the growth direction (z direction). 

To understand the different saturation behaviors ofTE and TM modes, we 

can apply the so-called mass reversal effect to our analysis. The commonly used 

terms of heavy-hole and light-hole refer the effective mass along the z direction 

m;'h and m~h. Within the plane parallel to the quantum well surface, the heavy-
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hole effective mass 111:'" is in fact smaller than the light-hole effective mass 111:11
• 

ml~ is given by me111:' I( me + 111:') and therefore is larger for light holes than for 

heavy holes. On the other hand, I nm is determined by z direction effective masses 

and m~h < m:" . m~' is closer to the electron effective mass me' Thus the wave 

function of a light hole will be closer to that of an electron. As a result, I nm is 

larger for light holes as well. The matrix elements M (0) for the e-hh transition 

for the TE mode is 1.5 and for the e-Ih transition for the TM mode is 2.0. Adding 

these three factors together leads to the conclusion that the light-hole excitonic 

transition excited by a TM mode will have smaller R as defined in (7.5) and thus 

smaller optical saturation intensity. 

It is worth having a closer look at the reduced mass ml~ that is given by 

me111~' I(me + 111:')· The electron effective mass me is nearly constant but the hole 

effective mass ~:' can vary for different structures. The Hamiltonians of heavy-

holes and light-holes in semiconductors can be expressed in terms of Luttinger 

parameters 
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The Hamiltonians show asymmetric effective masses along kz and k
ll

• For 

unstrained bulk material, the HH and LH sub-bands are degenerate at the band top 

and the asymmetry of effective mass will be washed out by the coupling term W. 

For highly strained bulk material, the asymmetry will be real since HH and LH 

sub-bands split far apart and the coupling term W can be ignored. For quantum 

well material, the effective masses behave in a similar but sometimes more 

complicated manner. The asymmetry of effective mass exists when the HH and 

LH are far apart and the complicated behavior occurs when HH and LH are close 

together. 

Absorption saturation is ultimately measured by optical power. Equation 

(7.2) can be modified as 

With the optical saturation power defined as 

P
s 

= NsAlr 
aoT(Lw +Lb) 

(7.8) 

(7.9) 

Where A is the active region area and r is the optical confinement factor. r for 

TM is smaller than that of TE. The difference is about ten percent for a typical 

waveguide. 

7.2.2 Numerical results 
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In the following, we will evaluate R in (7.5) that characterizes the optical 

saturation of TE and TM modes. In equation (7 .5), ml~ can be estimated through 

hole effective mass that is extracted from the valance band dispersion obtained 

from equation (2.5). 1
11m 

is obtained from the wave function of equations (2.1) 

and (2.5). 
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Figure 7-9 In-plane reduced effective masses of e-hh and e-lh excitons 

The numerical simulation has been carried out for Ga Jnt- x As / InGaAsP 

quantum wells with 1 a.anm wide wells and 1 a.anm wide barriers. The in-plane 

reduced masses of e-hh and e-Ih excitons are plotted in Figure 7-9. The solid-

diamond line and the dashed-diamond line are obtained directly from Luttinger 

parameters without band mixing included. The solid line and the dashed line are 
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extracted from band structures with band mixing included. The effective masses 

of quantum wells with band mixing exhibit interesting behaviors. At low 

composition (x<0.48, compressive strain), HH 1 is far above LH 1, band mixing is 

weak and the effective mass reversal exists. At moderate composition 

(0.48<x<0.55, small strain), HHI and LHI are very close to each other and strong 

mixing of HH1 and LH1 occurs. The effective mass varies drastically (and may 

not even provide an accurate description of the band structure) and effective mass 

reversal may not occur. At higher composition (0.55<x<0.58, tensile strain), LH1 

is far above HH1, band mixing is weak for LH1 and effective mass reversal occur 

for LHl. But at even higher composition (x >0.58) HH1 mixes with LH2, and its 

effective mass oscillates again. For the two regions where effective mass reversal 

clearly exists, at low composition (x <0.48) the first absorption peak will be an e­

hh1 transition excited by TE, and at high composition (0.55<x<0.58) the first 

absorption peak will be an e-Ihl transition excited by TM. ml~ of the former is 

smaller than that of the latter by about 1.5. 
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Figure 7-10 Overlap of electron wave function with heavy-hole and light-hole wave functions. 

The square of overlap integrals of electron and hole wave functions I nm 

are plotted in Figure 7-10 for both heavy-hole and light-hole as a function of 

electric field. Based on infinite the barrier quantum well model in text books, the 

distribution of electron wave functions is independent of the electron mass, which 

explains why the overlaps between the electron and both heavy-holes and light-

holes are close to unity at zero electric field. The overlap of the light hole with 

electron, however, is larger than that of the heavy hole for nonzero electric field 

since the light hole is closer to electron in terms of the effective mass mz • The 

difference of the overlaps is significant and has to be considered because electro-

absorption devices either work under bias or have a built-in electric field. 
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As we mentioned, the matrix elements M(O) are also different for e-hh for 

TE and e-lh for TM. All three factors together give a difference of a factor of 

about 2.5 in terms of the ratio R defined in equation (7.5). In other words, light­

hole excitonic transitions excited by a TM mode can reduce the optical saturation 

power substantially. 

It is desirable that the above analysis can be verified by experiments. The 

experimental device prototyping relevant to the discussion here will be report in 

next chapter. 

7.3 Summaries 

The TE and TM balancing issue for quantum-well EAMs has been studied using a 

simple parabolic model in which no band mixing and exciton state mixing are 

considered. We have shown here that both of these effects are important and have 

to be included in the TE and TM analysis of EA modulators. Based on a 

comprehensive absorption model, we have also designed quantum well EA 

modulators for TE and TM insensitive operation in optical communication 

systems. In the structures considered, the first heavy-hole subband and the first 

light-hole subbands are well aligned. And the material absorption of the TE mode 

is 20-30% less than that of the TM mode. The difference of material absorption 
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can be compensated by the difference of optical confinement factors of TE and 

TMmodes. 

To enhance the optical saturation in EAMs, we have used the excitonic 

absorption associated with light-holes and the TM mode, instead of the 

conventional excitonic absorption associated with thr heavy-hole and the TE 

mode. Because of differences in the quantum confinement of heavy-hole and 

light-hole along the growth direction, the in-plane reduced effective mass of HH 

and LH excitons, and the matrix elements for TE and TM modes, we show that 

EAM based on LH excitons excited by a TM mode exhibits much lower optical 

saturation intensity. This means that EA modulators can work at much lower 

optical power. 



Chapter 8 

Nonlinear EAM: Experimental 

prototyping 

In the prevIOUS chapters, we have studied EA modulators for nonlinear 

applications from various perspectives, including physics, modeling and design. It 

is desirable to carry out some experimental proto typing of the devices to realize 

the design concept and to compare the theoretical simulation with experiment. In 

this chapter, we report the effort made on this front under the available fabrication 

and characterization conditions. 

8.1 Design Considerations 

One of our goals for device prototyping is to qualitatively verify the design 

concept of lower absorption saturation power using LH absorption excited by a 

TM mode as discussed in last chapter. The analysis in chapter 7 shows that the 

light-hole excitonic transition excited by optical transverse magnetic (TM) mode 

could have much lower saturation power than that of the conventional heavy-hole 

149 
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excitonic transition excited by an optical transverse electrical (TE) mode. The TM 

mode scheme can be realized by proper use of tensile strain in quantum wells. 

Experimental data reported in Ref. [88] partially support this idea. Our goal here 

is to obtain a clear validation of the conception. 

To implement the idea, we need to determine material compositions and 

geometric dimensions of the device. Based on the analysis in chapter 7 and 

reference to Ref. [88], a quantum well structure with compositions 

Ino44Gao.56As /InAs o2 Po.8 wellibarrier is proposed. These have 0.6% tensile strain 

in the wells and 0.6% compressive strain in the barriers. The net strain of the 

structure is zero. To determine the device dimension, we also evaluate the optical 

saturation intensity and electron lifetime in equation (7.3) and the results are 

shown in Figure 8-1 and Figure 8-2. 

The optical saturation intensity of the quantum well is calculated for 6-nm, 

9-nm, 12-nm wide wells. It can be seen that the narrower wells give higher 

saturation intensity. The reason is as follows. The narrower the wells, the closer 

the electron energy level to the barriers, the easier for electron to escape, the less 

electron concentration in wells, and the more difficult to saturate. In Figure 8-1 

the optical saturation is characterized in term of optical saturation intensity, it can 

also be characterized by optical saturation power. For an EAM with typical 

optical waveguide structure, an optical saturation intensity of 1O.OkW/cm2 in 
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Figure 8-1 corresponds to roughly l.OmW optical saturation power. These values 

can be considered as low saturation intensity/power. In other words, BAM with 

these saturation characteristics will be effective in applications such as 

wavelength convention. It also can be pointed out that the saturation power can be 

adjusted through an applied field as shown in Figure 8-1, which provides a little 

extra freedom for the device to adopt to different applications. 
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Figure 8- I Optical saturation intensity as function of electric field. 
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Figure 8·2 Operation frequency as function of electric field. 

The device operation speed is estimated through the carrier escape time 

and the results are plotted Figure 8-2. Comparing Figure 8-1 and Figure 8-2, we 

note that the fastest structure of 6-nm QW s has the highest optical saturation 

intensity, which means the lower saturation power comes at the price of slower 

operation speed as we have discussed before. In the compromise of these two 

quantities, we will place our emphasis on low optical saturation power. In 

addition, to make EA modulators work at the wavelength range of 1530~ 1555nm, 

the C-band of optical communication, the quantum well width will be around 

10.0-11. 0 nm. The speed for the device of this range is not ideal (a few GHz). It 
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is believed that higher speed can be achieved in later stage of development 

through structure optimization. 

8.2 Device Structure 
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3.4 ~m 

Shallow etch. 0.2 to 
1.5 ~m 

\ 
Device length. 300 ~m to 
1 mm 

Figure 8-3 Schematics ofEA modulator designed for wavelength conversion 
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22 Well In(O.44 )Ga(0.56)As 0.81 0.6 10.5 intrinsic 

repeat 9 times 2,3 intrinsic 

3 Barrier InAs(0.2)P(0.8) 1.15 -0.6 10 intrinsic 

2 Well In(0.44)Ga(0.56)As 0.81 0.6 10.5 intrinsic 

1 Barrier 1nAs(0.2)P(0.8) 1.15 -0.6 25 intrinsic 

Table 8-1 Details of layer compositions and dimensions ofEAM modulators designed for 

wavelength conversion 

The structure of the designed EAM is schematically shown in Figure 8-3. 

Vertically, it is a PIN diode with multiple quantum wells in the intrinsic region. 

The cross section structure is a ridge waveguide with width from 2.0 to 3.4 urn. 

The longitudinal length of the devices varies from 300um to 1000um. The 

detailed layer structures and compositions are listed in Table 8-1. 

8.3 Device Characteristics 

The EAM has been fabricated through CPFC (Canadian Photonics Fabrication 

Center). The finished devices are shown in Figure 8-4. Figure 8-4a shows the top 
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view of waveguide under microscope and Figure 8-4b shows the SEM picture of 

cross section of EAM. 

a 

b 

Figure 8-4 Fabricated EA modulators. a: top view; b: SEM of cross section 
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Figure 8-5 Optical absorption saturation characteristics of EA modulator 

The fabricated EA modulators have been characterized by Prof. 

Cartledge's group in Queen's University. The basic measurements such as current 

versus voltage and absorption versus wavelength have been done to confirm that 

the devices work as EA modulators are supposed to. Here we are most interested 

in the characteristics of optical absorption saturation. Figure 8-5 shows the 

insertion loss (normalized to the insertion loss at low input power) at a 

wavelength of 1610nm. The device is inversely biased at -0.7SY. And the 

measured die is coated and 300um long. We can see a relative absorption 

saturation of 2.0 dB around input power of 8.0 dBm. When the input power 
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exceeds 10.0 dBm, the saturation reduced again. This is attributed thermal effects 

at high optical power. The power level for the EAM to saturate is higher than the 

design targets. We also note that the excitonic peak is around 1610nm instead of 

the design value of 1550nm, which indicates that the basic parameters of the 

quantum well structure (either the composition or well width or both) have shifted 

from the design values. 

The reasons the device does not work as designed are many fold. As any 

development of this nature, many runs often have to been attempted before a 

workable device can be made. In addition, the project is a pilot of CFPC that is 

intented to give more fabrication access to Canadian university researchers. There 

are still many aspects to be developed and improved from a project management 

point of view. For instance, better data tracking and thus better problem diagnosis 

is desired. Nonetheless, the effort of BAM prototyping is worth attempting. We 

believe, through more tries and as conditions improve, the effort will eventfully 

come to fruition in future. 



Chapter 9 

Conclusions and Suggestions for Future 

Work 

9.1 Summary and Conclusions 

In this thesis, we have systematically studied the subject of nonlinear EA 

modulators, including the development of probably the most comprehensive 

model for the device, the investigation of some fundamental physics relevant to 

EAM in nonlinear applications, and the exploration and experimentation of 

innovative design concepts. The major contributions of the thesis are summarized 

as follows and the corresponding publications can be found in Appendix B. 

Firstly, on the model 

1. A physics-based and self-consistent model has been developed for optical 

absorption saturation in quantum-well electro absorption modulators, 

including both exciton saturation and electric field screening (17]. And we 

have shown that the comprehensive model is indispensable in the study of 

158 
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EA modulators for high-speed nonlinear applications such as optical 

wavelength conversion and signal regeneration in optical networks. 

2. The numerical boundary condition of the perfectly matched layer (PML) 

terminated by an infinite potential barrier has been applied to the state 

analysis of quantum-wells with tilted potentials [20]. The boundary 

condition extends the electron state analysis to the cases of shallow quantum 

wells and strong electrical field. 

Secondly, on the physics 

1. We have studied the effects of exciton state mIxmg on photo-induced 

conduction inter-subband transitions in un-doped quantum wells [18]. We 

have shown that an infrared laser near resonant with two conduction 

subbands in quantum wells can in fact excite intersubband excitations not 

only with zero orbital angular momentum attributions but also with other 

orbital angular momentum attributions (p, d, ... ). Our results show that the 

inclusion of all the orbital angular momentum allows accurate evaluation of 

the dipole moment of the photo-induced intersubband transitions, which 

may have been drastically overestimated or underestimated by the previous 

models. 

2. We have studied the excitonic nature of carrier capture and escape in 

shallow quantum wells including the effects of valence subband mixing 
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(19]. We show that such a mixing process has significant impact, yielding 

one order of magnitude smaller capture and escape times than the previous 

results. 

Finally, on the design 

1. The dynamic behaviors of electrons and holes under a strong optical pulse 

excitation have been investigated for two different quantum well systems: 

Ino.53Ga0.47As / In1_xGaxAs y~_y and InO.53Ga0,47As / Inl_x_yGaxAfyAs 

quantum wells [17]. For Ino.53Ga0.47As/lnl_xGaxAsy~_y quantum wells, it 

is found that the slow hole sweep-out time in a QW impedes the device 

speed by causing a long tail and that larger hole concentrations in QWs 

harms to achieve large absorption changes. In contrast, for InO.53 Gao 47 As 

/In1_X_yGaxA("As quantum wells, the electron and hole saturation dynamics 

are more balanced, and more electron concentration in QW helps to enhance 

absorption changes. As a result, absorption saturation as 2 times as large as 

that of InO.53Ga0.47As / Inl_xGaxAsy~_y quantum wells can be achieved 

under comparable device speed. 

2. TE/TM insensitive operations of EA modulators have been analyzed and 

realized in tensile strained QW structures for application in optical 
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communication [24]. The effects of valance band mixing and exciton state 

mixing have been taken fully into account. 

3. The excitonic excitation of light-holes by TM modes, instead of the 

conventional excitation of heavy-holes through TE mode has been utilized 

to enhance exciton saturation [24], which yields much lower optical power 

consumption for EAM. 

9.2 Suggestions for Future Research 

Based on the work presented in this thesis, some suggestions for future research 

can be made as follows: 

9.2.1 2D model of EAM 

Most of the device physics, such as quantum confinement and carrier transport 

happen along the growth direction. So that be the focus of the models developed 

in this thesis. Nevertheless, to completely describe the EA modulator, optical 

wave propagation along the longitudinal direction is needed. Two-dimensional 

models are desirable to connect the terminal characteristics of the EAM to the 

device parameters. This is important especially in the study of the device 

performance in optical systems. 
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9.2.2 Behavior models of EAM 

The device models developed in this thesis are rich in physics. If we can leverage 

the work done here to extract the behavior models for EAM, they will be very 

useful for optical system applications [89]. 

9.2.3 Electron/exciton tunneling 

The theoretical platform built in this thesis can also be used to investigate 

electron/exciton tunneling from quantum wells. Tunneling is an important 

mechanism for electrons/excitons to escape out of quantum wells. The current 

tunneling model is based on parabolic band structure of electrons and holes. PML 

boundary conditions implemented in Chapter 3 for parabolic band structures can 

be extended to the case of valence band mixing, which enables us to study the 

effects of valence band mixing and exciton state mixing on the tunneling. 

9.2.4 Innovative design and experimental prototyping 

It is desirable to have the experimental condition to work through the design 

concepts developed in the thesis. On the theoretical simulation and optimization 

side, more structures such as asymmetric quantum wells, coupled quantum wells, 

SCH with various profiles can be explored for the applications of optical 

wavelength conversion and signal regeneration [3],[83]. 
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Appendix A 

Excitonic Absorption in Quantum Wells 

The general fonnulation of optical absorption can be obtained by the theory of 

electron-photon interaction as [54] 

Where Co is constant. I i) and I f) are the initial state and the final state with 

corresponding energy Ei and Ef ' respectively. feE) is Fenni distribution 

function. 

The key in equation (A.I) is the matrix element (fI6Ii). To evaluate the 

matrix elements, we first need to have the wave functions of initial and final 

states, which lead us to the discussion of wave functions of two-particle system. 

The wave function of two-particle system consisted of an electron and a hole 

ljI(re' rh ) can be expressed as a linear composition of single (uncorrelated) 

electron and hole Bloch functions 'lick. (re) and IjIv-k
h 
(rh) as 

'II(re,rh ) = L:A(ke,kh)'IIck. (re)'IIv-k
h 
(rh) (A.2) 

k"kh 

The great simplification can be achieved in semiconductor theory by invoking the 

effective mass approximation, in which he fast-varying Bloch periodic functions 
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uc(re) and uv(rh ) can be dropped from the basis function and be incorporated 

into effective masses. This allows us to focus on envelope function only. The 

envelope function two-particle can be expanded in terms of the envelope function 

of single electron as 

(A.3) 

Since Coulomb potential between electrons and holes depends only on the 

difference between the electron and hole position vectors V(re' rh ) == V(re - rh ), 

we can change coordinate system into the difference and center-of-mass system. 

Define the new coordinates in real space as 

R = fJre + (1- fJ)rh (A.4) 

Or in momentum space as 

k = (1- fJ)k e - fJk h , (A. 5) 

For parabolic band structure, fJ == me I(me + m,,). 

The wave function of two-particle system can be expressed as 

iK·R ,K·R 1 
cI>(re,rh ) == cI>(R,r) == e tr; ¢(r) = e tr; tr; Ia(k)eik

.
r 

v'V v'V v'V k (A. 6) 

And the optical matrix elements can be expressed as 
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(A.7) 

= LA*(k,-k)e'pcv(k) 
k 

Here the final state is exciton state that is a wave packet in moment space and a 

localized distribution in real space. The initial state is plane wave states in 

moment space with equal distribution for all k. The following conditions have 

also been used in the above derivation. The optical vector potential operator 

change the symmetry of valence band Bloch functions, therefore the matrix 

element of Pvv is zero. In addition, the following selection rule has been used. 

(A.S) 

Since the wavelength of photon is much longer than that of electron, the photon 

momentum has been considered as negligible. 

Comparing equations (A.3) and (A.6), we obtain 

LA' (k,-k)e· PCy (k) 
k 

= e . P cv LA' (k, -k) (A.9) 
k 

= e· Pcv ~a' (k) = e· Pcv.JV ¢/ (0) 
k 

¢' (0) is the wave function at the center which represents the probability to find 
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the electron and hole in the same cell. The formulation of exciton absorption in 

(A.9) can apply to exciton wave function obtained in real space (the last equation) 

and momentum space (the second last). 

For the wave function in quantum wells, the envelop function of an electron-hole 

pair can be expressed as 

Where In(ze) and gm,.,(z,,) are the one-dimensional electron and hole wave 

functions along the growth direction. Finally the excitonic absorption in quantum 

well can be written as 

(A.Il) 
nm k 

/Un, v k 

nm." 
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