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Abstract

The main theme of this dissertation is statistical estimation and information theory.

There are three related topics including "distributed estimation", "an information

geometric approach to ML estimation with incomplete data" and "joint identification

and estimation in non-linear state space using Bayesian filters". The expectation­

maximization (EM) algorithm, as an iterative estimation technique for dealing with

incomplete data is the common bond that binds these three topics together.

1. Distributed estimation

Distributed estimation involves the study of estimation theory in an informa­

tion theoretic framework. This field concerns the following question: "What

if the purpose of communications in a distributed environment is parameter

estimation rather than source reconstruction?" The first part of this thesis is

dedicated to designing low-complexity iterative algorithms for distributed esti­

mation. The algorithm design, in this case, involves transmission of statistics

via communication systems. Therefore, the first question raised is "whether

the code rates in distributed estimation are different from those in conventional

communications?" Surprisingly, under certain conditions, the answer is found

to be negative. It is shown that for fixed parameters, the achievable rates co­

incide with rates in conventional distributed coding of correlated sources (i.e.

Slepian-Wolf region). In order to prove the main theorem, we also devise a novel
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distributed binning scheme and a new theorem in Large deviation theory that

are used for proving our distributed coding theorem. The proof of the converse

is implemented by a generalized Fano's inequality for distributed estimation.

Determination of the region of achievable rates for efficient estimation of a

general source is an extremely difficult problem. This fact is the motivation

for proving a theorem that provides a method for determining the region of

achievable rates for a large class of sources with a convex mutual information

with respect to the unknown parameters.

With a given set of rates, an efficient implementation of universal coding schemes

for distributed estimation based on the expectation maximization (EM) tech­

nique is presented. Since the correlation channel between the sources is assumed

to be unknown at the joint decoder, previously proposed distributed coding

schemes are not useful for this purpose. Therefore, LDPC-based coset~coding

schemes are extended to the case where the correlation channel is unknown at

the decoder. The basic idea is to implement a low~complexity version of the

EM algorithm on a factor~graph that includes an LDPC decoding mechanism.

2. Information geometric approach to ML estimation with incomplete data

The stochastic maximum likelihood estimation of parameters with incomplete

data is cast in an information geometric framework. In this vein we develop

the information geometric identification (IGID) algorithm, that provides an al­

ternative iterative solution to the incomplete~dataestimation problem. The

algorithm consists of iterative alternating projections on two sets of probabil­

ity distributions (PD); i.e., likelihood PD's and data empirical distributions.

A Gaussian assumption on the source distribution permits a closed form low­

complexity solution for these projections. The method is applicable to a wide
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range of problems; however the emphasis is on semi~blind identification of un­

known parameters in a multi-input multi-output (MIMO) communications sys­

tem.

3. Joint identification and estimation in non~linear state space usmg Bayesian

filters

There are situations in estimation where nonlinear state-space models where

the model parameters or the model structure itself are not known a priori or are

known only partially. In these scenarios, standard estimation algorithms like the

extended Kalman Filter (EKF), which assume perfect knowledge of the model

parameters, are not accurate. The nonlinear state estimation problem with

possibly non-Gaussian noise in the presence of measurement model uncertainty

is modeled as a special case of maximum likelihood estimation with incomplete

data. The EM algorithm is used to solve the problem. The expectation (E)

step is implemented by a particle filter that is initialized by a Monte-Carlo

Markov chain algorithm. In the maximization (M) step, a nonlinear regression

method, here using a mixture of Gaussians (MoG), is used to approximate

(identify) the uncertain model equations. The proposed procedure is used to

solve a highly nonlinear bearing-only tracking problem, as well as the sensor

registration problem in a multi-sensor fusion scenario.
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Chapter 1

Introduction

1.1 Summary

The main theme of this dissertation is statistical estimation. There are three related

topics including "distributed estimation", "an information geometric approach to

ML estimation with incomplete data" and "joint identification and estimation in

non-linear state space using Bayesian filters". The expectation-maximization (EM)

algorithm, as an iterative estimation technique for dealing with incomplete data is

the common bond that binds these three topics together.

Distributed estimation: Distributed estimation involves the study of estimation

theory in an information theoretic framework. This field concerns the question:

"What if the purpose of communications in a distributed environment is param­

eter estimation rather than source reconstruction7" The first part of this thesis is

dedicated to designing low-complexity iterative algorithms for distributed estimation.

The algorithm design, in this case, involves transmission of statistics via communi­

cation systems. Therefore, the first question raised in the communications engineer's

mind is the extent that communication resources are sufficient (and necessary) for

such a purpose. Therefore, in order to answer these questions, as well as to provide a

1



2 CHAPTER 1. INTRODUCTION

proper understanding of the problem, one needs to first determine the sufficient (and

necessary) communications resources (rates) for efficient distributed estimation.

Chapter 2 is the result of an effort to answer the question: "Whether the code

rates in distributed estimation are different from those in conventional communica­

tions?" Surprisingly, under certain conditions, the answer is found to be negative. It

is shown that for fixed parameters, the achievable rates coincide with rates in con­

ventional distributed coding of correlated sources (i.e. the Slepian-Wolf region). A

novel theorem for bounding the achievable rates for a large class of sources is also

presented.

With a given set of rates, in Chapter 3, an efficient implementation of universal

coding schemes for distributed estimation based on the expectation maximization

(EM) technique is presented. Since the correlation channel between the sources is

assumed to be unknown at the joint decoder, previously proposed distributed coding

schemes are not useful for this purpose. Therefore, LDPC-based coset-coding schemes

are extended to the case where the correlation channel is unknown at the decoder.

The basic idea is to implement a low-complexity version of the EM algorithm on a

factor-graph that includes an LDPC decoding mechanism.

Information geometric approach to ML estimation: Here, the stochastic maximum

likelihood estimation of parameters with incomplete data is cast in an information

geometric framework. In this vein we develop the information geometric identification

(IGID) algorithm, that provides an iterative alternative solution to the incomplete­

data estimation problem. The algorithm consists of iterative alternating projections

on two sets of probability distributions (PD); i.e., likelihood PD's and data empirical

distributions. A Gaussian assumption on the source distribution permits a closed form

low-complexity solution for these projections. The method is applicable to a wide

range of problems; however, in this chapter the emphasis is on semi-blind identifica­

tion of unknown parameters in a multi-input multi-output (MIMO) communications
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system.

Joint identification and estimation in non-linear state space using Bayesian fil­

ters: There are situations in estimation with nonlinear state-space models where the

model parameters or the model structure itself are not known a priori or are known

only partially. In these scenarios, standard estimation algorithms like the extended

Kalman Filter (EKF), which assume perfect knowledge of the model parameters, are

not accurate. The nonlinear state estimation problem with possibly non-Gaussian

noise in the presence of measurement model uncertainty is modeled as a special case

of maximum likelihood estimation with incomplete data. The EM algorithm is used

to solve the problem. The expectation (E) step is implemented by a particle filter

that is initialized by a Monte-Carlo Markov chain algorithm. In the maximization

(1\1) step a nonlinear regression method using a mixture of Gaussians (MoG) is used

to approximate (identify) the uncertain model equations. The proposed procedure is

used to solve a highly nonlinear bearing-only tracking problem, as well as the sensor

registration problem in a multi-sensor fusion scenario.

All proposed algorithms in this dissertation are involved, in one way or another,

with maximum likelihood estimation using incomplete data and the application of the

expectation-maximization (EM) algorithm [35]. This algorithm is the most renowned

technique in estimation with incomplete data and the main body of most iterative

estimation algorithms currently used in engineering. Therefore, from the algorithmic

viewpoint, one of the main themes in this dissertation is modeling the problems at

hand into an incomplete-data problem, and then solving them by a variant of the

EM algorithm.

Organization of chapter: This chapter begins with a brief review of some

of important fundamentals in statistics and a tutorial on the maximum likelihood

estimation using incomplete data and the EM algorithm.

Then, the three related but different problems that are the subject of the following
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chapters are introduced and the contributions of the thesis are reviewed.

Notation: In this dissertation, a random variable and its particular realization are

represented by uppercase and lowercase letters, X and x, respectively. A sequence

(vector) of n random variables and any corresponding realization are shown by super­

script n, e.g. xn and xn, respectively. When a reference to any element of a sequence

(vector) is needed a proper subscript is used, e.g. Xi and Xi for element i of a random

sequence and its realization, respectively. When more than a reference to a vector is

needed, where clear from context, the superscript n is omitted.

1.1.1 Preliminary definitions from statistics:

Suppose X and Yare sets with finite or countably infinite cardinality. The joint

probability distribution Q(X, Y; B) is a function Q : X x Y -+ R which satisfies:

Q(X, Y) 2': 0 (\f(x, y) E X x Y) and L Q(X, Y) = 1. (1.1)
xEX,yEY

The set Q is called a statistical model, probability distribution set, or a parametric

model if:

(1.2)

where k E Z is the integer parameter dimension.

It is assumed that for all distributions of interest, for all (X, Y) E X x Y, the

parametrization B -+ Q(X, Y; B) (8 -+ R) is one-to-one and infinitely many times

differentiable (sometimes represented by COO). This condition is to confirm the ex­

istence of derivatives with respect to the parameters B. Throughout, the notations

8t Q(X, Y; B) = ~~ and 8t 8J Q(X, Y; B) = a~,2~J are used frequently.

1.1.1.1 Fisher information

The Fisher information (FI) plays an important role in estimation theory as a measure

of information existing in a set of random variables about the unknown parameter.
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In estimation, the inverse of the FI determines an upper-bound on the accuracy at­

tainable in estimation. Additionally, the invariance of this information with respect

to re-parametrization in the space of probability distributions is the fundamental

concept in the differential geometry approach to statistics, also referred to as infor­

mation geometry. In the following, some useful concepts from information geometry

are studied. Beyond these points, the subject of information geometry is not directly

relevant for the purpose of this thesis. For more detail on information geometry many

excellent references exist, for example [9] and [58].

For the PD Q(X, Y; 0), the Fisher information matrix (FIM):

is defined as follows:

J(O) = [Ji ]] Vi,j E {I, ... , k} (1.3)

(1.4)

where l(X, Y; 0) = log Q(X, Y; 0) and Ee is the expectation operator with respect to

the PD Q(X, Y; 0).

1.1.1.2 Additivity of Fisher information

Suppose (xn, yn) = (Xl, YI), ... , (X n , Yn) is a set of i.i.d random samples from a proba­

bility distribution Q(X, Y; 0). It is easy to show that [24]:

(1.5)

where I n (0) is defined as the Fisher information in (xn
, y n ). This property shows

that it is sufficient to study the Fisher information of a single observation (the Fisher

information is an intrinsic attribute of any probability distribution and therefore is

invariant under sampling method, observation method, etc.).
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1.1.1.3 Sufficient Statistics

A statistic S = h(X, Y) is any function, h : X x y --1- R. The statistic S(X, Y) is

sufficient for parameter e if e --1- S(X, Y) --1- (X, Y) (Markov-chain property), i.e. if

p(X, Y!S(X, Y)) is independent from e. In general the statistic can be a vector-valued

function. In this case, the sufficient statistics S(X, Y) = h(X, Y) are sometimes called

joint-sufficient ([34], page 364). Note that a statistic is in fact an induced random

variable S = h(X, Y).

Theorem 1.1.1 (Factorization Theorem) Given (xn, yn) as n samples drawn from

Q(X, Y; e), S (generally vector valued) is a sufficient statistic for e if and only if the

likelihood of (xn, yn) factorizes into the following form:

(1.6)

for some functions q and r.

Proof 1.1.1 Only the proof for the discrete case is presented. Assume that the like­

lihood factorizes as above. Let define zn t::. (xn, yn). For the conditional distribution

of zn given the statistic S we have:

Q(zn, s(zn))
p(S(zn))

Q(zn)

LWn:S(Wll)=S(Zll) Q(Wn
)

q(e, S(Zn)).r(Zn)

LWn:S(Wll)=S(Zll) q(e, S(Zn)).r(Wn)
r(Zn)

which is not a function of e. Here W is an arbitrary auxiliary random variable.

Conversely assume that S is a sufficient statistic for e. Then the likelihood factorizes
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as follows:

£(e) Q(Znle)

Q(ZnIS(Zll), e)Q(S(Zll)le)

r(Zn).q(S(Zll), e).

7

Example (Bernoulli Distribution): A sufficient statistics for Bernoulli(e) is L:Xi

since:

Example (Exponential Distribution): Let x n be n samples from an exponential

probability distribution:

f(Xle) = r(X) exp{7](e)S(X) - B(e)}.

Then S(x n
) = L:z S(x!) is a sufficient statistic for e.

1.1.1.4 Maximum likelihood (ML) parameter estimation

Suppose (xn, yn) = (XI, Yl), ... , (x n , Yn) is a set of random samples from a probability

distribution Q(X, Y; e) with (X, Y) E X x Y and e E 8. It is desired to estimate the

underlying distribution, i.e. to estimate the parameter e. As estimator e is a function

from x n x yn to 8. In ML estimation, the parameter of interest is estimated by

maximizing the (log)likelihood of the observed samples:

where l(xn , yn; e) = log Q(xn , yn;e) is the log-likelihood of (x n , yn). Note that for any

given (xn, yn), l(xn, yn; e) is considered as a function of e. We call iJfI,IL an ML esti­

mator. It is easy to verify that the ML estimator is a function of a sufficient statistic,

and therefore it is a statistic. Although not generally true, in most problems the ML
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estimator is also a sufficient statistic. An important property of ML estimation is

the fact that if the ML estimator is sufficient statistic, then it is a minimal sufficient

statistic [14].

Remark 1 When complete set of data (xn, yn) is available, the solution of ML es­

timation involves a maximization in (1.1.1.4). On the other hand, when the data is

partially available, i.e. the data is incomplete, (e.g. when only yn is available) the ML

estimation involves the maximization of a lower bound on the log-likelihood. This is

the basis of the expectation-maximization (EM) algorithm explained in the following

after reviewing more definitions.

1.1.1.5 Estimator unbiasedness and efficiency

An estimator en is called unbiased when:

where Eo is the expectation operator with respect to Q(X; e). In addition, the per­

formance of any estimator is measured by its mean-square error (MSE) defined as:

When en is unbiased the MSE equals the variance-covariance matrix of the estimator

en defined as:

The estimator variance Vn(en ) is defined respectively. Note that the estimator e and

its variance-covariance matrix are in general functions of the sample size n. The mean

square error of an unbiased estimator is lower bounded by the inverse of the Fisher

information, also known as the Cramer-Rao lower bound (CRLB).
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Theorem 1.1.2 (Cramer-Rao inequality) The variance-covariance matrix Cn(Bn) of

an unbiased estimator Bn satisfies:

in the sense that nCn(en) - J(B)-l is positive semidefinite.

Proof 1.1.2 Refer to ([9], page 42).

For the scalar parameter case, the inequality for the variance of estimation is as

follows:

Theorem 1.1.3 (Cramer-Rao inequality- Scalar parameter) The variance Vn(en) of

an unbiased estimator en is lower bounded by the inverse of the Fisher information:

where:

Proof 1.1.3 Refer to ([24], page 328).

The estimator is called efficient if its variance achieves the minimum achievable vari-

ance.

1.1.1.6 Estimator asymptotic consistency and efficiency

Here, the asymptotic behavior of an estimator is studied in the limit n ~ 00. In

this case, an estimator, or more precisely a sequence of estimators {en, n = 1,2, ... } is

called asymptotically consistent iffor any B, the estimate {en} converges in probability

to B as n ~ 00. In other words, for any arbitrarily small E > 0:
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As n becomes sufficiently large, the probability distribution of such an estimator is

concentrated around () and therefore for all values of the parameter () the expectation

of the estimator converges to () uniformly:

lim Ee() = ().
n-->oo

The mean square error of an asymptotically consistent estimator is lower-bounded by

the CRLB as in the case of a consistent estimator:

A consistent estimator that achieves (as n becomes sufficiently large) the equality in

CRLB inequality for all () is called asymptotically efficient.

1.1.1.7 Consistency and efficiency of ML estimation

Although the minimum achievable variance is not defined for general estimators, it

is defined for the class of ML estimators. The importance of the ML estimation

procedure becomes apparent in the following theorem.

Theorem 1.1.4 (Efficiency of ML estimation) The maximum likelihood estimator

{jAIL is asymptotically consistent and efficient:

More precisely, the probability distribution of ()AIL is a Gaussian with mean () and

covariance ~J-l(()).

Proof 1.1.4 Refer to ([9], page 84).

The result of this theorem is the main reason why we are interested in .l\IL esti­

mation in a distributed scenario in the following chapters.
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1.1.1.8 Loss in Fisher information

11

Due to the important role that the FI plays in ML estimation, it is necessary to learn

whether a sufficient statistic conveys the FI completely. Also, it is useful to study

the FI loss when the sufficient statistic is not completely available. The following

theorem [9] provides the answer to such questions.

Theorem 1.1.5 (Efficiency and Fisher information) Suppose 8 = h(X) is a statistic

(possibly vector valued) of B. Also suppose that the PD Q(X; B) is trivially factorized

in the form: Q(X; B) = q(h(X); B)r(X; B) where q(S; B) = q(h(X); B) is the statistical

model of the random variable S induced by the mapping function h. The Fisher

information of the induced probability distribution Q(8; B), Jh(B), is upper-bounded

by the Fisher information of the original PD Q(X; B), i.e. Jh(B) ::; J(B), in the

sense that I1J(B) = J (B) - Jh(B) is positive semidefinite. A necessary and sufficient

condition for the equality Jh(B) = J(B) to hold is that h is a sufficient statistic for B.

The information loss I1J (B) is given by:

Eo[8! 10gr(X; B)8j 10gr(X; B)]

Eo [COV[8t l(X; B)8j l(X; B) 18]] ,

where Eo [cov[8t l(X; B)8j l(X; B)ls]] = JCov[., ·Is]q(s; B)ds and Cov[., ·Is] for a fixed

s denotes the covariance with respect to the conditional distribution p(X IY; B).

Proof 1.1.5 See Appendix A.

1.1.2 ML estimation using incomplete data: the EM algo­

rithm:

Suppose that sufficient statistics for estimation of B is not available completely. The

partial data, here yn, is usually referred to as the incomplete data. In this case,
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the ML estimation involves the maximization of a lower bound on the log-likelihood

function. Let U(X; e) denote a variational distribution, generally a function of (), over

the input space. The log-likelihood of the available data can be written:

£(e, yn) log Q(yn; ())

log L Q(xn
, yn; e)

x n

I "'u(x·e)Q(xn,yn;())
og~ , U(X; ())

> '" U(X. e) I Q(x
n

, yn; e)
~ , og u(x.e)
x n ,

L U(X; ()) log Q(xn, yn; e) - L U(X; e) log U(X; e)

6 F(e, U),

(1. 7)

(1.8)

(1.9)

(1.10)

where in (1. 7) the likelihood is summed (integrated for continuous-valued variables)

over the unknown x n
. In (1.8) Jensen's Inequality [24] is used. Here H(U) is the

entropy of the distribution U(X; e).

As can be seen from (1.9), the likelihood of the available data is lower-bounded

by the expectation of the likelihood of the complete-data over the unknown variable

and the entropy of the variational distribution U(X).

The EM algorithm attempts to maximize this lower bound in an iterative fashion.

In the E-step at iteration t, the unknown parameter ()t is assumed to be known and

fixed. The F function (1.10) is maximized with respect to U(X; et ):

(1.11)

where Ut = U(X; et ) and Ut+l is the optimal argument obtained in the optimization.

In the M-step, Fe.Ut+1 is maximized with respect to () to obtain a new value for
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the parameter:

M-step: B(t+l) = argmaxF(B, Ut+d·
e

13

(1.12)

The EM algorithm alternates between these two steps until convergence is reached.

Different variants of the EM algorithm perform different versions of the E-step.

For instance, in the classical version of the EM algorithm [35] the E-step involves

computation of the posterior distribution of xn given the available data yn:

(1.13)

One can verify that, in this case, the variational distribution U*(X; Bt ) is optimal, i.e.

achieves the lower-bound in (1.8). In this case, the E-step is in fact the computation

of the expectation of the log-likelihood of the complete-data distribution when the

parameter is assumed to be known Bt .

Remark 2 The EM algorithm will be used in Chapter 3 to implement a distributed

estimator using side-information. The EM algorithm also will be studied in Chapter

4 to verify the results of an information geometric algorithm for channel estimation

in wireless MIMO channels. In Chapter 5 a special implementation of the algorithm

is used to solve a joint estimation and identification problem in non-linear state space

models. In that chapter, the E-step is implemented by a particle smoother and the es­

timation of the variational estimation M-step is replaced with a non-linear regression

using a mixture-of-Gaussians.

In all these implementations, the E-step is involved with computation of the pos­

terior distribution (1.13).

1.2 Communications for estimation

In distributed coding of two correlated discrete sources, the objective is to reconstruct

the sources' symbols at a common decoder. In contrast, in distributed estimation, the
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main goal of coding is to protect the relevant information about the source parameters

of interest.

In a "communications Utopia", optimality is defined by accuracy in estimation

and the objective of optimization in a transmission system is the "Fisher information"

rather than the bit-error-rate.

1.2.1 Motivation: A distributed weather network

It was Shannon who through his source coding theorem [24] showed that a code with

rate R at least equal to the entropy of the source H(X) is necessary and sufficient to

noiselessly represent the information content of the source X. Moreover, in a theorem

known as the "separation theorem" [24] he showed that in a point-to-point system

the communications with arbitrarily small error is possible if and only if the channel

capacity is at least equal to the rate of the source; C ~ R. Therefore, one of the key

questions in source coding is how much rate is sufficient and necessary to preserve

the source content within the context of communications.

It was believed that in a distributed source coding scenario with two correlated

sources with code rates Rx and Ry respectively, a sum rate of R = Rx + Ry ~

H(X) + H(Y) was necessary to encode the two sources noiselessly. However, in their

seminal paper, Slepian and Wolf (SW) [90] showed that, surprisingly, by means of

using the correlation information between the sources, one can do much better than

that and a sum rate of R = H(X) + H(YIX) = H(X, Y) is sufficient for this purpose.

In the distributed estimation case, rather than the reproduction of the sources, the

objective is estimation of the source parameter. The Slepian-Wolf rates are sufficient

for such a purpose (the parameter can be estimated using the reconstructed sources).

However it is not clear whether one can do better than these rates for parameter

estimation. The first question raised in this thesis is whether the SW rates are also

necessary for distributed parameter estimation. To provide further motivation, we
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provide the following example from [24]. We then extend the example.

Example 14.4.1 ([24], page 409) Consider the weather in Gotham and Metropolis

represented by binary random variables X and Y respectively. For the purposes of

our example, we assume that Gotham is sunny with probability 0.5 and that the

weather in Metropolis is the same as in Gotham with probability 0.89. The joint

distribution of the weather is given as follows:

Metropolis

p(X, Y) Rain Shine

Gotham

Rain 0.445 0.055

Shine 0.055 0.445

Assume that we wish to transmit 100 days of weather information to the National

Weather Service Headquarters in Washington. We could send all the 100 bits of the

weather in both places, making 200 bits in all. If we decided to compress the infor­

mation independently, then we would still need 100H(0.5) = 100 bits of information

from each place for a total of 200.

If instead we use the coding scheme prescribed by the Slepian-Wolf theorem we

need only nH(X) + nH(YIX) = 100H(0.5) + 100H(0.89) = 100 + 50 = 150 bits in

total. According to the same theorem, nH(YIX) = 100 *H(0.89) = 50 bits need to

be sent from each of the cities to the other one in order for both cities to have all the

weather information.

Example cont'd: number of days with different weather We now assume that the

only desired information at the headquarters is the number of days during which the

weather in both cities are the same (or different). The answer to such a question

is the main subject of Chapter 2. In this case, it will be shown that even though

we do not need to reconstruct all the information at the headquarters, we still need
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at least nH(X) + nH(YIX) = 150 bits to be sent. Notice that this is in contrast

to the intuition that "since only the correlation information is needed to be sent to

the headquarters, a sum of only 100I(X; Y) = 100(H(X) - H(XIY)) = 50 would be

sufficient."

1.3 Problem Statement

Suppose a phenomenon is characterized by a discrete probability distribution Q(X, Y; ()),

where the random variables X and Y take discrete values from sets of discrete al­

phabets X and y, respectively and where () E e s: R k is a parameter vector by

which the PD is uniquely identified. Let also (xn,yn) be n i.i.d samples drawn from

Q(X, Y; ()). The sequences are encoded into separate messages by encoding func­

tions f : xn -----+ III and 9 : yn -----+ II g , respectively. The message sets III and IIg ,

also referred to as the codebooks, are arbitrary discrete sets III = {I, 2, ... , 2nRx }

and IIg = {I, 2, ... , 2nRy
}. Here R x and R y are called the code rates defined as

R - I' loglIlf! d R - l' loglIlgl h III I d III I th d'x - Imn->oo n an y - Imn->oo n ,were I an 9 are e car }-

nality of the sets III and IIg , respectively.

The encoded messages are transmitted to a common receiver via separate com­

munication channels. The communications channel capacities are generally limited.

Thus the design of the codebooks and the messages involve compression. By ap­

propriately incorporating the compression such that the rate of the codes is "no

more" than the available capacities of the channels, the decoder receives the noise­

less encoded messages. At the receiver, by means of a decoder/estimator function

h : III x IIg -----+ 8, it is desired to estimate the parameter of the underlying distribu­

tion, e= h(j(xn
), g(yn)) (see Figure 1.1).

The pair of rates (Rx , R y ) is called achievable if there exists at least one pair of

encoders (j, g) and a decoder h with probability converging to 1 by which one can
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Figure 1.1: Distributed estimation
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construct the sequences of codes that provide transmission of sufficient statistics for

the parameter eto the receiver with probability of error converging to 0 as n becomes

sufficiently large.

It is desired to determine the region of achievable rates for distributed estimation.

It is also useful to determine the rates under which the distributed estimator can

achieve the same accuracy as it can in local estimation. Moreover, it is desired to

design communication systems that are able to achieve the local accuracy bounds.

Remark 3 Throughout this thesis, we refer to estimation as being local (or cen­

tralized) when it is performed using completely available sufficient statistics. This

is in contrast to distributed estimation where in general sufficient statistics undergo

compression and encoding. Also, an estimator is called efficient when its variance

achieves its lower bound (e.g. Cramer-Rao lower bound).

1.3.1 A Brief Review of Literature

Multiterminal estimation was first introduced by Toby Berger in [15] and then elabo­

rated on by Zhang and Berger (ZB) in [106]. In these interesting papers, given a set of

positive rates, it was demonstrated that there always exists asymptotically unbiased

estimators for distributed parameter estimation. A single-letter upper bound on the

maximum accuracy that the optimal estimator can achieve was also established. The

main weakness of the ZB approach was a limiting constraint on the joint distributions
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of correlated variables, referred to as the "additivity condition" , which does not hold

in general nor under parameter transformations.

Later, Amari [6] solved the distributed estimation problem under zero-rate com­

pression, from an information-geometric point of view. In this contribution, he showed

that when the marginal distribution(s) are function(s) of the unknown parameters,

asymptotically efficient estimation is possible. He also developed the maximum likeli­

hood (ML) estimator based on the observed marginal types (defined in later chapters)

and computed the achievable accuracy, enumerated by the observed Fisher informa­

tion. His method, however, does not include positive rates.

In the first attempt to solve the positive-rate distributed estimation, Ahlswede

and Burnashev [1] chose the min-max approach to estimation of a scalar parameter

using full side-information (8I), provided that the marginal distribution of the 81 was

independent of the parameter (i.e. an ancillary statistic). They showed that there

exist efficient estimators whose min-max variance index can achieve the max-min

Fisher information. They also computed both the variance index (as a function of

the available rate) and the Fisher information.

Perhaps the most important contribution in the field is due to Han and Amari

[47] who solved the distributed estimation problem for arbitrary positive rates and

vector-valued parameters. The common method used by these authors is based on

the introduction of auxiliary random variables that form a Markov chain with the

original random variables. An asymptotically unbiased effective estimator using only

the marginal joint-types of these auxiliary random variables is constructed. Then

the constructed ML equations are solved and solutions based on the transmitted

joint-type are obtained. Also, the achievable Fisher information as a function of the

available rates and the unknown parameters is computed using the ML estimation.

Remark 4 The method of Han and Amari (HA) is the most recent result on dis­

tributed estimation (mainly on two-terminal estimation). It is shown by the authors
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that this method not only relaxes the additivity condition constraint in the ZB method,

but provides a substantially smaller variance index. Also, it is shown that these results

can be simplified to the min-max results of Ahlswede and Burnshev (1). Therefore,

in the following chapters, when a comparison to the literature is necessary, we refer

solely to the method of Han and Amari (47) (48).

Remark 5 One of critical steps in the HA method is the appropriate choice of test

channel distributions (explained later in Section 2.8.1) that depends on the particular

problem in hand. The choice of these test channels also has a prominent effect of

the region of achievable rates, as well as the accuracy that can be attained by the ML

estimator.

More importantly, when such selections are made, the calculation of certain im­

portant parameters in the HA method, e.g. the matrix HAIl of the projection on the

observable types (cI Section 2.8.1), is non-trivial. This is the case even for the sim­

plest case of binary symmetric sources {[47}}. These complications make this solution

mathematically intractable, and hence inaccessible to the engineering community (as

noted by the same authors in !48), and also noted in (55}) .

1.3.2 Thesis contribution:

We approach the problem from a different perspective by answering the question:

"How much rate (or sum of rates) is necessary to have efficient estimation?". We

show in Chapter 2 that for fixed parameters, the rates in the Slepian-Wolf region are

not only sufficient but also necessary for efficient estimation. In order to prove the

main theorem, we also devised a novel distributed binning scheme and a new theorem

in large deviation theory that are used for proving our distributed coding theorem.

The proof for the converse is implemented using a generalization of Fano's inequality

for distributed scenarios [114J [110J.
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As we show in the last part of that chapter, determination of the region of achiev­

able rates for efficient estimation of a general source is an extremely difficult problem.

This fact is the motivation for proposing methods that provide practical guidelines

for designing distributed estimation systems. One example of such approaches pro­

posed in [88] for binary symmetric sources. Given any source parameter for a binary

symmetric source, this theorem determines the region of achievable rates for efficient

estimation of the source.

We generalize this theorem for a larger class of sources. More specifically, we pro­

vide a lower bound on the region of achievable rates (i.e., existence of encoder/decoders

for attaining an accuracy equivalent to local estimation) for estimation of sources with

a convex mutual information with respect to the unknown parameter ().

Finally, we study a famous "Modulo-two adder" source network due to [61]. We

show that in such a network, if communications is for the purpose of estimation, in

contrast to the Slepian-Wolf rates, the triple set of (0, 0, 0) rates are achievable.

Our approach is closely related to the distributed source coding theorem first

proved by Slepian-Wolf [90]. In fact, we extend the distributed source coding the­

orem for the special case in which the accuracy in parameter estimation (noiseless

transmission of joint-type) is the main concern, rather than the perfect reconstruction

of the sources per se.

In Chapter 3 an efficient implementation of universal coding schemes for dis­

tributed estimation of a binary symmetric source is presented [115] [111]. Since the

correlation channel between the sources is assumed to be unknown at the joint de­

coder. previously proposed distributed coding schemes are not useful for this purpose.

Therefore, LDPC-based coset-coding schemes are extended to the case where the cor­

relation channel is unknown at the decoder. The basic idea is to implement the EI\f

algorithm on a factor-graph that includes an LDPC decoding mechanism.
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Distributed source coding involves the study of the theoretical limits and practical

techniques for encoding (and quantization) and optimal reconstruction (with respect

to a fidelity criterion) of two or more correlated sources, when the communication

resources (rates) are limited. The main challenge that discriminates distributed source

coding from point-to-point source coding is that the encoders have no (or limited)

collaboration.

From the information theoretical point of view, the distributed estimation lit­

erature is divided into two different but closely related problems; i.e. distributed

source coding (source estimation) and distributed parameter estimation (multitermi­

nal estimation). The key difference between the two categories corresponds to the

definition of estimation; estimation (reconstruction) of the source(s) in the former

and parameter estimation (reconstruction of function(s) of the source(s)) in the later

case. The current main stream of research seems focused on the distributed source

coding. There are a large number of references for distributed coding, of which ([104],

and the references therein) is more related to our interests.

1.3.4 Relation to network information theory

Shannon's separation principle [24] separates the necessary and sufficient conditions

of noise-free "point-to-point" communications for transmission of source symbols with

a given distortion. This principle lets communications engineers work in two related

but separate communities, i.e. the source-coding and channel coding communities.

However, there are particular circumstances, like a network of sources and receivers

where the separation principle is not valid anymore. A counterexample [23] shows

that the source-channel separation theorem does not hold in general for networks of

sources. In that example, it is shown that although the rates of source information are
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more than the channel capacity, error-free transmission is possible (in contradiction

to the "necessary condition" part of the separation principle).

Throughout, we assume that the source code rates are appropriately chosen (less

than the capacities of the channels), and therefore once the sources are encoded, they

can be transmitted losslessly. This can be guaranteed, for example, by assuming that

the transmission is via a set of orthogonal multiple-access channels for which case the

sufficiency and necessity of the separation theorem is proved [103].

1.4 Information geometric approach to MLE

1.4.1 Motivation

In Chapter 4, semi-blind channel estimation in MIMO wireless communications is

posed as an incomplete-data problem. The EM algorithm has been used in different

varieties for this purpose. The current algorithms in the literature suffer a very slow

convergence rate with complexity of computations exponentially growing with the

length of channel (in lSI channels) or the size of constellations.

The main goal in Chapter 4 is to propose a fast semi-blind channel estimation

algorithm relative to previously proposed algorithms. Here bold lower-case symbols

indicate a vector quantity while a symbol in calligraphic style indicates a set of prob­

ability distributions. The subscript t is the iteration index and k is the temporal

index.

1.4.2 Problem statement

We consider the following linear time-invariant MIMO system with 1\1 transmitters

and N receivers:

y(k) = jf;HX(k) + v(k)
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where y(k) E eN and x(k) E OM are the output and the input vectors, respectively,

k is the time index, and 0 is a complex constellation with C members, such that

the average energy over all members of the constellation is unity. The quantity

H E eNxM is the complex channel coefficient matrix, whose elements are zero mean

random variables, scaled to unit rms values. The quantity p is the SNR on each

receive channel. Also, the sources are chosen to be i.i.d., whose components are

zero-mean Gaussian. The quantity v rv N(O, w) is the noise vector with generally

unknown covariance W E eNxN . It is assumed that W is full rank.

The above MIMO model is valid in an intersymbol-interference (ISI) free Rayleigh­

fading channel. It is assumed the channel H and the covariance Ware constant over

a block of L transmitted symbols. This model is useful in space-time coding systems,

where in many cases it is necessary to (semi) blindly identify the channel [4, 93, 94].

This model is also widely adopted in OFDM systems, e.g., [5].

A joint pdf of the input and output variables, e.g. q(z; 0), where z = [yT, xT]T

is the complete data, and 0 = (H, w) is the parameter set, provides a complete

description of the underlying signal model. In general, for a given z there exists a

one-to-one correspondence between 0 E 8 and q(. ; 0) E Q, where 8 is the parameter

space, and Q is the set of likelihood distributions, defined by

Q = {q(z; 0), 0 E 8}.

The ML estimation task is then to choose a distribution in this family that best

describes the complete data. By assuming that L independent complete data samples

Zk, k = 1, ... ,L are available, the maximum likelihood estimation problem is to find

the distribution q*(z; 0*) that satisfies

L

q*(z; 0*) = argmaxII q(Zk; 0).
qEQ

k=l

There are situations where the complete data are only partially available, I.e.,

we observe only y. In these circumstances, the question is how to maximize the
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likelihood of observations and select the distribution q(z; 0) E Q gIven only the

partially available data (also called incomplete data). Assuming that the input is

discrete and distributed according to the pdf p(x), one must solve the following

equivalent incomplete-data problem:

1.4.3 The EM-based channel estimation algorithms

Early work on blind channel identification using the stochastic ML estimation (specif­

ically EM algorithm) was by Feder [40]. In [57] the EM algorithm is used for jointly es­

timating the channel and detecting the symbols in a single-input single-output (SISO)

system in an lSI dispersive channel. For a geometric derivation of the EM algorithm

as well as generalized successive interference cancelation algorithms for CDMA chan­

nel estimation refer to [54]. The EM algorithm was also used for identification of the

channel in MIMO systems with OFDM modulation in [68]. Similar results for multi­

input single-output (J"'IISO) systems were given in [5]. The intensive computations

necessary for the E-step makes the algorithms very slow in convergence. Therefore,

these algorithms are usually computationally very slow. Besides, their computational

complexity increases with either the length of channel (in lSI channels) or the number

of constellation points.

Several attempts have been made to speed up the convergence. Examples are the

space-alternating generalized EM (SAGE) in which the algorithm alternates between

several hidden spaces rather than using one "complete" data space, and therefore,

instead of all the unknown parameters, a subset of them are being updated in each

iteration [41]. For a comprehensive application of this algorithm for joint detection

and channel estimation in a multiuser DS-CDMA system refer to [60]. The EM and

SAGE algorithms are also used for channel estimation in a space-time coded OFDM
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with transmit diversity [100].

The EM-based algorithm for semi-blind channel estimation implemented in this

thesis (summarized in Appendix E) is included for the sole purpose of comparison of

the results from a proposed algorithm based on information geometry. The algorithm

used is the essential algorithm used in many other references for similar purposes.

For some examples refer to [5], [40], [60], [105], [54], [26], [71], [41], [100], and [68].

1.4.4 Thesis contribution

In Chapter 4 we pose the incomplete data problem in an information geometric

framework [28]. Information geometry encompasses a theoretical framework for a

better understanding of estimation problems. Based on information geometry, a low­

complexity iterative identification procedure, called the IGID algorithm, for blind

identification of unknown parameters in a multi-input multi-output (MIMO) system

with Gaussian distributed noise was proposed [112] [113] [109]. The algorithm is an

iterative solution to the incomplete-data problem posed by maximum likelihood (ML)

estimation of parameters in a linear Gaussian MIMO system when only the output

observations are available. The IGID algorithm involves two iterative minimizations,

corresponding to projections onto the likelihood PD (probability distribution) set and

the empirical PD set, respectively. A Gaussian assumption on the source allows us

to develop closed-form expressions for the projection operations. The performance of

the IGID algorithm in blind identification of the channel gain matrix in a MIMO com­

munication system is investigated. It is shown by simulation that the performance of

the IGID algorithm is only slightly degraded relative to that of previous EM-based

algorithms [5]; however, a noticeable improvement in computational cost is realized.
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1.5 Joint identification and estimation using Bayesian

filters and MCMC

1.5.1 Motivation

In most solutions to state estimation problems, e.g., target tracking, it is generally

assumed that the state transition and measurement models are known a priori. How­

ever, there are situations where the model parameters or the model structure itself

are not known a priori or are known only partially. In these scenarios, standard es­

timation algorithms like the Kalman filter and the extended Kalman Filter (EKF),

which assume perfect knowledge of the model parameters, are not accurate.

The application of Bayesian (particle) filters as well as the related sampling meth­

ods (e.g. Markov-chain Monte-Carlo methods) for joint estimation and identification

in nonlinear in the presence of uncertain (and probably non-linear) models is pre­

sented in Chapter 5.

1.5.2 Problem statement

State estimation in a nonlinear state-space dynamical system whose evolution process

is described as

x(t + 1) = f(x(t)) + u(t),

consists of estimating the state data vector x using a sequence of noisy measurements

given by the following model:

z(t) = h(x(t), 8) + v(t), t = 1,2, ... ,

where t is the discrete time index, x(t) E eM and z(t) E eJ are the state variable

and the noisy output measurement vectors respectively, and u(t) E eM is assumed to

be an i. i. d noise processes, whose probability density function is assumed known and
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possibly non-Gaussian. The vector v(t) E ((Y is a zero-mean Gaussian noise variable

with unknown covariance Q. The noise v(t) is assumed uncorrelated in time; i.e.,

E(v(t1)V(t2)) = 6t1 ,t2Q.

Also, the vector valued functions f : eM /-----t eM, and h : eM /-----t eJ are assumed

to be smooth but otherwise are arbitrary. We assume that the function f(-) is known,

whereas uncertainty may exist in the observation model h(·).

A major focus of Chapter 5 is on how to model the partially known or unknown

function h(·). If a model which takes into account any known structure in the mea­

surement process is available, then that model should be used in the proposed method,

as described later. Any uncertainty is expressed in a parameter vector e. On the other

hand, it is also possible to assume no structure on h(·), as is done with our examples

in Sections 5.4 and 5.5. We model this function as an mixture of Gaussians (MoG),

again parameterized by the vector e, in a manner to be described later in Sect. 5.3.2.

1.6 Contribution of the thesis

In Chapter 5 in order to estimate the states in the presence of model uncertainty,

we use the variational form of the EM algorithm. [108] [107]. The expectation (E)

step is implemented by a particle filter that is initialized by a Monte-Carlo Markov

chain algorithm. Within this step, the posterior distribution of the states given the

measurements, as well as the state vector itself, are estimated. Consequently, in the

maximization (M) step, we approximate the nonlinear observation equation as a MoG

model. During the M-step, the MoG model is fit to the observed data by estimating

a set of MoG parameters. The proposed procedure, called EM-PF (expectation­

maximization particle filter) algorithm, is used to solve a highly nonlinear bearing­

only tracking problem, where the model structure is assumed unknown a priori. It

is shown that the algorithm is capable of modeling the observations and accurately
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tracking the state vector. Additionally, the algorithm is also applied to the sensor

registration problem in a multi-sensor fusion scenario. It is again shown that the

algorithm is successful in accommodating an unknown nonlinear model for a target

tracking scenario.



Chapter 2

On Multiterminal Estimation

Rates

2.1 Introduction

Suppose two non-collaborating correlated sources transmit a pair of sequences via two

separate communication channels to a common receiver. The communication chan­

nels, in general, have limited transmission capacity. Thus, coding of the sequences

involves compression. In the sequel, we assume that the source code rates are appro­

priately chosen (smaller that the capacities of the channels), and therefore once the

sources are encoded, they can be transmitted losslessly.

In distributed lossless coding, the objective is to reconstruct the source symbols

at the common decoder. The region of achievable rates for this case was studied by

Slepian and Wolf (SW) [90]. In contrast, in distributed estimation the main goal

of communications is to protect the relevant information about the parameters of

interest. The notion of achievability, in this case, is different than what it is in

distributed coding. More specifically, it is desired to determine the rates under which

the estimator can achieve the same accuracy in distributed estimation as it can in

29
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local estimation, i.e. when sufficient statistics are completely available at the decoder.

Determination of the region of rates in distributed estimation (also known as mul­

titerminal estimation) is a non-trivial practice, since the region is in general a function

of the unknown parameters. The most recent results in distributed estimation due

to Han and Amari (HA) [48] provide sufficient conditions for achieving efficient dis­

tributed estimation. For fixed parameters, the SW rates also are sufficient for efficient

estimation (i.e. the parameters can be estimated using the reconstructed sequences).

However, it is not obvious whether these rates are also necessary. In other words, for

fixed parameters, it is not clear whether one can do better than the SW compression

if it is desired to estimate a parameter rather than to reconstruct the sources.

The result presented in this chapter is an effort to answer the question: "what

(sum of) rates is necessary to have efficient distributed estimation7". Although the

question itself is limited to the lossless case, it provides practical insight into the

general problem. The approach presented here is an extension of the Slepian-Wolf

distributed source coding theorem to the special case where the accuracy in parameter

estimation is the main concern. In this chapter we show that for fixed parameters, the

rates in the Slepian-Wolf region are not only sufficient but also necessary for efficient

estimation. The simple proof based on the method of types and large deviation theory

leads to derivation of a lower-bound on the region of rates for a large class of bivariate

sources.

2.1.1 A Brief Review of Literature

Distributed estimation was first introduced by Berger [15] and later elaborated on

by Zhang and Berger (ZB) [106]. In their interesting paper, they demonstrated that

given a set of positive rates, there always exists asymptotically unbiased estimators.

They also established a single-letter upper bound on the maximum accuracy that the

optimal estimator can achieve. The main weakness of the ZB approach was a limiting
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constraint on the joint distributions of correlated variables, referred to as "additivity

condition", which does not hold in general nor under parameter transformations.

Later, Amari [6] solved the distributed estimation problem under zero-rate com­

pression from an information-geometric point of view. He showed that when the

marginal distribution(s) are function(s) of the parameter, asymptotically efficient es­

timation is possible. He also proposed maximum likelihood estimation of parameters

based on the observed marginal types and computed the achievable accuracy, enu­

merated by the observed Fisher information. His method, however, does not include

positive rates.

In the first attempt to solve the positive-rate distributed estimation, Ahlswede

and Burnashev (AB) [1] chose the min-max approach to the estimation of a scalar

parameter using full side-information, for the case where marginal distribution of

the side-information is independent ofthe parameter (i.e. it is an ancillary statistic).

They showed that there exist efficient estimators whose min-max variance can achieve

the max-min Fisher information. They also computed both the variance (as a function

of the available rate) and the Fisher information.

Perhaps the most important contribution in the field is due to Han and Amari

(HA) [47] who solved the distributed estimation problem for arbitrary positive rates

and vector-valued parameters. For a two-terminal distributed estimation scenario,

they demonstrated that provided a set of rate-compatibility conditions are satisfied,

there always exists a set of encoders and a decoder to perform asymptotically efficient

estimation. Using the marginal types of a set of auxiliary random variables, they also

constructed a maximum likelihood (ML) estimation equation. The constructed equa­

tion was used to solve for the ML estimation of the unknown parameter. Moreover, it

provided the attainable accuracy (i.e. Fisher information), as a function of the avail­

able rates as well as the unknown parameter. The definition of the rate-compatibility
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conditions was to guarantee that sufficient information about the joint-type of cor­

related random variables is transmitted to the decoder (to be able to estimate the

parameter).

Remark 1 The method of Han and Amari (HA) {47] !48] is the most recent result on

distributed estimation (mainly on two-terminal estimation). It is shown by the authors

that this method not only relaxes the additivity condition constrained by Zhang and

Berger !l06], but provides a substantially smaller variance. Also, it is shown that

these results simplify to the min-max results of Ahlswede and Burnsev !lI Therefore,

when a comparison to literature is necessary, we refer solely to the HA method.

2.1.2 Thesis contribution:

The rates in the SW region are sufficient for reconstruction of correlated sequences

in distributed coding. Therefore, these rates are also sufficient for efficient parameter

estimation, i.e. the parameters can be estimated using the reconstructed sequences.

In addition, the HA method provides sufficient rates for this purpose. However, it is

not obvious whether these rates are also necessary. In other words, these methods do

not answer the question whether one can do better than the Slepian-Wolf compression

if it is desired to estimate a parameter rather than to reconstruct the sources.

For instance, as the sole complete solution to the problem, one of the critical steps

in the HA method is the appropriate selection of the test channel distributions (condi­

tional distributions that relate the correlated random variables to their corresponding

auxiliary random variables, explained in detail later in Section 2.8.1). The selection

process differs for any particular problem under consideration and has a prominent

effect on the region of achievable rates as well as the accuracy that can be attained by

the ML estimator. Moreover, there is no systematic method for this process. More
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importantly, when such selections are made, the calculation of the important param­

eters in the HA method, e.g. the matrix HAff of the projection on observable types

(c.f. Section (2.8.1)) is non-trivial, even for the simplest case of binary symmetric

sources ([47]). These complications make the HA solution mathematically intractable

and hence inaccessible to the engineering community (as noted by the same authors

in [48]), also in [55].

We approach the problem from a different perspective by answering the question:

"how much rate (or sum of rates) is necessary (and sufficient) to have perfect es­

timation?" This approach is limited to lossless distributed estimation. However, it

provides practical insight into the more general problem. The approach presented here

is closely related to the distributed source coding theorem first proved by Slepian and

Wolf [90]. In fact, the distributed source coding theorem is extended to the special

case when the accuracy in parameter estimation (noiseless transmission of joint-type)

is the main concern, rather than perfect reconstruction of the sources per se.

For this purpose, in Section 2.4 it is shown that for optimal estimation, the joint~

type of the correlated sequences is a sufficient statistic. Then in Section 2.5 it is shown

that for any fixed source parameter, the Slepian-Wolf region is not only sufficient but

also necessary for the perfect transmission of the joint-type, i.e., efficient estimation.

A distributed coding scheme for achieving these rates is also presented. The proofs are

based on the large deviation theory (particularly Sanov's theorem) and a particular

form of distributed random binning scheme. For contrasting the contribution of this

chapter, we show in Section 2.8 that the method of Han and Amari gives a set

of sufficient rates for efficient estimation in distributed estimation (for fixed set of

parameters) .

As we show in the last part of the chapter, determination of the region of achiev­

able rates for efficient estimation of a general source is an extremely difficult problem.

This fact is the motivation for proposing methods that provide practical guidelines
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for designing distributed estimation systems. One example of such approaches pro­

posed in [88] for binary symmetric sources. Given any source parameter for binary

symmetric source, this theorem determines the region of achievable rates for efficient

estimation of the source.

In Section 2.7, we generalize this theorem for a larger class of sources. More

specifically, we provide a lower bound on the region of achievable rates (i.e. existence

of encoder/decoders for attaining an accuracy equivalent to local estimation) for

estimation of sources with a convex mutual information with respect to the unknown

parameter e.

Finally, we study a famous "Modulo-two adder" source network due to [61]. We

show that in such a network, if communications is for the purpose of estimation, in

contrast to the Slepian-Wolf rates, the triple set of (0,0,0) rates are achievable.

Remark 2 The second theorem proved in this chapter (Theorem 2.5.1) shows that in

a distributed codmg scenario, the transmission of the joint-type needs as much rate

as the transmission of the sequences themselves, i.e. the SW rates. This result was

prevwusly published in {2} and {43]' More specifically, Ahlswede and Csiszar showed

that in a distributed coding framework, perfect transmission of a particular class of

functions (sensitive functions) of the sequences can be as difficult as perfect trans­

mission of the sequences themselves. They also showed that for the special case of

the joint-type, the sufficient and necessary rates coincides with the SW rates. There­

fore, the proof provided here can be considered as a simple alternative proof for this

problem.
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Suppose a phenomenon is characterized by a discrete probability distribution Q(X, Y; ()),

where the random variables X and Y choose discrete values from sets of discrete al-

phabets X and Y, respectively and where () E e c nk is a parameter vector by

which the PD is uniquely identified. Let also (xn, yn) be n i.i.d samples drawn from

Q(X, Y; ()). The sequences are encoded into separate messages by encoding func­

tions j : xn -t IIt and 9 : yn -t IIg , respectively. The message sets IIt and

IIg , also referred to as codebooks, are arbitrary discrete sets IIt = {I, 2, ... , 2nRx }

and IIg = {I, 2, ... , 2nRy }. Here R x and Ry are called the code rates defined as

Rx = limn-->oo IOg~rrfl and Ry = limn-->oo log~rrgl where Illtl and JIIgl are cardinality

of the sets IIt and IIg , respectively.

The encoded messages are transmitted to a common receiver via separate com­

munication channels. The communications channel capacities are generally limited.

Thus the design of the codebooks and the messages involve compression. By appropri­

ately incorporating compression such that the rate of the codes is "no more" than the

available capacities of the channels, the decoder receives noiseless encoded messages.

At the receiver, by means of a decoder/estimator function h : II t x IIg -t e, it is

desired to estimate the parameter of the underlying distribution, e= h(f(xn), g(yn)).

The pair of rates (Rx , Ry) is called achievable if there exists at least one pair of

encoders (f' g) and a decoder h with probability converging to 1 by which one can

construct the sequences of codes that provide transmission of sufficient statistics for

the parameter () to the receiver with probability of error converging to 0 as n becomes

sufficiently large. Here we study the region of achievable rates.

Remark 3 Suppose X is a discrete set with finite or countably infinite cardinality.

A probability distribution Q(X; ()) on X is defined as a junction Q : X -t n which
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satisfies:
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Q(x) 2: 0 (\:Ix E X) and :L Q(x) = 1.
xEX

Similarly, a joint probability distribution Q(X, Y; B) is defined similarly on two

discrete sets X and Y as a function Q : X x Y ----+ R which satisfies:

Q(x, y) 2: 0 (\:I(x, y) E X x Y) and :L Q(x, y) = 1.
xEX,yEY

Throughout, when clear from the context, we avoid representing the dependence of

the PD Q(X, Y; B) on the parameter B explicitly.

2.3 Information theory- some definitions and the-

orems

The fundamental concept in Shannon's information theory is the typicality of large

sequences. Sufficiently long sequences fall into two major sets, the typical and non­

typical sets. It was proved by Shannon [87] that almost all (with probability close

to 1) randomly generated sequences are members of the so-called typical set. The

important property for all members of the typical set is that their entropy is almost

equal to the entropy of the source and therefore all these sequences carry the same

amount of information about the source. In other words, for sufficiently large n, the

average of the negative logarithm of the probability of each sequence x n approaches

the source entropy H(x). Therefore, it is a common practice in information theory to

treat long sequences such that there are almost 2nH(X) sequences each with probability

of 2~nH(X). These two observations that almost all long sequences are typical and so

carry the same amount of information about the source, and that there are almost

2nH(X) such typical sequences lead to Shannon's source coding theorem. This shows

a code with a rate at least equal to the entropy of the source exists which carries
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carryall the source information. Now, consider two correlated sources generating two

correlated random variables X and Y with entropies H(X) and H(Y), respectively.

Similarly there are 2n (H(X)+H(Y)) total typical sequences. Also since the variables are

correlated, there are almost 2nH(x,Y) jointly typical sequences.

The method of types [29] is a topic in combinatorics used extensively for proving

theorems in information theory. This method is a set of tools for studying the behavior

of long sequences using their types. The type of a sequence is the relative occurrence

of the alphabets in the sequence. The method of types owes its usefulness (particulary

in information theory) to the concept of typicality, firstly recognized by Shannon all

typical sequences have the same type. Here, we present two important results from

the method of types, i.e. the number of types for long sequences is upper bounded by

a polynomial function of the sequence length, and the maximum number of sequences

with the same type (joint-type) is upper bounded by an exponential function of the

sequence length and entropy (joint entropy).

The Large deviation theory is another subject that is reviewed in this section. This

theory involves rarely occurring events, i.e. events that are far from expectation. We

present one of the most important theorems in this theory, referred to as Sanov's

theorem that gives the likelihood of rare sequences (events) in terms of the Kullback­

Leibler (KL) distance between their types and the underlying probability distribution.

We will use this theorem to prove another important theorem that computes the

likelihood of the event that two sequences generated independently according to two

independent marginal distributions appear to be jointly-typical with respect to a

joint distribution. This theorem will be the main tool used to implement the random

binning scheme for transmission of the joint-type in a distributed coding scenario.
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2.3.1 A quick review of fundamentals

2.3.1.1 Typical and jointly typical sets [24]

A typical set Ax with respect to Q(X) is a set of sequences (Xl, X2, ... , X n ) E X n with

the following property:

Thus, for arbitrarily small E > 0 and sufficiently large n:

where 1.1 denotes absolute value.

Lemma 2.3.1 (The Asymptotic Equipartition Property, (AEP}[24)) If Xl, X2, ... are

i.i.d rv Q(X), then:

1. -~ lOgQ(XI, X2, ... , x n ) --+ H(X) in probability.

3. Pr{Ax} > 1 - f for n sufficiently large.

4. lAx I :::; 2n (H(X)+E),

5. IAxl 2': (1- f)2n (H(X)-E).

where 1.1 denotes cardinality I.

Proof 2.3.1 The first statement is the fundamental concept upon which the infor­

mation theory is built and is an extension of the weak law of large numbers. For the

proof refer to [24}, page 51-52.

1 We assume that the meamng of notatwns for absolute value and cardinality are clear from the
context.
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Similarly, for two correlated random variables, for arbitrarily small E > 0 and

sufficiently large n the jointly typical set Axy of pairs of sequences (xn, yn) rv Q(X, Y)

is defined as:

Axy = {(xn,yn): 1-~lOgQ(xn) - H(X)I < E

I-~ logQ(yn) - H(y)1 < E

I-~ logQ(xn, yn) - H(X, Y)I < E}.

Lemma 2.3.2 (The Joint Asymptotic Equipartition Property (JAEPJ!24}J Let (xn, yn)

be sequences of length n drawn i.i.d according to Q(X, Y). Then:

2. IA I < 2n (H(X,y)+c)Xy _ ,

3. If (in, fr) rv Q(xn)Q(yn), z.e. in and fjn are generated independently by the

same marginals of Q(X, Y), then for sufficiently large n:

Also, for sufficiently large n,

Proof 2.3.2 c.f. [24), page 195.

Lemma 2.3.3 Let (xn, yn) be sequences of length n drawn i.i.d according to Q(X, Y).

Let for any E > 0 define Ax(xn Iyn) to be the set of xn sequences that are jointly typical

with a particular yn sequence. If yn E A y , then for sufficiently large n, we have:
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Proof 2.3.3 See [24), page 387.

2.3.1.2 Marginal and joint types

Let N(alxn) be the number of occurrences of the alphabet symbol a E X in sequence

x n. The type of the sequence xn (or marginal type with respect to the joint distribution

Q(X, Y)) is defined as the relative occurrence of symbol a E X in the sequence:

Similarly, the joint-type of the pair (xn, yn) is defined:

?xnyn(a, b) = ~N((a,b)l(xn,yn)).
n

2.3.1.3 Set of types (Pn )

(2.1)

(2.2)

The set of types with denominator n are represented by Pn. For example, the set of

joint-types with denominator n for a binary set X x Y is:

{ [
P(O 0) P(O 1)] (Q Q) (1. Q) ( !.!:.

P
n

= P(l: 0) P(l: 1) : ~ ~ , ~ n~l ' ... , ~
Lemma 2.3.4 For random variables X and Y selected from discrete alphabets X and

Y, respectively, the maximum number of joint-types with denominator n is polynomial

zn n:

(2.3)

Proof 2.3.4 Refer to ([24), page 280).

Corollary 2.3.5 For a binary alphabet X = Y = {O, I}, the cardinality of the joint­

type set with denominator n is at most polynomial in n:
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Remark 4 This result provides the possibility of "almost zero-rate" transmission of

the marginal types to the decoder as will be discussed later in Section 2.5.

2.3.1.4 Type class

For any type Px E P n , the type class, T(Px), is the set of sequences with type equal

to Px:

(2.4)

Similarly, for any joint type Pxy E Pn the type class, T(Pxy ), is defined as the set

of pairs of sequences with joint-type equal to Pxy:

Lemma 2.3.6 For any type P E P n :

1 2nH(P) < IT(.P)I < 2nH(P)
(n + l)lxxYI - -

where H(.P) is defined below.

Proof 2.3.5 Refer to ([241 page 282).

(2.5)

(2.6)

Remark 5 The important result of this section is that while there exists only a poly­

nomial number of types with denominator n, e.g. (n + 1)4 for binary sequences, there

exists an exponential number of sequences with the same type. This property shows

that there should exist at least "one type class" with an exponential number of se­

quences, i. e. the type class with entropy H (X). We use this result in distributed

coding scheme in later sections.

2.3.1.5 Entropy of a type

The entropy of a type .Pxn is defined as:

H (.Pxn) /:; - L .Pxn (a) log .Pxn (a).
aE{O,l}

(2.7)
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Similarly, the entropy of a joint-type is defined:

(2.8)

2.3.2 Large deviation theory

Typical sequences are the main building blocks of information theory. As the se­

quences become larger, the probability of a typical sequence occurring approaches 1.

In contrast, large deviation theory studies the probability of the occurrence of non­

typical sequences. In other words, this theory is concerned with events that occur far

from the expectation. For instance, in a sequence of coin flips, the likelihood (proba­

bility) of observing a sequence with almost the same number of "head" s and "tail" s is

close to 1. In contrast, as it is shown by large deviation theory, the likelihood of ob-

serving a sequence that has 9 times more "head"s (one's) than it has "tails"s (zero's)

is exponentially low and a function of the KL-distance between the underlying prob­

ability distribution (in this case uniform) with the type of the observed sequence (i.e.

UO' 1
9
0))'

Example ([24], page 291): What is the probability that ~ L Xl is near ~, if

Xl, X2, ... , X n are drawn i.i.d BernoulliO)? Since the empirical mean is expected

to be close to the expected value (~) this is an event with probability close to 1

and so a small deviation from the expectation. On the other hand, suppose we

are interested in the probability of the event when ~ L Xl is greater than ~? The

probability of this event is exponentially small and so is a large deviation from the

expectation. Using large deviation theory, the probability of this event turns out

to be 2-nD (1'>."n IIQ(X)) = 2-nD((~,~)II(~,~)), where Pxn = (N(Olx n ), N(ljxn )) = (~, ~) is

the type of observations X1,X2, ... ,Xn , i.e. ~ LXi = ~. The notation N(alxn
) de­

fines the relative occurrence of alphabet a in xn as defined previously in (2.2). Also

Q = (Pr(X = 0), Pr(X = 1)) = (~,~) is the probability distribution from which the
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variables are drawn.

Now let E be a subset of the set of probability mass functions. We write:

(2.9)

which is in fact the probability under distribution Q of the sequences whose type is

in E with respect to PD Q(X). Here PrQ stands for the probability with respect

to Q(X) 2. Sanov's Theorem provides an upper bound on the likelihood of these

sequences as well as a method for computing the best probability distribution in E

that maximizes this likelihood.

Theorem 2.3.7 (Sanov's Theorem [24J) Let Xl, ".,xn be i.i.d rv Q(X). Let E ~ Pn

be a set of probability distributions. Then:

where

P* = arg min D(P II Q),
PEE

(2.10)

(2.11)

is the distribution in E that is closest to Q in relative entropy (K-L distance). If in

addition, the set E is the closure of its interior, then:

~ log Q(E) -t -D(P* II Q).
n

(2.12)

Proof 2.3.6 The proof is based on the method of types. For detail refer to ([24),

page 292).

In the following section, Sanov's Theorem is used to derive an important property

of independently generated sequences. This property will be used in the proposed

distributed binning scheme presented in later sections.

2We follow classical notations used in Thomas and Cover [24]
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Remark 6 The following theorem is the basis for the distributed coding scheme pre­

sented in the following sections. The proof is based on the following observation:

Consider a product distribution Qo(X, Y) = Q(X)Q(Y) consisting of the product

of the marginals of a joint distribution Q(X, Y). In series ofn experiments measuring

the output of this source (Qo), the event of observing a pair (xn, yn) that are statisti­

cally independent (because their PD is the product of its marginals) is a typical event­

its probability or likelihood is close to 1. In contrast, the event of observing a pair that

is jointly typical with respect to the joint distribution Q(X, Y) is a rare (non-typical)

event. The following theorem is concerned with measuring the probability of observing

such events. It is proved in the following theorems that the probability of such events

is exponentially low with exponent proportional to the mutual information between the

correlated random variables.

Moreover, we show that the probability of observing pairs with a joint-type that has

entropy less than the entropy of the joint-type Q(X, Y) is also exponentially low with

exponent proportional to the mutual information. This idea provides the theoretical

basis for using the minimum entropy decoder; a decoder that outputs a pair with

minimum Joint-type entropy. This result will be used in our main distributed coding

scheme explained in detail in Section 2.5.1.

Lemma 2.3.8 (Mutual Dependence Theorem)

Part (a)([24j, page 295): Let Q(X, Y) be a given joint distribution and let Qo(X, Y) =

Q(X)Q(Y) be the associated product distribution formed from the marginals of Q. Let

Eo be the event that a sample drawn according to Qo "appears" to be jointly distributed

according to Q, i.e. has a Joint-type Q. The probability of this rare event is:

Pr(E ) < 2-nI(XY)o _ , (2.13)

where I(X; Y) is the mutual information corresponding to Q(X, Y). lv!oreover, the

joint-type of the most probable pair that achieves the equality is equal to the joint
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distribution:

P;nyn = Q(X, Y). (2.14)

Part (b): Let £u be the event that a sample drawn according to Qo ({appears" to

be jointly distributed with respect to any other joint distribution Qu i= Q for which

H(Qu) :::; H(Q). The probability of this event is:

Pr(£u) :::; 2-nl(x,Y). (2.15)

The joint-type of the most probable pair that achieves the equality satisfies:

H(P;) :::; H(Q). (2.16)

Proof 2.3.7 For proof of part (a) See Appendix B. For proof of part (b), denote

the mutual information with respect to Qu as Iu(X; Y). First having assumed the

condition H(Qu) :::; H(Q):

Iu(X; Y) H(X) + H(Y) - H(Qu)

> H(X) + H(Y) - H(Q)

I(X; Y).

Based on this observation and according to Part (a):

Pr(£u) < 2-n1u (x,Y)

< 2-nI(X,Y) .

Also, since P; = Qu and H(Qu) :::; H(Q) we conclude that H(P;) :::; H(Q).

Theorem 2.3.9 Let Q(X, Y) be a given joint distribution and let Qo(X, Y) = Q(X)Q(Y)

be the associated product distribution formed from the marginals of Q. Let £ be the

event that a sample drawn according to Qo has joint-type Q or any other joint-type

for which H(Pxnyn) :::; H(Q). The probability of this event is:

Pr(£) :::; (n + 1)lxxYI2-nl(X,Y).



46 CHAPTER 2. ON MULTITERMINAL ESTIMATION RATES

Proof 2.3.8 By lemma (2.3.8), the probability of a sequence appearing with joint­

type Q(X, Y) is less than 2-nI (X,Y). By the same lemma, the probability of a sequence

appearing with any joint-type for which H(Pxnyn) ::; H(Q) is also less than 2-nI(X,Y).

There are at most (n + l)xxY joint-types with denominator n. The probability of the

union of these events are less than the sum of them, and therefore the theorem is

proved.

Remark 7 This theorem shows that in a distributed random binning situation, if a

pair with joint-type equal to Q is observed, the probability of another pair appearing

with the same joint-type or any other joint-type with entropy less than H(Q) ~s

exponentially low with exponent proportional to the mutual information.

Remark 8 Suppose a pair of sequences generated by the product distribution Qo =

Q(X)Q(Y) exists in a bin that appears jointly typical with respect to Q(X, Y). For

this pair the joint- type Pxn yn = Q(X, Y). This is equivalent to the case when a pair is

generated by the joint distribution Q(X, Y), i.e. for which case again PXnyn = Q(X, Y).

This observation is the basis for the universal coding scheme presented in upcoming

sections.

2.4 Sufficiency of the joint-type

We will see in the following chapters that the joint~type is a sufficient statistic for

ML estimation of () using the following theorem.

Lemma 2.4.1 Let (xn, yn) be n samples drawn i.i.d from Q(X, Y; ()) with (X, Y) E

X x y. Then the likelihood of the data depends only on the joint type Pxnyn is given

by

£(()) = 2-n(H(Pxn yn )+D(Pxn yn IIQ» ,

where D is the K ullbak-Liebler (KL) distance.
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Proof 2.4.1 [24]:

n
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IIQ(Xi, Yi; B)
~=1

II Q(a, b; B)N((a,b)lx,y)

(a,b)EXxY

II Q(a, b; Blxnyn (a,b)

(a,b)EXxY

II 2 n (PX n yn(a,b) logQ(a,b;O))

(a,b)EXxY

II 2 n (PX n yn (a,b) log Q(a,b;O)- Pxnyn (a,b) log Pxnyn (a,b)+Pxnyn (a,b) log Pxnyn (a,b))

(a,b)EXxY

(2.17)

Remark 9 The result of this theorem is the basis for all developments presented in the

following chapters when an ML estimation problem is solved. When a complete set of

data (xn, yn) is available, the ML solution involves a maximization of the first term in

Equation (2.17). On the other hand, when the data is partially available, also referred

to as incomplete-data, e.g. when only yn is available, ML estimation involves the

maximization of a lower bound on (2.17). This will be used in the following chapters.

We now state the main result of this section from statistics that will be used in

the following sections.

Theorem 2.4.2 (Sufficiency of the Joint Type) Let (Xn, yn) be n samples drawn

i.i.d from Q(X, y; B). The joint type Fxnyn is a sufficient statistic for B.

Proof 2.4.2 Let r(xn, yn) D. 2-n (H(Pxn yn)) and q(S(Xn, yn); B) D. 2nD(1"xnynIIQ). We

observe that the joint type factorizes the likelihood. Therefore, the proof is immediate

from the Factorization Theorem stated in Section 1.1.1.3.
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2.5 Coding for distributed estimation

The main obstacle in designing a universal coding scheme in distributed estimation is

that the underlying PD Q(X, Y; e) changes with the unknown parameter e, leading

to different correlations between the sequences, hence a different conditional type.

Even when the unknown parameter is fixed, determination of the region of achievable

rates is not obvious. In what follows, the region of rates for this case is studied. With

a simple proof it is shown that for any fixed value for the parameter e, the region

of achievable rates coincides with the Slepian-Wolf (SW) region. The proof is based

on the large deviation theory that provides a very simple alternative to the proofs

provided previously [2].

In the following a coding scheme for proving the main theorem is presented. The

proof is based on distributed binning 3. The process consists of two steps. In the first

step, a codebook is constructed. Each source has access to a marginal distribution

of the joint distribution. Consequently, it randomly assigns all sequences generated

according to its marginal distribution to a set of bins4
. Then the bins generated by

each source are put together to form joint-bins, also referred to as codebook. In the

second step, the transmission of measured sequences is performed. For this purpose,

given the sequence of measurements, the encoder at each source looks into all its bins

and transmits the address of the bin to which the sequence belongs. At the decoder,

it is desired to locate the pair in the joint-bin corresponding to the received address.

For this purpose, the decoder selects a pair in the joint-bin for which the joint-entropy

is minimum. We refer to this decoder as the minimum-entropy decoder [30].

The main idea in the proof is to show that with the aid of minimum-entropy

decoder, if the rates are chosen properly (similar to the Slepian-Wolf rates for any

3\Ve coin this term as a generalization to the binning scheme defined in [24]
4Notice that all distributions including the marginal distributions are functions of the parameter

e
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fixed parameter), the probability of decoding a pair with a joint-type other than

the joint-type of the measurement pair goes to zero exponentially. Conversely, it

is shown that when the probability of decoding a pair with a joint-type different

than the joint-type of the measurement pair vanishes, the proposed rates are also

necessary.

Figure 2.1 illustrates the distributed binning scheme for a bivariate source. Each

dimension corresponds to one of the sources. Source X assigns almost 2nH(X) se­

quences generated according to Q(X) to 2nRx bins. Similarly for source Y. Suppose

a pair appears (marked by star (*)) to be jointly distributed according to the joint

distribution Q(X, Y). Theorem 2.3.8 shows that the probability of such a pair ap­

pearing in the bin is exponentially low (almost 2-nI(x,Y)). Moreover, Theorem 2.3.9

shows that the probability of pairs appearing with a joint-type different than the

joint-type of the measurement pair is also exponentially low. Therefore, when the

rates are chosen sufficiently large, there would exist sufficient diversity in bins to avoid

the existence of more than one such pairs in a joint-bin. This observation is the basis

for the following proofs.

2.5.1 Coding scheme

Suppose we fix the parameter e. We will denote the PD Q(X, Y; e) with fixed e by

Q(X, Y). Here, for a two-terminal estimation scenario, the sufficient and necessary

rates as well as a coding scheme are presented to noiselessly reconstruct the joint-type

at the decoder and therefore efficiently estimate e.
Distributed random binning: Suppose it is desired to transmit the joint-type

of a pair of n i.i.d. samples (xn, yn) from the joint distribution Q(X, Y). The sources

X and Y partition the space of x n into 2nRx and the space of yn into 2nRy bins,

respectively.

Random code generation and binning: To form the codebooks, the sequences
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Figure 2.1: Codebook for a distributed binning scheme

x n and yn are generated according to the marginal distributions Q(X) and Q(Y),

respectively. This is due to the fact that the sources do not collaborate and therefore

have no information of the underlying joint distribution. The marginals are associated

with the joint PD Q(X, Y). The source X randomly assigns every x n E x n to one of

2nRx bins according to a uniform distribution on {I, 2, ,.. , 2nRx }. Independently, the

source Y randomly assigns the sequences yn E yn generated by marginal distribution

Q(Y) to the 2nRy bins {I, 2, ... , 2nRy }. We call the sequences x n and yn the codewords

and the set of bins for xn and yn as the codebooks II! and IIg , respectively, The

assignment functions f and 9 are revealed to both the encoder and decoder. Note

that the generation of the sequences are according to the marginal distributions rather

than the joint distribution.

Encoding: For any given pair (x n , yn) generated by Q(X, Y), the sender X sends

the index mxn of the bin to which x n belongs, to the decoder. Similarly for Y. Note
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that the encoded pair (Xn, yn) is generated by the joint distribution.
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Decoding: Given the received bin index pair (mxn, myn), a minimum entropy

decoder h(mxn,myn) declares Q(X, Y) = Pxnyn the joint-type of a pair with mini­

mum entropy, i.e. H(Pxnyn) ::; H(Px'nY;,) for all sequences in the joint-bin (x~, y~) i=­
(xn, yn).

Probability of error Pe: In conventional decoding (e.g. the SW decoding [24],

page 411) an error is declared if (xn, yn) is not in the joint-typical set (Axy ) or if

there is another jointly typical sequence in the same bin. Instead we are interested in

just the joint-type of the sequences xn and yn. Therefore, considering the minimum

entropy decoder, an error is declared if there exists at least one sequence in the bin

that has a joint-type with entropy less than H(Q) but is not equal to Q(X, Y).

Achievability: The rate R is called achievable if there exists at least one pair

of encoders (1, g) and a decoder h with probability converging to 1 by which one

can construct sequences of codes that provide transmission of the joint-type of the

sequence (xn, yn) to the receiver with probability of error converging to 0 as n becomes

sufficiently large.

Remark 10 We recall Remark 7 and Theorem 2.3.9. The proof is based on this

the that in a distributed random binning situation, if a pair with joint-type equal to

Q is observed, the probability of another pair appearing with the same joint-type or

any other joint-type with entropy less than H(Q) is exponentially low with exponent

proportional to the mutual information.

We now present the main theorem.
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Theorem 2.5.1 For any fixed () the following rates are sufficient and necessary:

Rx > H(XIY; ()),

Ry > H(Y/X; ()),

Rx + Ry > H(X, Y; ()).

Although the achievability is an obvious result of the Slepian-Wolf theorem, here

a different proof is presented. The necessity is also proved in the converse part.

Proof 2.5.1 (Achievability) The proof is similar to the proof of Slepian- Wolf The­

orem given in ([24], page 412). The codebooks are generated by two marginal dis­

tributions of the PD Q(X, Y). At the decoder, the marginal codebooks are paired up

together to form almost 2n(Rr+R y
) joint-bins. Now suppose a pair (x n, yn) is gen­

erated according to Q(X, Y). The encoder finds the bins to which these sequences

belong. On the Teceiver side a minimum entropy decoder is used. Therefore, accord­

ing to Theorem 2.3.9 the probability of any pair appearing with Joint-type other than

Q(X, Y) with entropy less than H(Q) , is upper-bounded by 2-n1 (X,Y). On the other

hand, there are almost 2 n(H(X)+H(Y)) sequences. Therefore, on average, a rate larger

than 2-n1(X'Y)2n(H(X)+H(Y)) = 2 n(H(X,Y)) is needed to make sure that no such pair

(with Joint-type other than Q(X, Y) and less entropy) appears in the gwen bin. It is

important to notice that although the codebooks are generated by the marginal distri­

butions, the encoded pairs are generated according to the joint distribution Q(X, Y).

The formal proof follows.

Consider any pair (xn, yn) rv Q(X, Y). At the decoder side, it is desired to recon­

struct the Joint type Pd , or better, the Joint distribution Q(X, Y).

We define the following error events (for brevity we represent Q(X, Y) by Q below):

(2.18)
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and

E 1 - f3(x~, yn) : x~ i= x n, f(x~) = f(xn), and

PX'nyn i= Q for which H(Px'nyn)::; H(Q)},
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(2.19)

The error E 1 is declared when there exists a pair in the bin that has a joint-type

other than Q(X, Y) and whose entropy is less than the entropy H(Q). This error is

associated with the minimum-entropy decoder. We showed in Theorem 2.3.9 that the

probability of this event is exponentially low with exponent proportional to the mutual

information. This is going to be used in the following proofs. The errors E 2 and E 3

are defined similarly.

{:J(xn,y~): y~ i= yn,g(y~) = g(yn), and

Pxny'n i= Q for which H(PxnyJ::; H(Q)}, (2.20)

E 3 {:J(x~, y~) : (x~, y~) i= (x n, yn), f(x~) = f(x n), g(y~) = g(yn), and

PX'nY'n -I- Q for which H(Px'nyd::; H(Q)}. (2.21)

The total probability of error is given by the union of the events:

We now study the error events. The encoded pair (x n , yn) is generated according

to the joint PD Q(X, Y). By the joint asymptotic equipartition property ((24J page

385), P(Eo) -----+ 0 and hence for n sufficiently large and arbitrary E > 0, P(Eo) < E.
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For all possible pairs (xn, yn) rv Q(X, Y), the P(E1 ) can be bound as follows:

P(E1 ) = P{3(x~, yn) : x~ i= x n, f(x~) = f(xn), x~ E Ax and

Px~yn i= Q for which H(Px~yn):::; H(Q)}

L p(xn,yn)
(xn,yn)

P{3(x~, yn) : x~ i= x n, f(x~) = f(xn), x~ E Ax and

< L p(xn,yn)
(xn,yn)

(2.22)

P{f(x~) = f(xn)}p{Px~yn i= Q for which H(Px~yn):::; H(Q)}

< L p(xn,yn)2-nRx (n+ 1)XxY2-nI(X'Y)IAx!
(xn,yn)

< (n + 1)XxY2-nRx2-nI(X'Y)2n(H(X)+E)

where we used part (1) of Lemma 2.3.9 (Section 2.3) in (2.22). Also we used the fact

that L:p(xn,yn)jAxl::; 2n(H(X)+E). This bound goes to 0 if Rx > H(XIY)+E. Notice

that the rate of increase of (n + 1) is polynomial compared to the exponential decrease

of the remaining terms. Hence for sufficiently large n, P(Ed < f. Similarly for E 2

and E 3 • Since the average probability of error is less than 4f, there exists at least

one code (1, g, h) with the probability of error less than f for which the probability

of error p}n) ---+ O. Thus we can reconstruct the joint-type of original sequences by a

minimum entropy decoder that outputs the sequence with a joint-type with minimum

entropy. This proves that the pair of sequences (xn, yn) with the same average joint­

type information are distinguishable at the decoder with arbitrarily small error. This

guarantees, on avemge, that the joint-type of the pairs are preserved and therefore the

region is achievable. Since the joint-type is a sufficient statistics for f), we see that
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the parameter () can be estimated from this pair.
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Remark 11 It is mentioned prevwusly that for estimation of any fixed parameter (),

the Slepian- Wolf rates are sufficient. The converse part of this theorem proves that

these rates are also necessary. In other words, even when transmission is not for the

purpose of perfect reconstruction of sequences but rather for estimation of the source

parameters, the same rates are necessary.

2.6 Proof of the converse

The proof to the converse is more involved and requires a preliminary theorem that

relates the degree of randomness of the decoded pair with the probability of error.

The theorem plays the same role in distributed coding as the Fano's inequality plays

in coding.

Theorem 2.6.1 (Extension of Fano 's Inequality to Distributed Coding) Consider the

decoder in the distributed binning scheme when the index of bins 10 E {I, 2, ... , 2nRx }

and Jo E {I, 2, ... , 2nRy } are given. We define the event of error in a minimum entropy

decoder as follows:

{

I,
E=

0, otherwise.

where we denote Pr(E = 1) = Pe - We have:

H(xnIIo, Jo, yn) ~ 1 + nPe[-Rx + H(X!Y)
c

+-log(n + 1)],
n

H(yn/Io, Jo, X n) < 1 + nPe[-Ry + H(YIX)
c

+-log(n + 1)].
n
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Similarly:
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H(Xn, ynlIo, Jo) < 1 + nPe[-Rx - R y
c

+H(X, Y) + -log(n + 1)],
n

where we defined the constant c = IAlIYI.

Proof 2.6.1 We first study the corner point of the rate region with pair of rates

(H(X/Y), H(Y)), i.e. yn is completely given at the decoder. Following the same

path as the proof of Fano's inequality ([24.), page 39) we would like to compute

H(XnIIo, Jo, yn). Let us write H(E, xn/lo, Jo, yn) in two different forms:

H(XnIIo, Jo,yn) + H(EIIo, Jo, Xn, yn)

H(Ello, Jo, yn) + H(Xn/E, la, Jo, yn).

To proceed, we need to prove the following lemma:

Lemma 2.6.2

(2.23)

(a) H(Xn/lo, Jo, yn, E = 1)

(b) H(ynllo, Jo, X n, E = 1)

(c) H(Xn
, ynllo, Jo,E = 1)

c
< n(-Rx + H(XIY) + -log(n + 1)),

n
c

< n(-Ry + H(YIX) + -log(n + 1)),
n

c
< n(-Rx - Ry+ H(X, Y) + -log(n + 1)).

n

Proof: (a) Given yn and the index of the joint bin (Io, Jo) and considering the fact

an error has occurred (E = 1), the conditional entropy of xn can be upper bounded

by the log of the number of possible outcomes of the event that a sequence xn in the

same bin appears to look jointly typical with yn with respect to any joint distribution

other than Q(X, Y). The probability of such a sequence xn appearing in the bin

(Io, Jo) that also looks Jointly typical with yn, has a joint-type with entropy less

than the entropy of the joint distribution, i.e. H(Pxnyn) S H(Q), and has a joint­

type not equal to the Q(X, Y) is less than 2-Rx (n + 1)C2-n (I(X;Y)+E) (see Theorem
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2.3.9}. The total number of typical sequences X n is almost 2n(H(X)+E). Therefore,

assuming uniform sampling, the total number of sequences will be less than (n +
1Y2-nR:r2nH(X)2-nI(X,Y) and therefore the conditional entropy is upper bounded by

log[(n + 1)c2-nR:r2nH(X)2-nI(X,Y)] and the proof is complete. 0

Now we return to Equation 2.23. Observe that H(EIIo, Jo, X n, yn) = ° and

H(EIIo, Jo, yn) :s; H(E) = H(Pe) :s; 1. Also from the above lemma H(XnIE, 10, Jo, yn) :s;

n(-Rx + H(XIY) + ; log(n + 1)). Thus we have:

H(Xn I10, Jo, yn) H(EIIo, Jo, yn) + H(XnIE, 10, Jo, yn)

H(EI10 ' Jo, yn)

+ Pr(E = O)H(XnjE = 0,10, Jo, yn)

+ Pr(E = l)H(Xn IE = 1,10, Jo, yn)

c
< 1 + (1 - Pe)O + Pen(-Rx + H(XlY) + -log(n + 1))

n
c

1 + nPe(-Rx + H(XIY) + -log(n + 1)),
n

and therefore the proof for the first part is complete. The proof for the other corner

point of the region, i.e. (H(YIX), H(X)) is similarly done by exchanging the roles of

x and y in the above proof For the non-corner points of the region, one can use a

similar approach and part (c) of the lemma to show that:

H(Xn, ynlIo, Jo) H(EIIo, Jo, X n, yn) + H(Xn, yn/E, 10, Jo)

H(EIIo, Jo, ,Xn, yn)

+ Pr(E = O)H(Xn, ynlE = 0,10, Jo)

+ Pr(E = l)H(Xn, ynlE = 1,10, Jo)

c
< 1 + (1 - Pe)O + Pe'n(-Rx - R y + H(X, Y) + -log(n + 1))

n
c

- 1 + nPe ( -Rx - Ry + H(X, Y) + -log(n + 1)),
n

o
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2.6.1 Proof of the converse to Theorem 2.5.1 (Necessary con­

dition)

We now proceed to complete the proof for the converse part of the Theorem 2.5.1. We

follow the same steps as in {!24}, page 413}. Let f,g, and h be fixed, and 10 = f(X n
)

and 1o = g(yn). According to Theorem 2.6.1 we have:

H(Xn, ynlIo, 1o) < 1 + nE:~,

H(XnIIo, 1o, yn) < 1 + nE;,

H(ynllo, 1o, X n
) < 1 + nE~,

where we defined E~ = Pe(-Rx - R y + H(X, Y) + ; log(n + 1)), E; = Pe(-Rx +

H(XIY) +:; log(n + 1)) and E~ = Pe(-Ry + H(YIX) +:; log(n + 1)). The probability

error Pe is defined previously in {2.5.1} and {2.6.1}. For the converse proof we assume

that when n -----+ 00, the probability of error goes to zero {Pe -----+ O} and therefore

E~, E;, E~ -----+ O. It is desired that the rates R x , R y , R x + R y are necessarily greater than

H(X), H(Y). and H(X, Y). respectively.

Notice that as n is increased, the fraction logn vanishes. We have:
n

n(Rx + R y ) > H(Io, Jo)

I(Xn, y n;10 ,10 ) + H(Io, Jo!Xn, y n
)

I(Xn
, y n

; 10 ,10 )

H(Xn, yn) - H(Xn, ynllo, Jo)

> H(Xn, yn) - (1 + nE~)

1 1
nH(X, Y) - n( - + En)'

n
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Also,

n(Rx ) > H(Io)

> H(Iolyn)

I(Xn;Iolyn) + H(IoIXn, yn)

I(Xn;Iolyn)

_ H(xnlyn) - H(Xnllo, Jo, yn)

1> H(xnJyn) - (1 + nE;) = nH(XIY) - n( - + E;),
n

and similarly

1
n(Ry ) 2: nH(YIX) - n( - + (~).

n
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Dividing these inequalities by n and taking the limit as n -----+ 00, we have the desired

converse proof.

2.7 On the region of achievable rates

As we pointed out previously, determination of the region of achievable rates for

efficient estimation of a general source is an extremely difficult problem. This fact is

the motivation for proposing methods that provide practical guidelines for designing

distributed estimation systems. One example of such approaches proposed in [88] for

binary symmetric sources. In this section, we generalize this theorem for a larger class

of sources. More specifically, we provide a lower bound on the region of achievable

rates (i.e. existence of encoder/decoders for attaining an accuracy equivalent to local

estimation) for estimation of sources with a convex mutual information with respect

to the unknown parameter ().

We first present the Amari's method beginning with a definition.
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Binary symmetric source: The binary symmetric source (BSS) with parameter

() is a double binary source with the probability distribution defined as the following:

(
8 1-8)

p(X, Y; ()) = 2 2 ,1-8 f!.
2 2

where 0 ::; () < !.
Theorem 2.7.1 We assume that the parametric family P(X, Y; ()) is defined in the

region 0 < () < ()/ or 1 - ()/ < () < 0, where 0 < ()/ < !. If R 2' H b(()/) , () can be

estimated without loss of information, that is, we can attain the same variance as

when both xn and yn can be observed [BB}.

Given any parameter value ()/, this theorem determines the region of achievable

rates for efficient estimation of BSS.

Now consider a source with a convex mutual information function with respect to

the unknown parameter (). Figure 2.2 shows the mutual information function of such

a source. The mutual information is a convex function of parameter () with minimum

at ()m' The following theorem shows that the region of "achievable" rates for such

sources is determined by the region of rates corresponding to the fixed parameter ()m.

Figure 2.3 illustrates the region of rates for two cases where () = ()m and ()s < ()m for

this source. The area of the region is maximum for ()m and shrinks with decreasing ().

We now state the main theorem.

Theorem 2.7.2 For any source Q(X, Y; ()) with marginal entropies independent of

the parameters (), if I(X; Y, ()) is a convex function of () with a minimum at ()m, the

following rates are achievable (sufficient), i. e. the maximum attainable accuracies of

distributed estimation and local estimation are equivalent:

Rx > H(XIY; ()m),

Ry > H(Y!X; ()m),
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Figure 2.2: A convex mutual information function with minimum at Om' The mutual
information for any parameter Os :s; Om is more than 1m corresponding to Om.
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Figure 2.3: Region of rates corresponding to parameters Om and Os in Figure 2.2
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where the entropies are with respect to the PD Q(X, Y; 8m ).

Proof 2.7.1 Suppose for any E > 0 we fix 8s = 8m ± E. Since I is a convex junction

of 8 with minimum at 8m , thus I(X; Y, 8s ) 2 I(X; Y, 8m ). The rest of the proof

is similar to the proof of Theorem 2.5.1 up to inequality (2.22). Now notice that

if we substitute I(X; Y, 8) with I(X; Y, 8m ) in this inequality, since I(X; Y, 8s ) 2

I(X; Y, 8m ) and the marginal entropies H(X) and H(Y) are not functions of 8, the

condition of achieveability is R x + R y 2 H(X, Y; 8m ) 2 H(X, Y; 8s ) which is always

true and therefore the probability of error P( E 1 ) (defined in (2.1g)) decreases to zero

exponentially surely. Similarly for P(E2 ) and P(E3 ) (defined in (2.20) and (2.21),

respectively) .

Corollary 2.7.3 For the BSS(8) with 0 :s; 8 :s; 8m , and 0 :s; 8m < ~, when side

information is available (Ry 2 H(Y) = 1), the achievable region is:

where Hb(8) = -(81og8+ (1- 8)log(1- 8)).

Proof 2.7.2 Observe that for the BSS I(X; Y, 8) = 1 - H(8) which is a monotically

decreasing convex function of e for 0 :s; e :s; ~. Therefore by setting each value of

8 = 8m (see Figure 2.4), we have H(XjY) = H b(8m ) and therefore using the above

theorem the region of rates is R x 2 H b ( em)'

Remark 12 This result is similar to Amari's result presented in 188}. Since the

region of rates is a convex set, once the theorem is applied for the comer points. the

other points of the region can be treated similarly to determine a lower bo'und region

for achievable rates. We presented their results here for completeness.



2.8. DISCUSSION

Figure 2.4: The mutual information function of BSS

2.8 Discussion
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Distributed coding theorem of this chapter was the first step for determination of the

rates under which a distributed estimator can achieve the same accuracy as it can in

local estimation. We showed that for any fixed parameter, the Slepian-Wolf rates are

not only sufficient [48] but also necessary for efficient estimation.

In this section, we first discuss the most important reference on distributed esti­

mation literature to contrast the contribution of our distributed coding theorem. We

show that the method of Han and Amari gives a set of sufficient rates for efficient es­

timation in distributed estimation (for fixed set of parameters). The theorem proved

in this chapter, however, proved these sets are also necessary.

In the second note, we study a famous "Modulo-two adder" source network due

to [61]. We show that in such a network, if communications is for the purpose of

estimation, in contrast to the Slepian-Wolf rates, the triple set of (0,0,0) rates are

achievable.
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2.8.1 A note on the method of Han and Amari [47]:

The most recent results in the literature on achievable rates in multiterminal dis-

tribution (more precisely two-terminal distribution estimation) are due to Han and

Amari [48] in which the authors reviewed all previous literature on the subject5
. Ad­

ditionally, they completed the theory of multiterminal distribution for discrete sources

in that paper- in the sense that they proved that provided a set of single-letterized

rate-compatibility conditions are satisfied, asymptotically consistent and efficient dis­

tributed estimation of parameters is possible. The basic idea of the HA method is

to find a set of rate-compatibility rates for each encoder that when satisfied, the

transmission of sufficient information to the encoder is guaranteed to reconstruct the

joint type (i.e. sufficient statistic) at the decoder. Based on these ideas, the authors

prescribed a maximum likelihood estimation equation for estimation of parameters

using the transmitted joint-type. They then computed the approximate distribution

of the solution to the ML estimation equation and derived the Fisher information

achievable when the rate-compatibility conditions are satisfied.

We begin with the following definitions.

Test channels and auxiliary variables: It is common practice in informa­

tion theory to use auxiliary random variables defined as the output of an arbitrary

stochastic mapping function, also known as a test channel. Test channels have the

original random variables as their inputs. In two-terminal distributed estimation,

two auxiliary random variables Ue and VB are needed. These RV's are the output of

the corresponding stochastic mappings, also referred to as test channels:

Pe(UIX)

Pe(VIY)

X-----+U

y-----+v.

5To our knowledge, the only authors who referred to the Han and Amari works were Jornsten
and Yu [55]. In their results, an approximate method is provided to make the HA method computa­
tionally accessible for special cases of Gaussian sources. We consider these results irrelevant to our
purpose.
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These variables are defined such that for all (j the Markov-chain property holds:

It is important to notice that the auxiliary variables defined are such that they

depend on (j only through the marginal distribution Q(X; (j) and Q(Y; (j). This is

a crucial assumption which holds by construction and guarantees that the auxiliary

variables are generated only by the knowledge of the marginal distributions, a con­

straint that discriminates distributed estimation from local estimation. The outputs

of the test channels, i.e. (un, vn ) are usually called codewords. It is assumed that at

least some of the information is preserved in such stochastic mappings, i.e.:

I(Uo;Xo) > 0, I(VO; YO) > 0.

Also, there is a standard assumption called the positivity condition [48], [55]:

Q(X, Y; (j) > 0, Po(U, X, V, Y) > 0, Vu, x, y, v, (j > 0.

Remark 13 Note that all random variables and probability distributions are func­

tions of the unknown parameter. This constraint is the main difficulty in the theory

of multiterminal distribution. More specifically, only a universal coding scheme is de­

sirable as if it is not universal, the coding scheme depends on an unknown parameter.

The interesting result of Han and Amari is invaluable for it is asymptotically univer­

sal (independent of the unknown parameter (j and valid for any estimator including

consistent estimators).

When (j is known. it is obvious that any lossless distributed coding scheme can

be used for multiterminal distribution. More specifically, as it is also noted in ((55),

page 15). when (j is known at the encoders, any rate in the Slepian- Wolf region is
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achievable:

Rx > Ho(X/Y),

R y > Ho(YIX),

Rx+Ry > Ho(X;Y). (2.24)

However, when (J is not known at the decoder and is desired to be estimated, the

intriguing question is whether these rates are also necessary. We showed that for

any fixed value of the parameter, the answer to this question was also positive (see

Theorem 2.5.1).

We review the HA method by reviewing the main theorem in [47] borrowed from

[55], as the following.

Theorem 2.8.1 Consider parameters (J E e where e is a compact subset of R k .

Provided that the rate-compatibility conditions:

Rx > I(Uo;Xolve),

Ry > I(ve; Yo!Uo),

(2.25)

are satisfied, then there exist universal coding functions f : un --+ x n and g : Vn --+

yn, with rates R x = limn->oo log If I and R y = limn->oo log Igi that achieve the maximum
n n

likelihood estimate (JAIL with the following covariance:

(2.26)

(2.27)

where Qo = Q(X, Y; (J). Here "'\lQo is partial derivative Po(ulx)VQ(x, y; (J)po(vl:r). 1\1

is the index of observable types and the set 1\1' is the subset of observable types that
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are unconstrained with respect to M. The matrix H11;[' is the projection matrix onto

the unconstrained observable types. The matrix GM' is the unconstrained covariance

matrix of the multinomial distribution Po(U, X, Y; V).

Proof 2.8.1 Refer to {47j.

Remark 14 From a practical point of view, the rate-satisfiability conditions in the

HA method are difficult to establish. They require a critical selection of proper test

channels that are functions of the unknown parameter.

Moreover, the construction of the likelihood equations is extremely difficult. The

key element of the HA method is the projection matrix H M ,. This operator char­

acterizes the amount of information carried from (xn, yn) into the auxiliary random

variables (un, vn) under the coding scheme. The mathematical complexity required to

compute this matrix is extremely high and a non-trivial exercise even for the simplest

examples, e.g. binary symmetric source as noted by the same authors {47} and others

([55J, page 75).

Remark 15 Suppose we set the test channels to the identity function. This is equiva­

lent to setting Uo = X o and Yo = Yo· We also fix e. The rate-compatibility conditions

of the HA theorem is in this case:

Rx > Ho(XIY),

R y > Ho(YIX),

Rx + Ry > Ho(X, Y).

In this case, it is shown {47} that the Fisher information is asymptotically equal

to the Fisher information achieved in local estimation:
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where in this case all types are observable (!vI' = M). The HA theorem proves the

sufficiency (achievability) of the rates in a region similar to the Slepian- Wolf [gO]

region. However, this theorem does not discuss the necessary part, i. e. whether

there exists an asymptotically efficient estimator if the rates do not satisfy the rate­

compatibility conditions or equivalently. for a fixed f), if they do not satisfy the Slepian­

Wolf region. The res'ults of our theorem proves the converse conjuncture.

2.8.2 A note on "Modulo-two adder" source network:

Here we study a famous "A10dulo-two adder" source network [61]. We show that in

such a network, if communications is for the purpose of estimation, the triple set of

(0,0,0) rates are achievable.

We begin with the following definition: "Modulo-two adder" source network

(Korner and l\Iarton [61]) Let (xn, yn) be n i.i.d samples from a discrete memoryless

source Q(X, y; f)) with X E X n, y E yn. Also let zn be the sequence defined by

Z = X EEl Y, the binary addition of samples (xn, yn), where Z E zn. Here X =

Y = z = {O, I}. The sequences are encoded separately by three encoder functions

f : X n
-----+ II j , g : yn -----+ n'l' and e : zn -----+ IIe with code rates Rx = n-1log Ilfll,

R y = n-1log Ilgll, and R z = n-1log Ilell, respectively. The range of encoders, II j ,

TIg , and TIe are arbitrary binary sets. For arbitrarily small E > 0, a decoder function

h : II j x IIg x IIe -----+ zn reconstructs the sequence zn with the probability of error

defined as Pr(h(1(Xn), g(yn), e(Zn)) =f zn) < E. The rate triple (Rx , R y , Rz ) is

called achievable if there exists at least one triple of encoders (1, g, e) and a decoder h

with probability converging to 1, by which one can construct the sequences of codes

that provide transmission of the sequence zn to the receiver with probability of error

converging to E -----+ °as n becomes sufficiently large.

Lemma 2.8.2 For the binary symmetric source Q(X, Y; f)) the following rates are
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achievable:

Proof 2.8.2 Refer to {61J.

Rx + Rz > H(Z),

Ry + R z > H(Z).
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(2.28)

This theorem provides the achievable rates when the transmission of the modulo-two

sum of the sequences (xn, yn) is desired.

We study a similar source network setting, for the case when the distributed

estimation of the source parameter B is desired. The discussion is for general binary

sources, including the BSS. We first show that the types of the sequences X n , yn

and zn are sufficient statistics. Then we conclude that the triple rate (Rx , Ry, Rz ) =

(0,0,0) is achievable (in the sense of distributed estimation of B).

Lemma 2.8.3 Given n i.i.d. samples (Xn, yn) taken from a binary PD Q(X, y, B),

the marginal types Pxn (1) and pyn (1) and the joint-type pxnyn (1, 1) are minimal suffi­

cient statistics.

Proof 2.8.3 The bivariate binary source with PD Q(X, y, B) 'is a member of the

curved exponential family:

Q(X, Y; ,,(e») ~ exp [c +t"kFk(X, Y) -1/;(,,))] ,

where (o:(B) E R 3 ) is the vector of natural or canonical parameters, and the functions

Fk(X, Y) are called the sufficient statistics. ljJ(o:) is the normalization function:

1/;(") ~ log Jexp [C(X,y) + ~"kFk(X'Y)] dxdy. (2.29)

Here C(X, Y) (:, 0, F1(X, Y) (:, 61(X), F2 (X, Y) (:, 61(y), F3 (X, Y) (:, 611(X, y),

where 6a (x) = 1 iff (x = a), is the Kronecker delta function and 611 (x, y) is defined
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similarly (see 2.2). The canonical parameters, also referred to as a-coordinates, are

defined as:

a l t::, 1 PlO (2.30)og-,
Poo

a 2 t::, 1 POl (2.31)og-,
Poo

a 3 t::, 1 PooPn (2.32)og--,
POlPlO

and

(2.33)

It can be shown by verification that aI, a 2
, and a 3 are affinely independent. Also

by definitions F I , F2 , and Fs are affinely independent. Therefore !14} the exponential

representation of p(X, Y; ()) is minimal, the a-parameters are "minimal canonical"

parameters and functions F l , F2 and F3 are the minimal sufficient statistics.

Remark 16 Note that F l , F2 , and F3 are in fact the relative occurrences of (x = 1),

(y = 1) and (x, y) = (1, 1), respectively. This shows that the relative frequency of

occurrence of "1" in the sequences xn and yn as well as the relative frequency of joint

occurrences of "(1,1)" in (xn, yn) are sufficient statistics for estimation of the PD

parameters.

Corollary 2.8.4 When the source is symmetric, z.e. Q(X, Y; ())

joint-type pxnyn (1,1) is the sole sufficient statistic.

BSS(()), the

Proof 2.8.4 For the binary symmetric source, the marginal distributions are known

at the decoder, i.e. Pxl = Pyl =~. Therefore, according to lemma (2.8.3) the joint­

type Pn is the sole minimal sufficient statistic.

Lemma 2.8.5 Oivenn i.i.d. samples (xn,yn) taken i.i.dfrom a binary source Q(X, Y;()),

and a sequence zn defined as the modulo-two sum of (xn, yn), the marginal types

Pxl, Pyl as well as the type Pzl are the minimal sufficient statistics.
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Proof 2.8.5 It is easy to verify thatpn = l?PXl +Pyl-Pzl)' Thereforepxl, Pyl and

Pzl provide the set of sufficient statistics of Theorem 2.8.3.

Theorem 2.8.6 For the modulo-two sum source network, and for efficient distributed

estimation of the source p(X, Y; ()), the triple rate (Rx, R y, R z) = (0,0,0) is achiev­

able.

Proof 2.8.6 It is a well-known fact since the cardinality of types is polynomial in n,

the types can be transmitted with arbitrarily small error by zero rate. Therefore the

triple of rates for transmission of marginals Pxl, Pyl, and Pzo are achievable.

Remark 17 It is important to notice that the "Modulo-two sum" source network of

Korner and Marton is a special case of the two-help-one source network [61]. This

network has been considered an instance of distributed coding scenarios (For example

refer to [44], page 43). However, the existence of the modulo-two sum sequence rep­

resents a collaboration between the two parties X and Y. This collaboration lies in

the fact that the random variable Z carries the joint-type of the the (X, Y) sequence

pairs. This is the reason why the rates achievable in this case do not obey the results

of the Slepian- Wolf [90] theorem. Also, when the two parties X and Y do not help

Z, the achievable rate for transmission of Z is an obvious result of Shannon's source

coding theorem (Rz 2:: H (Z) )
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Chapter 3

Distributed Parameter Estimation

3.1 Introduction

In this chapter, a low complexity algorithm for distributed maximum likelihood es­

timation of a binary symmetric source (BSS) using side-information is proposed.

The estimation is formulated as an incomplete-data problem and is solved by the

expectation-maximization (EM) algorithm. A low-complexity implementation of the

algorithm using coset codes and LDPC-based syndrome decoding with message pass­

ing over a factor-graph is also proposed. The algorithm is a generalization of the

LDPC-based syndrome decoding algorithm for the case when the probability distri­

bution of the source is not known a-priori. Hence, the algorithm may be considered as

a tool for achieving the corner points of the Slepian-Wolf (SW) region in distributed

coding when the correlation channel information is not available.

Suppose two sequences (xn , yn) drawn i.i.d from a binary symmetric source (BSS(p)),

p(X, Y; p), are encoded separately with code rates (Rx , Ry ) and transmitted to a com­

mon decoder. The probability distribution (PD) of source is parameterized by the

scaler (p En). It is assumed throughout this chapter that Ry 2:: H (Y), and hence

73
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the side-information sequence yn is available at the decoder perfectly. It is also as­

sumed that x n is encoded (compressed) to a sequence urn, where Rx = min ::::; 1. It

is assumed that the channel codes are chosen properly such that the communication

channel can be considered to be noiseless, i.e. the focus is on the coding/decoding

scheme for distributed source coding.

In distributed source coding with side-information (SI) at the decoder, the main

objective is to reconstruct the sequence x n using the SI yn and perfect knowledge

of the correlation between two random variables- the underlying PD or equivalently

p. The Slepian-Wolf (SW) theorem [90], in this case, determines the achievable rate

(i.e.Rx ::::: H(X!Y)) for near-Iossless reconstruction ofthe sequence xn
. Practical code

design for distributed coding with SI was initiated when Wyner [102] recognized the

similarity of the problem with channel coding. He observed that the SI yn may be

considered as output of a hypothetical correlation channel with input x n
. Thus, he

predicted that the channel coding techniques may be used for distributed coding using

SI. The distributed coding with syndromes (DISCUS) [85] [78] was the first practical

code that implemented Wyner's idea. It was shown that this approach not only can

approach the rates of the corner points of the SW region, but in general all SW

rates [86]. The low-complexity extension of DISCUS, e.g. LDPC-based codes [66],

distributed Turbo codes [12][74] was also shown to be capable of achieving all points

in the SW region. For a review on distributed source coding refer to ([104] and the

references therein).

In distributed estimation using SI, on the other hand, the objective is to estimate

the source parameter p at the decoder using a compressed version of xn and the SI

yn. The difficulty here is due to the fact that x n needs to be encoded and decoded

without knowledge of its correlation with the SI (i.e. the source parameters p). More

specifically, the encoding process relies upon the marginal distribution of the source,

p(X), which is in general dependent of the (unknown) parameter p. Therefore, the
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decoding must not depend on the unknown correlation information p. Proposing a

universal coding scheme for distributed estimation is in general a challenging problem

[48]. Here we concentrate on design conditions for which the distributed estimator

that can achieve the same accuracy that can be achieved in local estimation- when

sufficient statistics (uncompressed sequences) are available completely at the estima­

tor. For the BSS, a theorem due to Amari [88], studied in the following, provides

guidelines to achieve this goal.

As stated before, distributed estimation of B S S (p) using SI may be considered

as a distributed source coding problem using SI when the source parameters are not

known a priori. This analogy is used here to extend the DISCUS [79] algorithm used

in distributed source coding to the case when the statistics between the sequence xn

and the SI yn are not known at the decoder. Suppose the sequence xn is compressed to

um where m ~ n. The main idea is to treat the available data (yn, um
) as incomplete­

data and the compressed sequence xn as the hidden sequence. In this chapter, the

distributed estimation scenario is formulated as am ML estimation problem using

incomplete-data, and the expectation-maximization (EM) algorithm [35] is used to

provide an iterative estimate of the source parameter p.

The LDPC-based low-complexity extension ofthis idea for long-sequences (which

are inevitable for efficient estimation) is also presented. A factor-graph for LDPC­

based syndrome decoding algorithm is equipped with an extension that implements

the EM algorithm. In the augmented graph the posterior probabilities computed in

syndrome decoding are used in the E-step to implement the expectation operations

needed in the E-step. The following M-step estimates a new value for the unknown

parameter.

More specifically, assuming that SI yn is available at the decoder, the source is

encoded using a coset code characterized by an LDPC parity-check matrix. Syn­

drome decoding is implemented by message passing over a factor-graph to compute
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the posterior distribution of encoded messages, given the SI yn and the received

syndrome urn. The factor-graph is equipped with an extension that implements the

EM-algorithm. This incorporates the computed posterior probabilities in an iterative

fashion for estimating the unknown source parameter.

In addition to distributed estimation, the proposed algorithm may be used for

distributed source coding. The success of all distributed source coding schemes re­

lies upon knowledge of the correlation between the sequence pairs. These algorithms

do not perform optimally when this correlation information is not available at the

decoder. The proposed algorithm may be used for joint correlation parameter es­

timation and distributed syndrome decoding. In this case, the algorithm may be

considered as an example of a universal distributed coding/decoding scheme.

In Section 3.2, the problem statement is presented and the expectation-maximization

(EM) algorithm is formulated to solve the maximum likelihood (1\1L) estimation of

the source parameter using SI. In Section 3.3, fundamental concepts and definitions

in linear block parity check codes are reviewed and in Section 3.4 their application

for distributed source coding is studied. In Section 3.5 Wyner's idea for distributed

source coding and the DISCUS algorithm are extended to distributed estimation using

the EM algorithm. Moreover, since long sequences are required for efficient estima­

tion, the proposed algorithm needs to be implemented using low-complexity codes.

For this purpose, a short tutorial on LDPC codes and message passing over factor­

graphs is presented in Section 3.6. Then in Section 3.7 the basic algorithm proposed

in Section 3.5 is extended to LDPC-based source coding using syndrome decoding

by message passing over factor graphs. It is shown in this section that the LDPC

decoding scheme needs to be modified properly when used for syndrome-decoding.

This is studied in Section 3.7.1. The estimation efficiency is studied by comparing

the estimation variance with the achievable Fisher information in multiterminal es­

timation theory. The achievable rates are studied in Section 3.8. Simulation results
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for distributed estimation of sources are presented in Section 3.9. It is also shown

through simulations that the proposed algorithm may be used as a tool for achiev­

ing the corner points of the Slepian-Wolf (SW) region [90] for joint-estimation and

decoding in distributed coding.

Notation: All the binary vectors in this chapter are assumed to be row-vectors.

Also all logarithms are arbitrarily chosen to be base 2. A random variable and its

particular realization are represented by uppercase and lowercase letters, X and x,

respectively. A sequence (vector) of n random variables and their any particular real­

izations are shown by superscript n, e.g. xn and xn, respectively. Proper subscripts

are used, e.g. Xi and Xi, to reference any element i of a random sequence and its

realization, respectively. When a particular n-sequence is needed to be referenced,

where clear from context, the superscript n is replaced by the reference index, e.g.

3.2 Distributed ML Estimation with Side Infor-

mation

We begin with a definition.

3.2.1 Binary symmetric source

Suppose X and Yare sets with finite or countably infinite cardinality. A binary

symmetric source (BSS) with parameter p, (BSS(p)), is a double binary source with

joint probability distribution over a pair of random variables (X, Y) E X x Y defined

as the following:

p(X, Y;p) = (
~ l;P)

I-p p
-2- 2"

(3.1)
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u
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Figure 3.1: Distributed estimation with side-information

where without loss of generality we assume 0 < p ::; ~. For the BSS(p) we have:

H(XIY) = H(YIX)

I(X; Y)

H(X) = H(Y)

H b(l - p)

1- H b(l- p)

1,

where H(X) is the entropy of the random variable X and I(X; Y) is the mutual

information between two random variables X and Y. Also Hb(p) 6. -plogp - (1 ­

p) 10g(1 - p).

3.2.2 Problem Statement

Let n samples drawn i.i.d from a BSS(p) are encoded independently at rates Rx

and R y , respectively, and transmitted to a common decoder. We assume R y 2:: H(Y)

and hence the sequence yn, referred to as side-information (81), is available with

arbitrarily small error at the decoder. The sequence x n is encoded into message

urn = f (xn ) (rn::; n) with rate restriction (Rx = ;:- ::; Rc where Rc is the available

capacity of the channel). Given a limited rate 0 ::; Rc ::; H(X) for transmission of

x n , it is desired to design a pair of low-complexity encoder-decoders to optimally

estimate the source parameter p (see Figure 3.1).

For unbiased (asymptotically consistent) estimation, the mean square error is
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equal to the variance of estimation defined as:

where E p is expectation with respect to p(X, Y; p). Here J(p, R x , R y) is the Fisher

information (FI) with respect to the parameter p. The inverse of the FI defines a

lower bound on the attainable variance in estimation (read "accuracy"), also referred

to as the Cramer-Rao lower bound (CRLB). In distributed estimation, the CRLB is

not only a function of the parameters, but a function of the available rates.

In what follows, we are mainly interested in scenarios where distributed estimation

is equivalent to local estimation. "Equivalent" is in the sense that, given the complete

SIyn, the accuracy of estimation using the compressed sequence urn is as good as the

accuracy when the uncompressed sequence x n is used.

3.2.3 Binary symmetric channel model and MLE

In order to define the likelihood function, we use Wyner's correlation channel between

two correlated random variables [102]. We consider Y as the output of a hypothetical

binary symmetric channel (BSC) with input X and noise W:

Y = X EB tV (3.2)

where EB indicates the modulo-two summation. Here, W is a Bernouli(p) process,

i.e. a binary random variable with Pr(W = 1) = p. The parameter p is usually called

the correlation parameter.

Given an input sequence xn of n i.i.d samples to the BSC, the likelihood of the

output sequence yn is:

n

IIpZ!(l- p)(l-z,l, (3.3)
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where dH(.) is the Hamming distance:

n

dH(xn, yn) = 2:(Xi EB yJ.
t=l

We also define the binary random variable Z = Y EB X.

Remark 1 With the ESC interpretation, ESS parameter estimation is in fact a

means for estimating the correlation between two sequences. Therefore, throughout,

the accuracy of ESS parameter estimation is also an indication of the success of es­

timation of this correlation.

3.2.3.1 MLE with complete data

When complete knowledge of the pair (yn, xn ) is available, the log-likelihood is:

£(p) logp(ynlxn; p)t [z, log p + (1 - z,) log(1 - p)l (3.4)

Thus, the ML estimate is obtained as:

A 2:~ Zt
PML=--·

n

The mean and the variance of estimation are:

In this case, the estimator achieves the CRLB defined as the inverse of the FI:

J = E[Ej2£(p)] = n
8p2 p(l - p).

(3.5)
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3.2.3.2 The MLE with compressed data using side-information

Ideally, complete knowledge of sufficient statistics, (yn, xn), is necessary for estimation

of p. However, in distributed estimation with SI, the available data at the decoder

consists only of the SI yn and the compressed sequence um . Therefore, ML distributed

estimation using SI can be considered as an instance of the so-called incomplete­

data problem. The exact solution of the MLE with incomplete data (yn, um ) is NP

hard. Given a compressed sequence um , the number of candidate sequences xn that

could have been compressed into um increases exponentially with n. Therefore, any

exhaustive search in the input space has an exponentially increasing complexity.

In contrast, the EM algorithm [35] provides a computationally efficient method

for solving the problem approximately. More specifically, instead of maximizing the

complete-data likelihood, the EM algorithm maximizes the expectation of the likeli­

hood given the partially available data. For this purpose, the EM algorithm alternates

between two main steps. In the expectation (E) step, the algorithm computes a lower­

bound on the likelihood of available data. Then, in the maximization (M) step, this

lower-bound is maximized to solve for a new value of the parameter.

The log-likelihood of the available data (yn, um) can be lower-bounded in the

following way:

£(p) logp(ynlum; p) (3.6)

log LP(yn, xnlum;p)
x n

log LP(ynlxn, um; p)p(xnlum;p)
x n

log LP(ynlxn; p)p(xnlum; p) (3.7)
x n
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We assume a uniform sampling over the members of each coset and therefore substi-

£(p) = log

log L J( p(x
n

) ( nl n )
Ip(Xn)p y x ;p

xn:um=fCxn )

log L J(l p(yn, xn;p)
p(xn )

xn:um=fCxn )

> L logp(yn, x n
; p) - L logp(xn) + J(2, (3.8)

xn:um=fCxn ) xn:um=fCxn )

where we used the Jensen's inequality in the last equation. We defined the constant

J(2 = L:xn:um=fcxn) log J(l. Note that the second and third terms in (3.8) do not play

any role in the MLE.

At iteration t, the parameter is assumed to be known and equal to Pt. In the

E-step, the expectation of the log-likelihood, represented by the F function defined

below is computed. The expectation is with respect to the posterior distribution of

the input given the available data, and is computed using the current value of the

parameter, Pt:

E-step: F(plpt) = (3.9)

Note that the F function is the expectation of the first part of the lower bound in

Equation 3.8, the only part that is a function of the parameter p.

In the lVI-step the F function is maximized to obtain a new value for the param­

eter:

M-step: PCt+l) = arg maxF(plpt).
p

(3.10)

In words, in the E-step, given the initial value of the unknown parameter, the pos­

terior distribution of the most-likely input sequences x n responsible for generating



3.3. LINEAR BLOCK PARITY CHECK CODES 83

the compressed sequence urn is computed. This distribution is used to compute the

expectation of the log-likelihood function. Then in the M-step, this expectation is

maximized to re-estimate a new value of the unknown parameter. The new value of

the parameter is used in the next E-step. The algorithm continues until convergence.

With a proper initial point, the EM algorithm guarantees an increase (or at least no

reduction) in likelihood in each iteration.

In what follows, we implement the EM algorithm for distributed estimation with

SI using coset-code linear block codes with syndrome decoding currently used in

distributed source coding. For this purpose, we first review fundamental concepts

in coding. This begins with linear block parity check codes for which we discuss

maximum likelihood (ML) detection, syndrome decoding and the notion of coset(s).

A quick review of the application of linear block codes for distributed coding follows.

When the necessary background is laid out, the application of the linear block parity

check codes for distributed estimation of source parameters using the EM algorithm

is presented. This algorithm may be considered an extension of previously proposed

distributed coding algorithms (more specifically DISCUS [79]) to the case when the

correlation information is not available a priori.

3.3 Linear Block Parity Check Codes

In general, a linear block parity check (n, k) code transforms k bits of input sequences,

represented by vector bk
, into an n-vector (n 2 k) codeword though a linear operation

defined by a generator matrix G E {a, 1}kxn. There are (n-k) parity check bits added

to the information bits to protect them from the noise present in transmission. The

encoded information bits are then recovered using a linear operation defined by a

parity check matrix H E {a, l}(n-k)xn. The coding and decoding in LBPC codes can

be explained better with a familiar example, the Hamming codes [51], as follows.
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3.3.1 Example- Hamming (7,4) channel code

The Hamming code is a linear parity check code with n = 2m -1 with Tn ~ 2. For this

code Tn is the number of parity check bits and k = 2m -1- Tn. The minimum distance

for this code is dmm = 3. The columns of H consists of all non-zero vectors of length

Tn. For the Hamming (7,4) code it is desired to encode k = 4 bits of information in bk

into a n = 7 bit codeword vectors with Tn = n - k = 3 parity check bits. Therefore:

0 1 1 1 0 0 0
0 1 1 1 1 0 0

1 0 1 0 1 0 0
G= H= 1 0 1 1 0 1 0

1 1 0 0 0 1 0
1 1 0 1 0 0 1

1 1 1 0 0 0 1

The codewords generated by the generator matrix:

x n = bkG

are in a linear subspace spanned by the rows of G. There are C = 2k = 24 binary

permutations of k = 4 bits in the information vector bk and thus the same number of

codewords. Since by definition GHT = 0, for any codeword x n :

xkHT = 0,

i.e. all codewords are orthogonal to the rows of H and thus are in the null space

of H. The space of possible vectors is an (n = 7) dimensional binary lattice. The

generator matrix assigns to each input information vector a vertex of this lattice, and

so chooses C = 2k = 16 vertices of this lattice as codewords. The most important

characteristic of the Hamming code is that G performs this mapping onto a linear

subspace consisting of vertices with minimum Hamming distance greater than dmm =

3. In other words, all C = 16 codewords of Hamming code are on vertices with

minimum distance dH = 3. This property, when accompanied with proper maximum

likelihood detection, gives rise to the error-correction capability of the Hamming code

(and in general linear block codes).
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3.3.2 Maximum likelihood detection

85

The decoding capability of the Hamming code can be shown by an example. Suppose

single bits x and yare the input and output of a binary symmetric channel BSC(p),

respectively. As we showed in Section 3.2.3, this is equivalent to writing y = x E9 w,

where w is a Bernouli(p) random noise. For a vector of n i. i. d bits x n input to the

BSC(p), the output vector yn is yn = xn E9 wn, and the likelihood of the received

sequence yn is a binomial distribution:

where as before dH(xn, yn) is the Hamming distance between the two sequences. It is

easy to verify that for a ::::: p :::; ~ the likelihood is a decreasing function of dH and is

maximized for an input codeword with the minimum distance to yn.

3.3.3 Syndrome and coset

Despite its apparent simplicity, the ML detection is an NP-hard problem. For large

sequences, detection involves a search through the n-dimensional binary lattice that

tends to become exponentially complex. A sub-optimal solution is the so-called

syndrome decoding. The main idea is based upon the fact that all valid codewords lie

in the null-space of H. The syndrome of a received vector is a measure of the violation

of the vector from this null~space and is defined as:

s ynHT

(xn + wn)HT

a+wnHT

wnHT .

The following two important properties [51] are needed.



86 CHAPTER 3. DISTRIBUTED PARAMETER ESTIMATION

Lemma 3.3.1 The syndrome depends only on the error pattern and not the trans­

mitted codeword.

Proof 3.3.1 The proof is immediate by observing that s(n-k) = ynHT = wnH T .

Lemma 3.3.2 All error patterns that differ by a codeword have the same syndrome.

Proof 3.3.2 Let W = {eJ : ei = wn + xi, j = 0,1, ... , 2k
- I} be the set of error

vectors formed by adding 2k codewords to a particular error vector wn. We have:

(wn + xJ)HT

wnHT .

In words, associated with each syndrome is an error vector with the property that

when added to any codeword, it will generate the same syndrome. This is the basis

for the syndrome decoding scheme explained in the following. We first define cosets.

Let wi be the error vector corresponding to syndrome si. We call the set of

sequences formed by adding the error vector to all codewords a coset, with wJ as

the coset leader. According to lemma 3.3.2 above, all the members of the coset

have the same syndrome. There are 2n - k syndromes and thus the same number of

error patterns. As can be seen in the following table, the space of 2n sequences are

partitioned into 2n -
k sets (rows as cosets), each consisting of 2k sequences (for clarity

we omit the superscript n for vectors). Each coset (row) in this table consists of

sequences with the same syndrome. In other words, each member of a coset when

multiplied with the parity check matrix generates the same syndrome and is associated

with the same error pattern. The first row associates with w n = 0 syndrome and

consists of channel codes words. We refer to this coset as the original coset in the



3.3. LINEAR BLOCK PARITY CHECK CODES

following discussion.

WI = 0 X
2 X 3 xi 2k

X

W 2
X

2
+W

2
X

3
+W

2 x~ + W 2
X

2k + W
2

W 3
X

2
+W

3
X

3
+W

3 X~ + W 3
X

2k + W
3
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It can be seen that the members of each coset are codewords offset by the same error

vector. For any given channel the probability of a decoding error is minimized if the

most likely error patterns are chosen as coset leaders [51). In the case of the BSC,

the error patterns with the smallest Hamming weight are most likely and therefore

should be chosen as coset leaders.

For our example of the (7,4) Hamming code, the space of all sequences consists

of 2n = 27 vectors. There are 2n - k = 23 cosets each having 2k = 24 vectors. The

coset with leader w n = OIX7 is the coset of error-free codewords, also referred to as

the "original coset"

3.3.4 Syndrome decoding

Now, suppose a sequence yn with syndrome s(n-k) = ynH T is received. The decoded

sequence can be computed by:

(3.11)

where 7iJn is the coset leader of the coset corresponding to the received syndrome.

The input information bits bk can be extracted from the detection sequence in.

Remark 2 The decoding process in linear block codes tends to become complex as

the code length increases. For ML detection, a lattice search through all codewords
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becomes practically impossible when the code length becomes very large. Addition­

ally construction of a look-up table relating syndrome vectors to error patterns (that

should be used to extract the input bits from the received vector) becomes exponentially

complex with n. Low-density-parity-check (LDPC) codes were designed to provide a

practical algorithm for decoding when the code length is very large. The complexity

of LDPC decoding is linear with code-length [42). We will study LDPC codes in

following sections.

3.4 Linear Block Codes for Distributed Coding

The Slepian-Wolf [90] theorem provides the region of achievable rates for near-lossless

reconstruction of two correlated sources. However, it does not provide a constructive

solution to practical code design. In his seminal paper, Wyner [102] opened new

directions in practical code design for this problem. He observed the similarity of

decoding in the presence of SI with channel coding. Suppose we have two correlated

random variables (X, Y) from the distribution p(X, Y). By his analogy, the side­

information Y can be considered as the output of a noisy channel with input X. Thus,

he proposed using linear block channel codes for encoding and decoding of X using

Y. He also showed that the corner points of the SW region, (H(XIY), H(Y)) can be

achieved by coset codes and syndrome decoding. In fact, for a received syndrome S,

the decoder used Y together with the knowledge of the correlation between X and Y

to determine which codeword in the designated coset was input to the "channel". So

if the linear channel code was a good channel code for the hypothetical "correlation

channel", then respective coset code was also a good source code for this type of

correlation.

Perhaps due to the implementation complexity of this approach, these ideas were

abandoned for decades until the recent growing interest in distributed processing
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and sensor networks emerged. More specifically, it was Pradhan and Ramchandran

that recently proposed a practical implementation of Wyner's idea for distributed

coding [85]. The introduction of distributed source coding using syndromes (DISCUS)

triggered a new wave of research on practical code design for distributed coding (For

example see [12] and [74] for the application of Turbo codes for distributed coding

and [66] for the LDPC-based codes for distributed coding). We illustrate the basic

idea behind DISCUS by a simple example from [85]. Then we review some extensions

to this example. 1

3.4.1 Example: The Hamming (7,4) distributed source code

The Hamming channel code may also be used for distributed coding of correlated

sources [85]. Here we represent the Hamming code by (n, k) with m = n - k referring

to the number of syndrome bits. Let xn and yn be two discrete memoryless uniformly

distributed n = 7-bit binary random variables which are correlated in the sense that

their Hamming distance is less than 1 bit, i.e. dH(xn, yn) :s 1. Observe that:

H(xn) = H(yn)

H(xnlyn) = H(ynlxn)

I(xn;yn)

H(xn, yn)

7 bits

3 bits

4 bits

10 bits.

According to the SW theorem, xn and yn can be separately compressed at rates Rx and

Ry , respectively, such that Rx 2: 3, Ry 2: 3, and Rx +R y 2: 10 bits. Now let us consider

the corner point of the rate region with (Rx = H(xnlyn) = 3, Ry = H(yn) = 7). For

these rates, yn can be considered fully available at the decoder. On the other hand, the

1It is important to notice that linear block codes are proved to be sufficient for achieving all
points in SW region [30] provided that minimum entropy decoding is used. However, we must still
investigate whether 11L estimation performed with LDPC codes can achieve the same performance.
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Hamming parity check matrix partitions the space of x n vectors into 2n - k = 23 cosets

(bins) each consisting of 2k = 24 codewords. In each coset, the distance between

each pair of codewords is at least dH ;::::: 3. Therefore, when yn is known, there

is one and only one codeword in each coset for which dH(yn, x n) ::; 1, i.e. that

matches the correlation channel model between X and Y. Therefore the rates of

the corner point are achieved (other points of the region can be achieved either by

time-sharing between the sources or symmetrical distributed source coding schemes

proposed elsewhere e.g. see [45], [78], and [91]).

Let us illustrate the underlying concept with an example. Suppose x n and yn

differ only in the 4th bit:

x n
( 0 1 1 0 1 0 o ) ,

yn ( 0 1 1 1 1 0 o ).

The syndrome for encoding x n is:

T

0 1 1 1 1 0 0

8
m

= ( 0 1 1 1 1 o 0) 1 0 1 1 0 1 0 = (0 0 1 ) .

1 1 0 1 0 0 1

We defined m = n - k. For (Ry = ~ = 1) the sequence yn is completely known at

the decoder. The syndrome 8
m is transmitted to the decoder with a rate Rx = ~. All

codewords in the coset designated by 8
m are at least dH = 3 far apart. Therefore,

having yn accessible, as well as using the fact that x n is not further than dH = 1 from

yn guarantees that the true codeword x n can be found in the coset.

The idea illustrated in this example is generalized for linear block parity check

codes as follows.



3.4. LINEAR BLOCK CODES FOR DISTRIBUTED CODING 91

3.4.2 Distributed source coding using syndrome (DISCUS)

Consider the case when xn and yn are equiprobable n-vectors sampled i. i. d from

p(X, Y) with correlation defined such that dH(xn
, yn) ::; dcorr where dcorr repre­

sents the distance between vectors with a certain correlation [79]. Throughout we

assume the corner point of the Slepian-Wolf region with code rates (Rx , Ry) =

(H(X!Y), H(Y)). In this case, we can assume that the sequence yn is completely

known at the decoder.

The Hamming code (n, k) = (2m -1, 2m - m -1), m 2: 3, can achieve the corner

point of the region when H(XIY) = H(Y!X) = m as in this case Rx = m. For this

code, the set of codewords are partitioned into 2n
-

k = 2m cosets each containing 2k

valid codewords. The important property of Hamming code is that it partitions the

space of codewords into cosets in which all the codewords are at least dmin 2: dcorr

far apart. This property in addition to the fact that the sequences x n and yn are

correlated such that dH(xn, yn) ::; dcom guarantees that an error-free decoding of the

sequences is possible at the decoder.

The sequence x n is compressed using a (n, k) linear block parity check code C with

rate Rx = n~k with the parity check matrix H. In particular, xn is compressed into

the 2n - k syndromes (associated with cosets each with size 2k
). The code is complete

in the sense that the union of its cosets contains all the n-vector sequences. The

conditions for the code to achieve the corner point of the SW region is:

n-k
Rx = -- 2: H(XIY) --7 k::; n(1 - H(XIY))

n

The syndrome is computed by s(n-k) = x n H T and transmitted to the decoder. H is a

full rank parity check matrix with the form H = [BIA] where A and Bare (n-k) x (n­

k) and (n-k)x(k) binary matrices, respectively. The matrix H' = A-IH = [A-IBII],

a systematic parity check matrix, is used to compute the syndrome.

ML Detection: When the search through the codewords of a bin is too complex
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to be performed exhaustively, maximum likelihood syndrome decoding can be used.

For this purpose, suppose syndrome sJ is received. We need to associate an error

vector with the received syndrome. A simple way to do that is to consider wJ =

[OlxklsJ] (hence wJHT = sj, c.£. property stated in lemma 3.3.2). Therefore we need

to decode:

where c1 E C is the codeword in original coset corresponding to x n
, I.e. the coset

containing the channel codes (corresponding to syndrome s = 0). From this and the

fact that yn = x n + w n , we have:

where we omit superscript n for a vector y' for clarity. Now, using y', the codeword

cJ can be detected using ML detection (we refer to the detected codeword ( 1
). The

detected sequence is in the original coset, hence its counterpart in the coset with

leader sJ is obtained by Xl = 21 EB illJ .

Remark 3 As can be seen from this example, compared to the Hamming channel

code, the main difference here is that the information vectors bk are no longer of any

importance in the sense that now the codewords consist of all n-bit vectors ~n n-dim

space(e.g. for Hamming (7,4) code there are 27 valid codewords).

Remark 4 The main assumption in DISCUS (and generally codes based on Wyner's

correlation channel idea) is that the correlation information between the two sequences

is known. If fact, the success of DISCUS depends upon the proper choice of H (or G)

with respect to the hypothetical correlation channel between X and Y. In other words,

the code defined by H should be a good code for this channel (104]. For instance,

the (7,4) Hammmg code is a good code for distributed coding of pairs generated by

a binary symmetric source with correlation parameter such that the sequences are

always closer than dH = 1.
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3.5 Distributed estimation using EM
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We extend the DISCUS algorithm, described above, to distributed estimation of the

source parameter p using 81. The proposed scheme is in fact an implementation of

the EM algorithm for MLE of the source parameter using side-information. The

encoding and decoding operations are defined as follows:

3.5.1 Encoder

The compressed sequence urn is computed as the syndrome of a linear block parity

check code with the parity check matrix H E {a, l}rnxn with rate R x = min defined

as:

(3.12)

The sequence x n is simply compressed using a (n, n - m) linear block parity check

code with the parity check matrix H. The encoder computes the syndrome of the

coset containing the input sequence x n
. Provided that Rx 2 Rc ' where Rc is the

available capacity for transmission channel, the sequence urn can be assumed to be

perfectly available at the decodeIestimator.

3.5.2 Decoder/Estimator

Given the 81 yn and the syndrome urn, it is desired to estimate p. We define the coset

corresponding to the compressed sequence urn as:

The MLE of p using the EJ'vI algorithm consists of the following two consecutive steps:
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3.5.3 Expectation step (E-step)

In expectation step t, it is assumed that the parameter p is known (or initialized in

the first iteration) and fixed, i.e. Pt . The expectation of the likelihood with respect

to the posterior distribution of xn given yn is computed. The expectation is over

those input vectors that could be responsible for generation of the syndrome um. For

this purpose, in iteration t, the function F introduced in (3.9) is computed as follows:

F(p!pt) = L p(xn!yn; Pt) logp(yn, xn;p)
xnEc(um )

Ept logp(yn, xn;p)

E pt [logp(ynlxn; P)p(xn;p)] (3.13)

where for any function l(xn ), Ept is the expectation with respect to the posterior

distribution defined as:

(3.14)

Here, we used the definition of the likelihood from (3.3) for p(ynlxn; Pt), and used the

abbreviated notation d = dH(xn, yn). All summations are over all the sequences in

coset C(um ).

By assuming a uniform sampling of input sequences x n in each coset, the prior

information is independent of the parameter p, e.g. p(x n ; p) = 21k ' By substitution of

the likelihood defined in (3.3) the F function becomes:

F(plpt) = E pt [logp(ynlxn, p) + log 21k ]

E
pt

[log(pd(x
n ,yn)(l - p)(n-d(xn,yn») + log 2~ ]

Ept [d(xn, yn) log(p) + (n - d(xn, yn)) log(l - p) + log 21k - k](.3.15)
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3.5.4 Maximization step (M-step)
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In the M-step, the expectation of the likelihood function represented by the F func­

tion that is computed in E-step is maximized and a new value for the parameter PHI

is obtained:

P(HI) arg max F(p!pt)
P

! Eptd(xn, yn),
n

(3.16)

where the expectation is defined in (3.14).

By choosing a proper initial value for P, (3.16) provides an iterative solution for

the MLE of p. According to this equation, the MLE of P in (3.5) is averaged over

all input vectors in the coset designated by the syndrome urn. The weights used in

computation of the expectation are posterior probabilities of each individual sequence

given the SI yn. The iterations continue until convergence.

Remark 5 In contrast to distributed coding. sufficiently long sequences are required

for efficient distributed estimation. The MLE is not accurate (and generally not

consistent nor efficient) for shori sequences. On the other hand, for a (n, k) linear

code, the size of each coset is (2k ) and hence the computational complexity of (3.14)

grows exponentially with k (also with n). For instance, for a code (50, 25, 25) code

with R x = O.5n = 25 bits this number is 225 = 33,554,432.

More importantly, as k grows, it becomes more computationally challenging to

locate all the sequences that belong to a desired coset. In fact, the assignment of

sequences to each bin becomes an untractable operation for large n.

Therefore. for (asymptotically) consistent and efficient estimation, (i. e. with a

large n) the use of low-complexity codes becomes inevitable. We continue to develop

a low-complexity extension of the ideas presented above using LDPC codes.
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Note: Before presenting a low-complexity implementation of the EM algorithm

over factor-graphs, we review some background including LDPC codes, message pass­

ing over a factor-graph and application of LDPC codes for distributed coding. These

subjects are covered to the extent as needed for our purposes. More detail can be

found in the classical references. Then we extend the algorithms presented here to

LDPC codes. The algorithm is a low-complexity implementation of source-coding

with SI using LDPC coset codes equipped with the EM algorithm for correlation

parameter estimation.

3.6 Low density parity check codes

LDPC codes were first discovered by Robert Gallager 40 years ago in his Ph.D.

dissertation [42]. These codes are best described by their parity-check matrix H

[51]. The parity-check matrix H of a binary LDPC code has a small number of ones

(hence is low density). The random structure of H provides the randomness that was

predicted to be necessary for achieving Shannon's coding limits.

LDPC decoding is best explained by its factor graph (aka Tanner graph [62])­

a bipartite graph with two sets of nodes (Figure 3.2). Each row of the parity check

matrix H(mxn) corresponds to a parity check equation, and a "1" in the row constrains

the corresponding input bit (variable) to the check equation. Similarly, each column

of H corresponds to an input variable (bit), and a "1" in the column corresponds

to a check equation that the input bit is engaged in. For H there are m parity

check equations constraining n variables in n-vector codewords. Therefore, there are

n variable nodes, v, representing the variable bits. Also there are m check nodes, c,

representing the parity check equations. Hence, for each "1" in H(i,j) there exists an

edge from variable node i to check node j. The number of edges is controlled by the

density of 'T's. An LDPC with density { (0 :S { :S 1) has row-weight W r = {.n, i.e.
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+ check (C) nodes

ran~ections

= variable (V) nodes

Figure 3.2: A bipartite graph for the LDPC codes
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the number of "1"s in each row. Thus, there are W r variables engaged in each parity

check equation. Also, the column-weight is We = l.m, i.e. the number of "1"s in each

column. Thus, there are We parity check equations on each of the variables. When

the number of "1"s are equal in all rows and also the number of "1"s are equal in all

columns, the LDPC code is called regular, otherwise it is called irregular. In general,

for a given rate and for the same code lengths, the performance of optimized irregular

codes is expected to be superior to that of regular codes [80]. In this chapter, we only

consider regular LDPC codes.

The main reason for using a bipartite graph for representing LDPC codes is that

it allows the application of the message passing algorithm [62] for decoding. In what

follows we describe the decoding algorithm for LDPC codes by means of message

passing over a bipartite factor graph.

Remark 6 The reminder of this chapter is presented for maintaining the continuity.

The materials are borrowed (with minor changes) from (84) and (89). Readers familiar

with the subject can skip this section.
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3.6.1 LDPC Codes- Decoding Algorithm:

In addition to inherent randomness of the LDPC codes (implemented by the ran­

dom structure of the parity check matrix H), the existence of an efficient decoding

algorithm is the main reason for the success of these codes. The LDPC decoding algo­

rithm, also referred to as belief propagation (BP) decoding algorithm, is a member of

message passing iterative decoding algorithms [62]. In each iteration the probability

(likelihood) of each variable bit is propagated over the graph of the code, from variable

nodes to check nodes and from check nodes back to variable nodes. The main idea is

to approximate the exponentially complex maximum likelihood detection algorithm

(see Section 3.3.2) into a sub-optimal factorized solution. The factorization of the

likelihood is possible by observing that for an i. i. d sequence of outputs from a noisy

channel, the most likely sequence can be found over the lattice of codes by a local

search. The local search is performed by passing the belief (likelihood) of variables

over the graph while continuously validating the decoded sequence by check nodes.

More precisely, the messages passed from a variable node x to a check node c is the

probability that x has a certain value ("0" or "1") given the observed value of that

variable node, and all the values communicated to x in the prior round from the check

nodes connected to x other than c itself. On the other hand, the message passed from

c to x is the probability that x has a certain value ("0" or "1") given all the messages

passed to c in the previous round from message nodes other than x itself.

The messages over the LDPC bipartite graph can be derived for two main cases,

a posteriori probability (APP) and the log-likelihood ratio (LLR) defined below.

Suppose sequence yn is received from a noisy channel with input x n. For binary

variables X and Y we define the likelihood functions are assumed as the following:

• L (x) = ~~~~:~i the likelihood ratio of x.

• L(x[y) = ~~~~:~i~i the conditional likelihood ratio of x given y,
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• LL(x) = logL(x), the log-likelihood ratio of x,

• LL(xly) = log L(xly) the conditional log-likelihood ratio of x given y,
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It is also assumed that the LDPC code is a "channel code". Thus, the parity

check equations restrict the decoded sequence x n to be in the original coset, i.e. all

check nodes need to be zero.

Remark 7 When the LDPC decoding is used for syndrome decoding (as it will be

in distributed estimation or coding), this assumption need to be modified. The modi­

fication is such that non-zero syndrome (or check equations) be possible. More detail

will be presented in the following sections.

We begin with the following definitions:

• The variable nodes (v-nodes) are associated with random variables Xi ,1 <

i ~ n.

• The check nodes (c-nodes) are associated with the check equations Cj, 1 ~ j ~

m.

• V; = {v-nodes connected to c-node cJ }

• V;\~ = {v-nodes connected to c-node cJ } \ {X~} 2

• C~ = {c-nodes connected to v-node Xi }

• C~\j = {c-nodes connected to v-node X~ } \ { cJ }

• lIIv (;v i) = {messages from all v-nodes except node X~ }

• 1I1c (;v j) = {messages from all c-nodes except node Cj}

2The operator \ means "excluding"
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• Sl =the event that the check equations involving X 2 are satisfied,

• The messages from v-nodes to c-nodes q2j(b) = Pr(xi = blSl , Y2' AlcC-v j)), where

bE {a, I}.

• The messages from c-nodes to v-nodes rj2(b) = Pr(check equation Cj is satisfiedlx l =

b, Mv ( rv i)), where b E {a, I}.

Remark 8 In terminology used in message-passing over factor graphs, two random

variables /1x,->c
J

and /1c
J
->x, represent messages from random variables Xi to check

node Cj and vice versa, respectively. Having defined the messages q2J and rp above,

these messages for the APP, LR, and LLR algorithms respectfully are as follows:

qlJ (0)
q2J (1)
rjl(O)
rJ1 (1)

Property 1: For an equiprobable random variable x using Bayes' rule we have

L(xly) = L(ylx).
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Property 2: For i.i.d random variables YI, ... , Yn:

n

LL(xIYI, ... , Yn) = L LL(xIYi)'
t=l
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We need the following theorem due to Gallager [42] for APP message computation:

Theorem 3.6.1 Consider a sequence of .fov1 independent binary digits at for which

Pr(at =.1) = Pt· Then the probability that {ai }t!l contains an even number of "I"s

zs:

The following theorem proves the same result for the LLR case.

Theorem 3.6.2 For binary RVs Xl, ... , Xn and RVs YI, ... , Yn and a binary variable

1 + n~=l tanh(~)
LL(XI + X2 + ... + Xn = St!YI, ... , Yn) = (1 - 2st ) log n I '

1 - nt=l tanh( ~ )

where li = LL(xzIYt).

Proof 3.6.1 See Appendix C

This theorem shows a mechanism by which the parity check equations are enforced

and hence reinforce the belief for the most likely codeword. For instance, when all

Si are set to zero, this theorem gives a probabilistic measure for the extent that a

codeword belongs to the original coset. Other values of of St gives this information

for other cosets.

3.6.2 Messages over the factor graph (APP case)

We can define the messages for the APP case as follows:
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3.6.2.1 Messages from the variable nodes to the check nodes

q2j(0) Pr(x2= 0IYt, 3 2 , Mc(rv j))

(1 - P2 ) Pr(3t lxi = 0, Yi, Jov[c(rv j))/Pr(St)

K 2J (1 -~) II rJ't(O) (3.17)
j'EC'\J

Similarly:

q2J(1) = KtjPi II rJ'2(1),
J'EC'\J

where constants Kt] is chosen properly to ensure that q2j (0) + qtj (1) = 1.

Therefore the message from v-node X 2 to c-node Cj is:

3.6.2.2 Messages from the check nodes to the variable nodes

(3.18)

(3.19)

Referring to the Theorem 3.6.2, we notice that Pt corresponds to Q2J(1), since when

X 2 = 0, the bits {x~ : i' E XJ\t} must contain an even number of l's in order to check

node cJ to be satisfied, we have:

(3.20)

(3.21)

Therefore the message from c-node cJ to v-node X t is:

(3.22)
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3.6.2.3 Initialization
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(3.24)

Suppose Yt E {O, I} is observed at the factor node It as shown in Figure 3.2 as the

output of the hypothetical BSC(p) with probability of error p = Pr(Yi = bClxi = b)

for any bit b E {O, I}. We have:

Pr(x
t

= blYt) = p(Yilx!)p(x!)
p(Ytlx! = O)P(Xi = 0) + P(YtIXi = l)p(xt = 1)

{

I - p when Yt = b
(3.23)

p when Yt = bC.

where we made use of the fact that for BSS, p(x! = 0) = p(xt = 1) = ~.

The message passing algorithm (MPA) starts with initialization of probabilities

from variable nodes Xi generated by the likelihood of observing Yi at node Ii. There­

fore, the initialization for variable nodes is as follows:

{

~ for b = 1
q!](b) = Pr(xi = blYi) =

1 - Pi for b = 0,

Vi, j for which htj = 1 and zero otherwise. Here we used the definition ~ = Pr(xt =

3.6.3 Summary of MPA (APP Case:)

• Initialize: According to Equation 3.24, given the received symbol Yi for all

o::; i ::; n - 1 compute ~ = Pr(xi = 1IYt). Set q2J (0) = 1 - Pt and qiJ (1) = Pi

for all i, j for which ht,j = 1.

• Iterate: Update {r]t(b)} using Equations 3.20 and 3.21

• Update {qt](b)} using Equations 3.17 and 3.18 and solve for the constants K tj .

• For 0 ::; i ::; n - 1, compute:

Qt(O) 6. K 2(1 - Pt) II rjt(O),
]EG,

(3.25)
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and

Qi(1) to. KtPz II rJ~(I),
JEG,

(3.26)

where constants Ki are chosen such that Qi(O) + Qi(l) = 1. Notice that Qt is

similarly defined as Qij except that it is summed over all incoming messages.

• For 0 :::::; i :::::; n - 1, set

X
t

= { 1, if Q~(I) > Qi(O);

0, else.
(3.27)

If inHT = 0 or the number of iterations exceeds a predefined number, stop,

otherwise continue at the iterate step.

3.6.4 Messages over the factor graph (LLR case)

Due to the multiplicative nature of the messages, the APP message passing algorithm

is numerically unstable. The log-domain version of the algorithm is following. Define:

L(xt) - log (pr(xz : OIYt)) (3.28)
Pr(xt - llYi)

L(rJt ) log (rp(o) ) (3.29)
rjt(l)

L(qtJ) - log ( qtj(O) ) (3.30)
qtJ(l)

L(Qt) - log (Qt(O)) (3.31)
Q~(l)

(3.32)

3.6.4.1 Messages from variable nodes to check nodes

The message from v-node X~ to c-node Cj is:

(3.33)
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We divide Equation 3.17 and 3.18 we have:

L(qtj) = L(x.t ) + L L(TJ't)
J'EG, \j

Similarly,

L(Qi) = L(xt) + L L(TJi)'
JEG,

3.6.4.2 Messages from check nodes to variable nodes

The message from c-node cJ to v-node Xi is:
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(3.34)

(3.35)

(3.36)

To compute the LLR message, we first replace Tjt(O) with 1- TJi(l) in (3.20) we have:

1 - 2Tjt(1) = II (1 - 2qt'J(1)).
i'EVJ\t

We use tanh [~log(PO/PI)] = Po - PI = 1 - 2PI and re-write the above equation

into:

To simplify this expression, let:

atJ sign[L(qt))]

(3tJ - IL(qn)1

So (3.37) becomes:

(3.37)
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Then we have:

g""j2 tanh-
1 (g tanh G~i'J))

g""J.2tanh-
1

]og-1 log (g tanh GIJ"j))
gr>",.2tanh-

1
]og-1~ log (tanh G~"J))

II Gtlj.¢ ( L ¢((3t1j )) ,
t'E\0\t l'E\0\i

(3.38)

were we have defined:

(
eX + 1)¢(x) = -log [tanh(x/2)J = log ,
eX - 1

which also ¢-l(X) = ¢(x) for x > o.

3.6.4.3 Initialization

The initialization step for different channels is different. For the BSC (p) and a binary

bit Yi observed, we have:

(
1- p)L(qtJ) = L(xt ) = (-l)Y' log -p- .

3.6.5 Summary of MPA (LLR Case:)

(3.39)

• Initialize: According to ((3.39), given the received symbol Yl for all 0:::; i :::; n-1

compute L(qtj) for all i, j for which Ht'J = 1.

• Iterate: Update {L(rJi)} using (3.38

• Update {L(q1J)} using ((3.34)

• Update {L(Qt)} using (3.35)
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• For 0 ::; i ::; n - 1, set

Xi = { 1, if L(Qz) < 0;

0, else.
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(3.40)

If inHT = 0 or the number of iterations exceeds a predefined number, stop,

otherwise continue at the iterate step.

3.7 Low-complexity distributed estimation

We now extend the algorithm presented in Section 3.5 to LDPC codes and message

passing over factor graphs. Factor graphs have been used to implement the EM

algorithm previously in [38] for the purpose of joint channel estimation and symbol

detection, and has been used for detection of symbols from a binary symmetric source

in [39]. In [33] the EM algorithm is described in terms of message passing on factor

graphs. The implementation presented here is essentially similar to the latter ref­

erence. Nevertheless, appropriate changes are applied to tailor the method for our

purposes.

The factor graph for the ML estimation with side-information is depicted in Figure

3.3(b). The LDPC part of the graph is a standard LDPC code for coset codes. The

input sequences x n in each coset Coset(um , H) are protected by the LDPC channel

code. In other words, the check equations characterized by the parity check matrix

H force the inputs to be in the coset Coset(um
, H) specified by the syndrome urn.

The main idea implemented by the algorithm consists of the following steps:

• Initialization: First the parameter p is initialized and fixed. This parameter is

used to compute the likelihood functions existing in the LDPC decoding scheme.

A proper initialization, in general, plays an important role in the success of the

E.l'vl-based algorithms. Despite this fact, as is shown in the simulations, when
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code rates chosen properly, the success of the proposed algorithm does not

depend on the initialization.

• LDPC syndrome decoding: Given a received sequence yn and syndrome se­

quence um, multiple cycles of LDPC syndrome decoding are performed. As will

discussed in detail, the parity check conditions in LDPC decoding are modified

such that non-zero syndrome sequences (corresponding to cosets other than the

original coset) are supported by the LDPC decoding scheme.

• EM steps: The result of the soft decoding of xn in LDPC syndrome decoding

is used to compute the posterior distribution present in the E-step. The soft

decoding probabilities are in fact the posterior probability of each bit x~ given

the received sequences yn and urn. These probabilities are treated as prior

knowledge about each bit to compute the posterior probabilities in this step.

• The maximization of the M-step follows which computes a new estimate for the

parameter p.

• Convergence: Unless a convergence is reached, the new estimated parameter

is fed back to the LDPC factor graph for another round of LDPC syndrome

decoding.

Therefore, the algorithm alternates between three consecutive cycles, i.e. the

computation of posterior probabilities through the LDPC syndrome decoding; the

computation of the expectation of the likelihood function using these posterior prob­

abilities; and the maximization of the computed expectation to obtain a new estimate

of the parameter p. The final estimate p is computed when the algorithm converges.

The graph related to the EM algorithm is depicted in Figure 3.3(a). In the follow­

ing, each of the above-mentioned steps as well as corresponding individual messages

over the factor-graph are explained. We first study the necessary modifications to
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Figure 3.3: (a) EM factor graph and corresponding messages, (b) EM-LDPC Factor
Graph for ML estimation with side-information

LDPC decoding in order to implement LDPC syndrome decoding, i.e. when non-zero

syndrome sequences are permitted. Then a detailed derivation of the E and M steps

of the EM algorithm is presented.

Remark 9 In the following discussion all summations are over x n E C(urn)

Coset(um , H).

3.7.1 LDPC-based syndrome decoding for distributed cod-

The application of LDPC codes for distributed coding is a straightforward general­

ization of DISCUS (see [66] and [104] and the references therein). In order that the

LDPC codes can be used for distributed estimation, an important change should be
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made. In channel codes, the only valid coset is the one with all-zero syndrome, also

referred to as the original coset. This coset contains the channel codewords for the

particular choice ofthe generator matrix (and its corresponding parity check matrix).

Remark 10 The compressed sequence urn in distributed coding is computed as the

syndrome of an LDPC code. Therefore, when clear from context, we refer to syndrome

by sm and urn , interchangeably.

In the original derivations by Gallager [42], all check variables were set to Sl = 0,

meaning that the parity check equations enforced even parity in the codewords. In

contrast, as we noticed in DISCUS, in distributed coding all cosets even with non-zero

syndromes are valid. Therefore, when belief propagation (BP) for syndrome decoding

in distributed source coding is desired, the parity check equations should be changed

properly to take into account the non~zero syndrome bits. More specifically, for those

non-zero syndrome bits, the roles of "(b = 0)" and "(b = 1)" are interchanged in

messages. More details follow.

3.7.1.1 Messages from check nodes to variable nodes- APP case

Referring to Theorem 3.6.2, we notice that Pl corresponds to %(1), since when Xl = 0,

the bits {x: : if E ~\l} must contain an "even" number of 1f s in order for the check

node cJ to be satisfied. For the case of a non-zero syndrome bit, i.e. Sl = 1, the

corresponding check node should be one. This is equivalent to saying that the bits

{x~ : if E V}\J must contain an "odd" number of I
f
s in order for the check node Cj

to be satisfied. This change may be implemented by interchanging the role of the

messages rij(O) and rIJ (I) for those check nodes whose syndrome bits are Si = 1 in

Equations 3.20 and 3.21, thus:
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3.7.1.2 Messages from check nodes to variable nodes- LLR case
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For the check nodes with a non-zero syndrome, i.e. Si = 1, the changes made in the

APP case, correspond to a sign change in the LLR. Hence (3.38) becomes:

This is previously used in literature [85] [66].

3.7.2 The E-Step

We begin with the following two facts:

Likelihood Factorization: Since the samples are i. i. d, the likelihood function

can be factorized:

n

rrp~(YtIX2; p).
1=1

(3.41)

Posterior Factorization: It is easy to verify that for i. i. d. samples, the expecta­

tion of the likelihood p(Yllxi; p) with respect to the posterior distribution, at iteration

t, can be marginalized as follows:

Epf logp(ydx 1 ; p) = L p(xnlyn;Pt) logpi(Ytlx~; p)
xnEC(u m )

L p~(XtIY2; Pt) logp2(YiI X t; p)
x"EC(um )

L E)ogpt(YtIXt; p),
x"EC(um )

(3.42)

where Epf is defined in Equation 3.14 and E~ is the expectation with respect to the

posterior distribution Pi(x~IYi;Pt).

Using these two properties, we continue with what was derived in Section 3.5.3
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(see (3.13)):
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2..= p(xnlyn; Pt) logp(yn, x n;p)
xnEC(urn )

Ept logp(yn, x n;p)

Ept logp(ynlxn; p)p(xn;p)

2..= E t [ log Pi (Yi IXi; p) + logp(x t ; p)] .
xnEC(um )

(3.43)

For computing the expectation operations Et in the above equations, the pos­

terior distributions Pt (Yt Ixt ; p) are needed. In the following, by we show that these

probability values can be received as the results of the LDPC syndrome decoding.

The E-step is started by receiving a message from node it towards the node ihi.
It can be seen from Figure 3.3(b) that the branches connecting the these pair of nodes

correspond to random variables Xi. Therefore, at the beginning of each E-step, the

node it implements its function which is computing the posterior distribution of Xi

given the message received from the LDPC syndrome decoding algorithm (/LX,---->!, or

equivalently Qt in (3.25)) and the received symbols Yt as the following:

(3.44)

where in this stage of operations (iteration t), we assumed that the node i1 assumed a

known value Pt for the parameter and implements Bayes' rule for computing the poste­

rior probabilities. For thus purpose, the messages received from the LDPC syndrome

decoding are treated as the prior probability of each symbol x t . For these messages,

we have used the standard a posteriori probability (APP) messages /Lx,---->!, (0) and

/Lx,~!, (1) generated from node Xl. Note that, for the APP case, these messages corre­

spond to Q/s- the computed marginalized posterior probability of XI'S after sufficient
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number of iterations in the LDPC decoding defined in (3.25) repeated here:

Ki(l - Po) IT Tji(O)
jEC,

/-Lx,-->!, (1) = Qi(1) = KiPOIT Tjt(1),
jEC,

113

(3.45)

(3.46)

where Po = Pr(x2 = 11Yi) and C2 is the set of edges connected from the check nodes

to variable node i, and Tji is the message received at variable node i from check node

j. The constants K 2 are chosen properly such that /-Lx,-->!, (0) + /-Lx,-->!, (1) = 1 (see

(3.17) and (3.18)).

The likelihood functions in (3.44) can be simplified into:

P2(Yilx2 = 0; Pt)

P2(Y21X2= 1, Pt)

(pt)Y'(l - Pt)Y;

(Pt)Y; (1 - Pt)Y',

(3.47)

(3.48)

where y~ is the complement of the binary variable Y2'

Now that the expectation operators have been computed, the function node fh2

computes the likelihood function for each element i defined in the following (see

3.3(a)):

By this definition, the E-step objective function can be written as:

F(plpt) = L E2[lOgP2(Y2IXi;P)+lOgp(X2;p)]
xnEC(um )

L h2(Y2, p) + logp(xi; p),
x"EC(um )

(3.49)

(3.50)

which is the sum of the messages receiving from the nodes At. Note as it was stated

previously, since the sampling over sequences in each coset is performed uniformly, the

distribution p(x t; p) is independent of P and does not contribute to the maximization

of F with respect to p. Thus this term can be ignored in the M-step.



114 CHAPTER 3. DISTRIBUTED PARA!vlETER ESTIMATION

3.7.3 The M-Step

In the M-step (see 3.10), the maximization is with respect to p:

P(t+l) = argmaxF(plpt)
p

argm:x I: E~ [lOgpi(Y~IX~;p) + logp(x~; P)]
xnEC(um )

argm:x I: E~[logPi(Y~IX~;p)]
xnEC(u m )

argm:x I: E~ [Zi logp + (1 - Zi) log(l - p)],
xnEC(um )

(3.51)

where we substituted (3.3) for p~(y~lx~; p) in the above. Here Z~ = X~ EB Y~ is a binary

sum of the random variable Xi and variable Y~.

Remark 11 Using the definition from (3.49), the M-step involves solving the follow-

ing optimization:

(3.52)

Therefore, the optimization objective is the sum of individual messages hx,---->fp (see

Figure 3.3(a).

The solution to the optimization (3.51) is:

(3.53)

Remark 12 The upward message along the edge p from function node fp is the result

of the M-step optimization and therefore a new estimate pt+l defined as (see Figure

3.3(a)):

Pfp---->p = P(t+l)'

This message arrwes intact to the nodes f~ through the nodes fh] in order to set a

new value for the likelihood function implemented by these nodes (see (3.23)).
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Remark 13 Once the posterior probabilities in (3.44) are computed, the expectation

in (3.53) can be simplified into:

p(t+1) = L Ez(zi)

LPi(Xi = Olyz)Y~ + pz(xz = llyz),

where again yf is the complement of Yt·

3.7.4 Scheduling the Decoding/Estimation

Due to possible existence of short cycles in the LDPC coset code, we choose proper

scheduling through which multiple cycles of decoding are performed before a new

value for the parameter p is computed. Then, the result of the soft decoding of xn

is used to compute the posterior distribution used in the E-step. The maximization

of the M-step follows. A new value of the parameter p obtained in the M-step is

fed back to the LDPC factor graph for another round of LDPC decoding. Therefore,

the algorithm alternates between three consecutive cycles, i.e. the computation of

posterior probabilities through the LDPC syndrome decoding; the computation of

the expectation of the likelihood function using these posterior probabilities; and the

maximization of the computed expectation to obtain a new estimate of the parameter

p. The final estimate p is computed when the algorithm converges.

Remark 14 The final value of the parameter may be used in a typical distributed

coding scheme to decode the syndrome u m into the input sequence x n . We will study

this in simulations.

3.7.5 The algorithm

• Initialize: Set an initial value for the parameter p. Given the received symbol

Yt for all 0 ::; i ::; n - 1 compute L(qtj) for all i, j for which Hi,] = 1. The
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initial value for the parameter p affects this initialization through (3.24) for the

APP case or (3.39) for the LLR case. These equations compute the posterior

probability of x~ given the received Yi which is in turn a function of the likelihood

of Y~ given x~ (through Bayes' theorem). This likelihood is a function of the

parameter p (see (3.23))

• LDPC syndrome decoding: Update {L(rj~)} using Equation 3.38.

• Update {L(qij)} using Equation 3.34.

• Update {L(Qi)} using Equation 3.35.

• For 0 :::; i :::; n - 1, set

Xi = { 1, if L(Ql) < 0;

0, else.

If inH T = urn, where urn is the received coset syndrome, or the number of

iterations exceeds a predefined number (e.g. 300), continue with the E-step,

otherwise continue with the steps for updating {L(rjl)}'

• E-Step: Compute the posterior probabilities in (3.42) for all i, required for the

expectation operation.

• M-Step: Update the parameter p by solving (3.54).

• Convergence: If the difference between the new parameter value and the value

for the previous iteration is less than a pre-defined threshold, stop the iteration.

Otherwise, set the new parameter in (3.39) and re-start the LDPC decoding.
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3.8 Region of Achievable Rates
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In distributed estimation, a pair of rates (Rx , Ry ) is called achievable if there exists a

pair of encoders and a decoder/estimator that attain the same accuracy in distributed

estimation as when the estimation is performed locally. In other words, when a pair

of rates is achievable, distributed estimation can do as well as local estimation, i.e. it

achieves the local Cramer-Rao lower bound (CRLB) [48].

In general, determination of the region of achievable rates for distributed esti­

mation is not an easy and obvious task. In contrast to the Slepian-Wolf region in

distributed coding [90], the region for distributed estimation is in general a function

ofthe unknown parameter as well as the selected test channels [48] and hence difficult

to determine. Nevertheless, for the case of the BSS(p), the following theorem pro­

vides practical guidelines for choosing proper rates rather than precise determination

of the region.

Theorem 3.8.1 Suppose Sf, yn, is available perfectly at the decoder. For the BSS(p)

with 0 < P < p/ where 0 < p/ < 0.5, if R x ~ H(p'), p can be transmitted without loss

of information, that is attain the same variance when uncompressed sequences x n and

yn can be observed. The Fisher information is given by:

otherwise.
(3.54)

where Hb(p) = -(plog2 p + (1 - p) log2(1 - p)).

Proof 3.8.1 See [88).

According to this theorem, a sufficient statistic for p can be transmitted perfectly

with a rate at least equal to H(p'). Moreover, when the rate is not sufficient, the

theorem determines an upper bound on attainable Fisher information, i.e. a lower

bound on estimation accuracy.
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Figure 3.4: L = 6 iterations of the EM algorithm for estimation of P = 0.1 with
random initial value (shown here for Po = 0.4, n = 200, R x E [0.5,1.0]

Table 3.1: The binary entropy of binary symmetric source BSS(p) for different values
of parameter p.

p 0.05 0.10 0.15 0.20 0.25
Hb(p) 0.2864 0.4690 0.6098 0.7219 0.8113

p 0.30 0.35 0.40 0.45 0.50
Hb(p) 0.8813 0.9341 0.9710 0.9928 1.00

Figure 3.4 depicts Hb(p). According to the above theorem, for any rate greater

than Hb(p), the local CRLB is achievable. As an example, for p = 0.15, a rate as large

as Rx 2': Hb(p) = 0.6098 is required for distributed estimation to achieve the local

CRLB index (n/J(p,Rx ) = p(l- p) = 0.1275n), where n is the number of samples

(here the code length). In the following table, sufficient rates for achieving the local

CRLB for different values of p are given. These rates are used in the simulations:
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3.9 Simulations
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The algorithm begins with an initial value for the unknown parameter Po. Then it

alternates between syndrome decoding, the E step and the M step. The E step is

implemented by a sufficient number of iterations of the LDPC syndrome decoding

(e.g. 300 - 500). Due to the possible existence of short cycles in the LDPC coset

code, we choose proper scheduling [62] through which multiple cycles of decoding are

performed before the posterior probabilities are used in the E and !vI steps. Then the

soft posterior probability value of the variables is used to implement the expectations

in the E and AI-steps. These decoding/estimation iterations are continued until

convergence in the estimation of p is achieved or a maximum number of iterations is

passed.

For studying the behavior of the estimation algorithm, a regular Gallager code is

used, i.e. all the parity check matrices have 3 ones per column [42]. For generating

the LDPC parity check matrix, we run through the graph trying to eliminate cycles of

length 4; i.e., situations where pairs of rows share Is in a particular pair of columns.

The results are for AI = 1000 Monte-Carlo runs of the algorithms.

The first set of results are for estimation of different values of parameter, i.e.

p = {0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5}. Assuming an LDPC parity check matrix H E

{O, l}mxn, the graphs are for different values of available rates, Rx = min = {0.5, ... , 1.0}.

The simulations are for a comparatively medium code length n = 200.

Figures 3.5(a) to 3.8(a) show the estimation results and Figures 3.5(b) to 3.8(b)

show their corresponding mean square error (MSE) graphs for L = 6 iterations of the

EM algorithm. Also, Figures 3.9(a) to 3.1O(b) show the IVISE of the converged EM

algorithm versus different values of available rates, i.e. Rx E [0.5,1.0]. The CRLB

for each case is computed as the inverse of the Fisher information by setting pi = P

in (3.54).
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It can be seen from these graphs that for a rate Rx ~ 0.7, the algorithm success­

fully estimates the parameter in a few iterations and the M8E achieves the CRLB.

However, for rates Rx < 0.7 estimation accuracy is not close to the bound. Longer

code lengths and optimized irregular codes may be needed to achieve this bound.

Considering that the parameter is initialized randomly to a value between 0 ~ Po <

1/2, the results suggest that provided a sufficient rate is chosen, the final estimation

does not depend on initialization.

The algorithm is studied for different code lengths. It can be seen in Figures

3.11(a) and 3.11(b) that for P = 0.10 with a sufficiently large rate (Rx = 0.65),

increasing the code length improves the estimation accuracy. When the rate is not

sufficient, i.e. Rx = 0.65 for P = 0.20, increasing the code length does not show

any improvement in accuracy (see Figures 3.12(a) and 3.12(b)). However, with a

sufficiently large rate (Rx = 0.90), the accuracy can be improved with increasing the

code length for p = 0.20 (see Figures 3.13(a) to 3.13(b)).

In a second set of simulations, the estimated parameters in the above are used for

distributed coding using 81 when the correlation parameter p is not known a priori

(see Figures 3.14(a) to 3.15(b)). For this purpose, the bit error rate (BER) in decoding

of sequence x n is computed for different values of available rates Rx E [0.5,1.0].

Each of the graphs shows the BER for a different step of the EM algorithm as the

parameter is estimated. Multiple graphs in each figure show the improvement in

decoding achieved in different steps of the El'vI-algorithm. The results are for four

cases p = {0.05, 0.1, 0.2, 0.3}. One can see that the proposed algorithm improves the

BER in each step and hence may be used for joint parameter estimation and sequence

decoding in distributed estimation/coding using 81 scenarios.
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3.10 Discussion

Extensive simulations, partly shown here, suggest that for comparably short code

lengths the proposed algorithm is successful in the estimation of the BSS parameter

provided that the rate is not too low (Rx > 0.7) and the BSS parameter is such that

the correlation between the sequences is sufficiently high (i.e. p ::::; 0.25). Interestingly,

under these conditions, the algorithm was not dependent on the initial parameter

chosen. The choice of the regular Gallager code with 3 ones per column was used to

show the capability of the algorithm for estimation. This capability may be improved

by using optimized codes, e.g. irregular codes with larger lengths.

The success of syndrome-based distributed coding schemes, e.g. DISCUS and

LDPC-based codes, depends greatly on the knowledge of the underlying probability

distribution at the decoder, based upon which a good correlation channel maybe

chosen [104]. The existence of a universal block coding scheme accompanied with

minimum entropy decoding is proved by Csiszar [30]. However, the construction of

such codes is still an open research problem (for example refer to [22]). The proposed
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algorithm may be considered as a first step towards designing such coding schemes,

e.g. for achieving the corner points of the Slepian-Wolf region [90] when the underlying

PD is not known perfectly.
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Chapter 4

An Information Geometric

Approach to MLE

4.1 Introduction

With regard to identification of multi-input multi-output (MIMO) communication

channels, if a training set consisting of input-output pairs to the channel is available,

then the unknown parameters can be estimated using an ML estimation method

that incorporates training. However, there are situations in which the observations

do not include the input signals, and therefore the estimation must be carried out

using only the available output observations. In such cases, since the observations

alone are incomplete for estimating the unknown model parameters, the identification

process, usually referred to as blind identification, relies on the available structure of

the input as well as the signal model assumed. Blind identification problem in this

case is based only on the partially available data, otherwise known as the incomplete

data. The EM algorithm [35] for solving the so-called incomplete-data problem is

the main body of almost all algorithms that propose an approximate solution for

stochastic blind identification. Previous work on the application of the EM algorithm

129
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in communications is presented in [5, 40, 68, 105, 54, 26, 71, 100, 60, 41].

In this chapter we pose the incomplete data problem in an information geomet­

ric framework [28]. Information geometry encompasses a theoretical framework for

a better understanding of estimation problems. The first paper that explicitly used

the notion of information geometry for maximum likelihood estimation was due to

Csiszar [27]. In this reference an iterative algorithm for minimizing the Kullback­

Liebler (KL) distance between a given probability distribution representing the em­

pirical distribution of the observations, and a family of probability distributions (the

likelihood distributions) was proposed, and its relationship to ML estimation was

investigated. Later in [32], an iterative algorithm for minimizing the KL-distance

between two probability distribution (PD) convex sets was proposed and the applica­

tion of the algorithm for maximum likelihood estimation was addressed. Maximum

likelihood estimation with incomplete data was posed as a double minimization of the

KL distance between two PD sets in [20]. A similar approach was used for learning

in the Boltzman machine [19] and for iterative image reconstruction [18]. The same

problem was considered as a double minimization of the KL-distance between two

sets of PD's in [7]. Specifically in these references, it was shown that this double pro­

jection information geometric approach is closely related to the EM algorithm [7, 8].

Interested readers are encouraged to refer to [19] for a review of the two approaches.

The IGID algorithm uses a treatment similar to that given in [32]. The blind

identification problem is implemented as a double minimization of the K L-distance

between two PD sets. This minimization is realized in the form of iterative alter­

nating projections. A major contribution here is that closed-form solutions for these

projections are developed. This closed-form nature of the algorithm is made possible

by a Gaussian assumption on the source distribution1 . The primary advantage of the

lThe impact of making such an assumption is discussed in Sect. IV.
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proposed algorithm is computational. Previous EM algorithms for blind channel iden­

tification have not assumed Gaussianity of the source, and consequently suffer from

computational complexity problems arising in the E-step, e.g., [5,68, 105, 54, 26, 71].

In contrast, the closed-form analytical projections used by the proposed IGID al­

gorithm reduce computational costs significantly, especially for large constellations,

with minimal degradation in performance. Thus, the proposed method inherits the

asymptotically optimal properties of ML stochastic estimation, at substantially re­

duced cost. A previous closed~form EM algorithm which uses the Gaussian assump­

tion, for blindly identifying single-input, single-output channels is presented in [70].

Due to the similarity between information geometric alternating projection and

EM algorithms, it would have been possible to derive a blind identification algorithm

based on EM principles, that assumes a Gaussian source, instead of using information

geometric principles. However, solving the blind identification problem in the infor­

mation geometric framework gives new insight into the identification process and its

relationship to the EM algorithm. Moreover, the development and the execution of

the closed-form expressions for the required minimization (projection) operations are

very straightforward and simple.

Notation: Bold upper-case (lower-case) symbols indicate a matrix (vector) quan­

tity respectively, while a symbol in calligraphic style indicates a set of probability

distributions. The notation N(J1" w) denotes a multivariate (complex) normal distri­

bution with mean J1, and covariance w. In this chapter, we consider joint distributions

of the form q(x, y), and their associated marginal and conditional distributions q(x)

and q(xly) respectively. Even though these are three distinct distributions, they are

not denoted as such. The meaning of the distribution is evident from the structure

of its argument. The subscript t is the IGID iteration index and k is the temporal

index.
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We refer to the following minimization

p* = arg min D(pllq)
pEP

as a type-I projection. It projects q onto P, where q is an arbitrary PD, P is a set of

PDs, and D(pllq) is the K L- distance measure, which is defined as

'"' p(x)
D(pllq) = L.."p(x) log q(x)

x

where p and q in this case are discrete PDs and q(x) #- a over the range of x. We

refer to the following minimization

q* = arg min D(pllq)
qEQ

as a type-II projection, which projects p onto a PD set Q. Because the KL distance

measure is asymmetric, these two projections have different characteristics [31]. In

the sequel, we often do not indicate the type of projection we are referring to. The

type is made clear from the context.

4.2 Stochastic ML Estimation

Here we consider the general problem of stochastic maximum likelihood (ML) esti­

mation of parameters. The stochastic ML approach assumes a class of PD for the

unknown variables and therefore has the advantage of imposing statistical structure

on the inputs, in contrast to deterministic ]\,lL methods which ignore the statistics of

the unknown quantities. For a comprehensive review of deterministic and stochastic

methods to the blind identification problem, refer to [96].

We consider the following linear time-invariant MIMO system with AI transmitters

and N receivers:

y(k) = (PHx(k) + v(k)YNi (4.1)
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where y(k) E eN and x(k) E OM are the output and the input vectors, respectively,

k is the time index, and 0 is a complex constellation with C members, such that

the average energy over all members of the constellation is unity. The quantity

H E eNxM is the complex channel coefficient matrix, whose elements are zero mean

random variables, scaled to unit rms values. The quantity p is the SNR on each

receive channel. Also, the sources are chosen to be i. i. d., whose components are

zero-mean Gaussian. The quantity v rv N(O, '11) is the noise vector with generally

unknown covariance '11 E eNxN . It is assumed that '11 is full rank.

The above MIMO model is valid in an intersymbol-interference (ISI) free Rayleigh­

fading channel. It is assumed the channel H and the covariance '11 are constant over

a block of L transmitted symbols. This model is useful in space-time coding systems,

where in many cases it is desired to (semi) blindly identify the channel [4, 93, 94]. By

doing so, a higher quality channel estimation is available for "mismatched" style de­

tectors comparing to the case where a short training sequence is used. This provides

a better performance with less training sequence and therefore higher rate [92]. This

model is also widely adopted in OFDM systems, e.g., [5].

A joint pdf of the input and output variables, e.g. q(z; (}), where z = [yT, xTJT

is the complete data, and (} = (H, '11) is the parameter set, provides a complete

description of the underlying signal model. In general, for a given z there exists a

one-to-one correspondence between (} E 8 and q(. ; (}) E Q, where 8 is the parameter

space, and Q is the set of likelihood distributions, defined by

Q = {q(z;(}),(} E 8}. (4.2)

The ML estimation task is then to choose a distribution in this family that best

describes the complete data. By assuming that L independent complete data samples

Zk, k = 1, ... ,L are available, the maximum likelihood estimation problem is to find
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the distribution q* (z; B*) that satisfies

L

q*(z; B*) = arg maxII q(Zk; B).
qEQ

k=l

(4.3)

There are situations where the complete data are only partially available, i.e.,

we observe only y. In these circumstances, the question is how to maximize the

likelihood of observations and select the distribution q(z; B) E Q given only the

partially available data (also called incomplete data). Assuming that the input is

discrete and distributed according to the pdf p(x), one must solve the following

equivalent incomplete-data problem:

(4.4)

4.2.1 The Information Geometric Approach to Stochastic

ML Estimation

We recall here how the ML estimate of (4.4) can be re-written in the form of a

projection onto a set of distributions. The discrete distribution case is presented here

for simplicity (extension to the continuous case is straightforward). Assume that

the domain of incomplete observations y is divided into J neighborhoods, fly]; j =

1, ... , J with y] 's as their center points. Now, given the observations Yk' k = 1, ... ,L,

we define the empirical distribution p of the observations to be:

where 6(.) is the Kronecker delta function defined as:

(4.5)

1; Yk E fly]

0; otherwise
(4.6)
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Using q(Yk) = LXk q(Ykl Xk), the MLE problem (4.4) can be written as

135

q*
L

argmax log(II q(Yk))
qEQ

k=l
L

arg max "'"' log q(Yk)
qEQ L..J

k=l
J L

argmax L L <5(YJ - Yk) log q(Yk)
qEQ

j=l k=l
J

argmaxL LP(Yj)logq(Yj)
qEQ j=l

arg~~~ {tp(Yj) logp(Yj) - tp(Yj) log p((~J))}
J=l j=l q YJ

argmax {-H(p) - D(p II q)}
qEQ

(4.7)

(4.8)

(4.9)

(4.10)

where H(p) is the entropy of the empirical distribution p. Eq. (4.8) is obtained from

(4.7) by the definition of the Kronecker delta function. Eq. (4.9) follows from (4.8)

by using the definition of the empirical distribution given in (4.5). Since the entropy

of p, i.e. H (p), does not depend on the variable of maximization in (4.7) the ML

estimation problem becomes:

q* = argminD(p(y) II q(y)).
qEQ

(4.11)

Thus, the ML estimation problem is equivalent to finding the projection of p(y) onto

the set Q.

Observe that the optimization of (4.11) must find the best joint distribution

q(y, x) E Q using only the information of the marginal distributions. To solve this

incomplete-data problem we proceed according to the method of [20] and define P

as the set of all possible empirical distributions whose marginal distribution over the

unknown variable x is equal to the empirical distribution p(y) of the observations:

P = {p(y, x)1 LP(Y, x) = P(y)}.
x

(4.12)
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Now, for a given qo, observe that:

D(p II qo) =
~~ p(y, x)
LLP(y,x)log ( )
Y x ® Y,X

~ ~ _ p(y)p(xly)
L L p(y)p(xly) log () ( I )'qo Y qo x Y
Y {xI LX p(y,X)=j5(Y) }

(4.13)

where the last line follows because the joint distribution p(y, x) representing the

observed data and the corresponding inputs is physically constrained to lie within P;

hence p(y, x) = p(xly)p(y) = p(xly)p(y). The above derivation can be extended as

follows:

- LP(Y) log p((y)) + LP(y) L p(xly) log p~:lr))
y qo y Y {XI LX p(y,X)=j5(Y)} qo Y

D(p(y) II qo(Y)) + Ep(y)D(p(xly) II qo(xly))· (4.14)

Now, since qo and the empirical distribution of the observations p(y) are given, the

first term in (4.14) is unchanged by changing p. This term is thus a lower bound

on the K L-distance between p and qo. Therefore, the minimum K L-distance is

achieved by letting p(xly) = qo(xly) regardless of y. This gives:

min D(p II qo) = D(p(y) II qo(Y)) Vqo E Q.
pEP

Substitution of (4.15) in (4.11) gives:

{q*,p*} = argminminD(p II q).
qEQ pEP

(4.15)

(4.16)

Since the minimum KL-distance is achieved when p(xly) = qo(xly), and by defini­

tion the marginal distribution of every distribution pEP is equal to p(y), one ob­

serves that p*(y, x) = p(xly)p(y) = qo(xly)p(y) achieves the minimum K L-distance

in (4.15). This completes the prooffor the following important theorem, which follows

from [20]:
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Theorem 1: Define the set P as in (4.12). Also define Q as the set of all likelihood

PD's q(y, x; 8) each member of which is characterized by the parameter vector 8. The

ML estimation of 8 can be obtained by the following double minimization:

{q*,p*} = argmin min D(p II q).
qEQ pEP

(4.17)

Also, the projection of a given likelihood distribution qo(y, x) on P is given by:

p*(y,x) = argminD(p II qo(y, x)) = qo(xly)p(y).
pEP

(4.18)

o
We therefore have the important result that stochastic ML estimation with in­

complete data is equivalent to the double minimization of the K L-distance between

the sets Q and P. This double minimization is implemented using an iterative al­

ternating projection method. After initializing with a suitable (p~, qo), at iteration t,

P;+l is the type-I projection of q; onto P, and q;+l is the type-II projection of P;+l

onto Q. Then, t +- t + 1 and the process iterates until convergence.

If these two sets of PD's are convex2
, the double minimization has a global mini­

mum, convergence to which is guaranteed [31]. However, in our case, Q is not convex

and therefore the proposed alternating projection algorithm requires that the initial

estimate q5 be determined through a proper initialization (training) procedure to as­

sist convergence to the global minimum. The convergence analysis of the alternating

projections approach to ML estimation of incomplete data is analogous to that of

the EM algorithm. With the latter, conditions to guarantee convergence to a global

optimum are very difficult to establish [101]. Thus, appropriate training sequences

are used to alleviate convergence of the EM algorithm to the global optimum. The

same applies to the IGID algorithm.

As can be seen in the following section, the projection onto Q is a convex opti­

mization that gives a unique solution which is guaranteed to be a member of the set

2For the definition of convexity, refer to [32].
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of desired likelihood distributions.

It is straightforward to observe that:

D(Pt+l II qt+d < D(Pt+l II qt)

< D(pt II qt), (4.19)

Since D(· II .) is bounded from below by 0, the sequence of pdf's generated by

the algorithm decreases monotonically in K L-distance, and convergence to a local

minimum is guaranteed.

4.3 Application to Semi-Blind Channel Identifica­

tion

In this section, we apply the above information geometric approach to develop the

computationally efficient IGID algorithm for semi-blind ML estimation of a multiple­

input, multiple-output (MIMO) channel. The method is semi-blind due to the fact

that the initial point is obtained by training the algorithm in each data block. We

show the exact equivalence of the IGID algorithm and the variational EM algorithm

[82] in Appendix (D).

4.3.1 Signal Distributions

It is assumed tbat the input x(k) '"" N(J-t,<p), where it is assumed J-t = 0, and

<P is assumed known. The set of likelihood distributions Q is parameterized by

() = {H, 'l!}, where Hand 'l! are the channel, and the covariance matrix of the noise

v in (4.1), respectively. Thus, each member of Q is a Gaussian likelihood distribution

defined by:

q(z; H, 'l!) = N(z, Q) (4.20)
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where:

(4.21)

and

Q ~ [ m;;r+ iJ' :'1>] (4.22)

where we have used the fact that q>T = q>.

The expression for Q-l is given for future convenience as (see Appendix (III):

(4.23)

For analytical and computational tractability, in the following we assume the em­

pirical distribution corresponding to the observations is normally distributed; p(y) =

N(r, S), where rand S are the mean vector and the sample covariance matrix for the

output observations, respectively. This is in contrast to the exact form of empirical

distribution given by (4.5). We note that since the source is assumed zero mean, and

if we assume the channel has finite zero frequency gain, then under these assumptions

we have r = O. This fact is used later.

4.3.2 The First Projection: Computing the Best Complete­

Data Distribution

Due to the Gaussian source assumption, the complete data distribution is jointly

Gaussian. Thus, this task is equivalent to finding the best mean and covariance of

this joint distribution. Having the distribution qt(Y, x : 0) obtained from the previous

iteration, we now solve the first minimization:

p* = min D(p II q),
pEP

which is a type-I projection of the given PD q on the PD set P.

(4.24)
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The unique solution is given by the second part of Theorem 1. Therefore, to obtain

the optimum distribution, one needs to compute the joint distribution of the complete­

data likelihood distribution. In the case of jointly Gaussian PD's, straightforward

mathematical manipulations yield the following closed form solution:

p* = q(xly)jJ(y) = N(m, P*),

where it can be shown that

--1 [ H J-t - r ]
m=z+P*S 0 '

(4.25)

(4.26)

(4.27)
[

'11-1 _ (H<flHT + '11)-1 + S-1 _'11-1H ]
(p*)-1 =

_HT w- l <fl- l + H T w- l H

and S-1 E R(M+N)x(l\I+N) is the covariance matrix S-1 E RNxN properly augmented

with zero blocks, i.e.:

We note that, under the current assumptions, both m and z are O.

Therefore, to solve the first projection, i.e., to calculate (P*)-l, it is sufficient only

to modify the upper-left element of the inverse covariance matrix Q-l given by (4.23),

using the current estimates of Hand W. The closed-form solution (4.27) avoids multi­

dimensional integrations usually necessary in conventional EM-type algorithms. In

Appendix I we show this projection is identical to the E-step of the EM algorithm.

4.3.3 The Second Projection: the Complete-Data ML Esti-

mation

Given p*(z) from the previous projection, the second minimization is an T\IL es­

timation of the parameters, using the complete-data. The problem in the second
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minimization is to find the best distribution in the likelihood PD set Q that fits the

estimated complete-data. This is equivalent to finding the type-II projection of p*

onto the PD set Q. Therefore, it is necessary to solve the following minimization

problem:

q* = argminD(p* II q).
qEQ

(4.28)

Since the Q family is parameterized by Hand W, the optimization is performed with

respect to these parameters. Assuming the following block form for the covariance

matrix P* of the given distribution p*

P* = lP1~ P
12 j,

P 12 P 22
(4.29)

(4.30){H*, w*}

the second projection is equivalent to the following minimization (see Appendix IV):

arg min [trace(w- 1P l1 )
{H,w}

2trace(w- 1H pi2)

+ trace( «>-1 P 22 + H T w-1H P 22 )

log det w-1 - log det «>-1

log det P* - d] ,

where d = .J\;I + N is the dimension of the complete-data. Observe that by assuming

a nonsingular noise covariance matrix W, the minimization is a convex optimization.

It therefore has a unique solution. The minimization of the objective with respect to

the parameters Hand W gives (see Appendix V):

H* = P 12 P 2i (4.31)

(4.32)

Therefore the iterative application of Equation (4.27), (4.31) and (4.32) generates

the sequence of distributions Pt, qt, t = 0,1, ... , which in the limit yield maximum
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likelihood estimates for the model parameters H and \I!. It is shown in Appendix I

that this projection is identical to the M-step of the EM algorithm.

4.3.4 Initialization Using '!raining

When a training data set consisting of input signal and output observation pairs are

available, then identification is a complete-data ML estimation problem. Even though

this problem is straightforward to solve in this case, it is interesting to note that it

may be solved using an information geometric formulation. Maximum likelihood

estimation corresponds to finding the closest (in the K L-distance sense) likelihood

distribution q(y, x) to the empirical distribution of the input-output training data

p(y,x):

q* = arg min D(p II q)
qEQ

(4.33)

Assume a set of Ltr training data pairs Zk = [Yk' Xk]T, (k = 1, ... ,Ltr ) is available.

Assume that the empirical distribution (4.5) for the training data is modelled by a

normal distribution, i.e. p(z) '" N(r, S) where:

Then, it is straightforward to show that the estimates iI and 4t solving (4.33) are

given by

v ~ T 1 ~ T v ~ T ( T)-lH L.J Xk X k = - L.J Ykxk ----7 H = L.J YkXk Xk x k .Ltrk=l k=l k=l

where <P is the source covariance matrix which is assumed known, and

(4.34)

(4.35)
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These results are similar to the least-squares solution for the ML estimation with

training [99].

4.3.5 The IGID Algorithm: Summary

1. Initialization: Initial parameter estimates lID and ~o are obtained from the

training data using (4.34) and (4.35) respectively.

2. The first projection (onto P), i. e., choosing the best empirical complete-data

distribution: In this step in iteration t, we compute the best distribution of the

complete data z = [yTxTV. Therefore we substitute the current values of H t

and \[It into (4.27) to obtain the optimum covariance matrix (p*)-l.

3. The second projection (onto Q), i.e., maximum likelihood estimation of parame­

ters: In this step, we compute the maximum likelihood estimate of the channel.

Therefore, we invert (p*)-l and prepare the sub-blocks as in (4.29). Then we

use Equations (4.31) and (4.32) to estimate the parameters Ht+l and \[It+l.

4. Termination: Check convergence by examining D(p* " q*) ((G.20)). If the

distance is less than a predefined value c, 0 < c « 1, terminate; otherwise,

continue with the first projection (Step 2).

4.3.6 Convergence of the IGID Algorithm

We have seen that if the PD sets P and Q are convex, then the IGID algorithm

converges [31]. However, in our case, these PD sets are Gaussian and hence are

not convex. Even though (4.19) guarantees non-increasing divergence, it does not

guarantee convergence to a single point in the intersection of P and Q. As with

the conventional EM algorithm, analysis of convergence of the IGID algorithm to a

global optimum is difficult and is beyond the scope of this thesis. Nevertheless, we
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can demonstrate the behavior of the algorithm at convergence. In the following, we

demonstrate there is a Gaussian distribution in P and one in Q that have equal means

and covariances.

It is shown in Appendix VI that there exists a point {iI, 4;} within Q such that

(4.36)

where S is the covariance matrix of the observations y (defined in the paragraph under

(4.23)). By substituting (4.36) into the upper-left block of (4.27) and substituting

the values iI and 4;, it is straightforward to show that (p*)-l from (4.27) remains

invariant from one iteration to the next. Further, (p*)-l from (4.27) is equal to Q-1

from (4.23), when iI and 4; are substituted in (4.23). Thus, there exists a point in

P and Q for which the covariance matrices of the distributions Poo and qoo 3 are equal

and invariant with iteration.

From Section 4.3.2, we have seen that the mean z of qoo and the mean 'Tn of Poo

are both zero and invariant with iteration.

Therefore, since the means and covariances of the distributions are equal and are

invariant with iteration, then under the stated conditions, there exists a point within

P and Q to which convergence is possible. Thus, the convergence region of the IGID

algorithm includes at least one point.

A consequence of this property is that D(poo Ilqoo) -----+ O.

4.4 Simulations

4.4.1 Channel Estimation

In this section, we present simulation results for verifying the performance of the IGID

algorithm for blind channel identification. The results are compared with a general

3Recall the subscript on p or q refers to iteration index.



4.4. SIMULATIONS 145

previous EM-based algorithm which does not exploit a Gaussian source assumption,

as summarized in Appendix B. ML estimation using all the data in the block as a

training sequence is also performed, since this provides a lower bound on the perfor­

mance of the algorithms. The IGID algorithm does not require the noise covariance

to be known in general. However, in simulations we assume that the noise covariance

matrix W is known in order to be able to compare the results with previously reported

algorithm. In each simulation, it is assumed that the channel gain matrix is constant

within a block of length L = 1000 symbols.

In each block, the IGID and EM algorithms are initialized using training con­

sisting of 10% of the block length, using (4.34) and (4.35). It is assumed that the

symbols transmitted from each transmit antenna are selected uniformly from a 4­

QAM (QPSK), 16-QAM or 64-QAM constellation, which has been normalized to

unit variance. The values A! and N are each chosen to be equal to 2. The receiver

noise covariance matrix W is set to the identity I. The channel coefficient matrix H

is scaled corresponding to the desired values of SNR, as in (4.1). The channel coeffi­

cient matrix itself is chosen so that its elements are i. i. d. circular complex Gaussian

random variables, with zero mean and unit variance.

The first index we use for quantifying the performance of the algorithms is the root

mean-squared (rms) error of the channel estimate, at each iteration of the algorithm.

This index shows the speed of convergence of the algorithms, as well as the extent

to which the algorithm is able to converge to the true channel gain matrices. For

these experiments, two values of SNR, arbitrarily chosen to be 16dB and 6dB, are

chosen to demonstrate the performance of the algorithms in typical high and low-SNR

conditions.

Figure 4.1 shows the rms error of the channel gain matrix estimation for 50 Monte­

Carlo runs, for the IGID algorithm (circle), the EM algorithm (star), and ML esti­

mation using the entire block as a training sequence (dashed line), versus iteration
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Figure 4.1: Convergence (rrns error vs. iteration index) for channel gain estimation
in the low-SNR regime (SNR=6dB) in a 2 by 2 MIMO communication system with
16-QAM modulation. "ML with Training" uses the whole block of data as a training
sequence, whereas the EM and the IGID algorithms each use 10% of the data block
for training. The error is evaluated over 50 Monte Carlo runs.

index, in the low-SNR regime (SNR = 6). The results are evaluated over 50, 000

symbols (50 blocks). It can be seen that the performance of the IGID algorithm is

almost equal to that of the conventional EM algorithm. Also the IGID algorithm

converges at a rate comparable to the EM-algorithm. Figure 4.2 shows the same

results in the high-SNR regime (SNR = 16). Here, it can be seen that the IGID

algorithm performance is only slightly degraded in terms of rms error compared to

that of the El\I algorithm.

4.4.2 Symbol-Error-Rate (SER)

To further examine the performance of the proposed algorithm, a symbol error rate

(SER) analysis is performed. Each symbol is detected using an ideal ML procedure

using the estimated values of Hand 'l!. Since in the simulations the number of sources

is small, the usual complexity of ML detection is tractable in this case. The estimated

channel gain matrix and the noise covariance matrix are used for ML detection of the
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Figure 4.2: Same as Figure 4.1, except SNR = 16 dB

transmitted symbols x, which are computed by:

(4.37)

where n is constellation set of the source. Figures 4.3-4.7 show SER results for

4QPSK, 16-QAM and 64-QAM modulation, each for block lengths of L = 100 and

1000 (only L = 1000 for the 64-QAM case). Each of these figures show SER results

corresponding to the following estimation schemes for the parameters Hand \[1: i)

the parameters are perfectly known at the receiver (asterisk), ii) the parameters are

estimated using only the initial training; i.e., EM and IGID are turned off (plus) iii)

the parameters are estimated using the EM algorithm with 10% of the block used for

training (x), and iv) the parameters are estimated using the IGID algorithm, again

with 10% of the block of data used for training (circle). For the large L and small

constellation case, it can be seen from the figures that the performance of the IGID

algorithm is very close to that of the EM algorithm. However, it is seen that IGID's

performance degrades slightly for decreasing values of L and increasing constellation

size. For all the simulation scenarios considered in this study, the number of iterations

for the IGID algorithm never exceeded five.
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Figure 4.3: Symbol Error Rate (SER) curves for QPSK modulation for a block length
of L = 100.
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Figure 4.4: Same as Figure 4.3, except the block length L = 1000.
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Figure 4.5: SER curves for 16-QAM modulation for a block length of L = 100.
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Figure 4.6: SER curves for 16-QAM modulation for a block length of L = 1000.
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Figure 4.7: SER curves for 64-QAM modulation for a block length of L = 1000.

Simulations were performed where the percentage of training symbols relative

to the block length was varied. It was determined that the SER performance is

insensitive to training lengths above 10% when L = 100, and above roughly 5%

when L = 1000. However, the number of iterations required for convergence changes

somewhat with training length.

SER simulations were also conducted for the JADE [21] algorithm, which is deter­

ministic due to the fact it does not exploit the specific distribution of the source nor

the parameters. For the same simulation scenarios, it was found that the performance

of the JADE method is up to about 3-4 dB worse than the IGID algorithm. This

demonstrates the general idea that stochastic ML estimation is usually better than

its deterministic counterpart.

In Figure 4.8. we show an example of the convergence of the IGID algorithm, for

the same simulation scenario as in Figure 4.1. This figure shows the KL distance

between Pt and qt vs. the iteration index t. As expected, this measure converges

monotonically towards zero.
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4.4.3 Discussion

In addition to considering estimation performance, it is important to notice the con­

siderable superiority in terms of computational complexity of the IGID algorithm over

the EM-based algorithm. The complexity of the IGID algorithm is dominated by the

inversion of the matrix P(1"I+N)x(M+N) in (4.27), which is on order of O((.!'vI + N)3)

using the Cholesky factorization [46], where M and N are the number of inputs and

outputs, respectively. When the inputs are chosen from a set of discrete values, we

see that the complexity of the IGID algorithm is independent of the number of input

values and is on the order of (.!'vI + N)3. This is in contrast to the complexity of the

conventional EM-based algorithm, summarized in Appendix II, which is dominated by

the computation of xxT (defined in Appendix E), and is on the order of O(L.!'vI2C M )

where L, lvI and C are the data block length, the number of input sources, and the

number of discrete points in the constellation. Notice the exponential growth in com­

plexity with C and lvI. Thus, for spectrally efficient signalling schemes, which use a

large value of C, the IGID algorithm can be orders of magnitude faster than the EM

algorithm.

For the current scenario using 16-QAM signalling, with .!'vI = N = 2, C = 16,
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and L = 1000, the complexity of the IGID algorithm is of the order 64, com­

pared to 1, 024, 000 for the EM-based algorithm. These figures are (64; 51, 200) and

(64; 10,240) when the block length reduces to L = 500 and L = 100 (appropriate

for fast-fading channels), respectively. The ratio of the actual FLOP counts for each

iteration of the two algorithms as measured by MATLAB© is about (15,000), (800),

and (150) for L = 1000, L = 500, and L = 100, respectively. This figures show a

noticeable improvement in the execution speed of the proposed algorithm.

We have made the assumption that the source data and the observations are

Gaussian distributed. This approximation is not far from reality in the low-SNR

regime, due to the prominent effect of the noise on the output distribution. However,

in high-SNR regime, since the noise effect is not as significant, the validity of this

assumption diminishes. This seems to be the main reason for the discrepancy which

exists between the performance of the IGID algorithm relative to that of previous EM

algorithms. Nevertheless, this small deviation has a negligible effect on symbol error,

as noted in the previous simulation results. However, we have noted that this marginal

decrease in performance is accompanied by a significant gain in computational cost.

In this chapter, the IGID algorithm has been developed for the following form of

model:

y(t) = H x(t) + v(t)

where y(t) is a vector of observations, H is a matrix which is a function of unknown

parameters, x(t) is the input vector, and v(t) is a noise vector. This model appears

in many signal processing problems, such as direction of arrival estimation, tracking,

model identification with hidden Markov models, in blind identification of channels,

etc. Thus, the proposed method is applicable not only to the blind identification

problem, but to many other problems in signal processing as well.
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In this chapter an information geometric approach to blind identification was pre­

sented. Based on information geometry, a low-complexity iterative identification

procedure, called the IGID algorithm, for blind identification of unknown parame­

ters in a multi-input multi-output (MIMO) system with Gaussian distributed noise

was proposed. The algorithm is an iterative solution to the incomplete-data problem

posed by maximum likelihood (ML) estimation of parameters in a linear Gaussian

MIMO system when only the output observations are available. The IGID algorithm

involves two iterative minimizations, corresponding to projections onto the likelihood

PD (probability distribution) set and the empirical PD set, respectively. A Gaussian

assumption on the source allows us to develop closed-form expressions for the projec­

tion operations. The performance of the IGID algorithm in blind identification of the

channel gain matrix in a MIMO communication system was investigated. Simulation

results showing the symbol-error-rate (SER) behavior are given. It is shown by sim­

ulation that the performance of the IGID algorithm is only slightly degraded relative

to that of previous EM-based algorithms [5]; however, a noticeable improvement in

computational cost is realized.
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Chapter 5

An EM Algorithm for State

Estimation

5.1 Introduction

In most solutions to state estimation problems, both linear and nonlinear, it is gener­

ally assumed that the state transition process and the measurement process parame­

ters are known a priori. For instance, in target tracking using a nonlinear state space

model, the extended Kalman filter (EKF) assumes that the process and measurement

matrices as well as corresponding noise statistics are known [13]. However, there are

situations in which the model parameters are not known a priori or they are known

with some degree of uncertainty. In these state estimation problems neither a set of

certain training data is available to accurately identify the model uncertainties, nor

are accurate models of the measurement process available to precisely estimate the

states using conventional estimation procedures. In these circumstances, standard es­

timation algorithms, which are based on perfect knowledge of the model parameters,

are not accurate anymore. To solve this problem, we must perform optimum state

estimation in the presence of model uncertainty; i.e., perform model identification

155
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while tracking.

There are three main categories of methods proposed to perform this task. The

classical remedy is to treat the unknown parameters as extra state variables and

augment the state vector by the unknown parameters [13]. For a review of these

methods refer to [3]. See also the reduced state estimator approach [75].

The second category consists of the so-called multiple model (MM) estimators [13].

An adaptive filtering algorithm decides the most appropriate model from a number of

different but predefined model dynamics during the estimation process. The general­

ized pseudo-Bayesian estimator (GSBS) and the interactive multiple model estimation

(IMM) procedure are among the best known examples [13] of this type of method.

The MM estimators with variable structure are another example of this type of esti­

mator. For a comprehensive review of these methods, interested readers are referred

to the survey paper [72] along with [63, 64, 50]. MM algorithms show promising

performance in tracking maneuvering targets whose dynamics are predictable. How­

ever, their ability to handle model uncertainties is limited to the "model dictionary"

available. Furthermore, they often require a long time to acquire track, as shown in

the simulation section of this chapter.

The key idea in the third category of algorithms is to divide the problem of

state estimation in the presence of the model uncertainty into two joint problems;

i.e., state estimation and model identification [67]. First, assuming that the model

is known perfectly, the states are estimated. Then the estimated states with their

corresponding measurements are used to identify the model parameters. Perhaps the

first paper in this regard was [25]. Also, in [3], an optimality test was derived to

adjust a Kalman filter when the noise statistics are not known exactly. Later in [69]

and [52], joint simultaneous state estimation and model identification for the scalar

state estimation case, in the presence of unknown model parameters, was studied.

See also [11, 83, 53, 76, 49] for similar approaches.
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This third category is the one chosen for this chapter. Interestingly, this approach

can be cast in an expectation maximization (EM) context [35]. See [82] in which

a general framework for solving the general joint estimation-identification of linear

Gaussian models was presented. Refer to [97, 98] for a similar application of the EM

algorithm for linear state estimation with uncertain model parameters. The main

idea in EM-based algorithms is to solve the state estimation problem in the presence

of model uncertainty in two iterative steps. In the first step, called the E-step,

it is assumed that the model is known perfectly and therefore standard estimation

methods are used to estimate the states. Then, in the second step, i.e., the M-step,

the estimated states with their corresponding measurements are used to identify the

model parameters. Different implementations of the E and the M steps have resulted

in different algorithms suitable for different applications.

In this chapter we extend the approaches of [82] and others with regard to the

problem of model identification while tracking. Here, we extend the previous work

to the case where the measurement model is nonlinear and unknown, subject to

the restriction that it can be accurately represented as a mixture of Gaussian (MoG)

kernels, and that the Cramer-Rao bound for all the model parameters and the states,

given the observations, exists. A specific EM procedure called the EM-PF algorithm

is presented.

In the E-step of the proposed algorithm, an approximation of the posterior dis­

tribution of the states given the measurements is formulated. This distribution is

then used to estimate the states. In nonlinear systems this conditional density is

generally non-Gaussian and can be quite complex. We use a particle filter [36] algo­

rithm to estimate and recursively update this posterior distribution in time. Because

the EM algorithm is sensitive to initialization, the particle filter is initialized using a

Metropolis-Hastings l\lonte-Carlo Markov Chain (MH-MCMC) [36] procedure. This
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greatly assists the algorithm in converging to the global optimum. In the maxi­

mization (M) step, the unknown measurement process is approximated by fitting the

observations to an MoG model using the current estimate of the states. A closed-form

maximum likelihood procedure for determining the parameters of the MoG model is

gIven.

Finally, the proposed EM-PF algorithm is applied to two nonlinear state estima­

tion problems with model uncertainties. First, we consider a typical bearing-only

tracking problem where the sensors have an unknown measurement bias. In this ex­

ample we treat the observation model in the presence of sensor biases as unknown. It

is shown that the EM-PF algorithm is capable of successfully estimating the position

and velocity states and therefore can accommodate model uncertainty and correct

the misalignment caused by the sensor bias. Then, we approach a sensor registration

problem in which different sensors with different unknown bias values combine their

measurements for state estimation. Here again we treat the observation model as

unknown. We show that the sensor registration is performed successfully and the

effect of sensor bias is suppressed by the algorithm. Even though in each of the above

examples it may be possible to gain better performance by exploiting the known form

of the nonlinear model, we demonstrate that the proposed method is applicable to

situations where very little is known about the structure of the observation model.

The structure of chapter is as follows. In Section 5.2, the general framework for the

EM algorithm is introduced. The details of the proposed EM-PF algorithm follow.

The implementation of the E-step using a particle filter, and the M-step by fitting an

MoG model to the estimated data, are provided in Section 5.3. Then in Section 5.4,

the proposed method is applied to a nonlinear bearing-only tracking problem (similar

to the one in [65]) with uncertain model parameters. Also, Section 5.5 presents the

application of the EM-PF algorithm to a sensor-registration problem in a multisensor

tracking scenario. Simulation results are presented for each application.
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Throughout the text, the notation N(m,!;) indicates a Gaussian distribution

with mean m and covariance!;. An upper-case bold symbol (e.g., A) denotes a

matrix, and a lower-case bold symbol denotes a vector. If the vector is a function

of time, e.g., z(t), then the corresponding symbol without the time index (e.g., z)

denotes the set of all values of the vector over the range of the temporal index; e.g.,

z denotes {z(t)lt = 1, ... , L}, where L is the number of data points.

Throughout, t where t = 1, ... ,L denotes the discrete time index, k = 1,2 is

the EM iteration index where k = 1 is the initialization step, and i, where i = 1, ,N

is the particle index, where N is the number of particles used in the particle filter.

5.2 Nonlinear State Estimation using EM

State estimation in a nonlinear state-space dynamical system whose evolution process

is described as

x(t + 1) = f(x(t)) + u(t), (5.1)

consists of estimating the state data vector x using a sequence of noisy measurements

given by the following model:

z(t) = h(x(t), 0) + v(t), t = 1,2, ... , (5.2)

where t is the discrete time index, x(t) E (CM and z(t) E (CJ are the state variable

and the noisy output measurement vectors respectively, and u(t) E (CM is assumed to

be an i. i. d noise processes, whose probability density function is assumed known and

possibly non-Gaussian. The vector v(t) E (CJ is a zero-mean Gaussian noise variable

with unknown covariance Q. The noise v(t) is assumed uncorrelated in time; i.e.,

E(v(tdV(t2)) = 6tthQ.

Also, the vector valued functions f, f: (CM 1-----+ (C!H, and h, h: eM 1-----+ (CJ are

assumed to be smooth but otherwise are arbitrary. We assume that the function f (.)
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is known, whereas uncertainty may exist in the observation model h(·).

A major focus of this chapter is how to model the partially known or unknown

function h(·). If a model which takes into account any known structure in the mea­

surement process is available, then that model should be used in the proposed method.

Any uncertainty is expressed in a parameter vector (}. On the other hand, it is also

possible to assume no structure on h(·), as is done with our examples in Sects. 5.4

and 5.5. We model this function as an MoG, again parameterized by the vector (}, in

a manner to be described later in Sect. 5.3.2.

A restriction on the proposed methodology is that the Cramer-Rao bound on all

the states and on all the parameters (} which describe the model given the obser­

vations, must exist. Here we do not discuss conditions for which the bound exists.

However, it is clear that the proposed formulation will place restrictions on the class

of problems that may be considered.

When the model is known completely, maximum likelihood (ML) state estimation

results in a filtering problem, which can be solved using, e.g., the EKF, the particle

filter, or the unscented Kalman filter [56]. Also, in the case where when the model

structure is known but contains a number of unknown parameters, and a training set

consisting of corresponding state and measurement data is available, then the states

and unknown model parameters can be jointly estimated using maximum likelihood

(ML) procedures, as is common practice in communication systems. However, in

the case considered here where we assume that no training set is available, and the

measurement function h is uncertain or unknown, standard estimation algorithms

that assume perfect knowledge of the model parameters are not accurate. In this

case it is desirable to jointly estimate the state vectors and the observation model

using an EM technique which blindly incorporates model uncertainty, as is proposed

in this chapter.

To estimate the states in the presence of model uncertainty, we use the variational
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form of the EM algorithm [82]. The log likelihood of observations is defined as:
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(5.3)£(8) = logp(zI8) = log1p(x, zl8)dx

where X is the range of the state variables, z = [ZT (1), ... , ZT (L)]T E en is the

entire sequence of observed measurements, x = [xT(1), ... , x T(L)]T E eML are all the

state variables, 8 is the vector of parameters describing the MoG model, and L is the

number of observation points.

Maximizing this function can often be intractable in the nonlinear/non-Gaussian

case. Therefore, an alternative procedure is to define a variational distribution U(x)

over the hidden state variables, that allows us to obtain a lower bound on the expected

likelihood [73, 82]:

£(8) log1p(x, zl8)dx

1 j U( )
p(x, zl8)d

og x x U(x) x

j p(x,zI8)
> x U(x) log U(x) dx

1U(x) logp(x, zl8)dx -1 U(x) log U(x)dx

1U(x) logp(x, zj8)dx + H(U)

L'J.
F(U, 8),

(5.4)

(5.5)

where (5.4) follows from Jensen's inequality [13] and H(U) in (5.5) is the entropy of

the distribution U. It is straightforward to show that the equality in (5.4) is satisfied

for U*(x) = p(xlz, 8).

The EM algorithm alternates between maximizing F with respect to the distribu­

tion U(x) and the parameters 8, respectively. Starting from some initial parameters

8 0 the algorithm iteratively applies

E - Step: (5.6)
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M - Step: (}k+l = argmaxF(Uk+1 , (}k), (5.7)
()

where k is the EM iteration index. The primary purpose of the the E-step is to

estimate the hidden states. This is accomplished by determining the best distribu­

tion U* = p(xlz, ()) which makes the expectation of log-likelihood maximum. A

conditional-mean estimate of the states is then readily available from this distri­

bution. The M-step involves estimating the model parameters () using the states

estimated in the previous E-step and their corresponding measurements. Since, at

the end of each E-step the likelihood function F meets the equality for U*(x), then

F(Uk+1,(}k) = £((}k). Also, because in the M-step the optimization is over (), it is

guaranteed that the likelihood will not decrease in any iteration.

5.3 The EM-PF Algorithm

The overall operation of the proposed EIVI-PF algorithm for estimating states in the

presence of model uncertainties, nonlinear models and non-Gaussian noise is shown

in Figure 5.1. The algorithm as shown in this figure operates in batch mode, using

a finite set of observations z(t), t = 1, ... , L. Since we wish to estimate the states

Xk(t) over this same interval, the problem may be cast as a fixed interval smoothing

problem. It is assumed that the parameters (}k describing the model do not change

significantly over this interval. In the situation of interest here, where the observation

noise is non-Gaussian or the model is nonlinear, the distribution p(xk(t)lz, (}d, which

is critical to the E-step, cannot be evaluated analytically. In the proposed EM-PF

algorithm, this distribution is approximated using a particle filter.

5.3.1 The E-step: Estimation of States by the Particle Filter

At the kth iteration of the EM algorithm, the distribution of interest for the E­

step is p(xk(t)lz, (}k), for t = 1, ... , L. When the noise is non-Gaussian or the
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Figure 5.1: Block diagram of the EM-PF algorithm, which gives state and model
parameter estimates, over the block t = 1, ... ,L.



164 CHAPTER 5. AN EM ALGORITHM FOR STATE ESTIIvIATION

model is nonlinear, this distribution can be intractable. Instead, an approximation

PN(Xk(t)lz, (h) to this distribution is used, which is propagated in time by a particle

filter. At the beginning of the kth E-step, it is assumed that the parameter vector (h

has been estimated within the previous M-step and therefore is known.

Given PN(Xk(t) Iz, (h), the states Xk(t) can be estimated as, e.g., the conditional

mean of this distribution at any time t = 1, ... , L. Then in the M-step, the esti­

mated states and their corresponding measurements are used to identify the mea­

surement function hO, parameterized by (h. This vector is estimated using the

state-measurement pairs estimated in the E-step. The E- and M-steps iterate until

convergence.

The presentation on particle filters here is necessarily brief; readers are referred to

[10, 36] for further background. We first explain the case for the filtenng distribution;

i.e., approximation of the filtering distribution P(Xk(t) Izu'(h)l. We later extend

the treatment to the fixed-interval smoothing problem, i.e., approximation of the

distribution P(Xk(t) IZ1:L' (h), for any t E [1, ... ,L], which is the problem of relevance

here.

The quantity PN(Xk(t)lzu, (h) is specified by a set {xk~)(t),wt)(t) L=l:N' where

the x~~) (t) are samples (particles) of the states, that are used to compose the de­

sired distribution. The quantity N is the number of particles. and wk~) (t) are the

respective filtering weights, whose calculation is described below. The approximation

PN(Xk(t)lzu'(h) is given by

N

PN(Xk(t)lzu'(h) = LWkl)(t)b(Xk(t) - x~I)(t)),
1=1

(5.8)

where b(.) is the Dirac delta function.

The unnormalized weights at time t can be recursively updated from those at time

IThe notation Ya'b is commonly used in the particle filtering literature and implies all values of
Y from time a to b.
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t - 1 at EM iteration k by [10, 36]

ii/~)(t) = w(t)(t _ l)p(z(t)lxi~)(t), lh)p(xi
i
)(t) Ixi

i
) (t - 1))

k k r(xit)(t)lxi~)(t _ 1), z(t)) ,

The normalized weights wii)(t) are then calculated as

165

i = 1, ... ,N. (5.9)

i = 1, ... ,N. (5.10)

The quantities xi~)(t) in (5.9) are the particles, which are samples drawn from a

proposal distribution r(xi~)(t)lxi~)(t - 1)). This distribution is chosen to be easy

to sample from, and to resemble the desired distribution p(xk(t)lz, (h) as closely as

possible. We choose the proposal distribution to be a normal distribution:

(5.11)

where 0"; is chosen such that the support of the distribution properly covers the

current state Xk(t).

The distribution p(z(t)lxii)(t),lh) in (5.9) is the likelihood, and is determined

from (5.2), given (Jk and knowledge of the distribution of v. The distribution p(xit)(t)lxi~) (t­

1)) in (5.9) is the prior distribution on the states and is given from (5.1), know-

ing the distribution of u(t). Thus, the method propagates the desired distribution

p(xk(t)IZl:t,lh) in time at each value of t by first, drawing particles xi~)(t),i =

1, ... , N from the proposal distribution r(·I·). Then, using the particles and the

observations, the respective distributions in (5.9) can be evaluated. The weights

wi~)(t) are then updated using (5.9) and (5.10), whereupon the desired approximate

distribution is obtained by (5.8).

We now extend this treatment to the fixed-interval smoothing problem. It is

shown in [37] that the smoothing distribution is given as

N

PN(Xk(t)!ZloL, (h) = l:= wk(tIL)(~)b(xk(t) - xi~)(t))
~=l

(5.12)
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for any t E [1, ... ,L]. Thus, only the weights change in going from the filtering to the

smoothing problem. The smoothing weights wk~)(tIL) are calculated according to the

following algorithm [37]:

1. Initialization at time t = L:

2. for t = L, ... , 1

• for i = 1, ... ,N, evaluate the smoothing weights:

Using (5.12), conditional mean state estimates Xk(t) can be obtained for any time

t = 1, ... , L by

Xk(t) i Xk(t)P(Xk(t) IZ1:L, (h)dxk(t)

;:::; i Xk(t)PN(Xk(t) IZ1:L, (h)dxk(t)

N

L wkz
)(tiL )xkz

)(t).
~=l

(5.14)

In the sequel, for ease of notation we write z, implying Zl:L

The problem with the particle filter is that after a few time steps, all but a very

few of the particles have negligible weights. This degeneracy problem results in in­

efficient use of the particles. There are a number of proposed resampling techniques

that correct this problem. A simple minimum variance scheme first proposed by

Kitagawa [59], and applied to a tracking problem [65], is used in this chapter. This

re-sampling technique probabilistically replicates particles with large weights and dis­

cards particles with small weights, so that our set of particles better represents the

required distribution.
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Initialization of the particle filter at t = 1: The initial particles at time

t = 1 for each EM iteration k must be chosen carefully, otherwise the particle filter

may lose track later in time. For this purpose, we consider the Metropolis-Hastings

(MH) algorithm, which is a Monte Carlo Markov chain (MCMC) procedure, for gen­

erating samples from the initial posterior distribution 7r = p(xk(1)lz(1), (h). Ideally,

we would like to use the exact distribution p(xk(1)lz, (h); however, this is not possi­

ble for reasons of tractability, so we use 7r as an approximation. As described below,

the MCMC process is iterative; each iteration places an underlying Markov chain in

a different state, which corresponds to a sample; thus, a potential candidate sample

is drawn in each iteration. An appropriate number of initial iterations (referred to

as the burn-in period), are required before the underlying Markov chain establishes

equilibrium. Only after equilibrium is established are the samples distributed ac­

cording to the desired distribution 7r; therefore, the burn-in samples are discarded.

After the burn-in period completes, N useful samples are drawn by executing N

additional iterations. These additional samples serve as the initial particles X~i) (1)

for the particle filter. Since these initial particles are already distributed according

to the approximate desired posterior distribution, the corresponding weights are all

initialized to unity.

By choosing a proposal density q(xJ·) which may be different from 1'(·1,), the

following procedure generates samples, x~~)(1) from 7r .6. p(xk(1)lz(1), (h):

for i = 1, ... N, after equilibrium of 7r is reached:

1) Sample x* rv q(X/X(z-I))

2) Evaluate

(
(i-I) * .6. . { 7r(x*)q(X(i-I)lx*)}

a x ,x) -nun 1'7r(X(~-I))q(x*lx(i-I))

3) assign xi2)(1) = x* with probability a(x(i-IJ, x*).

(5.15)
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We choose the proposal density q(XIX(~-l)) to be an easy-to-sample distribution; e.g.,

the Gaussian distribution:

(5.16)

where, in this study, the variance (J~ is chosen empirically, so that the support region

of the proposal density properly covers the state space around the initial state xk(l).

The distribution 7r for evaluating the samples in (5.15) can be obtained by Bayes'

rule, assuming that fh is independent of Xk (t), as follows:

(5.17)

where the likelihood distribution p(z(l)lxk(1), fh) is obtained from the measurement

process (5.2) and the prior distribution p(xk(l)llh) = p(xk(l)) is assumed to be

uniform. The value of p(z(l)llh) is irrelevant for the purposes at hand. since it is

independent of x and hence cancels in (5.15).

5.3.2 The M-Step

In this section we demonstrate the M-step for the general case where no structure is

available for h(·). Here, h(·) is modelled as a mixture of Gaussian kernels. If specific

structure is available, then the procedure can be modified accordingly.

By substituting the posterior distribution of the states given the observations

obtained in the E-step (Uk+1 = p(xklz, fh)) into (5.5), the required optimization for

the .I'd-step of the kth EM iteration becomes

(5.18)

To proceed with this optimization, we incorporate our model for the observation

function h(x(t), 0) in (5.2). If some structure regarding h(.) is available, then it
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should be incorporated into a suitable model. However in our case, no structure on

he) is assumed, and it is modeled as a mixture of Gaussians with P components, as

P

h(x(t), 0) ~ L m p9p(x(t)) + Ax(t) + b
p=l

(5.19)

where the parameters m p E «:Y are the coefficients of the scalar Gaussian kernels 9p,

with fixed centers cp E eM and fixed covariance matrices Sp E C MxM . The centers

are distributed uniformly over the range of x, and the covariances Sp may be assigned

arbitrarily. 2 The Gaussian kernels are defined as:

(5.20)

The quantity A E C JxM is a constant matrix, b E e J is a constant bias term. The

vector 0 E e Jx (P+M+1) is therefore defined as

(5.21)

which according to the assumptions, is time-invariant. We also define the vector

ti>(t) E C(P+M+l)X\ which includes the time-varying parameters in h(·) as

ti> (t) 6 [91 (X (t) ), 92 (X (t) ), ... ,9P (x (t )), x (t )T, 1f .

Then, (5.19) can be written in the form

h(x(t), 0) ~ Oti>(t).

(5.22)

(5.23)

We now evaluate the probability distribution P(Xk' ZlOk) at EM iteration k in

(5.18). This may be evaluated according to

P(Xk' Z!Ok) P(ZIXk, Ok) P(Xk!Ok)

ex: P(ZIXk, Ok)

2In the following simulations, they were all assigned to the identity matrix.

(5.24)
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where the second line follows because the prior distribution of the states is assumed

to be independent of the unknown parameters, and is assigned a uniform distribution.

The distribution p(zlxk, (h) is easily obtained as the likelihood distribution obtained

using the observation equation (5.2).

The log-likelihood logp(zlxk, (h) of a single fully observed data point z(t) under

the model at EM iteration k, using (5.23) and (5.24) is then given as

By substituting the model log-likelihood into (5.18), and combining the terms for

t = 1, ... ,L, the relevant M-step optimization is then

By denoting the expectation over the posterior distribution P(Xk(t)!Z, (h) by 0,
the objective function then becomes

(5.27)

It is shown in the Appendix that the solution to the above is given by

L L

Q ~ Qk IJ ~ ~ \ Z(t)ZIl (t») - ~ \ 9if>k(t)ZH (t»)

(5.28)

(5.29)

Thus, given the expectations in the angular brackets, the optimal parameters can be

obtained by solving a set of linear equations.

The expectations above are evaluated using the particle filter. Given the computed

particles xkz
)(t) and using the approximation (5.8) for the posterior distribution, the
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expectation of any function f (x) can be approximated in a manner similar to that of

(5.14) by

N

(f(x)) =1f(Xk(t))p(Xk(t)lz, (h)dxk(t) ~ I: wk~)(tIL)f(xk~)(t)).
X ~=1

(5.30)

The number P of Gaussian kernels is chosen empirically, so that the kernels are

positioned sufficiently densely over the region of support of the state variables.

Initialization of the EM Algorithm: The initial parameters 01 must be

chosen with some care, otherwise the EM algorithm may not converge. In the ex­

periments described in the following sections, successful results were obtained by

assigning the Gaussian kernel coefficients m p to equal values, the kernel centers cp to

a uniformly-spaced grid, and the kernel covariance matrices Sp to the identity. (The

parameters cp and Sp are held fixed throughout the EM iterations.) The matrix A

is also assigned to be an identity (padded appropriately with zeros), and the bias b

to zero. Given this initial 0, an E-step was performed to obtain the initial states,

Xo(t), t = 1, ... ,L.

5.3.3 Summary

Here we give a step-by-step overview of the proposed EM-PF algorithm:

• Initialization: (k = 1) Given a set of measurements, z = {z(t), t = 1, ... ,L},

initialize the parameter vector 0 1 to suitable values, as described above. Perform

an initial E-step to obtain xo(t), t = 1, ... ,L.

• Iterate the EM Algorithm: for k = 2,3, ...

- E-step: In the E-step, we estimate the states Xk(t) using the parti­

cle filtering approximation PN(Xk(t) Iz, Ok) to the posterior distribution

p(Xk(t)lz, Ok) with the most current model. More detail is given as fol­

lows:
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* Initialize the posterior distributionp(xk(1)lz(l), (h) at the current EM

iteration k using the Metropolis-Hastings MCMC method, described

in Sect. 5.3.1. The required proposal density q(·I·) for the MH-MCMC

algorithm is chosen to be a Gaussian distribution with mean equal to

the previous state x(i-l) and variance chosen so that the support of

the function covers adequate space around the current state. Set the

filtering weights wit\t) = 1, i = 1, ... ,N.

* propagate p(xk(t)lz, (h) for t = 2,3, ... , L using the particle filter.

The approximate posterior distribution PN(Xk(t)lz, (h) for the fixed­

interval smoothing case is given by (5.12) as a function of the smooth­

ing weights wii)(tIL). These weights are propagated to the next time

step by the following procedure: first the jiltering weights w( t) (t - 1)

are propagated to time t using (5.9) and (5.10). Then, the filtering

weights are converted to the smoothing weights wit)(tIL) using the

algorithm surrounding (5.13).

* The likelihood p(z(t) IXk(t)Jh) used in (5.9) is given from the MoG

model (5.19), knowing the statistics of n. The form of prior distri­

bution p(x(t + l)lx(t)) also used in (5.9) depends on the underlying

physics of the model, as determined by (5.2). Examples are given in

Sects. 5.4 and 5.5.

* Once the smoothing weights wit)(tIL) are available, an approximate

conditional mean estimate of the states Xk(t) is given at each time

through (5.14).

~ M-step: The approximated states with their corresponding measurements

are then used in the M-step to re-estimate the parameters of the MoG,

i.e., the parameter vector ()k+l and the model noise covariance Qk+l using

(5.28) and (5.29) respectively. These estimated parameters are used in
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the next E-step. The necessary expectations in these two equations are

evaluated using (5.30).

In the following two sections, we apply the proposed EM-PF method to solve the

bearing-only tracking problem with uncertain model parameters, and the so-called

sensor registration problem in a multi-sensor scenario.

5.4 Bearing-only Tracking

5.4.1 Problem Statement

We apply the EM-PF algorithm to a bearing-only target tracking problem in the

presence of sensor bias. Even though known structure which may be exploited does

exist in the observation model h(x, 0) in this case, here we choose to ignore it, and

model h(·) as a mixture of Gaussians. This is done to demonstrate that useful state

information can be estimated with limited knowledge of the model.

The problem consists of a linear state transition and a nonlinear measurement

process. The problem is defined in [13]. In this scenario, a platform with a sensor

moves according to the discrete time equations:

t = 1,2, ... (5.31)

where xp(t) and Yp(t) are the average platform position coordinates, and the per­

turbations ~xp(t) and ~yp(t) are assumed to be mutually independent zero-mean

Gaussian white noise sequences with variances r x and r y, respectively. The average

(unperturbed) platform motion is assumed to be horizontal with constant velocity.

Its position as a function of the discrete time t (in meters) is:

(5.32)
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where al and a2 are constants.

It is assumed a target moves on the x-axis according to

x(t + 1) = F(t)x(t) + wet) (5.33)

where:

F(t) = [~ :] (5.34)

and Xl and X2 denote the position and velocity of the target, T = Is is the normalized

sampling period, and wet) rv N(O, ~w), where

[~3 ~2]
~w=q

T2 T
2

and q is a scalar. The sensor measurement process is:

where

(5.35)

(5.36)

h(xp(t), Yp(t), Xl(t)) = tan- l (~lP(t) () (5.37)
Xl t - Xlp t

is the bearing between the horizontal and the line of sight from the sensor to the

target, and the sensor noise vs(t) is zero mean white Gaussian with variance rs. The

sensor noise is assumed to be independent of the sensor platform perturbations. Also

(3 is the unknown bias of the measurements.

The estimation of the target's state is performed using only the measurements

(5.36).

The platform location perturbations induce additional errors in the measurements.

The effect of these errors is evaluated by expanding the nonlinear measurement func­

tion h in a Taylor series about the average platform position. The resulting measure­

ment process can then be written as:

(5.38)
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where the equivalent measurement noise v(t) is zero mean white Gaussian with vari­

ance given by

(5.39)

Notice that the variance of the equivalent measurement noise is time varying. For

more details on modeling the new measurement process refer to [13].

In the following, we use the EM-PF algorithm to track the target corresponding

to the uncertain observation model which has been discussed. This method ignores

any known structure in the model. No doubt better performance could be achieved if

a method which exploits the model structure of (5.38) were used, where Ylp(t), Xlp(t)

and (3 were treated as unknown parameters. Despite this fact, this example suc-

cessfully demonstrates that the EM-PF method can be applied to the problem of

bearing-only tracking with model uncertainty in the form of sensor bias. The exam­

ple also demonstrates that the EM-PF method can be successfully applied to a range

of problems where little is known about the structure of the observation model.

5.4.2 Simulation Results

In this simulation scenario, the parameter values are listed in Table 5.1. The mea­

surements are biased by a value of (3 = 0.5 radians (see Figure 5.2).

It is important to compare the performance of the optimal smoother and that

of the proposed EM-PF algorithm. In general, the optimal smoother is analytically

intractable or prohibitively expensive to run. However, even if the optimal smoother

is impossible to run, is still possible to determine the performance of the optimal

smoother in terms of some performance criterion such as the mean-squared error

(MSE). Indeed, if we resort to the computation of the posterior Cramer-Rao lower

bound (PCRLB) as described in [16, 95], we can determine the achievable JVISE ofthe
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Table 5.1: Parameters for the bearing-only tracking simulation example.

Parameter symbol Meaning
T x variance of ~xp in (5.31)
T y variance of ~Yp in (5.31)
al see (5.32)
a2 see (5.32)
q covariance scalar in (5.35)
Ts measurement noise variance in (5.38)
Xo initial condition for the state
P Number of Gaussian kernels in the MaG model
L Number of observations
N Number of particles
J Number of sensors
!vI Number of state variables

Value
1m2

1m2

4 m/sec
20 m

0.01 m2/sec3

5.24 x 1O-3rad2

[80,lf
20
21
200

1
2

15,---~-----r----~--~-,

05

20155
OL-----'-----~----'-----~----!

o

Figure 5.2: Unbiased, noise-free but perturbed measurements obtained from (5.36)
with (3 = 0 (bottom), and the biased, perturbed, noisy measurements from (5.38),
that are input to the algorithm (top).
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generally intractable optimal smoother. More importantly, we can obtain a theoretical

benchmark for any other practical suboptimal smoothing algorithm.

Formally, the PCRLB for fixed-interval smoothing can be stated as follows:

(5.40)

where M k is the MSE correlation matrix and Jr;l denotes a matrix which can be

recursively computed as described in [16]. We stess that Xk(t) need not be an unbiased

estimator, and that (5.40) is a matrix inequality in the sense that M k - Jr;l is a

positive semi-definite matrix. In general, (5.40) provides a lower bound on the MSE

of the considered estimator Xk(t).

Figure 5.3 shows the position and the velocity tracking trajectories, respectively,

over four successive iterations of the EM-PF algorithm for the bearing-only tracking

problem for a typical run. Also, Figure 5.4 shows the root MSE error for tracking

the position and velocity of the target over 50 Monte-Carlo runs, respectively. The

figures represent the error for four consecutive iterations of the algorithm.

Figure 5.5 shows the position and velocity root MSE's of the EM-PF algorithm

at the fourth iteration for the same run. Also shown are the corresponding PCRLB

curves. In this case, the PCRLB assumes the model is known, except that the biases

are unknown random variables, constant over the observation interval. It is noted that

the performance ofthe EM-PF root ]VISE is worse than the PCRLB. This discrepancy

is to be expected, since the PCRLB results correspond to a known observation model,

(except for the bias), whereas the EM-PF algorithm assumes no knowledge of the

model. Also, there are errors in the MoG and particle filter approximations. As can be

seen, the EM-PF algorithm is capable of managing uncertain dynamics by identifying

them, and then using this information for better estimation of the states. Although

the simulation results are provided for Gaussian nonlinear measurement dynamics,

the EM-PF algorithm is nevertheless capable of handling the non-Gaussian case.
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Figure 5.3: Position (a) and velocity (b) tracking trajectories for the EM-PF algorithm
over four successive iterations.
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Figure 5.4: Root MSE of the position (a) and velocity (b) state estimates vs. time
over 50 ~Ionte-Carlo runs of the EM-PF algorithm for four iterations.
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Figure 5.5: Root MSE of the position (a) and velocity (b) state estimates vs. time of
the EM-PF algorithm at the fourth iteration, along with the corresponding PCRLB
curves.

We also present results in Figure 5.6 showing root MSE vs. observation noise

variance (q in (5.35)) averaged over 50 simulation runs. We can see that the root

MSE increases relatively smoothly with increasing noise variance until a threshold

is reached at a noise variance value of about 10-2
, beyond which the method breaks

down. The root MSE does not steadily decrease to zero with decreasing noise variance,

due to the errors in the MoG model and the error in the particle filter approximations.

We now compare the performance obtained from the EM-PF algorithm with the

interactive multiple model (IMM) approach [13] for the same bearing-only tracking

problem, where each model uses an extended Kalman filter (EKF) with a different

range of bias3 . In the following experiment.s, we used 16 models, whose corresponding

bias values are uniformly distributed over 0 to 1 radian. The various parameters

3Experiments were also conducted using a conventional EKF, using a model which did not in­
corporate bias. In this case, the track loss rate approached 100%.
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RMSE Error In Velocity and Posl!lon Estimation vs Measurement NOise
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Figure 5.6: Root MSE vs. observation noise variance for the bearing-only tracking
problem.

describing the problem were the same as those for the EM-PF case, and are given in

Table 5.1.

Figure 5.7 shows the position and velocity estimation performance for the IMM

algorithm. The corresponding RMSE's are shown in Figure 5.8 over the time interval

[0,40]s. The RMSE's for the interval [20, 40]s are shown in Figure 5.9.

It may be observed that, over the interval [20,40]s after which the IMM method

has acquired track, the performance of the EM-PF and IMM algorithms are roughly

equivalent. However, it may be observed that the IMM model requires about 20 time

steps to acquire track, because of the time required to assess the individual model

probabilities and determine the winner. However, the EM-PF approach, due to its

MCMC initialization procedure, requires virtually no time for acquisition. Further,

any approach using EKFs must have available an accurate observation model, which

is not required for the EM-PF method.

It is straightforward to modify the proposed EM-PF algorithm so that it can



350

5.5. SENSOR REGISTRATION

POSItion Estimation by IMM-EKF
400'---~-~~-~~-;===:=C===;::=j1

I actual position
IMM-EKF

300

250

1200
c
o

~ 150
a.

100

50

-500'---~-~10---L15-~20'----~25=------::3~0 -3~5--"40

Tlme(s)

(a)

181

Velocity Estimation by IMM-EKF
25'---~-~~-~-~==C=;=;==j]

I actual velocity
IMM-EKF

20

~15

5
~
(j
o
~ 10

oo'----~-~10--:':15,----~20::-----::2'::-5 -3~O-c:':35---'40

Time (s)

(b)

Figure 5.7: Position and velocity estimates for the IMM-EKF algorithm, applied to
the bearing-only tracking problem.

handle time variations in the model parameters (). In this vein, a hypothetical exper­

iment was conducted where the bias changed sign half-way through the observation

record. It was observed that the EM-PF method quickly adapted to this change in

model parameters.

5.5 Sensor Registration

We first introduce the fundamental idea of the sensor registration problem. An ex­

ample of this problem is in the tracking scenario where multiple targets are being

tracked by multiple sensors. The locations of the sensors are determined by a Carte­

sian coordinate system, while measurements from the sensors are obtained in polar

coordinates. To properly combine the measurements in a multisensor scenario, it is

required to transform the measurements into a common reference frame free from

sensor registration errors. In a multi-sensor scenario, sensor registration errors can
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Figure 5.8: Position and velocity estimate RMSEs for the IMM-EKF algorithm, ap­
plied to the bearing-only tracking problem over the time interval 0 to 40s.

cause significant error in the target location. Biased measurements, for example, can

increase estimation error or even corrupt the estimation process completely.

Bias estimation is inevitable in current multisensor estimation scenarios. The

classical approach to mitigate this problem is to firstly transform the measurements

into a common coordinate system, estimate the biases by a batch algorithm and

then remove the bias from the subsequent measurements. The EM-PF algorithm can

be applied in this regard. The EM-PF algorithm may be considered similar to the

recently reported method called maximum likelihood registration (MLR) [81] that

indirectly estimated sensor biases and removes the effect of them in the estimation

process.

In surveillance applications, it is known that the stereographic projection of three

dimensional data onto a two-dimensional plane introduces error in sensor registra­

tion [81]. We overcome this problem using geodetic transformations for mapping the

sensor measurements into the earth centered earth fixed (ECEF) coordinate system.
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Figure 5.9: Position and velocity estimate RMSEs for the IMM-EKF algorithm, ap­
plied to the bearing-only tracking problem, for the time interval from 20s to 40s.

Sensor registration is then performed in the ECEF coordinate system. The perfor­

mance of the EM-PF algorithm is determined using simulations based on a scenario

presented previously in [81].

5.5.1 Problem Statement

The problem definition provided in this section is based on the presentation in [81].

The state vector x (t) of a moving target at time t consists of the three-dimensional

position of the target defined in ECEF coordinate system:

x(t) = [X(t) Y(t) Z(t)]T. (5.41)

The origin of the ECEF coordinate system is at the center of the Earth. The X

axis is extends from origin to the intersection of the prime meridian (0 0 longitude)

and the equator (0 0 latitude). In the right-handed coordinate system, the Y axis

extends from the origin to the intersection of the 900 longitude and the equator. Also
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the Z axis passes through the origin and the north pole (90 0 latitude).

Consider AI sensors located at (Lm,\n, am) (m = 1, ... ,11,1), where Lm is the

geodetic latitude, Am is the longitude and am is the altitude above the reference ellip­

soid, in the geodetic coordinate system. At time instant t, the mth sensor measures

the position of a common target in terms of a three-dimensional measurement vector

m = 1, ... ,AI, (5.42)

where M is the number of sensors, Pm is slant range, 1m is azimuth (measured clock­

wise from North), and Em is elevation, each with respect to the mth sensor. The

registration vector for each sensor also consists of the corresponding biases, i.e.,

(5.43)

In order to register the sensor measurements in a common coordinate system,

we transform the sensor position data into the ECEF coordinate system. Given

the sensor position (Lm, Am, am) the following equations give the ECEF coordinates

(Xm,Ym, Zm):

(c + am)' cos Lm. sin Am

in which we adopt an wes - 84 ellipsoid5 with parameters:

(5.44)

(5.45)

(5.46)

c a/y'l - e2 sin2 Lm (5.47)

e - 0.0818 (5.48)

a 6378137.0 m. (5.49)

"Note that the adopted notation implies that non-time varying coordinates specify sensor loca­
tions, whereas time varying coordinates specify target locations.

5The world geodetic system (1984) (WGS-8el) is a standard for earth coordinate systems. The
WGS-84 ellipsoid minimizes the error between itself and the true shape of earth over a specific region
of interest.



5.5. SENSOR REGISTRATION 185

Since the state vector consisting of the position of the target (as well as the

position of sensors) is defined in EeEF coordinates, and the measurements are in

polar coordinates, it is difficult to write the explicit dependence of the measurement

functions h on the state vector. Instead, we proceed to transform the state vectors

into polar coordinates and model the measurement process in this system. Define the

target state vector in the local tangent plane of sensor mas:

(5.50)

where Em(t), vm(t) and vm(t) denote east, north, and up axes at sensor m. These

components are computed in terms ofthe state vector given by (5.41) and the position

of the sensors as follows:

Em(t) - - (X(t) - X m)sin Am + (Y(t) - Ym) cos Am,

vm(t) - (X(t) - X m)sin Lmcos Am - (Y(t) - Ym)sin Lmsin Am + (Z(t) - Zm) cos Lm

vm(t) (X(t) - X m ) cos Lm cos Am + (Y(t) - Ym)cos Lmsin Am + (Z(t) - Zm) sin Lm-

Now we can express the nonlinear measurement functions (hmj ; m = 1, ... , M; j =

1,2,3 for sensor m and the three measurement components, in terms of the state

vector (5.50) as follows:

hm1 (xm(t))

hm2 (xm(t))

JE;" (t) + v~ (t) + v~ (t),

-1 (Em(t))tan -(-) ,
V m t

. -1 { Vm(t) }@n .

JE;" (t) + V;r (t) + V~ (t)

(5.51)

(5.52)

(5.53)

Having prepared the necessary definitions and assuming that the location of the

static sensors are known perfectly, we can now define the measurement process for

sensor mas:

m = 1, ... , lvI, (5.54)
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where zm(t) E R3
xI consists of the three measurement components range (p), az­

imuth (,), and elevation (E) of the target, respectively. Also, V m E R3
X I is the ran­

dom measurement noise vector assumed to be i. i. d. white noise, mutually independent

from component to component, with covariance matrix ~Z1n = diag(a-~m' a-~1n ' a-;m)'

The nonlinear functions hmj , j = 1,2,3, are defined in (5.51) - (5.53). For lYI sensors

measuring the location of the common target, the measurements from (5.54) can be

combined into a single equation as follows:

Z(t) = h (x(t)) + (3 + v(t), (5.55)

where v (t) = [VI (t)T ... VM(t)TjT is the random measurement noise vector assumed to

be an i. i. d. white noise process, mutually independent from sensor to sensor. The

measurement covariance matrix is ~z = diag(~zl' ... , ~Zl\I) E R3i\IX3M. The vectors

x(t) = [XI(t)T ... Xi\I(t)TjT and z(t) = [ZI(t)T ... Zi\I(t)TjT are the state variable

and the noisy output measurement vectors for the AI sensors, respectively. Also,

the vector valued nonlinear function h mJ , m = 1, ... , AI; j = 1,2,3 is assumed to be

known for the AI sensors and the three values of the measurement vectors zm(t) =

[Pm (t) 1m(t) Em (t) jT . The vector (3 = [,Bf... ,B~ jT E R3M contains the unknown

biases for the Al sensors that is assumed to be deterministic, time-invariant and

independent of the state vector x(t).

The state process is assumed to be modelled by a linear first-order Markov process

as follows:

X(t + 1) = x(t) + w(t), (5.56)

where w(t) E R3 is an i.i.d. noise process with covariance matrix R = diag(a-.r' a-y, a-z ),

and x(t) = [X(t) Y(t) Z(t)jT is position of the target in the ECEF coordinate sys­

tem.

Given L measurement vectors z(t), t = 1, ... , L, the problem is to remove the

effect of the measurement biases (3 and to estimate the states x(t), t = 1, ... , L
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We implement exactly the same scenario in [81] to compare the performance of the

EM-PF algorithm with the recently reported MLR algorithm for sensor registration

example. The details of the simulation scenario are given here from the stated refer­

ence: There are two ground-based sensors measuring the position of a moving target.

The geodetic coordinate of sensors, (Lm,Am,CXm), are: (-12°30',131°6', 15m) for sen­

sor 1 and (-14°18',129°36', 10m) for sensor 2. The target is flying from geodetic

coordinate (-12°,129°30', lOkm) to (-13°30',130°30', 10km), then it makes a mild

turn and finished at (-14°,131°12', 10km). A total of J( = 120 synchronous pairs of

measurements are collected. We assign O"x = O"y = O"z = 102 m 2/s4
.

The true sensor biases used in simulations are as follows. Sensor 1: !:1P1 = 2.5 km;

!:1'1 = -2.5°; !:1E1 = -0.5°. Sensor 2: !:1P2 = -1.8 km; !:1'2 = 3°; !:1E2 = 1°. Mea­

surement noise is zero--mean Gaussian with covariance I:zm = diag(O"~m' O"~m' O";,J, for

m = 1,2. The standard deviations of the measurement noise used in the simulations

are [81]: O"PI = O"P2 = 100 m; O""'tl = 0"'"'(2 = 0.2° and O"q = O"f2 = 0.25°.

Figure shows the true trajectory of the target as well as the initial estimates of the

target position by the two sensors in geodetic coordinates. The differences between

these trajectories are the result of unknown bias values for the sensors. Figure (a)

shows these trajectories after the application of the EM-PF algorithm for sensor

registration. It can be seen from this figure that the EM-PF algorithm is capable of

compensating for the effect of the bias errors in track estimation after four iterations.

Figure (b) shows the RMS error of the position estimation for 100 Monte Carlo

runs of the EM-PF algorithm. The algorithm is successful in compensating the effect

of the unknown bias terms existing in the two sensors. It can be seen from the figure

that the estimation error converges to a small value after four iterations.
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Figure 5.10: True (circle) and biased (dot) target trajectories estimated by two sensors
(star)

The performance of the EM~PF algorithm is virually identical to that of the MLR

method, shown in [81] for the same simulation scenario. However, unlike the J\lLR

method, the EM-PF algorithm can be applied to non-Gaussian noise. Further, the

EM-PF method is general technique, applicable to a wide range of problems, which

include linear or nonlinear models and Gaussian or non-Gaussian noise in the presence

of model uncertainty.

5.6 Conclusions

An EM-type algorithm for solving a joint estimation-identification problem for nonlin-

ear non-Gaussian state-space estimation when the observation model is uncertain, is

proposed. The expectation (E) step is implemented by a particular type of particle fil­

ter that is initialized by a Monte-Carlo Markov chain algorithm. Within this step, the

posterior distribution of states given the measurements as well as the state vectors are

estimated. Consequently, in the maximization (M) step, the nonlinear measurement

process parameters are approximated using a nonlinear regression method for adjust­

ing the parameters of a mixture of Gaussians (MofG) model. The model parameters
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Figure 5.11: (a) True and registered target trajectories after application ofthe EM-PF
algorithm, and (b) RMS position error for two sensors vs. iteration number

are determined by solving a linear system of equations. The proposed method, which

we refer to as the EM-PF algorithm, is used to solve a highly nonlinear bearing-only

tracking problem with uncertain (biased) measurements. It is shown that the algo­

rithm is capable of accurately tracking the state vector while identifying the unknown

measurement dynamics. Also, the EM-PF algorithm is applied to solving a sensor

registration problem in a multisensor fusion scenario. It is shown that the algorithm

is successful in compensating the effect of unknown bias terms existing in the sensors

in the target tracking scenario.

By using a nonlinear regression method based on fitting a mixture of Gaussians

to the observations, the algorithm is capable of approximating a wide range of non­

linearities in the measurement and state transition processes. Also, implementing the

E-step with a particle filter provides the possibility of employing the algorithm in the

presence of non-Gaussian noise, e.g., with impulsive or multi-modal distributions.
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Chapter 6

Conclusions

6.1 Conclusions

The main theme of this dissertation is statistical estimation. We studied three differ­

ent but related applications of iterative estimation algorithms. In what follows, we

briefly highlight the main contributions of the thesis in chronological order of study.

6.1.1 Joint identification and estimation using Bayesian fil­

ters and MCMC

The application of simulation-based Bayesian estimation methods (e.g. particle filters

and MCMC methods) were studies to extend the role of the EM algorithm for joint

estimation and identification in non-linear state estimation problems. The proposed

algorithm was a variation of the expectation-maximization (EM) algorithm. The

E-step was implemented by a particle smoother whose importance distribution was

initiated by the IVIGI'vIC sampling, and the maximization was a nonlinear regression

using a mixture of Gaussian kernels. We solved two nonlinear problems to examine

the performance of the algorithm- a bearing-only tracking problems with uncertainty

191
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in measurement model and registration in multi-sensor fusion [108] [107]. The results

compared to previously proposed methods like IMM and EKF and showed superior

performance.

The resulting iterative estimation algorithms were used to tackle an unconven­

tional joint estimation and identification non-linear filtering problem. On one hand,

using a particle-filter initialized by the MCMC algorithm provided the possibility of

dealing with non-Gaussian noise. On the other hand, a nonlinear regression method

simplified the problem of dealing with a nonlinear measurement model. The proposed

algorithm implemented a general solution for joint estimation and identification in

nonlinear systems.

6.1.2 Wireless MIMO blind channel estimation

The application of iterative methods for estimation with incomplete data from a ge­

ometrical point of view was studied, with application to wireless channel estimation.

Our study of the information geometry (differential geometric approach to statistics)

resulted in a novel and extremely fast algorithm for semi-blind MIMO channel es­

timation [112][109]. A simple approximation of the input constellation space in a

MIMO wireless communications system by a Gaussian distribution was used with

this approach. This approximation, when combined with a double-projection on the

set of probability distributions, led to a major improvement in the quality of channel

estimation. We improved the speed of previously proposed methods by a consid­

erable margin, while the performance of our algorithm was comparable to previous

approaches [113]. This experience showed the importance of using sophisticated geo­

metrical tools in estimation.
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6.1.3 Distributed estimation
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The investigation of iterative estimation algorithms for distributed estimation re­

sulted in new contributions in information theory, relating to study of sufficient and

necessary rates in distributed estimation. It also opened new insights in using low­

complexity linear codes for distributed estimation.

Sufficient and necessary rates: A major part of the third problem considered

was an effort to answer the following question "what if the purpose of communications

in a distributed environment is parameter estimation rather than source reconstruc­

tion?" The first question that needed to be answered and perhaps the most obscured

was: "whether the code rates in distributed estimation are different than the con­

ventional communications (e.g. Slepian-Wolf rates)?" Surprisingly, the answer was

found to be negative as reported recently [114]. The proofs ofthe theorems were based

on "large deviation theory" (more specifically Sanov's Theorem) and "the method of

types". The idea was to employ a universal coding scheme by distributed binning,

and to compute the sufficient and necessary rates for transmitting the joint-type of

the pair of sequences.

Determination of the region of achievable rates for efficient estimation of a general

source is an extremely difficult problem. This fact is the motivation for proposing

methods that provide practical guidelines for designing distributed estimation sys­

tems. One example of such approaches proposed in [88] for binary symmetric sources.

Given any source parameter for binary symmetric source, this theorem determines

the region of achievable rates for efficient estimation of the source. We generalized

this theorem for a larger class of sources. More specifically, we provide a lower bound

on the region of achievable rates (i.e. existence of encoder/decoders for attaining

an accuracy equivalent to local estimation) for estimation of sources with a convex

mutual information with respect to the unknown parameter e [110].

LDPC-based distributed estimation with side-information With a given



194 CHAPTER 6. CONCLUSIONS

set of rates, the next important issue was efficient implementation of universal coding

schemes for distributed estimation. Since the correlation channel between the sources

was assumed to be unknown at the joint decoder, the previously proposed distributed

coding schemes were not useful for our purpose. We therefore extended the LDPC­

based coset-coding schemes to the case where the correlation channel were unknown

at the decoder. The basic ideas was to implement the expectation-maximization

algorithm on a factor-graph that includes an LDPC decoding mechanism [115] [111].

6.2 Suggestions for further investigations

6.2.1 Estimation rate-distortion Theory:

One of the open questions in multiterminal estimation theory is how the theory relates

to rate-distortion theory. The most recent works in the field provide a theoretical

framework for the limits of accuracy in distributed estimation when positive rates are

available. The results, however, do not provide a clear and immediate relationship

with rate-distortion theory, for the following reasons. Firstl, the region of achievable

rates are functions of the unknown parameters. Therefore, the region shifts when the

parameter changes, and thus no immediate relation between the region or rates for

efficient estimation and the region of rates in distributed coding can be established.

Secondl, the region of rates as well as the attainable accuracy in estimation are

functions of the test channels chosen. It has been shown in [48] that any particular

selection of the test channels might result in a different region of rates as well as

different limits in attainable accuracy. This is in contrast to the conventional rate­

distortion theory where the region of rates for communications is unique. Therefore,

up to this date, there is no obvious methodology for designing the best estimator with

the best possible accuracy int he distributed estimation context.
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Therefore, an interesting direction for future research is to bridge the gap between

distributed estimation and rate-distortion theory. The main ideas can be related to

an appropriate measure of distortion in sequences, e.g.; their marginal or joint-type,

or loss in Fisher information. This derivation can provide an engineering tool for

designing communication systems for the purpose of distributed estimation.

6.2.2 (Network) Information theory and statistical analysis

Recent advances in information technology have motivated extensive research on net­

work information theory and distributed (e.g. collaborative) communications. As

network technology advances, special purpose communications systems for the statis­

tical analysis of distributed signals and data will emerge. This requires a broad range

of theoretical and applied research, some of which are as follows.

Network information theory and coding: It is known that the Shannon

separation theorem does not hold in general for networks. A theoretical study of

network source-channel transmission problems with a goal of optimizing distributed

universal codes in multiple-access and broadcast networks is needed. The use of

correlated channel codes seems to be promising for such purposes, like multi-casting

over networks and collaborative communications.

On the other hand, special purpose communication systems for statistical analysis

demands a different approach in design. Works on structured random codes, special

purpose sparse codes (e.g. LDPC) and diversity codes (e.g. Fountain codes) for

statistical analysis in networks are promising directions.

Multiterminal estimation and rate-distortion theory: Multiterminal esti­

mation of continuous-valued sources and rate-distortion theory relating to parameter

estimation are still open problems. The subject of this dissertation can be extended



196 CHAPTER 6. CONCLUSIONS

for Gaussian sources, to learn more about the relationship between distributed estima­

tion and distributed coding (e.g. Wyner-Ziv theorem). One approach is to establish

estimation equations in the space of probability distributions, and using the method

of types measure the amount of Fisher information (FI) loss under a limited entropy

rate. The effect of the encoding process on sufficient statistics depends on the form

of the underlying distributions and on the local behavior of the FI, notions that can

be studied by information geometry and statistics.

Methods of information geometry: The applications of information geometry

(IG) for statistical signal and data processing have attracted a great attention re­

cently. Problems involve optimization over the manifolds of probability distributions,

and require careful manipulation of the Fisher and/or Shannon information. For in­

stance, consider source-channel (network) codingand capacity approaching pre-coding

in MIMO systems, or optimal sensory sampling and coding problems. The locality of

the FI (vs. the global Shannon entropy) can be used to design algorithms that behave

differently in various locations of measure space, in order to optimally match to the

local behavior of the source and channel. Information geometrical methods can be

used to combine ideas from the theory of loss, ancillary statzstics and rate-distortion

theory to design distributed signal processing algorithms. These algorithms behave

optimally in terms of the preservation of the FI, while meeting information theoretic

constraints (e.g. entropy, rate, power, delay, randomness and privacy).



Appendix A

Proof of Theorem (1.1.5)

For proving the theorem we begin with some preliminaries. A statistic is defined by a

mapping h : X ~ 5 from random variable X to a random variable S = h(X). Given

PD Q(X; B), this mapping determines the PD q(S; B) = q(h(X); B) governing random

variable S. We define the following:

r(X;B)

p(Xls; B)

Pr(Als; B)

Q(X; B)
q(h(X);B)'
r(X; B)6h(x)(s) for any fixed s E 5,

2::p(X[Y; B), A c X,
:rEA

(A.1)

where 6h(X) is the Kronecker delta function on (5, ds) concentrated on the point h(X),

and A is defined any open subset of the domain of X. Here Pr(Als; B) is in fact the

conditional probability of the event {X E A} given any given S = s value of the

statistic.

197



198 APPENDIX A. PROOF OF THEOREM (1.1.5)

Using these definition, for any open subset B E 5 we have:

l Pr(AJs; 8)q(s; 8)ds r I:p(xls; 8)q(s; 8)ds
JB xEA

Pr(A n h-1 (B))

I: p(x; 8),
xE(Anh-1(B))

Therefore, if A = X (therefore Pr(Als; 8) = 1 for all s E 5), for any set B E S we

have:

l q(y;8) = I: Q(X;8).
xEh-1(B)

For the same set B c 5, we use this equation to compute the following derivative

with respect to 81 :

Eo [D~ log q(s; 8)]

which shows that for B c 5:

l [odogq(s;8)]q(s;8)ds

l o~q(s; 8)ds

Oi l q(s; 8)ds

o~ I: Q(X; 8)
xEh- 1(B)

I: o~l(X; 8)Q(X; 8)
xEh-1(B)

Eo [oJ(X; 8)lh(X)],

Also, for any fixed particular value of statistic s E B c 5:

(A.2)

(A.3)
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From the assumed factorization Q(X; B) = q(h(X); B)r(X; B) we have:

o~l(X; B) = Oi log q(h(X); B) + Otr(X; B).

Therefore,

(AA)

Eo [Oil(X; B)lh(X)] - Eo [odogq(h(X); B)lh(X)]

Eo[o~l(X;B)lh(X)] - Eo [Ot logq(h(X); B)]

Eo [Ot log q(h(X); B)] - Eo [Ot log q(h(X); B) Ih(X) ](A.5)

0, (A.6)

where we used the Eq. (A.2) in (A.5). This shows that Oi log r(X; B) as a function of

X is orthogonal to any function of h(X) (and in particular to OJ log q(h(X); B) with

respect to the expectation inner product defined as:

(<I>, \lJ)o = Eo [<I> (X) \lJ (X)] .

We use this property when we compute the conditional covariance of the score

functions given any particular fixed value of the statistic S as follows (we use the

notation lo = logQ(X; B) and note that S = h(X)):

Eo [ {OtlO - Eo [o~lols]} {oJlo - Eo [oJlols]} Is]

Eo [oJoOjlo\s] - Eo[o~lols]Eo[o)ols]

Eo [Otloo)ols] - Ot1ogq(s;B)ojlogq(s;B), (A.7)

where we used Eq. (A.3) in Eq. (A.7). We now sum up the above covariance over all
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values of statistic S, we have:

APPENDIX A. PROOF OF THEOREM (1.1.5)

Ee[COV[8zle,8JeISJ] J[COV[8i le,8i lel sJ]q(s; B)ds

J[Ee[8zle8zleIsJ - 8i log q(s; B)8] log q(s; B)] q( s; B)ds

J[Ee[8i le8ileIsJ] q( s; B)ds

- J[8i log q(s; B)8j log q( s; B)] q(s; B)ds

Ee[8i le8zleJ - E~ [8z log q(s; B)8] log q(s; B)J

J(B) - Jh(B)

!J.J(B) ,

where E~ denotes the expectation with respect to the induced PD q(s; B). We used the

definition of the Fisher information of the induced distribution in the last equation.

Since the covariance is always positive semidefinite !J.J(B) ;:::: 0, and therefore Jh(B) ::;

J(B).

We now show that the equality holds when h is a sufficient statistic. We substitute

from Eq. (A.4) in Eq. (A.7) we have (the PD's q(s; B) and r(s; B) are denoted as qe

and re, respectively):

Ee[8zle8t leIsJ - 8t log q8] log qe

Ee[{8dog qe + 81 log re} {8j log qe + 8j log re} IsJ

81 log qe8j log qe
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that results into:

Eo [Bi log goB] log gols] + Eo [Bi log ToBj log TO Is]

Eo [B~ log goB) log TO Is] - Eo [B) log goB~ log TO Is]

B~ log goBj log go

B~ log goBj log go + Eo [Bi log ToBj log TO Is]

o- 0 - Bi log goB) log go

Eo [Bi log ToBj log TO IS] ,

where we used the orthogonality property proved in Eq. (A.6). This shows that the

covariance vanishes when Bdog T(X; tI) = 0 for all tI, i, and X. In other words ~J(tI) =

o and the equality in achieved. This conditions is equivalent to the sufficiency of

statistic S = h(X).
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Appendix B

Proof of Lemma (2.3.8, part (a))

Let (Xi, y~) be i.i.d rv Qo(X, Y) = Q(X)Q(Y). We define the joint typicality of the

pair of sequences (xn, yn) with respect to Q(X, Y) iff the sample entropies are close

to their true values, i.e. for any t > 0:

1-~lOgQ(xn) - H(X)I < t, (B.8)

I-~ logQ(yn) - H(y)1 < E, (B.9)

I-~ log Q(xn
, yn) - H(X, Y)I < E. (B.1O)

We wish to calculate the probability (under the product distribution) of seeing a

pair (xrl,yn) that looks jointly typical of Q, i.e. (xn,yn) satisfies Eqs. (B.8)-(B.I0).

Thus (xn , yn) are jointly typical with respect to Q(X, Y) if its joint-type is a member

of the set E, i.e. ?Xy(xn, yn) E En Pn(X, Y) defined as follows:

E = {P(X, Y): - L P(X, Y) log Q(X) - H(X) < t,

X"lJ

- L P(X, Y) log Q(Y) - H(Y) < t,

x,y

- L P(X, Y) log Q(X, Y) - H(X, Y) < t}.
x,y
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Using Sanov's theorem, the probability of set [; is:

where P* is the distribution closets to Qo in relative entropy. We wish to find P* E E

that is closest to Qo in KL distance. For this, we need to solve the following constraint

optimization:

P* = argminD(P II Qo),
PEE

For sufficiently large n we assume f = 0. Using Lagrange multipliers, we construct

the functional:

J(P)
P(X)

- L P(X) log Q(X)
x

+ Ao(LP(X, Y)logQ(X) - H(X))
x,y

+ Al (L P(X, Y) log Q(Y) - H(Y))
x,Y

+ A2(L P(X, Y) log Q(X, Y) - H(X, Y))
x,y

+ A3 LP(X),
x

By taking the derivative with respect to P(X) and renaming the Lagrangian

multipliers, the solution is in the form of:

By checking the Karush-Kuhn-Tucker (KKT) conditions ([17], page 243), it is

easy to verify that this solution is unique. Moreover, by substituting Qo(X, Y) =

Q(X)Q(Y) in the solution it is easy to verify that P*(X, Y) = Q(X, Y). This shows

that that as f ---+ 0, P* is the joint distribution Q and Qo is the product distribution.
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In other words, the distribution in E closest to the product distribution Qo(X, Y) =

Q(X)Q(Y) is the joint distribution Q(X, Y). Thus:

Pr(E) Q~(E) :=:; 2-nD(Q(X,Y)IIQo)

2-nD(Q(X,Y)IIQ(X)Q(Y))

2-nI(x,Y) .
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Appendix C

Proof of Theorem 3.6.2

First, let:

1+p
Pr(Xl = Olyd = -2- ----t P = 2Pr(xl = 0IYl) - 1

1+q
Pr(x2 = 0IY2) = -2- ----t q = 2Pr(x2 = 0IY2) - 1

Then:

Pr(Xl = 0IYl, Y2)Pr(x2 = 0IYl, Y2)

+ Pr(xl = 1IYl,Y2)Pr(x2 = 1IYl,Y2)

- Pr(xl = 0IYl)Pr(x2 = 0IY2)

+ Pr(xl = 1IYl)Pr(x2 = 11Y2)
1+p1+q 1-p1-q

- -2---2- + -2---2-

1 +pq
2 '

hence:

Similarly by induction:
n

2Pr(xl + .0. + X n = 0IYl, ... , Yn) - 1 = II(2Pr(xt = 0IYt) - 1). (Coll)
i=l

207



208

Now since:

we have:

APPENDIX C. PROOF OF THEOREM 3.6.2

L -1 l
2Pr(x2 = 0IY2) - 1 = L2 = tanh~, (C.12)

2+1 2

with L2 = L(x2 IYt) and l2 = logLi . By substituting Equation (C.12) in Equation

(C.lI) the proof is for the case when 8i = 0 is complete. The proof for the case 8 2 = 1

is obvious by noticing that Pr(x2 = 11Y2) = Pr(x2 = 0IY2) which in turn inverts the

sign of the likelihoods.
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IGID and the Variational EM

algorithm

In this Appendix we prove the equivalence of the IGID and EMS algorithms by

introducing a variational version of the EM algorithm originally developed in [82].

Suppose that L input-output pair of observations (Xl, YI), ... , (XL, YL) are available.

The standard maximum likelihood estimation aims to maximize the log-likelihood of

the complete-date defined as:

L L

£ = log II q(Yk' Xk) = L log q(Yk' Xk).
k=l k=l

(D.13)

However, since the corresponding inputs of the observations are not available in the

blind ML estimation problem, the procedure is based on only the output observations,
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which are also referred to as the incomplete-data:

L

.c = log II q(Yk)
k=l

L

Llogq(Yk)
k=l

L

L log L q(Yk' x)
k=l x

LP(Y) log L q(y, x),
y x

(D.14)

(D.15)

where the summation over x in (D.14) represents the set of all possible input values

corresponding to the output observation. Also,(D.15) is obtained using the definition

of the emp~rical distribution as defined in (4.5).

Using an arbitrary variational distribution over the input space, u(xly) we obtain

a lower bound on the log-likelihood as follows:

.c = LP(Y) log L u(xly) ~~~I~? (D.16)
y x

> L LP(y)u(xIY) log ~~~I~? (D.17)
y x

'""'"" _ p(y)q(y,x)
~~p(y)u(xly)logp(y)u(xly)

y x

L LP(y)u(xIY) log u(~iY')~~ ) + L LP(y)u(xIY) logp(y)
y x YPY y x

L LP(y)u(xIY) log u(~iY')~~ ) + LP(Y) logp(y)
y x YPY y

L LP(Y, x) log q~y, x~ + LP(Y) logp(y)
y x P Y, x y

-D(p II q) - H(p(y))

.6.. F(p, q), (D.18)

where H(p(y)) is the entropy of the observed empirical distribution. Eq. (D.16) is
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obtained from (D.17) using the Jensen's Inequality and the fact that the log function

is convex.

The EM algorithm consists of two consecutive iterations [82] for maximizing the

lower-bound F (D.18) as follows:

D.1 The E-Step vs. the First Projection

In the E-step, the best variational distribution over the input, u(xly) is computed to

maximize the lower-bound (D.18):

u(xly) arg max F(p, q)
u(xly)

arg max -D(p II q) - H(p(y))
u(xly)

arg min D(p II q).
p

(D.19)

Eq. (D.19) follows from the fact that the entropy ofthe output empirical distribution

H(p(y)) is constant.

Eq. (D.19) shows the similarity of the E-step to the first projection in the

IGID algorithm. It is useful to observe that the solution of the first projection,

i.e. p*(y, x) = q(xly)p(y) achieves the equality in (D.18):

F(p*, q) -D(p* II q(y, x)) - H(p(y))

-D(q(xIY)p(y) II q(y, x)) - H(p(y))

- L L q(xly)p(y) log q~~:y~p~y~ + LP(Y) logp(y)
y x q yqy y

- L p(y) log p((y)) + L p(y) log p(y)
y q y y

LP(y)logq(y) = £.
y



212

D.2

APPENDIX D. IGID AND THE VARIATIONAL EM ALGORITHM

The M-Step vs. the Second Projection

The M-step of the EM algorithm maximizes the lower-bound (D.18) given the ob­

tained distribution u(xly) in the E-step [82]. The maximization is performed with

respect to the parameters of the likelihood function, which is equivalent to finding

the best likelihood distribution q within the family of likelihood distribution Q:

q argmaxF(p, q)
q

argmax( -D(p II q) - H(p(y)))
q

argminD(p II q).
q

This minimization corresponds to the second projection of the IGID algorithm.



Appendix E

EM-based Blind Identification

Algorithms

EM methods have been developed for various blind identification problems [5, 40,

105, 54, 26, 71, 100, 68]. We summarize these the results as follows:

L L

H t+1 = LYkXT(L XXT)-l.
k=l k=l

1 L

Wt +1 = L L (Yk - H t+1 X)(Yk - Ht+1x)T,
k=l

where Ht+l and Wt+l are the new updated estimates of the channel gain matrix and

noise covariance at iteration t and where:

and similarly
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where H t and wt are the channel matrix and the noise covariance from the previous

iteration, respectively. Also pY(Yklx; H t , Wt) is the likelihood function obtained by

using the current values of the parameters H t and wt . These results are given

assuming that the input consists of a finite set of points from constellation set n.

Also since a uniform signalling scheme for the input is considered, the prior input

distribution is Px (x) = C~f where 1\;1 is the length of input vector.



Appendix F

Proof of (4.23)

Defining the Schur complement of M ~ [~ ;] as W ~ Schur(M) ~ A ­

BD-IC, one can obtain the inverse of M by:

[

W-I _ W-IBD-I ]
M-I =

_D-ICW-I D-I + D-ICW-IBD-I

Using the above, it is straightforward to derive the inverse of the block matrix Q in

(4.23).
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Appendix G

Proof of (4.30)

It is easy to show that for Gaussian distributions p = N(O, P E R dXd) and q =

N(O, Q E RdXd):

D(p II q) = trace(Q-1 P) + logdet Q -logdet P - d. (G.20)

Substituting Q-1 and P from Equations (4.23) and (4.29), respectively, in (G.20)

we have:

In addition since

we have

trace(Q-1P) trace(\(1-1Pn)

2trace(\(1-1H pi2)

+ trace(q.-1 + H T\(1-1H)P22 .

det [~ :] ~ <letA. det(D - CK'B),

(G.21)

(G.22)

det Q-1 (G.23)
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Therefore:

APPENDIX G. PROOF OF (4.30)

log det Q = -log det Q-1 = -(log det '11-1 + log det <1>-1). (G.24)

Substituting (G.20), (G.21) and (G.24) in (4.28) gives (4.30).



Appendix H

Proof of (4.31) and (4.32)

From matrix algebra we have [77]:

o(trace(HTw-1H P 22 )) -lHP
oH = 2w 22

o(trace(w-1Pn)) _ pT
ow-1 - n

o(trace(w-
1H pf2)) = P ?HT

ow-1 L

o(trace(HTw-1HP22 )) = HpT H T
ow-1 22

alog det w- 1 = W
ow-1 .

Using these equations to compute the partial derivatives necessary in the minimization

of (4.30) results in (4.31) and (4.32).
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Appendix I

Proof of (4.36)

By definition, P is the covariance matrix of the complete data z = [yT xTV. Therefore

the true values of the blocks P 22 and P ll in (4.29) are equal to 4>, the (true) known

covariance matrix of the source x, and S, the sample covariance matrix of the observed

data y, respectively. From (4.31), we have

P 12 = H*4>.

Using this result in (4.32), we have

P ll = S \]!* + H*4>4>-l4>T (HT)*

H*4>(HT)* + \]!*.

Therefore, there exist values iI and l{I in Q so that

A A T A

S = H4>H + \]!,

which was to be shown.
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Appendix J

Proof of (5.28) and (5.29)

Here we wish to evaluate

L

min L 1p(Xk(t)lz(t), lh)[z(t) - O<I»k(t)]HQ-l[Z(t) - O<I»k(t)]dx + In IQI (J.26)
O,Q t=l x

J.1 Solution for ()k

The problem at hand is equivalent to solving

In taking the expectations, we assume Ok in P(Xk(t) Iz(t), Ok) is held fixed at the value

obtained in the previous iteration. Also, since 0 is independent of x, we can move

the derivative operator inside the expectation. Using the relation [77]

8 H H-(x - As) W(z - As) = -2W(x - As)s
8A

(J.27) becomes
L

~ \ - 2Q-l [z(t) - O<l'k(t)]<I'£, (t) ) = 0
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where the angular brackets denote expectation w.r.t. the distribution p(Xk(t) Iz(t), (h)

and () is the desired estimate of (). This is equivalent to

L

~ ([Z(t) - 6<Pk(t)] <Pi,'(t) ) ~ o.

Eq. (J .28) leads to

L L8 (Z(t)<Pi,' (t)) - 68(<Pk(t)<Pi,' (t) ) ~ 0

from which the result for iJ = ()k+l follows.

J.2 Solution for Q

The problem of relevance in this case is to solve

(J.28)

(J.29)

D

L

D~ ~ ([Z(t) - 6<Pk(t)]HQ-l [z(t) - 6<Pk(t)]) + In IQI ~ o. (J.30)

In this case, the distribution P(Xk(t)\Z(t), ()k) is independent of Q, and Q is in­

dependent of x, so the derivative operation with respect to Q can be moved directly

inside the expectation.

Using the following derivative rules [77]

oaHW-1b
oW

o\W\
oW

(J.30) becomes

L

~ ( _ Q-H[Z(t) 6<Pk(t)][Z(t) _ 6<Pk(t)]HQ-H) +Q H

L

Q 1~ ([Z(t) - 6<Pk(t)][Z(t) - 6<Pk(t)]H)

o

I JxJ , (J.31)
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where Q is the desired solution. The last line follows by postmultiplication of the line
A H A -H A -1

above by Q ,and recognizing that Q = Q . By substituting (J.28) into (J.31),

and distributing the sum and expectation operators amongst the individual terms,

we have

which was to be shown.

(J.32)

o
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