VALENCE BOND CALCULATIONS FOR QUANTUM SPIN CHAINS






VALENCE BOND CALCULATIONS FOR QUANTUM SPIN CHAINS:
FROM IMPURITY ENTANGLEMENT AND INCOMMENSURATE
BEHAVIOUR TO QUANTUM MONTE CARLO

By
ANDREAS DESCHNER, Dipl.-Phys.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree

Doctor of Philosophy

McMaster University
Copyright by Andreas Deschner, 2014.



Doctor or PHiLosoPHY, Physics and Astronomy, McMaster University (2014), Hamilton,
Ontario

TrtLE: Valence Bond Calculations for Quantum Spin Chains: From Impurity Entanglement
and Incommensurate Behaviour to Quantum Monte Carlo

AuTtHOR: Andreas Deschner, Dipl.-Phys. (Heidelberg University)
Supervisor: Dr. Erik S. Sgrensen

NUMBER OF PAGES: Xi, 120

ii



Abstract

In this thesis I present three publications about the use of valence bonds to gain information
about quantum spin systems. Valence bonds are an essential ingredient of low energy states
present in many compounds.

The first part of this thesis is dedicated to two studies of the antiferromagnetic J,-J, chain
with § = 1/2. We show how automated variational calculations based on valence bond
states can be performed close to the Majumdar-Ghosh point (MG-point). At this point, the
groundstate is a product state of dimers (valence bonds between nearest neighbours). In the
dimerized region surrounding the MG-point, we find such variational computations to be
reliable.

The first publication is about the entanglement properties of an impurity attached to the
chain. We show how to use the variational method to calculate the negativity, an entanglement
measure between the impurity and a distant part of the chain. We find that increasing the
impurity coupling and a minute explicit dimerization, suppress the long-ranged entanglement
present in the system for small impurity coupling at the MG-point.

The second publication is about a transition from commensurate to incommensurate
behaviour and how its characteristics depend on the parity of the length of the chain. The
variational technique is used in a parameter regime inaccessible to DMRG. We find that in
odd chains, unlike in even chains, a very intricate and interesting pattern of level crossings
can be observed.

The publication of the second part is about novel worm algorithms for a popular quantum
Monte Carlo method called valence bond quantum Monte Carlo (VBQMC). The algorithms
are based on the notion of a worm moving through a decision tree. VBQMC is entirely
formulated in terms of valence bonds. In this thesis, I explain how the approach of VBQMC
can be translated to the .S,-basis. The algorithms explained in the publication can be applied
to this .S ,-method.
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1. Introduction

Things in nature behave according to many complicated rules. This can make researching
their behaviour very difficult indeed. What makes the work of a physicist possible is that
the physical world has the wonderful property that most of the many degrees of freedom
are not important at all. If you were to try to kick a ball, you would mostly be concerned
with its center of mass, its weight and its radius. The specifics of the positions of the atoms
and their constituents are of no importance at all. For the purpose of kicking a ball, they are
only distractions. There are, of course, many problems that make it necessary to try to know
more about the ball than its macroscopic properties. One could, for example, try to find
out what the ball is made out of, how it burns if lit or where in the ball there are electrons.
It depends on the question at hand, on the problem one wants to solve. If it is possible to
focus on a limited set of variables, one should always do it; one should always use a model.
Fewer variables usually mean less hassle. A good model captures the relevant physics while
making the problem much simpler to solve. One should, however, not overdo it. Modelling
a soccer ball as a massless hard sphere when trying to estimate its trajectory after kicking it
will lead to incorrect results.

In condensed matter physics we are interested in the study of a huge number of atoms. With
knowledge of the constituent atoms, it is not difficult to write down a model that contains all
physics that is relevant at energy scales we usually are interested in. It is a Hamiltonian with
the kinetic energies of the electrons and nuclei together with Coulomb interactions between
all particles that make up the compound.

Macroscopic systems contain on the order of 10%* particles. Full analytic calculations
without any approximations are therefore impossible. Even just trying to keep track of the
wavefunction of all the particles is hopeless. With so many particles, it is also futile to
attempt to tackle such a problem numerically. If we had a very big and very good module of
random-access memory that we wanted to fill with one number per particle and that has a
transfer rate of 1 TB/s (a rate that is outside of current capabilities), we would have to wait
for roughly the age of the universe for it to be filled. Something we cannot do.

We thus have to remove everything that is not essential to the problem. Take a crystal for
example. At low temperatures, the nuclei can be thought of as harmonic oscillators, each
oscillating about a fixed position in a lattice. When one is only interested in the degrees of
freedom of the electrons, it is often found to be worthwhile to ignore the motion of the nuclei
altogether and take them into account with a background potential. One must, however, not
get carried away and think that the motion of the nuclei does not matter for the electrons. It
is the interaction between the motion of the nuclei and the electrons that is responsible for
superconductivity in conventional superconductors.
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1.1. Magnetic models

If one is considering a crystal in which the electrons are well localized at magnetic ions, it is
often a good idea to only consider the degrees of freedom of the spins in order to capture the
low-energy physics. Then, suitable models can be devised. Rich magnetic structures can be
studied in this way.

How the electrons interact through their spins is highly interesting. The classical dipolar
interaction, which one always has between magnetic dipoles, is not the main cause for the
interactions. The Coulomb interaction is mostly responsible for the strength of the spin
interaction in magnetic compounds, even though it is blind to the spin of particles. Only
through the Pauli principle and the tendency of fermions to avoid each other does the spin
become important for the Coulomb interaction. The strong interactions between spins that
give rise to magnetic phenomena are thusly generated. They are called exchange interactions.

Exchange interactions come in two variants: Coulomb exchange and kinetic exchange.
Coulomb exchange usually favours alignment of spins. It is caused by minimizing the
potential energy of electrons on different sites. An intuitive picture is easily given and
understood. Because of the Pauli principle, electrons have a tendency to stay far apart from
each other if their spins are aligned. The potential energy in this case is thus lower than if
their spins were not aligned.

The alignment of the spins also plays an important role for the kinetic energy. If the spins
of two electrons are not aligned, it is possible for them to be in the same orbital. Thus,
the electrons can roam around the crystal less restrictedly. This leads to a lower kinetic
energy and the energy contribution stemming from this mechanism is fittingly called “kinetic
exchange energy”. It usually favours misalignment of spins. A more rigorous and quantitative
exposition of the these concepts can be found in Auerbach [1994] and many other textbooks.

Because of the inherently quantum mechanical origin of the interactions that lead to
macroscopic magnetism, it is fair to say that the existence of magnetic materials is a distinctly
quantum mechanical phenomenon.

The main model for magnetic insulators is the Heisenberg model. It contains only the
interactions caused by spin degrees of freedom. Spin Hamiltonians are defined on lattices.
At each point in the lattice there is a spin. The most basic Hamiltonian with spin rotational
symmetry for such a model is given by

H=Y 1,88, (1.1)
ij

where the J;; stand for the interaction strengths between pairs of spins. The Heisenberg
model is studied in classical and quantum mechanical varieties. In classical models, the S,
are the components of the spins at lattice sites. In quantum mechanical systems, they are the

spin operators.
Heisenberg models are used to describe phenomena in ferromagnets, in which the spins
have the tendency to align, and in antiferromagnets, where they tend to antialign. It depends



Ph.D. Thesis — Andreas Deschner — McMaster University —  Physics and Astronomy

on the sign of the interaction strength J;; which case is modelled. If the J's are negative, one
is looking at a ferromagnetic interaction. For a Hamiltonian with only such interactions, the
system has a ferromagnetic groundstate with all the spins aligned in one direction. Because
this state is an eigenstate of the Hamiltonian, it is a groundstate for the classical as well as
the quantum mechanical problem.

If the J's are positive, one speaks of an antiferromagnetic Hamiltonian. Compared to the
ferromagnetic Hamiltonian, the spectrum is inverted and the behaviour is more difficult to
understand. If it is possible to stagger the spins in the system and thereby satisfy all bonds, i.e.
if there is no frustration, the groundstate of the classical system shows a staggered magnetic
structure. This state, the Néel state, is not an eigenstate of the Hamiltonian. Finding the
groundstate of an antiferromagnet even in the simplest case is thus not easy.

With frustration, classical systems may have many degenerate groundstates. For quantum
systems this means that there are many different possible groundstates, some of which are
very quantum mechanical. The most prominent such groundstate is the spin liquid state, in
which no symmetries of the Hamiltonian are broken. I will say more about such states in the
next section. Frustrated models are much harder to understand. After decades of research
they are still the topic of a very active area. To get a flavour of the breadth of current research,
I recommend having a look at Lacroix et al. [2011].

For real systems, many different terms can appear in a spin Hamiltonian. It might, for
example, happen that not all J s are positive or negative and that different interactions compete
because of the sign. This can also introduce frustration. The interactions between the spins
might also not be isotropic or only involve two spins. Interactions with magnetic fields may
also play a role.

The antiferromagnetic Heisenberg model can be derived as a limiting case of the Hubbard
model. The Hubbard model describes electrons that are in localized orbitals close to lattice
sites and can hop from one site to the other (see Hubbard [1963]). The Hamiltonian is given
by

H = —t Z [CIaCj,o + h.c.] +U Z niah (1.2)

(i.j),0

where the ¢; are annihilation operators at site i and the first sum is over sites in the lattice
as well as the spin directions (as indicated by the o). The Hamiltonian has two competing
terms. The hopping term causes the electrons to delocalize. Its strength is given by ¢. The
on-site repulsion term causes the electrons to stay far away from each other and thus limits
how the electrons can delocalize. Its strength is given by U.

The ratio #/U determines the characteristics of the model. The smaller ¢/U is, the stronger
is the tendency of any two electrons to be at different sites. At half-filling, where there are as
many electrons as sites, one can freeze the positions of the electrons by making #/U smaller
and smaller. This increases the penalty for an uneven distribution of electrons. The hopping
term, however, is still important. By means of perturbation theory, one can see that it lowers
the energy of some states on the basis of their spin arrangement. The lowest order effective
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Hamiltonian that is obtained with perturbation theory is the antiferromagnetic Heisenberg
Hamiltonian as introduced above. Terms of higher order include interactions between more
than two spins (see e.g. Takahashi [1977]).

1.2. Different orders

As long as the dimension is big enough, classical systems order at a finite temperature. For
one- or two-dimensional systems, this may not be true according to the theorem due to Mer-
min and Wagner [1966], which states that continuous symmetries cannot spontaneously
be broken in systems with dimension smaller than three. Fluctuations play a much more
important role in low dimensions and can mix states that are related by the symmetry that
would otherwise be broken.

Groundstates of classical systems, however, always show some order. Orders of classical
spin systems are usually very intuitive to understand. In the easiest cases, there may be
ferromagnetic order, where all spins align, or antiferromagnetic order, where all spins
anti-align. An illustration of antiferromagnetic order can be found in figure 1.1 (a). With
competing interactions or interesting lattices, there may also be incommensurate spiral order,
where neighbouring spins are neither parallel nor point into opposite directions, but are
rotated with respect to each other by some fixed pitch angle.

Quantum mechanical systems can have (and often do have) groundstates that are funda-
mentally different. Especially in low dimensions and for spins with small spin quantum
number S can such groundstates be observed. This is so for the same reason the theorem of
Mermin and Wagner is true: fluctuations about an ordered classical groundstate are enhanced
under these conditions. In classical systems, fluctuations matter only at finite temperature.
In quantum systems they are also important at zero temperature. In many regards, quantum
systems of dimension D can be thought of as classical systems of dimension D + 1 at finite
temperature. The role of thermal fluctuations is then played by quantum fluctuations. The
correspondence between classical and quantum spin systems is very useful since it allows
our classical intuition to be used on quantum mechanical systems. Care has to be taken to
not rely on this too much, as there is much more to most quantum mechanical systems.

For the Heisenberg chain this correspondence can for example be exploited in the case
of integer spin (see Haldane [1983]). For Heisenberg chains with half-integer spins this is
not true. The spin spin correlation function of the .§'=1-Heisenberg chain (also called the
Haldane chain) decays exponentially, as one would expect because of the correspondence
and the theorem of Mermin and Wagner. In contrast, the spin spin correlation function of
the .S'=1/2 Heisenberg chain decays algebraically.

The classical Néel-ordered state with opposing spins on neighbouring sites is not an
eigenstate of the antiferromagnetic Heisenberg Hamiltonian. Antiferromagnetic quantum
systems with dimensions bigger than one nevertheless often show Néel-order similar to
classical antiferromagnets such that (S,) # 0 and the rotational symmetry of the Hamiltonian
is spontaneously broken.
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Many systems, however, show order which is very different to that of classical systems.
Quantum mechanical systems have a means to minimize their energy that is not available to
classical systems. In the presence of antiferromagnetic interactions, classical systems can
only point their spins in as different directions as possible. The energy expectation value of
such a state would be (with J = A2 =1)

1
<T,ij|SlSJIT,lj> :_Z . (13)
Quantum spins can form a valence bond or dimer, given by the state
1
V2

This configuration is the groundstate for two spins with an antiferromagnetic interaction.
The corresponding energy is —3/4. This is much lower than the energy for the antiparallel
arrangement. There is a trade off to be taken into account: When two spins are in different
dimers, the expectation value for the interaction term between them is zero. Because
they dimerize, the two spins miss out on the opportunity to lower the energy through the
interactions with other spins. The more neighbours a spins has, the less inclined it, thus, will
be to form a dimer. Explicit dimerization (some of the bonds being stronger than others)
aside, dimers or valence bonds therefore mostly play an important role in systems with one
and two dimensions. An interesting feature of dimers is that they are spin singlets, i.e. that
they are symmetric under spin-rotations. The spin rotational symmetry of the Hamiltonian
is thus not broken in a valence bond state.

[0 =111)] - (1.4)

4 4 I —
v v

!t 11 T —

A A
v v «  ®© @ e
(a) Néel-order (b) Columnar dimer-order

Figure 1.1.: Illustrations of Néel-order (a) and dimer-order (b) on a square lattice of 12 sites.
Which sites are connected by a dimer is indicated by an ellipse.

Dimerization can come in different shapes and forms. There is for example the valence
bond crystal. The valence bonds are, in such a state, arranged in a repeating pattern. In this
way, the state breaks symmetries of the underlying lattice. An example for such a state is
illustrated in figure 1.1 (b).

With valence bonds as building blocks, one can also form states that do not break any
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symmetry of the Hamiltonian. To get such a state, one has to add states with very many
different arrangements of valence bonds (enough to have all states connected by symmetry
operations covered). States with this property have been given the name resonating valence
bond states (RVB). They are (and have been) of incredible interest. They were studied
by Anderson [1973] and the interest in them rekindled when they were proposed to be
important for the understanding of high temperature superconductivity (see Anderson [1987]).
Because they, like a liquid, do not break any symmetries, such states are often called spin
liquids.

Two reasonably realistic two-dimensional Heisenberg Hamiltonians have to date con-
vincingly been shown to allow for such a state; for both this occurred recently. Firstly,
the antiferromagnetic J;-J, model on the square lattice, where nearest and next-nearest
neighbours interact antiferromagnetically (see Jiang er al. [2012a]). The other system is the
Kagome lattice with antiferromagnetic nearest neighbour interactions (see Yan et al. [2011]).
This model is of relevance to the physics of a number of compounds (see Balents [2010]).
With herbertsmithite there now also seems to be a material that is very well described by the
Kagome Hamiltonian and, thus, considered to have a spin liquid groundstate (see Han ez al.
[2012]).

Some spin liquid groundstates are not entirely unorganized, even though no symmetries
of the Hamiltonian are broken. These groundstates show topological order, as described
by Wen [1989, 2013]. When such spin liquids are put on topologically non-trivial manifolds,
there is a degeneracy. How severe this degeneracy is, depends on the genus of the manifold.
One very unique quality is that this degeneracy cannot be eliminated by a local perturbation.
A prominent example of such a model is the toric code introduced in Kitaev [2003]. The
spin liquid state on the Kagome lattice is also believed to have topological order, as shown
in Depenbrock ef al. [2012]. Such states have long-ranged entanglement as was shown
in Kitaev and Preskill [2006] and Levin and Wen [2006]. I will return to this issue in
section 2.2.

In one dimension, one does not have to search for models that show inherently quantum
mechanical order. The opposite is true. Even the simplest antiferromagnetic system with
only nearest neighbour interaction has a spin liquid groundstate and adding next-nearest
neighbour interactions induces dimerization. Two of the publications in this thesis are
focused on exactly this spin model. In this section, I describe its phase diagram in some
detail.

This spin chain is usually referred to as the J,-J, chain. It is often also called the zigzag
chain. Sadly, the also descriptive name “railroad trestle lattice” given to it in Anderson
[1973] has somewhat gone out of style. The model was first considered by Majumdar and
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WAW

),

Figure 1.2.: A graphical representation of the J,-J, chain.

Ghosh [1969a,b]. The Hamiltonian is

H=1J,)8,-S;+J, ) S-S, . (1.5)
@.J) ((@.5))

where the subscripts (i, j) and ((i, j)) denote pairs of nearest and next-nearest neighbours,
respectively. A graphical representation is given in figure 1.2. There are many compounds
that can be modelled with the J,-J, chain. A (far from complete list) of such compounds
can be found in Hase er al. [2004].

Depending on the interactions, the system may be frustrated. This makes for an interesting
phase diagram, which is illustrated in figure 1.3. In the following an even number of sites is
assumed (just as shown in figure 1.2).

I will go through the phase diagram in clockwise direction. I start at the point where both
interactions are positive and J,/J, = J,=0.241167(5). For J,/J, < J_, the chain is in an
antiferromagnetic phase (see White and Affleck [1996]; Eggert [1996]). It is labelled SAFM
in figure 1.3. The systems is, in this phase, either slightly frustrated or not frustrated at all.
In this phase, in which lies the Heisenberg chain with only nearest-neighbour interactions,
one finds a gapless groundstate with short-ranged antiferromagnetic correlations. The
magnetization at single sites is zero and there is no broken symmetry. This phase is, thus, an
example of a spin liquid phase. The spin spin correlation function shows algebraic decay. In
the lower right quadrant, the system is not frustrated. The phase just described is expected
to be found in the whole lower right quadrant.

In the lower left quadrant, both interactions are negative. The interactions do not compete;
J, in fact stabilizes the ferromagnetic polarization observed in the ferromagnetic Heisenberg
chain without next-nearest-neighbour interaction. The ferromagnetic region extends into the
upper left quadrant of slight frustration, where J, >0. It is labelled with FM in figure 1.2.

At |J,/J,| = Jyprys = 1/4 there is a phase transition. The ferromagnetic groundstates
become degenerate with an interesting, very unique state that is analytically known. It
is a uniformly distributed resonating valence bond state (UDRVBS); a state given by the
superposition of all product states with valence bonds between all pairs of sites (see Hamada
et al. [1988]). For |J,/J,| > 1/4 the system has an incommensurate singlet groundstate which
smoothly transforms into the UDRVBS as |J,/J;| \\ 1/4 (see Tonegawa and Harada [1989]).

The maximum of the static magnetic structure factor starts to shift from g=0 at J;pryp-
It thus is a Lifshitz point. More information about such points can be found in the sec-
tions 3.1 and 3.2 of this thesis. The groundstate in this phase is believed to be dimerized.
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JUDRVB

FM SAFM

Figure 1.3.: The phase diagram of the J,-J, chain as explained in the main text.

Appreciable values for the dimer-order parameter (S,_; - S;) — (S, - S,,;) could, however,
only be found for |J,/J,| > 0.5 (see Furukawa ef al. [2012]). There likely is a very small gap
in this region (see Itoi and Qin [2001]; Furukawa ef al. [2012]). As is explained in Furukawa
et al. [2012], one can likely think of the groundstate in this phase along the following lines.
The ferromagnetic nearest neighbour interaction leads to effective degrees of freedom with
S=1 that are located on each second bond. The constituents of the emergent degrees of
freedom then form valence bonds. This is reminiscent of the situation in the Haldane chain
(the S=1-Heisenberg chain). The phase is therefore called the Haldane dimer phase and
the region is labelled with H-DIMER in figure 1.2. This phase has recently been of interest
because of its relevance to ferroelectric compounds with chains of CuO, (see Furukawa er al.
[2010]). Examples are PbCuSO,(OH), (see Willenberg et al. [2012]; Yasui et al. [2011]),
LiCu,0, (see Park et al. [2007]) and LiCuVO, (see Naito et al. [2007]).

When J, = 0 and J, > 0, the system is composed of two uncoupled antiferromagnetic
Heisenberg chains. Thus, the model is gapless and there is antiferromagnetic short-ranged
order with algebraic decay of the spin spin correlation function.

The J,-J, chain is the subject of two papers presented in this thesis. Both studies concern a
parameter range that lies in the upper right quadrant of figure 1.3. The phase is labelled with
S-DIMER. For J, > J, = 0.241167(5) J, the system is dimerized (see White and Affleck
[1996]; Eggert [1996]). The spin spin correlations on alternating bonds have alternating
sign in contrast to the Haldane dimer phase and the dimer-order parameter is about 40
times bigger than the dimer-order parameter in the Haldane dimer phase (see Furukawa
et al. [2012]). There is a gap to the first exited state. The most well known compound
whose low-energy properties can be modelled with the J;-J, chain in this phase is probably
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CuGeO; (see Castilla er al. [1995]).

The point at which J, = Jy5 = 0.5J, is very special. It is called the Majumdar-Ghosh
point (MG-point). Here, the groundstate is explicitly known. It is entirely composed of
dimers, valence bonds between nearest neighbours. Since the arrangement of dimers is fixed
and shows translational symmetry, this state is also called a dimer crystal. Under periodic
boundary conditions this state is doubly degenerate. With open boundary conditions, there
is only one such state. It is not too difficult to see that these states have to be groundstates.

Already in the first publications on the J,-J, chain (Majumdar and Ghosh [1969b]), it was
realized that the dimerized states at Jy,q are exacts groundstates for a chain with 10 sites. I
will, here, show that they are groundstates for any length of the chain. This will be done
following the method used in van den Broek [1980]. The strategy of the proof is to first show
that a lower limit for the groundstate energy exists and to then observe that the dimerized
states saturate this limit.

We start by writing the Hamiltonian as a sum of terms that contain only interactions
between 3 sites. Since J, = % Ji,

N
H=J, 2 H;=2J, Z (Si ’ Si+1 + Si+1 'Si+2 +8S;- Si+2) ’ (1.6)
i=1

0| =

where N is the number of sites in the chain. As is shown in the appendix A.1, the spectrum
of single H (i) is given by 3/4 and —3/4. The lowest eigenvalue of a sum of operators cannot
be lower that the sum of the lowest eigenvalues of the single operators. Thus,

E, > J, % (-%) . (1.7)

With a little algebra it is easy to see that a state composed of dimers has an energy of

EMG:JI% <_%) (1.8)
because every dimer (of which there are N/2) contributes an energy of —J,3/4. The dimerized
states saturate the lower bound; they have to be groundstates.

The lowest lying excitations at the MG-point can be generated by breaking a dimer. The
two unpaired spins can propagate freely (see Shastry and Sutherland [1981]; Sgrensen et al.
[1998]) and separate regions that have the dimerization pattern of the groundstate, which is
why they are often called solitons. The gap and the simple structure of the lowest excited
states makes variational calculations close to the MG-point very worthwhile.

At the MG-point, spins are only correlated with their next neighbour. The correlation
length assumes its minimum at this point. It is thus also called a disorder point (see section 3.3
for more information on such points). Another special property of this point is that the
spin spin correlation function starts to show incommensurate behaviour. This behaviour
is present for all J,> Jy,5. Only starting at a different point, the Lifshitz point where J, =
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J. =0.52063(6) J, (see Bursill et al. [1995]), does the incommensurate behaviour become
apparent in the static structure factor, the Fourier transform of the spin spin correlation
function. More information about the Lifshitz point can be found in section 3.2.

1.4. Numerical approaches

It is very difficult to gain insight into the properties of spin systems analytically. Only for very
few models is the groundstate known analytically. The J,-J, chain at the Majumdar-Ghosh
point (see last section) is an example. Hamiltonians analogous to the Majumdar-Ghosh chain
can readily be constructed (see Klein [1982]). The idea behind this method is to, on each
bond, project onto the state with a high total spin. Then, the low spin state minimizes the
energy. The Hamiltonian of the .S =1 AKLT-chain, named after (Affleck, Kennedy, Lieb and
Tasaki), falls into this class of Hamiltonians and thus has a known groundstate (see Affleck
et al. [1987]).

One of the few systems that can be solved analytically is the nearest-neighbour Heisenberg
chain. This can be done with the Bethe ansatz, a technique that was developed by Hans
Bethe to solve exactly this problem (see Bethe [1931]). It has since been extended to other
one-dimensional systems but all attempts to extend it to higher dimensions have failed.

Analytical approaches to spin systems almost always rely heavily on approximations and
simplifications that are often hard to justify. It is, thus, not surprising that numerical methods
play a central role in this branch of physics.

The main numerical techniques can be organised in three groups. Exact diagonalization,
less exact diagonalization and quantum Monte Carlo.

For small systems it is possible to calculate whatever one desires just by diagonalizing
the Hamiltonian in some basis. This is only possible for a small number of sites. Even if
one removes redundant parts of the Hilbert space which are connected by operations under
which the Hamiltonian is symmetric, this method can even in the best cases hardly be used
to investigate groundstates for systems with more than about 45 sites (see Sandvik [2010]
for a pedagogical introduction).

A popular way to alleviate this problem is to further restrict the Hilbert space in which the
diagonalization is performed. Calculations that are performed in such a restricted Hilbert
space are called variational. The state that has the smallest energy expectation value in this
subspace is then taken to be the best approximation of the groundstate. How well this works
(and if it works at all) depends heavily on the subspace that is used. Sometimes it is possible
to just guess a good subspace. The papers in part I of this thesis rely on such an educated
guess.

Often this is, however, not possible. Then, one needs to use a more inspired approach.
The density matrix renormalization group (DMRG) relies on such an approach. Since its
introduction in White [1992] this method has enjoyed widespread adoption especially for
systems in one dimension. For a modern introduction to DMRG see Schollwock [2011].

Systems with two dimensions are treated as one dimensional systems with irregular
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interactions by consecutively labeling the sites in the lattice. That DMRG can be used for
two-dimensional systems is attested to by its impressive use in studies that found spin liquid
states in simple Heisenberg Hamiltonians and were mentioned in section 1.2 (Yan et al.
[2011]; Jiang et al. [2012a]). The Hilbert space that the DMRG diagonalizes in can be
written in terms of matrix product states (see again Schollwock [2011]). It is now known
that these states have different scaling of the entanglement entropy than the groundstates of
many systems of interest. I will come back to this point in section 2.2. DMRG thus struggles
to find such groundstates. The subspace it chooses is not ideal. Tensor network states allow
for the implementation of variational calculations in terms of states with the correct scaling
of the entanglement entropy (see Cirac and Verstraete [2009]).

Whenever possible, Monte Carlo methods are applied in spin lattice systems. Monte Carlo
methods scale well with the sizes of the systems in question and allow for a robust estimate
of uncertainties. They were first used during the Manhattan project and have developed into
very popular tools to calculate statistical expectation values and many other things. One
aspect all Monte Carlo methods have in common is that they make use of random numbers
to approximately solve a problem.

The basic idea employed in calculations that are typical for condensed matter problems is
easily explained in simple terms. If one wanted to calculate a statistical average

0= p0;, (1.9)

but there are too many terms in the sum to actually perform the sum, there is still a way
to approximately calculate it. One can generate an ensemble of the Q, such that they are
distributed according to the probabilities p, and then just average over those Q,. The central
limit theorem tells us that the statistical uncertainty of this result will behave according to

0'o<L , (1.10)

\/ﬁ

where N is the number of elements one uses to calculate the average. Many problems in
statistical mechanics and quantum mechanics are exactly of the nature of equation 1.9.

Quantum Monte Carlo (QMC) is Monte Carlo of quantum systems. There are many
different ways to employ Monte Carlo in the context of quantum mechanics. Many methods
and algorithms have been proposed. I will restrict myself to the ones I consider the most
important. In condensed matter systems, these mostly come in two variants.

The first variant is based on the partition function at finite 7. Properties of the groundstates
can be extracted by extrapolating to T'=0. The most well known and conceptually most
intuitive method is called worldline Monte Carlo. The partition function is here written as a
path integral via

Z =Tre ™ =Tr [e7o H]" | (1.11)
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where L 6t = f. The error one makes with this approximation can be controlled with 6z.
The lower the temperature is, the bigger L has to be chosen and the more expensive is the
computation. Upon introducing many identities, this turns into a path integral with one
compact dimension, the temperature- (or imaginary time-) dimension. Single contributions
to the partition function that are sampled are the worldlines of the system. The temperature
dimension plays the role of time. These worldlines form loops because in the temperature
(time) direction periodic boundary conditions are employed. The worldlines here are anal-
ogous to the Q, of equation 1.9. For a review of this method and different algorithms see
Kawashima and Harada [2004].

Another very popular method for spin systems that is based on an expansion of the partition
function is the stochastic series expansion (SSE) (see Sandvik and Kurkijarvi [1991] and
for an introduction see Sandvik [2010]). Here, one Taylor expands the Boltzmann factor
and stochastically evaluates a truncated version of the resulting sum. How early one can
truncate depends crucially on the temperature because the expansion is basically a high-T'
expansion. The lower the temperature, the more terms in the series have to be kept and the
more computationally expensive do calculations become.

The second variant of Quantum Monte Carlo is focused on T'=0. One projects out the
groundstate from a trial state with non-zero overlap with the groundstate by repeatedly acting
on it with an appropriate operator. Popular choices for such a projection operator are the
inverted and shifted Hamiltonian, —H + C, or exp(—H 7). The second part of this thesis
is about a projection method using the former operator. In projection QMC, one directly
calculates groundstate properties and no extrapolation to T'=0 is necessary. The quality of
the results depends on the quality of the projection.

One class of such methods, Greens function Monte Carlo (see Ceperley and Kalos [1986];
Trivedi and Ceperley [1990]), performs the projection by evolving from one state to the next.
One takes a trial state and acts on it with the projection operator. Of the many terms that
are generated one only keeps a finite, manageable number. This is done in a stochastic way.
Terms with high weight are more likely to be kept. By repeating this process one can then
sample the groundstate. A pedagogical introduction can be found in Sorella et al. [2013].

It is also possible to do projective Monte Carlo in a very different way. If one expands
operators such as (—H + C)", one is left with a sum of many different products of operators.
These strings of operators can be the subject of sampling. This is usually done in a basis given
by states in which all spins are in valence bonds. The method is therefore called ‘“valence
bond quantum Monte Carlo”(VBQMC). VBQMC was introduced in Liang [1990a], laid
dormant for fifteen years, and was then further developed by Anders Sandvik (see Sandvik
[2005]; Sandvik and Evertz [2010]). It is the subject of part II of this thesis and will there
be explained in some detail. In section 4.1.2, I will explain that and how such projection
QMC can also be done in different bases.

The generation of a suitable ensemble to average over is usually the hard part of Monte
Carlo calculations. In very lucky cases it might be possible to avoid this issue and one might
be able to just generate the ensemble from uniformly distributed random numbers via a
direct mapping. An example of a method with this property and the associated algorithm
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can be found in Gies ef al. [2003]. If this is not possible (almost always), the generation of
the ensembles is done using a Markov chain. One creates the next element of the ensemble
from the current element such that it occurs with the probability

P = min [1,ﬂ] , (1.12)

p current

where p .., and p_,...,. are the probabilities with which one wishes to generate the next
and the current state, respectively. If the next state is chosen according to equation 1.12,
the algorithm is said to satisfy detailed balance and it produces a correct ensemble. This
can most easily, most robustly, but sadly in many cases quite inefficiently be achieved by
essentially changing the current element in a random way and then accepting the resulting
element with the probability given in equation 1.12. If the random changes are too drastic,
the acceptance rate is very low. Thus only minor changes can be performed in one step.
This method is called “Metropolis-Hastings method” (see Metropolis et al. [1953]; Hastings
[1970]).

The Metropolis-Hastings method works well in most cases. It is robust and applicable to
many systems and problems. Yet, there are important cases where it is terribly inefficient.
This is easy to see for the ferromagnetic 2D-Ising model close to its second order phase
transition. Typical states of the system, here, contain large ordered domains. In a simulation
one would now take such a state and flip a number of randomly chosen spins. The acceptance
rate depends on the energy difference between the states before and after flipping the spins.
The energy penalty for flipping spins would likely be big because one is likely to try to
flip spins which lie in ordered domains. The probability of accepting moves is really small.
Therefore, such domains are very difficult to revert and break up. In order to generate
independent elements, one has to update very many times. Sampling the configuration space
well takes a very long time if it is done in this way. This phenomenon is called critical
slowing down. The degree of freedom that is changed (the direction of spin at randomly
chosen sites) is not chosen well.

This problem was solved by the introduction of algorithms in which, instead of single
spins, whole clusters of spins are flipped (see Swendsen and Wang [1987]; Wolff [1989]).
By updating big parts of the system at once, updates are much more effectively changing the
state.

In Evertz et al. [1993] an algorithm was developed for quantum mechanical systems
that used the same strategy to alleviate some of the major problems of local updates, such
as critical slowing down and non-ergodicity stemming from the conservation of winding
numbers in the temperature as well as spatial directions. Their algorithm is applicable to
worldline Monte Carlo. Here, just as in the algorithms for classical systems, big parts of the
configurations that are sampled (the worldlines of the system) are chosen and then updated
at once. Such algorithms are also known for other quantum Monte Carlo methods. Loop
algorithms are, for example, known for VBQMC (see Sandvik and Evertz [2010]) and SSE.

There is another class of algorithm that do not suffer from the draw-backs of traditional
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algorithms and can be used for worldline Monte Carlo. They are called worm algorithms
and were first published in Prokof’ev and Svistunov [2001]. The idea here is to effect a large
change in the configuration by doing many local updates of a special kind. One breaks up
the configuration (we may think of closed worldlines) to create an open line instead of a
loop. Then, the ends are moved around according to well chosen probabilities. The ends
move around in configuration space like one might imagine little worms would. Thus the
name worm algorithm. The configuration is only updated where the worm goes. Once the
two ends meet again an update is complete. The local sampling is done in an extended space
that includes configurations that are not present in the partition function. In this way it is
possible to create algorithms that are competitive with non-local cluster updates. In state of
the art quantum Monte Carlo, one usually uses either a cluster or a worm algorithm.

All QMC methods and algorithms have one issue in common. They cannot efficiently be
used for frustrated systems. This is because, for frustrated system, all of them suffer from
the sign problem — a truly hard problem (see Troyer and Wiese [2005]). It is caused by
negative weights in the sum of equation 1.9. A probabilistic interpretation of the equation,
then, becomes problematic and Monte Carlo approaches struggle.

Systems with more than 60,000 spins have been studied with quantum Monte Carlo
methods (see Sandvik and Evertz [2010]). Further development is, however, still needed, as
it may happen that data for very big system sizes is needed to obtain reliable results (as was
e.g. a problem in Meng et al. [2010] and rectified in Sorella ez al. [2012]). Often one might
be interested in averages over a large number of simulations. Calculations in disordered
systems, for example, make this necessary. Then, even minute improvements of algorithms
can compound. Researchers will always push their tools as far as they can.

1.5. Outline

The remainder of this thesis is separated into two parts. In part I, two publications about
variational calculations regarding the J,-J, chain are presented. Both papers are preceded
by an introduction of the main questions addressed in the paper.

I present a recent publication about novel algorithms for valence bond Monte Carlo in
part 1. It also contains an introduction in which the method itself and extensions of it are
explained.

The thesis ends with a short conclusions in which the main findings of the three publications
are summarized and remaining issues which could be the object of future research are
highlighted.
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In this part, two studies of the antiferromagnetic J,-J, chain with .S’ =1/2 are presented. The
two studies are linked by studying the same system with the same technique.

For both projects we heavily relied on an automated variational approach that we developed
for these studies. In the dimerized phase of the J,-J, chain such calculations have been
shown to be very precise. In the past, these calculations could only be done at the MG-point.
We can perform these calculations for any J,/J,. This made the whole dimerized phase
accessible to the variational approach. How the calculations were done is explained in some
detail in the publications themselves.

Otherwise, the two publications are quite distinct from each other because they are about
very different properties of the J,-J, chain. The first publication is about the entanglement
properties of an impurity attached to the chain. The second publication is about a transition
from commensurate to incommensurate behaviour that occurs in the J,-J, chain and how
the characteristics of this transition depend on the parity of the length of the chain.
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2. Impurity entanglementin a
dimerized quantum spin chain

Andreas Deschner and Erik S. Sgrensen:

Impurity Entanglement in the J-J,-6 Quantum Spin Chain;

J. Stat. Mech. (2011) P10023; doi:10.1088/1742-5468/2011/10/P10023;
©IOP Publishing Ltd and SISSA

Calculations: I performed all variational calculations. DMRG calculations were per-
formed by Erik S. Sgrensen.

Manuscript: I wrote the bulk of the manuscript and made all figures. The introduction
was written in equal parts by Erik S. Sgrensen and me. Furthermore,
Erik S. Sgrensen provided (partly substantial) edits, comments and su-
pervision.

The first paper in this thesis is about entanglement. More specifically, it is about how
an impurity site in a dimerized spin chain is entangled with the rest of the chain, how this
should be studied and how a popular measure of entanglement can be calculated within a
variational framework.

2.1. Entanglement

Entanglement is one of the aspects of quantum mechanics that cannot be grasped with
classical intuition. There just is nothing in the classical world that is quite the same. The
canonical example for entangled states are the maximally entangled states of two-level
systems, also called qubits. In a system of two spin Y2, these states are given by

IME,) = %[nw ~ )] IME,) = %[nw +1n)]
IME,) = é[nw +11)] IME,) = %[nw -] e
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If one only had access to one of the spins in such a state, a measurement of the z-component
would yield up or down with a probability of one half. After this measurement, the spin
would be in the respective state. The other spin would then also be in a state with fixed
z-component. For this to be the case, they could be arbitrarily far apart; no shielding would
do anything, as long as they are in one of the maximally entangled states in the beginning.
A measurement on one of the spins always measures both. This is why they are called
maximally entangled.

At second glance this might not be too unusual. After all, if somebody had just prepared
two classical spins such that one is pointing up and the other is pointing down and chosen
the first spin to point up with a probability of one half, the situation would indeed look
quite similar to us. The two situations are however fundamentally different. Whereas the
outcome of the measurement of both spins is determined before the measurement in the
classical scenario, this is not the case for the quantum spins. Here, the measurement on the
first spin changes the state of the second spin. A signature of entanglement and something
the classical world has no analogue for.

Two systems, A and B, are entangled if it is not possible to write their state as a single
product state of local basis states, |j), and |i)g, i.e. if their state only be written as

AB) = )" ¢;lidali)e
ij
= ) & m)ln)g . 2.2)

as a sum of product states. Note that in the last line I have chosen orthonormal bases for
A and B such that the sum is over one index. This way of expressing a state in the product
space of two Hilbert spaces is known as the Schmidt decomposition. Using the Schmidt
decomposition makes for a simple looking density matrix:

=05, In)a(ml, ® In)gim|g . (2.3)

n,m

There is a convenient way to quantify the entanglement between two systems that are in a
pure state. Imagine that some quantity has been measured in system A but we do not know
the outcome of the measurement. System B then is in several states with some probability,
i.e. system B is in a mixed state. The initial state of A and B was more entangled if, after the
measurement of sy