
EXPLOITING LIMITED CUSTOMER CHOICE AND
SERVER FLEXIBILITY

EXPLOITING LIMITED CUSTOMER CHOICE AND
SERVER FLEXIBILITY

By

YU-TONG HE, B.Eng.(Hons.), M.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

McMaster University

© Copyright by Yu-Tong HE, December 2007

DOCTOR OF PHILOSOPHY (2008)

(Software Engineering)

MCMASTER UNIVERSITY

Hamilton, Ontario

TITLE:

AUTHOR:

Exploiting Limited Customer Choice and Server

Flexibility

Yu-Tong HE

B.Eng.(Hons.), Shanghai Jiao Tong University, China

M.Sc., McMaster University, Canada

SUPERVISOR: Dr. Douglas G. Down

NUMBER OF PAGES: xi, 159

11

Abstract

Flexible queuing systems arise III a variety of applications, such as

service operations, computer/communication systems and manufacturing. In

such a system, customer types vary in the flexibility of choosing servers; servers

vary in the flexibility of which types of customers to serve. This thesis studies

several resource allocation policies which address the concerns of limited cus­

tomer choice and server flexibility. First, to accommodate different levels of

flexibility, we propose the MinDrift affinity routing (MARa) policy and three

variants: MARO-2/k, MARO-flex and MARa-tree. These policies are de­

signed to maximize the system capacity by using the first moments of the inter­

arrival times and the service times, at the same time they require only a small

amount of state information in minimizing the delay in the system. Using dif­

fusion limits for systems with Poisson arrival processes, we prove that MARa,

MARO-flex and MARO-tree have the same heavy traffic optimality prop­

erties and the optimality is achieved independent of the flexibility levels. By

providing their applications in distributed computing systems, we show that

the MARa related policies (which require significantly less state information)

outperform the MinDrift(Q) policy (which requires global state information),

in heterogeneous server systems with either high or medium loads. Second,

when no state information is available, we propose both the random routing

policy which asymptotically minimizes the delay in the system by using the

second moments of the service times, and the pooling strategy which further

reduces the delay by combining appropriate parallel single-server queues into a

number of multi-server queues. Overall, this thesis intends to provide insights

on designing effective policies for allocating servers' times to serve multiple

types of customers.

iii

Acknowledgments

First of all, I shall express my sincere gratitude to Dr. Douglas G.

Down, my supervisor, for offering his patient guidance and invaluable support.

To him, I am indebted for the blend of challenges and freedom that allowed

me to explore this research field.

I am grateful to Drs. George Karakostas, Terence Todd, Norm Archer

and Otis Jennings for their careful review of this thesis and for sharing with

me their uncommon wealth of insights.

My appreciation goes to Laurie LeBlanc for her help with administra­

tive matters. Also, I shall say thank-you to my fellow students for adding

colours to daily life.

I thank my parents, my sister and her family for their constant under­

standing and moral support; they keep calling me hurry up, from their time

zone 12 hours ahead of mine.

Lastly, but not least, I should thank McMaster University for having

supported this work through scholarships.

IV

Contents

Abstract

Acknowledgments

List of Figures

List of Tables

1 Introduction

1.1 Motivation...............

1.1.1 System Models

1.1.2 Issues in Resource Allocation

1.1.3 Heavy Traffic Analysis

1.2 Related Work .

1.3 Contributions .

1.4 Thesis Outline.

2 Mathematical Background

2.1 Stochastic Process Limits

2.1.1 Weak Convergence

2.1.2 Brownian Motion and Donsker's Theorem

2.1.3 Reflected Brownian Motion '"

2.2 Heavy Traffic Results for A Single Queue

2.2.1 The Assumptions ...

2.2.2 A Single-Server Queue

2.2.3 A Multi-Server Queue

2.3 Complete Resource Pooling Condition

v

iii

IV

VIll

x

1

1

1

2

6

7

11

12

14

14

14

17
18

19

20
21

22

23

3 Resource Allocation with Limited State Information

3.1 The Model

3.2 MinDrift(Q) Policy

3.3 MinDrift Affinity Routing Policies .

3.3.1 MARO

3.3.2 MARO-2/k.

3.3.3 MARO-flex.

3.3.4 MARO-tree.

29

30

31

32

32

41

42

47

3.3.5 Comparison. 57

3.4 Special Cases 59

3.4.1 Homogeneous Systems with Single Task Type 59

3.4.2 Homogeneous Systems with Multiple Task Types 64

3.4.3 Heterogeneous Systems with Single Task Type

3.5 Summary

4 Resource Allocation with No State Information

4.1 Routing Policy

4.1.1 The Heavy Traffic Model . . .

4.1.2 The Resource Allocation NLP

4.2 Pooling Strategies . . .

4.2.1 Full Pooling . .

4.2.2 Partial Pooling

4.3 Extensions.......

4.4

4.3.1 Moderate Traffic

4.3.2 General Arrivals.

Summary

5 Applications

5.1 Single-Task-Type Systems

5.1.1 Homogeneous Systems .

5.1.2 Heterogeneous Systems.

5.2 Grid Systems

5.2.1 The Base Model.

5.2.2 Trial Systems

5.2.3 Main Results ..

vi

66

67

69

70

70

74

78

79

82
84

84

89

93

95

95

95

104

105

105

107

111

5.3 Hospital Waiting Times

5.3.1 The Model.

5.3.2 Results.

5.4 Summary

6 Conclusions and Future Work

Bibliography

126

127

129

133

135

139

A An Experiment of Solving the Resource Allocation NLP Using

Geometric Programming 147

A.l Standard GP 147

A.2 Reformulation of the NLP Problem

A.3 Numerical Examples

B A Resource Allocation Heuristic

B.l The Procedures ...

B.2 Numerical Examples

Vll

149

152

153

154

158

List of Figures

1.1 An output-queued system

1.2 An input-queued system .

2.1 One-sided reflection mapping

3

3

19

3.1 Discnt vs. number of servers J, equal-arrival-case case 58

3.2 Discnt vs. number of servers J, single-dominant-arrival case 60

4.1 Procedure for partitioning the routing matrix P 85

5.1 Routing structures vs. Total mean queue lengths, i.i.d. expo-

nential service times, p* = 0.95 98

5.2 Flexibility levels vs. Improvement of total mean queue length,

i.i.d. exponential service times, p* = 0.95 99

5.3 Flexibility levels vs. Relative improvement of total mean queue

length, i.i.d. exponential service times, p* = 0.95 " 99

5.4 Routing structures vs. Total mean queue lengths, i.i.d. Erlang-k

service times, p* = 0.95 " 102

5.5 Routing structures vs. Total mean queue lengths, i.i.d. hyper-

exponential service times, p* = 0.95 " 102

5.6 Routing structures vs. Improvement of total mean queue lengths,

i.i.d. Erlang-k service times, p* = 0.95 " 103

5.7 Routing structures vs. Improvement of total mean queue lengths,

i.i.d. hyper-exponential service times, p* = 0.95 103

5.8 System load vs. Improvement of total mean queue length, Sys-

terns C and D, exponential processing times 124

Vlll

5.9 Flexibility levels vs. Relative improvement of total mean queue

length, MARO-flex, exponential processing times 125

5.10 Processing time variance vs. Improvement of total mean queue

length (System D, p* = 0.41). 126

B.1 A heuristic to generate the random routing matrix pH 155

B.2 Subroutines to generate the dedicated servers 156

B.3 Subroutines to generate the dedicated task types. . . . 157

IX

List of Tables

4.1 Cases of no pooling superior than full pooling, I = J = 3,

exponential processing times 81

4.2 Cases of full pooling superior than no pooling, I = J = 3,

exponential processing times 81

4.3 A case of partial pooling superior than full pooling, I = J = 6,

exponential processing times 83

5.1 Routing structures vs. Total mean queue lengths, i.i.d. expo-

nential service times, p* = 0.95 97

5.2 Routing structures vs. Total mean queue lengths, i.i.d. Erlang-k

service times, p* = 0.95 .. 101

5.3 Routing structures vs. Total mean queue lengths, i.i.d. hyper­

exponential service times, p* = 0.95 101

5.4 Routing structures vs. Total mean queue lengths, heteroge-

neous servers, exponential service times, p* = 0.95 . . . 104

5.5 Machine types in a BLAST server cluster. 106

5.6 Trial systems and the applied server allocation policies 109

5.7 Mean processing rate matrix f1 of System D ... 111

5.8 Optimal solution matrix \}!* of System D 115

5.9 Static routing probability matrix pd of System D 115

5.10 Discounted amount of required state information. 116

5.11 Total mean queue lengths (Systems A and B, p* = 0.41), expo-

nential processing times 118

5.12 Total mean queue lengths (Systems A and B, p* = 0.95), expo-

nential processing times 119

5.13 Server utilizations (Systems A), exponential processing times 120

x

5.14 Total mean queue lengths (Systems C and E1, p* = 0.41), ex-

ponential processing times 121

5.15 Total mean queue lengths (Systems D and E2 , p* = 0.41), ex-

ponential processing times .. 121

5.16 Total mean queue lengths (Systems C, D and E, p* = 0.95),

exponential processing times . 122

5.17 Server utilizations (Systems C and D, p* = 0.41), exponential

processing times . 123

5.18 Leftover exams in System H1 132

5.19 Leftover exams in System H2 132

Xl

Chapter 1

Introd llcti()n

This thesis studies resource allocation in stochastic service systems with mul­

tiple types of tasks and heterogeneous servers. The system can be referred

to as a flexible queueing Eystem, in which task types vary in the inter-arrival

time distributions and in ';he flexibility of server choice for processing; servers

vary in the service time distributions and in the flexibility of which types of

tasks to process. Flexible queuing systems arise in a variety of applications,

including service operations [32J, computer systems [42J and manufacturing

[16J. Resource allocation for such systems deals with how to allocate a server's

time to process different ty pes of tasks, in order to achieve certain performance

goals (e.g., a task's mean :30journ time in the system is minimized).

In this chapter, we will describe the system models of interest, the

issues for resource allocation and the methodology adopted in our study.

1.1 Motivation

1.1.1 System Models

For flexible queueing syste.:ns, there are two related queueing models: output­

queued and input-queued systems. Both systems are equipped with indepen­

dent parallel queues and a number of servers. Each queue might be associated

with multiple servers. Tasks arrive from outside of the system and wait in one

of the queues until served. They require a single service and leave the system

1

PhD Thesis - Y-T. He - McMaster - Computing and Software

upon completion.

Figure 1.1 shows an output-queued system. In this model, each task

must be routed (by a dispatcher) to one of the servers immediately upon

arrival. After being routed, the task stays in the server's queue until it is

processed. Such models can be found in applications such as manufacturing

systems [64], wireless networks [63], medical services and distributed com­

puting systems (or similarly, multi-location call centres [4]). For example,

a wireless application may have data packets to be transmitted to multiple

destinations. These data packets constitute multiple types of tasks and are

dispatched to a set of transmitters whose transmission rates depend on the

channel qualities between different transmitters and destinations.

Figure 1.2 shows an input-queued system, where tasks of the same

type are placed in a dedicated input queue without being pre-assigned to any

particular server. When a task is at the head of the queue, it is taken by one

of the servers which is ready for processing. A scheduling policy is required

to specify, at each time a server completes the processing of a task, which

task type that server will process next. This involves both routing decisions

(to direct which task types to which servers) and sequencing decisions (to

determine the order in which servers will process tasks from their dedicated

queues). This model arises in applications like cross-bar switches [62] and

single-location call centres [8, 69J.

In this thesis, we study the resource allocation problem for output­

queued systems and demonstrate its applications in distributed computing

systems and medical services.

1.1.2 Issues in Resource Allocation

One of the most commonly managed qualities of a queueing system is the

accessibility of servers, i.e., "How long did customers have to wait to receive

service". To reduce the delay in an output-queued system, resource alloca­

tion can take three measures: (1) the routing policy that decides which types

of tasks are routed to which queues; (2) the pooling strategy that combines

different subsets of single-server queues into multi-server queues; and (3) the

2

PhD Thesis - Y-T. He - McMaster - Computing and Software

I task types

1

1

Dispatcher :
1
1

1

1

Type 1 Type I

J queues i U ... U ... U
J servers i __ ~------r------_~ __ i

Figure 1.1: An output-queued system

I task types Type 1 Type I

:----l-------i-------i----:
I queues

J servers

FigurE l.2: An input-queued system

3

1
1

I
1

I
1

I
I
1

1
1
1

___ I

PhD Thesis ~ Y.-T. He - McMaster - Computing and Software

local scheduling policy that determines the order in which the waiting tasks are

processed at each server. Different policies require various amount of system

information, which impacts the complexity of implementation. For example,

designing a new scheduling policy in a computer server system requires the

control of a server's kernel, which sometimes is hard to obtain. In this thesis,

we focus on the routing policy and the pooling structure, assuming that the

local scheduling is non-preemptive and all task types have the same priority.

Information Needed

The information needed for making routing decisions is classified into two

major categories. One is the state mformation, which includes the actual

numbers of tasks waiting in queues and/or in process, the expected completion

times of a new arrival at different queues, and the actual remaining processing

time at each server. The other is the przmitives, which are distributions of task

inter-arrival times and processing times, or individual task sizes. Within each

category, differing amounts of information may be required for a routing policy.

For example, a dynamic routing policy requires current state information (and

sometimes the past routing history), which is clearly more complex than a

static routing policy that requires no state information.

State information can enable a dynamic policy to achieve better per­

formance than a static policy, but it also affects scalability. There are several

problems with requiring up-to-date state information from a large number of

servers. Firstly, the complexity of implementation increases, which can make

the policy infeasible. For example, an unreasonably long time might be re­

quired for collecting and processing the state information before a routing

decision can be made. Secondly, even if the policy is feasible, a large amount

of state information increases the system load by adding overhead in routing

individual tasks, which may compromise the gains in performance. Thirdly,

the supplied state information may be out of date when a routing decision is

made. As observed in [50], performance degradation resulting from outdated

information is a major limitation of policies which require global state infor­

mation. Therefore, tradeoffs between the performance gain and the amount of

4

PhD Thesis - Y-T. He - McMaster - Computing and Software

required state information should be evaluated. In this thesis, we propose a se­

ries of routing policies to address these problems by requiring dramatically less

state information while at the same time achieving competitive performance.

Regarding the information of primitives, our proposed routing policies

require no a priori knowled ge of each task's size, but the first (and in some cases

the second) moment(s) ofthe task inter-arrival times and processing times. For

the case where individual task sizes are known, a size-interval strategy [21] is

proved to be the optimal static routing policy for a homogeneous system of

first-come-first-serve queues. However, in the situation where task size and

processing time have very little correlation (e.g., as discussed by Lu et al. in

[45]), even if the task size is known to be fixed, it is more effective to know

the processing time distributions at the servers.

Server and Customer ll"lexibility

In many applications, servers are partitioned into specialized and cross-trained

groups. For example, in emergency medical services, there are both basic and

advanced life support units [40]; in call centres, customer service representa­

tives are unilingual or multilingual [25]; and in web applications, servers can

be configured as specialized or general servers [13]. These configurations of

servers are not only to cope with the various demands from customers, but in

the latter case of web applications also to improve scalability of the system.

To improve service quality, we are faced with two design questions:

(1) how much flexibility should each server have and (2) how much routing

flexibility should be provided to each customer type. Consequently, the sys­

tem performance can be compared in two scenarios: dedicated systems versus

flexible systems, where tLe difference in performance is affected by both the

routing policy and the pooling strategy.

In a dedicated sy:"tem, a customer has no choice in which queue to

receive service. So no state information is needed for making routing decisions.

An extreme case is that each customer type can be routed to only one server

and each server can only serve one customer type, where no pooling is allowed.

In such a case, each server is configured for exactly one kind of task, which in

5

PhD Thesis - Y-T. He - McMaster - Computing and Software

turn should reduce the cost of implementing and maintaining high flexibility

for the servers.

In a flexible system, a customer has the flexibility of choosing a subset

of queues to join (a strict subset may be due to locality constraints or personal

preference). Servers are partitioned into a number of subsets, where in each

subset, the servers are capable of serving the same types of customers that are

waiting in a single queue. When the number of servers in any subset is greater

than one, a pooling structure is formed. Pooling identical servers result in per­

formance improvement (e.g., one MIlvfl2 queue versus two MIMI1 queues),

however, it is not always superior in a heterogeneous system. Buzacott [15]

shows that when the service times of different customer types are not identical

in distribution, pooling can lead to longer queueing delays. On the other hand,

Andrad6ttir et al. [7] shows that a static routing policy which maximizes the

system capacity does require a subset of servers capable of serving multiple

customer types. Therefore, there is a tradeoff between the system performance

and the cost of maintaining highly flexible servers.

1.1.3 Heavy Traffic Analysis

To obtain insight into the design of resource allocation policies for output­

queued systems, we employ the method of diffusion limit analysis under heavy

traffic conditions [68]. Intuitively speaking, servers in a heavy traffic system

are operating with nearly full utilization.

In this thesis, heavy traffic limits for a queueing model are obtained

by considering a sequence of queueing models, where the input load is allowed

to increase toward the maximum possible, while maintaining stability. Under

heavy traffic conditions, the steady state performance measures (e.g., the queue

lengths) typically grow unboundedly. However, with appropriate scaling of

both time and space, one can construct for the entire queue length process a

stochastic-process limit. For example in the standard case, such a limit is a

Markov process with continuous sample paths, also called a diffusion process

(due to the historic connection with mathematics of physical diffusion).

The heavy traffic analysis method has several attractive features: (1) it

6

PhD Thesis - Y-T. He - McMaster - Computing and Software

produces simple heavy-traffic limits which identify the key elements affecting

the performance of a complicated system; (2) it yields asymptotically exact

behaviour of the system in steady state, which is otherwise analytically in­

tractable, given maximum possible input load; (3) it reduces the dimension of

the state space in the system control problem, providing a form of state-space

collapse which makes the problem easier to analyze.

Our objective of resource allocation is to identify routing policies and

pooling strategies that are asymptotically optimal in heavy traffic, i.e., mini­

mizing an arrival's mean sojourn time in the system, or equivalently by Little's

Law, minimizing the mean total number of tasks in the system. We would like

to achieve this minimum using the smallest amount of server flexibility, while

accommodating different l'~vels of customer flexibility.

To determine routing policies in Markovian queueing systems, dynamic

programming (DP) [57] is a standard approach. However, for a system with

many servers and many customer types, the state space may be uncountably

infinite, which makes it VEry difficult to derive structural properties of effec­

tive policies. The application of standard DP techniques to numerically find

optimal controls also becomes intractable.

Due to the inherent complexity of the systems under consideration in

this thesis, heavy traffic analysis would be appropriate, not only because of

its engineering significance mentioned above, but also because in general, the

case of interest is when the system is heavily loaded (both as being worst case

and economically).

1.2 Related Work

In the literature on heavy traffic analysis, two asymptotic regimes are discussed

in the design and control of multi-server queueing systems.

The first is the so-called "finite-server" heavy traffic regime (first es­

tablished by Kingman [41], also referred to as the conventional heavy traffic

regime). In this regime, the system has a fixed finite number (m) of servers

and the system utilization approaches one, the critical value for stability. This

regime corresponds to the operating environment where server costs dominate

7

PhD Thesis - Y-T. He - McMaster - Computing and Software

the cost of customer delay and where almost all customers may encounter

delays [25].

Iglehart and Whitt [39] prove that in heavy traffic, the scaled queue­

length processes are asymptotically equivalent in the following two systems: a

GIG/1 queue with service rate m and a GIGlm queue (each of the m servers

with rate 1), both having identical arrival processes. That is, for the multi­

server model with homogeneous servers and the FCFS discipline, the m servers

act as a "single super server". This is also true for the system with the join-the­

shortest-queue (JSQ) rule, where the multi-dimensional queue length process

collapses to one dimension in heavy traffic [58]. This state space collapse

enables the sojourn time processes in different queues to be expressed in terms

of the limit of the one-dimensional total queue-length process.

The second regime is the so-called Halfin-Whitt regime [31]. Here the

arrival rate and the number of servers are scaled up (to infinity) so that the

desired traffic load is obtained and the steady state probability that a customer

gets delayed converges to a limit 0 < a < 1. This regime is more likely to be

used in describing the dynamics of a call centre where the staffing level grows

in response to the high arrival rate of incoming calls. However this is not the

case on which we are focusing, where the number of servers in the system is

not necessarily large and the service rate of each server is not fixed. Moreover,

to analyze a system in this regime requires one to solve a non-linear partial

differential equation whose dimension equals the number of customer types,

and is therefore not practical to derive implement able control policies [6, 8J.
Armony and Maglaras [5J perform an asymptotic analysis in the Halfin­

Whitt regime of an M / M / m system, which models call centres with a call-back

option for customers. The model is restricted to one with 2 customer classes

and a single server group, however, it is still interesting to see that introducing

this customer choice also benefits those customers who do not make this choice

(modelled as one of the two customer classes): the asymptotic approximation

of their expected waiting time is reduced (by more than 50%), when all the

customers have static estimates of the steady-state waiting time.

In a system with multiple types of customers served by groups of spe­

cialized and cross-trained servers, skills-based routing [25J becomes a neces-

8

PhD Thesis - Y-T. He - McMaster - Computing and Software

sity. Garnett and Mande:.baum [26] define some canonical designs of network

topologies, which represe llt building blocks for more complex parallel queue­

ing systems. For example, in a "W" design, two pools of agents cater to three

types of customers: Pool 1 serves Type 1 and 2; Pool 2 serves Type 2 and 3.

In an "X" design, two pools of servers have full flexibility so that two types

of customers can be routed to either pool. They use simulation to demon­

strate how various routing policies can yield a dramatic difference in system

performance.

Harrison and Lopez; [35) give a skills-based routing model that resembles

the reality of a call centre in the efficiency-driven regime. They identify a

complete resource pooling (CRP) condition in which the set of parallel servers

act as a single (pooled) su per-server, however, the "X" design mentioned above

does not satisfy this condition. Mandelbaum and Stolyar [48] prove that, for

input-queued systems which satisfy the CRP condition, a simple generalized Cf.-L

(GCf.-L) rule is asymptotically optimal in heavy traffic. Each idle server chooses

to serve the longest-waiting customer, who incurs a convex increasing waiting

cost. So the GeIL rule performs well for systems that are efficiency driven. The

rule does not depend on arrival rates, but requires continuous re-calculation of

the state-dependent waiting cost of each present customer. Stolyar proves in

[63] that for output-queu~d systems under the CRP condition, the MinD rift

routing rule (in conjunction with arbitrary work-conserving disciplines at the

servers) has asymptotic optimality properties analogous to those of the GeIL

rule for input-queued systems. The difference is that waiting cost is calculated

once at the arrival time of each customer. Teh and Ward [64] prove for a two­

queue system the asymptotic optimality of a threshold routing policy, under

linear holding costs. Under this policy, arrivals are routed to the fast-server

queue 1 unless the other slow-server queue 2 is below the threshold. However,

this threshold policy is outperformed by the shortest-expected-delay-routing

policy. The reason (conjectured by the authors) is because the threshold policy

keeps track of less state information (only one queue length instead of two).

For routing policie:3 in flexible queueing systems, we are also interested

in the optimality of JSQ schemes where not all arrivals join the shortest queues.

It is known that JSQ routing (with FCFS service discipline) minimizes the

9

PhD Thesis - Y-T. He - McMaster - Computing and Software

mean waiting time for exponentially distributed interarrival and service times,

under knowledge of full state information [70J. Whitt [66], however, provided

several examples in which JSQ routing is not optimal when service times have

large variance. Foley and McDonald [22J analyze the asymptotic behaviour of

JSQ in a "W" design system, where the service rates are server-dependent.

They determine the limiting distributions of the queue lengths when the total

number of customers in the system grows high, and suggest that to balance the

load, a potential least-costly solution is to route a small portion of the arrivals

to the shorter queue, while having most of the customers remain dedicated to

their servers.

The literature on pooling usually studies the comparison between two

extreme cases: a dedicated system versus a fully pooled system. In the case

of partial pooling, two issues are involved: 1) how many dedicated servers to

pool for cross-training and 2) which servers to pool.

Smith and Whitt [61] show that a pooled system can be made arbitrar­

ily worse than a dedicated one if there are rare customers with long service

times. It is also shown that in systems with homogenous service and demand

distributions, a pooled system always outperforms a dedicated one.

Mandelbuam and Reiman [47] reduce the pooling of a Jackson network

into an M / PH /1 queue. A stream of incoming customers change their types

by demanding different service times for different tasks. An efficiency index is

used to show that pooling always helps in light traffic, while its effects can go

either way in heavy traffic. Pooling a parallel structure can sometimes hurt

unboundedly if the service rates at each queue are sufficiently different.

Gurumurthi and Benjaafar [30] use a continuous time Markov chain to

model flexible queueing systems, where an arbitrary number of Poisson arrivals

have the flexibility of being routed to more than one server based on a priority

scheme, while the service times are exponentially distributed with means which

depend on the servers. Their characterization of the probability distribution of

system states and the transition probabilities between these states is claimed to

offer the opportunity to formulate optimal control problems (e.g., on capacity

allocation) in the framework of a Markov decision process. One of the related

studies is by Shumsky [60], where performance measures for an "N" design

10

PhD Thesis - Y-T. He - McMaster - Computing and Software

system are generated by an approximation procedure that decomposes the

state space of the Markov chain.

Tekin et al. [65] me Kingman's Law of Congestion (see [67]) to approx­

imate both the average delay W t in an M / G / m t queue (each queue dedicated

to type i customers. i = 1, ... , N) and the average delay W K in one pooled

department with K M/G/m queues, K < N. It is shown that to minimize

W K, the selection of these K queues depends on the system parameters, such

as arrival rates, service times and the number of servers Tnl of each queue. A

sufficient condition is provided for pooling to be advantageous in systems with

uniform utilization and service time variability. This condition implies that

the queues to be pooled should have mean service times close to each other,

high service time sev's (squared coefficient of variation) and small mt.

Gans et al. [25] st-Jdy the pooling of geographically dispersed call cen­

tres, the base case of which is the M / M / m (Erlang C) model. The pooling

may be obtained either physically by combining two or more centres into a

larger one, or virtually through the use of networking technology that con­

nects calls to various sites. They show that under efficiency-driven staffing,

the scaled expected waiting time before being served (or ASA, average speed

of answer in the call-centre context) is unchanged with respect to the base

case. Here all servers in 8, pool can handle the same set of customer types.

1.3 Contributions

The main contributions of this thesis include:

1. We propose a Min Drift Affinity Routing (MARO) policy for output­

queued systems with heterogeneous servers to process multiple types of

tasks. Given the first moments of both the task inter-arrival times and

the task processing times, this policy is designed to both maximize the

capacity of the system and minimize the delay in the system by using a

subset of global state information.

2. We propose three variants of the MARO policy, namely MARO-2/k,

MARO-flex and MARO-tree, to accommodate different levels of flexi-

11

PhD Thesis - Y-T. He - McMaster - Computing and Software

bility with which tasks acquire limited amounts of state information for

routing. Using diffusion limits for systems with Poisson arrival processes,

we prove that MARO-flex and MARO-tree have the same heavy traffic

optimality properties as does MinDrift(Q) and the optimality is achieved

independent of the levels of flexibility. For the special cases of systems

with a single task type, MARO-flex and MARO-tree approach the

lower bound of achievable performance.

3. We propose resource allocation policies for output-queued systems with

homogeneous servers and Poisson arrival processes, where no state infor­

mation is available. The proposed policies consist of two parts: one is

the random routing policy which asymptotically minimizes the delay in

the system under heavy traffic, given the first and second moments of the

task processing times; the other is the pooling strategy which combines

the parallel single-server queues into a number of multi-server queues, in

order to further reduce the delay in the system.

4. We make extensions of the optimal random routing policies for two situa­

tions: one is heterogeneous server systems with Poisson arrival processes,

which operate under medium load; the other is heterogeneous systems

in heavy traffic with generic arrival processes.

5. We provide applications of the MARO related policies in heterogenous

computing systems and in medical services (or service operations in gen­

eral). Guidelines for choosing the routing policies in system design are

also provided.

1.4 Thesis Outline

The remainder of this thesis consists of the following chapters and appendices.

Chapter 2 introduces the related mathematical background. For com­

pleteness, theorems later used in the thesis are included.

Chapter 3 presents the proposed MARO policies and the resource al­

location LP on which the policies are based. The heavy traffic optimality

12

PhD Thesis - Y-T. He - McMaster - Computing and Software

properties of these policies are proved and the discounted amount of required

state information is compared for three variants of MARO. Simplified results

are given for homogeneous/heterogeneous systems with a single type of tasks.

Chapter 4 discuss<2s the resource allocation policies which require no

state information. To derive the optimal random routing matrices, three non­

linear programming (NLP) problems are formulated for different system con­

figurations, respectively. An alternative way of solving the NLPs using geo­

metric programming is discussed in Appendix A. For homogenous systems in

heavy traffic, a procedure for choosing pooling strategies to further reduce the

system delay is proposed. A heuristic which produces the routing matrix for a

higher degree of pooling is shown in Appendix B as a complement to the NLP

method.

Chapter 5 demons1;rates the applications of the MARO variants in Grid

systems (which are generalized distributed computer systems). Issues of ap­

plying two related policies to reduce hospital waiting times are discussed. Im­

plications from these applications are summarized for system design.

Chapter 6 includeE some concluding remarks and suggestions for future

work.

13

Chapter 2

Mathematical Background

In this chapter, we introduce required definitions of stochastic process limits

and collect some existing results in heavy traffic analysis that will be used in

our study. Section 2.1 presents the concepts of weak convergence in the Sko­

rohod space with uniform topology, and reflected Brownian motion (RBM),

which are together used to establish diffusion limits for stochastic processes

using the functional central limit theorem (FCLT). Section 2.2 includes heavy

traffic theorems for a single queue (with either one server or multiple servers),

where the stochastic processes of interest are the one-dimensional queue length

and waiting time processes. In Section 2.3, we state the corresponding the­

orems for output-queued systems and the complete resource pooling (CRP)

condition, under which a parallel queue system effectively forms a single pool

of processing capacity and the state space of the system information collapses

into one dimension, making the system much easier to analyze.

2.1 Stochastic Process Limits

Materials in this section follow Chapters 3 and 4 in [68] and Chapter 5 in [19].

2.1.1 Weak Convergence

Let the metric space (S, m) be endowed with the Borel CT-field 8(S) and X be a

mapping from a probability space (D, F, P) to (S,8(S)). If X is measurable,

14

PhD Thesis - Y-T. He - McMaster - Computing and Software

I.e, if {w EO: X(w) E: A} E F for all A E 8(S), we call it a random

element of (S,8(S)). If S is the K-dimensional Euclidean space IRK, X is

called a K -dimensional random vector. If S is a space of K -dimensional real­

valued functions which an:) defined on the subinterval [0, T] of the real line and

are right-continuous witb left limits, X is called a K-dimensional stochastic

process. The corresponding function space is denoted as DK := D([0, Tj, IRK),

or simply D. For the subspace C of continuous functions, the reference metric

m(sl' S2) (Sl' S2 E S) is the uniform metric \\Sl - S2\\' defined in terms of the

uniform norm

\\:c\\:= sup { max \Xk(t) \} ,
O::;t::;T l::;k::;K

for all XES, where x := {x(t) : ° :::; t :::; T} and x(t) := [Xl (t), ... , XK(t)] E

IRK. In this case, the space D is a (standard) Skorohod space with uniform

topology, which is sufficient for our study, because all of the limit processes

considered in this thesis have continuous sample paths.

The distribution of X is the image probability measure P induced by

X on (S, 8(S)), denoted as

P(A) := P(X E A) := P({w EO: X(w) E A}), A E 8(S).

Let X be a stochastic process and {Xn : n 2: 1} be a sequence of stochastic

processes, all defined on the probability space (0, F, P). Let P and Pn be the

distributions of X and X'L' respectively. We say that Pn converges weakly to

P if for every bounded and continuous function f on D,

lim f fdPn = f fdP'
n---->oo Jv Jv

In other words, Xn converges weakly to X (or Xn converges to X in distribu­

tion), denoted by Xn ~ X, if and only if

lim E [J(Xn)] = E[J(X)],
n---->oo

for every f.

Given the established stochastic process limits, new stochastic process

limits may be obtained m:ing the following theorems.

15

PhD Thes'ls - Y-T. He - McMaster - Computing and Software

Let {Xn : n 2': I} and {Yn : n 2': I} be two sequences of random

elements which are defined on a common domain in a separable metric space

(S, m). (By separable, we mean that there is a countable subset So ~ S such

that VS I E S, Vf > 0, ::1S2 E So, m(sI' S2) < f.)

Theorem 2.1.1 ([68], Theorem 11.4.7, convergence together theorem). If

Xn ~ X in (S, m) and m(Xn' Yn) ~ ° in JR, then

(Xn' Yn) ~ (X, X) in (S, m) x (S, m).

The converse to Theorem 2.1.1 yields not only two marginal limits

Xn ~ X and Yn ~ X, but also asymptotic equivalence of Xn and Yn.

Let g be a Borel measurable function mapping a separable metric

space (S, m) into another separable metric space (S', m'). Let Dg be the

set of discontinuity points of g, i.e., Dg is the subset of S E S such that

there exists a sequence {sn : n 2': I} in S with limn---?oo m(sn' s) = ° and

limn---?oo m'(g(sn), g(s)) =1= o.

Theorem 2.1.2 ([68], Theorem 3.4.3, continuous mapping theorem). If

Xn ~ X in (S, m) and g : (S, m) ----t (S', m') is measurable with P(Dg) = 0,

then g(Xn) ~ g(X).

Let Va be the subset of all x E VK with Xk(O) 2': ° for all 1 ::; k ::; K.

Let Vr be the subset of functions in Va that are nondecreasing. Let Co, Cr be

the corresponding subsets of CK; i.e., Co = C n Va, Cr = C n Vi'

Lemma 2.1.3 ([68], Theorem 13.2.1). The composition map 6ox(t) := 6(x(t))

from Vi x v K to V K is measurable and continuous at (6, x) E Cf X CK.

Suppose two random elements X E V K and .6. E Vi are defined on

a probability space (0, F, P). Each element of the two sequences of random

elements {Xn : n ~ I} and {.6.n : n ~ I} is defined on a probability space

(On' Fn, Pn).

Theorem 2.1.4 ([12], (17.9), random time change theorem). If (Xn' ~n) ~

(X,.6.) in V K and P(X E CK
) = P(.6. E Cf) = 1, then .6.n a Xn ~ ~ a X in

V K .

16

PhD Theszs - Y-T. He - McMaster - Computing and Software

2.1.2 Brownian Motion and Donsker's Theorem

The fundamental stochastic process limit is the convergence of a sequence of

scaled random walks to Brownian motion (BM) in the function space 1). This

is provided by Donsker's Theorem. Using a continuous mapping approach,

new stochastic process limits can be established for queueing models.

A process Bo = {Bo(t) : t 2': o} is a standard Brownian motion, or

Wiener process, if it (1) has continuous sample paths with Bo(O) = 0, (2)

has stationary and independent increments Bo(tn) - BO(tn-1), n 2': 1 and (3)

when evaluated at time t, is normally distributed with mean ° and variance

t, denoted as Bo(t) rv N(O, t). As random variables, the increments are inde­

pendent for any n < 00 and 0 ::; to < tl < ... < tn. They are stationary if the

distribution of Bo(t + h) - Bo(t) depends only on h > O.

A process B = {B(t) : t 2': O} defined by B(t) = B(O) + ()t + (JBo(t) is

called a Brownian motion with drift () and variance (J2 starting at B(O), denoted

as BM((), (J2). It follows that B(t + h) - B(t) rv N(h(), h(J2). Brownian motion

is a diffusion process because it satisfies the Markov property ([34], page 5).

Theorem 2.1.5 ([19], Theorem 5.7, Donsker's theorem). Let {Xt : i 2': I} be

a sequence of independent and identically distributed (i. z. d.) random variables.

Assume that E[X1J = p,-1 < 00 and Var[x1J = [32 < 00. For each n 2': I, define

a scaled random walk process .K(n) = {.K Cn) (t), t 2': O} with the centred partial

sums

where the summation is understood to be zero when nt < 1. Then as n ---+ 00,

.KCn) ~ Bo = BM(O, 1).

Donsker's theorem is called a functional central limit theorem (FCLT),

since it is a generalization of the classic CLT. This can be seen by fixing the

time t for each process .KCn).

Let X = {X (k) : k 2': I} be the unscaled random walk with partial

sums X (k) = 2::7=1 Xi, where each X t is nonnegative. Define its associated

17

PhD Thesis - Y.-T. He - McMaster - Computing and Software

counting process Y = {Y(t), t 2: O} by

Y(t) = sup{k: X(k) ~ t}.

Since each Xi is an i.i.d. random variable, Y(t) is a renewal process. For each

n 2: 1, define the scaled process y(n) = {y(n) (t), t 2: O} by

y(n\t) = In (Y(nt) - ntp.).

Theorem 2.1.6 ([19], Theorem 5.11). If the conditions in Theorem 2.1.5

hold for the sequence {x~: i 2: I}, then y(n) ~ Bl\,f(0,p,3rJ2), as n --+ 00.

2.1.3 Reflected Brownian Motion

Define a one-dimensional, one-sided reflection mapping ~(.) as

~(x(t)) := x(t) + sup [x(s)]-,
O:S;sg

where [xt := max(-x, 0) := [-x]+ is the negative part of x. The mapping

~(.) is Lipschitz continuous on Va and its effect is shown in Figure 2.1. The

origin with respect to z(t) = ~(x(t)) appears to be the thick dashed line,

where z(t) equals x(t) up until the first time t at which x(t) = 0 and thereafter

z(t) equals the amount by which x(t) exceeds the minimum value of x over

[0, t]. Therefore, such a mapping is also called a one-sided regulator with lower

barrier at zero. This transform can be used to model queueing processes in a

system with unlimited waiting space [68].

If X = Bl\I(e, (]"2) and Z(t) = ~(X(t)), a process Z = {Z(t) : t 2: O}

is a called a reflected Brownian motion (RBM) with drift () and variance (]"2,

denoted as RBM(e, (]"2). Unlike Brownian motion, RBM does not have inde­

pendent increments, but it is still a Markov process. The process RBM(O, 1)

has the same distribution as the process {IBo(t)1 : t 2: O}.

Theorem 2.1.7 ([19], Theorem 6.2). If Z = RBl\;f(e, (]"2) is a one-dimensional

REM, then the process Z has a stationary distribution if and only if e < 0, in

which case the stationary distributwn is exponential with mean cp = (]"2 j(2Iel).

18

PhD Thes~s - Y-T. He - McMaster - Computing and Software

X(t)

)

o
Z(t)

Figure 2.1: One-sided reflection mapping

2.2 Heavy Traffic Results for A Single Queue

In this section, we follow Reiman [58] to state several heavy traffic limit theo­

rems for a single queue. First, the required probability space and the assump­

tions are described for a single queue system with I types of arrivals and J

servers. Next, for the simple case of I = J = 1, diffusion limits are estab­

lished for the queue length process and the sojourn time processes. Finally,

limit theorems for a multi-server queue with I superimposed renewal arrival

processes are introduced.

To identify the stochastic process limits for a queueing system, a se­

quence of queueing systems is considered. The motivation is as follows. The

queue length process (or the sojourn time process) has a stationary distrib­

ution only when the traffic intensity p is strictly less than one. However, as

will be shown, the diffusion limit of the queue length process is zero when

p < 1. Therefore, the queueing system we are interested in is assumed to be

an element in a sequence of systems whose traffic intensities approach one.

Once the limit is obtained, it can be used to identify key elements that affect

the performance of the system.

19

PhD Thesis - Y-T. He - McMaster - Computing and Software

2.2.1 The Assumptions

Consider a queue with unlimited waiting space. Customers arrive one at a time

and are served in the order oftheir arrival. On a probability space (0, F, P), we

define mutually independent sequences of nonnegative i.i.d. random variables,

{Ui,m : m 2 I}, {Vj,£ : R 2 I}, for all 1 :::; i :::; I and 1 :::; j :::; J. Let Ui,m be the

inter-arrival time between the (m - l)-th and m-th customers of type i (Ui,l

being the arrival epoch of the first customer). Let vJ ,£ be the R-th service time

at server j. We assume that both have finite means and finite variances:

E[u~,m] = Ail,

E[vj,£] = J-l;\

Var[Ui,m] = a;,
Var[vJ ,£] = f3].

Define random walks U~ = {Ui(k) : k 2 I} and ~ = {Vj(d) : d 2 I}

with the partial sums

k d

U~(k) = :L U~,m' ~(d) = :L V J ,£'

m=l £=1

The associated counting processes are Ai = {A~(t), t 2 O} and 5 j = {SJ(t), t 2
O}, with

For each type i, Ui(k) is the arrival time of the k-th customer and A(t) gives

the number of customers that arrive during the time interval [0, t]. Sj (t) is

the number of customers that complete service at server j and depart the

system, provided that the server is busy all of the time. We refer to A(t) =
2:~=1 A~(t) and S(t) = 2::=1 SJ (t) as the (superimposed) arrival process and

the (potential) service process, respectively.

Now consider a sequence of queues as defined above, indexed by n.

For the n-th queue, the random variables are defined on a probability space

(o(n), F(n) , p(n)). Let (A;l)(n) and (a7)(n) be the mean and variance, respec­

tively, for the inter-arrival times; (J-l j 1)(n) and (f3;)(n) are the mean and vari­

ance, respectively, for the service times. We assume that for all 1 :::; i :::; I and

20

PhD Thesis - Y-T. He - McMaster - Computing and Software

1:::; j:::; J,

lim A (n) = A;
~ "' n-+oo

and

sup E [(v~,i£) (n)] < 00

n2:1

(2.1)

(2.2)

(2.3)

for some E > O. Condition (2.3) implies that both the inter-arrival times and

the service times have finite means and variances. Moreover, under this condi­

tion, the functional central limit theorem still holds even if the time sequence

is formed by random variables that are independent but not identically dis­

tributed (cf. the Lindeberg condition in the central limit theorem) [58]. They

are used throughout the thesis for the same reason.

In addition, it is assumed that

I J

;~~ yin (2: A;n) - 2: f-L;n)) = c < 00 (2.4)
i=l J=l

for some finite constant c. Let A = 2::=1 A~, f-L = 2::=1 f-Lj and p = AI f-L. It is

known from (2.4) that c = -00 corresponds to p < 1 and c > -00 corresponds

to p = 1.

2.2.2 A Single-Server Queue

Let I = J = 1. Define the potential workload process

X(t) = V(A(t)) - t.

By workload, we mean the amount of time to empty the system, if there are

no more arrivals. The actual workload process is

Z(t) = 6(X(t)) = X(t) + sup [X(s)t. (2.5)
O~s~t

So, the k-th arrival at time Tk has a sojourn time of

(2.6)

21

PhD Thesis - Y-T. He - McMaster - Computing and Software

Since the cumulative busy time in [0, t] at the server is

B(t) = t - sup [X(s)t,
O::;s::;t

and S (B (t)) counts the number of departures in [0, t], the queue length process

is

Q(t) = A(t) - S(B(t)).

Define the scaled processes for (2.5)-(2.7) as

z(n)(t)

w(n)(t)

Q(n)(t)

In z(n) (nt),

In W(n)(lAntj),

1 yin Q(n)(nt).

(2.7)

(2.8)

(2.9)

(2.10)

Theorem 2.2.1 ([58], Theorem 3.1). If (2.1)-(2.4) hold with c > -00,

z(n)(t) ~ Z = RBM(c/J1, A(002 + (32)) in V.

Theorem 2.2.2 ([58], Theorem 3.2). If (2.1)-(2.4) hold with c - -00,

z(n)(t) ~ ° in V.

Theorem 2.2.3 ([58], Theorem 3.3). If (2.1)-(2.4) hold, then w(n)(t) ~ Z

in V.

Theorem 2.2.4 ([58], Theorem 3.4). If (2.1)-(2.4) hold, then Q(n) (t) ~ AZ

in V.

2.2.3 A Multi-Server Queue

Let I > 1 and J> 1. Consider a J-server queue with I superimposed renewal

arrival processes. Assume the customers are served in the order of arrival by

the first idle server. Let Q J (t) be the number of customers at time t that will

be served at server j. AJ (t) is the total number of customers that arrive in

time (0, t] and are served at server j. The actual service times at server j form

22

PhD Thesis - Y-T. He - McMaster - Computing and Software

the sequence {vj,m : m ~ I}, which is a subsequence of the original service

times 1, so the elements v;,m are still i.i.d .. The actual workload at server j is

where rJ(t) is the residual service time of the customer being served by the

j-th server at time t and [QJ (t) - 1]+ is the number of customers waiting for

service at server j. The k-th arrival at time Tk has a sojourn time of

Let Q(t) = 'L:=1 QJ(t) denote the queue length at time t. The total actual

workload is
A(0 J

Z(t) = L v:n + L rj(t),
m=A(t)-[Q(t)-J]++l j=l

where {v:n} are the actual service times of m arrivals.

Define the corresponding diffusion scaled processes in the same fashion

as in (2.8)-(2.10).

Theorem 2.2.5 ([58], Theorem 5). If (2.1)-(2.4) hold, then

(i) If c > -00, then Q(n)(t) ~ Q = REM (c, 'L~=1 ,\~O'; + 'L:=1 11;13;)

in 'D, as n -+ 00. If, in addition, J = 1 or all the servers are identical,

then z(n)(t) ~ Q/(JI11) and w(n)(t) ~ Q/(JJL1) in 'D.

(ii) If c = -00, then Q(n)(t) ~ 0 in V, as n -+ 00. If, in addition, J = 1

or all the servers are identical, then z(n) (t) ~ 0 and vv(n) (t) ~ 0 in 'D.

2.3 Complete Resource Pooling Condition

In this section, we introduce the concept of complete resource pooling (CRP).

Intuitively, a system of m parallel queues which satisfies the CRP condition has

1 Given the original service times {vJ,i : £ 2': I} at server J, if there is no arrival waiting
for service at the £-th time, that time is ignored.

23

PhD Thes~s - Y-T. He - McMaster - Computing and Software

the same asymptotic behaviour as a single queue with m servers. Correspond­

ingly, a multi-dimensional queue-length process collapses to one dimension in

heavy traffic. This state space collapse enables the queue-length processes in

different queues to be expressed in terms of the limit of the one-dimensional

total queue-length process. This makes the system much easier to analyze,

because for higher than one dimension, RBMs are not well understood.

For output-queued systems, Stolyar [63] has proposed the MinDrift(Q)

routing rule which routes arrivals to a queue which has the minimal expected

increment (or so-called drift) of the total holding cost (caused by the system

workload). It has been proved that under CRP, MinDrift(Q) asymptotically

minimizes the total workload among all routing rules, as long as the local

scheduling rule is non preemptive (within the same customer type) and work­

conserving, i.e., servers are not allowed to idle whenever there are customers

waiting.

Here we follow Stolyar [63] to give a formal definition of the CRP

condition and the limiting workload process of an output-queued system which

is equipped with the MinDrift(Q) routing rule.

Consider a system with I types of customers and J servers. For each

type i, the inter-arrival times form an i.i.d. sequence which has finite mean

Ai 1 and variance a;. At each server j, the service times for type i customers

form an i.i.d. sequence and have finite mean p,j and variance (3~j. All arrival

and service processes are assumed mutually independent.

Define a matrix W = (1jJ~,JhxJ, with all1jJ~,J 2:: O. Each element 'l/Jt,j is the

average rate at which server j's time is allocated to serve type i customers,

in the long run. So the total utilization of server j is Pl = L.:;=l 'l/Jt,J. The

service capacity for type i customers is /'ei = L.::=l P,i,J'l/Ji,j. Given the matrix

W, if in an output-queued system, customers of type i are routed to queue j at

the average rate (p't,J 'l/Jt,J) , then the total service capacity for type i customers

equals the mean arrival rate Ai.

Define vectors A = [AI, ... , AI], /'e = [/'el, ... , /'eI] and P = [PI, ... ,PJ].

The server utilization region is denoted by

24

PhD Thes~s - Y-T. He - McMaster - Computing and Software

where IR~ = {x E IRJ
: x ~ O} and the vector comparison is component-wise.

The region U contains all the possible values of the server utilizations which

satisfy the condition that the corresponding service capacity allocated to each

task type is not less than the mean arrival rate of that type, a necessary

condition for stabilizing the system. Let the vector C = [~~, ... , G JT be the

outer normal vector to the convex polyhedron U at point 1 E IRJ. (If 1 is

outside the polyhedron U, the corresponding system simply does not satisfy

the CRP condition.) The inner product of vectors p and C is written as p' C.

Theorem 2.3.1 ([63], Lemma 3, complete resource pooling). The CRP con­

dition for a fixed vector A holds if and only if the following two conditions

hold.

(i) Vector 1 E IRJ solves the problem

mm p·e
pEU

s. t. /\, ~ A.

(ii) The matrix \[I which solves the linear system

A = /\', P = 1

1,S umque.

(2.11)

Let the matrix \[1* be a solution to (2.11). A graph 9 is constructed

with nodes being customer types i and servers j, arcs (i, j) corresponding to

a positive element 1/J:'J > O. The CRP condition is equivalent to the condition

that the graph 9 is a tree [35].

Define the capacity region

K = {/\, E IR~+ : p :::::; 1},

where lR~+ = {x E IRI : x > O}. Given /\, = A, the region K contains all

the mean arrival rate vectors for which the system can be stabilized. Let the

vector v* = [v~, ... , v;]T be the outer normal vector to the convex polyhedron

K at the point A. The CRP condition also implies 1 . C = A . 1/*.

25

PhD Thesis - Y-T. He - McMaster - Computing and Software

Let Qt,J(t) denote the number of type i customers at server j at time

t, including the one in service. The workload estimated by the queue length

at server j is defined as the Q-estimated workload

I

Zj(t) = L fJ,~}Qt'J(t).
i=l

The total server workload of the system is defined as

J

Z(t) = L~; Zj(t), (2.12)
J=l

where the component ~; quantifies the workload contribution of server j. The

total customer workload is defined as

I J

Y(t) = L Vt* L Qi,J(t), (2.13)
i=l J=l

where v
t
* quantifies the workload contribution of customer type i. For example,

in a homogeneous server system with multiple task types, we have ~; = 1/ J

for each server j and vt* = 1/ (J fJ,i), where fJ,i is the mean service rate of type i

tasks at each server. In general, we have Z(t) 2: Y(t) for systems with multiple

task types. They are equal under the CRP condition.

Finally, we state the heavy traffic optimality properties of the Min­

Drift(Q) routing rule.

Assume that for each server j, a holding cost function CJ (() ((::::: 0) is

given and has the following properties [63]:

Assumption 2.3.1 (cost function properties).

1. CJ (·) is continuous, strictly increasing and convex, with Cj(O) = 0;

2. The first derivatzve C; (.) is continuous and strictly increasing, with C; (0) =
0;

3. The second derivative C;' (.) is strictly posdive continuous in the open

interval (0, +00), with C;' (0) = limoo C;' (() and 0 :::; C;' (0) :::; +00.

26

PhD Thesis - Y-T. He - McMaster - Computing and Software

The MinDrift(Q) rule routes a type i customer at arrival time t to a

server j which satisfies

. . C; (Zj(t))
J E arg mm

l~J~J f1~,J

Ties are broken arbitrarily.

Define the vector process

(2.14)

The vector Z* E lR~ is called a fixed point if

[C; (Z~(t)), ... , C;(Z;(t)) J = cC

for some constant c 2: o. For any c > 0, all components of Z* are strictly

positive. The Karush-Kuhn-Tucker (KKT) conditions [14J imply that a fixed

point Z* is the unique solution to the problem

J

m~n fo(Z) = L CJ(Zj(t))
J=l

s.t. Z . C = Z* . C·

The fixed point Z* minimizes the total cost among all vectors with the same

server workload. The diffusion limit of Z* is established in Theorem 2.3.2 as

follows.

Suppose there is an output-queued system equipped with the Min­

Drift(Q) routing rule and an arbitrary non preemptive, work-conserving local

scheduling rule. Associated are the mean arrival rate vector>' which satisfies

the CRP condition, the matrix \}I * , and the vectors C and z;*. All of the queues

are empty at the initial time t = O. Consider a sequence of systems, indexed

by n. For the n-th system, the inter-arrival times of task type i have mean

(>.;1) (n) and variance (an (n); the service times at server j for type i arrivals

have mean f1;} and variance (3~j. We assume that the following conditions

hold

1· (2)(n) 1m o:~
n-->(X)

27

(2.15)

PhD Theszs - Y-T. He - McMaster - Computing and Software

and

< 00, (2.16)

(2.17)

for some E > 0 and finite constant Ct,j' In addition the heavy traffic condition

(2.18)

for some finite constant bi is assumed to be true for all 1 :::; i :::; I. Since the

vector A = (AihxI satisfies the CRP condition, (2.18) is equivalent to (2.4) in

the sense that bt > -00 (for all i) corresponds to p = 1.

Let z(n), z(n)(t) and y(n)(t) denote the scaled versions of (2.14), (2.12)

and (2.13), respectively, where the scaling is the same as in (2.8).

Theorem 2.3.2 ([63], Theorem 2(i)). If (2.15)-(2.18) hold, then as n ---> 00,

z(n)(t) ~ Z = RBM(B, 0- 2), where

I

B = L vtbi,
i=l

Z(11) ~ Z, where fOT each t 2: 0, the vector Z is a fixed point that is uniquely

deteTmined by Z(t) . e = Z(t).

Theorem 2.3.3 ([63], Theorem 3).

(i) If (2.15)-(2.18) hold, then as n ---> 00, y(n)(t) ~ Z.

(ii) The MinDTift(Q) TOuting TUle, in conjunction with an aTbitmry wOTk­

conserving local scheduling Tule, asymptotically minimizes the customeT

workload (2.13), in an output-queued system. Speczjically, the customer

wOTkload pTOcess y;nJ(t) under a TOutzng rule 7r other than MinDrift(Q)

can be constTUcted on a common probabzlity space with the RBM Z, so that

with pTObability 1, we have

liminf inf [y;n)(s) - Z(8) 1 2: 0
n--oo O<;s<;t

for any time t 2: 1.

28

Chapter 3

Resource Allocation with

Limited State Information

In this chapter, we propose several resource allocation policies, mainly routing

policies which use the means of both the task inter-arrival times and the task

processing times, for heterogeneous server systems with multiple task types.

The task inter-arrival times follow exponential distributions, while the task

processing times follow general continuous or discrete distributions. The rout­

ing policies are dynamic in the sense that they make routing decisions based

on the current state information of the system, e.g., the queue lengths or the

expected sojourn times. The proposed policies are designed to both maximize

the capacity of the system and minimize the delay in the system by using a

subset of global state information.

We study the routing policies in the following four sections. Section 3.1

introduces the system model. Section 3.2 gives Stolyar's MinDrift(Q) policy,

which requires global state information to make routing decisions and thus is

used as a reference for comparison. Section 3.3 presents our proposed policies,

MinDrift Affinity ROuting policy (MARa) and its variants, that have several

advantages over existing policies. In the last section, Section 3.4, special cases

of applying MARa related policies to homogeneous server systems are studied.

We study their applications in heterogeneous server systems in Chapter 5.

29

PhD Thesis - Y-T. He - McMaster - Computing and Software

3.1 The Model

Define sets I = {1, ... , I} and 3 = {1, ... , J}, where I ;::: 1 and J ;::: 2. Consider

a system with I types of tasks and J servers. Type i tasks arrive according

to a Poisson process with rate At > O. The processing times of type i tasks at

server j are i.i.d. and form the sequence {vt,j,m : Tn ;::: 1}. Therefore, all inter­

arrival time and processing time sequences are renewal processes. Moreover,

they are assumed mutually independent. Both fJt,J = 1/ E[Vi,j,l] and (3~j =
Var[vt,J,l] are assumed finite. We allow fJi,j = 0, which implies server j is

physically incapable of processing type i tasks. In addition, each task type

can be processed by at least one server, i.e., (Vi E I)(3j E 3) fJi,j > O.

Collectively, we define the first-order primitives: vector A = (AihxI and matrix

fJ = (fJt,j)IXJ, and second-order primitive: matrix (3 = ((3;'J)IXJ'

The topology of the system is that servers work in parallel at each

task type and each server maintains its own queue with a buffer of infinite

size. A task must be dispatched (by a dispatcher) to one of the servers j

immediately upon arrival. After being assigned, the task stays in queue j

until it is processed and leaves the system upon completion of processing.

Such a model is an "output-queued" (OQ) system.

The processing discipline satisfies two conditions:

Condition 3.1.1. The local scheduling rule at each server is non-preemptive

within each task type. Preemption of service or server sharing is allowed only

for tasks of different types. A server is not allowed to idle while there are tasks

waiting in zts queue.

Condition 3.1.2. A task's processmg time is not known until its completion,

though the task type and thus zts processing time distribution is known to the

dispatcher and the servers.

Let Qt,J(t) denote the number of type i tasks at queue j (including the

one in process) at time t. The estimate of the unfinished processing time at

server j at time t is given by the Q-estimated workload

ZJ(t) = L fJ~JIQt'J(t). (3.1)
tEI

30

PhD Thesis - Y- T. He - McMaster - Computing and Software

We use ZJ to denote the estimate calculated at each arrival time (equivalently,

when a routing decision is to be made). In addition, each server j is given a

holding cost function Cj (.) which satisfies Assumption 2.3.1. An example cost

function is a single-term polynomial of the form CJ(z) = CjZn, where cJ > a
and n > 1. We allow different cost functions at different servers.

3.2 MinDrift(Q) Policy

Stolyar [63J introduced the MinDrift(Q) rule, which attempts to minimize the

average increase rate of the aggregate cost L: jE.1 Cj(ZJ)' due to placement of

new tasks to the servers.

Policy 3.2.1 (MinDrift(Q)). A type i arrival is dispatched to a queue j sat-

2sfying
. . C'(Z))

J E argmm J .
jE.1 f.1i,J

Ties are b'f'Oken arbitrarily, jor example, in javour oj the smallest queue index.

The value C; (ZJ) / f.1~,J approximates the expected increment of the ag­

gregate cost (caused by routing one type i task to server j). The MinDrift(Q)

policy has been proved, in the heavy traffic regime, to asymptotically minimize

the holding cost rate (or the so-called "drift") at all times, when the first-order

primitives A and f.1 satisfy the complete resource pooling (CRP) condition (see

Theorem 2.3.1).

The fact that this policy satisfies such an optimality property means

that it also stabilizes the system [62, 63J. This makes for a desirable starting

point, but we need to be careful about naively implementing it. Policy 3.2.1

suffers from the fact that to make a routing decision, the dispatcher must

know, in addition to the f.1 matrix, the current state information of all queues.

Also, the optimality property of Policy 3.2.1 is obtained under a heavy traffic

assumption where the system load approaches 100 percent. When one backs

off from the heavy traffic condition, we will see (e.g., in Section 5.2.3) that

there is room for making bad routing decisions, which in turn can significantly

degrade performance.

31

PhD Thesis - Y-T. He - McMaster - Computing and Software

Motivated by reducing the overhead of obtaining state information, as

well as maintaining high performance levels under a range of traffic conditions,

we propose in the next subsection a set of routing policies, which adapt Policy

3.2.1 to address these concerns.

3.3 MinD rift Affinity Routing Policies

3.3.1 MARO

This Mindrift Affinity ROuting (MARO) policy, along with its variants pro­

posed in the following subsections, involves solving a linear programming (LP)

problem whose goal is to minimize server utilizations (equivalently, maximiz­

ing the system capacity). Since in general, server utilizations (associated with

first-order primitives) have a significant impact on performance metrics such

as mean queue lengths and sojourn times in the system, it seems reasonable

that policies which make the routing decisions by using the solutions to the

LP should be expected to achieve comparatively good performance.

The Static Allocation LP

Let the scalar p denote the long-run utilization of the busiest server. Define

the matrix \]I = ('IA,J)IXJ where the elements 'l/Ji,J are interpreted as the average

rate at which the j-th server's time is allocated to process type i tasks. The

static (processing time) allocation problem can be described by the following

LP:

min
(p,w)

s.t.

p

J

L 'l/Ji,j!Ji,j = '\' Vi E T,
J=l

I

L '!/Jt,J ::; p, Vj E J,
t=l

p ~ 0, '!/Jt,J ~ 0, Vi E T, Vj E J.

Several observations can be made about this LP:

32

(3.2)

(3.3)

(3.4)

PhD Thesis - Y-T. He - McMaster - Computing and Software

Firstly, LP (3.2) always has a solution, since no upper bound constraint

is put on p. However, the physical meaning of p requires that its value not

exceed one. Therefore, if the first-order primitives (A, p,) are such that LP

(3.2) has an optimal solution p* > 1, it means that each mean arrival rate

Ai should be scaled down by a factor of 1/ p* at least, otherwise the system

cannot be stabilized. If p* :::; 1, the reciprocal of the optimal value p* is the

maximum factor by which each arrival rate A~ can be increased so that the

system can still be stabilized [59J. In that case, LP (3.2) also maximizes the

system capacity.

Secondly, constraint (3.3) enforces the processing capacity for each task

type is not less than the task's arrival rate, which provides a necessary condi­

tion for stabilizing the system. On the other hand, (3.3) requires the processing

capacity to not exceed a task's arrival rate. If a task type i was over-allocated

with service times, we could reduce the values of the 'l/J~,/s until constraint

(3.3) is satisfied, while one or more of the constraints in (3.4) is not tight at

optimum. If a constraint in (3.4) is tight at optimum, the corresponding server

is considered as a bottleneck. In this thesis, we focus on a bottleneck system

which meets the following assumption:

Assumption 3.3.1. The tuple of primitives (A, p,) is such that LP (3.2) has

solutions (p*, w*) satisfying

I

,"""",0/'* , = p* < 1 \/J' E J. L-t Cf/'L,] -, (3.5)
i=l

This means that if L~=l 'l/J:,J < p* for any server j, that server is under­

utilized and will be removed from our model (together with the portion of

tasks that were routed to this server).

One special case of first-order primitives which satisfy the above as­

sumption is that all mean processing rates p,i,j are positive. This requires that

all servers are capable of processing all task types. Using Proposition 3.3.1,

we will show that the solutions of LP (3.2) remain the same even if a num­

ber of fully-flexible servers are substituted by servers which are only capable of

processing a subset of different task types. This leads to our third observation.

Let Np be the number of positive elements of a solution W*. We have

33

PhD Thesis - Y-T. He - McMaster - Computing and Software

Proposition 3.3.1. There exists a solution w*, whose associated Np satisfies

max(I, J) ::; Np ::; 1 + J - 1.

Proof The first inequality follows the assumptions made on the model in

Section 3.1, otherwise there exists either at least one task type that is not

processed by any servers or at least one idle server.

The second inequality results from the generation of the basic optimal

solution [11] of LP (3.2). Since the LP always has a non-zero optimal solution

which contains 1 J + 1 variables, then a basic optimal solution exists. The

solution contains 1 + J linearly independent (basic) variables which correspond

to 1 + J constraints and 1 J + 1- (1 + J) (nonbasic) variables which are zeros.

Since one of the basic variables is always p* > 0, the matrix w* has at least

1 J + 1 - (I + J) elements equal to zero. Equivalently, the number of positive

elements is at most 1 + J - 1. D

Given system A with a full matrix Af..L where Af..L2,J > 0, Vi E I, Vj E .:J
and the corresponding solution A W*, we may construct system B with matrix

Bf..L where

{

A 'f An/,* 0'
B . _ f..Li,J' 1 'f/2,] > ,

f..L2,J - ° 'f An/,* = 0'
, 1 'f/ 2,J '

and obtain the corresponding solution BW*. It is easy to verify BW* = AW*. So

the two systems will have the same performance when they use the following

affinity routing policy, while system B only requires each server have limited

flexibility in processing different task types. This is desirable when it is costly

to maintain highly flexible servers.

The Affinity Routing Policy

Given a solution w*, we define for each task type i the set St of servers that

will potentially process that type, i.e.,

(3.6)

It is true that [S2[> ° for all i E I, since any type i tasks will get processed

by at least one server. Thus, we propose the MARO policy as follows:

34

PhD Thesis - Y.-T. He - McMaster - Computing and Software

Policy 3.3.1 (MARO). A type z arrival is dispatched to a queue j satzsjying

. . C~ (Zj)
J E argmm J .

JES, J1t,J

Ties are broken randomly with equal probabilities.

The MARO policy has the following properties:

Firstly, it not only aims to maximize the capacity in the long term by

using the solution to the LP (3.2), but also in the short term shifts the workload

between servers to avoid congestion by using the current state information at

each arrival time.

Secondly, MARO differs from MinDrift(Q) in that the dispatcher does

not have to know the current workload information of all servers for each

task type (at each arrival time). It does require that the arrival rates of all

task types must be estimated in order to determine the set St. Nevertheless,

MARO is robust to perturbations in the mean arrival rates in the sense that

increasing each At by the same factor C A does not change the sets St. This

can be seen by multiplying c), on both sides of (3.3). On the other hand, the

arrival rate information is also needed for MinDrift(Q) when checking if the

system can be stabilized.

Thirdly, MARO benefits as the size of the set St is smaller than the

total number of servers J for most task types i, i.e., 'lJ* is a sparse matrix.

From Proposition 3.3.1, it is can been seen that when J increases, 'lJ* becomes

sparser. To measure this, we introduce the idea of "discount amount of state

information" as follows.

Let Ns be the average number of servers from which MARO acquires

state information for each arrival. We have

(3.7)

where .\ = .z..::iEI At· If ISil = 1, type i tasks join a single server without

acquiring state information. Definition (3.6) implies that Ns is a function of

J. For MinDrift(Q), the corresponding number of servers is J (assuming that

all J1i,j are positive). Thus, using MinDrift(Q) as a reference, we define the

35

PhD Thesis - Y.-T. He - McMaster - Computing and Software

discount of the average required state information for a routing decision by

(
Ns(J)) Discnt(MARO) = 1 - -J- x 100%. (3.8)

Given Proposition 3.3.1 and I > 1, we have

Proposition 3.3.2. If Np = L~EIIS~I = 1+ J -1 and)..d)... = III for all

i E'I, then DiscntUvIARO) is monotonically increasing in J.

Proof·

Let l' = aJ, a > 1 and L~EI 15:1 = I + l' - 1. Let J(J) = Ns(J)1 J,
we have

J(l') - f(J)

I-I (1) ----yy-- ~ - 1 < O.

So f (J) is monotonically decreasing m J, which implies Discnt(1II ARO) is

monotonically increasing in J.

o

Proposition 3.3.2 implies that MARO is more advantageous in systems

with a large number of servers, when the arrival rates of different task types

are equal. It is noted, however, that equal arrival rates are not necessary for

DiscntUIIARO) to be monotonically increasing in J. We will discuss the effect

of a single dominant task type in Section 3.3.5.

Fourthly, although MARO is more favourable when the value Np is

small (so that Ns is small), to have MARO take advantage of the state in­

formation in order to shift workload between servers, we do not want Np too

small. We construct a graph Qw which has nodes being arrival types i and

servers j and arcs (i, j) being the routing activities. The graph Qw is associ­

ated with the matrix w* in that an arc (i, J) corresponds to a non-zero element

'l/J;j' Therefore, if Np < I + J - 1 (which corresponds to a degenerate basic

36

PhD Thesis - Y-T. He - McMaster - Computing and Software

solution to the LP), then gw is not a connected graph, which means there is

at least one server whose load cannot be shifted to the others. The extreme

case is that when Np reaches the lower bound max(I, J), no workload can be

shifted among the servers. This will reduce MARO to a static routing policy

(which does not need state information for any task type). If Np > 1+ J - 1,

then gw contains at least one ring. This implies that LP (3.2) has infinitely

many solutions, since we can perturb a solution along the arcs of a ring. On

the other hand, we may use such a perturbation to obtain a solution w* such

that Np = 1+ J -1, i.e., graph gw represents a tree. This not only reduces the

amount of required state information, but also enables workload to be shifted

among all servers. We now provide two examples to illustrate this concept.

Example 3.3.1. Let

One solution of LP (3.2) is

p* = 1, w* = [0.5 0.5],
0.5 0.5

with Np > I + J - 1 = 3. By perturbing w* along the arcs of the ring (1,1) -

(2,1) - (2,2) - (1,2), we have

w* = [0.5 + 10/1- 0.5 - 10/1-] •

E 0.5 - 10/1- 0.5 + 10/1-

When EJ-L = 0.5, we have w* equal to the identity matrix and Np = 2. Th~s

reduction of Np is not desirable for MARO, since workload cannot be shifted

between the two servers.

Example 3.3.2. Let

One solution of LP (3.2) is

37

PhD Thesis - Y.-T. He - McMaster - Computing and Software

Instead of directly applying wi to the MARO policy, we perturb wi and obtain

with Np = I + J - 1. Using W~, MARO requires the mmimum amount of state

information while still allowing workload to be shifted between the two servers.

Finally, we use Theorem 3.3.1 to show that under the same assumptions

on the primitives (>.., /1), MinDrift(Q) and MARO have the same optimality

properties in heavy traffic, so from that standpoint we have not lost any­

thing by using less state information. We will perform simulation studies in

Section 5.2.3, which suggest that under realistic load MARO can outperform

MinDrift(Q) in heterogeneous server systems.

Assume that the following conditions hold for the primitives (>.., /1):

Assumption 3.3.2. LP (3.2) has a unique solution (p*, w*), where p* 1

and 2:~=1 'l/J;,J = 1, for all j E J.

Assumption 3.3.3. 2:iEI ISil = I +J -1, where the set Si is defined in (3.6).

Assumption 3.3.2, which is stronger than Assumption 3.3.1, implies

that the system is under heavy traffic. Assumption 3.3.3 implies that the

graph 9'l!* associated with the matrix w* represents a tree, so the workload of

each server can be shifted to the others. Then using Theorem 2.3.1 (complete

resource pooling), we have that the CRP condition holds for the mean arrival

rate vector >...

We rewrite (2.13) to define the total customer workload

Y(t) = L 1I~* L Qi,j(t), (3.9)
~EI jEJ

where 1I~* quantifies the contribution of type i arrivals to the total workload

38

PhD Thesis - Y-T. He - McMaster - Computing and Software

and is the solution to the dual of LP (3.2),

max
(v,~)

S.t.

I

LVi>"~
~=1

Vi/Ji,) S; ~J' Vj E J, Vi E T,
J

L~l S; 1,
3=1
Vi 2: 0, Vi E T and ~J 2: 0, Vj E J.

(3.10)

Vector V = (Vt*hXI corresponds to constraint (3.3), so we have v; > 0 for all

i E I. In addition, we have v~* f.-l~,J = ~; if 1/J~j =1= 0, v~* f.-li,j < ~; if 1/J:'j = 0 and

1:,:=1~; = 1, ~; > 0 for all j E J, under Assumptions 3.3.2 and 3.3.3.

To define the heavy traffic regime, we consider a sequence of systems

indexed by n. For the n-th system, the inter-arrival times of task type i are

exponentially distributed with mean (>..;1) (n); the processing times at server

j for type i arrivals have mean f.-li,} and variance (3~j' We assume that the

following conditions hold

lim >..(n) = >..
~ ~, (3.11)

n->oo

where the vector>" = (>"~)lXI satisfies the CRP condition (defined in Section

2.3) and

(3.12)

for some E > 0 and constant di,l' where {Vi,j,m : m 2: I} is a sequence of i.i.d.

random variables formed by the processing times at queue j for task type i.

In addition, the heavy traffic condition

(3.13)

for some finite constant b~ is assumed to be true for all i E T.

Let Q~~) (t) be the queue length process of type i arrivals at server j at

time t. We define its diffusion scaled version

QA (n) () 1 Q(n) ()
i,j t = yn i,j nt . (3.14)

39

PhD Thesis - Y.-T. He - McMaster - Computing and Software

Consequently, the diffusion scaled total workload process derived from (3.9) is

denoted as Y(n)(t). For the same sequence of systems on which MinDrift(Q)

(Policies 3.2.1) and MARO (Policy 3.3.1) are operating, we denote the diffusion

scaled total workload as Yd(n)(t) and ya(n) (t), respectively.

To show that the two policies have the same optimality properties, we

have the following results:

Theorem 3.3.1.

(i) For the MinDrift(Q) policy, the diffusion scaled total customer workload

process, yJn) (t), converges weakly to a one-dimensional reflected Brownian

motion Yd' To be precise, yt)(t) ~ Yd = RBM((), (]"2), as n -+ 00, where

() 2:= vtbi ,

iEI

2:=(Vt*)2 [At + 2:= 1j;;j~lt'J(J~Jl·
tEI JEJ

(3.15)

(ii) For the MARO policy, ya(n)(t) ~ Yd'

Proof.

(i) Under the conditions (3.11) - (3.13), a direct application of Theorem

2.3.3(i) yields the result. Furthermore, Theorem 2.3.3(ii) implies that the

MinDrift(Q) routing policy minimizes the total workload (3.9) and is as­

ymptotically optimal among all service disciplines which satisfy Conditions

3.1.1 and 3.1.2 described in Section 3.1.

(ii) Let the tuple ((~i,J)d' ((J;'J)d) characterize the processing time distribu­

tion of the system on which MinDrift(Q) is operating. For the system to

which MARO is applied, we have

(.) _ { (~z,j)d, if 1j;~j i= 0,
~t,J a - 0, if .I,,!,. = ° If/t,] ,

and

40

PhD Thesis - Y-T. He - McMaster - Computing and Software

Consequently, the same mean arrival rate vector A satisfies the CRP con­

dition when MARO is applied. Then using the same reasoning as in Part

(i), we have the result.

o

3.3.2 MARO-2/k

To reduce further the state information required in making server assignment

decisions, one way is to choose for each arrival just two queues from the set Si

and then compare that pair of holding cost drifts.

Policy 3.3.2 (MARO-2/k). A type i arrival is dispatched to one of the two

queues (11, j2) chosen from Si such that the arrival joins a queue j satisfymg

. . C' (Zj)
J E arg mm J .

jE{jl, j2} !1i,J

If ISil > 2, the two queues j1 and 12 are chosen with probabilities PJl = rt,))i\

and Ph = ri,J2/ (7\ - ri,jl)' respectively, where rt,J = 'l/J:,J!1i,J and f\ = LJEs, rt,J'

Policy 3.3.2 only needs the state information of two queues (j1, j2)'

Since (3.3) holds, we have i\ = At and rt,J denotes the (optimal) average rate at

which type i tasks are routed to server j. Therefore, the first queue j1 is picked

with a probability to achieve this optimum and the second queue j2 is chosen

with a conditional probability given j1 is picked. Since L(Jl,h)ES, PilPj2 = 1,

the probabilities given in Policy 3.3.2 are well defined.

Similarly, we can define the discount of the average required state in­

formation by

. (NS
(2k)) 01 Dzscnt(2k) = 1 - -j- X 10010, (3.16)

where

(3.17)

is the average number of servers from which MARO-2/ k acquires state in­

formation for each arrival. It is noted that the worst case of Discnt(2k) is

41

PhD Thesis - Y-T. He - McMaster - Computing and Software

(J - 2)/ J x 100%. This implies that when the number of servers grows, the

discount Discnt(2k) increases independently of the structure of \]1*, which is

even more favourable than MARO.

A special case of the system to which Policy 3.3.2 is applied is the

"supermarket" model with J identical servers (processing times exponentially

distributed, mean one, FIFO service discipline) and a Poisson arrival process

with rate JA,l (for only one task type, A,1 < 1). In this case, 1/J~,J = 1 for all

j E J. An arrival thus randomly (with equal probabilities) chooses two of

the J servers and joins the queue of the server with the shorter queue length.

Mitzenmacher [51J analyzed such a system and found that when A,1 approaches

1 (which implies the system is under heavy traffic) and J ----+ 00, there is an

exponential improvement in the mean sojourn time (over choosing only one out

of J servers randomly), while increasing the number of choices for an arrival

results in only a constant improvement over two choices. This suggests that a

similar degree of improvement might be expected for MARO and MARO-2/k

over a static routing policy, although the "power of two choices" has not been

analyzed rigorously for heterogeneous systems.

3.3.3 MARO-flex

The MARO - 2/ k policy in the long run still requires state information of all

queues in the set St for all type i tasks. If either in the long run only a certain

proportion of time is available for the dispatcher to acquire state information

from the distributed server queues, or only a certain proportion of type i tasks

can afford (or need) to be routed to a queue based on dynamic choice, we can

introduce another way of limiting the required state information, as proposed

through the following routing policy.

Policy 3.3.3 (MARO-flex). Given 0 < qi ::; 1, for each task type i, 100(I-qt)

percent are assumed to be dedicated arrivals; the remaimng 100qi percent are

assumed to be flexible arrivals. A dedicated arrival is routed to queue j (j E Si)

with probability

(3.18)

42

PhD Thesis - Y-T. He - McMaster - Computing and Software

where Ti = LjkEs, 'ljJ~JkjJi,jk is the total processing capacity for type 'l tasks. A

flexible arrival is routed to queue j using Policy 3.3.1, MARG.

Since (3.3) holds, we have f\ = '\ and ri,j := 'ljJ~~jjJi,J denotes the (opti­

mal) average rate at which type i tasks are routed to server j. In the proof of

Theorem 3.3.2, we will see that both dedicated and flexible arrivals are routed

to achieve this optimum.

MARO can be considered as a special case of MARO-flex with q~ = 1

for all task types i. Therefore, MARO-flex has the same properties as MARO

has. If qi = a for all task types i, MARO-flex becomes a static routing policy.

To quantify the reduction in the amount of state information used by

the MARO-flex Policy, we define the discount

. (NS(JlX)) 01 D'lScnt(flx) = 1 - J X 10010, (3.19)

where by (3.7),

is the average number of servers from which MARO-flex acquires state in­

formation. We have the same result as stated in Proposition 3.3.2, that

Discnt(flx) is monotonically increasing in J in the case where the arrival rates

of all task types are equal.

Heavy Traffic Analysis

We use Theorem 3.3.2 to show that in heavy traffic, a small amount of flex­

ibility in the MARO-flex policy should give close to the performance im­

provement given by 100 percent flexibility (i.e., the MARO policy). When

MARO-flex is applied to the same sequence of systems considered in Theo­

rem 3.3.1, we denote the diffusion scaled total workload process by

y(n)(t) = '" lI~ '" Q(n) (t),
f ~ ~ ~ f~J

(3.20)
iEI jE.:J

where Qj~;'J(t) is the MARO-flex version of (3.14). Then we have have

43

PhD Thesis - Y-T. He - McMaster - Computing and Software

Theorem 3.3.2. yt)(t) ~ Yd) where the diffusion hmit is independent 01

both qi and pt.j.

Since the difference between the two unsealed sequences of processes

Ya(t) and Yf(t) is of the order o(Jn), Theorems 3.3.1(ii) and 3.3.2 suggest

that the performance of the systems should be relatively close (particularly

for high loads).

Proof.

Suppose the elements of St are indexed as 1/J;J , ... , 1/J7J ,where jl <
, 1 , K'I.

... < jK, and Ki = IStl, then (3.6) is equivalent to

(3.21)

and (3.18) is equivalent to

(3.22)

• A Ad A f Ad . .
Define the mdex set I = U1EI Si U U~EI St' where Si = {(1" Jk) :

Af A

jk E S1} and Si = {(i, Si)}. Define the set £ = {I, ... , III} and a one-to-one

function 11 : i ----+ £ of the form

and

{
h(~,jk) = l:~-==11 Kn + k,

11(1" St) = l:n=1 Kn + 1,

k E {I, ... , Kd,

i > 1, k E {I, ... , K t },

i> 1.

The arrival rate vector ~ = (~€)IXlil has elements grouped with respect

to each task type i and indexed by subscripts Ct. In each group i, the arrival

rates are

for the dedicated arrivals,

for the flexible arrivals,

44

(3.23)

PhD Thesis - Y-T. He - McMaster - Computing and Software

where the indices £2 are determined by

{

·d
Zk'

i!i = fl(X) :=
'f Z ,

(3.24)

So for each type i, we have

Define the matrix <1> = (¢€,J)liIXJ' where the quantity (¢€,JJ-Li,J) is the

average rate at which arrivals of subtype i! (within task type i) are routed to

queue j. It consists of I sub-matrices <1>1, ... , <1>1, each corresponding to a task

type i (i E I). Each sub-matrix (with only non-zero elements shown) is

¢od
21,J1

<1>i= [:q ¢d 0

~K7,JK'/,

¢U,j1 ¢U,h ¢U,JK,
(K,+l)xJ

where the row indices i% and if (denoted collectively as i!i) are determined

using (3.24). Let the non-zero elements ¢E"jk be

(3.25)

for all k E {I, ... , Ki}' Given 0 < qi :::; 1, all the elements ¢E,j are positive

for flexible arrivals. This combined with Assumption 3.3.3 (the matrix \It*

representing a tree), implies that the matrix <I> also represents a tree, whose

nodes are arrival subtypes i! and queues j and arcs (i!, j) are the actual routing

activities.

From (3.22), (3.23) and (3.25), we have for each task type i a set of

equalities

(3.26)

45

PhD Thesis - Y-T. He - McMaster - Computing and Software

Assumption 3.3.2 and (3.26) imply that 1>e,J defined in (3.25) is a unique

solution to the linear system

= Ae,
= 1,

V£ E .c,

Vj E J.
(3.27)

Therefore, from Theorem 2.3.1, the CRP condition holds for the arrival rate

vector).. defined in (3.23).

For each task type i, let

for the dedicated arrivals,

for the flexible arrivals,
(3.28)

so that 2.:e, he, = bi . From (3.13) and (3.28), we have

where)..e, is defined in (3.23).

Let f);, quantify the contribution of subtype £t arrivals to the total

customer workload. We define the diffusion scaled total customer workload at

time t

y(n)(t) = """ f)* """ Q(n) (t).
F ~ ~~ ~J (3.29)

e,EL jEJ

where Qt~(t) is defined in the same fashion as in (3.14).

Since each type i arrival follows a Poisson process, each subtype £i

arrival process remains a Poisson process when MARO-flex is applied. Thus,

applying Theorem 2.3.3, we have

where

() (3.30)

L (f);,)
2 [Ae, + L 1>e"jf-L7,j(3~Jl·

e,EL JEJ

(3.31)

46

PhD Thesis - Y-T. He - McMaster - Computing and Software

The quantity v;, can obtained by solving the LP (3.10) (where Vi is

changed to Vf). Since ~ satisfies the CRP condition, we have V;,f.L2,J = ~; if

rPc"J =I- O. This implies

(3.32)

for each group i. Thus, Yj,n) (t) in (3.29) is equivalent to yt) (t) in (3.20).

From (3.32) and (3.28), (3.30) is equivalent to

The terms in (3.31) which are indexed by the subscript fi can be grouped with

respect to each group i, so that (J'2 = L:iEI (J';. Let :Z:C, denote the summation

of terms within each group i. We have

(J'; = (V;J2 [2:: Ac, + 2:: 2:: rPC"jf.LLf3~Jl·
f, JEJ f,

Thus, using (3.32) and (3.26), (3.31) is equivalent to

(J'2 = 2::(V1*)2 [A1 + 2:: ~;'Jf.L~,jf3~jl·
iEI JEJ

This completes the proof.

o

3.3.4 MARO-tree

In the MARO-flex policy, a type i flexible arrival can choose anyone of the

queues in the candidate set 81 . If the number of servers J is large, the size of 81

may be large. However, in the circumstance when the choice may be severely

limited due to locality constraints or personal preferences (e.g., a patient can

only afford to go to hospitals within a certain distance from their home), a

new routing policy is needed to address these concerns. So we propose the

MARO-tree policy as follows.

Policy 3.3.4 (MARO-tree). Given 0 < q1 ::; 1, for each task type i, 100(1 -

q1) percent are assumed to be dedicated arrivals,· the remaining 100q2 percent

47

PhD Thesis - Y.-T. He - McMaster - Computing and Software

are assumed to be flexible arrivals. Given the set of candidate queues defined

in (3.21), a dedicated arrival is routed to a queue jk (k E {I, ... , IStl}) with

probability

(3.33)

which is the same as (3.18) in the MARO- flex policy.

A flexible arrival picks queue jk (k E {l, ... , IStl- I}) with probability

pLk and joins one of two adjacent queues (jk, jk+l) satisfying

. . C'(Zj)
J E arg mm -------=-J __

jE{jdk+l} /1t,J

For each task type i, if I Si I > 2, the routing probabilities p{J' should satisfy the
, k

condztions

k k k+l

LP~'Jn < LpLn < LPt,Jn' k E {I, ... , ISil- 2}, (3.34)
n=l n=l n=l

and

(3.35)

For any type i flexible arrivals choosing to join one of the two adjacent

queues (jk,jk+l), we denote them as subtype ik. Let ri,jk = (¢ik,Jk/1i,jk) denote

the average rate at which these arrivals join queue jk' In the proof of The­

orem 3.3.3, we will see that the first inequality of (3.34) implies that for the

righthand-side queue ri,Jk+l > 0, while the second inequality of (3.34) implies

for the left hand-side queue ri,jk > O. Thus the queues in set Si are able to

communicate with each other and the workload may be shifted between the

queues.

The sets of queues which type i tasks actually join are Si for the dedi­

cated arrivals and

if IStl = 1,

if 2::; ISll ::; J,
(3.36)

48

PhD Thesis - Y-T. He - McMaster - Computing and Software

for the flexible arrivals, respectively. Also we have I sf I = I S11- 1, if 2 :::; I S11 :::;

1.

Let Ki = ISil. The average number of servers from which MARO-tree

acquires state information is

K,-l

N - '"' q1~1 '"' 2 f. = 2 '"' qi~i.
S(tree) - 6 ,\ 6 P1,Jk .6,\

1'K,>1 k=l 1:K,>1

To quantify the reduction in the amount of state information used by the

MARO-tree policy, we define the discount

. S(tree)

(
N) D'lscnt(tree) = 1 - J x 100%. (3.37)

Similar to Discnt(2k) , Discnt(tree) increases independently of the structure of

1lJ* when the number of servers grows.

Heavy Traffic Analysis

We use Theorem 3.3.3 to show that in heavy traffic, the performance of

MARO-tree is close to that of MARO-flex. When MARO-tree is oper­

ating on the same sequence of systems considered in Theorem 3.3.1, we denote

the diffusion scaled total workload process by ~(n)(t), which is defined in the

same fashion as in (3.20). Then we have

Theorem 3.3.3. ~(n)(t) ~ Yd , where the diffusion limit is independent of

both q1' the proportion of type i fiexzble arrivals, and P{Jk' the routing proba­

bilities of the arrivals.

Proof.

The proof is similar to that of Theorem 3.3.2 except for the parts dealing

with the flexible arrivals.

Define the index set i = UiEI S~ U UiEI sf, where Sf = {(i, jk) : jk E

SJ and Sf = {(i,jk,jk+1) : (jk,jk+l) E Sf}· Define the set .c = {1, ... , Iii}
and a one-to-one function f2 : T - .c of the form

= k, k E {1, ... , Kd;

k E {1, ... , Kl - 1},

49

PhD Thesis - Y-T. He - McMaster - Computing and Software

and

i > 1, k E {1, ... , Kd;

i > 1, k E {1, ... , K~ - 1}.

The arrival rate vector ~ = (~€)lXlil has elements grouped with respect

to each task type i and indexed by subscripts f~. In each group i, the arrival

rates are

(1 - q1P.'~P~Jk'

q~\P{Jk '

for the dedicated arrivals,

for the flexible arrivals,

where the indices fi are determined by

So for each type i, we have

(3.38)

(3.39)

Similar to (3.25), for each task type i (i E I), the routing structure

matrix (with only non-zero elements shown) is

cPi {,J2 (~.40)

cP~{ ,J2 cP~{,]3

(2K,-1)xJ

where the row indices i% and i~ (denoted collectively as f i) are determined

50

PhD Thesis - Y- T. He - McMaster - Computing and Software

using (3.39). Let the non-zero elements CPe"jk be

_ ~ (>.. ""k-l f _ ""k-l n/'* .)
- J.L")k ~ L...n=l p~,Jn L...n=l lfI~,JnP,~,Jn , kE {2, ... , Kl - I}, (3.41)

k E {2, ... , Ki - I},

Given 0 < P2 :::; 1 and condition (3.34), all the elements CPe"Jk are positive

for the flexible arrivals. This combined with Assumption 3.3.3 (the matrix

w* representing a tree), implies that the entire routing structure matrix <I> =
(<I>~)IXI also represents a tree, with nodes being arrival subtypes fI. and queues

j and arcs (fl., j) being the actual routing activities.

From (3.33), (3.38) and (3.41), we have for each task type i a set of

equalities

CPi~'JkP,i,jk + CP~£,Jk+lP,~'Jk+l = \~, k E {I, ... , K~ - I}, (3.42)

2:.:, CPe',)k = 1/J7,Jk' k E {I, ... , K~}.

Assumption 3.3.2 and (3.42) imply that CPe,J defined in (3.41) is a unique

solution to the linear system (3.27). Therefore, from Theorem 2.3.1, the CRP

condition holds for the arrival rate vector). defined in (3.38).

For each task type i, let

for the dedicated arrivals,

for the flexible arrivals,

so that 2:e, be, = b~. From (3.13) and (3.43), we have

(3.43)

where).e, is defined in (3.38). Then using the same reasoning as in the proof

of Theorem 3.3.2, we have the result.

o

51

PhD Thesis ~ Y-T. He ~ McMaster ~ Computing and Software

Routing Probabilities of the Flexible Arrivals

We give in (3.34) and (3.35) the conditions on the routing probabilities, pLk
(II, E {1, ... , K~ - 1}, Ki = ISil > 2), with which a flexible arrival picks a

pair of adjacent queues. Here we discuss a method of explicitly choosing the

probabilities.

The proposed means of choosing P{Jk aims both to maximize the amount

of (flexible) workload that can be shifted between servers and to balance the

loads among servers. The reasons are (1) from the analysis of MARa's prop­

erties (in Section 3.3.1), we see that the dynamic routing policy benefits from

doing short term shifting of workload between servers to avoid congestion; (2)

the long-run server utilizations, on the other hand, also have a big impact on

the system performance.

In the proof of Theorem 3.3.3, we know that given the matrix <Pi in

(3.40), the rate at which type i flexible arrivals join queue jk is

k = 1,

cP~f J"kf..Li,Jk + cPo! J"kf..Li,jk'
k-l' . "k'

k E {2, ... , K~ - 1}, (3.44)

On the other hand, the rate at which the dedicated arrivals join queue jk

is ,\d given in (3.38). Therefore, p!J" is chosen to maximize the difference
k " k

between the two rates (.\ f - .\!d) for all jk E S~. This involves solving a linear
h k

programming problem as follows.

For each task type i, define the matrix

ipl,l ipl,2

pf =
~

ip2,2 ip2,3
(3.45)

ipK,~I,Kt~1 ipKt~I,Kt
(K,~I)xKt

where the non-zero elements are

52

PhD Thesis - Y-T. He - McMaster - Computing and Software

for k E {I, ... , K~ - I}. The LP is hence given by

max
b"p!)

s.t.

(3.46)

qiipl,l - (1 - qi)P~jl 2: It' (3.47)

qi(ipk,k + ipk-l,k) - (1- qi)Pt,Jk 2: It' Vk E {2, ... , Ki - 1},(3.48)

q~ipK,-l,K, - (1 - qi)p~'JK, 2: It' (3.49)
k k

L ipn,n + ipn,n+l > Lpl,jn' Vk E {I, ... , K~ - 2}, (3.50)
n=l n=l

k k+l

L ipn,n + ipn,n+l < LP~Jn' Vk E {I, ... , K~ - 2}, (3.51)
n=l n=l
K z-1 K,

L L ipe,k = 1, (3.52)
e=l k=l

ipe,k > 0, ve, Vk, (3.53)

where P~jk is given in (3.33) and q~ is the proportion of flexible arrivals. Con­

straints (3.47)-(3.49) are derived from (3.38), (3.42) and (3.44). Constraints

(3.50)-(3.52) are equivalent to conditions (3.34) and (3.35), since from (3.38)

and (3.42), we have

(3.54)

To transform the strict inequalities to the standard form for LP solvers, a small

number E > 0 is added to the left-hand sides of (3.50) and (3.53); similarly

-E < 0 is added to (3.51).

When qt and P~'Jk are such that constraints (3.47)-(3.49) are tight at

the optimum, each column k of p/ sums to bt* + (1 - qt)p~JJ /qil where It =
(2qi - 1)/ K~, k E {I, ... , K i }, and each row of p/ sums to pLk' k E {I, ... , K t -

1 }.

Here we give an example to show the actual utilizations of the servers

in a heterogeneous system using LP (3.46). This example is abstracted from

the Grid application in Section 5.2.1.

Example 3.3.3. Let I = 2, J = 6 and q~ = 1 for each task type i. The

first-order primitives are
), = [151 50.3] '

53

and

PhD Thesis - Y-T. He - McMaster - Computing and Software

[
17 25 24 29

f.L = 30 48 78 84 1~~ 1~~]·
Then LP (3.2) has a solution p* = 0.95 and

\f!* = [0.950 0.950 0.950 0.950 0.950 0.580].
0.370

For the dedicated arrivals, the routing probabilzty matrix is

pd = (d) = [0.107 0.157 0.151 0.183 0.302 0.100].
Pt,] IxJ 1.000

Assumzng qt = 1 for all task types i, the solution of LP (3.46) for type

1 tasks is ,* = 1/6 and

P f* _
1 -

0.167 0.052

0.115 0.035

0.132 0.040

0.127 0.080

0.087 0.167

for task type 1. Each column of P/* sums to ,*, which means constraints

(3.47)-(3.49) are tight at the optimum.

Summing each row of P/*, we have for type 1 flexible tasks the routing

probabilities

(pLhX(J-l) = [0.219 0.150 0.172 0.207 0.254].

Given p d
, all type 2 flexible tasks are routed to queue 5 and join one of the

two queues 5 or 6, according to which has a shorter expected waiting time.

Simulation yields the corresponding steady state total mean queue length

of the system to be 38.94 ± 2.3% at a 95% confidence level. The utilizations of

the servers are given by the vector

(Pi hx J = [0.91 0.98 0.95 0.95 0.96 0.94].

The average and standard deviation of the values p] are 0.95 and 0.02, respec­

tively. The result fits well to the solution of the allocation LP (3.2), indicating

that systems using the dynamic routing policy MARO-tree can achieve the

optimal objective of LP (3.2).

54

PhD Thesis - Y-T. He - McMaster - Computing and Software

Ring Routing Structure

Motivated by Theorem 3.3.3, if the mechanism for good performance is that

a sufficient proportion of incoming workload can be shifted from any server

to any other server through the routing structure, then there are two natural

choices that should intuitively lead to better performance (while still keeping

the number of choices to be at most two). One of these is the MARO-2/k

policy described in Section 3.3.2, as it can spread incoming workload over many

different queues, so it seems reasonable that it would have better performance.

Another obvious choice is to extend the MARa-tree policy so that there is an

additional stream of flexible arrivals that is allowed to join the shorter of queues

J and 1. This would allow incoming workload to be shifted bidirectionally,

rather than unidirectionally for the two end queues. We will call such a routing

structure a "ring" structure, as opposed to the "tree" structure of our original

policy. Unfortunately, as seen below, the CRP condition does not hold for

either of these, but we suggest a means to make a comparison.

First, we assume all arrivals flexible for the ring structure, since the

diffusion limit in Theorem 3.3.3 is independent of the flexibility level q. The

ring structure allows a type i arrival to pick queue j k (k E {I, ... , I Stl}) with

probability pLk and joins one of two queues (jk,jk+l(mod K,)) satisfying

. . C' (Zj)
J E arg mm --,,-J --

jE{jk,jk+l (mod K,)} f.Li,J

where Kt = IStl and L.~~lpLk = 1. Therefore, the sets of queues which type

i tasks actually join is

if ISil = 1,

if 2::; I St I ::; J,

for the flexible arrivals. Also we have IS[I = K t .

Define the index sets i = UiEySf, where sf = {(i,jk,jk+l(modK,)) :

(jk, jk+l (mod K,)) E S[} and .c = {I, ... , Iii}· Define a one-to-one function

h : i --+ .c of the form

{

h(l,jk,jk+l(mod K,))

h(i, jk, jk+l (mod K,))

= k,

~i-l K k
= un=l n + ,

55

k E {I, ... , Kd;

i > 1, k E {I, ... , Ki}.

PhD Thesis - Y-T. He - McMaster - Computing and Software

The arrival rate vector ~ = (~£)lxlil has elements grouped with respect

to each task type i and indexed by subscripts '£Z. In each group i, the arrival

rates are

(3.55)

where the indices .£Z are determined by

K A

So for each type i, we have Lk-':.l \f = Ai'
- k

The difficulty in analyzing the ring structure is that the corresponding

arrival rate vector ~ defined by (3.55) does not satisfy the CRP condition,

because for each task type i, the routing structure matrix

¢i{,Jl ¢i{,J2

¢Z{,J2 ¢Z{,J3

4>, = (3.56)

has a cycle in the corresponding graph. That implies the entire routing struc­

ture matrix

<I> = (<I>z)IXl = (¢£,j)lilxJ

has rings and there are multiple solutions to the linear system (3.27). There­

fore, by Theorem 2.3.1, the CRP condition does not hold and we cannot di­

rectly make conclusions similar to Theorem 3.3.3.

However, this does not imply that the ring routing structure will have

performance worse than the tree routing structure. To see this, we modify the

ring structure so that the flexible arrivals which join the shorter of the two end

queues jl and jK, instead join each of those two queues with equal probability.

Then the corresponding routing structure matrix has the same form as (3.40)

for each task type i, since the last row in (3.56) becomes the dedicated part <I>f

in (3.40). Using the same reasoning in the proof of Theorem 3.3.3, we conclude

that the system in which the modified version of the ring routing structure is

56

PhD Thesis - Y-T. He - McMaster - Computing and Software

applied, has the total workload process achieving the same RBM limit as that

of the original tree model.

At this point, we suggest that the modification that has been made

would degrade the performance in the sense that if L R is the mean number in

the system for the ring routing structure and L R is the mean number in the

system for the modified ring structure, then LR ~ LR . While we are unable to

provide a proof, the intuition is that if queue j1 has a much higher workload

than queue jK" the original ring structure enables the incoming workload

to be shifted directly to queue jK" while the modified structure only allows

sequential shifting through queues j2 to j K, -1· So congestion is alleviated

more quickly in the original ring structure. Similar reasoning implies that the

MARO-2/k policy should perform better than MARO-tree.

3.3.5 Comparison

Here we compare MARO with its variants, in terms of the discount of the av­

erage required state information for making routing decisions. To compare the

discounted amounts, we use (3.8), (3.16), (3.19) and (3.37), which correspond

to MARO, MARO-2/k, MARO-flex and MARO-tree, respectively.

Suppose (1) the number of candidate queues IBtl is greater than 1 for

each task type i, (2) LiEI IBtl = I + J - 1 and (3) the proportion of flexible

arrivals qi equals a constant q for all i E I. A quantitative comparison is given

in two cases: the equal-arrival-rate case and the single-dominant-arrival case.

Equal-Arrival-Rate Case

Let p~ = At />" = 1/1 for all i E I, i.e., all arrival rates are equal. We have

Discnt(AI ARO)

Discnt(2k)

DiscntU1x)

Discnt(tree)

[(1 - l)(J - 1)]/(1 J) x 100%,

(J - 2)/ J x 100%,

[(1 - q)J - q(1 - l)J/(1 J) x 100%,

(J - 2q)/J x 100%.

It can be shown that in this case, all the Discnt values are monotonically

increasing in the number of servers J, when the number of task types I is

57

PhD Thesis - Y-T. He - McMaster - Computing and Software

greater than one. Additionally, we have Discnt(tree) 2:: DiscntUlx) if J 2:: 1+1.

Figure 3.1 shows the comparison in the equal-arrival-rate case, given

the number of task types I = 4. The values of Discnt(MARO) and Discnt(2k)

are the same as those of DiscntUlx) and Discnt(tree) with q = 1, respectively.

We can see that for the same policy, less state information is required as the

proportion of flexible arrivals increases. At the same level of flexibility q,

MARO-tree requires less state information than MARO-flex.

100

90

80

70,
d
I

60,

~
I

C 50 0
CJ
<J>

Ci
40

-*
30 I

20

10

0
0

£) - -

<2> ...

*' I

5 10

1=4. P: =0 25

_ -0- - - -_-:--------:--------

15
J;o,2

20

e Olsent(l,ee) (q=o~) * Olsent(!me) (q-1)
--e-- Olsent(flx) (q=O 5)

--*"" Olsent("x) (q=1) _

25 30

Figure 3.1: Discnt vs. number of servers J, equal-arrival-case case

Single-Dominant-Arrival Case

Let pi = A Ii 5.. > 1/1 and p~ = Ad 5.. = (1 - pi) / (I - 1) for all i E I \ { 1 }. If pi

is close to one, type 1 tasks are dominant. Also let lSI I = J + 1 - I 2:: 2 and

IS~I = 2 for all i E I \ {I}, i.e., the dominant task type has to acquire state

information from the largest possible set of candidate queues (which might be

considered as a worst case). Then Discnt(2k) and Discnt(tree) are the same as

in the equal-arrival-rate case. In addition, we have

Discntu1x) = [(1- qpDJ - q(2 - pi - pi!)]/J x 100%.

58

PhD Thesis - Y-T. He - McMaster - Computing and Software

It can be seen that (1) if pi > 2/(I + 1), DiscntUlx) (including Discnt(MARO»)

is monotonically decreasing in the number of servers J and bounded below by

(1 - qpi), as J ~ 00. Since J ;:::: I + 1 in this case, we have Discnt(tree) ;::::

Discntulx). Figure 3.2 shows the comparison in two single-dominant-arrival

cases, given I = 4 and pi is equal to 0.9 and 0.5, respectively; (2) if 1/1 <
pi < 2/ (I + 1), DiscntUlx) is monotonically increasing in the number of servers

J. However, given I and J, Discnt(flx) is still smaller than that in the equal­

arrival-rate case, regardless of the flexibility level q.

3.4 Special Cases

In this section, we discuss several cases where the MARa related policies

are applied to systems with homogeneous servers, i.e., the processing time

distribution of any task type i is the same at each server j. Referring to the

matrices f-l and {3 defined in Section 3.1, we have f-li,j = f-lt and {3i,j = {3i for

all j E J. In Section 3.4.1, we give the special forms that the MARa related

policies will take when there is only one task type. The results are extended

to multiple task types in Section 3.4.2.

As an additional special case, we discuss in Section 3.4.3 how the

MARa related policies are applied to a system with a single task type and

heterogeneous servers. For studies of systems with multiple task types and

heterogeneous servers, we present results in Chapter 5.

3.4.1 Homogeneous Systems with Single Task Type

In this case, the first-order primitives are a scalar Al and a vector f-l = (f-llhxJ.

The solution to LP (3.2) is

Hence, the set of candidate queues is Sl = J.
The MARa policy is the same as MinDrift(Q) (Policy 3.2.1), which is

equivalent to routing a task to queue j satisfying

59

PhD Thesis - Y-T. He - McMaster - Computing and Software

100

90

80

,

70

1

/

/
60r

~
"E
u

50
</)

Ci
40

30-

20

10

0'
0 5

100

90 f-

80~
70

60~
~

I
I

"E 50 l
u
</)

Ci
40

30

20

10

0
0 5

10

10

I =4. P~ =0.9

_~~~~ -___ :-=-:: _~~_- ~-~l---- -~
- * -

15

15

20 25 30

J(tree):;" 2, J(fix):;,,5

I =4, P~ =05

20 25 30

J(tree):;" 2, J(flx):;,,5

35

~e - Dlscnt(tr~;:' (q:O 5)

, * Dlscnt(tree) (q-1)
-e- Dlscn\nx) (q=0.5)

:_ -"*:'" Dlscn\nx) (q=1)

40 45

e Discn\tree) (q=O 5) * Dlscnt(tree) (q=1)
, -e- Dlscnt(nx) (q=O 5)

I -"*:'" Dlscn\flx) (q=1)
----- -----

35 40 45

50

50

Figure 3.2: Discnt vs. number of servers J, single-dominant-arrival case

60

PhD Thesis - Y-T. He - McMaster - Computing and Software

If the cost function is of the form Cj (ZJ) = cZJ, where c > 0 is a constant and

ZJ (t) is the expected waiting time at each arrival time t given by

then MARO (and MARO-flex as well) is the same as routing a (flexible) task

to queue j with the shortest queue length Qj(t), i.e., the "join the shortest

queue" (JSQ) policy.

The MARO-2/ k and MARO-tree policies are changed accordingly:

a flexible arrival is routed to the shorter one of the paired queues. Using

MARO-2/k, the two candidate queues are picked with probabilities 1/ J and

1/ (J - 1), respectively. In the MARO-tree policy, dedicated arrivals are

routed to each queue j (j E .1) with equal probability P~ = 1/ J. Flexible

arrivals are routed to queue j with probability p;, which can be determined

in the following way as one solution to LP (3.46).

Let q E (0,1] be the proportion of flexible arrivals. Since constraints

(3.47)-(3.49) are tight at optima, the optimal solution is

,* = (2q - 1)/ J

and
1. 1 *
J] - if!2,2

pf* =
* 1 * if!2,2] - if!3,3

* 1 if! J-l,J-l J (J-l)xJ

Let if!j,j = if!j-l,j = 1/(2J) for j E {2, ... , J - I}. We have

p; = { 3/(2J), ~ E {1, J - I},

1/ J, J E {2, ... , J - 2},
(3.57)

which satisfy conditions (3.34) and (3.35).

Finally, we compare the discounts of the average required state infor­

mation for the MARO related policies, when they are applied to systems with

61

PhD Thesis - Y-T. He - McMaster - Computing and Software

a single task type. From (3.8), (3.16), (3.19) and (3.37), we have

Discnt(M ARO) = 0%,

Discnt(2k)

DiscntUlx)

Discnt(tree)

= (J - 2)/J x 100%,

= (1 - q) x 100%,

= (J - 2q)/J x 100%.

(3.58)

Since J 2 2 and q ::; 1, we have Discnt(tree) 2 DiscntUlx) 2 Discnt(MARO)

and Discnt(tree) 2 Discnt(2k). That is MARO-tree requires the least amount

of information to make routing decisions.

Heavy Traffic Analysis

In the case of a single task type, Assumption 3.3.3 is satisfied, since lSI I
I + J - 1. If Al = J /-Ll (i.e., Assumption 3.3.2) also holds, then the heavy

traffic optimality properties given by Theorems 3.3.1, 3.3.2 and 3.3.3 hold for

the MARO, MARO-flex and MARO-tree policies, respectively. Specifically,

we have the following results.

Define the total queue length process

Q(t) = L Qj(t),
JES

and its diffusion scaled version

Let the total queue length processes for the MARO-flex, MARO-tree and

JSQ policies be given by Q~;) (t), Q~~) (t) and Q~ndQ (t), respectively. In addition,

let Q~~) (t) denote the queue length process for an ./1.1/ G / J system (i.e., a single

queue with J homogeneous servers).

Assume that conditions (3.11) and (3.12) are hold. In addition, the

heavy traffic condition

(3.59)

for some finite constant bl is assumed to be true. Then we have

62

PhD Thesis - Y-T. He - McMaster - Computing and Software

Theorem 3.4.1.

(i) For MARO-flex, the diffusion scaled total queue length process, ctY(t),

converges weakly to a one-dimensional reflected Browman motion Q s. To

be precise, Q~;)(t) ~ Qs = RBM(b1 , '\1(1 + J-LIf3i)) , as n ---7 00.

(ii) For MARO-tree, Q~;)(t) ~ Qs.

(iii) For JSQ, Q~~Q(t) ~ Qs.

(iv) For MIGI J, Q~)(t) ~ Qs.

Part (iv) of Theorem 3.4.1 implies that when the system is under heavy

loads, the MARO related policies should have performance close to that of a

system where no routing decision is required, such a system providing a lower

bound on achievable performance.

Proof.

(i) From (3.20), we have

y(n) (t) _ V*QA (n) (t)
f - 1 sf '

where the arrival workload contribution v; equals 11 (J J-L) in this homoge­

neous case. Using Theorem 3.3.2, we have

which yields the result.

(ii) Using Theorem 3.3.3 and reasoning similar to that in part (i), we have

the result.

(iii) Since JSQ is equivalent to MARO in this special case, applying Theo­

rem 3.3.1 yields the result. It is noted that by applying Theorem 3.1 from

Zhang and Hsu [72], the same result can be obtained.

(iv) A direct application of Theorem 2.2.5 gives the result.

o

63

PhD Thesis - Y- T. He - McMaster - Computing and Software

3.4.2 Homogeneous Systems with Multiple Task Types

In this case, the first-order primitives are the vector A = (AihxI, I > 1 and

the matrix !1 which consists of J identical column vectors (!1i)IXl, i E T. Let

P~ = Ad !1i. Applying Corollary 3 in [7], a solution to LP (3.2) is

and

pdJ pdJ

1J!*=
P2/ J P2/ J

(3.60)

pIIJ pIIJ IxJ

Therefore, Assumption 3.3.1 holds for this case. The associated set of candi­

date queues is S~ = J for all i E T.

Note that given Proposition 3.3.1, there exists another solution 1J!* with

the maximum number of zero elements. Comparing the number of positive

elements N p , we have

Np 1 1 - 1/1
-<-+ . N - I J p

The matrix 1J!* is sparse when the values of I and J are large. Using 1J!* in

MARO and its variant policies means much less state information is required

for making routing decisions. However, it does not necessarily result in better

performance of the system. The reason is that in this homogeneous system,

using ~* with the maximum number of zero elements limits the choice of

candidate servers to shift workload. This can unbalance the workloads between

servers to some extent, which yields greater mean queue length of the system

(see Chapter 5, Table 5.12).

Using the full matrix 1J!*, MARO is the same as MinDrift(Q), which is

equivalent to routing a type i task to queue j satisfying

. . C' (ZJ)
J E argmm J .

JE:l !1~

64

PhD Thesis - Y-T. He - McMaster - Computing and Software

If the cost function is of the form CJ (ZJ) = C/12Z;, where C > 0 is a constant

and Zj(t) is the Q-estimated workload at each arrival time t given by

I

Zj(t) = L Qi,J(t)/ /1i,
2=1

then MARO (and MARO-flex as well) is the same as the "join the shortest

expected waiting time" (JSEW) policy.

The MARO-2/ k and MARO-tree policies are changed accordingly: a

flexible arrival is routed to one of the paired queues, according to whichever

has a shorter expected waiting time. Using MARO-2/ k, the two candidate

queues are picked with probabilities 1/ J and 1/(J - 1), respectively. In the

MARO-tree policy, dedicated arrivals are routed to each queue j (j E J)

with equal probability P~ = 1/ J. Flexible arrivals are routed to queue j with

probability pt, which can be determined in the same way as (3.57).

Finally, the comparison of the discounted amount of the required state

information is the same as that in (3.58) for the MARO related policies.

Heavy Traffic Analysis

Note that if the condition

is true, LP (3.2) has multiple solutions (p*, '11*), where p* = 2:~=1 'IjJ:,J = 1,

for all j E J. This implies the system is under heavy traffic. However,

Assumptions 3.3.2 and 3.3.3 do not hold for the primitives (.A, /1). The com­

plete resource pooling condition thus does not hold for systems which use

MinDrift(Q) or the MARO related routing policies. Even with the arrival

workload contribution 1/; = 1/(J/1i) unique, the MinDrift(Q) policy need not

be asymptotically optimal. Roughly speaking, multiple solutions of \]i* yield

that the RBM variance given in (3.15) is not well defined. However, if a system

uses a static routing policy, i.e., type i tasks are routed to queue j with prob­

ability P2,J without state information, the diffusion scaled total queue length

process still weakly converges to a one-dimensional reflected Brownian motion.

We study this case in Chapter 4.

65

PhD Thesis - Y.-T. He - McMaster - Computing and Software

3.4.3 Heterogeneous Systems with Single Task Type

In this case, the first-order primitives are a scalar Al and a vector f-l = (f-ljhxJ.

Let jl = Lf=1 f-lJ" Applying Corollary 1 in [7], the solution to LP (3.2) is

p* = Ad jl, w* = (p*hxJ.

Hence, the set of candidate queues is SI = 3.
Let the Q-estimated workload at arrival time t be

If the cost function is ofthe form Cj(ZJ) = f-ljZ;, then MARO and MARO-flex

are the same as the JSEW policy which routes a task to queue j satisfying

. . QJ (t)
J E argmm--.

JEJ f-lJ

The MARO-2/k and MARO-tree policies are changed accordingly.

Using MARO-2/k, the two candidate queues (j, J' + 1) are picked with prob­

abilities f-lJ/jl and ~tJ+d(jl- f-lJ)' respectively. In the MARO-tree policy,

dedicated arrivals are routed to queue j (j E 3) with probability p~ = f-lJ/jl;

flexible arrivals are routed to queue j with probability p;, which is determined

using LP (3.46).

Heavy Traffic Analysis

Similar to homogeneous systems with a single task type, we can show that for

heterogeneous systems under heavy traffic, the MARO related policies should

have performance close to the lower bound on achievable performance.

Let Q~~~(t) denote the queue length process for an M/G/ Jh system

(i.e., a single queue with J heterogeneous servers, service being first-come­

first-serve). Assume Al = jl is true, so that Assumption 3.3.2 holds. In

addition, conditions (3.11), (3.12) and (3.59) are assumed true. Then we have

Theorem 3.4.2.

(i) For MARO-flex, the dzjjusion scaled total queue length process, Q~;) (t),

converges weakly to a one-dimensional reflected Brownian motion Q sh. To

be precise, Q~;)(t) ~ Qsh = RBM(b1, Al + LjEJf-l;f3J), as n -+ 00.

66

PhD Thesis ~ Y-T. He ~ McMaster ~ Computing and Software

(ii) For MARO-tree, Q~~)(t) ~ Qsh'

(iii) For M/G/Jh, Q~~~(t) ~ Qsh'

Proof.

(i) From (3.20), we have

yen) (t) _ V*QA (n) (t)
f - 1 sf '

where the arrival workload contribution v~ equals 1/ jj in this heterogeneous

case. Using Theorem 3.3.2, we have

which yields the result.

(ii) Using Theorem 3.3.3 and reasoning similar to that in part (i), we have

the result.

(iii) A direct application of Theorem 2.2.5 gives the result.

o

3.5 Summary

In this chapter, we have proposed a series of MinDrift affinity routing policies,

namely MARO, MARO-2/k, MARO-flex and MARO-tree. As resource

management strategies, these policies use the solution to a resource allocation

LP which aims to maximize the system capacity. As dynamic routing policies,

they also use state information to shift workload between servers, trying to

minimize the expected increment of the holding cost due to delay in the system.

Compared with MinDrift(Q), which requires global state information for every

routing decision, the proposed policies significantly reduce the amount of the

required state information in making decisions, which benefits from using the

solution to the LP. We have shown that the larger the system, the greater the

67

PhD Thesis - Y-T. He - McMaster - Computing and Software

reduction. It is also noted that the MARO-related policies are robust in the

sense that multiplying the mean arrival rates of all task types by the same

factor does not change the routing probabilities derived from the LP.

To accommodate different levels of flexibility, three variants of the

MARO policy, MARO-2/k, MARO-flex and MARO-tree, are introduced.

They reduce further the required state information, either by choosing a

smaller number of candidate queues or by allowing fewer flexible arrivals, or

both. Using diffusion limits, we have shown that MARO-flex and MARO-tree

have the same heavy traffic optimality properties as does MinDrift(Q) and the

optimality is achieved independent of the levels of flexibility. For the spe­

cial cases of systems with a single task type, MARO-flex and MARO-tree

approach the lower bound of achievable performance by a multi-server single

queue.

As a result, we will demonstrate in Chapter 5 that (1) for systems in

heavy traffic, a small amount of flexibility can yield significant improvement in

system performance; (2) when the system is not operating under heavy traffic,

MARO and MARO-2/k achieve better performance than does MinDrift(Q),

by making use of an "appropriately" limited amount of state information.

After having compared the resource allocation policies which use full

or partial state information, it is natural to ask what can be done without any

state information. We will study this logical extreme case in Chapter 4. The

results obtained can be useful to compare the performance of the policies that

utilize different amounts of state information.

68

Chapter 4

Resource Allocation with No

State Information

In Chapter 3, we proposed several dynamic routing policies, which aim to

minimize the delay in an output-queued system by using a limited amount of

state information. In this chapter, we will propose resource allocation policies

for systems where no state information is available. The systems under study

are equipped with homogeneous servers to process multiple types of tasks,

while a task's processing time is unknown until its completion. The task

inter-arrival times are known to follow exponential distributions, while the

task processing times follow general continuous or discrete distributions. The

proposed resource allocation policies consist of two parts: one is the routing

policy and the other is the pooling strategy which combines several parallel

queues into a multi-server single queue, in order to further reduce the delay in

the system.

Section 4.1 presents the routing policy which minimizes the delay in

a parallel-queue system under heavy traffic, by taking into account the sec­

ond moments of the task processing times. Section 4.2 compares the pooling

strategies that are coupled with the given routing policy. Finally, Section 4.3

discusses extensions of the results to heterogeneous server systems with general

arrival processes.

69

PhD Thesis - Y-T. He - McMaster - Computing and Software

4.1 Routing Policy

4.1.1 The Heavy Traffic Model

Consider an output-queued system as defined in Section 3.1, which has J

identical servers in parallel to process I types of tasks. Type i tasks arrive

according to a Poisson process with rate Ai > O. The processing times of type

i tasks at each server are i.i.d. and form the sequence {Vi,m : m 2': 1}. Both

/-Li = 1/ E[vz,11 and f3l = Var[vi,11 are assumed finite. The local scheduling

rule at each server is FCFS. A type i task is routed to one of the queues j

immediately upon arrival, with probability Pz,j' Define the routing probability

matrix P = (Pz,J)IXJ. We have

J

LPi,) = 1, Vi E T.
j=l

At the j-th queue, we have a Poisson arrival stream with rate

I

AeJ = L AiPz,) ,
z=l

while the service time distribution of server j has mean

and variance

(4.1)

(4.2)

(4.3)

I

(32 = '" Azpz.) (/-L-2 + 132) - /-L-2. (4.4)
~ ~ A z z ~

i=l eJ

Let Pi = Az/ /-Li and 'l/J7,) be the average rate at which the j-th server's

time is allocated to process type i tasks. Then we have

(4.5)

As has been analyzed in Section 3.4.2, Assumption 3.3.1 holds for this homo­

geneous server system. So all servers are equally utilized, i.e.,

I

L 'l/JZ~J = p* ~ 1, Vj E J, (4.6)
z=l

70

PhD Thesis - Y-T. He - McMaster - Computing and Software

where p* = L.~=lpdJ. Combining (4.5) and (4.6)1 we have
I

LPiP1,J = P*l Vj E J.
1=1

(4.7)

Define the vector A = (A1hxl1 the matrices J.L and (3 which consist of

J identical column vectors j1 = (J.Lihxl and jJ = UJf)Ixl1 respectively. Given

(4.6)1 we make the following assumption.

Assumption 4.1.1. The first-order primitives (A1 J.L) are such that p* = 1.

Given (4.2) 1 (4.3) and (4.7) 1 Assumption 4.1.1 implies Ae} = J.Le} 1 i.e· l

each server j is under heavy traffic using the routing matrix P.

To define the heavy traffic regime1 now consider a sequence of the sys­

tems defined above 1 indexed by n. For type i tasks in the n-th system1 the

Poisson arrival rate is At); the service time distribution has mean J.Li l and

variance (3;. We assume that the following conditions hold

lim Ain) = Ail (4.8)
n->oo

and

(4.9)

for some E > 01 where {v1 ,m : m ~ I} is a sequence of i.i.d. random variables

formed by the processing times for task type i at each identical server. In

addition1 the heavy traffic condition

lim vn(Ain) - Ai) = b
n->oo

(4.10)

is assumed to be true for all i E I for some finite constant b. We define a

constant Cj for each j E J such that
I

'"'po .b L...J 1,J
i=l

(4.11)

From (4.2)-(4.4) and (4.8)-(4.9)1 we have for queue j the following

heavy traffic conditions

lim A(n) - AeJ 1 (4.12)
n->oo eJ

lim J.L(n)
n->oo eJ

J.Le J 1 (4.13)

() (n) (3;] 1 (4.14) lim (3; -
n----+oo]

71

PhD Thesis - Y-T. He - McMaster - Computing and Software

and

(4.15)

for some f > 0, where {ve),rn : m 2:: I} is a sequence of i.i.d. random variables

formed by the effective processing times at server j. In addition, from (4.10),

(4.11) and Assumption 4.1.1, we have

lim vn()..~nl - Me) = e).
n-too) J

(4.16)

Let the queue length process for queue j be given by Q;nl(t). We form

the diffusion scaled queue length process as

(4.17)

From (4.12)-(4.16) and Theorem 2.2.4, we have the following result:

Theorem 4.1.1. Q;nl (t) ~ Q) = REM (e), a}), as n --+ 00, where

(4.18)

From Theorem 2.1.7, the mean of the stationary distribution of RBM

Q) is 1jJ) = o-;/(2IeJI). Since the queue length processes Q;nl(t) are mutually

independent, we define the weighted total mean

(4.19)

The parameter

(4.20)

includes the second moment of the random variable Vi, from which the process­

ing times of type i tasks are generated.

Our goal is, given the primitives ().., M, f3) and Assumption 4.1.1, to

find an optimal routing matrix P* which yields the minimal rp, subject to

72

PhD Thesis - Y-T. He - McMaster - Computing and Software

conditions (4.7) and (4.1). It can be formulated as a nonlinear programming

(NLP) problem

_ t (Lid AJ'i,j), (Lid B,p,,))
(4.21) mm cp(F) = I

P j=l Lt=l Pl,j
I

s.t. L PiPt,j = 1, Vj E J (4.22)
t=l

J

LPt,J = 1, Vi E T (4.23)
J=l

o ~ Pi,j ~ 1, Vi E T, V)· E J.

Before proceeding to solve this NLP, we compare it with the static

allocation LP (3.2) given in Section 3.3.1. Since Assumptions 3.3.1 and 4.1.1

hold for homogeneous systems, constraints (4.22) and (4.23) are equivalent

to the constraints of LP (3.2), with inequalities (3.3) and (3.4) changed to

equalities. Therefore, given the same set of constraints, the routing matrix

derived from the solution \}f* to LP (3.2) maximizes the system capacity (or

throughput), while the solution to NLP (4.21) minimizes the total queue length

of the system (or equivalently the delay in the system) in heavy traffic. In some

special cases, these two routing matrices are the same 1, but in general, they

are different. The difference between the two static routing policies shows

that maximizing the throughput does not necessarily result in minimizing the

delay in the system. That is why the variance of processing times is taken into

account, in order to achieve the latter objective.

1 For example, given that the processing times are exponentially distributed, 1= J = 2,
Pl = 0.5 and /11//12 = 2, the solution to NLP (4.21) is

p* _ [0.5 0.5]
- 0.5 0.5 .

It is the same as the static routing policy derived from the solution to LP (3.2).

73

PhD Thesis ~ Y-T. He ~ McMaster ~ Computing and Software

4.1.2 The Resource Allocation NLP

Define

• decision variables x = vec(P) and augmented variables y = [Y1, ... , Y3J JT;

• parameters P = [PI, ... , PI] and B = [B1' ... , BI], where P2 =)..d JL2 2: 0 and

as defined in (4.20) B2 2: O. (By convention, 1/ JL1 = 0 if 1£2 = 0.)

NLP (4.21) is reformulated as

mm
(x,y)

s.t.

J

cp(y) = L (yJ) (Yj+J) (Yj;2J)

j=l

I

YJ - L)..2X(j~1)l+i = 0, Vj E .1
2=1

I

YJ+J - L B2X(j~1)l+2 = 0, Vj E .1
2=1

I

YJ+2J - L X(J~l)l+i = 0, Vj E .1
2=1

I

L P2X(J~1)l+1 = 1, Vj E .1
2=1

J

L X(J~1)l+2 = 1, Vi E I
j=l

0::; Xn ::; I, Vn E {I, ... , IJ}
I

o ::; Yj+J ::; L Bi ,

2=1 2=1

o ::; Yj+2J ::; I, Vj E .1.

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Constraints (4.25)-(4.27) are merely substitutions of variables. Constraints

(4.28) and (4.29) are equivalent to constraints (4.22) and (4.23), respectively.

All the variables are bounded by (4.30) and (4.31). Consequently, NLP (4.24)

consists of linear equality constraints and a non-convex objective function.

74

PhD Thesis ~ Y-T. He ~ McMaster ~ Computing and Software

Note that the objective function is a posynomial 2 and the constraint

functions can also be transformed to posynomials. This suggests that NLP

(4.24) might be transformed into a geometric programming (GP) problem,

which in turn can be solved using convex optimization techniques [9]. How­

ever, our attempt to solve NLP (4.24) with the GP solver in the MOSEK

optimization toolbox [53] was not successful (see Appendix A).

Based on the benchmarking results provided by Dolan et al. in [20]

and Morales et al. in [52], we choose a general purpose NLP solver, KNITRO

[18], to solve the resource allocation problem (4.24). Unlike some other NLP

solvers, e.g., MINOS [54] or SNOPT [27], which are designed to find a locally

optimal solution which is close to the starting point of a feasible solution x,

KNITRO features a multi-start procedure [37] so that the solution returned is

the local optimum with the best objective function value. This improves the

probability of finding the global optimum for NLP.

Here we give an example of computing the optimal static routing policy

for a homogeneous system in heavy traffic. This example is abstracted from

the Grid application in Section 5.2.1.

Example 4.1.1. Let I = 5 and J = 6. The first-order pnmitwes are

,\ = [39.84 13.47 15.15 0.94 2.06]

and
j1 = [16.7 30.4 18.9 3.0 1.0] T ,

so that Assumption 4.1.1 holds.

Assume that the processing time distributions are exponential, i. e., the

parameter Bt defined in (4.20) is equal to 2,\d jJ; for task type i. From the

analysis in Section 3.4.2, we know that a natural starting point is the routing

matrix pO wzth all of the elements bemg 1/ J. Using KNITRO, the global

2Let x = [Xl, ... , xn] be a vector with components x,, i = 1, ... , n. A function of the form

K n

f(x) = L Ck II X~"k,
k=l ,=1

where Ck > 0 and a"k E lR, is called a posynomial (function). If K = 1, f(x) is a monomial.

75

PhD Thesis - Y-T. He - McMaster - Computing and Software

optimal solution to NLP (4.24) is obtained to be

0.20 0.24 0.29 0.27

0.30 0.70

p*= 0.64 0.36 (4.32)
1.00

0.49 0.49 0.02

which yields the objective function value

0:xp = 178.6. (4.33)

Several observations can be made from this example.

Firstly, if the processing time distributions are changed such that the

squared coefficient of variation C; is altered by a factor of k for all task types,

the optimal static routing policy solution is the same as that given in (4.32),

while the objective function value cp* is differentiated by a factor of (k +
1)/2 from that of the exponential processing time case. This can be seen by

rewriting the parameter 8i in (4.19) as

82 = A2(1 + C;,J/ fJ;·
For example, let the processing time distributions be Erlang-k for all task

types, then we have C;,i = l/k for all i E I. Suppose that the optimal solution

P* yields 0:xp for exponential processing times. Then the same matrix P* is

also the optimal solution for the Erlang-k processing times and the objective

function value is
* (1+I/k)*

CPEk = 2 CPexp'

Secondly, the routing matrix pO derived from LP (3.2) is used as the

starting point to solve NLP (4.24), however, the resulting optimal routing ma­

trix P* is quite different. This implies that maximizing the system throughput

does not necessarily lead to minimizing the delay in the system. What is the

same between pO and P* is that column permutations of each routing prob­

ability matrix keep the corresponding objective function value optimal, since

the servers are identical.

Thirdly, since NLP (4.21) and LP (3.2) have the same set of linear con­

straints, we have the following proposition to quantify the number of positive

elements Np in a solution P.

76

PhD Thesis - Y-T. He - McMaster - Computing and Software

Proposition 4.1.1. There exists a feasible solution P, whose associated Np

satisfies max(I, J) :::; Np :::; I + J.

Proof. The proof is similar to that of Proposition 3.3.1. The first inequality

follows from the fact that otherwise there exists either at least one task type

that is not processed by any servers or at least one idle server. If there were

an idle server, the objective function value 0*, which corresponds to the total

scaled mean queue length of the system in heavy traffic, could not have been

a nUl1lmum.

The second inequality results from the generation of the basic feasible

solution of NLP (4.21). Since the NLP has only I +J linear equality constraints

and always has a non-zero feasible solution which contains I J variables, then

a basic feasible solution (BFS) exists. The BFS contains I + J basic variables

which correspond to the linearly independent constraints and I J - (I + J)

nonbasic variables which are zero. Then the matrix P has at least I J - (I + J)

elements equal to zero. Equivalently, the number of positive elements is at

most 1+ J. D

Proposition 4.1.1 implies that the matrix P contains many zero ele­

ments (especially when the matrix size is large). Although the feasible solution

which contains the maximum number of zeros might not be the optimum, it is

found that in many cases, the number of zeros in the optimal solution is close

to the maximum. For example, the number of positive elements in the optimal

solution P* in (4.32) is 12, close to I + J = 10. This implies that using the

optimal static routing policy, most servers need only be capable of processing

a small subset of the task types. This is desirable when it is expensive to

maintain highly flexible servers.

Finally, if more than one column of P* are the same, e.g., columns 1

and 3 in (4.32), the corresponding servers can be pooled into one queue to

further reduce the total mean queue length of the system. To be specific,

given P* = (P;)IXJ, suppose there exists a subset of queues Jk satisfying the

following condition:

Condition 4.1.1. For any two queues j, j I E Jk ~ :J, P:,j = P:,J I is true for

all i E Y.

77

PhD Thesis - Y-T. He - McMaster - Computing and Software

We can construct a single queue jk by pooling these IJkl parallel queues

together, with IJkl arrival streams, each being a Poisson process with rate Ae)

as defined in (4.2). Consider a sequence of such IJkl-server single queues

indexed by n. For the n-th system, let the queue length process of queue jk

be Q;:)(t). Its diffusion scaled version Q;:)(t) is formed in the same fashion

as (4.17). The following theorem says that the scaled queue length process for

the pooled queue converges to the same reflected Brownian motion as that for

anyone of the queues to be pooled, except that the RBM drift and variance

are increased by a factor of I Jk I·

Theorem 4.1.2. If for any queue j E Jk, Q;n) (t) ~ RBM (ej, a}), as

n -+ 00, then for the multi-server queuejk' Q;:)(t) ~ RBM(IJk!cj, IJkl a;) ,

as n -+ 00.

Proof. The proof follows directly from Theorems 2.2.5 and 4.1.1. D

Let the mean of the stationary distribution of the corresponding RBM

be 'Pj and 'Pjk' respectively. We have 'PJk = 2..:JE .:h 'Pj/IJkl. This implies that

by pooling the IJkl parallel queues, the performance of the subsystem can be

improved by a factor of IJkl in heavy traffic. For example, using the matrix

P* in (4.32), we can pool servers 1 and 3 together in a single queue. The

objective function value is reduced to 174.4.

In Appendix B, we propose a heuristic to obtain a suboptimal routing

matrix (denoted as PH) that satisfies the constraints (4.28) and (4.29) in

NLP (4.21). When the system size I x J is large, the matrix pH has more

columns that satisfy Condition 4.1.1 than the optimal solution P* to NLP

(4.21). Therefore, if an NLP solver is not available, pH is useful to try to

increase the degree of pooling.

4.2 Pooling Strategies

There are three kinds of pooling: no pooling, full pooling and partial pooling.

The J parallel queue system discussed in Section 4.1.1 involves no pooling,

where only the static routing policy is used. Full pooling is to pool all the

78

PhD Thesis - Y-T. He - McMaster - Computing and Software

queues together into one queue, so that a J-server single queue is formed and

no routing is needed. Given the optimal routing policy derived from NLP

(4.21), partial pooling is to pool each subset of the J queues, which satisfies

Condition 4.1.1, into a multi-server single queue, in order to minimize the total

mean queue length of the system. Given the primitives (A, f.1, (3), a pooling

strategy is to decide which kind of pooling should be applied, so that the total

mean queue length of the system is minimized in heavy traffic.

4.2.1 Full Pooling

Using the system described in Section 4.1.1, a multi-server-single-queue sys­

tem is constructed by pooling the parallel queues into one queue. The local

scheduling rule at the J identical servers is FCFS. The arrivals of the I types

of tasks follow a Poisson process with rate
I

~ = LAt.
i=l

The service time distributions of the J servers are identical with mean

and variance

-1
f.1e =

I

'""' Ai -1 ~ ---;;;-f.1.
i=l A t

I A.
f32 '""' t (-2 (32) -2

e = ~ ~ f.1i + i - f.1e .

i=l

For the first-order primitives (A, f.1), Assumption 4.1.1 implies

I

L Ai = J.
1=1 f.1i

(4.34)

(4.35)

(4.36)

So we have A = J f.1e, i.e., this multi-server single queue is under heavy traffic.

In the heavy traffic regime, we assume that (4.8)-(4.10) hold. Then

from (4.34)-(4.36), we have

lim ~(n) A, (4.37)
n->oo

lim f.1~n) f.1e, (4.38)
n->oo

lim (f3;) (n) f3;, (4.39)
n->oo

79

PhD Thesis - Y-T. He - McMaster - Computing and Software

and

(4.40)

for some E > 0, where {ve,m : m ~ I} is a sequence of i.i.d. random variables

formed by the effective processing times at each server. In addition, we have

lim Vn(~(n) - J/Je) = cf, (4.41)
n--+oo

where cf = bI is a constant.

Let Qjn)(t) be the diffusion scaled queue length process. From (4.37)­

(4.41) and Theorem 2.2.5, we have the following result:

Theorem 4.2.1. Qjn)(t) ~ Qf = RBM(cf' a}), as n --+ 00, where

(4.42)

From Theorem 2.1.7, the mean of the stationary distribution of the

RBM Qf is CPf = a}I(2Icfl)· We define the weighted mean

(4.43)

where ei = AiE[vll is the same as (4.20).

To compare full pooling with no pooling, we denote the weighted total

mean defined in (4.19) as <Pn (which stands for no pooling). Comparing (4.43)

with (4.19), it can be seen that if the optimal routing matrix p~ for no pooling

has all the elements being II J, Theorem 4.2.1 is a special case of Theorem

4.1.2 with Jk = J. Then we have <p~ = J<Pf, i.e., full pooling is better than

no pooling.

However, there are cases where the performance of no pooling is su­

perior than that of full pooling, when p~ has other structures. Table 4.1

shows two such cases, where Assumption 4.1.1 holds for the first-order prim­

itives ()..,/J), i.e., L~=lP1 = J = 3. Since <p~ < rpf, the no pooling structure

outperforms the full pooling structure in heavy traffic.

80

PhD Thesis - Y-T. He - McMaster - Computing and Software

Table 4.1: Cases of no pooling superior than full pooling, I = J = 3, expo­
nential processing times

I Cases I zip, I JL, ,

1 1 1.10 20.00 22.00 0.07 0.91 0.02

2 0.10 2.00 0.20 1.00

3 1.80 0.20 0.36 0.46 0.54 71.2 343.3

2 1 1.80 20.00 36.00 0.44 0.56

2 0.10 2.00 0.20 1.00

3 1.10 0.20 0.22 0.09 0.91 274.6 554.2

Table 4.2: Cases of full pooling superior than no pooling, I = J = 3, expo­
nential processing times

I Cases I i I p, I JL, cp~ II <Pf

1 1 0.10 20.00 2.00 1.00

2 1.80 2.00 3.60 0.50 0.50

3 1.10 0.20 0.22 0.91 0.09 19.8 16.1

2 1 1.80 20.00 36.00 0.56 0.44

2 1.10 2.00 2.20 0.18 0.82

3 0.10 0.20 0.02 1.00 195.7 123.4

81

PhD Thesis - Y-T. He - McMaster - Computing and Software

4.2.2 Partial Pooling

Using the same matrix M and the task type loads Pi in Table 4.1, but with

different combinations (which result in different vectors A), Table 4.2 shows

two cases where the no pooling structure is outperformed by the full pooling

structure (cp~ > cP f)· N ow the question is given the optimal routing matrix

P~ which yields the no pooling structure outperformed by the full pooling

structure, is there a partial pooling structure that outperforms the full pooling

structure?

The answer is depending on the primitives (>., /1, (3), pooling each sub­

set of the J queues that satisfies Condition 4.1.1, into a multi-server single

queue, can yield a partial pooling structure that outperforms the full pooling

structure.

Define the set K = {1, ... , K}. Suppose that there exists a partition of

.1 where .1 = .10 u (U~=l .1k) and .1k n .1k' = 0, Vk, k' E K U {O}. Each server

in the subset .10 maintains its own queue, while parallel queues within each

subset .1k (k -=1= 0) satisfy Condition 4.1.1 and are pooled into a multi-server

queue jk' Therefore, the probability with which type i tasks are routed to

queue jk is P~,jk = l.1klp~,k' where P~,k = p7,J' for any j E .1k'

From Theorem 4.1.2, the mean of the stationary distribution of the

RBM QJk is equal to that of the RBM Qj, for any queue j E .1k' Since the

RBMs QJk (k E K) are mutually independent, we define the weighted total

mean

CPp 21bl (L CPJ + L CPjk)
JE:Jo kEK

L (2:~E:I A~P:'J) 2 (2:~EI eiP:,J) +
JE:Jo 2:~EI P:,J

L (2:iEI AiPi,k) 2 (2:iEI e~Pi,k)
kEK 2:~EI P~,k .

(4.44)

If .1k = 0 for all k -=1= 0, we have .10 = .1 and CPP = cp~. Otherwise, Theorem

4.1.2 implies CPP < cP~, which means the total mean queue length of the system

can be reduced further in heavy traffic with partial pooling.

82

PhD Thesis - Y-T. He - McMaster - Computing and Software

Table 4.3 shows an example, where the routing matrix P/! for no pool­

ing yields performance worse than that of full pooling (lp;; > lp f) . However,

given P:!, by pooling two subsets of the queues: queues 1 and 2, queues 5 and

6, respectively, partial pooling is better than full pooling (lp f > lpp).

Table 4.3: A case of partial pooling superior than full pooling, I = J = 6,
exponential processing times

I i I p, I /-1-, ,
-R

'Pn 'PI

1 0.40 2.01 0.80 0.33 0.33 0.33

2 0.88 2.05 1.80 0.50 0.50

3 2.90 2.02 5.86 0.34 0.34 0.10 0.11 0.11

4 0.60 2.00 1.20 1.00

5 0.22 1.95 0.43 0.50 0.50

6 1.00 78.00 78.00 1.00 187.6 178.9 170.3

Therefore, given the primitives (..\, /1, fJ), to choose a pooling strategy

which minimizes the total mean queue length in heavy traffic, we have the

following procedure:

1. Solve NLP (4.21) and obtain the optimal objective function value lp~

and the routing matrix P;.

2. Given P;, pool each subset Jp of the J queues that satisfies Condition

4.1.1, into a multi-server single queue and calculate the weighted total

mean for partial pooling lpp in (4.44). If none of the subsets satisfies

Condition 4.1.1, we have lpp = lp~, otherwise we have lpp < lp~.

3. Calculate the weighted mean for full pooling lp fusing (4.43).

4. If rpp > lp f' the full pooling structure should be applied. Otherwise,

the partial pooling structure should be applied. In the latter case, if

lpp = lp~, no pooling is needed.

83

PhD Thesis ~ Y-T. He ~ McMaster ~ Computing and Software

When choosing between full pooling and partial pooling, there is again

a tradeoff between the system performance and the cost of maintaining highly

flexible servers. Full pooling requires each server capable of processing all

types of tasks, while partial pooling requires less flexibility.

Finally, we present in Figure 4.1 an algorithm to find t.he partition of the

J parallel queues according to an equivalence condition which is exactly as or

"close to" Condition 4.1.1, given the optimal solution P* of NLP (4.21). In the

worst case, the procedure partition(P) makes O(J2) comparisons between

the J columns of the matrix P. In the procedure Check_Arrays(p, q), if E

is not larger than the machine precision, then queues p and q exactly satisfy

Condition 4.1.1. To increase the degree of pooling and obtain a potential

smaller total mean tpp, we may want to relax Condition 4.1.1 by choosing a

larger E (e.g., 1O~2). Then the partition becomes less fine, i.e., the number of

subsets decreases. Consequently, more servers are required to be capable of

processing more types of tasks.

4.3 Extensions

In this section, we discuss the possible extensions of the results obtained for

homogeneous server systems to heterogeneous systems. Section 4.3.1 shows

that for heterogeneous systems with Poisson arrival processes, where the sys­

tem load does not approach one and the Pollaczek-Kintchine formula can be

applied, the NLP used to obtain the optimal routing matrix is no more com­

plicat.ed than t.hat. in the heavy traffic case. In Section 4.3.2, the results are

extended t.o heterogeneous systems with generic arrival processes in the heavy

traffic regime.

4.3.1 Moderate Traffic

Consider J heterogeneous servers in parallel t.o process I types of tasks. The

arrivals of task type i follow a Poisson process with rate .Ai > O. The processing

times of type i tasks at server j are i.i.d. and form the sequence {Vi,j,m : m ~ I}.

Both /-Li,] = 1/ E[Vi,],l] and f3i~] = Var[v2,],1] are assumed finite. The local

84

PhD Thesis - Y-T. He - McMaster - Computing and Software

1 proc partition(P)

2

3

{ y, z: column (or queue) indices of the matrix P with size I x J;

k: index of the subset S[k] ~ {l, ... , J};

4 j: queue index of the first element in the set S[k];

5 part[J]: array of length J, element partly] = 1 if queue y is in some set S[kJ;

6

7 k = 0; j = 1; part[l, ... , J] = 0; / / initialization

8 while (Sum(part) < J)

9 {k = k + 1; S[k] = {j}; z = j + 1;

10 while (z ::; J)

11 {if (part[z] == 0)

12 { Equal = 0;

13 Equal = Check..Arrays (P[:, j], P[:, zj);

14 if (Equal == 1) II (P[i,j]- P[i,z]) < c, 'Vi E {1, ... ,I}.

15 { S[k] = S[k] U {z};

16 part[z] = 1;

17 }

18 }

19 z=z+l;

}

y = j + 1;

20

21

22

23

while (y ::; J AND partly] == 1) y = y + 1;

j = y; / / find the first element of the new set S[k];

24 }

25 return(S[I]' ... , S[k]);

26 }

27 / / proc Sum(p) returns the sum of array p's elements.

28 I I proc Check..Arrays(p, q) returns 1 if (p[i] - q[i]) < c, 'Vi ::; length(p); 0, otherwise.

Figure 4.1: Procedure for partitioning the routing matrix P

85

PhD Thesis - Y-T. He - McMaster - Computing and Software

scheduling rule at each server is FCFS. A type i task is routed to queue j

immediately upon arrival, with probability Pl,). So we have

J

2:= Pt,) = 1, 'Vi E I.
j=l

At the j-th queue, we have a Poisson arrival stream with rate

1

AeJ = 2:= AtPi,) ,
1=1

while the effective service time distribution of server j has mean

and variance
1 A

(32 ~ tPI,) (-2 (-12) -2
e] = ~ -A- /-ti,) + fJt,) - /-te] .

t=l e)

(4.45)

Let Pt,j = At/ /-tt,) and Pel = Ae] / /-te]· We have the effective offered load for

server j to be
1

Pel = 2:= Pi,)Pi,)·
i=l

(4.46)

In general, we have Pe #- Pe I for any two queues j #- j I in moderate traffic.
))

This is different from the heavy traffic case (cf. (4.7)).

Since 0 < Pel < 1, for all j E 3, by applying the Pollaczek-Kintchine

formula, we have the mean queue length of queue j to be

2 + A2 (32 Pel e] e]
Pel + 2(1 _) Pel

~ (2:=:=1 A,Pi,j) (2:=:=1 Bt,)pt,j)
~ Pi,jPt,) + 2(1 ,\,1)'
t=l - L...tt=l Pi,jPi,j

(4.47)

where Bt,j = Al(/-t~} + (31~)) = AiE[V;,)l·
- J

Let Q = 2:=)=1 Q) denote the total mean queue length of the system.

To find an optimal routing matrix P* which yields the minimal Q, subject to

condition (4.45), we can formulate an NLP as follows. Define

86

PhD Thesis - Y-T. He - McMaster - Computing and Software

• decision variables x = vec(P) and augmented variables y = [Y1, ... , Y3Jf;

• parameters A = (AlhxI' P = (Pl,J)IXJ and () = ((}l,J)JXJ, where Al > 0,

for all 1 ::::; i ::::; I and Pi,J 2: 0 and (}i,j 2: 0, for all 1 ::::; i ::::; I, 1 ::::; j ::::; J.

(By convention, Pi,J = 0 and (}i,J = 0 if f-Li,j = 0.)

The NLP is

mm
(x,y)

_ 1 J J

Q(y) = 2 L (YJ) (YJ+J) (Y;;2J) + L(1- YJ+2J)
j=l j=l

I

s.t. YJ - L Ai X(j-1)J+l = 0, Vj E :r
i=l

I

Yj+J - L (}l,jX(J-1)J+i = 0, Vj E :r
i=l

I

YJ+2J + L Pi,J X(j-1)J+i = 1, Vj E :r
i=l

J

L X(j-l)J+l = 1, Vi E I
J=l

o ::::; Xn ::::; 1, Vn E {I, ... ,1 J}
I

o ::::; YJ+J ::::; L (}l,J'
i=l

max (1- t,Pi." 0) S YJ+2J S 1, Vj E:r.

(4.48)

Comparing NLP (4.48) with NLP (4.24), NLP (4.48) has J fewer linear

equality constraints and its objective function remains non-convex, with the

highest order power being one degree lower.

Although the results of random routing can be extended to systems

under moderate traffic, it is not easy to obtain the corresponding pooling

strategies. To estimate the mean queue length of multi-server queues which

have generic processing time distributions, approximation techniques with take

into account the traffic load factor are more complicated than heavy traffic

analysis (for example, using Allen-Cunneen approximation requires computing

the Erlang-C formula).

87

PhD Thesis - Y-T. He - McMaster - Computing and Software

Next, we give an example of computing the optimal random routing pol­

icy for heterogeneous systems in moderate traffic. The example is abstracted

from the Grid application in Section 5.2.1.

Example 4.3.1. Let I = 5 and J = 6. The first-order primitives are

Al\h = [48.75 16.48 18.54 1.14 2.52]

and
16.7 24.8 24.2 29.0 25.6 48.3

30.4 48.3 77.7 83.6 135.9 144.9

/-l= 18.9 24.2 48.3 45.8 72.5 72.5

3.0 3.0 7.6 7.6 8.3 8.7

1.0 1.1 3.0 2.9 3.0 3.0

so that the solution to LP (3.2) is p* = 0.5. Let the starting point be

0.17 0.25 0.08 0.50

1.00
po= 1.00

0.11 0.89

0.60 0.40

which is derived from the solution to LP (3.2) using (4.56). Assume that the

processing times are exponentially distributed. Then the global optimal solution

to NLP (4.48) is obtained to be

0.13 0.25

1.00

0.62 0.38

1.00

1.00

0.62

The effective offered loads for the servers are given by the vector

P:,Ml = (P:)lXJ = [0.37 0.48 0.52 0.48 0.38 0.63].

(4.49)

To see the impact of system load, we increase the mean arrival rates

to be Al\12 = 1.9 X Al\h and keep the processing times unchanged, so that the

solution to LP (3,2) is p* = 0,95. Then using the same starting point po, the

88

PhD Thesis - Y-T. He - McMaster - Computing and Software

global optimal solution to NLP (4.48) is obtained to be

0.17 0.25

1.00

0.60 0.40

0.06 0.52

1.00

1.00

The effective offered loads are given by the vector

P;,M2 = [0.95 0.96 0.96 0.95 0.95 0.96] .

(4.50)

It is known from (4.47) that the optimal solutions (4.49) and (4.50)

do not change if the processing time distributions are changed such that the

squared coefficient of variation is increased by a factor of k > 1, for all task

types at each server. Similar to the observation made for the heavy traffic case,

the optimal random routing policy which minimizes the delay in the system by

using the first and second moments of the processing times is different from the

static routing policy which maximizes the system throughput without using

the second moments of the processing times. When the system load approaches

one, the effective offered loads of the heterogeneous servers become closer to

each other and the optimal routing matrix also changes correspondingly.

4.3.2 General Arrivals

Consider an output-queued system with processing time distributions and lo­

cal scheduling rule as described in Section 4.3.1, but with different arrival

processes. The inter-arrival times of type i tasks are i.i.d. and form the se­

quence {Ui,m : m 2:: I}. Both'\~ = 1/ E[U~,l] and a7 = Var[ui,l] are assumed

finite. A type i task is routed to queue j immediately upon arrival, with

probability Pi,j'

Let the random variable Ui,j = 2::~r Ui,k be the generic inter-arrival

times of type i tasks at server j, where the random variable Ni ,] is geometrically

distributed with parameter P~,J' We have

E[Ui,J] = '\~J = ('\iPi,jr
1

, (4.51)

a; 1 1 - Pi,J
= - + ,\2 . 2

p~,J ~ Pi,]
(4.52)

89

PhD Thesis - Y-T. He - McMaster - Computing and Software

Let Ae) = ~~=1 AtPi,). The effective service times at server j have mean

(4.53)

and variance
I A'

(32 ~ Z,) (- 2 + (32) - 2
e) = 6 ~ fLi,) t,) - fLe) .

i=l eJ

(4.54)

Define the vector A = (\)lXI and the matrices fL

((3i,))IXJ' Assume that Assumption 3.3.1 holds for the first-order primitives

(A, fL), i.e.,

Vi E I,
(4.55)

Vj E J,

where 'I/J;,j is the average rate at which the j-th server's time is allocated to

process type i tasks and p* is the long-run utilization of each server j, which

approaches one in this case.

Since the processing capacity for each task type equals its arrival rate,

we have

(4.56)

Let Pt,) = At/fLt,J" Combining (4.55) and (4.56), we have

I

L Pz,jPi,j = 1, Vj E J. (4.57)
i=l

This implies that using the routing matrix P, each single-server queue j with

I arrival streams is under heavy traffic, i.e., Ae = fLe .
J)

Now consider a sequence of systems as defined above, indexed by n. For

type i tasks in the n-th system, the inter-arrival time distribution has mean

(\-l)(n) and variance (ai)(n); the service time distribution has mean fL;J and
. i:t2 vanance fJ',j'

hold

For each task type i, we assume that the following conditions

1· dn) \
1m /\t = /\"

n~oo

. (2) (n) 2 Inn at = ai'
n-->oo

(4.58)

90

PhD Thesis - Y-T. He - McMaster - Computing and Software

and

n~~~I E [(u~rrn)l < 00,

E [v;,:;:n == di,j < 00,

for some E > 0 and finite constant d1 ,], j E J.

(4.59)

(4.60)

From (4.51)-(4.54) and (4.58)-(4.60), we have the following heavy traf­

fic conditions for queue j

1· (2) (n) 2 1m Lri] = Lri]"
n---700' ,

(4.61) 1· dn) - \ 1m A 1] - Ai,],
n---+oo '

. (2) (n) 2 hm f3e = f3e ,
n-->oo] J

(4.62)

and

(4.63)

\/j E J, (4.64)

where {Ve],m : m ~ I} is a sequence of i.i.d. random variables formed by the

effective processing times at each server j. In addition, from (4.10), (4.11) and

(4.57), we have

(4.65)

Let Q;nl(t) be the diffusion scaled queue length process for queue j.

From (4.61)-(4.65) and Theorem 2.2.5, we have the following result.

Theorem 4.3.1. Q;n\t) ~ Q] = RBM (c], a;), as n ----t 00, where

i=l

91

PhD Thesis - Y-T. He - McMaster - Computing and Software

Let C~,2 =),;00; and C;,2,J = /1;,jf3l,J denote the squared coefficients of

variation of the inter-arrival times and the processing times, respectively. Even

though the queue length process Q;n) (t) are not mutually independent due to

the geometric arrival splitting, we can still obtain the weighted total mean as

__ ~ L;=l 62P;,J ~ (L;=l),lPi,j) 2 (L;=l 82,JPi,j)
cp - ~ I + ~ I ,(4.66)

J=l L l=l Pi,J j=l Ll=l Pl,J

where

If that we were looking at anything other than the mean, we would have to

take the correlation between the arrival streams into account. If the arrivals

follow Poisson processes and the servers are identical, (4.66) is the same as

(4.19).

Define

• decision variables x = vec(P) and augmented variables y = [Y1, ... , Y4J JT;

• parameters 6 = (6ihxI, P = (Pi,J)IXJ and 8 = (81 ,JhxJ. The sign of

62 depends on the value of the squared coefficients of variation of the

inter-arrival times. For all i E I, j E J, we have P2,J 2: 0 and 82,J 2: O.

(By convention, P2,j = 0 and 8i,j = 0 if /12,J = 0.)

The corresponding NLP is formulated as

mm
(x,y)

J J

(jJ(y) = L (y;) (YJ+J) (Yj+\J) + L (Yj+3J) (Yj;2J)
j=l J=l

I

s.t. Yj - L),2 X(J-1)I+2 = 0, Vj E J
i=l

I

YJ+J - L 82,J X(j-1)I+2 = 0, Vj E J
i=l

I

Yj+2J - L X(J-1)!+2 = 0, Vj E J
2=1

I

YJ+3J - L 62X(j-l)I+i = 0, Vj E J
i=l

92

(4.67)

PhD Thesis - Y-T. He - McMaster - Computing and Software

I

L Pl,jX(j-l)I+i = 1, Vj E .:J
i=l

J

L X(]-l)I+l = 1, Vi E T.
j=l

o ~ Xn ~ 1, Vn E {I, ... , I J}
I

o ~ YJ+J ::; L el ,] ,

i=l i=l

o ::; Y]+2J ::; I,

min (0, t 6.) <:: YJ+3J <:: max (0, t 6.), Ifj E J

If the arrivals follow Poisson processes and the servers are identical,

NLP (4.67) is the same as NLP (4.24). Although NLP (4.67) has both linear

and non-linear constraints, it can still be solved by a generic NLP solver like

KNITRO.

Except for the variable substitution constraints, NLP (4.67) has the

same linear constraints as LP (3.2) with equality constraints. This implies

that (1) using (4.56), the routing matrix derived from the solution to LP (3.2)

can be used as a starting point of x to solve NLP (4.67); (2) using Proposition

4.1.1, the optimal routing matrix contains many zero elements, especially when

the matrix is large.

4.4 Summary

To derive the optimal (static) random routing policy for output-queued sys­

tems, we have formulated a nonlinear programming problem which minimizes

the delay in the system in heavy traffic. When inter-arrival times are ex­

ponentially distributed, the resulting optimal policy does not change if the

processing times distributions are changed such that the (squared) coefficient

of variation is altered by the same factor for all task types at each server. Using

the optimal routing policy, most servers need only to be capable of processing

a small subset of task types. This is desirable when it is costly to maintain

highly flexible servers.

93

PhD Thesis - Y-T. He - McMaster - Computing and Software

In the case of homogeneous server systems, the optimal routing matrix

contains identical columns. Pooling the corresponding servers into a single

queue can further reduce the delay in the system. To choose between full

pooling and partial pooling, one can compare the diffusion limits of the total

mean queue length of the system in heavy traffic.

For systems in moderate traffic, we have also formulated a nonlinear

programming problem which minimizes the mean sojourn time for arrivals

that follow Poisson processes. In the case of homogeneous server systems, it is

hard to obtain the optimal pooling strategy analytically, since the mean queue

lengths of multi-server queues can only be estimated with approximations.

94

Chapter 5

Applications

In this chapter, we discuss applications of the MARa related routing poli­

cies proposed in Chapter 3. First in Section 5.1, simulation studies are used

to demonstrate the heavy traffic optimality properties in the systems which

are equipped with homogeneous or heterogeneous servers to process a single

type of tasks. In Section 5.2, we apply the MARa related policies to a server

cluster environment that processes multiple types of tasks, exemplifying their

applications in resource management for distributed computing systems. Fi­

nally, Section 5.3 discusses the issues of applying the MARa policy to reduce

hospital waiting times.

5.1 Single-Task-Type Systems

5.1.1 Homogeneous Systems

Consider an output-queued system with J identical servers, whose service

times are assumed independent, each with mean one. The arrival stream

consists of one task type and follows a Poisson process with rate p* J. As

discussed in Section 3.4.1, the JSQ policy is a special case of the MARa policy

when applied to this homogeneous system with a single task type. Therefore,

we compare the following routing structures when the system is heavily loaded,

i.e., p* is close to one.

95

PhD Thesis - Y-T. He - McMaster - Computing and Software

• LP-Static: According to the solution to LP (3.2), arrivals are routed

to the J servers with equal probabilities 1/ J. Since the arrival stream

follows a Poisson process, the system is thus equivalent to J M/G/l

queues in parallel.

• JSQ-flex: This is a special case of MARO-flex. When the flexibility

level q = 1, it is JSQ. SO a flexible arrival joins one of the J servers

with the shortest queue length. Ties are broken randomly. A dedicated

arrival is routed to one of the J servers with probability 1/ J.

• JSQ-2/ k: This is a special case of MARO-2/ k. An arrival joins the

shorter of the two queues chosen from the J servers. The two candidate

queues are picked with probabilities 1/ J and 1/(J - 1), respectively.

• JSQ-tree: This is a special case of MARO-tree. A flexible arrival is

routed to queue j with probability given by (3.57) and joins the shorter

of queues j and j + 1, j E {I, ... , J - I}.

• JSQ-ring: This is a variant of JSQ-tree. A flexible arrival is routed to

queue j with probability 1/ J and joins the shorter of queues j and j + 1

(mod J), j E {I, ... , J}.

• Full pooling: The system becomes as an M / G / J queue, so no routing is

needed.

Simulation Results

Systems of three different sizes are studied, using J = 4, 20 and 100. The

simulation results mainly focus on the steady-state mean queue length of the

system, which includes both the number of tasks waiting in the queue and

those in process. All statistics for the dynamic routing policies are at 95

percent confidence level, with accuracies no worse than ±2%. The mean queue

lengths for the M / G /1 and M / G / J queues are calculated using the Pollaczek­

Kintchine formula [29] and the Allen-Cunneen approximation [1], respectively.

Using the results, we discuss the impact of the amount of state infor­

mation required for routing and the impact of service time variance.

96

PhD Thesis - Y-T. He - McMaster - Computmg and Software

Impact of the amount of state information Table 5.1 compares the

routing structures that require different amounts of state information. The

performance improvement (Imprvmnt.) is calculated using the total mean

queue length of J parallel M 1M II queues as a reference, since it needs no

state information. All JSQ related policies are assumed to have flexibility

level q = 1 (i.e., no dedicated arrivals).

Table 5.1: Routing structures vs. Total mean queue lengths, i.i.d. exponential
service times, p* = 0.95

II J=4 J = 20 J = 100
Model II Mean Imprvmnt. Mean Imprvmnt. Mean Imprvmnt.

J x MIMl1 76.00 0% 380.00 0% 1900.00 0%

JSQ-tree 25.92 66 % 96.54 75 % 461.85 76 %

JSQ-ring 23.94 68 % 89.74 76 % 446.54 77 %

JSQ-2/k 23.72 69 % 72.03 81 % 328.23 83 %

JSQ 22.28 71% 45.99 88 % 176.80 91 %

II MIMIJ 11
20 .74

1
73 % II 33.35 1

91 %
II 104.62

1
94 %

It is seen that the improvements for the tree and ring structures and

JSQ-2Ik appear to be of the same order of magnitude. This is consistent with

our observations in Section 3.3.4, which would suggest that these three policies

are roughly equivalent in terms of giving a significant improvement. Note that

our results are also consistent with the observation in [17] that when n items

are placed at n servers with d choices per item, when nearest neighbours are

chosen, the maximum number of items assigned to a server is a constant factor

larger than a system where the d choices are made randomly. In our case where

n = J and d = 2, the tree and ring structures yield only a constant increase

of the mean queue length (per queue) over JSQ-2Ik.

When compared using the discounted amount of the required state

information for routing (given by (3.58)), JSQ-tree and JSQ-2/k require

significantly less information than JSQ. When the number of servers increases

97

PhD Thesis - Y-T. He - McMaster - Computing and Software

from 4 to 100, the discount increases from 50% to 98%. However, the difference

(in terms of the total mean queue length) between JSQ-tree (or JSQ-2/k)

and JSQ also becomes larger in systems with a larger number of identical

servers (see also Figure 5.1). Therefore, there is a tradeoff between the system

performance and the cost of acquiring more state information in homogeneous

systems.

In addition to Table 5.1, Figure 5.1 also compares the JSQ related

policies with an 111/111/ J queue. Although Theorem 3.4.1 implies that under

the heavy traffic condition (i.e., p -+ 1), the JSQ related policies yield the

same diffusion scaled queue length which is in turn also the same as that of an

A1/ A1/ J queue, it can be seen that when one backs off from heavy traffic, even

at 95 percent load, the actual queue lengths differ in systems with a larger

number of servers. New techniques ([28] for example) are needed to yield

diffusion scaled limits that allow one to differentiate between various policies

in finer granularity.

1000
Total

DM/M/J
I2lJSQ-flex

• JSQ-Z/k

mJsQ-nng
o JSQ-tree

100

10

J=4 J=20 J=100

Number of servers

Figure 5.1: Routing structures vs. Total mean queue lengths, i.i.d. exponential
service times, p* = 0.95

The flexibility level q is another factor that characterizes the amount

of state information required for routing. Figure 5.2 shows that under high

98

PhD Thesis - Y-T. He - McMaster - Computing and Software

Improvement
100%- - ---

/:<~'::'::::::':.:. -, -' -, -' -, ---------'

90%

80% L

70%

60%

50%

40%

30%

20%

10% -

I::::<>~ I~-: -~~-~:~:: ~~:~~~)
--*"-JSQ-flex (J=4)

- -G. JSQ-Iree (J=1 00) i
_.)IE-. JSQ-Iree (J=20) !

- .~:_ JSQ-IreEl JJ=4) ___ I

0% ____ L......_....l.... ____ -'---_--'-_

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Flexibility q

Figure 5.2: Flexibility levels vs. Improvement of total mean queue length,
i.i.d. exponential service times, p* = 0.95

100%

90%

80%

70%

60%

Relative
Improvement

I

I

f
I

L

50% -

40%

30%

20%

10%

0%

! -&-- JSQ-flex (J=1 00) I
I I
'~JSQ-flex (J=20) :
--*"-JSQ-flex (J=4) !

,--G··JSQ-Iree (J=100):
:-·)IE-··JSQ-Iree (J=20) :

i-::· .. · J~Cl::.lreeCJ.~):

•

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Flexibility q

Figure 5.3: Flexibility levels vs. Relative improvement of total mean queue
length, i.i.d. exponential service times, p* = 0.95

99

PhD Thesis - Y-T. He - McMaster - Computing and Software

load, there is a significant improvement for a very small level of flexibility:

about 40 percent improvement for JSQ-tree and 50 to 60 percent improve­

ment for JSQ-flex, respectively, at 10 percent flexibility. At a given level q,

the improvements increase as the number of queues J increases. Figure 5.3

shows that at 30 percent flexibility, the amount of improvement achieved by

JSQ-tree is about 80 percent of that with 100 percent flexibility. This rela­

tive improvement increases to 90 percent for JSQ-flex. These observations are

consistent with Theorem 3.4.1, which implies that under heavy traffic, the dif­

fusion scaled queue lengths for both policies are independent of the flexibility

level q.

Impact of processing time variance To examine how processing time

variance affects the system performance, we compare the total mean lengths us­

ing two more processing time distributions: Erlang-k and hyper-exponential,

in addition to exponential. The squared coefficient of variation C1 is set to

0.1 for Erlang-k (i.e., k = 10) and 10 for hyper-exponential, respectively. (By

definition, C1 = 1 for the exponential distribution.)

The results given in Tables 5.2 and 5.3, as well as in Figures 5.4-5.7,

are consistent with the observations made for the exponential service times

setting. In addition, it can be seen that all policies have larger improvement

in systems with larger service time variance than in those with small variance.

This is probably not too surprising, as it follows from the observation that

when the service time variance is small, the performance is less sensitive to

the policy, i.e., for small service time variance if some policy balances the load

over long time scales, it is highly likely to also balance the load under shorter

time scales. For example, in the extreme of constant service times, an optimal

routing policy would be round robin. On the other hand, with large service

time variance, load imbalances may occur over short time scales due to the

variability in service times, so it becomes more desirable to be able to shift

the incoming work between queues.

100

PhD Thesis - Y-T. He - McMaster - Computing and Software

Table 5.2: Routing structures vs. Total mean queue lengths, i.i.d. Erlang-k
service times, p* = 0.95

J=4 J = 20 J = 100
Model Mean Imprvmnt. Mean Imprvmnt. Mean Imprvmnt.

J x M/Ek/1 43.51 0% 217.55 0% 1087.75 0%

JSQ-tree 16.08 63 % 63.58 71 % 298.45 73 %

JSQ-ring 14.89 66 % 57.90 73 % 291.22 73 %

JSQ-2/k 14.67 66 % 47.26 78 % 219.57 80 %

JSQ 14.06 68 % 36.21 83 % 156.95 86 %

70 % II 26.89 1 88 % 100.29 1 91 %

Table 5.3: Routing structures vs. Total mean queue lengths, i.i.d. hyper­
exponential service times, p* = 0.95

J=4 J = 20 J = 100
Model Mean Imprvmnt. Mean Imprvmnt. Mean Imprvmnt.

J x M/Hx /1 400.90 0% 2004.50 0% 10022.50 0%

JSQ-tree 113.99 72% 368.36 82 % 1684.35 83 %

JSQ-ring 101.87 75 % 325.22 84 % 1627.27 84 %

JSQ-2/k 101.62 75 % 217.48 89 % 900.23 91 %

JSQ 96.16 76 % 108.63 95 % 218.92 98 %

II M/ Hx/ J II 96.95 1 76 % II 97.94 1 95 % II 147.92 1 99 %

101

PhD Thesis - Y-T. He - McMaster - Computing and Software

1000

100

10

Total

DM/EklJ
Ii'lJSQ-fiex

• JSQ-2/k

mJsQ-nng

o JSQ-tree

J=4 J=20

Number of servers

Figure 5.4: Routing structures vs. Total mean queue lengths, i.i.d. Erlang-k
service times, p* = 0.95

10000 Tro~t=al~~~~ __ ~

1000

100

10

o M/Hx/J
Ii'lJSQ-flex

• JSQ-2/k

J=4 J=20

Number of servers

J=100

Figure 5.5: Routing structures vs. Total mean queue lengths, i.i.d. hyper­
exponential service times, p* = 0.95

102

PhD Thesis - Y-T. He - McMaster - Computing and Software

Improvement
100% ----

90% I
80%

I 70% r

60% ~
50% r
40% L

30%

20% ,

\

10% i

~ ~::=:::~.-.-·-·-·-·-·-·-·-·-·-·-·-t
~,..,--'.:' k'-'-'-'-

.. /:>/ FO JSQ-fl~x (J;100) , r / ~ """""*- JSQ-flex (J=20)

i --.It- JSQ-flex (J=4)
i _ G-. JSQ-tree (J=100)

'I-·:IE-· JSQ-tree (J=20) i
_ JSQ-tree (J,,4)--,

0% - --'--,- ___ , __ L __ , __ ---.L- ~_~ __

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Flexibility q

Figure 5.6: Routing structures vs. Improvement of total mean queue lengths,
i.i.d. Erlang-k service times, p* = 0.95

30%

20%

10%

0%

l
L -"- _' . ..L..-_ ~--~-

I

-e-JSQ-fleX (J=100) I I

"""""*- JSQ-flex (J=20)
'--.It- JSQ-flex (J=4) \

1

- G-. JSQ-tree (J=1 00) I'

_.:IE-. JSQ-tree (J=20)

,_· .. ··JSQ-tree (J=4) _

~~_---.l _____ '

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Flexibility q

Figure 5.7: Routing structures vs. Improvement of total mean queue lengths,
i.i.d. hyper-exponential service times, p* = 0.95

103

PhD Thesis - Y-T. He - McMaster - Computing and Software

5.1.2 Heterogeneous Systems

Here we study a single-task-type system with J = 20 heterogeneous servers.

The service time distribution at queue j is exponential with rate /1j. Let the

mean service rate vector be /1 = [1, 2, ... ,20]' and the single Poisson arrival

stream have rate .\ = 199.5, so that the solution to LP (3.2) is p* = 0.95 and

\It* = (p*hxJ, a vector of J p*'s.

Corresponding to the JSQ related policies given in Section 5.1.1, we

compare the JSEW related policies with J different !vI/ M /1 queues in paral­

lel and one .M / M / Jh queue with J heterogeneous servers, respectively. The

flexibility level q is set to one.

Table 5.4: Routing structures vs. Total mean queue lengths, heterogeneous
servers, exponential service times, p* = 0.95

/I Model II Mean I Imprvmnt. I
Jh x M/M/l 380.00 0%

JSEW-tree 88.02 77%

JSEW-ring 87.78 77 %

JSEW-2/k 70.66 81 %

JSEW 37.02 90 %

II M/M/J
h

34.52 1 91 %

Using LP-Static, the arrivals are routed to queue j at rate 0.95/1j,

so the total mean queue length of J parallel M / M /1 queues is the same as

that in the homogeneous server case. Table 5.4 shows that JSEW -tree and

JSEW yield similar improvements as those seen in Table 5.1, the homogeneous

server case. Actually, we know from Theorems 3.4.1 and 3.4.2 that in the case

of exponential service times, both the homogeneous and the heterogeneous

systems have the same reflected Brownian motion limit (under the complete

resource pooling condition), so this observation is not surprising.

104

PhD Thesis - Y-T. He - McMaster - Computing and Software

5.2 Grid Systems

Grid systems [23] are gaining acceptance as the preferred way to coordinate

computing resources across institutional boundaries. A Grid is a generalized

distributed computing system that can scale to Internet-size environments

with machines distributed across multiple administrative domains. Computer

clusters form the natural building blocks for grid systems by networking a set

of independent machines with various computational capabilities to perform

a specific set of applications. For a Grid to efficiently support a variety of

applications, the resource management system (RMS) [44] is essential to its

operation and is responsible for optimizing its performance metric.

One of the core functions of an RMS is to allocate resources (a machine

or some service that is synthesized using a combination of machines, networks

and software) and route incoming tasks to machines in a computer cluster.

We propose in Chapter 3 a new routing policy, MARO, and several variants.

By applying them to a real-world server cluster, we show that our proposed

policies have several advantages over existing policies.

5.2.1 The Base Model

For our study, we adopt the server cluster environment used in Kontothanas­

sis' experiment [43]. The characteristics of the machines in the cluster are

summarized in Table 5.5. The tasks to be executed in the server cluster are

the jobs performed by the popular BLAST [2] application suite, which biol­

ogists use to search nucleotide and protein databases in the National Center

for Biotechnology Information in the United States. For example, one type

of tasks called "blastn" compares a nucleotide query sequence against a nu­

cleotide sequence database. There are five task types: some depend primarily

on CPU speed, others are more I/O bound and thus sensitive to the memory

and disk subsystems. The mean processing times of each task type at the six

machine types are given in [43] and the variances are known to be small. Our

study is to use the six types of machines and the five types of tasks to construct

different server clusters and to compare the performance of the systems using

different server allocation policies (including MARO). The performance metric

105

PhD Thesis - Y-T. He - McMaster - Computing and Software

chosen is the steady-state mean total number of tasks in the server cluster.

By Little's Law, it is then easy to calculate the average task completion time.

Table 5.5: Machine types in a BLAST server cluster

I Machine I CPU I Memory I Disk

Type 1 733 MHz 256 MB 40 MB/s IDE

Type 2 525 MHz 8 GB 60 MB/s SCSI

Type 3 2.8 GHz 256 MB 40 MB/s IDE

Type 4 2.8 GHz 256 MB 60 MB/s SCSI

Type 5 2.8 GHz 1.5 GB 40 MB/s IDE

Type 6 2.8 GHz 1.5 GB 60 MB/s SCSI

Define sets I = {1, ... , I} and J = {1, ... , J}. The base cluster system

has J = 6 servers, each being a different machine type and capable of process­

ing I = 5 types of tasks. The processing times are assumed independent. The

local scheduling policy at each server is first-come-first-serve. The full trace of

tasks (with all five types) follows a Poisson process with rate 5.. = 0.877 see l .

Let the i-th element of the vector pt denote the proportion of type i tasks in

the full trace, here

pt = (P;hXI = [0.558 0.188 0.212 0.014 0.028] . (5.1)

Let '\ = 5..p~ be the mean arrival rate of type i tasks and Mi,j be the mean

processing rate of type i tasks at server j. We have the first-order primitives

A = (AihxI = [0.489 0.165 0.186 0.012 0.025] ' (5.2)

and

0.385 0.571 0.556 0.667 0.588 1.111

0.699 1.111 1.786 1.923 3.125 3.333

M = (Mi,J)IXJ = 0.435 0.556 1.111 1.053 1.667 1.667 (5.3)
0.070 0.069 0.174 0.174 0.190 0.200

0.023 0.026 0.069 0.067 0.070 0.070

106

PhD Thesis - Y-T. He - McMaster - Computing and Software

To have a clearer view of the qualitative attributes of the primitives,

we normalize A and j), using the smallest element min~ET,jEJ{j),~,j} and obtain

~ = [21.3 7.2 8.1 0.5 1.1] '

and
16.7 24.8 24.2 29.0 25.6 48.3

30.4 48.3 77.7 83.6 135.9 144.9

j),= 18.9 24.2 48.3 45.8 72.5 72.5

3.0 3.0 7.6 7.6 8.3 8.7

1.0 1.1 3.0 2.9 3.0 3.0

Firstly, it can be seen that the first three "major" task types contribute more

than 95 percent of arrivals for the full task trace. Secondly, the mean process­

ing rates of task types 4 and 5 are significantly lower on all machine types, by

which we may consider these two types of tasks as "hard" jobs (even though

they are a small proportion of arrivals). Thirdly, using Table 5.5 and the ma­

trix /1, we may label machine types 1 and 2 as "slow" machines and types

5 and 6 as "fast" ones. We will study how these qualitative attributes (e.g.,

hardness, slowness) affect the system performance.

5.2.2 Trial Systems

For the simulation study, we apply 6 server allocation policies to 5 homo­

geneous/heterogeneous systems which are constructed from the base system.

The policies include:

• LP-Static: a static routing policy that maximizes the system capacity

in the long term according to LP (3.2), but does no short term shifting

of workload. Type i tasks are routed to server j with probability P~,J

given in (3.18) .

• MinDrift(Q): see Section 3.2. The cost function chosen (for the MARO

related policies as well) is of the form

(5.4)

where Zj is given in (3.1), an estimate of the unfinished processing time

at server j at each arrival time t. Let Qn,](t) be the number of type n

107

PhD Thesis - Y-T. He - McMaster - Computing and Software

tasks at queue j at time t, then a type i arrival is dispatched to queue j

satisfying

(5.5)

Ties are broken randomly with equal probabilities.

• MARO-flex: see Section 3.3.3. Assume a constant flexibility level q for

all task types. When q = 1, it is the MARO policy (see Section 3.3.1).

• MARO-2/k: see Section 3.3.2.

• MARO-tree: see Section 3.3.4. The routing probabilities for the flexible

arrivals are determined using LP (3.46).

• FCFS: a standard first-come-first-serve policy. It is used in the multi­

server-single-queue systems where all tasks are waiting at one queue and

the task at the head of the queue is dispatched to the first idle server.

If more than one server is idle at the time of an arrival, ties are broken

randomly with equal probabilities.

Note that given the cost function properties in Assumption 2.3.1, the

routing decisions made based on (5.5) will not change even if the cost function

is different from (5.4). This can be seen as follows. Suppose there are two cost

functions C1 (Zj) and C2 (Zj) which both satisfy the assumption. Given two

queues)1 and)2, if
C; (Z]J C; (Zh)
~-=-=- < ,

J-Lt,Jl J-L1,)2

then we have
C;(ZJJ C;(ZJ2)
----=-~~< ,

J-L1,]1 J-Lz,]2

if in addition J-Li,]l = J-Lz,]2' since the first derivatives C;(Z]) and C;(Z]) are

both strictly increasing in ZJ' Even if J-Lt'l1 i= J-Lt,12' the definition of fixed point

(2.15) suggests that the above relations still hold in heavy traffic (see Theorem

2.3.2). Therefore, the qualitative comparison results obtained in the following

108

PhD Thesis ~ Y-T. He ~ McMaster ~ Computing and Software

simulation studies are not sensitive to the specific form of a cost function which

satisfies Assumption 2.3.1.

There are two categories of systems constructed. Systems A and Bare

homogeneous systems, in which all machines in the server cluster are of one

type. Systems C, D and E are heterogeneous systems, in which the server

cluster consists of six different machine types. The applied server allocation

policies are summarized in Table 5.6.

Table 5.6: Trial systems and the applied server allocation policies

II \I System A I System B I System C I System D I System E I
LP-Static vi vi vi

MinDrift (Q) vi vi vi
MARO-flex vi vi vi
MARO-2/k vi vi vi
MARO-tree vi vi vi

FCFS vi vi

Homogeneous Systems

System A This system has J = 6 identical parallel servers, each capable of

processing I = 5 types of tasks. All servers are chosen to be machine type 2

so the results can be compared with those in [43]. From (5.2) and (5.3), we

have the first-order primitives A,\ = ,\ and

A /-L = [/-Lt,2 /-Li,2 /-Li,2 /-Lt,2 /-Li,2 /-Li,2] iEI .

As has been analyzed in Section 3.4.2, if the full matrix \IF* (3.60) is

to be used in this homogeneous system, the LP-Static policy routes a task to

each of the servers with equal probabilities. Thus the system behaves as J

parallel 111/ G /1 queues with each arrival stream a Poisson process with rate

5../J.
The MinDrift(Q) policy reduces to the "join the shortest expected wait­

ing time" (JSEW) policy, i.e., a task is dispatched to server j satisfying

j E arg~~ {L/-L;;,;Qn,J(t)}.
nEI

109

PhD Thesis - Y-T. He - McMaster - Computing and Software

It is also equivalent to the "minimum completion time" (MCT) policy, which

is seen in existing distributed computer systems [24J.

MARO will be the same as MinDrift(Q) if the full matrix W* is used. To

study the performance of the MARO related policies using less state informa­

tion for routing, we will use a perturbed W* instead, which has the maximum

number of zero elements (see Proposition 3.3.1).

System B This is a multi-server-single-queue system equipped with the

FCFS dispatching policy, which was also used in [43J. It is included in our

study as a reference for comparison. Given the processing times at all J servers

are assumed i.i.d., System B is denoted as an Nln IG I J queue with multiple

types of arrivals. The first-order primitives are B).. = A).. and B f1 = A f1.

Heterogeneous Systems

System C This system has J = 6 heterogeneous parallel servers, each capa­

ble of processing I = 5 types of tasks. The first-order primitives are C f1 = f1

and
c). =).. x 1.89 = [0.926 0.313 0.352 0.023 0.047],

so that the load of System C is the same as that of System A.

System D This is an expansion of System C, which has J = 30 parallel

servers, each being capable of processing I = 5 types of tasks. The servers are

partitioned into 6 groups, servers within a group are identical. The number of

servers in each group and the corresponding mean processing rates are shown

in Table 5.7. Servers in groups 1 and 2 are "slow" machines and those in

groups 5 and 6 are "fast" machines. Note that these groups do not necessarily

correspond to geographic locations. Depending on applications, servers of

different machine types may be grouped together at one location. However,

since permutation of the columns of the matrix f1 does not affect the solution

of LP (3.2), the results obtained in the following simulation studies apply to

different groupings of the servers.

The mean arrival rate vector is

D). =). x 9.60 = [4.694 1.584 1.785 0.115 0.240],

110

PhD Thesis - Y- T. He - McMaster - Computing and Software

Table 5.7: Mean processing rate matrix fl of System D

Machine type
Group No.

of servers
Task type i E I

so that the load of System D is the same as that of Systems A and C.

System E Similar to System B, this is also a multi-server-single-queue sys­

tem equipped with the FCFS dispatching policy. We denote System E as an

Mn / G / Jh queue given the processing time distributions at the J servers are

different. There are two settings of the first-order primitives for this system.

One is El). = c). and El fl = C fl. The other is E2). = D). and E2 fl = D fl.

5.2.3 Main Results

Our main results are divided into two parts. The first part includes the opti­

mal solutions of the resource allocation LP (3.2) for Systems A, C and D. The

results are to be used in the MARO related policies. Note that the routing

probabilities derived from the LP do not vary with the system loads (since

the required load is obtained by multiplying the mean arrival rate vector with

a positive factor while keeping the mean processing rate matrix unchanged).

The second part includes simulation results comparing the server allocation

policies and discusses the impact of the amount of state information required

for decision making (which is indicated by flexibility level and the set of can­

didate queues), the impact of server utilization (and system load) and the

impact of processing time variance.

Solutions of the Resource Allocation LP

System A For System A, LP (3.2) has multiple solutions \lI* with Ap*

0.412. Constraint (3.4) is active at the optimum, which means no server is

111

PhD Thesis - Y-T. He - McMaster - Computing and Software

under-utilized. One solution w* is

0.142 0.142 0.142 0.142 0.142 0.142

0.025 0.025 0.025 0.025 0.025 0.025
AW*-1- 0.056 0.056 0.056 0.056 0.056 0.056 (5.6)

0.029 0.029 0.029 0.029 0.029 0.029

0.160 0.160 0.160 0.160 0.160 0.160

which consists of repetitions of the first column, so the graph 9'11 associated

with AWi contains rings. The corresponding static routing probability matrix

is

1. 1. 1 1 1 1
6 6 6 6 6 6

1. 1 1 1. 1 1
6 6 6 6 6 6

Apd _ 1 1. 1 1 1 1
1 - 6 6 6 6 6 6

1. 1. 1 1 1 1
6 6 6 6 6 6
1 1 1. 1 1 1
6 6 6 6 6 6

As has been analyzed in Section 3.4.2, the elements of A W~ are 1/Ji,j =)..d (J /-Lz)'

Therefore, System A represents a case where the loads of the fast arrivals (type

1 tasks) and of the "hard" tasks (type 5) are significantly higher than those

for the other task types.

To allow the LP-based dynamic routing policies to use less state in­

formation for routing, we may perturb AWi along the arcs of the rings in 9'11
until the number of positive elements is reduced to (I + J - 1). Thus another

optimal solution to LP (3.2) is obtained as

0.276 0.076 0.262 0.238

0.150
AW*-2- 0.336 (5.7)

0.174

0.136 0.412 0.412

while the objective function keeps the same optimal value A p* = 0.412. The

associated static routing probability matrix is

Apd_
2 -

0.324

0.142 0.429 0.429

112

0.089 0.308 0.279

1.000

1.000

1.000

PhD Thesis - Y-T. He - McMaster - Computmg and Software

Compared with AW;' in (5.6), the structure of AW; allows task types 1 and

5 (whose loads are significantly higher than the others') to spread incoming

workload over as many queues as possible, while keeping the maximum number

of zero elements in W*.

The LP-based policies hence have two choices of w*, shown in (5.6)

and (5.7). Since MARO is the same as MinDrift(Q) if (5.6) is used, we will

call its variants as MinD rift related policies. For example, MinDrift-flex with

flexibility level q = 1 is equivalent to the original MinDrift(Q) (see Table 5.10).

To differentiate LP-Static in these two choices, the names MinDrift-Static and

MARO-Static are used, respectively (see Table 5.11).

System C For System C, LP (3.2) has a unique solution, given by

0.412 0.412 0.110

0.100

0.211

0.020 0.101

0.412 0.282

0.412

(5.8)

and C p* = 0.412 which is the same as that for System A. Constraint (3.4) is

active at the optimum, which means no server is under-utilized. The number

of positive elements in the matrix cw* is Np = 10 = (I + J - 1), so the graph

Q", associated with cw* is a tree. The corresponding static routing probability

matrix is

0.171 0.254

Cpd=

0.080

1.000

1.000

0.155 0.845

0.601 0.399

0.495

From the last two rows of C pd, we can see that for static server allo­

cation, the optimal solution assigns the "hard" tasks (types 4 and 5 tasks) to

servers with above-average processing rates (servers 3, 4 and 5), but not neces­

sarily to the "fastest" (server 6). At the same time, more than 40 percent ofthe

fast arrivals (type 1 tasks) are routed to the relatively "slow" servers (server 1

being the slowest). Additionally, while server 6 has the fastest processing rate

113

PhD Thesis ~ Y-T. He ~ McMaster ~ Computing and Software

for type 2 tasks, none of its effort is allocated to them. Instead, type 2 tasks

are assigned to server 5, which has the second fastest processing rate for them.

These are not obvious to deduce without the aid of the allocation LP (3.2).

For MARO-tree, the routing probabilities of the flexible arrivals are

0.343 0.158 0.499

Cpf=

1.000

1.000

1.000

1.000

where the first row is obtained from LP (3.46) with q = 1. When the flexibility

level q changes, the first row changes accordingly. For example with q = 0.5,

we have

C (pL)lX(J~1) \q=O.5 = [0.298 0.160 0.000 0.542 0.000].

System D For System D, LP (3.2) has multiple solutions for the matrix

w*, each yielding D p* = 0.412, the same as those for Systems A and C. Con­

straint (3.4) is active at the optimum, which means no server is under-utilized.

One solution of DW* and the corresponding static probability matrix D pd are

shown in Tables 5.8 and 5.9, respectively. Servers within the same group are

assigned the same non-zero values '1/J1~) and p1,). The number of non-zero ele­

ments in the matrix DW* is Np = 52 > (1 + J -1), so the graph Qw associated

with DW* contains rings. We will use Table 5.9 for the MARO related poli­

cies in the simulation studies, since the discounted amount of required state

information is still very significant (see Table 5.10). For MARO-tree, the

routing probabilities for the flexible arrivals are obtained using Table 5.9 and

LP (3.46).

It is interesting to note that although System A might be seen as a

subsystem of System D (since A has both the same number and the same

type of servers as group 2 in D, except that the mean arrival rate vectors

are differentiated by a constant factor, D A = A A x 9.6), the server allocations

are quite different. This shows that one must take into account the relative

values of the processing rates at different servers. Consequently it suggests

114

PhD Thesis - Y-T. He - McMaster - Computing and Software

Table 5.8: Optimal solution matrix \.It* of System D

Machine type slow medium fast
Group No. 1 2 3 4 5 6

of servers 2 6 7 7 4 4

Task type 1 0.412 0.412 0.242 0.412
Task type 2 0.127
Task type 3 0.267
Task type 4 0.083 0.018
Task type 5 0.412 0.087

Table 5.9: Static routing probability matrix pd of System D

Machine type slow medium fast
Group No. 1 2 3 4 5 6

of servers 2 6 7 7 4 4

Task type 1 0.035 0.050 0.034 0.098
Task type 2 0.250
Task type 3 0.250
Task type 4 0.126 0.030
Task type 5 0.119 0.024

that when the servers in a system change, the optimal routing policy needs to

change accordingly. Again, such changes would be difficult to deduce without

the aid of the allocation LP (3.2).

Finally, for Systems A, C and D, the discounted amounts of required

state information for the MARO-flex, MARO-2/k and MARO-tree policies

are calculated using (3.19), (3.16) and (3.37), respectively. The results are

summarized in Table 5.10. It can be seen that in a relatively large system

like System D, the amount of state information required for making routing

decisions is reduced significantly, even if we do not use the matrix \.It* which

has the maximum number of zeros. For the MinDrift related policies which use

the full matrix c\.It* in the homogeneous case (System A), the corresponding

discounted amount of information is also attached.

115

PhD Thesis - Y-T. He - McMaster - Computing and Software

Table 5.10: Discounted amount of required state information

MARO-flex MARO-2jk MARO-tree
q=l q = 0.5 q = 0.3 q=l q = 0.5 q = 0.3

System A 61% 81% 88% 81% 81% 90% 94%

System C 61% 81% 88% 81% 81% 90% 94%

System D 58% 79% 87% 94% 94% 97% 98%

MinDrift-flex MinDrift-2 j k MinDrift - tree
q=l q = 0.5 q = 0.3 q=l q = 0.5 q = 0.3

System A 0% 50% 70% 68% 68% 84% 90%

Simulation Results

The simulation results mainly focus on the steady-state mean queue length.

All statistics for the dynamic routing policies are at 95 percent confidence level,

with the accuracy calculated as the ratio of the half width of the confidence

interval to the mean value.

When equipped with the LP-Static policy, either a homogeneous or

a heterogeneous system is equivalent to J A1/ G /1 queues in parallel. Given

the probability P~,j defined in (3.18) (with which type i tasks are routed to

queue j) and the processing times at server j with mean J-L~Jl and variance

f3;'j' the mean queue length Q j of each queue j can be calculated using the

Pollaczek-Kintchine formula as described in Section 4.3.1.

Since System B is equivalent to an M / G / J queue with multiple arrival

types, its mean queue length can be approximated using the Allen-Cunneen

formula

where C(·,·) is the Erlang-C formula and Pe = 5../J-Le is the effective offered

load, with 5.., J-Le and {3; as defined in (4.34)-(4.36).

For exponential processing time distributions, Tables 5.11 - 5.16 com­

pare the performance improvements that can be achieved using different rout­

ing policies. The improvements, Imprvmntl and Imprvmnt2, are calculated

116

PhD Thesis - Y-T. He - McMaster - Computing and Software

using the LP-Static policy and MinDrift(Q) as a reference, respectively. A

negative improvement means a policy being outperformed by the reference.

The performance degradation of a policy is compared with the corresponding

discounted amount of required state information shown in Table 5.10.

Impact of the amount of state information The amount of state infor­

mation required in a dynamic routing policy is characterized by two factors:

(1) whether the policy is based on LP (3.2), e.g., MinDrift(Q) is not but

MARO is; (2) the flexibility level adopted by the policy. From the results,

several observations can be made.

Firstly, in the homogeneous case shown in Table 5.11, the MARO re­

lated dynamic policies using the perturbed matrix w* (5.7) perform better

than their counterparts using the full matrix (5.6) (except that MARO is out­

performed by MinDrift(Q)). However, as the system load increases, we see the

opposite in Table 5.12. As has been analyzed in Section 3.4.2, such perfor­

mance results from unbalanced workload between homogeneous servers, due

to the limited choices enforced by the MARO related dynamic policies. This

can be seen from Table 5.13, where the MARO related policies yield larger

standard deviations of the server utilizations than the MinDrift related ones.

This unbalancing may have an adverse effect on system performance, espe­

cially under high load. Therefore, for homogeneous systems, we recommend

the MARO related policies use the full matrix W*. To reduce the amount of

state information required for routing, we recommend using MinDrift-2/ k.

Secondly, in the heterogeneous cases shown in Tables 5.14, 5.15 and

5.16, MinDrift(Q) performs worse than MARO, especially when the system is

heavily loaded. Although it has been proved [63] that MinDrift(Q) will route

the tasks to the corresponding servers according to the LP-derived probabilities

(3.18) under the heavy traffic condition, our results suggest that as one backs

off from heavy traffic, MinDrift(Q) routes all types of tasks to the slowest

server with non-zero probabilities, which can result in problematic routing

choices. This phenomenon can also be seen in Table 5.17, where MinDrift(Q)

makes each server's utilization higher than the optimal value 0.41 (the average

being above 0.52 in both Systems C and D). It has been observed that the

117

PhD Thesis - Y-T. He - McMaster - Computing and Software

Table 5.11: Total mean queue lengths (Systems A and B, p* = 0.41), expo­
nential processing times

/I Policies) q)) Mean) Accuracy) Imprvmntl) Imprvmnt2 I Discnt)

MinDrift-Static - 12.86 - 0% - -

1 2.58 ± 0.4 % 80 % 0% 0%

MinDrift - flex 0.5 6.32 ± 0.8 % 51 % -145 % 50 %

0.3 8.45 ± 0.9 % 34 % -228 % 70 %

MinDrift - 2 j k - 3.98 ± 0.6 % 69 % -54 % 68 %

1 4.56 ± 0.7 % 65 % -77 % 68 %

MinDrift - tree 0.5 7.55 ± 1.0 % 41 % -193 % 84 %

0.3 9.25 ± 1.1 % 28 % -259 % 90 %

I - II 2.54 1 80 %

MARO-Static - 5.99 - 0% - -

1 3.06 ± 0.3 % 49 % -19 % 61 %

MARO-flex 0.5 4.43 ± 0.5 % 26 % -72 % 81 %

0.3 5.06 ± 0.6 % 16 % -96 % 88 %

MARO-2jk - 3.36 ± 0.4 % 34 % -54 % 81 %

1 3.42 ± 0.4 % 43 % -33 % 81 %

MARO-tree 0.5 4.38 ± 0.6 % 27 % -70 % 90 %

0.3 4.90 ± 0.8 % 18 % -90 % 94 %

118

PhD Thesis - Y-T. He - McMaster - Computing and Software

Table 5.12: Total mean queue lengths (Systems A and B, p* = 0.95), expo­
nential processing times

II Policies I q II Mean I Accuracy I Imprvmntl I Imprvmnt2 I Discnt I
MinDrift-Static - 660.18 - 0% - -

1 101.41 ± 3.1 % 85 % 0% 0%

MinDrift(Q) - flex 0.5 119.76 ± 2.6 % 82 % -18 % 50 %

0.3 147.09 ± 2.2 % 78 % -45 % 70 %

MinDrift - 2/ k - 113.89 ± 2.8 % 83 % -12 % 68 %

1 150.61 ± 2.1 % 77% -49 % 68 %

MinDrift - tree 0.5 195.91 ± 2.0 % 71% -93 % 84 %

0.3 249.28 ± 1.9 % 63 % -146 % 90 %

II I - II 95.57 1 86 %

MARO-Static - 237.16 - 0% - -

1 181.21 ± 2.1 % 24 % -79 % 61 %

MARO(Q)-flex 0.5 165.70 ± 2.3 % 30 % -63 % 81 %

0.3 152.74 ± 2.2 % 36 % -51 % 88 %

MARO-2/k - 163.90 ± 2.3 % 31 % -62 % 81 %

1 229.47 ± 1.8 % 3% -126 % 81 %

MARO-tree 0.5 233.97 ± 1.9 % 1% -131 % 90 %

0.3 225.23 ± 1.9 % 5% -122 % 94 %

119

PhD Thesis - Y-T. He - McMaster - Computing and Software

Table 5.13: Server utilizations (Systems A), exponential processing times

II Policies
II p* = 0.41

Mean I Std
II p* = 0.95

Mean I Std

MinDrift -Static 0.412 - 0.951 -

MinDrift(Q) 0.412 ± 0.002 0.951 ± 0.001

MinDrift - 2 j k 0.412 ± 0.012 0.950 ± 0.002

MinDrift-tree 0.412 ± 0.083 0.951 ± 0.024
(q = 1)

MARO-Static 0.412 - 0.951 -

MARO 0.412 ± 0.071 0.950 ± 0.068

MARO-2jk 0.412 ± 0.023 0.950 ± 0.059

MARO-tree 0.412 ± 0.088 0.951 ± 0.059
(q = 1)

mean utilization of the slowest server is as high as 0.65 in System C and 0.68

in System D, a direct result of an inefficient assignment of tasks.

Thirdly, based on the same solution of LP (3.2), the dynamic policies

outperform the static one in both homogeneous and heterogeneous systems.

The improvement increases as the system size grows, although such improve­

ment is obtained at the cost of acquiring state information for each routing

decision. On the other hand, further limiting the acquired state information

as MARO-2/k and MARO-tree do will result in performance worse than

that achieved by MARO. For the heterogeneous systems, the performance

degradation becomes larger when the system size grows, as MARO-2/ k and

MARO-tree yield larger discounts of required state information (see Table

5.10). This suggests that in designing the server allocation policies, designers

should evaluate the tradeoffs between the system performance and the cost

of acquiring system information before choosing one of the MARO-related

policies that we have proposed.

120

PhD Thesis - Y- T. He - McMaster - Comput?,ng and Software

Table 5.14: Total mean queue lengths (Systems C and E l , p* = 0.41), expo­
nential processing times

II Policies I q "Mean I Accuracy I Imprvmntl I Imprvmnt2 I Discnt I
LP-Static - 5.15 - 0% - -

MinDrift (Q) - 3.50 ± 0.4 % 32 % 0% 0%

1 3.45 ± 0.4 % 33 % 1% 61 %

MARO-flex 0.5 4.08 ± 0.5 % 21 % -17 % 81 %

0.3 4.44 ± 0.5 % 14 % -27 % 88 %

MARO-2/k - 3.50 ± 0.4 % 32 % 0% 81 %

1 3.74 ± 0.4 % 27 % -7 % 81 %

MARO-tree 0.5 4.26 ± 0.5 % 17 % -22 % 90 %

0.3 4.57 ± 0.5 % 11% -31 % 94 %

/I Mn/G/J h
1 - /I 3.87 1 ±0.7% 25%

Table 5.15: Total mean queue lengths (Systems D and E 2 , p* = 0.41), expo­
nential processing times

Policies I q II Mean I Accuracy IImprvmnh I Imprvmnt2 I Discnt I
LP-Static - 24.18 - 0% - -

MinDrift (Q) - 15.68 ± 0.2% 35% 0% 0%

1 13.00 ± 0.2% 46% 17% 58 %

MARO-flex 0.5 17.83 ± 0.4% 26% -14% 79 %

0.3 20.06 ± 0.4% 17% -28% 87 %

MARO-2/k - 14.39 ±0.3% 40% 8% 94 %

1 15.68 ±0.4% 35% 0% 94 %

MARO-tree 0.5 18.67 ±0.4% 22% -19% 97 %

0.3 20.50 ± 0.5% 15% -31% 98 %

II Mn/G/Jh
I - 11 17.70 I ± 0.3 % 27%

121

PhD Thesis - Y-T. He - McMaster - Computing and Software

Table 5.16: Total mean queue lengths (Systems e, D and E, p*
exponential processing times

System C II System D
Policies q Mean Accuracy Mean Accuracy

LP-Static - 174.97 - 827.11 -

MinDrift(Q) - 153.97 ± 1.8 % 220.50 ± 1.8%

1 76.67 ± 1.9 % 208.08 ± 1.9 %

MARO-flex 0.5 85.70 ± 1.6 % 199.76 ± 1.6 %

0.3 94.80 ± 1.5 % 204.49 ± 1.2 %

MARO-2/k - 89.21 ± 1.7 % 252.99 ± 1.3 %

1 95.87 ± 1.6 % 235.18 ± 1.2 %

MARO-tree 0.5 105.13 ± 1.8 % 280.43 ± 1.4 %

0.3 113.24 ± 1.3 % 325.48 ± 1.2 %

Mn/GjJh - 49,938.41 ± 0.7 % 236,174.33 ± 0.3 %

0.95),

Fourthly, when comparing a single-server-parallel-queue system with a

multi-server-single-queue system (both processing multiple types of tasks), it

is not surprising to see that for homogeneous systems, Mn I C I J is a better

choice, while for heterogeneous systems, a fully-pooled !lin ICI Jh queue is

not good, especially when the system load is high. The reason is that using

FeFS for local scheduling, "hard" tasks (which require considerably longer

processing times) will more likely block the tasks arriving afterwards and result

in longer queue length. Wu showed in [71] that if both the system load and

task size variance are high, the local scheduling policy had a bigger impact on

the system performance than the routing policy did. Preemptive policies were

proposed to replace the non-preemptive FeFS policy. Note that the output­

queued systems studied in this thesis do allow preemption for tasks of different

types. How to compare the performance of such a system equipped with the

MARO policy with that of a fully-pooled Mn IC I Jh queue, both using the

same preemptive local scheduling policy, remains to be studied.

122

PhD Thesis - Y-T. He - McMaster - Computing and Software

Impact of server utilization and system load As pointed out in Sec­

tion 3.3.1, the long-run server utilizations have a big impact on the system

performance. So we compare the dynamic policies with respect to the aver­

age and standard deviation of the utilizations of all servers in Systems A, C

and D. In addition to Table 5.13, Table 5.17 shows that in heterogeneous sys­

tems, the policies based on LP (3.2) (i.e., LP-Static, MARa, MARO-2/k,

MARa-tree) yield close-to-optimum server utilizations, while MinDrift(Q)

does not. Consequently, for heterogeneous systems with 100 percent flexibil­

ity, MinDrift(Q) is outperformed by the LP-based dynamic policies in most

cases, which has been shown in Tables 5.14 and 5.15 for systems in medium

load, and in Table 5.16 for systems in high load. In some cases, as shown in

[36], MinDrift(Q) performs even worse than the static policy, LP-Static.

Table 5.17: Server utilizations (Systems C and D, p* = 0.41), exponential
processing times

Policies

Min Drift (Q)

LP-Static 0.412 - 0.412 -

MARO 0.427 ± 0.087 0.426 ± 0.103

MARO-2jk 0.412 ± 0.032 0.408 ± 0.024

MARO-tree 0.406 ± 0.125 0.412 ± 0.069
(q = 1)

Associated with server utilizations is the system load, which is indi­

cated by the optimal solution p*. The impact of system load is twofold. One

is the impact on the absolute improvement that can be achieved by the dy­

namic policies over the static policy. The other is the impact on the relative

improvement t.hat. can be achieved at different flexibility levels.

When the system load increases, the improvement over the static policy

increases as well. Figure 5.8 illustrates the changes in the absolute improve-

123

PhD Thesis - Y-T. He - McMaster - Computing and Software

Improvement
100%

o System C (41% load)
90% ~ System C (95% load)

80%
r:System 0 (41% load)
• System 0 (95% load)

70%

60%

,-, ~
, , ~ r-,

- , ' %' , , ' ,- , ' , , %' , , , , ' ~' , ' , , ' , , , , ' ' , , , ,
, '

, ' ' , , '

~.! !
' , , , , , , ' ' , , '

II'
' , , ,

II ,

50%

40%

30%

20%

10%

0%

MinDnft(Q) MARO MARO-2k MARO-tree

Figure 5.8: System load vs. Improvement of total mean queue length, Systems
C and D, exponential processing times

ment for the heterogeneous systems with two different system loads. For exam­

ple, when the load of System C increases from 41 % to 95%, the improvement

achieved by MARO increases from 33% to 56%.

To illustrate the impact of system load on the relative improvement

of the total mean queue length, we use the heterogeneous systems equipped

with the MARO-flex policy. The relative improvement is the ratio of the

improvement achieved at a flexibility level q over that at 100 percent flexibility,

both being calculated using the static policy as a reference. Figure 5.9 shows

the relative improvement at four different flexibility levels and at two different

load levels for systems with exponential processing times.

It can be seen that when System C is 41% loaded, the improvement

achieved with 30 percent flexibility is 42 percent of that with 100 percent

flexibility. At the same flexibility levels, the relative improvement increases to

82 percent, when the system load increases. For System D, which has a larger

system size, the increase in the relative improvement goes from 37 percent to

close to 100 percent. The results indicate that when the system is in heavy

traffic, a small amount of flexibility can yield significant improvement in system

performance. In fact! we have been able to show in Theorem 3.3.2 that in the

124

PhD Thesis - Y.-T. He - McMaster - Computing and Software

Relative Improvement

110%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

0 01 0.2 03 04 05 0.6

--&-- System D (95% load)

---.-- System C (95% load)
_ .•. System C (41% load)

-{3-. System D (41% load)

07 08 0.9
MARO-flex FleXIbIlity q

Figure 5.9: Flexibility levels vs. Relative improvement of total mean queue
length, MARa-flex, exponential processing times

heavy traffic asymptotic regime, the performance improvement given by any

small amount of flexibility is close to that given by 100 percent flexibility.

Impact of processing time variance To examine how processing time

variance affects the system performance, we compare the total mean lengths us­

ing two more processing time distributions: deterministic and hyper-exponential,

in addition to the exponential one. For the hyper-exponential case, the squared

coefficient of variation Cl,i,] is set to 10 for all task types i at each server j.

(By definition, C1 = a for deterministic processing times.)

Figure 5.10 shows that when the processing time variances increase,

the dynamic routing policies achieve greater improvements over the static pol­

icy, although larger processing time variances also result in longer mean total

queue length (hence longer sojourn time in the system). Observations made

from Tables 5.14 and 5.15 still hold for different processing time distributions

with smaller or larger variances. The MinDrift(Q) policy not based on LP

(~~.2) performs even worse when the processing time variances are smaller.

In the deterministic case, MinDrift(Q) is outperformed by the static policy,

LP-Static.

125

PhD Thesis - Y.-T. He - McMaster - Computing and Software

Improvement
100% ,--,

[J Deterministic
80% • Exponential

~ Hyper-exponential

60%

i Dnft(Q) MARO MARO-2/k MARO-tree

-20%

-40% "---'
Routing policies

Figure 5.10: Processing time variance vs. Improvement of total mean queue
length (System D, p* = 0.41)

5.3 Hospital Waiting Times

Throughout the health care sector in Canada, waiting has been and continues

to be the number one barrier for those having difficulties accessing medical

services. Reports from Statistics Canada [10] indicate that nationwide median

waiting times for all specialized services (e.g., specialist visits, diagnostic tests

like non-emergency MRI/CT scans) have been at 3 to 4 weeks in 2005 and

most individuals continue to report that they received the services within 3

months, depending on the kind of care. In some densely populated places,

for example the Greater Toronto Area, the waiting times for CT scans are at

7 to 12 weeks from December 2005 to July 2006. Correspondingly, the CT­

machine-to-population ratio is approximately 1/100,000 and the number of

CT scans per 1,000 population is about 80 in the 2005/2006 fiscal year [55].

Such long waiting times and large demands imply that the medical facilities

have been operating with heavy loads.

As an important part of "Ontario's Wait Time Strategy" [38], the Min­

istry of Health and Long-Term Care has launched a single wait time informa­

tion system that collects data from about 50 Ontario hospitals. Patients can

also access the reports from this system online (http://www.health.gov.on.ca/

126

PhD Thesis - Y-T. He - McMaster - Computing and Software

transformation/waiLtimes/public/wLmorejnfo.html#, accessed on Novem­

ber 30, 2007) to find out the waiting times over the past 2 months for special­

ized services in the hospitals around their neighbourhood (e.g., within 50 km),

so that they are able to make informed choices about where to be referred for

quicker service.

The insights obtained from the Grid system should also apply to the

hospital system, since both can be modelled by the output-queued model in

heavy traffic. We will demonstrate two resource allocation rules which are

related to the above Wait Time Strategy. The service demands considered

are mainly from outpatients, because it is the outpatients rather than the

inpatients who need the waiting time information to decide which hospital to

go to for quicker service.

E .. 3.1 The Model

Consider an area with J hospitals, each having a fixed capacity OJ for outpa­

tient exams (e.g., CT scans). The capacity is the number of 15 minute (CT

scan) slots that can be scheduled for any given day. In reality, as the data

collected in [56] for Vancouver General Hospital indicate, exam lengths vary

(in this case from 15 to 60 minutes), each being a multiplier of 15. Let type i

exams have the length of (15 x i) minutes, i = 1, ... ,4. From a booking point of

view, it is the scheduled length of the exam rather than the actual length that

is relevant. Therefore, the service time distribution for type i exams at hospi­

tal j is assumed deterministic with mean I-t;,} = (OJ/i)-I, i.e., the maximum

number of type i exams can be scheduled at hospital j is /-Li,j per day.

It is known from the Grid system application (Figure 5.9) that for

systems operating in heavy traffic, a small proportion of flexible arrivals can

yield significant improvement in system performance, because a fraction of

incoming workload can be shifted in the system, which leads to complete

resource pooling. Therefore, given 0 :S q :S 1, we assume that there are two

pools of outpatients: 100(1 - q) percent are the dedicated outpatients who

always go to a particular hospital (e.g., the one in a patient's neighbourhood);

100q percent are the flexible ones who are willing to go to anyone of the J

127

PhD Thesis - Y-T. He - McMaster - Computing and Software

hospitals.

Assume that (1) the total outpatient demand (or the number of ex­

ams per day) is a Poisson random variable with mean 5:.; (2) the dedicated

outpatient demand at each hospital j is proportional to the hospital capacity

CJ . Then the flexible demand and each dedicated demand j are independent

Poisson random variables with mean)J = q5:. and A1 = (1 - q)5:. Cj /2:.:=l Cj,

respectively. Let Pi denote the probability of type i exams, i = 1, ... ,4. Then

the total number of type i exams per day is also a Poisson random variable

with mean Ai = Ap~.
Let X~ denote the actual number of type i exams that can be scheduled

at hospital j on day m. We have 2:.;=1 iX~ ::; CJ • Let Q~ denote the actual

outpatient demand, which consists of the flexible part F~r:; and the dedicated

part DiJ. Then the number of exams left over is

L~ = max (0, (Qr;J - Xf;)) .

If Drj > 0, it is included in the actual demand of the next day Q2/1.
An effective resource allocation rule should yield smaller total leftover

exams for the J hospitals. We compare two allocation rules which direct a

flexible outpatient to a hospital in different ways.

Policy 5.3.1 (Decentralized rule). Flexible outpatients make the decision on

their own. Suppose the system provides daily values of the expected waiting

time for type i exams at each hospital j, based on the number of left-over

exams on day m and the ded~cated demand known for the coming day m + 1.

Therefore, given the time

{

4 Dm+1 + Lm I} W = ~ n,J n,J + _
'i ,) L ' n=l /1n,j /1i,j

(5.9)

a flexible outpat~ent who needs a type i exam will choose hospital j which has

the mimmal Wi,J on day m + 1.

Policy 5.3.2 (Centralized rule). Flexible outpatients stand by as "on call" for

the next day exams. The system will refer a flexzble outpatzent who needs a

128

PhD Thesis - Y-T. He - McMaster - Computing and Software

type i exam to hospital j satisfying

j E arg min "'" n,} + -
{

4 Qm+l(t) 1}
JE.:l ~ I/. /I. ..

n= 1 r n ,} rt,J

for day m + 1, where Q:,;-l(t) is the total number of type n exams demand at

the time before notifying the flexible outpatient.

The decentralized rule is close to what has been described in "Ontario's

'¥ait Time Strategy", except that the state information provided is updated

more frequently and contains some future expectations. The centralized rule

is the same as the minimum completion time policy [46], which can be seen as

a special case of MARO with the cost function being C(ZJ) = O.5J1t,jZ; + ZJ

for all j E J and ZJ = 2.:~= 1 J1~,~ Q n,J (t). The difference between the two

rules is that using the decentralized rule, all flexible outpatients who need

the same type of exams will go to the same hospital which has the shortest

expected waiting time, while using the centralized rule, the flexible demand

can be shifted between hospitals in the short term in order to balance the

loads.

:5.3.2 Results

To compare the above two rules, we use simulations to examine the total

leftover exams of all J hospitals over a period of M/2 days (with the first half

of the M days set aside as a warm up period). The performance measure is

the average total of leftover exams

if the system is stable; or otherwise the growth rate of leftover exams

LM -L¥
R= M/2

Two trial systems are used:

129

PhD Thesis - Y.-T. He - McMaster - Computing and Software

System Hl has J = 2 identical hospitals, with capacities 0 1 = O2 = 50. So

the mean service rate matrix is

[

50.0 50.0]
25.0 25.0

J-L=
16.7 16.7

12.5 12.5

The probability of type i exams is given by the i-th element of the vector

pt = [0.5 0.3 0.1 0.1] .

The total exam demand per day has mean ,\ = 52.7, so that the solution to

LP (3.2) is p* = 0.95.

System H2 has J = 3 different hospitals, with capacities 0 1 = 50, O2 = 30

and 0 3 = 20, respectively, so the total capacity is the same as that of System

H l . The mean service rate matrix is

[

50.0

25.0
J-L = 16.7

12.5

30.0 20.0]
15.0 10.0

10.0 6.7 .

7.5 5.0

The total exam demand per day has the same distribution as that of System

Hl (i.e., the same .x and pt), and the solution p* to LP (3.2) is also the same.

The simulation consists of 5000 replications of M = 1000 days each for

a system. The results are at 95 percent confidence level, with accuracies no

worse than 5%.

Table 5.18 compares the number of leftover exams at different flexibility

levels q (assuming q is the same for all exam types), when the two allocation

rules are applied to System HI. I mprvl is the relative improvement over

zero flexibility and I mprv2 is the improvement of the centralized rule over the

decentralized rule. It can be seen that System HI remains stable when the

proportion of flexible demand increases. With a small amount of flexibility

q, the centralized rule can achieve similar improvement as that achieved with

large q. However, when the decentralized rule is applied, the proportion of

flexible demand must be kept small, otherwise the performance gets worse.

130

PhD Thesis - Y-T. He - McMaster - Computing and Software

This can be explained by the "herding effect" [50], where large amounts of

flexible demand all choose to go to one hospital and result in congestion. This

is avoided to some extent by the centralized rule.

In the decentralized rule, the state information on which the flexible

outpatients base their (routing) decisions is updated on a daily basis. In the

centralized rule, however, the system can obtain the updated state information

instantly after each flexible demand is assigned. The simulation results suggest

that an effective resource allocation policy should be able to obtain the state

information that is updated at a speed comparable to the decision making

frequency.

Table 5.19 compares the number and the growth rate of leftover exams

in System H 2 , where one ofthe hospitals in System HI is split into two hospitals

with smaller capacities. It can be seen that when there is a large amount

of flexible demand, both allocation rules can yield an unstable system. It

has been observed that when the flexibility level q increases, the total mean

utilized capacity 6 decreases as a result of more flexible demand going to the

large hospital, leaving the small hospital under utilized. For example, using
A 3 A

the centralized rule, C = 2:)=1 Cj drops from 84.8 (out of 100) to 80.8 when

q increases from 0.5 to 0.9, where the mean utilized capacity of the small

hospital 63 decreases from 8.5 (out of 20) to 1.7, at the same time 61 (of the

large hospital) increases from 47.8 (out of 50) to 49.5.

Although the centralized rule continues to outperform the decentralized

rule when the system is stable, both rules appear the same when the system

becomes unstable. This is not surprising, since the system load is unchanged

no matter which allocation rule is applied, so the rate of divergence of the

total demand per day Qm is the same for both rules. Given Qm = Lm + ~ (the

amount of leftover exams plus the fixed throughput), Lm diverges at the same

speed as Qm does, when the system is unstable.

The simulation results suggest that when using a policy that has opti­

mality properties in the heavy traffic limit, the system load should approach

the critical value from below, rather than from above, so that the system re­

mains stable at any time. Otherwise, the "optimal" policy appears the same

as any policy that keeps all servers busy.

131

PhD Thesis - Y-T. He - McMaster - Computing and Software

Table 5.18: Leftover exams in System Hl

Centralized Rule Decentralized Rule

q L Imprvl L Imprvl Imprv2

0 2.62 - 2.62 - 0%

0.1 1.17 56% 1.38 47% 16%

0.3 0.80 70% 3.67 -40% 78%

0.5 0.76 71% 9.03 -245% 92%

0.7 0.73 72% 14.99 -472% 95%

0.9 0.72 73% 20.70 -690% 97%

Table 5.19: Leftover exams in System H2

Centralized Rule Decentralized Rule

q L Imprvl L Imprvl Imprv2

0 5.45 - 5.45 - 0%

0.1 2.79 49% 3.23 41% 13%

0.2 2.71 50% 4.94 9% 45%

0.3 3.91 28% 9.06 -66% 57%

0.4 6.23 -14% 15.60 -186% 60%

0.5 12.58 -131% 26.70 -390% 53%

R /I R /I Imprv2

I:: II 2.53 II 2.53 II ::
0.40 0.40

132

PhD Thesis - Y-T. He - McMaster - Computing and Software

5.4 Summary

Simulation studies of the MARO related policies have the following implica­

tions, which provide guidelines in designing the routing policies of an output­

queued system.

In the case of a single arrival type, we have that

• The performance improvement achieved by the MARO related policies

is close to the lower bound of achievable performance, when the system

load is high.

• Such improvement is larger in systems with larger service time variance,

because the proposed dynamic routing policies allow incoming workload

to be freely shifted over short time scales between all the queues in the

system.

• Using significantly less state information, MARO-2/k and MARO-tree

achieve improvement competitive with the dynamic policy which requires

global state information, although there is a tradeoff between the sys­

tem performance and the cost of acquiring state information for making

routing decisions.

• A small number of flexible arrivals can yield significant performance im­

provement, especially when the system is operating with high loads. If

the flexibility of choosing servers is limited (e.g., due to locality con­

straints), the ring routing structure is a good choice; otherwise,

MARO-2/k is recommended.

In the case of multiple arrival types, we have that

• The MARO related policies outperform the MinDrift(Q) policy in hetero­

geneous server systems with either high or medium loads, while requiring

significantly less state information. This is achieved by routing arrivals

to the "appropriate" subsets of the queues, with the aid of a resource

allocation LP. The routing structure does not change if the mean arrival

rates of all task types vary by the same factor.

133

PhD Thesis - Y-T. He - McMaster - Computing and Software

• For homogeneous server systems, MinDrift-2jk is recommended to spread

the incoming workload over all of the queues and at the same time to

reduce the amount of state information required for routing.

• The improvement over the static routing policy is larger in systems with

a larger number of servers, or with higher loads, or with larger service

time variance.

• When the system size grows, MARO-2jk and MARO-tree yield larger

discounts of required state information than MARO-flex. However, the

relative values of the system performance and the cost of acquiring state

information should be evaluated, before choosing one of the MARO re­

lated policies with an appropriate flexibility level.

• An effective dynamic routing policy should be able to obtain state in­

formation that is updated at a speed comparable to the decision making

frequency.

134

Chapter 6

Conclusions and Future Work

In this thesis, we have studied several resource allocation policies which require

varying amounts of information for output-queued systems with multiple types

of tasks. These policies require no knowledge of the actual processing times

of the tasks for making routing decisions, but use the first (and in some cases

the second) moments of the task inter-arrival times and processing times, with

a small amount of state information (or even none), in order to minimize the

delay in the system.

For systems with heterogeneous servers, we proposed the MinD rift

Affinity Routing (MARa) policy and three variants, namely MARO-2/k,

MARO-flex and MARa-tree. These policies are designed to maximize the

capacity of the system by using the first moments of the task inter-arrival

times and processing times, and to minimize the delay in the system by using

a limited amount of state information. Specifically, the state information is

the expected increment of the aggregate (convex) holding cost of multiple task

types. As a special case, the state information can be the expected waiting

time in systems with a single task type. On average, the amount of state infor­

mation needed is less than half of the global state information. This amount

can be further reduced if the flexibility level is low, e.g., only a certain propor­

tion of time is available for the dispatcher (who makes the routing decisions)

to acquire state information, or only a certain proportion of tasks are flexi­

ble, or the flexible tasks can only afford a small number of dynamic choices.

Nonetheless, using diffusion limits for systems with Poisson arrival processes,

135

PhD Thesis - Y-T. He - McMaster - Computing and Software

we prove that MARa, MARO-flex and MARO-tree have the same heavy

traffic optimality properties and the optimality is achieved independent of the

levels of flexibility. For systems with a single task type, the MARa related

policies approach the lower bound of achievable performance (where no routing

is required).

By demonstrating applications of the MARa related policies in distrib­

uted computing systems and in medical services, we have shown that:

• It is important for a dynamic routing policy to allow a sufficient pro­

portion of incoming workload to be shifted from one server to any other

server in the system.

• A small number of flexible tasks can yield significant performance im­

provement (over the corresponding static policy), especially when the

system is operating under high load.

• Such improvement is larger in systems with larger service time variance,

or with a larger number of servers.

• Using the MARa related policies, each server in the system is allowed

to be capable of processing a small number of different task types. This

is desirable when it is costly to maintain highly flexible servers.

• By routing the tasks to the "appropriate" subsets of the servers, the

MARO related policies (which require significantly less state informa­

tion) can outperform the MinDrift(Q) policy (which requires global state

information), in heterogeneous server systems with either high loads or

medium loads.

• When the system SIze grows, the MARa related policies yield larger

discounts of required state information. However, the relative values

of the system performance and the cost of acquiring state information

should be evaluated, before choosing one of the policies with a proper

flexibility level.

• An effective dynamic routing policy should be able to obtain updated

state information at a rate comparable to the decision making frequency.

136

PhD Thesis - Y-T. He - McMaster - Computing and Software

We have also proposed resource allocation policies which require no

state information. For output-queued systems which are operating under

heavy traffic, the random routing policy asymptotically minimizes the de­

lay in the system by using the second moments of the task processing times.

The accompanying pooling strategy further reduces the delay by combining

appropriate parallel single-server queues into a number of multi-server queues.

The proposed random routing policy has several features. First, it only

requires each server in the system to be capable of processing a small number

of different task types, in fact a number of servers are dedicated to processing

one type of tasks. This is desirable when the cost is high to maintain highly

flexible servers. Second, it routes a number of the same task types to a subset

of identical servers, which enables these servers to be pooled together, so that

the system performance can be further improved. Third, it is optimal for

various processing time distributions whose (squared) coefficients of variation

are differentiated by a constant factor, if the arrival streams of tasks follow

Poisson processes.

We have shown that to minimize the delay in the system, the pool­

ing strategy depends on the combinations of the first two moments of the

task inter-arrival times and processing times. There are cases where (partial)

pooling subsets of the servers is better than (full) pooling all of the identical

servers into a single queue. In cases where full pooling is optimal, there is still

a tradeoff between the system performance and the cost of maintaining highly

flexible servers, since pooling requires the corresponding servers to be capable

of processing the same types of tasks.

There are several lines along which future research could proceed .

• It is noted that with an arbitrary work-conserving local scheduling rule,

MARO (as well as its variants) asymptotically minimizes the delay in

either the input-queued or output-queued system. For an input-queued

system, MARO can still be used to determine which servers to route

to for tasks waiting in their dedicated queues. Therefore, a study of

MARO's application in staffing service operations (e.g., call centres)

would be of interest.

137

PhD Thesis - Y-T. He - McMaster - Computing and Software

• The MARO related policies are known to be robust in the sense that

the routing structure does not change if the mean arrival rates of all the

task types vary by the same factor. It will be of interest to study how

the estimates of the mean arrival rates affect the routing structure, if the

estimates are apart from the true values by different factors for multiple

task types.

• As for the local scheduling policy, MARO allows preemption of service or

server sharing for tasks of different types. Anantharam showed in [3J that

preemptive policies are better than non-preemptive policies in the sense

of decreasing mean waiting time under high variance. How to compare

the performance between an output-queued system using MARO and a

fully-pooled queue with the same heterogeneous servers, both using the

same preemptive local scheduling policy, would be of interest to study.

• To obtain the optimal routing policy which requires no state information,

we have tried several means of generating the random routing matrix,

instead of using a generic nonlinear programming solver. Fine-tuning

the heuristic procedures so that the solutions are closer to the optimal

values given by the NLP solvers might be useful. In particularly, when

the system parameters change frequently so that the optimal routing

policy needs to be recalculated, using the heuristics will significantly

reduce the time spent in making routing decisions.

138

Bibliography

[1] A. O. Allen. Probability, Statistics and Queueing Theory w~th Computer

Science Applications, Academic Press, second edition, 1990.

[2] S. Altschul, W. Gish, W. Miller, E. Myers and D. Lipman. A Basic Local

Alignment Search Tool. Journal of Molecular Biology, 215:403-410, 1990.

[3] V. Anantharam. Scheduling Strategies and Long-range Dependence.

Queueing Systmes, 33(1-3):73-89, 1999.

[4] M. Armony. Dynamic Routing in Large-Scale Service Systems with Het­

erogeneous Servers. Queueing Systems, 51:287-329, 2005.

[5] M. Armony and C. Maglaras. On Customer Contact Centers with a Call­

Back Option: Customer Decisions, Routing Rules and System Design.

Operations Research, 52(2):271-292, 2004.

[6] R. Atar, A. Mandelbaum and M. Reiman. Scheduling a Multi-class Queue

with Many Exponential Servers: Asymptotic Optimality in Heavy Traffic.

Annals of Applied Probability, 14(3):1084-1134, 2004.

[7] S. Andrad6ttir, H. Ayhan and D. G. Down. Dynamic Server Alloca­

tion for Queueing Networks with Flexible Servers. Operations Research,

51(6):952-968,2003.

[8] A. Bassamboo, J. M. Harrison and A. Zeevi. Design and Control of a Large

Call Center: Asymptotic Analysis of an LP-based Method. Operations

Research, 54(3):419-435, 2006.

139

PhD Thesis - Y-T. He - McMaster - Computing and Software

[9] C. Beightler and D. Phillips. Applied Geometric Programming. Wiley, New

York, 1976.

[10] J. M. Berthelot and C. Sanmartin. Access to Health Care Services zn

Canada. Statistics Canada, Catalogue 82-575-XWE, 2006.

[11] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization,

Athena Scientific, 1997.

[12] P. Billingsley. Convergence of Probability Measures, John Wiley and Sons,

1968.

[13] K. Birman. Can Web Services Scale Up? IEEE Computer, 38(10):107-

110,2005.

[14] S. Boyd and L. Vandenberghe. Convex Optimization, Cambridge Univer­

sity Press, Cambridge, 2004.

[15] J. A. Buzacott. Commonalities 111 Re-engineered Business Processes:

Models and Issues. Management Science, 42:768-782, 1996.

[16] J. A. Buzacott and J. G. Shanthikumar. Stochastic Models of Manufac­

turing Systems, Prentice Hall, 1993.

[17] J. W. Byers, J. Considine and M. Mitzenmacher. Geometric General­

izations of the Power of Two Choices. Proceedings of the Sixteenth An­

nual ACJ\1 Symposium on Parallelism in Algorithms and Architectures,

Barcelona, 54-63, 2004.

[18] R. H. Byrd, J. Nocedal and R. A. Waltz. KNITRO: An Integrated Package

for Nonlinear Optimization. G. Di Pillo and M. Roma (eds.), Large-Scale

Nonhnear Optimization, 83:35-59, Springer, Netherlands, 2006.

[19] H. Chen and D. D. Yao. Fundamentals of Queueing Networks: Perfor­

mance, Asymptotics and Optimization, Springer, New York, 2001.

[20] E. D. Dolan, J. J. More and T. S. Munson. Benchmarking Optimiza­

tion Software with COPS 3.0, Technical Report ANL/MCS-273, Argonne

National Laboratory, 2004.

140

PhD Thesis - Y-T. He - McMaster - Computing and Software

[21] H. Feng, V. Misra, D. Rubenstein. Optimal State-free, Size-Aware Dis­

patching for Heterogenous M/G/-type Systems. Performance Evalua­

tion, 62:475-492, 2005.

[22] R. D. Foley and D. R. McDonald. Join the Shortest Queue: Stability and

Exact Asymptotics. The Annals of Applied Probability, 11(3):569-607,

2001.

[23] 1. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid: En­

abling Scalable Virtual Organizations. International Journal of High Per­

formance Computing Applications, 15(3):200-222, 2001.

[24] R. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D.

Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L.

Moore, B. Rust, and H. J. Siegel. Scheduling Resources in Multi-User,

Heterogeneous Computing Environments with SmartNet. Proceedings of

the 7th Heterogeneous Computing Workshop, 184-199, 1998.

[25] N. Gans, G. Koole and A. Mandelbaum. Telephone Call Centers: Tutorial,

Review, and Research Prospects. Manufacturing and Service Operations

Management, 5(2):79-141, 2003.

[26] O. Garnett and A. Mandelbaum. An Introduction to Skills-based Rout­

ing and Its Operational Complexities. Teaching Notes, Technion, Haifa,

Israel, 2001.

[27] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP Algorithm

for Large-Scale Constrained Programming. Technical Report SOL 97-3,

Systems Optimization Laboratory, Stanford University, 1997.

[28] C. Graham. Functional central limit theorems for a large network m

which customers join the shortest of several queues. Probab. Theory Relat.

Fields, 131:97-120, 2005.

[29] D. Gross and C. Harris. Fundamentals of Queueing Theory, Wiley­

Interscience, third edition, 1998.

141

PhD Thesis - Y-T. He - McMaster - Computing and Software

[30] S. Gurumurthi and S. Benjaafar. Modeling and Analysis of Flexible

Queueing Systems. Naval Research Logistics, 51:755-782, 2004.

[31] S. Halfin and W. Whitt. Heavy Traffic Limits for Queues with Many

Exponential Servers. Operations Research, 29:567-587, 1981.

[32] R. W. Hall. Queueing Methods for Services and Manufacturing, Prentice

Hall, 1991.

[33] P. Hansen, B. Jaumard and S.H. Lu. Some Further Results on Monotonic­

ity in Globally Optimal Design. ASME Journal of Mechanisms, Trans­

missions, and Automation in Design, 111(3):345-352, 1989.

[34] J. M. Harrison. Brownian Motion and Stochastic Flow System, Wiley,

New York, 1985.

[35] J. M. Harrison and M. J. Lopez. Heavy Traffic Resource Pooling m

Parallel-server Systems. Queueing Systems, 33:339-368, 1999.

[36] Y-T. He, I. Al-azzoni and D. G. Down. MARO - MinDrift Affinity Rout­

ing for Resource Management in Heterogeneous Computing Systems. B.

Spencer, M.-A. Storey and D. Stewart (eds.), Proceedings of the 17th An­

nual Conference of IBM Centre for Advanced Studies on Collaborative

Research (CASCON'07), 71-85, 2007.

[37] K. Holmstrom, A. O. Goran and M. M. Edvall. User's Guide for TOM­

LAB/KNITRO v5.01, TOMLAB Optimization Inc., 2006.

[38] A. R. Hudson and P. Glynn Ontario's Wait Time Strategy:

Overview, Ontario Ministry of Health and Long-Term Care, Decem­

ber, 2004. Available via: http) /www.health.gov.on.ca/transformation/

wai Ltimes / providers / wt _strategy. html

[39] D. L. Iglehart and W. Whitt. Multiple Channel Queues in Heavy Traffic,

I and II. Advances in Applied Probability, 2:150-177, 355-364, 1970.

142

PhD Thesis - Y-T. He - McMaster - Computing and Software

[40] H. Jia and F. Ord6 nez and M. M. Dessouky. Solution Approaches for

Facility Location of Medical Supplies for Large-Scale Emergencies. Com­

puters and Industrial Engineering. 52(2):257-276, 2007.

[41] J. F. C. Kingman. The Heavy 'fraffic Approximation in the Theory of

Queues. Proceedings of the Symposium on Congestion Theory, W. Smith

and W. Wilkinson (eds.), University of North Carolina Press, 137-159,

1965.

[42] L. Kleinrock. Queueing System, Volume II: Computer Applications, Wi­

ley, New York, 1976.

[43] L. Kontothanassis and D. Goddeau. Profile Driven Scheduling for a Het­

erogeneous Server Cluster. Proceedings of the 2005 International Con­

ference on Parallel Processing Workshops (ICPPW'05), 336-345, IEEE

Computer Society, 2005.

[44] K. Krauter R. Buyya and M. Maheswaran. A Taxonomy and Survey of

Grid Resource Management Systems for Distributed Computing. Software

Practice Experience, 32(2):135-164, 2002.

[45] D. Lu, H. Y. Sheng, and P. A. Dinda. Effects and Implications of File

Size/Service Time Correlation on Web Server Scheduling Policy. Pro­

ceedings of the 13th IEEE International Symposium on Modeling, Analy­

sis, and Simulation of Computer and Telecommunication Systems (MAS­

COTS'05), 2005.

[46] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R. F. Freund. Dy­

namic Matching and Scheduling of a Class of Independent Tasks onto

Heterogeneous Computing Systems. Proceedings of the 8th Heterogeneous

Computing Workshop, 30-44, 1999.

[47] A. Mandelbaum and M. Reiman. On Pooling in Queueing Networks. Man­

agement Science, 44(7):971-981, 1998.

143

PhD Thesis - Y-T. He - McMaster - Computing and Software

[48] A. Mandelbaum and A. L. Stolyar. Scheduling Flexible Servers with Con­

vex Delay Costs: Heavy-Traffic Optimality of the Generalized CJ.1-Rule.

Operatwns Research, 52(6):836-855, 2004.

[49] C. Maranas and C. Floudas. Global Optimization in Generalized Geomet­

ric Programming. Computers and Chemical Engineering, 21(4):351-370,

1997.

[50] M. Mitzenmacher. How Useful Is Old Information? IEEE Transactions

on Parallel Distributed Systems, 11(1):6-20, 2000.

[51] M. Mitzenmacher. The Power of Two Choices in Randomized Load

Balancing. IEEE Transactions on Parallel and Distributed Systems,

12(10):1094-1104, 2001.

[52] J. L. Morales, J. Nocedal, R. Waltz, G. Liu, and J. P. Goux. Assessing

the Potential of Interior Methods for Nonlinear Optimization. O. Ghattas

(ed.), Proceedings of the First Sandia Workshop on Large-Scale PDE­

Constrained Optimization, Springer Verlag, 2002.

[53] The MOSEK optimization toolbox for MATLAB manual. Version 4.0,

MOSEK ApS, Denmark, 2006.

[54] B. A. Murtagh and M. A. Saunders. MINOS 5.5 User's Guide. Technical

Report SOL 83-20R, Systems Optimization Laboratory, Stanford Univer­

sity, 1998.

[55] Ontario Ministry of Health and Long-Term Care. Ontario's Wait

Time Strategy: MRI 8 CT Expert Panel - Phase II Report, Decem­

ber, 2006. Available via: http://www.health.gov.on.ca/transformation/

waiLtimes/providers/wLstrategy.html

[56] J. Patrick and M. L. Puterman. Improving Resource Utilization for Di­

agnostic Services through Flexible Inpatient Scheduling: A Method for

Improving Resource Utilization. Journal of the Operational Research So­

ciety, 58:235-245, 2007.

144

PhD Thesis - Y-T. He - McMaster - Computing and Software

[57] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dy­

namic Programming, Wiley, New York, 1994.

[58] M. Reiman. Some Diffusion Approximations with State Space Collapse.

Modelling and Performance Evaluation Methodology, F. Baccelli and G.

Fayolle (eds.), Lecture Notes in Control and Information Sciences, 60:209-

240, Springer, 1984.

[59] A. Sharifnia Instability of the Join-The-Shortest-Queue and FCFS Poli­

cies in Queuing Systems and Their Stabilization. Operations Research,

45(2):309-314, 1997.

[60] R. A. Shumsky. Approximation and Analysis of a Call Center with Flex­

ible and Specialized Servers. OR Spectrum, Special Issue on Call Centre

Management, 26(3):307-330, 2004.

[61] D. R. Smith and W. Whitt. Resource Sharing for Efficiency in Traffic

Systems. Bell System Technical Journal, 60:39-55, 1981.

[62] A. L. Stolyar. MaxWeight Scheduling in a Generalized Switch: State

Space Collapse and Workload Minimization in Heavy Traffic. Annals of

Applied Probability, 14(1): 1-53, 2004.

[63] A. L. Stolyar. Optimal Routing in Output-Queued Flexible Server

Systems. Probability m the Engineering and Informational Science,

19(2):141-189,2005.

[64] Y.-C. Teh and A. R. Ward. Critical Thresholds for Dynamic Routing in

Queueing Networks. Queueing Systems, 42:297-316, 2002.

[65] E. Tekin, W. J. Hopp and M. P. Van Oyen. Pooling Strategies for Call

Centre Agent Cross-training. Working paper, Northwestern University,

2004.

[66] W. Whitt. Deciding Which Queue to Join: Some Counter Examples.

Operations Research, 34:226-244, 1986.

145

PhD Thesis - Y-T. He - McMaster - Computing and Software

[67] W. Whitt. Approximations for the GI/G/m Queue. Production and Op­

erations Management, 2:114-161, 1993.

[68] W. Whitt. Stochastic-Processes Limits: An Introduction to Stochastic­

Process Limits and Their Applzcation to Queues, Springer, New York,

2002.

[69] R J. Williams. On Dynamic Scheduling of a Parallel Server System with

Complete Resource Pooling in Heavy Traffic. Analysis of Commumca­

tion Networks: Call Centres, Traffic and Performance, D. McDonald and

S.RE. Turner (eds.), Fields Institute Communication Series, 28:49-71,

American Mathematical Society, 2000.

[70] W. Winston. Optimality of the Shortest Line Discipline. Journal of Ap­

plied Probability, 14:181-189, 1977.

[71] R Wu. Scalable Scheduling of Parallel Servers, Ph.D. thesis, McMaster

University, 2007.

[72] H. Zhang and G.-H. Hsu. Heavy Traffic Limit Theorems for a Sequence

of Shortest Queueing Systems. Queueing Systems, 21:217-238, 1995.

146

Appendix A

An Experiment of Solving the

Resource Allocation NLP Using

Geometric Programming

In this section, we discuss an alternative way of solving the NLP (4.24) using

geometric programming (GP). Although our experiment on a sample prob­

lem was not successful with MOSEK's GP solver [53], we present here the

method of transforming the original problem into a series of standard form

GP problems, while each standard GP can be converted to a convex optimiza­

tion problem using logarithmic transformation [14J. What remains an open

question is whether our attempt can be used as a starting point for exploit­

ing the well-developed convex optimization techniques for the NLP problems

which are like the ones described in this thesis.

A.I Standard GP

The standard G P is of the form

min fo(x) (A.l)
x

s.t. fm(x) ::=; 1, l::=;m::=;M

he(x) = 1, 1 ::=; R ::; L.

147

PhD Thes2s - Y-T. He - McMaster - Computing and Software

The decision variables x E lR~+ are strictly positive. The objective function

fa and the inequality constraints fm are posynomials of the form

Km N

f () - ""' II xam,k" m X - ~Cm,k t , o ::; m ::; 111;
k=1 i=1

the equality constraints he are monomials of the form

N

he(x) = Ce II x:e", 0::; f ::; L,
t=1

where all coefficients Cm,k and Ce are strictly positive; all exponents am,k,t and

ae,i are real-valued. (If there exists a negative coefficient Cm,k, fm is called

signomial.)

GP (A.1) can be converted to a convex problem using a logarithmic

transformation of the variables, the objective and the constraint functions.

Let

X [IOgXI,'" ,lOgXN f,
Cm,k log Cm,b 0 ::; m ::; M, 1 ~ k ~ Km

Clm,k [am,k,I' ... , am,k,N], 0::; m ::; M, 1::; k ::; Km

ae [ae,l' ... ,ae,N], 0::; f ::; L.

GP (A.1) in convex form is

m~n Jo(x) = log (i.: eaO'k,x+CO'k) (A.2)
k=1

s.t. 1m (x) ~ log (t, e"m.' ;;Hm.,) <: 0, 1 <: rn <: M

he(x) = ae . X + log Ce = 0, 1::; f ~ L.

A high quality implementation of a GP solver is available in the MOSEK

software package. MOSEK takes as inputs the coefficients Cm,k, Ce and expo­

nents am,k,n ae,t and obtains GP (A.2) as a result of pre-processing. Then the

convex form is solved using a primal-dual interior-point method [14].

148

PhD Thesis - Y-T. He - McMaster - Computing and Software

A.2 Reformulation of the NLP Problem

Let A E lR.~, P E lR.~ and 0 E lR.~ be vectors of positive parameters. We denote

by Y E IR~J+3J the vector of decision variables. The original NLP is

mm
y

s.t.

IJ+J

fo(Y) = L (Y~) (YJ+J) (Y;;2J) (A.3)
J=IJ+1

I

L AiY(]-l)I+i = YJ+IJ, 1::; j ::; J (A.4)
i=l

I

L OiY(j-1)I+i = YJ+IJ+J, 1::; j ::; J (A.5)
z=l

I

LY(J-1)I+Z = YJ+IJ+2J, 1::; j ::; J (A.6)
z=l

I

L PZY(J-1)I+i = 1, 1::; j ::; J (A.7)
i=l

J

LY(j-1)I+i = 1, 1::; i ::; I (A.8)
j=l

o ::; Y(J-1)I+z ::; 1, 1::; i ::; I, 1::; j ::; J (A.9)
I

o ::; YJ+IJ+J ::; L Oz,
z=l i=l

o ::; Yj+IJ+2J ::; I, 1::; j ::; J. (A.10)

Constraint (A.9) means that the first I J variables Y(j-1)I+i correspond to the

routing probabilities Pz,j' Linear combinations of these I J variables yield the

remaining 3J variables, as given by constraints (A.4)-(A.6).

To transform the original NLP into a series of standard GP problems,

we first make the assumption that all of the decision variables in (A.3) are

strictly positive. Let Xl E lR.~+ denote the vector of new decision variables,

where X z = Yi +f with small constant f > 0, for alII::; i ::; (I J). If the solution

x; < 2f, the optimal value of Y; is set to zero. For example, let 2f = 0.01,

any probability less than 0.005 is considered to be zero. Using (A.4)-(A.6),

we construct the vector X2 E IR~+ from Xl'

149

PhD Thesis - Y-T. He - McMaster - Computing and Software

To find a local optimal solution, (A.3) is reformulated as

min
(Xl,X2)

s.t.

IJ+J

fa(x2) = L (x~) (xj+J) (X;~2J)
J=IJ+1

I

X;~IJ L Ai X (J-1)1+i ~ 1, 1 ~ j ~ J
i=l

I

xj~IJ+J L: ezX(j-l)1+z ~ 1, l~j~J
z=l

z=l z=l

I

L Pi X (j-1)1+z ~ 1, 1 ~ j ~ J
z=l

I (a) a"j I II Z,J II X -a,,) < 1
- (J-1)I+z - ,

i=l pz z=l

J

L: X(j-1)1+i ~ 1, 1 ~ i ~ I
j=l

J J

II f3:'~" IT X 0~i')I +i ~ 1,
j=l J=l

Xi ~ 1, 1 ~ i ~ I J

l~j~J

1 ~ j ~ J

I~j~J

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.I6)

(A.17)

(A. IS)

(A.I9)

(A.20)

(A.21)

(A.22)

Constraints (A.I2)-(A.I4) are transformed from (A.4)-(A.6). For each

xJ+1J (1 ~ j ~ J), the left-hand side of (A.I2) is the only constraint func­

tion which is monotonically decreasing, while fa is monotonically increasing.

Constraint (A.12) will be active at the minimum (xi, x;) [33, 49]. Similarly,

constraints (A.13)-(A.I4) will be active.

Constraints (A.15) and (A.16), which are transformed from (A.7), pro­

vide upper and lower bounds to X(j-1)1+i (1 ~ j ~ J), respectively. Specifi-

150

PhD Thesis - Y-T. He - McMaster - Computing and Software

cally, (A.16) is derived by condensing the lower bound constraints (which are

signomials)

I

(P1X()-1)l+1) -1 - 2:= (P1X(j-1)l+1) -1 (Pi X (j-1)l+t) ::; 1, 1::; j ::; J (A.23)
t=2

using the geometric inequality [9]

where gk(X) is monomial and Lk Cl:k = 1, (\:fk) Cl:k > O. For all 1 ::; j ::; J, let

The parameter Cl:i,j is determined by

I

Cl:i,j = gi,j (xiO)) / 2:= gi,) (xiO)), (A.24)
t=l

where xiO) is a feasible solution to the constraints (A.7)-(A.9). So we have

L{=l Cl: t ,] = 1, for all 1 ::; j ::; J. Then (A.23) becomes

which is the same as (A.16). Similarly, constraints (A.17) and (A.18) are

transformed from (A.9).

Constraints (A.19)-(A.22) are transformed from (A.9)-(A.10).

To obtain the global optimum of the original NLP (A.3), we solve a

series of CPs (A.l1) using the following procedure .

• Step 1: Choose a feasible xiO) which satisfies (A.7)-(A.9). Let t(O)

fo(x~O)), where x~O) is obtained using (A.4)-(A.6). Set n = 1.

151

PhD Thesis ~ Y-T. He ~ McMaster ~ Computing and Software

• Step 2: Solve an augmented GP

min ten)
(Xl,x2,t(n))

S.t. !O(X2) (t(n)) ~l ~ 1,

(A.12) - (A.22),

_S_t(n) < 1
t(n~l) -'

where s is a constant factor a bit larger than 1, e.g., s = 1.01.

(A.25)

• Step 3: If solving (A.25) is infeasible and xin
) is feasible, then the opti­

mum is obtained and the procedure is terminated.

A.3

If solving (A.25) is feasible and xin
) is also feasible, then (i) ten) =

!o(x~n)); (ii) set n = n + 1 and go to Step 2.

If solving (A.25) is infeasible and xin
) is also infeasible (i.e., anyone of the

constraints (A.12)-(A.22) is violated), then (i) use (A.24) to update the

parameters (Xi,] (and (3],t) with xin
); (ii) ten) = t(n~l); (iii) set n = n + 1

and go to Step 2. (If xin) is infeasible with a large nand Ilxin) _xin~l) II <
f, the procedure is terminated with an error.)

Numerical Examples

Let I = J = 2,). = [1, 0.3], p = [1/2, 3/2]' , e = [2/4, 0.6/0.04]. The global

optimal solution to NLP (A.3) is known to be xi = [1, 1/3, 0, 2/3].

The first experiment was trying to obtain a local optimum using GP

(A.11). The starting point was xiO) = [0.5, 0.5, 0.5, 0.5]. The MOSEK GP

solver returned the primal (and dual) feasible "optimal" solution xi = xiO).

The second experiment was trying to obtain a global optimum using

the augmented GP (A.25). The starting point was xiO) = [0.5, 0.5, 0.5, 0.5].

The MOSEK GP solver returned the primal (and dual) infeasible solution

Xl = [0.51,0.51,0.49,0.53].

Both experiments did not yield correct answers. However, it is hoped

that reformulating an NLP like (A.3) into a series of standard GPs can be

applicable to other GP solvers.

152

Appendix B

A Resource Allocation Heuristic

Here we propose a heuristic to generate the routing probability matrix for

an output-queued system which operates using static routing in heavy traffic.

The system has J identical servers in parallel to process I types of tasks. The

arrivals of type i tasks follow a Poisson process with rate Ai and are routed to

server j immediately upon arrival, with probability Ptj. The processing times

of type i tasks have mean f.Li 1 and variance {3;. The local scheduling rule at

each server is FCFS. The routing matrix obtained by the heuristic is trying to

(1) decrease the total queue length of the system, where no state information

is available and (2) increase the degree of pooling for the associated pooling

strategy, which aims to further decrease the delay in the system.

In Section 4.1, we formulated the following NLP to obtain the optimal

routing matrix P = (Pi,J)IXJ, which minimizes the total mean queue length of

the system in heavy traffic.

min
p

s.t.

(B.1)

I

L PiPtj = 1, 1 -::;, j -::;, J (B.2)
i=1

J

LPij = 1, 1 -::;, i -::;, I (B.3)
J=1

o -::;, Ptj -::;, 1, 1 -::;, i -::;, I, 1 -::;, j -::;, J,

153

PhD Thesis - Y-T. He - McMaster - Computing and Software

where the parameters include the mean arrival rate Ail the offered load Pi =
Ad J-Lz and the second moment of the processing times {}z = (J-L-;2 + (3;) for each

task type i, 1 :::; i :::; I.

By analyzing the optimal solution P*, it is observed that a random

routing policy which aims to reduce the total queue length tends to have the

following properties.

1. A number of servers are dedicated to processing a task type with high

load (pz > 1). This is consistent with the intuition that to reduce the

mean delay, one means is to reduce the service time variabilities. For

task type i, the number of dedicated servers (if any) is equal to lpd,
so that each server's utilization is one in heavy traffic. There might be

more than one group of dedicated servers, each group for a different task

type.

2. A number of task types are exclusively processed by one server. On the

other hand, the number of task types being processed at each server is

small. This also contributes to reducing the service time variabilities.

3. For systems with a large number of servers, there are identical columns

in the matrix P*. Theorem 4.1.2 implies that pooling the corresponding

servers can further reduce the total queue length of the system.

B.l The Procedures

According to the desirable properties described above, we propose in Figure

B.l a heuristic that provides an alternative way to generate a suboptimal

routing matrix PH. It is useful when an NLP solver is not available, or when

the time spent in solving NLP (B.l) is very long, or when a large degree of

pooling is desirable.

The heuristic starts with a full matrix po, with all of its elements being

1/ J. It not only is a natural choice that is a feasible solution to the constraints

(B.2) and (B.3), but it also improves the chances of obtaining a load-balanced

solution pH, i.e., for each row i, the values of the nonzero elements p~ are

154

PhD Thesis - Y-T. He - McMaster - Computing and Software

1 function pH = RoutingMatrixU, A, j1, (3)

2 { p: array of the offered loads of I task types;

3 7): array of the second moments of the processing times of I task types;

4 po: starting point of the routing matrix with size I x J;

5 Jds: number of the dedicated servers, each processing only one type of tasks;

6 P: the first Jds columns of the matrix P corresponds to the dedicated servers;

7 If Jds > 0, <p(P) < <p(PO); otherwise, P = po;

8 pds: array of the offered loads sorted in descending order;

9 pds [i] = 0 implies all of the type i tasks are routed to the dedicated server(s);

10 pH: the solution returned, with <p(PH) ::::: <p(pds);

11

12 P, = Al / j1" 7), = (j1;2 + (3;), 1::::: z ::::: I;

13 po = (P,,))rXJ with P,,) = I/J, for aliI::::: i::::: I, 1::::: j ::::: J;

14 [Jds, pds, P] = DedicateSrvr(p, pO);

15 7)ds = {7), : 7), E 7), pdS[il-=l= O};

16 pH = DedicateType(Jds , p, 7)ds, P);

17 }

Figure B.1: A heuristic to generate the random routing matrix pH

close to each other. Since the system in question has identical servers, load

balancing is beneficial to reducing the total mean queue length.

Figure B.2 shows the subroutines to generate the dedicated servers. If

there exist Jds (0 < Jds :s: J) dedicated servers and the objective function

r.jJ(P) is decreased, then the resulting matrix P is updated in such a way that

the remaining load of each task type is now evenly distributed among the

(J - Jds) non-dedicated servers. Specifically, we have for all (Jds + 1) :s: j :s: J,

{
1/(J - JdS),

P"j = (1 - ~;~': p-;,j)/(J - JdS),
i E {i': p,',j' = 0,1 :s: j':S: J dS },
, {'" - -1 0 1 < "< Jds} 1., E 1., • Pi',]' - Pi',j' > , _ J _ .

This keeps the load balanced as much as possible, while maintaining P to be

155

PhD Thesis - Y-T. He - McMaster - Computing and Software

1 function [Jds , pds, pds J = DedicateSrvr (p, p)

2

3

{ col: column index of the routing matrix P with size 1 x J;

rl, r2: arrays of row indices of P, with lengths hand 12 = 1 - h, respectively;

4 k: index of the elements in rl;

5 update, improve: boolean variables;

6

7 [pds, rl, r2J = Sortl(p);

8 pds = P; Jds = 0; col = 0; improve = 1;

9 while (col < J AND improve == 1)

10 { col = col + 1; update = 0; k = 1;

11

12

13

14

while (k :::; h AND update == 0)

{ ptest = Testl (col, rl[k], pds, pds) ;

if (cj;(ptest) < cj;(Pds))

pds = ptest; update = 1;

15 else

16 k = k + 1;

17 }

18 if (update == 1)

19 pdS[rt[kJ] = pds[rl[kJJ -1; Jds = Jds + 1; (pds, rl, 7'2J = Sortl(pds);

20 else / / all the task types with load greater than one are tested.

21 improve = 0;

22 }

23 }

24 / / function Sortl(p) returns the arrays pds, 7'1 and r2, where

25 pdS[rt[IJJ;::: .. ·;::: pds(7'I(h]J;::: 1 > pdS[r2[1]];::: .. ·;::: pds(7'2[h]].

26 / / function Testl (j, i, p, P) returns the matrix ptest, which satisfies the constraints

27 (B.2) and (B.3). At the column], ptest[i,j] > 0 and ptest[i,jJ = 0

28 for all i' i- i, i.e., the server j is dedicated to processing the task type i.

Figure B.2: Subroutines to generate the dedicated servers

156

PhD Thes~s - Y-T. He - McMaster - Computing and Software

1 function pH = DedicateType (Jdt , p, rJdt , P)

2 { col: column index of the routing matrix P with size [x J;

3 t, s: arrays of row indices of P, with the same length K = length(rJdt);

4 k: index from 1 to K; task type s[K] has the smallest processing time variance.

5 update, improve: boolean variables;

6

7 s = Sort2(rJdt, 0); / / rJdt[s[l]] 2: '" 2: rJdt[s[K]].

8 pH = P; col = Jdt; improve = 1;

9 while (col < J AND improve == 1)

10

11

12

13

14

15

16

17

18

19

{ col = col + 1; update = 0; k = K;

while (k > 0 AND update == 0)

{ t = Sort2(rJdt , rJdt[s[k]]); ptest = Test2(col, s[k], t, p, pH);

if (rp(ptest) < rp(pH))

}

pH = ptest; update = 1;

else

k = k - 1;

if (update == 1)

s = s \ {s[k]}; rJdt = rJdt \ {rJdt[s[k]]}; K = K -1;

20 else

21 improve = 0;

22 }

23 }

24 / / function Sort2(rJ, rJ[i]) returns the array l' with length K = length(rJ) such that

25 IlrJ[i] - rJ[1'[1]] II 2: ... 2: IlrJ[z] - rJ[r[K]] II.

26 / / function Test2 (j, i, t, p, P) returns the matrix ptest. For the dedicated task type z,

27 ptest [i, j] > 0 and ptest [i, j'] = 0 for j < j' :s: J. Moreover, [' task types

28 (indexed by t[l] .. . t[[']) are routed to the servers j' instead of the server j,

29 while the number [' is subject to the constraints (B.2) and (B.3).

Figure B.3: Subroutines to generate the dedicated task types

157

PhD Thesis - Y-T. He - McMaster - Computing and Software

a feasible solution.

Figure B.3 gives the routines to generate the dedicated task types. Sup­

pose there are I;t types of tasks being processed exclusively at non-dedicated

server j. The variabilities of their processing times (indicated by rJi , 1 :S i :S
I;t) are close to each other. The load of the remaining (I - I;t) task types

is then evenly distributed among the non-dedicated servers which are indexed

by j I E {(j + 1), ... ,J}. (In Figure B.3, (I - I;t) is denoted by l' in function

Test2.)

B.2 Numerical Examples

Here we give an example of computing the routing matrix pH using the heuris­

tic. For comparison purposes, this example has the same parameters as in

Example 4.1.1.

Example B.2.1. Let I = 5 and J = 6. The first-order primitives are

).. = [39.84 13.47 15.15 0.94 2.06]

and

JL = [16.7 30.4 18.9 3.0 1.0].

So the offered loads are gwen by the vector

p = [2.39 0.44 0.80 0.31 2.06].

Since the processing times are assumed exponentzally distributed, the second

moments are given by the vector

to be

rJ = 2~L-2 = [7.2 2.2 2.6 222.2 2000.0] x 10-3
.

Using the heurzstic, the s'uboptimal solutwn to NLP (B.l) is obtamed

0.42

pH =

0.49

0.42

0.49

158

0.06 0.10

1.00

0,50 0.50

1.00

0.02

(B.4)

PhD Thesis - Y-T. He - McMaster - Computing and Software

which yields the objective function value

cjJ;; = 234.8. (B.5)

By comparing (B.5) with cjJ;xp = 178.6 in (4.33), the relative error of

the heuristic is
-H -*

c = CPn - CPexp X 100% = 31 %.
-* CPexp

On the other hand, by comparing (B.4) with (4.32), it is found that pH has

more identical columns than P*. By (partial) pooling the servers 1 and 3, 2

and 4, respectively, we have the objective function value

cjJ: = 150.6,

which is 16 percent less than the minimum value cjJ:xp for no pooling.

159

