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Abstract

In this thesis I present three publications about the use of valence bonds to gain information
about quantum spin systems. Valence bonds are an essential ingredient of low energy states
present in many compounds.

The first part of this thesis is dedicated to two studies of the antiferromagnetic 𝐽1-𝐽2 chain
with 𝑆 = 1/2. We show how automated variational calculations based on valence bond
states can be performed close to the Majumdar-Ghosh point (MG-point). At this point, the
groundstate is a product state of dimers (valence bonds between nearest neighbours). In the
dimerized region surrounding the MG-point, we find such variational computations to be
reliable.

The first publication is about the entanglement properties of an impurity attached to the
chain. We show how to use the variational method to calculate the negativity, an entanglement
measure between the impurity and a distant part of the chain. We find that increasing the
impurity coupling and a minute explicit dimerization, suppress the long-ranged entanglement
present in the system for small impurity coupling at the MG-point.

The second publication is about a transition from commensurate to incommensurate
behaviour and how its characteristics depend on the parity of the length of the chain. The
variational technique is used in a parameter regime inaccessible to DMRG. We find that in
odd chains, unlike in even chains, a very intricate and interesting pattern of level crossings
can be observed.

The publication of the second part is about novel worm algorithms for a popular quantum
Monte Carlo method called valence bond quantum Monte Carlo (VBQMC). The algorithms
are based on the notion of a worm moving through a decision tree. VBQMC is entirely
formulated in terms of valence bonds. In this thesis, I explain how the approach of VBQMC
can be translated to the 𝑆𝑧-basis. The algorithms explained in the publication can be applied
to this 𝑆𝑧-method.
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1. Introduction

Things in nature behave according to many complicated rules. This can make researching
their behaviour very difficult indeed. What makes the work of a physicist possible is that
the physical world has the wonderful property that most of the many degrees of freedom
are not important at all. If you were to try to kick a ball, you would mostly be concerned
with its center of mass, its weight and its radius. The specifics of the positions of the atoms
and their constituents are of no importance at all. For the purpose of kicking a ball, they are
only distractions. There are, of course, many problems that make it necessary to try to know
more about the ball than its macroscopic properties. One could, for example, try to find
out what the ball is made out of, how it burns if lit or where in the ball there are electrons.
It depends on the question at hand, on the problem one wants to solve. If it is possible to
focus on a limited set of variables, one should always do it; one should always use a model.
Fewer variables usually mean less hassle. A good model captures the relevant physics while
making the problem much simpler to solve. One should, however, not overdo it. Modelling
a soccer ball as a massless hard sphere when trying to estimate its trajectory after kicking it
will lead to incorrect results.

In condensed matter physics we are interested in the study of a huge number of atoms. With
knowledge of the constituent atoms, it is not difficult to write down a model that contains all
physics that is relevant at energy scales we usually are interested in. It is a Hamiltonian with
the kinetic energies of the electrons and nuclei together with Coulomb interactions between
all particles that make up the compound.

Macroscopic systems contain on the order of 1024 particles. Full analytic calculations
without any approximations are therefore impossible. Even just trying to keep track of the
wavefunction of all the particles is hopeless. With so many particles, it is also futile to
attempt to tackle such a problem numerically. If we had a very big and very good module of
random-access memory that we wanted to fill with one number per particle and that has a
transfer rate of 1 TB/s (a rate that is outside of current capabilities), we would have to wait
for roughly the age of the universe for it to be filled. Something we cannot do.

We thus have to remove everything that is not essential to the problem. Take a crystal for
example. At low temperatures, the nuclei can be thought of as harmonic oscillators, each
oscillating about a fixed position in a lattice. When one is only interested in the degrees of
freedom of the electrons, it is often found to be worthwhile to ignore the motion of the nuclei
altogether and take them into account with a background potential. One must, however, not
get carried away and think that the motion of the nuclei does not matter for the electrons. It
is the interaction between the motion of the nuclei and the electrons that is responsible for
superconductivity in conventional superconductors.

1



Ph.D. Thesis — Andreas Deschner — McMaster University — Physics and Astronomy

1.1. Magnetic models

If one is considering a crystal in which the electrons are well localized at magnetic ions, it is
often a good idea to only consider the degrees of freedom of the spins in order to capture the
low-energy physics. Then, suitable models can be devised. Rich magnetic structures can be
studied in this way.

How the electrons interact through their spins is highly interesting. The classical dipolar
interaction, which one always has between magnetic dipoles, is not the main cause for the
interactions. The Coulomb interaction is mostly responsible for the strength of the spin
interaction in magnetic compounds, even though it is blind to the spin of particles. Only
through the Pauli principle and the tendency of fermions to avoid each other does the spin
become important for the Coulomb interaction. The strong interactions between spins that
give rise to magnetic phenomena are thusly generated. They are called exchange interactions.

Exchange interactions come in two variants: Coulomb exchange and kinetic exchange.
Coulomb exchange usually favours alignment of spins. It is caused by minimizing the
potential energy of electrons on different sites. An intuitive picture is easily given and
understood. Because of the Pauli principle, electrons have a tendency to stay far apart from
each other if their spins are aligned. The potential energy in this case is thus lower than if
their spins were not aligned.

The alignment of the spins also plays an important role for the kinetic energy. If the spins
of two electrons are not aligned, it is possible for them to be in the same orbital. Thus,
the electrons can roam around the crystal less restrictedly. This leads to a lower kinetic
energy and the energy contribution stemming from this mechanism is fittingly called “kinetic
exchange energy”. It usually favours misalignment of spins. A more rigorous and quantitative
exposition of the these concepts can be found in Auerbach [1994] and many other textbooks.

Because of the inherently quantum mechanical origin of the interactions that lead to
macroscopic magnetism, it is fair to say that the existence of magnetic materials is a distinctly
quantum mechanical phenomenon.

The main model for magnetic insulators is the Heisenberg model. It contains only the
interactions caused by spin degrees of freedom. Spin Hamiltonians are defined on lattices.
At each point in the lattice there is a spin. The most basic Hamiltonian with spin rotational
symmetry for such a model is given by

𝐻 = ∑
𝑖𝑗

𝐽𝑖𝑗 𝐒𝑖 ⋅ 𝐒𝑗 , (1.1)

where the 𝐽𝑖𝑗 stand for the interaction strengths between pairs of spins. The Heisenberg
model is studied in classical and quantum mechanical varieties. In classical models, the 𝐒𝑖
are the components of the spins at lattice sites. In quantum mechanical systems, they are the
spin operators.

Heisenberg models are used to describe phenomena in ferromagnets, in which the spins
have the tendency to align, and in antiferromagnets, where they tend to antialign. It depends

2
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on the sign of the interaction strength 𝐽𝑖𝑗 which case is modelled. If the 𝐽 s are negative, one
is looking at a ferromagnetic interaction. For a Hamiltonian with only such interactions, the
system has a ferromagnetic groundstate with all the spins aligned in one direction. Because
this state is an eigenstate of the Hamiltonian, it is a groundstate for the classical as well as
the quantum mechanical problem.

If the 𝐽 s are positive, one speaks of an antiferromagnetic Hamiltonian. Compared to the
ferromagnetic Hamiltonian, the spectrum is inverted and the behaviour is more difficult to
understand. If it is possible to stagger the spins in the system and thereby satisfy all bonds, i.e.
if there is no frustration, the groundstate of the classical system shows a staggered magnetic
structure. This state, the Néel state, is not an eigenstate of the Hamiltonian. Finding the
groundstate of an antiferromagnet even in the simplest case is thus not easy.

With frustration, classical systems may have many degenerate groundstates. For quantum
systems this means that there are many different possible groundstates, some of which are
very quantum mechanical. The most prominent such groundstate is the spin liquid state, in
which no symmetries of the Hamiltonian are broken. I will say more about such states in the
next section. Frustrated models are much harder to understand. After decades of research
they are still the topic of a very active area. To get a flavour of the breadth of current research,
I recommend having a look at Lacroix et al. [2011].

For real systems, many different terms can appear in a spin Hamiltonian. It might, for
example, happen that not all 𝐽 s are positive or negative and that different interactions compete
because of the sign. This can also introduce frustration. The interactions between the spins
might also not be isotropic or only involve two spins. Interactions with magnetic fields may
also play a role.

The antiferromagnetic Heisenberg model can be derived as a limiting case of the Hubbard
model. The Hubbard model describes electrons that are in localized orbitals close to lattice
sites and can hop from one site to the other (see Hubbard [1963]). The Hamiltonian is given
by

𝐻 = −𝑡 ∑
(𝑖,𝑗),𝜎

[𝑐†
𝑖,𝜎𝑐𝑗,𝜎 + ℎ.𝑐.] + 𝑈 ∑ 𝑛𝑖,↑𝑛𝑖,↓ , (1.2)

where the 𝑐𝑖 are annihilation operators at site 𝑖 and the first sum is over sites in the lattice
as well as the spin directions (as indicated by the 𝜎). The Hamiltonian has two competing
terms. The hopping term causes the electrons to delocalize. Its strength is given by 𝑡. The
on-site repulsion term causes the electrons to stay far away from each other and thus limits
how the electrons can delocalize. Its strength is given by 𝑈 .

The ratio 𝑡/𝑈 determines the characteristics of the model. The smaller 𝑡/𝑈 is, the stronger
is the tendency of any two electrons to be at different sites. At half-filling, where there are as
many electrons as sites, one can freeze the positions of the electrons by making 𝑡/𝑈 smaller
and smaller. This increases the penalty for an uneven distribution of electrons. The hopping
term, however, is still important. By means of perturbation theory, one can see that it lowers
the energy of some states on the basis of their spin arrangement. The lowest order effective

3
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Hamiltonian that is obtained with perturbation theory is the antiferromagnetic Heisenberg
Hamiltonian as introduced above. Terms of higher order include interactions between more
than two spins (see e.g. Takahashi [1977]).

1.2. Different orders

As long as the dimension is big enough, classical systems order at a finite temperature. For
one- or two-dimensional systems, this may not be true according to the theorem due to Mer-
min and Wagner [1966], which states that continuous symmetries cannot spontaneously
be broken in systems with dimension smaller than three. Fluctuations play a much more
important role in low dimensions and can mix states that are related by the symmetry that
would otherwise be broken.

Groundstates of classical systems, however, always show some order. Orders of classical
spin systems are usually very intuitive to understand. In the easiest cases, there may be
ferromagnetic order, where all spins align, or antiferromagnetic order, where all spins
anti-align. An illustration of antiferromagnetic order can be found in figure 1.1 (a). With
competing interactions or interesting lattices, there may also be incommensurate spiral order,
where neighbouring spins are neither parallel nor point into opposite directions, but are
rotated with respect to each other by some fixed pitch angle.

Quantum mechanical systems can have (and often do have) groundstates that are funda-
mentally different. Especially in low dimensions and for spins with small spin quantum
number 𝑆 can such groundstates be observed. This is so for the same reason the theorem of
Mermin and Wagner is true: fluctuations about an ordered classical groundstate are enhanced
under these conditions. In classical systems, fluctuations matter only at finite temperature.
In quantum systems they are also important at zero temperature. In many regards, quantum
systems of dimension 𝐷 can be thought of as classical systems of dimension 𝐷 + 1 at finite
temperature. The role of thermal fluctuations is then played by quantum fluctuations. The
correspondence between classical and quantum spin systems is very useful since it allows
our classical intuition to be used on quantum mechanical systems. Care has to be taken to
not rely on this too much, as there is much more to most quantum mechanical systems.

For the Heisenberg chain this correspondence can for example be exploited in the case
of integer spin (see Haldane [1983]). For Heisenberg chains with half-integer spins this is
not true. The spin spin correlation function of the 𝑆 =1-Heisenberg chain (also called the
Haldane chain) decays exponentially, as one would expect because of the correspondence
and the theorem of Mermin and Wagner. In contrast, the spin spin correlation function of
the 𝑆 =1/2 Heisenberg chain decays algebraically.

The classical Néel-ordered state with opposing spins on neighbouring sites is not an
eigenstate of the antiferromagnetic Heisenberg Hamiltonian. Antiferromagnetic quantum
systems with dimensions bigger than one nevertheless often show Néel-order similar to
classical antiferromagnets such that ⟨𝐒𝑖⟩ ≠ 0 and the rotational symmetry of the Hamiltonian
is spontaneously broken.

4
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Many systems, however, show order which is very different to that of classical systems.
Quantum mechanical systems have a means to minimize their energy that is not available to
classical systems. In the presence of antiferromagnetic interactions, classical systems can
only point their spins in as different directions as possible. The energy expectation value of
such a state would be (with 𝐽 = ℏ = 1)

⟨↑𝑖↓𝑗 |𝐒𝑖 ⋅ 𝐒𝑗|↑𝑖↓𝑗⟩ = −1
4

. (1.3)

Quantum spins can form a valence bond or dimer, given by the state

1
√2

[|↑𝑖↓𝑗⟩ − |↓𝑖↑𝑗⟩] . (1.4)

This configuration is the groundstate for two spins with an antiferromagnetic interaction.
The corresponding energy is −3/4. This is much lower than the energy for the antiparallel
arrangement. There is a trade off to be taken into account: When two spins are in different
dimers, the expectation value for the interaction term between them is zero. Because
they dimerize, the two spins miss out on the opportunity to lower the energy through the
interactions with other spins. The more neighbours a spins has, the less inclined it, thus, will
be to form a dimer. Explicit dimerization (some of the bonds being stronger than others)
aside, dimers or valence bonds therefore mostly play an important role in systems with one
and two dimensions. An interesting feature of dimers is that they are spin singlets, i.e. that
they are symmetric under spin-rotations. The spin rotational symmetry of the Hamiltonian
is thus not broken in a valence bond state.

(a) Néel-order (b) Columnar dimer-order

Figure 1.1.: Illustrations of Néel-order (a) and dimer-order (b) on a square lattice of 12 sites.
Which sites are connected by a dimer is indicated by an ellipse.

Dimerization can come in different shapes and forms. There is for example the valence
bond crystal. The valence bonds are, in such a state, arranged in a repeating pattern. In this
way, the state breaks symmetries of the underlying lattice. An example for such a state is
illustrated in figure 1.1 (b).

With valence bonds as building blocks, one can also form states that do not break any

5
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symmetry of the Hamiltonian. To get such a state, one has to add states with very many
different arrangements of valence bonds (enough to have all states connected by symmetry
operations covered). States with this property have been given the name resonating valence
bond states (RVB). They are (and have been) of incredible interest. They were studied
by Anderson [1973] and the interest in them rekindled when they were proposed to be
important for the understanding of high temperature superconductivity (see Anderson [1987]).
Because they, like a liquid, do not break any symmetries, such states are often called spin
liquids.

Two reasonably realistic two-dimensional Heisenberg Hamiltonians have to date con-
vincingly been shown to allow for such a state; for both this occurred recently. Firstly,
the antiferromagnetic 𝐽1-𝐽2 model on the square lattice, where nearest and next-nearest
neighbours interact antiferromagnetically (see Jiang et al. [2012a]). The other system is the
Kagome lattice with antiferromagnetic nearest neighbour interactions (see Yan et al. [2011]).
This model is of relevance to the physics of a number of compounds (see Balents [2010]).
With herbertsmithite there now also seems to be a material that is very well described by the
Kagome Hamiltonian and, thus, considered to have a spin liquid groundstate (see Han et al.
[2012]).

Some spin liquid groundstates are not entirely unorganized, even though no symmetries
of the Hamiltonian are broken. These groundstates show topological order, as described
by Wen [1989, 2013]. When such spin liquids are put on topologically non-trivial manifolds,
there is a degeneracy. How severe this degeneracy is, depends on the genus of the manifold.
One very unique quality is that this degeneracy cannot be eliminated by a local perturbation.
A prominent example of such a model is the toric code introduced in Kitaev [2003]. The
spin liquid state on the Kagome lattice is also believed to have topological order, as shown
in Depenbrock et al. [2012]. Such states have long-ranged entanglement as was shown
in Kitaev and Preskill [2006] and Levin and Wen [2006]. I will return to this issue in
section 2.2.

1.3. The 𝐽1-𝐽2 chain

In one dimension, one does not have to search for models that show inherently quantum
mechanical order. The opposite is true. Even the simplest antiferromagnetic system with
only nearest neighbour interaction has a spin liquid groundstate and adding next-nearest
neighbour interactions induces dimerization. Two of the publications in this thesis are
focused on exactly this spin model. In this section, I describe its phase diagram in some
detail.

This spin chain is usually referred to as the 𝐽1-𝐽2 chain. It is often also called the zigzag
chain. Sadly, the also descriptive name “railroad trestle lattice” given to it in Anderson
[1973] has somewhat gone out of style. The model was first considered by Majumdar and

6
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J1

J2

Figure 1.2.: A graphical representation of the 𝐽1-𝐽2 chain.

Ghosh [1969a,b]. The Hamiltonian is

𝐻 = 𝐽1 ∑
(𝑖,𝑗)

𝐒𝑖 ⋅ 𝐒𝑗 + 𝐽2 ∑
((𝑖,𝑗))

𝐒𝑖 ⋅ 𝐒𝑗 , (1.5)

where the subscripts (𝑖, 𝑗) and ((𝑖, 𝑗)) denote pairs of nearest and next-nearest neighbours,
respectively. A graphical representation is given in figure 1.2. There are many compounds
that can be modelled with the 𝐽1-𝐽2 chain. A (far from complete list) of such compounds
can be found in Hase et al. [2004].

Depending on the interactions, the system may be frustrated. This makes for an interesting
phase diagram, which is illustrated in figure 1.3. In the following an even number of sites is
assumed (just as shown in figure 1.2).

I will go through the phase diagram in clockwise direction. I start at the point where both
interactions are positive and 𝐽2/𝐽1 = 𝐽𝖼 = 0.241167(5). For 𝐽2/𝐽1 < 𝐽𝖼, the chain is in an
antiferromagnetic phase (see White and Affleck [1996]; Eggert [1996]). It is labelled SAFM

in figure 1.3. The systems is, in this phase, either slightly frustrated or not frustrated at all.
In this phase, in which lies the Heisenberg chain with only nearest-neighbour interactions,
one finds a gapless groundstate with short-ranged antiferromagnetic correlations. The
magnetization at single sites is zero and there is no broken symmetry. This phase is, thus, an
example of a spin liquid phase. The spin spin correlation function shows algebraic decay. In
the lower right quadrant, the system is not frustrated. The phase just described is expected
to be found in the whole lower right quadrant.

In the lower left quadrant, both interactions are negative. The interactions do not compete;
𝐽2 in fact stabilizes the ferromagnetic polarization observed in the ferromagnetic Heisenberg
chain without next-nearest-neighbour interaction. The ferromagnetic region extends into the
upper left quadrant of slight frustration, where 𝐽2 >0. It is labelled with FM in figure 1.2.

At |𝐽2/𝐽1| = 𝐽𝖴𝖣𝖱𝖵𝖡 = 1/4 there is a phase transition. The ferromagnetic groundstates
become degenerate with an interesting, very unique state that is analytically known. It
is a uniformly distributed resonating valence bond state (UDRVBS); a state given by the
superposition of all product states with valence bonds between all pairs of sites (see Hamada
et al. [1988]). For |𝐽2/𝐽1|>1/4 the system has an incommensurate singlet groundstate which
smoothly transforms into the UDRVBS as |𝐽2/𝐽1|↘1/4 (see Tonegawa and Harada [1989]).

The maximum of the static magnetic structure factor starts to shift from 𝑞 =0 at 𝐽𝖴𝖣𝖱𝖵𝖡.
It thus is a Lifshitz point. More information about such points can be found in the sec-
tions 3.1 and 3.2 of this thesis. The groundstate in this phase is believed to be dimerized.
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Figure 1.3.: The phase diagram of the 𝐽1-𝐽2 chain as explained in the main text.

Appreciable values for the dimer-order parameter ⟨𝐒𝑖−1 ⋅ 𝐒𝑖⟩ − ⟨𝐒𝑖 ⋅ 𝐒𝑖+1⟩ could, however,
only be found for |𝐽2/𝐽1| > 0.5 (see Furukawa et al. [2012]). There likely is a very small gap
in this region (see Itoi and Qin [2001]; Furukawa et al. [2012]). As is explained in Furukawa
et al. [2012], one can likely think of the groundstate in this phase along the following lines.
The ferromagnetic nearest neighbour interaction leads to effective degrees of freedom with
𝑆=1 that are located on each second bond. The constituents of the emergent degrees of
freedom then form valence bonds. This is reminiscent of the situation in the Haldane chain
(the 𝑆=1-Heisenberg chain). The phase is therefore called the Haldane dimer phase and
the region is labelled with H-DIMER in figure 1.2. This phase has recently been of interest
because of its relevance to ferroelectric compounds with chains of CuO2 (see Furukawa et al.
[2010]). Examples are PbCuSO4(OH)2 (see Willenberg et al. [2012]; Yasui et al. [2011]),
LiCu2O2 (see Park et al. [2007]) and LiCuVO4 (see Naito et al. [2007]).

When 𝐽1 = 0 and 𝐽2 > 0, the system is composed of two uncoupled antiferromagnetic
Heisenberg chains. Thus, the model is gapless and there is antiferromagnetic short-ranged
order with algebraic decay of the spin spin correlation function.

The 𝐽1-𝐽2 chain is the subject of two papers presented in this thesis. Both studies concern a
parameter range that lies in the upper right quadrant of figure 1.3. The phase is labelled with
S-DIMER. For 𝐽2 > 𝐽𝖼 = 0.241167(5) 𝐽1 the system is dimerized (see White and Affleck
[1996]; Eggert [1996]). The spin spin correlations on alternating bonds have alternating
sign in contrast to the Haldane dimer phase and the dimer-order parameter is about 40
times bigger than the dimer-order parameter in the Haldane dimer phase (see Furukawa
et al. [2012]). There is a gap to the first exited state. The most well known compound
whose low-energy properties can be modelled with the 𝐽1-𝐽2 chain in this phase is probably
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CuGeO3 (see Castilla et al. [1995]).
The point at which 𝐽2 = 𝐽𝖬𝖦 = 0.5𝐽1 is very special. It is called the Majumdar-Ghosh

point (MG-point). Here, the groundstate is explicitly known. It is entirely composed of
dimers, valence bonds between nearest neighbours. Since the arrangement of dimers is fixed
and shows translational symmetry, this state is also called a dimer crystal. Under periodic
boundary conditions this state is doubly degenerate. With open boundary conditions, there
is only one such state. It is not too difficult to see that these states have to be groundstates.

Already in the first publications on the 𝐽1-𝐽2 chain (Majumdar and Ghosh [1969b]), it was
realized that the dimerized states at 𝐽𝖬𝖦 are exacts groundstates for a chain with 10 sites. I
will, here, show that they are groundstates for any length of the chain. This will be done
following the method used in van den Broek [1980]. The strategy of the proof is to first show
that a lower limit for the groundstate energy exists and to then observe that the dimerized
states saturate this limit.

We start by writing the Hamiltonian as a sum of terms that contain only interactions
between 3 sites. Since 𝐽2 = 1

2
𝐽1,

𝐻 = 𝐽1 ∑ 𝐻𝑖 = 1
2

𝐽1

𝑁

∑
𝑖=1

(𝐒𝑖 ⋅ 𝐒𝑖+1 + 𝐒𝑖+1 ⋅ 𝐒𝑖+2 + 𝐒𝑖 ⋅ 𝐒𝑖+2) , (1.6)

where 𝑁 is the number of sites in the chain. As is shown in the appendix A.1, the spectrum
of single 𝐻(𝑖) is given by 3/4 and −3/4. The lowest eigenvalue of a sum of operators cannot
be lower that the sum of the lowest eigenvalues of the single operators. Thus,

𝐸0 ≥ 𝐽1
𝑁
2 (−3

4) . (1.7)

With a little algebra it is easy to see that a state composed of dimers has an energy of

𝐸𝖬𝖦 = 𝐽1
𝑁
2 (−3

4) (1.8)

because every dimer (of which there are 𝑁/2) contributes an energy of −𝐽13/4. The dimerized
states saturate the lower bound; they have to be groundstates.

The lowest lying excitations at the MG-point can be generated by breaking a dimer. The
two unpaired spins can propagate freely (see Shastry and Sutherland [1981]; Sørensen et al.
[1998]) and separate regions that have the dimerization pattern of the groundstate, which is
why they are often called solitons. The gap and the simple structure of the lowest excited
states makes variational calculations close to the MG-point very worthwhile.

At the MG-point, spins are only correlated with their next neighbour. The correlation
length assumes its minimum at this point. It is thus also called a disorder point (see section 3.3
for more information on such points). Another special property of this point is that the
spin spin correlation function starts to show incommensurate behaviour. This behaviour
is present for all 𝐽2 >𝐽𝖬𝖦. Only starting at a different point, the Lifshitz point where 𝐽2 =
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𝐽𝖫 =0.52063(6) 𝐽1 (see Bursill et al. [1995]), does the incommensurate behaviour become
apparent in the static structure factor, the Fourier transform of the spin spin correlation
function. More information about the Lifshitz point can be found in section 3.2.

1.4. Numerical approaches

It is very difficult to gain insight into the properties of spin systems analytically. Only for very
few models is the groundstate known analytically. The 𝐽1-𝐽2 chain at the Majumdar-Ghosh
point (see last section) is an example. Hamiltonians analogous to the Majumdar-Ghosh chain
can readily be constructed (see Klein [1982]). The idea behind this method is to, on each
bond, project onto the state with a high total spin. Then, the low spin state minimizes the
energy. The Hamiltonian of the 𝑆 =1 AKLT-chain, named after (Affleck, Kennedy, Lieb and
Tasaki), falls into this class of Hamiltonians and thus has a known groundstate (see Affleck
et al. [1987]).

One of the few systems that can be solved analytically is the nearest-neighbour Heisenberg
chain. This can be done with the Bethe ansatz, a technique that was developed by Hans
Bethe to solve exactly this problem (see Bethe [1931]). It has since been extended to other
one-dimensional systems but all attempts to extend it to higher dimensions have failed.

Analytical approaches to spin systems almost always rely heavily on approximations and
simplifications that are often hard to justify. It is, thus, not surprising that numerical methods
play a central role in this branch of physics.

The main numerical techniques can be organised in three groups. Exact diagonalization,
less exact diagonalization and quantum Monte Carlo.

For small systems it is possible to calculate whatever one desires just by diagonalizing
the Hamiltonian in some basis. This is only possible for a small number of sites. Even if
one removes redundant parts of the Hilbert space which are connected by operations under
which the Hamiltonian is symmetric, this method can even in the best cases hardly be used
to investigate groundstates for systems with more than about 45 sites (see Sandvik [2010]
for a pedagogical introduction).

A popular way to alleviate this problem is to further restrict the Hilbert space in which the
diagonalization is performed. Calculations that are performed in such a restricted Hilbert
space are called variational. The state that has the smallest energy expectation value in this
subspace is then taken to be the best approximation of the groundstate. How well this works
(and if it works at all) depends heavily on the subspace that is used. Sometimes it is possible
to just guess a good subspace. The papers in part I of this thesis rely on such an educated
guess.

Often this is, however, not possible. Then, one needs to use a more inspired approach.
The density matrix renormalization group (DMRG) relies on such an approach. Since its
introduction in White [1992] this method has enjoyed widespread adoption especially for
systems in one dimension. For a modern introduction to DMRG see Schollwöck [2011].

Systems with two dimensions are treated as one dimensional systems with irregular
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interactions by consecutively labeling the sites in the lattice. That DMRG can be used for
two-dimensional systems is attested to by its impressive use in studies that found spin liquid
states in simple Heisenberg Hamiltonians and were mentioned in section 1.2 (Yan et al.
[2011]; Jiang et al. [2012a]). The Hilbert space that the DMRG diagonalizes in can be
written in terms of matrix product states (see again Schollwöck [2011]). It is now known
that these states have different scaling of the entanglement entropy than the groundstates of
many systems of interest. I will come back to this point in section 2.2. DMRG thus struggles
to find such groundstates. The subspace it chooses is not ideal. Tensor network states allow
for the implementation of variational calculations in terms of states with the correct scaling
of the entanglement entropy (see Cirac and Verstraete [2009]).

Whenever possible, Monte Carlo methods are applied in spin lattice systems. Monte Carlo
methods scale well with the sizes of the systems in question and allow for a robust estimate
of uncertainties. They were first used during the Manhattan project and have developed into
very popular tools to calculate statistical expectation values and many other things. One
aspect all Monte Carlo methods have in common is that they make use of random numbers
to approximately solve a problem.

The basic idea employed in calculations that are typical for condensed matter problems is
easily explained in simple terms. If one wanted to calculate a statistical average

𝑄 = ∑ 𝑝𝑖𝑄𝑖 , (1.9)

but there are too many terms in the sum to actually perform the sum, there is still a way
to approximately calculate it. One can generate an ensemble of the 𝑄𝑖 such that they are
distributed according to the probabilities 𝑝𝑖 and then just average over those 𝑄𝑖. The central
limit theorem tells us that the statistical uncertainty of this result will behave according to

𝜎 ∝ 1
√𝑁

, (1.10)

where 𝑁 is the number of elements one uses to calculate the average. Many problems in
statistical mechanics and quantum mechanics are exactly of the nature of equation 1.9.

Quantum Monte Carlo (QMC) is Monte Carlo of quantum systems. There are many
different ways to employ Monte Carlo in the context of quantum mechanics. Many methods
and algorithms have been proposed. I will restrict myself to the ones I consider the most
important. In condensed matter systems, these mostly come in two variants.

The first variant is based on the partition function at finite 𝑇 . Properties of the groundstates
can be extracted by extrapolating to 𝑇 = 0. The most well known and conceptually most
intuitive method is called worldline Monte Carlo. The partition function is here written as a
path integral via

𝑍 = Tr𝑒−𝛽𝐻 = Tr [𝑒−𝛿𝑡 𝐻]
𝐿 , (1.11)
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where 𝐿 𝛿𝑡 = 𝛽. The error one makes with this approximation can be controlled with 𝛿𝑡.
The lower the temperature is, the bigger 𝐿 has to be chosen and the more expensive is the
computation. Upon introducing many identities, this turns into a path integral with one
compact dimension, the temperature- (or imaginary time-) dimension. Single contributions
to the partition function that are sampled are the worldlines of the system. The temperature
dimension plays the role of time. These worldlines form loops because in the temperature
(time) direction periodic boundary conditions are employed. The worldlines here are anal-
ogous to the 𝑄𝑖 of equation 1.9. For a review of this method and different algorithms see
Kawashima and Harada [2004].

Another very popular method for spin systems that is based on an expansion of the partition
function is the stochastic series expansion (SSE) (see Sandvik and Kurkijärvi [1991] and
for an introduction see Sandvik [2010]). Here, one Taylor expands the Boltzmann factor
and stochastically evaluates a truncated version of the resulting sum. How early one can
truncate depends crucially on the temperature because the expansion is basically a high-𝑇
expansion. The lower the temperature, the more terms in the series have to be kept and the
more computationally expensive do calculations become.

The second variant of Quantum Monte Carlo is focused on 𝑇 = 0. One projects out the
groundstate from a trial state with non-zero overlap with the groundstate by repeatedly acting
on it with an appropriate operator. Popular choices for such a projection operator are the
inverted and shifted Hamiltonian, −𝐻 + 𝐶 , or exp(−𝐻𝜏). The second part of this thesis
is about a projection method using the former operator. In projection QMC, one directly
calculates groundstate properties and no extrapolation to 𝑇 =0 is necessary. The quality of
the results depends on the quality of the projection.

One class of such methods, Greens function Monte Carlo (see Ceperley and Kalos [1986];
Trivedi and Ceperley [1990]), performs the projection by evolving from one state to the next.
One takes a trial state and acts on it with the projection operator. Of the many terms that
are generated one only keeps a finite, manageable number. This is done in a stochastic way.
Terms with high weight are more likely to be kept. By repeating this process one can then
sample the groundstate. A pedagogical introduction can be found in Sorella et al. [2013].

It is also possible to do projective Monte Carlo in a very different way. If one expands
operators such as (−𝐻 + 𝐶)𝑁 , one is left with a sum of many different products of operators.
These strings of operators can be the subject of sampling. This is usually done in a basis given
by states in which all spins are in valence bonds. The method is therefore called “valence
bond quantum Monte Carlo”(VBQMC). VBQMC was introduced in Liang [1990a], laid
dormant for fifteen years, and was then further developed by Anders Sandvik (see Sandvik
[2005]; Sandvik and Evertz [2010]). It is the subject of part II of this thesis and will there
be explained in some detail. In section 4.1.2, I will explain that and how such projection
QMC can also be done in different bases.

The generation of a suitable ensemble to average over is usually the hard part of Monte
Carlo calculations. In very lucky cases it might be possible to avoid this issue and one might
be able to just generate the ensemble from uniformly distributed random numbers via a
direct mapping. An example of a method with this property and the associated algorithm
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can be found in Gies et al. [2003]. If this is not possible (almost always), the generation of
the ensembles is done using a Markov chain. One creates the next element of the ensemble
from the current element such that it occurs with the probability

𝑃 = min [1,
𝑝next

𝑝current ]
, (1.12)

where 𝑝next and 𝑝current are the probabilities with which one wishes to generate the next
and the current state, respectively. If the next state is chosen according to equation 1.12,
the algorithm is said to satisfy detailed balance and it produces a correct ensemble. This
can most easily, most robustly, but sadly in many cases quite inefficiently be achieved by
essentially changing the current element in a random way and then accepting the resulting
element with the probability given in equation 1.12. If the random changes are too drastic,
the acceptance rate is very low. Thus only minor changes can be performed in one step.
This method is called “Metropolis-Hastings method” (see Metropolis et al. [1953]; Hastings
[1970]).

The Metropolis-Hastings method works well in most cases. It is robust and applicable to
many systems and problems. Yet, there are important cases where it is terribly inefficient.
This is easy to see for the ferromagnetic 2D-Ising model close to its second order phase
transition. Typical states of the system, here, contain large ordered domains. In a simulation
one would now take such a state and flip a number of randomly chosen spins. The acceptance
rate depends on the energy difference between the states before and after flipping the spins.
The energy penalty for flipping spins would likely be big because one is likely to try to
flip spins which lie in ordered domains. The probability of accepting moves is really small.
Therefore, such domains are very difficult to revert and break up. In order to generate
independent elements, one has to update very many times. Sampling the configuration space
well takes a very long time if it is done in this way. This phenomenon is called critical
slowing down. The degree of freedom that is changed (the direction of spin at randomly
chosen sites) is not chosen well.

This problem was solved by the introduction of algorithms in which, instead of single
spins, whole clusters of spins are flipped (see Swendsen and Wang [1987]; Wolff [1989]).
By updating big parts of the system at once, updates are much more effectively changing the
state.

In Evertz et al. [1993] an algorithm was developed for quantum mechanical systems
that used the same strategy to alleviate some of the major problems of local updates, such
as critical slowing down and non-ergodicity stemming from the conservation of winding
numbers in the temperature as well as spatial directions. Their algorithm is applicable to
worldline Monte Carlo. Here, just as in the algorithms for classical systems, big parts of the
configurations that are sampled (the worldlines of the system) are chosen and then updated
at once. Such algorithms are also known for other quantum Monte Carlo methods. Loop
algorithms are, for example, known for VBQMC (see Sandvik and Evertz [2010]) and SSE.

There is another class of algorithm that do not suffer from the draw-backs of traditional
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algorithms and can be used for worldline Monte Carlo. They are called worm algorithms
and were first published in Prokof’ev and Svistunov [2001]. The idea here is to effect a large
change in the configuration by doing many local updates of a special kind. One breaks up
the configuration (we may think of closed worldlines) to create an open line instead of a
loop. Then, the ends are moved around according to well chosen probabilities. The ends
move around in configuration space like one might imagine little worms would. Thus the
name worm algorithm. The configuration is only updated where the worm goes. Once the
two ends meet again an update is complete. The local sampling is done in an extended space
that includes configurations that are not present in the partition function. In this way it is
possible to create algorithms that are competitive with non-local cluster updates. In state of
the art quantum Monte Carlo, one usually uses either a cluster or a worm algorithm.

All QMC methods and algorithms have one issue in common. They cannot efficiently be
used for frustrated systems. This is because, for frustrated system, all of them suffer from
the sign problem – a truly hard problem (see Troyer and Wiese [2005]). It is caused by
negative weights in the sum of equation 1.9. A probabilistic interpretation of the equation,
then, becomes problematic and Monte Carlo approaches struggle.

Systems with more than 60,000 spins have been studied with quantum Monte Carlo
methods (see Sandvik and Evertz [2010]). Further development is, however, still needed, as
it may happen that data for very big system sizes is needed to obtain reliable results (as was
e.g. a problem in Meng et al. [2010] and rectified in Sorella et al. [2012]). Often one might
be interested in averages over a large number of simulations. Calculations in disordered
systems, for example, make this necessary. Then, even minute improvements of algorithms
can compound. Researchers will always push their tools as far as they can.

1.5. Outline

The remainder of this thesis is separated into two parts. In part I, two publications about
variational calculations regarding the 𝐽1-𝐽2 chain are presented. Both papers are preceded
by an introduction of the main questions addressed in the paper.

I present a recent publication about novel algorithms for valence bond Monte Carlo in
part II. It also contains an introduction in which the method itself and extensions of it are
explained.

The thesis ends with a short conclusions in which the main findings of the three publications
are summarized and remaining issues which could be the object of future research are
highlighted.
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In this part, two studies of the antiferromagnetic 𝐽1-𝐽2 chain with 𝑆 =1/2 are presented. The
two studies are linked by studying the same system with the same technique.

For both projects we heavily relied on an automated variational approach that we developed
for these studies. In the dimerized phase of the 𝐽1-𝐽2 chain such calculations have been
shown to be very precise. In the past, these calculations could only be done at the MG-point.
We can perform these calculations for any 𝐽2/𝐽1. This made the whole dimerized phase
accessible to the variational approach. How the calculations were done is explained in some
detail in the publications themselves.

Otherwise, the two publications are quite distinct from each other because they are about
very different properties of the 𝐽1-𝐽2 chain. The first publication is about the entanglement
properties of an impurity attached to the chain. The second publication is about a transition
from commensurate to incommensurate behaviour that occurs in the 𝐽1-𝐽2 chain and how
the characteristics of this transition depend on the parity of the length of the chain.
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2. Impurity entanglement in a

dimerized quantum spin chain

Andreas Deschner and Erik S. Sørensen:
Impurity Entanglement in the 𝐽 -𝐽2-𝛿 Quantum Spin Chain;
J. Stat. Mech. (2011) P10023; doi:10.1088/1742-5468/2011/10/P10023;
©IOP Publishing Ltd and SISSA

Calculations: I performed all variational calculations. DMRG calculations were per-
formed by Erik S. Sørensen.

Manuscript: I wrote the bulk of the manuscript and made all figures. The introduction
was written in equal parts by Erik S. Sørensen and me. Furthermore,
Erik S. Sørensen provided (partly substantial) edits, comments and su-
pervision.

The first paper in this thesis is about entanglement. More specifically, it is about how
an impurity site in a dimerized spin chain is entangled with the rest of the chain, how this
should be studied and how a popular measure of entanglement can be calculated within a
variational framework.

2.1. Entanglement

Entanglement is one of the aspects of quantum mechanics that cannot be grasped with
classical intuition. There just is nothing in the classical world that is quite the same. The
canonical example for entangled states are the maximally entangled states of two-level
systems, also called qubits. In a system of two spin ½, these states are given by

|ME1⟩ = 1
√2

[|↑↓⟩ − |↓↑⟩] |ME2⟩ = 1
√2

[|↑↓⟩ + |↓↑⟩]

|ME3⟩ = 1
√2

[|↓↓⟩ + |↑↑⟩] |ME4⟩ = 1
√2

[|↓↓⟩ − |↑↑⟩] . (2.1)
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If one only had access to one of the spins in such a state, a measurement of the z-component
would yield up or down with a probability of one half. After this measurement, the spin
would be in the respective state. The other spin would then also be in a state with fixed
z-component. For this to be the case, they could be arbitrarily far apart; no shielding would
do anything, as long as they are in one of the maximally entangled states in the beginning.
A measurement on one of the spins always measures both. This is why they are called
maximally entangled.

At second glance this might not be too unusual. After all, if somebody had just prepared
two classical spins such that one is pointing up and the other is pointing down and chosen
the first spin to point up with a probability of one half, the situation would indeed look
quite similar to us. The two situations are however fundamentally different. Whereas the
outcome of the measurement of both spins is determined before the measurement in the
classical scenario, this is not the case for the quantum spins. Here, the measurement on the
first spin changes the state of the second spin. A signature of entanglement and something
the classical world has no analogue for.

Two systems, 𝖠 and 𝖡, are entangled if it is not possible to write their state as a single
product state of local basis states, |𝑗⟩𝖠 and |𝑖⟩𝖡, i.e. if their state only be written as

|𝖠𝖡⟩ = ∑
𝑖𝑗

𝑐𝑖𝑗|𝑖⟩𝖠|𝑗⟩𝖡

= ∑
𝑛

̃𝑐𝑛|𝑛⟩𝖠|𝑛⟩𝖡 , (2.2)

as a sum of product states. Note that in the last line I have chosen orthonormal bases for
𝖠 and 𝖡 such that the sum is over one index. This way of expressing a state in the product
space of two Hilbert spaces is known as the Schmidt decomposition. Using the Schmidt
decomposition makes for a simple looking density matrix:

𝜌 = ∑
𝑛,𝑚

̃𝑐𝑛 ̃𝑐𝑚 |𝑛⟩𝖠⟨𝑚|𝖠 ⊗ |𝑛⟩𝖡⟨𝑚|𝖡 . (2.3)

There is a convenient way to quantify the entanglement between two systems that are in a
pure state. Imagine that some quantity has been measured in system 𝖠 but we do not know
the outcome of the measurement. System 𝖡 then is in several states with some probability,
i.e. system 𝖡 is in a mixed state. The initial state of 𝖠 and 𝖡 was more entangled if, after the
measurement of system 𝖠, we know less about which of the possible states system 𝖡 is in,
because then measuring on system 𝖠 changed the state of system 𝖡 more severely.

How little we know about which state system 𝖡 is in is encoded in its von Neumann
entropy, which was first used to calculate the entropy for quantum mechanical systems by
von Neumann [1927]. This entropy is a good measure of the entanglement between the two
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systems. It is given by

𝑆𝖡 = − ⟨ ln 𝜌𝖡⟩
= − tr [𝜌𝖡 ln 𝜌𝖡] . (2.4)

The reduced density matrix for system 𝖡 is given by

𝜌𝖡 = tr𝖠𝜌 = ∑
𝑛

| ̃𝑐𝑛|2 |𝑛⟩𝖡⟨𝑛|𝖡 . (2.5)

This measure of entanglement is called the (von Neumann )entanglement entropy. We know
that tr𝜌 = ∑𝑛 | ̃𝑐𝑛|2 = 1. Thus, tr𝜌2

𝖡 = ∑𝑛 | ̃𝑐𝑛|4 < 1 if there are more than one terms in the
sum in equation 2.2, i.e. if 𝖡 is in a mixed state.

The entanglement entropy is given by 𝑆𝖡 = − ∑𝑛 | ̃𝑐𝑛|2 ln| ̃𝑐𝑛|2. If one calculates this
entropy for system 𝖠, one gets the same result.

It may be instructive to look at a simple example that will be important in the publication
that is the subject of this chapter. For the maximally entangled singlet state of two spins (as
defined in equation 2.1), we find, in the usual product basis, that

𝜌 = |ME1⟩⟨ME1| =
⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

, 𝜌𝖡 = (
1/2 0
0 1/2) (2.6)

and thus 𝑆𝖡 = 2 × 1/2 × ln 2 = ln 2.
There is a whole family of entropies that are also used to quantify bipartite entanglement

of pure states: the Rényi entropies defined by

𝑆𝑟
𝖠(𝜌) = 1

𝑟 − 1
ln [ tr(𝜌𝑟

𝖠)] . (2.7)

For 𝑟 → 1 this is just the von Neumann entropy.

2.2. Entanglement is useful

Aside from being a highly interesting non-classical phenomenon, entanglement is also highly
useful.

Entanglement plays a central role, for example, in the fields of quantum computation and
quantum information. Entanglement’s role is in fact so central that in a textbook on the subject
the authors claim that it is “iron to the classical world’s bronze age” of computation and
information (Nielsen and Chuang [2000]). Quantum computation and quantum information
algorithms and protocols rely on entanglement.

Fairly recently condensed matter physicists have also started to study entanglement in their
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Figure 2.1.: A quantum mechanical system separated into two subsystems.

quest for the understanding of different phases in all kinds of quantum matter (for a review
see Amico et al. [2008]).

One of the most important results of this research is the area law. It states that for
groundstates of generic local Hamiltonians one can expect the entanglement entropy of a
part of the system to depend on its size in a very specific way.

From thermodynamics we know the entropy to be extensive. It is proportional to the
volume of a system. If one considers a subsystem of a bigger system in its groundstate,
one, however, finds that the entanglement entropy of the subsystem does not scale with
the volume as one may have guessed. For gapped systems, it scales with the length of the
boundary surrounding the subsystem. For gapless systems, logarithmic corrections, which
are sometimes universal to a whole class of systems, have to be applied.

It is not difficult to get an intuition for why the boundary might play an important role.
The entanglement entropy is a measure of correlations between the subsystems 𝖠 and 𝖡. In
gapped systems, the correlations decay exponentially (Hastings [2004]). Thus, only close to
the boundary can the two systems be entangled and the entanglement should be proportional
to the size of the volume close to the boundary and thus be proportional to the area of the
boundary.

For gapped 1D-systems, the area law has been proven to be valid (Hastings [2007]), i.e.
it was shown that the entanglement entropy saturates to a finite value as the size of the
subsystem is increased. For gapped systems with local Hamiltonian in higher dimensions it
is generally expected to hold as well. A very interesting case are two-dimensional gapped
systems with topological order. The area law is here given by 𝑆 = 𝛼𝑑 − 𝛾 + … (Kitaev and
Preskill [2006]; Levin and Wen [2006]), where 𝑑 is the linear dimension of the subsystem
(as shown in figure 2.1) and 𝛾 , the topological entanglement entropy, is positive and depends
solely on the type of topological order present. The topological entropy is the same for all
Rényi entropies (see Flammia et al. [2009]). It is not easy to detect topological order since it
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is an inherently non-local feature of the whole wavefunction. The topological entanglement
entropy is therefore a very important tool which can and has been used to detect topological
order (Isakov et al. [2011]; Jiang et al. [2012b]; Depenbrock et al. [2012]).

For generic gapless systems, the entanglement entropy is expected to scale like the length
of the boundary plus logarithmic correction. One dimensional systems, here, also play a
special role and can largely be considered understood.

By the use of conformal field theory, which is believed to describe gapless spin chains
without internal length scale well, it was for example shown that (for periodic boundary
conditions and an infinite system) the entanglement entropy scales like

𝑆 ∼ 𝑐 ln(𝑙/𝑎) , (2.8)

where 𝑎 is a UV-cutoff length scale (for lattice models the lattice spacing) and 𝑙 is the length
of the subregion (Holzhey et al. [1994]; Calabrese and Cardy [2004]).

In higher dimensions the situation is more complex. Logarithmic corrections here also are
necessary for many gapless systems (for a review see Eisert et al. [2010]).

The knowledge of the expected scaling of entanglement in groundstates is very useful if
one should want to calculate a groundstate numerically. It is a hint that tells one where to
search for the groundstate. This is especially important for variational techniques since they
are in essence nothing but exact diagonalizations in a subspace of the whole Hilbert space.
Their quality depends on how close the actual groundstate lies to this subspace. A method
formulated in terms of states with the wrong scaling of the entanglement entropy will have
grave difficulties to give the correct result. It is now understood that this is why DMRG
(density matrix renormalization group) is difficult to apply to critical one-dimensional and to
higher dimensional systems in general; it is a variational method in terms of matrix product
states whose entanglement scaling is appropriate for gapped one-dimensional systems (see
Schollwöck [2011] for a review). Now, tensor network states are used, because they have the
desired scaling of the entanglement entropy. Efficient numerical methods based on them
have been developed and implemented (see e.g. Cirac and Verstraete [2009]).

2.3. Measures of entanglement

To measure the entanglement between two systems which together are in a pure state is
easy, as is described in section 2.1. One just has to calculate the entanglement entropy.
Sadly, but obviously, this is not the only case in which one might want to be able to quantify
entanglement. Just think of simple questions like, “How entangled are the spins on the sites
1 and 15 in a spin lattice?” or, “How entangled are the first 5 to the last 5 spins in a spin
chain?”. A natural way to answer these questions is to first trace out the parts of the system
one is not interested in and then calculate the entanglement between the remaining parts.
After taking the trace, the remaining parts are in a mixed state. Thus, if we knew how to
calculate entanglements for systems in mixed states, we could calculate the entanglement
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between distant parts in a system. Sadly, no unique perfect measure of entanglement for
systems in a mixed state is known. For different purposes there are different measures. In
this section I will only give a very brief description of a few of them. For more information
I refer the reader to Plenio and Virmani [2006].

Let {|𝑎𝑖⟩} and {|𝑏𝑖⟩} be local bases for two systems 𝖠 and 𝖡. A mixed state of 𝖠 and 𝖡 is
not entangled (also called separable) if its density matrix can only be written as

𝜌 = ∑ 𝑝𝑖|𝑎𝑖𝑏𝑖⟩⟨𝑎𝑖𝑏𝑖| , (2.9)

where 𝑝𝑖 > 0. An example would be the state with the density matrix

𝜌sep = 1
2

|↑↓⟩⟨↑↓| + 1
2

|↓↑⟩⟨↓↑| , (2.10)

of a system that is in the states |↑↓⟩ and |↓↑⟩ with equal probability.
One might be tempted to average the entanglements in the two contributing states according

to the weights 𝑝𝑖 to quantify the entanglement in the mixed state. This would not work.
The reason is that density matrices can be separated in many different ways. Take for
example the density matrix generated by mixing two maximally entangled states (as defined
in equation 2.1)

𝜌m = 1
2

|ME1⟩⟨ME1| + 1
2

|ME2⟩⟨ME2| . (2.11)

As calculated above in section 2.1, both parts by themselves have the entanglement entropy
𝑆 = ln 2. So one might also expect the state of equation 2.11 to have this entropy and be
entangled. Writing 𝜌m in terms of the product basis, we see that this result would be very
wrong;

𝜌m = 1
2 [

1
2 (|↑↓⟩ − |↓↑⟩)(⟨↑↓| − ⟨↑↓|)] + 1

2[
1
2 (|↑↓⟩ + |↓↑⟩)(⟨↑↓| + ⟨↑↓|)]

= 1
4 [|↑↓⟩⟨↑↓| − |↑↓⟩⟨↓↑| − |↓↑⟩⟨↑↓| + |↓↑⟩⟨↓↑|]

+ 1
4 [|↑↓⟩⟨↑↓| + |↑↓⟩⟨↓↑| + |↓↑⟩⟨↑↓| + |↓↑⟩⟨↓↑|]

= 1
2 [|↑↓⟩⟨↑↓| + |↓↑⟩⟨↓↑|] , (2.12)

which is equal to the density matrix of the separable state of equation 2.10. Mixing the
two maximally entangled states resulted in state with no entanglement! Just looking at one
possible way of writing the density matrix thus does not work.

There is, however, an entanglement measure in use that is based on the strategy I just
dismissed: the entanglement of formation 𝐸f (introduced in Bennett et al. [1996]). It is
defined as the minimum value of entanglement among all decompositions of the density
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matrix,

𝐸f = min [ ∑ 𝑝𝑖
̃𝑆𝖠(𝜌𝑖)] . (2.13)

The entanglement entropy commonly used for this definition uses log2 instead of ln (which
is usually true in publications in the quantum information community). The minimization is
performed among all possible ways to decompose the density matrix of the system. In most
realistic scenarios this makes 𝐸f not practical. If the two systems under scrutiny are two
qubits (like spins), however, there is a way to calculate 𝐸f (see Wootters [1998]). It turns out
that it can be written in terms of a quantity called “concurrence”, denoted by 𝐶 , via

𝐸f = ℎ
(

1 + √1 − 𝐶2

2 )
, where ℎ(𝑥) = 𝑥 log2(𝑥) − (1 − 𝑥) log2(1 − 𝑥) . (2.14)

Similarly to 𝐸f, the concurrence for a density matrix 𝜌 = ∑ 𝑝𝑖|𝜑𝑖⟩⟨𝜑𝑖| of two qubits is given
by a minimization over all possible decompositions of the density matrix (see e.g. Wootters
[2001]),

𝐶(𝜌) = min[ ∑ 𝑝𝑖|⟨𝜑|𝜎𝑦 ⊗ 𝜎𝑦|𝜑∗⟩|] . (2.15)

This time the minimization is not nearly as detrimental as in the case of 𝐸f. It can be shown
that knowledge of the density matrix of the two qubits allows one to calculate the concurrence.
It is given by

𝐶(𝜌) = max[0, 𝜆1 − 𝜆2 − 𝜆3 − 𝜆4] , (2.16)

where the 𝜆𝑖 are the eigenvalues of 𝜌 (𝜎𝑦 ⊗ 𝜎𝑦)𝜌∗(𝜎𝑦 ⊗ 𝜎𝑦) in descending order. Conve-
niently, the concurrence itself can serve as an entanglement measure. In this way pairwise
entanglement of distant spins in a spin-½ system can be calculated.

A very easily computable entanglement measure for mixed states is the negativity intro-
duced in Vidal and Werner [2002]. All eigenvalues of the partial transpose with respect to a
subsystem of a density matrix of a separable state are positive (see Peres [1996]). In other
words: If the partial transpose has negative eigenvalues, the state has to be entangled. The
more negative its eigenvalues are, the more entanglement is present. This leads us straight
to the definition of the entanglement measure negativity:

𝒩 (𝜌) =
‖𝜌⊺𝖠‖1 − 1

2
, (2.17)

where 𝜌⊺𝖠 is the partial transpose of 𝜌 with respect to subsystem 𝖠 and ‖ ⋅ ‖1 is the trace
norm defined by ‖𝖬‖1 = tr√𝖬†𝖬, or, with 𝖬’s eigenvalues 𝜆𝑖, ‖𝖬‖1 = ∑ |𝜆𝑖|.
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To see how a partial transposition acts on a density matrix, we look at a simple example of
two spins in the usual product space with the basis ordered as |↑𝖠↑𝖡⟩, |↑𝖠↓𝖡⟩, |↓𝖠↑𝖡⟩, |↓𝖠↓𝖡⟩.
The 4 × 4 Hermitian density matrix can be separated into four submatrices belonging to the
four different combinations of the basis vectors in subsystem 𝖠,

𝜌 = (
𝖢 𝖣†

𝖣 𝖥 ) , (2.18)

where 𝖢 and 𝖥 are Hermitian. The partial transpose with regards to system 𝖠 is given by

𝜌⊺𝖠 = (
𝖢 𝖣
𝖣† 𝖥 ) . (2.19)

It is Hermitian and has the same trace as 𝜌. The trace of the partial transpose is, thus, equal
to one. If some eigenvalues are negative, the sum of the absolute value of the eigenvalues has
to be bigger than one. The negativity directly measures to what extend the partial transpose
of a density matrix fails to be positive. Partial transposition with regards to subsystem 𝖡
yields

𝜌⊺𝖡 = (
𝖢⊺ 𝖣∗

𝖣⊺ 𝖥⊺ ) = (𝜌⊺𝖠)⊺ . (2.20)

Thus, the negativity is the same regardless of with respect to which system the partial
transpose is performed. These results are also true for systems that contain more than two
spins.

It should be noted that a zero negativity is not a sufficient criterion for entanglement. There
are entangled states with no negativity. The great strength of the negativity is the possibility
of computing it.

2.4. The paper

In the publication presented in this chapter, we variationally calculate the negativity in the
𝐽1-𝐽2 spin chain with explicit dimerization and an impurity attached to one end. This work
is the natural extension of prior research. Erik S. Sørensen and collaborators published two
papers about the entanglement of an impurity attached to the 𝐽1-𝐽2 chain (see Sørensen et al.
[2007a,b]).

For 𝐽2/𝐽1 < 𝐽𝑐 ≈ 0.241, where the chain is gapless, this model shows the same physics as
the low-energy regime of the Kondo model, where a spin interacts with itinerant electrons
via a Kondo coupling and is screened by them (see e.g. Laflorencie et al. [2008]). Therefore,
their work was mostly focused on this parameter regime.

They found that the entanglement entropy between the part of the chain that includes the
impurity and the rest of the chain scales in a very particular way. This is so because the size
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of the screening cloud surrounding the impurity provides a second length scale in addition to
the length of the chain. To see this they defined the impurity entanglement entropy 𝑆imp. It
is the difference between the entanglement entropy with and without the impurity present in
the chain. One of their main results was that 𝑆imp = 𝑆imp(𝑟/𝜉𝐾 , 𝑟/𝑁), where 𝑟 is the distance
of the bipartition to the impurity, 𝜉𝐾 is the size of the screening cloud derived from the decay
of 𝑆imp with 𝑟 and 𝑁 is the length of the chain.

They also studied the impurity entanglement entropy in the gapped dimerized regime with
𝐽2/𝐽1 > 𝐽𝑐, for which they developed a very simple heuristic picture around the notions of
“single particle entanglement” (SPE) and the “impurity valence bond” (IVB). This picture is
based on the same ideas as the variational calculations with which many of the results in
this thesis have been achieved.

The SPE is particularly important in the dimerized chain. With an odd number of spins,
one spin cannot be in a dimer. It stays unpaired and acts as a domain wall between dimerized
regions. It is thus usually called the soliton. The groundstate then roughly consist of a
superposition of states that have this unpaired spin on different sites. The entanglement this
induces is called “single particle entanglement”.

The IVB can also easily be understood. If the impurity is coupled to the members of the
chain just like all the other spins in the system (or equivalently if we have a chain without
impurity), all spins will be in a dimer with their neighbour (aside from a soliton if applicable).
Lowering the coupling on the impurity sites makes the valence bond from the impurity to its
neighbour less favourable. It will thus terminate at a site farther away. This bond is called
the impurity valence bond. The IVB contributes to the entanglement entropy, whenever it
crosses the line dividing the two sectors between which the entropy is calculated.

It was also shown that the dimerized chain is, at the Majumdar-Ghosh point, very well
treatable with a simple variational ansatz and that the entanglement entropy can be calculated
in this way.

To get a better grasp of the entanglement of the impurity, it would of course be nice to
be able to directly calculate how entangled the impurity is with a distant block in the chain.
The negativity is a quantity that can exactly fulfill this need, as was outlined in section 2.3.

Bayat et al. were able to calculate the negativity for the 𝐽1-𝐽2 spin chain with impurity
using DMRG (see Bayat et al. [2010]). They showed that the negativity is indeed a very
useful tool to understand how far into the chain the impurity is entangled. The gapless Kondo
regime was of most interest to them. Some results were also presented for the dimerized
phase. Based on DMRG data of the negativity, the same authors published a study in which
they proposed the chain in the Kondo regime to be a good candidate to create long-ranged
entanglement between the ends of the chain by quenching the interactions on one end (Sodano
et al. [2010]).

We set out to answer the following questions:

• How do the impurity entanglement entropy and the negativity compare?

• How can variational calculations be used for a wider range of parameters?
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• How can the negativity be calculated within the variational framework?

• What happens when one introduces an explicit dimerization?

The answers to these questions can be found in the first publication of this thesis.
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1. Introduction

Entanglement in quantum spin chains has received considerable attention. For gapless
quantum spin chains, detailed predictions [1] of many aspects of entanglement have been
obtained from conformal field theory (CFT). For these (1 + 1)-dimensional models a
precise understanding of the entanglement has proven invaluable for the understanding
of numerical techniques such as the density matrix renormalization group [2] (DMRG)
approach as well as for the development of new techniques. The contribution to the
entanglement arising from impurities has also attracted considerable interest [3]–[13].
Here the term ‘impurities’ is used in the general sense and includes the effects of boundary
magnetic fields [3], boundaries [4], qubits interacting with a decohering environment [5]–[8]
as well as Kondo-like impurities [9]–[13]. The presence of the impurity can lead to different
conformally invariant boundary conditions which can dramatically alter the entanglement.
For a review see [14]. Quantum spin models have been used for studies of qubit
teleportation and quantum state transfer [15]–[23], where the change in entanglement
arising from the impurities plays a crucial role.

Usually the entanglement is defined in terms of the von Neumann entanglement
entropy of a subsystem A of size l and reduced density matrix ρA defined by [24, 25]

S(l, L) ≡ −Tr[ρA ln ρA], (1)
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Figure 1. An example of a spin chain with only nearest neighbour interactions
and an impurity on the first site. The interaction of the impurity site is multiplied
by JK. The chain is separated into part A (the grey box), which includes the
impurity and has the length l, and the rest of the chain.

where L stands for the total system size. It is known [4] that the entanglement entropies
of Heisenberg spin chains with open boundary conditions have a uniform as well as an
alternating part:

S(l, L) = Su(l, L) + (−1)lSa(l, L), (2)

where the subscripts u and a stand for uniform and alternating respectively.
On the basis of this observation, the impurity entanglement entropy Simp(JK, l, L)

was introduced to quantify the contribution that an impurity makes to the entanglement
of a spin chain [9, 10]. To model an impurity, the interactions on one site are scaled by a
factor of JK. The impurity entanglement entropy is given by the difference of the uniform
parts of the entanglement entropies of the chain with the impurity present and the chain
without the impurity. The subsystem A in the definition of the entanglement entropy
in equation (1) is chosen to contain the first l sites of the chain and thus contains the
impurity site, too (see figure 1). Upon removing the impurity site, A and the whole chain
are both one element shorter. The uniform entanglement entropy in a system where the
impurity is absent is thus given by Su(1, l−1, L−1). This leads to the following definition
of Simp:

Simp(JK, l, L) ≡ Su(with impurity) − Su(no impurity)

≡ Su(JK, l, L) − Su(1, l − 1, L − 1), l > 1. (3)

This definition is similar in spirit to experimental procedures for extracting impurity
contributions to, for instance, susceptibilities. It is also possible to consider the alternating
part of the impurity entanglement, but we shall not do that here.

However, it was later pointed out [11, 12] that a more consistent definition of the
impurity contribution to the entanglement can be obtained from the negativity [26]. The
negativity between a subsystem A and the rest of the system is defined by

N =

∑ |λi| − 1

2
, (4)

where the λi are the eigenvalues of the partial transpose of the density matrix with respect
to either A or the rest of the system. In contrast to the entanglement entropy it can also
be used to quantify the entanglement if the system is not in a pure state. This makes it
possible to use the negativity to directly quantify the entanglement of the impurity spin
and another part of the system.

It is an important question to what extent these two quantities yield the same
information about the impurity entanglement. In this paper we compare these two
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Figure 2. The J–J2–δ chain with an impurity coupled with strength JK.

measures and show that they agree for many universal features but are fundamentally
different, with N being the more general measure of the impurity entanglement.

Entanglement and in particular impurity entanglement in gapped quantum spin
chains has received comparatively little attention. In part this is due to the fact that for
non-critical spin chains with a finite correlation length ξ, one expects [1] for a partition
into two semi-infinite chains

S ∼ log ξ. (5)

For instance, for the S = 1 Affleck–Kennedy–Lieb–Tasaki (AKLT) chain [27, 28] where the
entanglement can be calculated analytically [29]–[35] it is known that S(l, L) approaches
a constant for large l, L in an exponential manner [34, 35] on a length scale equal to the
bulk correlation length ξ = 1/ ln(3). At the Majumdar–Ghosh (MG) point [36] of the
J–J2 spin chain, where J2 = J/2, one finds that S(l, L) is either 0 or ln(2) for any l, L.
However, the impurity contribution to the entanglement can still be long range in gapped
spin chains. For the J–J2 spin chain this was shown to be the case at the MG point [9, 10].
This is due to the twofold degeneracy of the singlet ground state, corresponding to the two
different dimerization patterns, and the associated presence of solitons separating regions
with different dimerizations. The model that we study is the slightly more general J–J2–δ
quantum spin chain defined as

H = JK[(1 + δ)�S0 · �S1 + J2
�S0 · �S2] +

L−3∑

i=1

[(1 + (−δ)i)�Si · �Si+1 + J2
�Si · �Si+2]

+ (1 + (−δ)L−2)�SL−2 · �SL−1, (6)

where we implicitly have set the nearest neighbour coupling J ≡ 1. The coefficient
JK describes the coupling of the impurity spin and δ is a staggering of the nearest
neighbour coupling inducing dimerization. Figure 2 may serve to clarify the definition
of the Hamiltonian. We focus exclusively on chains with open boundary conditions and
the impurity at one end of the chain. With δ = 0 this model undergoes a transition
from the gapless Heisenberg phase to a dimerized state at Jc

2 = 0.241 167 [37, 38]. In the
Heisenberg phase a correspondence to the low energy physics of a Kondo impurity can
be established [39, 40]. This correspondence becomes exact at Jc

2 . The mapping to the
Kondo problem requires one to use open boundary conditions and we therefore do not
consider periodic boundary conditions here. However, entanglement in models similar to
the one considered here but with periodic boundary conditions has also been studied; see
section 4 of [14] for a review.

With periodic boundary conditions and an even number of sites, the system at the
MG point has an exactly known twofold-degenerate dimerized ground state and a gapped
spectrum [36, 41]. (With open boundary conditions and L even the ground state is unique
with the same energy.) The lowest lying excitations of the MG chain are pairs of unbound
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solitons and upon introducing a finite dimerization the solitons become confined [42]. For
a chain with an odd number of sites, solitons separate regions with the ground state
dimerization pattern of the chain with an even number of sites [41, 42]. For the gapped
phase, in the proximity of the MG point, it is possible to perform very precise variational
calculations [41, 43, 44] for the J–J2 model (corresponding to δ = 0 in this study) since
appropriate states spanning the variational subspace can be identified with relative ease,
as the ground state at the MG point is known. Within this variational framework it
is possible to evaluate the entanglement [10]. Here, we explain in detail how similar
calculations can be performed for the negativity and discuss the appropriate subspaces
used in these computations. Along the so called disorder line, where J2 = (1−δ)/2, one of
the two degenerate ground states of the Majumdar–Ghosh chain remains the exact ground
state. Close to the disorder line, one therefore expects the same variational methods to
yield very precise results.

In the past, these variational calculations have been performed more or less by
hand [41, 43, 44]. If the variational problem is, however, formulated as a generalized
eigenvalue problem, it is not difficult to automate the calculation, as for any two states,
ϕi and ϕj, with all but no, one or two sites being in dimers, 〈ϕi|�Si

�Sj|ϕj〉 as well as the
overlaps between different ϕ can be computed in an automated fashion. One advantage
of the automated computation of these matrix elements is that one avoids lengthy and
error-prone calculations. Secondly, solving a generalized eigenvalue problem can be done
using standard libraries. This approach is not limited to the specific Hamiltonian studied
in this paper. It can in fact be used to perform variational calculations using dimerized
states forming the subspace in which the diagonalization is carried out for any Heisenberg
spin Hamiltonian.

In addition to providing a more direct analytical insight into the physics, the main
advantages that the variational approach has over other methods such as the DMRG
technique are computational cost and simplicity. These advantages do not, however,
come for free. To identify a good subspace to use for variational calculations, one always
has to rely on knowledge gained obtained by other means. This role is often played by
the DMRG technique.

The paper is organized as follows. In sections 2–5 the variational approach is discussed
along with the different subspaces used in the calculations. Section 6 describes the
calculation of the negativity once the variational ground state is known and sample
results for the negativity are compared to DMRG data. In section 7 the negativity and
the impurity entanglement entropy are compared. Section 8 presents our results for the
negativity and Simp for general JK at the MG point. In section 9 we describe how the
impurity entanglement is affected by the presence of a non-zero explicit dimerization, δ.

2. The variational calculation as a generalized eigenvalue problem

For completeness, we review here how the variational problem can be formulated as a
generalized eigenvalue problem. Consider a set of states {ϕi} to be used for the variational
calculation. We then wish to minimize

〈H〉 =
(ϕ|Hϕ)

(ϕ|ϕ)
, (7)
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where the trial state ϕ is given by

ϕ =
∑

cjϕj . (8)

The minimization is to be performed with respect to the cj . In variational calculations
we make use of the fact that

∀ϕ : E0 ≤ (ϕ|Hϕ)

(ϕ|ϕ)
, (9)

where E0 is the ground state energy. One strives to find a well chosen set of ϕis as well
as the state ϕmin ∈ span{ϕi} that satisfies

(ϕ|Hϕ)

(ϕ|ϕ)

∣
∣
∣
ϕmin

= minspan{ϕi}
(ϕ|Hϕ)

(ϕ|ϕ)
. (10)

This state is the variational estimate for the ground state. Let us denote the energy
eigenbasis as {ei}. The variational state ϕ can evidently be written as ϕ =

∑
aiei.

Thus

(ϕ|Hϕ)

(ϕ|ϕ)
=

∑

i,j

āiaj
(ei|Hej)∑

i |ai|2 =

∑
i |ai|2Ei∑

i |ai|2 ≥ Ev, (11)

where Ev is the energy of the eigenstate ev of non-zero projection onto span{ϕi} that has
the lowest energy. With any orthonormal basis {bi} of span{ϕi}, the variational guess for
the ground state ϕmin can thus be found by diagonalizing H :

• Minimization problem ≡ Finding the lowest eigenvalue of (bi|Hbj).

If we do not have an orthonormal basis at our disposal, we have to do a little more
work. Let us suppose that the ϕi are linearly independent and the ei are the orthonormal
basis of energy eigenstates. For the variational ground state given by ϕmin =

∑
i aiϕi and

the variational estimate of the ground state energy Ev we know from the equation (11)
that

H
∑

j

ajϕj = Ev

∑

j

ajϕj . (12)

We will now show that a vector a = (a1, . . . , an) is a solution to the variational problem
if and only if

∀i :
∑

j

aj(ϕi|Hϕj) = Ev

∑

j

aj(ϕi|ϕj). (13)

With the definitions

Hij = (ϕi|Hϕj) and Bij = (ϕi|ϕj), (14)

one can write equation (13) as

Ha = EvBa, (15)

which defines a generalized eigenvalue problem. That equation (12) implies equation (13)
can be seen by taking the scalar product of both sides in equation (12) with ϕi.
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That equation (13) implies (12) will now be proved. We do this by proving that for
any basis (linearly independent set of states that span the space) {ϕi},

∀i: (ϕi|q) = (ϕi|r) ⇒ q = r, (16)

for any vectors q, r. With q = H
∑

j ajϕj and r = Ev

∑
j ajϕj the relation (16) becomes

the relation equation (13) ⇒ (12).
Proof:

∀i: (ϕi|q) = (ϕi|r) (17)

⇒
∀i: (ϕi|q − r) = 0 (18)

⇒
∀i: ϕi⊥(q − r) (19)

⇒
q − r = 0. � (20)

We have thus proven that the minimization problem of equation (10) can be replaced
by the generalized eigenvalue problem of equation (15) if the states used to span the
subspace in which the minimization takes place are linearly independent.

3. The Hilbert spaces used in the calculation

The implementation of the variational technique as a generalized eigenvalue problem
allows us to just solve a linear algebra problem instead of solving a set of non-linear
equations which is necessary if one approaches the minimization naively. The one
requirement for this implementation to work is for the states that span the Hilbert space
in which the minimization is done to be linearly independent. This flexibility makes it
possible to use different bases according to the specific needs of the problem. Here we are
concerned with the two cases of even and odd length chains.

(i) A chain with an odd number of sites.
The simplest ensemble of variational states for a chain with an odd number of sites
are the so called single-soliton states [41, 43, 44, 10]. These states can be generated
by taking L− 1 of the sites of the chain to be maximally dimerized while leaving the
site left over (the soliton) to be in the Sz = 1/2 state. Here and in the remainder of
the paper we use L to denote the length of the chain. The number of dimers between
the undimerized site and the left end of the chain can be used to label the states. In
figure 3 we show a pictorial representation of the first three states. When drawing a
dimer we use an arrow to denote the order in (|↑↓〉 − |↓↑〉)/√2. For an odd length
chain with L spins there exist N = (L + 1)/2 such states. Note that here we do not
include states with the soliton in the Sz = −1/2 state.

(ii) A chain with an even number of sites.
In studies of the entanglement of the impurity site with the rest of a chain with
an even number of sites, a suitable set of states can be defined by leaving the bulk

doi:10.1088/1742-5468/2011/10/P10023 7

Ph.D. Thesis — Andreas Deschner — McMaster University — Physics and Astronomy

35

http://dx.doi.org/10.1088/1742-5468/2011/10/P10023


J.S
tat.M

ech.
(2011)

P
10023

Impurity entanglement in the J–J2–δ quantum spin chain

Figure 3. The first three variational states used in the calculations with the
single-soliton space for a chain with an odd number of sites. Note the arrows on
the dimers that indicate their direction.

Figure 4. The first three variational states used in the calculation of the
negativity for a chain with an even number of sites.

(L−2) sites of the chain dimerized while one of the spins is in a valence bond with the
impurity. Example states are given in figure 4. These states are chosen in order to
reflect the presence of an impurity valence bond (IVB) [10], connecting the impurity
site to the bulk of the chain.

4. The matrix elements of the Hamiltonian H

To set up the generalized eigenvalue problem it is necessary to calculate the matrices H
and B which were defined in equation (14). In this section we will explain how to compute
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H. In order to allow for the most general Hamiltonian possible, we write it as follows:

H =
∑

{m,l}
Jml

�Sm
�Sl. (21)

Here, the summation {m, l} is over ‘bonds’ of the Hamiltonian and the coupling constants
Jml can take any value. It is convenient to write the matrix elements Hij in terms of the

operators hml = �Sm
�Sl − 1/4, because they have a simple action on the ϕs. This gives

(ϕi|Hϕj) =
∑

{m,l}
Jml(ϕi|�Sm

�Slϕj) =
∑

{m,l}
Jml(ϕi|[hml + 1/4]ϕj). (22)

The following description of this action is an extension of results presented earlier [45] in
the context of quantum Monte Carlo simulations in the valence bond basis where it is
necessary to take the hml to have the sign opposite to what we use here. The action of
hml on states relevant to us is given by

hml[m; l][k; n] = −[m; l][k; n] (23)

hmk[m; l][k; n] = 1
2
[m; k][n; l] (24)

hml ↑m [l; k] = 1
2
[m; l] ↑k (25)

hmk[m; l] ↑k= −1
2
[↑m [l; k] + [m; l] ↑k], (26)

where

[m; k] :=
1√
2
( ↑m↓k − ↑k↓m )

are the spins at m and k in a singlet state.
In figure 5 a pictorial representation of the equations (23)–(26) is shown. To fix the

phase of the states that we include in the calculation, we again represent [m; k] by an
arrow pointing from m to k. For the calculations that we present here, these are the only
rules needed. However, when considering the action of the Hamiltonian it is sometimes
convenient to apply the simple rules

[m; k] = −[k; m] (27)

[k; l] ↑m= [k; m] ↑l + ↑k [m; l], (28)

in order to reduce the action of the hml to one of the above.
We want to stress that even though the single-soliton states can be orthogonalized

with relative ease [46], this is not generally the case and even after orthogonalization, the
resulting eigenvalue problem is still non-trivial for a general set of Jlm. Whether or not
it is possible to proceed with analytical calculations often depends on specific choices for
the coupling constants in the Hamiltonian. Here, we can solve the variational problem for
any values of the couplings.

As can be seen in equation (24) and figure 5(b), the application of hml to a given
state ϕi may result in a state that is not an element of span{ϕi}. Therefore, in order to
evaluate

(ϕi|Hϕj) =
∑

{m,l}
Jml(ϕi|hmlϕj)
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Figure 5. The action of hml on the variational states. The dotted line signifies
the sites acted upon by hml. Arrows fix the phase of singlets between sites of the
lattice. The convention is explained in the main text.

we need to compute the overlap of hmlϕj with all the variational states. This slows down
our calculations since it is not sufficient to build a table of all the overlaps of the ϕi. We
now turn to a discussion of how the overlaps are calculated.

5. The matrix elements of the overlap matrix B

As is explained in [47, 45] the magnitude of the overlaps of valence bond states depends
solely on the length of loops created by overlaying the two states. If one chooses l to be
the length of such a loop then the overlap is of magnitude 2−l/2+1. To get the sign of the
overlap we, in addition to overlaying them, reverse all arrows on one of the states. Then
we follow the loop and count how often one has to go against the arrow. If the resulting
number is odd, the sign of the overlap is negative. If the resulting number is even, the
sign of the overlap is positive. Because the total number of bonds in the loop is even, this
leads to a well defined sign of the overlap. To get the overlaps of two states one only has
to follow this prescription for every loop and multiply contributions from different loops.
Figure 6(c) shows the loop structure for the states shown in figures 6(a) and (b). The left
loop is six bonds long and going around it one has to go against the direction of the arrow
three times. The right loop is two bonds long and one has to go against the direction of
the arrow once. The overlap is therefore given by

(−2−2)(−20) = 1
4
.

In the case of unpaired spins being part of the states, the rules have to be modified slightly.
If there is one unpaired spin in both states, upon overlaying the two states, there will in
addition to loops be a string that goes from one unpaired spin to the other. As is the case
for the loops, for the string the magnitude of the contribution to the overlap depends only
on the length. One finds the contribution to be 2−l/2. The contribution to the sign of the
overlap can be determined in exactly the same way as in the case of complete loops.
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Figure 6. The two states (a) and (b) together with the corresponding loop
structure created by reversing the arrows of one state and overlaying the two
states (c). Both loops contribute a minus sign. The overlap is given by 1/4.

Figure 7. The chain separated into three parts: the impurity spin (a), the part
whose entanglement with the impurity spin is to be quantified (b) and the part
that separates the two (x).

6. The calculation of the reduced density matrix and the negativity

For the calculation of the negativity describing the entanglement between the impurity
spin and a distant part of the chain, it is necessary to separate the chain into three
parts [26, 11]: the impurity spin, the part whose entanglement with the impurity spin is
to be quantified and the part that separates the two (the parts will in the remainder of
the paper also be referred to as regions a, b and x respectively. The negativity is invariant
under interchange of b and x. For clarification, see figure 7). To calculate the negativity
between the impurity spin and a part of the chain that is separated from the impurity
spin by a different part, we have to compute the reduced density matrix that results from
tracing out the separating part of the chain. We will now explain how this is done within
our variational framework.

Let the result of the generalized eigenvalue problem be the variational ground state
ϕg given in the variational basis: ϕg =

∑
aiϕi. To take trace of the density matrix over

the region x in figure 7, we express the density matrix in a product basis formed by states
of region x and states of the rest of the chain. This requires us to represent the variational
ground state ϕg in this product basis. In doing so we follow the approach of [10], where
the entanglement entropy was calculated from a variational ground state. For a chain with
an odd number of spins these bases will, in the following, be introduced. We start with
the case where the region x contains an even number of sites followed by the case where
the region x contains an odd number of sites. For a chain with an even total number of
sites an analogous calculation was performed.
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6.1. An even number of sites to be traced out

(i) For the impurity spin we choose the Sz basis and denote the two states by f1 =↑ and
f2 =↓.

(ii) For the region x we denote the basis by gi. We take the region to contain at least two
sites. The states are chosen to be

g1 =
R∑

n=1

an ↑
n−1 dimers

︷ ︸︸ ︷
− · · · − ↑ − · · · −

︸ ︷︷ ︸
2R sites

g2 =
R∑

n=1

an ↑
n−1 dimers

︷ ︸︸ ︷
− · · · − ↓ − · · · −

︸ ︷︷ ︸
2R sites

,

g3 = ↑ − · · · −↑
︸ ︷︷ ︸

2R sites

, g4 = ↓ − · · · −↓
︸ ︷︷ ︸

2R sites

, g5 = ↓ − · · · −↑
︸ ︷︷ ︸

2R sites

,

g6 = ↑ − · · · −↓
︸ ︷︷ ︸

2R sites

, g7 = − · · · −︸ ︷︷ ︸
2R sites

,

where the symbol ‘−’ is used for valence bonds between neighbouring sites and R is
the highest possible number of dimers that can could be formed in region x.

(iii) For region b we define the states in the following way:

h̃1 = − · · · −︸ ︷︷ ︸
L−2R−1 sites

h̃2 =

N−1∑

n=R+1

an ↑
n−R−1 dimers
︷ ︸︸ ︷
− · · · − ↑ − · · · −

︸ ︷︷ ︸
L−2R−1 sites

h̃3 =

N−1∑

n=R+1

an ↓
n−R−1 dimers
︷ ︸︸ ︷
− · · · − ↑ − · · · −

︸ ︷︷ ︸
L−2R−1 sites

.

In order to express the density matrix of the impurity spin and the region b in
an orthonormal basis it is necessary to orthonormalize the basis {h̃i} as it is not
orthogonal in the way in which it is defined above:

(h̃1|h̃3) =
N−1∑

n=R+1

an (−2)−n+R+1

(−1√
2

)

. (29)

We do this following the usual Gram–Schmidt procedure. Our orthonormalized
version is given by

h1 =
h̃1

√
(h̃1|h̃1)

h2 =
h̃2

√
(h̃2|h̃2)

h3 =
h̃3 − (h̃3|h1)h1

√
(h̃3|h̃3) − |(h̃3|h1)|2

. (30)

For the product space of the impurity spin and region b we use the basis states:

k1 = f1h1, k2 = f1h2, k3 = f1h3,

k4 = f2h1, k5 = f2h2, k6 = f2h3.
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With these definitions, the variational ground state can be written as

ϕg =
∑

anϕn =
∑

i,j

Cijkigj, (31)

where the matrix C is given by

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ‖h̃1‖√
2

0 0 0 (h̃3|h1)
2

a0‖h̃1‖
0 0 0 −‖h̃2‖√

2
0 0 0

0 0 0 0 κ
2

0 0

−‖h̃1‖√
2

0 − (h̃3|h1)
2

0 0 0 0

0 0 0 0 0 −‖h̃2‖
2

0
0 0 −κ

2
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where κ =
√
‖h̃3‖2 − |(h̃3|h1)|2 and ‖h‖ =

√
(h|h).

With the matrix Gij := (gi|gj), whose matrix elements can be computed using the
prescription given in section 5, one can write the reduced density matrix of the impurity
spin and region b as

(ρab)ij = (trx ρaxb)ij =
∑

n,m

CinCjm(gn|gm), (32)

or, in matrix form,

ρab = CGCT. (33)

6.2. An odd number of sites to be traced out

(i) For the impurity spin we choose the Sz basis and denote the two states by f1 =↑ and
f2 =↓.

(ii) For the region to be traced out we denote the basis by gi. The states are chosen to
be

g1 = − · · · −↓
︸ ︷︷ ︸

2R+1 sites

, g2 = − · · · −↓
︸ ︷︷ ︸

2R+1 sites

,

g3 =
R∑

n=1

an ↑
n−1 dimers

︷ ︸︸ ︷
− · · · − ↑ − · · · −↑

︸ ︷︷ ︸
2R+1 sites

,

g4 =
R∑

n=1

an ↓
n−1 dimers

︷ ︸︸ ︷
− · · · − ↑ − · · · −↑

︸ ︷︷ ︸
2R+1 sites

,

g5 =

R∑

n=1

an ↑
n−1 dimers

︷ ︸︸ ︷
− · · · − ↑ − · · · −↓

︸ ︷︷ ︸
2R+1 sites

,

g6 =

R∑

n=1

an ↓
n−1 dimers

︷ ︸︸ ︷
− · · · − ↑ − · · · −↓

︸ ︷︷ ︸
2R+1 sites

,

g7 = ↑− · · · −
︸ ︷︷ ︸

2R+1 sites

, g8 = ↓− · · · −
︸ ︷︷ ︸

2R+1 sites

,
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where the symbol ‘−’ is used for valence bonds between neighbouring sites and R is
the highest possible number of dimers that can be formed in region x.

(iii) For region b we define the states in the following way:

h̃1 = ↑− · · · −
︸ ︷︷ ︸
L−2R−2 sites

, h̃2 = ↓− · · · −
︸ ︷︷ ︸
L−2R−2 sites

, h̃3 =
N−1∑

n=R+1

an

n−R−1 dimers
︷ ︸︸ ︷
− · · · − ↑ − · · · −
︸ ︷︷ ︸

L−2R−2 sites

.

We orthonormalize and build a product basis for the impurity spin and region b just
as is done in the case of an even number of sites that have to be traced out.

With Gij := (gi|gj) and

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− a0√
2

0 0 0 0 −1
2

0 (h̃1|h̃3)√
2

0 a0√
2

0 1
2

0 0 0 0

0 0 0 0 0 0 0 κ√
2

0 0 0 0 1
2

0 − (h̃1|h̃3)√
2

0

0 0 −1
2

0 0 0 0 0
0 0 0 0 0 0 − κ√

2
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where κ =
√

(h̃3|h̃3) − |(h̃3|h1)|2, we can again write the reduced density matrix as

ρab = CGCT. (34)

For a chain with an even total number of sites we followed an analogous procedure. In
order to save space, we have not included it here.

6.3. The negativity

With the expression for the reduced density matrix of the impurity spin and region b, ρab,
at hand, it is now straightforward to calculate the negativity according to its definition [26]

N =

∑ |λi| − 1

2
, (35)

where the λi are the eigenvalues of the partial transpose of ρab.

6.4. The precision of the variational approach

The variational states that form our starting point should yield almost exact results close
to the MG point (J2 = J/2) where a chain with an even number of spins is fully dimerized.
However, the states that we include in our variational calculation (see section 3) form only
a subset of the states in which the bulk of the chain is dimerized. At the MG point the
contribution arising from these neglected states is negligible and the variational approach
is very good. However, as J2 is decreased towards the critical point Jc

2 we expect the
contribution from the neglected states to grow in importance and at Jc

2 , where the ground
state is no longer dimerized, we expect our variational approach to fail. Nevertheless,
for intermediate J2, Jc

2 < J2 ≤ J/2, we still expect the variational approach to yield
qualitatively good results.
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Figure 8. Variational results for the negativity (filled symbols) together with
DMRG data from [11] (empty symbols) for two values of the impurity coupling
JK. The calculations were done for a chain of length L = 250, with frustration
J2 = 0.42 and dimerization δ = 0.

It is possible to calculate the negativity, N , using DMRG techniques, as was shown
by Bayat et al [11]. In figure 8 we compare our variational results for N to DMRG results
from [11] at J2 = 0.42J for two different values of JK: JK = 0.16 and 0.4 (here δ = 0). The
definition of N used in [11] differs from the one used by us by a factor of 2. To account
for this difference we multiplied their data by 2. For both values of JK we observe a very
good agreement between the DMRG and variational results.

7. N compared to Simp at the MG point

Having established the validity of the variational approach we now turn to a comparison
of the two measures for the impurity entanglement, N [11] and Simp [9]. In figure 9 we
show results for both N and Simp at the MG point for a system with L = 200 sites and an
impurity coupling JK = 0. Shown also is the impurity entanglement arising from a single
impurity valence bond (IVB) [9] between the impurity spin and the bulk of the chain.
For JK = 0 and L even, the idea of an impurity valence bond is easy to understand.
The uncoupled impurity must form a singlet with the unpaired S = 1/2 in the bulk of
the chain. If the entire system (impurity and bulk) is divided into two parts A and B,
this impurity valence bond will contribute either ln(2) or 0 depending on whether the
unpaired spin is in part B or A. With the wavefunction for the unpaired spin ϕsol(x) and
p =

∫
A
|ϕsol(x)|2 dx, the impurity entanglement is then simply [9, 10]

SIVB
imp = (1 − p) ln(2). (36)

To a first approximation ϕsol(x) can be taken to be the wavefunction of a free particle in
a box [10]:

ϕsol(i) =

√
2

L
sin

(
πi

L

)

. (37)
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Figure 9. Variational results for the negativity N and the impurity entanglement
Simp scaled by 1/(2ln(2)) at impurity coupling JK = 0 and δ = 0. Shown also is
the impurity entanglement arising from an impurity valence bond (IVB) scaled
by 1/(2ln(2)). The calculations were done for a chain of length L = 200 at the
MG point. For clarity, only a fraction of all data points are shown.

Figure 10. Variational results for the negativity N and the impurity
entanglement Simp scaled by 1/(2ln(2)) at impurity coupling JK = 1. The
calculations were done at the MG point for a chain of length L = 200 (a) as
well as L = 199 (b). For clarity only a fraction of all data points are shown.

It is also possible to obtain more precise estimates of ϕsol [10]. Apart from an overall
scaling factor of 2 ln(2), the two measures are in the case shown in figure 9 essentially
identical.

We now compare the two measures of the impurity entanglement in the limit JK = 1.
In figure 10(a) we show variational results for both quantities at JK = 1. Since the
impurity here is coupled with the same strength as the remaining sites and since we
consider a chain with an even number of sites, the chain is in its dimerized ground state.
The dimerization of the state implies that every spin is maximally entangled with one of
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its neighbours. It follows that the impurity is only entangled with its neighbour and not
with any other spin. While this can be inferred from the negativity shown in figure 10(a)
which is exactly 0 for l > 0, this is not the case for Simp which in fact becomes negative (!).
The difference of the two measures arises from the subtractive procedure used to define
Simp where the term SU(1, l − 1, L − 1), in addition to terms cancelling out SU(1, l, L),
also contains a contribution arising from the single unpaired spin which is present because
L − 1 is odd. This contribution from SU(1, l − 1, L − 1) can be identified as the single-
particle entanglement [10] (SPE). Hence, Simp fails in this case to be a good measure of
the impurity entanglement since SU(1, l−1, L−1) is not a good reference state and cannot
be identified with S (no impurity). It would be very interesting to define a measure of
the impurity entanglement based on a relative entropy, but again one would need a well
defined reference state with the impurity absent.

For a system with an odd number of sites the SPE is the only contribution to Simp

at JK = 1. Here the impurity is viewed in the general sense as arising from the boundary
conditions yielding the non-zero Simp. However, the negativity, since it is really a tripartite
measure, is not sensitive to this and is negligible for l > 1, as shown in figure 10(b), at
the MG point.

It may be conjectured that N and Simp agree well as long as the IVB contribution
dominates Simp as is the case in figure 9. We also note that the SPE vanishes at Jc

2 [10]
and we expect N and Simp to exhibit the same scaling behaviour at Jc

2 , as has indeed
been demonstrated [9, 11]. For J2 > Jc

2 , N is the more faithful measure of the impurity
entanglement and in the following we mainly use this measure.

8. The negativity and the SPE for general JK at the MG point

As we saw in section 7, the impurity entanglement for an even length system with JK = 0
can be seen as arising from an impurity valence bond (IVB). At the MG point for JK = 0
this was calculated within the variational approach in [10]. Here we focus on the negativity
N and the complete crossover as JK is varied between 0 and 1. Variational results for N
at different JK for a system of length L = 200 (including the impurity site) are shown in
figure 11(a). At JK = 0 the impurity entanglement is long range, extending throughout
the chain, but as JK is turned on, it quickly becomes suppressed and for JK larger than
∼0.3, it has all but disappeared, reflecting the fact that the impurity valence bond now
preferentially terminates close to the impurity site. For these non-zero values of JK the
appropriate ϕsol to use would then no longer be the wavefunction of a free particle, as
in equation (37), but instead a wavefunction describing a localized state bound to the
impurity site. The presence of such a localized state should be reflected in an exponentially
decaying impurity entanglement away from the impurity site. For JK > 0.15 we have
verified that the negativity N shown in figure 11(a) does indeed have a tail decaying
exponentially with the site index. The length scale, ξloc, associated with this exponential
decay is therefore clearly distinct from the bulk spin–spin correlation length in the system
which here is effectively zero. The sharpness of the crossover is illustrated in figure 11(b)
where for a chain of 200 spins the negativity with the region x containing 40 spins is
plotted versus JK. As can be seen, N transitions from ∼0.5 to 0 very close to JK = 0.15.
For JK ≤ 0.15 we have not been able to identify any exponentially decaying part in N
as obtained within the variational approach even for systems substantially longer than
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Figure 11. (a) Variational results for the negativity for different JK with L = 200.
(b) Variational results for the negativity for fixed size, l = 40, of the subsystem
x as a function of JK with L = 200. All results are obtained at the MG point
with δ = 0.

Figure 12. Variational results for the Simp for different JK with L = 199. All
results are obtained at the MG point with δ = 0. For clarity only a fraction of
all data points are shown.

200 and it appears that a finite Jc
K ∼ 0.15 is needed to induce an exponential decay in

N . This would imply that the presence of a non-zero JK cannot be modelled as a simple
one-dimensional potential well, since this would always have a bound state independent of
the depth of the potential well. Probably, an enlarged variational space for the calculation
will change the value for Jc

K and could possibly drive it all the way to zero. However,
Bayat et al [11], using the DMRG, do not find an exponential decay for J2 = 0.46 and
JK = 0.16 consistent with a non-zero Jc

K. Due to the complexity of the calculation of N
in larger subspaces we have, however, been unable to complete such calculations.

In a similar manner, we can study the single-particle entanglement (SPE) for general
JK within the variational approach. Our results are shown in figure 12. The single-particle
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entanglement arises from the presence of a single unpaired spin for odd L which is always
present in the ground state for odd L. The unpaired spin moves freely throughout the
system when JK = 1, but as JK is decreased away from 1 towards zero it rapidly becomes
localized on the impurity site, thereby quenching the impurity entanglement. As can
be seen in figure 12, the impurity entanglement rapidly transitions around JK ∼ 0.8–
0.85. While the variational approach agrees closely with DMRG data away from this
transition region, some quantitative differences appear in this region due to the limitation
of the Hilbert space used in the variational approach. The variational and DMRG results
are however qualitatively the same and we have for clarity not included DMRG results in
figure 12. We have verified that for JK ≤ 0.85 the data for Simp shown in figure 12 develop
an exponentially decaying part with an associated length scale, ξloc, different from the bulk
spin–spin correlation length. Also here, it appears that ξloc diverges before JK reaches 1
but this effect could possibly be due to finite-size effects in the DMRG calculations or
limitations in the subspace used in the variational calculations.

9. Impurity entanglement with δ �= 0

The variational approach that we employ here is straightforward to use for any J2, δ and
JK and we now discuss our results for the impurity entanglement for non-zero explicit
dimerization δ �= 0. As we stressed in section 1, the impurity entanglement can be long
range in these systems due to the near degeneracy of the two singlet ground states of the
chain with periodic boundary conditions. With a non-zero δ this degeneracy is lifted and
we expect the impurity entanglement to decrease dramatically. Essentially, this is because
when δ is increased it is more costly for the impurity to be entangled with far away parts
of the systems: if the impurity is in a singlet with a spin far away, there are more dimers
on weak bonds than if the impurity bonds with a site that is close to it. If we consider L
even, then, in order to have sizable entanglement, the bulk of the chain must have a site
in a valence bond with the impurity spin and this spin is then bound to one end of the
chain [42].

For a chain with an even number of spins we expect to be able to describe N in
terms of an IVB picture for which an estimate of ϕsol is needed for non-zero δ. Such an
estimate has been derived by Uhrig et al [46]. They showed that to good approximation
ϕsol(i) ∝ Ai(i/ξ + z), where Ai(x) is the Airy function and z1 = −2.3381 is its biggest
root. Here, the size of the area that the impurity spin binds to is roughly given by
ξ = (3mδ/2)−1/3, where m ≈ 1/(1 + 7/

√
65). Our variational approach directly yields

the lowest state vector which is simply ϕsol. In figure 13(a) we compare this directly to
Ai(i/ξ + z) where it can be seen that the agreement is good. It is noteworthy that the
maximum in ϕsol is quite distant from the end of the chain, in agreement with previous
results.

We can use this result to estimate N using equation (36). In figure 13(b) we see
typical graphs of the behaviour of the negativity as δ is increased with JK = 0 and
L = 500. The range over which the impurity site is entangled is decreased upon increasing
the dimerization. Figure 13(b) also includes the impurity valence bond entropy (IVB)
obtained from equation (36) using the Airy functions for ϕsol. For easier comparison
with the negativity we scaled by a factor of 1/2 ln 2. For δ = 0 we used equation (37)
for ϕsol. A reasonable agreement between N and the IVB contribution (solid lines) is
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Figure 13. (a) Variational results for ϕsol (markers) compared to Ai(i/ξ + z)
(lines); see the main text. (b) Variational results for the negativity at impurity
coupling JK = 0 for three values of the dimerization δ plotted along with the
scaled IVB entanglement (lines). The calculations were done for a chain of length
L = 500, with J2 = J/2.

observed. Overall, as one would expect, the impurity entanglement is now dramatically
suppressed. Even for δ = 15 × 10−5 the impurity entanglement is effectively zero beyond
60 sites. Following the above discussion we expect the extent over which the impurity
entanglement is non-zero to diverge as δ−1/3 as dictated by ξ.

10. Conclusion

We have presented detailed discussion of how variational calculations can be used to
calculate the negativity. This approach is quite generally applicable and should be very
precise close to the MG point. A complete characterization of the impurity entanglement
for any JK can then be obtained. For JK = 0 (L even) the impurity entanglement is
long range and extends throughout the system, while for larger JK > 0.15 it decays
exponentially with a length scale clearly different from the correlation length in the
system. For L odd the SPE present at JK = 1 is rapidly destroyed once JK is decreased
below JK = 0.8–0.85. In both cases it would be valuable to perform higher precision
calculations in order to determine whether or not a critical JK is needed to destroy the
impurity entanglement. When a non-zero dimerization is introduced and the ground
state degeneracy is lifted, the impurity entanglement rapidly disappears. It would be
interesting to investigate impurity entanglement in other gapped systems with degenerate
singlet ground states.
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3. Incommensurability effects in an

odd length quantum spin chain

Andreas Deschner and Erik S. Sørensen:
Incommensurability effects in odd length 𝐽1-𝐽2 quantum spin chains: On-site magneti-
zation and entanglement;
Physical Review B 87, 094415 (2013); doi: 10.1103/PhysRevB.87.094415
Copyright (2013) by the American Physical Society

Calculations: I performed all variational calculations. DMRG calculations were
performed by Erik S. Sørensen.

Manuscript: I wrote the bulk of the manuscript and made all figures.
Erik S. Sørensen wrote section IV. He also added several paragraphs
throughout the manuscript. Furthermore, Erik S. Sørensen provided
(partly substantial) edits, comments and supervision.

The publication that is the subject of this chapter contains variational results concerning
the onset of incommensurate behaviour in a dimerized spin chain of odd length, which
turned out to be much more fascinating than expected (at least by me).

3.1. Incommensurate order

When different interactions compete, it is natural for a spin system to show incommensurate
order. This means that the system shows order that is not compatible with the underlying
lattice. This is a generic feature of many systems. A very simple and for this thesis most
fitting example is the classical antiferromagnetic 𝐽1-𝐽2 chain at 𝑇 =0. At 𝑇 >0 this system
is not ordered because of the theorem of Mermin and Wagner [1966].
The energy is given by

𝐸 = ∑ [𝐽1 𝐒𝑖 ⋅ 𝐒𝑖+1 + 𝐽2 𝐒𝑖 ⋅ 𝐒𝑖+2]
∝ ∑ [𝐽1 cos (Θ𝑖,𝑖+1) + 𝐽2 cos (Θ𝑖,𝑖+2) ] , (3.1)
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where Θ𝑖,𝑗 is the relative angle between spins on the sites 𝑖 and 𝑗. For 𝐽2/𝐽1 → ∞, the

(a) The spin chain for 𝐽2/𝐽1 < 0.25. (b) The spin chain for 𝐽2/𝐽1 → ∞.

Figure 3.1.: The classical 𝐽1-𝐽2 chain in the two limiting cases

groundstate is given by two antiferromagnetically ordered chains of next-nearest neighbours,
i.e. Θ𝑖,𝑖+1 = 𝜋/2 (or −𝜋/2) and Θ𝑖,𝑖+2 = 𝜋 (or −𝜋). If 𝐽2/𝐽1 = 0, the groundstate is antiferro-
magnetically ordered, i.e. Θ𝑖,𝑖+1 = 𝜋 (or −𝜋) and Θ𝑖,𝑖+2 = 2𝜋. The two extreme cases are
shown in figure 3.1. Upon increasing 𝐽2/𝐽1 from zero, the second nearest neighbours will
have a tendency to not be parallel anymore. They will lean. This of course comes with an
energy cost associated with nearest neighbours. If this cost is too high, nothing happens. If a
high enough 𝐽2/𝐽1 makes it worthwhile, something does happen. Because it is energetically
favourable for any spin to be misaligned with both of their nearest neighbours by the same
amount, all spins will lean by the same amount. The groundstate will therefore show constant
shifts Θ𝑖,𝑖+1 =Θ between neighbouring spins. In other words, there will be a wave vector of
magnitude Θ associated with the order.

𝜋/2 3𝜋/4 𝜋

Θ

0

1

2

𝐹 (Θ)

Figure 3.2.: The function 𝐹 (Θ) (broken
line) and a solid line which indicates the
minimum value of 𝐽2/𝐽1 for the energy
to be stationary.

Θ can easily be derived. For the energy of a
system with constant Θ we find

𝐸 ∝ 𝐽1 cos (Θ) + 𝐽2 cos (2Θ) (3.2)

Upon differentiation, we find the energy to be
stationary when

𝐹 (Θ) ∶= − sin(Θ)
2 sin(2Θ)

= − 1
4 cos(Θ)

=
𝐽2

𝐽1
.

(3.3)

As figure 3.2 tells us, there are no solutions when
𝐽2/𝐽1 ≤ 0.25. When 𝐽2/𝐽1 > 0.25, Θ is not equal
to 𝜋 and may take any value between 𝜋/2 and
𝜋, i.e. the system is incommensurately ordered.
The wave vector of the incommensurate order is

given by

Θ = cos−1
(

4 𝐽2

𝐽1 ) . (3.4)

The point 𝐽2/𝐽1 =1/4, thus, is a point at which three phases meet. A disordered phase at
finite temperature and two ordered phases at 𝑇 = 0, one of which shows incommensurate
order. Such points are called Lifshitz points. Starting with Hornreich et al. [1975], Lifshitz
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points have been studied since the 1970s. This research mostly focused on classical Ising
systems such as the axial next-nearest neighbour Ising (ANNNI) model (see Selke [1988]).
Lifshitz points have since been proposed for many different kinds of systems ranging from
ferroelectrics (see Slivka et al. [1990]) to diblock copolymers (see Bates et al. [1995]).
Chapter 6 in the book of Henkel and Pleimling [2010] might serve as a good source of more
information.

In the publication of this chapter, we will be concerned with a quantum chain that shows
behaviour similar to that of a classical system with a Lifshitz point.

3.2. Quantum effects

The classical chain has long-range order. Its spin spin correlation function oscillates with a
certain wavelength; the wavenumber is 𝜋 in the commensurate regime and between 𝜋/2 and
𝜋 in the incommensurate regime. The static structure factor (the Fourier transform of the
spin spin correlation function) is a delta function because there is only one ordering wave
vector and no decay of the correlations. Immediately where incommensurate order starts, the
peak in the static structure factor starts to shift. There is no doubt that the incommensurate
order begins at the Lifshitz point.

The quantum 𝐽1-𝐽2 chain’s behaviour is different. Firstly, there is only short-ranged order
as the chain is gapped in the region close to the Lifshitz point. Starting at 𝐽2 = 0.5 𝐽1, the
Majumdar-Ghosh point, incommensurate order develops, but it is only apparent in real space
(see Bursill et al. [1995]). This point is called the disorder point (about which I will say
more in the next section). The static structure factor’s maximum stays at 𝜋 until another
point, the Lifshitz point, is reached at 𝐽2 ≈ 0.52063(6) 𝐽1 as was also found in Bursill et al.
[1995].

Lifshitz-point

T

commensurate
correlations

incommensurate
correlations

disorder-line Lifshitz-line

D L

P

Figure 3.3.: Schematic generic phase diagram at a Lifshitz point (here at 𝖳 = 0). The
parameter 𝖯 stands for any quantity that drives the transition.
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The role of the AKLT point in the 𝑆 = 1 chain with biquadratic term is very similar to
the role of the Majumdar-Ghosh point in the 𝐽1-𝐽2 chain. In Schollwöck et al. [1996] a
study was undertaken of a transition from commensurate to incommensurate behaviour in
the 𝑆 =1 chain with the Hamiltonian

𝐻 = ∑ [ cos(𝜃) 𝐒𝑖 ⋅ 𝐒𝑖+1 + sin(𝜃) (𝐒𝑖 ⋅ 𝐒𝑗+1)
2
] . (3.5)

which shares many properties with the transition in the 𝐽1-𝐽2 chain. There is a disorder
point (the AKLT point at tan(𝜃) = 1/3) and also a Lifshitz point (at tan(𝜃) ≈ 0.44). In
their publication they provided an heuristic intuitive explanation for this observation. They
draw heavily on the correspondence between classical systems and quantum systems whose
dimension is smaller by one. The following exposition of the mechanism follows their
original presentation given in Schollwöck et al. [1996].

That the transition happens at different points in real and reciprocal space, can be considered
to be caused by quantum fluctuations effectively introducing a finite temperature. A schematic
phase diagram at a Lifshitz point is shown in figure 3.3. The figure is drawn for systems that
are ordered only at zero temperature. For other systems the mechanism presented here also
works as long as one stays above but close to the critical temperature. Close to the ordered
states at 𝖳 = 0, one expects the short-ranged correlation to still have their characteristics.
To the left of the Lifshitz point, the correlations should be commensurate and to the right
incommensurate. Close to the Lifshitz point, the two orderings will be competing. When
one increases 𝖯 at some finite temperature (moving along the blue line) there is a point, in
the figure called 𝖣, at which incommensurate correlations appear in real space. Due to the
competing orders, at this point, one naturally expects the correlation length to be minimal;
thus, it is a disorder point. For a bigger 𝖯, at 𝖫, the incommensurate correlations will also be
evident in the static structure factor.

Quantum fluctuations effectively make it as if there was a finite temperature. When
changing 𝖯, one thus, even at 𝖳 = 0, moves along the blue line for the quantum chain.

That higher spin versions of the 𝐽1-𝐽2 chain also exhibit a disorder point and a Lifshitz
point (as seen in Roth and Schollwöck [1998]) was taken to be further evidence that this
simple picture captures the main physics. Another strong point of this picture is that the
AKLT point and the MG-point share many characteristics with disorder points in classical
systems, as one would expect. I will dwell on these characteristics a little more in section 3.3.

It may be surprising that the structure factor shows no trace of incommensurate behaviour
while it is, in real space quantities, plainly present between the disorder point and the Lifshitz
point. Yet, it is not very difficult to understand how this can be the case. The following
explanation follows Schollwöck et al. [1996].

We start with a very simple model static structure factor given by

̃𝑆sim(𝑞) = 1
𝑎(𝑞 − 𝜋)2 + (𝑞 − 𝜋)4 + ̃𝜉−2

, (3.6)
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where ̃𝜉−2 controls the width of the maximum. If the quartic term were absent and 𝑎 = 1,
then ̃𝜉 would be the correlation length of the system. The maximum of ̃𝑆gen is at 𝑞max = 𝜋, if
𝑎>0. It is more convenient to have the maximum at 𝑞max = 0. We thus shift all momenta
and work with

𝑆sim(𝑞) = 1
𝑎𝑞2 + 𝑞4 + ̃𝜉2

. (3.7)

If 𝑎 > 0, the static structure has a maximum at 𝑞 = 0; if 𝑎 < 0, the static structure has a local
minimum at 𝑞 = 0 and a maximum at a different 𝑞 (see figure 3.4).

0 𝜋/ 2 𝜋
𝑞

𝑆sim(𝑞)

𝑎 < 0

𝑎 > 0

Figure 3.4.: The maximum of the generic
structure factor of equation 3.7 is at zero
for 𝑎 > 0 and shifted from zero for 𝑎 < 0.

To find out about the corresponding spin spin
correlation functions,

⟨𝐒(𝑦) ⋅ 𝐒(𝑦 + 𝑥)⟩ = ∫ d𝑞 𝑆sim(𝑞) 𝑒−𝑖𝑞𝑥 ,

(3.8)

we have to have a look at the pole structure of the
static structure factor, as this is what determines
the long distance behaviour of the correlation
functions. The integral can be calculated using
Cauchy’s integral formula by closing the arch
in the lower half of the complex plane. Thus,
the two poles with negative imaginary part are
important. The poles are at

𝑢1,2,3,4 = √𝑔±(𝑎) = √−𝑎
2

± √
𝑎2

4
− ̃𝜉2 . (3.9)

The structure of the poles for different 𝑎 can be seen in figure 3.5. If 𝑎 > 0 and 𝑎2

4
> ̃𝜉2,

𝑔±(𝑎) is negative and real. The poles of 𝑆sim thus are purely imaginary. The two poles, say
𝑢1 and 𝑢2, with negative imaginary parts both contribute one term to the correlation function.
These parts are proportional to exp(−𝑖𝑢𝑖𝑥). Since the 𝑢𝑖 are negative and purely imaginary
this implies exponential decay. The correlation length is then given by 𝜉−1 = min[|𝑢𝑖|].

If 𝑎 > 0 and 𝑎2

4
< ̃𝜉2, then the 𝑔±(𝑎) = 𝑎

2
± 𝑖𝑘, where 𝑘 is a real positive constant. The two

poles of 𝑆sim with negative imaginary part thus have the same imaginary part but opposite
real parts. The imaginary parts lead to exponential decay. The non-zero real part leads to
oscillations in the correlation function. The maximum of 𝑆sim is, for this value of 𝑎, still
at the origin (see figure 3.4), yet incommensurate behaviour is apparent in the real space
correlation function.

For not too negative 𝑎 < 0 (where 𝑎
4

< ̃𝜉2), the poles have the same structure and
incommensurate behaviour is prevalent in real space and in the static structure factor.
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𝖨𝗆(𝑢)

𝖱𝖾(𝑢)

𝑎 > √4 ̃𝜉2

𝑎 < √4 ̃𝜉2

Figure 3.5.: The positions of the poles in
the complex plane for two different set-
tings of 𝑎 and ̃𝜉2.

For large and negative 𝑎 < 0, this simple ex-
ample is not applicable and 𝑆sim develops poles
on the real axis.

The simple example tells us the following. If
the static structure factor has finite width, it can
very well be that incommensurate correlations ap-
pear in real space while the structure factor shows
no sign of this occurring. This is not possible in
a classical system with its sharp maximum of the
structure factor.

3.3. Disorder points

A disorder point is a point at which the character
of short-ranged correlations changes. It was first defined in Stephenson [1970a]. The
correlation function decays monotonically on one side and shows oscillations on the other.

The disorder point in the 𝑆 =1 chain of equation 3.5 (the AKLT point) very much resembles
disorder points of the first kind found in classical systems (see Schollwöck et al. [1996]).
Disorder points of the first kind are disorder points where the wave vector of the oscillation
changes with the temperature. At disorder points of the second kind, the wave number of
the oscillation does not depend on the temperature.

For such a point in classical 𝐽1-𝐽2 Ising systems with ferromagnetic 𝐽1 and antiferromag-
netic 𝐽2, it was, for example, found (see Stephenson [1970b]; Garel and Maillard [1986])
that everywhere, aside from the disorder point, the correlation function for big distances
followed the Ornstein-Zernike form one might expect for a classical spin system and which
is given by

⟨𝑆0𝑆𝑥⟩ ∝ (
1
𝑥)

(𝑑−1)/2
𝑒−𝑥/𝜉 , (3.10)

where 𝑑 is the dimension of the system. At the disorder point, the correlation function is of
the same form but with the dimension reduced by one. Furthermore it was found that the
wave number of the incommensurate oscillations grows like

𝑞(𝑇 ) ∝ (𝑇 − 𝑇𝐷)1/2 , (3.11)

where 𝑇𝐷 is the temperature at the disorder point.
The behaviour of the correlation length at the disorder point is also remarkable. Its

derivative diverges at the disorder point if one approaches the disorder point from the
commensurate side. It is finite on the incommensurate side. This creates a cusp at the
disorder point as shown in figure 3.6. All these results are also true for the disorder point
in the 𝑆 = 1 chain as long as one uses 𝑑 = 1 + 1 for the dimension and 𝐽2/𝐽1 as the
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temperature (see Schollwöck et al. [1996]; Fáth and Sütő [2000]).

𝜉

𝖳𝖳𝖣

commensurate

side

incommensurate

side

Figure 3.6.: Expected behaviour of the
correlation length at a disorder point of
the first kind. At the disorder point 𝖳𝖣
(indicated by a dotted line) there is a
cusp.

For the 𝐽1-𝐽2 chain with 𝑆 = ½ the same be-
haviour is expected. This is mostly because it
also has a disorder point and a Lifshitz point.

3.4. The paper

The 𝐽1-𝐽2 chain has been studied extensively.
The transitions through the disorder point and the
Lifshitz point are no exceptions. Yet, all studies
(most notably Bursill et al. [1995]; White and
Affleck [1996]) of the transition from commensu-
rate to incommensurate behaviour suffered from
the same omission. They entirely focused on
chains with an even number of sites. In dimer-
ized systems it can, however, be very important
whether or not the chain has an even or an odd
number of spins. An odd system is for example not gapped and even at the MG-point its
groundstate is not known. The paper in the last chapter is a nice illustration of how the parity
of the length of the chain can be very important.

One could say that these differences become less and less important as the thermodynamic
limit is approached. This consideration, while true in many regards, does not at all imply
that odd-length systems are not important. The thermodynamic limit is not reached in real
compounds, typical chains are only a few hundred to a few thousand spins long. For such
chains it matters if they are of odd or even length. If one wants to have a full understanding
of the 𝐽1-𝐽2 chain as it might appear in a real system, an understanding of the odd-length
chain is mandatory.

When working on the paper of chapter 2, I saw intriguing oscillations in the on-site
magnetization in the odd-length 𝐽1-𝐽2 chain develop at the Lifshitz point (see figure 10 in
the paper).

Investigating these results with DMRG surprisingly proved to be very challenging. It was
clear that we did not fully understand the physics at the transition from commensurate to
incommensurate behaviour in the odd-length chain. We thus set out to study the transition
in the odd-length 𝐽1-𝐽2 chain with DMRG and variational calculations.

While working on the project, we noticed that there seemed to have been something
else that never had been done. To our knowledge, it had never been checked whether the
correlation length, at the MG-point, shows the behaviour expected at a classical disorder
point (see last section).
The main questions we wanted to address for the odd-length chain were

• Why can DMRG not be used close to the Lifshitz point?
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• How different (and in which way different) is the Lifshitz point for an odd-length
chain?

• Does the correlation length show the expected behaviour at the MG-point (the disorder
point)?

• Does the behaviour at the disorder point depend on the parity of the chain?

The answers to these questions can be found in the second publication in this thesis.
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For the antiferromagnetic J1-J2 quantum spin chain with an even number of sites, the point J d
2 = J1/2 is a

disorder point. It marks the onset of incommensurate real space correlations for J2 > J d
2 . At a distinct larger

value of J L
2 = 0.520 36(6)J1, the Lifshitz point, the peak in the static structure factor begins to move away from

k = π . Here, we focus on chains with an odd number of sites. In this case, the disorder point is also at J d
2 = J1/2

but the behavior close to the Lifshitz point, J L
2 � 0.538J1, is quite different: starting at J L

2 , the ground state goes
through a sequence of level crossings as its momentum changes away from k = π/2. An even length chain, on
the other hand, is gapped for any J2 > 0.24J1 and has the ground-state momentum k = 0. This gradual change
in the ground-state wave function for chains with an odd number of sites is reflected in a dramatic manner
directly in the ground-state on-site magnetization as well as in the bipartite von Neumann entanglement entropy.
Our results are based on DMRG calculations and variational calculations performed in a restricted Hilbert space
defined in the valence bond picture. In the vicinity of the point J2 = J1/2, we expect the variational results to be
very precise.

DOI: 10.1103/PhysRevB.87.094415 PACS number(s): 75.10.Jm, 75.10.Pq, 75.50.Ee

I. INTRODUCTION

Disorder points were first discussed by Stephenson in mod-
els described by classical statistical mechanics.1–4 On one site
of a disorder point, the correlation function shows monotonic
decay, on the other oscillatory decay. Depending on how the
wavelength of the oscillation depends on the temperature,
one distinguishes between two kinds of disorder points. If
the wavelength of the oscillation depends on the temperature,
one speaks of a disorder point of the first kind, if it does not, one
speaks of a disorder point of the second kind.2 In the first stud-
ies, disorder points were found where the paramagnetic phase
of frustrated two-dimensional Ising models starts to show
incommensurate instead of commensurate behavior. In models
with competing commensurate and incommensurate order, one
might expect such a point to occur where the short-range
correlations with the largest correlation length change from
being commensurate to being incommensurate. Such a point
should then be associated with a cusp in the correlation length,
a fact that was quickly established.5 Schollwöck, Jolicoeur and
Garel first investigated disorder points in a quantum spin chain
for the bilinear-biquadratic S = 1 quantum spin chain,6 which
has H = cos θ

∑
Si · Si+1 + sin θ

∑
Si · Si+1. They pointed

out that the disorder point in this gapped quantum model
coincides with the AKLT point where tan θVBS = 1/3 and
the known ground state is a valence bond solid (VBS) with
correlation length ξ = 1/ ln(3). They also identified another
distinct point, the Lifshitz point, at tan θL = 1/2, where the
peak in the structure factor is displaced away from π due
to incommensurability effects. A third distinct point in this
S = 1 model, tan θdisp � 0.4, has also been located7 where the
minimum in the magnon dispersion shifts away from π and
the curvature (velocity) vanishes. These three points can be
distinct since no phase transition occurs and the correlation
length remains finite. Subsequently, it was confirmed8 that for
the S = 1/2 J1-J2 spin chain with Hamiltonian

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2, J1,J2 > 0 , (1)

the situation is similar. For the calculations presented in this
paper, we set J1 ≡ 1 and vary the remaining parameter J2.
The disorder point, with minimal correlation length (ξ � 0),
occurs at the Majumdar-Ghosh9 (MG) point, J d

2 = J1/2, and
the Lifshitz point at JL

2 = 0.520 36(6)J1.8

At the disorder points, the ground states of these two
quantum spin models share important features: the system
is gapped and an exact wave function is known. For both,
the momentum of the lowest excitations changes at a distinct
point. Yet, there are also important differences between the two
systems. While the S = 1 VBS state remains an exact state for
a chain with an odd number of spins, this is not the case for the
S = 1/2 J1-J2 chain at the MG point where no analytical
expression for the odd length ground-state wave function
is known. Moreover, the odd length J1-J2 chain is gapless
in the thermodynamic limit within the STot = 1/2 subspace,
and a large spin gap exists. The onset of incommensurability
effects for odd length chains must then be quite distinct from
the onset in even length chains. Here, we show that this is
indeed the case. While the disorder point remains unchanged,
the nature of the Lifshitz point, JL

2 � 0.538, is rather dif-
ferent. At JL

2 , a sequence of level crossings starts, changing
the ground-state momentum away from k = π/2. Although the
correlation length remains small, the change in ground-state
momentum induces pronounced oscillations directly in the
on-site magnetization as well as the entanglement entropy.
The modulations in the on-site magnetization are potentially
observable in experiments. This scenario is reminiscent of a
real Lifshitz transition10–13 in which the ground state becomes
modulated. The scaling of the entanglement entropy at Lifshitz
transitions recently has been the subject of interest.14,15

The S = 1/2 J1-J2 antiferromagnetic (AF) spin chain is
one of the simplest frustrated Heisenberg spin models, but it
has a rich phase diagram. The system undergoes a transition16

from a gapless Luttinger liquid to a dimerized phase at a
critical value of J c

2 = 0.241167J1.17–19 For even length chains,
the ground-state wave function at the MG point J2 = J1/2
is known to be formed by nearest-neighbor dimers.9,20,21
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FIG. 1. (Color online) The odd length J1-J2 chain. Two different
dimerization patterns are separated by a soliton.

It is twofold degenerate, corresponding to the two possible
nearest-neighbor dimerization patterns, indicated in Fig. 1. As
is evident from Fig. 1, an unpaired spin, a soliton22,23 can act as
a “domain wall” and separate regions of different dimerization
patterns. In the Luttinger liquid phase, unpaired spins are more
commonly called spinons since they do not act as domain
walls. Spin excitations in the even length chain correspond to
introducing two solitons, and it is known24 that in the vicinity
of the MG point, the solitons do not bind and a large spin
gap of � = 2�sol (at the MG point �sol/J1 = 0.1170(2))24

exists. The spin gap for even length chains is known to remain
sizable25,26 beyond JL

2 . The presence of a large soliton mass
�sol renders variational calculations based on a reduced Hilbert
space consisting of soliton states very precise;22,23 a fact that
we shall exploit here.

In contrast, for odd length chains it is not possible for the
chain to be fully dimerized and the ground-state wave function
is not known for any value of J2. An S = 1/2 soliton that
effectively behaves as a free particle27 is always present in the
ground state and gives rise to gapless excitations. Depending
on the quantity in question, odd and even length chains can
show very different behavior. Under open boundary conditions
(OBC), this has, for example, already been seen in the on-
site magnetization,24 the entanglement entropy,28,29 and the
negativity.30 As mentioned above, here we focus on odd length
chains.

While it is possible to perform highly precise density matrix
renormalization group (DMRG) calculations well beyond the
onset of incommensurability for even chains,25,26 the sequence
of level crossings that we encounter for odd length chains for
J2 > JL

2 significantly restrains the usefulness of the DMRG
technique in a large region of parameter space for J2 > JL

2 .
Fortunately, using the picture of Shastry and Sutherland,22 it
is possible to quite efficiently perform very precise variational
calculations for both open and periodic boundary conditions
(PBC). Here, we mainly present results of such variational
calculations and supplement them with DMRG results.

A number of spin-Peierls compounds, which to some extent
realize the J1-J2 spin chain, have been identified. One of the
most well known is CuGeO3.31 In these materials, impurities
often cut the chains at random points. Therefore both odd and
even length chains are present. A particular point of focus
has been the study of S = 1/2 solitons32–35 in these systems.
Thus our results might be directly verifiable if materials with
sufficiently large J2 > Jd

2 can be found.
The outline of the paper is as follows. In Sec. II, the

variational approach is described. Section III begins with
a presentation of our DMRG results for the correlation
functions, correlation lengths, and the structure factor. In
Sec. III A, we discuss our variational results for the J1-J2

with periodic boundary conditions and show the change in

ground-state momentum developing at the Lifshitz point.
Section III B contains variational and DMRG results for the
on-site magnetization and level crossings occurring with open
boundary conditions. Variational and DMRG results for the
entanglement entropy for a range of J2 for odd length chains
(OBC) are presented in Sec. IV and contrasted with results for
even length chains (OBC). Finally, estimates for the location
of the Lifshitz point are presented in Sec. V.

In the following, we shall take J1 ≡ 1. This leaves us with
only one parameter J2 that governs the properties of the system.

II. THE VARIATIONAL METHOD

Most of the results presented in this paper were generated
using variational calculations,22,23,28,30,36 i.e., the results were
obtained by minimizing the expectation value of the Hamilto-
nian within a reduced Hilbert space:

〈H 〉 = (ϕ|Hϕ)

(ϕ|ϕ)
, (2)

where

ϕ =
∑

cjϕj (3)

and the minimization is done with respect to the cj . To get
a good estimate of the true ground state of the system, it is
necessary that the ground state has a sizable projection onto
the subspace one diagonalizes in. The quality of the result
of a variational calculation thus depends very strongly on
the choice of subspace. Often one has to rely on physical
insight and intuition to choose well. For the J1-J2 model,
which we consider, the selection of an appropriate subspace is
straightforward as long as one stays in the dimerized phase. In
contrast, in the Luttinger liquid phase, selecting an appropriate
subspace seems intractable.

The first variational calculations on the J1-J2 model were
done in a space that we in the following shall call R0.22,23

It is spanned by the states in which there are domains that
have one of the two ground-state configurations of the MG
chain and which are separated by one soliton. Examples can
be seen in Figs. 1 and 2. The arrows in Fig. 2 serve to fix
the phase of the dimers that make up the ground state. Our
convention is such that if the arrow goes from site i to site
j , the spins are in the state: 1√

2
(|↑〉i |↓〉j − |↓〉i |↑〉j ). For a

chain with an odd number of sites, a set of single soliton states
can be generated by leaving the chain maximally dimerized
and taking the remaining site to be in the Sz=1/2 state. For
a chain with open boundary conditions, the soliton can only
reside on every second site. The dimension of this variational

(a)

(b)

FIG. 2. Two variational states used in the calculations within R0

for a chain with an odd number of sites. The arrows between sites are
used to fix the phase of the dimers (see main text).
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(a)

(b)

FIG. 3. Two variational states used in the calculations within R1

for a chain with an odd number of sites. The arrows between sites are
used to fix the phase of the dimers (see main text).

subspace is then D = (N + 1)/2. We use N to denote the
length of the chain. For calculations on odd length chains
with periodic boundary conditions, it is necessary to allow
a nearest-neighbor dimer across the boundary and to let the
soliton cross the boundary by going from site N to site 2. In
this case, R0 has dimension N and incorporates states with the
soliton at every site with the remaining spins paired in nearest
neighbor dimers. (For odd N and PBC, it becomes difficult to
distinguish the two dimerization patterns since they twist into
each other at the boundary. Still, the soliton clearly denotes a
domain wall between the two patterns.)

To improve upon R0, it is natural to act with the Hamiltonian
onto the space as doing this repeatedly generates a space that
contains the ground state if the starting space had any overlap
with and all symmetries of the ground state. It was shown
that acting onto R0 with the Hamiltonian only once is at
the MG point already enough to make the calculation almost
exact.23 For the J1-J2 model with J2 	= 0.5J1, the linearly
independent states generated by acting with the Hamiltonian
onto R0 fall into three classes, each of which corresponds
to a variational subspace. (1) The variational space R0 itself.
(2) The variational space R1 which is spanned by states in
which sites to the left and right of the soliton are connected by
a valence bond. Pictorial representations of example states are
shown in Fig. 3. (3) The variational space R2 which is spanned
by states in which two neighboring sites are in a valence bond
with their next-nearest neighbor. These states are generated by
the action of the nearest-neighbor-terms and the next-nearest
neighbor terms in the Hamiltonian on adjacent dimers in the
states in R0. Pictorial representations of example-states are
shown in Fig. 4. In the case of the MG chain, J1 and J2 are

(a)

(b)

(c)

FIG. 4. Three states that are generated by acting with the
Hamiltonian onto R0. The arrows between sites are used to fix the
phase of the dimers (see main text).

balanced in such a way that these states are not generated
because they occur with a weight of 2J2 − J1.

The number of states in R0 and R1 scales linearly with
the size of the chain, whereas the number of states in R2

scales quadratically. Due to computational cost, we have thus
not found it practical to use the union of the three as the
variational subspace for chains longer than 101 sites. We
performed calculations using the union of R0 and R1 (in the
following called Zs) for chains up to 1001 and the union of all
three (in the following called Zb) for a chain of 101 sites. In
this way, we could go to long chains and also check the validity
through the comparison at N = 101. We found that while there
were small quantitative differences between calculations done
in Zs and Zb, the overall qualitative features of the results
where the same. Therefore we chose to use Zs , the union of
R0 and R1, or just R0 for the variational calculations shown in
this paper.

All the states in these spaces have STot
z := ∑

i S
i
z = 1/2.

We could equally well have worked in the STot
z = −1/2 space.

States of higher total spin are of little importance to the low-
energy physics since they contain more solitons and are thus
gapped by at least twice the soliton mass �sol. Since �sol

is sizable24 in the regime of our study, such states can be
disregarded for both odd and even N .

A variational description of a chain with an even number
of sites can be done along the same lines. Again, the states
are chosen in order to leave all but two spins in the favored
dimerized state. In this way, one can gain insight into the
low-energy singlet as well as triplet excitations by choosing
the two spins to be in singlet or the triplet states, respectively.

If one considers a subspace with an orthogonal basis, one
can just diagonalize the Hamiltonian. While an easy way to
orthogonalize R0 is known,27 this is generally not true for other
subspaces. Importantly, for R1, no such method is known. We
thus have to solve the generalized eigenvalue problem given
by

H 
ϕ = λ B 
ϕ , (4)

where Hij := (ϕi |Hϕj ) and Bij := (ϕi |ϕj ). Such generalized-
eigenvalue problems can be solved numerically by standard
routines. We calculate H and B by evaluating their defining
expressions. This is possible because for valence-bond states
the action of H on them as well as the overlap between them
can straightforwardly be calculated in an automated manner.
How to do all other calculations necessary to get the results
presented in this paper has already been described in an earlier
publication.30 We took the coefficients cj in Eq. (3) to be real.
Also for PBC, the resulting wave function is not an eigenstate
of the translational operator, which would have required the
use of complex cj ’s. Effectively, we obtain states that are
linear combinations of translationally invariant states with k

and −k, degenerate in energy. While this has no bearing on
the obtained energies, it does affect real-space quantities like
the on-site magnetization and entanglement, which cannot be
translational invariant.

III. THE INCOMMENSURATE BEHAVIOR

Previous numerical studies of disorder points in S =
1/28,17,25,26,37,38 and S = 16,7,39–41 quantum spin chains have
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concentrated on the behavior of even length chains. For the
S = 1/2 J1-J2 chain, it has been shown that the disorder point
of this one-dimensional quantum system can be understood as
a 1 + 1 dimensional classical disorder point. In particular, it
was shown42–44 that in the “commensurate” region of the phase
diagram the correlation function behaves asymptotically, with
r � ξ , as

〈SiSi+r〉 ∼ (−1)r
e−r/ξ

√
r

, (5)

and in the “incommensurate” region of the phase diagram as

〈SiSi+r〉 ∼ (−1)r
e−r/ξ

√
r

cos [(q − π )r + φ] . (6)

Here, q is the wave vector of the incommensurate correlations
and φ a phase shift. However, right at the disorder point
separating commensurate and incommensurate correlations
the correlation function is asymptotically purely exponential:

〈SiSi+r〉 ∼ (−1)re−r/ξ . (7)

For these quantum spin models it appears that this purely
exponential behavior is in part connected to the fact that
the ground state is an exact nearest-neighbor dimer state.
Interestingly, as we shall see, the correlation functions at the
MG point for odd length chains display the same behavior
in the absence of a unique nearest-neighbor dimer ground
state. Furthermore, it is known42,43 that as the disorder point is
approached from the commensurate side, the derivative of the
correlation length with respect to the driving coupling becomes
infinite, while it is finite on the incommensurate side. It is also
known that the disorder point has special degeneracies that
are exact for any system size N . For instance, for the J1-J2

chain with periodic boundary conditions and an even length,
the two dimerization patterns are degenerate at the disorder
point while their symmetric and antisymmetric combinations
are split with an exponentially small gap away from this point.

We now present our results for the incommensurate effects
in odd length S = 1/2 J1-J2 chains. Our first point of focus
is the location of the disorder point. As stressed above, when
N is odd, the nearest-neighbor dimer wave function is not an
exact solution,22 and there are also no special degeneracies.
There is therefore no reason to expect that the behavior of
the correlation length at the MG point is in any way unique.
However, as we shall see, it is unique indeed. DMRG results for
C(r) = 〈SiSi+r〉 for an open chain with N = 201 are shown
in Fig. 5(a) for J2 = 0.5 and 0.51. The correlation function
follows a purely exponential decay at the MG point, J2 = 0.5,
with a finite correlation length:

ξMG ∼ 2.8 (odd N ). (8)

Distant spins in odd chains are correlated even at the MG point,
because the soliton is present in the chain. The correlations can
be thought of as correlations in the soliton wave function.
Secondly, as can be seen in Fig. 5(a), incommensurate
correlations are clearly present for J2 = 0.51. They were
present in every calculation we performed with J2 > 0.5. We
conclude that the disorder point remains at J2 = J1/2, albeit
with a finite correlation length compared to the case of even
N where the correlation length is nominally zero.

FIG. 5. (Color online) (a) The spin-spin correlation function
C(r) = 〈SiSi+r〉 for a chain with 201 sites and J2 = 0.5,0.51. The
correlation length (b) and the static structure factor (c) for chains
with an odd (201) or an even (200) number of sites. The data were
obtained with DMRG. Open boundary conditions were employed
and m = 256 states kept. For both, odd and even length chains,
the correlation length displays a minimum at the MG point. The
static structure factors of odd and even are shown for J2 = 0.51 and
J2 = 0.57. The maximum remains at q = π until the Lifshitz point
is crossed (not shown in figure).

The precise behavior of the correlation length around the
disorder point J2 = 1/2 appears to have been studied neither
for even length nor for odd length chains. Results for larger
J2 > 0.6 are available for even N .26 By fitting DMRG results
for chains of 200 and 201 sites to the forms of Eqs. (5) and (6)
we have determined ξ as a function of J2 for both even and odd
N [see Fig. 5(b)]. The results for the even and the odd length
chain are remarkably similar. At the disorder point, there is a
discontinuity in the slope of ξ and on the commensurate side
the slope of ξ approaches −∞. We found that close to the
disorder point in the commensurate region combined forms
like |C(r)| ∼ C exp(−r/ξC)/

√
r + D exp(−r/ξD) with ξC >

ξD fit the data better than the single forms of Eqs. (5) and (6)
because the dominant short-ranged correlations change at the
disorder point. The results presented in Fig. 5 do not use such
combined forms. We also note that for odd N and for a range of
J2 > 0.538 it becomes very difficult to obtain reliable DMRG
results due to the appearance of many almost degenerate states.

The structure factor for even chains has been studied in
some detail previously,8,17 and the Lifshitz point has been
located, JL

2 = 0.520 36(6)J1.8 Our DMRG results are shown
in Fig. 5(c). In agreement with previous studies for even N ,
we observe that the maximum in the structure factor remains
at q = π for J2 = 0.51 but has clearly moved away from
π at J2 = 0.57. This is clearly also the case for odd N .
Due to the above mentioned difficulties in obtaining reliable
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DMRG results for odd N and J2 > 0.538, we have not been
able to determine the precise point where the peak in the
structure factor is displaced from q = π . Using the variational
techniques outlined above, it is possible to understand in detail
what happens close to J2 � 0.538.

A. Variational results in periodic boundary conditions

We now turn to a discussion of our variational results
obtained using the method outlined in Sec. II. We begin
by focusing on the case of odd length chains and periodic
boundary conditions. The case of open boundary conditions
will be the subject of the next section. The results shown in
this subsection were obtained using the space R0 (see Sec. II),
consisting of all single soliton states with STot

z = 1/2.
At the MG point, the spectrum of the J1-J2 model has been

studied extensively. The feature that is most important to us
is the low-lying dispersive line that is well separated from the
continuum24 and roughly follows a cosine as found in previous
variational studies:22,45

E(k) = 1
8 [5 + 4 cos(2k) − 3N ]. (9)

Our variational method reproduces this estimate and agrees
well with the low-energy data of an exact diagonalization of
a chain of 23 sites (see Fig. 6). It may be surprising that
the minimum of the dispersion relation is not at k = π but
at k = π/2. This is a natural consequence of the effective
doubling of the unit cell that occurs because the action of the
Hamiltonian displaces the soliton by two sites.

One of the strengths of the variational method is that within
the limits of the approximation it is possible to easily access
not only the ground state but also the entire energy spectrum
within the subspace of STot

z = 1/2 states. Computing the
spectrum through the transition region reveals very surprising
behavior (see Fig. 7). All the states are twofold degenerate
corresponding to the energetically degenerate k and −k. As
one approaches the transition, the excited states linearly move
closer and closer to the ground state. At the Lifshitz point
JL

2 ≈ 0.53, the energy of the first excited state crosses the

FIG. 6. (Color online) Comparison of the estimate by Shastry
and Sutherland,22 the variational method and exact diagonalization
(ED) data.24 Data were taken for a chain with 23 sites and J2 = 0.5.
Only the lowest energy of a spin 1/2 excitation for every momentum
is shown. The deviations to ED occur at higher energies where the
dispersive mode enters the continuum and the variational calculation
is only of limited value.

FIG. 7. (Color online) The excitation spectrum with periodic
boundary conditions in the variational subspace with STot

z = 1/2. The
energies of the first few excited states are shown. The ground-state
energy was set to zero. The energies of the excited states approaches
the ground-state energy until, at J2 = J L

2 , level crossings start to
occur. All energy levels are doubly degenerate. The data were taken
for a chain with 401 sites.

ground-state energy. This level crossing marks the first shift in
the ground-state momentum and is followed by a series of other
level crossings at larger J2 that further shift the ground-state
momentum. Clearly, the presence of the many adjacent level
crossings hinders the effectiveness of DMRG calculations.

This is in stark contrast to the spectrum of even length
chains—the ground state of even length chains is exactly
twofold degenerate at the MG point for any N , whereas
for larger J2, the symmetric and antisymmetric combinations
are split with an exponentially small gap in N . The excited
states are separated from these two states by a large gap
of approximately 2�sol. This gap persists throughout the
transition region and no level crossings are observed.17,26

It is very instructive to look at how the dispersion relation in
Fig. 6 evolves with J2. As can be seen in Fig. 8, the dispersion
relation changes its shape when J2 is increased. The minimum
at k = π/2 first becomes flat very close to J2 = 0.53 and then
becomes a local maximum. In the process, two minima are

FIG. 8. (Color online) Dispersion relation for varying J2. The
data were taken for a chain with 401 sites. To avoid cluttering,
the dispersion relations for the smaller two J2 were shifted. As J2

is increased, the minimum first flattens and then turns into a local
maximum.
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FIG. 9. (Color online) The second-order coefficient of the dis-
persion relation c changes sign [(a) and (b)], while the forth-order
coefficient d stays positive (b). The data are results off a fit to data of
the kind shown in Fig. 8. The dotted horizontal line in (a) separates
positive from negative values.

created, which move away from k = π/2 with increasing J2.
The ground-state momentum is then clearly changing away
from k = π/2 beyond J2 = 0.53 and we may identify the
point where this happens with a real Lifshitz transition11,46–50

as opposed to the corresponding point in the S = 1 bilinear
biquadratic chain where the ground-state momentum remains
unchanged and the shift is in the excited magnon dispersion.
Due to the shift in the ground-state momentum, we conclude
that the maximum of the structure factor will shift away from
k = π at the same point. This is consistent with the data
in Fig. 5. We therefore in the following refer to this point
as the Lifshitz point JL

2 . The precise behavior of the dispersion
relation close to JL

2 is analyzed in Fig. 9. For a range of J2,
we fitted the dispersion relation to the form7

E(k) = E(k0) + c

2
(k − k0)2 + d

24
(k − k0)4 (10)

and confirmed that the second-order coefficient c changes its
sign at a J2 close to 0.53, while the fourth-order coefficient d

stays positive (see Fig. 9). This behavior is typical of a Lifshitz
transition and if the coefficient c = v2/�sol is associated with
a velocity v, the Lifshitz point signals the vanishing of this
velocity.7

The variational calculations with periodic boundary condi-
tions presented in this section were limited to the subspace R0

described in Sec. II. This basis only includes nearest-neighbor
valence bonds and it is quite noteworthy that the physics of
the Lifshitz point along with the associated level crossings are
captured within this simple basis set. However, as we discuss
in Sec. V, we do not expect the precise location of the Lifshitz
point to be accurately determined within R0.

B. Open boundary conditions

In materials that realize the J1-J2 spin chain, impurities
are always present. They often act as nonmagnetic impurities
effectively breaking the linear chains into finite segments.
The use of open boundary conditions is therefore closer to
the experimental situation than the use of periodic boundary
conditions. Furthermore, it is natural to expect half of the

FIG. 10. (Color online) The on-site magnetization at a range of
values of J2 for N = 601 sites. Additional structure appears beyond
J L

2 . For J2 = 0, J c
2 , 1, and ∞ DMRG data (obtained with m =

256 states kept) are shown (red). For the remaining J2 variational
calculations are shown (blue).

chain segments to have an odd number of sites. In this
section, we therefore focus on odd length chains with open
boundary conditions. In particular, we describe the change that
switching from periodic to open boundary conditions causes.
The variational results shown in this section were obtained
using the space Zs (see Sec. II).

One quantity that very directly shows the qualitative
difference between PBC and OBC is the ground-state on-site
or local magnetization 〈Sz

i 〉, which is of importance to, for
instance, NMR measurements.32,33 Figure 10 shows the on-site
magnetization at eight different values of the frustrating
interaction J2 between J2 = 0 and J2 = ∞ in a chain of
601 sites. Figures 10(c)–10(f) show variational calculations
through the Lifshitz point JL

2 where DMRG calculations are
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less effective, the remaining results, Figs. 10(a), 10(b), 10(g),
and 10(h), are obtained with DMRG.

a. The Luttinger liquid phase (J2 � J c
2 ). The transition to

the dimerized phase occurs at J c
2 , see Fig. 10(b). At this point,

as well as throughout the Luttinger liquid phase (J2 < Jc
2 ), the

on-site magnetization agrees very well with the prediction for
the on-site magnetization in the ground state with STot

z = 1/2
from conformal field theory:51

〈
Sz

i

〉 = C(−1)i
√

π

2N
sin

(
πi

N

)
+ 1

2N
, (11)

where C is a constant. In this phase, 〈Sz
i 〉 increases with the

characteristic behavior 〈Sz
i 〉 ∼ √

i for small i close to the
boundary.

b. Dimerized phase with J2 < JL
2 . Once the dimerized

phase is entered, 〈Sz
i 〉 is drastically altered. The on-site

magnetization roughly follows the behavior of a massive
particle in a box28 with 〈Sz

i 〉 ∼ i2 close to the boundary. This
behavior is visible at the MG point [see Fig. 10(c)]. As J2 is
increased beyond the MG point towards the Lifshitz point, JL

2 ,
the central peak sharpens [see Fig. 10(d)].

c. “Incommensurate” phase J2 > JL
2 . At the Lifshitz

point, there is another dramatic change in 〈Sz
i 〉: additional

maxima develop and the magnetization is modulated by an
oscillating function [see Fig. 10(e)]. Upon increasing J2

further, more such maxima form and the wavelength of the
modulation decreases [see Figs. 10(f) and 10(g)]. If J2 is
fine-tuned for a given N , it is possible to find a point where
two maxima occur in 〈Sz

i 〉, then three maxima, and so forth.
It is natural to expect this behavior based on the results

for PBC presented in Sec. III A. The local magnetization is
effectively modulated with the momentum of the ground state.
The running wave found under periodic boundary conditions is
converted to a standing wave under open boundary conditions.
Then, as the momentum of the ground states changes with
growing J2, the wavelength of the modulation shrinks. Finally,
in Fig. 10(h), we show results for J2 → ∞. In this limit, the
odd length chain with N sites is split into two chains with
(N − 1)/2 and (N + 1)/2 sites, one of which will have an even
number of sites and hence 〈Sz

i 〉 ≡ 0. The on-site magnetization
of the other chain can be found by calculating 〈Sz

i 〉 for a chain
with J2 = 0 of the same length. The results shown in Fig. 10(h)
were obtained in this way, i.e., from data for a chain with
N = 301 and J2 = 0 that was then interspersed with zeros
from the half of the chain that had an even number of sites.

To estimate the wavelength of the incommensurate mod-
ulation, we make use of the fact that, if our system had
translational invariance, the distance between maxima in the
on-site magnetization would be equal to half of the wavelength,
as indicated in Fig. 10(e). Thus, by calculating the mean
distance of the central maxima, we are able to determine an es-
timate for the wavelength of the incommensurate modulation.
The inverse of this quantity can then be used to calculate the
wave number, qest = 2π/λest. In Fig. 11(a), we show how qest

varies with J2 for four chains whose length ranges from 301
to 1001 sites.

Since the incommensurate behavior can only be seen if the
wavelength is shorter than the system, it starts later in smaller
chains. Aside from small deviations, which can be attributed

FIG. 11. (Color online) The wave number qest against J2. Data
are shown for four chains of different length (a) and with the result
of a fit qest = 1.2062 	(J2 − 0.528)(J2 − 0.528)0.4806 for a chain of
601 sites (b).

to finite size effects, the wavelength does only depend on
J2 and not the length of the chain [see Fig. 11(a)]. In the
limit of infinite J2, the next-neighbor interaction J1 can be
neglected and the chain be partitioned into two subchains that
do not interact. As mentioned, the J1-J2 model in this limit
approaches two uncoupled chains with intrachain coupling J2.
The wavelength of the incommensurate behavior in this limit
reaches its minimum with λ = 4 lattice spacings.

For J2 > JL
2 , one expects the wave number q to behave as

q ∝ (J2 − JL
2 )α , where 0 < α < 1.6 In a study of correlations

functions around the disorder point in the S = 1/2 J1-J2 model
with an even number of sites and modified interactions on the
edge of the chain, the exponent was reported to have been
calculated to be α = 1/2.52 This is consistent with calculations
on classical Lifshitz points,11,46 which at the mean-field level
find α = 1/2. In the present case, where the ground-state
momentum is changing, one might also expect corrections
to the mean-field value of α = 1/2 as described in Refs. 11
and 46.

Our calculations indeed confirm that qest(J2) follows a
power law with exponent smaller than 1 [see Fig. 11(b)].
The line in Fig. 11(b) is a fit of the three-parameter function
f (x) = c1	(x − c2)|x − c2|α , where 	(x) is the Heaviside
step function, to the blue data points also shown in the plot.
Using this form, we find a value for the exponent α = 0.4806.
The data in Fig. 11 show steplike features. The cause of
the steps is the introduction of new maxima: every time
a new maximum appears, qest jumps abruptly in order to
accommodate the new maximum and there is a step. Between
the appearance of new maxima, the maxima that are present
move closer together and qest increases smoothly. As one
increases the system size, this effect affects the mean distance
between maxima less and thus leads to less pronounced steps.
Due to the different range of J2 values, the steplike features
explained above are more pronounced in Fig. 11(b) than in
Fig. 11(a). Because of the inaccuracies, the steplike features
introduce to the fitting procedure, we cannot comment on
whether or not the corrections mentioned above are necessary.

While the on-site magnetization could relatively easily be
understood from the results obtained with PBC, this is not
the case for the energy spectrum. To the left of the transition

094415-7

Ph.D. Thesis — Andreas Deschner — McMaster University — Physics and Astronomy

65



ANDREAS DESCHNER AND ERIK S. SØRENSEN PHYSICAL REVIEW B 87, 094415 (2013)

FIG. 12. (Color online) The excitation spectrum with open
boundary conditions in the variational subspace with STot

z = 1/2. The
energies of the first few excited states are shown. The ground-state
energy was set to zero. The values at which the scaling with N is
studied in Fig. 14 are indicated by dashed vertical lines. The data
were taken for a chain with 601 sites.

(J2 < JL
2 ), the spectrum for OBC (see Fig. 12) looks exactly

like the spectrum for PBC (see Fig. 7)—yet there is an
important difference: the spectrum for OBC is not degenerate.
Introducing the boundary splits the degenerate states. On
the other side of the transition (J2 > JL

2 ), the behavior
of the energy of the first excited state also looks familiar:
it hits the ground-state energy, grows, approaches it again, and
another level crossing occurs. Repeated level crossings of just
the two states follow. Higher-excitation levels, however, do not
cross many other levels as they do for PBC. They approach the
ground state, then turn around and form a pair with the state
they would have been degenerate with under PBC. The two
states exhibit a repeated pattern of intertwining level crossings,
while their mean energy difference to the ground state grows.
We do not know of an intuitive way of understanding the
spectrum for OBC from the spectrum with PBC. Modifying
the couplings at the boundary of the chain by a multiplicative
factor of λ and varying λ between 0 and 1, we have studied the
crossover from PBC to OBC. A low-energy spectrum similar
to the one for OBC is observed until λ ≈ 0.9.

It is reasonable to ask if the Lifshitz point is a well defined
point in the spectrum. In order to answer this question, we show
results in Fig. 13 for chains of length 301 and 451 sites for a
range of J2 close to JL

2 . As can be clearly seen, the turnarounds
of the higher energy levels occur much closer to the first level
crossing of the ground state for N = 451 than for N = 301.
In the thermodynamic limit we expect the turnarounds for all
higher lying levels to occur at JL

2 .
We next focus on the scaling of the energy levels with N .

In Fig. 14(a), we show data for N2En taken at J2 = 0.526, to
the left of the transition as indicated in Figs. 12 and 13. As can
be seen, it converges to a constant value indicating that for this
value of J2 En ∝ N−2. For the first excited state, this behavior
is apparent for quite short chains already and it seems plausible
that for higher-excited states longer chains would lead to the
same decay proportional to N−2. This scaling is not surprising
since the soliton behaves like a massive particle in a box. We
therefore expect the low-energy spectrum to be approximated

FIG. 13. (Color online) Spectrum with open boundary conditions
for chains of 301 and 451 sites. The values at which the scaling with
N is studied in Fig. 14 are indicated by dashed vertical lines.

by h̄2k2/(2�sol) with k = πn/2N , n = 1,2, . . ., yielding the
expected scaling of the energies as N−2.

In Fig. 14(b), we show data taken on the other side of
JL

2 at J2 = 0.531 (again indicated in Fig. 12 and 13). For
the smallest N shown, the higher excited states still show
signs of the transition at this value of J2. For short chains the
second, third, forth, and fifth excited states thus have minimum
in Fig. 14(b). For chains with more than roughly 160 sites,
we see of intertwining pairs of states familiar from Figs. 12
and 13. The average energy of the pair at big N also scales
proportionally to N−2. We therefore conclude that sufficiently
far away from the transition point, for the first few energy
states, �En ∝ J2/N

2.
In order to study the scaling of the spectrum at the Lifshitz

point JL
2 , we focus on the minimum in the second excited

state. Although this minimum occurs at slightly different J2,
as N is varied, it serves as the best possible definition of
an excited energy scale at the Lifshitz point. Specifically, we
define the minimal energy difference of the ground and the
second excited states as Emin

2 = minJ2 (E2 − E0). Our results
for Emin

2 are shown in Fig. 15. As can be clearly seen in this

FIG. 14. (Color online) The energy scales proportionally to N−2.
Plot of N 2�En to the left of the transition (a) and to the right of the
transition (b) for the first five excited states.
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FIG. 15. (Color online) The energy at which the second excited
state turns around goes to zero faster than N−2. The value of J2 of
Emin

2 was found up to �J2 = 10−5. The resulting uncertainty of the
value of the minimum energy is smaller than the size of the symbols
in the plot.

figure, Emin
2 goes to zero faster than N−2 violating the simple

scaling found elsewhere.
We now turn to an estimate of the location of JL

2 within the
variational approach. The level crossing of the first excited and
the ground state allows for an easy way to define the value of
JL

2 for a given N . As one could already see in Figs. 12 and 13,
JL

2 varies slightly with the length of the chain. Our results are
shown in Fig. 16 for chains out to N = 701. The main panel in
Fig. 16 shows that JL

2 converges to approximately JL
2 = 0.528

as one increases the length of the chain.
The value of J2 at which the second excited state has its

minimum also approaches JL
2 . To show this, we use the value

of J2 at which the nth state reaches its first minimum for a
given N . We call this quantity Cn. The inset in Fig. 16 shows
�C21 = C2 − JL

2 . As can be seen, this quantity approaches 0
and the minimum for big N thus lies at the Lifshitz point.

FIG. 16. (Color online) J L
2 as a function of the length of the chain.

(Inset) The difference between J L
2 and the C2 at which the minimum

of the second excited state occurs. All values were determined up to
�J2 = 10−5. The resulting uncertainty of the value of the minimum
energy is smaller than the size of the symbols in the plot and causes
deviations from very smooth behavior.

IV. INCOMMENSURATE BEHAVIOR IN THE
ENTANGLEMENT ENTROPY

The scaling of the entanglement entropy at a (quantum)
Lifshitz transition has recently been the subject of interest.14,15

In free fermion models, analogous to the spin chain model
discussed here, the Lifshitz transition is associated with
a change in the topology of the Fermi surface. In one
dimension, new Fermi points appear at the Lifshitz transition
and, analogously, new patches appear in higher dimensional
models. If one associates a chiral conformal field theory with
each patch, it can be argued53 that, when the number of points
(patches) increases by a factor K , the entanglement should
be multiplied with the same factor K . For a free fermion
model with next-nearest-neighbor hopping, t2, one expects
the number of Fermi points to double at the Lifshitz transition
tL2 = 1/2 at half-filling with a corresponding doubling in the
entanglement entropy. This behavior is well confirmed in
numerical calculations.15

In this section, we discuss our results for the entanglement
entropy across the Lifshitz point in the odd length J1-J2

quantum spin chain which is the quantum spin analog of
the model considered in Ref. 15. We study the entanglement
in terms of the von Neumann entanglement entropy of a
subsystem A of size l and reduced density-matrix ρA defined
by54,55

S(l,N ) ≡ −Tr(ρA ln ρA) , (12)

where N again stands for the total system size. We consider
exclusively open boundary conditions.

FIG. 17. (Color online) The entanglement entropy of a bipartition
of an odd chain. The data were taken for chain of 301 sites and the
variational subspace R0 (see Sec. II) was used.
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If one uses the restricted space R0, which was introduced in
Sec. II, as the variational subspace, one can also calculate
the entanglement entropy using the method employed in
this paper.28 Away from MG and Lifshitz points, where
the variational method is not reliable, we complement the
variational results with DMRG calculations.

We first discuss the variational results for odd length chains
close to the Lifshitz point shown in Fig. 17 for N = 301. The
entanglement entropy at the MG point for the odd length chain,
shown in Fig. 17(a), has previously been discussed in detail.28

Since the entanglement entropy is very directly connected to
the wave function of the state, drastic changes of the wave
function should also be present in the entanglement entropy
when the Lifshitz point is reached. This is clearly the case as
can be seen in Fig. 17. As the Lifshitz point, JL

2 , is reached, the
entanglement entropy develops plateaus [see Fig. 17(c)]. As
J2 is increased more plateaus appear [see Fig. 17(d)]. For the
free fermion model studied in Ref. 15, analogous oscillations
in the entanglement entropy are observed beyond t2 > 1/2.
Because a different subspace was used in the previous parts of
this paper, the transition begins at J2 ∼ 0.529, which is slightly
higher than J2 ∼ 0.528, which could be inferred from Fig. 13.

For an even length system, no such plateaus are visible [see
Fig. 18(a)]. As J2 → ∞ the entanglement increases towards

(a) Even number of sites

(b) Odd number of sites

FIG. 18. (Color online) The entanglement entropy of a bipartition
of an even chain (200 sites) (a) and an odd chain (201 sites) (b). The
data were obtained using DMRG with m = 256 states kept.

that of two independent gapless Heisenberg chains as it must.
A similar increase is seen for an odd number of sites but
with pronounced signatures of the incommensurability [see
Fig. 18(b)].

V. THE TRANSITION POINT

The numerical value of JL
2 for the Lifshitz point depends

not only on the length of the chain but also on the basis set that
one uses in the variational calculation. While this is a small
concern when one looks at qualitative features, it is of course
detrimental if one is interested in a precise estimate of the
Lifshitz point. Just using the different basis sets introduced in
Sec. II, this is evident. Using the smallest basis, R0, for a chain
with N = 301 sites, we obtained JL

2 ≈ 0.5295 (see Fig. 17) for
the onset of oscillations in the entanglement. This is a slightly
bigger value than what was found in Fig. 13, JL

2 ≈ 0.528,
based on the calculations with the larger basis Zs .

DMRG can give us a more reliable estimate for JL
2 at

least for small chains. For a chain with 201 sites, we found
the first indications of incommensurate behavior in the local
magnetization at

JL
2 ≈ 0.538(1). (13)

We expect this estimate to depend on N in roughly the
same way as the variational estimate does in Fig. 16. If this
is the case, an eventual extrapolation to the N → ∞ limit
might change this estimate by 0.0005, which is smaller than
the uncertainty to which we have determined the point.

VI. CONCLUSION

We have studied incommensurability effects as they occur
in the odd length antiferromagnetic J1-J2 chain. Even though
no exact ground-state wave function is known at the MG
point, J2 = J1/2, this point is the disorder point with minimal
correlation length. The Lifshitz point JL

2 = 0.538J1 marks
the onset of significant modulations directly in the ground
state 〈Sz

i 〉 as well as a shift in the ground-state momentum. A
series of intertwining level crossings causing the shift in the
ground-state momentum starts at the Lifshitz point. The shift
in the ground-state momentum and the associated modulations
directly affect the entanglement entropy, which shows distinct
plateaus developing for J2 > JL

2 .
In realistic compounds with chain breaking impurities, one

would expect half the chain segments to be of odd length. The
experimentally well studied compound CuGeO3 has a J2 ∼
0.36J1 < J1/2.56 If compounds with a J2 in excess of J1/2
can be identified, it would be very interesting to experimentally
look for the odd length effects that we have detailed here. In
particular, the effects on the on-site magnetization shown in
Fig. 10 might be observable using NMR techniques or other
local probes.
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6U. Schollwöck, T. Jolicoeur, and T. Garel, Phys. Rev. B 53, 3304
(1996).

7O. Golinelli, T. Jolicoeur, and E. S. Sørensen, Eur. Phys. J. B 11,
199 (1999).

8R. Bursill, G. A. Gehring, D. J. J. Farnell, J. B. Parkinson, T. Xiang,
and C. Zeng, J. Phys.: Condens. Matter 7, 8605 (1995).

9C. K. Majumdar, J. Phys. C 3, 911 (1970).
10I. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).
11R. M. Hornreich, M. Luban, and S. Shtrikman, Phys. Rev. Lett. 35,

1678 (1975).
12Y. Blanter, M. Kaganov, A. Pantsulaya, and A. Varlamova, Phys.

Rep. 245, 159 (1994).
13Y. Yamaji, T. Misawa, and M. Imada, J. Phys. Soc. Jpn. 75, 094719

(2006).
14E. Fradkin, J. Phys. A 42, 504011 (2009).
15M. Rodney, H. F. Song, S.-S. Lee, K. Le Hur, and E. S. Sørensen,

arXiv:1210.8403.
16F. D. M. Haldane, Phys. Rev. B 25, 4925 (1982).
17T. Tonegawa and I. Harada, J. Phys. Soc. Jpn. 56, 2153 (1987).
18K. Okamoto and K. Nomura, Phys. Lett. A 169, 433 (1992).
19S. Eggert, Phys. Rev. B 54, R9612 (1996).
20C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1388 (1969).
21P. M. v. d. Broek, Phys. Lett. A 77, 261 (1980).
22B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 47, 964 (1981).
23W. J. Caspers, K. M. Emmett, and W. Magnus, J. Phys. A 17, 2687

(1984).
24E. S. Sørensen, I. Affleck, D. Augier, and D. Poilblanc, Phys. Rev.

B 58, R14701 (1998).
25R. Chitra, S. Pati, H. R. Krishnamurthy, D. Sen, and S. Ramasesha,

Phys. Rev. B 52, 6581 (1995).
26S. R. White and I. Affleck, Phys. Rev. B 54, 9862 (1996).
27G. Uhrig, F. Schönfeld, M. Laukamp, and E. Dagotto, Eur. Phys. J.

B 7, 67 (1999).
28E. S. Sørensen, M. Chang, N. Laflorencie, and I. Affleck, J. Stat.

Mech. (2007) P08003.

29I. Affleck, N. Laflorencie, and E. S. Sørensen, J. Phys. A 42, 504009
(2009).

30A. Deschner and E. S. Sørensen, J. Stat. Mech. (2011) P10023.
31M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. 70, 3651

(1993).
32Y. Fagot-Revurat, M. Horvatić, C. Berthier, P. Ségransan,
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This part of the thesis is about work that was done in order to develop novel worm algorithms
for a quantum Monte Carlo method called valence bond quantum Monte Carlo (VBQMC).
In addition to a publication about the algorithms, this part contains an explanation of how
VBQMC works and how its general scheme can be implemented in the 𝑆𝑧-basis.
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4. Worm algorithms for valence bond

quantumMonte Carlo

Andreas Deschner and Erik S. Sørensen:
Valence-Bond Quantum Monte Carlo Algorithms defined on Trees;
submitted to Physical Review E; pre-print: arXiv:1401.7592

Calculations: I performed all calculations.

Manuscript: I wrote the bulk of the manuscript and made all figures.
Erik S. Sørensen provided (partly substantial) edits, comments and
supervision.

In the publication that is the subject of this part, we show that, using the notion of a worm
travelling through a decision tree, intriguing algorithms can be developed for valence bond
quantum Monte Carlo.

4.1. Valence bond quantum Monte Carlo

In this section, I introduce the method that is the subject of the publication that is the topic of
this part. It is a quantum Monte Carlo method formulated solely in terms of valence bonds.
Thus, it is called valence bond quantum Monte Carlo (VBQMC).

The first publications using VBQMC were published by Shoudan Liang in the very
early nineties (see Liang [1990b,a]). These studies followed and made use of variational
calculations performed in the valence bond basis published in Liang et al. [1988]. The
method then laid dormant for many years until it was popularised by Anders Sandvik and
then systematically further developed – mostly also by Sandvik (see e.g. Sandvik [2005],
Sandvik and Beach [2007] and Sandvik and Evertz [2010]).

The unique features of VBQMC have been used in a number of very interesting studies.
One great example are studies of deconfined criticality (see Sandvik [2007]; Pujari et al.
[2013]). For those studies, a Hamiltonian was constructed that is perfectly suited for the use
of VBQMC. The Hamiltonian is made up of two parts: the usual 2D-Heisenberg Hamiltonian
on the square (Sandvik [2007]) or the hexagonal lattice (Pujari et al. [2013]), which favours
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Néel-order, and a term which favours a valence bond crystal. This term lends itself naturally
to be implemented with VBQMC. As the relative strength of the two terms is varied, the
system undergoes a quantum phase transition.

VBQMC was also used in studies of entanglement. It was used to calculate the valence
bond entanglement entropy. The valence bond entanglement entropy of two regions is
proportional to the expectation value of the number of valence bonds that is cross the border
of the two, a quantity that is computable with VBQMC. In Alet et al. [2007], it was proposed
as a good computable measure of entanglement. Its scaling with the size of the smaller
part of a bipartition was found to be different from the scaling of the von Neumann entropy
(see section 2.1) in Kallin et al. [2009], yet it still shows different behaviour for gapped
and gapless phases, making it potentially useful to detect phase transitions. The valence
bond entanglement entropy has been reformulated in terms of the 𝑆𝑧-basis. Thus, methods
without the sign problem can be used to calculate it for many frustrated systems (see Alet
et al. [2010]).

Furthermore, in Hastings et al. [2010], it was shown that VBQMC can be used to calculate
the Rényi entropy 𝑆2 (see section 2.1).

As was shown in Beach et al. [2009], a generalized version of VBQMC can be used for
𝖲𝖴(𝑁) symmetric Heisenberg Hamiltonians. For the Heisenberg Hamiltonian on the square
lattice, a phase transition at 𝑁 = 4.57(5) between a Néel-ordered and a bond ordered state
was found.

4.1.1. How it works

VBQMC is a Monte Carlo method that can be used to calculate groundstate properties
of Heisenberg models that are free of the sign problem (i.e. not frustrated) and have a
groundstate that is a total spin singlet. It works by projecting the groundstate out of a trial
state. Therefore, it is not a finite temperature but a 𝑇 =0 method.

In this section, I introduce VBQMC in a way that is directly applicable to systems with
any spin. This approach is novel and has yet not been published. VBQMC can and has also
been used on systems with 𝑆 ≠ 1/2 by mapping the original system onto a bigger system
with 𝑆 = 1/2. Then, the usual spin ½ algorithm can be used. An 𝑆 = 1 chain of length 𝐿
is then for example mapped into a 𝑆 = 1/2 system of size 2 × 𝐿 (see Liang [1990a]). The
method presented here circumvents a mapping of any kind. It rather naturally extends all
expressions used for VBQMC directly to higher spin. Almost everything contained in this
section that has nothing to do with whether or not we have 𝑆 = 1/2, is a summary of the
standard technique as it is, for example, published in Sandvik and Beach [2007].

To see how VBQMC is done and why it works, we start with the antiferromagnetic
Heisenberg model on a bi-partite lattice, i.e. on a lattice where all interaction are between
members of different sublattices:

𝐻 = ∑ 𝐒𝑖 ⋅ 𝐒𝑗 . (4.1)
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We will use Schwinger bosons to represent the spins on the lattice. This means that
we introduce two kinds of operators which correspond to two kinds of bosons, 𝑎 and 𝑏.
They have the usual commutation relations for bosonic operators; [𝑎, 𝑎†] = [𝑏, 𝑏†] = 1 and
[𝑎, 𝑏] = 0. The states that can be generated by applying 𝑏†s and 𝑎†s to the empty state |0⟩
and that fulfill the constraint

𝑎†𝑎 + 𝑏†𝑏 = ̂𝑛𝑎 + ̂𝑛𝑏 = 2𝑆 (4.2)

form a representation of 𝖲𝖴(2) of total spin 𝑆 (or equivalently dimension 2𝑆+1). For 𝑆 =1/2,
the two species of bosons correspond to spin up and spin down, i.e.

𝑎†|0⟩ ↔ |↑⟩ and 𝑏†|0⟩ ↔ |↓⟩ . (4.3)

The spin operators are given by

𝑆𝑥 =1
2 (𝑎†𝑏 + 𝑏†𝑎) ,

𝑆𝑦 = 1
2𝑖 (𝑎†𝑏 − 𝑏†𝑎) ,

𝑆𝑧 =1
2 (𝑎†𝑎 − 𝑏†𝑏) . (4.4)

It is convenient to perform a rotation about the 𝑦 axis on one of the sublattices, such that
𝑆𝑥 → −𝑆𝑥, 𝑆𝑦 → 𝑆𝑦 and 𝑆𝑧 → −𝑆𝑧. In terms of the operators 𝑎 and 𝑏, this means that
𝑎† →− ̃𝑏† and 𝑏† → ̃𝑎. Let us take the sublattice that corresponds to the index 𝑗 in equation 4.1
to be the one that is rotated.

After the rotation the original Hamiltonian can then be written as

𝐻 = −1
2 ∑

{𝑖,𝑗}
[𝐴†

𝑖𝑗𝐴𝑖𝑗 − 2𝑆2] , (4.5)

where

𝐴†
𝑖𝑗 = 𝑎†

𝑖 ̃𝑎†
𝑗 + 𝑏†

𝑖
̃𝑏†
𝑗 . (4.6)

The operators 𝐴†
𝑖𝑗 generate (unnormalized) singlet states (valence bonds) as

𝐴†
𝑖𝑗|0⟩ = (𝑎†

𝑖 ̃𝑎†
𝑗 + 𝑏†

𝑖
̃𝑏†
𝑗 )|0⟩

= (𝑎†
𝑖 𝑏†

𝑗 − 𝑏†
𝑖 𝑎†

𝑗 )|0⟩
= |↑𝑖↓𝑗⟩ − |↓𝑖↑𝑗⟩ . (4.7)

In the second line I took back the rotation.
How the actual projection works is easy to understand. Take a Hamiltonian 𝐻 with
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0

𝐸𝑛

(a) Spectrum of 𝐻 .

0

−𝐸𝑛

(b) Spectrum of −𝐻 .

0

−𝐸𝑛 + 𝐶

(c) Spectrum of −𝐻 +𝐶 .

Figure 4.1.: The projection operator is constructed by first flipping the spectrum (b) and then
shifting it (c). The eigenvalue of the groundstate is indicated by the lone orange line.

bounded spectrum. From this operator, we construct an operator whose eigenstate with the
eigenvalue of biggest magnitude is the groundstate of 𝐻 .

First we multiply 𝐻 with −1 to move the groundstate energy from the bottom to the top
of the spectrum. Then we add an appropriate constant 𝐶 to shift the spectrum up so that all
eigenvalues are positive. Figure 4.1 illustrates this process.
Now we take a state |𝜑⟩ (which has to have finite overlap with the groundstate). Repeatedly
acting with −𝐻 + 𝐶 results in a projection onto the groundstate. This can easily be seen by
expanding the state in energy eigenstates.

Then, we get

(−𝐻 + 𝐶)𝑛|𝜑⟩ =(−𝐻 + 𝐶)𝑛
𝑁

∑
𝑖=0

𝑐𝑖 |𝐸𝑖⟩

=(−𝐸0 + 𝐶)𝑛𝑐0 (
|𝐸0⟩ +

𝑁

∑
𝑖=1

[
−𝐸𝑖 + 𝐶
−𝐸0 + 𝐶 ]

𝑛 𝑐𝑖

𝑐0
|𝐸𝑖⟩ + …

)
, (4.8)

where 𝑁 is the dimension of the Hilbert space. The projective power 𝑛 determines the
quality of the projection.
Because −𝐸𝑖 + 𝐶 < −𝐸0 + 𝐶 (by construction, see figure 4.1), the contributions of all
excited states are suppressed relative to the groundstate.

In many cases the most sensible (and thus customary) choice for 𝐶 is 𝐶 = 𝒩 𝑆2, where
𝒩 is the number of summands in the Hamiltonian. This makes the projection operator
especially simple and we get

−𝐻 + 𝐶 = 1
2 ∑ 𝐴†

𝑖𝑗𝐴𝑖𝑗 . (4.9)

All different valence bond coverings of the lattice form a basis of the singlet subspace (see
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e.g. Beach and Sandvik [2006]). If one knows that the groundstate is a singlet state, it thus
suffices to do this projection in the subspace spanned by all valence bond coverings.

These states can be generated by acting with 𝐴†
𝑖𝑗s onto the empty state in all possible ways.

The only condition is that every index appears with the correct multiplicity such that the
sites are populated with the correct number of bosons and the constraint from equation 4.2
is not violated. For 𝑆 =1/2, this means that each index should be acted on once; for 𝑆 =1
this means that each index should be acted on twice.

The general idea is now to take a valence bond state 𝛼 and to act on it with the projective
operator as often as necessary.

With bond operators defined by

ℎ𝑖𝑗 ∶= 1
2

𝐴†
𝑖𝑗𝐴𝑖𝑗 , (4.10)

this takes the form

(−𝐻 + 𝐶)𝑛|𝛼trial⟩ = ( ∑ ℎ𝑖𝑗)
𝑛
|𝛼⟩

= ∑
𝑘

𝑛

∏
𝑢=1

ℎ𝑖𝑢𝑘𝑗𝑢𝑘
|𝛼⟩

= ∑
𝑘

𝑠𝑘|𝛼⟩

= ∑
𝑘

𝑚(𝑘)

∑
𝑟

𝑤𝑘𝑟|𝛼𝑘𝑟⟩ , (4.11)

where the operator string 𝑠𝑘 ∶= ∏𝑛
𝑢=1 ℎ𝑖𝑢𝑘𝑗𝑢𝑘

was introduced and |𝛼𝑘𝑟⟩ are valence bond states.
The sum over 𝑟 in the last line accounts for the possibility of a string generating more than
one state.

It should be noted that 𝑘 ≠ 𝑘′ and 𝑟 ≠ 𝑟′ does not imply |𝛼𝑘𝑟⟩ ≠ |𝛼𝑘′𝑟′⟩. There are many
operator strings that generate the same state.

The action of the projective operator is the same as the action of a sum of strings of 𝑛 bond
operators. The action of each of the summands results in states |𝛼𝑘𝑟⟩ and weights 𝑤𝑘𝑟. It
turns out that these constants are positive. Equation 4.11 is a good example for an expression
that can be evaluated with Monte Carlo. One just has to be able to generate the |𝛼𝑘𝑟⟩ in
relative proportions of 𝑤𝑘𝑟.

In the 𝑆 =1/2 case, acting with a bond operator onto any valence bond state returns exactly
one valence bond state. Therefore acting onto any valence bond state with any operator string
only returns one state times a weight 𝑤𝑘. The sum over 𝑟 in equation 4.11 thus contains one
summand and equation 4.11 becomes

(−𝐻 + 𝐶)𝑛|𝛼⟩ = ∑
𝑘

𝑠𝑘|𝛼⟩ = ∑
𝑘

𝑤𝑘|𝛼𝑘⟩ . (4.12)
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The action of the operator strings can easily be calculated if one knows the action of the
bond operators. The action of the bond operators in turn follows simple rules that can be
calculated. The following commutation rules are a good starting point.

[𝐴𝑖𝑗 , 𝐴†
𝑖𝑗] = 2 + ̂𝑛𝑖 + ̂𝑛𝑗 ,

[𝐴𝑘𝑗 , 𝐴†
𝑖𝑗] = 𝑎†

𝑖 𝑎𝑘 + 𝑏†
𝑖 𝑏𝑘 ∶= 𝜒𝑖𝑘 ,

[𝜒𝑖𝑘, 𝐴†
𝑘𝑚] = 𝐴†

𝑖𝑚 . (4.13)

(a) Acting on a bond returns the state.

0.5

(b) Acting on sites without bond rearranges bonds
and multiplies the state with ½.

Figure 4.2.: The action of a bond operator on valence bond states is given by two simple
rules for systems with 𝑆 =1/2. Lines between sites stand for valence bonds connecting the
two sites. The dotted ellipse marks the two sites that are acted on by the bond operator.

If 𝑆 =1/2, one has to deal with two different scenarios when acting with ℎ𝑖𝑗 on a valence
bond state: Either the sites 𝑖 and 𝑗 are in a valence bond, which we indicate by |[𝑖, 𝑗]⟩, or
not. If they are in a valence bond, we find

ℎ𝑖𝑗|[𝑖, 𝑗]⟩ =1
2

𝐴†
𝑖𝑗𝐴𝑖𝑗𝐴

†
𝑖𝑗|0⟩

=1
2

𝐴†
𝑖𝑗(2 + ̂𝑛𝑖 + ̂𝑛𝑗)|0⟩

=𝐴†
𝑖𝑗|0⟩

=|[𝑖, 𝑗]⟩ . (4.14)

In this case, the state is just returned.
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If they are not in a valence bond, the situation is slightly more difficult:

ℎ𝑘𝑗|[𝑖, 𝑗][𝑘, 𝑚]⟩ =1
2

𝐴†
𝑘𝑗𝐴𝑘𝑗𝐴

†
𝑖𝑗𝐴

†
𝑘𝑚|0⟩

=1
2

𝐴†
𝑘𝑗[𝐴†

𝑖𝑗𝐴𝑘𝑗 + 𝜒𝑖𝑘]𝐴†
𝑘𝑚|0⟩

=1
2

𝐴†
𝑘𝑗[𝐴†

𝑖𝑗𝐴
†
𝑘𝑚𝐴𝑘𝑗 + 𝜒𝑚𝑗]|0⟩

+ 1
2

𝐴†
𝑘𝑗[𝐴†

𝑘𝑚𝜒𝑖𝑘 + 𝐴†
𝑖𝑚]|0⟩

=1
2

𝐴†
𝑘𝑗𝐴

†
𝑖𝑚|0⟩

=1
2

|[𝑘, 𝑗][𝑖, 𝑚]⟩ , (4.15)

where 𝜒𝑖𝑘 was defined in equation 4.13. In this case, the bonds are rearranged. After the
action, the sites that were acted on are in a bond with each other. The sites they originally
were in a bond with are then also in a bond with each other. The whole state is multiplied
with 1/2 (see figure 4.2 for clarification).

6

(a) The bond operator acts on two sites that
are connected with two bonds.

4 +

(b) The bond operator acts on two sites that
are connected with one bond.

+

+

+

(c) The bond operator acts on two sites that are not connected.

Figure 4.3.: The action of a bond operator on a covering state of systems with 𝑆 =1. The
dotted ellipse marks the sites the bond operator acts on. Because we are considering spins
with 𝑆 =1, each site has two bonds connected to it.

These rules are more complicated for higher spin. The rules one obtains for 𝑆 = 1 are
shown in figure 4.3. The most important new feature is that the action of a bond operator
can return more than one state.

The most straightforward implementation of VBQMC works as follows. Firstly, one
chooses a trial state |𝛼trial⟩. To make for a very efficient calculation, this state should have
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very big overlap with the groundstate. Then one creates an operator string. By acting with
the string on the state according to rules like the ones from figures 4.2 and 4.3, one then
generates the weight and the state |𝛼𝑘𝑟⟩ from equation 4.11.

Since the action of each bond operator in the string only returns one state, this is easy
to do for 𝑆 =1/2. One just collects the factors of 1/2 that are the result of hitting two sites
that are not connected by a bond, while acting on the state with the operators in the string.
This weight can then directly be used in a Metropolis rejection step. To get the next operator
string (and thus state), one can then attempt to change a few of the bond operators and repeat
the process.

If 𝑆 ≠1/2, this is not a trivial task because one operator string can return a large number
of states. This problem can be overcome by introducing weighted branching. If the action of
one bond operator returns more than one state with weights 𝑘𝑖, we choose one of the states
with probability 𝑘𝑖/ ∑ 𝑘𝑖. The weight to be used in the Metropolis step is then given by
∏𝑛

1 (∑ 𝑘𝑖), where the product is taken over all bond operators in the string. How and why
this sampling works is described in appendix A.2. Branching would also occur for 𝑆 =1/2 if
one would not choose the offset 𝐶 in the prescribed way. The suppression of excited states
is controlled by the ratio of the shifted groundstate energy and the shifted excited energy.
Choosing 𝐶 as small as possible thus increases the suppression of the low-lying excited
states. Choosing 𝐶 very small will potentially lead to contamination by higher excited states
that might no longer be suppressed sufficiently. Using an optimized trial state that does not
contain such states might alleviate this problem. There have not yet been any attempts at
increasing the projection quality using this approach.

There is no hard rule for how many operators one should change when going from one
operator string to the next. Changing very few operators will change the string only very
little but lead to high acceptance rates. Changing very many (or even all) will make it
very unlikely that the new string is accepted. Thus, many update attempts are necessary in
order to appreciably change the operator string. Maximising the average number of changed
operators per update attempt will typically lead to acceptance rates around 0.2–0.4 and on
the order of 4–10 changed operators in a Monte Carlo step. To make sure that consecutive
measurements of the quantity one wants to calculate are sufficiently independent to allow
for a reliable error estimate, one defines the Monte Carlo sweep as the smallest practical unit
of calculation length. One sweep contains as many steps as are necessary to on average have
attempted to change as many operators as there are in the string. The number of steps in
a sweep thus scales linearly with the length of the operator string. How long a step takes
is also proportional to the length of the operator string. Thus the computational time is of
order 𝑂(𝑛2). The acceptance rate is not very sensitive to both the length of the string and the
size of the system under consideration (Sandvik and Beach [2007]).

There is no way to determine the necessary projective power for a given accuracy theoreti-
cally. Simulating and looking for how the result converges with a growing projective power
is the way to go. There is however a quite useful rule of thumb for how the result should
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converge. The second excited state is suppressed by a factor of

(
−𝐸1 + 𝐶
−𝐸0 + 𝐶 )

𝑛

= (1 − Δ𝐸
−𝐸0 + 𝐶 )

𝑛

≈ exp [−𝑛 Δ𝐸
−𝐸0 + 𝐶 ] , (4.16)

where we have introduced Δ𝐸, which is the gap in the singlet sector. The singlet sector is
all that matters because the trial state has no overlap with any states with 𝑆 ≠0. The gap can
be expected to be proportional to its value in the thermodynamic limit plus some power of
the size of the system, or in fewer words Δ𝐸 ∝ 𝛿 + 𝑎1𝑁−𝛾 + 𝑎2𝑁−𝜇 + … .

The groundstate energy and the constant are both roughly proportional to the size of the
system: −𝐸0 + 𝐶 ≈ 𝑘𝑁 . For equation 4.16 this means that

(
−𝐸1 + 𝐶
−𝐸0 + 𝐶 )

𝑛

∝ exp [−𝛿 𝑛
𝑁 ] exp [−𝑘 𝑛

𝑁 𝛾+1 ] , (4.17)

where 𝑘 is a constant. The required projection power to get some fixed accuracy is thus
proportional to the size of the system in the case of a system whose singlet sector has a gap
in the thermodynamic limit and proportional to 𝑁 𝛾+1 for gapless systems. For a system with
a gap in the singlet sector, one finds (for big enough 𝑁) that

⟨𝐸0⟩ ≈ 𝐸0 + 𝑘 exp [−𝛿 𝑛
−𝐸0 + 𝐶 ] 𝐸1 , (4.18)

where 𝑘 is again a constant.
The easiest quantity to calculate with VBQMC is the groundstate energy. There is a trick

involved that works with operators to whom the groundstate is an eigenvalue. It is based
on the Néel state having equal overlap with all valence bond states. In our rotated-boson
basis, the Néel state, |Néel⟩, is created by acting with 𝑎† or ̃𝑎† on all sites. If one expands the
products of 𝐴†

𝑖𝑗 = 𝑎†
𝑖 ̃𝑎† + 𝑏†

𝑖
̃𝑏† that generate valence bond states, there is always exactly one

term that only contains 𝑎†s and ̃𝑎†s, regardless of which valence bond state one is looking at.
This term is responsible for the overlap with the Néel state.

The groundstate energy can be calculated according to

𝐸0 =
⟨Néel|𝐻|𝐸0⟩

⟨Néel|𝐸0⟩

=
⟨Néel|𝐻 lim𝑛→∞(−𝐻 + 𝐶)𝑛|𝛼trial⟩
⟨Néel| lim𝑛→∞(−𝐻 + 𝐶)𝑛|𝛼trial⟩

, (4.19)

where |𝐸0⟩ stands for the groundstate. With equation 4.11 we see that, if we are able to
generate a set of |𝛼𝑗⟩ with the correct probabilities, we can approximate the groundstate
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energy according to

𝐸0 ≈
⟨Néel|𝐻| ∑𝑛

𝑘 ∑𝑚(𝑘)
𝑟 𝑤𝑘𝑟𝛼𝑘𝑟⟩

⟨Néel| ∑𝑛
𝑘 ∑𝑚(𝑘)

𝑟 𝑤𝑘𝑟𝛼𝑘𝑟⟩

≈
⟨Néel|𝐻| ∑𝑗 𝛼𝑗⟩

⟨Néel| ∑𝑗 𝛼𝑗⟩

=
∑𝑗⟨Néel|𝐻|𝛼𝑗⟩

∑𝑗⟨Néel|𝛼𝑗⟩

=
∑𝑗 [ ∑𝑙 𝜀𝑗𝑙⟨Néel|𝛼⟩]

𝑀⟨Néel|𝛼⟩

=
∑𝑗 [ ∑𝑙 𝜀𝑗𝑙]

𝑀
, (4.20)

where the 𝜀𝑗𝑙 are defined by 𝐻|𝛼𝑗⟩ = ∑𝑙 𝜀𝑗𝑙|𝛼𝑗𝑙⟩ and 𝑀 is the number of terms in the sum
on the second line. On the first line the “≈” is used instead of a “=” because 𝑛 is not infinite.
The sum in the second line is the Monte Carlo estimate of the sum in the first line; hence the
“≈” in the second line.

Figure 4.4 contains the results for the groundstate energy of the Heisenberg model with
𝑆 =1/2 together with the correct result calculated with the Bethe ansatz by Erik S. Sørensen
[panel (a)] and with 𝑆 = 1 together with the result of an exact diagonalization (published
in Golinelli et al. [1994]) [panel (b)]. The Monte Carlo data is presented as a function of
the projection power 𝑛. Thus, to the left the values disagree with the correct value as the
projection is bound to be insufficient. To the right however the Monte Carlo data agree
with the known results nicely. It is noteworthy that there is no particular importance to the
direction the groundstate energy is approached from.

To calculate operators’ groundstate expectation value to whom the groundstate is not an
eigenvalue is slightly more complicated. One has to perform two projections at the same
time and approximate an expectation value of an operator 𝑂 as

⟨𝑂⟩ =
⟨𝐸0|𝑂|𝐸0⟩

⟨𝐸0|𝐸0⟩

=
⟨𝛽trial|(lim𝑛→∞(−𝐻 + 𝐶)𝑛)† 𝑂 lim𝑛→∞(−𝐻 + 𝐶)𝑛|𝛼trial⟩

⟨𝛽trial|(lim𝑛→∞(−𝐻 + 𝐶)𝑛)†lim𝑛→∞(−𝐻 + 𝐶)𝑛|𝛼trial⟩
, (4.21)

where |𝐸0⟩ again stands for the groundstate and the trial states 𝛽trial and 𝛼trial would usually
be chosen to be the same. This is called a double projection. In a real calculation, 𝑛 can of
course only be finite. With (−𝐻 + 𝐶)𝑛|𝛼trial⟩ = ∑𝑘 𝑤𝑘|𝛼𝑘⟩ (and the equivalent for |𝛽trial⟩
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(b) 𝑆 =1, 𝑁 =22

Figure 4.4.: With a big enough projective power, 𝑛, the Monte Carlo results agree well with
the correct value for 𝑆 = 1/2 (a) and 𝑆 = 1 (b). The correct values were calculated with
the Bethe ansatz (by Erik S. Sørensen) (a) and exact diagonalization (taken from Golinelli
et al. [1994]) (b) and are indicated by a dotted line. The insets contain a magnification of a
parameter range in which the calculation is almost fully converged and the data is almost
statistically scattered around the groundstate energy per site.

just with the weights 𝑣𝑘), we get

⟨𝑂⟩ ≈
∑𝑗 ∑𝑘 𝑣𝑗𝑤𝑘⟨𝛽𝑗|𝑂|𝛼𝑘⟩

∑𝑗 ∑𝑘 𝑣𝑗𝑤𝑘⟨𝛽𝑗|𝛼𝑘⟩

= ∑
𝑗

∑
𝑘

𝑣𝑗𝑤𝑘⟨𝛽𝑗|𝛼𝑘⟩
∑𝑗 ∑𝑘 𝑣𝑗𝑤𝑘⟨𝛽𝑗|𝛼𝑘⟩

⟨𝛽𝑗|𝑂|𝛼𝑘⟩
⟨𝛽𝑗|𝛼𝑘⟩

= ∑
𝑗

∑
𝑘

𝑎𝑗𝑘

⟨𝛽𝑗|𝑂|𝛼𝑘⟩
⟨𝛽𝑗|𝛼𝑘⟩

, (4.22)

where in the last line the weights 𝑎𝑖𝑗 defined by

𝑎𝑖𝑗 =
𝑣𝑗𝑤𝑘⟨𝛽𝑗|𝛼𝑘⟩

∑𝑗 ∑𝑘 𝑣𝑗𝑤𝑘⟨𝛽𝑗|𝛼𝑘⟩
(4.23)

were introduced. They are positive and normalised. One can thus use 𝑣𝑗𝑤𝑘⟨𝛽𝑗|𝛼𝑘⟩ as weights
in the Monte Carlo calculation.

The quality of the calculation very much depends on the choice of the trial state. One
would like to maximise the overlap with the groundstate. A really simple way of doing this
is to start with a randomly chosen state, run the simulation for a while and then take the
result of the application of an operator string as the actual trial state. This does boost the
performance. It can, however, be very much worthwhile to try a little harder to optimize the
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groundstate.
The idea is to use a more complicated trial state and optimize it. Since this method was

not used in the publication, which is the main focus of the chapter, the treatment here is
rather brief. For more information I recommend the reader to have a look at Sandvik and
Beach [2007].

The trial state is a superposition of valence bond states:

|𝛼opt⟩ = ∑ 𝑐𝑘|𝛼𝑘⟩ . (4.24)

With such a state one can just as well perform the Monte Carlo projection; one just has
more sums to deal with:

⟨𝑂⟩ ≈
∑𝑖 ∑𝑙 ∑𝑗 ∑𝑘 𝑐𝑖𝑐𝑙𝑣𝑗𝑤𝑘⟨𝛽 𝑖

𝑗|𝑂|𝛼𝑙
𝑘⟩

∑𝑖 ∑𝑙 ∑𝑗 ∑𝑘 𝑐𝑖𝑐𝑙𝑣𝑗𝑤𝑘⟨𝛽 𝑖
𝑗|𝛼

𝑙
𝑘⟩

, (4.25)

where |𝛼𝑙
𝑘⟩ is defined by (−𝐻 + 𝐶)𝑛|𝛼𝑙⟩ = ∑𝑘 𝑤𝑘|𝛼𝑙

𝑘⟩. The weights to be used in the
calculation are 𝑐𝑖𝑐𝑙𝑣𝑗𝑤𝑘⟨𝛽 𝑖

𝑗|𝛼
𝑙
𝑘⟩ and the estimator (the quantity that is evaluated and averaged)

is

⟨𝛽 𝑖
𝑗|𝑂|𝛼𝑙

𝑘⟩

⟨𝛽 𝑖
𝑗|𝛼

𝑙
𝑘⟩

. (4.26)

Now one also has to update the state.
The 𝑐𝑘 are taken to be functions of the length of the bonds in the state. They are defined

as 𝑐𝑘 = ∏ 𝑑(𝑥𝑖
𝑘, 𝑦𝑖

𝑘), where the product is over all bonds in the state and 𝑑(𝑥, 𝑦) is some
function of the distance of the two endpoints of a bond. One approach would be to now
variationally choose the function 𝑑(𝑥, 𝑦) that minimizes the energy expectation value and
use this state in the projection Monte Carlo.

A more efficient way is to stochastically improve the state and thus the 𝑑(𝑥, 𝑦) using the
projection. The probability distribution of bond lengths in the state |𝛼opt⟩ is proportional to
𝑑(𝑥, 𝑦). After projection onto the groundstate we expect the distribution of bond lengths to be
close to the optimal distribution. If 𝑑(𝑥, 𝑦) was originally chosen very well, the distribution
of bond lengths should be the same before and after a projection.

By evaluating the probability distributions before and after the projection and adjusting
𝑑(𝑥, 𝑦) to be higher or smaller depending on whether or not there were too many or too few
bonds with a specific length, it is possible to achieve a 𝑑(𝑥, 𝑦) such that the distributions do
not change anymore. The state with this 𝑑(𝑥, 𝑦) is then used in the actual projection.

For most of the important studies an improved algorithm was used in conjunction with
double projection. This loop algorithm was published in Sandvik and Evertz [2010] but by
then had already been used by various groups.

Since it was not used in my work, I will not explain how it works but refer the interested
reader to the original publication.
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To use the algorithm described in the last section, one has to do 𝑂(𝑛) updates to change
the operator string significantly. The time necessary for one update also scales with 𝑛, the
length of the operator string, because for each update one has to act on the state with the
whole string. Overall we thus are confronted with a computational time of 𝑂(𝑛2).

The time one loop update takes scales linearly with the length of the operator string, just as
one update step in the local implementation. A single loop update, however, already changes
the string tremendously. The duration of one full loop update, thus, also scales linearly with
the length of the string. Compared to the local update, much bigger systems can be accessed
if one is using it.

The implementation of the loop update turns out to be very similar to that of loop updates
for SSE, the very popular finite-𝑇 Monte Carlo method based on an expansion of the partition
function (see Sandvik [1999]; Sandvik and Evertz [2010] and section 1.4).

4.1.2. Calculations in the 𝑆𝑧-basis

The projective technique described in subsection 4.1.1 is not only useful in the valence bond
basis. It can, in fact, also be used in the product basis of eigenstates to the 𝑆𝑧-operator. In
this subsection, I present previously unpublished results of a work in progress.

The main advantage of using the 𝑆𝑧-basis is that all basis states are orthonormal. Overlaps
between basis states do not have to be calculated. Another difference is that one is not
restricted to the spin singlet sector. The main implementational difference to standard
VBQMC is that branching (see subsec 4.1.1 and appendix A.2) occurs very frequently.

The algorithm is very simple to implement and understand. We call this method 𝑆𝑧-projector
Monte Carlo (SPMC).

Where VBQMC is applicable, it is faster than the SPMC. This advantage comes with a
built-in restriction: everything takes place in the subspace with 𝑆tot = 0.

We explain the algorithm using the example of the XXZ-model with

𝐻 = ∑
(𝑖,𝑗)

[𝑆𝑥
𝑖 𝑆𝑥

𝑗 + 𝑆𝑦
𝑖 𝑆𝑦

𝑗 + Δ𝑆𝑧
𝑖 𝑆𝑧

𝑗 ] =∶ ∑
(𝑖,𝑗)

̃𝐵𝑖𝑗 , (4.27)

where the sum is over all pairs of nearest neighbours. After a sublattice rotation about the
z-axis on the sites on one sublattice, each contribution is, in the standard 𝑆𝑧-basis, given by

̃𝐵𝑖𝑗 = 1
4

⎛
⎜
⎜
⎜
⎝

Δ 0 0 0
0 −Δ −2 0
0 −2 −Δ 0
0 0 0 Δ

⎞
⎟
⎟
⎟
⎠

, (4.28)

which has the eigenvalues Δ/4, (2 − Δ)/4 and −(2 + Δ)/4. The constant to add in order to
get the projection operator (see equation 4.9) can thus be chosen to be Δ/4. In fact, there is
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more freedom. Bond operators to be used for the projection can be of the form

𝐵𝑖𝑗(𝑟) =
⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 2Δ 2 0
0 2 2Δ 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

+ 𝑟 𝟏4

=
⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 2Δ + 𝑟 0 0
0 0 2Δ + 𝑟 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

+
⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 0 2 0
0 2 0 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

+
⎛
⎜
⎜
⎜
⎝

𝑟 0 0 0
0 0 0 0
0 0 0 0
0 0 0 𝑟

⎞
⎟
⎟
⎟
⎠

=𝐵diag
𝑖𝑗 + 𝐵flip

𝑖𝑗 + 𝐵par
𝑖𝑗 , (4.29)

where 𝟏4 stands for the 4 × 4 identity matrix and I have also introduced the operators I call
the diagonal, the flip and the parallel bond operators.

Acting on sites with parallel spins with a diagonal or a flip operator, destroys the state,
while the parallel operator will return the state multiplied by 𝑟. A state with anti-parallel
spins on the two sites is destroyed by the parallel operator. The diagonal operator returns
states with anti-parallel spins multiplied with 2Δ + 𝑟; the flip operator flips the spins and
multiplies the state by 2.

The parameter 𝑟 shifts all eigenvalues of 𝐵𝑖𝑗 . Since the quality of the projection is controlled
by the fraction of the eigenvalues of the excited states and the groundstate, one wants to
choose it as small as possible.

Just like in VBQMC, I make use of the fact that there exists a state that has equal overlap
with all basis states in order to calculate the groundstate energy. I exploit this fact in the same
way. In each measurement, I then calculate the numerical factors coming from the action of
the Hamiltonian on the resulting state and add them. The average of these measurements is
the estimate of the groundstate energy. If a term in the Hamiltonian hits sites with parallel
spins, a value of Δ is added. If a term hits sites with anti-parallel spins, I add −(2 + Δ).

The Implementation

Depending on the value one chooses for 𝑟, there are two qualitatively different possibilities:
𝑟 = 0 and 𝑟 ≠ 0.

Setting 𝑟 = 0 When 𝑟 = 0, acting with an operator on two sites with parallel spins destroys
the state (leads to an operator string of zero weight). Such an operator string would certainly
be rejected. This, of course, needs to be avoided. A naive implementation where one just
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changes a number of operators in the string, propagates through it and then decides whether
or not to accept, is not practical because already for short operator lengths the probability
for this to occur is big.

It is possible to implement a branching algorithm (see subsection 4.1.1 and appendix A.2).
While propagating through the operator string, at each node, we have to keep the number of
operators that do not destroy the state and multiply the weights stemming from the bond
operators themselves: 2Δ and 2 for the diagonal and the flip operators, respectively. The
parallel operators do not have to be taken into account because they destroy all states if
𝑟 = 0. If Δ = 1 all weights are the same and only the branching weights need to be kept
track of. Then, a Metropolis decision can be made. This approach is however not very
efficient, because the weights can be very big and fluctuate substantially. The algorithm
can be implemented very similarly to the driven worm algorithm, which is subject of the
publication presented in this part of the thesis. Implementing a rejection free worm algorithm
along the lines of the bouncing worm algorithm, which is also subject of the publication,
should also be possible.

Setting 𝑟 ≠ 0 If one chooses 𝑟 ≠ 0, it is easy to set up a branching algorithm that lets one
reach reasonable acceptance rates while updating the string at random positions.

We now first choose a bond and then, depending on whether or not we act on parallel spins,
consider two different cases. If we act on parallel spins, the state is not changed and we
collect the weight 𝑟. If we act on anti-parallel spins, I randomly choose between the diagonal
or the flip operator. Which of the operators is chosen is, in the case of acting on anti-parallel
spins, stored as part of the operator string and updated just like the bond the operator-string
acts on. If we act with the diagonal operator, we collect a weight of 2 × (2Δ + 𝑟). If we act
with the flip-operator, we collect a weight of 2 × 2. The factor of 2 in front of the weights is
necessary because of branching.

I found it to be useful to update both the bond-position and the decision between diagonal
and flip operator at the node that is updated. Per step I do this at two nodes. Then, the
acceptance-rate is approximately 0.1. As the number of steps per sweep, I chose the fraction
of the length of the operator-string and the number of operators I try to update. Between
measurements I do as many sweeps as are necessary to on average have roughly as many
operators successfully updated as there are operators in the string. For the calculations here
this means that we do one measurement every four or five sweeps.

For the XXZ-model we find agreement with the result from the Bethe ansatz calculated by
Erik S. Sørensen (see table 4.1).
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Δ Length SPMC Bethe ansatz

0.5 20 -7.536(5) -7.534
0.5 100 -37.50(1) -37.51
0.25 20 -6.935(4) -6.934
0.25 100 -34.519(9) -34.524

Table 4.1.: The estimates for the groundstate energy from SPMC agree with results from the
Bethe ansatz.

Branching with a magnetic field

Other interactions can also be included quite easily. We show this with the example of the
inclusion of a magnetic field acting in the z-direction:

𝐻 = 𝐻xxz + ℎ ∑
𝑖

𝑆𝑧
𝑖 . (4.30)

The total 𝑆𝑧
tot-sector of which one finds the lowest energy is chosen with the trial state.

For the magnetic field term, it is surely impossible to increase the energy by more than ℎ/4
times the length of the string. If we increase 𝐶 in the definition of the projection operator of
equation 4.9 by (at least) this number, we can be sure to create a valid projection operator.
The projection operator then contains new operators 𝐷𝑖 which act on each site (I call them
site operators) and which for the purpose of the projection are treated just like the usual bond
operators. Again we have the freedom to shift up with a unit matrix, which yields the family
of site operators

𝐷𝑖 = (
𝑞 0
0 2ℎ + 𝑞) . (4.31)

Depending on whether or not the operator hits an up or a down spin the weight in the Monte
Carlo will be 𝑞 or 2ℎ + 𝑞, respectively. If 𝑞 = 0, it is, just as with 𝑟 = 0 above, very likely
that operator strings of weight zero are generated. This leads to an inefficient projection and
needs to be avoided.

Alternatively to introducing a new set of operators, one can also include the weights
stemming from the magnetic field in the weights of the diagonal and parallel operators. Then
𝑞 can be set to zero without causing any ill effects. With 𝑞 =0, the modified operators are

𝐵diag
𝑖𝑗 =

⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 2Δ + 𝑟 + 2ℎ 0 0
0 0 2Δ + 𝑟 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

(4.32)
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and

𝐵par
𝑖𝑗 =

⎛
⎜
⎜
⎜
⎝

𝑟 0 0 0
0 0 0 0
0 0 0 0
0 0 0 𝑟 + 2ℎ

⎞
⎟
⎟
⎟
⎠

. (4.33)

SPMC, in its current form, cannot, for practical purposes, compete with mature state of
the art methods. Should one succeed to find a working loop algorithm for it, this may not be
the case anymore. Such an algorithm also seems to be necessary in order to effectively use
double projection. The overlaps between different states appearing in equation 4.22 make an
efficient implementation only possible if states without overlap are avoided. Valence bond
states always have non zero overlap. Thus, they are not affected by this issue. In SPMC we
deal with an orthonormal basis and this is an important problem.

Sadly, a loop algorithm that solves this problem is not known.

4.2. The paper

The work on the publication which is the topic of this chapter was started in the hopes
of combining VBQMC and the notion of a worm (see section 1.4) travelling through the
operator string. It is the natural extension of earlier work done by Erik S. Sørensen. In Alet
and Sørensen [2003a] and Alet and Sørensen [2003b], Fabien Alet and Erik S. Sørensen
published a successful attempt at creating a worm algorithm for the quantum rotor model.
The publication of this part is about our work of trying to do the same for VBQMC.

The main questions we wanted to address were

• Is it possible to use a worm algorithm with VBQMC?

• How efficient can such an algorithm be?

The answers to these questions can be found in the third publication in this thesis.
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We present a new class of algorithms for performing valence-bond quantum Monte Carlo of quantum spin
models. Valence-bond quantum Monte Carlo is a projective T=0 Monte Carlo method based on sampling of a set
of operator-strings that can be viewed as forming a tree-like structure. The algorithms presented here utilize the
notion of a worm that moves up and down this tree and changes the associated operator-string. In quite general
terms we derive a set of equations whose solutions correspond to a new class of algorithms. As specific examples
of this class of algorithms we focus on two cases. The bouncing worm algorithm, for which updates are always
accepted by allowing the worm to bounce up and down the tree and the driven worm algorithm, where a single
parameter controls how far up the tree the worm reaches before turning around. The latter algorithm involves
only a single bounce where the worm turns from going up the tree to going down. The presence of the control
parameter necessitates the introduction of an acceptance probability for the update.

I. INTRODUCTION

Projective techniques are often used for determining the
ground-state properties of strongly correlated models defined
on a lattice. They were initially developed for non-lattice mod-
els [1] and then used for the study of fermionic lattice mod-
els [2]. They were subsequently applied to quantum spin mod-
els [3–8] as well as other models. The underlying idea is easy to
describe. For a lattice Hamiltonian H , it is possible to choose a
constant c such that the dominant eigenvalue E of c1−H cor-
responds to the ground-state wavefunction of H , |Ψ0〉. We can
then use P = c1−H as a projective operator in the sense that
the repeated application of P to a trial wave function, Pn|ΨT 〉,
will approach En|Ψ0〉 for large n. Hence, if n can be taken
large enough, |Ψ0〉 can be projected out in this manner provided
that 〈Ψ0|ΨT 〉 6= 0. Some variants of this approach are often
referred to as Green’s functions Monte Carlo (GFMC) [2, 5–8].
Other projective operators such as exp(−τH) can be used
depending on the model and its spectrum. For a review see
Ref. 9–11. The convergence of such projective techniques may
be non-trivial as can be shown by analyzing simple models [12].
If P |ΨT 〉 can be evaluated exactly, this projective scheme is
equivalent to the power method as used in exact diagonalization
studies. As the number of sites in the lattice model is increased,
exact evaluation quickly becomes impossible and Monte Carlo
methods (projector Monte Carlo) have to be used.

The efficiency of the Monte Carlo sampling is crucial for
the performance of implementations of the projective method
and detailed knowledge of such Monte Carlo methods is of
considerable importance. Here, we have investigated a new
class of Monte Carlo algorithms for projective methods for
lattice models. We discuss these algorithms within the context
of quantum Monte Carlo where the projection is performed in
the valence bond basis [3, 4, 13, 14], so called valence bond
quantum Monte Carlo (VBQMC). The algorithms are, however,
applicable to projective techniques in any basis.

VBQMC was first developed by Liang [3, 4] and then, start-
ing fifteen years later, significantly further developed by Sand-

∗ deschna@mcmaster.ca
† sorensen@mcmaster.ca

FIG. 1. The branching tree of length 5 for the selection of an operator
string in a system with a Hamiltonian of NB (here 5) terms. The
operator that acts on the state first, is chosen at the first node on the
left. This node is called the root and the direction towards the root we
define to be up. The operator that acts on the state last is at the end of
the string. The two colored paths differ in the choice of the last three
operators. The last three branches, thus, contribute different operators
and weights (si, ti). The resulting strings S and T are different.

vik and collaborators [13, 14] and it is now widely used. Since
its inception, VBQMC has been improved and generalized
in several ways: it can be used on systems with spins with
S 6= 1/2 [4] and states with total Sz = 1/2 [15]. An efficient
sampling algorithm with loop updates is known for systems
with S = 1/2 [14].

As outlined above, VBQMC works by projecting onto the
ground-state by repeatedly acting on a trial-state |ΨT 〉 with
P = c1 − H , where the constant c is chosen such that the
ground-state has the biggest eigenvalue. For Hamiltonians with
bounded spectrum such a c can always be found. For a simple
quantum spin model defined on a lattice we have

H = J
∑
<i,j>

Si · Sj =
∑
<i,j>

hij (1)

and we can write P = c1 − H =
∑

Oij as a sum over NB

bond-operators Oij . Taking P to the nth power then results in
a sum over products of these bond-operators Oij :

Pn =
∑
a

Oi(a,1)j(a,1) . . . Oi(a,n)j(a,n)︸ ︷︷ ︸
n-operators

:=
∑
a

Sa . (2)
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Each instance of this product then forms a string Sa of bond-
operators of length n. When selecting such a string of length
n, one has to make a choice between the NB bond-operators at
each position in the string. It is possible to view the construc-
tion of such a string as a specific path in a decision-tree (see
Fig. 1).

Although the algorithms we present can be extended to higher
spin models, we shall restrict the discussion to quantum spin
models with S = 1/2 where one usually takes c = JNB/4.
The action of the bond-operators then takes an attractively
simple form.

In a valence bond basis state spins are paired into singlets. A
specific pairing of all spins is usually referred to as a covering.
All such coverings form an over complete basis for the singlet
sub-space of the model. We shall only be concerned with
models defined on a bi-partite lattice in which case a given
valence bond covering, C, for a lattice with N spins can be
denoted by listing all N/2 pairs of [i, j] with i on sub-lattice
A and j on sub-lattice B. Here, [i, j] = (| ↑iA↓jB 〉 − | ↓iA↑jB
〉)/

√
2. We label the initial covering (trial-state) as C0. The

action of an operator Oij can take two forms [3, 4, 13]:

• The sites i and j are in a singlet before the action of
the operator. Then, the action of the operator does not
change the state and we can associate a weight of w = 1:

Oij [i, j] = 1[i, j] . (3)

• The sites i and j are not in a singlet before the action
of the operator. Then, after the action of the operator,
the sites i and j form a singlet. The sites they were
originally connected to are also returned in a singlet-state.
Furthermore, the state is multiplied by a weight equal to
w = 1

2 :

Oij [i, k][l, j] =
1

2
[i, j][l, k] . (4)

A particularly nice feature is that the application of any of the
Oij to any given covering yields a unique other covering and not
a linear combination of coverings. Although convenient, this
feature of projections in the valence bond basis is not strictly
necessary for the algorithms we discuss here as they can be
adapted to the case where a linear combination of states are
generated [16]. For a given operator string Sa =

∏
k Ok, we

can associate a weight given by Wa =
∏

wk. The state SaC0

will contribute to the final projected estimate of the ground-state
with this weight. One can then sample the ground-state by
performing a random walk in the space of all possible strings
Sa [3, 4, 13] according to the weight Wa. This way of sampling
is quite different from GFMC even though VBQMC and GFMC
are closely related projective techniques. GFMC, as it is used
in for instance Ref. 6, is usually performed in the Sz basis but
can also be done in terms of the valence bond basis [17]. In
GFMC the projection is done by stochastically evaluating the
action of the whole projection-operator on a trial-state. This
is done by introducing probabilistic “walkers”. In contrast, as
mentioned, in VBQMC a single state results and the strings
Sa are sampled according to their weight. Clearly, the efficient

sampling of states resulting from the stochastic projection of
the trial-state is a difficult problem. Here, we propose to use
worm (cluster) algorithms for this purpose.

In Monte Carlo calculations one averages over many config-
urations of the system which are generated with appropriate
probabilities. Usually, this is done in a Markov-chain, where
one configuration is chosen as a variation of the last. One impor-
tant feature of an efficient algorithm is that these consecutive
configurations are as uncorrelated as possible. This led to the
introduction of algorithms where whole clusters and not just
single elements are changed going from one configuration to
the next [18, 19] or where all elements in the path of a worm
are changed [20].

Here, we show how it is possible to adapt such worm al-
gorithms for projections in the context of VBQMC. The al-
gorithms we have studied are based on the notion of a worm
moving around in the decision tree described above. As in ear-
lier worm algorithms, the change of many elements is achieved
by moving the worm based on local conditions [20–24] and
one might refer to the algorithms as tree-worm algorithms. In
general, the algorithms can be viewed as directed [23] algo-
rithms.

When we update the string, we start with a worm at the end
of the tree and move it up the tree. See Fig. 1. The worm then
moves around in the tree and where it goes the operator-string is
changed. When the worm finds its way back to the bottom of the
tree the update is complete. We derive a set of simple equations
governing the movement of the worm. The solution of these
equations lead to parameters defining a new class of algorithms.
Quite generally, many solutions are possible leaving significant
room for choosing parameters that will lead to the most optimal
algorithm.

We focus on two specific choices of parameters correspond-
ing to two different algorithms. The bouncing worm algorithm,
for which every update is accepted and the driven worm algo-
rithm, for which the update is accepted with some probability.
With the driven worm algorithm one can choose at will how
much of the operator-string is on average changed in a success-
ful update.

In order to test the algorithms, we calculate the ground-state
energy of the isotropic Heisenberg-chain. This quantity is easy
to calculate with VBQMC and can be exactly computed using
the Bethe-ansatz. It is thus a very convenient quantity to test the
algorithms with. The algorithms presented in this paper can,
however, be used for the same calculations as other VBQMC
implementations (see e.g. [13]).

In section II we derive the general equations governing the
movement of the worm. Section III contains a description of
the specific implementation corresponding to the two choices
of parameter solutions we have studied. The bouncing worm
is detailed in section III A while the driven worm algorithm is
described in section III B. The algorithms are then compared
in section IV. We present our conclusions in section V.
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II. TREE ALGORITHMS

We now turn to a discussion of the general framework for
the algorithms we have investigated. We begin by deriving the
equations governing their behavior in a general way.

Let us take the Hamiltonian to have NB terms. We now
imagine a tree where each node indicates the decision to chose
one of the NB bond operators composing the string (see Fig. 1).
Each branch of the tree corresponds to one of the NB bond
operators. A given operator string then corresponds to selecting
a path in the tree. Consider 2 such paths S and T that are
identical for the part of the operator string first applied to the
trial-state. The last 3 operators, however, differ. This leads to
different weights, which we denote with si and ti.

As it is done in most Monte Carlo methods, we set out to
construct a Markov-chain. Here it is a chain of different strings.
If the probabilities to go from one string to the next have detailed
balance, the Markov-chain contains the strings with the desired
probability. For detailed balance, the probabilities for starting
from operator string S and going to operator string T and
reverse have to satisfy

P (S → T)

P (T → S)
=

t3t4t5
s3s4s5

. (5)

We can achieve this ratio of probabilities by imagining a worm
(tree-worm) working its way up the tree to the point p where it
turns around and then working its way down again.

Let us call the valence-bond covering of the trial-state C0.
Up to numerical factors, the application of an operator string S
of length n will yield a new valence-bond covering SC0 ∝ Cn.
The worm is started by removing the last applied bond operator
and considering the resulting covering Cn−1. A decision now
has to be made if the worm is to continue ”up” the tree by
removing more bond operators from the string or if it should
instead go ”down” the tree by adding a new bond operator to
the string. At each node in the tree the decision to continue
up or turn around is made according to a set of conditional
probabilities P (up|s) and P (t|s). Here, P (up|s) denotes the
probability for going up after coming from a bond operator
that carried weight s and P (t|s) is the probability for turning
around by applying a bond operator of weight t coming from
an operator with weight s. Likewise, P (s|up) denotes the
probability of choosing an operator with weight s given that the
worm is coming from further up the tree. With these conditional
probabilities the left-hand side of Eq. (5) can be written as

P (S → T)

P (T → S)
=

P (t5|up)P (t4|up)P (t3|s3)P (up|s4)P (up|s5)
P (up|t5)P (up|t4)P (s3|t3)P (s4|up)P (s5|up)

. (6)

Clearly, Eq. (6) is satisfied if we choose

P (up|s)
P (s|up)

=
c

s
and

P (t|s)
P (s|t)

=
t

s
, (7)

where c is an additional free parameter included for later op-
timization of the probabilities. If we can choose conditional
probabilities with these properties, we can go between different
operator strings always accepting the new string. The rejection
probability is then zero. This is a very desirable property of any
Monte Carlo Algorithm since it indicates that the algorithm is
sampling. We mostly focus on so called zero bounce algorithms
for which if the worm turns around the probability for replacing
a bond operator with the same operator is zero. Then the two
operator strings S and T are always different. This means that

P (s|s) = 0 . (8)

Quite generally, it is easy to find many solutions to the equa-
tions (7) leading to many Monte Carlo algorithms which can
be tuned for efficiency.

We now focus on S=1/2-Heisenberg models defined on bi-
partite lattices. As has been described above, for these models
only 2 weights can occur: 1, 1/2. The two weights correspond
to the two different actions the bond-operators can have on
the state. It is 1 if the operator acts on two sites that are in a
valence-bond. The state is not altered under the action of such
an operator. We call such operators diagonal. The weight is 1/2

if the operator acts on two sites that are not in a valence-bond.
After the action of the operator the two sites are connected by a
bond as well as the sites they were connected to. We call such
operators non-diagonal.

If a decision has to be made at the node at position m, the
conditional probabilities depend on how many of the NB bond-
operators will yield a weight of 1 (are diagonal) or 1

2 (are
non-diagonal) when applied to the present covering Cm−1. We
shall denote these numbers by N1 and N 1

2
respectively. When

the worm is started N1 and N 1
2

therefore have to be calculated
for Cn−1, if they are not already known from an earlier update.
It is thus sensible to store N1 or N 1

2
at all nodes. N1 can only

be zero at the node furthest up the tree (the root) and only if
the trial-state is chosen to not contain any diagonal bonds. In
Fig. 1 it is the gray node on the very left. N 1

2
cannot be smaller

than NB/2.
We can now write down an (NB +1)× (NB +1) matrix M

of conditional probabilities for each node of the tree. The j’th
column of the matrix describes the probability for going in any
of the NB + 1 directions when coming from the direction j.
For clarity we order the rows and columns such that the first N 1

2

correspond to the non-diagonal operators and the next N1 to the
diagonal operators. The last column contains the probabilities
for going down the tree when coming from above; the last row
the probabilities for going up the tree when coming from below.
The remaining part of the matrix describe the probabilities for
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replacing one operator with another when the worm turns from going up to going down. The matrix M has the form

N 1
2︷ ︸︸ ︷ N1︷ ︸︸ ︷ up︷ ︸︸ ︷

M =



P ( 12 |
1
2 ) P ( 12

′| 12 ) P ( 12
′| 12 ) · · · P ( 12

′| 12 ) P ( 12 |1) P ( 12 |1) · · · P ( 12 |1) P ( 12 |up)
P ( 12

′| 12 ) P ( 12 |
1
2 ) P ( 12

′| 12 ) · · · · · · · · · · ·
· · · · · · · ·
· · · · · · · ·

P ( 12
′| 12 ) P ( 12

′| 12 ) P ( 12
′| 12 ) · · · P ( 12 |

1
2 ) P ( 12 |1) P ( 12 |1) · · · P ( 12 |1) P ( 12 |up)

P (1| 12 ) P (1| 12 ) P (1| 12 ) · · · P (1| 12 ) P (1|1) P (1′|1) · · · P (1′|1) P (1|up)
· · · P (1| 12 ) P (1′|1) P (1|1) · · · · ·
· · · · · · · ·
· · · · · · · ·

P (1| 12 ) P (1| 12 ) P (1| 12 ) · · · P (1| 12 ) P (1′|1) P (1′|1) · · · P (1|1) P (1|up)
P (up| 12 ) P (up| 12 ) P (up| 12 ) · · · P (up| 12 ) P (up|1) P (up|1) · · · P (up|1) P (up|up)



,

where P (s′|s) refers to the conditional probability of coming
from an operator with weight s and going to a different operator
with the same weight. As mentioned above, P (up|s) denotes
the probability for going up coming from an operator with
weight s and P (t|s) is the probability for turning around by
choosing a bond operator of weight t coming from an operator
with weight s. Likewise, P (s|up) denotes the probability of
choosing an operator with weight s coming from further up the
tree.

To shorten the notation we introduce the short-hand
x = P (1/2′|1/2), y = P (1/2|1), z = P (1′|1) . (9)

Furthermore we define the ‘bounce’ probabilities
b 1

2
= P (1/2|1/2), b1 = P (1|1), bu = P (up|up) . (10)

Here it is implied that the probabilities are for going from one
operator to the same operator. Finally we also need to define
the branching probabilities

u = P (1/2|up), w = P (1|up) , (11)
from which it follows (using Eq. (7)) that:

2cu = P (up|1/2), cw = P (up|1) . (12)
The matrix M is then given by

M =



b 1
2

x x · · · x y y · · · y u

x b 1
2

x · · · x y y · · · y u

· · · · · · · ·
· · · · · · · ·
x · · · · · b 1

2
y y · · · y u

2y 2y 2y · · · 2y b1 z · · · z w

· · · 2y z b1 · · · · ·
· · · · · · · ·
· · · · · · · ·
2y 2y 2y · · · 2y z z · · · b1 w

2cu 2cu 2cu · · · 2cu cw cw · · · cw bu



. (13)

The requirement that this matrix be stochastic (i.e. some branch
is chosen with probability one) means that the entries in each
column have to sum to 1. This leads to the set of equations

1 = N 1
2
u+N1w + bu

1 = N 1
2
y + (N1 − 1)z + cw + b1

1 = (N 1
2
− 1)x+N12y + 2cu+ b 1

2
. (14)

These simple equations are the central equations governing
the behavior of the algorithms. To find an algorithm, we
need to solve these 3 equations with the constraints that 0 ≤
x, y, z, b 1

2
, b1, bu, u, w ≤ 1; a straight forward problem.

At the root, the equations are modified slightly: since it
is not possible to go further up the tree, 2cu, cw, bu are not
meaningful and can be set to zero. For convenience we set
b1 = x and b2 = z at the root. This allows one to just choose
diagonal operators twice as often as non-diagonal operators.
Since the number of diagonal operators does not change at
the root, a table generated at the beginning of the calculation
suffices to perform this task.

It can be very useful to choose different c’s at different nodes.
Then, calculating the probabilities to choose operators accord-
ing to the rules introduced in this section will not lead to an al-
gorithm with detailed balance, because ci from different strings
will not cancel in Eq. (6). It is necessary to work with an
acceptance probability. We find

P (S → T)

P (T → S)
=

t3t4t5
s3s4s5

cS4c
S
5

cT4 c
T
5

Pacc(S → T)

Pacc(T → S)
. (15)

Here cSi and cTi denote c at the different nodes in the strings
S and T, respectively. To validate the algorithm, we must
therefore introduce an acceptance probability that must cancel
the factor (cS4cS5)/(cT4 cT5 ). This can be achieved by choosing

Pacc(S → T) = min
(
1,

cT4 c
T
5

cS4c
S
5

)
, (16)
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meaning that when a new string is generated through a worm
move it is accepted with this probability.

Since we always start from the bottom of the tree (the last
operator applied), the worm algorithms presented in this pa-
per always change a block of consecutive branches at the end
of the string. This is favorable to changes across the whole
string because changes far up the string might be undone by
changes closer to the end of the string [13]. In this way the
most important part of the string is updated most substantially.

It is also important to note that the algorithm will con-
serve certain topological numbers. For instance, for a two-
dimensional system S = 1/2 Heisenberg model the number
of valence bond crossing a cut in the x- or y-direction is either
odd or even. Hence, the initial covering, C0 is characterized by
these 2 parities. It is easy to see that the application of P to any
covering can not change these parities and they are therefore
preserved under the projection.

III. IMPLEMENTATIONS OF TREE WORM
ALGORITHMS

As is explained in the last section, many different algorithms
can be found because many different solutions to the equa-
tions (14) exist.

In this section we present two different algorithms. One pure
worm algorithm where every update is accepted (the bounc-
ing worm algorithm) and an algorithm that allows for con-
trol over how far in the tree updates are attempted (the driven
worm algorithm). To test and compare the different algorithms,
we calculate the ground-state energy of the antiferromagnetic
Heisenberg chain.

The Néel-state |Néel〉 has equal overlap with all valence-
bond states. This can be used to very directly estimate the
ground-state energy, E0 [13]:

E0 =
〈Néel|H|Ψ0〉
〈Néel|Ψ0〉

= lim
n→∞

〈Néel|HPn|C0〉
〈Néel|Pn|C0〉

= lim
n→∞

Nn
B∑

a=1

〈Néel|HSa|C0〉∑Nn
B

a=1〈Néel|Sa|C0〉

= lim
n→∞

Nn
B∑

a=1

Wa∑Nn
B

a=1 Wa

〈Néel|H|Ca〉
〈Néel|Ca〉

. (17)

If we take EaCb = HCa and assume that the Monte Carlo
sampling will visit strings according to their weight Wa, then
for a Monte Carlo sequence of length N of independent strings
we find:

E0 =
1

N

N∑
a=1

Ea, (18)

where again we have used the fact that 〈Néel|C〉 is independent
of the covering C.

FIG. 2. A possible path that contains one bounce and connects the
string S and the string T. The worm first goes up to the node 2 where
it turns to go down to node 3. The worm bounces back and goes all
the way to node 1. Then the worm turns around and does not bounce
again.

To analyze the correlation-properties of the worm algorithms
we use the energy-autocorrelation-time, which we take to be the
number of updates it takes the energy-autocorrelation-function

AE(t) =
〈EiEi+t〉 − 〈E〉2

〈E2〉 − 〈E〉2
(19)

to decay to 0.1. The results of all update-attempts enter
the calculation of the expectation-values. The shorter the
autocorrelation-time is, the fewer steps have to be done be-
tween consecutive measurements.

If not stated otherwise an operator-string of 20,000 operators
was used for calculations with worm algorithms.

A. The bouncing worm algorithm

The first algorithm we discuss is the bouncing worm algo-
rithm. Only a few of the variables that appear in the equa-
tions (14) are chosen to be non-zero. We choose to set:

x = y = 0, b1 = b1/2 = 0, (20)

while z = P (1′|1) 6= 0 as is u,w. We leave bu as a parameter
that can be zero or non-zero allowing for tuning of the algorithm.
With this choice, when the worm is moving up the tree the only
possibility for it to turn around is by opting to replace one
diagonal operator with another diagonal operator. The ci are
chosen to be the same at all nodes: ci = c.

The equations for the non-zero parameters are then

u =
1

2c

w =
1

N1

(
1−

N 1
2

2c
− bu

)
z =

1− cw

N1 − 1
. (21)

The requirements that z, w > 0 imply that

N 1
2

2(1− bu)
≤ c ≤ NB +N1

2(1− bu)
. (22)
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To satisfy Eq. (22) with node-independent c, we set

c =
NB

2(1− bu)
. (23)

With this choice of parameters, we find the probability to
go up the tree if the worm is at a node with a non-diagonal
operator to be

P (up|1/2) = 2cu = 1 , (24)

for any bu. Likewise, if the worm is at a node with a diagonal
operator the probability to go up is given by

P (up|1) = cw = 1/2 , (25)

independent of bu. The probability for going up the tree is
therefore independent of bu.

We define the penetration depth (p.-depth), which we denote
by r, as the maximal height that the worm reaches. The actual
length of the worm is denoted by l and with bu = 0 we find
l = 2r. The penetration depth r will determine how much the
operator-string is changed. Obviously, it is desirable to have the
worm reach as far up the tree as possible. It is possible to force
the worm farther up the tree by having it bounce back to going
up after it has turned to go down (see Fig. 2). In that case, the
actual length of the worm, l, will then be substantially different
from twice the penetration depth since the worm can turn many
times, a point we shall return to later. Such bounces occurs
with a likelihood of bu which was left as a free parameter and
can now be used as a tuning parameter.

The algorithm is straight forward to implement and the accep-
tance probability for a worm update is 1. The move is always
accepted. Specific details of an implementation of the bouncing
worm update can be found in appendix A 1.

We begin by discussing the case of bu = 0. In this case
the worm first moves up the operator string, turns around once
and then proceeds down to the bottom of the tree. It does
not go back up the operator string since bu = 0. In order to
measure the performance of the algorithm we did calculations
on an antiferromagnetic Heisenberg chain with 50 sites using
an operator string of length 100, 000. As can be seen in table I,
this leads to a rather small mean penetration-depth (p.-depth) of
about 5. The maximal penetration-depth of 50 is substantially
larger. Both these numbers are, however, substantially smaller
than the length of the operator string (100, 000) and it appears
that the algorithm with bu is not very effective.

We now turn to the case bu 6= 0. In this case the worm
can now switch directions many times during construction (see
Fig. 2). The results for the mean and maximal penetration-
depth are also listed in table I. As bu is increased from zero,
the maximal penetration-depth first increases very slowly until
about bu = 0.25. It then grows dramatically and, not surpris-
ingly, reaches the length of the operator string. This occurs at
bu ≈ 0.2790. At the same time the mean penetration-depth
only increases by a factor of roughly 4, from 5 to about 20.
For bounce-probabilities bigger than bu ≈ 1/4 the program
is slowed down significantly compared to the algorithm with
bu = 0 as indicated in the last column in table I. Thus, even
though a large penetration-depth is desirable the computational

bu mean p.-depth max p.-depth slowdown
0.0000 4.561(4) 50 1
0.2500 7.38(1) 305 1.7
0.2750 10.44(3) 1,465 9.7
0.2789 15.64(9) 41,010 316.7
0.2790 19.7(5) >100,000 <5,535.7

TABLE I. Data for several runs at different bu. At bu ≈ 0.25 in-
creasing the bounce-probability starts to significantly slow down the
algorithm. The last column contains the run-times divided by the
runtime for bu = 0. The data were generated with an operator-string
of 100,000 operators. The maximal penetration and the expected
slowdown could thus not be resolved for bu = 0.2790. We used 106

measurements and a chain with 50 sites.

cost can become so big that increasing bu might not be worth-
while.

In contrast to the maximal penetration-depth, the mean
penetration-depth grows very slowly for the values of bu we
have been able to study. For computations of reasonable com-
putational cost it never reaches the size of the system and thus
also not the length of the operator-string which has to be chosen
to be several times the size of the system. That only a small
part of the string is updated regularly is directly reflected in
the energy-autocorrelation-time (see Fig. 3). The number of
bonds that can change in one update of the worm-calculations
is twice the penetration-depth. Typical updates never reach far
into the operator-string. Thus, the bigger the system is, the less
it is perturbed by the update and the more correlated are the en-
ergies measured after consecutive updates. As shown in Fig. 3,

101 102 103

system size N

100

101

102

103

104

au
toc

or
re

lat
ion

-tim
e

bu  = 0.26 
e−6.41 x2.21

bu  = 0.275 
e−7.74 x2.16

FIG. 3. The autocorrelation-time of the energy as a function of system
size N . The lines indicate tentative power-law fits to the data at large
N with a power of 2.21 for bu = 0.26 and 2.16 for bu = 0.275.
Operator-strings of 20,000 operators were used.

increasing bu decreases the autocorrelation-time. However, for
large system sizes the overall scaling of the autocorrelation-time
with the system size appears independent of bu. At bu = 0.26
we find a power-law with an exponent of 2.21 while a slightly
larger bu = 0.275 yields a power of 2.16.

Even though the mean penetration depth remains small, one
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can still obtain high quality results. In particular, it is not nec-
essary for the mean penetration depth to reach a value close to
the length of the operator-string (the projection power) in order
to get reliable results. Since the maximal penetration-depth is
substantially larger than the mean, the operator-string is often
updated deeper than the mean penetration-depth. Hence, the
mean penetration-depth can be much smaller than the length
of the operator-string has to be for otherwise equivalent calcu-
lations with conventional VBQMC. We discuss this effect in
more detail in section IV.

0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28
bounce probability bu

22.20

22.16

22.12

22.08

E

N=50

0.2780 0.2785

0.0005

0.0005
∆E

FIG. 4. With a bigger probability to bounce bu, the bouncing worm
algorithm yields a better approximation of the ground-state energy.
The ground-state energy was calculated using the Bethe-ansatz and
is indicated by a dotted line. Since some operators in the string are
never updated, calculations with different bu were effectively done
with different trial-states. The calculation was done for a chain with
50 sites. Operator-strings of 20,000 operators were used.

As one increases the probability to bounce up the tree a
longer part of the string actually partakes in the projection.
Thus, also the quality of the projection is better (see Fig. 4).
If operators are never updated, they do not contribute to the
projection; they do however modify the trial-state used in the
projection. This leads to the irregularly scattered pattern the
data shows for small bu. In this sense one can think of rare
updates that go high up the tree as effectively changing the
trial-state and the whole calculation as an averaging over these
trial-states.

As is evident from Fig. 4, the bouncing worm algorithm
yields good results for bu > 0.25. It is an attractively simple
algorithm with zero bounce probability and a probability of 1
for accepting a new string. The autocorrelation-time can be re-
duced by increasing bu whereas the overall power of the growth
at large system sizes appears independent of bu. However, the
increased computational cost associated with increasing bu is
considerable and we have therefore investigated another param-
eter choice leading to a different algorithm, the driven worm
algorithm. We now turn to a discussion of this algorithm.

B. The driven worm algorithm

Clearly, it is desirable to have all updates result in a substan-
tial change of the operator-string. Then, fewer updates have
to be performed. For the problem at hand, this means that we
need the worm to go far up the tree as often as possible without
increasing the computational cost too much. Direct control
over the associated probability would be very convenient. We
achieve this by setting the probabilities to go up the tree to be

2cu = cw = α . (26)

The value of α is the probability to, at each node, decide to go
up the tree. Since u and w depend on N1 and N2, this is only
possible by allowing c to vary with the node. As explained at
the end of section II, the acceptance step of Eq. (16) thus has
to be introduced. Updated strings may be rejected.

We set all bounce-probabilities to be zero, b1 = b1/2 =
bu = 0. Hence, the worm will move up the tree and then
turn around once. To get a working algorithm, we have to
find solutions to the equations (14) which will determine the
transition-probabilities (see Eq. (13)). If N 1

2
, N1 > 1 the

solutions to equations (14) are given by:

x =
1

N 1
2
(N 1

2
− 1)

[
2N1(N1 − 1) z

+ (1− α)(N 1
2
− 2N1)

]
,

y =
1

N 1
2

[
(1−N1)z + 1− α

]
,

u =1/(N 1
2
+ 2N1) ,

w =2u , (27)

where

1− α

N1 − 1

[
1−

N 1
2

2N1

]
≤ z ≤ 1− α

N1 − 1
. (28)

If N1 6= 1, we set

z =
1− α

N1 − 1

[
1− 1

2

N 1
2

2N1

]
, (29)

if it results in z > 0 or

z =
1

2

1− α

N1 − 1
(30)

otherwise. In this way Eq. (28) is always satisfied and z ≥ 0.
If N1 = 1 we set z = 0. Finally, we note that the worm
update in this case has to be accepted/rejected according to the
probability Eq. (16). Specific details of an implementation of
this driven worm algorithm can be found in appendix A 2.

How far up the tree updates are attempted can in this case
easily be calculated. The probability for the worm to have
length l and turn around after going up r = l/2 nodes is given
by P (r) = αr(1− α). The expectation-value of r is given by

〈r〉 = 1

1− α
. (31)
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The probability distribution for the worm to penetrate the
tree r nodes deep during a computation of m updates, is given
by

Pm,α(rmax) =
(
1− (1− α)

∞∑
q=r

αq
)m

︸ ︷︷ ︸
probability that in m attempts no worm

turns at a node with r > rmax

−
(
(1− α)

r−1∑
q=1

αq
)m

︸ ︷︷ ︸
probability that in m attempts all worms

turn at a node with r < rmax

=(1− αr)m − (1− αr−1)m . (32)

How far up the tree is updated, is not given by how far
the worm goes up the tree since the update might be rejected.
The mean penetration-depth is therefore not equal to 〈r〉. In
Fig. 5 we show results for the mean and maximal penetration-
depth for two different system sizes, N = 50, 1000 as a func-
tion of 1/(1− α). As expected, both the mean and maximal
penetration-depth increase monotonically with 1/(1− α).

101 102 103

1/(1−α)

100

101

102

103

104

no
de

N=50

max. p.-depth
mean p.-depth

101 102 103

1/(1−α)

N=1000

max. p.-depth
mean p.-depth

FIG. 5. The mean and the maximal penetration-depths grow as α
approaches one. The mean penetration-depth is always smaller than
〈r〉 = 1/(1 − α). This behavior is independent of the system size.
For the chain with 50 sites 3× 108 and for the chain with 1000 sites
107 updates were performed. Operator-strings of 20,000 operators
were used.

Another measure of the performance of the algorithm can
be established by simply looking at the calculated ground-state
energy and its error. This is done in Fig. 6 where the ground-
state energy is shown as a function of 1/(1 − α). Operators
that are never updated, only change the effective trial-state the
ground-state is projected out of. By forcing the worm further
up the tree, one can have a bigger part of the operator-string
partake in the projection (see Fig. 5). This leads to a better
approximation of the ground-state energy as can be seen in
Fig. 6.

For the driven worm algorithm we have also studied the
behavior of the autocorrelation-time of the energy. Our results

101 102

1/(1−α)

22.20

22.15

22.10

E

N=50

102 103

0.0003

0.0003
∆E

FIG. 6. The bigger the penetration probabilityα, the better the approxi-
mation of the ground-state energy given by the driven worm algorithm.
The ground-state energy was calculated using the Bethe-ansatz. It
is indicated by a dotted line. Since some operators in the string are
never updated, calculations with different α were effectively done with
different trial-states. The calculation was done for a chain with 50
sites. Operator-strings of 20,000 operators were used.

are shown in Fig. 7 as a function of 1/(1− α). The behavior
is in this case not monotonic. At first the autocorrelation time
decreases, but then it starts to grow at larger 1/(1− α).

This can be understood in the following way: As long as 〈r〉
is much smaller than the size of the system, the autocorrelation-
time decreases with increasing α. This follows naturally from
the fact that increasing 1/(1−α)will increase 〈r〉 and therefore
lead to larger and more effective updates. This decreases the
correlations between operator-strings. The farther the worm
travels up the string, the smaller is the probability that an update
is accepted (see table II). For bigger α, and thus also 〈r〉, this
effect dominates and the autocorrelation-time grows. A charac-
teristic minimum in the autocorrelation-time as 1/(1− α) is
increased can then be identified as is clearly evident in Fig. 7.

101 102 103

1/(1−α)

101
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N=1000
N=500
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FIG. 7. The autocorrelation-time decreases with 〈r〉, if typical updates
are smaller than the system size. Since bigger 〈r〉 means better projec-
tion, this implies that the autocorrelation-time decreases as the quality
of the projection is improved. Operator-strings of 20,000 operators
were used.
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1/(1− α) acceptance-rate
200 0.41
1000 0.13
5000 0.03

TABLE II. The acceptance rate drops when the string is updated more
substantially. The calculations were done for a chain with 50 sites.

IV. COMPARISON OF ALGORITHMS

In the following we compare worm-updates to simple con-
ventional VBQMC-updates as described for example in refer-
ence [13]. This means that for VBQMC we attempt to change 4
randomly selected operators during one update. We do not com-
pare to loop-updates as introduced in reference [14], since we
anticipate the worm algorithms to be of most with algorithms
for which loop-updates are not known although our current
implementations of them are similar to conventional VBQMC.

We first consider the convergence of the energy with the
projection power (the length of the operator strings). Our results
for a 50 site Heisenberg chain are shown in Fig. 8. It turns out
that if the worm algorithms penetrate the tree sufficiently deeply,
the results do not depend on the type of algorithm in use. In
particular, the dependence of the results on the length of the
string is the same for all three algorithms (see Fig. 8), just as
one might have expected since the power method underlies all
three algorithms.

0 100 200 300 400 500 600 700 800
projection power

10-5

10-4

10-3

10-2

10-1

|∆E|

Driven Worm
Bouncing Worm
Conventional VBQMC

FIG. 8. Upon increasing the quality of the projection by using longer
operator strings, the estimate of the ground-state energy converges to
the correct value in the same way for worm- and conventional VBQMC-
algorithm as long as the string is penetrated sufficiently deeply. The
driven worm algorithm was run with the probability to go up the tree
α = 0.995, which corresponds to a mean penetration-depth of about
90 and full penetration of the string. The bouncing worm algorithm
was run with a bounce probability bu = 0.2675, which corresponds
to a mean penetration-depth of roughly 8 and full penetration of the
string. The calculation was done for a chain with 50 sites.

When using the worm algorithms, the operator string is usu-
ally chosen so long that the worm never or very rarely reaches
the root of the tree. This means that there are almost always
nodes close to the root with operators that are never updated

and thus act on the trial-state after every update. In this way,
we are effectively using an optimized trial-state. The effect is
similar to generating the trial-state by performing several up-
dates on a randomly chosen trial-state and taking the resulting
state for the actual calculation. We used such a trial-state for
the conventional VBQMC-calculations shown in this section.

0 500 1000 1500 2000
scaled number of updates

0.0

0.2

0.4

0.6

0.8

1.0

AE

Bouncing Worm
Driven Worm
Conventional VBQMC

FIG. 9. The autocorrelation-function versus scaled number of updates
for the two worm algorithms and conventional VBQMC. The number
of updates was scaled by the number of operators attempted to be
changed in an update, 〈l/2〉. Hence, data for conventional VBQMC
updates, the driven worm algorithm and the bouncing worm algorithm
were multiplied by 4, 200 and 63.758, respectively. For the worm
algorithms the same parameters as in Fig. 8 were used. This means
that α = 0.995 and bu = 0.2675. An operator-string of length 1000
was used for all three algorithms. The horizontal line at 0.1 was added
to allow for easy visual estimation of the scaled autocorrelation-time.

A useful measure of the effectiveness of an algorithm can be
obtained from the autocorrelation function. If simply measured
as a function of the number of updates it decreases dramatically
faster for the worm algorithms when compared to conventional
VBQMC. However, just using one update as the temporal unit
puts conventional VBQMC at an unfair disadvantage. The
reason is, that in calculations with conventional VBQMC one
attempts to change 4 operators per update while for the worm
algorithms it could be many more. The number of updated
operators in a given worm update varies greatly with the length
of the worm, 〈l〉, which can easily be hundreds of operators
long. Since a single worm update is, therefore, computationally
more expensive to perform than a single 4 operator update with
conventional VBQMC, it seems fairer to compare autocorrela-
tion functions with this difference taken into account. That is,
a fair comparison would ask which algorithm has the smallest
correlations when on average the same number of changes has
been attempted. We can take this into account by simply scaling
the temporal axis with the average size of the attempted update.

In Fig. 9 we therefore show results for the energy autocor-
relation function for the two worm algorithms as well as for
conventional VBQMC with the temporal axis rescaled by the
number of operators one attempts to change in a single up-
date. During one update with worm-algorithms one tries to
update l/2 operators. The scaled number of updates is simply
#updates× 〈l/2〉 with 〈l/2〉 = 4 for conventional VBQMC
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and 〈l/2〉 = 〈r〉 = 1/(1− α) for the driven worm algorithm.
For the bouncing worm algorithm, 〈l〉 has to be measured dur-
ing the simulation, since the bouncing worm can go up and
down the tree many times. Thus, 〈l/2〉 can be orders of mag-
nitudes bigger than the mean penetration-depth. For instance,
for the calculations shown in Fig. 9 the mean penetration-depth
was approximately 7.8 whereas 〈l/2〉 = 63.758. Even includ-
ing such a rescaling of the temporal axis, it is clear that the
autocorrelation-times are much shorter for the worm algorithms,
as shown in Fig. 9.

101 102 103

mean p.-depth
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10-3

10-2

10-1

|∆E|

Driven Worm
Bouncing Worm

101 102 103

projection power

N=100

Conventional 
VBQMC

FIG. 10. The deviation, |∆E|, from the exact Bethe-ansatz results
for a chain with 100 sites. The results are shown for the driven and
bouncing worm algorithms versus the mean penetration-depth and for
conventional VBQMC updates versus the projective power (length of
operator string). The worm algorithms reach the same small value of
|∆E| with a mean penetration-depth an order of magnitude smaller
than the projective power used for the calculation with conventional
VBQMC updates. The bars on the markers indicated the statistical un-
certainty. The colored (dark) surfaces are due to overlapping error-bars.
Operator-strings of 20,000 operators were used for the calculations
with the worm algorithms.

The two worm algorithms change operators of the string
starting from one end while the conventional VBQMC selects
4 operators at random to be changed. As mentioned in sub-
section III A, the mean and the maximum penetration-depth
are usually much smaller than the length of the operator-string
(the projection power). It is therefore natural to ask if one can
reach a similar quality of results using worm algorithms and
conventional VBQMC.

That this is so can be seen by plotting the absolute devi-
ation from the ground-state energy, |∆E|, versus the mean
penetration-depth. As shown in Fig. 10, the mean penetration-
depth can, in fact, be much smaller than the projection power
of a conventional VBQMC-calculation and still yield results of
the same accuracy.

Finally, we look at how the scaled autocorrelation-time de-
pends on the size of the system studied. For convenience, we
define the scaled autocorrelation-time to be the point where
the autocorrelation function has decreased to the value 0.1 (see
Fig. 9). Since in realistic calculations one would use a fixed
(large) length of operator string with the worm algorithms,
while one would scale it with the size of the system in con-

ventional VBQMC, we here only compare the two worm al-
gorithms. Our results are shown in Fig. 11 for a fixed length
operator string of 20, 000.
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FIG. 11. The scaled autocorrelation-time for the driven and bouncing
worm algorithms as a function of system size. A fixed operator string
of length 20, 000 was used in the calculations. In the calculations
shown, the bouncing worm algorithm was run with bu = 0.275 and
the driven worm algorithm was run with α = 0.995. For the scaling
we use 〈l/2〉 = 200 for the driven worm algorithm and an 〈l/2〉
between 60 for N = 10 and 221 for N = 1000 for the bouncing
worm algorithm.

For the simulations shown in Fig. 11 the mean penetration-
depths for the driven worm algorithm were about 100. The
autocorrelation-time for the driven worm algorithm starts to
increase appreciably at this system size, while it is initially
are almost flat. We conclude that a significant increase in the
autocorrelation-time appears once the system size significantly
exceeds the mean penetration-depth. A similar effect can be ob-
served for the bouncing worm algorithm. The mean penetration-
depths for the bouncing worm algorithm are, however, much
smaller (around 9; see Fig. 10). Results for N smaller than the
mean penetration-depth are therefore not shown in Fig. 11. The
autocorrelation-times remain manageable for the system sizes
studied, even though it is consistently increasing.

Compared to simple implementations of VBQMC, the worm
algorithms have significant overhead. This is largely compen-
sated by the large number of operators that can be changed in
an update and resulting shorter autocorrelation-times, as we
found in all computations. Given the somewhat different prop-
erties of the two worm algorithms, a realistic implementation
could combine the two by performing updates with the driven
worm algorithm mixed with updates using the bouncing worm
algorithm (and perhaps conventional VBQMC updates).

V. CONCLUSION

We have shown that valence-bond quantum Monte Carlo can
be implemented with an update build around the notion of a
worm propagating through a tree. Many different such algo-
rithms are possible. We studied the validity and efficiency of
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two of them. One for which no update is rejected (the bouncing
worm algorithm) and one for which big parts of the operator-
string are updated (the driven worm algorithm). Both algo-
rithms are attractively simple and straight forward to implement
and produce high quality results.

While they may not be computationally competitive with
state of the art loop update algorithms [14] for VBQMC, the
algorithms presented here are intrinsically interesting since they
represent a new class of algorithms that should be generally
applicable to projective methods. These algorithms are not
restricted to the valence bond basis and preliminary results
show that they can be quite efficient in the Sz-basis [16] method
and might spark further development of it. We also note that
many other algorithms can easily be found with the results
contained in this paper and that it is possible that the parameter
space allows for much more efficient algorithms than the two
we have studied here.

In terms of further optimizing the algorithms several direc-
tions may be interesting to pursue. Not updating some of the op-
erators the worm visits, might boost the acceptance ratio of the
driven worm algorithms and thereby reduce the autocorrelation-
times. This could be combined with attempting to reduce the
overhead of the driven worm calculations by always forcing the
worm all the way down to the root. This would eliminate the
need to keep track of the state at each node. With the current
practice of updating all operators after turning around, going
all the way to the node during every update leads to very small
acceptance ratios.

We acknowledge computing time at the Shared Hierar-
chical Academic Research Computing Network (SHARC-
NET:www.sharcnet.ca) and research support from NSERC.

Appendix A: Pseudocode for implementations of the tree worm
algorithm

This appendix contains pseudocode that shall serve to clarify
the algorithms proposed in this paper. To simplify notation we
refer to diagonal operator as DOP and non-diagonal operators
as NDOP.

1. Bouncing worm algorithm

In this section we give detailed information on a straight-
forward (albeit not optimized) implementation of the bounce-
algorithm (see Subsec. III A). Shown is an outline of the central
part of the algorithm: the update of the operator-string and the
state.

The algorithm works its way up the tree. It starts at the last
branch which is assigned the nth position. At each position
it is decided if the worm goes up the tree or down, in which
case a new operator is chosen for the branch at this position.
The necessary probabilities are calculated according to the
expressions given in Eq. 21 and Eq. 23. If a new operator is
chosen for the nth branch, the update is complete.

It is assumed that the tree is so high (the operator-string so
long) that the root is never reached. If the root is reached, one

has to choose an operator for the first branch according to the
probabilities outlined in Sec. II after Eq. 14.

Schematically, using pseudocode, a bouncing worm update
of a tree with n nodes can be outlined as follows:

pos = n . start at last branch
going up = TRUE
while pos ! = n+ 1 do

ran = uniform(0, 1)
if going up then

if operator at pos is NDOP then
pos = pos− 1

else if ran < cw then
pos = pos− 1

else
going up = FALSE
choose new DOP at pos
update state, w and N1 at pos
pos = pos+ 1

end if
else

if ran < bu then
going up = TRUE

else
if ran− bu < wN1 then

choose DOP at pos
else

choose NDOP at pos
end if
update state, w and N1 at pos
pos = pos+ 1

end if
end if

end while

The weights w, u and bu, N1 as well as the state are stored at
each node.

2. Driven worm algorithm

We now turn to a description of a (not optimized) implemen-
tation of the driven worm algorithm (see Subsec. III B). As
above, we show an outline of the central part of the algorithm:
the update of the operator-string and the state.

The worm works its way up the tree. It starts at the last branch
which is assigned the position n. While going up the tree, the
worm, at each node, goes further up the tree with probability
α or turns around with probability 1−α. After turning around,
the worm keeps going down until it reaches the end. At the
nodes the worm visits new operators are chosen. When the
worm reaches the end, it has to be decided whether or not the
update should be accepted. The associated probabilities are
calculated according to the expressions given in the main text
(see Eq. 26, Eq. 27 and Eq. 16).

As above, we assume that the tree is so high (the operator-
strings so long) that the root is never reached. If that the root
is reached, one has to choose an operator for the first branch
according to the probabilities outlined in Sec. II after Eq. 14.
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Shown is the driven worm update of a tree with n nodes.
Using pseudocode language, a driven worm update then takes
the following form for a tree with n nodes:

pos = n . start at last branch
going up = TRUE
while pos ! = n+ 1 do

ran = uniform(0, 1)
while going up do

if ran < α then
pos = pos− 1

else
going up = FALSE
if operator at pos is DOP then

if ran− α < yN1/2 then
choose new NDOP at pos

else
choose DOP at pos

end if
else

if ran− α < zN1 then
choose new DOP at pos

else
choose NDOP at pos

end if
update state, weights, c, and N1 at pos
pos = pos+ 1

end if
end if

end while
if ran < wN1 then

choose DOP at pos
else

choose NDOP at pos
end if
update state, weights, c, and N1 at pos
pos = pos+ 1

end while
Accept or reject using old and new c’s.

The weights, c, N1 as well as the state are stored at each node.
A new string is not always accepted.
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5. Conclusions

In part I of this thesis, I presented two variational studies of the dimerized 𝐽1-𝐽2 chain. The
first publication was about the entanglement between the chain and an impurity attached to
one of its ends. We explained how it is possible to calculate a genuine entanglement measure,
the negativity, between a block of spins at one end of the 𝐽1-𝐽2 chain and an impurity spin
attached to the other end, within a conceptually very simple variational framework that was
known to be applicable to the 𝐽1-𝐽2 chain at the Majumdar-Ghosh point (MG-point). Via
comparison with results of DMRG and other techniques, we were able to show that this
variational method does not only work at the MG-point but also in the surrounding region.

The results for the negativity were used to compare it to a different quantity, 𝑆imp, that had
been introduced earlier to quantify the impurity entanglement in this model. It was found that
the negativity is better suited to help understand the impurity entanglement. For small values
of the coupling of the impurity to a chain with an odd number of sites, we, in accordance
with prior studies, found the entanglement at the MG-point to be long-ranged. Increasing the
impurity coupling was observed to quickly reduce the range of the entanglement. Another
result contained in this publication is that a very small explicit dimerization can also suppress
long-range entanglement very effectively.

The second publication was about a study of the 𝐽1-𝐽2 chain with an odd number of sites.
We found DMRG to not be applicable close to the Lifshitz point, because of a massive
degeneracy developing at this point. Thus, the same variational method as in the first
publication was used in the second publication. We showed that there is a sequence of level
crossings starting at the Lifshitz point. Such level crossings are absent in the 𝐽1-𝐽2 chain with
an even number of sites, which is gapped throughout the region of interest. The correlation
length was shown to have the same characteristic behaviour close to the disorder point for
even and odd chains; at the disorder point it is, for example, minimal in both cases. For
periodic boundary conditions, we were able to develop a robust understanding of the nature
of the level crossing. For odd boundary conditions we were unable to do so. It would be
truly great to understand why and how the intriguing pattern of the intertwining levels forms.
The on-site magnetization and the entanglement entropy show dramatic changes while one
is going through the level crossings.

The variational method used in the two publication makes no reference to the specifics
of the system or the Hamiltonian. As long as the groundstate can reasonably well be
approximated by a manageable number of dimerized states, it can be used and good results
can be expected.

In the second part, I presented one publication about new algorithms for valence bond
quantum Monte Carlo. In this publication, we showed that it is possible to implement worm
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algorithms to generate substantial updates of the operator strings which are sampled in this
method. Two algorithms with very different characteristics were introduced and studied.
Several ways to potentially improve the worm algorithms were mentioned in the publication.
I believe that it would be very interesting and possible to only update a fraction of all the
nodes that a worm passes and thereby have updates that penetrate the string even more
substantially.

In the sections accompanying the publication we explained how the general scheme of
VBQMC can be translated to the 𝑆𝑧-basis. The algorithms of the publication are applicable
to the 𝑆𝑧-method. Testing such an implementation would be very interesting, since efficient
loop or cluster algorithms are not known for the VBQMC in the 𝑆𝑧-basis. It would also
be very worthwhile to try to develop a loop algorithm. There is a lot of room for further
research and it is far too early to make any decisive statement about the prospects of the
worm algorithms and 𝑆𝑧-projector Monte Carlo.
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A. Appendix

A.1. The spectrum of 𝐻(𝑖)
In the following, the spectrum of the operator 𝐻(1) = 𝐒1 ⋅ 𝐒2 + 𝐒2 ⋅ 𝐒3 + 𝐒1 ⋅ 𝐒3 acting on
three spin ½ is calculated. I start by decomposing the 8 dimensional Hilbert space into three
subspaces, which have definite total spin. Then, it is not difficult to calculate the eigenvalues
of 𝐻(1).

First we look at the subspace with 𝑆𝗍𝗈𝗍 = 3/2. The basis states are (in declining order of
𝑆𝑧-eigenvalue) given by:

𝑒8 =|↑↑↑⟩ ,

𝑒7 = 1
√3

[|↑↑↓⟩ + |↑↓↑⟩ + |↓↑↑⟩] ,

𝑒6 = 1
√3

[|↑↓↓⟩ + |↓↓↑⟩ + |↓↑↓⟩] ,

𝑒5 =|↓↓↓⟩ . (A.1)

For the corresponding eigenvalues one finds that

𝐻(1) 𝑒5 = 𝐻(1) 𝑒6 = 𝐻(1) 𝑒7 = 𝐻(1) 𝑒8 = 3
4

. (A.2)

With the shorthand

|−⟩ = 1
√2

[|↑↓⟩ − |↓↑⟩] ,

eigenstates of the first subspace of 𝑆𝗍𝗈𝗍 = 1/2 can be written as

𝑒4 =|↑⟩|−⟩ + |−⟩|↑⟩ ,
𝑒3 =|↓⟩|−⟩ + |−⟩|↓⟩ . (A.3)

Eigenstates of the second subspace of 𝑆𝗍𝗈𝗍 = 1/2 are given by

𝑒2 =|↑⟩|−⟩ − |−⟩|↑⟩ ,
𝑒1 =|↓⟩|−⟩ − |−⟩|↓⟩ . (A.4)
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For both subspaces it does not matter which spins are in the singlet state as long as they are
the same ones for both states. Let it be the third spin that is in the state |↑⟩. Then,

𝐻(1) |−⟩|↑⟩ =[ − 3/4 + 𝐒1 ⋅ 𝐒3 + 𝐒2 ⋅ 𝐒3]
1

√2
[|↑↓↑⟩ − |↓↑↑⟩]

= − 3/4|−⟩|↑⟩ + 1
√2

[
1
4

↑↓↑⟩ + 1
4

|↓↑↑⟩ − 1
2

|↑↑↓⟩ − 1
4

↑↓↑⟩ − 1
4

|↓↑↑⟩ + 1
2

|↑↑↓⟩]

= − 3/4|−⟩|↑⟩ . (A.5)

Thus,

𝐻(1) 𝑒1 = 𝐻(1) 𝑒2 = 𝐻(1) 𝑒3 = 𝐻(1) 𝑒4 = −3/4 . (A.6)

We have thus shown that the spectrum of 𝐻(1) (and thus all 𝐻(𝑖) from equation 1.6) is
given by 3/4 and −3/4 and that both eigenvalues are fourfold degenerate.

A.2. Valence bond quantum Monte Carlo sampling for

𝑆 >1/2

Trying to simulate spins with spin quantum number bigger than 𝑆 =1/2 introduces difficulties
that are absent when 𝑆 =1/2, as is explained in section 4.1 of chapter 4 in part II. One has to
deal with the fact that a bond operator creates more than one states and that thus the sum
over 𝑟 in

(−𝐻 + 𝐶)𝑛|𝛼trial⟩ = ( ∑ ℎ𝑖𝑗)
𝑛
|𝛼⟩

= ∑
𝑘

𝑛

∏
𝑢=1

ℎ𝑖𝑢𝑘𝑗𝑢𝑘
|𝛼⟩

= ∑
𝑘

𝑠𝑘|𝛼⟩

= ∑
𝑘

𝑚(𝑘)

∑
𝑟

𝑤𝑘𝑟|𝛼𝑘𝑟⟩ (A.7)

has more than one term. We call this branching. Equation A.7 is the same as equation 4.11.
It was copied for the readers convenience. It is the equation that we want to calculate (the
projection onto the groundstate) and the quantity in the last line is the quantity we evaluate
with Monte Carlo.

The goal is to generate the 𝛼𝑘𝑟 with a probability proportional to the 𝑤𝑟𝑘. The weight of
an operator string is calculated by acting on |𝑎trial⟩ with one of the bond operators after the
other.
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Just choosing a state from the superposition that is created by an operator string and using
the corresponding 𝑤𝑟𝑘 in the acceptance step does not work. The reason is that the states that
are compared are not chosen with the same probability. Imagine a string 𝑠1 that creates a
superposition of 20 states. A single state is then chosen with probability 0.05. Now imagine
the next string to generate a superposition of 100 states. A single state is then chosen with a
probability of 0.01. Thus, the probability to consider a state from 𝑠1 as a new state coming
from 𝑠2 is 5 = 100/20 times higher than the probability to consider a state from 𝑠2 coming
from 𝑠1. This imbalance has to be taken into account.

Firstly, I explain a very simple way of overcoming this problem and show that it is valid,
i.e. that it has detailed balance. Then, I explain how the simple method can be improved
significantly.

Here is the simple way of doing it. If acting on the state generates 𝑐 branches, one of the
branches is chosen randomly and the weight of the operator string given by the coefficient a
state is generated with is multiplied with 𝑐.

It will now be shown that with this procedure detailed balance is achieved. For this purpose
it is necessary to distinguish between the weight 𝑤𝑖𝑗 of a state in the sum in equation A.7
which is given by the numerical factors generated by the action of an operator string and
the weight 𝑔𝑖𝑗 that is used during the acceptance rejection step during the generation of the
ensemble of states that is used in the simulation.

Let us start with an arbitrary state |𝛼1𝑟⟩ generated by the operator string 𝑠1. Its weight in
the sum in equation A.7 shall be 𝑤1𝑟. Its weight in the simulation is denoted by 𝑔1𝑟. Let 𝑐1

1
be number of terms in the superposition created if we act with the first bond operator on
|𝛼trial⟩. If we choose a state |𝛼1

1⟩ with coefficient 𝑘1
1 randomly from the superposition, it is

chosen with a probability of 1/𝑐1
1 . Acting on the chosen state |𝛼1

1⟩ with the next operator
in 𝑠1, we get a superposition of 𝑐2

1 states back. If we randomly choose one state |𝛼2
1⟩ that

contributes the coefficient 𝑘2
1, it will be chosen with the probability 1/𝑐2

1 . After application of
the first two operators in 𝑠1, we therefore get |𝛼2

1⟩ with a probability of 1/(𝑐1
1𝑐2

1). The weight
from the coefficients is given by 𝑘1

1𝑘2
1. After the application of all of 𝑠1’s 𝑛 bond operators,

the state |𝛼1𝑟⟩ = |𝛼𝑛
1⟩ will be the state we have to accept or reject with the probability of

𝑃1𝑟 = 1
∏ 𝑐𝑖

1

. (A.8)

The weight of |𝛼1𝑟⟩ in the sum in equation A.7 is

𝑤1𝑟 = ∏ 𝑘𝑖
1 . (A.9)

The weight we use in subsequent acceptance rejection steps is

𝑔1𝑟 =
𝑤1𝑟

𝑃1𝑟
. (A.10)

Now we calculate the transition amplitude to a second state |𝛼2𝑙⟩ generated by an operator
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string 𝑠2 which itself is generated by randomly changing some of the bond operators making
up 𝑠1. The probability for 𝑠2 to be chosen is denoted by 𝑝. It is the same as choosing 𝑠1
coming from the string 𝑠2. The necessary quantities 𝑤2𝑙 and 𝑔2𝑙 can be calculated following
the recipe given for |𝛼1𝑟⟩.

The acceptance probability 𝑢1𝑟→2𝑙 of |𝛼2𝑙⟩ is given by 𝑢1𝑟→2𝑙 = min [
𝑔2𝑙

𝑔1𝑟
, 1]. Combining

the probabilities for 𝑠2 to be chosen, for |𝛼2𝑙⟩ to be chosen from the superposition created by
𝑠2 and the acceptance probability, we find that the transition probability to go from |𝛼1𝑟⟩ to
|𝛼2𝑙⟩ is given by

𝑡1𝑟→2𝑙 = 𝑝 𝑃2𝑙 𝑢1𝑟→2𝑙 . (A.11)

Similarly we can get the transition probability to go from |𝛼2𝑙⟩ to |𝛼1𝑟⟩ that

𝑡2𝑙→1𝑟 = 𝑝 𝑃1𝑟 𝑢2𝑙→1𝑟 . (A.12)

It follows that

𝑡2𝑙→1𝑟

𝑡1𝑟→2𝑙
=

𝑝 𝑃1𝑟 𝑢2𝑙→1𝑟

𝑝 𝑃2𝑙 𝑢1𝑟→2𝑙
=

𝑃1𝑟 𝑔1𝑟

𝑃2𝑙 𝑔2𝑙

=
𝑤1𝑟

𝑤2𝑙
. (A.13)

Detailed balance is observed.

The better way to do it

It is desirable to keep fluctuation of the weight used in the acceptance rejection step as small
as possible. This enhances the acceptance ratio and thus makes the algorithm much more
efficient. It can be achieved by choosing states that have big weight more often. We should
thus choose branches with a probability proportional to their coefficients.

Let us call the coefficients of states created by the 𝑗th operator in the first string 𝑘𝑗
1𝑖. We

choose the 𝑖th branch after acting with the 𝑗th operator with the probability 𝑘𝑗
1𝑖/ ∑𝑖 𝑘𝑗

1𝑖. The
probability for a branch to be chosen from the superposition generated by the first string is
then

𝑃1𝑟 = ∏
𝑗 [

𝑘𝑗
1𝑖

∑𝑖 𝑘𝑗
1𝑖

]
. (A.14)

In this way, branches with big coefficients are chosen more often and fewer states have to
be rejected. The introduction of this probability has to be balanced through a division of the
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rejection weight by 𝑃1𝑟. We get

𝑔1𝑟 =
𝑤1𝑟

𝑃1𝑟

= ∏
𝑗

∑
𝑖

𝑘𝑗
1𝑖 . (A.15)

Doing these steps for a second string and following the steps that led to equation A.13 directly
leads to the conclusion that this method has detailed balance.
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