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Abstract 

Electrical impedance tomography (EIT) is an imaging technique that reconstructs the internal electrical 

properties of an object from boundary voltage measurements. In this technique a series of electrodes is 

attached to the surface of an object and alternating current is passed via these electrodes and the resulting 

voltages are measured. Reconstruction of internal conductivity images requires the solution of an ill

conditioned nonlinear inverse problem from the noisy boundary voltage measurements. Such unreliable 

boundary measurements make the solutions unstable. To obtain stable and meaningful solutions 

regularization is used. This thesis deals with the EIT problem from the perspective of both image 

reconstruction and hardware design. This thesis consists of two main parts. The first part covers the 

development of 3D image reconstruction algorithms for single and multi-frequency EIT. The second part 

relates to the design of novel multi-frequency hardware and performance testing of the hardware using the 

designed phantom. 

Three different approaches for image reconstruction of EIT are presented: 

1) The dogleg algorithm is introduced as an alternative method to Levenberg-Marquardt for solving the EIT 

inverse problem. It was found that the dogleg technique requires less computation time to converge to the 

same result as the Levenberg-Marquardt. 

2) We propose a novel approach to build a subspace for regularization using a spectral and spatial multi

frequency analysis approach. The approach is based on the construction of a subspace for the expected 

conductivity distributions using principal component analysis (peA). The advantage of this technique is 

that priori information for regularization matrix is determined from the statistical nature of the multi

frequency data. 

3) We present a quadratic constrained least square approach to the EIT problem. The proposed approach is 

based on the trust region subproblem (TRS), which uses L-curve maximum curvature criteria to fmd a 

regularization parameter. Our results show that the TRS algorithm has the advantage that it does not require 

any knowledge of the norm of the noise for its process. 

4) The second part of thesis discuses the designing, implementation, and testing a novel 48-channel multi

frequency EIT system. The system specifications proved to be comparable with the existing EIT systems 
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with capability of 3-D measurement over selectable frequencies. The proposed algorithms are [mally tested 

under experimental situation using designed EIT hardware. The conductivity and permittivity images for 

different targets were reconstructed using four different approaches: dog-leg, principal component analysis 

(PCA), Gauss-Newton, and difference imaging. In the case of the multi-frequency analysis, the PCA-based 

approach provided a substantial improvement over the Gauss-Newton technique in terms of systematic 

error reduction. Our EIT system recovered a conductivity value of 0.08 Sm- l for the 0.07 Sm- l piece of 

cucumber (14% error). 
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CHAPTER I 

Introduction 

1. Background 
This thesis discusses hardware design and image reconstruction methods in Electrical Impedance 

Tomography (EIT). EIT is an imaging modality which reconstructs images of the distribution of the 

electrical properties of an object from boundary measurements. In this modality an array of electrodes is 

attached to the surface of the object under investigation, and electrical currents are passed to the electrodes. 

The electrical current is an alternating current whose amplitude is between I-lOrnA and frequency between 

1-100 kHz. The stimulation results in electric potentials that are measured on the surface of the object using 

the same or additional electrodes. The voltages measured on the boundary are a function of the object's 

electrical properties and the electrical current. An estimation of the spatial distribution of the electrical 

properties inside of the volume is reconstructed by implementing varying current injection strategies and 

voltage measurement sequences. In a practical situation, the simultaneous measurement of both the 

amplitude and the phase of boundary voltages can result in images of electrical conductivity and permittivity 

distributions inside the volume. 

EIT has numerous applications in both industrial and medical areas. In industry, EIT has been used to image 

fluid flows in pipelines and as a non-destructive test tool such as crack detection (Dickin et al., 1996; 

Alessandrini et al., 1998). A variation of the technique has also been used for landmine detection by the 

military (Wexler et al., 1985). In medical applications, EIT is used for monitoring cardiac function, 

monitoring brain function, detection of haemorrhage and possibly stroke, gastric imaging, breast cancer 

detection, and functional imaging of the thorax (Cherepenin et ai., 2002; Eyuboglu et ai., 1989; Gibson et 

al., 2000; Bagshaw et al., 2003; Kunst et al., 1998; Smallwood et al., 1994). It is the interest of this thesis to 

develop EIT for medical imaging. Ultimately our laboratory's focus will be the detection and possibly 

diagnosis of breast cancer. 

This is motivated by the great potential of EIT to be used in .clinical environments as a diagnostic and 

monitoring modality. However currently, due to several limitations of EIT, it has not yet been used as a 

routine medical diagnostic tool in everyday clinical practice. Primarily, EIT suffers from a low spatial 

resolution, and is susceptible to noise and electrode errors. The spatial resolution of EIT is relatively poor in 

comparison to other modalities, such as, magnetic resonance imaging (MRJ) and Computed X-ray 

Tomography (CT). In comparison however, EIT is a technique that does not use ionizing radiation, it is safe 



and non-invasive, and is very portable. Moreover, it is much more inexpensive compared to other imaging 

modalities such as MR!, CT and positron emission tomography (PET). 

The mathematical formulation and uniqueness of the EIT problem was first addressed by Calderon 

(Calderon, 1980). Since then several different approaches for solving the EIT problem have been proposed. 

A problem is called a well-posed problem if it has a unique solution (uniqueness) and if the solution depends 

continuously on the data (stability). In other words, small changes in the data must not cause instability in 

the solution. A problem is called ill-posed if at least one of the three conditions (existence, uniqueness, 

stability) is not satisfied. The EIT problem is categorized as an "ill-posed" problem (Hansen ,1998). 

The EIT reconstruction problem is a nonlinear ill-posed inverse problem, and special approaches must be 

implemented to recover a stable solution. As EIT is an ill-posed problem, small perturbations in the 

measured boundary voltages can cause arbitrarily large errors in the estimated internal electrical 

conductivity. One of the most common techniques for EIT image reconstruction is the minimization of the 

squared norm of the difference between the measured boundary voltages and the calculated boundary 

voltages through a mathematical model (Vauhkonen, 1997). However, because of the ill-posedness of the 

EIT problem, this optimization process has to adopt particular techniques in order to obtain a stable solution. 

This modification is called regularization, a process which introduces additional terms into the minimization 

(Borsic, 2002). This modification removes the ill-posedness of the problem. When the problem is 

regularized by introducing this additional term, a priori information about the solution is introduced into the 

reconstruction process. 

The EIT reconstruction algorithms can be classified into several categories; static/absolute imaging, 

dynamic imaging, multi-frequency imaging, and difference imaging. Each of these is intended to image a 

different aspect of the object's conductivity distribution. The aim of absolute imaging is to reconstruct an 

absolute conductivity distribution that is achieved by using only a single data set of boundary voltage 

measurements. This kind of image reconstruction needs accurate calculation of simulated voltages for 

known conductivity distributions. The calculation of the boundary voltages when the injected currents and 

the conductivity distribution are known is referred to as a forward problem. In dynamic imaging, the time 

variation of the conductivity distribution is included into the reconstruction process, and reconstruction is 

updated after each current injection (Vauhkonen, 1997). In difference imaging, the difference between 

conductivity distributions are created as a result of the difference between two data set measurements 

corresponding to two different object conductivity distributions. The purpose of multiple frequency imaging 

systems is to reconstruct the frequency variation of conductivity distributions of the target (Griffiths and 

Zhang, 1989). 
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The utility of EIT for medical applications comes from the large variation in the tissue conductivity or 

resisitivity of different organs. As shown in Table 1, there is a huge dynamic range of resistivity values for 

different organs enabling the creation of high contrast images. One such interesting application of EIT for 

medical purposes is the detection of significant changes in the resistivities caused by circulating blood or 

inspired air. For these situations the difference imaging method would be an ideal choice as the electrode 

artefacts are eliminated. Examples where difference imaging has been used for medical applications are: 

gastric imaging (Barber 1990, Dijkstra et at., 1993; Smallwood et at., 1992) the detection of intrathoracic 

fluid volumes (Newell et al., 1996), the estimation of cardiac and pulmonary parameters (Brown et aI., 

1992; Eytiboglu et at., 1989; Harris et at., 1992; Newell et ai., 1992) and the detection of haemorrhage 

(Sadleir et ai., 1992; Murphy et ai., 1987; McArdle et aI., 1988). In the following sections, the physics of 

the EIT difference image reconstruction method is discussed. 

Table 1: Resistivity values for mammalian tissues (Barber and Brown, 1984). 

Tissue 

CSF 
Blood 
Liver 
Human arm (longitudinal) 
Human arm (transverse) 
Skeletal muscle (longitudinal) 
Skeletal muscle (transverse) 
Cardiac muscle (longitudinal) 
Cardiac muscle (transverse) 
Neural tissue 
Gray matter 
White matter 
Lung( out-in) 
Fat 
Bone 

Resistivity (Om) 

0.65 
1.5 
3.5 
2.4 
6.75 
1.25 
18.00 
1.6 
4.24 
5.8 
2.84 
6.82 
7.27-23.63 
27.2 
166 

2. Forward Model and Data Collection in EIT 
From the perspective of EIT image reconstruction, a physical model is required to relate the internal 

conductivity distribution to the boundary voltage measurement. This implies a relationship between the 

measured voltages, the injected currents, and the conductivity distribution. The equation for the EIT 

physical model has been derived from Maxwell's equations (Malmivuo and Plonsey 1995; Doerstling,1995). 

In order to reconstruct the conductivity distribution through the EIT inverse solution, the forward solution is 

required first. The forward problem is to calculate the boundary voltages when the conductivity distribution 

and the injected currents are given. Of course initially, this conductivity distribution is the starting value 

specified by a particular model. In the following section the different physical models that are used in the 
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forward solution are discussed (Cheng et at., 1989; Pidcock et at., 1995a; Somersalo et at., 1992; Pidcok et 

at., 1992b). The most accurate model that has been proposed is the so-called complete electrode model 

(Polydorides, 2002a). In this thesis the complete electrode model is used as the forward model and it is 

solved using the [mite element method (FEM). FEM is a feasible technique for solving partial differential 

equations with complex geometries (Brenner and Scott, 1994; Miller and Henriquez, 1990; Hinton and 

Owen, 1979). Lastly, the different current injection and voltage measurement strategies used in EIT are 

discussed. 

2.1 Physics of the Problem 
In the EIT experiment, an array of electrodes, usually 16 or 32, are attached around the object, n, and a 

small alternating current of the order of a few rnA with a frequency between 1 kHz-IOO kHz is applied to a 

subset of electrodes and the resulting voltages are measured on the remaining electrodes. In the following, 

the physical models for ElI with different boundary conditions are derived. A mathematical model of the 

problem is derived from Maxwell's equations 

aB 
VxE=--at 

aD 
VxH=J+-at 

(I) 

(2) 

Where V x is the curl operator, .!. partial derivative with respect to time, E is the electric field, B is the at 
magnetic induction, H is the magnetic field, J electric current density and D the dielectric displacement. 

Moreover, in a linear isotropic medium the following relations are valid 

D=£E (3) 

B=,uH (4) 

J=aE (5) 

In EIT it is also common practice to further simplify Maxwell's equations. The quasi-static approximation is 

usually used. The injected currents are assumed to be "slowly varying," so the time-dependence is 

neglected. Since the frequencies of injected alternating currents are small the quasi-static approximation is a 

valid assumption (Vauhkonen, 1997). In the quasi-static approximation the time derivative in equations (1) 

and (2) are zero. Moreover, the electric field is conservative and the conduction currents are dominant with 

respect to the displacement currents, such that 

VxE=O (6) 
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V'xH=J (7) 

Since V x E = 0 , there is electrical potential u such that 

E=-V'u (8) 

Taking the divergence of both sides of equation (7) gives 

V' . J = V' . (V' x H) = 0 (9) 

Using equation (5) 

V' . (IE = 0 (10) 

Finally using equation (8), it gives 

V'·(aVu) = 0 (11) 

This is the equation that recovers the electric potential u inside the body Q. In order to account for electrode 

interactions within the object, a reasonable and appropriate model should be developed. In the following 

section the boundary conditions, i.e., the electrode models are briefly discussed. 

2.2 Electrode Models 

In this section a brief description of the four most common electrode models are discussed. This thesis will 

utilize the Complete Electrode Model which is considered to be the most accurate description of the 

electrode and body interaction. 

Continuum Electrode Model 

The Continuum Model is the simplest of the models used in EIT. The model assumes that there are no 

electrodes facing the boundary of the object, but the model assumes that the current density, j, is a 

continuous function on the entire boundary of the object. In this case, the relation 

J .nl = -J .nl 
inside outside 

on an 

is valid. Here n is the normal vector to the boundary of the object, an.. Furthermore, using equation 8 

E = -V'u , equation (12) can be recast as a Neumann boundary condition: 

(I au = -J . n == j 
an 

(12) 

(13) 

where j is the negative nonnal component of injected current. Equation (13) together with equation (11) is 

called the continuum model. 
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Gap Model 
The gap model assumes discrete electrodes on the surface of an object. The injected currentj is represented 

as 

. au I[ 
}=CY-=an A 
. au 0 
}=CY-= an 

on &[ , 1= 1,2, ... , L 

(14) 

where A is the area of the electrode, II is injected current into the rth electrode and L is the number of 

electrodes. The shunting effect of the electrodes and contact impedance are ignored in both the continuum 

and the gap models. 

Shunt Model 
The shunt electrode model refines the Gap model by taking into account the shunting effect of the electrode 

(Holder, 2005). It assumes the potential on the electrode is constant. Also the model states that the net 

current density through the surface of electrode has to be equal to the total injected current 

f au 
CY-ds =11 an one, ,1=1,2, ... ,L 

(15) 

on 8/ , I = 1,2, ... , L 

where VI is the measured voltage on the rth electrode. This model ignores the contact impedances of 

electrodes (Somersalo et ai, 1992). The model is completed by defming an arbitrary choice of ground to 

ensure existence and uniqueness of the result 

(16) 

Complete Electrode Model 

The Complete Electrode Model is a refmement of the shunt electrode model in which the contact impedance 

between the electrodes and the object is taken into account (Paulson et al., 1992; Somersalo et al., 1992). 

The contact impedance layer exists between the surface of the metal electrode and the object either in 

medical applications or in phantom studies with ionic solutions. The effect of the contact impedance 

between the electrode-surface interface is a voltage drop when the voltages are measured on the current 

carrying electrodes (Hua et aI., 1991). This modifies the shunting effect so that the assumption of constant 

voltage under the electrode is no longer valid. If both the shunting effect of the electrodes and the contact 

impedance are taken into account the complete electrode model is obtained. This model has improved the 
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accuracy of the simulated voltages to be comparable to the precision of the data acquisition system (Cheng 

et al., 1989). In this model the equation (15) is replaced by following equation 

au 
u+zzcr-=Vz oncz ,I = 1,2, ... ,L 

au an 
fcr- ds =1/ on c/ , 1= 1,2, ... , L an 

(17) 

Where z/ is the contact impedance between the l'th electrode and object. The complete electrode model 

consists of the following equations and the boundary conditions 

v . (oVu) = 0 on n 

f 
au 

a-ds =1{ an 

on c[ , 1= 1,2, ... , L 

onC{ ,1=1,2, ... ,L 

L 

on aQ\UC[ 
1=1 

(18) 

(19) 

(20) 

(21) 

Equation (I9) states that the surface measured voltages on each electrode consist of the voltage on the 

boundary surface underneath that electrode plus the voltage dropped across the electrode impedance. 

Equation (20) states that the integral of the current density over the electrode surface is equal to the total 

injected current to that electrode. Finally, equation (21) means that there is no current entering or leaving the 

boundary of object on the inter-electrode gap. In addition, the following two conditions for the conservation 

of charge and an arbitrary choice of ground are needed to ensure existence and uniqueness of the result: 

(22) 

(23) 

2.3 Numerical Solution of the Forward Problem 
In order to solve the inverse problem in EIT, the physical model (complete electrode mode!), which is called 

the forward part, has to be solved. An analytical solution for the forward problem is only available in simple 

cases, such as circular geometries with homogenous conductivity distributions (Fuks et al., 1991; Pidcock et 

al., 1995a). However, in most practical situations especially medical applications, the geometry of object is 

sufficiently complex that numerical methods are required. The most popular and feasible numerical method 
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for solving the partial differential equations with complex geometries is the finite element method (FEM). In 

comparison to other methods, such as the finite difference method (FDM), the complex geometries can be 

implemented relatively easily with FEM. In contrast, the implementation of complex boundary conditions is 

not easy when using [mite difference methods. Furthermore, in FEM the unknown functions can be 

approximated inside each element by linear or higher order polynomials. In FEM, the geometry of the object 

is subdivided into a [mite number of discrete elements. The elements are triangles in two dimensions (2D) 

and tetrahedra or hexahedra in three dimensions (3D). Each element consists of nodes and faces. Figure 1 

shows a 3D mesh constructed of tetrahedra with electrodes attached on the surface of a cylinder. 

The procedure in FEM for the solution of partial differential equations starts to form the so-called 

variational form, or weak form, of the original equation. In this procedure, the residual of the original partial 

differential is formed first. Then this residual is multiplied by a test function vex) and integrated over the 

domain. The next step is to find an approximate solution of the variational problem. The solution u(x) of the 

10 

8 .... 
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FIG. 1: 3D meshes for a cylinder with circular electrodes attached on surface. The mesh was 

generated with NETGEN mesh generator. 

partial differential equation is represented as a linear combination of piecewise polynomial interpolation 

functions 
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N 

U(X) = Luitpj(x) 
j""l 

h {
Ion vertex i 

were tp.= 
1 0 otherwise (24) 

Where tpj (x), i = 1,2, ... , N are the piecewise linear basis functions which fonn the basis of the discrete 

solution space, Ui are the value of potential at i'th vertex, and N is the number of the vertices. In the weak 

fonnulation of FEM, the test functions v are also selected to be the same functions as used to approximate 

the potential, 

N 

vex) = L VjlPj(X) 

j""l 
(25) 

In the following, the weak fonn for the complete electrode model is derived. Much of the derivation in the 

following section was interpreted from (Holder 2005; Polydorides, 2002a; Vauhkonen, 1997). By 

multiplying equation (11) by test functions v and by integrating over the domain n 

fVV'. (oVu) dV = 0 

n 

is obtained. Using the vector derivative identity 

V' . (vaVu) = aVu . V'v + vV'.(oVu) 

Substitution of (27) into (26) yields 

fV'· (voVu) dV - foVu. V'v dV = 0 

n n 

(26) 

(27) 

(28) 

Invoking divergence (Gauss) theorem on (28) enables a fonn for the implementation of boundary conditions 

J oV U . V'v dV = f (oV u . n)v dS = f () :: v dS 
n an an 

(29) 

The boundary integral on the right side of equation (29) can be separated into two sections, the domain 

L 

under each electrode, 5[ and domain between the electrodes an \ U 5[ • In this case, right side of equation 
1=1 

(29) can be written in following fonn 

f au f au L fau ()-vdS= ()-vdS+ L ()-vdS 
an an L an 1=1 e an 

an\Ue/ I (30) 
1=1 

o 
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The first part of the integral vanishes because of the boundary condition in equation (21). Furthennore, 

using the boundary equation (19) this tenn can be rearranged as 

au 1 
u-=-(V/ -u) an Zt 

Now inserting equations (30) and (31) into (29) gives 

L 1 
foVU. VvdV = L f-:;-(Vt -u)vdS 

n 1=1 &/ 1 

(31) 

(32) 

Substituting the test function from equation (25) and the approximate solution in equation (24) into equation 

(32) gives 

(33) 

The combination of the boundary equations (19) and (20) and using the approximate solution from equation 

(24), the total current has the following fonn 

1 I N {f~qJj dS} 
I, = I-(Vt -u)dS= I-vz dS - L Zz u j z, Zz .-1 &, &, &, 1-

where Ie 11 is the electrode area. For the FEM model, a piecewise constant basis function is used to 

approximate the conductivity on each simplex as 

where 

K 

U = L uJJj (x) 
i=1 

on element i 
otherwise 

(34) 

(35) 

(36) 

In this case, Cl j can be taken outside of the integral for each element. For a set of current injection patterns, 

IK
, the forward model with the complete electrode model is formulated as a system of linear equations as 

follows: 
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(37) 

In equation (37), Al is an (NxN) symmetric matrix called the global stiffness matrix 

K 

Al (i,}) = JoVqJj ,VqJjdV= LO"k fVqJj ,VqJjdV (38) 
o k~ Ok 

The integral is taken over the volume of each element. For convenience the integral part is called local 

stiffness matrix 

s~ = Jv qJi . V qJjdV 

Ok 
(39) 

The other components of equation (37) are as follows: 

(40) 

(41) 

i = j 
i, j = 1,2, .. .L (42) 

otherwise 

IK is the vector of the injected currents, and U (Nxl) is the vector of nodal voltages, and VL (LxI) is the 

vector of electrode voltages. The whole first set of matrices in equation (37) is called the global conductance 

matrix, A with the size of (N + L x N + L ), Assembling the global conductance matrix, A, starts first with 

the construction of global stiffness matrix, At, from the local stiffness matrices and augmenting A2 to the 

global stiffness matrix. Following, A3 and ~ are added to form the complete electrode model FEM for the 

forward part of the problem. 

The other two boundary conditions for the complete electrode model, equations (22) and (23), are needed to 

impose existence and uniqueness on the forward solutions (Somersalo et al., 1992). The matrix form in 

equation (37) is solved for a set of d driving current patterns: 

(43) 

The different methods used to solve the system of equations in (37) will be discussed in the next section. 
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2.4 Algorithms to Solve the Forward Model 

The forward linear equation (37) can be expressed in a condensed form as: 

Au=b (44) 

with u = [U VLY E 9{N+L and b = [0 IK r E 9{N+L. There are two general approaches to solve 

equation (44): direct or iterative methods. The matrix A is square, sparse, symmetric and positive defmite. 

Positive definiteness allows a matrix to be decomposed into two triangular factors using Cholesky 

factorization. A square matrix A with non-zero pivots can be changed as the product of a lower matrix Land 

an upper matrix U; this is called LU-factorization. Furthermore, since A is positive defmite, the U can be 

chosen to be the transpose ofL, which is called Cholesky decomposition (Golub and Van Loan, 1996). With 

Cholesky decomposition, we can solve Au = b by first computing the Cholesky decomposition A = LL T, 

then solving Ly = b for y, and finally solving LTu = y for u. The Cholesky decomposition is twice efficient 

as the LU decomposition. The factorization process has a computational cost 0 (n3
). The computational 

benefits of iterative procedures are more profound in three dimensional cases. Iterative processes such as the 

conjugate gradient (CG) method shows a cost of 0 (n2k) per iteration and requires less than n iterations to 

converge (Nocedal and Wright, 1999). In iterative process such as CG, the solution is sequentially updated 

at each iteration through minimization of the least square residual 

min~IIAu -bll~ 
2 

u 
(45) 

The CG method searches for a minimum of the above objective function by taking conjugate search 

directions for every iteration and require only the computation of the gradient of the objective function. The 

convergence rate of CG can be improved by a process which is called preconditioning. The application of 

CG in EIT problem is discussed in detail in (Monlinari et al., 2002; Polydories et al., 2002b; Player et ai., 

1999). 

2.5 Current Patterns and Measurement Procedure 
The common approach in EIT systems is to inject current and to measure voltages on the surface electrodes 

instead of applying voltages and measuring currents. This approach reduces the effect of contact impedance 

on voltage measurements due to the high input impedance of the voltage measurement system. The EIT 

system can be categorized based on the number of current sources either as a single current driver system or 

a multiple current driver system (Holder, 2005). In single source systems, a single current source generates a 

current flow in the object using a pair of electrodes. The resulting voltages are then measured between pairs 
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of the remaining electrodes. The current source is then switched to another pair of electrodes and the voltage 

measurement repeated until a complete set of measurements has been collected. In multiple current drive 

systems, there are N current sources, one for each electrode. Multiple drive systems have the ability to drive 

current in more than two electrodes at a time. From the voltage measurement perspective, there are two 

main strategies: two-electrode and four-electrode. In the two-electrode method, the voltages are measured 

from the same current injection electrodes. In the four-electrode method, the current is injected through a 

pair of electrodes while the voltages are measured from another pair. The error in the voltage measurement 

due to contact impedance is much lower in the four-electrode than the two-electrode method. 

The most commonly used four-electrode injection approach is the adjacent drive method also known as the 

neighbouring method (Barber, 1989; Hua et at., 1987; Webster, 1990). As it is shown in Figure 2, current is 

passed through two adjacent electrodes and the voltages differences are collected from successive pairs of 

adjacent electrodes. This is repeated through the next pair of electrodes and the same procedure is repeated 

for all the electrodes. From all possible voltage measurements, the numbers of independent measurements 

that can be used in image reconstruction are limited to a certain number. For N electrodes, the total numbers 

of adjacent measurements are N2
• In the four-electrode measurement strategy, the voltage is not measured at 

a) First drive pair 

" , 
.f 

10 '" 

b) Second drive pair 

FIG. 2: Adjacent current driver. The current is passed through two neighbour electrodes and the 

voltages differences are collected from successive pairs of adjacent electrodes. 

a current injecting electrode thus the number of measurements is reduced to N(N -3). However, the numbers 

of independent measurements are even lower due to the reciprocity theorem which states that reversing the 

voltage measurement and current injection electrodes would give an identical value of the impedance 

(Geselowitz, 1971; Webster, 1990). Therefore only N (N - 3)/2 of the measurements are independent. 
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In the adjacent drive method, most of the injected current travels near the boundary of the object. The 

method is therefore very sensitive to conductivity variations near the surface of the object. This will reduce 

the sensitivity of the voltage measurements to the conductivity changes at the centre of the object. 

Another common four-electrode method is the so-called opposite method (Avis and Barber, 1994). In this 

approach current is injected through electrodes that are 180
0 

apart while voltage differences are measured 

with respect to one reference electrode adjacent to the current electrode. In the opposite method, the current 

distributions are more uniformly distributed and hence results in good sensitivity. The opposite pattern is 

less sensitive to conductivity variations close to the boundary in comparison to the adjacent injection. The 

opposite pattern offers fewer current injections than can be applied for the same number of electrodes in the 

adjacent strategy. 

Techniques to devise an optimal current pattern in EIT have been studied by several researchers. Seagar 

(1983) studied the optimal placing of a pair of point drive electrodes on a disk in order to maximize the 

measured voltage differences between a homogeneous background and an offset circular anomaly. 

Optimizing the measured voltages with respect to the conductivity distributions has been addressed by 

means of distinguishability. Distinguishability was defined (Isaacson, 1986) as the ability to distinguish 

between two conductivity distributions 0' 1 and 0'2 up to a precision of E if there exist a current pattern I with 

11111=1 for which 

(46) 

where R(O') is the nonlinear function associated the resistivity to the boundary voltage measurements. Gisser 

et at (1987) defined the optimal current pattern for distinguishability as an optimization problem such that 

IIR(al)I - R(a2)III 
I opt = arg max 11111 (47) 

The optimal current pattern that maximizes equation (46) is calculated as the eigenvector of the operator 

(R(al ) - R(a2 ))2 associated with the largest eigenvalue. The next best current pattern is the one associated 

with the second largest eigenvalue. All the eigenvectors for which the distinguishability reaches the 

accuracy threshold of the measurement system can be considered. The concept of optimal current in terms 

of distinguishability has been further studied in (Koksal et aI., 1995; Cheney and Isaacson, 1992). 

As an example of an optimal current pattern to distinguish a central circular anomaly embedded in a larger 

circular object are the so-called trigonometric current patterns (Isaacson, 1986). In this pattern, current is 

injected on all electrodes and voltages are measured on all electrodes. 
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jCOS(k 27r/) 1= 1, ... , L k = 1, ... , L / 2 
Ilk = NL 27r1 

sin«(k - -) -) 1= 1, ... , L k = L / 2 + 1, ... , L-1 
2 N 

(48) 

From a practical perspective, the application of such an optimal current requires multiple current drivers 

which make the whole system more complex and expensive. The use of multiple current sources requires 

higher precision current sources than when using a single source, as unmatched gains would increase the 

common-mode current, i.e. the sum of all current (Cook et al. , 1994; Zhu et al., 1994). In contrast, in a twin 

drive system any gain error will affect all measurements due to the repetition through the set of patterns. As 

pointed out in (Borsic, 2002) the use of multiple drive optimal patterns does not necessarily guarantee a 

better accuracy over pair drive systems. The other important consideration for medical applications 

(Eytiboglu and Pilkington, 1993) is that the total amount of applied current is restricted due IEC safety 

regulations (lEC, 2007), so that the concept of distinguishability should be maximized with respect to this 

constraint. 

3. Image Reconstruction Algorithms 
One of the most difficult and challenging aspects of EIT is solving the inverse conductivity problem. As 

discussed above, the forward problem is well posed and straightforward to solve, however the inverse part is 

both non-linear and ill-posed. As defined by Hadamard (Hadamard, 1902) a problem is "well-posed" if it 

has three properties: a) Existence- a solution exists, b) Uniqueness - the solution is unique, and c) Stability -

the solution is continuously dependent upon the observed data. According to Hadamard's criteria, a 

problem is ill-posed ifat least one of the three conditions (existence, uniqueness, stability) is not satisfied. 

There are broad ranges of techniques for solving ill-posed problems with the majority of them dealing with 

stability and uniqueness by implementation of a priori information through a technique called 

regularization. The EIT image reconstruction methods can be divided into two major streams: stochastic 

and deterministic. The stochastic method is based on probabilistic-statistical reasoning (Kaipio et al. , 2000; 

Kaipio et al. , 2003). The deterministic approach can be subdivided to linear (Mueller et al. , 2002; Barber, 

1989) and non-linear methods (Molinari et al. , 2001 ; Borcea, 2001). However in this thesis the main focus is 

on the deterministic approach. Before a discussion of the methods used in EIT image reconstruction, some 

general background of the linearization and computation of the Jacobian are given. 

3.1 Linearization and the Jacobian 

With the aid of the physical modeling from the previous section, a forward (discrete) operator F which maps 

the conductivity to the boundary measurement can be given as 

v = F(O") = R(CT)J (49) 
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where V E m LxK is a vector of the boundary voltages on the L electrodes and K is the number of current 

patterns and F(a) E mLxK is the (discrete) forward operator (equation 19-22). The matrix R(O") is the part 

of the inverse of the matrix, A, that was used in the FEM calculations (equation 37), previously. The 

measured boundary data depends nonlinearly on the internal conductivity distribution, so that there are two 

different approaches to solve this type of nonlinear problem. Either the forward operator is replaced by a 

linear approximation at ao and only the differences, ~a are calculated or some iterative algorithm, such as 

the Gauss-Newton is applied (Holder, 2005). 

In the linearized approach in which only ~a are calculated, the forward solution is needed only for the 

computation of the so-called Jacobian. The Jacobian is defined as first derivative of the forward 

operatof, J = F'(a). To reconstruct the conductivity differences, ~a, two separate measurements are 

needed. For static image reconstruction the forward problem has to be solved in each iteration. However, in 

both techniques the Jacobian of the discrete forward operator, F(a) is required. The Jacobian relates the 

changes in the boundary measured voltages due to small changes in the conductivity distribution of each 

element, such that ~F: ~aln H ~Vl an. The Jacobian has the following form 

av/ av! av! 
-- --aa1 aa2 aaN 

avd av~ av~ 
----aa1 aa2 aaN 

J= 
avi av~ 

(50) 
----

av/ av; 
-- --

In the early days of EIT and mostly for 2-D models, the calculation of the Jacobian matrix was done in a 

way that each conductivity element was perturbed by small amount, ba, then the corresponding change on 

each electrode, bV was calculated through solving the forward problem. This had to repeated fOf all current 

patterns k = 1, 2 . . . K, and for all elements. By dividing the change in the voltages by the change in the 

conductivity, an approximation for the Jacobian elements was obtained. However, when the finite element 

method is three dimensional this becomes inefficient and time consuming. 
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Yorkeyand Webster (Yorkey and Webster, 1987) proposed two approaches for calculating the Jacobian. 

The fIrst approach, the so-called standard method, is based upon the matrix equation (44). In terms of the 

FEM, each column element of the Jacobian can be obtained from 

(51) 

Invoking the chain rule the right hand side of equation (51) : 

a(A -1b) = _A-1 aA A-1b 

au n au n 
(52) 

The only derivative that must be calculated is the derivative of the stiffness matrix which can be calculated 

as 

:J (53) 

where 

aAI(i, j) 1 f .. 
--- = - - 2 Vrpj ' V rp j dV, I , } =1,2, ... ,N 

au n u n l',n 
(54) 

A more effIcient approach to calculate the Jacobian was presented as the sensitivity method (Breckon, 

1990). In the sensitivity method the element of the Jacobian (derivative with respect to the conductivity) is 

calculated based on two different current injections: 

av~ f / k J 1k n = --= - Vu(1 )· Vu(J )dV aUn .ok 
(55) 

Polydorides (Polydorides, 2002a) describes an implementation of this product that is the most effIcient way 

from the computational perspective to calculate the Jacobian. 

In the linearized approach, in which only the difference is solved, F(u) is approximated with a fIrst order 

Taylor polynomial at u 0 as 

F( u) = F( u 0 ) + F I ( U 0 )( u - u 0 ) + D(llu - u 0 11 2 ) (56) 

If the second order terms are dropped, equation (56) can be written in the form 
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(57) 

where 5V = F(c;") - F(ao), oa = a - ao, and J = F'(ao) . In the noniterative approach the following is 

solved. 

minllJ oa - 5V11 
oa 

(58) 

where 8V is a difference between two successive boundary measurements. However, this minimization 

tends to fail as the problem is ill-posed, so that the problem has to be regularized. 

3.2 Regularization 

Since the EIT problem is inherently ill-posed, the minimization process of the weighted residual is doomed 

to failure (Holder, 2005). Due to the unstable nature of the problem, even small changes in the boundary 

measurements (contaminatation with noise) can eventually result in wide changes in the final solution. 

Under these circumstances, the final solution is no longer unique as there would be more than one solution 

that can fit the data up to the measurement noise level. In this case, regularization is an approach that 

attempts to restore uniqueness and stabilize the solution. 

A wide range of regularization techniques have been applied to EIT including truncated singular value 

decomposition, maximum entropy, and a number of generalized least squares schemes including Tikhonov 

regularization methods (Cheney and Isaacson, 1995). The most widely used regularization method is the 

Tikhonov regularization. Tikhonov regularization imposes prior information regarding the solution. The 

prior term is incorporated into the solution as an additional term in the least squares minimization. Based 

upon the linear approximation in the previous section, instead of minimizing IIJ Oa - 5V11 ' one minimizes an 

expression of the form: 

arg min {IIJ 60" - b'V112 + ailL 60"11
2 
} 

60" 
(59) 

where L is the regularization matrix, and the prior term is represented by IILoal1 2 
which penalizes the 

minimized function, along with a regularization parameter, a., which controls the amount of prior 

information imposed over the whole minimization process. From the point of view of optimization, this is a 

quadratic minimization problem that is guaranteed to have a unique solution for a. > O. The identity matrix 

and the matrices corresponding to the first and second difference operators are the most common 

regularization matrix that have been used in Tikhonov regularization (Hua et ai. , 1988, Woo et ai., 1993). 

The identity matrix is used in the classic Tikhonov regularization. The solution to equation (59) is calculated 

from the regularized inverse 
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(60) 

For large enough a the regularized solution is stable for noisy measured data. The most common approaches 

to determine a are the L-curve (Lawson et aI. , 1974), Generalized Cross Validation (Wahba, 1977), and 

Discrepancy Principle methods (Morozov, 1984). 

3.3 Iterative Method 

Iterative methods that have been used in EIT reconstruction are mostly based on the modified Gauss

Newton algorithm with Tikhonov regularization (Woo et ai., 1993; Hua et ai., 1991; Ruan et ai., 1996; Woo 

et a. , 1992). The Tikhonov regularized form for the non-linear problem ofEIT can be written as 

(61) 

where V meas are the measured boundary voltages, F( a) is the forward operator which simulates the voltage 

measurements from an object with conductivity distribution a , L is the regularization matrix, and ao is the 

initial estimate of background conductivity, a is a regularization factor. The non-linear solution of equation 

(61) is solved iteratively using a linearized step at each iteration. The equation (61) can be solved 

recursively via Newton's method as follows 

0' n+l = 0' n +!10' n 

!1O'n =-H - 1VrJ) 
= (JT J + aLT L) - l [J T (V - F(O'n)) - aLT LO'J (62) 

where H is the approximation for the Hessian of the objective function. In this case, the regularization 

parameter,a, is held constant during whole iteration process. In contrast, Levenberg (Levenberg 1944) and 

Marquardt (Marquardt 1963) used a modified version of the Newton method called the damped Newton 

method. In this way, a diagonal matrix, AI is added in addition to the regularization term, aLTL, but the A is 

reduced to zero as a solution is achieved. When the current iteration is far from the solution, the AI term 

dominates and the step direction approaches the steepest-descent direction. As A ----j- 0 the effect of the AI 

term diminishes and the direction is almost the same as the Gauss-Newton direction, which is implemented 

for the [mal iterations. 

It is obvious that the injected currents are not restricted only to the electrode plane, therefore the currents 

spread out all over the three-dimensions. The 2D assumption for current distributions has been used since 

the early days of EIT. This assumption simplifies the problem and demands less computational time. The 

main difficulty with 3D models is computation. The number of [mite elements is so large for three 

dimensional complex geometries compared to 2D models. 3D reconstruction algorithms used in medical 
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applications can be found in Gobel et al (Gobel et al.,1992) , Metherall et al (Metherall et aI.,1996), 

Polydorides (Polydorides, 2002a), Blue et al (Blue et aI. , 2000) and Molinari et al (Molinari et al., 2002 ). 

3D models need more efficient algorithms due to the large storage and computation time. The iterative 

Gauss-Newton method is suitable for small-scale EIT problems. However in large 3D problems the large 

number of [mite elements needed for sufficient accuracy makes the Gauss-Newton method unsuitable. In 

this thesis, an efficient three-dimensional reconstruction algorithm is proposed. 

An outline of the thesis contents is listed here: 

Chapter (ii) (Paper I) This chapter describes a trust region implementation for image reconstruction of 

conductivity changes in EIT. The main contribution of this chapter is the development of a fast and 

reliable method for 3D EIT models which is demonstrated to be as good as or better than the existing 

methods while being stable and repeatable. The dogleg method is presented for this objective. The 

dogleg algorithm approximates a Levenberg-Marquardt step within the trust region of the model 

function with a quadratic model. The comparison of Levenberg-Marquardt and dogleg algorithms is 

presented using the reconstructed images. This comparison of two techniques suggests the 

implementation of dogleg method could result in the reduction of the execution time to less then 50% of 

that of Levenberg-Marquardt algorithm without any quantifiable loss of quality of reconstructed 

images. This work is described in detail in the paper "Dogleg trust-region application in electrical 

impedance tomography," by Mehran Goharian, Aravinthan Jegatheesan and Gerald R Moran, published 

in the lOP Journal Physiological Measurement. 28 (2007) 555-572. 

Chapter (iii) (Paper 11) The EIT image reconstruction is a non-linear and ill-posed inverse problem, which 

requires regularization to ensure a stable solution. Traditionally the regularization matrix has been 

selected to be the identity matrix, a diagonal matrix or an approximation of first or second order 

differential operators. Such matrices guarantee stability but enforce smoothness in the inverse solutions 

thus eliminating the possibility of recovering non-smooth solutions. In this paper, we propose a novel 

approach to build a subspace for regularization using a spectral and spatial multi-frequency analysis 

approach. The approach is based on the construction of a subspace for the expected conductivity 

distributions using principal component analysis. It is shown via simulations that the reconstructed 

images obtained with the proposed method are better than with the standard regularization approach. 

The advantage of this technique is that prior information is extracted from the characteristic response of 

an object at different frequencies and spatially across the finite elements. This work is described in 

detail in the paper "A Novel Approach for EIT Regularization via Spatial and Spectral Principal 

Component Analysis" by Mehran Goharian, Mark-John Bruwer, Aravinthan Jegatheesan, 

Gerald.R.Moran, and John.F.MacGregor, published in the lOP Journal Physiological Measurement. 28 

(2007) 1001-1016. 
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Chapter (iv) (Paper III) In this chapter a new approach for regularization of the ill-posed EIT problem is 

presented. This approach is based on the trust region subproblem (TRS), which uses L-curve maximum 

curvature criteria to find a regularization parameter. A comparison of the TRS method with conjugate 

gradient least squares (CGLS) for an experimental phantom study is presented. Our results show that 

both methods converge to the same point on the L-curve when the noise level is known. The TRS 

algorithm has the advantage that it does not require any knowledge of the norm of the noise. This work 

is described in detail in the paper "Regularization of EIT Problem Using Trust Region SubProblem 

Method" by M.Goharian, M. Soleimani , A. Jegatheesan, and G.R. Moran , published in conference 

proceeding of the 13th International Conference on Electrical Bioimpedance combined with the 8th 

Conference on Electrical Impedance Tomography, Vienna, Austria, 2007 (Paper number : 72665). 

Chapter (v) (Paper IV) EIT is an imaging modality which reconstructs images of the electrical properties 

distribution of an object from boundary measurements. A series of electrodes are attached to a subject 

in a transverse plane. These are linked to a data acquisition unit, which outputs data to a Pc. By 

applying a series of small currents to the attached electrodes on surface of body a set of potential 

difference measurements can be made from non-current carrying pairs of electrodes. Although the 

physiological electrical conductivity contrast is very large, and acquired images of high definition 

should be achievable, this has not been the case to date. This chapter introduces a novel EIT system 

developed based on a digital signal processor (DSP) architecture which allows flexibility in design 

options such as an arbitrary shape of signal generation and flexibility in the communication between 

system components and data collection. The prototype system provides 48 electrodes with continuous 

frequency selection from 0.1 kHz to 125 kHz. A software based phase-sensitive demodulation 

technique is used to extract amplitudes and phases from the raw measurements. Signal averaging and 

automatic gain control are also implemented in voltage and phase measurements. System performance 

was validated using a Cardiff-Cole Phantom and a saline filled cylindrical tank. This EIT system offers 

image reconstruction of both conductivity and permittivity distributions in three dimensions. This work 

is described in detail in the paper "A DSP Based Multi-Frequency Electrical Impedance Tomography 

System," by Mehran Goharian, Aravinthan Jegatheesan and Gerald R Moran, submitted to the lOP 

Journal Measurement Science and Technology (2007). 

Chapter (vi) (Paper V) In this paper, we discuss and present the results of a series of phantom experiments 

to show the baseline imaging performance of our designed EIT system. The conductivity and 

permittivity images for a piece of cucumber were reconstructed using four different approaches: dog

leg, principal component analysis (PCA) based approach, Gauss-Newton, and difference imaging. In 

the case of a single frequency approach, the dog-leg technique proved to be robust by converging 

towards solutions with lower systematic error. However, in the case of multi-frequency analysis, a 

PCA-based approach demonstrates a substantial improvement over using a Gauss-Newton technique at 
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a single frequency in terms of systematic error reduction. Our EIT system recovered the value of the 

electrical conductivity and the location of the targets at the correct order of magnitude. This work is 

described in detail in the paper "3D Multi-Frequency Electrical Impedance Tomography Imaging in 

Phantoms" by Mehran Goharian, Aravinthan Jegatheesan, Mark-John Bruwer, Gerald.R.Moran, and 

John.F.MacGregor, submitted to the lOP Journal Physics in Medicine and Biology (2007). 

Chapter (vii) (Conclusions) The thesis results are summarized and, based on them, suggestions are made for 

the possible directions of future work. 

Appendix (Paper VI) This section presents the design and fabrication of a novel polymer based phantom 

which is called polyvinyl alcohol (PV A)-based cryogel (PV A-C). PV A-C consists of water and the 

polyvinyl alcohol that have been mixed to form a solution which is converted into a solid hydrogel. The 

PV A-C phantoms are suitable for medical imaging such as MRI and Ultrasound with simulated normal 

tissues and lesions. This section also presents the effect of radiation on the elastic stiffness, electrical 

and MRI properties of PVA-C. The benefits of PVA-C based phantom are include: long-term stability 

(electrical properties of tissue specimens change with time); the ability to perform long imaging 

procedures without having to be concerned with subject motion or discomfort; and also to test and 

develop novel medical procedures. This work is described in detail in the paper "Modifying the MRI, 

elastic stiffness and electrical properties of polyvinyl alcohol cryogel using irradiation" by Mehran 

Goharian, Gerald R. Moran, Kyle Wilson, Colin Seymour, Aravinthan Jegatheesan, Michael Hill, 

R.Terry Thompson, and Gordon Campbell, published in the Nucl. Instr. and Meth. B (2007), 

doi:l0.1016/j.nimb.2007.04.11 1. 
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CHAPTER II 

Paper I 
The following paper examines the feasibility of implementing a trust-region based algorithm, the so-called 

"dogleg," for the purpose of image reconstruction of conductivity distributions in electrical impedance 

tomography. The dogleg algorithm approximates a Levenberg-Marquardt step within the trust region of the 

model function with a quadratic model. In this paper a comparison between Levenberg- Marquardt and 

dogleg algorithms is presented for different objects using simulated data. 

The work presented in this chapter is the first paper in a series of papers which implements new algorithms 

for image reconstruction of EIT. The simulation work presented in this paper was performed by me under 

the supervision of Dr. Moran. The manuscript was written by me and edited by Dr. Moran and Mr. 

J egatheesan. 

(Reprinted from Physiol. Meas. 28 (2007) 555- 572 , Mehran Goharian, Aravinthan Jegatheesan and Gerald 

R Moran, Dogleg trust-region application in electrical impedance tomography, Physiol.Meas.28 (2007) 

555-572, Copyright (2007), with permission from lOP. http://www.iop.org/EJ/pm). Abstract is available at 

http://www.iop.org/EJ/toc/0967-3334/28/5 
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Abstract 
This paper presents a trust-region implementation for image reconstruction 
of conductivity changes in electrical impedance tomography. A dogleg 
trust-region algorithm is applied in different cases to detect abnormalities. 
The dogleg algorithm approximates a Levenberg-Marquardt step within 
the trust region of the model function with a quadratic model. The 
comparison of Levenberg- Marquardt and dogleg algorithms is presented using 
the reconstructed images. This comparison of two techniques suggests the 
implementation of the dogleg method could result in the reduction of the 
execution time to less than 50% of that of the Levenberg-Marquardt algorithm 
without any quantifiable loss of quality of reconstructed images. 

Keywords: electrical impedance tomography (ElT), trust region, Levenberg
Marquardt, dogleg, image reconstruction 

(Some figures in this article are in colour only in the electronic version) 

1. Introduction 

Electrical impedance tomography (ElT) is an imaging technique that calculates the 
conductivity a (x, y, z) of an object from boundary voltage measurements. A series of 
electrodes is attached to the boundary of an object under investigation, and alternating current 
(or Voltage) is passed to a pair of electrodes. The induced voltages on the surface of the object 
are measured through the non-current carrying electrodes. These boundary measurements 
are used to calculate the internal conductivity distribution based on mathematical models that 
relate the internal conductivity distribution to the boundary measurements. The calculation 
of the boundary voltages when the injected currents and the conductivity maps are available 

0967-3334/07/050555+1 8$30.00 © 2007 lOP Publishing Ltd Printed in the UK 555 
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is called the forward problem. Cheng et al (1989) and Somersalo et al (1992) have discussed 
different models for EIT. The complete electrode model is the most accurate model (Vauhkonen 
et at 1999). In this model the contact impedances between the electrodes ane the object and 
the shunting effect of the electrodes are incorporated into the EIT mathematical model. The 
most common approach to solve the forward problem is the finite element method (FEM). 
The FEM is a feasible technique for solving the partial differential equation~; governing the 
EIT problem using complex geometries and boundary conditions (Miller and Henriquez 1990, 
Brenner and Scott 1994). 

The EIT image reconstruction problem is considered to be an ill-posed irrverse problem 
as defined by Hadamard (Groetsch 1993). Different techniques for solving inverse problems 
in EIT have been proposed. One of the most common approaches uses iterati'/e least squares 
to minimize the difference between the measured and the calculated boundar) voltages using 
FEM. In order to obtain a stable solution for the ill-posed EIT inverse problem, the optimization 
process used in the reconstruction has to use so-called regularization methods. A regularization 
method stabilizes the solution by adding extra terms and constraints to the system and thereby 
reduces the influence of noise. If these 'extra' constraints can be extracted from the actual 
physical systems and used as an input, this would be referred to as a prieri information. 
Since the small singular values always correspond to high frequency components in the 
image, regularization therefore acts on the image as a low-pass filter to remove them. The 
most common types of regularization are the identity, and first- and second-order difference 
matrices (Vauhkonen 2004). The regularized form of the EIT inverse problem can be written 
as 

min/(u) = ~IIV - F(a)11 2 + ~a1lWa112 
a 

(1) 

where u is the true conductivity, F(u) is the conductivity to voltages map given by FEM, V is 
the measured voltages, W is the given regularization matrix and a is the regularization factor. 
Equation (1) can be linearized using a Gauss-Newton (GN) type optimization technique. The 
recurrence relation for minimizing the function is 

where 

i3.an = -H-I V / 

= (JT J +aWTW)-I[JT(V - F(un )) -aWTWun ] (2) 

H is the Hessian approximation for f (a) in the GN method. J is the Jacobian of the mapping 
operator F( a), and Y n is called step length. The step length determines how far from the current 
iteration one moves (in the direction of V f) for the next iteration. The perlormance of the 
GN method is highly dependent upon the condition number of the J ocobian matrix, especially 
when the singular values of the Jacobian decay gradually to zero. In the case of the Hessian 
approximation, the condition number of JT J is double that of J, so a small perturbation 
(noise) from the measured value can cause instability in the solution, which may cause the line 
search to fail to converge. If the Hessian is not positive definite and symmetric then this may 
cause the line search to fail as well. The Gauss-Newton method has an oscillatory behaviour 
during iterations and is not as robust as the steepest descent approach (Jacoby et aI1972). The 
steepest descent computes the gradient direction followed by a one-dimensional search that 
approaches the minimum point of the objective function iteratively. 

In this paper we use two different approaches instead of the GN to solve the nonlinear 
equation in (1). The first approach is the Levenberg-Marquardt (LM), and the s,!cond approach 
is the dogleg (DL) method. In both cases the line search is replaced with a trust region strategy. 
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2. Theory and algorithms 

2.1. Levenberg-Marquardt (LM) method 

Levenberg (1944) and Marquardt (1963) used a modified version of the Newton method called 
the damped Newton method. In this case the step vector, him, at each iteration is defined by 
the following equation: 

Cv2 f(x) + AI)hlm = -\1 f(x). (3) 

This modification of the Hessian of the objective function has several effects: 

(a) For A > 0 the modified Hessian is positive definite which ensures a descending direction. 
(b) When the current iteration is far from the solution, the AI term dominates and the step 

direction approaches the steepest-descent direction. 
(c) As A ~ 0 the effect of AI term diminishes and the direction is almost the same as the 

Gauss-Newton direction, which is implemented for the final iterations. 

In the case of nonlinear least-squares problems, such as equation (1), the iteration has the 
following form (Vauhkonen 2004): 

ak+l = ak + J3.k 

tlk = (JT J + AI + aWTW)-I[JT (V - F(an» - aWTWan ]. 
(4) 

In this way the diagonal elements of JT J are modified in a process called damping, where 
A is the damping term. For example, if the damping term is small in the present iteration 
that implies that the step will be calculated by the Gauss-Newton approach. In this way, 
the LM technique has the ability to switch between slow convergence steepest descent when 
it is far from the minimum and fast quadratic convergence when it is close to the solution. 
An effective approach (Nielsen 1999) for updating the damping teIm is used in this work. 
If we assume f (x) : ffi"n ~ ffi" is our objective function and just the first two terms of the 
Taylor-series expansion of f(x) are used to create the model function at iteration Xk (Nocedal 
and Wright 1999), we have: 

(5) 

wherefk = f(Xk), \1 fk = \1 f(Xk),P is the direction of the next step vector andBkis asymmetric 
matrix. The updating is controlled using a gain factor formula (5) which is used to make sure 
that the actual decrease in the objective function is higher than that predicted by the quadratic 
model in equation (5). 

P 
== f(x) - f(x + p) > 8 

L(O) - L(p) (6) 

where 8 is a positive number. Using the model function from equation (5) the denominator of 
the gain factor in equation (6) is calculated as follows: 

L(O) - L(p) = -hTmJT f - !h!mJT Jh1m (7) 

where him is the step vector in the LM method. The higher orders in this calculation are 
eliminated. On each iteration, if p is close to one it means that the model function is a good 
representation of the objective function, and then A can be decreased for the next iteration. 
The damping term, AI, has the ability to deal with the rank deficiency of the Jacobian, and 
therefore handles the singularity of the JT J matrix. The following criteria were used to specify 
an endpoint in order to teIminate the algorithm (for the objective function in equation (1», 

Ilglloo ~ 81 

g = \1 !(a) = JT(V - F(a» - aWTWa 
(8) 
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Algorithm: 

Input: objective function!; voltage measurements vector V; starting values for conductivity 0'0; 
Output: updated conductivity vector a 

k:==O; v:==2; a= O'c; Ilinitializationil 

A:= J(a)T J(a)+aWTW; g:= J(a)T (V -F(a»-aWTWa; 

stop := (11g 1'"-, ~ £1); A:= r * max i=I ... ,m (Aii) ; 

while (stop:ttrue) and (k<kma)() do 
k:=k+l; 
Solve (A+Al)8o=-g; //cholesky// 

if 118all"" $ (£2110"11 + £2) then 

stop:=true; 
else 

anew :=0'+80'; 
Compute p by (6-7) 
if p>O then 

else 

A:== J(O"l J(O") + aWTW ; g := J(a/ (V - F(a)) - aWTWO"; 

stop:= (1Igll~ ~ £1); 

1 
A:= A * max{-, 1-(2p-l)3}; v:==2; 

3 

A := A * v ; v:=v*2; 
end if 

end if 
end while 

Figure 1. The complete Levenberg-Marquardt algorithm. 

where £1 is a small positive number defined by the user. The algorithm stops when the 
following criterion is met: 

(9) 

where £2 is a small positive number defined by the user. The LM algorithm is presented in 
pseudo code in figure 1, and more detail can be found in Madsen et al (2004). The starting 
value for A is chosen based on the maximum element of (JT J + aWTW) as per Nielsen 
(1999). 

2.2. Dogleg method 

The dogleg (Powell 1970) method combines the Gauss-Newton and the method of steepest 
descent (similar to LM technique) in solving unconstrained optimization problems. In this 
situation, this happens explicitly through the control of the radius of a trust region. With the 
trust region approach, an approximation of the objective function, f, called a model function, 
L k, same as equation (5) is constructed to represent the behaviour of the objective function 
at each iteration (Nocedal and Wright 1999). The iteration steps are determined to minimize 
the model function inside the trust region. The size of the trust region is detennined based on 
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the performance of algorithm in the previous iteration. The following subproblem needs to be 
solved to obtain the search direction, P (Nocedal and Wright 1999) 

min {Lk(Xk + p) = fk + pT\1 fk + !pT BkP} 

P E Rn (10) 

subject tollpli2 ( ~k 

where ~k is called the trust region radius. The 11-11 2 is the L2-norm. The vector p* is a 
globally optimized solution to problem (10) for a scalar J.. ~ 0 if the following conditions are 
satisfied (Nocedal and Wright 1999): 

(i) (B + J..I)p* = -\1 fk 

(ii) J..(~ - Ilplb) = 0 (11) 

(iii) (B + AI) is positive semidefinite. 

The candidate step is the solution to the constrained subproblem in equation (10). The 
necessary and sufficient conditions for the solution are given in equation (11). The radius 
of the trust region has a critical effect on the convergence of the optimization. It is selected 
based on the success of the model function (equation (5» in predicting the behaviour of the 
objective function during each iteration. If the model correctly predicts the objective function 
behaviour then the radius is increased to allow for bigger steps. In the case of failure to predict, 
the radius is decreased and the subproblem (equation (10» is solved again using the reduced 
radius. More and Sorensen (1983) suggested solving a nonlinear equation by the Newton 
method using the sparse Choleski decomposition of IIplA)1I = ± with(B + J..l)p(J..) = -\1 f. 
This method requires two to three Choleski decompositions per iteration. There are other 
methods which are based on the minimization of the subproblem in equation (10) in the 

T 

two-dimensional subspace containing the Cauchy step, Psd = -(g; 19)9 and the Newton step 

pgn = - B-1 g. The most common technique is the dogleg (DL) method which was suggested 
by Powell (1970), where p = Pgn if IIPgn II :::;; ~ and p = CIP~dll )Psd if IIPsd II ) ~. In the 
remaining case, P is a convex combination of Pgn and Psd such that IIpll = ~. The advantage 
of the dogleg method is that it requires only one Choleski decomposition per iteration. It 
should also be mentioned that in the case of the EIT least -squares problem, the matrices g and 
B are given as follows: 

g = JT (V - F(a» - aWTWa 

B = J(a)T J(a) + aWTW. 

(12) 

(13) 

The dogleg step can be selected based on Powell's suggestion through the above-mentioned 
algorithm listed as equation (14). The dogleg algorithm is presented in pseudocode in figure 2 
and more details can be found in Madsen et at (2004). 

if IIPsdll ~ fi then 

Pdl := CP~dll) P,d: 

else if I\Pgn 1\ :::;; ~ then 

Pdt := Pgn; 

else Pdt:= Psd + f3(pgn - Psd); 

Where f3 is chosen to meet I/Pdlli = ~ 
end 
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Algorithm: 

Input: objective functionf, voltage measurements vector V, starting values for conductivity 00 

Output: updated conductivity vector, 0 

K:=O; 0:= 0'0; ~:= ~o' GN:=true; //initialization// 

B:= l(erl l(er) + aWTw; g := l(erl (V - F(er) - aWTWer; 

stop = (1lglloo ~ Cl) ; 

while (stop*true) and (k<kmax) do 

k:=k+l; 

P 
'- IIgl12 g' 

sd .- IIlgl12 ' 

ifGN=true then 

P . B-1 • 
gn'= - g, 

GN:=false; 
end if 

Compute Pdl by (14) 

/J.O":= Pdl; 

if II~all ~ (£211011 + C2) then 
stop:=true; 

else 
Onew :=0+ ~o; 
Compute p by (6-7) 
if p>O then 

a:=anew ; 

B:= l(al 1(0") +aWTW; g:= l(erl (V - F(a)) -aWTWer; 

stop:= «llgt ::; £1) or ellfex)t ::; £3»); 

GN:=true; 
if p>O.75 then 

~:= max{~,3*llpdlll} 
else if p<O.25 then 

~:= ~/2; 

end if 

stop := II~erll ~ (c211erll + c2) ; 

end if 
end if 

end while 

Figure 2. The complete Powell's dogleg algorithm. 

2.3. Forward model 

In order to solve the inverse problem in EIT, the forward problem must be solved. When 
the conductivity distribution and injected currents are known, the forward solution gives the 
estimated measured voltages on the electrodes. The most common model for the forward 
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problem is the complete electrode model (Somersalo et al 1992, Cheng et al 1989). The 
equations for the complete electrode model are: 

V' . (aVa) = 0, 

au 
u +z[a- = U[, an 

f Cf au dS = I z , 
an 

a au = 0, 
an 

XEn (15) 

x E e[, I = 1,2, ... ,L (16) 

X E ez, I = 1, 2, ... , L (17) 

(18) 

where Q is the object, u is the scalar potential distribution, n is the outward unit normal of 
the boundary an, z[ is the electrode contact impedance, U[ is the potential on each electrode, 
II is the injected current, L is the number of electrodes and e[ denotes the lth electrode. For 
existence and uniqueness of the solution the law of conservation of charge and a reference 
voltage has to be added to the model 

L 

Lit =0 (19) 
[=1 

L 

LU[=O' (20) 
[=1 

In the finite element method a linear system is formed 

Au = f (21) 

where A E rn-(N+L)x(N+L) is the master matrix which has integrations over the elements and 
over the boundary elements, b E rn-(N+Lxl) is the vector in which the N first elements are 
the voltages in each node and the last L are the voltages on the electrodes, and j(N+Lxl) is a 
vector in which the first N elements are zero and the last L elements consist of the injected 
currents. More details regarding assembling and solving the above-mentioned matrices can 
be found in Polydorides (2002). The forward and inverse parts of the image reconstruction 
code used in this study were implemented in MATLABTM (The Mathworks, Natick, MA). The 
forward solution is an adaptation of the code provided on the EIDORS website (Polydorides 
and Lionheart 2002). 

3. Methods 

The LM and dogleg algorithms were tested on simulated case studies. The simulated geometry 
is a cylinder with both height and diameter equal to 3 (arbitrary length units). This cylinder 
is surrounded by 48 electrodes in three vertically-stacked rings with each ring composed of 
16 electrodes. The length and width of each electrode are 0.29 cm and 0.42 cm, respectively. 
There is 0.3 cm gap between each electrode. The geometry was created and discretized 
into tetragonal finite elements using FEMLABTM (COM SOL 2004). The total number of 
tetrahedrons was 7149 with 1575 nodes. The geometry is displayed in figure 3 with the 
electrodes indicated. Different cases were studied. In the first study, a single abnormality is 
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Figure 3. Simulated geometry with 48 electrodes. 
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Figure 4. Tumour geometry for EIT simulation in the case of two abnormalities. 

M Goharian et at 

assigned at different locations within the volume of the cylinder, while in the second case, two 
abnormalities (of approximately equal volume) are located in different positions inside the 
volume. The two abnormalities are depicted in figure 4. The sizes of the objects were selected 
to be 1 % of the total number of finite elements with 71 finite elements belonging to each 
object. The adjacent current injection pattern and adjacent voltage measurement (' adjacent'
' adjacent') were implemented and in total 2160 pairs of measurements were obtained with 
the 48 electrodes on three rings. Different Gaussian noise levels were added to the voltage 
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z=1.20 z=1.0 z=0.80 

z=0.60 z=0.40 z=0.20 

Figure S. Original conductivity distribution for the case of one abnormality at (-0.5, -0.5, 0.5) 
at different heights, z, of cylinder for 30% changes. 

measurement. The standard deviation of the noise was chosen to be 0.5 and 1 % of the mean 
absol ute measured voltage level. The highest value of the added noise (1 %) is a relatively 
large noise level for an EIT measurement system (Eyiiboglu et al 1994). The regularization 
parameter, a, determines the degree of smoothing against the noise in the reconstructed 
image. There are more robust approaches for choosing the value of a, such as L-curve, 
generalized cross validation (GCV) and the discrepancy principle (Hansen 1992, Johnston and 
Gulrajani 2000). For instance, the L-curve method balances the semi-norm of the regularized 
estimated vector against the norm of the residual vector. Graham and Adler (2006) introduced 
and evaluated some objective hyperparameter selection techniques for EIT. The value of the 
regularization parameter for this study was empirically chosen to be 5 x 10-5• All simulations 
in this study were performed on an AMD Opteron 175 running Linux with 4 GB of RAM 
(Random Access Memory). In any iterative method, the initial guess for the conductivity 
distribution has to be determined. In this study, a homogeneous estimate for the conductivity 
distribution was used. The best homogeneous conductivity distribution was computed based 
on Kao et al (2006). 

4. Results 

4.1. Performance for single abnormality 

In this study, an increased conductivity (by 30% above background) was assigned to a small 
region containing 71 elements where the position of an abnormality was varied from the side 
to the centre and from the bottom to the top of the cylinder. Figure 5 shows the original 
conductivity distribution when the abnormality is located at (-0.5, -0.5, 0.5). The X, Y 
coordinates of the cylinder varied from [-1.5, 1.5] and height from [0, 3]. Figures 6 and 7 
show the reconstructed images for the LM and dogleg methods with 1 % noise respectively. 
Even in the case of 1 % noise the image quality is sufficient to detect the abnormality in both 
methods. It can be noted that both methods reconstruct almost the same image since both 
the LM and dogleg methods work with combinations of Gauss-Newton and steepest-descent 
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z=1.20 z=1.0 z=0.80 

z=O 60 z=0.40 z=0.20 

Figure 6. Reconstructed images with dogleg method with I % noise for the case of one abnormality 
at (-0.5, -0.5, 0.5) at different heights, z, of cylinder. 
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Figure 7. Reconstructed images with LM method with 1 % noise for the case of one abnormality 
at (-0.5, -0.5, 0.5) at different heights, z, of cylinder. 

method. In other simulations the abnonnality moves from the bottom to the top of cylinder 
while the X and Y positions of the abnonnality stay in the centre of the cylinder (0, 0, 0.5) 
to (0, 0, 1.4) and (0, 0, 2.5). In interest of space only reconstructed image with the dogleg 
method for 1 % noise level for object at (0, 0, 0.5) is shown in figures 8 and 9. Both algorithms 
perfonn worse for an object at the centre particularly for the 1 % noise level. In the adjacent 
method the current is passing mostly in the outer part of imaged object. Therefore the adjacent 
method is very sensitive to conductivity variation close to the boundary and insensitive to the 
central conductivity variation (Dickin and Wang 1996). 
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z=1.20 z=1.0 z=0.80 

z=0.60 z=0.40 z=0.20 

Figure 8. Original conductivity distribution for the case of one abnonnality at (0, 0, 0.5) at different 
heights, z, of cylinder for 30% change. 

z=1 20 z=1.0 z=0.80 

z=0.60 z=0.40 z=0.20 

Figure 9. Reconstructed images with dogleg method with 0.5% noise for the case of one 
abnonnality at (0, 0, 0.5) at different heights, z, of cylinder. 

The last study for a single abnormality investigated a small change in conductivity (10% 
higher than background) with an abnormality at the bottom of the cylinder. The dogleg 
reconstructed images with a 0.5% noise level are shown in figure 10. This figure is an 
indication of the ability of the method to detect an abnormality, even with this small variation. 

4.2. Performance with two abnormalities 

Two cases were used in this part to check the distinguishability of the two algorithms with two 
abnormalities. In the first case, there are two small regions containing 71 tetrahedron elements 
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Figure 10. Reconstructed images with dogleg method with 0.5% noise for the case of one 
abnormality at (-0.5, -0.5, 0.5) at different heights, z, of cylinder with 10% conductivity change. 

z=1.0 z=0.80 z=0.60 

z=0.40 z=0.20 z=0.10 

Figure 11. Original conductivity distribution for the case of two abnormalities both with 30% 
conductivity change at (-0.5, -0.5, 0.5) and (1, 1, 0.5) at different heights, z, of cylinder. 

which are positioned diagonally at the same plane at the bottom of the cylinder (-0.5, -0.5, 
0.5) and (1, 1, 0.5). In the first study the same conductivity changes of 30% higher than the 
background are assigned. The original distribution for this case is shown in figure 11. The 
reconstructed image with the dogleg method in the case of 1 % noise is shown in figures 12. In 
the second case, the conductivity changes (+30% and -50%) with respect to the background 
are defined in the two regions at the same plane. Figures 13 and 14 show the original and 
reconstructed conductivity. In both cases even with 1 % noise the abnormalities can be clearly 
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z=1.0 
z=0.80 z=0.60 

z=0.40 z=0.20 z=0.10 

Figure 12. Reconstructed conductivity images with dogleg for 1 % noise for the case of two 
abnormalities both with 30% conductivity change at (-0.5, -0.5,0.5) and (1,1, 0.5) at different 
heights, z, of cylinder. 
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z=0.40 z=0.20 z=0.10 

Figure 13. Original conductivity distribution for the case of two abnormalities at (-0.5, -0.5, 
0.5) and (1, 1, 0.5) at different heights, z, of cylinder one with 30% higher and the other one with 
50% lower than background. 

identified. In the last study the abnormality with 30% higher conductivity than the background 
is defined in a region towards the top of the cylinder at the position (0. 5, 0.5, 1.5) and the 
abnonnality with -50% is located towards the bottom of the cylinder at (-0.5, -0.5, 0.5). 
The original and reconstructed images for this case are shown in figures 15 and 16. 
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z=1.0 z=O.80 z=O.60 

.0 

z=0.40 z=O.20 z=O.10 

Figure 14. Reconstructed conductivity images with dogleg for the case of two abnormalities at 
(-0.5, -0.5, 0.5) and (1, 1, 0.5) at different heights, z, of cylinder at I % noise one with 30% 
higher and the other one with 50% lower than background. 
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z=1.80 
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z=1.60 

z=O.40 

Figure 15. Original conductivity distribution for the case of two abnormalities at (-0.5, -0.5, 
0.5) and (0.5, 0.5, 1.5) at different heights, z, of cylinder one with 30% higher and the other one 
with 50% lower than background. 

Both algorithms proved to be robust under the tested conditions by converging towards 
solutions. Even at the highest tested level of noise (1 %), the algorithms produced reconstructed 
conductivity maps in which the abnonnalities were visually separable from background and 
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z=2.0 
z=1.80 z=1.60 

.r' 

z=1.20 z=1.0 z=0.40 

Figure 16. Reconstructed conductivity images with dogleg for the case of two abnormalities at 
(-0.5, -0.5,0.5) and (0.5, 0.5, 1.5) at different heights, z, of cylinder with 1% noise, one with 
30% higher and the other one with 50% lower than background. 

Table 1. False positive and negative percentages of finite elements that were determined based on 
an image intensity threshold that ensures 95% of tumour finite elements are correctly classified. 

False positive False negative 

DU 1.35 0.58 
LMa 1.12 0.85 
DLb 18.91 1.2 
LMb 13.76 0.96 

a Two objects at (-0.5, -0.5, 0.5) and (0.5, 0.5, 1.5) with conductivity changes of +30% and 
-50% at 0.5% noise leveL 
b Two objects at (-0.5, -0.5, 0.5) and (0.5, 0.5, 1.5) with conductivity changes of +30% and 
-50% at 1 % noise level. 

centred at the expected location. However, the presence of noise in measurements proved to 
have similar negative affects on both algorithms. A visual examination of the reconstructed 
images reveals that as noise increases, the number and sizes of non-existent protuberances also 
increase (see figures 7 and 9). A statistical analysis of the reconstructed conductivities also 
demonstrates the affects of noise on the reconstruction process. A quantitative comparison 
of image reconstruction using two methods is presented in table 1. Table 1, a comparison of 
reconstructions from the two algorithms with 0.5% and 1 % levels of noise, exemplifies the 
results, which was typical of all tested cases. The comparison was performed by setting a 
threshold on image intensity defined to include 95% of all pixels belonging to tumour tissue. 
All background finite elements with image intensity higher than this level will indicate the 
percentage that can be considered as false positives. The results show that as the level of 
noise increases, the number of false positives increases drastically while the number of false 
negatives was not significantly affected. The dogleg algorithm is slightly more sensitive to 
noisy environments, where at 1 % level of noise, it has 37% more false positives than the 
Levenberg-Marquardt algorithm. The level of misclassification with 1 % noise would not be 
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Table 2. Perfonnance comparison of LM and DL methods: initial value of objective function, 
!(a), final value of objective function f(a), objective function and Jacobian calculations, total 
number of iteration/linear system calculation, execution time in minutes. 

Initial value of f(a) Final value of f(a) 

DL LM DL LM 

Case 1 3.08 x 10-4 3.08 X 10-4 4.8 x 10-6 4.8 x 10-6 

Case 2 1.6 x 10-5 1.6 x 10-5 4.9 x 10-7 4.9 x 10-7 

Fun/lac 

DL LM 

10/5 10/10 
10/5 10/10 

Iter/sys. solved 

DL LM 

10/5 10/10 
10/5 lO/tO 

Exec. time 

DL LM 

26 57 
25 55 

Case 1: two objects at (-0.5, -0.5,0.5) and 0, 1,0.5) with conductivity changes of +30% and -50% at 1 % noise 
level. 
Case 2: one object at (-0.5, -0.5, 0.5) with conductivity changes of +30% at 1 % noise level. 

acceptable in most applications, however modem EIT systems report a level of lower than 1 %, 
and therefore this should not prove to be a problem (McEwan et al 2006). 

The placement of the abnormalities within geometry plays a very significant role in 
the ability of an algorithm to accurately reconstruct an image. Abnormalities which were 
located near the surface of the geometry and closer to the electrodes were reconstructed with 
much higher accuracy, greater contrast against the background and had more clearly defined 
boundaries. Test cases in which the abnormality was closer to the surface were also less 
sensitive to the non-existent protuberances due to noise as seen in figure 6. This was equally 
true of both the dogleg and the Levenberg-Marquardt reconstructions. The abnormalities 
located in the centre were also reconstructed to be much larger in size than actuality with both 
algorithms. However these issues are common to all EIT reconstruction algorithms and have 
to do with the very nature of EIT. Changes from abnormalities located in the centre cause a 
much smaller boundary voltage change than a voltage change located near the surface (Dickin 
and Wang 1996). This affect is amplified by the fact that the comparison tests used only 
adjacent firing patterns. The majority of the current would not have travelled to the centre of 
the cylinder and the abnormalities located in the centre would not have been probed to the 
extent as an abnormality located close to the surface. The lack of clear information in voxels 
located in the centre means that the regularization smoothes over conductivity changes located 
in the centre of the object. The use of optimal current patterns (Lionheart et al 2001, Goble 
and Isaacson 1989), or more measurements would compensate for the lack of information 
from the centre, but this could be said of any EIT reconstruction algorithm and does not go 
towards demonstrating the viability of the dogleg and LM algorithm in EIT reconstruction. 

A statistical comparison of the two methods is given in table 2. This comparison shows 
the total number of evaluations of the objective function, the Jacobian, and solving the linear 
system of equations. As can be seen, the DL algorithm requires fewer objective and linear 
system of equations evaluations. It has already been mentioned that LM needs to solve 
equation (3) on each iteration to determine the step. This means that when the LM step fails, 
the algorithm needs to solve equation (3) with an increased damping factor, A. In other words, 
every failed step results in an unproductive effort. The advantage of the dogleg method is that 
it does not require finding the Gauss-Newton step in the case of failure. Once the Gauss
Newton step has been found, the algorithms can solve the subproblem (10) for a different 
radius, L\. Reducing the number of times that the algorithm needs to solve the Gauss-Newton 
step has a crucial effect on the performance of the algorithm. For many optimization problems, 
computing the gradient of the objective function requires more computing time than computing 
the function value, and computing the Hessian sometimes requires far more computing time 
and memory than computing the gradient. As shown in table 2, the total execution time for 
the dogleg method is less than 50% of that for the LM method. If the size of the mesh were to 
increase, the benefits of using the dogleg algorithm would be even greater. Figure 17 shows 
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Figure 17. Convergence rate change for objective function versus iteration for the case of two 
objects at (-0.5, -0.5,0.5) and (1, 1,0.5) with conductivity changes of +30% and -50% at 1 % 
noise level. 

the convergence rate change for objective function versus iterations for the case of two objects 
and is indicative of convergence rates for all test cases. As can be seen, the algorithms are able 
to converge after only five iterations, with very minimal change at further iterations. If further 
reduction in computation time is required, the number of iterations can be reduced with only 
a small sacrifice in accuracy. 

6. Conclusion 

This paper has introduced the Powell's dogleg algorithm as an alternative method to 
Levenberg-Marquardt for solving the EIT inverse problem. As demonstrated in all the 
simulations, the dogleg method produces similar solutions to those of LM with less 
computational effort. The introduction of a trust region method to the EIT problem has 
additional benefits. It can be used to solve EIT problems in a constrained optimization 
formulation. 
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CHAPTER III 

Paper II 
The following paper is a continuation of a series of papers for new image reconstruction algorithms for 

EIT. In this paper, we introduce a novel approach for the regularization of the EIT problem using a spectral 

and spatial multi-frequency analysis approach. The approach is based on the construction of a subspace for 

the expected conductivity distributions using principal component analysis. The advantage of this technique 

is that prior information is extracted from the characteristic response of an object at different frequencies 

and spatially across the finite elements. 

The SS-MIA algorithm which is presented in this paper is a modification of a suggested algorithm in PhD. 
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Moran and MacGregor. 
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Abstract 
Electrical impedance tomography, EIT, is an imaging modality in which the 
internal conductivity distribution of an object is reconstructed based on voltage 
measurements on the boundary. This reconstruction problem is a nonlinear 
and ill-posed inverse problem, which requires regularization to ensure a stable 
solution. Most popular regularization approaches enforce smoothness in the 
inverse solution. In this paper, we propose a novel approach to build a 
subspace for regularization using a spectral and spatial multi-frequency analysis 
approach. The approach is based on the construction of a subspace for the 
expected conductivity distributions using principal component analysis. It is 
shown via simulations that the reconstructed images obtained with the proposed 
method are better than with the standard regularization approach. Using this 
approach, the percentage of misclassified finite elements was reduced up to 
twelve fold from the initial percentages after five iterations. The advantage 
of this technique is that prior information is extracted from the characteristic 
response of an object at different frequencies and spatially across the finite 
elements. 

Keywords: electrical impedance tomography, peA, multi-spectral analysis, 
regularization 
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1. Introduction 

In electrical impedance tomography the internal electrical conductivity distribution is 
reconstructed from electrical measurement on the surface of the object under study. Arrays 
of electrodes are attached to the object surface and an alternating current is passed through at 
least a single pair of electrodes. The induced voltages are measured on the remaining surface 
electrodes. There are many potential applications of EIT in medical imaging (Cheney et al 
1999) and industrial process monitoring (Dickin and Wang 1996). A more comprehensive 
review of the theory and application of EIT is provided in a recent text by Holder (2005). 

This type of problem, in which the property under investigation is recovered from 
boundary measurements, is a nonlinear inverse problem and is severely ill posed. The ill 
conditioning stems from conductivity distributions for which the voltage measurements are 
extremely small and influenced by noise. Such unreliable measurements make the solutions 
unstable. To obtain stable and meaningful solutions regularization is used. There are two 
primary regularization classes: the penalty method and the projection method. In the penalty 
method a penalty term is added to the original problem to 'penalize' noise contributions to the 
solution. A popular example of this class is Tikhonov regularization. The penalty methods 
regularize ill-posed problems by inserting terms to filter out unwanted components in the 
solutions. These unwanted properties in the solutions originate from the noisy measurements. 
Tikhonov regularization achieves this by means of adding a penalty term to the objective 
function. 

In the projection method the solution is projected to a subspace to remove the unwanted 
components (Jacobsen 2004). The truncated singular value decomposition (TSVD) is an 
example. Another class of regularization is the so-called hybrid method which is combination 
of projection and penalty methods (Hanke and Hansen 1993). The implementation of 
regularization is equivalent to introducing a priori information in the reconstruction process, 
which may affect the ability of detecting sharp variations in the conductivity distribution (in 
EIT for example). The Tikhonov regularized form for the nonlinear problem of EIT can be 
written as 

min <I>(a) = {IIV - F(a)1l 2 +a \lLaI1 2
} (1) 

(J 

where a is the conductivity distribution, V are the measured voltages, F (a) is a functional map 
between the conductivity distribution and the voltage measurements, L is the regularization 
matrix, and a is a regularization factor. The regularization factor tries to balance the amount of 
prior information that is used in the final solution. The most common approaches to determine 
a are the L-curve (Lawson and Hanson 1974), generalized cross validation (Wahba 1977) and 
discrepancy principle methods (Morozov 1984). Equation (1) can be solved recursively via 
Newton's method as follows: 

(2) 

/).an = -H-1\1<1> 

= (JT J + aLT L)-l[JT (V - F(an) - aLT Lan] (3) 

where H is the approximation for the Hessian of the objective function, and J is the Jacobian 
for the mapping function F(a). Differential operators (typically, first and second order) are 
the most common penalty functions that have been used in Tikhonov regularization (Hua et al 
1988, Woo et al 1993). 

In the NOSER algorithm (Cheney et al 1990) a diagonal matrix was suggested for 
regularization which chooses L = J JT J. Smooth solutions are expected when using these 
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regularization matrices. Vauhkonen et al (1997) introduced the basis constraints method 
(BCM) in which the conductivity distribution was considered to be a linear combination of 
preselected basis functions; Wi, that is, a = L~l Ci Wi, Ci E m are the weight functions 
for the basis functions. A representative ensemble of possible conductivity distributions was 
created based on prior information on the structures and conductivities of the object. The 
basis functions are created from the principal eigenvectors of the ensemble. The drawback of 
the BCM method is that it is biased towards a particular set of solutions. In another study, 
Vauhkonen et at 1998 introduced the subspace regularization method (SSRM) to overcome 
the prior bias problem of BCM. The SSRM method weights the solution towards the subspace 
which is spanned by a representative ensemble of orthonormal vectors. Vauhkonen suggests 
calculating a regularization matrix whose null space is Sw in the following way: 

L = I - WWT (4) 

where I is the identity matrix and W is the matrix holding all orthonormal column vectors, 
Wi, i = 1, ... , M. If a lies in the subspace Sw (spanned by the orthonormal column vectors, 
wd then WWT a = a (since WWT gives the orthogonal projection of a onto the subspace 
Sw). Thus, the implementation of L gives, La = (l - WWT)a = a - WWT a = 0 (if a 
lies in Sw) and such a are favored. In Vauhkonen et al (1998) it was shown that the SSRM 
technique is able to reconstruct conductivities which do not match the prior information. This 
is due to the fact that SSRM only draws the solution towards the subspace instead of forcing 
it, unlike BCM. Vauhkonen (1997) built a subspace from an ensemble of 81 possible thoracic 
conductivity distributions, using the anatomical structure of the tissue being imaged from MRI 
images, and published conductivity values. 

In this paper we proposed subspace regularization using a similar approach to SSRM. 
However, in our work it is assumed that the anatomical structure and conductivities are not 
available a priori to build the subspace. We propose a novel approach to build the subspace 
for regularization using spectral and spatial multi-variate analysis techniques developed by 
Bruwer (2006). The paper is organized as follows. Section 2 develops the principles and 
implementation of the proposed regularization. Section 3 introduces the simulation-based 
studies used to demonstrate the feasibility of this technique. Section 4 presents and discusses 
the results. 

2. Theory and algorithms 

2.1. Multi-frequency peA modeling of the EIT problem 

The electrical conductivity of mammalian tissue depends on the tissue structure at the cellular 
level and it is known to change with frequency (Schwan 1957). The conductivity of excised 
tissue samples can be modeled via the Cole-Cole model (Cole and Cole 1941). The Cole-Cole 
model has been directly implemented in the EIT image reconstruction algorithms by using 
data across a range of frequencies (Mayer et al 2006). Constructing the model in this way 
is often referred to as parametric imaging. The premise of parametric imaging is that the 
collection of data simultaneously across a range of frequencies will decrease the ill posedness 
of the problem. 

A similar multiple-frequency approach has been applied in microwave image 
reconstruction (Fang et al 2004). Fang et al implemented simultaneous multiple-frequency 
measurement data to reconstruct a single image of tissue property dispersion. The high
contrast objects were successfully reconstructed through the multiple frequency-dispersion 
reconstruction algorithm (MFDR) for which a single-frequency algorithm failed to reconstruct 
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an image. Image quality was improved by adding more frequencies in the reconstruction 
model. In another approach a multispectral constrained approach has been implemented 
for near-infrared frequency domain tomography for the purpose of creating images of total 
hemoglobin, water, oxygen saturation and scatter parameters (Srinivasan et a/200S). In this 
method the spectral constraint of the chromophore and scattering spectra was implemented 
directly in the algorithm, thus reducing the parameter space from 12 images to 5 parametric 
images. In addition, the spectral constraint approach reduced the noise in the reconstructed 
chromophore concentration, especially those in water and scatter power images. The 
usefulness of the multi-frequency approach has also been investigated in the bioluminescence 
optical tomography (BLT) technique. For bioluminescence imaging, it is important to be able 
to correctly localize and quantify the three-dimensional (3D) distribution of bioluminescent 
sources inside a small animal to study various molecular and cellular activities. Dehghani 
et al (2006) used multi wavelength emission data in spectrally resolved bioluminescence optical 
tomography to improve the accuracy of the reconstructed image. The bioluminescent source 
location in the reconstructed image was detected to be within 1 mm of the original source 
location by using six wavelength bands. 

In a related work (Bruwer 2006) it was shown how principal component analysis (peA) 
can be used as an alternative, non-parametric approach to account for the frequency dependence 
of tissue conductivity in EIT image reconstruction. peA perfonns a mathematical procedure 
that transfonns a number of correlated variables into a smaller number of un correlated variables 
called principal components. The first principal component contains as much of the variability 
in the data as possible, and each succeeding component accounts for as much of the remaining 
variability as possible. Low-order components often contain the most important aspects of the 
data. 

peA implementation on multi-frequency BIT data (in this study conductivity distribution) 
can effectively compress highly correlated data and project it onto a reduced subspace via a 
linear combination of the original conductivity data. In this way only a few reduced dimensions 
are needed to describe all of the significant variation in the multi-frequency EIT data. In order 
to implement multi-frequency analysis via peA on the EIT data, the original image data must 
be fonnatted into a matrix. The following procedure is perfonned. Each finite element in the 
image has conductivity values over the range of discrete frequencies. Each such characteristic 
spectrum is considered as a row vector and these row vectors concatenated vertically to form 
a matrix, X, of dimension (M x N), where M is equal to the number of finite elements and N 
is the number of discrete frequencies. 

To find the first principal component from the original conductivity data, X, the following 
optimization problem should be solved: 

max '11 = pi XT XPI 
PI 

S.t. pi PI = 1 
(5) 

The solution to (5) gives PI, the eigenvector with the largest eigenvalue (AI) of the covariance 
matrix, XTX, scaled to unit length. To find all principal component vectors the additional 
constraint should be added to the optimization problem in (5) which states that they are 
orthogonal to each other: 

max'l1i == pi XT XPi i = 1, ... , k 
PI 

S.t. pi Pi = 1 (6) 

pi Pj = 0 j = 1, ... , (i - 1), y i ~ 2 
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The principal component vectors, PI, P2,' .. , Pk, are concatenated into the loading matrix, 
P. For a given observation, Xj, the projection onto the peA model gives a set of 'scores', ti, 
through tT = xi P. The structure in the original conductivity data matrix, X, is modeled as 

A 

X = Ltipr +E = TpT +E 
i=l 

(7) 

where A is equal to or less than the rank of X, T is the score matrix (M x A), pT is the 
loading matrix (A x N), and E is the residual matrix (M x N). See Wold et al (1987) for more 
details on the peA method. In this way, the frequency-dependent structure in the original 
conductivity data, which excludes most of the unstructured noise, can be calculated using only 
the A dominant principal components via 

- T X=TP =X-E. (8) 

Each finite element has its own unique conductivity spectrum with respect to all the frequencies, 
referred to here as its spectral signature. This method of image analysis is called 'multivariate 
image analysis' (MIA) (Ge1adi and Grahn 1996). 

2.2. Simultaneously extracting spatial and spectral structure 

Tumor tissues have high vasculature leading to higher water content when compared to 
n ann al tissue. The high rates of necrosis in tumor tissue also lead to breakdown of cell 
membranes, lowering the resistance to low frequency current transmitted through tissue. 
These physiological changes manifest as changes in electrical properties. It has been shown 
that the dielectric constant and conductivity for cancerous tissue (for instance breast tissue) 
is three or more times greater than that of nonnal tissue (Surowiec et al 1988). Therefore 
it would be possible to identify and cluster finite elements in a 3D EIT reconstruction based 
on the detected electrical properties. If the EIT mesh was spatially finer than the underlying 
physiological traits, it would be expected that the electrical properties of neighboring finite 
elements would exhibit similar electrical properties. In Bruwer (2006) a new method which 
combines the spatial correlation structure with the frequency correlation has been developed. 
This method is called 'spatial-spectral MIA', or 'SS-MIA'. 

The proposed SS-MIA approach is as follows. EIT data from multiple frequencies are 
gathered and an image is reconstructed independently for each frequency. The reconstructed 
conductivities are then rearranged into a matrix, X, where the number of rows is given by the 
number of finite elements in the 3D mesh and the number of columns is given by the number 
of frequencies for which data were reconstructed. The ith row in this matrix would represent 
conductivities across the range of frequencies for the ith finite element of the mesh. peA is 
applied to the matrix of multi-frequency EIT data, X, to get dominant score vectors (matrix T 
in equation (7», where the ith row vector ofT, tT is the compressed spectral signature ofthe ith 
finite element. For the ith finite element, the finite elements,j = 1, ... ,ki' are selected which 
have their centers of mass within a specific radius, r, from the center of mass of the ith finite 
element. The bounding volume is a sphere in three dimensions and a circle in two dimensions. 
The size of radius acts as a balance between image noise reduction and image smoothing. 
Thereafter, the vector distance between each spectral signature, tj, of the jth selected finite 
element and that of the ith finite element (ti) is calculated as follows: 

dij = L (tjl - til)2, 
l 

j = 1, ... ,kj, 
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where I = 1, ... , A, A being the number of principal components in the peA model of 
equation (7). These distances are concatenated into the vector, d j = [dn ... djk]T. This 
analysis is repeated for all finite elements in the model, giving a set of these spectral distance 
vectors, D = {di , i = 1, ... , M}, where M is the total number of finite elements. The set D has 
two important features. First, the lengths (kj ) of the vectors, d j , vary due to the variable number 
of finite elements within a radius, r, for each given finite element. The second feature of the 
set, D, is that the order of the elements in each vector, d j , varies based on mesh geometry. The 
following approach is implemented to deal with the variable vector lengths. First, the greatest 
vector length, K = max{kj , i = 1, ... , M}, in the set, D, is determined. Then, for each vector, 
d j , aj = floor(K/kj), and hj = K - kjaj are calculated. If h j = 0 (ki divides exactly into K) then 
dd j is formed simply by concatenating d j with aj - 1 copies of itself. If hi > 0 then the first 
(kjai) elements of ddi are filled as described above, while a different approach is needed to fill 
the last hi elements. A matrix, Si. is formed in which the first column is the vector, Sj, and the 
second column the vector d i . The elements of Sj are the spatial distances from the surrounding 
finite elements to the centre finite element (between centers of mass). Next, the rows of Si are 
sorted so that the elements of the first column are in ascending order. Finally, hi equally spaced 
elements from the second column of Si are selected and used to fill the last hi elements of ddi. 

This approach has the effect of finding a subset of finite elements in a manner which does not 
introduce bias, but also samples the range of radial distances (in the spatial image-domain) 
evenly. The above operation ensures that the new set, DD = {ddi , i = 1, ... , M}, has vectors 
of equal length, K. A key feature of this approach is that variation of finite element density 
throughout the whole volume is handled automatically. The elements of the augmented vector 
ddi are sorted in ascending order to remove the random arrangement. This procedure creates a 
'spectral-distance spectrum' for each finite element. Finite elements whose spectral signature 
is consistent with those of its immediate spatial neighborhood will have a spectral-distance 
spectrum comprised of mostly small values. By contrast, if the spectral signature of a given 
finite element is very different from its spatial neighborhood, its spectral-distance spectrum 
will show many large values. 

The last step is to perform peA analysis on the combination of the compressed spectral 
signature, ti, for each finite element and its associated spectral-distance signature, ddj • The 
peA is performed on an augmented matrix, Xaug = [T Q], where T is the matrix of scores 
from the original peA model (cf equation (7)), and Q is a matrix formed by vertically 
concatenating the row vectors, dd? A block scaling on T and Q is applied so that they have 
equal weight in the peA model (Eriksson et al 20a 1). Figure 1 shows a flowchart for the 
SS-MIA algorithm. 

2.3. Image reconstruction procedure with SS-MIA 

The Newton-type method (2) was used for the solution of the nonlinear problem (1). In 
this study a three-step approach was implemented for image reconstruction. The proposed 
procedure is as follows: 

(1) Assuming a uniform conductivity, take the first step in the iterative Newton method for 
the inverse problem using equations (2) and (3) simultaneously to reconstruct the first 
estimate of the conductivity distribution for each discrete frequency. 

(2) Generate the matrix, X, by concatenating the individual conductivity vectors, and perform 
peA analysis to estimate X = T pT. 

(3) Each column of X gives the updated conductivity estimated at the corresponding 
frequency. These estimated conductivity distributions are used for the next iteration. 
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Figure 1. Flowchart for SS-MIA algorithm. 
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(4) Generate Xaug as described in section 2.2 and perform PCA analysis to generate X aug (the 
SS-MIA approach). The first A columns of this matrix correspond to the updated score 
matrix , T. Equation (8) is then implemented to obtain the updated X = T pT. 

(5) The regularization matrix, L , can be updated using equation (4). In this case the a priori 
subspace, W, for a given frequency would simply be the corresponding column of the 
updated X from SS-MIA, normalized to unit length. 

(6) Petform the next step of Newton's method (equations (2) and (3)) with the updated value 
of L. This is done for each frequency. 

(7) Return to step 2 and repeat until convergence or the maximum iteration number is reached. 

The EIT image reconstruction code used in this study was implemented in MatLab™. 
The forward solver is an adaptation of the code provided on the EIDORS website (Polydorides 
and Lionheart 2002). 

3. Methods 

The proposed SS-MIA regularization technique was tested on simulated cases. The simulated 
geometry is a cylinder with both height and diameter equal to 3 cm. There are 48 electrodes 
in three rings with each ring composed of 16 electrodes connected peripherally around the 
cylinder. The geometry was created and discretized into tetragonal finite elements using 
FEMLABTM. The total number of tetrahedral for the inverse part was 7149 with 1575 nodes. 
The number of tetrahedrons used for forward computations was 8125, in order to avoid what 
is referred as an inverse crime (Lionheart 2004). The geometry is displayed in figure 2 with 
the electrodes indicated. Two tumors are positioned at (0.5, 0.5 , 1.5) and (-0.5 , -0.5, 0.5) 
respectively within the tissue volume. These are depicted in figure 3. The tumor volumes were 
calculated to be 0.24 and 0.25 cm3 for upper and lower tumors respectively, and the number 
of finite elements belonging to each tumor was approximately 1 % of the total number of finite 
elements. 
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Figure 3. Tumor geometry for EIT simulation. 
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Figure 4. Breast tissue conductivity variation verses frequency (Surowiec el al 1988). 

1009 

The opposite current injection pattern and adjacent voltage measurement ('opposite'
' adjacent') were implemented. Different Gaussian noise levels were added to the measured 
voltages. The standard deviation of the noise was chosen to be either 1 % or 3% of the mean 
absolute measured voltage. 

The conductivities of the tumor and the background as a function of frequency were chosen 
to be the same as the experimental data presented by Surowiec et al (1 988) for cancerous and 
normal breast tissue, respectively. Ten discrete frequencies were chosen from 10 KHz to 
1 MHz in this study. The conductivity frequency dependence is shown in figure 4. To 
reduce the size of the simulation and thus reduce the computational task only the real part of 
conductivity was simulated. 

The regularization parameter, ex, determines the degree of smoothing against the noise 
in the reconstructed image. More robust approaches, such as L-curve, generalized cross 
validation (GCV), and the discrepancy principle (Hansen 1992, Johnston and Gulrajani 2000), 
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Figure 5. Loading weights for first principal component of the MIA peA model. 

can be used to detennine the optimal value for the regularization factor. However, in this 
study, the hyperparameter, a, was chosen heuristically to be 5 x 10-5. 

There are other parameters for the MIA and SS-MIA approaches that need to be set 
for the simulation study. Since the conductivity variables all have the same units, the data 
X for the PCA model was not scaled. In implementing the SS-MIA method to update the 
regularization matrix on each iteration the data in Xaug were mean centered and block scaled. 
This is performed by multiplying each variable in a given block by the additional scaling 
factor 1/,Jk, where k is the number of variables in that block (Eriksson et al 2001). The other 
parameter to be chosen was the radius, r, of the bounding volume. The value was chosen 
empirically to balance image noise reduction against image smoothing. A value of r = 0.8 
was found empirically to be reasonable. 

A quantitative comparison between the three methods was performed. In this case a 
threshold on image intensity was defined to include 95% of all pixels belonging to tumor 
tissue. All background finite elements with image intensity higher than this level will indicate 
the percentage that can be considered to be false positives. 

4. Results 

4.1. Image reconstruction with MIA and SS-MIA peA model 

The proposed image reconstruction procedure in section 2.3 was applied to the simulated 
geometry. Cross validation (Eriksson et al 2001) was used to find the most significant 
principal components for MIA and SS-MIA. The loading vector corresponding to the most 
significant component for MIA is plotted in figure 5. It is obvious from the loading 
vector graph that this component captures the variation in conductivity over all frequencies 
(cf figure 4). Figure 6 plots the loading weights for SS-MIA. The loading weights are related 
to the spectral-distance spectrum (dd j ). The spectral signature consists of just one variable (tii 

from the MIA model). Its associated loading weight is 0.78 (the first element in figure 6-off 
the scale). Comparing the first element with the loading weights for the other elements in 
figure 6 indicates a strong correlation between the spectral signature of a given finite 
element and the distances in the spectral domain between it and the finite elements in its 
spatial neighborhood. The physical interpretation of this is that finite elements with a high 
conductivity have a very different spectral signature from their neighbouring finite elements. 
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Figure 6. Loading weights for first principal component of the SS-MIA peA model. The model 
shows the correlation structure between spectral signature and its relationship with its spatial 
neighbors. The spectral signature comprises just one variable. Its associated loading weight is 
0.78 (the first element-offthe scale). 

z=2.5 z=1 .70 z=1 .50 

z=1 .30 z=1 .00 z=O.50 

Figure 7. Original conductivity distributions for the geometry illustrated in figure 2 shown as a 
series of 2D slices (at lowest frequency 10 kHz). 

This is sensible since tumors have high conductivity and also tend to have a smaller volume 
relative to the total tissue volume. 

Figure 7 shows the original conductivity distribution as series of 20 slices at different 
levels for the geometry with two abnormalities in figure 3. Figures 8 and 9 show the 
reconstructed images for 1 % and 3% noise level, respectively, using both MIA and SS
MIA to update the conductivity and regularization matrices, respectively. 

4.2. Image reconstruction with only SS-MIA peA model 

In this case the inverse problem was solved using the Gauss-Newton (equations (2)-(3)) 
method with the regularization matrix was updated using the SS-MIA regularization 
procedures described in the previous sections. MIA was not used to update the conductivity 
matrix. Figure 10 shows the reconstructed images for 3% noise. 
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z=2.5 z=1 .70 z=1 .50 

z=1 .30 z=1 .00 z=0.50 

Figure 8. Reconstructed conductivity distributions for the case of 1 % noise level with both MIA 
and SS-MIA shown as a series of 2D slices. Images reconstructed after five iterations (at lowest 
frequency 10 kHz). 

z=2.5 z=1.70 z=1.50 

z=1.30 z=1 .00 z=0.50 

Figure 9. Reconstructed conductivity distributions for the case of 3% noise level with both MIA 
and SS-MIA shown as a series of 2D slices. Images reconstructed after five iterations (at lowest 
frequency 10kHz). 

4.3. Image reconstruction with total variation method 

For the comparison with the MIA and SS-MIA methods the total vanatlOn (TV) as a 
regularization approach was used. Total variation assumes that the data set is blocky and 
discontinuous (Borsic 2002). Figures 11 and 12 show the reconstructed images for 1 % and 
3% noise level using TV regularization. 

5. Discussion 

Figure 13 shows a quantitative comparison for the case of 3% added noise level. This shows 
that the percentage of misclassified finite elements is reduced up to twelve fold from the 
initial percentage after five iterations. SS-MIA has been presented as a new approach for 
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z=2.5 z=1 .70 z=1 .50 

z=1 .30 z=1 .00 z=O.50 

o •. : 

Figure 10. Reconstructed conductivity distributions for the case of 3% noise level witj1 only 
SS-MIA shown as a series of 2D slices. In this case the regularization matrix is updated in each 
iteration based on the SS-MIA PCA model. Images reconstructed after five iterations (at lowest 
frequency 10 kHz). 

z=2.5 z=1 .70 z=1 .50 

z=1 .30 z=1 .00 z=O.50 

Figure 11. Reconstructed conductivity distributions for the case of 1 % noise level with TV 
regularization shown as a series of 2D slices. Images reconstructed after five iterations (at lowest 
frequency 10kHz). 

regularization through multi-frequency EIT imaging. It is clear, both from comparing the 
images in figures 8 and 9 with figures 11 and 12, and from the metrics in figure 13, that the 
combined SS-MIA and MIA approach improves the reconstructed images over the traditional 
approach of a regularized image reconstruction at a single frequency. The benefit of this 
technique is that prior information is extracted from both the frequency and spatial behavior 
of the object under study. As can be seen in figure 13, the false positive percentage for TV 
regularization at the fifth iteration is higher than the third iteration which is an indication that 
the algorithm did not converge. 

Figure 10 indicates that the implementing solely the SS-MIA approach produced a more 
uniform image (compared to the combination of MIA and SS-MIA) in the non-tumor regions, 
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z=2.5 z=1 .70 z=1 .50 

z=1 .30 z=1 .00 z=O.50 

Figure 12. Reconstructed conductivity distributions for the case of 3% noise level with TV 
regularization shown as a series of 2D slices. Images reconstructed after five iterations (at lowest 
frequency 10 kHz). 
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Figure 13. False positive percentage of finite elements that was determined based on an image 
intensity threshold that ensures 95% of tumor finite elements are correctly classified. 

but also smoothes the image over the tumors as well. The main characteristic of the SS-MIA 
approach is to extract the key spatial correlation from the given geometry. This correlation 
structure is shown by equation (9). Finite elements which show a large conductivity value 
(i.e., belonging to tumors) seem to be surrounded by many more finite elements that have a 
different conductivity. This is due to the fact that the tumor size is small, so that moving far 
enough in any direction will intersect normal tissue with a lower conductivity. In contrast, the 
normal tissue with low conductivity tends to be surrounded by many finite elements with the 
same conductivity. 

6. Conclusions 

The traditional EIT regularization approach at a single frequency needs to include a priori 
information which could be anatomical structure from another modality or the noise level 
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of the measurement system. Combined MIA and SS-MIA have been presented as an 
alternative approach. The advantage of this approach is that the principal components and then 
regularization matrix are determined from the statistical nature of the multi-frequency data, a 
property that is called the' spectral-distance spectrum', rather than any a priori assumptions 
about the model structure. Since PCA can transform input data from the high-dimensional 
space into a low-dimensional subspace while retaining most of the intrinsic information of the 
input data, it is an effective tool to extract information from the multi-frequency data. 
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CHAPTER IV 

Paper III 
The following paper presents a new approach for the regularization of the ill-posed EIT problem through a 

quadratic constrained least square approach. The proposed approach is based on the trust region 

subproblem (TRS), which uses L-curve maximum curvature criteria to find a regularization parameter. In 

this technique the trust region radius changes during each iteration which forced the algorithm toward the 

correct radius that corresponds to the elbow, the point of maximum curvature on the L-curve. 

The simulation and experimental work presented in this paper was performed by me under the supervision 

of Dr. Moran. The manuscript was written by me and edited by Drs. Moran and Soleimani. 

This manuscript has been accepted for publication in the proceedings of the 13th International Conference 

on Electrical Bioimpedance combined with the 8th Conference on Electrical Impedance Tomography, 

Vienna, Austria. 
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ABSTRCT 

The electrical impedance tomography CElT) problem is to image electrical proper
ties, such as conductivity and permittivity, in the interior of a body given mea
surements of voltages at the boundary of the object. In this paper we present a new 
approach for regularization of the ill-posed EIT problem. This approach is based 
on the trust region subproblem (TRS), which uses L-curve maximum curvature cri
teria to find a regularization parameter. A comparison of the TRS method with 
conjugate gradient least squares (CGLS) for an experimental phantom study is pre
sented. CGLS is an efficient technique when the norm of measured noise is exactly 
known. Our results show that both methods converge to the same point on the L
curve when the noise level is known. The TRS algorithm has the advantage that it 
does not require any knowledge of the norm of the noise. 

Keywords: Regularization, EIT, Image reconstruction, Trust region subproblem, CGLS. 

1. INTRODUCTION 

In electrical impedance tomography (EIT) the internal electrical conductivity can be reconstructed from 

voltage measurements on the surface of an object under study. In the case of complete and noiseless 

boundary measurements, the EIT problem is known to have a unique solution. In practice however, the 

measured data is noisy and incomplete. Hence, in this situation it is difficult to obtain a satisfactory 

solution from the nonlinear and ill-posed EIT problem. So it is necessary to use regularization tech

niques because of the ill-posed nature of the problem. 

Each regularization method employs a special parameter known as the regularization parameter, to 

control the effect of the noise on the solution. The nature of the regularization parameter is different for 

each method. For instance, in Tikhonov regularization the penalty parameter acts as a regularization 

parameters and in iterative approaches the number of iterations will serve as the regularization parame

ter. In the EIT problem, the relation between perturbations in the internal conductivity distribution and 
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the perturbations in the boundary measurements is nonlinear. However, this nonlinear relation can be 

formulated using a linearized form. If in the continuous region, 1 is the Frechet derivative of the poten

tial, U, with respect to conductivity, cr, for the nonlinear mapping CF H U(CF) , then the linearized form 

has following form 

Jx=8U (1) 

where x E iR n is the perturbation in conductivity distribution that maps to the differential measure-

ments OU E 9l m
, and J E 91 mxn is the lacobian matrix. Due to the ill-posed nature of problem, x cannot 

be recovered from (1). In practice, the most popular technique is to apply the conjugate gradient me

thod to the normal equations associated with problem (1). In this way a least square conjugate gradient 

(CGLS) approach to solve the inverse problem can be implemented in a similar fashion to a least 

square problem 

minllJx - OUl12 (2) 
x 

CGLS creates components in the direction of singular vectors related to large singular values at the 

early stages of iterations. While components associated with small singular values will be effective at 

later iterations this means that the number of iterations acts as a regularization parameter. Thus, the 

regularized solution would be obtained by stopping the iteration before the unwanted components add

ed to the current solution. 

The success of CGLS strongly depends on knowing when to stop the iteration, which is a difficult task 

in itself. On the other hand, we could use CGLS with the Tikhonov regularization approach, which is 

called a damped least squares problem. The convergence of this technique also depends on both a good 

choice of the damping parameter and a preconditioner. 

In this paper, we introduce the regularization problem as a quadratic constrained least squares problem. 

It has been shown that this approach is equivalent to Tikhonov regularization (Elden, 1977). In the area 

of optimization this problem is a special case of trust-region methods, which is known as the trust

region subproblem (Bjorck,1996). A comprehensive study regarding different approaches for solving 

the regularization problem as a trust-region subproblem is given in (Rojas, 1998). 

We adopted the recently developed method for solving the trust-region subproblem in the regulariza

tion case (Grodzevich, 2004) for the EIT problem. In this method the regularized solution was obtained 

using a parameterized trust region approach to estimate the region of maximum curvature of the L-

curve. 
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2. TRUST REGION SUBPROBLEM 

2.1 Structure of Problem 

We formulate the EIT regularization problem as the following quadratically constrained least squares 

problem 

R c,. := min IIJX - bUll 2 

s·t.lxII2$~ 
(3) 

with ~>O.Using the method of Lagrange multipliers it was shown (Elden, 1977) that this formulation is 

equivalent to Tikhonov regularization. This means that any solution to (3) with the value of ~ is equiv

alent to solving the following Tikhonov regularization with parameter a 

(4) 

It gives x a = xc,.. The solutions for (3) are the same as the following problem, which can be formulated 

by squaring both objective and constraint in (3), 

1] c,.:= min Q(x):= x T Hx - 2G T x 

s.t. "x"~ S ~2 
(5) 

where H = JT J and G = JT 8U . The optimization problem in (5) is called the trust region subproblem 

(TRS). The solution for the regularization problem (3) is found by solving the TRS (5) sequentially. 

The TRS can be used to form the L-curve, 

L(J,OU):::: {(log(A),logIIJxl'! -oul\): A > o} (6) 

The regularization parameter, ~ can be found through the point of maximum curvature, or the elbow, 

on the L-curve (Hansen, 1992). Therefore, the trust region radius, 6. needs to change iteratively to steer 

the algorithm to the elbow of the L-curve. A feasible vector x· = Xc,. is a solution to (5) if and only if 

(Sorensen, 1997): 

(H - A*J)Xc,. = G 
(H-A*I)~O 

A: (lIxc,.ll~ - d
2

) = 0 
),* sO 

(7) 

for a Lagrange multiplier ,.1* = ,.16.. These conditions relate the Tikhonov regularization (4) to the TRS 

(5). A solution x* to the TRS (5) is a solution to (4) corresponding to a 2 = -26. 

(8) 
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Conversely any solution Xa to (4) for a, solves (5) for Ll2 = jjxa II~ . So the objective function value in 

(3) and ~ represent a unique point on the L-curve. 

2.2 Creation of L-Curve With TRS 

From (Stem and Wolkowicz, 1995) we know the strong Lagrangian duality is satisfied for TRS so that 

TRS can be formulated as an unconstrained concave maximization problem,i.e. 

17fl = max minL(x, A) 
A:::;O x 

where L (x, A) = X T Hx - 2 G T X + A (~2 -llxll ~ ) represents Lagrangian of TRS. Define 

(9) 

D(t) ::: (t - G T), k(t):= (Ll2 + 1),.1, J (D(t)) - t (10) 
-G t 

where the AJ(D(t» is the smallest eigenvalue for D(t). Then the unconstrained dual problem for TRS is 
as follows 

17 fl = max kef) 
f 

(11) 

The L-curve is formed using ~ in TRS as a parameter and finding the residual for the corresponding 

optimal X.c\ • The L-curve can be formed using any of t ,~, and Afl . They are interchangeable and used 

to parameterize the regularization problem to give points on the L-curve. These parameters are related 

to each other as follows: 

t = At. +BU T J(JT J -At.1)-1 JT 8U 
~2 = c5[!T J(JT J - A

fl
1)-2 JT &J 

At. = Al (D(t» 

More details regarding derivation of the above parameters are given in (Grodzevich, 2004). 

3. EXPERIMENTAL MEASURMENT SETUP 

3.1 Measurements on phantom 

(12) 

To validate the proposed approach, experiments were conducted on a cylindrical phantom of 10cm 

height and 5cm radius containing 48 circular stainless steel electrodes in three rings with each ring 

composed of 16 electrodes connected peripherally around the cylinder. The radius of each electrode 

was 0.3 cm and the gap between electrodes was 1.35 cm. The phantom was filled with 0.2M saline and 

connected to a newly designed EIT system. Our EIT system currently consists of 48 channels operating 

at multiple frequencies from 100Hz-125 KHz that are continuously selectable. A digital signal proces

sor (DSP) is used to control the operation of every module. In order to convert measured raw data into 
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amplitude and phase information, we have implemented a PC-based phase-sensitive detection, which 

uses lock-in amplifiers. 

The test objects were a metal rod 6 cm tall with diameter 1.5 cm and a plastic rod with 5.5 cm height 

and 1.3 cm diameter. These are high contrast objects when used in the saline solution background. 

Figure 1 depicts the objects and the overhead view of the electrode geometry. 

Fig.l A cylindrical phantom with two test objects. 

The metal rod was 1.5 cm from electrode 1 and the plastic rod at the same depth near electrode 9. The 

adjacent current injection pattern and adjacent voltage measurement ('adjacent'- ' adjacent') were im

plemented and in total 2160 pairs of measurements were obtained. The frequency of the sine wave 

current was chosen for this test to be 125 KHz with a peak current of 4 rnA. Two sets of measurements 

without and with test objects were performed. Each set of measurement was repeated fifty times for the 

purpose of standard deviation calculation. The calculated standard deviation was used as an estimation 

of measurement noise, which was used to determine the stopping point for the CGLS approach. 

3.2 Summary of Results 

Figures 2-3 show the background-subtracted images for two TRS and CGLS methods. The metal rod 

appeared as red while the plastic rod appears blue. Figure 4 shows the different points on L-curve for 

both methods. The best possible solution that was obtained using the Tikhonov method is also shown in 

the graph. 
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z=8.0 z=5.0 z=4.0 

z=3.0 z=2.0 z=1 .0 

Fig.2 Reconstructed images with TRS at different heights of phantom. 

z=8.0 z=5.0 z=4.0 

z=3.0 z=2.0 z=1.0 

Fig.3 Reconstructed images with CGLS at different heights of phantom. 
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Fig.4 L-curve with TRS, CGLS, and best solution with Tikhonov. 

Eventhough the curve is not strongly L-shaped, both horizontal and vertical parts are distinguishable. 

The TRS algorithm was able to locate the elbow and this was close to the best solution provided by the 

Tikhonov approach. Figures 5 shows the reconstructed images with CGLS where the level of mea

surement noise was set to be 30% of the calculated standard deviation. Figure 6 shows the associated 

L-curve for CGLS. 

4. DISSCUSION 

The results show that the TRS was able to reconstruct images with the same performance as CGLS. 

The two test objects were clearly distinguishable at correct position at all different heights as indicated 

in Figure 2. The TRS algorithm was able to follow points on the curvature and locate the elbow as 

shown in Figure 4. The TRS selected solution (marked with +) was close to the best possible Tikhonov 

solution. 

CGLS is known to be a fast and robust approach that has been used for regularization of ill-posed prob

lems. It requires very low memory. The disadvantage of CGLS is the behaviour is called semiconver

gence , which requires a knowledge of exactly when to terminate the iteration. The stopping criterion 

for CGLS is based on the discrepancy principle. It terminates when the residual is smaller than a prede

fined level. This level is set based on the norm of measurements noise. In this paper the norm of the 

measurement noise was estimated from the standard deviation of repeated measurements. When the 

norm of the noise was set equal to the standard deviation of the measurements, the CGLS converged to 
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the same result as TRS (Figure.3). The CGLS results at each iteration were shown as circles above the 

TRS points in Figure 4. 

z=8.0 z=5.0 

z=3.0 z=2.0 

Fig.S Reconstructed images with CGLS at30% standard deviation. 
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Fig.6 L-curve with TRS and CGLS at 30% standard deviation. 

5 

The advantage of the TRS method compared to CGLS is that the former does not require any know

ledge of the noise for its process. As it shown in Figures 5-6 when the norm of noise is estimated to be 
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30% of standard deviation of measurements the CGLS required many more iterations to terminate with 

a much worse final result (Figure.5). 

An additional advantage of the constrained least square approach in comparison to the Tikhonov me

thod is that the physical properties of the problem could be used to estimate the norm of constraint 1:1. 

5. CONCLUSIONS 

We have successfully implemented a quadratically constrained least square approach to the EIT regula

rization problem. This approach was solved using a parameterized trust region to estimate the region of 

maximum curvature of the L-curve. The experimental results have proven the feasibility and benefit of 

this technique for the EIT problem. 
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CHAPTER V 

Paper IV 
The following paper describes the design, implementation, and testing of a 48-channel multi-frequency EIT 

system. The operating frequency for the designed EIT system ranges from 0.1 to 125 kHz. The system 

specifications are comparable with the existing EIT systems with the capability of 3D measurement over 

selectable frequencies. A phase-sensitive detection is implemented to recover the absolute phase and 

amplitude of the measured signal over all channels for 3 dimensional (3D) measurements. The designed 

EIT system offers image reconstruction of both conductivity and permittivity distributions in 3D. 

The work presented in this paper was performed by me under the supervision of Dr. Moran. Kenrick Chin 

has helped me in the design and fabrication of the hardware part of the EIT system. The majority of the 

user control software was developed by Aravinthan Jegatheesan. The manuscript was written by me and 

edited by Dr.Moran. 

(Manuscript submitted electronically to lOP journal of Measurement Science and Technology, Manuscript 

# MST/2549911PAP) 

75 



A nsp Based Multi-Frequency Electrical Impedance Tomography 
System 

Mehran Goharian i
, Aravinthan Jegatheesan 2, Kenrick Chin i

, and Gerald.R.Moranl i ,3 

IMedical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada. 

2McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada 

3Diagnostic Imaging Hamilton Health Sciences, Hamilton, Ontario, Canada 

ABSTRACT 

This paper describes the design of a novel multi-frequency EIT system which provides 
a flexible mechanism for addressing up to 48 electrodes for imaging conductivity and 
permittivity distributions. A waveform generator based on a digital signal processor is 
used to produce sinusoidal waveforms with the ability to select frequencies in the range 
of 0.1 to 125 kHz. A software based phase-sensitive demodulation technique is used to 
extract amplitudes and phases from the raw measurements. Signal averaging and 
automatic gain control are also implemented in voltage and phase measurements. 
System performance was validated using a Cardiff-Cole Phantom and a saline filled 
cylindrical tank. The signal-to-noise ratio (SNR) using saline tank was greater than 60 
dB and the maximum reciprocity error less than 4% for most frequencies. The 
common-mode rejection ratio (CMRR) was nearly 60 dB at 50 kHz. Image 
reconstruction performance was assessed using data acquired through a range of 
frequencies. This 1;:IT system offers image reconstruction of both conductivity and 
permittivity distributions in three dimensions. 

Keywords: Electrical Impedance Tomography (EIT), Multi-frequency EIT, Hardware design. 

1. INTRODUCTION 

The electrical impedance of mammalian tissue varies with frequency and is known to depend on the tissue 

structure at the cellular level (Schwan, 1957). The electrical impedance characteristics of different tissues 

in vitro have been measured by different researchers (Gabriel 1996; Foster and Schwan, 1989; Pethig and 

Kell, 1987). Mainly because of the wide variation in the electrical characteristics of tissue, and hence the 

potential image contrast, electrical impedance measures have the potential to be used as clinical diagnostic 

tools for tissue pathology (Blad 1996; Crile et a11992, Griffiths et al ,1994) monitoring ischemia (Ristic et 

al ,1997), and distinguishing between normal and cancerous tissue (Blad et al ,1996). 

Electrical impedance tomography (EIT) is an imaging technique that reconstructs images based on the 

electrical conductivity of tissue in response to an injected alternating electrical current. The first successful 

tomographic impedance image were reported by Barber and Brown (Barber and Brown, 1986) using the 

Sheffield Mark 1 system (Brown, 1987) at a single frequency. Single frequency EIT gives limited 
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information regarding the electrical characteristics of tissue. Injecting alternating current over a range of 

frequencies on the other hand would allow a more comprehensive probe of the tissue properties. The 

spectroscopic electrical response of tissue can be characterized by creating a Cole-Cole plot (Cole 1940; 

Cole and Cole 1941). 

There are several EIT systems designed by different research groups which are operating in different 

frequency ranges. The EIT system in (Yerworth et al ,2002) covers frequencies between 225Hz and 77 kHz 

which was designed for imaging brain function. It was designed based on previous 16 electrodes UCH 

Mark 1 a but has the capacity to address for 64 electrodes. Halter et al 2004 built an EIT system operating 

between 10kHz and 10 MHz. It has 64 electrodes and was designed for breast imaging. McEwan et al 

2006 has reported multi-frequency EIT system called UCLH Mk 2.5 for acute stroke imaging operating 

between 20Hz-256 kHz. Wilson et al 2001 has reported the Sheffield Mk3.5 EIT system which covers 30 

frequencies between 2 kHz and 1.6 MHz. Their system has eight electrodes with an adjacent drive/receive 

electrode data acquisition. 

The work reported here introduces a novel EIT system developed based on a digital signal processor (DSP) 

architecture which allows flexibility in design options such as an arbitrary shape of signal generation and 

flexibility in the communication between system components and data collection. The prototype system 

provides 48 electrodes with continuous frequency selection from 0.1 kHz to 125 kHz. A phase-sensitive 

detection is implemented to recover the absolute phase and amplitude of the measured signal over all 

channels for 3 dimensional (3D) measurements. The designed EIT system offers image reconstruction of 

both conductivity and permittivity distributions in 3D. In the following section the details of the hardware 

design are presented. The results outline the implementation and the performance specifications (See 

methods) of the EIT system. 

2. HARDWARE SYSTEM OVERVIEW 

In this section the major block components of the EIT system will be described. The system was built using 

a modular design concept. It consists mainly of a DSP based current source, data acquisition boards and a 

multiplexing unit. All of these modules are assembled on a main board, which can communicate with a 

computer through a serial port. A graphical user control interface was written using Lab View 

(www.ni.com). The EIT system is shown in Figure 1. In the following sections, the design details, the 

implementation of the EIT system, and the performance benchmarks of the system signal-to-noise, 

reciprocity error, common-mode-rejection, and measurement accuracy, are presented. 
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FIG. 1: Multi-frequency EIT system. 

2.1 Com puter 

The controlling computer consists of a Windows based 1.7-GHz Pentium-IV with 256 Mbytes of RAM 

which contains several expansion cards to house the data acquisition boards. 

2.2 Waveform Generator 

The waveform generator uses a DSP controller to achieve flexible waveform geometry and high speed 

performance. A block diagram of the DSP controller is shown in Figure 2. The function of the DSP 

controller and waveform generator is to generate any number of predetermined current or voltage pulses of 

any given shape (sine or pulse in present design), duration, frequency, and repetition rates. Parameters 

which determine the full specifications of the desired injection pulse are transferred from the host personal 

computer (PC) via a standard RS-232 serial communications port. This provides the maximum flexibility 

without the need to modify the hardware. In a future design, the serial interface to the host PC will most 

likely be replaced with a universal serial bus (USB) interface. 

There are different ways to implement the sine-wave generator on a DSP such as look-up table, 

interpolation, polynomials, etc. to the present design generates a sine wave using a seventh-order Taylor 
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polynomial approximation. The DSP generates a sine wave of a desired frequency for the first quadrant. 

Trigonometric identities are then applied to fill in the sine wave over the entire cycle, i.e., from 0 to 21[. The 

firmware for the DSP is developed using CodeWarrior from Metrowerks (www.metrowerks.com). Code is 

written using both C and assembly language. A block diagram and schematic are shown in Figures 2-3. 

The DSP used is the DSP56F807PY80 from Freescale Semiconductor (http://www.freescale.com) 

(formerly Motorola Inc). The main features of the DSP56F807 are: 

• 16-bit Digital Signal Processor with RlSC (reduced instruction set computer) architecture 

• clock frequency of 80MHz 

• 60K words of flash program memory 

• 8K words of random access memory (RAM) 

2.2.1 Digital to Analog Converter (DAC) 

The DAC is a 16-bit converter, AD669, from Analog Devices (http://www.analog.com). with a settling 

time of 2.5J.!s for one least significant bit (LSB) step. With a bipolar output range of -IOV to + 1 OV, one 

LSB is equivalent to a voltage step of300J.!V. 

2.2.2 Amplifier 

The purpose of the output amplifier is to convert the voltage output of the DAC to a low impedance output 

voltage or a high impedance current output as desired by the particular experiment. The amplifier chosen is 

a monolithic power operational amplifier LM675 from National Semiconductor (www.national.com). The 

device operates at a maximum supply voltage of 60V, capable of outputting 3A. The maximum slew rate is 

8V/ J.!S. We chose this amplifier because it has wide bandwidth and low input offset voltage. 

2.2.3 Current Driver 

The DSP is used as a waveform generator to produce the sinusoidal (or pulse) voltage signal with the 

frequency range from 100 Hz to 125 kHz. The voltage signal is then converted to current by a precision 

balanced voltage controlled current source (VCCS), based on the enhanced Howland topology (Bertemes

Filho et aI, 2000). The enhanced Howland current source uses a single operational amplifier with both 

negative and positive feedback. This design has only a single active device and the ability to adjust the 

output resistance. The schematic diagram of the enhanced Howland circuit is shown in Figure 4. The 

output current of the Howland circuit, IL is given in Eq. (1): 

(1) 
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FIG. 2: Block Diagram ofDSP based waveform generator. 

AMP 

The output current is independent of the load resistance. The output resistance is given in Eq. (2) 

R = R1R4b (R3 +R4) 
out R2R3 - RI (R4a +R 4b ) 

-~ Output 

(2) 

In the actual circuit, the total impedance is limited due to the presence of output stray capacitance. The 

presence of stray capacitance degrades the output impedance and hence the circuit performance. The 

presence of both positive and negative feedback paths may cause the enhanced Howland circuit to oscillate 

under large capacitive loads at high frequencies. To avoid this effect, a 10 pF capacitor was added in 

parallel with the negative feedback element (Cook et ai, 1994). 

2.3 Current Injection Multiplexer 
Forty-eight channels are implemented as sixteen channels on each of three separate custom printed circuit 

boards. Each board can select sixteen electrodes. The output of the balanced current generator can be 

injected to any pair of electrodes using multiplexers. 

For maximum flexibility, it is desirable to be able to select any pair of electrodes which will be the sources 

of the injected EIT current or voltages. This selection must be controlled from the host PC. In a typical 

experiment, the injection electrodes are first selected and voltages are recorded from a set of the remaining 

electrodes. The injection then proceeds to a different pair of electrodes and the measurements are repeated. 

The electronic analog multiplexer chosen is ADG406 from Analog Devices (www.analog.com).This is an 

integrated circuit providing a 16-channel analog multiplexer which is capable of selecting anyone of 

sixteen channels at switching speeds up to 2MHz. Typical resistance in the ON state is 50n. Leakage 

current in the OFF state is typically lnA.The selection of the pair of injection electrodes is controlled by the 

host PC. Since a serial communication link has already been established with the waveform generator DSP, 

an auxiliary microcontroller unit (MeV) is used to control the ADG406 analog multiplexers. A block 

diagram of this arrangement is shown in Figure 5. 
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A local area network (LAN) is created to communicate between the master DSP and any number of slave 

MCUs. The physical layer of the LAN is based on a 3-wire RS-485 interface standard operating at 9600 

baud. The auxiliary MCV selected is an ATtiny2313 from Atmel (www.atmel.com).This design is chosen 

because it has a number of advantages: It can be expanded to accommodate any number of multiplexers; 

The multiplexer components can be physically located a substantial distance from the master DSP; and, the 

ATtiny2313, besides being low power, can be placed into STOP mode in order avoid emitting any digital 

RF radiation which may degrade sensitive analog measurements. 
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The command protocol used to communicate between the host PC and the DSP was developed to be 

efficient using error-checking procedure. The same protocol is used to communicate between the master 

DSP and each slave MCV. Any command send from the PC to the DSP, intended for any MCU, is simply 

relayed to the LAN and hence to all MCUs. Both communications links operate at 9600 baud. In a future 

design, the primary link with the PC will be replaced with a USB port which is capable of operating at 

much higher rates. A schematic diagram of the multiplexers is shown in Figure 6. 

2.4 Data Acquisition 

Analog-to-digital (AID) signal conversion is performed using a PCI-6251 data acquisition board (DAQ) 

from National Instruments (NI) (www.ni.com).This card can sample up to 16 inputs at a rate of up to 1.25 

MHz with 16-bit resolution. It has seven programmable input ranges (±lOO mV to ±10 V) per channel. The 

analog input of the PCI-6251 is equipped with a differential programmable gain input amplifier (PGIA). 

The PGIA precisely interfaces to and scales the signal passed to the analog-to-digital converter (ADC) 

regardless of source impedance, source amplitude, DC biasing, or common-mode noise voltages. The PGIA 

helps to minimize the digitization noise on the receive channel so that the digitized voltage represents a 

sizeable proportion of the full range. A large first-in-first-out (FIFO) buffer holds data during acquisitions 

to ensure that no data is lost. The DAQ board can handle multiple AID conversion operations with direct 

memory access (DMA), interrupts, or programmed input-output (UO). PCI62S1 DAQ card is selected 

because of its high resolution and fast sampling rate. The schematic diagram of DAQ board is shown in 

Figure 7. 

2.5 Software 

Software was written to control all components of the EIT system including the waveform generator, 

multiplexer, AID DAQ boards and signal post processing. The software is divided into four components, 

i.e., data capture module, data processing module, control and communication module, and graphical user 

interface. F or the data capture module, an event-driven module is developed using the Lab VIEW 

(www.ni.com) event structure. The module can respond synchronously to the external trigger coming from 

DSP. This is important as it synchronizes the data collection between DAQ and DSP. The data processing 

module processes the raw data collected by the data capture module. The raw data is converted into 

amplitude and phase information using phase sensitive detection (see next subsection). This module 

contains different components such as: Fast Fourier Transform (FFT), filtering, and mathematical 

calculation. The timing and communication between DSP and DAQ boards are handled in the control and 

communication modules. A graphical user interface was built which allows the user to select the desired 

current pattern, injection frequency, measurement pattern, current amplitude, and number of waves to 

average. The converted data is then passed to a program written in Matlab v.6.S (Mathworks Inc.) which 

reconstructs the interior conductivity and permittivity distributions. 
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2.5.1 Phase-Sensitive Detection 

In order to convert measured raw data into amplitude and phase information, a virtual implementation of 

phase sensitive lock-in amplifier was programmed. A lock-in amplifier takes a reference signal and a noisy 

input signal and extracts only that part of the noisy input signal whose frequency matches the reference 

signal. The virtual lock-in amplifier consists of three distinct portions; reference signal detection, signal 

mixing and signal filtration. A block diagram of the lock-in amplifier is presented in Figure 8. A reference 

signal generated by the hardware is fed into an internal synthesizer based on a Fast-Fourier Transfonnation 

(FFT) that generates sine and cosine waves consistent with the reference signal. The two synthesized 

waves are then mixed with the measured voltage signal coming from the DAQ board. A low-pass filter 

following the mixer rejects the remaining high frequency components and retains the DC component which 

is proportional to the amplitude of the signal component and the cosine of its phase relative to the phase of 

the internal reference. The same process of mixing and filtering is then applied using a cosine wave. Using 

the combined results from the two processes, the amplitude and phase of the measured voltage signal can 

be determined. 

3. METHODS 

3.1. System Specifications 
In this section a number of tests of system performance characteristics are summarized including common 

mode rejection ratio (CMRR), reciprocity, signal-to-noise ratio (SNR) and precision. The testing was 

performed using either a Cardiff-Cole phantom, or a saline filled cylindrical tank - as outlined below. 

3. 1. 1. The Cardiff Cole Phantom 

The Cardiff-Cole phantom (Griffiths, 1995) is a resistor-capacitor wheel phantom designed to test and 

compare multi-frequency EIT systems. The phantom is representative of a cylinder of homogeneous 

conductor with complex impedance. The design generates identical complex impedance distributions to 

each drive configuration. The design used here has 32 drive and 32 receiver electrodes interleaved. There 

are three rings of jumpers inside the phantom. The Cole equation parameters can be changed using the first 

set of two jumpers (11&J2). These parameters are specified in terms of characteristic frequency (fc), and 

the ratio of the limiting values of resistance at high and low frequencies, R 0/ Roc; . The third set of jumpers 

(13) shorts out simulated electrode impedances. 

3.1.2. Saline Cylindrical Tank 

A cylindrical phantom was built from acrylic plastic (Plexiglass®). The phantom is 10cm tall with a radius 

of Scm. It contains 48 circular stainless steel electrodes in three rings with each ring consisting of 16 
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electrodes located radially around the cylinder. The radius of each electrode was 0.3 cm and the gap 

between electrodes was 1.35 cm. 

16 
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FIG.7: Block diagram ofNI-6251 DAQ board (Adapted from M series user manual-371022G-Ol , 
(www.ni.com ). 
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FIG.8: Block diagram ofFFT-based phase sensitive detection. 
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3.2. Reciprocity Error Measurement 

Four-point measurements are used in EIT instrumentation to remove the effects of electrode/skin interface 

impedance. Under ideal circumstances a current injected through electrodes 1 and 2 on an arbitrary region 

will induce a voltage V12, at electrodes 3 and 4. If the current and voltage sensing electrodes are reversed, 

a voltage V34 will be recorded at electrodes 1 and 2. These two voltage measurements should be identical 

based on reciprocity theory (Geselowitz, 1971). In practice, these two measurements will be different due 

to difference in the resistance and capacitance of the different electrode and electrode/skin interfaces. 

Reciprocity error is defined as 

RE = (V12 - V34 ) x 100% 
V12 

(3) 

The reciprocity error experiment was conducted on the Cardiff phantom (13s removed). It was averaged 

over 50 frames of image data. The reciprocity error for each electrode combination was calculated and the 

largest error was reported for each frequency. 

3.3. Common-Mode Rejection Ratio Measurement 

The common-mode rejection ratio (CMRR) shows the ability of the voltage measurement system 

(differential amplifier in this case) to reject any signal common to both input electrodes. Under ideal 

conditions the output voltage of a differential amplifier is related to two input voltages as VO=Ad(V+-V-), 

where Ad is the differential gain. However, in reality the output will be as Vo=A.ieV+-V-)+O.5*As(V++V-), 

where As is the common-mode gain. The CMRR was measured using the same approach as has been done 

previously using two circuit configurations (Yerworth et at, 2003). The following equation was used to 

calculate the EIT system CMMR (Brown et ai, 1999) 

(4) 

where Vern is the common mode voltage and V in is the differential voltage. 

3.4. Signal-to-Noise Ratio 

The signal-to-noise ratio (SNR) is defined as the ratio of the mean and standard deviations (Yerworth et al 

,2002).It was calculated for 50 sets of data from the cylindrical tank containing 780 ml of 0.2M saline. A 

maximum 4-mA peak-to-peak sine wave current was injected. A full scale range of ± 1 V for the DAQ 

board was used for all frequencies (0.1-125 kHz). 
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3.5. Measurement Accuracy 

The system's accuracy was estimated by measurement on a network of known resistors (480 Q) and 

capacitors (68nF) in parallel. Resistors and capacitors with ± 1 % tolerance were used. The data was 

collected at selected frequencies and the amplitude and phase of measured voltages were determined 

through phase-sensitive detection. The resulting voltages were compared with expected voltages. The 

accuracy at each frequency was reported as the deviation of measured voltages from the theoretical values 

as a percentage of the full-scale voltage measurement. The full-scale measurement is based on the 16-bit 

±lOVDAQ. 

3.6. 3-D Images of Test Objects 

To evaluate the ability of the system to reconstruct images, experiments were carried out on the cylindrical 

phantom with a few test objects. The first set of test objects was a metal rod 6 cm tall with diameter 1.5 cm 

and a plastic rod with 9 cm height and 2 cm diameter. The metal rod was placed 1.2 cm from electrode 1 

and the plastic rod at the same depth near electrode 9. The objects are depicted in Figure 13a. The second 

set of test objects were the metal rod and a piece of cucumber - depicted in Figure 14a. In this case, the 

cucumber was placed close to electrode 3 and the metal rod at the same depth near electrode 11 The 

adjacent current injection pattern and adjacent voltage measurement ('adjacent'-'adjacent') were 

implemented and 2160 pairs of measurements were obtained in total. Eleven different frequencies, 1 kHz, 

2.5kHz, 5kHz, 10kHz, Is.62skHz, 25 kHz, 31.35kHz, 50kHz, 62. 5kHz, 83.3kHz, and 125 kHz were 

chosen for this test with a peak-to-peak current amplitude of 4 rnA. Two sets of measurements without and 

with test objects were performed. The conductivity and permittivity images were reconstructed using the 

difference approach. 

4. RESULTS 

4.1. CMRR 

Figure 9 shows the CMRR variation with frequency. At low frequencies «15 kHz), the CMRR was 80 dB 

and decreased below 60 dB at high frequencies (>50 kHz). It decreased further to 50 dB at 125 kHz. 

CMRR values measured were close to the values of the instrumentation amplifier of DAQ board alone. 

4.2. Reciprocity 

The variation of maximum reciprocity error for each electrode combination is shown in Figure 10. It shows 

a maximum error of <3% for low to mid frequencies (lkHz-30kHz) and less than 5% up to 100 KHz 

frequencies. At the highest frequency the reciprocity error is increased. 
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4.3. Signal-to-Noise Ratio 

The SNR results are presented in Figure 11. It shows a mean SNR of approximately 62 dB for "opposite

adjacent" configuration over all three sets of electrodes rings. The SNR reaches 60 dB if one set of ring is 

used in "adjacent-adjacent" configuration. The SNR perfonnance of the system in "adjacent-adjacent" 

configuration using three sets of rings is more than 45 dB. This SNR is independent of the frequency. 

4.4. Measurement Accuracy 

Figure 12 shows the accuracy of the system. Data was collected at selected frequencies and the measured 

voltages were compared to theoretical values. The values in figure 12 do not represent actual errors in the 

measured data, but rather the error relative to the applied current. To make these conversions, the 

percentages in the graph must be multiplied by the ratio of the full-scale current (20 rnA) to the applied 

peak current (4 mA)-a factor of 5. The system's accuracy reported values for our system are comparable 

to those reported by the Dartmouth group (Hartov et ai, 2000). 

4.5. Saline Tank Imaging Results 

From Figure 13 the positions of different targets are clearly visible, that is, they all had more clearly 

reconstructed conductivity distribution images. The EIT system performance has also been validated by the 

ability to reconstruct the conductivity and pennittivity distribution images of the cucumber in the 

cylindrical tank in the 3-D difference image approach (Figure 14). 

5. DISCUSSION 

5.1. Summary of Results 

We have designed, implemented, and tested a 48-channel multi-frequency EIT system. The system 

specifications are comparable with the existing EIT systems with capability of 3-D measurement and over 

selectable frequencies. 

The most important parameter of the EIT data collection system is the variation of SNR over the range of 

operating frequencies. The SNR measurements were perfonned on a 10-cm diameter tank filled with O.2M 

saline. The mean SNR profile of measured values is shown in Figure 11. Three different sets ofSNR were 

reported. Measurement from only one set of rings was performed for the purpose of comparison with SNR 

values reported by other experimenters. The SNR from only one ring approached 60dB independent of 

frequency. This SNR value is higher than 40 dB reported for Sheffield MK3.5 (Wilson et al ,2001) and also 

MK3a which was 55dB (Lu, 1995b). In comparison with the UCLH Mark lb our SNR profile shows less 

frequency dependence and higher value than the 50dB reported (Yerworth et ai, 2002). The specification of 

60 dB is equivalent to a root-mean-square (nns) noise of less than 0.1 % of the signal level. In the case of 

the "adjacent-adjacent" arrangement for three-ring setup the results show variation between 41-45 dB 
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which is in a good range for 3-D imaging. In this case, measurements close to the drive electrode pair 

produced higher amplitude than those further away on a different ring. 

Common mode errors are shown in Figure 9. The common mode errors are at reasonable levels for a 

mUltiplexing EIT system (Boone et at, 1996, table 6). The common mode errors are considered the major 

limitations of EIT which are more critical issues in the case of a multi-frequency EIT system (Boone and 

Holder, 1996). There are various sources of common mode signals, such as unequal drive or receive 

electrode impedances and the relative position of the drive and receive electrodes (Riu et at, 1995). In 

addition, the current source driver is not perfectly balanced and hence any imbalanced current may pass 

through the differential amplifier of the DAQ and generate a common mode signal. To reduce this effect 

the voltage measurement needs to use separate signal grounds by means of separate power supplies 

(Jennings et at, 2001). In practice, stray capacitances will cause coupling between independent grounding 

signals and thus limiting the cancellation of the common mode signal using this approach. 

The overall CMRR of the system was close to that of the differential amplifier in the DAQ. The amplifier 

has a CMMR of 90 dB at 1 kHz and 60 dB at 50 kHz. The overall CMRR is greater than 70 dB at 20 kHz 

and greater than 50 dB at 125 kHz. There are several factors that degrade the CMRR - the finite common 

mode rejection (CMR) of the instrumentation amplifier inside the DAQ and unequal drive or receive 

electrode impedances. To reduce the CMRR error, common mode voltage compensation can be 

implemented. (Rosell et at, 1992). Common mode compensation reduces the common mode signal coming 

from the measurement system and hence improves the overall CMRR of system (Smith et at, 1995). In 

order to see an improvement, a DAQ with an improved CMRR would need to be purchased or designed. 

The measured reciprocity errors for our EIT system are comparable with those reported for the UCLH 

Mark Ib (Yerworth et at, 2002). However, our reciprocity errors increased at the higher frequencies rather 

than at both low and high frequencies as reported for the UCLH Mark 1 b. 

The present system needs safety consideration based on IEC60 1 for clinical application. IEC60 1 regulation 

requires that the injected current must be less than 1 00 ~A rms for frequencies less than 1 kHz and less than 

0.1 rnA / kHz up to a maximum of lOrnA for frequencies above 1 kHz. 

The system's ability to reconstruct conductivity and permittivity distributions has been validated with the 

cylindrical tank. The conductivity and permittivity reconstructed images in Figures 13-14 corresponded to 

the true position of the different objects. The system performance enabled clear images from different 

objects to be reconstructed in the tank studies. In future, there are some additional planned improvements in 

the system design. 
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FIO.13: a): Metal and plastic rods inside of saline filled cylindrical tank. b): reconstructed conductivity 
images of metal and plastic rods as a series of 2-D slices using subtraction from empty tank at 
50 KHz, metal rod is in red and plastic rod is in blue color c): The original position of two 
objects relative to electrodes in lower part of phantom. The metal rod was placed 1.2 cm from 
electrode 1 and the plastic rod at the same depth near electrode 9. 

5.2. Further Work 

The system needs further hardware improvements and attention to safety factors in order to be suitable for 

clinical trials. The current prototype is for laboratory testing purposes only and hence safety features must 

be developed in anticipation of actual clinical testing on humans. We are planning development of a next 

generation multi-frequency system with parallel data acquisition operating at frequencies up to IMHz. In 

addition, we are planning to use high resolution 24-bit delta-sigma analog-to-digital converters with no 

amplification to digitize the electrode voltages directly and digital subtraction to remove the common-mode 

signal. In order to achieve at least 20-bit accuracy this requires the output impedance of the current driver 

to be greater than Zo ~ (2 20 -1)Z Lmax' where ZLmaz is the maximum load impedance (Holder, 2005). In 

this situation, the output impedance must be greater than Ion which presents quite a challenge. In our 

present design we have chosen to use a multiplexed system as it provides flexibility in selecting electrodes 

and performing different measurement with different electrode patterns. In the future design we will 

eliminate the multiplexing approach in order to reduce or eliminate the common mode error, as with the 

Sheffield Mark 3.5 system (Wilson et aI, 2001).We will also employ test objects which more closely 

simulate human electrical properties (Ooharian et al ,2007a). 
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Fig.l4: a): cucumber and rod inside of saline filled cylindrical tank, b): reconstructed conductivity images 
of cucumber and rod using subtraction from empty tank as a series of 2-D slices at 125 KHz, 
metal rod is in red and cucumber is in blue color c): reconstructed permittivity images of 
cucumber and rod using subtraction from empty tank as a series of 2-D slices at 125 KHz, metal 
rod is in blue and cucumber is in red color d): The original position of two objects relative to 
electrodes in lower part of phantom. The cucumber was placed close to electrode 3 and the 
metal rod at the same depth near electrode 11. 
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6. CONCLUSION 

We have designed an EIT system capable of collecting 3-D measurements and capable of reconstructing 

complex impedance distributions. System performance has been checked with a saline tank and a Cardiff 

Cole Phantom. Multi-frequency image reconstruction algorithms will be implemented (Goharian et at 

2007b) to determine the viability of this approach as a reliable imaging technique and suitability for clinical 

application. There are several EIT systems currently being used for clinical or industrial purpose but most 

of them are for 2-D image reconstruction. We believe that this design offers 3-D measurement and also 

capable of reconstructing 3-D complex impedance distributions. 
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CHAPTER VI 

Paper V 

The following paper discusses the performance tests for the proposed algorithms under experimental 

conditions. The performance of three proposed algorithms was compared to standard BIT image 

reconstruction algorithms for different objects. In the case of the multi-frequency analysis the peA-based 

approach represents a substantial improvement over the Gauss-Newton technique at a single frequency 

analysis in terms of systematic error reduction. 

The work presented in this paper was performed by me under the supervision of Dr. Moran. The 

manuscript was written by me and edited by Drs. Moran, MacGregor and Bruwer. 

(Manuscript submitted electronically to Physics in Medicine and Biology, Manuscript # 
PMB/2587671PAP1161553) 
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ABSTRACT 

We have recently built and reported a DSP-based multi-frequency (0.1 kHz to 125 
kHz), 48 channel electrical impedance tomography (EIT) system. In this paper, we 
present the results of a series of phantom experiments to show the baseline imaging 
performance of our EIT system. Conducting and nonconducting objects with various 
widths were positioned at different distances from a Plexiglas tank edge (10 cm 
diameter) filled with 0.2 M saline solution. The results suggest that the lcm diameter 
conductor can be detected while placed near to the centre of the tank, using the 
difference imaging approach. The conductivity and permittivity images for a piece of 
cucumber were reconstructed using four different approaches: dog-leg, principal 
component analysis (PCA), Gauss-Newton, and difference imaging. In the case of the 
multi-frequency analysis, the PCA-based approach provided a substantial improvement 
over the Gauss-Newton technique in terms of systematic error reduction. Our EIT 
system recovered a conductivity value of 0.08 Sm'! for the 0.07 Sm· l piece of 
cucumber (14% error). 

Keywords: Electrical Impedance Tomography (EIT), Image reconstruction, multi-frequency EIT 

1. INTRODUCTION 

Electrical impedance tomography (EIT) is an imaging technique that reconstructs images of an object's 

electrical properties such as conductivity and permittivity. An array of electrodes is connected on the 

surface of the object to be imaged. A small current is directed into a subject through a pair of these 

electrodes; the current pathway inside the object is determined by the internal conductivity, pennittivity and 

the geometry of the subject. A number of different schemes are possible for current excitation, for instance 

trigonometric, adjacent and opposite drive pairs. The most commonly used injection current approach is the 

adjacent drive method also known as the neighbouring method (Barber, 1989; Hua et aI., 1987). In this 

approach current is passed through two adj acent electrodes and the voltages differences are collected from 

successive pairs of adjacent electrodes. Another common method is the so-called opposite method (Avis 

and Barber, 1994). In this approach current is i~ected through electrodes that are 180
0 

apart while voltage 

differences are measured with respect to one reference electrode adjacent to the current electrode. 
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Any local perturbation in the conductivity distribution affects the current pathway which eventually 

transfers this effect to the boundary voltages. The relationship between these boundary voltages and 

intemallocal changes is highly nonlinear, that is large changes in the interior conductivity or permittivity of 

the body give rise to very small changes in the surface voltage measurements (Breckon and Pidcock, 1987). 

The aim of EIT is to use these limited numbers of surface voltage measurements to reconstruct the 

conductivity and permittivity distribution inside the object. Therefore, the EIT image reconstruction 

problem is known to be severely ill-posed. There are two main routes to reconstruct an image in EIT either 

through linearization of the problem (Cheney et ai, 1990) or using an iterative process (Paulsen and Jiang, 

1997). 

EIT has a wide range of applications in both industrial process control (Brown, 2001) and in clinical 

environments. EIT has been used for different medical applications such as head imaging (McEwan et al 

2006 ,Holder 200 I), lung imaging (Cherepenin et al ,2002; Mueller et ai, 2001), and breast imaging (Soni 

et al ,2004; Kerner et ai, 2002; Cherepenin et ai, 2001; Osterman et al ,2000). EIT has been used as a 

diagnostic tool to map the functional activity inside the human body (Holder, 2005). 

We have recently designed and constructed a multi-frequency EIT system that is capable of continuously 

selecting the operating frequency from 0.1 to125 KHz (Goharian et ai, 2007a). This instrument is capable 

of reconstructing both the conductivity and the permittivity distributions at multiple frequencies. This paper 

presents the evaluation of the imaging capability of this new EIT hardware system. In the first section of 

this paper, a brief overview of the hardware and software is presented. In the following sections an outline 

of the experimental imaging protocol is explained. The results are presented as the maximum detectable 

depth as a function of object width, which shows the overall EIT system performance. Three different 

image reconstruction methods were used to recover conductivity distributions for a piece of cucumber. 

2. OVERVIEW OF EIT HARDWARE SYSTEM 

A block diagram of our EIT system is shown in Figure 1. This EIT system currently supports 48 electrodes 

but it has the capability to expand up to 256. In this system for the purpose of multi-frequency EIT and to 

improve measurement accuracy, a digital signal processor (DSP) based system was designed using a 

modular structure. It includes mainly the following modules: a multi-frequency DSP based current source, 

a micro-controller based multiplexing system, a data acquisition module (DAQ), a software based phase 

sensitive detection system, and a user friendly real-time controlling software. The high speed DSP controls 

all aspect of the communication and processes between each module. The main specifications of each 

module are as follows: 

a) DSP waveform generator and current driver: The purpose of the DSP controller and waveform generator 

is to create current pulses of any given shape (sine curve or pulses in present design), with the flexibility to 
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change the duration, frequency, and repetition rates. The generated pulses are passed through the digital-to

analogue converter (DAC) and an amplifier. A precision balanced voltage controlled current source 

(VCCS) is used to convert the voltage signal to current. 

b) Micro-controller multiplexer: The output of the balanced current generator can be directed to any pair of 

electrodes using the multiplexer system. Three separate custom printed circuit boards each consisting of 

sixteen channels were used to switch the forty-eight electrodes. This can be expanded to accommodate any 

number of multiplexers in future designs. An auxiliary microcontroller unit (MCU) is used to control the 

selection of a pair of driving electrodes. A local area network (LAN) is established to communicate 

between the master DSP and any number of slave MCUs. 

Software 
Control 

Program 

~ ________ ~~~2~mrr,uni~!I~ ________ ~ 

PCI COMlmunlcaoo, ,, _____ ___ _ 1.rigg"',---1 

Data 
Acquisition 

Device 

16-bit 
ADC 

FIG. 1: Hardware block diagram of Multi-frequency EIT 

Digital Signal 
Processor 

~ 
~ 
Analog Injection Signal 

Amplifier 

c) DAQ module: The digital signal conversion is handled by the PCI-6251 data acquisition board (DAQ) 

from National Instrument (NI). There are seven programmable input ranges (±100 mV to ±10 V) per 

channel in the PCI-6251 . The DAQ board has a differential programmable gain input amplifier (PGIA) 

which helps to eliminate the digitization noise on the receive channel. 
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d) Phase sensitive detection: In order to obtain amplitude and phase infonnation from the raw data, a PC 

based phase sensitive detection mechanism is used. One advantage of using a lock-in amplifier is its ability 

to reduce noise, i.e. to improve the signal-to-noise ratio of the signal to be measured. The main component 

of the lock-in amplifier is a phase sensitive detector. A lock-in detector takes a reference signal and a noisy 

input signal and uses a phase-sensitive detector to extract only that part of the output signal whose 

frequency and phase match the reference. The software implementation of lock-in-amplifier has advantages 

such as: it reduces the physical size of hardware system, it is more accurate than its hardware 

implementation, and it much easier to run over a very wide frequency range in software demodulation. 

The hardware perfonnance has been reported in more detail elsewhere (Goharian et aI, 2007a), where it is 

concluded that our EIT system performance is competitive with other recently reported multi or single 

frequency systems. The signal-to-noise ratios of greater than 60 dB are achieved on saline phantom 

experiments. This SNR value is higher than 40 dB reported for Sheffield MK3.5 (Wilson et aI, 2001) and 

also MK3a which was 55dB (Lu, 1 995a).The maximum reciprocity error achieved is less than 4% for most 

frequencies. The measured reciprocity errors for our EIT system are comparable with those reported for the 

UCLH Mark Ib (Yerworth et ai, 2002).The measured resistance and capacitance values of a parallel RC 

load are detennined to better than 0.2% in most cases that indicates good accuracy of our system. In the 

following section, we provide an outline of the experimental imaging protocol we have adopted. 

3. METHODS 

3.1 Experiment Protocol 
The perfonnance of the EIT hardware and software were evaluated on a designed cylindrical phantom of 

10cm height and 5cm radius made from Plexiglas. The phantom has three rings with each ring composed of 

16 embedded electrodes. Each stainless steel electrode has a radius of 0.3 cm and the gap between 

electrodes was l.35 cm. The phantom was filled with 0.2M saline and connected to the multi-frequency 

EIT system. Eleven different frequencies, 1 kHz, 2.5kHz, 5kHz, 10kHz, 15.625kHz, 25 kHz, 31.3 5kHz, 

50kHz, 62.5kHz, 83.3kHz, and 125 kHz were chosen for this test with a peak-to-peak current amplitude of 

4 rnA. These frequencies were chosen arbitrary and could have been selected anywhere between 0.1 kHz 

and 125 kHz which is the range of operating frequency of our system. The adjacent current injection 

pattern and adjacent voltage measurement ('adjacent'-'adjacent') were implemented and 2160 pairs of 

measurements were obtained in total. The first set of high-contrast objects were 6 cm tall metal rods of 

various diameters (l.2cm, 1.5cm). The nonconducting test objects were 6cm tall plastic (insulating) 

cylinders of the same diameters. These test objects were positioned at different depths from the phantom 

edge close to electrode 1 (1 cm, 2 cm, 3 cm and 4 cm). The figures will be oriented such that the actual 
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position of electrode 1 appears at the 3 O'clock position. Figure 2b shows the relative position of objects 

with respect to electrode 1 in the cylindrical phantom. 

In another experiment a piece of cucumber was inserted inside the phantom holder to evaluate the 

capability of system to reconstruct both conductivity and permittivity distributions of this test sample at 

multiple frequencies. Cucumber was chosen as it is cellular structure should display impedances closer to 

what would be expected in vivo. An Agilent (Agilent Technologies, Mississauga, ON) 4294A Impedance 

analyzer was used together with an Agilent 16452A liquid test fixture to measure the conductivity and 

permittivity of the piece of cucumber. The impedance analyzer operates in the frequency range of 40Hz to 

110MHz; however the liquid test fixture only operates accurately up to 30MHz. The measurements were 

performed only between 1 kHz and 1 MHz to match the frequency range of interest in EIT experiments. 

Using the impedance analyzer, the complex impedance (resistance R, and reactance X), the complex 

admittance (G and B), and the capacitance were measured between 1 kHz and 1 MHz. The measurement 

procedure is the same as what was implemented in (Goharian et ai, 2007d). 

3.2 Image Reconstruction Algorithm 

Two sets of measurements without and with test objects were performed. The conductivity and permittivity 

images were reconstructed using the difference approach. The absolute images of cucumber were 

reconstructed using the Dogleg technique (Goharian et ai, 2007b) at a 125 kHz frequency. The difference 

method was applied to reconstruct the conductivity and permittivity changes over the frequency range (Lu 

et ai, 1995b). In this case the data over multiple frequencies was collected and the images were 

reconstructed based on differences between each frequency verses a reference saline tank at the same 

frequency. The instrumentation errors, mostly due to stray capacitance, have a large impact on the absolute 

imaging accuracy. In the frequency difference approach, the instrumentation errors can be eliminated to a 

considerable degree through the use of a difference measurement. A multi-frequency approach using 

Principal Components Analysis (PCA) was used to model the frequency dependence of tissue electrical 

properties (Goharian et ai, 2007c). The method is based on Multivariate Image Analysis (MIA) and our 

approach is called "spatial-spectral MIA", or "SS-MIA" (Goharian et ai, 2007c). The PCA approach 

models the multi-frequency variation that is directly observable in the data. PCA is a technique used to 

project multidimensional data sets to lower dimensional subspaces in order to build a regularized model 

that can easily handle the highly correlated frequency-dependent conductivity variations. 

4. RESULTS 

In this study the three-dimensional reconstructed images are displayed as a series of two-dimensional 

image slices along the z-axis. Figures 2a and 3a indicate the difference images of the metal rod 1 cm and 4 

cm from electrode 1 at 125 kHz respectively. The electrode one position is at the 3 o'clock position, which 

is shown pictorially in Figures 2b and 3b. When the object is 1 cm from the edge, one can localize the 
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FIG.2: a) Difference conductivity images of a metal rod with 1.2 cm diameter at 1 cm far from electrode 1 
b) the actual position of metal rod relative to electrodes. 
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FIG.3: a) Difference conductivity images ofa metal rod with 1.2 cm diameter at 4 cm far from electrode 1 
b) the actual position of metal rod relative to electrodes. 
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FIG.4: a): Difference conductivity images of a metal rod with 1.2 cm diameter at 1 cm far from electrode 
1 and 1.5 cm diameter plastic rod at same depth from electrode 9, both rods were 6 cm tall. b) 
Metal and plastic rods inside of cylindrical phantom, c): The original position of two objects 
relative to electrodes in lower part of phantom. The metal rod was placed 1 cm from electrode 1 
and the plastic rod at the same depth near electrode 9. 

target in difference images. The electrode artifacts were clearly more pronounced in the situation where the 

target is almost at the centre of the tank (object 4cm from electrode 1). One can still however detect the 

presence of the target within the difference image while the object is 4 cm from the edge of tank. We 

defined this type of blurry difference image as the maximum discernible depth. Figure 4a shows the 

difference images for two targets separated radially by 1 cm (one from electrode 1 and one from electrode 

9) at 125 kHz. The metal rod (conductive) was 1.2 cm in diameter and the plastic rod (non-conductive) was 

1.5 cm. The positions of the conductive and nonconductive targets are indicated in Figures 4b and 4c. 

Figure 5a illustrates the position of the cucumber inside the phantom holder. Whereas figure 5b is a plot of 

the measured conductivity of the cucumber, showing that the conductivity of the cucumber has frequency 

dependency. The four different techniques which were used to reconstruct the conductivity variation of 

cucumber are the dogleg, PCA (SS-MIA), Gauss-Newton, and difference imaging. Figure 5c shows the 

reconstructed images using the dogleg technique. Figure 5d shows pictorially the placement of the 

cucumber near electrode 3. A comparison between images reconstructed using the SS-MIA approach and 

the Gauss-Newton approach is shown in Figure 6. As can be seen, the SS-MIA was able to remove most of 

the uncorrelated frequency-dependent systematic error and build images based on the frequency-dependent 

conductivity variations of the cucumber. Although at the height ofz=2cm and z=3cm, it might be said that 

the cucumber is detected, clearly the Gauss-Newton reconstruction is not of the same quality. Figure 7 

shows the conductivity and permittivity images of the cucumber using the difference imaging approach. 
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5. DISCUSSION 

It is shown in (Kerner et aI, 2000) that the electrode artifacts are much less at the higher frequency; hence 

EIT system can achieve to maximum resolution at the highest operating frequencies. A large number of 

experiments were performed and images have been reconstructed. The findings are reported in terms of 

maximum detectable depth as a function of object width. The best results (highest sensitivity) with the 

designed EIT system were obtained when positioning the conductive and non-conductive objects near the 

tank edge. The object at 4 cm from the edge of the tank can still be detected within the difference image. 

Since the injected current pattern was adjacent therefore it is expected that the detection will be less 

sensitive at the centre of the tanle In the adjacent injection pattern the sensitivity would be best at the edges, 

as most of the current will pass though the edges of the tank. A better choice to detect objects in the centre 

of the tank is to implement opposite current injection patterns since more of this current will pass through 

the centre of the tank. Unfortunately in medical applications we do not always know the position of the 

objects we are looking for. The better option would be using the optimal current pattern which has been 

studied in (Koksal et at. , 1995; Cheney and Isaacson, 1992). Although we are exploring optimal firing 

patterns, the purpose ofthis work is to investigate the limits of this prototype. 

Figure 4a shows the background-subtracted images for the metal and plastic rods. The metal rod appeared 

as red while the plastic rod appeared blue. The two test objects were clearly distinguishable at the correct 

position at all different heights as indicated in Figure 4a. It seems that the size of the plastic rod in the 

conductivity image is almost the same as the actual size up to height, z=5cm. The aim of the multi

frequency EIT approach is to detect the frequency related variation in electrical conductivity that appears in 

biological tissues. The data collection of EIT hardware system contributes to the systematic measurement 

errors (SchIappa et aI, 2000).The hardware systematic error might not be identical for all drive/receive 

electrodes combinations, hence the errors will produce spurious features on reconstructed images. 
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FIG.5: a) A piece of cucumber inside of saline tank, b) conductivity variation verses frequency for 
cucumber from 1kHz up to IMHz c) Reconstructed conductivity images of cucumber using 
Dogleg approach at 125 KHz. The cucumber was close to electrode 3, d) position of cucumber 
relative to electrodes. 
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FIG.6: a): Reconstructed conductivity images of cucumber using PCA approach at 125 KHz. The 
cucumber was close to electrode 3. Eleven different frequencies were used for multi-frequency 
analysis b): Reconstructed conductivity images of cucumber using Gauss-Newton approach at 
125 KHz. 
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FIG.7: a) : Reconstructed conductivity images of cucumber using difference method at 125 KHz. The 
cucumber was close to electrode 3. b): Reconstructed pennittivity images. The cucumber was 
close to electrode number 3. 
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These spurious objects can be confused with actual changes in the target objects. A common approach to 

eliminate the systematic errors is a subtraction of data images from calibration saline tank data at different 

frequencies. It is shown that (SchIappa et aI, 2000, Griffiths, 1994) the systematic errors are load 

dependent, so that the subtraction from the calibration tank data will not remove all the errors when the 

system is used for different patients or objects. Load dependence is also referred to as a 'transimpedance 

error'. A comprehensive review for errors in multi-frequency EIT system is given in McEwan et a12007. 

In the static imaging approach, a single set of data is used to reconstruct images, consequently this 

approach will not eliminate or reduce the systematic error which could occur in reconstructed images. In 

this study a PCA based approach is used to reduce multidimensional data sets (capturing multi-frequency 

data over series of frequencies) to lower dimensions. The advantage of the PCA-based approach is that it 

can remove the frequency-dependent systematic error from the true frequency-dependent conductivity 

variation of the obj ect under study. 

It is clear, from comparing the images in Figure 5 and 6, that our PCA-based approach represents a 

substantial improvement over using a Gauss-Newton image reconstructed at a single frequency to 

distinguish between background and the object (here a cucumber). 

The dog-leg algorithm has proven to be robust by converging towards solutions as it is shown in Figure 5c. 

The dog-leg algorithm is introduced as an alternative method to Levenberg-Marquardt for solving the EIT 

inverse problem in single frequency imaging (Goharian et aI, 2007a). For the case of a cucumber, the 

conductivity values reconstructed in the images using both the dog-leg and PCA based approaches can be 

shown to make sense physically. For the cucumbers at 125 kHz, our EIT system recovered a conductivity 

value of 0.08 Sm- I whereas the measurement of the cucumber directly using the HP impedance analyzer 

recorded a value of 0.07±O.004 Sm-1
• A graph of measured conductivity variation verses frequency for a 

piece of cucumber is shown in Figure 5b. Clearly, our system can recover the conductivity value and 

location of the object fairly accurately. Although tissue conductivity changes have been identified on the 

images, which were reconstructed using the Gauss-Newton approach, the systematic errors were significant 

enough to severely distort these images. 

The complex impedance distributions of a cucumber were clearly reconstructed within the tank in the three

dimensional using the difference method (Figure 7). The conductivity and permittivity reconstructed 

images in Figure 7 corresponded to the true position of the cucumber. These images demonstrate the 

ability of our EIT system to correctly reconstruct both the conductivity and the permittivity distributions in 

three dimensions. 
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6. CONCLUSION 

The great advantage of our EIT system is its versatility. There are several EIT systems currently being used 

for clinical or industrial purposes but most of them are for 2-D image reconstruction. Our EIT system 

proved that is capable to reconstruct 3-D complex impedance distributions. The results of the saline 

phantom experiments clearly show the feasibility of a PCA based method of detecting an object using a 

multi-frequency approach. PCA can transform high-dimensional data into a low-dimensional subspace 

while retaining most of the intrinsic information of the input data. It is also an effective way to eliminate or 

reduce the frequency-dependent systematic error from the true frequency-dependent conductivity variation 

of the object. For multi-frequency EIT systems that are operating at higher frequency up to 1 MHz, the 

PCA based approach is necessary technique to reduce systematic error as the systematic errors increase at 

the high frequency. 
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Chapter VII 

Summary and Future Work 

The key results of this work are summarized in this chapter. This work consists of two main parts. The first 

part is related to the development of 3D image reconstruction algorithms for single and multi-frequency 

EIT. The performances of the proposed algorithms are confirmed with simulated objects. The second part 

relates to the design of novel multi-frequency hardware and the performance testing of the hardware using 

a designed phantom. The proposed algorithms are finally tested under experimental conditions using the 

designed hardware. 

8.1 Development of 3D Algorithms for Image Reconstruction of EIT 
This portion of the work is discussed in chapters II, III, and IV of this thesis. In this work, 3D 

reconstruction methods for EIT have been proposed. Chapter II has introduced the dogleg algorithm as an 

alternative method to the Levenberg-Marquardt for solving the EIT inverse problem. The main aim was to 

compare the efficiency and the computational time of these two different methods. It was found that the 

dogleg algorithm and the Levenberg-Marquardt converged to the same solution because the functional to 

be minimized is same in both methods. The dogleg method combines the Gauss-Newton and the steepest 

descent explicitly through the control of the radius of a trust region (Nocedal and Wright, 1999). The 

dogleg algorithm method is preferable to Levenberg-Marquardt method because of its significantly shorter 

computational time (Goharian et at, 2007a). The three dimensional EIT problem especially in medical 

imaging requires a finite element model with a large number of elements for complex shapes (such as a 

breast or a body). In this case the number of finite elements will be so large that it may increase 

computational time and storage requirements such that it might cause the computer to run out of memory 

during the calculation. Either parallelizing the problem onto several processors, or introducing more 

efficient algorithms will be the solution to 3D image reconstruction. Based upon the work presented in this 

thesis, it would seem that the dogleg method would be one of the most efficient techniques for the 3D 

models. 

Chapter III has introduced a novel multi-frequency approach for 3D image reconstruction. The use of 

Tikhonov based regularization techniques is equivalent to introducing a priori knowledge to the 

reconstruction process. Such approaches guarantee the stability but enforce smoothness in the inverse 
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solution thus eliminating the possibility of non-smooth solutions (Borsic, 2002). The standard EIT 

regularization approach at a single frequency needs to include a priori information (Vauhkonen, 1997). 

This could be anatomical structure information from another modality or the noise level of the 

measurement system for example. In this chapter, we propose a novel approach to build a subspace for 

regularization using a spectral and spatial multi-frequency analysis approach. The approach is based on the 

construction of a subspace for the expected conductivity distributions using principal component analysis 

(PCA). The advantage of this approach is that the principal components and then the regularization matrix 

are determined from the statistical nature of the multi-frequency data, a property that is called the 

"spectral-distance spectrum," rather than any a priori assumptions about the model structure (Goharian et 

ai, 2007b). The simulations results proved that the reconstructed images obtained with the proposed 

method are reliable even at high level of noise in compare to the standard regularization approach. A 

quantitative comparison between the proposed multi-frequency approach and standard single frequency 

regularization approach proved the ability of algorithm in reduction of the percentage of misc1assified finite 

elements up to twelve fold from the initial percentages after five iterations. The biggest advantage of this 

technique is that prior information is extracted from the characteristic response of an object at different 

frequencies and spatially across the finite elements. 

In chapter IV we presented a new approach for the regularization of the ill-posed EIT problem. A 

comparison of the proposed technique with the conjugate gradient least square (CGLS) is presented. We 

have successfully implemented a quadratically constrained least square approach to the EIT regularization 

problem. The proposed approach is based on the trust region subproblem (TRS), which uses L-curve 

maximum curvature criteria to find a regularization parameter. This approach was solved using a 

parameterized trust region to estimate the region of maximum curvature of the L-curve. We implicitly 

changed the trust region radius during each iteration. This forced the algorithm toward the correct radius 

that corresponds to the elbow, the point of maximum curvature on the L-curve. In this chapter a comparison 

of the TRS method with CGLS for an experimental phantom study was also presented. CGLS is a fast and 

robust technique for regularization of ill-posed problems. The disadvantage of CGLS is that requires a 

knowledge of exactly when to terminate the iteration process. It terminates when the residual is smaller 

than a predefined level. This level is set based on the norm of measurements noise. Our results show that 

both methods converge to the same point on the L-curve when the noise level is known. The big advantage 

ofTRS algorithm is that it does not require any knowledge of the norm of the noise. 

One possible attractive application ofTRS technique could a combination of PC A based approach (chapter 

III) with TRS. In this way, TRS can be used as solver for inverse part of EIT, which use L-curve 

maximum curvature criteria to find a regularization parameter. At the same time the multi-frequency PCA 

approach can be used to regularization matrix from the characteristic response of an object at different 
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frequencies. This could leads to a conclusion that combining both two approaches may result in a better 

algorithm that can provide a reliable and a fast way to locate a regularized solution in the absence of prior 

knowledge about the final solution. 

8.2 Design and Construction of Multi-Frequency Hardware System 

The second part of thesis is composed of two chapters namely V and VI. The Chapter V discuses the 

design, implementation; and testing of a 48-channel multi-frequency EIT system. There are several EIT 

systems designed by different research groups which operate over different frequencies. The system 

specifications are comparable with existing EIT systems with the capability of 3-D measurements over 

selectable frequencies. We have decided to use multiplexing in our designed system to obtain flexibility in 

addressing electrodes and performing experiments with differing approaches. Even though this may 

increase the common mode error. A multiplexer design gives flexibility to arrange a four-terminal 

measurement that is the best technique to minimize the effect of contact impedance. In four-terminal 

measurements two electrodes are used to drive current and two to measure voltage. This method in 

principle eliminates series impedances and contact-resistance errors. The electrode impedance on the 

voltage measurement becomes negligible as the input impedance of the differential amplifiers is so high 

(Richards, 1996). The receive channels used to measure the electrode voltages are also multiplexed in the 

existing design. This does not mean however that future design of this prototype may not have an 

increasingly parallel acquisition to improve speed. From an image reconstruction perspective, the multiple 

sources seem to be a better choice. The multiple drive approach however needs to be accurately matched 

for a large number of current drivers in order to reduce common-mode currents. The measured average 

signal-to-noise ratio (SNR) using a saline phantom was greater than 60 dB across most frequencies and this 

figure was independent of the frequency of the injected current. Our system SNR value is higher than the 

Sheffield MK3.5 (Wilson et ai, 2001) and also MK3a which was 55dB (Lu, 1995). In comparision to the 

UCLH Mark 1 b our system shows less frequency dependence the on SNR and higher value than the 50dB 

reported by others (Yerworth et ai, 2002). The common mode errors are at reasonable levels for a 

multiplexing EIT system (Boone et ai, 1996). The overall CMRR of the system was close to that of the 

differential amplifier in the DAQ. 

A software based phase-sensitive demodulation technique is used to extract amplitudes and phases from the 

raw measurements. This type of design gives much more flexibility in comparison to hardware based phase 

sensitive demodulation; which has a limited range of operating frequency. 
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There are several EIT systems currently being used for clinical or industrial purposes but most of them are 

for 2-D image reconstruction. Our hardware offers 3-D measurement and also capable of reconstructing 3-

D conductivity and permittivity distributions that has been validated with the cylindrical tank experiments. 

The chapter VI discusses the testing of the proposed algorithms with phantom experiments. A piece of 

cucumber positioned inside of saline phantom. The performance of four different approaches: dog-leg, 

principal component analysis (PCA), Gauss-Newton, and difference imaging were checked in respect of 

reconstructed conductivity images. The results show that the PCA-based approach presents a substantial 

improvement over the Gauss-Newton technique in terms of systematic error reduction. Our EIT system 

recovered a conductivity value of 0.08 Sm-1 for the 0.07 Sm-l piece of cucumber (14% error). 

8.3 Future Research for Multi-Frequency EIT 
Although this initial prototype has exceeded our initial expectations, our research and testing has 

demonstrated some key areas where modifications could be made to improve the system: 

• Our designed system needs further hardware improvements and attention to safety factors in order 

to be applicable for clinical setup. With respect to patient saftey, for frequencies above 1 kHz, the 

injected current is limited by approximately 100 J..lA x f, where f is the frequency of injected 

current in kHz. (lEC, 2007). From the safety point of view any dc voltage should not pass to the 

injection electrode to avoid the skin irritation or burns. This can be done through dc blocking 

capacitors. The disadvantage with this approach is that any DC error in current driver output will 

accumulate charge in these capacitors which eventually appears as transient voltage error during 

switching electrode from 'drive' to the 'sense' mode in multiplexing system (McEvan et at , 

2007). A better design is to implement a sensing circuit to detect dc currents (Cherepenin et ai, 

2001). 

• The next generation of our designed multi-frequency system should include parallel injections and 

data acquisition. In this approach multiple current sources can be used along with no amplification 

to digitize the electrode voltages directly and digital subtraction to remove common-mode signal 

in data acquisition system. Even though this type of design removes multiplexing system and 

associate parasitic impedance however it requires designing higher precision current sources 

(Holder, 2005). The high precision current sources will keep the common-mode currents, i.e. 

summation of all injected currents, as small as possible. 
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• A novel cryogel-polymer was introduced in the Appendix which offers the opportunity to meet the 

requirements for phantoms in order to validate 3D reconstruction algorithms and measurement 

systems. In future a simple tissue-mimicking phantom that mimics the electrical conductivity of 

the normal tissue as well as benign and malignant lesions should be developed. This will give a 

pre-clinical trial for testing the hardware and image reconstruction performance that will be a 

crucial step in the development of a breast cancer detection tool. The operating frequencies of our 

hardware system should extend up to IMHz to enable better conductivity and permittivity image 

reconstruction. In a real experimental data set, the combined conductivity and permittivity data 

will show a more complex dependence on frequency. In this case the proposed multi-frequency 

approach can be used to assess and distinguish between tissues in different functional states. 

• The novel PCA-based method has been developed in chapter three is able to extract the 

frequency-dependent structure in multi-frequency data sets. It was proved through simulation and 

experimental case studies that the PCA based approach (termed "SS-MIA") achieves a substantial 

improvement in clarity of EIT images over standard EIT approaches. One possible attractive 

application could be a combination of peA based approach (chapter III) with TRS approach 

(chapter IV). The TRS can be inserted into SS-MIA approach as a solver for inverse part ofEIT. 

In this way, both the regularization parameter and regularization matrix can be simultaneously 

extracted and built from the characteristic response of an object at different frequencies. The TRS 

use L-curve maximum curvature criteria to find a regularization parameter and the multi

frequency PCA approach can build the regularization matrix from the multi-frequency data sets. 

This could lead to a reliable and fast approach without imposing any prior assumption about the 

final solution. 

• One promising current injection pattern from image reconstruction perspective is the optimal 

current injection strategy that produces the most uniform sensitivity over the whole volume of 

study (Cheng et al., 1990). This current pattern has some drawbacks which need to be considered 

in practical application. Optimal current patterns methods need as many current drivers as there 

are electrodes. In this case voltages are measured from the same current-carrying electrodes. To 

avoid the contact impedance effect in this approach the electrodes that are so-called compound 

electrodes can be used (Hua et al., 1993). The compound electrode has different parts for the 

current injection and voltage measurements which are not in connection with each other. An 

example of an optimal current pattern is so-called trigonometric current patterns (Isaacson, 1986). 

This type of current can be easily implement using the DSP based design. 
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• Increasing the number of the electrodes in order to collect much more information has the 

potential to improve the image reconstruction precision. For example, if 256 electrodes are used 

there would be 256 excitations for adjacent current strategy. Each excitation pair yields 254 

measurements this therefore results in total 65,024 dependent and independent voltage 

measurements. This extension would enable to approach the imaging of objects of 5 mm in size. 

Obviously this approach needs a very fast data collection system, high speed DSP, and USB link 

to transfer high data rate. 
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Appendix A 

Paper VI 

The following paper presents a novel cryogel-polymer design that offers the opportunity to meet the 

requirements for phantoms in order to validate 3D reconstruction algorithms and measurement systems. 

The purpose of this work was to study the effect of radiation on the elastic stiffness, electrical and MRI 

properties of polyvinyl alcohol (PV A)-based cryogel (PV A-C). 

The work presented in this paper was performed by me under the supervision of Drs. Moran, Campbell and 

Thompson. The experimental data for 1.89T and 3T were collected by Kyle Wilson. The data were 

analyzed by me. The manuscript was written by me and edited by Drs. Moran, Thompson and Campbell. 

(Reprinted from Nucl. Instr. And Meth. B , this article is in press as: Mehran Goharian, Gerald.R. Moran, 

Kyle Wilson, Colin Seymour, Aravinthan Jegatheesan, Mike Hill, Terry.R.Thompson, Gord Campbell, 

Modifying the MR!, elastic stiffness and electrical properties of polyvinyl alcohol cryogel using irradiation. 

Nucl. Instr. and Meth. B. (2007) in press. doi:l0.l016/j.nimb.2007.04.111, Copyright (2007), with 

permission from Elsevier) 
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Abstract 

The aim of this work was to study the effect of radiation on the elastic stiffness, electrical and MRI properties of polyvinyl alcohol 
(PVA)-based cryogel (PVA-C). The PVA-C samples were irradiated with a 60CO y-source, at 2.18 x 106 Rads. The indentation measure
ments (an indication of elastic stiffness) reduced by about 14.6% for PVA-3C and 5.7% PVA-6C after irradiation, indicating that the 
material became harder/stiffer. It was found that MRI relaxation times provide an alternative and non-destructive method to evaluate 
the radiation effect on PV A-C. The TI of PV A-C that had undergone three freeze thaw cycles decreased with irradiation by 10%, 25% and 
35% at 1 T, 1.89 T and 3 T respectively. The TI ofPVA-C that had undergone six freeze thaw cycles decreased with irradiation by 18%, 
15% and 11% at I T, 1.89 T and 3 T respectively. The T2 ofPVA-C decreased with irradiation only at I T, however this change is hypoth
esized to be due to the interaction of two spin pools in the gel. The electrical conductivity (a) and permittivity constant (e) of the unir
radiated and y-irradiated PV A-C samples were measured at different frequencies in the range 40 Hz to 1 MHz. The results demonstrated 
that the conductivity increased with irradiation by 50% for PVA-3C (three freeze thaw cycles) and 75% for PVA-6C (six freeze thaw 
cycles) at frequencies greater than 1 KHz.The permittivity decreased with irradiation up to 25% for 3C and 35% for 6C at frequencies 
less than 1 KHz. 
© 2007 Elsevier B.V. All rights reserved. 
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1. Introduction 

A PV A-cryogel (or PV A-C) is a hydrogel generated by 
freezing ( - 20°C) and thawing (+20 °C) an aqueous PV A 
solution [1]. The cryogel molecular organizational structure 
changes during the freeze thaw cycles as hydrogen bonds 
form between water and the hydroxyl groups on the PYA 
molecules. As the number of freeze-thaw cycles (FTCs) 
increases the degree of hydrogen bonding increases. A 
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Ontario, Canada L8S 4Kl. Tel.: +1 905 525 9140x26887. 

E-mail address:morang@mcmaster.ca (G.R. Moran). 

0168-583X1$ - see front matter © 2007 Elsevier B.V. All rights reserved. 
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PV A-C gel phantom has been successfully used to mimic 
organs and tissues in MR and ultrasound imaging studies 
[2]. Polymer crosslinking is a possible mechanism to 
explain the hardening of PYA cryogels. Three models have 
been proposed in an effort to explain the mechanisms 
inducing the solidification and the crosslinking. They 
involve hydrogen bonding, polymer crystallite formation, 
or a liquid-liquid phase separation process [3]. The factors 
affecting the PV A -C electrical and mechanical characteris
tics are the number of freeze thaw cycles, PV A concentra
tion and additive materials. 

The methods for determining elastic stiffness include 
rheological (storage and loss moduli), materials tensile test
ing, indentation and ultrasound propagation. Wan et al. [4] 
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Lowed a statistically significant difference among 1-6 
eeze thaw cycles for materials tensile testing. The indenta
::m method was chosen in this study as the measure of 
astic stiffness since it can provide a single measurement 
ith sufficient sensitivity to compare the relative changes 
~ elastic stiffness for each sample. 
Campbell et al. have demonstrated that the electrical 

~operties of PV A-C can be changed by adding water sol
ble salts [5]. The measurement of electrical properties is 
Ie of the most convenient methods for studying the poly
ler structure [6]. These properties are affected by the struc
lre of polymer, type of doping agent, concentration and 
.anufacturing process [7]. In an earlier work, we demon
rated that there are significant changes in the electrical 
roperties of PVA-C that undergoes 3FTCs as compared 
, 6FTCs [27]. 
In this same manuscript we had presented MRI results 

f plain 3C and 6C (15%) PYA-C. We measured PVA-C 
Lat had undergone three or six freeze thaw cycles at three 
~fferent fields, 1 T, 1.89 T and 3 T. It was determined that 
.} increased linearly with field (419 ms, 755 ms and 
)69 ms for 3C and 391 ms, 602 ms and 929 ms for 6C). 

was also found that T2 remained relatively constant 
~ound 50-60 ms. 
Other groups have performed similar measurements. 

or example Lukas et al. [8] have determined the MRI 
:laxation times at 1.5 T of a 10% PVA-C over 1-2 freeze 
law cycles. They estimate for example a T} of approxi
lately 1050 ms and a T2 of 150 ms at 35°C for 10% 
VA-C that has undergone two freeze thaw cycles. Surry 

al. [2] also measured MRI relaxation times of 100/0 
V A-C, however they measured PV A-C that had under
)ne from 1 to four freeze thaw cycles. For three freeze 
rcles for example, they measured a T} of approximately 
W ms and a T2 of 115 ms at 1.5 T. 
It has been demonstrated that the PVA-C properties 

lake it suitable for the construction of medical imaging 
rrantoms [2,9,10]. PVA-C polymer offers the opportunity 
, meet the phantom requirements suitable for impedance 
Iaging techniques, such as electrical impedance tomo
'aphy (EIT) [11]. Tissue mimicking phantoms made from 
VA-C have been used: for MRI to simulate normal 
ld diseased tissue [12], for temperature dosimetry in 
[RI [8] and for simulations of ultrasound guided breast 
.opsy [13]. 
Past studies have examined the effect of radiation 

duced polymerization (cobalt-60 [14,15J , electron beam 
6,17]) of PVA-C hydrogels. Degradation rather than 
'osslinking occurs with PYA alone. However, PVA-C 
ydrogels can be crosslinked by irradiation. It has been 
lown in rheological experiments that both the elastic 
~operties of the storage (G') and the loss (G") moduli 
.creased with absorbed radiation dose from 0 to 30 kGy 
8]. There has not been any study to elucidate the com
ned affects of freeze thawing and radiation processes on 
le properties (electrical impedance, magnetic susceptibility 
Id elastic) of PYA-C. 

Ionizing radiation is an efficient tool for sterilization. A 
great part of single-use medical products are sterilized by 
this technique [19]. In order to use irradiation to sterilize 
PVA-C phantoms, it is crucial that the changes in the mate
rial properties, in particular the elastic stiffness, the conduc
tivity and the MRI properties be characterized. 

The characterization of these changes also allows the 
possibility of using radiation to either "customize" the 
properties of a phantom, or to use PV A as a radiation 
dosimeter. Two new Fricke gel systems using PV A hydro
gel and PVA-C have been described [9]. Both systems 
showed excellent linear coefficients (R2 = 0.99), signifi
cantly lower diffusion coefficients and allowed storage for 
longer periods before radiation exposure. The authors con
cluded that the PV A based gels were a significant improve
ment over previous Fricke gel systems. 

The long term goal of this research is to fabricate PVA
C gels to be utilized in medical devices and to be used as 
tissue mimicking phantoms for imaging research. A 
requirement of the imaging studies is that the phantom 
constructions be visible with sufficient contrast, when 
viewed with both MRI and impedance imaging. The pur
pose of the present work is to determine the changes 
induced in the elastic stiffness, the MRI properties and 
the electrical properties of the cryogel, resulting from y
irradiation. 

2. Materials and methods 

2.1. PVA-C manufacture 

In this study 15% PVA-C specimens were prepared that 
had undergone either three or six freeze thaw cycles. The 
details of the manufacture have been detailed elsewhere 
[27J. Samples will be designated "PVA-3C" for 15% 
PVA-C with three freeze thaw cycles or "PVA-6C" for 
15% PVA-C with six freeze thaw cycles. 

2.2. Elastic stiffness (indentation) 

An indentor was devised that applies a minor load of 
0.1 N and a major load of 0.71 N to the flat surface of a 
PVA-C specimen through a 2.5 mm diameter hemispherical 
foot. The relative depth of penetration between the major 
and minor loads was recorded for 10 measurements on 
each specimen. This method is similar to the method 
described in ASTM D 1415 - Standard Test Method for 
Rubber Property - International Hardness [20]. However 
the major load applied according to ASTM 01415 was 
judged to be too severe for the cryogels used in this study 
thus the major load of 0.71 N was used. A smaller depth 
of penetration indicates a harder/stiffer material. 

2.3. MRI 

MRI was performed on all of the samples at field 
strengths of 1 T (OrthoOne, ONI corp, Wilmington MA, 
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www.onicorp.com). 1.89 T (referred to as 2 T here after) 
(Magnex magnet, SMIS console) and 3 T (lMRIS 3 T, 
Innovative Magnetic Resonance Imaging Systems, Winni
peg, Canada). The spin-lattice relaxation time, TJ and 
the spin-spin relaxation time, T2 were measured at each 
field strength. 

For TI measurements a standard 2D inversion recovery 
sequence was repeated with different inversion times (TI). 
The imaging parameters were as follows: 6 em FOV, 
64 x 64 matrix, TR = 4000 ms, TE = 13.8 ms, TI = 20, 
60, 100, 200, 400, 600, 800 and 1000 ms at 1 T. At 2 T 
and 3 T, the same parameters were used except TR = 
5500 ms and TI = 20, 60, 100, 200, 300, 400, 500, 600, 
700, 800, 1000, 2000 and 3000 ms. Signal intensity was 
determined in a cross-sectional region of interest in each 
image for each of the PVA-C samples. The Tl recovery 
can be described by the equation: 

S(TI) = So(1 - 2exp( - TI/Tt)) , (1) 

where S(TI) is the signal intensity of the selected ROI of the 
image and So is the signal at time TI = 0. This equation can 
be rearranged to form: 

TI/T\ = -In[I/2 - S(TI)/(2So)] (2) 

from which T\ can be obtained by a linear regression where 
both So and TJ are fitted parameters. 

T2 was measured at 1 T using a 2D spin echo sequence 
with: a 6 cm FOV, 64 x 64 matrix, TR = 4000 ms and 
TE = 25, 50, 100, 200, 400 and 500 ms at 1 T. The same 
parameters were used at 2 T and 3 T except TR = 5500 ms. 
The peaks of the echoes were fit to the equation: 

S(TE) = So exp( - TE/T2) , (3) 

where S(TE) is the signal intensity of the selected ROI and 
So is the signal intensity at TE = 0. In a previous manu
script [27J we had postulated the presence of two different 
T2 components. At 1 T , there was not sufficient resolution 
in the time domain to fit to two exponentials. However at 
2 T and 3 T the data was fit assuming a bi-exponential 
behaviour. 

2.4. Impedance analysis 

An Agilent (Agilent Technologies, Mississauga, ON) 
4294A Impedance analyzer was used together with an Agi
lent 16452A liquid test fixture to measure the conductivity 
and permittivity of the PYA-C. The details of the proce
dure have been outlined elsewhere [27]. 

The conductivity, (J , was calculated using 

(4) 

where t is the spacing between the electrodes, A is the elec
trode area (radius = 38.0 mm) and Rp is the (parallel) resis
tance measured. 

The permittivity, e, was calculated using: 

(5) 

where Cp is the parallel capacitance measured in the liquid 
fixture and eo = 8.85e- 12 C2/(N m2

) is the permittivity of 
free space. 

2.5. Irradiation 

The PVA-C samples were irradiated with the calibrated 
60Co y-rays source in the McMaster Nuclear Reactor. The 
source was a cylindrical Cobalt-60 of approximately 5600 
Curies (single 'pencil'). The samples were arranged equidis
tant upon a circle of 15.2 cm from the centerline of the 
source. The high dose rate was determined to be 51.4 x 
104 Rad/h. The total delivered dose was 2.18 x 106 Rads. 

2. 6. Statistics 

Multiple electrical measurements were made to deter
mine the average and standard deviation. Standard t-tests 
were performed to determine if measurements before and 
after irradiation were different at the p < 0.05 level. 

3. Results 

The results of the elastic stiffness (indentation) proce
dure are summarized in Fig. 1. 

The MRI relaxation time measurements are summarized 
in Figs. 2 and 3. For unirradiated samples as is shown in 
Fig. 2 there is an increase in Tl with field strength while 
T2 is less sensitive to field strength. This behaviour has been 
documented before [27]. Fig. 3 shows the TI and T2 of irra
diated PVA-3C and PVA-6C samples measured at the dif
ferent field strengths. y-irradiation appears to have 
decreased the T] of the PV A samples at all field strengths. 
At 1 T, the T2 data fit a single exponential well whereas at 
2 T the data was better fit by a bi-exponential behaviour. 
The higher T2 component (300 ms) is not reported. At 
3 T the T2 data fit a single exponential relaxation. 

0.9 ~----,--------,-------,--== ____ --, 

0 .8 +-------::-::~---I------+-----_+_---___l 

0.7 
II) 
II) 
41 :E 0.6 .. 
II) 

.!::! 0.5 
'1i) 
~ 0.4 
W 

0.3 

0 .2 

0.1 

o 

No.of freez-thaw cycles 

Fig. 1. Variation of the elastic stiffness (indentation) of unirradiated and 
irradiated PVA-3C and PVA- 6C. 
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:;'ig.2. Variation of TJ and T2 values for unirradiated PVA-3C and PVA
iC for various field strengths. 
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;ig.3. Variation of Tl and T2 values for irradiated PVA-3C and PVA-6C 
or various field strengths. 

The electrical properties are summarized in Figs. 4-6. 
<ig. 4 shows the conductivity spectra for the PVA-C sam
)les before and after y-irradiation in the frequency range of 
·0 Hz to 1 MHz. Fig. 4 indicates that there is a significant 
lecrease in the conductivity with freeze thaw cycles for 
mirradiated samples and the conductivity has significantly 
ncreased with radiation. The resistance plot (Fig. 5) shows 
.n equivalent change in behaviour as conductivity. The 
rradiated PVA-C has lower resistance than the unirradi
.ted case. 

In Fig. 6, the permittivity is plotted versus frequency . 
~ote that in this plot, the error bars fall within the data 
ymbols. There is a significant decrease in the permittivity 
or both PV A-3C and PVA-6C at the lower frequencies. 
~or frequencies greater than approximately 1 KHz, this 
lifference in the permittivity of the samples becomes less. 

'. Discussion 

The results indicate a change in the elastic stiffness, the 
~RI and the electrical properties of PV A -C between three 
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Fig. 4. Variation of electrical conductivity for unirradiated and irradiated 
PVA-3C and PVA-6C versus frequency . 
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Fig. 5. Variation of electrical resistance for unirradiated and irradiated 
PVA-3C and PVA-6C versus frequency . 
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Fig. 6. Variation of permittivity for unirradiated and irradiated PVA-3C 
and PV A-6C versus frequency. 
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and six freeze thaw cycles as well as before and after ')i-radi
ation. For the unirradiated specimens the indentation in 
the PVA-6C is significantly less than PVA-3C, indicating 
that the PVA-6C specimen is harder/stiffer. The difference 
is statistically significant difference (P« 0.001). This sup
ports the tension measurements reported by Rosiak et al. 
[21J showing that PVA-6C was stiffer than PVA-3C. The 
irradiated specimens for both the PVA-3C and PVA-6C 
were harder/stiffer by 14.6% and 5.70% respectively, than 
the unirradiated samples. The difference (pre and post radi
ation) for the PVA-3C was confirmed statistically 
(P« 0.001), but the difference for PVA-6C was not statis
tically significant (P> 0.05). 

The increased hardness/stiffness after irradiation may be 
explained by an increased crosslinking induced by the irra
diation. Since PVA-6C has undergone more entanglements 
than PVA-3C resulting from the freeze thaw process, the 
smaller change in stiffness after irradiation (which was 
not significant) may be attributable to fewer available sites 
for crosslinking. 

Both the spin-lattice (Td and the spin-spin (T2) relaxa
tion times can provide information regarding the nature 
and frequency of molecular motion occurring within mate
rials. The spin-lattice relaxation time in a polymer is inde
pendent of molecular weight and is mainly determined by 
the main chain motion. In contrast, the spin-spin relaxa
tion time decreases with increasing molecular weight and 
hence viscosity [22]. T2 is normally determined by the slow
est motions occurring within the sample [23,24]. This will 
depend also upon the radiation dose, since a polymer 
may be crosslinked using ionizing radiation. The number 
of crosslinks is proportional to the radiation dose, rand 
the efficiency of the process which is stated as a G-value, 
G(X) [25]. The G-value is defined as the number of reac
tions or events (in this case number of crosslinks) per 
100 e V of absorbed energy. The initial effect of radiation 
is to increase the molecular weight, Mw, 

Mw = M~/(I - c5), (6) 

where M~ is the initial molecular weight and b is the num
ber of crosslinks units per weight average molecule [22]. 
The gelation dose, r g, is reached when c5 = 1. One crosslink 
involves two crosslinked units, one on each molecule. Any 
energy absorption from radiation of (0.624 x 1020 rg) eVg- 1 

produces No/2Mw crosslinks per gram, where No is Avoga
dro's number and therefore the gelation dose is as follows 
[22]: 

(7) 

G-values for many reactions are in the range from 0.1 to 10, 
with 1 being a typical value for crosslinking pure polymers. 

The spin-lattice relaxation in a polymer has been 
described by a single exponential relaxation time. In the 
unirradiated and low molecular weight case, because of 
the great flexibility of the polymer chain and because pro
tons are in rapid motion, the spin-spin relaxation decay 

has a single exponential behaviour (fast exchange). For 
the irradiated polymer, particularly above the gelation 
dose, the spin-spin relaxation decay can be described by 
a double exponential function of the form [21,22J 

A(t)/A(O) = !e-t
/ T2L + (1 - !)e-t

/ T2S
, (8) 

where A(t)/ A(O) represent the normalized ( at t = 0) signal 
amplitude and T2L and T 2S refer to the long and short 
relaxation times respectively and f is the fraction of protons 
relaxing with T2L. As the dose increases f decreases and 
more of the signal decay comes from the short component. 
The dose at that point were the short component starts to 
decrease depends on the initial molecular weight of the 
polymer [25]. The crosslinked network can decrease the 
T2 which reflects the more restricted nature of translational 
chain motion of the network structure. So the spin-spin 
relaxation is sensitive to the crosslinked network structure. 

At the highest dose, Tl [25], which is most sensitive to 
molecular motions occurring at frequencies near to the res
onance frequency can be reduced. At higher fields a larger 
decrease in Tl relaxation time is expected which was indeed 
observed in MRI measurements at 2 T and 3 T. 

Note that at I T, the T2 data fit a single exponential well, 
indicating that if two water pools (one hydration layer and 
one free mobile water) are present, that there is not suffi
cient resolution in the time points to separate these compo
nents. At 2 T however the data was better fit by a bi
exponential behaviour. A higher T2 component (300 fiS) 

is postulated to be due to more mobile water, whereas 
the second component (approx 50 IDS) is due to water asso
ciated with the PYA-C. At 3 T the T2 data fit a single expo
nential relaxation yielding a T2 of approximately 50 ms. 
This fits a single exponential probably because the mobile 
water component has a larger T2 at 3 T and was not ade
quately resolved at the lower TE values. 

T2 changed little following radiation except at 1 T. It is 
postulated that this is resulting from the I T measurement 
arising from an average of a shorter (50 ms) water compo
nent associated with the PVA-C with a longer (150 ms) 
more mobile water component. As discussed above, if the 
signal corresponds to a recovery such as that indicated in 
Eq. (8), then radiation will not modify the T2's of these 
components, but rather the weightings of these compo
nents. Thus at I T following radiation, a T2 decrease from 
96 ms to 70 ms for the 3C sample for example indicates an 
increase in the weighting of the short component as 
expected. 

The data for conductivity shows that the conductivity 
increases with ')i-radiation. It is speculated that this is due 
to radiation induced polymeric crosslinking. This cross
linking reduces hydrogen bonding between the PV A and 
water, creating energetic free electrons, ions and radicals, 
which are able to migrate through the polymer, eventually 
changing the electrical conductivity. A clear description for 
conduction mechanism of disordered polymers has not 
been adapted to the data due to complexity of their struc
ture [26]. 
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Conclusion 

The elastic stiffness, MRI relaxation times and electrical 
operties have been measured for unirradiated and irradi
~d PV A-C samples (three or six freeze thaw cycles). All of 
:!se techniques illustrated clear differences due to radia
In exposure on the PYA cryogel polymer. Irradiation of 
T A-C samples increased their elastic stiffness by 14.6% 
r PVA-3C and by 5.7% for PVA-6C. The T} relaxation 
lles were decreased by irradiating the samples. The T} 
PVA-C that had undergone three freeze thaw cycles 

creased with irradiation by 10%, 25% and 35% at 1 T, 
~9 T and 3 T respectively. The Tl of PVA-C that had 
!dergone six freeze thaw cycles decreased with irradiation 

18%, 15% and 11% at 1 T, 1.89 T and 3 T respectively. 
le T2 of PV A-C decreased with irradiation only at 1 T, 
Iwever this change is hypothesized to be due to the inter
tion of two spin pools in the gel. 
Irradiation increased the conductivity of PVA-C by up 
50% for 3C and 75% for 6C at frequencies greater than 

K..Hz. This can be explained from the basis that radiation 
juces crosslinking and therefore ions and free radical are 
rmed which can be trapped in the bulk of material. The 
rmittivity was also decreased with irradiation up to 
% for 3C and 35% for 6C at frequencies less than 1 KHz. 
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