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Abstract 

Flexible queuing systems arise III a variety of applications, such as 

service operations, computer/communication systems and manufacturing. In 

such a system, customer types vary in the flexibility of choosing servers; servers 

vary in the flexibility of which types of customers to serve. This thesis studies 

several resource allocation policies which address the concerns of limited cus­

tomer choice and server flexibility. First, to accommodate different levels of 

flexibility, we propose the MinDrift affinity routing (MARa) policy and three 

variants: MARO-2/k, MARO-flex and MARa-tree. These policies are de­

signed to maximize the system capacity by using the first moments of the inter­

arrival times and the service times, at the same time they require only a small 

amount of state information in minimizing the delay in the system. Using dif­

fusion limits for systems with Poisson arrival processes, we prove that MARa, 

MARO-flex and MARO-tree have the same heavy traffic optimality prop­

erties and the optimality is achieved independent of the flexibility levels. By 

providing their applications in distributed computing systems, we show that 

the MARa related policies (which require significantly less state information) 

outperform the MinDrift(Q) policy (which requires global state information), 

in heterogeneous server systems with either high or medium loads. Second, 

when no state information is available, we propose both the random routing 

policy which asymptotically minimizes the delay in the system by using the 

second moments of the service times, and the pooling strategy which further 

reduces the delay by combining appropriate parallel single-server queues into a 

number of multi-server queues. Overall, this thesis intends to provide insights 

on designing effective policies for allocating servers' times to serve multiple 

types of customers. 
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Chapter 1 

Introd llcti()n 

This thesis studies resource allocation in stochastic service systems with mul­

tiple types of tasks and heterogeneous servers. The system can be referred 

to as a flexible queueing Eystem, in which task types vary in the inter-arrival 

time distributions and in ';he flexibility of server choice for processing; servers 

vary in the service time distributions and in the flexibility of which types of 

tasks to process. Flexible queuing systems arise in a variety of applications, 

including service operations [32J, computer systems [42J and manufacturing 

[16J. Resource allocation for such systems deals with how to allocate a server's 

time to process different ty pes of tasks, in order to achieve certain performance 

goals (e.g., a task's mean :30journ time in the system is minimized). 

In this chapter, we will describe the system models of interest, the 

issues for resource allocation and the methodology adopted in our study. 

1.1 Motivation 

1.1.1 System Models 

For flexible queueing syste.:ns, there are two related queueing models: output­

queued and input-queued systems. Both systems are equipped with indepen­

dent parallel queues and a number of servers. Each queue might be associated 

with multiple servers. Tasks arrive from outside of the system and wait in one 

of the queues until served. They require a single service and leave the system 
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upon completion. 

Figure 1.1 shows an output-queued system. In this model, each task 

must be routed (by a dispatcher) to one of the servers immediately upon 

arrival. After being routed, the task stays in the server's queue until it is 

processed. Such models can be found in applications such as manufacturing 

systems [64], wireless networks [63], medical services and distributed com­

puting systems (or similarly, multi-location call centres [4]). For example, 

a wireless application may have data packets to be transmitted to multiple 

destinations. These data packets constitute multiple types of tasks and are 

dispatched to a set of transmitters whose transmission rates depend on the 

channel qualities between different transmitters and destinations. 

Figure 1.2 shows an input-queued system, where tasks of the same 

type are placed in a dedicated input queue without being pre-assigned to any 

particular server. When a task is at the head of the queue, it is taken by one 

of the servers which is ready for processing. A scheduling policy is required 

to specify, at each time a server completes the processing of a task, which 

task type that server will process next. This involves both routing decisions 

(to direct which task types to which servers) and sequencing decisions (to 

determine the order in which servers will process tasks from their dedicated 

queues). This model arises in applications like cross-bar switches [62] and 

single-location call centres [8, 69J. 

In this thesis, we study the resource allocation problem for output­

queued systems and demonstrate its applications in distributed computing 

systems and medical services. 

1.1.2 Issues in Resource Allocation 

One of the most commonly managed qualities of a queueing system is the 

accessibility of servers, i.e., "How long did customers have to wait to receive 

service". To reduce the delay in an output-queued system, resource alloca­

tion can take three measures: (1) the routing policy that decides which types 

of tasks are routed to which queues; (2) the pooling strategy that combines 

different subsets of single-server queues into multi-server queues; and (3) the 
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local scheduling policy that determines the order in which the waiting tasks are 

processed at each server. Different policies require various amount of system 

information, which impacts the complexity of implementation. For example, 

designing a new scheduling policy in a computer server system requires the 

control of a server's kernel, which sometimes is hard to obtain. In this thesis, 

we focus on the routing policy and the pooling structure, assuming that the 

local scheduling is non-preemptive and all task types have the same priority. 

Information Needed 

The information needed for making routing decisions is classified into two 

major categories. One is the state mformation, which includes the actual 

numbers of tasks waiting in queues and/or in process, the expected completion 

times of a new arrival at different queues, and the actual remaining processing 

time at each server. The other is the przmitives, which are distributions of task 

inter-arrival times and processing times, or individual task sizes. Within each 

category, differing amounts of information may be required for a routing policy. 

For example, a dynamic routing policy requires current state information (and 

sometimes the past routing history), which is clearly more complex than a 

static routing policy that requires no state information. 

State information can enable a dynamic policy to achieve better per­

formance than a static policy, but it also affects scalability. There are several 

problems with requiring up-to-date state information from a large number of 

servers. Firstly, the complexity of implementation increases, which can make 

the policy infeasible. For example, an unreasonably long time might be re­

quired for collecting and processing the state information before a routing 

decision can be made. Secondly, even if the policy is feasible, a large amount 

of state information increases the system load by adding overhead in routing 

individual tasks, which may compromise the gains in performance. Thirdly, 

the supplied state information may be out of date when a routing decision is 

made. As observed in [50], performance degradation resulting from outdated 

information is a major limitation of policies which require global state infor­

mation. Therefore, tradeoffs between the performance gain and the amount of 

4 
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required state information should be evaluated. In this thesis, we propose a se­

ries of routing policies to address these problems by requiring dramatically less 

state information while at the same time achieving competitive performance. 

Regarding the information of primitives, our proposed routing policies 

require no a priori knowled ge of each task's size, but the first (and in some cases 

the second) moment(s) ofthe task inter-arrival times and processing times. For 

the case where individual task sizes are known, a size-interval strategy [21] is 

proved to be the optimal static routing policy for a homogeneous system of 

first-come-first-serve queues. However, in the situation where task size and 

processing time have very little correlation (e.g., as discussed by Lu et al. in 

[45]), even if the task size is known to be fixed, it is more effective to know 

the processing time distributions at the servers. 

Server and Customer ll"lexibility 

In many applications, servers are partitioned into specialized and cross-trained 

groups. For example, in emergency medical services, there are both basic and 

advanced life support units [40]; in call centres, customer service representa­

tives are unilingual or multilingual [25]; and in web applications, servers can 

be configured as specialized or general servers [13]. These configurations of 

servers are not only to cope with the various demands from customers, but in 

the latter case of web applications also to improve scalability of the system. 

To improve service quality, we are faced with two design questions: 

(1) how much flexibility should each server have and (2) how much routing 

flexibility should be provided to each customer type. Consequently, the sys­

tem performance can be compared in two scenarios: dedicated systems versus 

flexible systems, where tLe difference in performance is affected by both the 

routing policy and the pooling strategy. 

In a dedicated sy:"tem, a customer has no choice in which queue to 

receive service. So no state information is needed for making routing decisions. 

An extreme case is that each customer type can be routed to only one server 

and each server can only serve one customer type, where no pooling is allowed. 

In such a case, each server is configured for exactly one kind of task, which in 
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turn should reduce the cost of implementing and maintaining high flexibility 

for the servers. 

In a flexible system, a customer has the flexibility of choosing a subset 

of queues to join (a strict subset may be due to locality constraints or personal 

preference). Servers are partitioned into a number of subsets, where in each 

subset, the servers are capable of serving the same types of customers that are 

waiting in a single queue. When the number of servers in any subset is greater 

than one, a pooling structure is formed. Pooling identical servers result in per­

formance improvement (e.g., one MIlvfl2 queue versus two MIMI1 queues), 

however, it is not always superior in a heterogeneous system. Buzacott [15] 

shows that when the service times of different customer types are not identical 

in distribution, pooling can lead to longer queueing delays. On the other hand, 

Andrad6ttir et al. [7] shows that a static routing policy which maximizes the 

system capacity does require a subset of servers capable of serving multiple 

customer types. Therefore, there is a tradeoff between the system performance 

and the cost of maintaining highly flexible servers. 

1.1.3 Heavy Traffic Analysis 

To obtain insight into the design of resource allocation policies for output­

queued systems, we employ the method of diffusion limit analysis under heavy 

traffic conditions [68]. Intuitively speaking, servers in a heavy traffic system 

are operating with nearly full utilization. 

In this thesis, heavy traffic limits for a queueing model are obtained 

by considering a sequence of queueing models, where the input load is allowed 

to increase toward the maximum possible, while maintaining stability. Under 

heavy traffic conditions, the steady state performance measures (e.g., the queue 

lengths) typically grow unboundedly. However, with appropriate scaling of 

both time and space, one can construct for the entire queue length process a 

stochastic-process limit. For example in the standard case, such a limit is a 

Markov process with continuous sample paths, also called a diffusion process 

(due to the historic connection with mathematics of physical diffusion). 

The heavy traffic analysis method has several attractive features: (1) it 

6 
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produces simple heavy-traffic limits which identify the key elements affecting 

the performance of a complicated system; (2) it yields asymptotically exact 

behaviour of the system in steady state, which is otherwise analytically in­

tractable, given maximum possible input load; (3) it reduces the dimension of 

the state space in the system control problem, providing a form of state-space 

collapse which makes the problem easier to analyze. 

Our objective of resource allocation is to identify routing policies and 

pooling strategies that are asymptotically optimal in heavy traffic, i.e., mini­

mizing an arrival's mean sojourn time in the system, or equivalently by Little's 

Law, minimizing the mean total number of tasks in the system. We would like 

to achieve this minimum using the smallest amount of server flexibility, while 

accommodating different l'~vels of customer flexibility. 

To determine routing policies in Markovian queueing systems, dynamic 

programming (DP) [57] is a standard approach. However, for a system with 

many servers and many customer types, the state space may be uncountably 

infinite, which makes it VEry difficult to derive structural properties of effec­

tive policies. The application of standard DP techniques to numerically find 

optimal controls also becomes intractable. 

Due to the inherent complexity of the systems under consideration in 

this thesis, heavy traffic analysis would be appropriate, not only because of 

its engineering significance mentioned above, but also because in general, the 

case of interest is when the system is heavily loaded (both as being worst case 

and economically). 

1.2 Related Work 

In the literature on heavy traffic analysis, two asymptotic regimes are discussed 

in the design and control of multi-server queueing systems. 

The first is the so-called "finite-server" heavy traffic regime (first es­

tablished by Kingman [41], also referred to as the conventional heavy traffic 

regime). In this regime, the system has a fixed finite number (m) of servers 

and the system utilization approaches one, the critical value for stability. This 

regime corresponds to the operating environment where server costs dominate 

7 
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the cost of customer delay and where almost all customers may encounter 

delays [25]. 

Iglehart and Whitt [39] prove that in heavy traffic, the scaled queue­

length processes are asymptotically equivalent in the following two systems: a 

GIG/1 queue with service rate m and a GIGlm queue (each of the m servers 

with rate 1), both having identical arrival processes. That is, for the multi­

server model with homogeneous servers and the FCFS discipline, the m servers 

act as a "single super server". This is also true for the system with the join-the­

shortest-queue (JSQ) rule, where the multi-dimensional queue length process 

collapses to one dimension in heavy traffic [58]. This state space collapse 

enables the sojourn time processes in different queues to be expressed in terms 

of the limit of the one-dimensional total queue-length process. 

The second regime is the so-called Halfin-Whitt regime [31]. Here the 

arrival rate and the number of servers are scaled up (to infinity) so that the 

desired traffic load is obtained and the steady state probability that a customer 

gets delayed converges to a limit 0 < a < 1. This regime is more likely to be 

used in describing the dynamics of a call centre where the staffing level grows 

in response to the high arrival rate of incoming calls. However this is not the 

case on which we are focusing, where the number of servers in the system is 

not necessarily large and the service rate of each server is not fixed. Moreover, 

to analyze a system in this regime requires one to solve a non-linear partial 

differential equation whose dimension equals the number of customer types, 

and is therefore not practical to derive implement able control policies [6, 8J. 
Armony and Maglaras [5J perform an asymptotic analysis in the Halfin­

Whitt regime of an M / M / m system, which models call centres with a call-back 

option for customers. The model is restricted to one with 2 customer classes 

and a single server group, however, it is still interesting to see that introducing 

this customer choice also benefits those customers who do not make this choice 

(modelled as one of the two customer classes): the asymptotic approximation 

of their expected waiting time is reduced (by more than 50%), when all the 

customers have static estimates of the steady-state waiting time. 

In a system with multiple types of customers served by groups of spe­

cialized and cross-trained servers, skills-based routing [25J becomes a neces-

8 
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sity. Garnett and Mande:.baum [26] define some canonical designs of network 

topologies, which represe llt building blocks for more complex parallel queue­

ing systems. For example, in a "W" design, two pools of agents cater to three 

types of customers: Pool 1 serves Type 1 and 2; Pool 2 serves Type 2 and 3. 

In an "X" design, two pools of servers have full flexibility so that two types 

of customers can be routed to either pool. They use simulation to demon­

strate how various routing policies can yield a dramatic difference in system 

performance. 

Harrison and Lopez; [35) give a skills-based routing model that resembles 

the reality of a call centre in the efficiency-driven regime. They identify a 

complete resource pooling (CRP) condition in which the set of parallel servers 

act as a single (pooled) su per-server, however, the "X" design mentioned above 

does not satisfy this condition. Mandelbaum and Stolyar [48] prove that, for 

input-queued systems which satisfy the CRP condition, a simple generalized Cf.-L 

(GCf.-L) rule is asymptotically optimal in heavy traffic. Each idle server chooses 

to serve the longest-waiting customer, who incurs a convex increasing waiting 

cost. So the GeIL rule performs well for systems that are efficiency driven. The 

rule does not depend on arrival rates, but requires continuous re-calculation of 

the state-dependent waiting cost of each present customer. Stolyar proves in 

[63] that for output-queu~d systems under the CRP condition, the MinD rift 

routing rule (in conjunction with arbitrary work-conserving disciplines at the 

servers) has asymptotic optimality properties analogous to those of the GeIL 

rule for input-queued systems. The difference is that waiting cost is calculated 

once at the arrival time of each customer. Teh and Ward [64] prove for a two­

queue system the asymptotic optimality of a threshold routing policy, under 

linear holding costs. Under this policy, arrivals are routed to the fast-server 

queue 1 unless the other slow-server queue 2 is below the threshold. However, 

this threshold policy is outperformed by the shortest-expected-delay-routing 

policy. The reason (conjectured by the authors) is because the threshold policy 

keeps track of less state information (only one queue length instead of two). 

For routing policie:3 in flexible queueing systems, we are also interested 

in the optimality of JSQ schemes where not all arrivals join the shortest queues. 

It is known that JSQ routing (with FCFS service discipline) minimizes the 

9 
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mean waiting time for exponentially distributed interarrival and service times, 

under knowledge of full state information [70J. Whitt [66], however, provided 

several examples in which JSQ routing is not optimal when service times have 

large variance. Foley and McDonald [22J analyze the asymptotic behaviour of 

JSQ in a "W" design system, where the service rates are server-dependent. 

They determine the limiting distributions of the queue lengths when the total 

number of customers in the system grows high, and suggest that to balance the 

load, a potential least-costly solution is to route a small portion of the arrivals 

to the shorter queue, while having most of the customers remain dedicated to 

their servers. 

The literature on pooling usually studies the comparison between two 

extreme cases: a dedicated system versus a fully pooled system. In the case 

of partial pooling, two issues are involved: 1) how many dedicated servers to 

pool for cross-training and 2) which servers to pool. 

Smith and Whitt [61] show that a pooled system can be made arbitrar­

ily worse than a dedicated one if there are rare customers with long service 

times. It is also shown that in systems with homogenous service and demand 

distributions, a pooled system always outperforms a dedicated one. 

Mandelbuam and Reiman [47] reduce the pooling of a Jackson network 

into an M / PH /1 queue. A stream of incoming customers change their types 

by demanding different service times for different tasks. An efficiency index is 

used to show that pooling always helps in light traffic, while its effects can go 

either way in heavy traffic. Pooling a parallel structure can sometimes hurt 

unboundedly if the service rates at each queue are sufficiently different. 

Gurumurthi and Benjaafar [30] use a continuous time Markov chain to 

model flexible queueing systems, where an arbitrary number of Poisson arrivals 

have the flexibility of being routed to more than one server based on a priority 

scheme, while the service times are exponentially distributed with means which 

depend on the servers. Their characterization of the probability distribution of 

system states and the transition probabilities between these states is claimed to 

offer the opportunity to formulate optimal control problems (e.g., on capacity 

allocation) in the framework of a Markov decision process. One of the related 

studies is by Shumsky [60], where performance measures for an "N" design 

10 
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system are generated by an approximation procedure that decomposes the 

state space of the Markov chain. 

Tekin et al. [65] me Kingman's Law of Congestion (see [67]) to approx­

imate both the average delay W t in an M / G / m t queue (each queue dedicated 

to type i customers. i = 1, ... , N) and the average delay W K in one pooled 

department with K M/G/m queues, K < N. It is shown that to minimize 

W K, the selection of these K queues depends on the system parameters, such 

as arrival rates, service times and the number of servers Tnl of each queue. A 

sufficient condition is provided for pooling to be advantageous in systems with 

uniform utilization and service time variability. This condition implies that 

the queues to be pooled should have mean service times close to each other, 

high service time sev's (squared coefficient of variation) and small mt. 

Gans et al. [25] st-Jdy the pooling of geographically dispersed call cen­

tres, the base case of which is the M / M / m (Erlang C) model. The pooling 

may be obtained either physically by combining two or more centres into a 

larger one, or virtually through the use of networking technology that con­

nects calls to various sites. They show that under efficiency-driven staffing, 

the scaled expected waiting time before being served (or ASA, average speed 

of answer in the call-centre context) is unchanged with respect to the base 

case. Here all servers in 8, pool can handle the same set of customer types. 

1.3 Contributions 

The main contributions of this thesis include: 

1. We propose a Min Drift Affinity Routing (MARO) policy for output­

queued systems with heterogeneous servers to process multiple types of 

tasks. Given the first moments of both the task inter-arrival times and 

the task processing times, this policy is designed to both maximize the 

capacity of the system and minimize the delay in the system by using a 

subset of global state information. 

2. We propose three variants of the MARO policy, namely MARO-2/k, 

MARO-flex and MARO-tree, to accommodate different levels of flexi-

11 
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bility with which tasks acquire limited amounts of state information for 

routing. Using diffusion limits for systems with Poisson arrival processes, 

we prove that MARO-flex and MARO-tree have the same heavy traffic 

optimality properties as does MinDrift(Q) and the optimality is achieved 

independent of the levels of flexibility. For the special cases of systems 

with a single task type, MARO-flex and MARO-tree approach the 

lower bound of achievable performance. 

3. We propose resource allocation policies for output-queued systems with 

homogeneous servers and Poisson arrival processes, where no state infor­

mation is available. The proposed policies consist of two parts: one is 

the random routing policy which asymptotically minimizes the delay in 

the system under heavy traffic, given the first and second moments of the 

task processing times; the other is the pooling strategy which combines 

the parallel single-server queues into a number of multi-server queues, in 

order to further reduce the delay in the system. 

4. We make extensions of the optimal random routing policies for two situa­

tions: one is heterogeneous server systems with Poisson arrival processes, 

which operate under medium load; the other is heterogeneous systems 

in heavy traffic with generic arrival processes. 

5. We provide applications of the MARO related policies in heterogenous 

computing systems and in medical services (or service operations in gen­

eral). Guidelines for choosing the routing policies in system design are 

also provided. 

1.4 Thesis Outline 

The remainder of this thesis consists of the following chapters and appendices. 

Chapter 2 introduces the related mathematical background. For com­

pleteness, theorems later used in the thesis are included. 

Chapter 3 presents the proposed MARO policies and the resource al­

location LP on which the policies are based. The heavy traffic optimality 

12 
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properties of these policies are proved and the discounted amount of required 

state information is compared for three variants of MARO. Simplified results 

are given for homogeneous/heterogeneous systems with a single type of tasks. 

Chapter 4 discuss<2s the resource allocation policies which require no 

state information. To derive the optimal random routing matrices, three non­

linear programming (NLP) problems are formulated for different system con­

figurations, respectively. An alternative way of solving the NLPs using geo­

metric programming is discussed in Appendix A. For homogenous systems in 

heavy traffic, a procedure for choosing pooling strategies to further reduce the 

system delay is proposed. A heuristic which produces the routing matrix for a 

higher degree of pooling is shown in Appendix B as a complement to the NLP 

method. 

Chapter 5 demons1;rates the applications of the MARO variants in Grid 

systems (which are generalized distributed computer systems). Issues of ap­

plying two related policies to reduce hospital waiting times are discussed. Im­

plications from these applications are summarized for system design. 

Chapter 6 includeE some concluding remarks and suggestions for future 

work. 

13 



Chapter 2 

Mathematical Background 

In this chapter, we introduce required definitions of stochastic process limits 

and collect some existing results in heavy traffic analysis that will be used in 

our study. Section 2.1 presents the concepts of weak convergence in the Sko­

rohod space with uniform topology, and reflected Brownian motion (RBM), 

which are together used to establish diffusion limits for stochastic processes 

using the functional central limit theorem (FCLT). Section 2.2 includes heavy 

traffic theorems for a single queue (with either one server or multiple servers), 

where the stochastic processes of interest are the one-dimensional queue length 

and waiting time processes. In Section 2.3, we state the corresponding the­

orems for output-queued systems and the complete resource pooling (CRP) 

condition, under which a parallel queue system effectively forms a single pool 

of processing capacity and the state space of the system information collapses 

into one dimension, making the system much easier to analyze. 

2.1 Stochastic Process Limits 

Materials in this section follow Chapters 3 and 4 in [68] and Chapter 5 in [19]. 

2.1.1 Weak Convergence 

Let the metric space (S, m) be endowed with the Borel CT-field 8(S) and X be a 

mapping from a probability space (D, F, P) to (S,8(S)). If X is measurable, 
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I.e, if {w EO: X(w) E: A} E F for all A E 8(S), we call it a random 

element of (S,8(S)). If S is the K-dimensional Euclidean space IRK, X is 

called a K -dimensional random vector. If S is a space of K -dimensional real­

valued functions which an:) defined on the subinterval [0, T] of the real line and 

are right-continuous witb left limits, X is called a K-dimensional stochastic 

process. The corresponding function space is denoted as DK := D([ 0, Tj, IRK), 

or simply D. For the subspace C of continuous functions, the reference metric 

m(sl' S2) (Sl' S2 E S) is the uniform metric \\Sl - S2\\' defined in terms of the 

uniform norm 

\\:c\\:= sup { max \Xk(t) \} , 
O::;t::;T l::;k::;K 

for all XES, where x := {x(t) : ° :::; t :::; T} and x(t) := [Xl (t), ... , XK(t)] E 

IRK. In this case, the space D is a (standard) Skorohod space with uniform 

topology, which is sufficient for our study, because all of the limit processes 

considered in this thesis have continuous sample paths. 

The distribution of X is the image probability measure P induced by 

X on (S, 8(S)), denoted as 

P(A) := P(X E A) := P( {w EO: X(w) E A}), A E 8(S). 

Let X be a stochastic process and {Xn : n 2: 1} be a sequence of stochastic 

processes, all defined on the probability space (0, F, P). Let P and Pn be the 

distributions of X and X'L' respectively. We say that Pn converges weakly to 

P if for every bounded and continuous function f on D, 

lim f fdPn = f fdP' 
n---->oo Jv Jv 

In other words, Xn converges weakly to X (or Xn converges to X in distribu­

tion), denoted by Xn ~ X, if and only if 

lim E [J(Xn)] = E[J(X)], 
n---->oo 

for every f. 

Given the established stochastic process limits, new stochastic process 

limits may be obtained m:ing the following theorems. 
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Let {Xn : n 2': I} and {Yn : n 2': I} be two sequences of random 

elements which are defined on a common domain in a separable metric space 

(S, m). (By separable, we mean that there is a countable subset So ~ S such 

that VS I E S, Vf > 0, ::1S2 E So, m(sI' S2) < f.) 

Theorem 2.1.1 ([68], Theorem 11.4.7, convergence together theorem). If 

Xn ~ X in (S, m) and m(Xn' Yn) ~ ° in JR, then 

(Xn' Yn) ~ (X, X) in (S, m) x (S, m). 

The converse to Theorem 2.1.1 yields not only two marginal limits 

Xn ~ X and Yn ~ X, but also asymptotic equivalence of Xn and Yn. 

Let g be a Borel measurable function mapping a separable metric 

space (S, m) into another separable metric space (S', m'). Let Dg be the 

set of discontinuity points of g, i.e., Dg is the subset of S E S such that 

there exists a sequence {sn : n 2': I} in S with limn---?oo m(sn' s) = ° and 

limn---?oo m'(g(sn), g(s)) =1= o. 

Theorem 2.1.2 ([68], Theorem 3.4.3, continuous mapping theorem). If 

Xn ~ X in (S, m) and g : (S, m) ----t (S', m') is measurable with P(Dg ) = 0, 

then g(Xn) ~ g(X). 

Let Va be the subset of all x E VK with Xk(O) 2': ° for all 1 ::; k ::; K. 

Let Vr be the subset of functions in Va that are nondecreasing. Let Co, Cr be 

the corresponding subsets of CK; i.e., Co = C n Va, Cr = C n Vi' 

Lemma 2.1.3 ([68], Theorem 13.2.1). The composition map 6ox(t) := 6(x(t)) 

from Vi x v K to V K is measurable and continuous at (6, x) E Cf X CK. 

Suppose two random elements X E V K and .6. E Vi are defined on 

a probability space (0, F, P). Each element of the two sequences of random 

elements {Xn : n ~ I} and {.6.n : n ~ I} is defined on a probability space 

(On' Fn, Pn). 

Theorem 2.1.4 ([12], (17.9), random time change theorem). If (Xn' ~n) ~ 

(X,.6.) in V K and P(X E CK
) = P(.6. E Cf) = 1, then .6.n a Xn ~ ~ a X in 

V K . 
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2.1.2 Brownian Motion and Donsker's Theorem 

The fundamental stochastic process limit is the convergence of a sequence of 

scaled random walks to Brownian motion (BM) in the function space 1). This 

is provided by Donsker's Theorem. Using a continuous mapping approach, 

new stochastic process limits can be established for queueing models. 

A process Bo = {Bo(t) : t 2': o} is a standard Brownian motion, or 

Wiener process, if it (1) has continuous sample paths with Bo(O) = 0, (2) 

has stationary and independent increments Bo(tn) - BO(tn-1), n 2': 1 and (3) 

when evaluated at time t, is normally distributed with mean ° and variance 

t, denoted as Bo(t) rv N(O, t). As random variables, the increments are inde­

pendent for any n < 00 and 0 ::; to < tl < ... < tn. They are stationary if the 

distribution of Bo(t + h) - Bo(t) depends only on h > O. 

A process B = {B(t) : t 2': O} defined by B(t) = B(O) + ()t + (JBo(t) is 

called a Brownian motion with drift () and variance (J2 starting at B(O), denoted 

as BM((), (J2). It follows that B(t + h) - B(t) rv N(h(), h(J2). Brownian motion 

is a diffusion process because it satisfies the Markov property ([34], page 5). 

Theorem 2.1.5 ([19], Theorem 5.7, Donsker's theorem). Let {Xt : i 2': I} be 

a sequence of independent and identically distributed (i. z. d.) random variables. 

Assume that E[X1J = p,-1 < 00 and Var[x1J = [32 < 00. For each n 2': I, define 

a scaled random walk process .K(n) = {.K Cn ) (t), t 2': O} with the centred partial 

sums 

where the summation is understood to be zero when nt < 1. Then as n ---+ 00, 

.KCn ) ~ Bo = BM(O, 1). 

Donsker's theorem is called a functional central limit theorem (FCLT), 

since it is a generalization of the classic CLT. This can be seen by fixing the 

time t for each process .KCn ). 

Let X = {X (k) : k 2': I} be the unscaled random walk with partial 

sums X (k) = 2::7=1 Xi, where each X t is nonnegative. Define its associated 
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counting process Y = {Y(t), t 2: O} by 

Y(t) = sup{k: X(k) ~ t}. 

Since each Xi is an i.i.d. random variable, Y(t) is a renewal process. For each 

n 2: 1, define the scaled process y(n) = {y(n) (t), t 2: O} by 

y(n\t) = In (Y(nt) - ntp.). 

Theorem 2.1.6 ([19], Theorem 5.11). If the conditions in Theorem 2.1.5 

hold for the sequence {x~: i 2: I}, then y(n) ~ Bl\,f(0,p,3rJ2), as n --+ 00. 

2.1.3 Reflected Brownian Motion 

Define a one-dimensional, one-sided reflection mapping ~(.) as 

~(x(t)) := x(t) + sup [x(s)]-, 
O:S;sg 

where [xt := max( -x, 0) := [-x]+ is the negative part of x. The mapping 

~(.) is Lipschitz continuous on Va and its effect is shown in Figure 2.1. The 

origin with respect to z(t) = ~(x(t)) appears to be the thick dashed line, 

where z(t) equals x(t) up until the first time t at which x(t) = 0 and thereafter 

z(t) equals the amount by which x(t) exceeds the minimum value of x over 

[0, t]. Therefore, such a mapping is also called a one-sided regulator with lower 

barrier at zero. This transform can be used to model queueing processes in a 

system with unlimited waiting space [68]. 

If X = Bl\I(e, (]"2) and Z(t) = ~(X(t)), a process Z = {Z(t) : t 2: O} 

is a called a reflected Brownian motion (RBM) with drift () and variance (]"2, 

denoted as RBM(e, (]"2). Unlike Brownian motion, RBM does not have inde­

pendent increments, but it is still a Markov process. The process RBM(O, 1) 

has the same distribution as the process {IBo(t)1 : t 2: O}. 

Theorem 2.1.7 ([19], Theorem 6.2). If Z = RBl\;f(e, (]"2) is a one-dimensional 

REM, then the process Z has a stationary distribution if and only if e < 0, in 

which case the stationary distributwn is exponential with mean cp = (]"2 j(2Iel). 
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X(t) 

) 

o 
Z(t) 

Figure 2.1: One-sided reflection mapping 

2.2 Heavy Traffic Results for A Single Queue 

In this section, we follow Reiman [58] to state several heavy traffic limit theo­

rems for a single queue. First, the required probability space and the assump­

tions are described for a single queue system with I types of arrivals and J 

servers. Next, for the simple case of I = J = 1, diffusion limits are estab­

lished for the queue length process and the sojourn time processes. Finally, 

limit theorems for a multi-server queue with I superimposed renewal arrival 

processes are introduced. 

To identify the stochastic process limits for a queueing system, a se­

quence of queueing systems is considered. The motivation is as follows. The 

queue length process (or the sojourn time process) has a stationary distrib­

ution only when the traffic intensity p is strictly less than one. However, as 

will be shown, the diffusion limit of the queue length process is zero when 

p < 1. Therefore, the queueing system we are interested in is assumed to be 

an element in a sequence of systems whose traffic intensities approach one. 

Once the limit is obtained, it can be used to identify key elements that affect 

the performance of the system. 
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2.2.1 The Assumptions 

Consider a queue with unlimited waiting space. Customers arrive one at a time 

and are served in the order oftheir arrival. On a probability space (0, F, P), we 

define mutually independent sequences of nonnegative i.i.d. random variables, 

{Ui,m : m 2 I}, {Vj,£ : R 2 I}, for all 1 :::; i :::; I and 1 :::; j :::; J. Let Ui,m be the 

inter-arrival time between the (m - l)-th and m-th customers of type i (Ui,l 

being the arrival epoch of the first customer). Let vJ ,£ be the R-th service time 

at server j. We assume that both have finite means and finite variances: 

E[u~,m] = Ail, 

E[vj,£] = J-l;\ 

Var[Ui,m] = a;, 
Var[vJ ,£] = f3]. 

Define random walks U~ = {Ui(k) : k 2 I} and ~ = {Vj(d) : d 2 I} 

with the partial sums 

k d 

U~(k) = :L U~,m' ~(d) = :L V J ,£' 

m=l £=1 

The associated counting processes are Ai = {A~(t), t 2 O} and 5 j = {SJ(t), t 2 
O}, with 

For each type i, Ui(k) is the arrival time of the k-th customer and A(t) gives 

the number of customers that arrive during the time interval [0, t]. Sj (t) is 

the number of customers that complete service at server j and depart the 

system, provided that the server is busy all of the time. We refer to A(t) = 
2:~=1 A~(t) and S(t) = 2::=1 SJ (t) as the (superimposed) arrival process and 

the (potential) service process, respectively. 

Now consider a sequence of queues as defined above, indexed by n. 

For the n-th queue, the random variables are defined on a probability space 

(o(n), F(n) , p(n)). Let (A;l)(n) and (a7)(n) be the mean and variance, respec­

tively, for the inter-arrival times; (J-l j 1 )(n) and (f3;)(n) are the mean and vari­

ance, respectively, for the service times. We assume that for all 1 :::; i :::; I and 
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1:::; j:::; J, 

lim A (n) = A; 
~ "' n-+oo 

and 

sup E [( v~,i£) (n)] < 00 

n2:1 

(2.1) 

(2.2) 

(2.3) 

for some E > O. Condition (2.3) implies that both the inter-arrival times and 

the service times have finite means and variances. Moreover, under this condi­

tion, the functional central limit theorem still holds even if the time sequence 

is formed by random variables that are independent but not identically dis­

tributed (cf. the Lindeberg condition in the central limit theorem) [58]. They 

are used throughout the thesis for the same reason. 

In addition, it is assumed that 

I J 

;~~ yin (2: A;n) - 2: f-L;n)) = c < 00 (2.4) 
i=l J=l 

for some finite constant c. Let A = 2::=1 A~, f-L = 2::=1 f-Lj and p = AI f-L. It is 

known from (2.4) that c = -00 corresponds to p < 1 and c > -00 corresponds 

to p = 1. 

2.2.2 A Single-Server Queue 

Let I = J = 1. Define the potential workload process 

X(t) = V(A(t)) - t. 

By workload, we mean the amount of time to empty the system, if there are 

no more arrivals. The actual workload process is 

Z(t) = 6(X(t)) = X(t) + sup [X(s)t. (2.5) 
O~s~t 

So, the k-th arrival at time Tk has a sojourn time of 

(2.6) 
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Since the cumulative busy time in [0, t] at the server is 

B(t) = t - sup [X(s)t, 
O::;s::;t 

and S (B (t)) counts the number of departures in [0, t], the queue length process 

is 

Q(t) = A(t) - S(B(t)). 

Define the scaled processes for (2.5)-(2.7) as 

z(n)(t) 

w(n)(t) 

Q(n)(t) 

In z(n) (nt), 

In W(n)(lAntj), 

1 yin Q(n)(nt). 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

Theorem 2.2.1 ([58], Theorem 3.1). If (2.1)-(2.4) hold with c > -00, 

z(n)(t) ~ Z = RBM(c/J1, A(002 + (32)) in V. 

Theorem 2.2.2 ([58], Theorem 3.2). If (2.1)-(2.4) hold with c - -00, 

z(n)(t) ~ ° in V. 

Theorem 2.2.3 ([58], Theorem 3.3). If (2.1)-(2.4) hold, then w(n)(t) ~ Z 

in V. 

Theorem 2.2.4 ([58], Theorem 3.4). If (2.1)-(2.4) hold, then Q(n) (t) ~ AZ 

in V. 

2.2.3 A Multi-Server Queue 

Let I > 1 and J> 1. Consider a J-server queue with I superimposed renewal 

arrival processes. Assume the customers are served in the order of arrival by 

the first idle server. Let Q J (t) be the number of customers at time t that will 

be served at server j. AJ (t) is the total number of customers that arrive in 

time (0, t] and are served at server j. The actual service times at server j form 
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the sequence {vj,m : m ~ I}, which is a subsequence of the original service 

times 1, so the elements v;,m are still i.i.d .. The actual workload at server j is 

where rJ(t) is the residual service time of the customer being served by the 

j-th server at time t and [QJ (t) - 1]+ is the number of customers waiting for 

service at server j. The k-th arrival at time Tk has a sojourn time of 

Let Q(t) = 'L:=1 QJ(t) denote the queue length at time t. The total actual 

workload is 
A(0 J 

Z(t) = L v:n + L rj(t), 
m=A(t)-[Q(t)-J]++l j=l 

where {v:n} are the actual service times of m arrivals. 

Define the corresponding diffusion scaled processes in the same fashion 

as in (2.8)-(2.10). 

Theorem 2.2.5 ([58], Theorem 5). If (2.1)-(2.4) hold, then 

(i) If c > -00, then Q(n)(t) ~ Q = REM (c, 'L~=1 ,\~O'; + 'L:=1 11;13;) 

in 'D, as n -+ 00. If, in addition, J = 1 or all the servers are identical, 

then z(n)(t) ~ Q/(JI11) and w(n)(t) ~ Q/(JJL1) in 'D. 

(ii) If c = -00, then Q(n)(t) ~ 0 in V, as n -+ 00. If, in addition, J = 1 

or all the servers are identical, then z(n) (t) ~ 0 and vv(n) (t) ~ 0 in 'D. 

2.3 Complete Resource Pooling Condition 

In this section, we introduce the concept of complete resource pooling (CRP). 

Intuitively, a system of m parallel queues which satisfies the CRP condition has 

1 Given the original service times {vJ,i : £ 2': I} at server J, if there is no arrival waiting 
for service at the £-th time, that time is ignored. 
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the same asymptotic behaviour as a single queue with m servers. Correspond­

ingly, a multi-dimensional queue-length process collapses to one dimension in 

heavy traffic. This state space collapse enables the queue-length processes in 

different queues to be expressed in terms of the limit of the one-dimensional 

total queue-length process. This makes the system much easier to analyze, 

because for higher than one dimension, RBMs are not well understood. 

For output-queued systems, Stolyar [63] has proposed the MinDrift(Q) 

routing rule which routes arrivals to a queue which has the minimal expected 

increment (or so-called drift) of the total holding cost (caused by the system 

workload). It has been proved that under CRP, MinDrift(Q) asymptotically 

minimizes the total workload among all routing rules, as long as the local 

scheduling rule is non preemptive (within the same customer type) and work­

conserving, i.e., servers are not allowed to idle whenever there are customers 

waiting. 

Here we follow Stolyar [63] to give a formal definition of the CRP 

condition and the limiting workload process of an output-queued system which 

is equipped with the MinDrift(Q) routing rule. 

Consider a system with I types of customers and J servers. For each 

type i, the inter-arrival times form an i.i.d. sequence which has finite mean 

Ai 1 and variance a;. At each server j, the service times for type i customers 

form an i.i.d. sequence and have finite mean p,j and variance (3~j. All arrival 

and service processes are assumed mutually independent. 

Define a matrix W = (1jJ~,JhxJ, with all1jJ~,J 2:: O. Each element 'l/Jt,j is the 

average rate at which server j's time is allocated to serve type i customers, 

in the long run. So the total utilization of server j is Pl = L.:;=l 'l/Jt,J. The 

service capacity for type i customers is /'ei = L.::=l P,i,J'l/Ji,j. Given the matrix 

W, if in an output-queued system, customers of type i are routed to queue j at 

the average rate (p't,J 'l/Jt,J) , then the total service capacity for type i customers 

equals the mean arrival rate Ai. 

Define vectors A = [AI, ... , AI], /'e = [/'el, ... , /'eI] and P = [PI, ... ,PJ]. 

The server utilization region is denoted by 

24 



PhD Thes~s - Y-T. He - McMaster - Computing and Software 

where IR~ = {x E IRJ 
: x ~ O} and the vector comparison is component-wise. 

The region U contains all the possible values of the server utilizations which 

satisfy the condition that the corresponding service capacity allocated to each 

task type is not less than the mean arrival rate of that type, a necessary 

condition for stabilizing the system. Let the vector C = [~~, ... , G JT be the 

outer normal vector to the convex polyhedron U at point 1 E IRJ. (If 1 is 

outside the polyhedron U, the corresponding system simply does not satisfy 

the CRP condition.) The inner product of vectors p and C is written as p' C. 

Theorem 2.3.1 ([63], Lemma 3, complete resource pooling). The CRP con­

dition for a fixed vector A holds if and only if the following two conditions 

hold. 

(i) Vector 1 E IRJ solves the problem 

mm p·e 
pEU 

s. t. /\, ~ A. 

(ii) The matrix \[I which solves the linear system 

A = /\', P = 1 

1,S umque. 

(2.11) 

Let the matrix \[1* be a solution to (2.11). A graph 9 is constructed 

with nodes being customer types i and servers j, arcs (i, j) corresponding to 

a positive element 1/J:'J > O. The CRP condition is equivalent to the condition 

that the graph 9 is a tree [35]. 

Define the capacity region 

K = {/\, E IR~+ : p :::::; 1}, 

where lR~+ = {x E IRI : x > O}. Given /\, = A, the region K contains all 

the mean arrival rate vectors for which the system can be stabilized. Let the 

vector v* = [v~, ... , v; ]T be the outer normal vector to the convex polyhedron 

K at the point A. The CRP condition also implies 1 . C = A . 1/*. 
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Let Qt,J(t) denote the number of type i customers at server j at time 

t, including the one in service. The workload estimated by the queue length 

at server j is defined as the Q-estimated workload 

I 

Zj(t) = L fJ,~}Qt'J(t). 
i=l 

The total server workload of the system is defined as 

J 

Z(t) = L~; Zj(t), (2.12) 
J=l 

where the component ~; quantifies the workload contribution of server j. The 

total customer workload is defined as 

I J 

Y(t) = L Vt* L Qi,J(t), (2.13) 
i=l J=l 

where v
t
* quantifies the workload contribution of customer type i. For example, 

in a homogeneous server system with multiple task types, we have ~; = 1/ J 

for each server j and vt* = 1/ (J fJ,i), where fJ,i is the mean service rate of type i 

tasks at each server. In general, we have Z(t) 2: Y(t) for systems with multiple 

task types. They are equal under the CRP condition. 

Finally, we state the heavy traffic optimality properties of the Min­

Drift(Q) routing rule. 

Assume that for each server j, a holding cost function CJ (() (( ::::: 0) is 

given and has the following properties [63]: 

Assumption 2.3.1 (cost function properties). 

1. CJ (·) is continuous, strictly increasing and convex, with Cj(O) = 0; 

2. The first derivatzve C; (.) is continuous and strictly increasing, with C; (0) = 
0; 

3. The second derivative C;' (.) is strictly posdive continuous in the open 

interval (0, +00), with C;' (0) = limoo C;' (() and 0 :::; C;' (0) :::; +00. 
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The MinDrift(Q) rule routes a type i customer at arrival time t to a 

server j which satisfies 

. . C; (Zj(t)) 
J E arg mm 

l~J~J f1~,J 

Ties are broken arbitrarily. 

Define the vector process 

(2.14) 

The vector Z* E lR~ is called a fixed point if 

[C; (Z~(t)), ... , C;(Z;(t)) J = cC 

for some constant c 2: o. For any c > 0, all components of Z* are strictly 

positive. The Karush-Kuhn-Tucker (KKT) conditions [14J imply that a fixed 

point Z* is the unique solution to the problem 

J 

m~n fo(Z) = L CJ(Zj(t)) 
J=l 

s.t. Z . C = Z* . C· 

The fixed point Z* minimizes the total cost among all vectors with the same 

server workload. The diffusion limit of Z* is established in Theorem 2.3.2 as 

follows. 

Suppose there is an output-queued system equipped with the Min­

Drift(Q) routing rule and an arbitrary non preemptive, work-conserving local 

scheduling rule. Associated are the mean arrival rate vector>' which satisfies 

the CRP condition, the matrix \}I * , and the vectors C and z;*. All of the queues 

are empty at the initial time t = O. Consider a sequence of systems, indexed 

by n. For the n-th system, the inter-arrival times of task type i have mean 

(>.;1) (n) and variance (an (n); the service times at server j for type i arrivals 

have mean f1;} and variance (3~j. We assume that the following conditions 

hold 

1· (2)(n) 1m o:~ 
n-->(X) 
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and 

< 00, (2.16) 

(2.17) 

for some E > 0 and finite constant Ct,j' In addition the heavy traffic condition 

(2.18) 

for some finite constant bi is assumed to be true for all 1 :::; i :::; I. Since the 

vector A = (AihxI satisfies the CRP condition, (2.18) is equivalent to (2.4) in 

the sense that bt > -00 (for all i) corresponds to p = 1. 

Let z(n), z(n)(t) and y(n)(t) denote the scaled versions of (2.14), (2.12) 

and (2.13), respectively, where the scaling is the same as in (2.8). 

Theorem 2.3.2 ([63], Theorem 2(i)). If (2.15)-(2.18) hold, then as n ---> 00, 

z(n)(t) ~ Z = RBM(B, 0- 2 ), where 

I 

B = L vtbi, 
i=l 

Z(11) ~ Z, where fOT each t 2: 0, the vector Z is a fixed point that is uniquely 

deteTmined by Z(t) . e = Z(t). 

Theorem 2.3.3 ([63], Theorem 3). 

(i) If (2.15)-(2.18) hold, then as n ---> 00, y(n)(t) ~ Z. 

(ii) The MinDTift(Q) TOuting TUle, in conjunction with an aTbitmry wOTk­

conserving local scheduling Tule, asymptotically minimizes the customeT 

workload (2.13), in an output-queued system. Speczjically, the customer 

wOTkload pTOcess y;nJ(t) under a TOutzng rule 7r other than MinDrift(Q) 

can be constTUcted on a common probabzlity space with the RBM Z, so that 

with pTObability 1, we have 

liminf inf [y;n)(s) - Z(8) 1 2: 0 
n--oo O<;s<;t 

for any time t 2: 1. 
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Chapter 3 

Resource Allocation with 

Limited State Information 

In this chapter, we propose several resource allocation policies, mainly routing 

policies which use the means of both the task inter-arrival times and the task 

processing times, for heterogeneous server systems with multiple task types. 

The task inter-arrival times follow exponential distributions, while the task 

processing times follow general continuous or discrete distributions. The rout­

ing policies are dynamic in the sense that they make routing decisions based 

on the current state information of the system, e.g., the queue lengths or the 

expected sojourn times. The proposed policies are designed to both maximize 

the capacity of the system and minimize the delay in the system by using a 

subset of global state information. 

We study the routing policies in the following four sections. Section 3.1 

introduces the system model. Section 3.2 gives Stolyar's MinDrift(Q) policy, 

which requires global state information to make routing decisions and thus is 

used as a reference for comparison. Section 3.3 presents our proposed policies, 

MinDrift Affinity ROuting policy (MARa) and its variants, that have several 

advantages over existing policies. In the last section, Section 3.4, special cases 

of applying MARa related policies to homogeneous server systems are studied. 

We study their applications in heterogeneous server systems in Chapter 5. 
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3.1 The Model 

Define sets I = {1, ... , I} and 3 = {1, ... , J}, where I ;::: 1 and J ;::: 2. Consider 

a system with I types of tasks and J servers. Type i tasks arrive according 

to a Poisson process with rate At > O. The processing times of type i tasks at 

server j are i.i.d. and form the sequence {vt,j,m : Tn ;::: 1}. Therefore, all inter­

arrival time and processing time sequences are renewal processes. Moreover, 

they are assumed mutually independent. Both fJt,J = 1/ E[Vi,j,l] and (3~j = 
Var[vt,J,l] are assumed finite. We allow fJi,j = 0, which implies server j is 

physically incapable of processing type i tasks. In addition, each task type 

can be processed by at least one server, i.e., (Vi E I)(3j E 3) fJi,j > O. 

Collectively, we define the first-order primitives: vector A = (AihxI and matrix 

fJ = (fJt,j)IXJ, and second-order primitive: matrix (3 = ((3;'J)IXJ' 

The topology of the system is that servers work in parallel at each 

task type and each server maintains its own queue with a buffer of infinite 

size. A task must be dispatched (by a dispatcher) to one of the servers j 

immediately upon arrival. After being assigned, the task stays in queue j 

until it is processed and leaves the system upon completion of processing. 

Such a model is an "output-queued" (OQ) system. 

The processing discipline satisfies two conditions: 

Condition 3.1.1. The local scheduling rule at each server is non-preemptive 

within each task type. Preemption of service or server sharing is allowed only 

for tasks of different types. A server is not allowed to idle while there are tasks 

waiting in zts queue. 

Condition 3.1.2. A task's processmg time is not known until its completion, 

though the task type and thus zts processing time distribution is known to the 

dispatcher and the servers. 

Let Qt,J(t) denote the number of type i tasks at queue j (including the 

one in process) at time t. The estimate of the unfinished processing time at 

server j at time t is given by the Q-estimated workload 

ZJ(t) = L fJ~JIQt'J(t). (3.1) 
tEI 
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We use ZJ to denote the estimate calculated at each arrival time (equivalently, 

when a routing decision is to be made). In addition, each server j is given a 

holding cost function Cj (.) which satisfies Assumption 2.3.1. An example cost 

function is a single-term polynomial of the form CJ(z) = CjZn, where cJ > a 
and n > 1. We allow different cost functions at different servers. 

3.2 MinDrift(Q) Policy 

Stolyar [63J introduced the MinDrift(Q) rule, which attempts to minimize the 

average increase rate of the aggregate cost L: jE.1 Cj(ZJ)' due to placement of 

new tasks to the servers. 

Policy 3.2.1 (MinDrift(Q)). A type i arrival is dispatched to a queue j sat-

2sfying 
. . C'(Z)) 

J E argmm J . 
jE.1 f.1i,J 

Ties are b'f'Oken arbitrarily, jor example, in javour oj the smallest queue index. 

The value C; (ZJ) / f.1~,J approximates the expected increment of the ag­

gregate cost (caused by routing one type i task to server j). The MinDrift(Q) 

policy has been proved, in the heavy traffic regime, to asymptotically minimize 

the holding cost rate (or the so-called "drift") at all times, when the first-order 

primitives A and f.1 satisfy the complete resource pooling (CRP) condition (see 

Theorem 2.3.1). 

The fact that this policy satisfies such an optimality property means 

that it also stabilizes the system [62, 63J. This makes for a desirable starting 

point, but we need to be careful about naively implementing it. Policy 3.2.1 

suffers from the fact that to make a routing decision, the dispatcher must 

know, in addition to the f.1 matrix, the current state information of all queues. 

Also, the optimality property of Policy 3.2.1 is obtained under a heavy traffic 

assumption where the system load approaches 100 percent. When one backs 

off from the heavy traffic condition, we will see (e.g., in Section 5.2.3) that 

there is room for making bad routing decisions, which in turn can significantly 

degrade performance. 
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Motivated by reducing the overhead of obtaining state information, as 

well as maintaining high performance levels under a range of traffic conditions, 

we propose in the next subsection a set of routing policies, which adapt Policy 

3.2.1 to address these concerns. 

3.3 MinD rift Affinity Routing Policies 

3.3.1 MARO 

This Mindrift Affinity ROuting (MARO) policy, along with its variants pro­

posed in the following subsections, involves solving a linear programming (LP) 

problem whose goal is to minimize server utilizations (equivalently, maximiz­

ing the system capacity). Since in general, server utilizations (associated with 

first-order primitives) have a significant impact on performance metrics such 

as mean queue lengths and sojourn times in the system, it seems reasonable 

that policies which make the routing decisions by using the solutions to the 

LP should be expected to achieve comparatively good performance. 

The Static Allocation LP 

Let the scalar p denote the long-run utilization of the busiest server. Define 

the matrix \]I = ('IA,J)IXJ where the elements 'l/Ji,J are interpreted as the average 

rate at which the j-th server's time is allocated to process type i tasks. The 

static (processing time) allocation problem can be described by the following 

LP: 

min 
(p,w) 

s.t. 

p 

J 

L 'l/Ji,j!Ji,j = '\' Vi E T, 
J=l 

I 

L '!/Jt,J ::; p, Vj E J, 
t=l 

p ~ 0, '!/Jt,J ~ 0, Vi E T, Vj E J. 

Several observations can be made about this LP: 
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Firstly, LP (3.2) always has a solution, since no upper bound constraint 

is put on p. However, the physical meaning of p requires that its value not 

exceed one. Therefore, if the first-order primitives (A, p,) are such that LP 

(3.2) has an optimal solution p* > 1, it means that each mean arrival rate 

Ai should be scaled down by a factor of 1/ p* at least, otherwise the system 

cannot be stabilized. If p* :::; 1, the reciprocal of the optimal value p* is the 

maximum factor by which each arrival rate A~ can be increased so that the 

system can still be stabilized [59J. In that case, LP (3.2) also maximizes the 

system capacity. 

Secondly, constraint (3.3) enforces the processing capacity for each task 

type is not less than the task's arrival rate, which provides a necessary condi­

tion for stabilizing the system. On the other hand, (3.3) requires the processing 

capacity to not exceed a task's arrival rate. If a task type i was over-allocated 

with service times, we could reduce the values of the 'l/J~,/s until constraint 

(3.3) is satisfied, while one or more of the constraints in (3.4) is not tight at 

optimum. If a constraint in (3.4) is tight at optimum, the corresponding server 

is considered as a bottleneck. In this thesis, we focus on a bottleneck system 

which meets the following assumption: 

Assumption 3.3.1. The tuple of primitives (A, p,) is such that LP (3.2) has 

solutions (p*, w*) satisfying 

I 

,"""",0/'* , = p* < 1 \/J' E J. L-t Cf/'L,] -, (3.5) 
i=l 

This means that if L~=l 'l/J:,J < p* for any server j, that server is under­

utilized and will be removed from our model (together with the portion of 

tasks that were routed to this server). 

One special case of first-order primitives which satisfy the above as­

sumption is that all mean processing rates p,i,j are positive. This requires that 

all servers are capable of processing all task types. Using Proposition 3.3.1, 

we will show that the solutions of LP (3.2) remain the same even if a num­

ber of fully-flexible servers are substituted by servers which are only capable of 

processing a subset of different task types. This leads to our third observation. 

Let Np be the number of positive elements of a solution W*. We have 
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Proposition 3.3.1. There exists a solution w*, whose associated Np satisfies 

max(I, J) ::; Np ::; 1 + J - 1. 

Proof The first inequality follows the assumptions made on the model in 

Section 3.1, otherwise there exists either at least one task type that is not 

processed by any servers or at least one idle server. 

The second inequality results from the generation of the basic optimal 

solution [11] of LP (3.2). Since the LP always has a non-zero optimal solution 

which contains 1 J + 1 variables, then a basic optimal solution exists. The 

solution contains 1 + J linearly independent (basic) variables which correspond 

to 1 + J constraints and 1 J + 1- (1 + J) (nonbasic) variables which are zeros. 

Since one of the basic variables is always p* > 0, the matrix w* has at least 

1 J + 1 - (I + J) elements equal to zero. Equivalently, the number of positive 

elements is at most 1 + J - 1. D 

Given system A with a full matrix Af..L where Af..L2,J > 0, Vi E I, Vj E .:J 
and the corresponding solution A W*, we may construct system B with matrix 

Bf..L where 

{

A 'f An/,* 0' 
B . _ f..Li,J' 1 'f/2,] > , 

f..L2,J - ° 'f An/,* = 0' 
, 1 'f/ 2,J ' 

and obtain the corresponding solution BW*. It is easy to verify BW* = AW*. So 

the two systems will have the same performance when they use the following 

affinity routing policy, while system B only requires each server have limited 

flexibility in processing different task types. This is desirable when it is costly 

to maintain highly flexible servers. 

The Affinity Routing Policy 

Given a solution w*, we define for each task type i the set St of servers that 

will potentially process that type, i.e., 

(3.6) 

It is true that [S2[ > ° for all i E I, since any type i tasks will get processed 

by at least one server. Thus, we propose the MARO policy as follows: 
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Policy 3.3.1 (MARO). A type z arrival is dispatched to a queue j satzsjying 

. . C~ (Zj) 
J E argmm J . 

JES, J1t,J 

Ties are broken randomly with equal probabilities. 

The MARO policy has the following properties: 

Firstly, it not only aims to maximize the capacity in the long term by 

using the solution to the LP (3.2), but also in the short term shifts the workload 

between servers to avoid congestion by using the current state information at 

each arrival time. 

Secondly, MARO differs from MinDrift(Q) in that the dispatcher does 

not have to know the current workload information of all servers for each 

task type (at each arrival time). It does require that the arrival rates of all 

task types must be estimated in order to determine the set St. Nevertheless, 

MARO is robust to perturbations in the mean arrival rates in the sense that 

increasing each At by the same factor C A does not change the sets St. This 

can be seen by multiplying c), on both sides of (3.3). On the other hand, the 

arrival rate information is also needed for MinDrift(Q) when checking if the 

system can be stabilized. 

Thirdly, MARO benefits as the size of the set St is smaller than the 

total number of servers J for most task types i, i.e., 'lJ* is a sparse matrix. 

From Proposition 3.3.1, it is can been seen that when J increases, 'lJ* becomes 

sparser. To measure this, we introduce the idea of "discount amount of state 

information" as follows. 

Let Ns be the average number of servers from which MARO acquires 

state information for each arrival. We have 

(3.7) 

where .\ = .z..::iEI At· If ISil = 1, type i tasks join a single server without 

acquiring state information. Definition (3.6) implies that Ns is a function of 

J. For MinDrift(Q), the corresponding number of servers is J (assuming that 

all J1i,j are positive). Thus, using MinDrift(Q) as a reference, we define the 

35 



PhD Thesis - Y.-T. He - McMaster - Computing and Software 

discount of the average required state information for a routing decision by 

( 
Ns(J)) Discnt(MARO) = 1 - -J- x 100%. (3.8) 

Given Proposition 3.3.1 and I > 1, we have 

Proposition 3.3.2. If Np = L~EIIS~I = 1+ J -1 and )..d)... = III for all 

i E'I, then DiscntUvIARO) is monotonically increasing in J. 

Proof· 

Let l' = aJ, a > 1 and L~EI 15:1 = I + l' - 1. Let J(J) = Ns(J)1 J, 
we have 

J(l') - f(J) 

I-I (1 ) ----yy-- ~ - 1 < O. 

So f (J) is monotonically decreasing m J, which implies Discnt(1II ARO) is 

monotonically increasing in J. 

o 

Proposition 3.3.2 implies that MARO is more advantageous in systems 

with a large number of servers, when the arrival rates of different task types 

are equal. It is noted, however, that equal arrival rates are not necessary for 

DiscntUIIARO) to be monotonically increasing in J. We will discuss the effect 

of a single dominant task type in Section 3.3.5. 

Fourthly, although MARO is more favourable when the value Np is 

small (so that Ns is small), to have MARO take advantage of the state in­

formation in order to shift workload between servers, we do not want Np too 

small. We construct a graph Qw which has nodes being arrival types i and 

servers j and arcs (i, j) being the routing activities. The graph Qw is associ­

ated with the matrix w* in that an arc (i, J) corresponds to a non-zero element 

'l/J;j' Therefore, if Np < I + J - 1 (which corresponds to a degenerate basic 
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solution to the LP), then gw is not a connected graph, which means there is 

at least one server whose load cannot be shifted to the others. The extreme 

case is that when Np reaches the lower bound max( I, J), no workload can be 

shifted among the servers. This will reduce MARO to a static routing policy 

(which does not need state information for any task type). If Np > 1+ J - 1, 

then gw contains at least one ring. This implies that LP (3.2) has infinitely 

many solutions, since we can perturb a solution along the arcs of a ring. On 

the other hand, we may use such a perturbation to obtain a solution w* such 

that Np = 1+ J -1, i.e., graph gw represents a tree. This not only reduces the 

amount of required state information, but also enables workload to be shifted 

among all servers. We now provide two examples to illustrate this concept. 

Example 3.3.1. Let 

One solution of LP (3.2) is 

p* = 1, w* = [0.5 0.5], 
0.5 0.5 

with Np > I + J - 1 = 3. By perturbing w* along the arcs of the ring (1,1) -

(2,1) - (2,2) - (1,2), we have 

w* = [ 0.5 + 10/1- 0.5 - 10/1- ] • 

E 0.5 - 10/1- 0.5 + 10/1-

When EJ-L = 0.5, we have w* equal to the identity matrix and Np = 2. Th~s 

reduction of Np is not desirable for MARO, since workload cannot be shifted 

between the two servers. 

Example 3.3.2. Let 

One solution of LP (3.2) is 
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Instead of directly applying wi to the MARO policy, we perturb wi and obtain 

with Np = I + J - 1. Using W~, MARO requires the mmimum amount of state 

information while still allowing workload to be shifted between the two servers. 

Finally, we use Theorem 3.3.1 to show that under the same assumptions 

on the primitives (>.., /1), MinDrift(Q) and MARO have the same optimality 

properties in heavy traffic, so from that standpoint we have not lost any­

thing by using less state information. We will perform simulation studies in 

Section 5.2.3, which suggest that under realistic load MARO can outperform 

MinDrift(Q) in heterogeneous server systems. 

Assume that the following conditions hold for the primitives (>.., /1): 

Assumption 3.3.2. LP (3.2) has a unique solution (p*, w*), where p* 1 

and 2:~=1 'l/J;,J = 1, for all j E J. 

Assumption 3.3.3. 2:iEI ISil = I +J -1, where the set Si is defined in (3.6). 

Assumption 3.3.2, which is stronger than Assumption 3.3.1, implies 

that the system is under heavy traffic. Assumption 3.3.3 implies that the 

graph 9'l!* associated with the matrix w* represents a tree, so the workload of 

each server can be shifted to the others. Then using Theorem 2.3.1 (complete 

resource pooling), we have that the CRP condition holds for the mean arrival 

rate vector >... 

We rewrite (2.13) to define the total customer workload 

Y(t) = L 1I~* L Qi,j(t), (3.9) 
~EI jEJ 

where 1I~* quantifies the contribution of type i arrivals to the total workload 
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and is the solution to the dual of LP (3.2), 

max 
(v,~) 

S.t. 

I 

LVi>"~ 
~=1 

Vi/Ji,) S; ~J' Vj E J, Vi E T, 
J 

L~l S; 1, 
3=1 
Vi 2: 0, Vi E T and ~J 2: 0, Vj E J. 

(3.10) 

Vector V = (Vt*hXI corresponds to constraint (3.3), so we have v; > 0 for all 

i E I. In addition, we have v~* f.-l~,J = ~; if 1/J~j =1= 0, v~* f.-li,j < ~; if 1/J:'j = 0 and 

1:,:=1~; = 1, ~; > 0 for all j E J, under Assumptions 3.3.2 and 3.3.3. 

To define the heavy traffic regime, we consider a sequence of systems 

indexed by n. For the n-th system, the inter-arrival times of task type i are 

exponentially distributed with mean (>..;1) (n); the processing times at server 

j for type i arrivals have mean f.-li,} and variance (3~j' We assume that the 

following conditions hold 

lim >..(n) = >.. 
~ ~, (3.11) 

n->oo 

where the vector>" = (>"~)lXI satisfies the CRP condition (defined in Section 

2.3) and 

(3.12) 

for some E > 0 and constant di,l' where {Vi,j,m : m 2: I} is a sequence of i.i.d. 

random variables formed by the processing times at queue j for task type i. 

In addition, the heavy traffic condition 

(3.13) 

for some finite constant b~ is assumed to be true for all i E T. 

Let Q~~) (t) be the queue length process of type i arrivals at server j at 

time t. We define its diffusion scaled version 

QA (n) ( ) 1 Q(n) ( ) 
i,j t = yn i,j nt . (3.14) 
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Consequently, the diffusion scaled total workload process derived from (3.9) is 

denoted as Y(n)(t). For the same sequence of systems on which MinDrift(Q) 

(Policies 3.2.1) and MARO (Policy 3.3.1) are operating, we denote the diffusion 

scaled total workload as Yd(n)(t) and ya(n) (t), respectively. 

To show that the two policies have the same optimality properties, we 

have the following results: 

Theorem 3.3.1. 

(i) For the MinDrift(Q) policy, the diffusion scaled total customer workload 

process, yJn) (t), converges weakly to a one-dimensional reflected Brownian 

motion Yd' To be precise, yt)(t) ~ Yd = RBM((), (]"2), as n -+ 00, where 

() 2:= vtbi , 

iEI 

2:=(Vt*)2 [At + 2:= 1j;;j~lt'J(J~Jl· 
tEI JEJ 

(3.15) 

(ii) For the MARO policy, ya(n)(t) ~ Yd' 

Proof. 

(i) Under the conditions (3.11) - (3.13), a direct application of Theorem 

2.3.3( i) yields the result. Furthermore, Theorem 2.3.3( ii) implies that the 

MinDrift(Q) routing policy minimizes the total workload (3.9) and is as­

ymptotically optimal among all service disciplines which satisfy Conditions 

3.1.1 and 3.1.2 described in Section 3.1. 

(ii) Let the tuple ((~i,J)d' ((J;'J)d) characterize the processing time distribu­

tion of the system on which MinDrift(Q) is operating. For the system to 

which MARO is applied, we have 

( .) _ { (~z,j )d, if 1j;~j i= 0, 
~t,J a - 0, if .I,,!,. = ° If/t,] , 

and 
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Consequently, the same mean arrival rate vector A satisfies the CRP con­

dition when MARO is applied. Then using the same reasoning as in Part 

(i), we have the result. 

o 

3.3.2 MARO-2/k 

To reduce further the state information required in making server assignment 

decisions, one way is to choose for each arrival just two queues from the set Si 

and then compare that pair of holding cost drifts. 

Policy 3.3.2 (MARO-2/k). A type i arrival is dispatched to one of the two 

queues (11, j2) chosen from Si such that the arrival joins a queue j satisfymg 

. . C' (Zj) 
J E arg mm J . 

jE{jl, j2} !1i,J 

If ISil > 2, the two queues j1 and 12 are chosen with probabilities PJl = rt,))i\ 

and Ph = ri,J2/ (7\ - ri,jl)' respectively, where rt,J = 'l/J:,J!1i,J and f\ = LJEs, rt,J' 

Policy 3.3.2 only needs the state information of two queues (j1, j2)' 

Since (3.3) holds, we have i\ = At and rt,J denotes the (optimal) average rate at 

which type i tasks are routed to server j. Therefore, the first queue j1 is picked 

with a probability to achieve this optimum and the second queue j2 is chosen 

with a conditional probability given j1 is picked. Since L(Jl,h)ES, PilPj2 = 1, 

the probabilities given in Policy 3.3.2 are well defined. 

Similarly, we can define the discount of the average required state in­

formation by 

. (NS
(2k) ) 01 Dzscnt(2k) = 1 - -j- X 10010, (3.16) 

where 

(3.17) 

is the average number of servers from which MARO-2/ k acquires state in­

formation for each arrival. It is noted that the worst case of Discnt(2k) is 
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(J - 2)/ J x 100%. This implies that when the number of servers grows, the 

discount Discnt(2k) increases independently of the structure of \]1*, which is 

even more favourable than MARO. 

A special case of the system to which Policy 3.3.2 is applied is the 

"supermarket" model with J identical servers (processing times exponentially 

distributed, mean one, FIFO service discipline) and a Poisson arrival process 

with rate JA,l (for only one task type, A,1 < 1). In this case, 1/J~,J = 1 for all 

j E J. An arrival thus randomly (with equal probabilities) chooses two of 

the J servers and joins the queue of the server with the shorter queue length. 

Mitzenmacher [51J analyzed such a system and found that when A,1 approaches 

1 (which implies the system is under heavy traffic) and J ----+ 00, there is an 

exponential improvement in the mean sojourn time (over choosing only one out 

of J servers randomly), while increasing the number of choices for an arrival 

results in only a constant improvement over two choices. This suggests that a 

similar degree of improvement might be expected for MARO and MARO-2/k 

over a static routing policy, although the "power of two choices" has not been 

analyzed rigorously for heterogeneous systems. 

3.3.3 MARO-flex 

The MARO - 2/ k policy in the long run still requires state information of all 

queues in the set St for all type i tasks. If either in the long run only a certain 

proportion of time is available for the dispatcher to acquire state information 

from the distributed server queues, or only a certain proportion of type i tasks 

can afford (or need) to be routed to a queue based on dynamic choice, we can 

introduce another way of limiting the required state information, as proposed 

through the following routing policy. 

Policy 3.3.3 (MARO-flex). Given 0 < qi ::; 1, for each task type i, 100(I-qt) 

percent are assumed to be dedicated arrivals; the remaimng 100qi percent are 

assumed to be flexible arrivals. A dedicated arrival is routed to queue j (j E Si) 

with probability 

(3.18) 
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where Ti = LjkEs, 'ljJ~JkjJi,jk is the total processing capacity for type 'l tasks. A 

flexible arrival is routed to queue j using Policy 3.3.1, MARG. 

Since (3.3) holds, we have f\ = '\ and ri,j := 'ljJ~~jjJi,J denotes the (opti­

mal) average rate at which type i tasks are routed to server j. In the proof of 

Theorem 3.3.2, we will see that both dedicated and flexible arrivals are routed 

to achieve this optimum. 

MARO can be considered as a special case of MARO-flex with q~ = 1 

for all task types i. Therefore, MARO-flex has the same properties as MARO 

has. If qi = a for all task types i, MARO-flex becomes a static routing policy. 

To quantify the reduction in the amount of state information used by 

the MARO-flex Policy, we define the discount 

. (NS(JlX) ) 01 D'lScnt(flx) = 1 - J X 10010, (3.19) 

where by (3.7), 

is the average number of servers from which MARO-flex acquires state in­

formation. We have the same result as stated in Proposition 3.3.2, that 

Discnt(flx) is monotonically increasing in J in the case where the arrival rates 

of all task types are equal. 

Heavy Traffic Analysis 

We use Theorem 3.3.2 to show that in heavy traffic, a small amount of flex­

ibility in the MARO-flex policy should give close to the performance im­

provement given by 100 percent flexibility (i.e., the MARO policy). When 

MARO-flex is applied to the same sequence of systems considered in Theo­

rem 3.3.1, we denote the diffusion scaled total workload process by 

y(n)(t) = '" lI~ '" Q(n) (t), 
f ~ ~ ~ f~J 

(3.20) 
iEI jE.:J 

where Qj~;'J(t) is the MARO-flex version of (3.14). Then we have have 
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Theorem 3.3.2. yt)(t) ~ Yd) where the diffusion hmit is independent 01 

both qi and pt.j. 

Since the difference between the two unsealed sequences of processes 

Ya(t) and Yf(t) is of the order o(Jn), Theorems 3.3.1(ii) and 3.3.2 suggest 

that the performance of the systems should be relatively close (particularly 

for high loads). 

Proof. 

Suppose the elements of St are indexed as 1/J;J , ... , 1/J7J ,where jl < 
, 1 , K'I. 

... < jK, and Ki = IStl, then (3.6) is equivalent to 

(3.21) 

and (3.18) is equivalent to 

(3.22) 

• A Ad A f Ad . . 
Define the mdex set I = U1EI Si U U~EI St' where Si = {( 1" Jk) : 

Af A 

jk E S1} and Si = {(i, Si)}. Define the set £ = {I, ... , III} and a one-to-one 

function 11 : i ----+ £ of the form 

and 

{ 
h(~,jk) = l:~-==11 Kn + k, 

11(1" St) = l:n=1 Kn + 1, 

k E {I, ... , Kd, 

i > 1, k E {I, ... , K t }, 

i> 1. 

The arrival rate vector ~ = (~€)IXlil has elements grouped with respect 

to each task type i and indexed by subscripts Ct. In each group i, the arrival 

rates are 

for the dedicated arrivals, 

for the flexible arrivals, 
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where the indices £2 are determined by 

{ 

·d 
Zk' 

i!i = fl(X) := 
'f Z , 

(3.24) 

So for each type i, we have 

Define the matrix <1> = (¢€,J)liIXJ' where the quantity (¢€,JJ-Li,J) is the 

average rate at which arrivals of subtype i! (within task type i) are routed to 

queue j. It consists of I sub-matrices <1>1, ... , <1>1, each corresponding to a task 

type i (i E I). Each sub-matrix (with only non-zero elements shown) is 

¢od 
21,J1 

<1>i= [ :q ¢d 0 

~K7,JK'/, 

¢U,j1 ¢U,h ¢U,JK, 
(K,+l)xJ 

where the row indices i% and if (denoted collectively as i!i) are determined 

using (3.24). Let the non-zero elements ¢E"jk be 

(3.25) 

for all k E {I, ... , Ki}' Given 0 < qi :::; 1, all the elements ¢E,j are positive 

for flexible arrivals. This combined with Assumption 3.3.3 (the matrix \It* 

representing a tree), implies that the matrix <I> also represents a tree, whose 

nodes are arrival subtypes i! and queues j and arcs (i!, j) are the actual routing 

activities. 

From (3.22), (3.23) and (3.25), we have for each task type i a set of 

equalities 

(3.26) 
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Assumption 3.3.2 and (3.26) imply that 1>e,J defined in (3.25) is a unique 

solution to the linear system 

= Ae, 
= 1, 

V£ E .c, 

Vj E J. 
(3.27) 

Therefore, from Theorem 2.3.1, the CRP condition holds for the arrival rate 

vector).. defined in (3.23). 

For each task type i, let 

for the dedicated arrivals, 

for the flexible arrivals, 
(3.28) 

so that 2.:e, he, = bi . From (3.13) and (3.28), we have 

where )..e, is defined in (3.23). 

Let f);, quantify the contribution of subtype £t arrivals to the total 

customer workload. We define the diffusion scaled total customer workload at 

time t 

y(n)(t) = """ f)* """ Q(n) (t). 
F ~ ~~ ~J (3.29) 

e,EL jEJ 

where Qt~(t) is defined in the same fashion as in (3.14). 

Since each type i arrival follows a Poisson process, each subtype £i 

arrival process remains a Poisson process when MARO-flex is applied. Thus, 

applying Theorem 2.3.3, we have 

where 

() (3.30) 

L (f);,) 
2 [Ae, + L 1>e"jf-L7,j(3~Jl· 

e,EL JEJ 

(3.31) 
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The quantity v;, can obtained by solving the LP (3.10) (where Vi is 

changed to Vf). Since ~ satisfies the CRP condition, we have V;,f.L2,J = ~; if 

rPc"J =I- O. This implies 

(3.32) 

for each group i. Thus, Yj,n) (t) in (3.29) is equivalent to yt) (t) in (3.20). 

From (3.32) and (3.28), (3.30) is equivalent to 

The terms in (3.31) which are indexed by the subscript fi can be grouped with 

respect to each group i, so that (J'2 = L:iEI (J';. Let :Z:C, denote the summation 

of terms within each group i. We have 

(J'; = (V;J2 [2:: Ac, + 2:: 2:: rPC"jf.LLf3~Jl· 
f, JEJ f, 

Thus, using (3.32) and (3.26), (3.31) is equivalent to 

(J'2 = 2::(V1*)2 [A1 + 2:: ~;'Jf.L~,jf3~jl· 
iEI JEJ 

This completes the proof. 

o 

3.3.4 MARO-tree 

In the MARO-flex policy, a type i flexible arrival can choose anyone of the 

queues in the candidate set 81 . If the number of servers J is large, the size of 81 

may be large. However, in the circumstance when the choice may be severely 

limited due to locality constraints or personal preferences (e.g., a patient can 

only afford to go to hospitals within a certain distance from their home), a 

new routing policy is needed to address these concerns. So we propose the 

MARO-tree policy as follows. 

Policy 3.3.4 (MARO-tree). Given 0 < q1 ::; 1, for each task type i, 100(1 -

q1) percent are assumed to be dedicated arrivals,· the remaining 100q2 percent 
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are assumed to be flexible arrivals. Given the set of candidate queues defined 

in (3.21), a dedicated arrival is routed to a queue jk (k E {I, ... , IStl}) with 

probability 

(3.33) 

which is the same as (3.18) in the MARO- flex policy. 

A flexible arrival picks queue jk (k E {l, ... , IStl- I}) with probability 

pLk and joins one of two adjacent queues (jk, jk+l) satisfying 

. . C'(Zj) 
J E arg mm -------=-J __ 

jE{jdk+l} /1t,J 

For each task type i, if I Si I > 2, the routing probabilities p{J' should satisfy the 
, k 

condztions 

k k k+l 

LP~'Jn < LpLn < LPt,Jn' k E {I, ... , ISil- 2}, (3.34) 
n=l n=l n=l 

and 

(3.35) 

For any type i flexible arrivals choosing to join one of the two adjacent 

queues (jk,jk+l), we denote them as subtype ik. Let ri,jk = (¢ik,Jk/1i,jk) denote 

the average rate at which these arrivals join queue jk' In the proof of The­

orem 3.3.3, we will see that the first inequality of (3.34) implies that for the 

righthand-side queue ri,Jk+l > 0, while the second inequality of (3.34) implies 

for the left hand-side queue ri,jk > O. Thus the queues in set Si are able to 

communicate with each other and the workload may be shifted between the 

queues. 

The sets of queues which type i tasks actually join are Si for the dedi­

cated arrivals and 

if IStl = 1, 

if 2::; ISll ::; J, 
(3.36) 
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for the flexible arrivals, respectively. Also we have I sf I = I S11- 1, if 2 :::; I S11 :::; 

1. 

Let Ki = ISil. The average number of servers from which MARO-tree 

acquires state information is 

K,-l 

N - '"' q1~1 '"' 2 f. = 2 '"' qi~i. 
S(tree) - 6 ,\ 6 P1,Jk .6,\ 

1'K,>1 k=l 1:K,>1 

To quantify the reduction in the amount of state information used by the 

MARO-tree policy, we define the discount 

. S(tree) 

( 
N ) D'lscnt(tree) = 1 - J x 100%. (3.37) 

Similar to Discnt(2k) , Discnt(tree) increases independently of the structure of 

1lJ* when the number of servers grows. 

Heavy Traffic Analysis 

We use Theorem 3.3.3 to show that in heavy traffic, the performance of 

MARO-tree is close to that of MARO-flex. When MARO-tree is oper­

ating on the same sequence of systems considered in Theorem 3.3.1, we denote 

the diffusion scaled total workload process by ~(n)(t), which is defined in the 

same fashion as in (3.20). Then we have 

Theorem 3.3.3. ~(n)(t) ~ Yd , where the diffusion limit is independent of 

both q1' the proportion of type i fiexzble arrivals, and P{Jk' the routing proba­

bilities of the arrivals. 

Proof. 

The proof is similar to that of Theorem 3.3.2 except for the parts dealing 

with the flexible arrivals. 

Define the index set i = UiEI S~ U UiEI sf, where Sf = {(i, jk) : jk E 

SJ and Sf = {(i,jk,jk+1) : (jk,jk+l) E Sf}· Define the set .c = {1, ... , Iii} 
and a one-to-one function f2 : T - .c of the form 

= k, k E {1, ... , Kd; 

k E {1, ... , Kl - 1}, 
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and 

i > 1, k E {1, ... , Kd; 

i > 1, k E {1, ... , K~ - 1}. 

The arrival rate vector ~ = (~€)lXlil has elements grouped with respect 

to each task type i and indexed by subscripts f~. In each group i, the arrival 

rates are 

(1 - q1P.'~P~Jk' 

q~\P{Jk ' 

for the dedicated arrivals, 

for the flexible arrivals, 

where the indices fi are determined by 

So for each type i, we have 

(3.38) 

(3.39) 

Similar to (3.25), for each task type i (i E I), the routing structure 

matrix (with only non-zero elements shown) is 

cPi {,J2 (~.40) 

cP~{ ,J2 cP~{,]3 

(2K,-1)xJ 

where the row indices i% and i~ (denoted collectively as f i ) are determined 
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using (3.39). Let the non-zero elements CPe"jk be 

_ ~ (>.. ""k-l f _ ""k-l n/'* . ) 
- J.L")k ~ L...n=l p~,Jn L...n=l lfI~,JnP,~,Jn , kE {2, ... , Kl - I}, (3.41) 

k E {2, ... , Ki - I}, 

Given 0 < P2 :::; 1 and condition (3.34), all the elements CPe"Jk are positive 

for the flexible arrivals. This combined with Assumption 3.3.3 (the matrix 

w* representing a tree), implies that the entire routing structure matrix <I> = 
(<I>~)IXI also represents a tree, with nodes being arrival subtypes fI. and queues 

j and arcs (fl., j) being the actual routing activities. 

From (3.33), (3.38) and (3.41), we have for each task type i a set of 

equalities 

CPi~'JkP,i,jk + CP~£,Jk+lP,~'Jk+l = \~, k E {I, ... , K~ - I}, (3.42) 

2:.:, CPe',)k = 1/J7,Jk' k E {I, ... , K~}. 

Assumption 3.3.2 and (3.42) imply that CPe,J defined in (3.41) is a unique 

solution to the linear system (3.27). Therefore, from Theorem 2.3.1, the CRP 

condition holds for the arrival rate vector). defined in (3.38). 

For each task type i, let 

for the dedicated arrivals, 

for the flexible arrivals, 

so that 2:e, be, = b~. From (3.13) and (3.43), we have 

(3.43) 

where ).e, is defined in (3.38). Then using the same reasoning as in the proof 

of Theorem 3.3.2, we have the result. 

o 
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Routing Probabilities of the Flexible Arrivals 

We give in (3.34) and (3.35) the conditions on the routing probabilities, pLk 
(II, E {1, ... , K~ - 1}, Ki = ISil > 2), with which a flexible arrival picks a 

pair of adjacent queues. Here we discuss a method of explicitly choosing the 

probabilities. 

The proposed means of choosing P{Jk aims both to maximize the amount 

of (flexible) workload that can be shifted between servers and to balance the 

loads among servers. The reasons are (1) from the analysis of MARa's prop­

erties (in Section 3.3.1), we see that the dynamic routing policy benefits from 

doing short term shifting of workload between servers to avoid congestion; (2) 

the long-run server utilizations, on the other hand, also have a big impact on 

the system performance. 

In the proof of Theorem 3.3.3, we know that given the matrix <Pi in 

(3.40), the rate at which type i flexible arrivals join queue jk is 

k = 1, 

cP~f J"kf..Li,Jk + cPo! J"kf..Li,jk' 
k-l' . "k' 

k E {2, ... , K~ - 1}, (3.44) 

On the other hand, the rate at which the dedicated arrivals join queue jk 

is ,\d given in (3.38). Therefore, p!J" is chosen to maximize the difference 
k " k 

between the two rates (.\ f - .\!d) for all jk E S~. This involves solving a linear 
h k 

programming problem as follows. 

For each task type i, define the matrix 

ipl,l ipl,2 

pf = 
~ 

ip2,2 ip2,3 
(3.45) 

ipK,~I,Kt~1 ipKt~I,Kt 
(K,~I)xKt 

where the non-zero elements are 
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for k E {I, ... , K~ - I}. The LP is hence given by 

max 
b"p!) 

s.t. 

(3.46) 

qiipl,l - (1 - qi)P~jl 2: It' (3.47) 

qi(ipk,k + ipk-l,k) - (1- qi)Pt,Jk 2: It' Vk E {2, ... , Ki - 1},(3.48) 

q~ipK,-l,K, - (1 - qi)p~'JK, 2: It' (3.49) 
k k 

L ipn,n + ipn,n+l > Lpl,jn' Vk E {I, ... , K~ - 2}, (3.50) 
n=l n=l 

k k+l 

L ipn,n + ipn,n+l < LP~Jn' Vk E {I, ... , K~ - 2}, (3.51) 
n=l n=l 
K z-1 K, 

L L ipe,k = 1, (3.52) 
e=l k=l 

ipe,k > 0, ve, Vk, (3.53) 

where P~jk is given in (3.33) and q~ is the proportion of flexible arrivals. Con­

straints (3.47)-(3.49) are derived from (3.38), (3.42) and (3.44). Constraints 

(3.50)-(3.52) are equivalent to conditions (3.34) and (3.35), since from (3.38) 

and (3.42), we have 

(3.54) 

To transform the strict inequalities to the standard form for LP solvers, a small 

number E > 0 is added to the left-hand sides of (3.50) and (3.53); similarly 

-E < 0 is added to (3.51). 

When qt and P~'Jk are such that constraints (3.47)-(3.49) are tight at 

the optimum, each column k of p/ sums to bt* + (1 - qt)p~JJ /qil where It = 
(2qi - 1)/ K~, k E {I, ... , K i }, and each row of p/ sums to pLk' k E {I, ... , K t -

1 }. 

Here we give an example to show the actual utilizations of the servers 

in a heterogeneous system using LP (3.46). This example is abstracted from 

the Grid application in Section 5.2.1. 

Example 3.3.3. Let I = 2, J = 6 and q~ = 1 for each task type i. The 

first-order primitives are 
), = [151 50.3 ] ' 
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[ 
17 25 24 29 

f.L = 30 48 78 84 1~~ 1~~]· 
Then LP (3.2) has a solution p* = 0.95 and 

\f!* = [0.950 0.950 0.950 0.950 0.950 0.580]. 
0.370 

For the dedicated arrivals, the routing probabilzty matrix is 

pd = ( d ) = [0.107 0.157 0.151 0.183 0.302 0.100]. 
Pt,] IxJ 1.000 

Assumzng qt = 1 for all task types i, the solution of LP (3.46) for type 

1 tasks is ,* = 1/6 and 

P f* _ 
1 -

0.167 0.052 

0.115 0.035 

0.132 0.040 

0.127 0.080 

0.087 0.167 

for task type 1. Each column of P/* sums to ,*, which means constraints 

(3.47)-(3.49) are tight at the optimum. 

Summing each row of P/*, we have for type 1 flexible tasks the routing 

probabilities 

(pLhX(J-l) = [0.219 0.150 0.172 0.207 0.254]. 

Given p d
, all type 2 flexible tasks are routed to queue 5 and join one of the 

two queues 5 or 6, according to which has a shorter expected waiting time. 

Simulation yields the corresponding steady state total mean queue length 

of the system to be 38.94 ± 2.3% at a 95% confidence level. The utilizations of 

the servers are given by the vector 

(Pi hx J = [0.91 0.98 0.95 0.95 0.96 0.94]. 

The average and standard deviation of the values p] are 0.95 and 0.02, respec­

tively. The result fits well to the solution of the allocation LP (3.2), indicating 

that systems using the dynamic routing policy MARO-tree can achieve the 

optimal objective of LP (3.2). 
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Ring Routing Structure 

Motivated by Theorem 3.3.3, if the mechanism for good performance is that 

a sufficient proportion of incoming workload can be shifted from any server 

to any other server through the routing structure, then there are two natural 

choices that should intuitively lead to better performance (while still keeping 

the number of choices to be at most two). One of these is the MARO-2/k 

policy described in Section 3.3.2, as it can spread incoming workload over many 

different queues, so it seems reasonable that it would have better performance. 

Another obvious choice is to extend the MARa-tree policy so that there is an 

additional stream of flexible arrivals that is allowed to join the shorter of queues 

J and 1. This would allow incoming workload to be shifted bidirectionally, 

rather than unidirectionally for the two end queues. We will call such a routing 

structure a "ring" structure, as opposed to the "tree" structure of our original 

policy. Unfortunately, as seen below, the CRP condition does not hold for 

either of these, but we suggest a means to make a comparison. 

First, we assume all arrivals flexible for the ring structure, since the 

diffusion limit in Theorem 3.3.3 is independent of the flexibility level q. The 

ring structure allows a type i arrival to pick queue j k (k E {I, ... , I Stl}) with 

probability pLk and joins one of two queues (jk,jk+l(mod K,)) satisfying 

. . C' (Zj) 
J E arg mm --,,-J --

jE{jk,jk+l (mod K,)} f.Li,J 

where Kt = IStl and L.~~lpLk = 1. Therefore, the sets of queues which type 

i tasks actually join is 

if ISil = 1, 

if 2::; I St I ::; J, 

for the flexible arrivals. Also we have IS[I = K t . 

Define the index sets i = UiEySf, where sf = {(i,jk,jk+l(modK,)) : 

(jk, jk+l (mod K,)) E S[} and .c = {I, ... , Iii}· Define a one-to-one function 

h : i --+ .c of the form 

{ 

h(l,jk,jk+l(mod K,)) 

h(i, jk, jk+l (mod K,)) 

= k, 

~i-l K k 
= un=l n + , 
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The arrival rate vector ~ = (~£)lxlil has elements grouped with respect 

to each task type i and indexed by subscripts '£Z. In each group i, the arrival 

rates are 

(3.55) 

where the indices .£Z are determined by 

K A 

So for each type i, we have Lk-':.l \f = Ai' 
- k 

The difficulty in analyzing the ring structure is that the corresponding 

arrival rate vector ~ defined by (3.55) does not satisfy the CRP condition, 

because for each task type i, the routing structure matrix 

¢i{,Jl ¢i{,J2 

¢Z{,J2 ¢Z{,J3 

4>, = (3.56) 

has a cycle in the corresponding graph. That implies the entire routing struc­

ture matrix 

<I> = (<I>z)IXl = (¢£,j)lilxJ 

has rings and there are multiple solutions to the linear system (3.27). There­

fore, by Theorem 2.3.1, the CRP condition does not hold and we cannot di­

rectly make conclusions similar to Theorem 3.3.3. 

However, this does not imply that the ring routing structure will have 

performance worse than the tree routing structure. To see this, we modify the 

ring structure so that the flexible arrivals which join the shorter of the two end 

queues jl and jK, instead join each of those two queues with equal probability. 

Then the corresponding routing structure matrix has the same form as (3.40) 

for each task type i, since the last row in (3.56) becomes the dedicated part <I>f 

in (3.40). Using the same reasoning in the proof of Theorem 3.3.3, we conclude 

that the system in which the modified version of the ring routing structure is 
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applied, has the total workload process achieving the same RBM limit as that 

of the original tree model. 

At this point, we suggest that the modification that has been made 

would degrade the performance in the sense that if L R is the mean number in 

the system for the ring routing structure and L R is the mean number in the 

system for the modified ring structure, then LR ~ LR . While we are unable to 

provide a proof, the intuition is that if queue j1 has a much higher workload 

than queue jK" the original ring structure enables the incoming workload 

to be shifted directly to queue jK" while the modified structure only allows 

sequential shifting through queues j2 to j K, -1· So congestion is alleviated 

more quickly in the original ring structure. Similar reasoning implies that the 

MARO-2/k policy should perform better than MARO-tree. 

3.3.5 Comparison 

Here we compare MARO with its variants, in terms of the discount of the av­

erage required state information for making routing decisions. To compare the 

discounted amounts, we use (3.8), (3.16), (3.19) and (3.37), which correspond 

to MARO, MARO-2/k, MARO-flex and MARO-tree, respectively. 

Suppose (1) the number of candidate queues IBtl is greater than 1 for 

each task type i, (2) LiEI IBtl = I + J - 1 and (3) the proportion of flexible 

arrivals qi equals a constant q for all i E I. A quantitative comparison is given 

in two cases: the equal-arrival-rate case and the single-dominant-arrival case. 

Equal-Arrival-Rate Case 

Let p~ = At />" = 1/1 for all i E I, i.e., all arrival rates are equal. We have 

Discnt(AI ARO) 

Discnt(2k) 

DiscntU1x ) 

Discnt(tree) 

[(1 - l)(J - 1)]/(1 J) x 100%, 

(J - 2)/ J x 100%, 

[(1 - q)J - q(1 - l)J/(1 J) x 100%, 

(J - 2q)/J x 100%. 

It can be shown that in this case, all the Discnt values are monotonically 

increasing in the number of servers J, when the number of task types I is 
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greater than one. Additionally, we have Discnt(tree) 2:: DiscntUlx) if J 2:: 1+1. 

Figure 3.1 shows the comparison in the equal-arrival-rate case, given 

the number of task types I = 4. The values of Discnt(MARO) and Discnt(2k) 

are the same as those of DiscntUlx) and Discnt(tree) with q = 1, respectively. 

We can see that for the same policy, less state information is required as the 

proportion of flexible arrivals increases. At the same level of flexibility q, 

MARO-tree requires less state information than MARO-flex. 
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Figure 3.1: Discnt vs. number of servers J, equal-arrival-case case 

Single-Dominant-Arrival Case 

Let pi = A Ii 5.. > 1/1 and p~ = Ad 5.. = (1 - pi) / (I - 1) for all i E I \ { 1 }. If pi 

is close to one, type 1 tasks are dominant. Also let lSI I = J + 1 - I 2:: 2 and 

IS~I = 2 for all i E I \ {I}, i.e., the dominant task type has to acquire state 

information from the largest possible set of candidate queues (which might be 

considered as a worst case). Then Discnt(2k) and Discnt(tree) are the same as 

in the equal-arrival-rate case. In addition, we have 

Discntu1x) = [(1- qpDJ - q(2 - pi - pi!)]/J x 100%. 
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It can be seen that (1) if pi > 2/(I + 1), DiscntUlx) (including Discnt(MARO») 

is monotonically decreasing in the number of servers J and bounded below by 

(1 - qpi), as J ~ 00. Since J ;:::: I + 1 in this case, we have Discnt(tree) ;:::: 

Discntulx). Figure 3.2 shows the comparison in two single-dominant-arrival 

cases, given I = 4 and pi is equal to 0.9 and 0.5, respectively; (2) if 1/1 < 
pi < 2/ (I + 1), DiscntUlx) is monotonically increasing in the number of servers 

J. However, given I and J, Discnt(flx) is still smaller than that in the equal­

arrival-rate case, regardless of the flexibility level q. 

3.4 Special Cases 

In this section, we discuss several cases where the MARa related policies 

are applied to systems with homogeneous servers, i.e., the processing time 

distribution of any task type i is the same at each server j. Referring to the 

matrices f-l and {3 defined in Section 3.1, we have f-li,j = f-lt and {3i,j = {3i for 

all j E J. In Section 3.4.1, we give the special forms that the MARa related 

policies will take when there is only one task type. The results are extended 

to multiple task types in Section 3.4.2. 

As an additional special case, we discuss in Section 3.4.3 how the 

MARa related policies are applied to a system with a single task type and 

heterogeneous servers. For studies of systems with multiple task types and 

heterogeneous servers, we present results in Chapter 5. 

3.4.1 Homogeneous Systems with Single Task Type 

In this case, the first-order primitives are a scalar Al and a vector f-l = (f-llhxJ. 

The solution to LP (3.2) is 

Hence, the set of candidate queues is Sl = J. 
The MARa policy is the same as MinDrift(Q) (Policy 3.2.1), which is 

equivalent to routing a task to queue j satisfying 
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If the cost function is of the form Cj (ZJ) = cZJ, where c > 0 is a constant and 

ZJ (t) is the expected waiting time at each arrival time t given by 

then MARO (and MARO-flex as well) is the same as routing a (flexible) task 

to queue j with the shortest queue length Qj(t), i.e., the "join the shortest 

queue" (JSQ) policy. 

The MARO-2/ k and MARO-tree policies are changed accordingly: 

a flexible arrival is routed to the shorter one of the paired queues. Using 

MARO-2/k, the two candidate queues are picked with probabilities 1/ J and 

1/ (J - 1), respectively. In the MARO-tree policy, dedicated arrivals are 

routed to each queue j (j E .1) with equal probability P~ = 1/ J. Flexible 

arrivals are routed to queue j with probability p;, which can be determined 

in the following way as one solution to LP (3.46). 

Let q E (0,1] be the proportion of flexible arrivals. Since constraints 

(3.47)-(3.49) are tight at optima, the optimal solution is 

,* = (2q - 1)/ J 

and 
1. 1 * 
J ] - if!2,2 

pf* = 
* 1 * if!2,2 ] - if!3,3 

* 1 if! J-l,J-l J (J-l)xJ 

Let if!j,j = if!j-l,j = 1/(2J) for j E {2, ... , J - I}. We have 

p; = { 3/(2J), ~ E {1, J - I}, 

1/ J, J E {2, ... , J - 2}, 
(3.57) 

which satisfy conditions (3.34) and (3.35). 

Finally, we compare the discounts of the average required state infor­

mation for the MARO related policies, when they are applied to systems with 
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a single task type. From (3.8), (3.16), (3.19) and (3.37), we have 

Discnt(M ARO) = 0%, 

Discnt(2k) 

DiscntUlx) 

Discnt(tree) 

= (J - 2)/J x 100%, 

= (1 - q) x 100%, 

= (J - 2q)/J x 100%. 

(3.58) 

Since J 2 2 and q ::; 1, we have Discnt(tree) 2 DiscntUlx) 2 Discnt(MARO) 

and Discnt(tree) 2 Discnt(2k). That is MARO-tree requires the least amount 

of information to make routing decisions. 

Heavy Traffic Analysis 

In the case of a single task type, Assumption 3.3.3 is satisfied, since lSI I 
I + J - 1. If Al = J /-Ll (i.e., Assumption 3.3.2) also holds, then the heavy 

traffic optimality properties given by Theorems 3.3.1, 3.3.2 and 3.3.3 hold for 

the MARO, MARO-flex and MARO-tree policies, respectively. Specifically, 

we have the following results. 

Define the total queue length process 

Q(t) = L Qj(t), 
JES 

and its diffusion scaled version 

Let the total queue length processes for the MARO-flex, MARO-tree and 

JSQ policies be given by Q~;) (t), Q~~) (t) and Q~ndQ (t), respectively. In addition, 

let Q~~) (t) denote the queue length process for an ./1.1/ G / J system (i.e., a single 

queue with J homogeneous servers). 

Assume that conditions (3.11) and (3.12) are hold. In addition, the 

heavy traffic condition 

(3.59) 

for some finite constant bl is assumed to be true. Then we have 
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Theorem 3.4.1. 

(i) For MARO-flex, the diffusion scaled total queue length process, ctY(t), 

converges weakly to a one-dimensional reflected Browman motion Q s. To 

be precise, Q~;)(t) ~ Qs = RBM(b1 , '\1(1 + J-LIf3i)) , as n ---7 00. 

(ii) For MARO-tree, Q~;)(t) ~ Qs. 

(iii) For JSQ, Q~~Q(t) ~ Qs. 

(iv) For MIGI J, Q~)(t) ~ Qs. 

Part (iv) of Theorem 3.4.1 implies that when the system is under heavy 

loads, the MARO related policies should have performance close to that of a 

system where no routing decision is required, such a system providing a lower 

bound on achievable performance. 

Proof. 

(i) From (3.20), we have 

y(n) (t) _ V*QA (n) (t) 
f - 1 sf ' 

where the arrival workload contribution v; equals 11 (J J-L) in this homoge­

neous case. Using Theorem 3.3.2, we have 

which yields the result. 

(ii) Using Theorem 3.3.3 and reasoning similar to that in part (i), we have 

the result. 

(iii) Since JSQ is equivalent to MARO in this special case, applying Theo­

rem 3.3.1 yields the result. It is noted that by applying Theorem 3.1 from 

Zhang and Hsu [72], the same result can be obtained. 

(iv) A direct application of Theorem 2.2.5 gives the result. 

o 
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3.4.2 Homogeneous Systems with Multiple Task Types 

In this case, the first-order primitives are the vector A = (AihxI, I > 1 and 

the matrix !1 which consists of J identical column vectors (!1i)IXl, i E T. Let 

P~ = Ad !1i. Applying Corollary 3 in [7], a solution to LP (3.2) is 

and 

pdJ pdJ 

1J!*= 
P2/ J P2/ J 

(3.60) 

pIIJ pIIJ IxJ 

Therefore, Assumption 3.3.1 holds for this case. The associated set of candi­

date queues is S~ = J for all i E T. 

Note that given Proposition 3.3.1, there exists another solution 1J!* with 

the maximum number of zero elements. Comparing the number of positive 

elements N p , we have 

Np 1 1 - 1/1 
-<-+ . N - I J p 

The matrix 1J!* is sparse when the values of I and J are large. Using 1J!* in 

MARO and its variant policies means much less state information is required 

for making routing decisions. However, it does not necessarily result in better 

performance of the system. The reason is that in this homogeneous system, 

using ~* with the maximum number of zero elements limits the choice of 

candidate servers to shift workload. This can unbalance the workloads between 

servers to some extent, which yields greater mean queue length of the system 

(see Chapter 5, Table 5.12). 

Using the full matrix 1J!*, MARO is the same as MinDrift(Q), which is 

equivalent to routing a type i task to queue j satisfying 

. . C' (ZJ) 
J E argmm J . 

JE:l !1~ 
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If the cost function is of the form CJ (ZJ) = C/12Z;, where C > 0 is a constant 

and Zj(t) is the Q-estimated workload at each arrival time t given by 

I 

Zj(t) = L Qi,J(t)/ /1i, 
2=1 

then MARO (and MARO-flex as well) is the same as the "join the shortest 

expected waiting time" (JSEW) policy. 

The MARO-2/ k and MARO-tree policies are changed accordingly: a 

flexible arrival is routed to one of the paired queues, according to whichever 

has a shorter expected waiting time. Using MARO-2/ k, the two candidate 

queues are picked with probabilities 1/ J and 1/(J - 1), respectively. In the 

MARO-tree policy, dedicated arrivals are routed to each queue j (j E J) 

with equal probability P~ = 1/ J. Flexible arrivals are routed to queue j with 

probability pt, which can be determined in the same way as (3.57). 

Finally, the comparison of the discounted amount of the required state 

information is the same as that in (3.58) for the MARO related policies. 

Heavy Traffic Analysis 

Note that if the condition 

is true, LP (3.2) has multiple solutions (p*, '11*), where p* = 2:~=1 'IjJ:,J = 1, 

for all j E J. This implies the system is under heavy traffic. However, 

Assumptions 3.3.2 and 3.3.3 do not hold for the primitives (.A, /1). The com­

plete resource pooling condition thus does not hold for systems which use 

MinDrift(Q) or the MARO related routing policies. Even with the arrival 

workload contribution 1/; = 1/(J/1i) unique, the MinDrift(Q) policy need not 

be asymptotically optimal. Roughly speaking, multiple solutions of \]i* yield 

that the RBM variance given in (3.15) is not well defined. However, if a system 

uses a static routing policy, i.e., type i tasks are routed to queue j with prob­

ability P2,J without state information, the diffusion scaled total queue length 

process still weakly converges to a one-dimensional reflected Brownian motion. 

We study this case in Chapter 4. 
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3.4.3 Heterogeneous Systems with Single Task Type 

In this case, the first-order primitives are a scalar Al and a vector f-l = (f-ljhxJ. 

Let jl = Lf=1 f-lJ" Applying Corollary 1 in [7], the solution to LP (3.2) is 

p* = Ad jl, w* = (p*hxJ. 

Hence, the set of candidate queues is SI = 3. 
Let the Q-estimated workload at arrival time t be 

If the cost function is ofthe form Cj(ZJ) = f-ljZ;, then MARO and MARO-flex 

are the same as the JSEW policy which routes a task to queue j satisfying 

. . QJ (t) 
J E argmm--. 

JEJ f-lJ 

The MARO-2/k and MARO-tree policies are changed accordingly. 

Using MARO-2/k, the two candidate queues (j, J' + 1) are picked with prob­

abilities f-lJ/jl and ~tJ+d(jl- f-lJ)' respectively. In the MARO-tree policy, 

dedicated arrivals are routed to queue j (j E 3) with probability p~ = f-lJ/jl; 

flexible arrivals are routed to queue j with probability p;, which is determined 

using LP (3.46). 

Heavy Traffic Analysis 

Similar to homogeneous systems with a single task type, we can show that for 

heterogeneous systems under heavy traffic, the MARO related policies should 

have performance close to the lower bound on achievable performance. 

Let Q~~~(t) denote the queue length process for an M/G/ Jh system 

(i.e., a single queue with J heterogeneous servers, service being first-come­

first-serve). Assume Al = jl is true, so that Assumption 3.3.2 holds. In 

addition, conditions (3.11), (3.12) and (3.59) are assumed true. Then we have 

Theorem 3.4.2. 

(i) For MARO-flex, the dzjjusion scaled total queue length process, Q~;) (t), 

converges weakly to a one-dimensional reflected Brownian motion Q sh. To 

be precise, Q~;)(t) ~ Qsh = RBM(b1, Al + LjEJf-l;f3J), as n -+ 00. 
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(ii) For MARO-tree, Q~~)(t) ~ Qsh' 

(iii) For M/G/Jh, Q~~~(t) ~ Qsh' 

Proof. 

(i) From (3.20), we have 

yen) (t) _ V*QA (n) (t) 
f - 1 sf ' 

where the arrival workload contribution v~ equals 1/ jj in this heterogeneous 

case. Using Theorem 3.3.2, we have 

which yields the result. 

(ii) Using Theorem 3.3.3 and reasoning similar to that in part (i), we have 

the result. 

(iii) A direct application of Theorem 2.2.5 gives the result. 

o 

3.5 Summary 

In this chapter, we have proposed a series of MinDrift affinity routing policies, 

namely MARO, MARO-2/k, MARO-flex and MARO-tree. As resource 

management strategies, these policies use the solution to a resource allocation 

LP which aims to maximize the system capacity. As dynamic routing policies, 

they also use state information to shift workload between servers, trying to 

minimize the expected increment of the holding cost due to delay in the system. 

Compared with MinDrift(Q), which requires global state information for every 

routing decision, the proposed policies significantly reduce the amount of the 

required state information in making decisions, which benefits from using the 

solution to the LP. We have shown that the larger the system, the greater the 
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reduction. It is also noted that the MARO-related policies are robust in the 

sense that multiplying the mean arrival rates of all task types by the same 

factor does not change the routing probabilities derived from the LP. 

To accommodate different levels of flexibility, three variants of the 

MARO policy, MARO-2/k, MARO-flex and MARO-tree, are introduced. 

They reduce further the required state information, either by choosing a 

smaller number of candidate queues or by allowing fewer flexible arrivals, or 

both. Using diffusion limits, we have shown that MARO-flex and MARO-tree 

have the same heavy traffic optimality properties as does MinDrift(Q) and the 

optimality is achieved independent of the levels of flexibility. For the spe­

cial cases of systems with a single task type, MARO-flex and MARO-tree 

approach the lower bound of achievable performance by a multi-server single 

queue. 

As a result, we will demonstrate in Chapter 5 that (1) for systems in 

heavy traffic, a small amount of flexibility can yield significant improvement in 

system performance; (2) when the system is not operating under heavy traffic, 

MARO and MARO-2/k achieve better performance than does MinDrift(Q), 

by making use of an "appropriately" limited amount of state information. 

After having compared the resource allocation policies which use full 

or partial state information, it is natural to ask what can be done without any 

state information. We will study this logical extreme case in Chapter 4. The 

results obtained can be useful to compare the performance of the policies that 

utilize different amounts of state information. 
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Chapter 4 

Resource Allocation with No 

State Information 

In Chapter 3, we proposed several dynamic routing policies, which aim to 

minimize the delay in an output-queued system by using a limited amount of 

state information. In this chapter, we will propose resource allocation policies 

for systems where no state information is available. The systems under study 

are equipped with homogeneous servers to process multiple types of tasks, 

while a task's processing time is unknown until its completion. The task 

inter-arrival times are known to follow exponential distributions, while the 

task processing times follow general continuous or discrete distributions. The 

proposed resource allocation policies consist of two parts: one is the routing 

policy and the other is the pooling strategy which combines several parallel 

queues into a multi-server single queue, in order to further reduce the delay in 

the system. 

Section 4.1 presents the routing policy which minimizes the delay in 

a parallel-queue system under heavy traffic, by taking into account the sec­

ond moments of the task processing times. Section 4.2 compares the pooling 

strategies that are coupled with the given routing policy. Finally, Section 4.3 

discusses extensions of the results to heterogeneous server systems with general 

arrival processes. 
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4.1 Routing Policy 

4.1.1 The Heavy Traffic Model 

Consider an output-queued system as defined in Section 3.1, which has J 

identical servers in parallel to process I types of tasks. Type i tasks arrive 

according to a Poisson process with rate Ai > O. The processing times of type 

i tasks at each server are i.i.d. and form the sequence {Vi,m : m 2': 1}. Both 

/-Li = 1/ E[vz,11 and f3l = Var[vi,11 are assumed finite. The local scheduling 

rule at each server is FCFS. A type i task is routed to one of the queues j 

immediately upon arrival, with probability Pz,j' Define the routing probability 

matrix P = (Pz,J)IXJ. We have 

J 

LPi,) = 1, Vi E T. 
j=l 

At the j-th queue, we have a Poisson arrival stream with rate 

I 

AeJ = L AiPz,) , 
z=l 

while the service time distribution of server j has mean 

and variance 

(4.1) 

(4.2) 

(4.3) 

I 

(32 = '" Azpz.) (/-L-2 + 132) - /-L-2. (4.4) 
~ ~ A z z ~ 

i=l eJ 

Let Pi = Az/ /-Li and 'l/J7,) be the average rate at which the j-th server's 

time is allocated to process type i tasks. Then we have 

(4.5) 

As has been analyzed in Section 3.4.2, Assumption 3.3.1 holds for this homo­

geneous server system. So all servers are equally utilized, i.e., 

I 

L 'l/JZ~J = p* ~ 1, Vj E J, (4.6) 
z=l 
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where p* = L.~=lpdJ. Combining (4.5) and (4.6)1 we have 
I 

LPiP1,J = P*l Vj E J. 
1=1 

(4.7) 

Define the vector A = (A1hxl1 the matrices J.L and (3 which consist of 

J identical column vectors j1 = (J.Lihxl and jJ = UJf)Ixl1 respectively. Given 

(4.6)1 we make the following assumption. 

Assumption 4.1.1. The first-order primitives (A1 J.L) are such that p* = 1. 

Given (4.2) 1 (4.3) and (4.7) 1 Assumption 4.1.1 implies Ae} = J.Le} 1 i.e· l 

each server j is under heavy traffic using the routing matrix P. 

To define the heavy traffic regime1 now consider a sequence of the sys­

tems defined above 1 indexed by n. For type i tasks in the n-th system1 the 

Poisson arrival rate is At); the service time distribution has mean J.Li l and 

variance (3;. We assume that the following conditions hold 

lim Ain) = Ail ( 4.8) 
n->oo 

and 

(4.9) 

for some E > 01 where {v1 ,m : m ~ I} is a sequence of i.i.d. random variables 

formed by the processing times for task type i at each identical server. In 

addition1 the heavy traffic condition 

lim vn(Ain) - Ai) = b 
n->oo 

(4.10) 

is assumed to be true for all i E I for some finite constant b. We define a 

constant Cj for each j E J such that 
I 

'"'po .b L...J 1,J 
i=l 

(4.11) 

From (4.2)-(4.4) and (4.8)-(4.9)1 we have for queue j the following 

heavy traffic conditions 

lim A(n) - AeJ 1 ( 4.12) 
n->oo eJ 

lim J.L(n) 
n->oo eJ 

J.Le J 1 ( 4.13) 

( ) (n) (3;] 1 (4.14) lim (3; -
n----+oo ] 
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and 

( 4.15) 

for some f > 0, where {ve),rn : m 2:: I} is a sequence of i.i.d. random variables 

formed by the effective processing times at server j. In addition, from (4.10), 

(4.11) and Assumption 4.1.1, we have 

lim vn()..~nl - Me) = e). 
n-too ) J 

(4.16) 

Let the queue length process for queue j be given by Q;nl(t). We form 

the diffusion scaled queue length process as 

( 4.17) 

From (4.12)-(4.16) and Theorem 2.2.4, we have the following result: 

Theorem 4.1.1. Q;nl (t) ~ Q) = REM (e), a}), as n --+ 00, where 

( 4.18) 

From Theorem 2.1.7, the mean of the stationary distribution of RBM 

Q) is 1jJ) = o-;/(2IeJI). Since the queue length processes Q;nl(t) are mutually 

independent, we define the weighted total mean 

( 4.19) 

The parameter 

( 4.20) 

includes the second moment of the random variable Vi, from which the process­

ing times of type i tasks are generated. 

Our goal is, given the primitives ().., M, f3) and Assumption 4.1.1, to 

find an optimal routing matrix P* which yields the minimal rp, subject to 
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conditions (4.7) and (4.1). It can be formulated as a nonlinear programming 

(NLP) problem 

_ t (Lid AJ'i,j), (Lid B,p,,) ) 
(4.21 ) mm cp(F) = I 

P j=l Lt=l Pl,j 
I 

s.t. L PiPt,j = 1, Vj E J ( 4.22) 
t=l 

J 

LPt,J = 1, Vi E T ( 4.23) 
J=l 

o ~ Pi,j ~ 1, Vi E T, V)· E J. 

Before proceeding to solve this NLP, we compare it with the static 

allocation LP (3.2) given in Section 3.3.1. Since Assumptions 3.3.1 and 4.1.1 

hold for homogeneous systems, constraints (4.22) and (4.23) are equivalent 

to the constraints of LP (3.2), with inequalities (3.3) and (3.4) changed to 

equalities. Therefore, given the same set of constraints, the routing matrix 

derived from the solution \}f* to LP (3.2) maximizes the system capacity (or 

throughput), while the solution to NLP (4.21) minimizes the total queue length 

of the system (or equivalently the delay in the system) in heavy traffic. In some 

special cases, these two routing matrices are the same 1, but in general, they 

are different. The difference between the two static routing policies shows 

that maximizing the throughput does not necessarily result in minimizing the 

delay in the system. That is why the variance of processing times is taken into 

account, in order to achieve the latter objective. 

1 For example, given that the processing times are exponentially distributed, 1= J = 2, 
Pl = 0.5 and /11//12 = 2, the solution to NLP (4.21) is 

p* _ [0.5 0.5] 
- 0.5 0.5 . 

It is the same as the static routing policy derived from the solution to LP (3.2). 
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4.1.2 The Resource Allocation NLP 

Define 

• decision variables x = vec( P) and augmented variables y = [Y1, ... , Y3J JT; 

• parameters P = [PI, ... , PI] and B = [B1' ... , BI ], where P2 = )..d JL2 2: 0 and 

as defined in (4.20) B2 2: O. (By convention, 1/ JL1 = 0 if 1£2 = 0.) 

NLP (4.21) is reformulated as 

mm 
(x,y) 

s.t. 

J 

cp(y) = L (yJ) (Yj+J) (Yj;2J) 

j=l 

I 

YJ - L )..2X(j~1)l+i = 0, Vj E .1 
2=1 

I 

YJ+J - L B2X(j~1)l+2 = 0, Vj E .1 
2=1 

I 

YJ+2J - L X(J~l)l+i = 0, Vj E .1 
2=1 

I 

L P2X(J~1)l+1 = 1, Vj E .1 
2=1 

J 

L X(J~1)l+2 = 1, Vi E I 
j=l 

0::; Xn ::; I, Vn E {I, ... , IJ} 
I 

o ::; Yj+J ::; L Bi , 

2=1 2=1 

o ::; Yj+2J ::; I, Vj E .1. 

( 4.24) 

( 4.25) 

( 4.26) 

( 4.27) 

( 4.28) 

( 4.29) 

(4.30) 

(4.31) 

Constraints (4.25)-(4.27) are merely substitutions of variables. Constraints 

(4.28) and (4.29) are equivalent to constraints (4.22) and (4.23), respectively. 

All the variables are bounded by (4.30) and (4.31). Consequently, NLP (4.24) 

consists of linear equality constraints and a non-convex objective function. 

74 



PhD Thesis ~ Y-T. He ~ McMaster ~ Computing and Software 

Note that the objective function is a posynomial 2 and the constraint 

functions can also be transformed to posynomials. This suggests that NLP 

(4.24) might be transformed into a geometric programming (GP) problem, 

which in turn can be solved using convex optimization techniques [9]. How­

ever, our attempt to solve NLP (4.24) with the GP solver in the MOSEK 

optimization toolbox [53] was not successful (see Appendix A). 

Based on the benchmarking results provided by Dolan et al. in [20] 

and Morales et al. in [52], we choose a general purpose NLP solver, KNITRO 

[18], to solve the resource allocation problem (4.24). Unlike some other NLP 

solvers, e.g., MINOS [54] or SNOPT [27], which are designed to find a locally 

optimal solution which is close to the starting point of a feasible solution x, 

KNITRO features a multi-start procedure [37] so that the solution returned is 

the local optimum with the best objective function value. This improves the 

probability of finding the global optimum for NLP. 

Here we give an example of computing the optimal static routing policy 

for a homogeneous system in heavy traffic. This example is abstracted from 

the Grid application in Section 5.2.1. 

Example 4.1.1. Let I = 5 and J = 6. The first-order pnmitwes are 

,\ = [39.84 13.47 15.15 0.94 2.06] 

and 
j1 = [ 16.7 30.4 18.9 3.0 1.0] T , 

so that Assumption 4.1.1 holds. 

Assume that the processing time distributions are exponential, i. e., the 

parameter Bt defined in (4.20) is equal to 2,\d jJ; for task type i. From the 

analysis in Section 3.4.2, we know that a natural starting point is the routing 

matrix pO wzth all of the elements bemg 1/ J. Using KNITRO, the global 

2Let x = [Xl, ... , xn] be a vector with components x,, i = 1, ... , n. A function of the form 

K n 

f(x) = L Ck II X~"k, 
k=l ,=1 

where Ck > 0 and a"k E lR, is called a posynomial (function). If K = 1, f(x) is a monomial. 
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optimal solution to NLP (4.24) is obtained to be 

0.20 0.24 0.29 0.27 

0.30 0.70 

p*= 0.64 0.36 ( 4.32) 
1.00 

0.49 0.49 0.02 

which yields the objective function value 

0:xp = 178.6. ( 4.33) 

Several observations can be made from this example. 

Firstly, if the processing time distributions are changed such that the 

squared coefficient of variation C; is altered by a factor of k for all task types, 

the optimal static routing policy solution is the same as that given in (4.32), 

while the objective function value cp* is differentiated by a factor of (k + 
1)/2 from that of the exponential processing time case. This can be seen by 

rewriting the parameter 8i in (4.19) as 

82 = A2(1 + C;,J/ fJ;· 
For example, let the processing time distributions be Erlang-k for all task 

types, then we have C;,i = l/k for all i E I. Suppose that the optimal solution 

P* yields 0:xp for exponential processing times. Then the same matrix P* is 

also the optimal solution for the Erlang-k processing times and the objective 

function value is 
_* (1+I/k)_* 

CPEk = 2 CPexp' 

Secondly, the routing matrix pO derived from LP (3.2) is used as the 

starting point to solve NLP (4.24), however, the resulting optimal routing ma­

trix P* is quite different. This implies that maximizing the system throughput 

does not necessarily lead to minimizing the delay in the system. What is the 

same between pO and P* is that column permutations of each routing prob­

ability matrix keep the corresponding objective function value optimal, since 

the servers are identical. 

Thirdly, since NLP (4.21) and LP (3.2) have the same set of linear con­

straints, we have the following proposition to quantify the number of positive 

elements Np in a solution P. 
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Proposition 4.1.1. There exists a feasible solution P, whose associated Np 

satisfies max(I, J) :::; Np :::; I + J. 

Proof. The proof is similar to that of Proposition 3.3.1. The first inequality 

follows from the fact that otherwise there exists either at least one task type 

that is not processed by any servers or at least one idle server. If there were 

an idle server, the objective function value 0*, which corresponds to the total 

scaled mean queue length of the system in heavy traffic, could not have been 

a nUl1lmum. 

The second inequality results from the generation of the basic feasible 

solution of NLP (4.21). Since the NLP has only I +J linear equality constraints 

and always has a non-zero feasible solution which contains I J variables, then 

a basic feasible solution (BFS) exists. The BFS contains I + J basic variables 

which correspond to the linearly independent constraints and I J - (I + J) 

nonbasic variables which are zero. Then the matrix P has at least I J - (I + J) 

elements equal to zero. Equivalently, the number of positive elements is at 

most 1+ J. D 

Proposition 4.1.1 implies that the matrix P contains many zero ele­

ments (especially when the matrix size is large). Although the feasible solution 

which contains the maximum number of zeros might not be the optimum, it is 

found that in many cases, the number of zeros in the optimal solution is close 

to the maximum. For example, the number of positive elements in the optimal 

solution P* in (4.32) is 12, close to I + J = 10. This implies that using the 

optimal static routing policy, most servers need only be capable of processing 

a small subset of the task types. This is desirable when it is expensive to 

maintain highly flexible servers. 

Finally, if more than one column of P* are the same, e.g., columns 1 

and 3 in (4.32), the corresponding servers can be pooled into one queue to 

further reduce the total mean queue length of the system. To be specific, 

given P* = (P;)IXJ, suppose there exists a subset of queues Jk satisfying the 

following condition: 

Condition 4.1.1. For any two queues j, j I E Jk ~ :J, P:,j = P:,J I is true for 

all i E Y. 
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We can construct a single queue jk by pooling these IJkl parallel queues 

together, with IJkl arrival streams, each being a Poisson process with rate Ae) 

as defined in (4.2). Consider a sequence of such IJkl-server single queues 

indexed by n. For the n-th system, let the queue length process of queue jk 

be Q;:)(t). Its diffusion scaled version Q;:)(t) is formed in the same fashion 

as (4.17). The following theorem says that the scaled queue length process for 

the pooled queue converges to the same reflected Brownian motion as that for 

anyone of the queues to be pooled, except that the RBM drift and variance 

are increased by a factor of I Jk I· 

Theorem 4.1.2. If for any queue j E Jk, Q;n) (t) ~ RBM (ej, a}), as 

n -+ 00, then for the multi-server queuejk' Q;:)(t) ~ RBM(IJk!cj, IJkl a;) , 

as n -+ 00. 

Proof. The proof follows directly from Theorems 2.2.5 and 4.1.1. D 

Let the mean of the stationary distribution of the corresponding RBM 

be 'Pj and 'Pjk' respectively. We have 'PJk = 2..:JE .:h 'Pj/IJkl. This implies that 

by pooling the IJkl parallel queues, the performance of the subsystem can be 

improved by a factor of IJkl in heavy traffic. For example, using the matrix 

P* in (4.32), we can pool servers 1 and 3 together in a single queue. The 

objective function value is reduced to 174.4. 

In Appendix B, we propose a heuristic to obtain a suboptimal routing 

matrix (denoted as PH) that satisfies the constraints (4.28) and (4.29) in 

NLP (4.21). When the system size I x J is large, the matrix pH has more 

columns that satisfy Condition 4.1.1 than the optimal solution P* to NLP 

(4.21). Therefore, if an NLP solver is not available, pH is useful to try to 

increase the degree of pooling. 

4.2 Pooling Strategies 

There are three kinds of pooling: no pooling, full pooling and partial pooling. 

The J parallel queue system discussed in Section 4.1.1 involves no pooling, 

where only the static routing policy is used. Full pooling is to pool all the 
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queues together into one queue, so that a J-server single queue is formed and 

no routing is needed. Given the optimal routing policy derived from NLP 

(4.21), partial pooling is to pool each subset of the J queues, which satisfies 

Condition 4.1.1, into a multi-server single queue, in order to minimize the total 

mean queue length of the system. Given the primitives (A, f.1, (3), a pooling 

strategy is to decide which kind of pooling should be applied, so that the total 

mean queue length of the system is minimized in heavy traffic. 

4.2.1 Full Pooling 

Using the system described in Section 4.1.1, a multi-server-single-queue sys­

tem is constructed by pooling the parallel queues into one queue. The local 

scheduling rule at the J identical servers is FCFS. The arrivals of the I types 

of tasks follow a Poisson process with rate 
I 

~ = LAt. 
i=l 

The service time distributions of the J servers are identical with mean 

and variance 

-1 
f.1e = 

I 

'""' Ai -1 ~ ---;;;-f.1. 
i=l A t 

I A. 
f32 '""' t (-2 (32) -2 

e = ~ ~ f.1i + i - f.1e . 

i=l 

For the first-order primitives (A, f.1), Assumption 4.1.1 implies 

I 

L Ai = J. 
1=1 f.1i 

( 4.34) 

( 4.35) 

( 4.36) 

So we have A = J f.1e, i.e., this multi-server single queue is under heavy traffic. 

In the heavy traffic regime, we assume that (4.8)-(4.10) hold. Then 

from (4.34)-(4.36), we have 

lim ~(n) A, (4.37) 
n->oo 

lim f.1~n) f.1e, ( 4.38) 
n->oo 

lim (f3;) (n) f3;, (4.39) 
n->oo 
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and 

( 4.40) 

for some E > 0, where {ve,m : m ~ I} is a sequence of i.i.d. random variables 

formed by the effective processing times at each server. In addition, we have 

lim Vn(~(n) - J/Je) = cf, (4.41) 
n--+oo 

where cf = bI is a constant. 

Let Qjn)(t) be the diffusion scaled queue length process. From (4.37)­

(4.41) and Theorem 2.2.5, we have the following result: 

Theorem 4.2.1. Qjn)(t) ~ Qf = RBM(cf' a}), as n --+ 00, where 

( 4.42) 

From Theorem 2.1.7, the mean of the stationary distribution of the 

RBM Qf is CPf = a}I(2Icfl)· We define the weighted mean 

( 4.43) 

where ei = AiE[vll is the same as (4.20). 

To compare full pooling with no pooling, we denote the weighted total 

mean defined in (4.19) as <Pn (which stands for no pooling). Comparing (4.43) 

with (4.19), it can be seen that if the optimal routing matrix p~ for no pooling 

has all the elements being II J, Theorem 4.2.1 is a special case of Theorem 

4.1.2 with Jk = J. Then we have <p~ = J<Pf, i.e., full pooling is better than 

no pooling. 

However, there are cases where the performance of no pooling is su­

perior than that of full pooling, when p~ has other structures. Table 4.1 

shows two such cases, where Assumption 4.1.1 holds for the first-order prim­

itives ()..,/J), i.e., L~=lP1 = J = 3. Since <p~ < rpf, the no pooling structure 

outperforms the full pooling structure in heavy traffic. 
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Table 4.1: Cases of no pooling superior than full pooling, I = J = 3, expo­
nential processing times 

I Cases I zip, I JL, , 

1 1 1.10 20.00 22.00 0.07 0.91 0.02 

2 0.10 2.00 0.20 1.00 

3 1.80 0.20 0.36 0.46 0.54 71.2 343.3 

2 1 1.80 20.00 36.00 0.44 0.56 

2 0.10 2.00 0.20 1.00 

3 1.10 0.20 0.22 0.09 0.91 274.6 554.2 

Table 4.2: Cases of full pooling superior than no pooling, I = J = 3, expo­
nential processing times 

I Cases I i I p, I JL, cp~ II <Pf 

1 1 0.10 20.00 2.00 1.00 

2 1.80 2.00 3.60 0.50 0.50 

3 1.10 0.20 0.22 0.91 0.09 19.8 16.1 

2 1 1.80 20.00 36.00 0.56 0.44 

2 1.10 2.00 2.20 0.18 0.82 

3 0.10 0.20 0.02 1.00 195.7 123.4 
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4.2.2 Partial Pooling 

Using the same matrix M and the task type loads Pi in Table 4.1, but with 

different combinations (which result in different vectors A), Table 4.2 shows 

two cases where the no pooling structure is outperformed by the full pooling 

structure (cp~ > cP f)· N ow the question is given the optimal routing matrix 

P~ which yields the no pooling structure outperformed by the full pooling 

structure, is there a partial pooling structure that outperforms the full pooling 

structure? 

The answer is depending on the primitives (>., /1, (3), pooling each sub­

set of the J queues that satisfies Condition 4.1.1, into a multi-server single 

queue, can yield a partial pooling structure that outperforms the full pooling 

structure. 

Define the set K = {1, ... , K}. Suppose that there exists a partition of 

.1 where .1 = .10 u (U~=l .1k) and .1k n .1k' = 0, Vk, k' E K U {O}. Each server 

in the subset .10 maintains its own queue, while parallel queues within each 

subset .1k (k -=1= 0) satisfy Condition 4.1.1 and are pooled into a multi-server 

queue jk' Therefore, the probability with which type i tasks are routed to 

queue jk is P~,jk = l.1klp~,k' where P~,k = p7,J' for any j E .1k' 

From Theorem 4.1.2, the mean of the stationary distribution of the 

RBM QJk is equal to that of the RBM Qj, for any queue j E .1k' Since the 

RBMs QJk (k E K) are mutually independent, we define the weighted total 

mean 

CPp 21bl (L CPJ + L CPjk) 
JE:Jo kEK 

L (2:~E:I A~P:'J) 2 (2:~EI eiP:,J) + 
JE:Jo 2:~EI P:,J 

L (2:iEI AiPi,k) 2 (2:iEI e~Pi,k) 
kEK 2:~EI P~,k . 

( 4.44) 

If .1k = 0 for all k -=1= 0, we have .10 = .1 and CPP = cp~. Otherwise, Theorem 

4.1.2 implies CPP < cP~, which means the total mean queue length of the system 

can be reduced further in heavy traffic with partial pooling. 
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Table 4.3 shows an example, where the routing matrix P/! for no pool­

ing yields performance worse than that of full pooling (lp;; > lp f) . However, 

given P:!, by pooling two subsets of the queues: queues 1 and 2, queues 5 and 

6, respectively, partial pooling is better than full pooling (lp f > lpp). 

Table 4.3: A case of partial pooling superior than full pooling, I = J = 6, 
exponential processing times 

I i I p, I /-1-, , 
-R 

'Pn 'PI 

1 0.40 2.01 0.80 0.33 0.33 0.33 

2 0.88 2.05 1.80 0.50 0.50 

3 2.90 2.02 5.86 0.34 0.34 0.10 0.11 0.11 

4 0.60 2.00 1.20 1.00 

5 0.22 1.95 0.43 0.50 0.50 

6 1.00 78.00 78.00 1.00 187.6 178.9 170.3 

Therefore, given the primitives (..\, /1, fJ), to choose a pooling strategy 

which minimizes the total mean queue length in heavy traffic, we have the 

following procedure: 

1. Solve NLP (4.21) and obtain the optimal objective function value lp~ 

and the routing matrix P;. 

2. Given P;, pool each subset Jp of the J queues that satisfies Condition 

4.1.1, into a multi-server single queue and calculate the weighted total 

mean for partial pooling lpp in (4.44). If none of the subsets satisfies 

Condition 4.1.1, we have lpp = lp~, otherwise we have lpp < lp~. 

3. Calculate the weighted mean for full pooling lp fusing (4.43). 

4. If rpp > lp f' the full pooling structure should be applied. Otherwise, 

the partial pooling structure should be applied. In the latter case, if 

lpp = lp~, no pooling is needed. 
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When choosing between full pooling and partial pooling, there is again 

a tradeoff between the system performance and the cost of maintaining highly 

flexible servers. Full pooling requires each server capable of processing all 

types of tasks, while partial pooling requires less flexibility. 

Finally, we present in Figure 4.1 an algorithm to find t.he partition of the 

J parallel queues according to an equivalence condition which is exactly as or 

"close to" Condition 4.1.1, given the optimal solution P* of NLP (4.21). In the 

worst case, the procedure partition(P) makes O(J2) comparisons between 

the J columns of the matrix P. In the procedure Check_Arrays(p, q), if E 

is not larger than the machine precision, then queues p and q exactly satisfy 

Condition 4.1.1. To increase the degree of pooling and obtain a potential 

smaller total mean tpp, we may want to relax Condition 4.1.1 by choosing a 

larger E (e.g., 1O~2). Then the partition becomes less fine, i.e., the number of 

subsets decreases. Consequently, more servers are required to be capable of 

processing more types of tasks. 

4.3 Extensions 

In this section, we discuss the possible extensions of the results obtained for 

homogeneous server systems to heterogeneous systems. Section 4.3.1 shows 

that for heterogeneous systems with Poisson arrival processes, where the sys­

tem load does not approach one and the Pollaczek-Kintchine formula can be 

applied, the NLP used to obtain the optimal routing matrix is no more com­

plicat.ed than t.hat. in the heavy traffic case. In Section 4.3.2, the results are 

extended t.o heterogeneous systems with generic arrival processes in the heavy 

traffic regime. 

4.3.1 Moderate Traffic 

Consider J heterogeneous servers in parallel t.o process I types of tasks. The 

arrivals of task type i follow a Poisson process with rate .Ai > O. The processing 

times of type i tasks at server j are i.i.d. and form the sequence {Vi,j,m : m ~ I}. 

Both /-Li,] = 1/ E[Vi,],l] and f3i~] = Var[v2,],1] are assumed finite. The local 
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1 proc partition(P) 

2 

3 

{ y, z: column (or queue) indices of the matrix P with size I x J; 

k: index of the subset S[k] ~ {l, ... , J}; 

4 j: queue index of the first element in the set S[k]; 

5 part[J]: array of length J, element partly] = 1 if queue y is in some set S[kJ; 

6 

7 k = 0; j = 1; part[l, ... , J] = 0; / / initialization 

8 while ( Sum(part) < J ) 

9 {k = k + 1; S[k] = {j}; z = j + 1; 

10 while (z ::; J) 

11 {if (part[z] == 0) 

12 { Equal = 0; 

13 Equal = Check..Arrays (P[:, j], P[:, zj); 

14 if (Equal == 1) II (P[i,j]- P[i,z]) < c, 'Vi E {1, ... ,I}. 

15 { S[k] = S[k] U {z}; 

16 part[z] = 1; 

17 } 

18 } 

19 z=z+l; 

} 

y = j + 1; 

20 

21 

22 

23 

while (y ::; J AND partly] == 1) y = y + 1; 

j = y; / / find the first element of the new set S[k]; 

24 } 

25 return(S[I]' ... , S[k]); 

26 } 

27 / / proc Sum(p) returns the sum of array p's elements. 

28 I I proc Check..Arrays(p, q) returns 1 if (p[i] - q[i]) < c, 'Vi ::; length(p); 0, otherwise. 

Figure 4.1: Procedure for partitioning the routing matrix P 
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scheduling rule at each server is FCFS. A type i task is routed to queue j 

immediately upon arrival, with probability Pl,). So we have 

J 

2:= Pt,) = 1, 'Vi E I. 
j=l 

At the j-th queue, we have a Poisson arrival stream with rate 

1 

AeJ = 2:= AtPi,) , 
1=1 

while the effective service time distribution of server j has mean 

and variance 
1 A 

(32 ~ tPI,) (-2 (-12) -2 
e] = ~ -A- /-ti,) + fJt,) - /-te] . 

t=l e) 

(4.45) 

Let Pt,j = At/ /-tt,) and Pel = Ae] / /-te]· We have the effective offered load for 

server j to be 
1 

Pel = 2:= Pi,)Pi,)· 
i=l 

( 4.46) 

In general, we have Pe #- Pe I for any two queues j #- j I in moderate traffic. 
) ) 

This is different from the heavy traffic case (cf. (4.7)). 

Since 0 < Pel < 1, for all j E 3, by applying the Pollaczek-Kintchine 

formula, we have the mean queue length of queue j to be 

2 + A2 (32 Pel e] e] 
Pel + 2(1 _ ) Pel 

~ (2:=:=1 A,Pi,j) (2:=:=1 Bt,)pt,j) 
~ Pi,jPt,) + 2(1 ,\,1 )' 
t=l - L...tt=l Pi,jPi,j 

( 4.47) 

where Bt,j = Al(/-t~} + (31~)) = AiE[V;,)l· 
- J 

Let Q = 2:=)=1 Q) denote the total mean queue length of the system. 

To find an optimal routing matrix P* which yields the minimal Q, subject to 

condition (4.45), we can formulate an NLP as follows. Define 
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• decision variables x = vec(P) and augmented variables y = [Y1, ... , Y3Jf; 

• parameters A = (AlhxI' P = (Pl,J)IXJ and () = ((}l,J)JXJ, where Al > 0, 

for all 1 ::::; i ::::; I and Pi,J 2: 0 and (}i,j 2: 0, for all 1 ::::; i ::::; I, 1 ::::; j ::::; J. 

(By convention, Pi,J = 0 and (}i,J = 0 if f-Li,j = 0.) 

The NLP is 

mm 
(x,y) 

_ 1 J J 

Q(y) = 2 L (YJ) (YJ+J) (Y;;2J) + L(1- YJ+2J) 
j=l j=l 

I 

s.t. YJ - L Ai X(j-1)J+l = 0, Vj E :r 
i=l 

I 

Yj+J - L (}l,jX(J-1)J+i = 0, Vj E :r 
i=l 

I 

YJ+2J + L Pi,J X(j-1)J+i = 1, Vj E :r 
i=l 

J 

L X(j-l)J+l = 1, Vi E I 
J=l 

o ::::; Xn ::::; 1, Vn E {I, ... ,1 J} 
I 

o ::::; YJ+J ::::; L (}l,J' 
i=l 

max (1- t,Pi." 0) S YJ+2J S 1, Vj E:r. 

( 4.48) 

Comparing NLP (4.48) with NLP (4.24), NLP (4.48) has J fewer linear 

equality constraints and its objective function remains non-convex, with the 

highest order power being one degree lower. 

Although the results of random routing can be extended to systems 

under moderate traffic, it is not easy to obtain the corresponding pooling 

strategies. To estimate the mean queue length of multi-server queues which 

have generic processing time distributions, approximation techniques with take 

into account the traffic load factor are more complicated than heavy traffic 

analysis (for example, using Allen-Cunneen approximation requires computing 

the Erlang-C formula). 
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Next, we give an example of computing the optimal random routing pol­

icy for heterogeneous systems in moderate traffic. The example is abstracted 

from the Grid application in Section 5.2.1. 

Example 4.3.1. Let I = 5 and J = 6. The first-order primitives are 

Al\h = [ 48.75 16.48 18.54 1.14 2.52] 

and 
16.7 24.8 24.2 29.0 25.6 48.3 

30.4 48.3 77.7 83.6 135.9 144.9 

/-l= 18.9 24.2 48.3 45.8 72.5 72.5 

3.0 3.0 7.6 7.6 8.3 8.7 

1.0 1.1 3.0 2.9 3.0 3.0 

so that the solution to LP (3.2) is p* = 0.5. Let the starting point be 

0.17 0.25 0.08 0.50 

1.00 
po= 1.00 

0.11 0.89 

0.60 0.40 

which is derived from the solution to LP (3.2) using (4.56). Assume that the 

processing times are exponentially distributed. Then the global optimal solution 

to NLP (4.48) is obtained to be 

0.13 0.25 

1.00 

0.62 0.38 

1.00 

1.00 

0.62 

The effective offered loads for the servers are given by the vector 

P:,Ml = (P:)lXJ = [0.37 0.48 0.52 0.48 0.38 0.63]. 

( 4.49) 

To see the impact of system load, we increase the mean arrival rates 

to be Al\12 = 1.9 X Al\h and keep the processing times unchanged, so that the 

solution to LP (3,2) is p* = 0,95. Then using the same starting point po, the 
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global optimal solution to NLP (4.48) is obtained to be 

0.17 0.25 

1.00 

0.60 0.40 

0.06 0.52 

1.00 

1.00 

The effective offered loads are given by the vector 

P;,M2 = [0.95 0.96 0.96 0.95 0.95 0.96 ] . 

(4.50) 

It is known from (4.47) that the optimal solutions (4.49) and (4.50) 

do not change if the processing time distributions are changed such that the 

squared coefficient of variation is increased by a factor of k > 1, for all task 

types at each server. Similar to the observation made for the heavy traffic case, 

the optimal random routing policy which minimizes the delay in the system by 

using the first and second moments of the processing times is different from the 

static routing policy which maximizes the system throughput without using 

the second moments of the processing times. When the system load approaches 

one, the effective offered loads of the heterogeneous servers become closer to 

each other and the optimal routing matrix also changes correspondingly. 

4.3.2 General Arrivals 

Consider an output-queued system with processing time distributions and lo­

cal scheduling rule as described in Section 4.3.1, but with different arrival 

processes. The inter-arrival times of type i tasks are i.i.d. and form the se­

quence {Ui,m : m 2:: I}. Both'\~ = 1/ E[U~,l] and a7 = Var[ui,l] are assumed 

finite. A type i task is routed to queue j immediately upon arrival, with 

probability Pi,j' 

Let the random variable Ui,j = 2::~r Ui,k be the generic inter-arrival 

times of type i tasks at server j, where the random variable Ni ,] is geometrically 

distributed with parameter P~,J' We have 

E[Ui,J] = '\~J = ('\iPi,jr
1 

, (4.51) 

a; 1 1 - Pi,J 
= - + ,\2 . 2 

p~,J ~ Pi,] 
( 4.52) 
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Let Ae) = ~~=1 AtPi,). The effective service times at server j have mean 

( 4.53) 

and variance 
I A' 

(32 ~ Z,) ( - 2 + (32 ) - 2 
e) = 6 ~ fLi,) t,) - fLe) . 

i=l eJ 

(4.54) 

Define the vector A = (\)lXI and the matrices fL 

((3i,))IXJ' Assume that Assumption 3.3.1 holds for the first-order primitives 

(A, fL), i.e., 

Vi E I, 
(4.55) 

Vj E J, 

where 'I/J;,j is the average rate at which the j-th server's time is allocated to 

process type i tasks and p* is the long-run utilization of each server j, which 

approaches one in this case. 

Since the processing capacity for each task type equals its arrival rate, 

we have 

(4.56) 

Let Pt,) = At/fLt,J" Combining (4.55) and (4.56), we have 

I 

L Pz,jPi,j = 1, Vj E J. (4.57) 
i=l 

This implies that using the routing matrix P, each single-server queue j with 

I arrival streams is under heavy traffic, i.e., Ae = fLe . 
J ) 

Now consider a sequence of systems as defined above, indexed by n. For 

type i tasks in the n-th system, the inter-arrival time distribution has mean 

(\-l)(n) and variance (ai)(n); the service time distribution has mean fL;J and 
. i:t2 vanance fJ',j' 

hold 

For each task type i, we assume that the following conditions 

1· dn) \ 
1m /\t = /\" 

n~oo 

. (2) (n) 2 Inn at = ai' 
n-->oo 

( 4.58) 
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and 

n~~~I E [( u~rrn)l < 00, 

E [v;,:;:n == di,j < 00, 

for some E > 0 and finite constant d1 ,], j E J. 

(4.59) 

( 4.60) 

From (4.51 )-( 4.54) and (4.58)-(4.60), we have the following heavy traf­

fic conditions for queue j 

1· (2) (n) 2 1m Lri ] = Lri ]" 
n---700' , 

(4.61) 1· dn) - \ 1m A 1 ] - Ai,], 
n---+oo ' 

. (2 ) (n) 2 hm f3e = f3e , 
n-->oo] J 

(4.62) 

and 

( 4.63) 

\/j E J, ( 4.64) 

where {Ve],m : m ~ I} is a sequence of i.i.d. random variables formed by the 

effective processing times at each server j. In addition, from (4.10), (4.11) and 

(4.57), we have 

( 4.65) 

Let Q;nl(t) be the diffusion scaled queue length process for queue j. 

From (4.61)-(4.65) and Theorem 2.2.5, we have the following result. 

Theorem 4.3.1. Q;n\t) ~ Q] = RBM (c], a;), as n ----t 00, where 

i=l 
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Let C~,2 = ),;00; and C;,2,J = /1;,jf3l,J denote the squared coefficients of 

variation of the inter-arrival times and the processing times, respectively. Even 

though the queue length process Q;n) (t) are not mutually independent due to 

the geometric arrival splitting, we can still obtain the weighted total mean as 

__ ~ L;=l 62P;,J ~ (L;=l ),lPi,j) 2 (L;=l 82,JPi,j) 
cp - ~ I + ~ I ,( 4.66) 

J=l L l=l Pi,J j=l Ll=l Pl,J 

where 

If that we were looking at anything other than the mean, we would have to 

take the correlation between the arrival streams into account. If the arrivals 

follow Poisson processes and the servers are identical, (4.66) is the same as 

( 4.19). 

Define 

• decision variables x = vec( P) and augmented variables y = [Y1, ... , Y4J JT; 

• parameters 6 = (6ihxI, P = (Pi,J)IXJ and 8 = (81 ,JhxJ. The sign of 

62 depends on the value of the squared coefficients of variation of the 

inter-arrival times. For all i E I, j E J, we have P2,J 2: 0 and 82,J 2: O. 

(By convention, P2,j = 0 and 8i,j = 0 if /12,J = 0.) 

The corresponding NLP is formulated as 

mm 
(x,y) 

J J 

(jJ(y) = L (y;) (YJ+J) (Yj+\J) + L (Yj+3J) (Yj;2J) 
j=l J=l 

I 

s.t. Yj - L ),2 X(J-1)I+2 = 0, Vj E J 
i=l 

I 

YJ+J - L 82,J X(j-1)I+2 = 0, Vj E J 
i=l 

I 

Yj+2J - L X(J-1)!+2 = 0, Vj E J 
2=1 

I 

YJ+3J - L 62X(j-l)I+i = 0, Vj E J 
i=l 
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I 

L Pl,jX(j-l)I+i = 1, Vj E .:J 
i=l 

J 

L X(]-l)I+l = 1, Vi E T. 
j=l 

o ~ Xn ~ 1, Vn E {I, ... , I J} 
I 

o ~ YJ+J ::; L el ,] , 

i=l i=l 

o ::; Y]+2J ::; I, 

min (0, t 6.) <:: YJ+3J <:: max (0, t 6.), Ifj E J 

If the arrivals follow Poisson processes and the servers are identical, 

NLP (4.67) is the same as NLP (4.24). Although NLP (4.67) has both linear 

and non-linear constraints, it can still be solved by a generic NLP solver like 

KNITRO. 

Except for the variable substitution constraints, NLP (4.67) has the 

same linear constraints as LP (3.2) with equality constraints. This implies 

that (1) using (4.56), the routing matrix derived from the solution to LP (3.2) 

can be used as a starting point of x to solve NLP (4.67); (2) using Proposition 

4.1.1, the optimal routing matrix contains many zero elements, especially when 

the matrix is large. 

4.4 Summary 

To derive the optimal (static) random routing policy for output-queued sys­

tems, we have formulated a nonlinear programming problem which minimizes 

the delay in the system in heavy traffic. When inter-arrival times are ex­

ponentially distributed, the resulting optimal policy does not change if the 

processing times distributions are changed such that the (squared) coefficient 

of variation is altered by the same factor for all task types at each server. Using 

the optimal routing policy, most servers need only to be capable of processing 

a small subset of task types. This is desirable when it is costly to maintain 

highly flexible servers. 
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In the case of homogeneous server systems, the optimal routing matrix 

contains identical columns. Pooling the corresponding servers into a single 

queue can further reduce the delay in the system. To choose between full 

pooling and partial pooling, one can compare the diffusion limits of the total 

mean queue length of the system in heavy traffic. 

For systems in moderate traffic, we have also formulated a nonlinear 

programming problem which minimizes the mean sojourn time for arrivals 

that follow Poisson processes. In the case of homogeneous server systems, it is 

hard to obtain the optimal pooling strategy analytically, since the mean queue 

lengths of multi-server queues can only be estimated with approximations. 
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Chapter 5 

Applications 

In this chapter, we discuss applications of the MARa related routing poli­

cies proposed in Chapter 3. First in Section 5.1, simulation studies are used 

to demonstrate the heavy traffic optimality properties in the systems which 

are equipped with homogeneous or heterogeneous servers to process a single 

type of tasks. In Section 5.2, we apply the MARa related policies to a server 

cluster environment that processes multiple types of tasks, exemplifying their 

applications in resource management for distributed computing systems. Fi­

nally, Section 5.3 discusses the issues of applying the MARa policy to reduce 

hospital waiting times. 

5.1 Single-Task-Type Systems 

5.1.1 Homogeneous Systems 

Consider an output-queued system with J identical servers, whose service 

times are assumed independent, each with mean one. The arrival stream 

consists of one task type and follows a Poisson process with rate p* J. As 

discussed in Section 3.4.1, the JSQ policy is a special case of the MARa policy 

when applied to this homogeneous system with a single task type. Therefore, 

we compare the following routing structures when the system is heavily loaded, 

i.e., p* is close to one. 
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• LP-Static: According to the solution to LP (3.2), arrivals are routed 

to the J servers with equal probabilities 1/ J. Since the arrival stream 

follows a Poisson process, the system is thus equivalent to J M/G/l 

queues in parallel. 

• JSQ-flex: This is a special case of MARO-flex. When the flexibility 

level q = 1, it is JSQ. SO a flexible arrival joins one of the J servers 

with the shortest queue length. Ties are broken randomly. A dedicated 

arrival is routed to one of the J servers with probability 1/ J. 

• JSQ-2/ k: This is a special case of MARO-2/ k. An arrival joins the 

shorter of the two queues chosen from the J servers. The two candidate 

queues are picked with probabilities 1/ J and 1/(J - 1), respectively. 

• JSQ-tree: This is a special case of MARO-tree. A flexible arrival is 

routed to queue j with probability given by (3.57) and joins the shorter 

of queues j and j + 1, j E {I, ... , J - I}. 

• JSQ-ring: This is a variant of JSQ-tree. A flexible arrival is routed to 

queue j with probability 1/ J and joins the shorter of queues j and j + 1 

(mod J), j E {I, ... , J}. 

• Full pooling: The system becomes as an M / G / J queue, so no routing is 

needed. 

Simulation Results 

Systems of three different sizes are studied, using J = 4, 20 and 100. The 

simulation results mainly focus on the steady-state mean queue length of the 

system, which includes both the number of tasks waiting in the queue and 

those in process. All statistics for the dynamic routing policies are at 95 

percent confidence level, with accuracies no worse than ±2%. The mean queue 

lengths for the M / G /1 and M / G / J queues are calculated using the Pollaczek­

Kintchine formula [29] and the Allen-Cunneen approximation [1], respectively. 

Using the results, we discuss the impact of the amount of state infor­

mation required for routing and the impact of service time variance. 
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Impact of the amount of state information Table 5.1 compares the 

routing structures that require different amounts of state information. The 

performance improvement (Imprvmnt.) is calculated using the total mean 

queue length of J parallel M 1M II queues as a reference, since it needs no 

state information. All JSQ related policies are assumed to have flexibility 

level q = 1 (i.e., no dedicated arrivals). 

Table 5.1: Routing structures vs. Total mean queue lengths, i.i.d. exponential 
service times, p* = 0.95 

II J=4 J = 20 J = 100 
Model II Mean Imprvmnt. Mean Imprvmnt. Mean Imprvmnt. 

J x MIMl1 76.00 0% 380.00 0% 1900.00 0% 

JSQ-tree 25.92 66 % 96.54 75 % 461.85 76 % 

JSQ-ring 23.94 68 % 89.74 76 % 446.54 77 % 

JSQ-2/k 23.72 69 % 72.03 81 % 328.23 83 % 

JSQ 22.28 71% 45.99 88 % 176.80 91 % 

II MIMIJ 11
20 .74

1 
73 % II 33.35 1 

91 % 
II 104.62

1 
94 % 

It is seen that the improvements for the tree and ring structures and 

JSQ-2Ik appear to be of the same order of magnitude. This is consistent with 

our observations in Section 3.3.4, which would suggest that these three policies 

are roughly equivalent in terms of giving a significant improvement. Note that 

our results are also consistent with the observation in [17] that when n items 

are placed at n servers with d choices per item, when nearest neighbours are 

chosen, the maximum number of items assigned to a server is a constant factor 

larger than a system where the d choices are made randomly. In our case where 

n = J and d = 2, the tree and ring structures yield only a constant increase 

of the mean queue length (per queue) over JSQ-2Ik. 

When compared using the discounted amount of the required state 

information for routing (given by (3.58)), JSQ-tree and JSQ-2/k require 

significantly less information than JSQ. When the number of servers increases 
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from 4 to 100, the discount increases from 50% to 98%. However, the difference 

(in terms of the total mean queue length) between JSQ-tree (or JSQ-2/k) 

and JSQ also becomes larger in systems with a larger number of identical 

servers (see also Figure 5.1). Therefore, there is a tradeoff between the system 

performance and the cost of acquiring more state information in homogeneous 

systems. 

In addition to Table 5.1, Figure 5.1 also compares the JSQ related 

policies with an 111/111/ J queue. Although Theorem 3.4.1 implies that under 

the heavy traffic condition (i.e., p -+ 1), the JSQ related policies yield the 

same diffusion scaled queue length which is in turn also the same as that of an 

A1/ A1/ J queue, it can be seen that when one backs off from heavy traffic, even 

at 95 percent load, the actual queue lengths differ in systems with a larger 

number of servers. New techniques ([28] for example) are needed to yield 

diffusion scaled limits that allow one to differentiate between various policies 

in finer granularity. 

1000 
Total 

DM/M/J 
I2lJSQ-flex 

• JSQ-Z/k 

mJsQ-nng 
o JSQ-tree 

100 

10 

J=4 J=20 J=100 

Number of servers 

Figure 5.1: Routing structures vs. Total mean queue lengths, i.i.d. exponential 
service times, p* = 0.95 

The flexibility level q is another factor that characterizes the amount 

of state information required for routing. Figure 5.2 shows that under high 
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Figure 5.2: Flexibility levels vs. Improvement of total mean queue length, 
i.i.d. exponential service times, p* = 0.95 

100% 

90% 

80% 

70% 

60% 

Relative 
Improvement 

I 

I 

f 
I 

L 

50% -

40% 

30% 

20% 

10% 

0% 

! -&-- JSQ-flex (J=1 00) I 
I I 
'~JSQ-flex (J=20) : 
--*"-JSQ-flex (J=4) ! 

,--G··JSQ-Iree (J=100): 
:-·)IE-··JSQ-Iree (J=20) : 

i-::· .. · J~Cl::.lreeCJ.~): 

• 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Flexibility q 

Figure 5.3: Flexibility levels vs. Relative improvement of total mean queue 
length, i.i.d. exponential service times, p* = 0.95 
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load, there is a significant improvement for a very small level of flexibility: 

about 40 percent improvement for JSQ-tree and 50 to 60 percent improve­

ment for JSQ-flex, respectively, at 10 percent flexibility. At a given level q, 

the improvements increase as the number of queues J increases. Figure 5.3 

shows that at 30 percent flexibility, the amount of improvement achieved by 

JSQ-tree is about 80 percent of that with 100 percent flexibility. This rela­

tive improvement increases to 90 percent for JSQ-flex. These observations are 

consistent with Theorem 3.4.1, which implies that under heavy traffic, the dif­

fusion scaled queue lengths for both policies are independent of the flexibility 

level q. 

Impact of processing time variance To examine how processing time 

variance affects the system performance, we compare the total mean lengths us­

ing two more processing time distributions: Erlang-k and hyper-exponential, 

in addition to exponential. The squared coefficient of variation C1 is set to 

0.1 for Erlang-k (i.e., k = 10) and 10 for hyper-exponential, respectively. (By 

definition, C1 = 1 for the exponential distribution.) 

The results given in Tables 5.2 and 5.3, as well as in Figures 5.4-5.7, 

are consistent with the observations made for the exponential service times 

setting. In addition, it can be seen that all policies have larger improvement 

in systems with larger service time variance than in those with small variance. 

This is probably not too surprising, as it follows from the observation that 

when the service time variance is small, the performance is less sensitive to 

the policy, i.e., for small service time variance if some policy balances the load 

over long time scales, it is highly likely to also balance the load under shorter 

time scales. For example, in the extreme of constant service times, an optimal 

routing policy would be round robin. On the other hand, with large service 

time variance, load imbalances may occur over short time scales due to the 

variability in service times, so it becomes more desirable to be able to shift 

the incoming work between queues. 

100 



PhD Thesis - Y-T. He - McMaster - Computing and Software 

Table 5.2: Routing structures vs. Total mean queue lengths, i.i.d. Erlang-k 
service times, p* = 0.95 

J=4 J = 20 J = 100 
Model Mean Imprvmnt. Mean Imprvmnt. Mean Imprvmnt. 

J x M/Ek/1 43.51 0% 217.55 0% 1087.75 0% 

JSQ-tree 16.08 63 % 63.58 71 % 298.45 73 % 

JSQ-ring 14.89 66 % 57.90 73 % 291.22 73 % 

JSQ-2/k 14.67 66 % 47.26 78 % 219.57 80 % 

JSQ 14.06 68 % 36.21 83 % 156.95 86 % 

70 % II 26.89 1 88 % 100.29 1 91 % 

Table 5.3: Routing structures vs. Total mean queue lengths, i.i.d. hyper­
exponential service times, p* = 0.95 

J=4 J = 20 J = 100 
Model Mean Imprvmnt. Mean Imprvmnt. Mean Imprvmnt. 

J x M/Hx /1 400.90 0% 2004.50 0% 10022.50 0% 

JSQ-tree 113.99 72% 368.36 82 % 1684.35 83 % 

JSQ-ring 101.87 75 % 325.22 84 % 1627.27 84 % 

JSQ-2/k 101.62 75 % 217.48 89 % 900.23 91 % 

JSQ 96.16 76 % 108.63 95 % 218.92 98 % 

II M/ Hx/ J II 96.95 1 76 % II 97.94 1 95 % II 147.92 1 99 % 
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Figure 5.4: Routing structures vs. Total mean queue lengths, i.i.d. Erlang-k 
service times, p* = 0.95 

10000 Tro~t=al~~~~ ________________________________________ ~ 

1000 

100 

10 

o M/Hx/J 
Ii'lJSQ-flex 

• JSQ-2/k 

J=4 J=20 

Number of servers 

J=100 

Figure 5.5: Routing structures vs. Total mean queue lengths, i.i.d. hyper­
exponential service times, p* = 0.95 
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Figure 5.6: Routing structures vs. Improvement of total mean queue lengths, 
i.i.d. Erlang-k service times, p* = 0.95 
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Figure 5.7: Routing structures vs. Improvement of total mean queue lengths, 
i.i.d. hyper-exponential service times, p* = 0.95 
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5.1.2 Heterogeneous Systems 

Here we study a single-task-type system with J = 20 heterogeneous servers. 

The service time distribution at queue j is exponential with rate /1j. Let the 

mean service rate vector be /1 = [1, 2, ... ,20]' and the single Poisson arrival 

stream have rate .\ = 199.5, so that the solution to LP (3.2) is p* = 0.95 and 

\It* = (p*hxJ, a vector of J p*'s. 

Corresponding to the JSQ related policies given in Section 5.1.1, we 

compare the JSEW related policies with J different !vI/ M /1 queues in paral­

lel and one .M / M / Jh queue with J heterogeneous servers, respectively. The 

flexibility level q is set to one. 

Table 5.4: Routing structures vs. Total mean queue lengths, heterogeneous 
servers, exponential service times, p* = 0.95 

/I Model II Mean I Imprvmnt. I 
Jh x M/M/l 380.00 0% 

JSEW-tree 88.02 77% 

JSEW-ring 87.78 77 % 

JSEW-2/k 70.66 81 % 

JSEW 37.02 90 % 

II M/M/J
h 

34.52 1 91 % 

Using LP-Static, the arrivals are routed to queue j at rate 0.95/1j, 

so the total mean queue length of J parallel M / M /1 queues is the same as 

that in the homogeneous server case. Table 5.4 shows that JSEW -tree and 

JSEW yield similar improvements as those seen in Table 5.1, the homogeneous 

server case. Actually, we know from Theorems 3.4.1 and 3.4.2 that in the case 

of exponential service times, both the homogeneous and the heterogeneous 

systems have the same reflected Brownian motion limit (under the complete 

resource pooling condition), so this observation is not surprising. 
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5.2 Grid Systems 

Grid systems [23] are gaining acceptance as the preferred way to coordinate 

computing resources across institutional boundaries. A Grid is a generalized 

distributed computing system that can scale to Internet-size environments 

with machines distributed across multiple administrative domains. Computer 

clusters form the natural building blocks for grid systems by networking a set 

of independent machines with various computational capabilities to perform 

a specific set of applications. For a Grid to efficiently support a variety of 

applications, the resource management system (RMS) [44] is essential to its 

operation and is responsible for optimizing its performance metric. 

One of the core functions of an RMS is to allocate resources (a machine 

or some service that is synthesized using a combination of machines, networks 

and software) and route incoming tasks to machines in a computer cluster. 

We propose in Chapter 3 a new routing policy, MARO, and several variants. 

By applying them to a real-world server cluster, we show that our proposed 

policies have several advantages over existing policies. 

5.2.1 The Base Model 

For our study, we adopt the server cluster environment used in Kontothanas­

sis' experiment [43]. The characteristics of the machines in the cluster are 

summarized in Table 5.5. The tasks to be executed in the server cluster are 

the jobs performed by the popular BLAST [2] application suite, which biol­

ogists use to search nucleotide and protein databases in the National Center 

for Biotechnology Information in the United States. For example, one type 

of tasks called "blastn" compares a nucleotide query sequence against a nu­

cleotide sequence database. There are five task types: some depend primarily 

on CPU speed, others are more I/O bound and thus sensitive to the memory 

and disk subsystems. The mean processing times of each task type at the six 

machine types are given in [43] and the variances are known to be small. Our 

study is to use the six types of machines and the five types of tasks to construct 

different server clusters and to compare the performance of the systems using 

different server allocation policies (including MARO). The performance metric 

105 



PhD Thesis - Y-T. He - McMaster - Computing and Software 

chosen is the steady-state mean total number of tasks in the server cluster. 

By Little's Law, it is then easy to calculate the average task completion time. 

Table 5.5: Machine types in a BLAST server cluster 

I Machine I CPU I Memory I Disk 

Type 1 733 MHz 256 MB 40 MB/s IDE 

Type 2 525 MHz 8 GB 60 MB/s SCSI 

Type 3 2.8 GHz 256 MB 40 MB/s IDE 

Type 4 2.8 GHz 256 MB 60 MB/s SCSI 

Type 5 2.8 GHz 1.5 GB 40 MB/s IDE 

Type 6 2.8 GHz 1.5 GB 60 MB/s SCSI 

Define sets I = {1, ... , I} and J = {1, ... , J}. The base cluster system 

has J = 6 servers, each being a different machine type and capable of process­

ing I = 5 types of tasks. The processing times are assumed independent. The 

local scheduling policy at each server is first-come-first-serve. The full trace of 

tasks (with all five types) follows a Poisson process with rate 5.. = 0.877 see l . 

Let the i-th element of the vector pt denote the proportion of type i tasks in 

the full trace, here 

pt = (P;hXI = [0.558 0.188 0.212 0.014 0.028 ] . (5.1) 

Let '\ = 5..p~ be the mean arrival rate of type i tasks and Mi,j be the mean 

processing rate of type i tasks at server j. We have the first-order primitives 

A = (AihxI = [0.489 0.165 0.186 0.012 0.025 ] ' (5.2) 

and 

0.385 0.571 0.556 0.667 0.588 1.111 

0.699 1.111 1.786 1.923 3.125 3.333 

M = (Mi,J)IXJ = 0.435 0.556 1.111 1.053 1.667 1.667 (5.3) 
0.070 0.069 0.174 0.174 0.190 0.200 

0.023 0.026 0.069 0.067 0.070 0.070 
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To have a clearer view of the qualitative attributes of the primitives, 

we normalize A and j), using the smallest element min~ET,jEJ{j),~,j} and obtain 

~ = [ 21.3 7.2 8.1 0.5 1.1 ] ' 

and 
16.7 24.8 24.2 29.0 25.6 48.3 

30.4 48.3 77.7 83.6 135.9 144.9 

j),= 18.9 24.2 48.3 45.8 72.5 72.5 

3.0 3.0 7.6 7.6 8.3 8.7 

1.0 1.1 3.0 2.9 3.0 3.0 

Firstly, it can be seen that the first three "major" task types contribute more 

than 95 percent of arrivals for the full task trace. Secondly, the mean process­

ing rates of task types 4 and 5 are significantly lower on all machine types, by 

which we may consider these two types of tasks as "hard" jobs (even though 

they are a small proportion of arrivals). Thirdly, using Table 5.5 and the ma­

trix /1, we may label machine types 1 and 2 as "slow" machines and types 

5 and 6 as "fast" ones. We will study how these qualitative attributes (e.g., 

hardness, slowness) affect the system performance. 

5.2.2 Trial Systems 

For the simulation study, we apply 6 server allocation policies to 5 homo­

geneous/heterogeneous systems which are constructed from the base system. 

The policies include: 

• LP-Static: a static routing policy that maximizes the system capacity 

in the long term according to LP (3.2), but does no short term shifting 

of workload. Type i tasks are routed to server j with probability P~,J 

given in (3.18) . 

• MinDrift(Q): see Section 3.2. The cost function chosen (for the MARO 

related policies as well) is of the form 

(5.4) 

where Zj is given in (3.1), an estimate of the unfinished processing time 

at server j at each arrival time t. Let Qn,](t) be the number of type n 
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tasks at queue j at time t, then a type i arrival is dispatched to queue j 

satisfying 

(5.5) 

Ties are broken randomly with equal probabilities. 

• MARO-flex: see Section 3.3.3. Assume a constant flexibility level q for 

all task types. When q = 1, it is the MARO policy (see Section 3.3.1). 

• MARO-2/k: see Section 3.3.2. 

• MARO-tree: see Section 3.3.4. The routing probabilities for the flexible 

arrivals are determined using LP (3.46). 

• FCFS: a standard first-come-first-serve policy. It is used in the multi­

server-single-queue systems where all tasks are waiting at one queue and 

the task at the head of the queue is dispatched to the first idle server. 

If more than one server is idle at the time of an arrival, ties are broken 

randomly with equal probabilities. 

Note that given the cost function properties in Assumption 2.3.1, the 

routing decisions made based on (5.5) will not change even if the cost function 

is different from (5.4). This can be seen as follows. Suppose there are two cost 

functions C1 (Zj) and C2 (Zj) which both satisfy the assumption. Given two 

queues )1 and )2, if 
C; (Z]J C; (Zh) 
~-=-=- < , 

J-Lt,Jl J-L1,)2 

then we have 
C;(ZJJ C;(ZJ2) 
----=-~~< , 

J-L1,]1 J-Lz,]2 

if in addition J-Li,]l = J-Lz,]2' since the first derivatives C;(Z]) and C;(Z]) are 

both strictly increasing in ZJ' Even if J-Lt'l1 i= J-Lt,12' the definition of fixed point 

(2.15) suggests that the above relations still hold in heavy traffic (see Theorem 

2.3.2). Therefore, the qualitative comparison results obtained in the following 
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simulation studies are not sensitive to the specific form of a cost function which 

satisfies Assumption 2.3.1. 

There are two categories of systems constructed. Systems A and Bare 

homogeneous systems, in which all machines in the server cluster are of one 

type. Systems C, D and E are heterogeneous systems, in which the server 

cluster consists of six different machine types. The applied server allocation 

policies are summarized in Table 5.6. 

Table 5.6: Trial systems and the applied server allocation policies 

II \I System A I System B I System C I System D I System E I 
LP-Static vi vi vi 

MinDrift ( Q) vi vi vi 
MARO-flex vi vi vi 
MARO-2/k vi vi vi 
MARO-tree vi vi vi 

FCFS vi vi 

Homogeneous Systems 

System A This system has J = 6 identical parallel servers, each capable of 

processing I = 5 types of tasks. All servers are chosen to be machine type 2 

so the results can be compared with those in [43]. From (5.2) and (5.3), we 

have the first-order primitives A,\ = ,\ and 

A /-L = [/-Lt,2 /-Li,2 /-Li,2 /-Lt,2 /-Li,2 /-Li,2] iEI . 

As has been analyzed in Section 3.4.2, if the full matrix \IF* (3.60) is 

to be used in this homogeneous system, the LP-Static policy routes a task to 

each of the servers with equal probabilities. Thus the system behaves as J 

parallel 111/ G /1 queues with each arrival stream a Poisson process with rate 

5../J. 
The MinDrift( Q) policy reduces to the "join the shortest expected wait­

ing time" (JSEW) policy, i.e., a task is dispatched to server j satisfying 

j E arg~~ {L/-L;;,;Qn,J(t)}. 
nEI 
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It is also equivalent to the "minimum completion time" (MCT) policy, which 

is seen in existing distributed computer systems [24J. 

MARO will be the same as MinDrift(Q) if the full matrix W* is used. To 

study the performance of the MARO related policies using less state informa­

tion for routing, we will use a perturbed W* instead, which has the maximum 

number of zero elements (see Proposition 3.3.1). 

System B This is a multi-server-single-queue system equipped with the 

FCFS dispatching policy, which was also used in [43J. It is included in our 

study as a reference for comparison. Given the processing times at all J servers 

are assumed i.i.d., System B is denoted as an Nln IG I J queue with multiple 

types of arrivals. The first-order primitives are B).. = A).. and B f1 = A f1. 

Heterogeneous Systems 

System C This system has J = 6 heterogeneous parallel servers, each capa­

ble of processing I = 5 types of tasks. The first-order primitives are C f1 = f1 

and 
c). = ).. x 1.89 = [0.926 0.313 0.352 0.023 0.047], 

so that the load of System C is the same as that of System A. 

System D This is an expansion of System C, which has J = 30 parallel 

servers, each being capable of processing I = 5 types of tasks. The servers are 

partitioned into 6 groups, servers within a group are identical. The number of 

servers in each group and the corresponding mean processing rates are shown 

in Table 5.7. Servers in groups 1 and 2 are "slow" machines and those in 

groups 5 and 6 are "fast" machines. Note that these groups do not necessarily 

correspond to geographic locations. Depending on applications, servers of 

different machine types may be grouped together at one location. However, 

since permutation of the columns of the matrix f1 does not affect the solution 

of LP (3.2), the results obtained in the following simulation studies apply to 

different groupings of the servers. 

The mean arrival rate vector is 

D). = ). x 9.60 = [4.694 1.584 1.785 0.115 0.240], 
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Table 5.7: Mean processing rate matrix fl of System D 

Machine type 
Group No. 

# of servers 
Task type i E I 

so that the load of System D is the same as that of Systems A and C. 

System E Similar to System B, this is also a multi-server-single-queue sys­

tem equipped with the FCFS dispatching policy. We denote System E as an 

Mn / G / Jh queue given the processing time distributions at the J servers are 

different. There are two settings of the first-order primitives for this system. 

One is El). = c). and El fl = C fl. The other is E2). = D). and E2 fl = D fl. 

5.2.3 Main Results 

Our main results are divided into two parts. The first part includes the opti­

mal solutions of the resource allocation LP (3.2) for Systems A, C and D. The 

results are to be used in the MARO related policies. Note that the routing 

probabilities derived from the LP do not vary with the system loads (since 

the required load is obtained by multiplying the mean arrival rate vector with 

a positive factor while keeping the mean processing rate matrix unchanged). 

The second part includes simulation results comparing the server allocation 

policies and discusses the impact of the amount of state information required 

for decision making (which is indicated by flexibility level and the set of can­

didate queues), the impact of server utilization (and system load) and the 

impact of processing time variance. 

Solutions of the Resource Allocation LP 

System A For System A, LP (3.2) has multiple solutions \lI* with Ap* 

0.412. Constraint (3.4) is active at the optimum, which means no server is 
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under-utilized. One solution w* is 

0.142 0.142 0.142 0.142 0.142 0.142 

0.025 0.025 0.025 0.025 0.025 0.025 
AW*-1- 0.056 0.056 0.056 0.056 0.056 0.056 (5.6) 

0.029 0.029 0.029 0.029 0.029 0.029 

0.160 0.160 0.160 0.160 0.160 0.160 

which consists of repetitions of the first column, so the graph 9'11 associated 

with AWi contains rings. The corresponding static routing probability matrix 

is 

1. 1. 1 1 1 1 
6 6 6 6 6 6 

1. 1 1 1. 1 1 
6 6 6 6 6 6 

Apd _ 1 1. 1 1 1 1 
1 - 6 6 6 6 6 6 

1. 1. 1 1 1 1 
6 6 6 6 6 6 
1 1 1. 1 1 1 
6 6 6 6 6 6 

As has been analyzed in Section 3.4.2, the elements of A W~ are 1/Ji,j = )..d (J /-Lz)' 

Therefore, System A represents a case where the loads of the fast arrivals (type 

1 tasks) and of the "hard" tasks (type 5) are significantly higher than those 

for the other task types. 

To allow the LP-based dynamic routing policies to use less state in­

formation for routing, we may perturb AWi along the arcs of the rings in 9'11 
until the number of positive elements is reduced to (I + J - 1). Thus another 

optimal solution to LP (3.2) is obtained as 

0.276 0.076 0.262 0.238 

0.150 
AW*-2- 0.336 (5.7) 

0.174 

0.136 0.412 0.412 

while the objective function keeps the same optimal value A p* = 0.412. The 

associated static routing probability matrix is 

Apd_ 
2 -

0.324 

0.142 0.429 0.429 

112 
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Compared with AW;' in (5.6), the structure of AW; allows task types 1 and 

5 (whose loads are significantly higher than the others') to spread incoming 

workload over as many queues as possible, while keeping the maximum number 

of zero elements in W*. 

The LP-based policies hence have two choices of w*, shown in (5.6) 

and (5.7). Since MARO is the same as MinDrift(Q) if (5.6) is used, we will 

call its variants as MinD rift related policies. For example, MinDrift-flex with 

flexibility level q = 1 is equivalent to the original MinDrift(Q) (see Table 5.10). 

To differentiate LP-Static in these two choices, the names MinDrift-Static and 

MARO-Static are used, respectively (see Table 5.11). 

System C For System C, LP (3.2) has a unique solution, given by 

0.412 0.412 0.110 

0.100 

0.211 

0.020 0.101 

0.412 0.282 

0.412 

(5.8) 

and C p* = 0.412 which is the same as that for System A. Constraint (3.4) is 

active at the optimum, which means no server is under-utilized. The number 

of positive elements in the matrix cw* is Np = 10 = (I + J - 1), so the graph 

Q", associated with cw* is a tree. The corresponding static routing probability 

matrix is 

0.171 0.254 

Cpd= 

0.080 

1.000 

1.000 

0.155 0.845 

0.601 0.399 

0.495 

From the last two rows of C pd, we can see that for static server allo­

cation, the optimal solution assigns the "hard" tasks (types 4 and 5 tasks) to 

servers with above-average processing rates (servers 3, 4 and 5), but not neces­

sarily to the "fastest" (server 6). At the same time, more than 40 percent ofthe 

fast arrivals (type 1 tasks) are routed to the relatively "slow" servers (server 1 

being the slowest). Additionally, while server 6 has the fastest processing rate 
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for type 2 tasks, none of its effort is allocated to them. Instead, type 2 tasks 

are assigned to server 5, which has the second fastest processing rate for them. 

These are not obvious to deduce without the aid of the allocation LP (3.2). 

For MARO-tree, the routing probabilities of the flexible arrivals are 

0.343 0.158 0.499 

Cpf= 

1.000 

1.000 

1.000 

1.000 

where the first row is obtained from LP (3.46) with q = 1. When the flexibility 

level q changes, the first row changes accordingly. For example with q = 0.5, 

we have 

C (pL)lX(J~1) \q=O.5 = [0.298 0.160 0.000 0.542 0.000]. 

System D For System D, LP (3.2) has multiple solutions for the matrix 

w*, each yielding D p* = 0.412, the same as those for Systems A and C. Con­

straint (3.4) is active at the optimum, which means no server is under-utilized. 

One solution of DW* and the corresponding static probability matrix D pd are 

shown in Tables 5.8 and 5.9, respectively. Servers within the same group are 

assigned the same non-zero values '1/J1~) and p1,). The number of non-zero ele­

ments in the matrix DW* is Np = 52 > (1 + J -1), so the graph Qw associated 

with DW* contains rings. We will use Table 5.9 for the MARO related poli­

cies in the simulation studies, since the discounted amount of required state 

information is still very significant (see Table 5.10). For MARO-tree, the 

routing probabilities for the flexible arrivals are obtained using Table 5.9 and 

LP (3.46). 

It is interesting to note that although System A might be seen as a 

subsystem of System D (since A has both the same number and the same 

type of servers as group 2 in D, except that the mean arrival rate vectors 

are differentiated by a constant factor, D A = A A x 9.6), the server allocations 

are quite different. This shows that one must take into account the relative 

values of the processing rates at different servers. Consequently it suggests 
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Table 5.8: Optimal solution matrix \.It* of System D 

Machine type slow medium fast 
Group No. 1 2 3 4 5 6 

# of servers 2 6 7 7 4 4 

Task type 1 0.412 0.412 0.242 0.412 
Task type 2 0.127 
Task type 3 0.267 
Task type 4 0.083 0.018 
Task type 5 0.412 0.087 

Table 5.9: Static routing probability matrix pd of System D 

Machine type slow medium fast 
Group No. 1 2 3 4 5 6 

# of servers 2 6 7 7 4 4 

Task type 1 0.035 0.050 0.034 0.098 
Task type 2 0.250 
Task type 3 0.250 
Task type 4 0.126 0.030 
Task type 5 0.119 0.024 

that when the servers in a system change, the optimal routing policy needs to 

change accordingly. Again, such changes would be difficult to deduce without 

the aid of the allocation LP (3.2). 

Finally, for Systems A, C and D, the discounted amounts of required 

state information for the MARO-flex, MARO-2/k and MARO-tree policies 

are calculated using (3.19), (3.16) and (3.37), respectively. The results are 

summarized in Table 5.10. It can be seen that in a relatively large system 

like System D, the amount of state information required for making routing 

decisions is reduced significantly, even if we do not use the matrix \.It* which 

has the maximum number of zeros. For the MinDrift related policies which use 

the full matrix c\.It* in the homogeneous case (System A), the corresponding 

discounted amount of information is also attached. 

115 



PhD Thesis - Y-T. He - McMaster - Computing and Software 

Table 5.10: Discounted amount of required state information 

MARO-flex MARO-2jk MARO-tree 
q=l q = 0.5 q = 0.3 q=l q = 0.5 q = 0.3 

System A 61% 81% 88% 81% 81% 90% 94% 

System C 61% 81% 88% 81% 81% 90% 94% 

System D 58% 79% 87% 94% 94% 97% 98% 

MinDrift-flex MinDrift-2 j k MinDrift - tree 
q=l q = 0.5 q = 0.3 q=l q = 0.5 q = 0.3 

System A 0% 50% 70% 68% 68% 84% 90% 

Simulation Results 

The simulation results mainly focus on the steady-state mean queue length. 

All statistics for the dynamic routing policies are at 95 percent confidence level, 

with the accuracy calculated as the ratio of the half width of the confidence 

interval to the mean value. 

When equipped with the LP-Static policy, either a homogeneous or 

a heterogeneous system is equivalent to J A1/ G /1 queues in parallel. Given 

the probability P~,j defined in (3.18) (with which type i tasks are routed to 

queue j) and the processing times at server j with mean J-L~Jl and variance 

f3;'j' the mean queue length Q j of each queue j can be calculated using the 

Pollaczek-Kintchine formula as described in Section 4.3.1. 

Since System B is equivalent to an M / G / J queue with multiple arrival 

types, its mean queue length can be approximated using the Allen-Cunneen 

formula 

where C(·,·) is the Erlang-C formula and Pe = 5../J-Le is the effective offered 

load, with 5.., J-Le and {3; as defined in (4.34)-(4.36). 

For exponential processing time distributions, Tables 5.11 - 5.16 com­

pare the performance improvements that can be achieved using different rout­

ing policies. The improvements, Imprvmntl and Imprvmnt2, are calculated 
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using the LP-Static policy and MinDrift(Q) as a reference, respectively. A 

negative improvement means a policy being outperformed by the reference. 

The performance degradation of a policy is compared with the corresponding 

discounted amount of required state information shown in Table 5.10. 

Impact of the amount of state information The amount of state infor­

mation required in a dynamic routing policy is characterized by two factors: 

(1) whether the policy is based on LP (3.2), e.g., MinDrift(Q) is not but 

MARO is; (2) the flexibility level adopted by the policy. From the results, 

several observations can be made. 

Firstly, in the homogeneous case shown in Table 5.11, the MARO re­

lated dynamic policies using the perturbed matrix w* (5.7) perform better 

than their counterparts using the full matrix (5.6) (except that MARO is out­

performed by MinDrift(Q)). However, as the system load increases, we see the 

opposite in Table 5.12. As has been analyzed in Section 3.4.2, such perfor­

mance results from unbalanced workload between homogeneous servers, due 

to the limited choices enforced by the MARO related dynamic policies. This 

can be seen from Table 5.13, where the MARO related policies yield larger 

standard deviations of the server utilizations than the MinDrift related ones. 

This unbalancing may have an adverse effect on system performance, espe­

cially under high load. Therefore, for homogeneous systems, we recommend 

the MARO related policies use the full matrix W*. To reduce the amount of 

state information required for routing, we recommend using MinDrift-2/ k. 

Secondly, in the heterogeneous cases shown in Tables 5.14, 5.15 and 

5.16, MinDrift(Q) performs worse than MARO, especially when the system is 

heavily loaded. Although it has been proved [63] that MinDrift(Q) will route 

the tasks to the corresponding servers according to the LP-derived probabilities 

(3.18) under the heavy traffic condition, our results suggest that as one backs 

off from heavy traffic, MinDrift(Q) routes all types of tasks to the slowest 

server with non-zero probabilities, which can result in problematic routing 

choices. This phenomenon can also be seen in Table 5.17, where MinDrift(Q) 

makes each server's utilization higher than the optimal value 0.41 (the average 

being above 0.52 in both Systems C and D). It has been observed that the 
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Table 5.11: Total mean queue lengths (Systems A and B, p* = 0.41), expo­
nential processing times 

/I Policies ) q )) Mean) Accuracy) Imprvmntl ) Imprvmnt2 I Discnt ) 

MinDrift-Static - 12.86 - 0% - -

1 2.58 ± 0.4 % 80 % 0% 0% 

MinDrift - flex 0.5 6.32 ± 0.8 % 51 % -145 % 50 % 

0.3 8.45 ± 0.9 % 34 % -228 % 70 % 

MinDrift - 2 j k - 3.98 ± 0.6 % 69 % -54 % 68 % 

1 4.56 ± 0.7 % 65 % -77 % 68 % 

MinDrift - tree 0.5 7.55 ± 1.0 % 41 % -193 % 84 % 

0.3 9.25 ± 1.1 % 28 % -259 % 90 % 

I - II 2.54 1 80 % 

MARO-Static - 5.99 - 0% - -

1 3.06 ± 0.3 % 49 % -19 % 61 % 

MARO-flex 0.5 4.43 ± 0.5 % 26 % -72 % 81 % 

0.3 5.06 ± 0.6 % 16 % -96 % 88 % 

MARO-2jk - 3.36 ± 0.4 % 34 % -54 % 81 % 

1 3.42 ± 0.4 % 43 % -33 % 81 % 

MARO-tree 0.5 4.38 ± 0.6 % 27 % -70 % 90 % 

0.3 4.90 ± 0.8 % 18 % -90 % 94 % 
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Table 5.12: Total mean queue lengths (Systems A and B, p* = 0.95), expo­
nential processing times 

II Policies I q II Mean I Accuracy I Imprvmntl I Imprvmnt2 I Discnt I 
MinDrift-Static - 660.18 - 0% - -

1 101.41 ± 3.1 % 85 % 0% 0% 

MinDrift( Q) - flex 0.5 119.76 ± 2.6 % 82 % -18 % 50 % 

0.3 147.09 ± 2.2 % 78 % -45 % 70 % 

MinDrift - 2/ k - 113.89 ± 2.8 % 83 % -12 % 68 % 

1 150.61 ± 2.1 % 77% -49 % 68 % 

MinDrift - tree 0.5 195.91 ± 2.0 % 71% -93 % 84 % 

0.3 249.28 ± 1.9 % 63 % -146 % 90 % 

II I - II 95.57 1 86 % 

MARO-Static - 237.16 - 0% - -

1 181.21 ± 2.1 % 24 % -79 % 61 % 

MARO(Q)-flex 0.5 165.70 ± 2.3 % 30 % -63 % 81 % 

0.3 152.74 ± 2.2 % 36 % -51 % 88 % 

MARO-2/k - 163.90 ± 2.3 % 31 % -62 % 81 % 

1 229.47 ± 1.8 % 3% -126 % 81 % 

MARO-tree 0.5 233.97 ± 1.9 % 1% -131 % 90 % 

0.3 225.23 ± 1.9 % 5% -122 % 94 % 
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Table 5.13: Server utilizations (Systems A), exponential processing times 

II Policies 
II p* = 0.41 

Mean I Std 
II p* = 0.95 

Mean I Std 

MinDrift -Static 0.412 - 0.951 -

MinDrift(Q) 0.412 ± 0.002 0.951 ± 0.001 

MinDrift - 2 j k 0.412 ± 0.012 0.950 ± 0.002 

MinDrift-tree 0.412 ± 0.083 0.951 ± 0.024 
(q = 1) 

MARO-Static 0.412 - 0.951 -

MARO 0.412 ± 0.071 0.950 ± 0.068 

MARO-2jk 0.412 ± 0.023 0.950 ± 0.059 

MARO-tree 0.412 ± 0.088 0.951 ± 0.059 
(q = 1) 

mean utilization of the slowest server is as high as 0.65 in System C and 0.68 

in System D, a direct result of an inefficient assignment of tasks. 

Thirdly, based on the same solution of LP (3.2), the dynamic policies 

outperform the static one in both homogeneous and heterogeneous systems. 

The improvement increases as the system size grows, although such improve­

ment is obtained at the cost of acquiring state information for each routing 

decision. On the other hand, further limiting the acquired state information 

as MARO-2/k and MARO-tree do will result in performance worse than 

that achieved by MARO. For the heterogeneous systems, the performance 

degradation becomes larger when the system size grows, as MARO-2/ k and 

MARO-tree yield larger discounts of required state information (see Table 

5.10). This suggests that in designing the server allocation policies, designers 

should evaluate the tradeoffs between the system performance and the cost 

of acquiring system information before choosing one of the MARO-related 

policies that we have proposed. 
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Table 5.14: Total mean queue lengths (Systems C and E l , p* = 0.41), expo­
nential processing times 

II Policies I q "Mean I Accuracy I Imprvmntl I Imprvmnt2 I Discnt I 
LP-Static - 5.15 - 0% - -

MinDrift ( Q) - 3.50 ± 0.4 % 32 % 0% 0% 

1 3.45 ± 0.4 % 33 % 1% 61 % 

MARO-flex 0.5 4.08 ± 0.5 % 21 % -17 % 81 % 

0.3 4.44 ± 0.5 % 14 % -27 % 88 % 

MARO-2/k - 3.50 ± 0.4 % 32 % 0% 81 % 

1 3.74 ± 0.4 % 27 % -7 % 81 % 

MARO-tree 0.5 4.26 ± 0.5 % 17 % -22 % 90 % 

0.3 4.57 ± 0.5 % 11% -31 % 94 % 

/I Mn/G/J h 
1 - /I 3.87 1 ±0.7% 25% 

Table 5.15: Total mean queue lengths (Systems D and E 2 , p* = 0.41), expo­
nential processing times 

Policies I q II Mean I Accuracy IImprvmnh I Imprvmnt2 I Discnt I 
LP-Static - 24.18 - 0% - -

MinDrift ( Q) - 15.68 ± 0.2% 35% 0% 0% 

1 13.00 ± 0.2% 46% 17% 58 % 

MARO-flex 0.5 17.83 ± 0.4% 26% -14% 79 % 

0.3 20.06 ± 0.4% 17% -28% 87 % 

MARO-2/k - 14.39 ±0.3% 40% 8% 94 % 

1 15.68 ±0.4% 35% 0% 94 % 

MARO-tree 0.5 18.67 ±0.4% 22% -19% 97 % 

0.3 20.50 ± 0.5% 15% -31% 98 % 

II Mn/G/Jh 
I - 11 17.70 I ± 0.3 % 27% 
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Table 5.16: Total mean queue lengths (Systems e, D and E, p* 
exponential processing times 

System C II System D 
Policies q Mean Accuracy Mean Accuracy 

LP-Static - 174.97 - 827.11 -

MinDrift( Q) - 153.97 ± 1.8 % 220.50 ± 1.8% 

1 76.67 ± 1.9 % 208.08 ± 1.9 % 

MARO-flex 0.5 85.70 ± 1.6 % 199.76 ± 1.6 % 

0.3 94.80 ± 1.5 % 204.49 ± 1.2 % 

MARO-2/k - 89.21 ± 1.7 % 252.99 ± 1.3 % 

1 95.87 ± 1.6 % 235.18 ± 1.2 % 

MARO-tree 0.5 105.13 ± 1.8 % 280.43 ± 1.4 % 

0.3 113.24 ± 1.3 % 325.48 ± 1.2 % 

Mn/GjJh - 49,938.41 ± 0.7 % 236,174.33 ± 0.3 % 

0.95), 

Fourthly, when comparing a single-server-parallel-queue system with a 

multi-server-single-queue system (both processing multiple types of tasks), it 

is not surprising to see that for homogeneous systems, Mn I C I J is a better 

choice, while for heterogeneous systems, a fully-pooled !lin ICI Jh queue is 

not good, especially when the system load is high. The reason is that using 

FeFS for local scheduling, "hard" tasks (which require considerably longer 

processing times) will more likely block the tasks arriving afterwards and result 

in longer queue length. Wu showed in [71] that if both the system load and 

task size variance are high, the local scheduling policy had a bigger impact on 

the system performance than the routing policy did. Preemptive policies were 

proposed to replace the non-preemptive FeFS policy. Note that the output­

queued systems studied in this thesis do allow preemption for tasks of different 

types. How to compare the performance of such a system equipped with the 

MARO policy with that of a fully-pooled Mn IC I Jh queue, both using the 

same preemptive local scheduling policy, remains to be studied. 
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Impact of server utilization and system load As pointed out in Sec­

tion 3.3.1, the long-run server utilizations have a big impact on the system 

performance. So we compare the dynamic policies with respect to the aver­

age and standard deviation of the utilizations of all servers in Systems A, C 

and D. In addition to Table 5.13, Table 5.17 shows that in heterogeneous sys­

tems, the policies based on LP (3.2) (i.e., LP-Static, MARa, MARO-2/k, 

MARa-tree) yield close-to-optimum server utilizations, while MinDrift(Q) 

does not. Consequently, for heterogeneous systems with 100 percent flexibil­

ity, MinDrift(Q) is outperformed by the LP-based dynamic policies in most 

cases, which has been shown in Tables 5.14 and 5.15 for systems in medium 

load, and in Table 5.16 for systems in high load. In some cases, as shown in 

[36], MinDrift(Q) performs even worse than the static policy, LP-Static. 

Table 5.17: Server utilizations (Systems C and D, p* = 0.41), exponential 
processing times 

Policies 

Min Drift ( Q) 

LP-Static 0.412 - 0.412 -

MARO 0.427 ± 0.087 0.426 ± 0.103 

MARO-2jk 0.412 ± 0.032 0.408 ± 0.024 

MARO-tree 0.406 ± 0.125 0.412 ± 0.069 
(q = 1) 

Associated with server utilizations is the system load, which is indi­

cated by the optimal solution p*. The impact of system load is twofold. One 

is the impact on the absolute improvement that can be achieved by the dy­

namic policies over the static policy. The other is the impact on the relative 

improvement t.hat. can be achieved at different flexibility levels. 

When the system load increases, the improvement over the static policy 

increases as well. Figure 5.8 illustrates the changes in the absolute improve-
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Figure 5.8: System load vs. Improvement of total mean queue length, Systems 
C and D, exponential processing times 

ment for the heterogeneous systems with two different system loads. For exam­

ple, when the load of System C increases from 41 % to 95%, the improvement 

achieved by MARO increases from 33% to 56%. 

To illustrate the impact of system load on the relative improvement 

of the total mean queue length, we use the heterogeneous systems equipped 

with the MARO-flex policy. The relative improvement is the ratio of the 

improvement achieved at a flexibility level q over that at 100 percent flexibility, 

both being calculated using the static policy as a reference. Figure 5.9 shows 

the relative improvement at four different flexibility levels and at two different 

load levels for systems with exponential processing times. 

It can be seen that when System C is 41% loaded, the improvement 

achieved with 30 percent flexibility is 42 percent of that with 100 percent 

flexibility. At the same flexibility levels, the relative improvement increases to 

82 percent, when the system load increases. For System D, which has a larger 

system size, the increase in the relative improvement goes from 37 percent to 

close to 100 percent. The results indicate that when the system is in heavy 

traffic, a small amount of flexibility can yield significant improvement in system 

performance. In fact! we have been able to show in Theorem 3.3.2 that in the 
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Figure 5.9: Flexibility levels vs. Relative improvement of total mean queue 
length, MARa-flex, exponential processing times 

heavy traffic asymptotic regime, the performance improvement given by any 

small amount of flexibility is close to that given by 100 percent flexibility. 

Impact of processing time variance To examine how processing time 

variance affects the system performance, we compare the total mean lengths us­

ing two more processing time distributions: deterministic and hyper-exponential, 

in addition to the exponential one. For the hyper-exponential case, the squared 

coefficient of variation Cl,i,] is set to 10 for all task types i at each server j. 

(By definition, C1 = a for deterministic processing times.) 

Figure 5.10 shows that when the processing time variances increase, 

the dynamic routing policies achieve greater improvements over the static pol­

icy, although larger processing time variances also result in longer mean total 

queue length (hence longer sojourn time in the system). Observations made 

from Tables 5.14 and 5.15 still hold for different processing time distributions 

with smaller or larger variances. The MinDrift(Q) policy not based on LP 

(~~.2) performs even worse when the processing time variances are smaller. 

In the deterministic case, MinDrift(Q) is outperformed by the static policy, 

LP-Static. 
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Figure 5.10: Processing time variance vs. Improvement of total mean queue 
length (System D, p* = 0.41) 

5.3 Hospital Waiting Times 

Throughout the health care sector in Canada, waiting has been and continues 

to be the number one barrier for those having difficulties accessing medical 

services. Reports from Statistics Canada [10] indicate that nationwide median 

waiting times for all specialized services (e.g., specialist visits, diagnostic tests 

like non-emergency MRI/CT scans) have been at 3 to 4 weeks in 2005 and 

most individuals continue to report that they received the services within 3 

months, depending on the kind of care. In some densely populated places, 

for example the Greater Toronto Area, the waiting times for CT scans are at 

7 to 12 weeks from December 2005 to July 2006. Correspondingly, the CT­

machine-to-population ratio is approximately 1/100,000 and the number of 

CT scans per 1,000 population is about 80 in the 2005/2006 fiscal year [55]. 

Such long waiting times and large demands imply that the medical facilities 

have been operating with heavy loads. 

As an important part of "Ontario's Wait Time Strategy" [38], the Min­

istry of Health and Long-Term Care has launched a single wait time informa­

tion system that collects data from about 50 Ontario hospitals. Patients can 

also access the reports from this system online (http://www.health.gov.on.ca/ 
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transformation/waiLtimes/public/wLmorejnfo.html#, accessed on Novem­

ber 30, 2007) to find out the waiting times over the past 2 months for special­

ized services in the hospitals around their neighbourhood (e.g., within 50 km), 

so that they are able to make informed choices about where to be referred for 

quicker service. 

The insights obtained from the Grid system should also apply to the 

hospital system, since both can be modelled by the output-queued model in 

heavy traffic. We will demonstrate two resource allocation rules which are 

related to the above Wait Time Strategy. The service demands considered 

are mainly from outpatients, because it is the outpatients rather than the 

inpatients who need the waiting time information to decide which hospital to 

go to for quicker service. 

E .. 3.1 The Model 

Consider an area with J hospitals, each having a fixed capacity OJ for outpa­

tient exams (e.g., CT scans). The capacity is the number of 15 minute (CT 

scan) slots that can be scheduled for any given day. In reality, as the data 

collected in [56] for Vancouver General Hospital indicate, exam lengths vary 

(in this case from 15 to 60 minutes), each being a multiplier of 15. Let type i 

exams have the length of (15 x i) minutes, i = 1, ... ,4. From a booking point of 

view, it is the scheduled length of the exam rather than the actual length that 

is relevant. Therefore, the service time distribution for type i exams at hospi­

tal j is assumed deterministic with mean I-t;,} = (OJ/i)-I, i.e., the maximum 

number of type i exams can be scheduled at hospital j is /-Li,j per day. 

It is known from the Grid system application (Figure 5.9) that for 

systems operating in heavy traffic, a small proportion of flexible arrivals can 

yield significant improvement in system performance, because a fraction of 

incoming workload can be shifted in the system, which leads to complete 

resource pooling. Therefore, given 0 :S q :S 1, we assume that there are two 

pools of outpatients: 100(1 - q) percent are the dedicated outpatients who 

always go to a particular hospital (e.g., the one in a patient's neighbourhood); 

100q percent are the flexible ones who are willing to go to anyone of the J 
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hospitals. 

Assume that (1) the total outpatient demand (or the number of ex­

ams per day) is a Poisson random variable with mean 5:.; (2) the dedicated 

outpatient demand at each hospital j is proportional to the hospital capacity 

CJ . Then the flexible demand and each dedicated demand j are independent 

Poisson random variables with mean )J = q5:. and A1 = (1 - q)5:. Cj /2:.:=l Cj, 

respectively. Let Pi denote the probability of type i exams, i = 1, ... ,4. Then 

the total number of type i exams per day is also a Poisson random variable 

with mean Ai = Ap~. 
Let X~ denote the actual number of type i exams that can be scheduled 

at hospital j on day m. We have 2:.;=1 iX~ ::; CJ • Let Q~ denote the actual 

outpatient demand, which consists of the flexible part F~r:; and the dedicated 

part DiJ. Then the number of exams left over is 

L~ = max (0, (Qr;J - Xf;)) . 

If Drj > 0, it is included in the actual demand of the next day Q2/1. 
An effective resource allocation rule should yield smaller total leftover 

exams for the J hospitals. We compare two allocation rules which direct a 

flexible outpatient to a hospital in different ways. 

Policy 5.3.1 (Decentralized rule). Flexible outpatients make the decision on 

their own. Suppose the system provides daily values of the expected waiting 

time for type i exams at each hospital j, based on the number of left-over 

exams on day m and the ded~cated demand known for the coming day m + 1. 

Therefore, given the time 

{ 

4 Dm+1 + Lm I} W = ~ n,J n,J + _ 
'i , ) L ' n=l /1n,j /1i,j 

(5.9) 

a flexible outpat~ent who needs a type i exam will choose hospital j which has 

the mimmal Wi,J on day m + 1. 

Policy 5.3.2 (Centralized rule). Flexible outpatients stand by as "on call" for 

the next day exams. The system will refer a flexzble outpatzent who needs a 
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type i exam to hospital j satisfying 

j E arg min "'" n,} + -
{ 

4 Qm+l(t) 1} 
JE.:l ~ I/. /I. .. 

n= 1 r n ,} rt,J 

for day m + 1, where Q:,;-l(t) is the total number of type n exams demand at 

the time before notifying the flexible outpatient. 

The decentralized rule is close to what has been described in "Ontario's 

'¥ait Time Strategy", except that the state information provided is updated 

more frequently and contains some future expectations. The centralized rule 

is the same as the minimum completion time policy [46], which can be seen as 

a special case of MARO with the cost function being C(ZJ) = O.5J1t,jZ; + ZJ 

for all j E J and ZJ = 2.:~= 1 J1~,~ Q n,J (t). The difference between the two 

rules is that using the decentralized rule, all flexible outpatients who need 

the same type of exams will go to the same hospital which has the shortest 

expected waiting time, while using the centralized rule, the flexible demand 

can be shifted between hospitals in the short term in order to balance the 

loads. 

:5.3.2 Results 

To compare the above two rules, we use simulations to examine the total 

leftover exams of all J hospitals over a period of M/2 days (with the first half 

of the M days set aside as a warm up period). The performance measure is 

the average total of leftover exams 

if the system is stable; or otherwise the growth rate of leftover exams 

LM -L¥ 
R= M/2 

Two trial systems are used: 
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System Hl has J = 2 identical hospitals, with capacities 0 1 = O2 = 50. So 

the mean service rate matrix is 

[ 

50.0 50.0] 
25.0 25.0 

J-L= 
16.7 16.7 

12.5 12.5 

The probability of type i exams is given by the i-th element of the vector 

pt = [0.5 0.3 0.1 0.1 ] . 

The total exam demand per day has mean ,\ = 52.7, so that the solution to 

LP (3.2) is p* = 0.95. 

System H2 has J = 3 different hospitals, with capacities 0 1 = 50, O2 = 30 

and 0 3 = 20, respectively, so the total capacity is the same as that of System 

H l . The mean service rate matrix is 

[ 

50.0 

25.0 
J-L = 16.7 

12.5 

30.0 20.0] 
15.0 10.0 

10.0 6.7 . 

7.5 5.0 

The total exam demand per day has the same distribution as that of System 

Hl (i.e., the same .x and pt), and the solution p* to LP (3.2) is also the same. 

The simulation consists of 5000 replications of M = 1000 days each for 

a system. The results are at 95 percent confidence level, with accuracies no 

worse than 5%. 

Table 5.18 compares the number of leftover exams at different flexibility 

levels q (assuming q is the same for all exam types), when the two allocation 

rules are applied to System HI. I mprvl is the relative improvement over 

zero flexibility and I mprv2 is the improvement of the centralized rule over the 

decentralized rule. It can be seen that System HI remains stable when the 

proportion of flexible demand increases. With a small amount of flexibility 

q, the centralized rule can achieve similar improvement as that achieved with 

large q. However, when the decentralized rule is applied, the proportion of 

flexible demand must be kept small, otherwise the performance gets worse. 
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This can be explained by the "herding effect" [50], where large amounts of 

flexible demand all choose to go to one hospital and result in congestion. This 

is avoided to some extent by the centralized rule. 

In the decentralized rule, the state information on which the flexible 

outpatients base their (routing) decisions is updated on a daily basis. In the 

centralized rule, however, the system can obtain the updated state information 

instantly after each flexible demand is assigned. The simulation results suggest 

that an effective resource allocation policy should be able to obtain the state 

information that is updated at a speed comparable to the decision making 

frequency. 

Table 5.19 compares the number and the growth rate of leftover exams 

in System H 2 , where one ofthe hospitals in System HI is split into two hospitals 

with smaller capacities. It can be seen that when there is a large amount 

of flexible demand, both allocation rules can yield an unstable system. It 

has been observed that when the flexibility level q increases, the total mean 

utilized capacity 6 decreases as a result of more flexible demand going to the 

large hospital, leaving the small hospital under utilized. For example, using 
A 3 A 

the centralized rule, C = 2:)=1 Cj drops from 84.8 (out of 100) to 80.8 when 

q increases from 0.5 to 0.9, where the mean utilized capacity of the small 

hospital 63 decreases from 8.5 (out of 20) to 1.7, at the same time 61 (of the 

large hospital) increases from 47.8 (out of 50) to 49.5. 

Although the centralized rule continues to outperform the decentralized 

rule when the system is stable, both rules appear the same when the system 

becomes unstable. This is not surprising, since the system load is unchanged 

no matter which allocation rule is applied, so the rate of divergence of the 

total demand per day Qm is the same for both rules. Given Qm = Lm + ~ (the 

amount of leftover exams plus the fixed throughput), Lm diverges at the same 

speed as Qm does, when the system is unstable. 

The simulation results suggest that when using a policy that has opti­

mality properties in the heavy traffic limit, the system load should approach 

the critical value from below, rather than from above, so that the system re­

mains stable at any time. Otherwise, the "optimal" policy appears the same 

as any policy that keeps all servers busy. 
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Table 5.18: Leftover exams in System Hl 

Centralized Rule Decentralized Rule 

q L Imprvl L Imprvl Imprv2 

0 2.62 - 2.62 - 0% 

0.1 1.17 56% 1.38 47% 16% 

0.3 0.80 70% 3.67 -40% 78% 

0.5 0.76 71% 9.03 -245% 92% 

0.7 0.73 72% 14.99 -472% 95% 

0.9 0.72 73% 20.70 -690% 97% 

Table 5.19: Leftover exams in System H2 

Centralized Rule Decentralized Rule 

q L Imprvl L Imprvl Imprv2 

0 5.45 - 5.45 - 0% 

0.1 2.79 49% 3.23 41% 13% 

0.2 2.71 50% 4.94 9% 45% 

0.3 3.91 28% 9.06 -66% 57% 

0.4 6.23 -14% 15.60 -186% 60% 

0.5 12.58 -131% 26.70 -390% 53% 

R /I R /I Imprv2 

I:: II 2.53 II 2.53 II :: 
0.40 0.40 
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5.4 Summary 

Simulation studies of the MARO related policies have the following implica­

tions, which provide guidelines in designing the routing policies of an output­

queued system. 

In the case of a single arrival type, we have that 

• The performance improvement achieved by the MARO related policies 

is close to the lower bound of achievable performance, when the system 

load is high. 

• Such improvement is larger in systems with larger service time variance, 

because the proposed dynamic routing policies allow incoming workload 

to be freely shifted over short time scales between all the queues in the 

system. 

• Using significantly less state information, MARO-2/k and MARO-tree 

achieve improvement competitive with the dynamic policy which requires 

global state information, although there is a tradeoff between the sys­

tem performance and the cost of acquiring state information for making 

routing decisions. 

• A small number of flexible arrivals can yield significant performance im­

provement, especially when the system is operating with high loads. If 

the flexibility of choosing servers is limited (e.g., due to locality con­

straints), the ring routing structure is a good choice; otherwise, 

MARO-2/k is recommended. 

In the case of multiple arrival types, we have that 

• The MARO related policies outperform the MinDrift(Q) policy in hetero­

geneous server systems with either high or medium loads, while requiring 

significantly less state information. This is achieved by routing arrivals 

to the "appropriate" subsets of the queues, with the aid of a resource 

allocation LP. The routing structure does not change if the mean arrival 

rates of all task types vary by the same factor. 
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• For homogeneous server systems, MinDrift-2jk is recommended to spread 

the incoming workload over all of the queues and at the same time to 

reduce the amount of state information required for routing. 

• The improvement over the static routing policy is larger in systems with 

a larger number of servers, or with higher loads, or with larger service 

time variance. 

• When the system size grows, MARO-2jk and MARO-tree yield larger 

discounts of required state information than MARO-flex. However, the 

relative values of the system performance and the cost of acquiring state 

information should be evaluated, before choosing one of the MARO re­

lated policies with an appropriate flexibility level. 

• An effective dynamic routing policy should be able to obtain state in­

formation that is updated at a speed comparable to the decision making 

frequency. 

134 



Chapter 6 

Conclusions and Future Work 

In this thesis, we have studied several resource allocation policies which require 

varying amounts of information for output-queued systems with multiple types 

of tasks. These policies require no knowledge of the actual processing times 

of the tasks for making routing decisions, but use the first (and in some cases 

the second) moments of the task inter-arrival times and processing times, with 

a small amount of state information (or even none), in order to minimize the 

delay in the system. 

For systems with heterogeneous servers, we proposed the MinD rift 

Affinity Routing (MARa) policy and three variants, namely MARO-2/k, 

MARO-flex and MARa-tree. These policies are designed to maximize the 

capacity of the system by using the first moments of the task inter-arrival 

times and processing times, and to minimize the delay in the system by using 

a limited amount of state information. Specifically, the state information is 

the expected increment of the aggregate (convex) holding cost of multiple task 

types. As a special case, the state information can be the expected waiting 

time in systems with a single task type. On average, the amount of state infor­

mation needed is less than half of the global state information. This amount 

can be further reduced if the flexibility level is low, e.g., only a certain propor­

tion of time is available for the dispatcher (who makes the routing decisions) 

to acquire state information, or only a certain proportion of tasks are flexi­

ble, or the flexible tasks can only afford a small number of dynamic choices. 

Nonetheless, using diffusion limits for systems with Poisson arrival processes, 
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we prove that MARa, MARO-flex and MARO-tree have the same heavy 

traffic optimality properties and the optimality is achieved independent of the 

levels of flexibility. For systems with a single task type, the MARa related 

policies approach the lower bound of achievable performance (where no routing 

is required). 

By demonstrating applications of the MARa related policies in distrib­

uted computing systems and in medical services, we have shown that: 

• It is important for a dynamic routing policy to allow a sufficient pro­

portion of incoming workload to be shifted from one server to any other 

server in the system. 

• A small number of flexible tasks can yield significant performance im­

provement (over the corresponding static policy), especially when the 

system is operating under high load. 

• Such improvement is larger in systems with larger service time variance, 

or with a larger number of servers. 

• Using the MARa related policies, each server in the system is allowed 

to be capable of processing a small number of different task types. This 

is desirable when it is costly to maintain highly flexible servers. 

• By routing the tasks to the "appropriate" subsets of the servers, the 

MARO related policies (which require significantly less state informa­

tion) can outperform the MinDrift(Q) policy (which requires global state 

information), in heterogeneous server systems with either high loads or 

medium loads. 

• When the system SIze grows, the MARa related policies yield larger 

discounts of required state information. However, the relative values 

of the system performance and the cost of acquiring state information 

should be evaluated, before choosing one of the policies with a proper 

flexibility level. 

• An effective dynamic routing policy should be able to obtain updated 

state information at a rate comparable to the decision making frequency. 
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We have also proposed resource allocation policies which require no 

state information. For output-queued systems which are operating under 

heavy traffic, the random routing policy asymptotically minimizes the de­

lay in the system by using the second moments of the task processing times. 

The accompanying pooling strategy further reduces the delay by combining 

appropriate parallel single-server queues into a number of multi-server queues. 

The proposed random routing policy has several features. First, it only 

requires each server in the system to be capable of processing a small number 

of different task types, in fact a number of servers are dedicated to processing 

one type of tasks. This is desirable when the cost is high to maintain highly 

flexible servers. Second, it routes a number of the same task types to a subset 

of identical servers, which enables these servers to be pooled together, so that 

the system performance can be further improved. Third, it is optimal for 

various processing time distributions whose (squared) coefficients of variation 

are differentiated by a constant factor, if the arrival streams of tasks follow 

Poisson processes. 

We have shown that to minimize the delay in the system, the pool­

ing strategy depends on the combinations of the first two moments of the 

task inter-arrival times and processing times. There are cases where (partial) 

pooling subsets of the servers is better than (full) pooling all of the identical 

servers into a single queue. In cases where full pooling is optimal, there is still 

a tradeoff between the system performance and the cost of maintaining highly 

flexible servers, since pooling requires the corresponding servers to be capable 

of processing the same types of tasks. 

There are several lines along which future research could proceed . 

• It is noted that with an arbitrary work-conserving local scheduling rule, 

MARO (as well as its variants) asymptotically minimizes the delay in 

either the input-queued or output-queued system. For an input-queued 

system, MARO can still be used to determine which servers to route 

to for tasks waiting in their dedicated queues. Therefore, a study of 

MARO's application in staffing service operations (e.g., call centres) 

would be of interest. 
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• The MARO related policies are known to be robust in the sense that 

the routing structure does not change if the mean arrival rates of all the 

task types vary by the same factor. It will be of interest to study how 

the estimates of the mean arrival rates affect the routing structure, if the 

estimates are apart from the true values by different factors for multiple 

task types. 

• As for the local scheduling policy, MARO allows preemption of service or 

server sharing for tasks of different types. Anantharam showed in [3J that 

preemptive policies are better than non-preemptive policies in the sense 

of decreasing mean waiting time under high variance. How to compare 

the performance between an output-queued system using MARO and a 

fully-pooled queue with the same heterogeneous servers, both using the 

same preemptive local scheduling policy, would be of interest to study. 

• To obtain the optimal routing policy which requires no state information, 

we have tried several means of generating the random routing matrix, 

instead of using a generic nonlinear programming solver. Fine-tuning 

the heuristic procedures so that the solutions are closer to the optimal 

values given by the NLP solvers might be useful. In particularly, when 

the system parameters change frequently so that the optimal routing 

policy needs to be recalculated, using the heuristics will significantly 

reduce the time spent in making routing decisions. 

138 



Bibliography 

[1] A. O. Allen. Probability, Statistics and Queueing Theory w~th Computer 

Science Applications, Academic Press, second edition, 1990. 

[2] S. Altschul, W. Gish, W. Miller, E. Myers and D. Lipman. A Basic Local 

Alignment Search Tool. Journal of Molecular Biology, 215:403-410, 1990. 

[3] V. Anantharam. Scheduling Strategies and Long-range Dependence. 

Queueing Systmes, 33(1-3):73-89, 1999. 

[4] M. Armony. Dynamic Routing in Large-Scale Service Systems with Het­

erogeneous Servers. Queueing Systems, 51:287-329, 2005. 

[5] M. Armony and C. Maglaras. On Customer Contact Centers with a Call­

Back Option: Customer Decisions, Routing Rules and System Design. 

Operations Research, 52(2):271-292, 2004. 

[6] R. Atar, A. Mandelbaum and M. Reiman. Scheduling a Multi-class Queue 

with Many Exponential Servers: Asymptotic Optimality in Heavy Traffic. 

Annals of Applied Probability, 14(3):1084-1134, 2004. 

[7] S. Andrad6ttir, H. Ayhan and D. G. Down. Dynamic Server Alloca­

tion for Queueing Networks with Flexible Servers. Operations Research, 

51(6):952-968,2003. 

[8] A. Bassamboo, J. M. Harrison and A. Zeevi. Design and Control of a Large 

Call Center: Asymptotic Analysis of an LP-based Method. Operations 

Research, 54(3):419-435, 2006. 

139 



PhD Thesis - Y-T. He - McMaster - Computing and Software 

[9] C. Beightler and D. Phillips. Applied Geometric Programming. Wiley, New 

York, 1976. 

[10] J. M. Berthelot and C. Sanmartin. Access to Health Care Services zn 

Canada. Statistics Canada, Catalogue 82-575-XWE, 2006. 

[11] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization, 

Athena Scientific, 1997. 

[12] P. Billingsley. Convergence of Probability Measures, John Wiley and Sons, 

1968. 

[13] K. Birman. Can Web Services Scale Up? IEEE Computer, 38(10):107-

110,2005. 

[14] S. Boyd and L. Vandenberghe. Convex Optimization, Cambridge Univer­

sity Press, Cambridge, 2004. 

[15] J. A. Buzacott. Commonalities 111 Re-engineered Business Processes: 

Models and Issues. Management Science, 42:768-782, 1996. 

[16] J. A. Buzacott and J. G. Shanthikumar. Stochastic Models of Manufac­

turing Systems, Prentice Hall, 1993. 

[17] J. W. Byers, J. Considine and M. Mitzenmacher. Geometric General­

izations of the Power of Two Choices. Proceedings of the Sixteenth An­

nual ACJ\1 Symposium on Parallelism in Algorithms and Architectures, 

Barcelona, 54-63, 2004. 

[18] R. H. Byrd, J. Nocedal and R. A. Waltz. KNITRO: An Integrated Package 

for Nonlinear Optimization. G. Di Pillo and M. Roma (eds.), Large-Scale 

Nonhnear Optimization, 83:35-59, Springer, Netherlands, 2006. 

[19] H. Chen and D. D. Yao. Fundamentals of Queueing Networks: Perfor­

mance, Asymptotics and Optimization, Springer, New York, 2001. 

[20] E. D. Dolan, J. J. More and T. S. Munson. Benchmarking Optimiza­

tion Software with COPS 3.0, Technical Report ANL/MCS-273, Argonne 

National Laboratory, 2004. 

140 



PhD Thesis - Y-T. He - McMaster - Computing and Software 

[21] H. Feng, V. Misra, D. Rubenstein. Optimal State-free, Size-Aware Dis­

patching for Heterogenous M/G/-type Systems. Performance Evalua­

tion, 62:475-492, 2005. 

[22] R. D. Foley and D. R. McDonald. Join the Shortest Queue: Stability and 

Exact Asymptotics. The Annals of Applied Probability, 11(3):569-607, 

2001. 

[23] 1. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid: En­

abling Scalable Virtual Organizations. International Journal of High Per­

formance Computing Applications, 15(3):200-222, 2001. 

[24] R. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. 

Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. 

Moore, B. Rust, and H. J. Siegel. Scheduling Resources in Multi-User, 

Heterogeneous Computing Environments with SmartNet. Proceedings of 

the 7th Heterogeneous Computing Workshop, 184-199, 1998. 

[25] N. Gans, G. Koole and A. Mandelbaum. Telephone Call Centers: Tutorial, 

Review, and Research Prospects. Manufacturing and Service Operations 

Management, 5(2):79-141, 2003. 

[26] O. Garnett and A. Mandelbaum. An Introduction to Skills-based Rout­

ing and Its Operational Complexities. Teaching Notes, Technion, Haifa, 

Israel, 2001. 

[27] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP Algorithm 

for Large-Scale Constrained Programming. Technical Report SOL 97-3, 

Systems Optimization Laboratory, Stanford University, 1997. 

[28] C. Graham. Functional central limit theorems for a large network m 

which customers join the shortest of several queues. Probab. Theory Relat. 

Fields, 131:97-120, 2005. 

[29] D. Gross and C. Harris. Fundamentals of Queueing Theory, Wiley­

Interscience, third edition, 1998. 

141 



PhD Thesis - Y-T. He - McMaster - Computing and Software 

[30] S. Gurumurthi and S. Benjaafar. Modeling and Analysis of Flexible 

Queueing Systems. Naval Research Logistics, 51:755-782, 2004. 

[31] S. Halfin and W. Whitt. Heavy Traffic Limits for Queues with Many 

Exponential Servers. Operations Research, 29:567-587, 1981. 

[32] R. W. Hall. Queueing Methods for Services and Manufacturing, Prentice 

Hall, 1991. 

[33] P. Hansen, B. Jaumard and S.H. Lu. Some Further Results on Monotonic­

ity in Globally Optimal Design. ASME Journal of Mechanisms, Trans­

missions, and Automation in Design, 111(3):345-352, 1989. 

[34] J. M. Harrison. Brownian Motion and Stochastic Flow System, Wiley, 

New York, 1985. 

[35] J. M. Harrison and M. J. Lopez. Heavy Traffic Resource Pooling m 

Parallel-server Systems. Queueing Systems, 33:339-368, 1999. 

[36] Y-T. He, I. Al-azzoni and D. G. Down. MARO - MinDrift Affinity Rout­

ing for Resource Management in Heterogeneous Computing Systems. B. 

Spencer, M.-A. Storey and D. Stewart (eds.), Proceedings of the 17th An­

nual Conference of IBM Centre for Advanced Studies on Collaborative 

Research (CASCON'07), 71-85, 2007. 

[37] K. Holmstrom, A. O. Goran and M. M. Edvall. User's Guide for TOM­

LAB/KNITRO v5.01, TOMLAB Optimization Inc., 2006. 

[38] A. R. Hudson and P. Glynn Ontario's Wait Time Strategy: 

Overview, Ontario Ministry of Health and Long-Term Care, Decem­

ber, 2004. Available via: http) /www.health.gov.on.ca/transformation/ 

wai Ltimes / providers / wt _strategy. html 

[39] D. L. Iglehart and W. Whitt. Multiple Channel Queues in Heavy Traffic, 

I and II. Advances in Applied Probability, 2:150-177, 355-364, 1970. 

142 



PhD Thesis - Y-T. He - McMaster - Computing and Software 

[40] H. Jia and F. Ord6 nez and M. M. Dessouky. Solution Approaches for 

Facility Location of Medical Supplies for Large-Scale Emergencies. Com­

puters and Industrial Engineering. 52(2):257-276, 2007. 

[41] J. F. C. Kingman. The Heavy 'fraffic Approximation in the Theory of 

Queues. Proceedings of the Symposium on Congestion Theory, W. Smith 

and W. Wilkinson (eds.), University of North Carolina Press, 137-159, 

1965. 

[42] L. Kleinrock. Queueing System, Volume II: Computer Applications, Wi­

ley, New York, 1976. 

[43] L. Kontothanassis and D. Goddeau. Profile Driven Scheduling for a Het­

erogeneous Server Cluster. Proceedings of the 2005 International Con­

ference on Parallel Processing Workshops (ICPPW'05), 336-345, IEEE 

Computer Society, 2005. 

[44] K. Krauter R. Buyya and M. Maheswaran. A Taxonomy and Survey of 

Grid Resource Management Systems for Distributed Computing. Software 

Practice Experience, 32(2):135-164, 2002. 

[45] D. Lu, H. Y. Sheng, and P. A. Dinda. Effects and Implications of File 

Size/Service Time Correlation on Web Server Scheduling Policy. Pro­

ceedings of the 13th IEEE International Symposium on Modeling, Analy­

sis, and Simulation of Computer and Telecommunication Systems (MAS­

COTS'05), 2005. 

[46] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R. F. Freund. Dy­

namic Matching and Scheduling of a Class of Independent Tasks onto 

Heterogeneous Computing Systems. Proceedings of the 8th Heterogeneous 

Computing Workshop, 30-44, 1999. 

[47] A. Mandelbaum and M. Reiman. On Pooling in Queueing Networks. Man­

agement Science, 44(7):971-981, 1998. 

143 



PhD Thesis - Y-T. He - McMaster - Computing and Software 

[48] A. Mandelbaum and A. L. Stolyar. Scheduling Flexible Servers with Con­

vex Delay Costs: Heavy-Traffic Optimality of the Generalized CJ.1-Rule. 

Operatwns Research, 52(6):836-855, 2004. 

[49] C. Maranas and C. Floudas. Global Optimization in Generalized Geomet­

ric Programming. Computers and Chemical Engineering, 21(4):351-370, 

1997. 

[50] M. Mitzenmacher. How Useful Is Old Information? IEEE Transactions 

on Parallel Distributed Systems, 11(1):6-20, 2000. 

[51] M. Mitzenmacher. The Power of Two Choices in Randomized Load 

Balancing. IEEE Transactions on Parallel and Distributed Systems, 

12(10):1094-1104, 2001. 

[52] J. L. Morales, J. Nocedal, R. Waltz, G. Liu, and J. P. Goux. Assessing 

the Potential of Interior Methods for Nonlinear Optimization. O. Ghattas 

(ed.), Proceedings of the First Sandia Workshop on Large-Scale PDE­

Constrained Optimization, Springer Verlag, 2002. 

[53] The MOSEK optimization toolbox for MATLAB manual. Version 4.0, 

MOSEK ApS, Denmark, 2006. 

[54] B. A. Murtagh and M. A. Saunders. MINOS 5.5 User's Guide. Technical 

Report SOL 83-20R, Systems Optimization Laboratory, Stanford Univer­

sity, 1998. 

[55] Ontario Ministry of Health and Long-Term Care. Ontario's Wait 

Time Strategy: MRI 8 CT Expert Panel - Phase II Report, Decem­

ber, 2006. Available via: http://www.health.gov.on.ca/transformation/ 

waiLtimes/providers/wLstrategy.html 

[56] J. Patrick and M. L. Puterman. Improving Resource Utilization for Di­

agnostic Services through Flexible Inpatient Scheduling: A Method for 

Improving Resource Utilization. Journal of the Operational Research So­

ciety, 58:235-245, 2007. 

144 



PhD Thesis - Y-T. He - McMaster - Computing and Software 

[57] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dy­

namic Programming, Wiley, New York, 1994. 

[58] M. Reiman. Some Diffusion Approximations with State Space Collapse. 

Modelling and Performance Evaluation Methodology, F. Baccelli and G. 

Fayolle (eds.), Lecture Notes in Control and Information Sciences, 60:209-

240, Springer, 1984. 

[59] A. Sharifnia Instability of the Join-The-Shortest-Queue and FCFS Poli­

cies in Queuing Systems and Their Stabilization. Operations Research, 

45(2):309-314, 1997. 

[60] R. A. Shumsky. Approximation and Analysis of a Call Center with Flex­

ible and Specialized Servers. OR Spectrum, Special Issue on Call Centre 

Management, 26(3):307-330, 2004. 

[61] D. R. Smith and W. Whitt. Resource Sharing for Efficiency in Traffic 

Systems. Bell System Technical Journal, 60:39-55, 1981. 

[62] A. L. Stolyar. MaxWeight Scheduling in a Generalized Switch: State 

Space Collapse and Workload Minimization in Heavy Traffic. Annals of 

Applied Probability, 14(1): 1-53, 2004. 

[63] A. L. Stolyar. Optimal Routing in Output-Queued Flexible Server 

Systems. Probability m the Engineering and Informational Science, 

19(2):141-189,2005. 

[64] Y.-C. Teh and A. R. Ward. Critical Thresholds for Dynamic Routing in 

Queueing Networks. Queueing Systems, 42:297-316, 2002. 

[65] E. Tekin, W. J. Hopp and M. P. Van Oyen. Pooling Strategies for Call 

Centre Agent Cross-training. Working paper, Northwestern University, 

2004. 

[66] W. Whitt. Deciding Which Queue to Join: Some Counter Examples. 

Operations Research, 34:226-244, 1986. 

145 



PhD Thesis - Y-T. He - McMaster - Computing and Software 

[67] W. Whitt. Approximations for the GI/G/m Queue. Production and Op­

erations Management, 2:114-161, 1993. 

[68] W. Whitt. Stochastic-Processes Limits: An Introduction to Stochastic­

Process Limits and Their Applzcation to Queues, Springer, New York, 

2002. 

[69] R J. Williams. On Dynamic Scheduling of a Parallel Server System with 

Complete Resource Pooling in Heavy Traffic. Analysis of Commumca­

tion Networks: Call Centres, Traffic and Performance, D. McDonald and 

S.RE. Turner (eds.), Fields Institute Communication Series, 28:49-71, 

American Mathematical Society, 2000. 

[70] W. Winston. Optimality of the Shortest Line Discipline. Journal of Ap­

plied Probability, 14:181-189, 1977. 

[71] R Wu. Scalable Scheduling of Parallel Servers, Ph.D. thesis, McMaster 

University, 2007. 

[72] H. Zhang and G.-H. Hsu. Heavy Traffic Limit Theorems for a Sequence 

of Shortest Queueing Systems. Queueing Systems, 21:217-238, 1995. 

146 



Appendix A 

An Experiment of Solving the 

Resource Allocation NLP Using 

Geometric Programming 

In this section, we discuss an alternative way of solving the NLP (4.24) using 

geometric programming (GP). Although our experiment on a sample prob­

lem was not successful with MOSEK's GP solver [53], we present here the 

method of transforming the original problem into a series of standard form 

GP problems, while each standard GP can be converted to a convex optimiza­

tion problem using logarithmic transformation [14J. What remains an open 

question is whether our attempt can be used as a starting point for exploit­

ing the well-developed convex optimization techniques for the NLP problems 

which are like the ones described in this thesis. 

A.I Standard GP 

The standard G P is of the form 

min fo(x) (A.l) 
x 

s.t. fm(x) ::=; 1, l::=;m::=;M 

he(x) = 1, 1 ::=; R ::; L. 

147 



PhD Thes2s - Y-T. He - McMaster - Computing and Software 

The decision variables x E lR~+ are strictly positive. The objective function 

fa and the inequality constraints fm are posynomials of the form 

Km N 

f ( ) - ""' II xam,k" m X - ~Cm,k t , o ::; m ::; 111; 
k=1 i=1 

the equality constraints he are monomials of the form 

N 

he(x) = Ce II x:e", 0::; f ::; L, 
t=1 

where all coefficients Cm,k and Ce are strictly positive; all exponents am,k,t and 

ae,i are real-valued. (If there exists a negative coefficient Cm,k, fm is called 

signomial. ) 

GP (A.1) can be converted to a convex problem using a logarithmic 

transformation of the variables, the objective and the constraint functions. 

Let 

X [IOgXI,'" ,lOgXN f, 
Cm,k log Cm,b 0 ::; m ::; M, 1 ~ k ~ Km 

Clm,k [am,k,I' ... , am,k,N ], 0::; m ::; M, 1::; k ::; Km 

ae [ae,l' ... ,ae,N ], 0::; f ::; L. 

GP (A.1) in convex form is 

m~n Jo(x) = log (i.: eaO'k,x+CO'k) (A.2) 
k=1 

s.t. 1m (x) ~ log (t, e"m.' ;;Hm.,) <: 0, 1 <: rn <: M 

he(x) = ae . X + log Ce = 0, 1::; f ~ L. 

A high quality implementation of a GP solver is available in the MOSEK 

software package. MOSEK takes as inputs the coefficients Cm,k, Ce and expo­

nents am,k,n ae,t and obtains GP (A.2) as a result of pre-processing. Then the 

convex form is solved using a primal-dual interior-point method [14]. 
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A.2 Reformulation of the NLP Problem 

Let A E lR.~, P E lR.~ and 0 E lR.~ be vectors of positive parameters. We denote 

by Y E IR~J+3J the vector of decision variables. The original NLP is 

mm 
y 

s.t. 

IJ+J 

fo(Y) = L (Y~) (YJ+J) (Y;;2J) (A.3) 
J=IJ+1 

I 

L AiY(]-l)I+i = YJ+IJ, 1::; j ::; J (A.4) 
i=l 

I 

L OiY(j-1)I+i = YJ+IJ+J, 1::; j ::; J (A.5) 
z=l 

I 

LY(J-1)I+Z = YJ+IJ+2J, 1::; j ::; J (A.6) 
z=l 

I 

L PZY(J-1)I+i = 1, 1::; j ::; J (A.7) 
i=l 

J 

LY(j-1)I+i = 1, 1::; i ::; I (A.8) 
j=l 

o ::; Y(J-1)I+z ::; 1, 1::; i ::; I, 1::; j ::; J (A.9) 
I 

o ::; YJ+IJ+J ::; L Oz, 
z=l i=l 

o ::; Yj+IJ+2J ::; I, 1::; j ::; J. (A.10) 

Constraint (A.9) means that the first I J variables Y(j-1)I+i correspond to the 

routing probabilities Pz,j' Linear combinations of these I J variables yield the 

remaining 3J variables, as given by constraints (A.4)-(A.6). 

To transform the original NLP into a series of standard GP problems, 

we first make the assumption that all of the decision variables in (A.3) are 

strictly positive. Let Xl E lR.~+ denote the vector of new decision variables, 

where X z = Yi +f with small constant f > 0, for alII::; i ::; (I J). If the solution 

x; < 2f, the optimal value of Y; is set to zero. For example, let 2f = 0.01, 

any probability less than 0.005 is considered to be zero. Using (A.4)-(A.6), 

we construct the vector X2 E IR~+ from Xl' 
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To find a local optimal solution, (A.3) is reformulated as 

min 
(Xl,X2) 

s.t. 

IJ+J 

fa(x2) = L (x~) (xj+J) (X;~2J) 
J=IJ+1 

I 

X;~IJ L Ai X (J-1)1+i ~ 1, 1 ~ j ~ J 
i=l 

I 

xj~IJ+J L: ezX(j-l)1+z ~ 1, l~j~J 
z=l 

z=l z=l 

I 

L Pi X (j-1)1+z ~ 1, 1 ~ j ~ J 
z=l 

I (a ) a"j I II Z,J II X -a,,) < 1 
- (J-1)I+z - , 

i=l pz z=l 

J 

L: X(j-1)1+i ~ 1, 1 ~ i ~ I 
j=l 

J J 

II f3:'~" IT X 0~i')I +i ~ 1, 
j=l J=l 

Xi ~ 1, 1 ~ i ~ I J 

l~j~J 

1 ~ j ~ J 

I~j~J 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.I6) 

(A.17) 

(A. IS) 

(A.I9) 

(A.20) 

(A.21) 

(A.22) 

Constraints (A.I2)-(A.I4) are transformed from (A.4)-(A.6). For each 

xJ+1J (1 ~ j ~ J), the left-hand side of (A.I2) is the only constraint func­

tion which is monotonically decreasing, while fa is monotonically increasing. 

Constraint (A.12) will be active at the minimum (xi, x;) [33, 49]. Similarly, 

constraints (A.13)-(A.I4) will be active. 

Constraints (A.15) and (A.16), which are transformed from (A.7), pro­

vide upper and lower bounds to X(j-1)1+i (1 ~ j ~ J), respectively. Specifi-
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cally, (A.16) is derived by condensing the lower bound constraints (which are 

signomials) 

I 

(P1X()-1)l+1) -1 - 2:= (P1X(j-1)l+1) -1 (Pi X (j-1)l+t) ::; 1, 1::; j ::; J (A.23) 
t=2 

using the geometric inequality [9] 

where gk(X) is monomial and Lk Cl:k = 1, (\:fk) Cl:k > O. For all 1 ::; j ::; J, let 

The parameter Cl:i,j is determined by 

I 

Cl:i,j = gi,j (xiO)) / 2:= gi,) (xiO) ), (A.24) 
t=l 

where xiO) is a feasible solution to the constraints (A.7)-(A.9). So we have 

L{=l Cl: t ,] = 1, for all 1 ::; j ::; J. Then (A.23) becomes 

which is the same as (A.16). Similarly, constraints (A.17) and (A.18) are 

transformed from (A.9). 

Constraints (A.19)-(A.22) are transformed from (A.9)-(A.10). 

To obtain the global optimum of the original NLP (A.3), we solve a 

series of CPs (A.l1) using the following procedure . 

• Step 1: Choose a feasible xiO) which satisfies (A.7)-(A.9). Let t(O) 

fo(x~O)), where x~O) is obtained using (A.4)-(A.6). Set n = 1. 
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• Step 2: Solve an augmented GP 

min ten) 
(Xl,x2,t(n)) 

S.t. !O(X2) (t(n)) ~l ~ 1, 

(A.12) - (A.22), 

_S_t(n) < 1 
t(n~l) -' 

where s is a constant factor a bit larger than 1, e.g., s = 1.01. 

(A.25) 

• Step 3: If solving (A.25) is infeasible and xin
) is feasible, then the opti­

mum is obtained and the procedure is terminated. 

A.3 

If solving (A.25) is feasible and xin
) is also feasible, then (i) ten) = 

!o(x~n)); (ii) set n = n + 1 and go to Step 2. 

If solving (A.25) is infeasible and xin
) is also infeasible (i.e., anyone of the 

constraints (A.12)-(A.22) is violated), then (i) use (A.24) to update the 

parameters (Xi,] (and (3],t) with xin
); (ii) ten) = t(n~l); (iii) set n = n + 1 

and go to Step 2. (If xin) is infeasible with a large nand Ilxin) _xin~l) II < 
f, the procedure is terminated with an error.) 

Numerical Examples 

Let I = J = 2, ). = [1, 0.3], p = [1/2, 3/2]' , e = [2/4, 0.6/0.04]. The global 

optimal solution to NLP (A.3) is known to be xi = [1, 1/3, 0, 2/3]. 

The first experiment was trying to obtain a local optimum using GP 

(A.11). The starting point was xiO) = [0.5, 0.5, 0.5, 0.5]. The MOSEK GP 

solver returned the primal (and dual) feasible "optimal" solution xi = xiO). 

The second experiment was trying to obtain a global optimum using 

the augmented GP (A.25). The starting point was xiO) = [0.5, 0.5, 0.5, 0.5]. 

The MOSEK GP solver returned the primal (and dual) infeasible solution 

Xl = [0.51,0.51,0.49,0.53]. 

Both experiments did not yield correct answers. However, it is hoped 

that reformulating an NLP like (A.3) into a series of standard GPs can be 

applicable to other GP solvers. 
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Appendix B 

A Resource Allocation Heuristic 

Here we propose a heuristic to generate the routing probability matrix for 

an output-queued system which operates using static routing in heavy traffic. 

The system has J identical servers in parallel to process I types of tasks. The 

arrivals of type i tasks follow a Poisson process with rate Ai and are routed to 

server j immediately upon arrival, with probability Ptj. The processing times 

of type i tasks have mean f.Li 1 and variance {3;. The local scheduling rule at 

each server is FCFS. The routing matrix obtained by the heuristic is trying to 

(1) decrease the total queue length of the system, where no state information 

is available and (2) increase the degree of pooling for the associated pooling 

strategy, which aims to further decrease the delay in the system. 

In Section 4.1, we formulated the following NLP to obtain the optimal 

routing matrix P = (Pi,J)IXJ, which minimizes the total mean queue length of 

the system in heavy traffic. 

min 
p 

s.t. 

(B.1) 

I 

L PiPtj = 1, 1 -::;, j -::;, J (B.2) 
i=1 

J 

LPij = 1, 1 -::;, i -::;, I (B.3) 
J=1 

o -::;, Ptj -::;, 1, 1 -::;, i -::;, I, 1 -::;, j -::;, J, 
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where the parameters include the mean arrival rate Ail the offered load Pi = 
Ad J-Lz and the second moment of the processing times {}z = (J-L-;2 + (3;) for each 

task type i, 1 :::; i :::; I. 

By analyzing the optimal solution P*, it is observed that a random 

routing policy which aims to reduce the total queue length tends to have the 

following properties. 

1. A number of servers are dedicated to processing a task type with high 

load (pz > 1). This is consistent with the intuition that to reduce the 

mean delay, one means is to reduce the service time variabilities. For 

task type i, the number of dedicated servers (if any) is equal to lpd, 
so that each server's utilization is one in heavy traffic. There might be 

more than one group of dedicated servers, each group for a different task 

type. 

2. A number of task types are exclusively processed by one server. On the 

other hand, the number of task types being processed at each server is 

small. This also contributes to reducing the service time variabilities. 

3. For systems with a large number of servers, there are identical columns 

in the matrix P*. Theorem 4.1.2 implies that pooling the corresponding 

servers can further reduce the total queue length of the system. 

B.l The Procedures 

According to the desirable properties described above, we propose in Figure 

B.l a heuristic that provides an alternative way to generate a suboptimal 

routing matrix PH. It is useful when an NLP solver is not available, or when 

the time spent in solving NLP (B.l) is very long, or when a large degree of 

pooling is desirable. 

The heuristic starts with a full matrix po, with all of its elements being 

1/ J. It not only is a natural choice that is a feasible solution to the constraints 

(B.2) and (B.3), but it also improves the chances of obtaining a load-balanced 

solution pH, i.e., for each row i, the values of the nonzero elements p~ are 

154 



PhD Thesis - Y-T. He - McMaster - Computing and Software 

1 function pH = RoutingMatrixU, A, j1, (3) 

2 { p: array of the offered loads of I task types; 

3 7): array of the second moments of the processing times of I task types; 

4 po: starting point of the routing matrix with size I x J; 

5 Jds: number of the dedicated servers, each processing only one type of tasks; 

6 P: the first Jds columns of the matrix P corresponds to the dedicated servers; 

7 If Jds > 0, <p(P) < <p(PO); otherwise, P = po; 

8 pds: array of the offered loads sorted in descending order; 

9 pds [i] = 0 implies all of the type i tasks are routed to the dedicated server(s); 

10 pH: the solution returned, with <p(PH) ::::: <p(pds); 

11 

12 P, = Al / j1" 7), = (j1;2 + (3;), 1::::: z ::::: I; 

13 po = (P,,))rXJ with P,,) = I/J, for aliI::::: i::::: I, 1::::: j ::::: J; 

14 [Jds, pds, P] = DedicateSrvr(p, pO); 

15 7)ds = {7), : 7), E 7), pdS[il-=l= O}; 

16 pH = DedicateType(Jds , p, 7)ds, P); 

17 } 

Figure B.1: A heuristic to generate the random routing matrix pH 

close to each other. Since the system in question has identical servers, load 

balancing is beneficial to reducing the total mean queue length. 

Figure B.2 shows the subroutines to generate the dedicated servers. If 

there exist Jds (0 < Jds :s: J) dedicated servers and the objective function 

r.jJ(P) is decreased, then the resulting matrix P is updated in such a way that 

the remaining load of each task type is now evenly distributed among the 

(J - Jds) non-dedicated servers. Specifically, we have for all (Jds + 1) :s: j :s: J, 

{ 
1/(J - JdS), 

P"j = (1 - ~;~': p-;,j)/(J - JdS), 
i E {i': p,',j' = 0,1 :s: j':S: J dS }, 
, {'" - -1 0 1 < "< Jds} 1., E 1., • Pi',]' - Pi',j' > , _ J _ . 

This keeps the load balanced as much as possible, while maintaining P to be 
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1 function [Jds , pds, pds J = DedicateSrvr (p, p) 

2 

3 

{ col: column index of the routing matrix P with size 1 x J; 

rl, r2: arrays of row indices of P, with lengths hand 12 = 1 - h, respectively; 

4 k: index of the elements in rl; 

5 update, improve: boolean variables; 

6 

7 [pds, rl, r2J = Sortl(p); 

8 pds = P; Jds = 0; col = 0; improve = 1; 

9 while (col < J AND improve == 1) 

10 { col = col + 1; update = 0; k = 1; 

11 

12 

13 

14 

while (k :::; h AND update == 0) 

{ ptest = Testl (col, rl[k], pds, pds) ; 

if (cj;(ptest) < cj;(Pds)) 

pds = ptest; update = 1; 

15 else 

16 k = k + 1; 

17 } 

18 if (update == 1) 

19 pdS[rt[kJ] = pds[rl[kJJ -1; Jds = Jds + 1; (pds, rl, 7'2J = Sortl(pds); 

20 else / / all the task types with load greater than one are tested. 

21 improve = 0; 

22 } 

23 } 

24 / / function Sortl(p) returns the arrays pds, 7'1 and r2, where 

25 pdS[rt[IJJ;::: .. ·;::: pds(7'I(h]J;::: 1 > pdS[r2[1]];::: .. ·;::: pds(7'2[h]]. 

26 / / function Testl (j, i, p, P) returns the matrix ptest, which satisfies the constraints 

27 (B.2) and (B.3). At the column], ptest[i,j] > 0 and ptest[i,jJ = 0 

28 for all i' i- i, i.e., the server j is dedicated to processing the task type i. 

Figure B.2: Subroutines to generate the dedicated servers 
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1 function pH = DedicateType (Jdt , p, rJdt , P) 

2 { col: column index of the routing matrix P with size [ x J; 

3 t, s: arrays of row indices of P, with the same length K = length(rJdt ); 

4 k: index from 1 to K; task type s[K] has the smallest processing time variance. 

5 update, improve: boolean variables; 

6 

7 s = Sort2(rJdt, 0); / / rJdt[ s[l]] 2: '" 2: rJdt[ s[K]]. 

8 pH = P; col = Jdt; improve = 1; 

9 while (col < J AND improve == 1) 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

{ col = col + 1; update = 0; k = K; 

while (k > 0 AND update == 0) 

{ t = Sort2(rJdt , rJdt[ s[k]]); ptest = Test2(col, s[k], t, p, pH); 

if (rp(ptest) < rp(pH)) 

} 

pH = ptest; update = 1; 

else 

k = k - 1; 

if (update == 1) 

s = s \ {s[k]}; rJdt = rJdt \ {rJdt[s[k]]}; K = K -1; 

20 else 

21 improve = 0; 

22 } 

23 } 

24 / / function Sort2(rJ, rJ[ i]) returns the array l' with length K = length(rJ) such that 

25 IlrJ[ i] - rJ[ 1'[1]] II 2: ... 2: IlrJ[ z ] - rJ[ r[K]] II. 

26 / / function Test2 (j, i, t, p, P) returns the matrix ptest. For the dedicated task type z, 

27 ptest [i, j] > 0 and ptest [i, j'] = 0 for j < j' :s: J. Moreover, [' task types 

28 (indexed by t[l] .. . t[[']) are routed to the servers j' instead of the server j, 

29 while the number [' is subject to the constraints (B.2) and (B.3). 

Figure B.3: Subroutines to generate the dedicated task types 
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a feasible solution. 

Figure B.3 gives the routines to generate the dedicated task types. Sup­

pose there are I;t types of tasks being processed exclusively at non-dedicated 

server j. The variabilities of their processing times (indicated by rJi , 1 :S i :S 
I;t) are close to each other. The load of the remaining (I - I;t) task types 

is then evenly distributed among the non-dedicated servers which are indexed 

by j I E {(j + 1), ... ,J}. (In Figure B.3, (I - I;t) is denoted by l' in function 

Test2.) 

B.2 Numerical Examples 

Here we give an example of computing the routing matrix pH using the heuris­

tic. For comparison purposes, this example has the same parameters as in 

Example 4.1.1. 

Example B.2.1. Let I = 5 and J = 6. The first-order primitives are 

).. = [39.84 13.47 15.15 0.94 2.06] 

and 

JL = [16.7 30.4 18.9 3.0 1.0]. 

So the offered loads are gwen by the vector 

p = [2.39 0.44 0.80 0.31 2.06]. 

Since the processing times are assumed exponentzally distributed, the second 

moments are given by the vector 

to be 

rJ = 2~L-2 = [7.2 2.2 2.6 222.2 2000.0] x 10-3
. 

Using the heurzstic, the s'uboptimal solutwn to NLP (B.l) is obtamed 

0.42 

pH = 

0.49 

0.42 

0.49 
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which yields the objective function value 

cjJ;; = 234.8. (B.5) 

By comparing (B.5) with cjJ;xp = 178.6 in (4.33), the relative error of 

the heuristic is 
-H -* 

c = CPn - CPexp X 100% = 31 %. 
-* CPexp 

On the other hand, by comparing (B.4) with (4.32), it is found that pH has 

more identical columns than P*. By (partial) pooling the servers 1 and 3, 2 

and 4, respectively, we have the objective function value 

cjJ: = 150.6, 

which is 16 percent less than the minimum value cjJ:xp for no pooling. 
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