A NEW ENERGY MINIMIZATION METHOD
FOR ATOMISTIC SIMULATIONS



A NEW ENERGY MINIMIZATION METHOD FOR ATOMISTIC SIMULATIONS

By
LI PAN, M.A.Sc, B.ENG

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctor of Philosophy

McMaster University
(©Copyright by Li Pan, October 2007



DOCTOR OF PHILOSOPHY (2007) McMaster University

(Mechanical Engineering) Hamilton, Ontario

TITLE: A new energy minimization method for atomistic simula-
tions

AUTHOR: Li Pan, M.A.Sc (McMaster University)

SUPERVISOR: Dr. D.R. Metzger, Associate Professor

Department of Mechanical Engineering

Dr. M. Niewczas, Associate Professor
Department of Materials Science and Engineering

NUMBER OF PAGES:  xxxiv; 239

i



Abstract

A novel energy minimization framework, based on the Dynamic Relaxation tech-
nique, is developed to numerically determine the equilibrium of atomic positions in a
crystalline lattice containing internal defects and subjected to the external traction.

The internal force and stiffness of individual atoms are obtained as derivatives
of the potential energy function. The external traction is axially applied on boundary
atoms by means of a newly developed periodic symmetry technique, which allows the
deformation of the model to be carried out and ensures the stability of the model
during the simulation. The damping ratio adjusts the amount of artificial damping
introduced into the numerical integration to dissipate the kinetic energy, so that the
simulation is more efficient and accurate for various configurations.

The relaxation of the model containing a single edge or screw dislocation with-
out the external loading is in line with the experimental observation and theoretical
predictions. The external traction does not prevent the dislocation from dissociation,
but changes the separation width between partial dislocations after the relaxation.

The interactions between two dislocations gliding on the same slip plane are
in agreement with the theory. The increase of the height of two dislocations with
the opposite Burgers vectors gliding on parallel slip planes leads to the formation of
faulted dipoles or perfect stable dipoles. Two opposite screw dislocations on inclined

slip planes can annihilate by the mechanism of re-combination and re-dissociation,
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and the compression along the slip direction increases the critical height of the anni-
hilation.

The present approach has created the capability to provide insight into the
atomistic mechanisms and processes of the formation of particular structures in crys-

talline materials.
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Chapter 1

Introduction

1.1 Background and Motivation

Understanding the plastic deformation and working hardening of materials is critical
to control the behavior of materials during manufacturing for obtaining high-quality
industrial products. Nowadays, developing a material with desirable mechanical prop-
erties is a new focus aspect of the research. For example, new aluminum alloys with
high strength are being developed, which could be used for environment-friendly
lightweight vehicles. It is well known that the mechanical properties of a material are
determined by its microstructure. While the relationships between the mechanical
properties and the microstructure in materials have been examined by both theoret-
ical and experimental approaches, the mechanisms underlying these relationships are
not fully understood. Computer simulations for the investigation of the atomic struc-
tures of crystalline materials are increasingly important because they allow deeper
understanding of the relationship between internal structures and properties of these
materials without the necessity to carry out sophisticated and expensive experiments.

With more fundamental knowledge and better computational techniques, the mechan-
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ical properties of materials could be investigated by utilizing atomistic or multi-scale
simulations in the future.

Dynamical approaches, e.g. Molecular Dynamics (MD) schemes, for the atom-
istic simulation are widely used since simulations can be performed at finite temper-
atures. Atoms without or with initial velocities (temperature) in a non-equilibrium
state are allowed to re-arrange themselves according to classical Newton’s laws, and
eventually vibrate around their new equilibrium positions. Though simulations based
on dynamical methods can model equilibrium and thermodynamical properties, the
thermal energy available in the system can generate new processes in the material
system, which do not occur at the temperature of absolute zero. For example, the ex-
ternal applied stress and thermal activation both can trigger the cross-slip mechanism
of a screw dislocation, which is suppressed at low temperatures. Thus, the static or
steady-state approaches are needed, in which the temperature is set to 0K, to provide
simpler interpretation of these mechanisms. In these methods, atoms move to new
equilibrium positions as the total potential energy in the system is going down to the
minimal value, but they are stationary or in the steady-state in the initial and final
configurations.

The other limitation of dynamical methods is that the simulation time to
obtain the equilibrium configuration is quite long. Supposed that the equilibrium
occurs at the time of 107 second, there are at least 10® steps required to achieve the
solution in the MD approach with the time step of 10~! second that stabilizes the
simulation. However, the static or steady-state methods should be efficient to locate
equilibrium positions via some techniques and assumptions, e.g. the optimization of
the path of minimizing the potential energy, or the increase of the masses of atoms
since the inertia term (mii) disappears eventually. Therefore, static or steady-state

approaches based on minimizing the potential energy can play a crucial role in the
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atomistic modeling for investigating the change of local atomic structures of materials.

The computers available today allow one to solve atomic systems with tens
of millions degrees of freedom. However, currently available numerical platforms
to locate a configuration with minimum potential energy at 0K are subjected to
various limitations and sometimes do not converge to correct solutions. There are
two examples: (i) In order to obtain the static configuration in MD simulations
(quenched dynamics), some criteria are introduced to apply the artificial damping to
atoms when atoms vibrate around their equilibrium positions. The simulation time is
actually the same as pure dynamical approaches, and the criteria themselves usually
are not accurate enough, which could yield static solutions with errors; (ii) Conjugate
gradient method efficiently locates the minimum potential energy configuration by
mathematically optimizing the total potential energy function. However, the result
is often the local minimum that is close to the initial configuration and in fact other
local minima or even the global minimum, which could be the correct solution, may
be missed.

In short, developing a new efficient and accurate numerical algorithm of the
potential energy minimization, which would allow the calculation of stable configu-
rations of atoms in crystalline materials with or without external loading conditions,
is necessary and important. From the fundamental and academic point of view, the
new numerical framework can help to gain better knowledge of mechanisms under-
lying structure-property relationships and to independently verify results from other
methods in particular when there are no experimental observations available. From
the practical point of view, the new framework may be used to solve complex problems

in real material systems.
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1.2 Objectives

The objectives of the present research are:

(1) To develop a new theoretical framework of the potential energy minimization
based on the Dynamic Relaxation technique for the simulations of the atomic
structures of crystalline materials containing internal defects and subjected to
the axial external traction. The new approach allows (a) locating multi-minimal
potential energy positions by adjusting the damping ratio; (b) revealing the in-
termediate process path of the relaxation, and (c) applying the external traction

directly on boundary atoms of the model via a novel periodic symmetry technique.

(2) To better understand the processes leading to the formation of some complex de-
fects in crystalline lattices and their stable configurations. The basic mechanisms
of the formation of defects, which include the processes of the annihilation of edge
and screw dislocation dipoles, the formation and structures of faulted dipoles in
Z or S configurations, and the process of annihilation of screw dislocation dipoles

on inclined slip planes, are investigated by the new approach.

1.3 Outline of the thesis

The thesis consists of six chapters. In chapter 2, the literature review is conducted
with regard to potential energy functions, current available numerical approaches and
the periodic symmetry. The previous research work is summarized as well. The de-
velopment of the new framework including the numerical algorithm and post-process
techniques are explained in chapter 3. The numerical responses simulated by the
new approach are demonstrated in chapter 4, which includes models containing one

single dislocation free of the external traction, and subjected to the uni-axial or bi-

4
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axial external traction along the dislocation line direction and/or the slip direction.
In chapter 5, the interactions between two dislocations are studied. They include
modeling of the interactions of two edge dislocations on the same slip plane, edge
and screw dislocation dipoles on parallel slip planes and screw dislocation dipoles
on inclined slip planes. Finally, the conclusions and recommendations for the future

research are provided in chapter 6.
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Chapter 2

Literature Review

There are three major components in the theoretical framework of the potential energy
minimization. Potential energy functions control the way by which two or more
atoms interact with each other in the assembly, and determine the total energy of
the system and ultimately the minimum point at which the simulation is terminated.
The periodic symmetry allows a relatively small number of atoms in the model to
accurately represent a larger system that would otherwise be difficult or impossible
to be handled by the computer. Numerical methods, used in simulations, allow
converging the system to the configuration where the potential energy is minimum.
This chapter summarizes the previous research work on these topics available in the

literature, with the emphasis on the Dynamic Relaxation technique.

2.1 Potential energy functions

The success of all atomistic simulations depends on how accurately the potential
energy function reproduces interatomic interactions in the real crystal lattice. Though

there are many types of potential energy functions available, the most commonly used
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functions in atomistic simulations are: pair potentials and Embedded Atom Method

(EAM) potentials.

2.1.1 Pair potential functions

The common pair potentials used in atomistic simulations are the following (7}:

(i) Born-Mayer potential

V(ry) = Aexp[—p(ri; — 0)/To] (2.1)

where A and p are arbitrary constants, rq is a reference value as the nearest neighbor
distance in the perfect lattice, and r,, is the distance separated by one pair of atoms
i and j.

(ii) Morse potential
V(ry) = Aexp[=2p(ry; — 0)] — 2A exp[—p(ry;, = 70)] (2.2)

(iii) 12-6 Lennard-Jones potential

vea=ul(2)- (2)]

where parameters o and € are chosen to fit the physical properties of different mate-
rials. In the real simulation, it is usual to set 0 = ¢ = 1 with the adjustment of units
in the system.

The 12-6 Lennard-Jones (LJ) pair potential function has often been used in
investigating the behavior of systems consisting of atoms or more complex molecules.

The balance distance, in which the repulsive force is equal to the attractive force, is
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around 1.1220. The term ~ 1/r'? dominates for the repulsion at a short distance
while ~ 1/r% represents the attraction with a large separation between atoms. Thus,
in LJ potential, the repulsion is stronger than the attraction, and the corresponding
repulsive force increases very strongly when two atoms move closer.

The potential energy of individual atoms is determined by adding all of its in-
teractions with other atoms in the system together. Considering the size of a model,
the number of neighboring atoms could be limited when the cut-off radius is intro-
duced. Then, the total potential energy of the system is half of the summation of the

energy of individual atoms.

Ui = Y3 v (2.4)

The advantage of LJ potential is that the calculation of its value or its deriva-
tives is simple and fast, which is especially important in modeling very large atomic
assembles. LJ potential is usually used to investigate fundamental issues, rather than
studying the properties of a specific material [14]. However, there are some draw-
backs in using LJ potential in molecular simulations. First of all, the scheme of pair
potentials is not convenient to model ionic systems. The elastic constants in metals
are not properly reproduced. Finally, the formation energy for different internal de-
fects is overestimated [14][16]. Thus, it is necessary to develop a new potential energy
function specific for a given material, which accurately reproduces the properties of

a material and can be used efficiently in numerical computations.

2.1.2 EAM potential functions

Embedded Atom Method (EAM) has been developed for two decades. The basic

idea behind EAM potentials is to include the electron density function to the pair
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potential. This new approach was proposed by Daw and Baskes [36] and the scheme

of the potential energy of an atom ¢ in the system is written as:
U=~ f(p) 4 5 S V() (25)
7
The total potential energy of the model Uy, is given by:
Uot = ZUi (2-6)

Here V(r,,) is a pair potential and f(p;) is an embedded function (electron density
function). The distance r is the solo variable in pair potential functions. It is conve-
nient to calculate EAM functions when the same variable is adopted in the embedded

part. Thus p is constructed as:
M= Z (]S(T,j) (2.7)
J

where ¢(r;,) is a different pairwise interaction between two atoms compared to V(r;;).

The calculation of ¢ and V is within the limited number of neighboring atoms
in the range introduced by the cut-off radius. The interaction disappears when the
distance is larger than the critical value of the cut-off radius. Generally, the cut-oft
radius is equal to the distance that extends from one to four nearest neighbors in the
perfect lattice.

The computational procedure for calculating the EAM potential energy is
similar to that for a pair potential. For atom i, both ¢(r,;) and V(r;;) are summed
over neighbors j within the cut-off radius, and then a single evaluation of f(p,) is

performed [58]. Therefore, the nonlinear embedded function f(p,) plays a critical role
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in the form of EAM potentials and there is a lot of research work that focused on
the generation of accurate f for various materials. There are two basic approaches
to determine the function f One methodology is the direct curve-fitting such as the
early work performed by Foiles et al. [18] and the recent work done by Mishin et
al. [35]. They used a series of experimental data, including the sublimation energy,
equilibrium lattice constant, elastic constants, vacancy-formation energies and other
lattice properties, to fit Equation(2.5) providing that V' and p are determined. A
table or a curve of f with respect to the values of p, for a specific material is provided
for the simulation. Another scheme is to construct an empirical equation of f first,
then to build equations for p and V with unknown coefficients, and finally to fit these
coeflicients according to experimental data. The most famous one in the later group
was presented by Finnis and Sinclair (to be referred to as FS) [16]. They used a
square-root function to mimic the result of the tight-binding theory, in which ¢(r.,)

could be interpreted as a sum of squares of overlap integrals [33].

f(pz) = \/E (2~8)

There are some other formats of the function f, such as the one developed by

Kogure et al. [30].

f(p.) = Dpilnp, (2.9)

where D is determined by fitting the function to the experimental values of the
cohesive energy E. , the lattice parameter a, the material stiffness (Cy;,C12,Cy4), and
the vacancy formation energy F,. However, these formats are not as simple and
widely used as FS type.

Ackland et al. [2][3] gave the formula and corresponding parameters for N-

10
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body potential of the FS type for face-centred-cubic (f.c.c) metals and alloys.

Vir,)= Zak(rk - sz)SH(Tk —Ty) (2.10)
k=1
2
P(ry) = Z Ax(Ry — Ti])3H(Rk —Ty) (2.11)
k=1

where 7, and Ry are chosen as knot points such that ry > ro > r3 > rqy > r5 > rg and
R; > Ry. Hence, r; and R, represent the cut-off radius of functions V(r;,) and ¢(ry,),
respectively. In the case of copper, the radius is set to cover three nearest neighboring
atoms in the perfect lattice. rg is set to equal the nearest-neighbor spacing r,, in
all cases, so that this term multiplied by ag contributes only for r < r,,, where the
pair potential part shows strong repulsion. The coefficient a, ..., a5, A; and A, are
determined by fitting exactly to a series of parameters, which include the equilibrium
lattice parameter a, the cohesive energy E., the material stiffness (C1;1,C12,Cua), &
lower bound of the unrelaxed vacancy formation energy Ef and the stacking fault
energy. The coefficient ag cannot be found by fitting to any harmonic property of the
lattice, so it is adjusted for metals, such as copper, to fit the pressure-volume relation
calculated by Christensen et al. [9]. Since the copper is used throughout the thesis
as the model material, the parameters of Ackland are summarized in Table(2.1).

In conclusion, EAM potential energy functions provide more accuracy and offer
more reasonable interpretation for results in the simulation than pair potentials. EAM
potentials need more computational time. However, with the continuous increase of
the computer speed, the time to calculate the value of the potential energy in EAM

methodology is acceptable even for a large size of the model.

11



PhD Thesis - Li Pan

McMaster - Mechanical Engineering

Table 2.1: The coefficients of the Ackland et al. [3] potential for the copper.

Coeflicient | Copper
ay 29.059214
as -140.05681
as 130.07331
aq -17.48135
as 31.82546
ag 71.58749
Ry 1.2247449
R, 1.0000000
Ay 9.806694
Ay 16.774638
Ty 1.2247449
To 1.1547054
3 1.1180065
T4 1.0000000
T5 0.8660254
T61 0.7071068

(The coefficients for V and ¢ are in the unit of eV, and r and Ry are in the unit of

the lattice parameter 0.3615nm.)
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2.1.3 Other potential functions

Besides popular pair potentials and EAM potentials, there are other types of po-
tentials available for specific metals or alloys. Erkoc [13] summarized 38 different
formats of potential energy functions under three groups. In many atomistic simula-
tions, other two types of potential energy functions are used in recent years.

Rosato et al. [48] proposed a potential energy scheme for f.c.c. transition
metals, such as copper and nickel, based on the tight-binding theory. The potential

energy of an atom 1 is expressed as:

U = Ei+E
1/2
_ —{Z§Qexp [——2(](%— )}} +3 Aexp [—p<:—ig— )}(2.12)

where E, is the band energy modeling the attraction while E, adopts the Born-
Mayer pair potential to represent the repulsion. The parameters A, p, £, and ¢ are
determined by fitting experimental values for various metals.

Jacobsen et at. [27][28] suggested an approximate total energy method, which
is called the effective-medium theory (EMT). The basic idea of EMT is to calculate
the energy of an atom ¢ in a suitable reference system, i.e. the effective medium, and

then estimate the energy difference between the real and reference systems.

Uy = E.(n:)+ Eas(i)
ref

= E(n)+ > V() =Y Viry) (2.13)

Here, E.(n;) is the cohesive energy of an atom with respect to the electronic density

n; from its neighboring atoms in the reference system, e.g. the perfect f.c.c lattice.
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E 45(7) is the atomic-sphere correction. In the current approach, the correction rep-
resents the difference of pair potential values in real systems (models with defects)
and reference systems (perfect lattices). The coefficients used in Equation(2.13) are

determined by fitting experimental data for a specific material.

2.2 Periodic symmetry

In order to eliminate the surface effect dominated in the model, the periodic symmetry
(or the periodic boundary condition) is applied to mimic the presence of an infinite
bulk in an N-atom system. The model containing N atoms is treated as the primitive
cell of an infinite periodic lattice of identical cells [19].

In Figure(2.1) as a two-dimensional domain, any atom 7 interacts with all other
atoms including the atoms in the primitive cell and in all its image cells within the cut-
off radius. When applying the periodic symmetry to the model, the resultant internal
force on a certain atom and on all of its corresponding images should be identical.
Therefore, the atom and all its images should have the same acceleration (motion).
A method, herein called the traditional method [19][22], has been developed to form
the appropriate resultant force required to assume that the motion is compatible with
the symmetry.

Followings are some key points of the traditional method for the calculation

of the periodic symmetry:

(1) For three-dimensional models, applying a periodic symmetry to one coordinate
direction is widely used. For example, in dislocation simulations, it is usual to ap-
ply the periodic symmetry in the direction that is coincident with the dislocation
line, which assumes that the dislocation line is infinitely long. Thus, for a given

atom 14, there are two images in one direction, which is shown in Figure(2.2).
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Cut-off radius B/® ®
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Figure 2.1: The scheme of the periodic symmetry in atomistic simulations.

Image cell #2 Primitive cell Image cell #1
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Figure 2.2: The periodic symmetry along one coordinate direction.
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(2)

3)

Generally, the cut-off radius 7, must be less than half of the length of the primitive
cell ry, (periodic length) in the designated direction. Otherwise, some image atoms

could be missed or double counted.

The distance 7;, between atoms 7 and j now is determined by atom i(z;, v, 2),
atom j(z;,,,2,) and all js images by fixing the position of atom . For the
periodic symmetry in one coordinate direction, one need first evaluate the distance
15y If 7,y > re, then it is necessary to evaluate the distance between atom ¢ and
two images of atom j: ji(z, + 71,¥;,2;) and jo(x, — r1,¥,,2;). Three possible

cases are:

(a) If neither r;;; nor 7, is within the cut-off radius r., atom j is skipped;

(b) If either r,,1 or 7, is within the cut-off radius r,, this value is taken as the

distance between ¢ and 7

(c) if both r,; and 7, are within the cut-off radius r., the minimum value of

Ty,1 and 7,50 is the distance r;;.

In the traditional method of applying the periodic symmetry to the model, in

order to preserve the periodicity, the periodic length r; must be kept constant during

the simulation. Otherwise, atoms and their images lose uniform motion. Therefore,

in the usual treatment, the periodic length could not be stretched or compressed

but the corresponding periodic boundaries are allowed to move and deform, but at a

constant spacing. Consequently, the periodic symmetry generates a kind of restrictive

’kinematic constraint’ between the periodic boundaries. The relaxation under the

periodic symmetry in the traditional method takes place only within these boundaries

until even spacing between adjacent atoms is achieved.

One technique called ’tied nodes’ [49], which is used in Finite Element Methods
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(FEMs) [10][53], could be used in the atomistic simulation. This technique forces
two nodes (or atoms, in this case) to follow identical motions during the simulation.
Though the technique of ’tied nodes’ provides another way to obtain the motion of
corresponding pair of an atom and its image, it can only apply to the pair of physical
boundary atoms while inner atoms in the model still need use the traditional method
to calculate their movements. In the ’tied node’ method, forces on the boundary
atoms, F,, are first obtained without any regard for symmetry (no images considered).
Then the resultant force FZ on each boundary node (atom) i is calculated by adding

(assembling) the force from its image node ',

FR=F,+F;, =FF (2.14)

This ensures that the resultant forces on a boundary node and its image are the same.
Therefore, this method is equivalent to the traditional method. Since this method
need extra efforts to search for the pairs of boundary atoms, the computational burden
is higher than the traditional method.

The traditional treatments are acceptable when the change of atomic struc-
tures is only dependent on internal forces. If external forces are involved into the simu-
lation, e.g. the axial traction, the unit length between adjacent atoms is changed. The
periodic length should follow the same trend and be the identical parameter through-
out the model. However, the periodic length of the corresponding periodic boundary
under traditional treatments is fixed. On the one hand, the traditional method itself
enforces over-restrictive kinematic constraints between periodic boundaries since it
requires any pair of boundary atoms be in the same motion. In fact, boundary atoms
don’t have to be in the same motion as long as all pairs of boundary atoms in the

model could maintain a unique periodic length at any time during the simulation.
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On the other hand, randomly distributing external traction acting directly on atoms
at most of cases causes the model to easily lose its unique periodic length, so that the
periodicity of the model is subverted. Hence, a new method is needed to ensure that
the periodicity is upheld, while avoiding unnecessary constraints of the repeating cell

boundaries.

2.3 Numerical methods

Generally, there are two approaches to minimize the total potential energy of the
atomic system. In one group of techniques called gradient methods, the focus is
on mathematically optimizing the function of total potential energy Fi., such as
Equation(2.6), with the gradient dE;,; = 0. Since the distance r,, is the function of the
space coordinates of atoms ¢ and j, the potential energy is the function of coordinates.
Once the total potential energy function is minimized, the new equilibrium positions
of atoms are determined. Another treatments called dynamical methods rely on
numerical solutions of the differential equation of motion for individual atoms in the
system. In the equilibrium state, the minimum total potential energy is obtained
when the overall kinetic energy is maximum due to the energy conservation in the

system.

2.3.1 Gradient methods

The gradient methods include the steepest descents method [8][46], the conjugate
gradient method [8][17]{31][46], Newtom-Raphson method and Quasi-Newton method
[8][31]. Newton-Raphson method and Quasi-Newton method, which use the second
derivative of the potential energy function, cause the storage problem due to the

Hessian matrix and its inverse if large number of atoms is simulated. Therefore these
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methods are seldom used for the atomistic simulation except for models containing
small number of degrees of freedom.

In the method of steepest descent, the positions of atoms are updated along
the direction of the steepest descent iteratively with the total potential energy going
down. The descent direction S is the opposite direction of Etlot, which causes Ej to

decrease more quickly.

S = _VEtot (215)

If there are N atoms in the model, the total degrees of freedom are 3NV in the three-
dimensional space so that the target potential energy function has 3N variables.

Supposed that the vector X has 3N components,
Ei(X) =Y V(1) = Brot(X1, -, Xn) = Bior(%1, .., T3n) (2.16)
J

Combined with Equations(2.15) and (2.16), the vector S is calculated as:

( 6E1 )
Oz

OE:ot
o2

S = _VEtot = < (217)
OF+ot
3113"_1

OE;ot
\ Oz3n /

In any iterative step 7, the updated positions of atoms for the step (i + 1) are based

on the current positions and gradients.

Xz-’r] = Xz + hSz = Xz - hVEtOt,t (218)
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Here, h is the step length, which shows how far atoms move in the gradient direction
S. The h could be an arbitrary value or be optimized as h*. The arbitrary step
length could be determined before the start of the simulation and be adjusted during
the simulation by certain criteria. The optimal step length h* is selected where the
total potential energy is minimum along the line S. After S, is obtained, based on
Equations(2.16) and (2.18), the updated total potential energy with respect to A,
along the gradient direction, i.e. Fiu(X, + h;S,) is obtained. With dE;,/dh, = 0,
h*

)

is evaluated at the current step. Obviously, the arbitrary step length approach
may need more steps to converge to the minimum value but with fewer function
evaluations. Thus, it may require less computational time than more rigorous line
search approach.

The convergence criteria can be established based on: (i) the change of the
total potential energy in two consecutive iterations, or (ii) the difference of the posi-
tions of atoms in two consecutive iterations, or (iii) the value of the first derivative
of the total potential energy, is within the tolerance value. The trajectory to the
minimal value by the steepest descent method is in the form of a ’zigzag’ as shown
in Figure[2.3(a)]. Since the new gradient is always perpendicular to the previous di-
rection, the convergence rate is quite slow if the path to the minimal value is long
and narrow. The convergence characteristics of the steepest descent method could be
improved by the conjugate gradient method, which optimizes the direction of the gra-
dient to make the convergence as quickly as possible. As depicted in Figure[2.3(b)],
the conjugate gradient method does not require the directions of the gradient be
orthogonal. Fletcher and Reeves [17] developed the scheme to obtain the search di-

rection considering current and previous gradients. In its iterative procedure, after
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the first step, the descent direction is modified from Equation(2.15),

| v-Etot,z |2

Sz = _VEO .+ i—
T VEa

(2.19)

The conjugate gradient method provides better convergence, and thus is used
in many applications in atomistic simulations. It has been proven that there may be
a number of minima on the potential energy surface for a specific molecular model
[23]. However, the minimum potential energy of the system obtained by the conju-
gate gradient method is often the local one and in fact other local minima or even
the global minimum, which could be important in some disciplines, may not be ob-
tained. Moreover, the process of the potential energy minimization simulated by the
conjugate gradient method is a mathematical iteration, in which the attention is more
on quickly achieving the relaxed configuration. Therefore, the intermediate config-
urations calculated by the conjugate gradient method may not be controlled by the
physical law. In many cases, the physical path of atoms approaching the equilibrium

is useful to investigate the formation of certain atomic structures.

2.3.2 Dynamical methods

Rather than studying total potential energy functions, the target of dynamical meth-
ods is individual atoms in the system. If the net force acting on every atom is re-
balanced, i.e. Y, F = 0, the potential energy is minimum because the first derivative
of the potential energy as the internal force is zero. In dynamical methods, atoms
are regarded as mass points and modeled using the classical mechanics. Thus, the
general equation of motion for a single atom at any time ¢ is

Mt + Ku' = F!

ext

(2.20)
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=

(b)

Figure 2.3: The depiction of gradient methods. (a) The steepest descent method;

(b) The conjugate g

radient method [52].
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Here, M is the mass of an atom; K is the stiffness and u is the displacement. F,,;
is the external force. If the source for the change of the atomic structure is internal
defects, then F,,; = 0. For nonlinear problems, the internal force Fj,;, calculated by
the first derivative of the potential energy of an atom, is used in place of Ku so that
the whole system is decoupled.

Thus, dynamical methods integrate the motion of atoms iteratively. Supposed

that the acceleration of an atom in any time step ¢ is expressed as:

t ot
ﬁt — Fea:tMFmt (221)

Beeler et al. [20] summarized four different integration schemes. The central differ-
ence method [8][21] and Verlet algorithm [19] are widely used in the simulation. In
the central difference method, in order to obtain the new position of an atom at time

step t + At, the new velocity « is calculated as

WHHAY2 _ t=At/2 | GtAY (2.22)
Then, the corresponding displacement u and position x are obtained by

WAt — ut o+ ApattA? (2.23)

xt+At — xt + At.ut+At/2 (224)

In the Verlet algorithm, the new position and velocity at time step t4 At are obtained

by two sub-steps to reduce the truncation error.

XA = xP + At + (1/2)if AL (2.25)
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uttA2 = gt 4 (1/2)itAt (2.26)
t+At __ pt+At

ﬁt"‘At — Fezt MFmt (227)

UiHA = A2 4 (1/2)it A AL (2.28)

Both methods above use the explicit operation, in which the information of
an advanced time step is all based on current quantities. With the explicit method,
the algorithm is very simple and the computer memory is sufficient to handle for
a large atomic model. However, in order to stabilize the simulation, the time step
should be chosen below some critical values. There are no clear criteria to obtain
such critical values so that the time step is normally 1071* — 1075 second according
to the experience to ensure the convergence. Thus, the total simulation time could
be quite long to achieve the equilibrium.

It is known that the time integration for Equation(2.20) would not bring the
static solution for atoms. In the equilibrium, atoms oscillate around balanced po-
sitions by the harmonic motion. If there is no energy added or removed from the
system, the total energy in the system is conserved. Therefore, the positions of atoms
with the maximum kinetic energy is the configuration where the potential energy is
minimum.

Dynamical methods provide the transient approach to the equilibrium with
the physical foundation. They can not only simulate mechanical properties such as
the equilibrium positions of atoms, but also model thermodynamic properties of the
material at finite temperatures. The desired temperature is obtained by introducing

the proper velocity distribution to atoms in the initial state and rescaling velocities
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of atoms during the simulation. For example, Equation(2.28) could be replaced by

Ty
Tt

~t+AL —

u at A2 4 (1/2)at A AL (2.29)

where Tj is the desired temperature and T* the instantaneous temperature at time ¢

[14].

2.4 Dynamic Relaxation technique

There were couple attempts to obtain static equilibrium configurations by applying
the artificial damping to atoms. Gibson et al. [21] introduced the method to set
zero velocity of atoms each time when the total kinetic energy reaches a maximum
value. Evans et al. [20] developed an advanced criterion that the velocity of atoms
are overwritten to zero whenever the velocity-force dot product becomes negative.
Both techniques above dissipate the kinetic energy after atoms enter the equilibrium
state with a simple harmonic motion so that the simulation time is in the same level
as pure dynamical approaches.

In order to combine the advantages of gradient methods and dynamical meth-
ods, which is to quickly obtain the relaxed configuration by the iterative process
controlled by classical Newton’s laws, the Dynamic Relaxation (DR) technique is
selected as a new approach to supply the quasi-static (steady-state) solutions. DR
introduces the damping into Equation(2.20) to fast track the new equilibrium posi-
tions of atoms. Due to the highly non-linear nature of potential energy functions,
e.g. EAM potential, DR with the explicit operator becomes a very good method for
the energy minimization because (i) large-scale models involving tens of thousands

of degrees of freedom are possible and (ii) the DR method has good records to han-
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dle highly non-linear applications (geometry and material) when being coupled with
Finite Element Methods (FEMs).

The Dynamic Relaxation technique was first proposed by Day [12] for the
solution of partial differential equations by finite difference methods. DR can be
efficiently implemented into the FEMs to obtain quasi-static solutions. However, in
early applications, e.g. Brew et al. [6] or Pica et al. [44], the overshoot was a problem
in DR methodology because it is not acceptable in nonlinear problems such as elasto-
plastic deformation whose responses are path-dependent. Kant et al. [29] tried to
solve nonlinear structure problems by DR but the overshoot caused its suitability only
to small deformation or the linear behavior of materials under loading. Underwood
[56] suggested the derivation of the adaptive damping, mass and time step, which
leads to the steady-state solution presumably without overshoot. Following his ideas,
Sauvé et al. [50] derived an algorithm for DR which is applicable to highly nonlinear
problems without overshoot and is fully compatible with the explicit Finite Element
analysis.

Pan et al. [41][42] proposed the modified DR algorithm, which is based on
Sauvé et al.’s approach, in the energy minimization for atomistic simulations without
any external traction. In this approach the motion of atoms is governed by the

equation of motion of a regular mechanical system for time ¢:

Miit + Cut + Fpy(uf) = Y, = 0 (2.30)

Here M is the lumped mass matrix of atoms, C' is a damping matrix. In the DR tech-
nique, time £ usually does not represent the real time but is referred to an iteration
(cycle) counter. The revised algorithm is summarized as follows:

(1) The internal forces cannot be obtained by a regular routine from elements. How-
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ever, the FS type EAM potential function, i.e. Equation(2.5), is defined for separate
atoms. It is a cubic function, so that non-local internal forces at atoms can be easily
obtained by the first derivative of the potential energy function. Therefore, internal
forces in three coordinate directions (@ = x,y, z) acting on atom ¢ can be calculated

as:
o 8U Ti o o
Fmt,i = - (—a(a%)) = [ EAMp + FPcnr,z]
_ 1 ) ) | 10V (ry)
= - (zj:qﬁ(r”)) EJ: Pt 3 e, (2.31)

(2) Since the acceleration and velocity of the system are dissipated to zero at the end
by the damping, { Mii+C1u} are arbitrary dynamic terms. The masses of atoms could
be artificially scaled to make the simulation as fast as possible. The specification of
mass M is related to the stiffness K of the system under the DR framework. The
previous estimation of the stiffness, which directly derives the second derivative of the
potential energy, does not work in the atomistic simulation because there are repulsive
and attractive forces existing between atoms. When the attractive force is dominant
at one atom, the stiffness could exhibit the negative value, which behaves like a
‘negative spring’. In order to get a positive mass, the absolute function is applied to
the stiffness value and the mass is calculated as a summation of the absolute values of
the stiffness, which is based on Gerschgorin’s circle theorem (39]. Under this theorem,

the mass of atoms 7 is approximated by:

1 2
m, > SAL, ; | K, | (2.32)

where At is the critical time step and Kj; is the stiffness between atoms i and j within
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the cut-off radius. In order to save computational efforts, a one-dimensional approach
with ignoring the orientation is used to find the stiffness between any pair of atoms.
Then the atomistic system is analogous to a structure problem, i.e. like spring-mass
or truss. The stiffness of any atom can be obtained by the second derivative of its
potential energy. For instance,

_ dZV(’I"zj)
dr?

]

K; ZZ,KUI :Z

I#1 I#i

(2.33)

It is noted that the complicated EAM part calculation is omitted in the stiffness
estimation. The stiffness from the EAM part is small and always opposite to the
value from the pair part so that the stiffness is enlarged less than 5%, which is safe
for the stability in the calculation. The value of mass is customary to be the quarter

of the stiffness, that is

1
m, = > 1K (2.34)
371

And the critical time step At should be correspondingly scaled back to \/i/ 2 to
satisfy the inequality(2.32).

(3) Damping is used to control the manner in which the system approaches the
equilibrium. Mass proportional critical damping is applied to dissipate the kinetic
energy in the system.

C = 2%wM (2.35)

Here £ is the damping ratio and w is the natural frequency corresponding to the
participating mode of loading. Since the mass matrix is lumped and the corresponding
damping matrix is diagonal as well, the system is not necessary to factor a full matrix.

In the regular Finite Element analysis, ¢ is usually set to 1.0 to apply the

critical damping into the system. In the atomistic simulation, the damping ratio
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¢ is more than an indicator of the convergence rate. Because damping dissipates
the kinetic energy of the system, the results of the relaxation are always obtained
at the temperature of absolute zero (0K) when no kinetic energy exists. As shown
in Figure(2.4), when applying a lower damping ratio, the system can experience
higher kinetic energy prior to reaching the equilibrium so atoms oscillate around
point C' and have highly opportunity to overpass the point F to move into a new
configuration. Finally, atoms could stop at lower minimum energy positions F' if
existing. This in turn may require more steps to get the convergence. Contrarily,
applying a higher damping ratio affects the maximum kinetic energy of the system
so that atoms oscillate less between points B and D. Thus, atoms are less likely to
jump over point E and could stop at local equilibrium positions C, which is the closest
relaxed configuration from the starting configuration A. However, this may converge
in a shorter time. By adjusting the damping ratio, different relaxed configurations
can be obtained.

The Rayleigh quotient is used to estimate the frequency at cycle ¢,

Wt = [(“t)TK “tJl/Q (2.36)

(u)TMut
where u, K and M are current displacement vector, tangent stiffness matrix and mass
matrix, respectively.

To avoid possible instability during nonlinear calculations, only positive w is
allowable, i.e. w' = max(w',0). The velocity % replaces the displacement u as the

mode shape in Equation(2.36) to keep non-zero values in the denominator. Thus, w
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Figure 2.4: The scheme of the energy minimization path by the Dynamic Relaxation
technique.
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can be written as

(ﬁt—At/2)TKﬁt—At/2 1/2 (ﬁt—At/Z)TK(ut _ ut_At/z)/At 1/2
W = l:(ﬁt—At/Z)TMﬁt—At/zil = [ (at=A/2)T Myt —At/2
1/2

3n
Yo (@A) FL, — FRAY /At

= |= (2.37)

3n
) (u:—At/2)2m”
=1

With above prediction of the participating frequency w, in the typical situation
of the mass proportional damping as shown in Figure(2.5), the critical damping is
applied to the participating frequency w that tends to begin at a high end of the
system. Thus, the lowest participating frequency of the system is overdamped at the
current time. With more iterations, the participating frequency w goes lower as high
frequencies gradually damp out. When the lowest participating frequency is critically
damped, high frequencies are underdamped but they are already damped out at this
moment. Therefore, the solution is below the true response so that the overshoot
does not appear.

(4) Combined with Equation(2.22), the governing equation, Equation(2.30), is ap-

proximated by [5]

tHAL/2 _ yt-At/2 tHAL/2 4 t-At)2

t
M " +C : +F, =0 (2.38)

With Equation(2.35), Equation(2.38) can be written as:

attayz 1 — EwAt at—At/2 —AtFL,
1+ EwAt M(1 + EwAt)
1 —EwAt - t—At/2 At
- 2.
14 Ewlt 1+ éwit' (2.39)
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Figure 2.5: Damping ratio versus frequency for the mass proportional damping via
Rayleigh quotient. w3 > wy; > wy, and w; is the lowest participating frequency for a
given system. The participating frequency is dissipated from the high end.
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(5) Dynamic Relaxation is based on viewing the solution of a static problem as the
steady-state solution of a damped dynamic problem. Since external forces have not
been applied to the system yet, the structural change is the result from internal forces.
Therefore, the steady-state solution for the system implies that

F,=F

int — * ext

=0 (2.40)

which is achieved when the simulation is finished. Therefore, the dimensionless con-

vergence criterion based on Euclidean norm || || is:

“ant ”2

toi 24
max (| Fally) < (241)

Euclidean norm is a most commonly used function to assign a positive value to all
vectors, such as internal forces in this case, in a vector space. Compared to other
norms, e.g. uniform norm, Euclidean norm integrates all elements in the vector
space so that the value comprehensively represents the size of the space. fi,; in

inequality(2.41) is the tolerance value, which is set before the simulation.
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Chapter 3

Further development of potential

energy minimization framework

The further development of the framework lies on (i) the new periodic symmetry
method and the corresponding revision of the Dynamic Relaxation algorithm and (ii)

the pre-process of the model and the post-process of results from the simulation.

3.1 New periodic symmetry method

The periodic symmetry method is used for the simulation of lattice models with
dislocation(s) in the present research in order to reduce overall computational ef-
forts. Current available periodic symmetry technique over-restricts the repeating cell
boundaries, and the corresponding periodic length is fixed as a constant value. The
new periodic symmetry method is developed to solve the drawbacks of the traditional
method and gives more flexible treatments to boundary atoms.

The new method is based on the view of the equilibrium of objects with bal-

anced loadings in the static mechanics. As shown in Figure(3.1), for example, there
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is a rod with opposite forces F' applied on both ends. If the rod is randomly divided
into three portions, the corresponding internal traction, whose magnitude is F' as well,
balance themselves or external applied forces on every portion. Thus, three portions
could be analyzed independently to obtain the same results compared to the bulk
calculation if the stress on the intersection plane is evenly distributed. Such an idea
can be extended to more general periodic or repeating structures with proper kine-
matic constraints on repeating boundaries to save considerable computational time
and efforts in the simulation.

The primitive cell in the atomistic simulation, which is surrounded by an
infinite number of image cells with exactly the same structure and defects, is assumed
to be a minimum unit to represent the feature of the material model. For example,
as shown in Figure(3.2), there is an atomic model with the pattern of vacancies and
applied forces at each end. Then the minimum unit as the primitive cell is 6 x 6
atoms with two holes. In terms of the equilibrium, internal traction F’ is equal
to the external force . However, due to the nature of the atomic structure and
defects in the model, the stress is not evenly distributed on the boundaries of the
unit cell so that certain kinematic constraints need be applied to boundary atoms in
the primitive cell to ensure the compatible deformation at the boundaries, which is
under the assumption that the model maintains its periodicity after the relaxation.

Based on the scheme proposed by Metzger [34], the model of one line of atoms
is used to explain the scheme of the new method of the periodic symmetry. In
Figure(3.3), the primitive cell is from boundary atom ¢ to boundary atom i’ and the
corresponding periodic length is ¢. The cut-off radius is supposed to extend to the
one nearest neighbor in this case. Therefore, in the traditional method, atom i (or
atom 7’) should interact with two atoms, one of which is the image atom (white circle

in Figure[3.3(a)]). In the new method as shown in Figure[3.3(b)], forces on boundary
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Figure 3.1: The scheme of the equilibrium according to the static mechanics.
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Figure 3.2: The scheme of the equilibrium in the atomic model.
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Figure 3.3: The scheme of the force equilibrium on boundary atoms. (a) The
traditional method; (b) The new approach.
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node ¢ and its image i’ are found without regard for any symmetry, which is the same
as 'tied nodes’ method. However, the boundary force or external traction \; is used
in place of the interaction between boundary atoms and image atoms, which gives

resultant forces F® on atoms ¢ and #/,
FRE=F, + )\ (3.1)

FE=F,+ N\ (3.2)

where F, and F,, are the net internal force within the primitive cell. Since the new
method does not require (i) the periodic length to be a constant value during the
simulation, and (ii) the physical pair of boundary atoms 7 and ¢’ has identical motion,

the acceleration of these two boundary atoms are related by:
w; — Uy =¢ (3.3)

Therefore, according to the equation F' = ma, combined with Equations(3.1) and

(3.2), Equation(3.3) is re-written as:

FE FE F,+) F,+\

m, m, s My

=é (3.4)

And, the boundary forces have the same magnitude but opposite directions in order

to be compatible between the periodic boundaries, i.e.

By inserting Equation(3.5) into Equation(3.4), the external traction A; could be ob-
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tained as follows:

A= A, = (_m_m_) [5_ (F_@;IL@)} (3.6)
m, -+ my M, My

When the acceleration of the periodic length c is set to zero, Equation(3.6) becomes

F,m, —F,m;

A=Ay = — (3.7)

My + My

Equation(3.7) reveals how much external traction is needed in every cycle to be
applied on boundary atoms to keep the periodic length constant during the simulation.
Therefore, results of the relaxation based on Equation(3.7) should be in agreement
with results from the traditional method and ’tied nodes’ method.

Supposed that the mass of individual atoms in the system is a unique value,

Equation(3.7) could be further simplified as:

A=)y = F.—F (3.8)
2
Then, combined with Equation(3.8) and Equation(3.4),
F?¢ FE F,+F, F,+F,
oy _HiEdv B A g (3.9)

m, m, 2m; 2my

Apparently, the acceleration of boundary atoms in the new method is half of it in
the traditional method. Though the change would not affect the final result, it is
customary to cut the masses of boundary atoms into half value in order to obtain the
same path of the relaxation as the traditional method when ¢ = 0 is used in the new

method.

In order to prove the suitability of the new method, a model with 7 atoms in a
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row with randomly different spacing is examined so that the relaxation proceeds under
the periodic symmetry. The initial positions and spacing between adjacent atoms are
shown in Figure[3.4(a)] and Table(3.1). The movements of atoms are restricted to
the horizontal direction. Two methods, the traditional method and the new method
with é = 0, are both applied to the model. The potential energy function is chosen
as simple Lenard-Jones pair potential, and the tolerance to terminate the simulation
is that the total net force value is less than 0.001. The results are demonstrated in
Figures[3.4(b)], [3.4(c)] and Table(3.1). It is noted that the external traction is only
applied to the boundary atoms in the new method. Displacements of other atoms
within the primitive cell are calculated in the same way as in the traditional method.

From Figure(3.4) and Table(3.1), the new method is proved to be effective for
applying the periodic symmetry to the atomic model because both methods converge
to the state that the distances between adjacent atoms are equal. The periodic
length is not changed as it in the case with the traditional method. The system
momentum is balanced by both methods since the external traction (reactions) is in
the equilibrium state. The position of Center of Gravity (CG) R of the model is

calculated as a discretized particle system, which is

7
1
R= ; m,r, (3.10)

where M is the sum of particle masses, m, is the mass of individual atoms, and 7,
is the distance to the reference point as zero in this case. With the same mass of
inner atoms and half mass of two boundary atoms in the initial model, the position
of CG is 2.15. As the positions of atoms after the relaxation, the position of CG is
unchanged from both methods. Thus, the apparent rigid motion is due to the relative

motion of the boundaries not the movement of the Center of Gravity in the model.
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Figure 3.4: The model of one line of atoms. (a) The initial configuration; (b)
The new equilibrium configuration after the relaxation by the traditional periodic
symmetry method; (¢) The new equilibrium configuration after the relaxation by the
new periodic symmetry method.

Table 3.1: The positions of atoms in one-dimensional model before and after the
relaxation by the traditional periodic symmetry method and the new method.

Atoms| Initial positions | Final Final positions-
positions- the new method
the traditional
method

x(1) 1.0 0.85 0.85

x(2) 1.3 1.283 1.283

x(3) 1.6 1.717 1.717

x(4) 2.0 2.15 2.15

x(5) 2.5 2.583 2.583

x(6) 3.2 3.017 3.017

x(7) 3.6 3.45 3.45
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Therefore, the new method not only includes the features of the traditional method,
but also provides a way of applying the external traction to the model when ¢ is not
equal to zero.

Rather than the model of one row atoms, with more layers of atoms, the
external traction need be decomposed into a series of forces applied on every pair
of boundary atoms to maintain the periodicity. A two-dimensional model is used to
demonstrate the details of external traction distributions, as shown in Figure(3.5), in
which a pair of tensile forces T with the corresponding periodic symmetry is applied in
the X direction of the model while free boundary condition is used in the Y direction.
In the X direction, the shape of the boundary is random but the periodic length of
every row of atoms is unique. For every pair of boundary atoms, the external traction
is distributed as different A values. However, the sum of As should be equal to T,

which is
n

Z(—)\z) = i/\i' =T (3.11)

=1
where the positive sign of T is customary to point to the right. Based on Equation(3.6),

after substituting Equation(3.11), it is obtained

2 { (——mm ) [c _ Home = By, Fm} } =T (3.12)
m, + My N, My

=1
1=

There are two unknowns in Equation(3.12), T and &. One of these must be speci-
fied before the simulation starts so that the other unknown could be calculated. T
or ¢ could change every cycle step to adapt to the change of internal forces until
convergence.

Two examples using a two-dimensional cubic configuration of atoms are used

to illustrate the application of the new method for the periodic symmetry. The first
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Figure 3.5: A two-dimensional model with the external traction applied in the X
direction. (a) Total force; (b) Force components.
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example applies the periodic symmetry to the rectangular atomic model with even
spacing in the columns as shown in Figure(3.6). The numerical parameters are set as

follows:
(a) The periodic length is initially set to 4.0-arbitrary-units.
(b) Simple Lennard-Jones pair potential is used.

(c) A pair of tensile traction, which is 0.0-arbitrary-units, 4.0-arbitrary-units and
—4.0-arbitrary-units respectively, is applied to the boundary in the X direction
of the model with the new periodic symmetry while free boundary condition is

used in the Y direction.
(d) Cut-off radius is 1.6, which is set to cover one nearest neighbor.
(e) Damping ratio is 1.0
(f) Tolerance value as the total net force is 0.001

The new equilibrium configurations calculated by the new method are shown
from Figure[3.6(b)] to Figure[3.6(d)]. Since atoms are not under the equilibrium in the
initial configuration, when zero external traction is applied, atoms have opportunity
to adjust their positions until net resultant forces are zero so that the periodic length is
extended to 4.437-arbitrary-units. According to this value as a reference length, when
tension or compression is applied on the boundary atoms, the periodic length in all
rows becomes 4.531-arbitrary-units and 4.372-arbitrary-units, respectively. Because
the repulsive force is stronger than the attractive force derived from the potential
energy function, the deviation from the reference periodic length is not the same
as the same amount of tension or compression is applied. Thus, all the numerical

responses are in agreement with expectations.
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Figure 3.6: A two-dimensional rectangular model with the new periodic symmetry
applied in the X direction. (a) The initial configuration; (b) The equilibrium config-
uration after applying zero external traction; (c) The equilibrium configuration after
applying 4.0-arbitrary-units external tension; (d) The equilibrium configuration after
applying —4.0-arbitrary-units external compression.
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As discussed in the previous work [41], a rectangular or cubic assembly of
atoms in a two-dimensional model is a local minimum potential energy configuration
with certain spacing. Therefore, after applying the new periodic symmetry with
corresponding external traction in the X direction, the spacing between atoms is
equally increased and the unique periodic length is maintained during the simulation.
However, the configuration with lower minimum potential energy (i.e. closed-packed
configuration) is not achieved.

Another example is that the periodic symmetry is applied to the parallelogram
atomic model with even distance between adjacent atoms in X and Y directions
shown in Figure[3.7(a)]. The periodic length and the numerical parameters for the
simulation are the same as in the previous example. Two approaches of the periodic
symmetry are applied in the X direction. Figures[3.7(b)], [3.7(c)] and [3.7(d)] show the
results of respective equilibrium configurations by applying ¢ = 0 as the traditional
method, 4.0-arbitrary-units tension, and -4.0-arbitrary-units compression based on
Equation(3.12).

The parallelogram model is another kind of minimum potential energy config-
uration since it could generate closed-packed arrangements of atoms. It was proved
that the minimum potential energy value of the model is dependent on the angle ¢
and spacing r between atoms [41]. With four-atom parallelogram model, the angle 6
is 29.7°. If the traditional method as ¢ = 0 is used, the relaxation in the X direction
would not happen since the even spacing is already achieved between atoms, which
is shown in Figure[3.7(b)]. In the Figure[3.7(c)], when the tension is applied in the
X direction, it is found that the angle 6 of the parallelogram model is changed from
original 45.0° to 30.7° while the periodic length is stretched to 4.614-arbitrary-units.
In the Figure[3.7(d)], when the compression is applied in the X direction, the angle

6 of the model is shrunken to 29.4° while the periodic length is changed to 4.412-
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Figure 3.7: A two-dimensional parallelogram model with the periodic symmetry
applied in the X direction. (a) The initial configuration; (b) The equilibrium con-
figuration after applying ¢, = 0; (c¢) The equilibrium configuration after applying
4.0-arbitrary-units external tension; (d) The equilibrium configuration after applying
-4.0-arbitrary-units external compression.
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arbitrary-units. The angle 6 in the latter two cases both converges to approximate
30°, which means that the new method allowing for applying the external traction
does not prevent the model from relaxing to the configuration with lower potential
energy compared to the traditional method. However, just like other boundary con-
ditions, the new method causes the relaxation to be in the restrictive way, i.e. the
relaxation must be compatible to boundary conditions.

Compared with the traditional method, the new method overcomes the over-
restrictive constraint within the repeating cell boundaries and in the meantime keeps
the periodicity of the model so that it supplies a flexible treatment for the periodic
symmetry and is suitable for broad cases in atomistic simulations especially when
the external traction is applied. The new method could be used fully in place of the
traditional method when ¢ = 0. However, the traditional method, with advantages of
being straightforward and easily implemented, could still be the choice for cases that
the change of atomic structures is dominated by internal forces. The new method
needs computational efforts to search for the pairs of boundary atoms, but this could
be offset by the need to calculate fewer pairs of internal forces for the boundary atoms.
Therefore, the computational burden of the new method is about the same level as

the traditional method in the simulation.

3.2 Force evaluation

In the previous work [41], the motion of atoms is mainly driven by internal forces
from internal defects and the traditional periodic symmetry. When the new method
of the periodic symmetry is implemented to a real dislocation model such as the
face-centered-cubic (f.c.c.) lattice, the external traction is actually applied on bound-

ary atoms with a ’zig-zag’ boundary shape. When the equilibrium state is reached,
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the forces acting along one coordinate direction «, e.g. dislocation line, should be
balanced such that

FEAMo | prara |y (3.13)

wnt wnt

where X is the net external traction. According to Equation(2.31), here:

D=

Foithe = —% [Z ¢(ru)} > Q%%ﬁ (3.14)

7

and

air,o 1 8V(Tﬁ )
Fo " =52 "3, (3.15)
J

Since the dislocation is a two-dimensional defect, the lattice is always perfect along
the third dimension, i.e. dislocation line. Therefore, as shown in Figure[3.8(a)], if
the periodic length is kept constant, there is no relative displacement within rows,
such as j — j' or 7 — ¢’ but the displacement between rows is allowed. If the external
traction is applied, the spacing between atoms in one row is equally increased or
decreased. However, in the current perfect configuration as the periodic length is
fixed, for example, boundary atom i interacts with more neighboring atoms than its
image i’ so that the value of coefficient [3~ ¢(r;,)]~/? in Equation(3.14) is not identical
for the pair of boundary atoms. This in zcurn generates the problem that the resultant
internal forces in the perfect lattice, which could be calculated by assembling internal
forces from the atom and its image, are not equal to zero so that the ideal perfect
f.c.c configuration is not maintained. As a result due to the large error, the relaxation
of a dislocation would not equilibrate at correct positions under above assumptions.
In order to make [ ¢(r,;)]"/2 a common coefficient in the force calculation, the
traditional method z)f applying the periodic symmetry is used to determine ¢(r,;)

in EAM part. The remaining terms in Equations(3.14) and (3.15) follow the new
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approach of the periodic symmetry.

Based on Equation(3.12), the new method of the periodic symmetry exchanges
the internal forces of the pair of boundary atoms to determine the external traction,
which is in place of the interaction between the primitive cell and image cells. As
shown in Figures[3.8(a)] and [3.8(b)], for a boundary atom i in the perfect f.c.c. lat-
tice, there should be six neighboring atoms around it, one of which is an image atom.
When atoms ¢ and ¢ exchange their internal forces, atom ¢’ brings three interactions
to atom ¢, however, two of which are already counted by atom 4 such as links between
i and j, and its image i’ and j'. Double calculation of the interaction between two
boundary atoms causes incorrect determination of the external traction. The current
solution is to record the information of the interaction between boundary atoms. If
one link has been generated, the corresponding image link would be excluded.

When the new periodic symmetry is applied to the dislocation model along the
dislocation line and slip directions, it is more challenging to collect correct internal
forces of boundary atoms. As shown in Figure[3.9(a)], atoms A, B, C and D are the
boundary atoms at the corner of the model in the XZ plane. According to atom A,
atom B is its image atom in the Z direction and atom C is its image atom in the X
direction as well. When the periodic symmetry is applied in the X or Z direction, atom
D has no relationship with atom A. However, if the periodic symmetry is applied in
the X7 plane, atom D becomes one of atom A’s images. In the case that the periodic
length is not allowed to change, i.e. ¢ = 0 in both X and Z directions, the forces
applied to atom A and all of its images B, C and D should be identical so that the
motion of these atoms are the same providing that the mass of atom is unique.

The general external traction in the 2D plane, such as XZ plane shown in
Figure[3.9(a)], is normally decomposed into two components along X and Z directions

so that corresponding internal forces should have two components. In any direction,
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Figure 3.8: The scheme of the perfect configuration in one direction in the face-
centered-cubic lattice. (a) The full geometry; (b) The detail of one boundary atom
(white cycle is an image atom).
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Figure 3.9: The scheme of atoms at the corner of the XZ plane (a) in the perfect
lattice; (b) in the lattice with a screw dislocation.
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the new method of the periodic symmetry is implemented by Equation(3.12).

In order to apply the external traction on boundary atoms in the model, the
initial periodic length is used to search for the pairs of boundary atoms, which is under
the assumption that the periodic length is equal to the direct distance between one
boundary atom and its corresponding image (the pair). The periodic length along the
direction of the dislocation line is not changed after a dislocation is introduced into
the model so that the search algorithm of the pairs of boundary atoms is successful
in simple cases that the periodic symmetry is applied along the dislocation line.
However, such assumption is not valid in the direction other than the dislocation line.
As shown in Figure[3.9(b)], the known periodic length L; is not equal to the distance
L, between atoms A and C when a screw dislocation is initially generated in the model
(A, B, C and D represent atoms at the corner of any XZ plane). Therefore, the old
search algorithm generates unacceptable errors in finding the incorrect positions of
boundary atoms, which results in errors of internal forces. The current solution is to
build a boundary-atom list from a perfect lattice under the original search algorithm.
Then the external traction is applied to the pairs of boundary atoms based on the
list rather than their present positions. Thus, the lattice creator software used in the
current framework need supply the perfect lattice and the corresponding defective

lattice with the same number of atoms.

3.3 Mass scaling

From the original DR algorithm as stated in Section(2.4), mass is proportional to
the stiffness of an atom. On the one side, due to the highly non-linear nature of
potential energy functions, the stiffness and the corresponding mass changes faster

than general structural problems; On the other side, the stiffness and mass from
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the EAM potential is related to the number of neighboring atoms. For example,
boundary atoms have less mass than inner atoms because of the lack of neighboring
atoms. Though the non-identical mass can be handled under the framework of the
new method of applying the periodic symmetry and the external traction, it may
adversely affect the progress of solutions in certain circumstances.

Therefore, an alternative approach is to use fixed mass value for every atom
in the system during the simulation. The mass for every atom is obtained by
inequality(2.32), and then this value is kept constant throughout the simulation.
Such an idea could be further extended to the unique mass scheme. Considering the
complexity of the dislocation model, the mass is chosen as a possible largest value in

the system and determined as follows:

(i) The new periodic symmetry is usually applied to one or two coordinate direc-
tion(s). In order to make an identical mass in three directions, the value is
obtained based on inequality(2.32) and the traditional periodic symmetry ap-

proach;
(ii) The maximum mass value is chosen in the first cycle as the unique mass;

(iii) The mass of every atom in three directions is set to the unique mass and kept

constant during the simulation.

With the system approaching the equilibrium, the trend of the stiffness and mass is
going down. Therefore, the above unique mass scheme ensures that the responded
natural frequency must be lower than the maximum frequency so that the whole
process of the simulation is stable.

When the unique mass is used, the critical time step is changed by every time

54



PhD Thesis - Li Pan McMaster - Mechanical Engineering

step.
Aty =52 (3.16)
cr T wmaa: .
Here,
K
wmaxzmax( —’),z‘:l,m,n (3.17)
m,

where K; and m, is the stiffness and mass in every degree of freedom and ¢ is a
coeflicient to scale back the critical time step to satisty inequality(2.32). Normally,

4 = 0.5 ~ 0.7 is safe enough to stabilize the simulation.

3.4 Convergence criterion

After the external constant traction is applied to boundary atoms, all changes in
the structure of the model are the result of the integration of internal forces and
externally applied traction. According to Equation(3.13), the steady-state solution
for any boundary atom becomes

F = Fep, = \; (3.18)

int,

This is achieved when the simulation is finished.
When atoms find equilibrium positions, the summation of net force vectors
equals zero. Therefore, the convergence criterion is extended to include the external

traction from inequality(2.41):

wnt,i

max (”Fmt,i - /\1“2

”Ft B )‘1”2

) < ftol (3.19)

Generally, when damping is applied to the system, the unbalanced force in the first cy-

cle is the largest one. Therefore, the maximum value |Fn; — A;l|2 in inequality(3.19)
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is normally obtained after the first iterative step. For non-boundary atoms and in
directions without the periodic symmetry, A; is set to zero.

For the general case, in order to balance the efficiency and the accuracy of the
simulation, f;,; is set up as 0.001, which means the simulation would be terminated
when the total net force acting on atoms is below 0.1% of its maximum value. How-
ever, in some cases, if the maximum net force in the system is already very small, the

tolerance threshold could be properly increased.

3.5 Some pre-process and post-process techniques

3.5.1 Verlet list

Due to the existence of the cut-off radius in potential energy functions, every single
atom has its own neighboring atoms to interact with. Such neighboring-atom list
for individual atoms needs to be updated every cycle or several cycles because of
the movements of atoms during the relaxation. The computational time for searching
neighboring atoms is increased, which is proportional to the square of the total number
of atoms in the system N2. The speed is acceptable when the system consists of
several hundreds of atoms. However, the relaxation process becomes very slow when
the model with hundreds of thousand atoms is used, in which above 90% CPU time
is for updating the neighboring-atom list.

During the relaxation, atoms would not move far from their initial positions so
that the Verlet circle or Verlet sphere [19] in a three dimensional model is introduced
to reduce the computational burden. As shown in Figure(3.10), beyond the cut-off
radius 7., a new Verlet radius r, is setup for individual atoms. In the simulation,

the neighboring-atom list is generated based on the Verlet radius in the first iterative
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Figure 3.10: An atom 7 in a two dimensional face-centered-cubic model interacts
with neighboring atoms within the cut-off radius r, while the Verlet list contains all
atoms within the radius r,.
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cycle. Starting from the second cycle, atoms search for their interactions within the
cut-off radius from neighboring-atom list so that the computational time increases
linearly as total number of atoms increases. If the displacement of an atom at any
iterative cycle from its reference position is larger than the difference between the

cut-off radius and the Verlet radius, such as
IX: - xz,refl > lrv - rc, y (320)

the neighboring-atom list need be updated and the reference atomic positions are
changed to the current configuration.

There is no specific criterion to determine the value of the Verlet radius. If
the radius is too small, updating neighboring-atom list becomes frequent so that the
technique is not effective. If the radius is too large, the computational time is wasted
to exclude the atoms between r. and 7, in every cycle. Therefore, according to the
experience, the Verlet radius r, is chosen as 1.5v.. In the most of cases demonstrated
in later chapters, the neighboring-atom list is generated in the first cycle and not

updated any more during the simulation.

3.5.2 Stress of atoms

Unlike nodes in the Finite Element analysis, the stresses of atoms could not be ob-
tained by interpolating the continuum stress field in elements, or by a specific consti-
tutive stress-strain relationship. Currently, as developed by Machova [32], the stress
components of individual atoms are calculated as the local volume stress assuming

that an unstressed atom has the shape of a sphere. Based on the FS type EAM
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potential scheme, i.e. Equations(2.5) and (2.7).

F; ZJ: Qon(i’j)rﬁ(i’j) L 5 %zj:vﬂ(i’j)rﬂ(i’j)

Top(i) = o) (3.21)

where
=Y wi=—va (3.22)
dp;

do
Pa = d_ra (3.23)

av
Va = E (324)

4

w(i) = §7rR3, as R = \/iao in f.c.c lattices. (3.25)

Here aq is the lattice constant, and a and [ are indices representing coordinate
directions x, y and z respectively so that nine-components stress tensor is obtained
by different combinations of a and /3.

Rather than checking the maximum stress value, the interest in the atomistic
simulation of the stress field is focused on the area of tension or compression when
defects are introduced into the model. Therefore, the raw stress data are sorted,
ranked and normalized into ten groups from minimum 1.0 to maximum 10.0. The
rule of distributing stress is shown in Table(3.2). The 3% highest stress from the
top is assigned to number 10.0 while the 3% lowest stress from the bottom is given
value 1.0. The stress values of boundary atoms are expected to be inaccurate due to
boundary conditions. Thus, their original stress components are overwritten to zero
in the ranking process. Such manipulation does not alter the stress distribution in
the dislocation core since boundary atoms are far from the positions of dislocations.

The normalized stress values are then imported into the visualization software
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Rasmol [51]. In the software, red color represents the highest stress group while blue
color is for lowest stress values. For example, for a single edge dislocation model, due
to the existence of an extra half plane in the upper half of the model, there is the
compression in the upper half of the model and the tension correspondingly is in the
lower half of the model along the X direction. The contour of o,,, which is plotted
in Figure[3.11(a)] [24], demonstrates the compression and tension are symmetrical.
As shown in Figure[3.11(b)], the local volume stress and the normalized technique
reproduce the same shape of the contour of o,,, where red color is the highest stress
area (tension) and blue color represents lowest stressed atoms (compression) based on
their values. It is noted that blue color in this case represents negative stress values,

and the green color is for atoms with approximately zero stress (stress free).

3.5.3 Position of defects (dislocations)

It is very difficult to determine the exact positions of the dislocation(s) or other types
of defects during the process of the relaxation. However, locating the positions of
dislocations is crucial to understand the mechanism of the formation or organization
of certain defective configurations. In current simulations, the potential energy is used
to approximately indicate where dislocations are, since the potential energy increases
abruptly where the lattice distorts most.

Unlike the treatment of stress components, the raw potential energy value
for individual atoms need not be normalized in order to obtain the point of the
highest potential energy. To reduce the adverse effect of boundary atoms with fewer
neighboring atoms, the potential energy values of boundary atoms are overwritten to
the lowest value in the system.

The series of potential energy values is introduced into Rasmol [51]. Red and
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Table 3.2: The rule of the normalization of stress values and the corresponding
ranges of the distribution.

Distribution range (from the bottom) | Normalized value
[0%,3%)] 1.0
(3%,13%] 2.0

(13%,23% 3.0
(23%,33% 10
(33%,43% 5.0
(43%,53% 6.0
(53%,77% 7.0
(77%,87% 8.0
(87%,97% 9.0
(97%,100%)] 10.0
y o
:
+ x

Y [11-1]

Z[-121] X[101] ==

Figure 3.11: The contours of stress component o,, around an edge dislocation
introduced into the center of the model. (a) The theoretical analysis [24]; (b) The
normalized local volume stress.
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blue colors represent the highest and lowest values, respectively. Figure(3.12) shows
an example of demonstrating the positions of dislocations by the potential energy.
There is a single edge dislocation in the center of model as shown in Figure[3.12(a))].
The pure edge dislocation is well known to be not stable and it splits into two

Shockley partial dislocations with a distance as the stacking fault, which is shown

in Figure[3.12(b)].

3.5.4 Disregistry

Disregistry is a scheme proposed by Hoagland [25] to calculate the displacement of a
series of pair atoms above and below the slip plane in the dislocation model. By the
analysis of the displacement field, the evolution of the Burgers vector of a dislocation
during the simulation could be obtained quantitatively.

As shown in Figure(3.13), in one dimension, atoms ¢ and 4’ is a pair above and
below the slip plane. When a dislocation is introduced, the displacement u™ of atom

i and u~ of i’ are calculated as
ut = Uli) - Uliog) (3.26)
u = Ui ~ Uliy) (3:27)
Thus, the disregistry A is obtained by
A=yt —u” (3.28)

If the above scheme is expanded to a three-dimensional model, the X component of
A is the edge component of the Burgers vector of a dislocation and the Z component

of A represents the screw component.
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Y [11-1]

Z[-121] X [101]
Y [11-1]

Z[-121] X [101]

(b)

Figure 3.12: The positions of dislocations shown by the contour of the potential
energy around an edge dislocation, in which red and blue colors represent the high-
est and lowest values respectively. (a) The initial configuration; (b) The relaxed
configuration showing two Shockley partial dislocations.
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Figure(3.14) demonstrates the change of the edge component of the Burgers
vector of the models shown in Figure(3.12). For the creation of a dislocation in the
lattice, the corresponding displacement field is introduced to a half plane from the
edge to the center of the model so that the structure of another half is perfect at
the initial state. During the relaxation, the atoms within the boundary are free to
move so the positions of two Shockley partial dislocations are approximately at the
symmetry about the central plane.

The implementation of Disregistry to the slip plane could be extended to any
designated planes in the model. In these cases, the relative displacements of atoms
above and below the designated plane are calculated following Equations(3.26) and
(3.27). Throughout this thesis, the X and Z components of the displacement field
of the dislocation are called edge and screw components, respectively, as used in the

literature of the subject.

3.6 Summary of the framework

The new theoretical energy minimization method based on the Dynamic Relaxation
technique as a solver is developed to calculate the change of atomic structures at zero
temperature. This framework needs to import three-dimensional atomic coordinates
generated by the lattice creator software. Then, the simulation is performed for the
model with internal defects only or the combination of internal defects and the ex-
ternal traction through the new periodic symmetry method. Finally, a series of data,
which include new positions of atoms, the potential energy, the stress components
of atoms and other properties, could be exported to other software for further post-

processing. Table(3.3) summarizes the algorithm and flow of the new framework.
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Figure 3.13: The scheme of Disregistry to calculate the displacement of a pair of
atoms above and below the slip plane [25].

O initial configuration
0 relaxed configuration
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Figure 3.14: The edge components of the Burgers vector about a single edge dislo-
cation, and its corresponding two Shockley partial dislocations after the relaxation.
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Table 3.3: New energy minimization method based on the Dynamic Relaxation
technique (fixed mass scheme).

1. Get coordinates of atoms both from defective and perfect configurations; De-
termine immobile atoms according to the boundary conditions.
II. | Sort the pairs of boundary atoms in one or two directions from the prefect
model.
II1. | (i) Set Verlet Radius r,, update Verlet list for every atom.
(ii) Get internal force F,,,;, = gx—U; from initial defective positions and mass m,
(iii) Scaling mass:
if ¢ = 0, mass of boundary atoms mj = im;
otherwise m, = Mypaz
(iv) Get external traction A, and Fyym, = Fine, + A,
(v) At =05~0.7
IV. | At any cycle n, time ¢,
(l)uf = T;lFsum,i y
s A2 1wt - t—AL/2 At it
(ii)u, = 1HewAt + Teont Wi
(iii)ut+At/2 —oul 4+ ApaTAN? A2 b At o2
T ? (2 ? 1 7 1
(iv)Check if |x! — x, ori| > |1 — ¢, update Verlet list.
Ft ")"L . .
(v)Check error if L < fiol, terminated. Otherwise, go to next
max ([|Funt,e = Al )
step.
(vi)Record current positions of atoms if indicated for intermediate images.
(vii)Obtain F53" and w;
(viii)Obtain FiI20 = FiAt + ),
(ix)At, = wjaz and At,,1 = 0.5 ~ 0.7At,,
(x)estimate w
. t4+At/2 A
Kfz =u,; / (F::t,zt - ant,i)/Atn-l-l
K! = max(K%,0.0)
1/2
Kt
o= | st
(xi) Go to (i) and repeat
V. | Output positions of atoms, stress components of atoms, potential energy of
atoms.
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Chapter 4

Numerical responses of single

dislocation models

The chapter discusses the numerical responses of models containing one dislocation
simulated by the new energy minimization framework. Some results obtained from
dislocation models without applied external traction are compared with experimental
observations and the other theoretical analysis in order to validate the new approach.
Then, the investigation is focused on the responses of models subjected to the external
traction, which includes cases of (i) external traction applied along the direction of the
dislocation line and (ii) external traction applied along the direction of the dislocation

line and the slip direction.

4.1 Validation and benchmark results

4.1.1 Single perfect edge dislocation models

Based on the dislocation theory [26][59], one perfect edge dislocation (b) is not stable

in the f.c.c. crystal and it dissociates into two Shockley partial dislocations (by, bs)
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to lower the total potential energy in the system. For example, the perfect edge

dislocation could dissociate as:
b=b1+b2=>g[101]=%[211]+%[112] (4.1)

According to the Frank’s rule, the energy of the dislocation(s) before and after the

splitting is
apa?

; (4.2)

2
Esingle = O[/Lb2 = au%(]? +0+ 12) =
a*

36

a2

22 12 12
(2*°+1°+ )—i—oz,u36

2
Esplitting = oz,ubf +cv,ub§ =au [12 + (—1)2 + 12] = % (4.3)

where b, by and by are the Burgers vectors of respective dislocations, « is the coefficient,
i and a are the shear modules and the lattice parameter of the material.

Osetsky et al. [40] indicated that the model with a constant periodic length
along the dislocation line and fixed boundary conditions in the other two directions
would give the approximately correct core structure as long as the length along the
slip direction is larger than 100b while the proper potential energy function is used.
Though the model may not be generated so large to obtain the correct solution for
the relaxation of a single perfect edge dislocation, the result from a large size model
could be used as the benchmark. A perfect edge dislocation from the solution of
the anisotropic elastic theory is introduced into the center of the model with 114,950
atoms, whose geometry and the boundary condition in X and Y directions are shown
in Figure(4.1). According to the dislocation theory, excluding the small area around
the position of the perfect edge dislocation (less than 5b), the stress field is continuous

for the rest of the model and could be calculated as:

o b y(32% + %)

S 2n(1 —v) (22 + y2)2 (44)
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Figure 4.1: The geometry of a copper lattice with physical boundary atoms fixed in
X and Y directions. (a) The perfect model; (b) The model containing a perfect edge

dislocation with the dislocation line along the Z direction.
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_ o wh y(@r -9
Uyy - 27‘_(1 _ I/) (.’L'2 + y2)2 (45)

L ub z(e® -y
7= 51— 0) @+ P (49

where z and y are coordinates according to the dislocation (origin). Therefore, the
contour of stress components can be plotted from Equations(4.4), (4.5) and (4.6) [24].
From the atomistic simulation, stress components of atoms are calculated discretely.
However, their profiles should be compatible to the theoretical analysis. Figure(4.2)
compares stress contours from the continuum approach and the atomistic simulation
for a perfect edge dislocation. The contour from the simulation does not perfectly
match the theoretical contour. The pattern of two contours, however, is exactly the
same. This is because the distribution of stress values, which are calculated from the
discrete approach, into groups is difficult to be fully compatible with results from the
theoretical analysis. The definition of the positive direction of the shear stress o, in
the theoretical analysis and the discrete calculation is opposite, so that this pair of
contours is inverse mutually.

Thus, it proves that the lattice creator generates a correct configuration of a
perfect edge dislocation. After the relaxation, all stress components imply that there
are two dislocations in the model as shown in Figure(4.3).

More clear evidence to validate the relaxation is obtained by measuring the
distance between two partial dislocations, i.e. the length of the stacking fault in the
slip direction. From the experimental observation [54], the equilibrium width scatters
from 3.2nm to 4.2nm and the average is 3.8nm. The result from the simulation
approximately stands for 4.0nm as shown in Figure(4.4), which indicates that the
new approach works well.

Another validation procedure compares the results of the new approach to
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Figure 4.2: The comparison of the stress components of a perfect edge dislocation
calculated by the theoretical analysis and the atomistic simulation. (a) 04z; (b)oy,;
(€)Tzy.

[Note: red color represents atoms with the highest stress (positive values) and blue
color represents atoms with the lowest stress (negative values).]
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Y [111]

Z[121] (L— X [101]

Y [11-1]

z[-mll—xlwﬂ TR

Y [11-1]

Z[-121] CL— X[101]

Figure 4.3: The stress components of two Shockley partial dislocations from the
relaxation of a perfect edge dislocation calculated by the atomistic simulation. (a)
Oaz; (D)oyy; (€)oay.

[Note: red color represents atoms with the highest stress (positive values) and blue
color represents atoms with the lowest stress (negative values).]

(c)
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Figure 4.4: The positions of dislocations determined by the highest potential en-
ergy (red color) in the model with a constant periodic length in the direction of the
dislocation line (Z). (a) A perfect edge dislocation; (b) Two Shockley partial disloca-
tions; (c) The experimental observation of the separations of partial dislocations as a
function of dislocation line orientation [54].

**Note: The origin of a dislocation is normally not located on any atom. The atom
with the highest potential energy value is most close to the origin of a dislocation.
Therefore, the distance between dislocations determined from the positions of the
highest potential energy atoms is subjected to some errors.**

75



PhD Thesis - Li Pan McMaster - Mechanical Engineering

results obtained by the existing atomistic simulation method. The available code is
based on the classical Molecular Dynamics (MD) with the time step 107!* second.
The model under consideration is a cylindrical model with 14,901 atoms, in which a
perfect edge dislocation is introduced in the center and the dislocation line is along the
Z direction. The corresponding orientation, geometry and boundary conditions are
illustrated in Figure(4.5). By relaxing the model from both methods, results show
some differences as shown in Figures(4.6) and (4.7). The new DR-based method
captures the upper limit of the separation as determined by the experiment [54],
while the result from MD simulation is around the lower limit.

The following work is to investigate the reason of the discrepancy from two
methods. Figure(4.8) shows the path of the edge component of the Burgers vector
from the initial configuration to the final equilibrium state by the new DR-based
framework. It is found that the path crosses the final configuration calculated from
the MD method, which may imply that the result simulated by the MD method is
regarded as an intermediate stage but not the final equilibrium determined by the
new DR-based method. Thus, from the view of the new DR-based method, the MD
method does not fully relax the structure of a perfect edge dislocation.

Of course, another scenario is possible that the DR-based method misses the
correct equilibrium configuration but converges to the wrong limit. Therefore, the
simulated result from the DR-based method is re-calculated by the MD method. If
the configuration calculated from the DR-based method deviates from the correct
relaxed lattice, the potential energy is higher and the MD method should fix it to
the correct one. After the relaxation, the configuration is not changed as shown
in Figure(4.9), which proves that the relaxed configuration simulated from the DR-
method is an equilibrium state. It is expected that there would be slight difference

between two configurations in Figure(4.9) due to not exactly the same format of the
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Figure 4.5: The cylindrical geometry of a copper lattice with physical boundary
atoms fixed in X and Y directions. (a) The perfect model; (b) The model containing
one perfect edge dislocation with the dislocation line along the Z direction.
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Y [11-1]
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Figure 4.6: The separation of partial dislocations from the relaxation of a perfect
edge dislocation. (a) The result from the DR-based method; (b) The result from the
classical MD method.

(b)
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Figure 4.7: The comparison of the edge components of the Burgers vector in relaxed
configurations simulated by two theoretical methods from an initial model containing
a perfect edge dislocation. The edge component is determined by Disregistry.
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Figure 4.8: The comparison of edge components of the Burgers vector of configura-
tions calculated by the DR-based method in relaxing a perfect edge dislocation, and
the edge components of the Burgers vector in the relaxed configuration calculated by
the classical MD method from an initial model containing a perfect edge dislocation.
The edge component is determined by Disregistry.
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potential energy function and the boundary condition.

Finally, the relaxed configuration from the MD method is put into the DR-
based method for further relaxation. After the calculation, the original relaxed po-
sitions from MD simulation exactly move to the final configuration previously calcu-
lated by the DR-based method, which is illustrated in Figure(4.10). Therefore, the
conclusion could be drawn that both methods could correctly relax a model contain-
ing a perfect edge dislocation. However, the internal threshold of terminating the
simulation in the MD method is assumed to be set too high so that the relaxation is
stopped on the way to the equilibrium. Another possibility is the criterion of choosing
the configuration with the lowest potential energy is not optimized in the current MD
code. Since atoms vibrate around the equilibrium positions after the relaxation in
the MD simulation, the final equilibrium configuration depends on how to stop the
motion of atoms. If the second conjecture happens, the results from two methods
would be close providing that the advanced optimized criterion is available to obtain
a relaxed stationary configuration.

In short, the new DR-based energy minimization framework works well for
the relaxation of a perfect edge dislocation, and the result of the relaxation in the
model with 114,950 atoms is regarded as the benchmark for later simulation cases

considered in this work.

4.1.2 Single perfect screw dislocation models

Unlike the edge dislocation, in which the directions of the Burgers vector and the
dislocation line are perpendicular, the Burgers vector and the dislocation line are
parallel in the screw dislocation. Thus, there is no determined slip plane for a screw

dislocation so that a perfect screw dislocation could dissociate on different {1 1 1}
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Figure 4.9: The comparison of the edge components of the Burgers vector in two
relaxed configurations, i.e. the original simulation result by the DR-based method,
and the new simulation result by the MD method from the original relaxed config-

uration calculated by the DR-based method. The edge component is determined by
Disregistry.
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Figure 4.10: The comparison of the edge components of the Burgers vector in two
relaxed configurations, i.e. the original simulation result by the DR-based method,
and the new simulation result by the DR-based method from the original relaxed con-

figuration calculated by the classical MD method. The edge component is determined
by Disregistry.
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planes. As an example, a perfect screw dislocation dissociates on the horizontal
(1 11) plane or the inclined (1 1 -1) plane depending on the location of its origin,
which is demonstrated in Figure(4.11). However, the dissociation on the horizontal
plane is more convenient for the purpose to investigate the numerical responses of
screw dislocations.

A perfect screw dislocation is generated in the center of the model with
114,000 atoms. The model coordinates and the corresponding geometry are shown
in Figure(4.12). After the relaxation, as shown in Figures[4.13(a)] and [4.13(b)], the
distance between two partial dislocations is around 1.4nm, which is in agreement with
the experimental observation as indicated in Figure[4.13(c)]. Meanwhile, the screw
and edge components of the Burgers vector in the initial and relaxed configurations
are shown in Figure(4.14). By the comparison of the simulation and the experimental
result, the relaxed configuration could be treated as the benchmark result for future

screw dislocation simulations considered in this work.

4.1.3 Damping effect

As discussed in Section(2.4), the damping ratio controls the manner in which the
system approaches the equilibrium. However, in the practical simulations of the re-
laxation of edge or screw dislocations, because the relaxed configuration of a disloca-
tion is determined, the choice of the damping ratio to approach the correct minimum
configuration is important.

For edge dislocation cases, a perfect edge dislocation could dissociate in the
reasonable separation range with a higher damping ratio so that the damping ratio
closer to critical 1.0 could achieve the relaxation more promptly. Lower damping

ratios used in the edge dislocation simulation cause the process of the relaxation
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Z[1-10) X[11

Y11
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Figure 4.11: The dissociation of a perfect screw dislocation on different slip planes.
(a) The horizontal (1 1 1) plane; (b) The inclined (1 1 -1) plane.

83



PhD Thesis - Li Pan McMaster - Mechanical Engineering

Physical boundary
atoms fixed in X and Y
directions

19.41nmg = &

Y11

Zp Oll—‘xh 1-2)

Figure 4.12: The geometry of a copper lattice containing a perfect screw dislocation
with the dislocation line along the 7 direction.
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Figure 4.13: The positions of dislocations determined by the highest potential en-
ergy (red color) in the model with a constant periodic length in the Z direction. (a) A
perfect screw dislocation; (b) Two Shockley partial dislocations; (c) The experimental
observation of the separations of partial dislocations as a function of dislocation line
orientation [54].
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Figure 4.14: The comparison of the screw and edge components of the Burgers
vector in the initial model containing a perfect screw dislocation and the relaxed con-
figuration containing two Shockley partial dislocations. (a) The screw components;
(b) The edge components. (a) and (b) are determined by Disregistry.

88



PhD Thesis - Li Pan McMaster - Mechanical Engineering

to take longer and alter the relaxed configuration to some extent. For example,
as shown in Figure(4.15), the relaxation of the benchmark edge dislocation model
with damping ratio 0.5 needs 650 computational cycles but needs 890 cycles with
damping ratio 0.05. There is 0.5% difference of the total potential energy in two
cases. Considering the numerical noise in the case with a lower damping ratio, the
final potential energy values in these two cases are almost the same. However, the
edge components of the Burgers vector in relaxed configurations in the two cases
show some discrepancy as shown in Figure[4.16(b)]. The reason is that the separation
between partial dislocations increases from half to one interatomic distance in the slip
direction, which could be up to 4.22nm as shown in Figure[4.16(a)]. Therefore, under
almost the same potential energy, from the numerical point of view, the equilibrium
positions are not strictly fixed but are in some narrow range. In order to obtain
reliable simulation results, a higher damping ratio of 0.5 is conservatively chosen for
the benchmark case and future edge dislocation simulations.

For screw dislocation cases, the effect of the damping ratio is similar to edge
dislocation cases. For the benchmark model, as the example, there is 0.8% difference
of the total potential energy with higher damping ratio 0.5 and lower damping ratio
0.05, which is illustrated in Figure(4.17). The length of the stacking fault calculated
from the lower damping ratio is more in agreement with experimental data, which is
around 1.4nm. However, a higher damping ratio makes the separation of partial dis-
locations around 0.8nm. Such differences are also reflected in the analysis of the screw
component of the Burgers vector, which is demonstrated in Figure(4.18). Though the
result calculated from the higher damping ratio may be correct from the numerical
point of view as a local minimum configuration, it could not be supported by avail-
able experimental observations. Therefore, a higher damping ratio is not suitable for

relaxing dislocation models with a screw component. In the benchmark case of the
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Figure 4.15: Potential energy as a function of the simulation time for the relaxation
of a perfect edge dislocation with higher and lower damping ratios (stop at the same

tolerance value).
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Figure 4.16: The relaxation of a perfect edge dislocation with damping ratios 0.5
and 0.05. (a) The separation of partial dislocations with damping ratio 0.05; (b) The
edge components of the Burgers vector determined by Disregistry.
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Figure 4.17: Potential energy as a function of the simulation time for the relaxation
of a perfect screw dislocation with higher and lower damping ratios (stop at the same
tolerance value).
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Figure 4.18: The relaxation of a perfect screw dislocation with damping ratios 0.5
and 0.05. (a) The separation of partial dislocations with damping ratio 0.5; (b) The
screw components of the Burgers vector determined by Disregistry.
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relaxation of a perfect screw dislocation, lower damping ratio 0.05 is used.

In summary, the damping ratio, as a flexible parameter in the new DR-based
energy minimization framework, makes simulations more accurate and efficient. Al-
though the damping ratio for dislocation simulations is settled, there is no general
rule to choose damping ratios in various simulation cases. Normally, this parameter
is chosen on a case-by-case basis and could be optimized from repeated tests for a

specific atomic configuration.

4.2 One dimensional external traction

4.2.1 Unit length in the perfect lattice

Lattice parameter a defines the perfect length of the unit cell in the perfect crystalline
lattice. The lattice parameter a is 0.3615nm for the copper. The atomic model with
the perfect unit length should be in the stress-free state and the length of the unit
cell is retained if no external traction is applied in any direction.

However, in the current simulation by the new periodic symmetry applied in
the Z direction, when the external traction T is set to zero, the unit length deviates
from the lattice parameter a, which is similar to the circumstance that there are
extra external forces applied on every boundary atom in the XY plane but the net
of these forces is equal to zero. This unexpected discrepancy of the unit length will
exaggerate or underestimate the effect of the change of the periodic length from the
real external traction, which causes the difficulty in explaining results for dislocation
models. The reason for this problem arises from the fixed boundary condition applied
to physical boundary atoms in X and Y directions. For example, the worst positions

for boundary atoms are at the corner of the model. Although the force is balanced
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along the Z direction for boundary atoms at the corner, the internal forces without
considering the symmetry for these atoms are quite different to atoms within the
boundary due to the reduced number of neighbors. The difference in the raw internal
force values under the new periodic symmetry as Equation(3.12) exerts extra forces
on the rest of atoms in the model in order to maintain the unique periodic length in
the Z direction during the simulation.

As shown in Figure(4.19), this error can be reduced by increasing the number
of atoms in the model. For example, when the model consists of 256 atoms, the unit
length is 2.66% smaller than the lattice parameter. However, the difference between
the unit length and the lattice parameter is just 0.36% when the number of atoms
increases to 19,600. This is because the percentage of boundary atoms without enough
neighbors in the whole model decreases with the increase in the number of atoms, so
that the amount of extra external forces applied on individual atoms becomes smaller,
which means more atoms within the boundary are subjected to the extra traction.

It has been determined that this error is generated due to the fixed boundary
condition. The solution for the problem is to substitute the periodic symmetry for
the fixed boundary condition in the other two directions during the simulation. The
computational cost for three dimensional periodic symmetry is very high, and it is not
necessary for many cases. Therefore, if the fixed boundary condition is used, a larger

scale simulation model (10° or up) is needed to avoid a large error in the calculation.

4.2.2 One dimensional external traction in the perfect lattice

One dimensional external traction is first applied to the lattice without containing any
defects. The copper model consists of 95,000 atoms and its dimension is 25.56nm x

19.41nm x 1.99nm as shown in Figure(4.20). The model coordinates are X[1 0 1],
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Figure 4.19: The unit length after the relaxation for various number of atoms in
the perfect lattice where physical boundary atoms are fixed in X and Y directions
and the periodic symmetry is applied along the Z direction as T, = 0. (Dash line is
the lattice parameter 0.3615nm for the copper)
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Y[1 1-1] and Z[-1 2 1], and the traction is applied in the XY plane and along the
Z direction. The boundary condition in X and Y directions is obtained by fixing
physical boundary atoms whereas the atoms within the boundary are free to move in
the XY plane. The damping ratio is 0.5 while the tolerance is 0.001 in the simulation.

In the current EAM potential energy function, the unit is electronvolts (eV)
with normalized distances between atoms based on the lattice parameter in Angstrom
units. Therefore, the values of calculated internal forces and applied external trac-
tion are in arbitrary units, which are not units commonly used in engineering. The

coeflicient is calculated to convert the force in arbitrary units to Newtons, that is

1.602 x 107%°
L arbitrary unit x ——-—5—— = 1602 x 107°N. (4.7)

The periodic length along the Z direction in the initial model is 1.770981nm
including five atoms. When zero traction is applied, due to the error stated in
Section(4.2.1), the periodic length after the relaxation shrinks to 1.7689704nm, which
is about 0.1% smaller than the original length. Thus, for later simulations, the new
length is regarded as the reference quantity /o to calculate the strain of the periodic
length with respect to the applied traction and the corresponding normal stress along
the Z direction. Both tensile and compressive forces F, are applied in the range of
5-40 arbitrary units in increments of 5 arbitrary units. The normal stress in the unit

of Pascal (Pa) along the Z direction is calculated as

_ F, x1.602 x 10~°
AXY

G-ZZ

(4.8)

where Axy is the area of the XY plane intersection. The normal strain e,, is obtained
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by the engineering strain approach,

=l

o

(4.9)

ezz

where [ is the new periodic length after the relaxation. The 16 pairs of stresses and
strains are plotted in Figure(4.21), in which these values show strong linear trend.

By the linear curve regression with R = 0.9998, the relationship is obtained by

0 = 1.11 x 10M¢,, — 1.23 x 108. (4.10)

It is known that the slope in Equation(4.10) represents Young’s modulus E according
to Hooke’s Law. The value is quite in agreement with the Young’s modulus of the
copper, 110 — 120G Pa. Therefore, the responses of the perfect lattice subjected to

the external traction reproduced the correct elastic property.

4.2.3 One dimensional external traction in the lattice with a

dislocation

The benchmark model, as shown in Figure(4.1), is chosen for the investigation. The
boundary lines in the XY plane are assumed to be straight and the area is approxi-
mately 5.95 x 10716m?2 so that the corresponding dislocation density in the model is
of the order of 10'm~2, The dislocation line is along the Z direction. The damping
ratio and tolerance are chosen as 0.5 and 0.001, respectively.

Since the lattice in the Z direction is still free of defects, in the ideal condition,
the benchmark model with a constant periodic length (¢ = 0) in the Z direction and
the new model with zero external traction (7' = 0) yield the same relaxation results.

After the simulation, compared to the results of the benchmark model, the model
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Figure 4.20: The geometry of a perfect copper lattice subjected to various external
traction along the Z direction.
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Figure 4.21: The relationship between normal stress o,, and strain ¢,, determined
by a perfect copper lattice subjected to external tension or compression.
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with zero external traction shows similar results. From the relaxation curve of the
potential energy as shown in Figure(4.22), two models minimize their potential energy
following the same trend at the early stage. With different boundary treatments in
the Z direction, two models gradually diverge their minimization path and finally
have 4.6% difference in the rate of change of the total potential energy. From the
edge component of the Burgers vector analyzed by Disregistry shown in Figure(4.23),
the trends of the dissociation of an edge dislocation in two models are almost the
same but there are some differences in a couple of pairs of atoms in the relaxation
region. This means the formation of the dissociation is the same but the distance
between two partial dislocations is changed. Figure(4.24) demonstrates approximate
positions of two partial dislocations distinguished by the highest potential energy in
the system. The distance between two partial dislocations in the model with zero
external traction is approximate half b larger than the benchmark model. The reason
for above discrepancy is that two boundary treatments change the periodic length
in the Z direction. As expected, the periodic length in the model with zero external
traction shrinks 0.09%, which changes the configuration of the model a little bit.
Fortunately, such a change does not alter the pattern of the stress distribution. The
contours of 0., in two models are almost the same as shown in Figure(4.25). Since
an edge dislocation glides on the horizontal {1 1 1} plane, 0., is a stress component
characterizing the behavior of the dissociation of an edge dislocation.

A series of external traction is applied along the direction of the dislocation
line. The forces along the Z direction include 25.0, —25.0, 50.0, —50.0, 100.0 and
—100.0 in arbitrary units, which are equivalent to the normal stresses o, of 67.3M Pa,
—67.3M Pa, 134.6M Pa, —134.6 M Pa, 269.2M Pa and —269.2M Pa applied on the
XY plane. Unlike the perfect lattice, for the model containing a dislocation, the

numerical responses from the external compression do not mirror themselves from
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Figure 4.22: Potential energy as a function of the simulation time for the relaxation
of a perfect edge dislocation under two boundary conditions in the direction of the
dislocation line (Z) (stop at the same tolerance value).
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Figure 4.23: The edge components of the Burgers vector in the relaxation of a per-
fect edge dislocation under two boundary conditions in the direction of the dislocation
line (Z). The edge component is determined by Disregistry.
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Figure 4.24: The positions of dislocations in relaxed configurations from initial
models containing a perfect edge dislocation under two boundary conditions in the
direction of the dislocation line (Z). (a) The benchmark result (¢, = 0); (b) The result
from the model with traction 7, = 0.
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Figure 4.25: Normal stress component o,, in relaxed configurations from initial
models containing a perfect edge dislocation under two boundary conditions in the
direction of the dislocation line (Z). (a) The benchmark result (¢, = 0); (b) The result
from the model with traction 7, = 0.
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the external tension. The applied traction in the Z direction shrinks the lattice in X
and Y directions, which is similar to the concept of the Poisson’s ratio. Thus, the
external compression in the Z direction generates tendency of moving outward in X
and Y directions. Such effect in the X direction would push two partial dislocations
to move far from their original distance of the stacking fault energy. However, the
external tension in the Z direction applies the compression on the dislocations in
the X direction. If two partial dislocations move closer than their original distance,
the path of the relaxation is reversed, which needs high energy and is actually not
favorable.

For tension cases, the strains of the periodic length in the Z direction corre-
sponding to the length under zero traction are 6.0 x 1074, 1.2 x 1073 and 2.4 x 1073
respectively. For compression cases, strains are —5.8 x 10™*, —1.15 x 1073 and
—2.27 x 1073. The slight differences of the strain from the external tension and
compression are expected since the repulsive force and the attractive force derived
from the potential energy are not symmetrical.

The curves of the potential energy minimization are shown in Figures(4.26) and
(4.27) under the groups of the magnitude of the external traction. Figure(4.26) sum-
marizes results from small and intermediate external traction. Due to the existence
of the error explained in Section(4.2.1), the new periodic length in the Z direction
is around the perfect value so that the final values of the potential energy are close
to the reference value (benchmark result). Moreover, the potential energy gradually
increases with the increase of the external traction because more and more extra
energy is introduced into the system. Figure(4.27) shows results from large external
traction. The values of the potential energy in this group have significant change from
the reference value. Although the pattern of minimization curves is almost the same,

the compression generates lower potential energy than the tension because partial
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Figure 4.26: Potential energy as a function of the simulation time for the relaxation
of initial models containing a perfect edge dislocation and subjected to small and
intermediate external traction along the direction of the dislocation line (Z) (stop at
the same tolerance value).
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Figure 4.27: Potential energy as a function of the simulation time for the relaxation
of initial models containing a perfect edge dislocation and subjected to large external
traction along the direction of the dislocation line (Z) (stop at the same tolerance
value).
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dislocations with larger distance compensates some extra energy introduced by the
external compression.

The most powerful evidence of the movement of partial dislocations is demon-
strated by the disregistry of the edge component of the Burgers vector and corre-
sponding approximate positions of partial dislocations. Figure(4.28) compares the
edge components of the Burgers vector from the model with the external traction
of 100.0 in arbitrary units and the benchmark model. It is obvious that there is
almost no change in the calculation of the edge component of the Burgers vector
in these two cases. Thus, the distance of two partial dislocations is maintained at
4.03nm as the reference model. However, the change becomes significant when the
compression of —100.0 in arbitrary units is applied along the Z direction as shown in
Figure(4.29). From the profile of the edge component of the Burgers vector, the curve
from the model with the compression of —100.0 in arbitrary units shows the propor-
tional expansion from the reference curve, which implies the distance between two
partial dislocations visibly increases. Then the contour of the potential energy ap-
proximately indicates the distance becomes 4.54nm compared to the original 4.03nm.
The change of the distance is roughly equivalent to 2b in the slip (X) direction.

The contour pattern of the stress component o,, basically does not change
when the traction is applied along the direction of the dislocation line. The small
difference is due to the obvious shift of the origins of partial dislocations when the
external compression is applied. However, the external traction adjusts the distri-
bution of the stress component o, significantly as shown in Figure(4.30). For the
benchmark model, the profile of the stress ¢,, maintains the symmetrical contour
of tension and compression. When the tension is applied, the area of compression
decreases with the tensile stress gradually dominating the whole system as zero stress

at boundary atoms becomes the lowest value. Contrarily, when the compression is
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Figure 4.28: The comparison of relaxed configurations from initial models contain-
ing a perfect edge dislocation (i) with a constant periodic length in the direction of
the dislocation line (Z) (benchmark), and (ii) subjected to the tension of 100.0 in
arbitrary units along the direction of the dislocation line (Z). (a) The edge compo-
nents of the Burgers vector determined by Disregistry; (b) The distance between two

partial dislocations when the tension of 100.0 in arbitrary units is applied along the
7 direction.
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Figure 4.29: The comparison of relaxed configurations from initial models contain-
ing a perfect edge dislocation (i) with a constant periodic length in the direction of
the dislocation line (Z) (benchmark), and (ii) subjected to the compression of —100.0
in arbitrary units along the direction of the dislocation line (Z). (a) The edge com-
ponents of the Burgers vector determined by Disregistry; (b) The distance between
two partial dislocations when the compression of —100.0 in arbitrary units is applied
along the Z direction.
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Figure 4.30: Normal stress component o,, in relaxed configurations from initial
models containing a perfect edge dislocation under various boundary conditions in
the direction of the dislocation line (Z). (a) The benchmark result; (b) The tension of
100.0 in arbitrary units applied along the Z direction; (c) The compression of —100.0
in arbitrary units applied along the Z direction.
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applied, the area of tension reduces significantly.

For the case of the compression of —100.0 in arbitrary units applied along the Z
direction, two different damping ratios 0.5 and 0.05 are used in the simulation. After
the relaxation, the strains of the periodic length are —2.27 x 10™2 with damping ratio
0.5 and —2.32 x 1073 with damping ratio 0.05. The comparison of the total potential
energy and the edge component of the Burgers vector is shown in Figures(4.31) and
(4.32). There is almost no change in the final values of the potential energy with
two damping ratios. However, the lower damping ratio causes the oscillation of the
relaxation path approaching the equilibrium so that the iteration cycle in the case
using lower damping ratio is about 25% more than the case using the higher damping
ratio. The edge components of the Burgers vector in two cases show the same trend
but there is some discrepancy for a couple of pairs of atoms. According to previous
results, the movement of partial dislocations in the model with damping ratio 0.05 is
more than in the model with damping ratio 0.5 (less than half b). Considering the
numerical noise introduced by a lower damping ratio, in this case, the damping ratio
does not affect results very much.

In short, small external traction along the direction of the dislocation line
does not alter the relaxation of the model containing a perfect edge dislocation.
With large external compression along the direction of the dislocation line, there
are obvious movements of the origins of Shockley partial dislocations, which increases

the separation between two partial dislocations.

4.3 Two dimensional external traction

For dislocation models, two dimensional external traction is normally applied along

the direction of the dislocation line (Z) and the slip direction (X). The fixed boundary
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Figure 4.31: Potential energy as a function of the simulation time for the relaxation
of initial models containing a perfect edge dislocation and subjected to the compres-
sion of —100.0 in arbitrary units along the direction of the dislocation line (Z) with
damping ratios 0.5 and 0.05 (stop at the same tolerance value).
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Figure 4.32: The comparison of the edge components of the Burgers vector in re-
laxed configurations from initial models containing a perfect edge dislocation and
subjected to the compression of —100.0 in arbitrary units along the direction of the
dislocation line (Z) with damping ratios 0.5 and 0.05. The edge component is deter-
mined by Disregistry.
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condition is applied to the physical boundary atoms in the third direction (Y).

4.3.1 Two dimensional external traction in the perfect lattice

The perfect lattice is adopted from the model used for one dimensional external
traction and the dimension is shown in Figure(4.20). The damping ratio is 0.5 and
the tolerance is 0.001. Various boundary treatments as T' = 0 and ¢ = 0 in the new
periodic symmetry are applied in X and Z directions, and the responses of the change
of the periodic length are summarized in Table(4.1).

In cases of 1 and 2, under the approximately same condition as the fixed
periodic length in the X direction, the deviation of the periodic length in the Z
direction from the perfect value is reduced more than half, which supports the previous
statement that applying the periodic symmetry in more than one direction would trim
the error down.

Cases 3 and 4 both reveal that the periodic length in the X direction is
stretched rather than shrunk as it is in the Z direction under zero external trac-
tion. The difference is due to the orientation of a model in X and Z directions, in
which the interatomic distances between atoms are 0.255nm and 0.442nm, respec-
tively. Using the lattice parameter a as 0.3615nm, one can determine that there is
the repulsive force dominated in the X direction while the attractive force in the Z
direction. Moreover, the decrease of the periodic length in the Z direction increases
the periodic length in the X direction and vice verse because of the Poisson’s effect.
Therefore, the error in Case 4 is the largest one among four cases.

By comparing Case 2 and Case 3, it is found that the strain in the X direction
is larger than it in the Z direction. There may be possible two reasons: (i) the total

extra traction introduced by boundary atoms with fewer neighboring atoms along the
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Table 4.1: The strains of the periodic length in X and Z directions

lattice when 7" = 0 or ¢ = 0 is applied.

of a perfect

Case | Boundary | Perfect length (nm) | New length (nm) | Strain
1 X: Fixed X: 25.306291 X: 25.306291 0.0%
Z:T,=0 Z: 1.7709810 Z: 1.7689704 -0.11%
2 X:é, =0 X: 25.306291 X: 25.306291 0.0%
2:T,=0 Z: 1.7709810 Z: 1.7700669 -0.05%
3 X:T,=0 X: 25.306291 X: 25.324844 0.07%
Z:¢,=0 Z: 1.7709810 Z: 1.7709810 0.0%
4 X:T,=0 X: 25.306291 X: 25.343315 0.14%
Z2:T7,=0 Z: 1.7709810 Z: 1.7686161 -0.13%
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X direction is applied on the smaller YZ plane than the XY plane, which implies that
the extra external traction on individual atoms in the YZ plane is larger or (ii) Young’s
modulus in the X direction is weaker than in the Z direction. In order to determine
which reason is dominant, the elastic property along the X direction is investigated
by applying a series of external traction on the YZ plane (3.867 x 107'"m?). The
stress-strain relationship is shown in Figure(4.33) as the new length along the X
direction in Case 3 is used as the reference to calculate the strain. After performing
the line regression analysis with R = 0.997, the Young’s modulus along the X direction
<101 > is estimated as 119.5G Pa, which is a little bit higher than 111G Pa found
along the Z direction < —1 2 1 > but is still compatible with experimental data.
Thus, the smaller area of YZ plane causes the larger strain in the X direction when

zero external traction is applied.

4.3.2 Two dimensional external traction in the lattice with

a dislocation

A perfect screw dislocation model shown in Figure(4.34) is used to examine the nu-
merical responses after the two dimensional external traction is applied. The areas of
XY plane and YZ plane are 1.03 x 10~ m,? and 2.23 x 1071"m?, respectively. The new
periodic symmetry is applied in X and Z directions while physical boundary atoms
are fixed in the Y direction. The dislocation line is along the Z direction and the dis-
sociation occurs in the X direction. The damping ratio is chosen as 0.05, and for this
lower damping ratio, a limit to the maximum number of computational cycle is intro-
duced into the simulation to avoid unnecessary long-time small oscillation around the
equilibrium. After the maximum computational cycle is reached, the corresponding

tolerance is less than 0.005, which is good enough to be regarded as the equilibrium

116



PhD Thesis - Li Pan McMaster - Mechanical Engineering

oxx=1 .195e1 15“-7.287
2.0x10° -

1.5x10° -

1.0x10°

5.0x10°

ﬁ
0.0 4

-5.0x10°

-1.0x10° 4

Normal stress o, (pa)

1.5x10° -
a

-2.0x10° —
0015 -0.010

T T T 1 " 1 1
-0.005 0000 0005 0010 0015 0.020

Engineering normal strain ¢

Figure 4.33: The relationship between normal stress o,, and strain ¢, determined
by a perfect copper lattice subjected to various external tension or compression.
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state in the simulation.

As shown in Figure(4.35), when (i) é; = 0 and &, = 0, (ii) 7, = 0 and é, = 0,
(i) é¢, = 0 and T, = 0, and (iv) T, = 0 and T, = 0, are applied respectively, all
distances between two partial dislocations after the relaxation maintain 1.4nm as the
benchmark. In the current configuration, the interatomic distance between adjacent
atoms in the X direction is almost equal to the cut-off radius in the calculation of
the potential energy and corresponding internal forces. Thus, the boundary atoms
directly subjected to the external traction show some irregular motion when they
are dragged out the cut-off distance from atoms in the inner lattice. However, these
boundary atoms are not important to interpret the relaxed configuration in the area
of the dislocation core.

At the first stage, the external traction is applied in the slip direction while the
periodic symmetry with ¢ = 0 is implemented along the direction of the dislocation
line. Three tensile traction of 1.5, 3.0 and 6.0 in arbitrary units, are applied along the
X direction, which are equivalent to the normal stress (0,;) 108 M Pa, 216 M Pa and
432M Pa applied on the YZ plane. The normal strains (e, ), according to the length
in the zero external traction along the X direction, are 1.0 x 1073, 2.0 x 10~2 and
4.1 x 1073 respectively. However, all the external tension does not change the relaxed
configuration. As shown in Figure[4.36(a)|, the screw components of the Burgers
vector of two partial dislocations after the relaxation remain the same as from the
zero tension despite the increase of the tensile force. The edge components of the
Burgers vector of two partial dislocations are illustrated in Figure[4.36(b)], and are in
the same trend from all cases. The small discrepancy between three cases is expected
since the error of calculating A, based on Equation(3.28) increases when the tension
increases.

Similarly, external compressive forces are applied along the X direction in
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Figure 4.34: The geometry of a copper lattice containing a perfect screw dislocation
subjected to the external traction along X and Z directions.
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Figure 4.35: The comparison of the screw components of the Burgers vector in
relaxed configurations from initial models containing a perfect screw dislocation under
(i) é, = 0 (benchmark result), (ii) é, = ¢, =0, (iii) T, =0 and ¢, = 0, (iv) é, =0
and T, = 0, and (v) T, = T, = 0. The screw component is determined by Disregistry.
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Figure 4.36: The comparison of relaxed configurations from initial models contain-
ing a perfect screw dislocation and subjected to various external tension along the
slip (X) direction. (a) The screw components of the Burgers vector; (b) The edge
components of the Burgers vector. (a) and (b) are determined by Disregistry.
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the amount of —1.5; —3.0 and —6.0 in arbitrary units. The normal strains (),
according to the length in the zero external traction, are —0.97 x 1074, —1.9 x 1073
and —3.7 x 1073 respectively. The group of screw components and edge components
of the Burgers vector in relaxed configurations are shown in Figure(4.37). Still, there
are no obvious changes in all results compared to the case of zero external traction in
the X direction. In short, for a perfect screw dislocation model, the external traction
along the slip direction could not move two partial dislocations after the relaxation.
However, the interatomic distance along the slip direction proportionally increases or
decreases upon the external tension or compression.

In the second stage, the external traction is applied along the direction of
the dislocation line while the periodic symmetry with ¢ = 0 is implemented in the
slip direction. In order to apply approximately the same stress on the XY plane as
previous YZ plane, three external tension 70.0, 140.0, 280.0 in arbitrary units are
used, which correspond to 110M Pa, 219M Pa and 439M Pa on the XY plane. The
normal strains ¢,,, according to the new length in the zero external traction, are
1.0 x 1073, 2.1 x 1073 and 4.2 x 1073, respectively. After the relaxation, two partial
dislocations move closer in the slip direction with the increase of tensile stress in the
Z direction, which is demonstrated in Figure(4.38). As discussed before, there are
two relaxed configurations with minimum potential energy for the model containing
a perfect screw dislocation calculated by higher or lower damping ratios. From the
numerical point of view, the equilibrium distance between two partial dislocations
is not stiff but in a limited range, so that it is possible that they could move closer
during the relaxation. The range in the current calculation is between b/2 and b in
the slip direction.

Contrarily, the same amount of external compression applied along the Z direc-

tion makes no change for the relaxation as shown in Figure(4.39), in which the screw
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Figure 4.37: The comparison of relaxed configurations from initial models contain-
ing a perfect screw dislocation and subjected to various external compression along
the slip direction (X). (a) The screw components of the Burgers vector; (b) The edge
components of the Burgers vector. (a) and (b) are determined by Disregistry.
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Figure 4.38: The comparison of relaxed configurations from initial models contain-
ing a perfect screw dislocation and subjected to various external tension along the
direction of the dislocation line (Z). (a) The screw components of the Burgers vec-
tor determined by Disregistry; (b) The distance of two partial dislocations when the
external tension of 280.0 in arbitrary units is applied.
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and edge components of the Burgers vector remain the same despite the compression
increases. The possible explanation could be that the distance of the stacking fault
with a lower damping ratio is approaching its limit. With more distance between two
partial dislocations, the basic configuration of the stacking fault would be broken,
which is not energetic favorable. The corresponding normal strains €., in cases are
—9.9x 107%, —2.0 x 1072 and —3.8 x 1073, respectively.

As expected, when medium external traction is applied along the slip direc-
tion and the direction of the dislocation line, as shown in Figure(4.40), only the
external tension in the direction of the dislocation line (Z) could change the relaxed

configuration.

4.3.3 Discussion of the boundary treatment of an edge dis-
location model subjected to two dimensional external
traction

For a lattice model containing a perfect edge dislocation, although there is the same
number of atoms in the defective and perfect models generated by a lattice creator
code, the periodic length other than the direction of the dislocation line varies, e.g.
the slip direction (X), due to the displacement field introduced by the dislocation.
Different periodic lengths in one direction make it difficult to implement the new
periodic symmetry. However, the new periodic symmetry should work in the slip di-
rection theoretically. As shown in Figure(4.41), there are two image cells (dashed line)
surrounding the primitive simulation cell (solid line) in the slip (X) direction. Thus,
the shape of boundary layers A and A’ (dash-dot line) should be the same because
the effect on these layers from dislocations is identical. Due to the limitation of the

lattice creator software, the model with dislocations is generated without considering
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Figure 4.39: The comparison of relaxed configurations from initial models contain-
ing a perfect screw dislocation and subjected to various external compression along
the direction of the dislocation line (Z). (a) The screw components of the Burgers
vector; (b) The edge components of the Burgers vector. (a) and (b) are determined
by Disregistry.
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Figure 4.40: The comparison of the screw components of the Burgers vector in
relaxed configurations from initial models containing a perfect screw dislocation and
subjected to various external traction along the slip direction (X) and the direction
of the dislocation line (Z). The screw component is determined by Disregistry.

126



PhD Thesis - Li Pan McMaster - Mechanical Engineering

Figure 4.41: The schematic shapes of boundary layers A and A’ of the perfect edge
dislocation cell under the periodic symmetry in the X direction.
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any periodic symmetry in any direction. In fact, any kind of the periodic symmetry
applied to a single simulation cell somewhat destroys the displacement field on the
boundary layer and the primitive cell is strained. Thus, the fixed boundary condition,
which initially satisfies the displacement field, are widely used as long as the length in
the slip direction is long enough. However, external normal or shear stresses are diffi-
cult to apply under the fixed boundary condition. In order to deploy two-dimensional
periodic symmetry, there should be the pre-treatment of the boundary in the model.

Osetsky et al. [40] followed the idea by Daw et al. [11] to strain an edge
dislocation model so that the periodic length in the slip direction is unique. Their
dislocation models are generated by inserting an extra half plane of atoms into the
center of the model, which is shown in Figure[4.42(a)]. Then the strained crystal is
restored into a rectangular shape according to the value in the perfect lattice L as
shown in Figure[4.42(b)]. The difference between the actual length in a row, such
as L + b/2, and the perfect value L, is equally distributed to atoms on that row.
If the number of atoms in one row is large enough, e.g. 200, the movement or the
corresponding applied strain of individual atoms is small enough to be neglected.
They indicated the approach is successful especially when the external shear stress is
applied. However, the method is not suitable for dislocation models throughout this
thesis. Current dislocation models are built up by squeezing interatomic distances
between atoms in the upper or lower half of the crystal. Osetsky’s treatment actually
reverses the process of the generation of an edge dislocation in the current approach
of the lattice creation. Therefore, the relaxation yields the perfect lattice rather than
the dissociation.

Another possible treatment is to shift boundary atoms (one half at each side)
to maintain the periodic length according to the length in the perfect lattice as shown

in Figure(4.43) [43]. Moving pairs of atoms from their initial positions is equivalent to
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L+b/2

Figure 4.42: An edge dislocation in an unstrained crystal (a) and in a strained
crystal after the unbending into a rectangular shape (b) [40].
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applying different stresses on pairs of boundary atoms in the slip direction. Therefore,
the lengths of some rows are stretched under tension while some rows are shrunken
under compression. The periodic length could be chosen as its perfect value without
any defects. The change of the positions of boundary atoms could result in the stress
increase for atomic layers adjacent to the boundary, and the stress is assumed to be
relaxed during the simulation due to no kinematic restriction in the slip direction.
Although this treatment does not change any configuration in the area of the dis-
location core, the relaxation of the extra stress would affect the dissociation of the
perfect edge dislocation. Furthermore, it is difficult to distinguish this effect from the
extra stress introduced by the boundary treatment or the applied stress. Thus, only
for the quantitative study, this treatment could be used for a large model providing
that the effect from the extra stress is small.

The above two treatments are feasible only for the model containing one perfect
edge dislocation. Otherwise, excessive correction of atomic positions causes instabil-
ity in the simulation. Therefore, at the current stage, the developed new periodic
symmetry method could be applied along the direction of the dislocation line and
the slip direction in all screw dislocation models and in models containing edge dis-
location dipoles. The eventual solution for implementing the new periodic symmetry
method to any type of dislocation models is to further develop the lattice creation
framework based on the view of the periodic symmetry of the lattice, which is in line

with the basic assumption of the atomistic simulation.
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Figure 4.43: An edge dislocation in an unstrained crystal (a) and in a strained
crystal after the boundary is treated to adapted to the new periodic symmetry (b).
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Chapter 5

Interactions between two

dislocations

The chapter discusses interactions between two dislocations simulated by the new en-
ergy minimization framework. The cases of two dislocations include a pair of edge dis-
locations, screw dislocations and 60-degree dislocations. Two dislocations are placed
on the same slip plane, parallel slip planes and on inclined slip planes. The possible
interactions between two opposite dislocations include annihilation, the formation of
faulted dipoles and the formation of perfect stable dipoles. The numerical responses
of applying external traction to models containing dislocation dipoles are investigated

as well.

5.1 Two edge dislocations on the same slip plane

Crystal models containing two edge dislocations on the same slip plane are used to
validate the DR-based new energy minimization method. These results can easily

be verified against well established theory of dislocations [26]. The cases include two
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edge dislocations with the same Burgers vector and opposite Burgers vectors gliding

on the same slip plane.

5.1.1 Two edge dislocations with the same Burgers vector

The simulation model is the cubic copper lattice shown in Figure[4.1(a)]. Two perfect
dislocations with the Burgers vector b = (a/2)[1 0 1] are introduced into the model
using the anisotropic elasticity theory. These two dislocation lines are parallel to
each other and are oriented along the Z direction. The boundary conditions for the
simulation are (i) the physical boundary atoms are fixed in X and Y directions; (ii)
the periodic length is constant in the Z direction (¢, = 0). The damping ratio is 0.5
and the tolerance is 0.001.

According to the theory of dislocations, when two parallel perfect dislocations
with the same sign of the Burgers vector b lie on the same slip plane and are very
close to each other, i.e. with the spacing 0.5nm, the effective Burgers vector of such

configuration could be assumed as 2b. The total potential energy is calculated from

the Frank’s rule:
Einitiar = aj1(2b)? = dapb® = 4(1/%[12 + 0% + 1%] = 2aua’ (5.1)

where a is the lattice constant, p is the shear modulus and « is a coefficient which
is identical for the same type of dislocations. Since the lattice is not stable due to
the high-energy state, the pair of dislocations tends to repel each other in order to
reduce the energy, which is depicted in Figure(5.1). When the distance between two

dislocations is large enough, the total potential energy becomes

Bretazea = au(b)? + ap(b)? = apg[1? + 02 + 17 + apg 12 + 02 + 1% = apa?  (5.2)
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Figure 5.1: The schematic configurations of two edge dislocations with the same
Burgers vector gliding on the same slip plane. (a) The initial model; (b) The relaxed
model according to the theory of dislocations.

(b)

134



PhD Thesis - Li Pan McMaster - Mechanical Engineering

Therefore, the movement of dislocations is energetically feasible.

A perfect edge dislocation is not stable in the crystal lattice and would split
into two Shockley partial dislocations to reduce the energy. The splitting and corre-
sponding energy change is given by Equations(4.1) to (4.3). Therefore, in this case,
two perfect edge dislocations dissociate into four partial dislocations in the relaxed
configuration as shown in Figure(5.2). It is found that the separation of partial dis-
locations increases for both perfect edge dislocations compared to the benchmark
result, i.e. 4.03nm. This is because one perfect edge dislocation is subjected to the
repulsive force from the other one. It is expected that such force would change the
relaxed configuration to some extent. However, the increase of the separation is not
symmetrical. The length of the stacking fault in the left pair is larger than the right
pair within one interatomic distance b. It is not clear why the relaxation in two
perfect dislocations is not identical. The possible reason could be that the system
achieves a local energy minimum at this configuration.

The assumption, that two closely positioned dislocations with the same Burg-
ers vector b could be regarded as a larger dislocation with Burgers vector 2b, is
supported by the stress profiles. In Figure(5.3), the stress contours of ¢, oy, and
0y in the initial configuration follow the same pattern as the benchmark (one per-
fect edge dislocation). The stress contours of the relaxed configuration also clearly
illustrate the dissociation of two perfect edge dislocations into four Shockley partial
dislocations. Every pair of partial dislocations is compatible to the benchmark (re-
laxed lattice of a perfect edge dislocation). Figure(5.4) demonstrates the intermediate
process during the relaxation, which reveals that the movement and dissociation of
two perfect edge dislocations occur simultaneously in the beginning, and there is no

obvious sequence of actions during the rest of the simulation time.
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Figure 5.2: The relaxation of two prefect edge dislocations with the same Burgers
vector gliding on the same slip plane. (a) The initial configuration; (b) The relaxed
configuration; (c¢) The analysis of the edge components of the Burgers vector in (a)
and (b) by Disregistry.
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Y [11-1]

z [-m]l—x [101)

Y [11-1]

z[-m]L—ngl

Y [11-1]

z[.121]<L——x [101]

Figure 5.3: The stress components of the initial and relaxed configurations in the
relaxation of two perfect edge dislocations with the same Burgers vector gliding on
the same slip plane. (a) 0., in the initial configuration; (b)o,, in the relaxed configu-
ration; (c)oy, in the initial configuration; (d) oy, in the relaxed configuration; (e)o,
in the initial configuration; (f) o, in the relaxed configuration.

[Note: (1) red color represents atoms with highest stress (positive values) and blue
color represents atoms with the lowest stress (negative values); (2) the scale of stress
values in the initial and relaxed models is not the same.|

(e) ()
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Figure 5.4: The positions of dislocations during the relaxation of two perfect edge
dislocations with the same Burgers vector gliding on the same slip plane. (a) Cycle
No: 50; (b) Cycle No: 100; (c) Cycle No: 300; (d) Cycle No: 600.
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5.1.2 Two edge dislocations with the opposite Burgers vec-

tors

Two dislocations with the opposite Burgers vectors are introduced on the same slip
plane and the dislocation lines are parallel to each other. There are two configurations
in the initial model shown in Figures[5.5(a)| and [5.5(b)]. At first, two dislocations are
set in a limited distance 8nm apart so that the energy in the initial model is the same
as given in Equation(5.2). This pair of dislocations tends to attract each other to
reduce the energy. When these two dislocations move closer and closer, the effective
magnitude of the Burgers vector is zero. In practice it means that such dislocations
annihilate and the model inherits the perfect lattice as shown in Figure[5.5(c)], whose
potential energy is apparently the global minimum, which is in agreement with the
principles of the dislocation theory.

The boundary conditions are initially set to be the same as in the case of two
perfect edge dislocations with the same Burgers vector. After the relaxation, the re-
sults show no difference between two initial configurations. As shown in Figure(5.6),
the energy contour in the relaxed configuration does not show any color gradient,
which implies there is no dislocation existing in the model and the annihilation oc-
curs between this pair of perfect edge dislocations. The analysis of the Burgers vector
shown in Figure(5.7) illustrates the edge component is zero in both relaxed configu-
rations, which is also the evidence that these two dislocations annihilate during the
relaxation.

During the simulation, as expected, the attractive force between these two
dislocations does not prevent these dislocations dissociating into partial dislocations.
From the total potential energy minimization curve shown in Figure[5.8(a)], there are

two steep drops located at regions A and B, which implies that one pair of partial
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Figure 5.5: The schematic configurations of two perfect edge dislocations with the
opposite Burgers vectors gliding on the same slip plane. (a) Initial configuration I;
(b) Initial configuration II; (c) The relaxed dislocation-free model.

(c)
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Figure 5.6: The positions of dislocations in the relaxation of two perfect edge dis-
locations with the opposite Burgers vectors gliding on the same slip plane. (a) The
initial configuration corresponding to Figure[5.5(a)]; (b) The initial configuration cor-
responding to Figure[5.5(b)]; (¢) The relaxed configuration.
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Figure 5.7: The analysis of the edge components of the Burgers vector in the initial
model containing two perfect edge dislocations with the opposite Burgers vectors
gliding on the same slip plane, and in the corresponding relaxed configuration. (a)
Configuration I corresponding to Figure[5.5(a)]; (b) Configuration II corresponding
to Figure[5.5(b)]. The edge component is determined by Disregistry.
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dislocations annihilates followed by another annihilation of partial dislocations. This
is supported by Figures[5.8(b)] and [5.8(c)], which show the configurations of the
model entering the regions A and B.

Under current boundary conditions, though two dislocations could annihilate
in the center of the model, the residual stress o,,, is built up across the boundary in
X and Y directions as shown in Figure(5.9). The reason for this is the propagation of
the stress wave to the fixed boundary walls. The problem could be partially solved
by replacing fixed boundary condition with the periodic symmetry in the slip (X)
direction. Thus, a new set of the boundary condition is to (i) apply the periodic
symmetry to both X and Z directions and (ii) fix physical boundary atoms in the Y
direction.

Figure(5.10) compares the stress component o, in relaxed configurations un-
der two conditions that T, = ¢, = 0 and ¢, = ¢, = 0, in which &, = 0 is equivalent to
the traditional periodic symmetry method applied to the X direction. It is found that
no residual stress accumulates in the X direction and the residual stress only exists
in the Y direction after two boundary conditions are applied. However, the stress
distribution is not similar in these two cases. The lowest stress is not fully relaxed
in the center of the model when é, = 0 is applied. In the case of T, = 0, the stress
is relaxed and becomes flat in the center but the whole model is under the tensile
stress. Such difference of the stress profile 0., in two cases is due to the change of
the periodic length in the X direction. When T, = ¢, = 0, there is the trend of
the expansion of the periodic length in the X direction because of the error, which is
explained in Section(4.2.1). The periodic length in the X direction is correspondingly
changed from 30.674nm to 30.694nm and the normal strain ¢, is around 0.07%,
which is compatible to the case shown in Table(4.1). Thus, such strain causes the

small internal tensile stress in the whole model. However, in the case of ¢, = ¢, = 0,
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Figure 5.8: The relaxation of two perfect edge dislocations with the opposite Burgers
vectors gliding on the same slip plane. (a) The total energy minimization curve; (b)
The intermediate configuration of A region in (a); (¢) The intermediate configuration

of B region in (a).
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Figure 5.9: Stress component o, in the relaxation of two perfect edge dislocations
with the opposite Burgers vectors gliding on the same slip plane. (a) The initial
configuration; (b) The relaxed configuration with the fixed boundary condition for
physical boundary atoms in X and Y directions, and the periodic symmetry with
¢, = 0 along the direction of the dislocation line (Z).

[Note: The scale of stress values in the initial and relaxed models is not the same.]
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Figure 5.10: Stress component o,, in relaxed configurations from initial models
containing two perfect edge dislocations with the opposite Burgers vectors gliding
on the same slip plane under two boundary conditions in the slip direction (X). (a)
Constant periodic length ¢, = é, = 0; (b) Zero traction T, = ¢, = 0.

(b)
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in order to maintain the periodic length in the X direction, the compression need to be
applied along the X direction. Thus, some residual compressive stress remains in the
center of the model. The boundary layer in the case of T, = 0 is flexible and atoms
in the boundary are allowed to move so that the model could accommodate more
complicated reactions during the relaxation such as the annihilation of dislocations.

In short, the periodic symmetry provides more flexible boundary treatment
than the simple fixed boundary condition for the cases of interactions between defects.
Moreover, the newly developed periodic symmetry approach is more flexible than
the traditional one. The computational burden of the periodic symmetry, however,
increases from applying it in one coordinate direction of the model to three directions

eventually.

5.1.3 Two-opposite-edge-dislocation model subjected to ex-

ternal traction

The configuration I of two dislocations (Figure[5.5(a)]) is used to examine numerical
responses when the external traction is applied. At first, the normal stress is applied
on the YZ plane along the slip direction (X) while the periodic length in the Z direction
is fixed (¢, = 0). In order to approximate the same level of stress values as the
model subjected to external traction along the Z direction illustrated in Section(4.2),
external forces 1.6, 3.2, 6.4, —1.6, —3.2 and —6.4 in arbitrary units are applied along
the X direction respectively, which is equivalent to 66.4M Pa, 132.7M Pa, 265.4M Pa,
—66.4M Pa, —132.7TM Pa and —265.4M Pa of o,, applied on the YZ plane, whose
area is 3.8626 x 1071"m?. For tension cases, according to the reference length as
30.693544nm, the normal strains €, are 5.18 x 107, 1.04 x 1072 and 2.14 x 10~3. For

compression cases, the strains ¢,, become —5.13x107%, =1.03x1072 and —2.08 x 1073,
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The external traction in the slip direction does not prevent the annihilation
of two edge dislocations with the opposite Burgers vectors, since the annihilation is
the only way in the system to reduce the total potential energy. Figure(5.11) shows
the analysis of the edge component of the Burgers vector after the relaxation when
tension or compression is applied in the X direction. As in previous results, the edge
component is zero in both relaxed configurations. Though the external traction in the
X direction does not alter the relaxation process itself, it does change the distribution
of the residual stress after the relaxation. Figure[5.12(a)] illustrates the profile of the
residual stress component o,,, as an example, when the tensile force 6.4 in arbitrary
units is applied. Zero stress at the boundary becomes the lowest value (the stress
values of atoms at boundary layers are overwritten to zero no matter which boundary
conditions are), and the highest stress appears in the adjacent area where the force
is applied, and in the same tensile area as in the case that zero traction is applied as
shown in Figure[5.10(b)]. The original compressive area is relaxed when the tension
is applied. Contrarily, when the compressive force -6.4 in arbitrary units is applied,
the stress values in the system are negative so that the zero stress of atoms at the
boundary layers are the largest values numerically, as shown in Figure[5.12(b)]. The
largest compressive stresses are in the adjacent area from the boundary and original
compressive area in the case of zero traction as shown in Figure[5.10(b)]. The original
tensile area is relaxed when the compression is applied.

In the second step, the external traction is applied on the XY plane along
the direction of the dislocation line (Z) with a constant periodic length in the slip
direction (¢, = 0). The external traction 25.0, 50.0, 100.0, —25.0, —50.0 and —100.0 in
arbitrary units is respectively applied on the area of 5.97828 x 10~16m?, which generate
67.3M Pa, 134.0M Pa, 268.0M Pa, —67.3M Pa, —134.0M Pa and —268.0M Pa of o,

respectively. The tensile strains €,, based on the reference length 1.7701143nm are
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Figure 5.11: The analysis of the edge components of the Burgers vector in initial
models containing two perfect edge dislocations with the opposite Burgers vectors
gliding on the same slip plane and subjected to the external traction as 6.4 and
—6.4 in arbitrary units along the slip direction (X), and in corresponding relaxed
configurations. The edge component is determined by Disregistry.
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Figure 5.12: Stress component o,, in relaxed configurations from initial models
containing two perfect edge dislocations with the opposite Burgers vectors gliding
on the same slip plane under two boundary conditions in the slip direction (X). (a)
T, = 6.4 in arbitrary units and ¢, = 0; (b) T, = —6.4 in arbitrary units and ¢, = 0.
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6.15x 107, 1.24 x 1073 and 2.50 x 10~3. For compression cases, they are —6.02 x 1074,
—1.19x1073 and —2.33%1073. All values are higher than the results when the external
traction is applied only along the X direction. This is because (i) the stress in the
XY plane is slightly higher than it in the YZ plane, and (ii) the crystallographic
orientation in the X and Z direction is different.

The external traction in the Z direction does not prevent the annihilation of
two opposite edge dislocations as well, which is proved by the means of the analysis of
the edge component of the Burgers vector shown in Figure(5.13). When the tension
is applied, the periodic length in the Z direction is stretched so that atoms have a
tendency to move inward to the center in the X direction. The constant periodic
length in the X direction develops the positive traction along the X direction and
the residual stress o, is similar to the profile shown in Figure[5.12(a)]. Contrarily,
when the periodic length in the 7 direction is shortened, the periodic length in the
X direction should be increased. However, the constant periodic length in the X
direction develops the negative traction along the X direction, whose result is similar
to Figure[5.12(b)]. The plots of the residual stress o, of the model subjected to the
external traction along the Z direction are illustrated in Figure(5.14).

At the final stage, the external traction is both applied in the slip (X) and
dislocation line (Z) directions. After the relaxation, the annihilation occurs under
any combination of the external traction, and the traction in the X direction plays
the leading role in the development of final residual stress o,,. For example, the same
model is subjected to 6.4 in arbitrary units traction in the X direction and 100.0 in
arbitrary units traction in the Z direction. The strains €,, and ¢,, are 1.67 x 1073
and 1.28 x 1073, which are 20% and 49% lower than the corresponding values in the
uni-axial case. The decrease of both strains results from the mutual effects of the

tension along both directions. It is obvious that the deformation of the model along
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Figure 5.13: The analysis of the edge components of the Burgers vector in initial
models containing two perfect edge dislocations with the opposite Burgers vectors
gliding on the same slip plane and subjected to the external traction 100.0 and —100.0
in arbitrary units along the direction of dislocation line (Z), and in corresponding
relaxed configurations. The edge component is determined by Disregistry.
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Figure 5.14: Stress component o,, in relaxed configurations from initial models
containing two perfect edge dislocations with the opposite Burgers vectors gliding on
the same slip plane under two boundary conditions in the direction of the dislocation
line (Z). (a) T, = 100.0 in arbitrary units and ¢, = 0; (b) 7, = —100.0 in arbitrary
units and ¢, = 0.
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the X direction is larger than it is in the Z direction when approximately the same
stress is applied. Therefore, the traction applied along the slip direction is crucial in
the relaxation.

In summary, the above examples of the reaction of two dislocations with the
opposite Burgers vectors gliding on the same slip plane, are in agreement with the
theoretical analysis based on the classical dislocation theory. This also indicates
that the new DR-based energy minimization framework can be used in simulating
interactions between dislocations. The uni-axial or bi-axial external traction via the
new periodic symmetry method does not prevent the atomic model from relaxing
to the configuration with a lower potential energy, but it alters the distribution of
the residual stress. In both cases, the traction along the slip direction gives major

contribution in the relaxed configuration.

5.2 Two dislocations on parallel slip planes

Two dislocations with the opposite Burgers vectors gliding on parallel slip planes at-
tract each other to form stable configurations in the crystal structure [26]. Figure(5.15)
depicts the vacancy-type dipolar configuration relaxed from two opposite dislocations
on parallel planes as an example. Two perfect dislocations dissociate into four partial
dislocations. Depending upon the vertical distance between their glide planes h, four
partial dislocations can annihilate, form faulted dipolar structures and alternatively
can form stable dipolar structures. The following summarizes the interactions be-
tween opposite dislocations gliding on parallel slip planes, which includes the pair of

edge dislocations, screw dislocations and 60-degree dislocations.
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Figure 5.15: The schematic configurations of two edge dislocations with the opposite
Burgers vectors gliding on parallel slip planes with the vertical distance 4. (a) The
initial model; (b) The relaxed model according to the theory of dislocations.
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5.2.1 Pair of edge dislocations
5.2.1.1 Vacancy type edge-dislocation dipoles

The annihilation of two opposite edge dislocations could occur within the limited
vertical height between two dislocations as long as the attractive force is larger than
the climbing force. By experimental methods, Essmann et al. [15], Basinski et al.
[4] and Niewczas et al. [37][38] found the critical height of the dipolar annihilation
in the copper is around 1.6nm. The atomistic simulations tend to underestimate this
critical value. From the early work done by Tichy et al. [55] to the latest research
by Aslanides et al. [1] and Vegge et al. [57], the critical height for the annihilation
of edge dislocation dipoles has been determined to be around 0.4nm-0.42nm with
various numerical methods.

In order to compare present results with the results of other authors, the
orientation of the model is changed to X[1-10], Y[1 1 1] and Z[1 1 -2], whose geometry
is similar to the lattice as shown in Figure[4.1(a)]. The boundary conditions used in
the simulation are (i) fixing physical boundary atoms in X and Y directions and (ii)
the periodic symmetry in the Z direction with keeping the periodic length unchanged.
After a series of tests, under the new DR-based energy minimization framework, the
critical height A for the annihilation is 0.41nm, which agrees with the results available
in the literature [1][55][57] obtained with different numerical integration and potential
energy functions.

Figure(5.16) shows the positions of the dislocations in the initial and relaxed
configurations, and the corresponding analysis of the edge component along the mid-
dle (1 1 1) plane between two dislocations by the Disregistry method. Both results
imply that the process of the annihilation is almost finished except the center of

the model, in which voids could not be filled in due to the fixed boundary layers in
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Figure 5.16: The positions of dislocations. (a) The initial configuration of two
perfect edge dislocations with the opposite Burgers vectors gliding on parallel slip
planes with the vertical distance of 0.41nm; (b) The relaxed configuration of (a)
(vacancy type); (c¢) The analysis of the edge components along the middle (1 1 1)
plane between two dislocations in (a), and the edge components along the middle (1 1
1) plane between two pairs of partial dislocations in (b) by the Disregistry approach.
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the X direction. Similar to the case of two opposite edge dislocations on the same
slip plane, there are two major drops in the energy minimization curve as shown in
Figure[5.17(a)], which means the process of the annihilation of these two perfect edge
dislocations involves one pair of partial dislocations followed by another pair as shown
in Figures[5.17(b)] and [5.17(c)].

When the height A is larger than 0.41nm, the dislocations relax to form a
faulted dipole depicted in Figure(5.18). These two perfect edge dislocations dissoci-
ate on their respective slip planes. Since two leading partial dislocations are with the
opposite Burgers vectors, they attract each other until the 'Z’ configuration is gener-
ated, in which a new stacking fault appears between two leading partial dislocations
and the angle between them are acute with respect to the horizontal {1 1 1} plane.
While there is not much experimental evidence for the presence in the structure of
materials of the faulted dipole with the height between 0.42nm to 1.6nm, there is
still the possibility of their existence and the critical height 1.6nm therefore could
be considered as an upper limit of the annihilation of vacancy-type edge dislocation
dipoles.

When the height h is at 0.42nm, the relaxed configuration of dislocations
exhibits dipolar "Z’ configuration as shown in Figure[5.19(a)]. However, the separation
of partial dislocations is much smaller in this case than the value in the normal range
stated in Section(4.1.1). Therefore, the relaxed configuration with the dipolar height
0.42nm could be regarded as a transitional structure from the annihilation to the
faulted dipole. Figure(5.19) demonstrates the analysis of the edge component along
the middle (1 1 1) plane between two pairs of partial dislocations. There is a sudden
change in the center of the curve, which means the new stacking fault is generated
between two leading partial dislocations.

The space between two vertical {1 1 1} planes along the Y direction is around
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Figure 5.17: The relaxation of two perfect edge dislocations with the opposite
Burgers vectors gliding on parallel slip planes with the vertical distance of 0.41nm.
(a) The total energy minimization curve; (b) The intermediate configuration of A
region of (a); (¢) The intermediate configuration of B region of (a).

160



PhD Thesis - Li Pan McMaster - Mechanical Engineering

I TR

h]>Slip plane
Y[ 11] LW >, T'

Z[11-2] X[1-10]

Y[111) "§ TTT¥sFEl T T T

Z[1-2 X[1-10] Slip plane

(b)

Figure 5.18: The schematic configurations of two perfect edge dislocations with
the opposite Burgers vectors gliding on parallel slip planes with the vertical distance
larger than 0.42nm. (a) The initial model; (b) The relaxed model containing the
dislocation dipole in the 'Z’ configuration (vacancy type).
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