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Abstract 

Quantitative susceptibility mapping (QSM) is a promising technique to study tissue 

properties and function in vivo. The presence of a susceptibility source will lead to a non-

local field variation which manifests as a non-local behavior in magnetic resonance phase 

images. QSM is an ill-posed inverse problem that maps the phase back to the 

susceptibility source. In practice, the phase images are usually contaminated by 

background field inhomogeneities. Consequently, the efficacy and accuracy of QSM rely 

on background field removal. In this thesis, several technical advances in QSM have been 

made which accelerate the data processing and improve the accuracy of this ill-posed 

problem. 

Different background field removal algorithms are analyzed and compared in detail, 

including homodyne high-pass filtering, variable high-pass filtering, sophisticated 

harmonic artefact reduction for phase data (SHARP), and projection onto the dipole field 

(PDF). In these algorithms, phase unwrapping is usually required, which can be time-

consuming and sensitive to noise. To solve this problem, a new background field removal 

algorithm, local spherical mean value filtering (LSMV), is proposed, in which the global 

phase unwrapping is bypassed. This algorithm improves the time-efficiency and 

robustness of background field removal, especially for double-echo data.  

The simplest algorithm to solve the inverse problem is the regularization process using 

truncated k-space division. However, this algorithm induces streaking artefacts in the 
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susceptibility maps. The streaking artefacts can be reduced dramatically using geometry 

constraints. In the k-space/image domain iterative algorithm for susceptibility weighted 

imaging and mapping (SWIM), the geometries extracted from the initial susceptibility 

maps are used to update the data in the singularity regions in k-space. An improved 

version of this algorithm is demonstrated using multi-level thresholding to account for the 

variation in the susceptibilities of different structures in the brain. 

These susceptibility maps could be used to generate orientation independent weighting 

masks, to form a new type of susceptibility weighted image (SWI), referred to here as 

true-SWI (tSWI). The tSWI data show improved contrast-to-noise ratio (CNR) of the 

veins and reduced blooming artefacts due to the strong dipolar phase of microbleeds. 

Finally, the accuracy in estimating the susceptibility of a small object is usually hampered 

by partial volume effects. In this thesis, it is shown that the effective magnetic moment, 

being the product of the apparent volume and the measured susceptibility of the small 

object, is constant and can be used to improve the susceptibility quantification, if a priori 

information of the volume is available. 

In conclusion, the technical improvements presented in this thesis contribute to a better 

data processing scheme for QSM, with accelerated data processing by using the LSMV 

algorithm for background field removal, reduced streaking artefacts in the susceptibility 

maps by using the iterative SWIM algorithm for solving the inverse problem, and 

improved accuracy by proper handling of the partial volume effects using volume 

constraints. 
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Chapter 1 Introduction 

1.1 Background and significance 

Magnetic Resonance Imaging (MRI) provides both structural and functional information 

through magnitude and phase images. The contrast in the images is dependent on the 

sequence design and the associated acquisition parameters. In Susceptibility Weighted 

Imaging (SWI), phase images are combined with magnitude images to enhance the 

visualization of veins, iron (in the form of ferritin or hemosiderin if microbleeds have 

occurred) or calcium (1-3). Although SWI has been widely used for many clinical 

applications, it is hampered by the orientation dependence of phase information, 

especially when high imaging resolution is used (4,5). In that case, there will be errors in 

visualizing the veins and microbleeds. Besides, the orientation dependence of phase 

makes it difficult to quantify the iron/calcium content using SWI. On the other hand, 

susceptibility is known to be (for the most part) independent of orientation (5,6). Thus, 

mapping the susceptibility distribution, the source of phase information, is of great 

interest.  

Quantitative Susceptibility Mapping (QSM) provides a robust means to elucidate tissue 

properties and function through tissue susceptibilities, which are related to the changes in 
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the deposition of paramagnetic (e.g., iron) or diamagnetic (e.g., calcium or myelin content 

in white matter) substances. Susceptibility changes are also related to the changes in the 

oxygenation level of venous blood. As a result, QSM has many potential clinical 

applications, such as the quantification of cerebral iron deposition or calcium (7), 

visualization and quantification of iron loaded biomarkers such as iron loaded stem cells, 

as well as quantification of venous oxygen saturation (8,9). In this section, we shall give a 

brief review of these applications. 

Cerebral iron content can be categorized as heme iron and non-heme iron (16). The 

former is related to hemoglobin and transportation of oxygen, while the latter is related to 

iron storage or deposition, predominantly in the form of ferritin and hemosiderin 

macromolecules which are paramagnetic. Excessive iron deposition in deep gray matter 

structures such as the basal ganglia has been observed in many neurodegenerative 

diseases including: Alzheimer’s disease (10), Parkinson’s disease (11,12), and multiple 

sclerosis (13-16) to name just a few. Increased iron deposition is also present in the 

normal aging process (17-19). Studies have been performed to investigate the relation 

between the measured susceptibility and the absolute iron content using in vitro ferritin 

solutions (20). This relation is further compared and validated with that found in cadaver 

brains, for which the iron content can be measured by both QSM and other quantitative 

methods such as inductively coupled plasma mass spectrometry (ICP-MS) and x-ray 

fluorescence (XRF) (20,21). While the quantification of cerebral iron deposition, 

especially in the basal ganglia structures, helps to monitor the progress of 

neurodegenerative diseases and to evaluate treatment, a temporal profile and normal 
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baseline of the cerebral iron deposition in the normal aging process would facilitate the 

discrimination of the subjects with excessive cerebral iron deposition from normal 

healthy controls. This could be particularly beneficial for the early diagnosis of 

neurodegenerative diseases.  

Using QSM, it is viable to quantify not only the paramagnetic substances, but also 

diamagnetic substances such as calcium. Detection and quantification of calcium has long 

been a topic of interest in MRI. For example, SWI was formerly used to detect 

calcifications in the breast (3). QSM has also been used to differentiate between 

diamagnetic and paramagnetic cerebral lesions (7). Moreover, measuring calcification in 

vessel walls is also of great interest. For example, intracranial arterial calcification has 

been shown to be highly correlated with coronary artery disease for ischemic stroke 

patients (22).  

Another potential application of QSM is to monitor the cerebral 

myelination/demyelination process. This may be useful in studying demyelinating 

diseases such as multiple sclerosis and acute disseminated encephalomyelitis (23). It has 

been shown that the diamagnetic myelin is the major source of susceptibility differences 

between white matter and gray matter including phase and T2
*
/R2

*
 effects (24,25). This 

has been shown by comparing the grey and white matter phase contrast between 

demyelinated shiverer mice and normal control mice using MRI, followed by histological 

staining of myelin. The contribution of myelin content to grey/white matter phase contrast 

was also validated using post-mortem studies (26). Meanwhile, orientation dependence of 

T2
*
/R2

*
 was observed and was attributed to the fibre orientation of myelin content in 
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white matter (25,27,28). This orientation dependence of T2
*
 was the strongest in the optic 

radiation, which is known to have little iron content (27). Susceptibility anisotropy was 

also observed in the deep white matter and a susceptibility tensor model has been invoked 

in an attempt to describe the susceptibility behaviour found in the white matter (6).  

Finally, the measurement of venous oxygen saturation is another important application of 

QSM. It has been shown that the changes in venous oxygen saturation can be reflected by 

the changes in susceptibility(8). Together with the flow information, MRI can be used to 

quantify cerebral metabolic rate of oxygen (CMRO2) and to examine the cerebral 

functional changes in stroke and other neurodegenerative diseases. For example, it was 

shown that the visibility of periventricular veins was reduced in multiple sclerosis patients, 

due to the reduced brain function and reduced utilization of oxygen (hence more 

diamagnetic venous blood) (29). Furthermore, it is of great interest to measure the venous 

oxygen saturation in the spinal cord, in order to study the mechanism of blood flow and 

oxygen regulation (30,31). All of these applications discussed above depend on proper 

reconstruction of the susceptibility map.  

1.2 Review of QSM techniques 

The past few years have witnessed much progress in QSM. Various in vivo data 

acquisition and processing methods have been proposed. The in vivo MR data are 

typically acquired using a gradient echo (GRE) sequence with either single or multiple 

echoes (8,32,33). Accurate quantification of the susceptibility relies on many factors. The 

choice of echo time (TE) will affect the phase image signal-to-noise ratio (SNR) and the 
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level of phase aliasing (8). Meanwhile, T2
* 
signal decay and the blooming artefact at long 

TEs may lead to errors in susceptibility quantification (34,35) due to aliasing of the phase 

at the edge of the structure of interest. Another important parameter in data acquisition is 

the resolution. While low resolution leads to more severe partial volume effects and hence 

a larger error in susceptibility quantification, especially for small objects (35), high 

resolution generally requires a longer scan time and has reduced SNR. Given the 

development in fast imaging methods (36,37), it can be expected that data acquired with 

high resolution will become more and more common in the future. Furthermore, when the 

focus is the veins, full multi-directional flow compensation is required in order to avoid 

the spurious phase component induced by blood flow (mostly in the arteries) (5,8,38).  

In QSM data processing, the two most important steps are background field removal and 

the inverse process used to reconstruct the susceptibility map from the local phase 

information. QSM relies on pristine field (phase) information, which is induced by the 

local susceptibility distribution. The background field, on the other hand, is mainly 

induced by the global geometry such as the air/bone-tissue interfaces and main magnetic 

field inhomogeneity (2,38-40). Background fields lead to phase aliasing and signal decay 

at a long TE. Typically, the background field is removed through high-pass filtering, due 

to its low spatial frequency (2). But high-pass filtering causes inevitable signal loss of the 

local field variation. For a particular object, the signal loss due to high-pass filtering is 

dependent on both the size of the high-pass filter and the size of the object. Newer 

algorithms aim to reduce this signal loss of the local field while effectively removing the 

background field (38,40). One problem with all these algorithms is the loss of information 
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near the interface between susceptibility sources, such as the edge of the brain and air. 

Normally an eroded binary mask is used to perform the calculation only for the central 

regions (38,40). Another common problem is the requirement of phase unwrapping 

(38,40). Phase unwrapping is sensitive to noise in phase images and is particularly 

problematic when cusp artefacts are present (41,42). Cusp artefacts are typically caused 

by an improper combination of multi-channel phase data (1,43,44). Further, multi-

dimensional phase unwrapping is usually time-consuming (45,46). Fast phase 

unwrapping algorithms such as the Laplacian based algorithm can still suffer from errors 

in regions with rapid field changes, i.e., the edges of the veins or air/tissue interfaces 

(41,47). The use of double or multi-echo data helps to alleviate the problems related to 

phase unwrapping (48). Particularly, when a double-echo GRE sequence with a short first 

TE is used, phase unwrapping can be avoided in the background field removal step, an 

approach that will be taken later in this thesis.   

Using the extracted local phase information, various algorithms have been proposed to 

reconstruct the susceptibility map, based on the relation between the susceptibility 

distribution and local field variation. However, the Green’s function in the Fourier 

domain has zeros and thus QSM is an ill-posed inverse problem (8,32,49-52). The 

singularities of the Green’s function lead to streaking artefacts in susceptibility maps even 

when regularization methods are used. The simplest way of solving this inverse problem 

is to define a Fourier domain threshold and to use truncated k-space division (8,53). A 

larger threshold leads to a reduced level of streaking artefacts but also a larger error in the 

estimated susceptibility due to more signal loss in k-space (8) and more blurring of 
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individual structures (41). There is always this type of trade-off between the accuracy in 

the susceptibility estimation and the quality of artefact suppression.  

In conclusion, the robustness of QSM processing is usually hampered by the background 

field removal step. Particularly, the requirement of phase unwrapping in background field 

removal makes it vulnerable to cusp artefacts in phase images. The accuracy of QSM 

relies on several factors. Among those is the geometry information which plays an 

indispensable role. The motivation of this study is to develop fast and robust data 

processing methods for quantitative susceptibility mapping and to study the accuracy in 

susceptibility estimation.  

1.3 Overview of the thesis 

In Chapter 2, we introduce the basic theories, including signal formation mechanisms 

using a gradient echo sequence, the phase information and magnetic susceptibility. Given 

an arbitrary susceptibility distribution, the induced field variation can be predicted 

through a forward field calculation. On the other hand, QSM requires solving an inverse 

problem. An overview of QSM data processing procedures is given in that chapter. In 

Chapter 3, we focus on the first important step in QSM data processing: background field 

removal. Different filtering techniques are discussed in detail, including homodyne high-

pass filtering, variable high-pass filtering (VHP), Sophisticated Harmonic Artefact 

Reduction for Phase data (SHARP) and Projection onto Dipole Fields (PDF). The 

accuracy of these filters are evaluated and compared. In Chapter 4, a double-echo phase 

processing algorithm is introduced. The advantages of such an algorithm are its 



Ph.D. Thesis – Saifeng Liu                        McMaster – School of Biomedical Engineering 

8 
 

robustness and time-efficiency. Chapter 5 is focused on the core procedure of QSM, the 

inverse process. A geometry constrained iterative algorithm for susceptibility mapping is 

introduced and evaluated. A direct application of QSM is to use the susceptibility map to 

generate susceptibility weighting masks to improve the visualization of the venous 

structures, as is discussed in Chapter 6. Chapter 7 deals with the limitation of 

susceptibility estimation of small objects. In that chapter, we show that even though the 

accuracy of the susceptibility estimation is limited by the apparent volume, the product of 

susceptibility and volume (or the effective magnetic moment) is constant. Conclusions 

and future directions are provided in Chapter 8.  
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Chapter 2 Basic Concepts of Phase,         

Gradient Echo Imaging and 

Quantitative Susceptibility Mapping
1
 

 

2.1 The concept of a gradient echo and phase    

Gradient recalled echo (GRE) sequence is one of the most frequently used imaging 

methods in MRI. To start our story, let’s first take a look at the gradient echo signal 

formation mechanism. When placed in an external magnetic field,  ⃗  , the spins or protons 

will precess about  ⃗   at the Larmor frequency defined as: 

                                                                       [2.1], 

where   is the gyromagnetic ratio of protons (2.68∙10
8
∙rad∙s

-1
∙T

-1
). Upon the excitation by 

a radial-frequency (RF) pulse, e.g., a 90
o
 pulse, the longitudinal magnetization will be 

tipped into the transverse plane. The longitudinal magnetization will gradually recover 

                                            
1
Most of the contents in this chapter are adapted from Haacke EM, et al. Magnetic Resonance Imaging: 

Physical Principles and Sequence Design. 1st ed. Wiley-Liss; 1999, and Haacke EM, Reichenbach JR, 

editors. Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications. 1st ed. Wiley-

Blackwell; 2011. 
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toward the equilibrium state parallel to  ⃗  . This process is described using the Bloch 

equations (1). Particularly, there are two important relaxation times involved in this 

process, being the spin-lattice relaxation time T1 and the spin-spin relaxation time T2. 

While the former relaxation time describes the regrowth rate of the longitudinal 

magnetization, the latter represents the decaying rate of the magnetization in the 

transverse plane.  Practically speaking, due to global and local field inhomogeneities of 

various origins, the spins in the transverse plane will experience extra dephasing effects 

and thus the magnetization will decay much faster. This expedited decay rate is described 

using the T2
*
 time constant, which is defined as:  

 

  
  

 

  
 

 

  
                                                          [2.2], 

where     
 , or   

  corresponds to the dephasing effects caused by field inhomogeneities.  

In a 3D imaging experiment with linearly varying gradients      ,       and       

applied in three orthogonal directions, the local magnetic field becomes: 

               ⃗                                                   [2.3].  

The spin isochromats will precess at the Larmor frequencies proportional to the local 

magnetic field, and the accumulated phase induced by the linear gradient can be written 

as: 

                  ∫            
 

 
 ∫            

 

 
 ∫            

 

 
          [2.4]. 

It is shown that, with relaxation effects neglected, the signal can be written as (1): 
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     ∭                             ⃗                                     [2.5], 

where          is the effective proton density. Let’s further define: 

       ∫          
 

 
              ∫          

 

 
               ∫          

 

 
     [2.6], 

where       . Using Eqs. 2.4 and 2.6, Eq. 2.5 becomes: 

 (        )  ∭                                 ⃗                           [2.7]. 

Eq. 2.7 clearly indicates that the signal is the Fourier transform of the effective proton 

density,            . Therefore we name the signal space defined by Eq. 2.7 as “k-space”. 

With an inverse Fourier transform, the complex data of             can be obtained in the 

spatial domain. Magnitude and phase images can then be extracted from this complex 

data.  

In order to reconstruct the effective proton density, sufficient coverage of k-space is 

required. This is achieved by varying the duration or amplitude of the gradients      , 

      and      . Assuming that       is the readout gradient,       and       are the 

phase encoding and slab selection gradients, the timing and amplitudes of these gradients 

can be described by the sequence diagram (2). A typical 3D gradient echo sequence 

diagram is shown in Fig. 2.1.  
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Figure 2.1 Sequence diagram of a single echo 3D gradient echo sequence. GS: slab 

selection/partition encoding gradient; GP: phase encoding gradient; GR: readout gradient.  

The k-space trajectory can be understood from Fig. 2.2. Assuming that the duration of 

both the slab selection gradient Gs and the phase encoding gradient GP is tP, the amplitude 

of GP is at its maximum       , at t=t1, using Eq. 2.6, the k-space data points being 

sampled can be represented as: 

                                                             [2.8]. 

This corresponds to the data points in the first row in Fig. 2.2. 
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Figure 2.2 Illustration of filling one line in k-space. The k-space trajectory as indicated 

by the dashed arrows is described using Eqs.2.8 to 2.10.  

Starting from t=t1, the negative lobe of the readout gradient (with amplitude -GR) will be 

applied, using Eq. 2.6 again, the k-space trajectory in x direction can be written as: 

                                                                [2.9]. 

This corresponds to moving from      toward                        in k-

space. The positive lobe of the readout gradient is applied starting from     . The k-

space trajectory in    direction becomes:  

                                                         [2.10]. 



Ph.D. Thesis – Saifeng Liu                        McMaster – School of Biomedical Engineering 

18 
 

When            (that is when     ),      and an echo is formed. The duration 

from the RF pulse to t3 is defined as the echo time (TE), as shown in Fig. 2.1. Starting 

from t=t2, a total of Nx data points will be sampled symmetrically about     , as 

illustrated in Fig. 2.2. This corresponds to the coverage of             to        

    in    direction (2). The other data points in k-space are sampled similarly, by varying 

Gs and Gp (hence    and   ) in following RF excitations. The duration between the two 

RF excitations is the repetition time, TR. 

Note that, the sequence shown in Fig. 2.1 is a simplified gradient echo sequence. For SWI 

and QSM data acquisition, flow compensation gradients in slab select, partition encoding, 

phase encoding and readout directions are usually required, in order to reduce the 

dephasing effects caused by flow (1,2). The sequence diagram of a 3D gradient echo 

sequence with full flow-compensation is shown in Fig. 2.3 (2). Before the excitation by 

the next RF pulse, in the end of the acquisition during one RF excitation, there may be 

remnant transverse magnetization, which can be destructed through spoiling. This is 

achieved by keeping the gradient in the readout direction on to properly dephase the 

remnant transverse magnetization (i.e., gradient spoiling), and by changing the offset 

angle of the following RF pulse by 117
o
 (i.e., RF spoiling) (2). Considering the relaxation 

effects, for a particular voxel with several isochromats, the steady-state signal for the 

spoiled gradient echo sequence can be written as (1,2): 

 ̂             
    

        
       

 
                                [2.11], 

where   is the voxel spin density and           .  
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Figure 2.3 Sequence diagram of a single echo 3D gradient echo sequence with flow-

compensation in all directions. GS: slab selection/partition encoding gradient; GP: phase 

encoding gradient; GR: readout gradient.  

However, the sequences shown in Figs. 2.1 and 2.3 are single echo gradient echo 

sequences. For multi-echo gradient echo sequence, within one RF excitation, the 

gradients with the same settings can be used again to sample the same line in k-space, but 

with different echo time (1,3,4).  
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When there are inhomogeneities in the main magnetic field, at t=TE, with any flow 

induced effects compensated, the accumulated phase for a right-handed system can be 

written as (1,2): 

                                                             [2.12], 

where       is the time-independent phase offset, related to local conductivity and 

permittivity (5). The field variation        is induced by inhomogeities of the main 

magnetic field, susceptibility differences in the tissues in the human body and chemical-

shift. Particularly, the field variation induced by the susceptibility differences can be 

predicted through a forward calculation. 

2.2 Predicting field variation through forward calculation 

As a basic tissue property and important source of imaging contrast, magnetic 

susceptibility describes the ability of the material to get magnetized when exposed to an 

external magnetic field (1,2). It is also a measure of how materials change the local 

magnetic field (2). Based on their induced magnetization, the materials can be categorized 

as paramagnetic, diamagnetic and ferromagnetic materials. For paramagnetic materials, 

the induced magnetic moments align parallel with the external magnetic field, while for 

diamagnetic materials the induced moments align anti-parallel with the external field. For 

ferromagnetic materials, a magnetic field exists even without the external field (2).  

When an object with susceptibility   is placed in an external magnetic field  

 ⃗    ⃗⃗ ,                                                     [2.13], 
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where   is the permeability and  ⃗⃗  (in A/m) is the applied field (1). The actual field inside 

the object can be written as: 

 ⃗      ⃗⃗   ⃗⃗                                                   [2.14], 

where           Wb/(A·m) is the permeability of vacuum, and  ⃗⃗  is the induced 

magnetization, which is related to the H-field through:   

 ⃗⃗    ⃗⃗                                                          [2.15]. 

  is the magnetic susceptibility. For paramagnetic materials,   is positive; for 

diamagnetic materials,   is negative. In studies on biological tissues such as brain tissues, 

the reference of susceptibility is usually taken to be the susceptibility of soft tissue or 

water, with the susceptibility of water being approximately -9 ppm relative to vacuum. 

Thus, being “paramagnetic” or “diamagnetic” in this thesis, essentially means that being 

less diamagnetic (paramagnetic relative to water) or more diamagnetic than water (i.e. 

diamagnetic relative to water) (2,6).  

From Eqs. 2.14 and 2.15, assuming that    ,  

 ⃗          ⃗⃗    (  
 

 
)  ⃗⃗     ⃗⃗                              [2.16]. 

A dipole field will be generated due to the induced magnetization  ⃗⃗ . Assuming that the 

external magnetic field is in the z direction, only the z-components of the dipole field and 

 ⃗⃗  are important (6–8). This z-component of the field variation can be written as (6–8): 

        
  

  
∫      

   (  
 )(    )

 

         
 

  (  
 )

         
 

  
                          [2.17] 
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Eq. 2.17 can be written as a convolution process (9): 

                                                              [2.18]. 

The 3D Green’s function       is: 

      
 

  
 
        

                                               [2.19], 

where   is the angle subtended by a position vector, relative to the z direction in 3D 

spherical coordinate system(6–8). Particularly,       
  

  .  

From Eqs. 2.16 to 2.19, given the susceptibility distribution, the induced magnetic field 

variation can be predicted as: 

                                                              [2.20]. 

The convolution in Eq. 2.20 can be efficiently calculated in Fourier domain as: 

                                                              [2.21], 

where    and     represents the Fourier transform and the inverse Fourier transform, 

respectively.  

It can be shown that the Fourier transform of the Green’s function is (6–8): 

 ( ⃗ )            {
    

  
 

  
    

    
            ⃗   

                                             ⃗         

         [2.22]. 

Given a susceptibility distribution, the induced field variation can be predicted using Eqs. 

2.20 to 2.22. This process is referred to as the “forward calculation”.  
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2.3 Quantifying Susceptibility as an inverse problem 

The field variation         can be extracted from      , using Eq. 2.12, and susceptibility 

distribution       can be calculated using         through Eqs. 2.20 to 2.22. In practice, 

however, susceptibility quantification is composed of several steps. The QSM data 

processing procedures are illustrated in Fig. 2.4. 

 

Figure 2.4 QSM data processing procedures. The dashed line indicates that brain masks 

may not be required for phase unwrapping. The * indicates that the phase unwrapping 

step can be avoided in certain algorithms and the unwrapped phase is not required for 

background field removal.  

Susceptibility quantification is an ill-posed inverse problem, due to the zeros in  ( ⃗ ) 

along the magic angles in the Fourier domain. This inverse problem could be solved 

through either truncated k-space division (10–12) or other optimization methods (13–16). 

For the former approach, a regularized inverse filter is used, defined as: 
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     [2.23], 

and       can be calculated as: 

           {    
( ⃗ )           }                              [2.24]. 

In other approaches,       is obtained as: 

            ‖ (                   )‖
 

 
                        [2.25], 

where W is a weighting function which is related to the signal-to-noise ratio (SNR) of the 

data and      is the regularization term.   is a parameter which controls the trade-off 

between data fidelity and data regularization (13,17).  

In addition, the original phase images are usually aliased. The value range of the original 

phase images is from –π to π. However, the true value of phase may be outside this range 

and will be wrapped back into the range of –π to π. This wrapping process can be 

described as: 

                                                               [2.26], 

where the values of the function       are integers. In order to obtain         from the 

phase images without discontinuities,            is generated normally through phase 

unwrapping, in which the function       is determined.  
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Furthermore, the original phase information is contaminated by the background field 

inhomogeneities induced by the air-tissue interfaces. The background field can be 

removed with appropriate filtering of the data (18,19). The resulting local phase 

information will be used to calculate susceptibility maps by solving the inverse problem. 

More details on removing the background field and solving the inverse problem are 

provided in later chapters.  

2.4 Susceptibility and its relations to venous oxygen saturation 

and iron content 

One of the important applications of susceptibility mapping is measuring venous oxygen 

saturation in vivo. Blood can be modeled using two compartments: the plasma and the red 

blood cells. The susceptibility of the blood system can be written as (1,2): 

           (                   )                        [2.27],  

where Hct is the fractional hematocrit, defined as the volume fraction of the red blood 

cells in blood. The normal value of Hct is around 0.45 for men and 0.4 for women (1,2). Y 

is the oxygenation level.      and       are the susceptibilities of fully oxygenated and 

fully deoxygenated red blood cells, respectively. Using Eq. 2.27, the susceptibility 

difference between the venous blood (with 0<Y<1) and the fully oxygenated blood (Y=1) 

can be written as: 

                                                       [2.28], 
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where     is the susceptibility difference between fully deoxygenated and fully 

oxygenated red blood cells, which is approximately         ppm per unit Hct (2,20,21). 

Assuming that the susceptibility of fully oxygenated blood is the same as the 

susceptibility of the surrounding tissue, the difference between the susceptibility of 

venous blood and the surrounding tissue,    , can be approximated using Eq. 2.28. 

Particularly, with Hct=0.44, Y=70%,     is found to be close to 0.45ppm. It is this 

susceptibility difference that induces the field variation and the phase of the veins.  

Apart from measuring venous oxygen saturation, various studies have been performed to 

study the relation between the measured susceptibility and the iron content. Note that, 

since the susceptibility maps only provide a relative measure, it is only the slope between 

the measured susceptibility and iron content that can be determined. For ferritin, when the 

iron content was measured by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

(22) and X-ray fluorescence (XRF) (23), the slope was found to be 1.1 ppb per    iron/g 

wet tissue (23). For the deep grey matter structures in cadaveric brain, however, the slope 

was found to be 0.8 ppb per    iron/g wet tissue, with iron measured using XRF (23). The 

smaller slope found in cadaveric brain than the one found in ferritin phantom was 

attributed to invisible forms of iron in the cadaveric brain and signal loss or bias caused 

by the QSM data processing (22,23). Indeed, due to the singularities of the inverse kernel, 

regularization is required and is known to cause under-estimation of the susceptibility. 

More importantly, the quality and accuracy of QSM is largely dependent on the extraction 

of local phase information and hence the efficacy of the background field removal. 
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Chapter 3 Background Field Removal 

3.1 The background field 

Phase information is proportional to the product of field variation and echo time (TE) 

(1,2). For a right-handed system, the phase       is related to the total field variation 

       as: 

                                                            [3.1], 

where        is the phase offset at TE=0. As mentioned in the earlier chapter, the original 

phase images are usually aliased and phase unwrapping should be performed in order to 

obtain        using Eq. 3.1. The field variation        can be considered as a 

combination of two parts (3–6): the background field         and the local field        : 

                                                             [3.2]. 

In quantitative susceptibility mapping, it is the local field variation         that is of 

interest. The background field is induced by the main magnetic field inhomogeneity and 

the air-tissue interfaces which have a susceptibility difference of approximately 9.4 ppm 

relative the brain tissue (4). This is much higher than the susceptibility differences 

(<1ppm) of the local tissues inside the brain (4–7). At most realistic echo times, this large 
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field variation leads to phase aliasing, further complicating the problem of background 

field removal. Another complication occurs in the presence of a local background 

gradient which will cause a shift of the echo center in k-space which, in turn, induces a 

linear phase shift in the image domain (1). This can be easily understood through the 

Fourier shift theorem. For example, if the center of the echo is shifted in    by   , a 

linear phase component with gradient          will be created in the image domain. 

This linear phase component can be easily removed by detecting the position of the signal 

center (peak value) in k-space and shifting the k-space data such that the signal center 

occurs at the actual center of k-space (1). 

To remove the background field, various algorithms have been proposed. There are 

mainly four types of methods: geometry dependent artefact correction (GDAC) (4), 

(homodyne) high-pass filtering (8–10), spherical mean value filtering (3,6,7) and dipole 

field fitting (5), all with different assumptions of the background field.  

If the geometries and susceptibility distributions of the air-tissue interfaces were known, 

the field variation induced by the air-tissue interfaces could be predicted using the fast 

forward field calculation (4). Assuming that the susceptibility differences of these 

air/bone-tissue interfaces are         for the i
th

 interface, with i ranging from 1 to n, the 

induced field variation can be calculated as: 

              
                                                    [3.3]. 

The geometry of the sinuses can be extracted from the T1 weighted magnitude image, and 

the susceptibilities of different sinuses can be found through least squares fitting using 
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phase images without wraps (4). This method has been shown to effectively reduce the 

background field. However, obtaining the exact geometries and susceptibility 

distributions of the air/bone-tissue interfaces, such as the air sinuses in the head, is quite 

challenging. This is partly solved by assuming constant susceptibilities inside the sinuses. 

Recently, a method of using short TE’s data was proposed, which produce susceptibility 

maps for the air sinuses and bone structures (11). This can potentially solve the remnant 

problems of geometry dependent artefact correction.  

In the other background field removal algorithms, the background field is reduced, or 

separated from the local field, without knowing the exact geometries or susceptibility 

distributions of the air-tissue interfaces. These filtering methods are discussed in 

following sections. Note that, since phase is a linear function of field variation, as shown 

in Eq. 3.1, the filters discussed in this thesis are operated directly on the (unwrapped) 

phase images rather than the field maps.  

3.2 Homodyne high-pass filter  

3.2.1 Theory  

Homodyne high-pass filtering is the traditional way for background field suppression (10). 

It is widely used in susceptibility weighted imaging (SWI), due to its robustness and 

effectiveness. It makes use of the fact that the background field has relatively low spatial 

frequency. Consequently, the background field can be reduced through high-pass filtering. 

In homodyne high-pass filtering, low-pass filtered data are created by applying Hanning 

window to the central part of k-space (2,12).  



Ph.D. Thesis – Saifeng Liu                        McMaster – School of Biomedical Engineering 

32 
 

 ̂            ̂                                                 [3.4], 

Where  ̂           is the original complex data and      is a zero-filled 2D Hanning 

window defined as:  
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 [3.5]. 

Then the low-pass filtered data,  ̂  , are complex divided into the original complex data  ̂, 

to produce high-pass filtered complex data  ̂  . The high-pass filtered phase images,    , 

are generated as: 

       ( ̂  )     ( ̂  ̂  )                                     [3.6], 

where “/” represents pixel-wise division. The whole process of homodyne high-pass 

filtering is shown in Fig. 3.1.  

One advantage of homodyne high-pass filtering is that no phase unwrapping is required. 

This is due to the use of the complex data in the high-pass filtering. On the other hand, the 

phase images can also be unwrapped first and then a high-pass filter can be applied in the 

image domain, e.g., applying a Gaussian or boxcar window function to the unwrapped 

phase images (2). Both the homodyne high-pass filtering and image domain high-pass 

filtering have edge artefacts, since there is low/no reliable signal outside the brain.  



Ph.D. Thesis – Saifeng Liu                        McMaster – School of Biomedical Engineering 

33 
 

 

Figure 3.1 Illustration of the processing steps in homodyne high-pass filtering. 

3.2.2 Effects of object orientation in homodyne high-pass filtering 

Homodyne high-pass filtering has been used successfully in SWI, especially for 

venography, in which the objects of interest are the veins. However, high-pass filtering 

also leads to signal loss, especially for objects with relatively large size, such as those 

basal ganglia structures. This will cause underestimation of the susceptibility of those 

basal ganglia structures (2,13). Apart from the filter size, the accuracy of homodyne high-

pass filtering is also dependent on the direction along which the high-pass filter is applied, 

since the homodyne high-pass filter is typically applied in 2D. This may lead to different 

levels of signal loss to structures with different orientation (14).  

In order to study the effect of homodyne high-pass filtering, phase images of cylinders 

and spheres with different radii were simulated in a 256×256×256 matrix, with B=3T, 

TE=20ms. The cylinders were used as a surrogate for veins, and spheres for microbleeds. 
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The susceptibilities inside the cylinders and spheres were set to 0.45ppm and 1ppm, 

respectively. The radii of the cross section of the cylinders range from 1 to 32 pixels. The 

radii of the spheres are in the same range. For the cylinders, the long axis was set to be 30, 

45, 60, and 90 degrees with respect to the main field direction. Homodyne high-pass filter 

with different sizes were applied to the cylinders in 90
o
 with respect to the main field 

direction, in order to show the effects of filter size. Next, to show the effects of 

orientation of the object, homodyne high-pass filter with size 32×32 were applied in axial, 

coronal and sagittal views of the phase images of cylinders and spheres. Susceptibility 

maps were generated using truncated k-space division (15), with a k-space threshold of 

0.1, using both the original and filtered phase images. Mean susceptibility values were 

measured for the regions inside the cylinders and spheres.  

The relative errors in susceptibilities as a function of object size for different filter sizes, 

for cylinders perpendicular to the main magnetic field are shown in Fig.3.2.a. As 

expected, the larger the filter size, the greater the signal loss and hence the greater the 

underestimation in the estimated susceptibility values.  

The relative errors plotted in Fig. 3.2.b to 3.2.f are dependent on the object and filtering 

orientations. For cylinders, the least error in the estimated susceptibilities was obtained 

when the HP filter was applied in the direction which is perpendicular to the long axis of 

the cylinder. For example, in Fig. 3.2.b, the cylinders were aligned along the x direction. 

When the HP filter is applied to the view perpendicular to the long axis of the cylinders 

(the y-z view of the dataset), the errors were smaller than HP filtering in other views. For 

the 30
o
, 45

o
 and 60

o
 cases, none of the slice orientations were perpendicular to the long 
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axis of the cylinders. Hence varying error profiles were observed for each case, as shown 

in Fig. 3.2.c to 3.2.e. For these cases, the least errors in the estimated susceptibilities were 

obtained when the HP filter was applied in the orientation which is closest to be 

perpendicular to the long axis of the cylinder. This can be seen from Fig. 3.2.c and 3.2.e. 

In Fig. 3.2.c, the least error is obtained when the HP filter is applied to the sagittal view, 

while in Fig. 3.2.d to the coronal view. 

When the angle between the long axis of the cylinders and the field direction is 45
o
, as 

would be expected, both axial and coronal views give the same error profile (Fig. 3.2.d). 

This relation between errors in susceptibility estimation and HP filtering orientation was 

further confirmed by Fig. 3.2.f, in which the errors for spheres were independent to the 

filtering orientation. 

2D homodyne high-pass filtering, which is currently used in SWI data processing, leads 

to orientation-dependent errors to the estimated susceptibilities of cylinders. 

Consequently, when the homodyne high-pass filtering was used in the quantification of 

susceptibilities of veins, the orientation of the filtering with respect to the veins should be 

considered. This orientation dependence can be potentially removed by using a 3D 

homodyne high-pass filter. For data collected which were already filtered using a 2D 

homodyne high-pass filter, an additional homodyne high-pass can be applied in the 

through-plane direction, to form an effective 3D high-pass filtering.   
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Figure 3.2 Relative error in estimated susceptibilities induced by high-pass filtering in 

different orientations. The relative errors induced by homodyne high-pass filtering with 

different sizes, for cylinders in the 90
o
 case, are shown in a. b to e show the effects of the 

orientation of high-pass filtering for cylinders in the 90
o
 case (b), in the 30

o
 case (c), in 

the 45
o
 case (d), and in the 60

o
 case (e). Relative errors for the spheres are shown in f.  
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3.3 Variable high-pass filter (VHP) 

3.3.1 Theory 

It is known that homodyne high-pass filtering leads to signal loss and underestimation of 

the susceptibilities of structures with relatively large sizes, such as the basal ganglia 

structures. In fact, variable filter sizes can be used for different regions of the brain (16). 

The main idea is to apply mild filtering to the central part of the brain, where most of the 

relatively large structures are located, and to apply stronger filtering to the periphery of 

the brain, especially to the regions close to the air sinuses, where the background field has 

relatively higher spatial frequency. 

A major advance in this area of research on background field removal occurred, when it 

was recognized that the background field can be considered as a harmonic function inside 

the brain (3,6). Using the mean value property of harmonic functions,  

                                                                 [3.7],  

where “s” is a normalized sphere with uniform values and the sum of all the values of the 

pixels inside the sphere equals 1. “*” represents the convolution operation. From Eqs. 3.2 

and 3.7,  

                                                                [3.8].  

Eq. 3.8 can also be viewed as a low-pass filtering process using a spherical symmetric 

window function, s. Next, the background field could be removed by subtracting the low-

pass filtered field map from the original field map: 
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                                                          [3.9], 

where   is the delta function. 

However, using the above equation, the regions within a distance of R to the edge of the 

brain do not have correct convolution results (6,7), where R is the radius of the spherical 

kernel. Those regions will be set to 0 using a 3D eroded mask. To reduce the area of the 

lost regions, we applied spherical kernels with variable size, similar to the strategy used in 

(7). Specifically, for the periphery region of the brain, the size of the kernel at certain 

pixel is chosen to be the distance from that pixel to the nearest edge pixel of the brain. 

While for the central region of the brain, a large kernel with constant size was applied. 

This is essentially a high-pass filtering process, and is referred to as variable high-pass 

filtering (VHP) in this thesis.  

The procedures of variable high-pass filtering are as follows: 

1. Preprocessing: generate         through phase unwrapping; obtain the brain masks 

     defining the region inside the brain.  

2. Spherical averaging: apply the normalized spherical kernels with different radii to 

       .         will be produced by combining the results generated using different 

spherical kernels.  

3. High-pass filtering:         will be generated as                        .  
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3.3.2 Evaluating the accuracies of VHP using a simulated brain model  

Brain model data simulation 

In order to evaluate the accuracy of VHP, phase images of a 3D brain model were 

simulated using the forward field calculation (17,18), at B0=3T, TE=10ms. The 

background field variation induced by these air-tissue interfaces were introduced by 

setting the susceptibility of the air sinuses to 9.4 ppm. Different susceptibility values were 

set to different brain structures. The phase induced by the brain structures        (the local 

phase) and the phase induced by the sinuses        (the background phase) were 

calculated independently. Then the phase images of the brain model (     ) were 

generated by taking the sum of these two components. The magnitude images were 

assumed to be constant. White Gaussian noise was added to real and imaginary parts of 

the complex data, and the SNR in the final magnitude images was 10:1. This is equivalent 

to Gaussian noise with standard deviation 0.1 radians in phase images (1,19). The brain 

masks were generated which covers all the structures inside the brain. A reference region 

was obtained by eroding the brain masks 16 pixels. This reference region was used to 

calculate the root-mean-square-error (RMSE) in the processed phase images and in the 

generated susceptibility maps. The simulated phase images and the binary masks are 

shown in Fig. 3.3.  

The simulated phase images with background phase component and random noise were 

processed using VHP with largest spherical kernel radius 32 pixels and smallest spherical 

kernel radius 1 pixel. The processed phase images were compared with the simulated 
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phase of the structures inside the brain (      ), without any background phase or random 

noise. Root-mean-square-error (RMSE) was calculated for the reference region as: 

     √ (                 )
 
                                      [3.10], 

where        is the total number of pixels in the reference region.  

 

Figure 3.3 a). Simulated phase image with background phase but without random noise. 

b). Simulated phase with background phase and random noise. c). The local phase 

information without random noise. This is used as the true answer to evaluate the 

accuracies of the processed phase images. d). The reference region used for calculating 

the RMSEs in the processed phase images. e). The susceptibility map in axial view. f). 

The phase image corresponds to e.   
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In order to evaluate the accuracy of susceptibility quantification using VHP processed 

phase images, susceptibility maps were generated using the truncated k-space division 

approach (15). The mean susceptibility values were measured for a total of 9 structures, 

as listed in Table 3.3. The relative error in the susceptibility quantification of each 

structure was calculated as:                      , where      is the measured mean 

susceptibility value and      is the true susceptibility value of certain structure. However, 

this error is a combination of both the errors caused by background field removal and the 

errors by the truncated k-space division susceptibility mapping algorithm. To analyze the 

error purely caused by background field removal, reference susceptibility maps were 

generated with the same algorithm using the phase images with ideal background field 

removal, i.e., the local brain structures induced phase with random noise.  

Simulated data results 

As expected, both the RMSEs of the processed phase image and the susceptibility maps 

reduce as the radius of the spherical kernel increases, as shown in Fig. 3.4. This can be 

understood as a reduction of signal loss related directly to an increase in the size of the 

spherical kernel in image domain. The results shown in Fig. 3.4 correspond to the global 

errors. 
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Figure 3.4 Overall RMSEs of the processed phase images (a) and susceptibility maps (b) 

generated using VHP.  

The relative errors in the susceptibility maps for different structures are plotted in Fig. 3.5. 

For small structures such as veins, as the radius of the spherical kernel increases, the 

relative error reduces much faster than for other bigger structures such as the globus 

pallidus. Compared with the error in the susceptibilities estimated from the original phase 

(as indicated by the dashed lines in Fig. 3.5), when variable high-pass filtering was 

applied, the additional under-estimation could be around 20% to 30% for big structures 

such as putamen. 
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Figure 3.5 Relative errors in the estimated susceptibilities of different structures using 

phase images processed by VHP. a) Veins. b) Globus pallidus. c) Putamen. d) Caudate. 

The dashed lines indicate the errors in estimated susceptibilities for different structures 

using the phase images with ideal background field removal.  

For the processed phase images, the larger the radius of the spherical kernel, the smaller 

the error caused by spherical filtering. When spherical kernels with different radii were 

applied to different regions, the error in the estimated susceptibility of a certain structure 

can be different due to the different locations of the structures. The most affected 

structures are those which extend significantly spatially, e.g., putamen. Compared with 
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traditional high-pass filtering with a single filter size, this variable high-pass filter helps to 

preserve the low spatial frequency signal of the big structures while providing accurate 

phase information of the veins.  

3.4 Sophisticated Harmonic Artifact Reduction for Phase data 

(SHARP) 

3.4.1 Theory 

The same set of equations used in VHP, Eqs. 3.7 to 3.9, are used in SHARP to remove the 

background field, since SHARP is also based on the spherical mean value property of the 

background field. Nonetheless, as can be seen from Eq. 3.9, the obtained local field 

variation is essentially high-pass filtered. Thus, the last step in SHARP is to solve Eq.  3.9 

for the local field variation         as an inverse problem (6). This deconvolution process 

is done typically using a truncated version of the filter in Fourier domain, similar to the 

truncated k-space division method for QSM described in Chapters 2 and 5. Again, the 

pixels close to the edges will not have the correct convolution result, and will have to be 

removed using an eroded brain mask M. The last step in SHARP can be written as: 

                                      ⃗                   [3.11], 

where the regularized inverse filter       ⃗   is defined as: 

    ( ⃗ )  {
                                 

                                            
              [3.12]. 
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Another way is to solve this inverse problem as an optimization problem with a priori 

information incorporated (20).  

3.4.2 The influences of processing parameters on the accuracy of SHARP  

The accuracy of SHARP is dependent on both the radius of the spherical kernel and the 

deconvolution process. In this study, the deconvolution was done using the regularized 

inverse filter shown in Eq. 3.11. In order to evaluate the effects of both the radius of the 

spherical kernel and the regularization threshold th, and to determine the optimal 

processing parameters in SHARP, SHARP with different spherical kernel sizes and 

different threshold values were tested using the simulated phase images of the 3D brain 

model. The same 3D brain model which was used to evaluate the accuracy of VHP was 

also used in this section. Particularly, the radii of the spherical kernel ranged from 1 pixel 

to 16 pixels with step size 1 pixel, and the values of th ranged from 0.005 to 0.1 with step 

size 0.005. Again, RMSEs in the processed phase images and the susceptibility maps 

were used to evaluate the accuracy of SHARP. The relative errors in the measured 

susceptibilities for different structures were used to assess the effects of SHARP on 

susceptibility quantification of different structures.  

Fig. 3.6.a shows the overall RMSE in the phase images processed using SHARP. The 

overall RMSE in the susceptibility map, generated using the SHARP processed phase 

images is shown in Fig. 3.6.b. Generally speaking, spherical kernels with larger radii lead 

to smaller errors. For individual structures, the optimal spherical kernel radius and 

regularization threshold may vary a lot, as shown in Figs 3.7 and 3.8. 
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Figure 3.6 a) Overall RMSEs for different radii of the spherical kernel and different 

values of th in SHARP. b) Overall RMSE in susceptibility quantification for different 

kernel sizes and different thresholds in SHARP. 

The relative errors in the measured susceptibilities for different structures are illustrated 

in Fig. 3.7. Large relative error in the estimated susceptibility was observed for thalamus, 

where the error was higher than 50%. This could be caused by the low susceptibility 

value of the thalamus and by the streaking artefacts from the veins nearby. For the other 

structures, in order to maintain a low level of error, the proper choice of the kernel size 

depends on the sizes of the structures. For veins, spherical kernel with radius larger than 3 

pixels leads to reasonable accuracy. But for larger structures, such as the putamen, the 

radius of the spherical kernel has to be at least 6 pixels.   



Ph.D. Thesis – Saifeng Liu                        McMaster – School of Biomedical Engineering 

47 
 

 

Figure 3.7 Relative errors in measured susceptibilities using different parameters in 

SHARP for different structures. 

For different structures, the minimal relative errors in the estimated susceptibility values 

as functions of the radius of the spherical kernel are plotted in Fig. 3.8. The minimal 

errors in susceptibility estimates decreases as the radius of the spherical kernel increases 

for all the structures, except for substantia nigra, crus cerebri and subthalamic nucleus.  



Ph.D. Thesis – Saifeng Liu                        McMaster – School of Biomedical Engineering 

48 
 

 

Figure 3.8 The minimal RMSEs for different structures at different radii of the spherical 

kernel in SHARP. 

Considering the relatively higher signal loss at larger kernel sizes, a reasonable choice for 

the size of the spherical kernel in SHARP should be around 6-10 pixels (16). For the 

simulated data used in this study, the regularization threshold should be kept as small as 

possible (th<=0.05). However, for in vivo data, a higher threshold may be desired, in 

order to suppress non-harmonic phase components (6), e.g., the phase offset term       . 

Examples of the phase images processed with SHARP are available in the next section. 
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3.5 Comparison of different background field removal 

algorithms 

In addition to homodyne high-pass filtering, VHP, and SHARP, another popular 

background field removal algorithm is Projection onto the Dipole Field (PDF). In PDF, 

the background field inside the brain is assumed to be caused by the point-dipole sources 

outside the brain (5). And the background susceptibility distribution is estimated as: 

            |                      |
 

 
                   [3.13]. 

Once        is known, the background field can be calculated using the forward 

calculation and subsequently removed. However, the estimated        does not reflect 

the actual background susceptibility distribution, but is only used for the purpose of 

removing the background field (5). Moreover, an additional high pass filter using 

spherical kernel is usually applied to the PDF processed phase images to further reduce 

the low spatial frequency phase artefacts.  

3.5.1 Simulations and in vivo data studies 

In this section, different background field removal algorithms are compared using the 3D 

brain model and in vivo data. The data of the 3D brain model were created in the same 

way as in the previous section. For the in vivo data, 5 datasets were collected on the same 

healthy volunteer using the parameters shown in Table 3.1. Except for the last dataset, 

which was collected using a double-echo sequence (only the longer TE’s data were used 

here), all the other datasets were collected using single echo gradient echo sequences. The 

original phase images of the in vivo data were first unwrapped using a path-following 3D 
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phase unwrapping algorithm (21). Binary brain masks were generated using Brain 

Extraction Tool (BET) in FSL (22). Other processing parameters used in different 

algorithms are listed in Table 3.2. For homodyne high-pass filtering, only the 64x64 filter 

was applied to the in vivo data, in order to avoid any remnant aliasing near the air-tissue 

interfaces. For both the brain model and in vivo data, susceptibility maps were generated 

using truncated k-space division with threshold 0.1, using the phase images processed 

with different algorithms. This algorithm was chosen, primarily because of its simplicity 

and well understood systematic error. The susceptibilities were measured for 9 structures 

in the brain model, as shown in Table 3.3. For the in vivo data, the mean value of the 

susceptibilities were measured for a total of 7 structures, including veins, globus pallidus 

(GP), putamen (PUT), caudate nucleus (CN), substantia nigra (SN), red nucleus (RN) and 

thalamus (THA) using manually drawn ROIs. One-way ANOVA was used to test the 

differences seen in the measured susceptibilities obtained using different phase processing 

algorithms, for each structure. p<0.05 was considered as significant.  

3.5.2 Simulated data results  

For simulated data, VHP, SHARP and PDF led to similar level of errors in the estimated 

susceptibilities for different structures, as shown in Table 3.3. For basal ganglia 

structures, the truncated k-space division algorithm for susceptibility mapping will cause 

an underestimation around 10-20%. The VHP, SHARP and PDF processed phase images 

lead to an additional 20% error for basal ganglia structures. For other structures such as 

veins, the underestimation was smaller. The most severe error was seen in the results for 
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thalamus, for which the underestimations in the measured susceptibilities were large for 

all three phase processing methods. Even using the phase images with ideal background 

field removal in susceptibility quantification, the error was still large. This suggests that 

this error is largely caused by the truncated k-space division algorithm itself.  

Table 3.1 Imaging parameters for the in vivo data.  

Datasets 1 2 3 4 5 

TE (in ms) 14.3 17.3 12.8 19.2 17.6 

TR (in ms) 26 26 34 34 30 

BW (in Hz/px) 121 121 130 130 425 

Voxel Size (in mm
3
) 0.5×0.5×

0.5 

0.5×0.5×

0.5 

0.6×0.6×

1.2 

0.6×0.6×

1.2 

0.6×0.6×

1.2 

Matrix Size 512×368

×256 

512×368

×196 

512×336

×112 

512×336

×112 

512×368

×144 

Flip Angle (in degrees) 15 15 15 15 15 

 

Table 3.2 Data processing parameters in different algorithms. 

  Simulated data In vivo data 

Homodyne 

high-pass filter 

k-space window sizes 32x32 and 

64x64 

k-space window sizes 64x64 

VHP Spherical kernel radii: 32 px 

(largest), 1 px (smallest) 

Spherical kernel radii: 32 px 

(largest), 1 px (smallest) 

SHARP Spherical kernel radius: 8 px, 

Regularization thresholds: 0.02 

and 0.05 

Spherical kernel radius: 8 px, 

Regularization threshold: 0.05 

PDF Convergence tolerance: 10
-3

  Convergence tolerance: 10
-2

 

Spherical kernel radius: 32px 
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Table 3.3 The estimated susceptibilities (mean ± std. in ppm) for different structures in 

the brain model using different phase processing methods. “Original Phase” represents 

using the simulated phase images without any background field.  

        Original 

Phase                    

HP32 HP64 VHP SHARP  

th=0.02 

SHARP  

th=0.05 

PDF 

Veins 0.45 0.41 

±0.07 

0.36 

±0.09 

0.33 

±0.09 

0.40 

±0.07 

0.40 

±0.07 

0.40 

±0.07 

0.40 

±0.07 

Thalamus 0.01 0±0.06 -0.02 

±0.06 

-0.01 

±0.06 

0 

±0.06 

0   

±0.06 

0   

±0.06 

0 

±0.06 

Red 

Nucleus 

0.13 0.12 

±0.06 

0.07 

±0.06 

0.07 

±0.06 

0.11 

±0.06 

0.11 

±0.06 

0.11 

±0.06 

0.11 

±0.06 

Substantia 

Nigra 

0.16 0.15 

±0.06 

0.09 

±0.07 

0.09 

±0.07 

0.13 

±0.06 

0.14 

±0.06 

0.14 

±0.06 

0.14 

±0.06 

Subthalamic 

Nucleus 

0.20 0.19 

±0.06 

0.15 

±0.07 

0.14 

±0.06 

0.18 

±0.06 

0.18 

±0.06 

0.18 

±0.06 

0.19 

±0.06 

Crus 

Cerebri 

-0.03 -0.03 

±0.06 

-0.04 

±0.07 

-0.03 

±0.06 

-0.04 

±0.06 

-0.04 

±0.06 

-0.04 

±0.06 

-0.03 

±0.06 

Caudate 0.06 0.05 

±0.06 

0.03 

±0.07 

0.02 

±0.06 

0.04 

±0.06 

0.04 

±0.06 

0.04 

±0.06 

0.04 

±0.06 

Putamen 0.09 0.07 

±0.06 

0.02 

±0.08 

0.01 

±0.07 

0.05 

±0.06 

0.06 

±0.06 

0.05 

±0.06 

0.06 

±0.06 

Globus 

Pallidus 

0.18 0.15 

±0.06 

0.06 

±0.07 

0.05 

±0.07 

0.11 

±0.06 

0.14 

±0.06 

0.12 

±0.06 

0.13 

±0.06 
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On the other hand, the homodyne high-pass filters caused much larger error, especially 

for bigger structures such as those basal ganglia structures. Using homodyne high-pass 

filter with window size 32×32 caused smaller error than using a window size 64×64, as 

expected.  

Moreover, the susceptibilities obtained using the simulated phase images without 

background field are plotted against the susceptibilities obtained using the phase images 

processed with different algorithms, as shown in Fig. 3.9. This figure reflects the effects 

of different phase processing methods on susceptibility mapping. Particularly, if no 

additional errors are caused by the phase processing methods, the susceptibilities 

estimated using the processed phase images should be almost the same as those estimated 

using the original phase images. This can be indicated by the slopes and the correlation 

coefficients of the linear regressions shown in Fig. 3.9. The smaller the slope, the more 

underestimation in susceptibilities the filter causes. The smaller the correlation coefficient, 

the more uncertainty the filter induces. The homodyne high-pass filtering leads to more 

underestimation in the estimated susceptibilities than the other phase processing methods, 

and 32x32 homodyne high-pass filter causes less underestimation than 64x64 high-pass 

filter does. Using the phase images processed by VHP, SHARP and PDF, the estimated 

susceptibilities are almost the same as those obtained using the original unfiltered phase 

images.  
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Figure 3.9 Susceptibility estimated using the original phase vs. the susceptibility 

estimated using different phase processing methods: a) Homodyne HP32×32, b) 

Homodyne HP64×64, c) SHARP (radius=8px, th=0.02), d) SHARP (radius=8px, 

th=0.05), e) Variable HP, and f) PDF.  
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3.5.3 In vivo data results 

The phase images in Dataset 1 processed using different algorithms are shown in Fig. 

3.10. Edge artefacts were observed in the homodyne high-pass filter processed phase 

images. The edge artefact was propagated into the susceptibility maps, as can be seen 

from Fig. 3.11.a and 3.11.e. The VHP processed phase images (Fig. 3.11.b and 3.11.f) 

show good agreement with the SHARP processed phase images. However, the regions 

close to the edge of the brains have signal loss due to the strong high-pass filter that is 

applied to these regions. The SHARP processed phase images have severe error near the 

superior sagittal sinus (SSS), as shown in Fig. 3.11.c. This is due to the partial removal of 

the SSS by the brain mask. Even though a mild high-pass filter was applied, a slowly 

varying remnant background profile was still observed in the PDF processed phase 

images, as can be seen from Fig. 3.10.d and 3.10.h. A relatively large error was found for 

the structures close to the edge of the brain, using PDF processed phase images.  

Using different background field removal algorithms, the measured susceptibilities for 

different structures in the in vivo data are compared in Fig. 3.12. Compared with other 

algorithms, homodyne high-pass filter caused more under-estimation in the measured 

susceptibilities for all the structures (p<<0.05), except for the caudate nucleus (p=0.8717). 

For homodyne high-pass filtering, the large variation in the measured susceptibility for 

the same structure across different datasets is partly caused by the remnant phase aliasing 

artefacts in the high-pass filtered phase images. VHP, SHARP, and PDF led to almost the 

same susceptibility estimates for all the structures, except for the thalamus (p=0.0182). 
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Figure 3.10 Phase images processed with different algorithms in Dataset 1. a and e. 

64x64 Homodyne high-pass filter. b and f: VHP. c and g: SHARP. d and h: PDF. 

 

Figure 3.11 Susceptibility maps generated with different algorithms in Dataset 1. a and e. 

64×64 Homodyne high-pass filter. b and f: VHP. c and g: SHARP. d and h: PDF. 
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Figure 3.12 The means and standard deviations of the measured susceptibility values for 

different structures in different in vivo datasets. The error bars represent the standard 

deviations of the measured susceptibilities in different datasets. GP: globus pallidus, 

PUT: putamen, CN: caudate nucleus, SN: substantia nigra, RN: red nucleus, and THA: 

thalamus. The asterisks indicate Tukey’s HSD significance: * p<0.05, ** p<0.01, *** 

p<0.001. 

3.5.4 Discussion and conclusions 

Clearly, the variable high-pass filtering (VHP) leads to less underestimation in the 

susceptibility estimation, compared with the traditional homodyne high-pass filtering. In 
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VHP, the spherical kernel is used to generate a low-pass filtered phase image (the 

averaged phase image) which is close to the background phase. As can be seen from the 

results, variable high-pass filtering leads to similar results as SHARP. The only difference 

between VHP and SHARP is that, no additional deconvolution is required in VHP. This 

helps to avoid any amplification of noise due to the deconvolution. In addition, there is no 

need to select any regularization parameter for deconvolution, as it is done in SHARP.  

It can be concluded that the error in SHARP processed phase images reduces as the size 

of the spherical kernel increases. This is mainly due to the deconvolution process, as 

larger spherical kernel leads to less amplification of any remnant background field. 

However, as the size of the spherical kernel increases, more of the brain region will be 

affected by edge artefacts. The erosion of the brain mask leads to signal loss and is a 

particular limitation of SHARP. One possible solution is to extend the field continuously 

to the regions outside of the brain (16, 23).  

Both SHARP and VHP processed phase images lead to small errors in the estimated 

susceptibilities for most structures, except for the thalamus. This might be due to the low 

susceptibility and the large size of the thalamus. For veins and basal ganglia structures, 

the error is relatively more stable.  

PDF processed phase images are also affected by edge artefacts. This large error close to 

the edge was explained to be caused by the violation of the assumption of PDF, that is, 

the field induced by the dipole sources located within the brain is orthogonal to the field 

induced by the dipole sources outside the brain. Further, a remnant slowly varying 
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background phase component was observed for the PDF processed phase images, for the 

in vivo data. This might be caused by the phase offset,   , which could be removed when 

data were collected with a multi-echo gradient echo sequence.  

Generally speaking, if the original phase images are unwrapped properly, SHARP is 

found to be the most efficient background field removal algorithm among all the available 

algorithms. However, if a region with noisy phase values were included in the region of 

interest, the phase unwrapping may fail (2) and accuracy of SHARP processed phase 

images could be deteriorated by the deconvolution step (24). For instance, when there is 

cusp artefact/open-ended fringe lines in the phase images, most phase unwrapping 

algorithm will fail. In such cases, it would be better to simply use the variable high-pass 

filter which does not perform any deconvolution, in order to avoid any amplification of 

the artefacts coming from the noisy region included in the region of interest.  
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Chapter 4 Fast and Robust 

Background Field Removal using 

Double-echo Data 

4.1 Introduction  

Quantitative susceptibility mapping (QSM) has great potential in elucidating tissue 

properties and providing functional information in vivo. It has already found various 

applications, such as the quantification of cerebral iron content (1,2), venous oxygen 

saturation (3,4), and monitoring the changes of cerebral lesions and microbleeds (5,6). To 

extract the susceptibility distribution, normally the phase images from a gradient echo 

sequence are required. However, the phase images are contaminated by background field 

inhomogeneities. The background field induced phase component is referred to as the 

background phase in this study. Various algorithms have been proposed to remove the 

background phase and to extract the local phase which contains the field variation induced 

by local susceptibility changes (7-11). Most of these approaches require phase 

unwrapping, which can be time-consuming or sensitive to noise (12). To further 
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complicate the problem, any improper combination of the phase data collected with multi-

channel coil will lead to signal cancelation and open-ended fringe lines/cusp artefacts in 

the phase images (13-15), which may severely affect the accuracy of phase unwrapping 

and, hence, background phase removal. Any error in background phase removal will 

propagate into the susceptibility maps (16,17). Consequently, reliable background phase 

removal is a critical step, as it directly determines the quality and accuracy of QSM. 

Currently, there are mainly four types of background field/phase removal algorithms: 

homodyne high-pass filtering (7), geometry dependent artefact correction (GDAC) (8), 

projection onto the dipole field (PDF) (9) and sophisticated harmonic artefact reduction for 

phase data (SHARP) (10). The homodyne high-pass filtering has been successfully applied 

in susceptibility weighted imaging (SWI), due to its robustness and effectiveness. 

However, it also causes loss of low spatial frequency phase information to structures with 

relatively big size. The high-pass filter size could be reduced in the geometry dependent 

artefact correction (GDAC) method, but the accuracy of GDAC is largely dependent on 

the a priori information of the geometries of the air-tissue interfaces. Both PDF and 

SHARP utilize the fact that the background phase originated from the susceptibility 

sources outside the brain satisfies Laplace’s equation (9,10). Particularly, SHARP, or 

spherical mean value filtering based techniques have been shown be computationally 

efficient in removing the background phase (10). Except for homodyne high-pass filtering, 

all of these algorithms require phase unwrapping.  

Phase unwrapping could be done through either spatial or temporal domain algorithms 

(18,19). For temporal phase unwrapping, multiple echoes are required (19,20). The 
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choices of the echo times may be restricted by the requirement of applying 3D flow 

compensation gradient, when studying susceptibilities of veins (7,21). For spatial domain 

methods, path-following and quality-guided algorithms are typically used (18,22-24). In 

these algorithms, the spatial smoothness of the phase images is assumed. Since the 

Laplacian of phase can be calculated directly from the original phase images, another 

common strategy is to use Laplacian based phase unwrapping or to use the Laplacian of 

phase directly in background field removal (11,17). However, when the Laplacian is 

directly used, the accuracy of the extracted local phase information will be reduced (25); 

when the Laplacian based phase unwrapping algorithm is used, there are errors in the 

regions near the edges of the brain or major veins (11,17,25).  

In this study, we propose a background field removal algorithm in which the local phase 

unwrapping and background phase removal are performed simultaneously, and the global 

phase unwrapping is bypassed. For the best performance of this algorithm, multi-echo 

data, in this case double-echo data are used. We also show that the artefacts induced by T2
*
 

effects at a long echo time, as well as the phase singularities can be reduced when handled 

properly. 

4.2 Theory 

For a left-handed system, the phase information in a gradient echo sequence with echo 

time TE can be written as: 

                                                               [4.1], 
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where        is the phase offset at TE=0. This phase offset is related to the coil sensitivity 

and conductivity of the tissues (26,27). Usually, the original phase images are aliased and 

should be unwrapped. This is done by determining       and subtracting         from the 

original phase images:  

                                                               [4.2]. 

The unwrapped phase information can be viewed as two components, the background 

phase        and the local phase       : 

                                                                [4.3]. 

The background phase and the local phase are directly proportional to the background field 

and the local field, respectively. Using the spherical mean value property of the 

background field, it was shown that (28): 

                                                              [4.4], 

where “s” is a normalized spherical kernel and * represents the convolution operation. 

The background phase can be removed using Eqs. 4.3 and 4.4: 

                                                            [4.5]. 

Eq. 4.5 is the critical step to remove the unwanted background phase variations. This is 

referred to as spherical mean value filtering (SMV) (28). To calculate the convolution in 

Eq. 4.5, there should not be any discontinuities in the original phase images, i.e., phase 

unwrapping is required. Denoting the result of Eq. 4.5 as         , it is essentially the 

difference between the phase value of a given pixel and the mean phase value in the local 
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spherical VOI and, hence, is not dependent on the baseline. Consequently, it is only 

necessary to unwrap the local spherical VOI. When the maximal phase difference between 

any pixel and the central pixel in the spherical VOI does not exceed π, the local phase 

unwrapping can be achieved through baseline shifting: 

                    {   [ (             )]}                     [4.6]. 

For each       ,          can be calculated using Eq. 4.5, but only for those pixels which 

are sufficiently far away (i.e., with a distance larger than the radius of the spherical kernel) 

from any phase wraps. The remnant unresolved pixels are those where the phase gradients 

are too big, e.g., the regions close to the air-tissue interfaces, or those which are close to 

phase singularities/noisy phase pixels. In the former case, the phase images cannot be 

unwrapped locally using baseline shifting and          will be set to 0. In the latter case, 

for a particular pixel at     ,           was calculated through local complex division: 

          ∑                                
 
                   [4.7], 

where N is the total number of pixels of the spherical kernel s centered at    .   

Combining all the steps, we obtain          and then the local phase        is extracted via 

the deconvolution process: 

                                                                 [4.8]. 

The regularized deconvolution can be performed in the Fourier domain through 

thresholded division or other regularized inversion algorithms (10,29).   
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In the above calculations, it is assumed that TE is sufficiently short or the gradient of total 

field variation is sufficiently low. For the phase data at a long TE, TE2,          with a 

short effective echo time can be constructed through complex division using the phase 

images at the shorter TE, TE1: 

                                                                 [4.9], 

where   is an integer. The choices of   is dependent on the TEs and the SNRs of the 

phase data. Now          can be processed in the same way as described above to obtain 

            , then              can be calculated as: 

                                                               [4.10].  

Finally, the local phase           can be solved using              through Eq. 4.8. 

Alternatively, both            and            can be generated first, then           can be 

calculated in a way similar to Eq. 4.10. We refer to the whole process (Eqs. 4.5 to 4.10) as 

Local Spherical Mean Value filtering (LSMV) in this thesis.  

4.3 Materials and Methods 

4.3.1 3D brain model simulation  

A 3D brain model was created to study the robustness of LSMV and to compare with 

other phase unwrapping algorithms for processing the phase images with single short 

echo at different noise levels. Various structures such as basal ganglia structures, 

grey/white matter, CSF as well as the air-sinuses were included in this brain model. To 
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simulate the background phase, the susceptibility in the air-sinuses was set to 9.4 ppm. 

The phase images were calculated using the forward calculation (8,30–32) at B0=3T, 

TE=7.5ms. Magnitude images were also created with different T1, T2
*
, proton density 

values assigned to different structures. White Gaussian noise was added to real and 

imaginary parts of the complex data and the SNR of the magnitude in the white matter 

region ranged from 5:1 to 20:1. The phase images with different noise levels were 

processed using the same steps as described in the in vivo data acquisition and processing 

section.  

4.3.2 3D cylinder simulation 

In order to evaluate the effects of T2
*
 signal decay and partial volume on the proposed 

algorithm, the phase images of a 3D cylinder, as surrogate for the vein were created at two 

different TEs at B0=3T. The susceptibility inside the cylinder was set to 0.45ppm and 

outside 0. The main field direction was set to be perpendicular to the long axis of the 

cylinder. The two TEs were chosen to be TE1=7.5ms and TE2=22.5ms. The magnitude 

was set to uniformly 1 initially, and then the regions inside the cylinder experienced T2
*
 

signal decay as a function of TE, with T2
*
=25ms. A background field, varying linearly 

along the main field direction, was added to the field map of the cylinder. The gradient of 

the background field was chosen such that the induced phase increment is 2π at TE1 within 

the full FOV. The partial volume effects were simulated by first creating the magnitude 

and phase images of a 2D cylinder in an 8192×8192 matrix, then cropping the central 

256×256 pixels of k-space. The radius of the cylinder in the final 256×256 matrix was 8 
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pixels. Finally, the phase images of the 3D cylinder were generated by stacking the phase 

images of the 2D cylinder along the long axis of the cylinder. Gaussian noise was added to 

real and imaginary channels of the complex data, and the SNR in the magnitude images 

varied from 5:1 to 20:1. For phase processing using LSMV, the phase images at TE1 were 

complex divided twice into the phase images at TE2 to create phase images with ΔTE of 

7.5ms, i.e.,     in Eq. 4.9. The noisy pixels in the phase images at TE2 were detected as 

where phase singularity occurred and where the SNR in magnitude images was less than 

2:1. For the deconvolution step in Eq. 4.8, a regularization threshold 0.001 was used. Other 

processing steps are the same as described in the in vivo data processing section.  

4.3.3 In vivo data acquisition and processing 

The proposed method was tested on three in vivo datasets collected with 3D fully flow 

compensated double-echo gradient echo sequence (21), with GRAPPA acceleration factor 

of 2. Other imaging parameters are listed in Table 4.1. While higher spatial resolution was 

used in the first in vivo study, the lower through-plane resolutions used in the second and 

third in vivo studies are closer to the situations in most clinical applications. For the 

combination of multi-channel data, the linear gradients of the phase images from each 

channel were first corrected by shifting the echo center (the position of the pixel which has 

the maximum magnitude in k-space) to the actual center of k-space. The baseline of each 

channel was estimated from the center of k-space and removed subsequently. Finally, the 

phase data were combined through averaging of the complex data weighted by the 

magnitude images (13,14).   
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Table 4.1 Imaging parameters for the in vivo data. Datasets 1 and 2 were collected on the 

same volunteer. 

 Dataset 1 Dataset 2 Dataset 3 

Echo Time (ms) TE1=7.38, TE2=17.6 TE1=7.38, TE2=22.14 TE1=7.38, TE2=22.14 

TR 30 30 30 

Flip Angle 15 15 15 

Bandwidth (Hz/px) 425 425 425 

Head-coil 32-channel 12-channel 32-channel 

Voxel size (mm
3
) 0.6×0.6×1.2 0.5×0.5×2 0.5×0.5×2 

Matrix size 512×368×144 512×384×72 512×384×72 

 

The local phase images at TE1 and TE2 were obtained using the following steps.  

1. Generating the binary brain masks. This was done using the Brain Extraction Tool 

(BET) (33) in FSL, to the magnitude images at TE2. In order to refine the brain masks, 

quality maps were generated (24) as a function of the local average number of phase 

singularities /poles which can be detected using the method described in (34). The brain 

masks were set to 0 where the values of the quality maps were below an empirically 

determined threshold. 

2. Detecting the noisy pixels in the phase images 

There may be noisy pixels inside the brain with unreliable phase values, which could be 

induced by the phase singularities or T2
*
 effects at a long TE. To detect these noisy 
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pixels, the phase singularities detected in Step 1 were used as candidates. Then the 

noisy pixels were determined as those where the SNR in magnitude image was less than 

3:1. These noisy pixels were excluded from the calculation of the SMV filtered results.  

3. Spherical mean value filtering (SMV) through global baseline shifting  

The SMV filtered results (    ) were first calculated using the original phase images, 

only for the pixels which were not affected by any phase wraps in the original phase 

images, using Eq. 4.5. The radius of the spherical kernel was set to 8 pixels. The phase 

wraps were detected when the absolute value of the phase difference between two 

neighboring pixels was greater than 0.9π. The pixels affected by the phase wraps were 

determined as those which were within 8 pixels to any phase wraps in 3D. Then the 

baseline of all the pixels in the original phase images were shifted by π using Eq. 4.6. 

Since most pixels close to the phase wraps in the original phase images have phase 

values close to π or – π, a baseline shift of π is most effective in shifting the baseline of 

those pixels to 0 and creating locally unwrapped regions. Then SMV filtered results 

were obtained using the baseline shifted phase images, using the same procedures as 

described above. After this step 3, there might be remnant pixels which are still affected 

by phase wraps. These pixels will be resolved in the next step. 

4. Spherical mean value (SMV) filtering through local baseline shifting 

For a particular pixel, P, the phase value of all the pixels in the spherical VOI centered 

at P were complex divided by the phase value of P. After this local baseline shifting, if 

no phase wrap was detected in the local spherical VOI, the value of      at P will be 
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calculated using Eq. 4.7. If phase wraps were detected, it suggests that either that local 

phase gradient is too big, or P is affected phase singularities. In the former case,      

cannot be calculated using this proposed method and was set to 0. In the latter case, 

     was calculated again using Eq. 4.7.  

5. Obtaining the local phase information through deconvolution  

Finally, the local phase images (  ) were calculated through truncated Fourier domain 

division with regularization threshold 0.05, using Eq. 4.8. The whole process is 

illustrated in Fig. 4.1.  

 

Figure 4.1 Processing steps in LSMV for single echo phase data with short TE.  
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To generate the local phase images at TE2, the phase images at TE1 were complex divided 

twice into those at TE2 to create phase images at    . Then          was calculated 

using steps 2 to 5 as described above, and          was calculated as          

         . For any noisy pixels which were present only in the phase images at     but 

not in the phase images at TE1, the values of          were obtained by projecting the 

values of          from     to     as:                 , assuming that the 

influence of the    term is sufficiently small. 

4.3.4 Comparison with other phase unwrapping algorithms 

The proposed algorithm was compared with two commonly used phase unwrapping 

algorithms. One is the quality guided 3D phase unwrapping algorithm (3DSRNCP) (23) 

and the other the Laplacian based phase unwrapping (18,35). For the comparison, the 

phase images were first unwrapped using these two algorithms and then processed using 

SHARP. The other parameters, such as the spherical kernel size and the regularization 

threshold were the same between SHARP and LSMV. Thus, the differences in the results 

were purely caused by the phase unwrapping algorithms. In order to evaluate the 

influences of different algorithms on the accuracy of susceptibility quantification, 

susceptibility maps were generated using the processed phase images, through truncated k-

space division with a k-space threshold 0.1 (3). 

For the simulated 3D brain model and cylinder data, the root-mean-square-errors 

(RMSEs) were calculated by comparing the processed phase images with the ideal phase 

without background phase or random noise. RMSEs were also calculated for the 
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generated susceptibility maps. For in vivo data, root-mean-square-deviations (RMSDs) 

was calculated for both processed phase images and susceptibility maps, by comparing the 

results obtained using LSMV and those obtained using the other two phase unwrapping 

algorithms. Specifically, the RMSEs for simulated data or RMSDs for in vivo data were 

calculated in two regions-of-interest (ROIs): all the regions inside the brain and the regions 

close to the veins. For evaluating the processed phase images, the second ROI consisted of 

both the regions inside the veins and the surrounding regions within 4 pixels to the veins 

(for the 3D cylinder simulation, the second ROI was a cylindrical region with radius 12 

pixels, being concentric with the 3D cylinder); while for evaluating the generated 

susceptibility maps, the second ROI was taken to be the regions inside the veins (or 

cylinder) only. All the tests were performed in MATLAB R2010a on a desktop equipped 

with Intel i7-2600 CPU, 16 G of RAM. 

4.4 Results 

4.4.1 3D brain model simulation results 

The RMSEs of the processed phase images generated using different algorithms were 

plotted in Fig. 4.2. For both the processed phase images and the susceptibility maps, 

LSMV and 3DSRNCP lead to almost the same RMSEs. When SNR was lower than 10, 

Laplacian phase unwrapping leads to slightly lower over-all RMSE, but higher RMSE for 

the veins, compared with the other two algorithms.  

 



Ph.D. Thesis – Saifeng Liu                        McMaster – School of Biomedical Engineering 

75 
 

 

Figure 4.2 RMSEs of the processed phase images (a and b) and the susceptibility maps (c 

and d) at different noise levels for the simulated 3D brain model. The RMSEs in a and c 

were calculated using all the pixels inside the brain, while the RMSEs in b and d were 

calculated using only the pixels close to (or inside) the veins. The SNR represents the 

signal-to-noise ratio in the magnitude images.  

The processing times using different algorithms were also measured, as shown in Fig. 4.3. 

For all noise levels, Laplacian phase unwrapping was the fastest among the three tested 

algorithms. When SNR was lower than 10, the proposed algorithm LSMV cost more time 

than 3DSRNCP. But for higher SNRs, the processing time for LSMV gradually reduced. 

This is due to the reduced number of noisy pixels in the phase images. At SNR=20:1, the 

processing time of LSMV was roughly 2/3 of that using 3DSRNCP.  
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Figure 4.3 A comparison of the processing times using different algorithms at different 

noise levels. 

4.4.2 Cylinder simulation results 

The RMSEs in the phase images and susceptibility maps of the cylinders processed with 

different algorithms are plotted in Fig. 4.4. At both TEs, LSMV led to the smallest RMSEs 

among the three algorithms, for both the processed phase images and the susceptibility 

maps. When SNR was higher than 8, at both TEs, Laplacian phase unwrapping caused the 

largest RMSEs among the three algorithms, for both the processed phase images and the 

susceptibility maps. At TE1, 3DSRNCP and LSMV induced similar level of RMSEs. At 

TE2, when SNR was lower than 8, phase unwrapping using 3DSRNCP failed and this led 

to much larger RMSE in the processed phase images, as shown in Figs. 4.4.b and 4.5. This 

error was propagated into the susceptibility maps, as indicated by the large RMSE in the 

susceptibility maps at TE2 (Fig. 4.4.d).  
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Figure 4.4 RMSEs in the processed phase images (a and b) and susceptibility maps (c 

and d) of the cylinders at two TEs. The SNR represents the signal-to-noise ratio in the 

magnitude images.  

The original and the processed phase images of the cylinder are shown in Fig. 4.5. When 

SNR was 5:1, both 3DSRNCP and Laplacian phase unwrapping failed to unwrap the phase 

at TE2. When SNR was 20:1, it was noticed that the 3DSRNCP failed to recover a few 

pixels at the edge of the cylinder, as indicated by the black arrows in Fig. 4.5. This is due 

to the low SNR at those pixels caused by T2
*
 signal decay. The Laplacian phase 

unwrapping caused large error inside the cylinder at TE2 again. On the other hand, for both 
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low and high SNRs, the LSMV algorithm had successfully extracted the local phase 

information for the cylinder.  

 

Figure 4.5 The original phase images and the local phase images generated using 

different algorithms for the simulated cylinder at SNR=5:1 and SNR=20:1. The SNR 

represents the signal-to-noise ratio in the magnitude images. The images in the second to 

fourth columns are the central 64×64 pixels in the processed local phase images, as 

indicated by the white dashed box in the top-left image. The errors in the local phase 

images obtained using 3DSRNCP and Laplacian phase unwrapping are indicated by the 

black arrows. 
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4.4.3 In vivo data results 

The original and processed phase images, together with the SMV filtered images for 

Dataset 1 are shown in Fig. 4.6. 

 

Figure 4.6 The original and processed phase images for Dataset 1. a) Original phase 

image at TE1=7.38ms. b) Complex divided phase image with effective TE=2.84ms. c) 

Original phase images at TE2=17.6ms. d) SMV filtered result (φSMV) at TE1. e) SMV 

filtered result at ΔTE. f) SMV filtered result at TE2, calculated using the images shown in 

e and d as e+2×d. g) Local phase image at TE1. h) Local phase image at ΔTE. i) local 

phase image at TE2.  
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The LSMV led to almost the same local phase images as those obtained using 3DSRNCP, 

as shown in Fig. 4.7. The major difference between LSMV and 3DSRNCP is seen at the 

edges of the veins, especially at the longer TE, with the LSMV produced a more 

continuous phase profile. This continuous phase profile also helps to reduce the streaking 

artefacts in susceptibility maps, as shown in Fig. 4.7.i.  

 

Figure 4.7 Comparison between the local phase images and susceptibility maps generated 

using LSMV (a, d and g) and those generated using 3DSRNCP (b, e and h) for Dataset 1. 

The difference images are shown in c, f and i. The phase images in the first row are at 

TE1, and the phase images in the second row are at TE2. The images in the third row are 

susceptibility maps (SM) obtained using the phase images at TE2 (d and e). The scale bars 

are for the difference images c, f and i only. Note the improvement in the SM using 

LSMV thanks to the better recovery of phase around the veins. 
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Figure 4.8 Comparison between the local phase images and susceptibility maps generated 

using LSMV (a, d and g), and those generated using Laplacian phase unwrapping (b, e 

and h) for Dataset 1. The difference images are shown in c, f and i. The phase images in 

the first row are at TE1, and the phase images in the second row are at TE2. The images in 

the third row are susceptibility maps obtained using the phase images at TE2 (d and e). 

The scale bars are for the difference images c, f and i only.  

Compared with the LSMV generated results, the Laplacian phase unwrapping caused 

remnant low spatial-frequency background field, especially for regions close to the air-

tissue interfaces, as shown in Fig 4.8. Large differences were also seen at the edges of the 

veins. This could be due to the partial volume effects and discretization errors.  

The quantitative measures of the differences between different phase processing methods 

for all the in vivo data are shown in Table 4.2. For all three datasets, the processed phase 

images at TE1 obtained using LSMV are almost the same as those obtained using the 
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3DSRNCP. However, the processed phase images at TE2 show a slight difference between 

LSMV and 3DSRNCP. This may be due to the difference of the pixels at the edges of the 

veins, caused by T2
*
 signal decay. This difference in the processed phase images was 

propagated into the difference in susceptibility maps, especially for the vein regions. 

Meanwhile, a relatively large difference was seen between the processed phase images 

obtained using Laplacian phase unwrapping and those obtained using LSMV. This also 

caused a large difference between the susceptibility maps. As for the processing time, still 

Laplacian phase unwrapping with SHARP was the fastest among the three. The time cost 

by LSMV for processing the phase images at two TEs was close to the time cost by 

3DSRNCP for processing the phase images at a single TE.  

The proposed algorithm LSMV is able to handle noisy phase images and reduce the effects 

of the cusp artefacts. Signal cancelation and cusp artefacts occur when the multi-channel 

phase data is not combined properly. As an example, in Fig. 4.9.a, we show the original 

phase images at TE2 from Dataset 2, combined using the built-in algorithm on the scanner. 

The improper combination caused cusp artefacts and locally severely reduced SNR on the 

phase images, as indicated by the white arrows in Fig. 4.9. The cusp artefact caused failure 

of phase unwrapping using 3DSRNCP (Fig. 4.9.b), which was propagated into the 

extracted local phase images (Fig. 4.9.e). On the other hand, both LSMV and Laplacian 

phase unwrapping handled the cusp artefact properly (Fig. 4.9.d and 4.9.f).  
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Table 4.2 A comparison of phase images and susceptibility maps processed using 

different algorithms for the in vivo data. 

 Dataset 1 Dataset 2 Dataset 3 

TE1 TE2 TE1 TE2 TE1 TE2 

 

RMSD in  

Phase Images: 

Overall (in rad) 

LSMV vs. 

3DSRNCP+SHARP 

0 0.04 0 0.07 0 0.07 

LSMV vs. 

Laplacian+SHARP 

0.05 0.13 0.02 0.09 0.02 0.09 

 

RMSD in Phase 

Images: Veins (in 

rad) 

LSMV vs. 

3DSRNCP+SHARP 

0.03 0.20 0.04 0.46 0 0.46 

LSMV vs. 

Laplacian+SHARP 

0.06 0.24 0.05 0.47 0.03 0.45 

 

RMSD in 

Susceptibility 

Maps: Overall (in 

ppm) 

LSMV vs. 

3DSRNCP+SHARP 

0 0.01 0 0.01 0 0.01 

LSMV vs. 

Laplacian+SHARP 

0 0.02 0 0.02 0 0.02 

 

RMSD in 

Susceptibility 

Maps: Veins (in 

ppm) 

LSMV vs. 

3DSRNCP+SHARP 

0.02 0.11 0.02 0.18 0 0.15 

LSMV vs. 

Laplacian+SHARP 

0.02 0.12 0.01 0.18 0 0.15 

 

 

Processing time (s) 

LSMV 44 (two TEs) 28(two TEs) 26(two TEs) 

3DSRNCP+SHARP 32 31 20 20 20 20 

Laplacian+SHARP 7 7 4 4 4 4 
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Figure 4.9 a) Original phase image at TE2 from Dataset 2 with cusp artefact. Note that, 

this image was obtained using the built-in multi-channel data combination algorithm on 

the scanner. b) Unwrapped phase image using 3DSRNCP. c) Unwrapped phase image 

using Laplacian phase unwrapping. d) Local phase image generated using LSMV. e) 

Local phase image generated using the unwrapped phase image shown in b. f) Local 

phase image obtained using the unwrapped phase image shown in c. Cusp artefact caused 

errors in the processed phase images, as indicated by the white arrows.  
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4.5 Discussion 

Background field removal in QSM could be affected by several factors. The robustness of 

background field removal is usually hampered by the requirement of phase unwrapping, 

especially for phase images at a relatively long TE. For short TE phase images, however, 

most regions inside the brain are not affected by phase aliasing. Thus the short TE’s phase 

images could be used to accelerate the processing of the phase images at a longer TE.  

While the shorter TE’s phase has less T2
*
 decay induced noisy pixels, the longer TE’s 

phase has higher overall phase SNR. The signal loss due to T2
*
 signal decay could be 

reduced by projecting the phase obtained at the shorter TE to a longer TE. It was shown 

that the effective magnetic moment is constant (36). Thus, recovering the lost pixels near 

the edge of the veins is important, since these pixels will affect the estimation of the 

geometries of the veins and consequently affect the estimation of susceptibility. This is the 

main advantage of using a combination of short TE and long TE in a double-echo 

sequence.  

Multi-channel phase data combination also plays an indispensable role in QSM. For phase 

data collected with a multi-channel phased array coil, a simple weighted sum of the 

complex data usually leads to severe signal cancelation and cusp artefacts in the phase 

images (13,14), which will deteriorate the accuracy of background field removal. This 

problem is attributed to the coil sensitivity induced phase component in different channel’s 

data (13-15), and can be partly solved by applying high-pass filtering to each channel’s 

phase data before the data combination. But the combined phase data will be effectively 

high-pass filtered and this in turn will lead to under-estimation of the susceptibilities (14). 
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A correction of the constant baseline shifts for different channel’s data is an effective way 

to alleviate the problem (13). However, the accuracy of the baseline shift correction is also 

dependent on the selection of the reference region that is used for estimating the phase 

baseline shifts between channels (14). In a recently proposed method, the coil sensitivity 

induced phase components were estimated using reference scan or double-echo data and 

subsequently removed before combining the data from different channels (14). Instead of 

using the combined phase data, the phase data from individual channels can also be used 

directly in QSM processing, followed by weighted average of the susceptibility maps (37). 

The latter two methods are more sophisticated, but are computationally more extensive, 

since both of them requires phase unwrapping or background field removal for each 

channel’s phase data. From our experiences, if the focus is the brain, linear gradients and 

baseline correction for each channel’s phase will be sufficient to avoid any cusp artefacts 

or signal cancelation in phase images. The selection of a reference channel can be avoided, 

if the baseline of each channel is estimated from the center of k-space. 

The time cost by background field removal is mainly determined by the phase unwrapping 

process. For the currently available phase unwrapping algorithms, the processing time 

varies a lot, so does the robustness of these algorithms (12).  

The Laplacian phase unwrapping is the most time-efficient. However, no matter whether a 

Laplacian operator is directly used to remove the background field, or the phase is 

unwrapped first using Laplacian followed by other background field removal algorithms, 

errors are usually found in the extracted local phase information, especially for the regions 

near the edge of the veins. This is attributed to discretization errors in calculating the 
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Laplacian of phase (11,17,25). Despite its inability in producing reliable phase for the 

veins, Laplacian phase unwrapping is usually found to be a robust algorithm, especially 

when there are cusp artefacts in the phase images.  

On the other hand, the 3D path-following and quality guided phase unwrapping algorithms 

are able to produce relatively more reliable phase information, especially for the veins, 

even though these phase unwrapping algorithms are usually time-consuming. Particularly, 

when there are cusp artefacts, these phase unwrapping algorithms will eventually fail 

(15,17), as validated in this study.  

The proposed LSMV algorithm leads to almost the same results as those 3D quality guided 

phase unwrapping algorithms, with the advantage that phase singularities and noisy pixels 

are properly handled. For processing the phase images at two TEs, the time cost by LSMV 

is roughly half of the time cost by the fast 3D phase unwrapping algorithm.  

The effectiveness of the proposed algorithm is dependent on the TEs used in the double-

echo sequence. A proper combination of the TEs should satisfy the following conditions. 

First, the TE of the first echo should be short enough, so that only a few pixels close to the 

air-tissue interfaces need to be removed due to too rapid field changes. This helps to 

reduce the loss of the regions close to the air-sinuses. Second, the TE of the second echo 

should not be too far away from the first TE. i.e., the values of α in Eq. 4.9 should not be 

too big. A bigger α means more complex divisions using the phase images at the two TEs, 

and hence more amplification of the random noise in the phase images. Under the above 

two conditions, and assuming that the effective TE of the complex divided phase,   

       , we have             , or             . The lower bound of 
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    is usually restricted by the requirement of applying the flow compensation gradient. 

This restriction can be removed by using an interleaved double-echo sequence (21), but 

with prolonged scan time. In the cases when two relatively long TEs (with short TE 

spacing) are used, temporal phase unwrapping can be achieved by projecting the phase at 

the short effective TE to a much longer TE, as proposed in former studies (19,20). 

However, the accuracy of the processed phase at the longer TE may be compromised by 

the amplification of noise due to the projection.  

The quality of SHARP processed phase images is also dependent on the deconvolution 

process as shown in Eq. 4.8. In this study, we used the truncated k-space division for the 

deconvolution, due to its simplicity and time-efficiency. The deconvolution could also be 

done through a Tikhonov regularization process (29). It should be noted that the SMV 

filtered results generated from this algorithm can be easily used as the input to other 

deconvolution algorithms to further improve the accuracy of background field removal.  

In addition, the phase component    could be used to extract the conductivity of different 

tissues (26,27). For the purpose of QSM, the effects of    should also be considered, since 

it may not satisfy the Laplace’s equation and thus may not be fully suppressed by the 

spherical mean value filtering. For the algorithm proposed in this study, the effects of    

can be determined through a linear fitting using the processed phase images. Ideally,    

should be determined even before the phase images were processed (14).    can be 

determined through a weighted linear fitting using multiple echoes, but it was also shown 

in a previous study that nonlinear fitting of the phase may help to avoid any noise 

amplification at longer echo times (16).  
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Finally, the limitations to the proposed method are mainly associated with the regions near 

the sinuses, where the field is changing too rapidly. These regions cannot be fully resolved 

using baseline shifting or local complex division. Current techniques of using a forward 

model to remove more of the air/tissue interface would reduce the rapid field variations 

and hence make it possible to apply this new approach even in those regions. 

In conclusion, using the proposed algorithm based on double-echo data, global phase 

unwrapping is avoided and the noisy pixels in phase images (e.g., phase singularities/cusp 

artefacts) are better handled. This improves the efficiency and robustness of background 

field removal in QSM. 
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Chapter 5 Solving the Inverse Problem 

of Susceptibility Quantification 

5.1 Susceptibility mapping using truncated k-space division 

5.1.1 Theory 

As previously discussed in Chapters 2 and 3, the field variation in the main field direction 

can be considered as the convolution of the susceptibility distribution and the point-dipole 

field response (the Green’s function) as (1,2): 

                                                                  [5.1].                                          

The main field direction is assumed to be in z direction. This convolution can be 

calculated through convolution theorem by taking the Fourier transform of Eq. 5.1: 

   ( ⃗ )     ( ⃗ )   ⃗                                               [5.2]. 

The Fourier transform of the Green’s function,    ⃗  , has a simple form of       
    , 

when  ⃗   .  ( ⃗ )   , when  ⃗    (1–3).  
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Figure 5.1 The cross-sections of  ( ⃗ ) (a and b) and     ( ⃗ ) (c and d). In a and c, the 

cross-sections are parallel to the main field direction, in b and d, the cross-sections are 

perpendicular to the main field direction. The white regions in a and b correspond to the 

regions where   ( ⃗ )     . The black dashed lines in a and c indicate the positions of 

the cross-sections shown in b and d.  

Susceptibility quantification is the inverse problem, in which Eq. 5.1 is solved for      , 

given        . The inverse problem is ill-posed, due to the zeros in the Green’s function 

in Fourier domain. This inverse problem can be solved by using a regularized inverse 

filter(4),     ( ⃗ ), defined as: 
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The cross-sections of  ( ⃗ ) and     ( ⃗ ) are shown in Fig. 5.1. 

The regularized inverse filtering leads to two problems: streaking artefacts and 

underestimation  of the susceptibility (4,5). Consequently, the choice of the regularization 

threshold is usually a trade-off between the level of the streaking artefact and the 

underestimation of the susceptibility. 

The systematic underestimation  can be estimated, as proposed in (6). Consider the ideal 

solution to the inverse problem as: 

      ( ⃗ )  
  ( ⃗ )

     ⃗  
                                                 [5.4], 

and the solution using the regularized inverse kernel as: 

    ( ⃗ )  
  ( ⃗ )

  
      ⃗                                          [5.5], 

From Eqs. 5.4 and 5.5, 

    ( ⃗ )

      ( ⃗ )
       ⃗     ⃗                                           [5.6]. 

If the systematic underestimation was considered as a constant scaling factor in image 

domain, using the inverse Discrete Fourier Transform, it could be estimated as the 

average value of       ⃗     ⃗  . 
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5.1.2 Optimal choice of the regularization threshold 

In order to determine the optimal choice of the regularization threshold (th in Eq. 5.3), 

cylinders with different radii ranging from 2 pixels to 16 pixels were simulated in a 

256×256 matrix, at B0=3T, TE=5ms. The susceptibility of the cylinders was set to 1 ppm. 

Partial volume effects were simulated by first creating the complex data in a 4096×4096 

matrix, and then cropping the central 256×256 pixels in k-space. Gaussian noise was 

added to real and imaginary channels of the complex data and the SNR in the magnitude 

images ranged from 2:1 to 20:1. Means and standard deviations of the susceptibilities of 

the both the regions inside and outside the cylinder were measured.  

When no random noise was added, the level of underestimation  as a function of the 

regularization threshold th is plotted in Fig. 5.2.a and 5.2.b, for cylinders with different 

radii. When th is small, the predicted underestimation (Figure 5.2.a) agrees better with 

the measured underestimation of the relatively bigger cylinders; when th gets bigger, the 

predicted underestimation agrees better with the measured underestimation of the smaller 

cylinders. The underestimation of the susceptibilities of the cylinders is increasing as the 

threshold value th increases, while the uncertainty is decreasing.  

When different levels of random noise were added, the levels of underestimation for 

different cylinders were almost the same as those when no noise was added, as can be 

seen from Figure 5.2.c and 5.2.e. It was also noticed that, for the smallest cylinder, when 

th is low, there could be a significant increase of the level of underestimation, as indicated 

in Figure 5.2.c. and 5.2.e. The standard deviations of the measured susceptibilities inside 
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the cylinders were increased (Fig. 5.2.d and 5.2.f), compared with the standard deviations 

inside the cylinders without any random noise (Fig. 5.2.b).  

The measured susceptibilities of the regions outside the cylinders are mainly attributed to 

streaking artefacts and Gibbs ringing. As shown in Fig. 5.3.a and 5.3.b, the mean and 

standard deviations of the susceptibility values measured outside the cylinders were close 

to 0, but the standard deviation can be quite large when random noise was added and 

when th is small (Fig. 5.3.dand 5.3.f). The standard deviation measured outside the 

cylinders quickly decreases as th increases.  

In order to find the optimal threshold value, with the standard deviation outside the 

cylinders used as a measure of the level of streaking artefacts, a cost function could be 

defined as: 

      √                                                     [5.7], 

where U(th) is the underestimation as a function of th, for cylinder with certain radius r, 

and for a certain SNR; N(th) is the standard deviation measured outside the cylinder. The 

function R(th) is plotted in Fig. 5.4, for cylinders with different radii. The optimal th can 

be selected as the one which minimizes the cost function R(th). The optimal th was found 

to be close to 0.1 for small structures and 0.14 for relatively bigger structures. Besides of 

underestimation, bigger structures may also lead to blurring of the susceptibility maps 

(5,6). Consequently, 0.1 is the over-all optimal th when structures with different sizes are 

considered.  
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Figure 5.2 The underestimation in the susceptibility values measured inside the cylinders 

with different radii (a, c and e) and the standard deviations (b, d and f). a and b were 

generated when no noise was added. For c and d, SNR=10:1 in the magnitude images; 

while for e and f, SNR=5:1.  
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Figure 5.3 The mean susceptibility values (a, c and e) and the standard deviations (b, d 

and f) measured in the background regions outside the cylinders. a and b were generated 

when no noise was added. For c and d, SNR=10:1 in the magnitude images; while for e 

and f, SNR=5:1. 
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Figure 5.4 The cost function R(th) for different cylinders. R(th) was calculated using Eq. 

5.7. The optimal th was determined as when R(th) was minimized. Particularly, when 

SNR=10:1, the optimal ths were 0.12 (r=2px), 0.13(r=4px), 0.14 (r=8px), and 0.14 

(r=16px). When SNR=5:1, the optimal ths were 0.1 (r=2px), 0.13(r=4px), 0.13 (r=8px), 

and 0.14 (r=16px). 

5.2 Geometry constrained iterative reconstruction 

5.2.1 Theory and methods 

Even though the regularized inverse filtering helps to avoid amplification of the noise, the 

streaking artefacts are inevitable and they may severely affect the quality of susceptibility 

maps. In order to obtain susceptibility maps with reduced streaking artefacts, additional 

information such as the geometries obtained from magnitude or phase images can be used 

as constraints, and the inverse problem could be formularized as an optimization process 

(7–9): 

            ‖ (                   )‖
 

 
                              [5.8], 



Ph.D. Thesis – Saifeng Liu                        McMaster – School of Biomedical Engineering 

101 
 

where W is a weighting function and      is the regularization function. The first part of 

Eq. 5.8 is related to data fidelity and the second part of Eq. 5.8 is related to regularization. 

When    , Eq. 5.8 reduces to a least-squares fit (3). The      is usually taken to be the 

L
p
-norm the gradients of the susceptibility maps within a low-gradient mask,     .  

                                                                  [5.9]. 

The low-gradient mask could be generated by setting threshold to the gradients found in 

magnitude images (7), gradients and Laplacian of the phase images, or a combination of 

both the gradients in magnitude and phase images (8). The optimization problem in Eq. 

5.8 can be solved using iterative solvers such as LSQR in Matlab (10). Alternatively, a k-

space/image domain iterative algorithm, referred to as iterative SWIM, can be used.  

The main idea of iterative SWIM is to reduce the streaking artefacts associated with 

structures with relatively high susceptibility values and to update the k-space data in the 

singularity regions (i.e., where | ( ⃗ )|    ). The iterative SWIM algorithm consists of 

the following steps: 

1. Extraction of the high-susceptibility structures from the initial susceptibility maps. 

This can be done by setting threshold     to the initial susceptibility map,              . 

A high value of     is used at the beginning to extract structures with relatively high 

susceptibility values (such as veins in the brain). A denoising filter, e.g., median filter, 

is typically applied before extracting the high susceptibility structures through 

thresholding. For the extraction of the veins, a high-pass filter could be applied too. 
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This facilitates the suppression of any other bigger structures from being included in 

the veins masks. Then the veins can be extracted by thresholding the high-pass filtered 

susceptibility maps using    . Morphological operations such as opening and closing 

were performed after the thresholding to remove the noisy pixels. In the end, a binary 

mask  is created which equals one for the high susceptibility regions and zero 

everywhere else. This mask is applied to the original susceptibility map         to get 

the extracted susceptibility map          . In order to reduce the streaking artefacts 

inside the veins, an edge-preserving low-pass filter will be applied, to only the pixels 

inside the veins.          is Fourier transformed to get       ⃗  . 

2. Merging the k-space data. The original k-space data (      ⃗  ) in the cone of 

singularities (i.e.     ⃗      ) is merged with the k-space data       ⃗  . Particularly, 

     ⃗   and       ⃗   are merged to get new k-space data          ⃗   as: 

       ( ⃗ )  {
   ( ⃗ )                     | ( ⃗ )|    

   
 ( ⃗ )                      | ( ⃗ )|    

                     [5.10], 

3. Steps 1 and 2 will be repeated until the relative change of the susceptibility value of 

the extracted structures is less than a pre-defined threshold σ. σ was chosen to be 0.01 

in this study.    

4. Once converged, the threshold     will be lowered to include structures with lower 

susceptibility values (but still significantly higher than the background), such as the 

basal ganglia structures. Then Step 1 to 3 will be repeated.  

The whole process is illustrated in Fig. 5.5.  
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Figure 5.5 Illustration of the processing steps of Iterative SWIM algorithm.  

5.2.2 Simulations 

This algorithm was first evaluated using the 3D brain model. The phase images of this 

model were created using the forward calculation at B0=3T and TE=10ms, without any 

background field. Uniform magnitude images were used in this simulation. White 

Gaussian noise was added to real and imaginary channels of the data and SNR in the final 

magnitude images is 20:1. The exact geometries of the veins and other grey matter 

structures were used in the iterative algorithm, in order to evaluate the errors purely 

caused by the updating of k-space data. First, only the geometries of the veins were input 

to the iterative SWIM algorithm. This corresponds to when a high     is used to extract 

the veins. Next, the geometries of veins and other grey matter structures were input to the 

algorithm. This corresponds to when a relatively low     is used. The mean and standard 

deviations of the susceptibility values of the veins, as well as other grey matter structures 
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(globus pallidus, putamen, caudate nucleus and red nucleus) were measured for each 

iteration step. To study the effects of the k-space truncation threshold, different values of 

th were tested, with th ranging from 0 to 0.2, with step size 0.01. 

5.2.3 In vivo data studies 

The iterative SWIM algorithm was also tested using in vivo data collected on a 3T 

scanner with TE=14.3ms, voxel size 0.5×0.5×0.5mm
3
. For this in vivo data, the veins 

were extracted with    =0.16 ppm. The grey matter structures were extracted using 

   =0.06 ppm. The accuracy of using these parameters for extracting the geometries was 

evaluated using the 3D brain model. Means and standard deviations of the susceptibilities 

were measured for veins and grey matter structures including globus pallidus, caudate 

nucleus, putamen, red nucleus and substantia nigra. For the veins, the vein masks 

extracted in the iterative SWIM algorithm were used for measuring susceptibility, while 

for the grey matter structures, manually drawn ROIs were used. The susceptibility maps 

generated using the iterative SWIM algorithm were also compared with those generated 

using Morphology Enabled Dipole Inversion (MEDI) (7). In MEDI, It is assumed that the 

low gradient regions found in magnitude images correspond to the low gradient regions in 

susceptibility maps. The nonlinear formulation of MEDI (11) was used, together with 

model error reduction through iterative tuning (MERIT). To suppress the gradients 

induced by noise in magnitude images, the magnitude images were processed using 

anisotropic diffusion filtering (12) with 2 iterations, step size 0.05, gradient threshold 100. 

The gradient masks were generated assuming that 30% of the pixels correspond to actual 
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gradients, according to (7). The results of MEDI are largely dependent on the 

regularization parameter λ. Note that, the definition of λ in the MEDI algorithm is slightly 

different than the “λ” shown in Eq. 5.8. In MEDI, λ is placed together with the data 

fidelity term, instead of the regularization term (7,11). Thus, a low λ in MEDI leads to 

over-regularized results, and a large λ leads to under-regularized results. In this study, we 

tested different values of λ in MEDI, with log10 λ ranging from 1 to 3, with step size 0.25. 

The optimal λ was chosen according to the discrepancy principle (13) to match the 

residual with the expected noise power, as was used in the previous studies (7,11) on 

MEDI.   

5.2.4 Simulated Data Results 

First of all, the effect of the parameter th is shown in Fig. 5.6, in which the relative errors 

in the susceptibility values (measured from the converged susceptibility maps) are plotted 

for different structures. As th increases, the relative error in the measured susceptibility 

values increases while the standard deviation decreases. In order to reduce the relative 

errors and to have low uncertainties in the estimated susceptibility values, in this study we 

chose th as 0.1. 
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Figure 5.6 The effects of the parameter th on the accuracies of the estimated 

susceptibilities of different structures. a) The relative errors (absolute values) in the 

measured mean susceptibilities at different values of th. b) The standard deviations of the 

measured susceptibilities at different values of th.  

Next, the mean and standard deviations of the susceptibilities of different structures at 

different iteration steps were plotted in Fig. 5.7. When only the geometries of the veins 

were used as constraints, the relative error in the mean susceptibility value of the veins 

quickly decreases and converges after the 3
rd

 iteration, while the relative errors for all the 

other structures were increasing, as shown in Fig. 5.7.a. When the geometries of all the 

structures, including the veins, were used in the iterative SWIM algorithm, reduced 

relative errors in the measured susceptibility values were observed for all the structures, 

as indicated in Fig. 5.7.b. For the veins, the relative error was maintained at the same 

level as in Fig. 5.7.a. The standard deviations were reducing as more iteration steps were 

conducted, as can be seen from Figure 5.7.c to 5.7.f.   
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Figure 5.7 Means and standard deviations of the susceptibility values of different 

structures in the 3D brain model at different iteration steps. a and b: the mean 

susceptibility values measured at different iteration steps. c to f: the standard deviations 

measured at different iteration steps. The images in the first column (a, c and e) show the 

changes in mean and standard deviation when a high χth was used in geometry extraction, 

while the images in the second column show the results when a low χth was used in 

geometry extraction.  
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The iterative SWIM algorithm has reduced the streaking artefacts effectively, as can be 

seen from Fig. 5.8. Nonetheless, this iterative algorithm is optimized for the veins and the 

selected grey matter structures only. For the other parts of the brain, the relative errors in 

the measured mean susceptibility values were slightly increased after the iterative SWIM 

algorithm, as indicated by the error maps shown in Fig. 5.8.c and 5.8.d.  

 

 

Figure 5.8 a) The initial susceptibility map. b) The final susceptibility map after iterative 

SWIM. c) The difference between a and the ideal susceptibility map. d) The difference 

between b and the ideal susceptibility map. 
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Figure 5.9 K-space profiles of the initial susceptibility map (a) and the final 

susceptibility map after iterative SWIM algorithm (b). The errors in the k-space profiles 

in a and b are shown in c and d, respectively. Specifically, the errors were calculated by 

comparing the k-space of the generated susceptibility maps with the kspace of the ideal 

susceptibility maps. Compared with the initial susceptibility maps, the final susceptibility 

maps after iterative SWIM algorithm have reduced errors in the cone of singularities in k-

space, as indicated by the white arrows.  

The k-space profiles of the original susceptibility map and the final susceptibility map 

after iterative SWIM algorithm are shown in Fig. 5.9. The errors of k-space data in the 

cone of singularity regions were reduced after the iterative SWIM algorithm, especially 

for the central part of the k-space, as indicated by the white arrows in Fig. 5.9.  
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5.2.5 In vivo Data Results 

 

Figure 5.10 The extracted geometries of veins and grey matter structures (a and b) and 

the susceptibility maps (c and d) for the in vivo data. a) Maximum intensity projection of 

the binary masks of veins extracted using a high χth. b) One slice of the binary masks of 

the grey matter structures extracted using a low χth. c) Maximum intensity projection of 

the initial susceptibility maps. d) The corresponding susceptibility map to the binary 

mask shown in b.  

The vein masks obtained from the in vivo data are shown in Fig. 5.10. Particularly, Fig. 

5.10.a shows the maximum intensity projection (MIP) of the binary vein masks obtained 

from single high-pass filtering and thresholding, while Fig. 5.10.b shows the one slice of 

the binary masks for other grey matter structures with lower susceptibility values than the 
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veins. In order to evaluate the accuracy in the structure extraction, the vein masks and 

grey matter structure masks were generated for the brain model using the same algorithms 

and parameters. The relative error (calculated as (number of missed pixels +number of 

false positives) / actual number pixels in veins) in the extracted veins was measured as 9% 

and 10%, respectively. For the in vivo data, it was also observed that, the detected 

geometries of the veins or grey matter structures were sometimes locally contaminated by 

the noise and streaking artefacts which may have high intensities on the susceptibility 

maps. Besides, the putamen was only partly extracted, as shown in Fig. 5.10.b. This 

could be due to the variation of susceptibilities within the putamen.  

Similar to what was seen in the simulation, in the first round of iterations, when the 

geometries of the veins were extracted using the high    , the mean susceptibility values 

of veins quickly converge after the 3
rd

 iteration step, as shown in Fig. 5.11.a. The 

susceptibility values of other structures were decreased after the iterative algorithm was 

applied, except for red nucleus, for which the susceptibility value was slightly increased, 

as indicated by the images in the first columns of Figs. 5.11 and 5.12. In the second round 

of iterations, when the geometries of both the grey matter structures and the veins were 

extracted using a low    , the mean susceptibility values of all the grey matter structures 

were increased, while the susceptibility of the veins was maintained at the same level as 

in the first round of iterations, as can be seen from the second columns of Figs. 5.11 and 

5.12. For the veins, the standard deviations in the measured susceptibilities were 

decreased as more iteration steps were conducted, as shown in Fig. 5.13.a and 5.13.b. For 

other structures, the standard deviations measured in the second round of iterations were 



Ph.D. Thesis – Saifeng Liu                        McMaster – School of Biomedical Engineering 

112 
 

slightly increased (Fig. 5.13.c and 5.13.d). This could be caused by the errors in the 

extracted geometries of these structures. The streaking artefacts were reduced 

dramatically for all the structures, as can be seen from Fig. 5.14.  

 

Figure 5.11 Mean susceptibility values of veins and globus pallidus at different iteration 

steps in the in vivo data. The figures in the first column were obtained when high χth was 

used to extract the geometries of veins only, while the figures in the second column were 

measured when low χth was used to extract the geometries of veins and other structures.   
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Figure 5.12 Mean susceptibility values of red nucleus (RN), caudate nucleus (CN) and 

putamen (PUT) at different iteration steps in the in vivo data. The figures in the first 

column were obtained when high χth was used to extract the geometries of veins only, 

while the figures in the second column were measured when low χth was used to extract 

the geometries of veins and other structures. 
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Figure 5.13 Standard deviations of the susceptibility values at different iteration steps for 

different structures in the in vivo data. The figures in the first column were obtained when 

high χth was used to extract the geometries of veins only, while the figures in the second 

column were measured when low χth was used to extract the geometries of veins and other 

structures. 
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Figure 5.14 Comparison between the initial susceptibiltiy maps (a and d) and the final 

susceptibility maps (b and e). Their differences are shown in c and f (generated as b-a 

and e-d).  

5.2.6 Comparison with Morphology Enabled Dipole Inversion (MEDI) 

For MEDI, the proper value of λ was selected based on Fig. 5.15. The susceptibility maps 

generated with different values of λ are shown in Fig. 5.16. The smaller the λ, the more 

smoothed the susceptibility maps, and the smaller the RMSE. In this study, the optimal λ 

was chosen to be 100. 

Compared with the susceptibility maps generated by iterative SWIM algorithm, MEDI 

leads to smoother images with preserved edge information in the predefined regions. 

However, since MEDI utilizes the edge information in magnitude images only, when 

there is no clear edge, MEDI may lead to underestimation of the susceptibilities of veins, 

as shown in Fig. 5.17. In the cortical region, these two methods yield similar results.  
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Figure 5.15 The effects of the regularization parameter λ in MEDI. The average gradient 

was measured in the low gradient regions in the converged susceptibility maps.  

 

Figure 5.16 Susceptibility maps generated using different values of regularization 

parameter λ with MEDI. a and d: λ=10. b and e: λ=100. a and d: λ=1000. 
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Figure 5.17 Comparison of susceptibility maps generated by iterative SWIM (a) and 

MEDI (b). The profiles of the solid black lines across the vein of Galen in a and b are 

shown in c. The profiles of the dashed black line in the cortical region were shown in d. 

The corresponding magnitude image is shown in e, which does not have clear edge 

information of the veins in the region indicated by the white arrow.  
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This is further confirmed by the histograms of the susceptibility values of the veins shown 

in Fig. 5.18. Compared with MEDI, iterative SWIM algorithm leads to higher 

susceptibility estimates of the veins. Meanwhile, the iterative SWIM provides almost the 

same susceptibility estimates for grey matter structures such as globus pallidus, as shown 

in Table 5.1. The distribution of the susceptibility values of the pixels inside the globus 

pallidus is narrower in MEDI than in iterative SWIM. This is due to the minimization of 

the edges inside globus pallidus in the susceptibility maps generated by MEDI.  

        

Figure 5.18 Distributions of the susceptibility values of the pixels inside the veins (a and 

b) and inside the globus pallidus (c and d), measured from iterative SWIM generated 

susceptibility maps (a and c) and from MEDI generated susceptibility maps (b and d).  
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Table 5.1 Mean and standard deviation (in ppm) measured from susceptibility maps 

generated using iterative SWIM algorithm and MEDI.  

 Iterative SWIM MEDI 

Vein 0.30±0.11 0.24±0.15 

Globus Pallidus 0.11±0.06 0.12±0.04 

Red Nucleus 0.05±0.05 0.06±0.03 

Caudate Nucleus 0.04±0.05 0.04±0.03 

Putamen 0.02±0.05 0.03±0.04 

 

The k-space profiles of the susceptibility maps are shown in Fig. 5.19. The major 

difference between the k-space obtained from MEDI and the k-space generated by 

iterative SWIM is associated with the singularity regions in k-space. For the k-space 

generated using iterative SWIM algorithm, the lower amplitude inside the singularity 

regions is due to the fact that only veins and certain grey matter structures with high 

susceptibility values were used to update the k-space. It can also be observed that outside 

the singularity regions, the amplitude of the k-space generated by iterative SWIM is 

slightly higher than that generated by MEDI, as indicated by the white arrow in Fig. 

5.19.d. This is due to the difference between MEDI and iterative SWIM in defining the 

cone of singularities. In iterative SWIM, the cone of singularities is explicitly defined 

using the k-space truncation threshold, and only the k-space data inside this singularity 

region are updated.  
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Figure 5.19 The k-space profiles obtained using truncated k-space division (a), iterative 

SWIM (b) and MEDI (c). The difference between b and c is shown in d. The window 

levels in a, b, and c are the same. The major differences are seen along the cone of 

singularities in k-space, as indicated by the white arrow.  

5.3 Noise in susceptibility mapping 

The noise in susceptibility mapping is dependent on several factors, such as the 

regularization in solving the inverse problem and the random noise in the original phase 

data. In order to study the propagation of the random noise in the original phase data to 

the noise in susceptibility maps, simulations were conducted using 2D cylinders with 

different radii ranging from 2 to 16 pixels. The phase images were created at B=3T, 

TE=5ms. The susceptibility value inside the cylinder was set to 1, outside 0. A constant 

value was assumed to create magnitude images. To simulate the partial volume effects, 

the magnitude and phase images were first created in a 4096×4096 matrix, then the 

central 256×256 of k-space were cropped to form the final magnitude and phase images. 
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Random noise was added to real and imaginary channels of the complex data, and the 

SNR in the magnitude images ranged from 2:1 to 20:1.  

The susceptibility maps were generated using truncated k-space division, with k-space 

truncation threshold th ranging from 0.01 to 0.66, with step size 0.01. In order to study 

the propagation of random noise, independent of different regularization algorithms, the 

singularity regions where     ⃗       were replaced using the k-space data of the ideal 

susceptibility maps. Means and standard deviations of susceptibility values were 

measured from both the regions inside the cylinders and a referenced region in the 

background. The mean susceptibility values were used to calculate the relative error in 

susceptibility estimation using different regularization thresholds with different levels of 

noise, while the standard deviations were used to estimate the noise in the susceptibility 

maps.  

As shown in Fig. 5.20.a and b, the standard deviations measured in the reference region 

in the background are consistent for different cylinders. However, the standard deviations 

measured inside the cylinders show large variation. For large cylinders, the standard 

deviations measured in the two different regions are similar. Thus, the large difference 

between the standard deviations in Fig. 5.20.a and b for small cylinders is mainly due to 

the partial volume effects. When the standard deviations measured in the background 

reference region was used in analysis, the noise in susceptibility maps is found to be 

dependent on the noise in the original phase images. This relation can be approximated as 

a linear function as:  
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                                    [5.11], 

where   represents the noise amplification factor.  As shown in Fig. 5.20.c, when the 

regularization threshold th was chosen to be 0.1,   is approximately 4. This is consistent 

with the amplification factor found in the previous study (14). Note that   gets smaller as 

the regularization threshold th increases, although the relative error will also increase as 

th increases, as discussed in earlier sections. When   was plotted as a function of the 

relative error in the estimated susceptibilities, there appears to be an optimal 

regularization threshold th=0.13 which leads to both low noise amplification and low 

relative error in the susceptibility estimation. This is consistent with the optimal 

regularization threshold found earlier in this chapter.  
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Figure 5.20 a) Standard deviation of susceptibilities measured in the background 

reference region for cylinders with different radii. b) Standard deviation measured inside 

the cylinders. c) Noise amplification factor α as a function of SNR in magnitude images, 

when th=0.1. d) Noise amplification factor α as a function of relative errors in the 

estimated susceptibilities, when SNR=10:1. The arrow shows the case when th=0.13, 

α=3.3 and the underestimation of the susceptibility is 11.3%.  
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5.4 Discussion and Conclusions 

The main obstacle of quantitative susceptibility mapping originates from the ill-posed 

inverse problem. This leads to mainly three problems: underestimation of the 

susceptibility, streaking artefacts, and amplification of the noise.  

The underestimation of susceptibility can be well-approximated for structures with 

relatively large susceptibility values, such as veins. But for other structures, such as the 

grey matter structures, the estimation of susceptibilities is affected by the streaking 

artefacts caused by the nearby strong susceptibility structures. In this case, using a scaling 

factor to reduce the underestimation may lead to large uncertainties. Furthermore, it was 

noticed that when a large k-space truncation threshold was used, there tends to be more 

blurring of the susceptibility maps (4,5).  

Another problem of current susceptibility mapping technique is related to the streaking 

artefacts. The inverse problem can be efficiently solved in Fourier domain through 

truncated k-space division, and the streaking artefacts are related to the regularization that 

is applied in the k-space division. Newer techniques aim to map the susceptibilities as an 

optimization problem, and impose different constraints to the inverse problem. The 

accuracies of these newer methods are largely dependent on the constraints that are used 

in the optimization. It has already been shown that purely the gradient information 

extracted from magnitude images may not be sufficient, as not all the edges in 

susceptibility maps correspond to detectable edges in the magnitude images (8). This is 

partly solved by integrating the gradient information found in both magnitude and phase 
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images (8). Essentially, all of these methods fall into the category of edge preserving 

smoothing. Even though the susceptibility maps generated by these algorithms are smooth, 

the computation time can be prohibitively long. The k-space/image domain iterative 

SWIM algorithm, on the other hand, is much faster and more suitable for clinical settings. 

For the in vivo data in this study, which has 512x512x256 matrix size, it took MEDI 1.9 

hours to converge, but merely 1.6 minutes for iterative SWIM algorithm, on the same 

desktop with Intel i7 CPU.  

The effectiveness of the iterative SWIM algorithm was also examined using simulated 

data and in vivo data. The iterative SWIM algorithm has replaced the original k-space 

data in the cone of singularities, using the k-space of high-susceptibility structures. This 

results in proper interpolation of the missing data in central part of the k-space, and 

suppression of the noise with high frequency due to the replacing of missing data in the 

periphery of k-space. The iterative SWIM algorithm preserves the susceptibility 

information of the veins, but may potentially under-estimate the susceptibility of bigger 

grey matter structures, if they are not included in the geometry masks. Nonetheless, the 

streaking artefacts surrounding the veins were largely reduced together with improved 

accuracy of estimating the susceptibility of the veins. This is particularly advantageous 

for studies related to measuring venous oxygen saturation.  

Finally, the propagation of the random noise from original phase images to susceptibility 

maps was studied. With typical truncation threshold of 0.1, the noise amplification factor 

is close to four. This amplification factor was obtained assuming that only the cone of 

singularities in k-space was updated or modified. There are also studies on the noise 
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behavior in susceptibility mapping, using algorithms that update all the k-space values 

(15). Due to the smoothing function used in these algorithms, it is expected that the noise 

will be reduced in susceptibility maps.  

The accuracy of susceptibility mapping is also affected by many other factors, 

particularly, partial volume effects. While this is less a problem for relatively big 

structures such as the globus pallidus, with the resolution used clinically (e.g., 1mm x 

1mm x 2mm), it may cause errors for the veins. Considering a vein with diameter close to 

the imaging resolution, it may be still feasible to obtain a susceptibility value for the pixel 

which contains the vein. However, due to partial volume effects, it is not possible to 

obtain an accurate susceptibility value for the vein itself, but only an estimate of the 

magnetic moment, unless certain a priori information about the size of the vein is 

available (16,17).  

In conclusion, the core of quantitative susceptibility mapping is solving the inverse 

problem. Various algorithms have been proposed to deal with the ill-posedness of this 

inverse problem. The k-space/image domain iterative algorithm is particularly time-

efficient and applicable, especially for studies focused on measuring venous oxygen 

saturation.  
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Chapter 6 Improved Venography 

using True Susceptibility Weighted 

Imaging (tSWI)
2
 

6.1 Introduction 

Susceptibility weighted imaging (SWI) is a high resolution, spoiled gradient echo (GRE) 

magnetic resonance imaging (MRI) technique used today clinically for evaluating small 

veins and venous abnormalities in the brain and the presence of increased iron content 

and microbleeds in diseases such as dementia, multiple sclerosis (MS), Parkinson’s 

disease, stroke and traumatic brain injury (TBI) (1–3). SWI's exquisite sensitivity to small 

tissue magnetic susceptibility changes is due to its use of phase information (3–5). 

Paramagnetic or diamagnetic substances relative to water such as blood products or 

calcium, respectively, perturb the local magnetic field proportional to their respective 

magnetic susceptibilities. These differences are reflected in the phase of the MR images. 

                                            
2
Most of the contents in this chapter are adapted from Liu S, Mok K, Neelavalli J, Cheng YCN, Tang J, Ye 

Y, Haacke EM. Improved MR Venography Using Quantitative Susceptibility-Weighted Imaging. J. Magn. 

Reson. Imaging 2013; Article first published online: 31 OCT 2013 DOI: 10.1002/jmri.24413. Reprint under 

license. 
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In conventional SWI, after applying appropriate unwrapping and/or filtering techniques 

on the raw phase data (1,3), a phase dependent mask is created and multiplied n times into 

the magnitude data to enhance the contrast/visibility of these substances.  

Although SWI has been used quite successfully in clinical applications for many years, it 

is important to realize that it has a few weaknesses. One of them is based on the fact that 

the MRI phase signal is not only a function of the susceptibility, but also dependent on 

shape and orientation of the structure of interest. In data acquired with sufficient 

resolution, the phase inside veins perpendicular to the field has the opposite sign to that 

inside veins parallel to B0. This leads to variable suppression effects with the phase mask 

that makes SWI unique over conventional gradient echo imaging (6). Recently, 

quantitative susceptibility mapping (QSM) has emerged as a means to extract the source 

of phase information, that is, the local susceptibility distribution (7–15). QSM is known to 

be independent of echo time and, to a large degree, of orientation. To avoid the vessel 

orientation dependence in routine SWI data, instead of phase, we propose using a mask 

based on the susceptibility map. We refer to this approach as true-SWI (tSWI) to 

distinguish it from the conventional phase mask based SWI. In this work, our purpose is 

to compare the ability of these two methods to improve venous contrast and to show that 

tSWI is able to remove the geometry dependence of the phase for veins and microbleeds 

in SWI data.   
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6.2 Materials and Methods  

To provide some flexibility in generating the susceptibility weighting mask W, we 

introduce both lower and upper thresholds for defining the mask as follows: 

  {

                      

  
    

     
                  

                       

                                [6.1], 

where   refers to the susceptibility value of a voxel (e.g., vein) relative to the surrounding 

tissue in the susceptibility map,    is the lower limit and    is the upper limit of the range 

of tissue susceptibility values for which we want to improve the contrast in the final 

susceptibility weighted image. Finally, the true-SWI is generated by multiplying the 

magnitude image with the mask n times similar to the usual SWI mask application:  

                                                             [6.2]. 

The whole process is illustrated in Fig.6.1.  

In order to determine appropriate values for these two thresholds, we examined different 

potential choices. For   , we used: 1) the mean susceptibility value in the background 

white matter tissue region (0 ppm) in the susceptibility map and 2) three standard 

deviations (   ) above the tissue region, where    is the standard deviation of the white 

matter tissue region in the susceptibility map. While a threshold of 0 ppm would ensure 

that the susceptibility weighting mask would include smaller veins that are partial 

volumed, it can also lead to increased noise in tissue regions where susceptibility is 

supposed to be zero. On the other hand, a choice of        would reduce inclusion of 

noise in the mask. For   , we used: 1) the expected mean susceptibility value in the vein, 
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which is about 0.45 parts per million (ppm) relative to water (3,16) under normal 

physiological conditions; and 2) a value higher than this, in this case 1ppm. 

 

Figure 6.1 A comparison between tSWI and SWI data processing steps. 
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For a given set of    and    values, the contrast-to-noise ratio (CNR) between the vein 

and the background tissue can be optimized by choosing an appropriate n value in Eq. 6.2. 

CNR for a vein can be defined as the ratio between tSWI signal contrast for the vein and 

its associated uncertainty as follows: 

    
                      

  
                                        [6.3], 

where    √         
            

  . Noise in either the reference (background tissue) 

region (         ) or in the vein (          ) in the tSWI image can be estimated using the 

following equation: 

      √       
               

                         [6.4]. 

The noise, represented by the standard deviation for a given voxel in W,   , is dependent 

on the noise,   , in the susceptibility map in the following manner: 

    

{
 

 
  

     
                          

                                 
  

        
                   

                           [6.5]. 

The factor 1/2 in the case when      or      in Eq. 6.5 is due to the discontinuity (1). 

For simplicity, we assume that signal from vein (or cylinder) and reference region in the 

original magnitude images are the same:                 , and their associated 

signal standard deviations in these two regions are also the same:                    

 . Furthermore, we assume that the mean susceptibility value of the reference region is 0, 

and the mean susceptibility value of the vein is   . 
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i) When a threshold of     = 0 was used to generate the susceptibility mask, in the 

reference region, W = 1, and            . In the vein, W =        ,         , 

for           ; but when       , W = 0,             ; when       , W = 

0,    = 0. Using Eq. 6.4,  
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 [6.6]. 

 

ii) When a threshold of        was chosen, in the reference region, W = 1, and    = 0 

due to the fact that most pixels in the reference (background tissue) region have 

susceptibility values less than    . In the vein, W =                   ,   

           , for         ; but when      , W = 0,                 ; 

when      , W = 0,    = 0. Thus, 
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[6.7]. 

Thus the CNR can be written as: 
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        (  
     

     
)
 

                                     [6.8],                            

for          , with    given in Eqs. 6.6 and 6.7. 

When        and    is slightly less than   , CNR approaches SNR in the magnitude 

images as n approaches infinity. In this case, the optimal n was chosen to be the value 

where CNR reaches 90% of the maximal CNR for a certain vein.  

Simulations 

To evaluate the theoretical predictions, the optimal choice of n for generating tSWI 

images for different threshold values and vessel susceptibility values, and the influence of 

high-pass filtering on the final CNR for veins in tSWI images, simulations were 

performed using cylinders as surrogates to veins. A series of cylinders with radii ranging 

from 2 pixels to 16 pixels was used to simulate the associated phase images in a 512×512 

matrix at B0=3T, and TE=10ms. The cylinders were taken to be perpendicular to the main 

magnetic field. The input susceptibility of the cylinders was set to be 0.45ppm and the 

susceptibility value of the background region was set to zero. In order to simulate a more 

realistic response of the field perturbation, the complex data of a cylinder with radius 16 

times of the final radius was first created on an 8192×8192 matrix. The magnitude signal 

for the cylinder and background region were taken to be unity. The central 512×512 k-

space points generated from the larger matrix were then used to reconstruct the complex 

images of the cylinders. Gaussian noise was added to both real and imaginary channels of 

the data to simulate the SNR in the magnitude images to be 10:1. The simulated phase 

images were processed using a homodyne high-pass filter with a k-space window size of 
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64×64. Two sets of susceptibility maps, one from unfiltered and the other from filtered 

phase images, were generated for each cylinder size, using truncated k-space division 

with a k-space threshold of 0.1 (7). This is to evaluate the influence of high-pass filtering 

on the final CNR in tSWI images. The tSWI images were generated using Eqs. 6.1 and 

6.2 for different values of    and    as mentioned in the previous section. The standard 

deviation of the susceptibility maps was measured from a reference region outside the 

cylinder. The susceptibility mask was multiplied into the magnitude image n times with n 

ranging from 0 to 10 (n=0 refers to the case of no mask multiplication). The local CNRs 

between cylinders and the background reference were measured from the tSWI data using: 

                                                       [6.9] 

where Svein  and Sref are the mean intensity values inside the cylinder (vein) and inside a 

reference region of interest (ROI) adjacent to the cylinder directly from tSWI image, 

respectively. In order to estimate the overall noise    directly from tSWI images, the 

standard deviations inside the cylinder (          ) and the reference region (         ) in 

tSWI were measured and    was again calculated as the square root of             
  

         
 . The theoretically predicted CNRs from Eq. 6.8 using different thresholds for 

generating the susceptibility mask were compared with those measured from the 

simulations and the appropriate value for    for processing in vivo data was determined. 

CNRs of the cylinders with different susceptibility values ranging from 0.2ppm to 

0.45ppm were calculated to evaluate the influence of the susceptibility value of the object 

on the optimal choice of n. 
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In vivo data 

Table 6.1 Imaging parameters for three volunteers and one patient for in vivo studies. 

Dataset 5 was collected on a TBI patient. 

To evaluate the efficacy of tSWI in in vivo neuro-imaging, we compared the CNR 

obtained in tSWI data with that obtained in conventional SWI images in three healthy 

adult volunteers. The study was approved by the local institutional review board and 

informed consent was obtained from all subjects before the MRI scan. The volunteers 

were imaged on a 3T Verio system (Siemens, Erlangen) using a 3D SWI sequence with 

isotropic voxel size of 0.5mm×0.5mm×0.5mm. Imaging parameters are given in Table 

6.1. Data were acquired in the transverse orientation. In one case (volunteer 1), the SWI 

sequence was performed twice using two different echo times (TE = 14.3ms and 17.3ms). 

To evaluate the influence of voxel aspect ratio on the CNR, lower resolution images of 

0.5mm×0.5mm×2mm (anisotropic voxel size) from all 4 volunteer datasets were 

Dataset No. 1 2 3 4 5 

Volunteer No. 1 1 2 3 - 

B0 (T) 3 3 3 3 3 

TR (ms) 26 26 24 24 29 

TE (ms) 14.3 17.3 17 15.3 20 

FA (degrees) 15 15 15 12 15 

BW (Hz/px) 121 121 181 121 120 

Voxel size (mm
3
) 

0.5×0.5 

×0.5 

0.5×0.5 

×0.5 

0.5×0.5 

×0.5 

0.5×0.5 

×0.5 

0.5×0.5 

×2 

Matrix Size 
512×368

×256 

512×368

×256 

512×368

×224 

512×368

×192 

512×416

×64 
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generated by taking the central portion of the original k-space along the transverse 

direction.  

The quantitative susceptibility maps were generated for the isotropic and the anisotropic 

data, as follows: tissues outside the brain were removed using the Brain Extraction Tool 

(BET) in FSL (17), a homodyne high-pass filter with a k-space window of 64×64 was 

applied to remove the background field induced phase artefacts (1), and the inversion 

process to create susceptibility maps was accomplished using a single orientation 

truncated k-space division approach with a k-space truncation threshold of 0.1 (7). 

Similar to the case of the simulated data, two sets of tSWI images for each of the SWI 

datasets were generated using Eqs. 6.1 and 6.2 with: a)   =0 and b)       , where    

is the standard deviation of the susceptibility in the background white matter region close 

to the vein for which the CNR was measured. The threshold   was kept at 0.45ppm. The 

susceptibility mask was multiplied into the magnitude image n times, with n ranging from 

1 to 10. To generate conventional SWI images, phase masks were created using the high-

pass filtered phase images and then multiplied four times into the magnitude images (1). 

To investigate the impact of newer data processing methods, we also applied phase 

unwrapping (18) and SHARP (9) to remove the background field, and applied a geometry 

constrained iterative algorithm (8) to reconstruct the susceptibility maps for one dataset 

(Dataset 2). Then, tSWI images were generated using   =0 and    =0.45ppm. Local 

CNRs of two selected veins, the left internal cerebral vein (LICV) and the right septal 

vein (RSV), were measured from both tSWI and SWI using Eq. 6.9. Each vessel’s ROI 

was selected from the susceptibility maps and copied onto the tSWI or SWI images for 
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CNR evaluation. The reference ROI adjacent to each vein was taken from the same slice. 

To demonstrate the advantages of using tSWI over conventional SWI, we also analyzed 

one SWI dataset from a TBI patient. For this patient dataset, susceptibility maps were 

generated through homodyne high-pass filtering and truncated k-space division. tSWI 

images were then obtained with susceptibility weighting masks generated using   =0, 

  =0.45ppm and n=2. All the processing was done using Matlab (R2010a, Natick, MA).  

6.3 Results 

Simulations 

The simulated phase images of cylinders of different sizes, their corresponding 

susceptibility maps and tSWI images are shown in Fig. 6.2. The measured CNRs for 

cylinders with different radii, but with a constant input susceptibility of 0.45ppm, are 

plotted as a function of n in Fig. 6.3, and the theoretically predicted CNRs are plotted in 

Fig. 6.4. Since no T2* effects are considered here, the CNRs shown in Figs. 6.3 and 6.4 

reflect contrasts from only phase/susceptibility differences between the cylinders and the 

background reference region. The optimal choice of n and, correspondingly, the value of 

CNR in the tSWI image, are influenced both by (a) the choices of    and    and (b) the 

high pass filter. For   =0, CNRs reach maximum when n ≤ 4 (Figs. 6.3.a, 6.3.c, 6.3.e, 

6.4.a and 6.4.c). When    is larger with   =0, it also takes a larger n value to reach the 

optimized CNR. Meanwhile, the choices of    and    can also affect the rate at which 

optimal CNR is approached as a function of n. For       , CNRs in general increase 

as n increases (Figs. 6.3.b, 6.3.d, 6.3.f, 6.4.b and 6.4.d). The optimal n may be chosen 
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when CNR reaches 90% of the maximum of CNR. The optimal n was 4 for   =0.45ppm, 

and greater than 10 for   =1ppm.  

 

Figure 6.2 Phase images (a and b), susceptibility maps (c and d) and tSWI images (e, f, g 

and h) for simulated cylinders with and without homodyne high-pass filtering. Images in 

the first and third columns are generated using the original phase images without high-

pass filtering, while images in the second and fourth columns are generated using high-

pass filtering. The tSWI images e and f were generated using χ1=0, χ2=0.45ppm, n=2; 

while g and h were generated using χ1=3σχ, χ2=0.45ppm, n=4. σχ is the standard deviation 

of a reference region measured from the susceptibility maps shown in c and d 

(σχ=0.05ppm for both c and d). The SNR in the original magnitude image was set to be 

10:1 and the CNR between the cylinders and background in the original magnitude 

images was basically zero.  
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Figure 6.3 Measured CNRs of cylinders from simulated tSWI images. Figures in 

different rows were generated using different χ2 values, while figures in different columns 

were generated using different χ1 values. a) χ1=0, χ2=1ppm; b) χ1=3σχ, χ2=1ppm; c) χ1=0, 

χ2=0.45ppm; d) χ1=3σχ, χ2=0.45ppm; e) χ1=0, χ2=0.45ppm; and f) χ1=3σχ, χ2=0.45ppm. 

To evaluate the effect of high-pass filtering, e and f were generated using high-pass 

filtered phase images. 
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Figure 6.4 Theoretically predicted CNRs of cylinders with different susceptibility values. 

Figures in different rows were generated using different χ2 values, while figures in 

different columns were generated using different χ1 values. a) χ1=0, χ2=1ppm; b) χ1=3σχ, 

χ2=1ppm; c) χ1=0, χ2=0.45ppm; and d) χ1=3σχ, χ2=0.45ppm.  

When a high-pass filtered phase was used, the optimal choice of n was not affected much 

for   =0 and    = 0.45ppm (Fig. 6.3.e), but was slightly bigger for        and    = 

0.45ppm for all the cylinders except for the smallest one (Fig. 6.3.f). For both    = 0 

and       , the maximal CNR was reduced for bigger cylinders, when the high-pass 

filter was used. This is also partly evident in Fig. 6.2. The behavior in the case when the 

high pass filtered phase was used, agreed with the pattern observed in the theoretically 

predicted CNRs for objects with low susceptibility in Fig. 6.4. Given the simulated results 
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shown in Fig. 6.3, we chose    = 0.45ppm in the in vivo studies for a consistent choice of 

n for the maximal CNR. 

In vivo studies 

The local CNRs of the two veins, 1) the right septal vein and 2) the left internal cerebral 

vein, normalized by the SNRs, are plotted in Figs. 6.5 and 6.6 for all the in vivo datasets. 

The normalized CNRs in the SWI images and in the original magnitude images, as well 

as the SNRs in the original magnitude images (from the background tissues) are shown in 

Table 6.2. Compared to the original magnitude images, SWI improves the local CNR of 

the right septal vein in the anisotropic data, but not in the isotropic data. The CNR of the 

left internal cerebral vein is not improved in SWI in either isotropic or anisotropic data, 

due to the amplification of the noise in the background tissue region. Compared with the 

CNRs in magnitude images, the local CNRs in tSWI were improved by roughly a factor 

of 2 in both isotropic and anisotropic cases for    = 0. Compared with conventional SWI, 

the CNRs were improved by a factor of greater than three for datasets with isotropic 

resolution and greater than 30% for datasets with anisotropic resolution in tSWI. The 

local CNRs were further improved when       . Considering all cases, when    = 0 

was used, n = 2 was a reasonable practical choice for both isotropic and anisotropic 

datasets; when        was used, n = 4 was a reasonable choice for isotropic datasets 

and n = 8 for anisotropic datasets.  
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Figure 6.5 Local CNRs of the right septal vein (a, c, and e) and the left internal cerebral 

vein (b, d, and f) from different datasets with isotropic resolution. a, b, c and d were 

generated when threshold χ1=0 was used to create the susceptibility weighting masks, 

while e and f were generated when χ1=3σχ was used. The CNRs were normalized by the 

corresponding SNRs listed in Table 6.2.  c and d  show the CNRs of the two veins in 

Dataset 2 with isotropic resolution, when different data processing methods were used for 

susceptibility mapping (see Fig. 6.7 for examples of the tSWI images).  
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Figure 6.6 Local CNRs of the right septal vein (a, c, and e) and the left internal cerebral 

vein (b, d, and f) from different datasets with anisotropic resolution. a, b, c and d were 

generated when threshold χ1=0 was used to create the susceptibility weighting masks, 

while e and f were generated when χ1=3σχ was used. The CNRs were normalized by the 

corresponding SNRs listed in Table 6.2.  c and d  show the CNRs of the two veins in 

Dataset 2 with anisotropic resolution, when different data processing methods were used 

for susceptibility mapping (see Fig. 6.7 for examples of the tSWI images). 
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When SHARP along with an iterative algorithm (8) was used to generate susceptibility 

maps, the CNRs of the two veins of interest in the corresponding tSWI image were 

improved, as shown in Figs. 6.5.c, 6.5.d, 6.6.c and 6.6.d. For isotropic resolution, at n=2 

with    = 0, the relative improvements for the left internal cerebral vein and the right 

septal vein were 23% and 14%, respectively. For anisotropic resolution and at n=2, the 

relative improvements for the two veins were less than 5%. However, this improvement 

in CNR was more significant for grey matter structures than for veins, as can be seen 

from Fig. 6.7.d and 6.7.h. 

In Fig. 6.7, we compare the tSWI and SWI minimum intensity projections for both the 

isotropic and anisotropic cases. The tSWI appears to have higher CNR than the 

conventional SWI in both isotropic and anisotropic data. For tSWI, isotropic data 

provided a better delineation of the venous structures, compared to the anisotropic data. 

This is consistent with the results shown in Figs. 6.5 and 6.6, in which the normalized 

maximal CNRs are higher for the isotropic data than those for the anisotropic data. When 

       was used, the visibility of some tiny veins and the grey matter structures was 

reduced compared to the case when    = 0 was used.  
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Figure 6.7 Comparison between minimal intensity projections (mIP) of tSWI and SWI 

data over 16mm for isotropic (top row) and anisotropic data (bottom row) for Dataset 2. 

For b, c, f and g, susceptibility maps were generated using homodyne high-pass filtering 

and thresholded k-space division; while for d and h, susceptibility maps were generated 

using SHARP and geometry constrained iterative algorithm. a) isotropic SWI mIP; b) 

isotropic tSWI mIP (χ1=0, χ2=0.45ppm, n=2); c) isotropic tSWI mIP (χ1=3σχ, 

χ2=0.45ppm, n=4); d) isotropic tSWI mIP (χ1=0, χ2=0.45ppm, n=2); e) anisotropic SWI 

mIP. f) anisotropic tSWI mIP (χ1=0, χ2=0.45ppm, n=2). g) anisotropic tSWI mIP (χ1=3σχ, 

χ2=0.45ppm, n=8). h) anisotropic tSWI mIP (χ1=0, χ2=0.45ppm, n=2). 
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As an example of this process with    = 0,     = 0.45ppm and n = 2, Fig. 6.8 shows a 

case that demonstrates the problems with the conventional SWI processing: one of the 

veins has a trajectory roughly at the magic angle (54.7°) with respect to the direction of 

the main magnetic field B0. The black arrow shows the vein which is clearly seen in the 

tSWI (Fig. 6.8.f). In SWI (Fig. 6.8.e), the vein actually shows a dark structure which is in 

fact more associated with its edges. This makes the veins appear much bigger in the SWI 

than in the tSWI data, as can be seen from the minimum intensity projections (mIPs) in 

Figs. 6.8.g and 6.8.h. This non-local phase information used in SWI can lead to an 

inaccurate estimation of the geometry of microbleeds, as demonstrated in Fig. 6.9. In this 

TBI case, tSWI has more faithfully represented the microbleeds.   
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Figure 6.8 A sagittal view showing a vein near the magic angle (54.7° relative to the 

main magnetic field) as indicated by the black arrows. a) Phase image (from a left-handed 

system) showing effectively zero phase inside the vein, with outer field dipole effects also 

visible; b) susceptibility maps showing the vein as uniformly bright; c) susceptibility 

weighting mask obtained from the phase image (n=4); d) susceptibility weighting mask 

obtained from the susceptibility maps (χ1=0, χ2=0.45ppm, n=2); e) SWI showing 

unsuppressed signal inside the vein; and f) tSWI showing a clear suppression of the vein 

even at the magic angle. g) mIP of SWI in the sagittal direction. h) mIP of tSWI in the 

sagittal direction. Note the vessels near the magic angle are now well delineated in the 

tSWI data. 
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Figure 6.9 Sagittal views of SWI (a and c) and tSWI images (b and d) in a TBI case. The 

microbleeds appear much bigger on the SWI images than on the tSWI images, as 

indicated by the white arrows. This is due to the non-local phase information used in the 

conventional SWI weighting mask. For better visualization, the images were interpolated 

in through-plane direction from a resolution of 0.5mm×0.5mm×2mm to 0.5mm isotropic 

resolution.  

6.4 Discussion  

Quantitative susceptibility mapping offers an additional means to recognize veins and 

microbleeds and other tissues with high iron content as phase imaging does. However, the 

phase images are dependent on each object’s shape and orientation while the 

susceptibility values of the structures are not, at least in principle. Therefore, to produce 
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better susceptibility weighted images, we have investigated the use of susceptibility maps 

for the masking process.  

There are a number of key observations that can be made from the data presented herein. 

First, the results presented in this paper demonstrate that the object shape and orientation 

can be reasonably accounted for by using susceptibility maps and, hence, the inability of 

SWI processing to enhance veins at different orientations can be overcome. Besides, the 

blooming artefact due to the dipolar phase of microbleeds in conventional SWI was 

avoided. This leads to potential applications of this technique, for example, the evaluation 

of microbleeds in TBI studies. Nonetheless, the blooming artefact also enables the 

visualization of small or even sub-voxel structures using conventional SWI (6). In this 

case, due to the severe partial volume effects, the susceptibility values will not be 

accurately estimated and it is expected that tSWI will lead to similar results as 

conventional SWI. Second, tSWI can be used to process isotropic data, whereas SWI 

processing has relied on anisotropic data for its best results due to the direct use of phase 

information which is orientation dependent (6). In the past, SWI data have usually been 

collected with anisotropic resolution with 2mm slice thickness(6). However, modern 

segmented echo planar approaches are becoming viable and one expects to see more data 

being collected with isotropic voxel sizes (19,20). The high isotropic resolution also helps 

to reduce the error caused by the partial volume effects in susceptibility quantification, 

and thus leads to improved quality for tSWI. Note that, high image resolution will also 

lead to lower SNR within a given image time and thus lower CNR. Generally speaking, 

tSWI is most advantageous with the isotropic datasets. Third, the use of a susceptibility 



Ph.D. Thesis – Saifeng Liu                        McMaster – School of Biomedical Engineering 

152 
 

mask is not restricted to the paramagnetic venous blood, but it could also be designed to 

study the diamagnetic materials (e.g., calcifications, which have negative susceptibility in 

the susceptibility maps). Fourth, the effects of the upper and lower thresholds used in 

creating the susceptibility masks have been studied for two reasonable values, and the 

optimal number of multiplications, n has been determined. When the lower threshold was 

set to zero, the fact that a continuous mask from zero to unity is generated makes it 

possible to enhance contrast even in smaller veins, or larger veins that have had their 

phase artificially suppressed by using the high-pass filter, or in structures that have lower 

iron contents. The use of        helps to avoid amplifying noise in regions of low 

susceptibility and hence leads to a higher CNR. However, at the same time it can prevent 

small veins or structures with very low susceptibility from being enhanced. In addition, 

different datasets require different optimal n values. To avoid this problem, it may be 

more practical to choose    to be 0. We choose the upper threshold    to be 0.45ppm, as 

it corresponds to the theoretical susceptibility of venous blood when the oxygen 

saturation is 70% and the hematocrit is 45%. Increasing this upper threshold may lead to a 

slightly larger value for the optimal n when the susceptibility value of the vein is much 

smaller than   . In most cases, n = 2 gave optimal results, for    = 0 and     = 0.45ppm. 

In order to capture smaller veins or structures with lower susceptibility values such as the 

basal ganglia, a slightly larger n can be used for either isotropic or anisotropic datasets 

(21). The lower susceptibility values are due to a combined effect of partial volume and 

high-pass filtering. Fifth, the predicted CNRs slightly deviate from measured CNRs in 

simulations, as the mean value of the susceptibility mask W in the background reference 
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region is slightly less than 1. As a result, this creates slight differences between the 

prediction and measurements at large n values (n > 4). Lastly, conventional SWI uses 

phase information which is dependent on echo time and usually a relatively long echo 

time is used in SWI data collection. Although the phase mask could be redefined as a 

function of echo time to accommodate the loss of phase information as echo times are 

reduced, no such modification needs to take place for tSWI since the susceptibility map 

does not change with echo time. However when echo times are reduced the phase SNR 

used to generate the susceptibility map will decrease. On the other hand, if echo times 

become too long, phase aliasing occurs and the apparent size of the vessel will increase. 

Thus, tSWI makes the use of short echo times possible as long as the SNR is high enough 

to create a reasonable estimate of the local susceptibilities. The selection of a shorter TE 

has several major advantages, including reducing background field induced phase 

artefacts, shorter scan time and better overall image quality.  

There are several limitations to this method. First, we are using susceptibility maps 

generated from a single orientation dataset to create the mask for tSWI. These 

susceptibility maps can have streaking artefacts which are caused by the singularities in 

the inverse kernel (7–15). The streaking artefacts could permeate the tSWI data causing 

artefacts which did not exist before or decrease the CNR of grey matter structures. Some 

newer techniques such as nonlinear regularization (10,13,14) and iterative algorithms (8) 

will reduce the streaking artefacts and the latter is particularly time-efficient. Another 

common problem of the single orientation QSM method is the systematic under-

estimation or bias of the susceptibility. However, this can be compensated by the 
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thresholds used to generate the tSWI weighting masks. Second, we used the traditional 

homodyne high-pass filter to remove the background phase artefacts in the in vivo data. 

Even though homodyne high-pass filtering could be applied without phase unwrapping, it 

leads to an underestimation of the susceptibility, especially for large objects. This can be 

improved by using newly developed background field removal methods (9,22). But for 

relatively small structures such as veins, homodyne high-pass filtering already gives 

satisfying results if it is performed in the appropriate plane (see Chapter 3). Given the fact 

that homodyne high-pass filtering is still being widely used, the proposed algorithm can 

be directly added to the current SWI data processing scheme.  

In conclusion, we have proposed a data processing scheme which we refer to as true SWI 

or tSWI to generate SWI like images using susceptibility maps. This helps to avoid the 

orientation dependence related problem in SWI, especially in data with isotropic 

resolution and, in the future, possibly to allow the use of short TE SWI data collection. 

This tSWI data provide better and more consistent visualization of the venous system and 

thus have potential clinical applications in the study of neurodegenerative diseases.  
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Chapter 7 Quantitative Susceptibility 

Mapping of Small Objects using 

Volume Constraints
3
 

7.1 Introduction  

The measurement of magnetic susceptibility offers an entirely new form of contrast in 

magnetic resonance imaging (1-6). More specifically, susceptibility quantification has 

already found applications in mapping out iron in the form of ferritin in brain tissues such 

as the basal ganglia (1, 4, 6) and in the form of deoxyhemoglobin for measuring the 

oxygen saturation in veins (1, 4). This new form of imaging may provide a means for 

monitoring longitudinal changes in iron content in dementia, multiple sclerosis (MS), 

traumatic brain injury (TBI) and Parkinson’s disease (PD). It may also be used to monitor 

microbleeds which have been implicated in the progression of vascular dementia (7), 

Alzheimer’s and other neurovascular disorders (8, 9).  

                                            
3
Most of the contents in this chapter are adapted from Liu S, Neelavalli J, Cheng Y-CN, Tang J, Haacke 

EM. Quantitative susceptibility mapping of small objects using volume constraints. Magn. Reson. Med. 

2013;69:716–23. Reprint under license.    
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One of the most recent susceptibility mapping methods is a Fourier based method (2, 3, 5, 

10) which utilizes phase images. The accuracy of such a method depends on the volume 

measurement of the object. For example, in order to quantify the susceptibility of a given 

microbleed, usually the center and the radius of the microbleed have to be determined 

(10-13). Alternate volume estimations of the microbleed from high resolution spin echo 

images may overcome these limitations. With a gradient echo sequence, the apparent 

volume of the object is increased due to what is commonly referred to as the “blooming” 

effect, a signal loss around the object caused by T2
*
 dephasing. This increased apparent 

volume may be used to obtain an estimated susceptibility of the object while the product 

of the apparent volume and the estimated susceptibility is much more robust and should 

still provide a good estimate of the magnetic moment of the object. 

The goal of this paper is to evaluate the quantitative accuracy of a Fourier based 

susceptibility mapping method when it is applied to small structures, and to show that: 1) 

an accurate estimate of the magnetic moment is possible using multi-echo gradient echo 

imaging; and 2) the accuracy of the effective susceptibility can be improved using the 

magnetic moment when an estimate of the true volume is available. For validation, we 

used a gel phantom with air bubbles and glass beads to mimic the clinical situation of 

microbleeds. The method illustrated here does not depend on the susceptibility value or 

the size of the object. 
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7.2 Theory and Methods 

Current susceptibility mapping methods are based on the relation between the 

susceptibility distribution and the magnetic field variation in the Fourier domain (1-6; 10): 

  ( ⃗ )       ⃗      ⃗                                             [7.1], 

where   ( ⃗ ) is the Fourier transform of the magnetic field variation       ,     ⃗  is the 

Fourier transform of the susceptibility distribution       , and    ⃗  is the Green’s 

function 

   ⃗            
     

    
    

                      [7.2], 

assuming that the main field direction is in the z direction. Susceptibility quantification is 

an ill-posed inverse problem, due to zeros in the Green’s function    ⃗   along the magic 

angle in the k-space domain. As a result, regularization is required. In this study, we 

applied the regularization procedure described in a previous study (1) in which the 

intensity of the inverse of    ⃗   is reasonably attenuated when the absolute value of    ⃗   

is below a threshold value, th. The selection of this threshold is a trade-off between the 

susceptibility-to-noise ratio of the reconstructed susceptibility map and the accuracy in 

susceptibility quantification (1, 6). The threshold value was chosen to be 0.1 in this study.  

Although ideally    is the sought after parameter, when reduced resolution or T2
*
 effects 

confound a clean measurement of the object’s volume, it is more appropriate to 

investigate the associated magnetic moment (or, equivalently, the total or integrated 
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susceptibility weighted by the voxel volume (12)). To see why this is the case, consider a 

sphere with a susceptibility difference   , the induced magnetic field at point          

outside the sphere is given by (14): 

          
    

 (        )  

                                           [7.3] 

where              ,     is the susceptibility inside the object,     is the 

susceptibility outside the object,    is the radius of the sphere,   is the distance from the 

point         to the center of the sphere, and   is the angle between the point P and the 

main field direction. For simplicity, the meaning of susceptibility in this paper will be 

taken to be    rather than     or     . Eq. 7.3 also indicates that the product     is 

independent of TE, where       
    is the true volume of the sphere. Since the 

magnetic dipole moment of the spherical object is given as (14): 

  
    

      

 
 

    
     

   
                                           [7.4],  

when     . For simplicity we refer to the product     as the magnetic moment in this 

study. The phase value at a particular echo time (TE) is given in a right handed system by: 

                                                                [7.5]. 

The susceptibility    may be quantified using the phase information, if the true volume 

(V) of the object is known. Otherwise, the magnetic moment (   ) may be found. Since 

gradient echo images lead to a dephasing artefact and the object appears larger than its 

actual size, we defined an apparent volume V′ and assuming that the susceptibility of this 
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larger object can be accurately quantified, the magnetic moment could still be accurately 

calculated. Expressed symbolically, an estimated susceptibility value    can be 

calculated from the Fourier based method using Eqs. 7.1 to 7.5. The quantity       

provides an estimate of the magnetic moment. Finally, the true susceptibility    can be 

calculated using the following equation: 

                                 [7.6]. 

In this study, we use three volume definitions. The first one is the true volume V. The 

second one is the apparent volume V′, which is used in estimating the magnetic moment. 

The apparent volume is related to the signal loss due to T2
*
 dephasing and is determined 

from gradient echo magnitude images, as described later. The last one is the spin echo 

volume Vse, which is measured from the spin echo images. This volume is used as an MR 

based estimate of the true volume of the air bubble or glass bead. We used simulations 

and multi-echo gradient echo images of a gel phantom containing air-bubbles and glass 

beads of varying sizes to test Eq. 7.6. While glass beads can be considered as almost 

perfect spheres, air bubbles are closer to the clinical situation of variable shaped 

microbleeds. 

Simulations 

To evaluate validity of Eq. 7.6 for susceptibility calculation of small objects, we 

simulated magnitude and phase images of 4 spheres with different radii at 21 different 

TEs (from 0 ms to 20 ms, with a step size of 1 ms). In each simulation, the sphere was 

placed in the center of a 1024
3
 matrix with complex elements. The radii of four spheres 
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tested, within this 1024
3
 matrix, were 32, 48, 64 and 96 pixels, respectively. The 

magnitude inside each sphere was set to 0 while the background magnitude was set to 300 

to simulate intensities in the experimental data from the gel phantom. The phase images 

of the spheres were generated according to Eqs. 7.3 and 7.5 with        ppm. In order 

to simulate Gibbs ringing as well as partial volume effects seen in actual MR data, a 

process simulating the MR data sampling was used. Complex images generated in each 

1024
3
 matrix were Fourier transformed into k-space. The central 32

3
 region was selected 

from k-space and was inverse Fourier transformed back to the imaging domain generating 

low resolution data containing both Gibbs ringing and partial volume effects. The radii of 

the four spheres became 1, 1.5, 2 and 3 pixels respectively in this final 32
3
 volume. White 

Gaussian noise was then added to the real and imaginary channels of the complex data in 

the image domain such that the SNR in resultant magnitude images was 10:1. 

Susceptibility and the magnetic moment values were quantified for each of the spheres at 

all echo times and errors associated with these measurements were evaluated.  

Phantom experiments 

A gel phantom, containing 14 small air-bubbles and 9 glass beads of varying sizes, was 

imaged at 3T (Siemens VERIO, Erlangen, Germany) using a five-echo 3D gradient echo 

sequence. The echo times (TEs) were 3.93ms, 9.60ms, 15.27ms, 20.94ms and 26.61ms. 

Other imaging parameters for the gradient echo sequence were: repetition time (TR) 33ms, 

flip angle (FA) 11º, read bandwidth (BW) 465 Hz/pixel, voxel size 0.5×0.5×0.5mm
3
, and 

matrix size 512×304×176. A multi-slice 2D spin echo dataset was also collected with FA 

= 90º, TR = 5000ms and TE = 15ms and with the same field of view (FOV), BW, 
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resolution and matrix size as in the gradient echo dataset. This is to maintain a one-to-one 

correspondence of the spin echo with the gradient echo images of the phantom. To ensure 

that the field perturbation measured in the phase images is the actual perturbation profile 

from the gel phantom, we first performed shimming using a spherical phantom 

immediately before performing the imaging experiment. Manual shimming was 

performed on the spherical phantom, to a spectral full width at half maximum of 13 Hz 

and the shim coefficients were noted. The same shim settings were used while imaging 

the gel phantom to ensure that field perturbation profile due to the presence of the 

phantom in the magnet is not influenced by any additional shimming. 

For the construction of the phantom, an agarose gel solution was prepared with an 8% 

concentration by weight and poured into a cylindrical container. In the lower portion of 

the container, the gel was first filled to 1/3 the height of the cylinder and 9 glass beads of 

various sizes were embedded in the gel. The true diameter of the glass beads was roughly 

measured using calipers before the glass beads were put into the gel solution. Specifically, 

4 glass beads were 2mm in diameter, 3 glass beads were 3mm in diameter, 1 glass bead 

was 5mm in diameter, and the largest glass bead was 6mm in diameter. The phantom was 

allowed to cool so that the gel solidified and properly engulfed the glass beads. Rest of 

the prepared gel solution was then poured into the cylindrical container and variable sized 

bubbles were injected by pumping various amount of air into the gel using an empty 

syringe (two smallest air bubbles were excluded from this study, due to the limitation in 

volume estimation of small objects. Details are provided in later sections). The theoretical 

susceptibility difference between air and water is known to be 9.4ppm and will be used to 
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compare with the measurements from our method. For glass beads, the susceptibility 

values were measured independently in a former study to be −1.8 +/- 0.3ppm (15).  

First, in order to identify air bubbles and glass beads in the collected MR data, binary 

masks from magnitude data were used. The intensity variation in the magnitude images 

caused by the RF field inhomogeneity was first removed using a 2D quadratic fitting, 

before the binary masks were created. A reasonably uniform magnitude intensity profile 

across the phantom was obtained after this intensity correction. The binary masks were 

created by local thresholding of the corrected magnitude images (11). First, a relatively 

strict threshold is used to pick only the voxels where the signal is less than 50% of the 

signal-to-noise ratio (SNR) in the gel away from the air bubbles or glass beads, since both 

air bubbles and glass beads have much lower intensities than the intensity of the 

surrounding gel. Next, the mean (        ) and standard deviation (        ) were 

calculated for a cubic 21×21×21 VOI for each bubble or glass bead. A voxel roughly at 

the center of the bubble or glass bead was first chosen to center this 21
3 

voxel window. 

The voxels picked up in the first step were excluded in the mean and standard deviation 

calculation. If a neighboring voxel has intensity lower than                   , it was 

regarded as a voxel belonging to air or glass bead. For the high SNR data used here, β 

was empirically chosen to be 4 to separate air bubbles and glass beads from gel.  
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Susceptibility Quantification 

In order to reduce the background field or phase variation, a forward modeling approach 

was used to estimate air/gel-phantom interface effects (16). The phase processing steps 

were as follows:  

i. The original phase images were first unwrapped using the phase unwrapping tool, 

PRELUDE, in FMRIB Software Library (FSL) (17). With the geometry of the gel 

phantom extracted from the magnitude images at the shortest TE (3.93ms in this 

study), the background field effects were reduced by fitting the predicted phase to 

the unwrapped phase by a least squares method. An additional 2D quadratic fitting 

was added in order to remove the induced phase due to eddy currents.  

ii. The phase value inside a particular air bubble/glass bead (where the binary mask 

is 1) was set to the mean phase (essentially zero) from the local 9260 voxels. This 

is due to the fact that the phase inside a sphere is theoretically zero and the 

nonzero phase is induced by the remnant background field variation as well as 

Gibbs ringing. This step also determines the apparent volume (V′) from magnitude 

images.  

iii. At each echo time, a 160×160×87 voxel volume was cropped from the original 

phase images. This volume was selected because it covers most of the air bubbles 

and glass beads while voxels near the edge of the gel phantom were excluded. The 

selected volume was then zero-filled to a 512×512×256 matrix.  

iv. Susceptibility maps were generated using a threshold based approach described 

previously in (1). The mean (      or         ) and standard deviation (       
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or          ) of the susceptibility values of air bubble (or glass bead) were 

measured, taking into account the background susceptibility of the gel. 

Measurements were obtained in the following manner: the background mean 

(      ) and standard deviation (      ) of the local gel susceptibility value around 

each bubble or glass bead was first calculated from the 21
3
 voxel region centered 

at each of the bubble/bead. Within this 21
3
 volume, the voxels belonging to the 

bubble or glass bead, as determined by the binary mask, were excluded for this 

background mean and standard deviation calculation. Once these measures were 

obtained, for susceptibility of air bubbles, only voxels with susceptibility values 

higher than                were used for calculation purposes; while for glass 

beads, only voxels with a susceptibility value lower than                 were 

used. This process assumes that the noise in the susceptibility maps follows a 

Gaussian distribution, and the susceptibility of a voxel consisting of air or glass is 

statistically different from a voxel consisting of gel. The change in sign is due to 

the fact that the air bubbles are paramagnetic relative to the gel while glass beads 

are diamagnetic. To account for the baseline shift caused by remnant field 

variation, the susceptibility of the air bubble (or glass bead) was taken as        

       (or                ). 

Comparison with recent data processing algorithms  

In addition to the above described data processing steps, the phantom data were also 

processed using newer data processing algorithms to further reduce the streaking artefact 

in the susceptibility maps and to improve the accuracy of susceptibility quantification. 
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The background phase was removed using SHARP with radius 6 pixels, regularization 

threshold 0.05 (18). Susceptibility maps were generated using the k-space/image domain 

iterative algorithm (19). The geometries of the air bubbles and glass beads were extracted 

from magnitude images at different TEs. In each iteration step, the regions outside the air 

bubbles or glass beads were set to 0, while the regions inside the bubbles and beads were 

smoothed using an edge-preserving averaging filter. Then the cone of singularities in the 

original k-space was updated. The phase inside the air bubbles and glass beads was still 

set to zero initially, and was updated using the predicted phase from forward calculation 

using the susceptibility maps in each iteration step. The susceptibilities of the air bubbles 

and glass beads were measured in the same way as described in the previous section.  

Volume Measurement 

The apparent volume of the air bubble or glass bead was determined from the binary 

masks directly, i.e., by counting the number of voxels inside the air bubble or glass bead. 

On the other hand, the spin echo volume is measured utilizing the "object strength" notion 

proposed by Tofts et al (20), in which the total intensity is measured for a particular 

volume of interest (VOI). For a volume composed of two types of tissues, a and b, the 

total intensity can be expressed as 

                                                            [7.7], 

where   is the total intensity, “  ” and “  ” are the intensities of the voxels containing 

purely tissue “ ” or tissue “ ”, respectively. The total number of voxels in this volume of 

interest is denoted by “ ”, and the number of voxels occupied by tissue “ ” is denoted by 
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“  ”. Consequently, the number of voxels occupied by tissue “ ” can be expressed as 

    . 

By varying the size of the VOI, the total intensity is linearly dependent on the number of 

voxels in the VOI. While "  " can be determined as the slope in the fit to Eq. 7.7,    can 

be calculated from the intercept if “  ” is given (   may not be an integer as partial 

volume is included). In this study, "  " corresponds to the intensity of a voxel composed 

purely of gel, while "  " corresponds to the intensity of a voxel composed purely of air or 

glass. For a relatively large air bubble or glass bead, "  " is dominated by the thermal 

noise, which can be approximated as             , where          is the measured 

standard deviation of the gel region in the magnitude images (21). For an air bubble or 

glass bead with a radius generally less than 3 pixels, "  " is a combination of thermal 

noise and Gibbs ringing. To best account for these fluctuations, "  " is calculated as: 

   {
                                                      

                                               
               [7.8] 

where          and            are the measured mean values inside the bubble and glass 

bead, respectively;    and    are two weighting factors. Based on our simulations 

(explained below),    and    were empirically determined from simulations to be 0.4 

and 0.6 respectively, to minimize the error in estimation of the true volume.  
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Error in Volume Measurement  

Although a regression method is used to measure the spin echo volume, it is still affected 

by partial volume effects, Gibbs ringing as well as random noise. The simulated 

magnitude images at TE=0 were used to mimic spin echo magnitude images and to study 

the error in spin echo volume estimation. In addition, to examine the stability of this 

method due to thermal noise, the volume measurement evaluation was performed 10 

times for each simulated sphere, with independently generated random noise for each of 

these simulations. The errors were determined by comparing the measured volume with 

the true volume. Note that, this error estimation does not apply for the apparent volume 

which is determined directly from the binary masks.  

7.3 Results 

Simulations 

Magnetic moments for simulated spheres were calculated with the measured 

susceptibilities and the apparent volume for each sphere at a given echo time. The results 

across different TEs are shown in Fig. 7.1. The measured volumes at different TEs were 

normalized to the volume at the longest TE, while the measured magnetic moments were 

normalized to the true magnetic moment, which is the product of input volume (i.e., the 

true volume) of the sphere and the input susceptibility (true susceptibility) 9.4 ppm. The 

normalized magnetic moment is roughly a constant for all spheres. However, for the 

sphere with a radius less than 2 pixels, the magnetic moments measured in the short TE 

range have more fluctuations than those measured at longer TEs. In addition, the 

magnetic moments are under-estimated for all spheres. The mean normalized magnetic 
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moments were measured as: 0.85±0.04 (radius=1 pixel), 0.82±0.05 (radius=1.5 pixels), 

0.81±0.03 (radius=2 pixels) and 0.81± 0.02 (radius=3 pixels). 

After the magnetic moments were obtained, the susceptibility values were corrected using 

the actual known volume (i.e., true volume) using Eq. 7.6. Specifically, the corrected 

susceptibilities are: 7.95±0.38ppm (radius=1pixel), 7.70±0.43ppm (radius=1.5pixels), 

7.62±0.27 (radius=2pixels), and 7.63±0.21 (radius=3pixels). There is still a 15% to 19% 

under-estimation in the averaged susceptibility after attempting to correct the volume of 

the sphere.  

To evaluate the stability of the volume measuring method, we carried out 10 simulations 

for each sphere at TE=0. The means and standard deviations of the percentage errors 

relative to true volume for each sphere are: 18.02±27.26% (radius=1pixel), 1.89±12.18% 

(radius=1.5pixels), 3.67±8.91% (radius=2pixels) and 2.09±2.54% (radius=3pixels). The 

algorithm failed to quantify, in two of the 10 simulations for sphere with radius of 1pixel. 

Larger errors and more variations of the volume measurements were seen in spheres with 

radii less than 2 pixels. For the sphere with a radius of 3 pixels, the error in the volume 

estimation appears to be within 5% using the proposed method. As can be expected, when 

the object radius is only 1 pixel, the volume measurement becomes unstable.  
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Figure 7.1 Apparent volume normalized to the volume at TE = 20 ms (first column), 

measured susceptibility (second column), and normalized magnetic moments (third 

column) measured at different TEs of four different spheres. The dashed lines in the 

second column (b, e, h and k) indicate the true susceptibility 9.4 ppm. For each sphere, 

the effective magnetic moments were normalized to the true effective magnetic moment. 
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Phantom experiments 

A total of 14 air bubbles and 9 glass beads were examined in the phantom data. The 

measured spin echo volumes of the glass beads and air bubbles are shown in Tables 7.1 

and 7.2. In these two tables, the glass beads as well as air bubbles are sorted based on 

their spin echo volumes, from small to large objects. The diameters of these glass beads 

calculated from their spin echo volumes agree reasonably well with their physically 

measured diameters, as shown in Table 7.1. Also note that, the error in volume 

measurement is unreliable for spherical objects with radii less than 1.5 pixels (14.13 

voxels for the volume). The error is generally larger than 20%, as shown in the 

simulations. Thus, the first two smallest air bubbles were excluded from the analysis.  

Fig. 7.2 shows three orthogonal views of the susceptibility map of the largest glass bead 

for the shortest TE and the longest TE. Fig. 7.3 shows the susceptibility maps obtained 

using the newer data processing algorithms. Compared with the former results, the 

streaking artefacts are reduced and the objects are more homogeneous. 
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Table 7.1 Spin echo volume (in voxels) and the diameter (in mm) calculated from spin 

echo volume for each glass bead. 

               Bead 

Measure 

1 2 3 4 5 6 7 8 9 

Spin Echo Volume 35.4 37.5 38.2 39.1 96.5 103.8 113.6 516.6 912.1 

Spin Echo Diameter 2.0 2.1 2.1 2.1 2.9 2.9 3.0 5.0 6.0 

Actual Diameter 2.0 2.0 2.0 2.0 3.0 3.0 3.0 5.0 6.0 

 

Table 7.2 Spin echo volume (in voxel) of the 14 air bubbles. 

Bubble 1 2 3 4 5 6 7 

Volume 3.3 15.1 28.7 42.2 43.9 82.8 87.7 

Bubble 8 9 10 11 12 13 14 

Volume 92.7 118.2 170.5 238.6 288.7 322.7 897.2 
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Figure 7.2 Axial, sagittal and coronal views of the susceptibility maps with TE=3.93ms 

(a, b and c) and TE=26.61ms (d, e and f). The main field direction is in “y” direction. 

Glass bead No. 9 in Table 7.1 is pointed by the white arrows. The air bubbles are pointed 

by the white dashed arrows. 

 

Figure 7.3 Axial, sagittal and coronal views of the susceptibility maps with TE=3.93ms 

(a, b and c) and TE=26.61ms (d, e and f), obtained using newer data processing 

algorithms.  
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Using Eq. 7.6, the measured susceptibilities can be corrected with the volume estimated 

from the spin echo images. These results were shown in Table 7.3. The results obtained 

using the newer algorithms were shown in Table 7.4. Using the original data processing 

methods (i.e. geometry based artefact reduction together with 2D quadratic fitting for 

background field removal, and truncated k-space division for susceptibility mapping), the 

mean of the corrected susceptibility values of the glass beads averaged over all the TEs 

was −1.82±0.17ppm, which is within the range of the measured values in the previous 

study (15). The mean of the corrected susceptibility values of the air bubbles was 

6.66±0.85ppm. This is to be compared to the actual susceptibility of 9.4ppm. Using the 

new data processing algorithms (i.e. SHARP for background field removal, iterative 

SWIM for susceptibility mapping), the corrected average susceptibility of the glass beads 

was -2.12±0.15ppm, and the corrected average susceptibility of the air bubbles was 

7.35±1.13ppm.  

The susceptibility values estimated using the newer data processing algorithms are plotted 

as a function of echo time in Fig. 7.4. As shown in Fig. 7.4.a, the absolute susceptibility 

values of both the air bubbles and glass beads decreases as TE increases, due to the over-

estimated volume. And the corrected susceptibility values are almost constant over 

different TEs, indicating that the product of susceptibility and the measured volume, or 

the effective magnetic moment, is also constant. After correction, both the distributions of 

susceptibility of air bubble and glass beads became narrower, indicating reduced 

uncertainties in the susceptibility estimates, as shown in Fig. 7.4.c and 7.4.d.  
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Table 7.3 Mean measured and corrected susceptibilities (in ppm) of the glass beads and 

air bubbles and different TEs.  

 Glass Bead Air bubble 

TE/ms Measured Corrected Measured Corrected 

3.93 -1.50±0.07 -1.79±0.13 3.15±1.16 6.13±0.77 

9.60 -1.07±0.32 -1.76±0.13 1.70±0.61 6.44±0.90 

15.27 -0.86±0.32 -1.82±0.19 1.30±0.45 6.64±0.76 

20.94 -0.68±0.28 -1.82±0.18 1.07±0.36 6.88±0.77 

26.61 -0.59±0.25 -1.88±0.21 0.93±0.34 7.22±0.74 

 

Table 7.4 Mean measured and corrected susceptibilities (in ppm) of the glass beads and 

air bubbles and different TEs. These results were obtained using the new data processing 

algorithms.  

 Glass Bead Air bubble 

TE/ms Measured Corrected Measured Corrected 

3.93 -1.73±0.06 -2.06±0.15 3.58±1.41 7.24±1.01 

9.60 -1.29±0.35 -2.13±0.15 1.87±0.68 7.40±1.16 

15.27 -1.02±0.38 -2.16±0.16 1.36±0.48 7.39±1.20 

20.94 -0.79±0.34 -2.10±0.14 1.08±0.37 7.35±1.21 

26.61 -0.68±0.29 -2.17±0.18 0.89±0.31 7.38±1.23 
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Figure 7.4 a) Originally measured susceptibility values at different TEs for glass beads 

and air bubbles. b) Corrected susceptibility values. c) Distribution of the originally 

measured susceptibility values. d) Distribution of the corrected susceptibility values. 

After correction using the spin echo volume, the glass beads can be clearly distinguished 

from air bubbles. These results were obtained using the new data processing algorithms.  

7.4 Discussion and Conclusions 

The susceptibility mapping technique using the regularized Fourier based method has 

certain advantages over other methods, especially in terms of time-efficiency and 

simplicity. However, it suffers from problems caused by the intrinsic singularities in the 

inverse of the Green's function, as well as partial volume effects which disrupt the true 
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phase behavior. For small objects, susceptibility quantification using the inverse method 

(1) yields a significant under-estimation of the susceptibility. The increased apparent 

volume at long TE can be utilized to create a larger virtual object, for which the true 

volume can be more accurately measured and thus the Fourier based susceptibility 

quantification gives a relatively smaller error for the magnetic moment. At this point, the 

susceptibility close to the actual value can be extracted from the estimated magnetic 

moment with an estimation of the true volume, either if it is known ahead of time, or it 

can be estimated from a high resolution spin echo dataset. 

Based on the discussions above, the error     in the corrected susceptibility    comes 

from the estimated magnetic moment    =       and estimated volume (V). Through 

error propagation, the error in the corrected susceptibility is given by: 

   

    
 √(

   

  
)
 

 (
  

 
)
 

                                              [7.9]  

As can be seen from Eq. 7.9, the smaller the error in the estimated volume, the smaller the 

error in the corrected susceptibility. This equation explains the error seen in the corrected 

susceptibility of the air bubbles as well as glass beads. 

In simulations, where the true volume is known, the remnant under-estimation in the 

averaged corrected susceptibility ranges from 15% to 19%. Since there is no error in the 

true volume, this error must be due to the error in the apparent volume measurement and 

    quantification due to the regularization process. The level of under-estimation is 

related to the threshold value in the inverse of the Green’s function. A smaller threshold 
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leads to less under-estimation, but more streaking artefacts in the susceptibility maps. The 

regularized Fourier based method, with threshold value of 0.1, can lead to an under-

estimation of around 13% for objects with radii larger than 3 pixels and even worse for 

smaller objects (1, 6). This can be viewed as a systematic error, and can be reduced using 

the k-space/image domain iterative algorithm, as shown in previous chapters.  

In phantom studies, using high-pass filtered phase images and truncated k-space division 

for generating susceptibility maps, the corrected susceptibility values of the air bubbles 

have a maximum underestimation close to 44%, compared to the theoretical value 9.4ppm, 

even after using the volume estimated from the spin echo data. This is essentially a 

consequence of three factors: the error in the spin echo volume measurement, the signal 

loss due to high-pass filtering, and the under-estimation of     quantified using the 

truncated k-space division method. To overcome the limitations related to volume 

estimation, one has to go to high resolution images that can minimize volume 

quantification error. However, the decreased SNR in high resolution spin echo images 

may introduce additional variation/noise in the final volume results.  

The accuracy in the susceptibility estimation can be further improved using more 

sophisticated background field removal and susceptibility mapping methods. Using the 

newer data processing algorithms, the background phase was better reduced. Particularly, 

the streaking artefacts surrounding the air bubbles and glass beads were largely reduced 

due to the use of geometry constrained iterative SWIM algorithm. Finally, the phase 

values of the pixels inside the air bubbles and glass beads are not reliable, due to the low 
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signal inside these objects. This is solved by updating the phase values inside, using the 

predicted phase, during the iterative SWIM algorithm. This helps to get a faster 

convergence. All of these help to improve the accuracy in estimating the susceptibilities 

of small objects with low signal inside.  

There are a number of limitations to this study. Even though a forward calculation was 

carried out to reduce the geometry induced field variation, remnant background field 

variation still exists. To best account for it, the phase inside the spherical objects was set 

to the local average phase. This also helps to reduce the large variation in susceptibility 

estimate induced by Gibbs ringing and thermal noise. However, this phase correction 

process is based on the assumption that the object of interest is a sphere. For non-

spherical objects, this phase correction process may lead to variations of magnetic 

moment at different TEs. In addition, phase correction also creates a virtually larger 

object. It is possible that the center of the created object deviates from the true center of 

the original object of interest. This leads to additional errors even for spherical objects, as 

seen from simulations. Thus, the phase inside the spherical object has significant effects 

to this method. Theoretically, only when the center of a simulated large sphere coincides 

with the original center of the sphere, and when the background phase value is 0, can we 

obtain constant magnetic moment across different TEs. Hence, slight variation in object 

definition from binary mask, which is used for phase substitution, can introduce 

variations in magnetic moment values. This is the essential source of shape dependence of 

the proposed method. 
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Although the estimated magnetic moments of the glass beads are almost a constant over 

different TEs, as indicated by the corrected susceptibilities, the estimated magnetic 

moments of the air bubbles are usually larger at a longer TE than at a shorter TE. This can 

be understood by the fact that the air bubbles are not perfect spherical objects compared to 

the glass beads. In fact, most of the air bubbles have ellipsoidal shapes, and any attempt of 

phase correction inside the bubble based on the assumption of the spherical shape will 

cause errors in the susceptibility measurement and thus lead to errors in the measurement 

of the magnetic moments. 

Generally speaking, for small objects which can be well approximated as spheres, the 

theoretically expected errors in the estimated magnetic moment measurements are within 

20% of the expected values and can be further reduced by adjusting the regularization 

thresholds in the susceptibility mapping method. Practically, the errors might be larger 

due to the limited knowledge of the true volume. While most small microbleeds can be 

well approximated as spheres, the use of more accurate volume estimation methods has 

the potential to reduce the error in susceptibility quantification of microbleeds.  

In conclusion, we have shown that for very small structures, obtaining accurate magnetic 

susceptibility values is limited by the errors in the volume estimations of these structures 

and in the Fourier based method itself. Despite this inability to estimate the actual volume 

of a small object accurately (whether it is an air bubble or microbleed), the estimated 

magnetic moment is almost a constant over different TEs. This demonstrates that it is 

possible to measure the magnetic moment at a longer TE when the apparent volume is 
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increased due to T2
*
 dephasing. By measuring or knowing a priori the actual volume of 

an object, it is possible to obtain a reasonable estimate of the susceptibility.  
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Chapter 8 Conclusions and Future 

Directions 

Quantitative susceptibility mapping (QSM) is a promising technique to study tissue 

properties such as iron content and function such as oxygen extraction in vivo. In this 

thesis, several technical advances in the QSM methodology have been made which will 

accelerate the data processing and improve the accuracy of QSM.   

First, the quality of QSM is largely dependent on background field removal. From the 

results of simulations and in vivo data studies, the spherical mean value filtering (SMV) 

based techniques are the most effective method, both in terms of the time-efficiency and 

accuracy. However, the regions close to the edge of the brain are usually eroded in order 

to avoid noisy pixels outside the brain. This is the main remnant problem of these SMV 

based background field removal algorithms. For studies focused on the cerebral venous 

oxygen saturation, the superior sagittal sinus (SSS) is of great interest. But the accuracy 

of the extracted local phase information for the superior sagittal sinus is poor, since SSS 

is sitting at the edge of the brain and may be partly removed by the brain extraction step. 

Thus, it is critical to keep this structure using the binary brain mask and to keep the phase 

at the edge of the SSS or even outside the SSS in the skull (1,2).  
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The Local Spherical Mean Value filtering (LSMV) algorithm proposed in this thesis 

improves the robustness and efficiency for background field removal. It is particularly 

time-efficient for processing data collected with double- or multi- echo. The main 

advantage of this algorithm is avoiding global phase unwrapping and the reduction of 

phase signal loss near the edges of the veins due to T2
*
 signal decay. It can also be used 

for processing of data collected with a single short TE. The local background field 

removal also helps to reduce the effects of cusp artefacts/phase singularities, which are 

typically caused by improper combination of multi-channel data.  

Proper multi-channel phase data combination is critical for data collected using phased 

array coils and parallel imaging techniques such as GRAPPA (3). Any improper 

combination of the phase will lead to signal cancellation and cusp artefacts (4,5). For 

regions inside the brain, the cusp artefacts can be avoided by correcting the linear 

gradients and baseline differences of different channels. But for regions outside the brain, 

such a simple correction may still lead to cusp artefacts (6). This is again due to the 

difference in the phase references of different channels,   , which contains both the coil-

sensitivity induced phase components and the conductivity induced phase components. 

Thus, the ideal phase combination should have the    removed from each channel before 

combining all the channels’ data. This can be done by using either a reference scan or 

reference echo (6). In the former method, usually the reference scan is performed using 

coils with relatively uniform sensitivity profile. In the latter method, the TE of the 

reference echo could be chosen such that it equals half of the TE of the main scan. Then 

   can be calculated using these two echoes using complex division (without phase 
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unwrapping). Removing these spatially varying    effects will then lead to an improved 

QSM reconstruction. 

Second, QSM is essentially an ill-posed inverse problem. For solving the inverse problem, 

the main difference in currently available algorithms is related to the handling of the 

gradients/edges in the susceptibility maps. In order to suppress false gradients caused by 

the streaking artefacts, the gradients estimated from magnitude images and phase images 

or a combination of both are usually used as a priori information (7,8). Care should be 

taken when imposing these a priori constraints. While a false edge detected from 

magnitude or phase images will reduce the effectiveness in removing the streaking 

artefacts in the susceptibility maps, a missed edge will lead to over-smoothing of the 

susceptibility maps. For clinical studies, the processing time for these methods is also of 

concern, especially when large numbers of datasets with large matrix size are involved. 

The k-space/image domain iterative algorithm (iterative SWIM) is a promising method, 

precisely because of its proper preserving of the edge information in the susceptibility 

maps and its time-efficiency. As validated using simulated data and in vivo data, this 

iterative SWIM algorithm is particularly effective for studies focused on measuring 

venous oxygen saturation.  

An improved version of the iterative SWIM algorithm, which utilizes the geometries of 

the structures found in the susceptibility maps for solving the inverse problem, is 

demonstrated in this thesis. Instead of using the geometries of the structures with high 

susceptibilities, e.g., veins, as in the original iterative SWIM algorithm (9), in the 
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improved version proposed in this thesis, both the geometries of the veins and grey matter 

structures (with relatively high susceptibilities) were extracted and utilized in solving the 

inverse problem. This improves the accuracy of susceptibility estimation of both the veins 

and the grey matter structures.  

The accuracy of QSM is also dependent on the estimation of the volume, especially for 

small objects (10). Longer TE gives higher phase values and potentially higher phase 

SNR, but it also leads to more T2
*
 signal decay and larger apparent volume of the object. 

Any error in estimating the volume of the object will lead to error in estimating the 

susceptibility of that object (10). On the other hand, the effective magnetic moment can 

be used as surrogate to reflect the changes of the object of interest (10-12).  

Furthermore, the susceptibility maps can also be combined with the magnitude images to 

produce tSWI images (13,14). This helps to remove the orientation dependence of 

conventional SWI data. These tSWI images provide improved delineation of the 

geometries of veins and microbleeds and tSWI data processing can be easily incorporated 

with the current SWI data processing scheme. Thus tSWI has great potential in studies of 

traumatic brain injury (TBI) (13).  

There are also a few limitations in the techniques presented in this thesis. First, all of the 

techniques are for the data collected with single orientation. Orientation dependence of 

the susceptibility values of the white matter structures has been reported in former studies, 

and has been attributed to the myelin sheath surrounding the axons in the white matter 

(15–18). This requires more sophisticated models to describe the relation between field 
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variation and susceptibility distribution (19–21). In addition to the susceptibility 

anisotropy, nonlinear phase evolution was also observed and can be modeled using multi 

water compartments (17). Both the orientation dependence and nonlinear phase evolution 

are neglected in this thesis, since this thesis is focused on the deep grey matter structures 

and veins (18). Second, the method of improving the accuracy of susceptibility 

quantification using volume constraint was only demonstrated with a phantom, but 

without any in vivo data. The main application of this method is quantification of cerebral 

microbleeds or calcifications. For in vivo data, an estimate of the true volume of the 

microbleeds from the spin echo data may not be available. If multi-echo data were 

collected, it is possible to get an estimate of the true volume at TE=0 through 

extrapolation using the measured apparent volumes at different TEs. Otherwise, the 

effective magnetic moment could be used to study the longitudinal changes of the 

microbleeds or calcifications (12). 

Future directions include the following aspects. First, the performance of the iterative 

SWIM algorithm for solving the ill-posed inverse problem in susceptibility mapping 

could be improved. The effectiveness of the iterative SWIM algorithm relies on proper 

extraction of the geometries of different structures of interest. Currently, the geometries 

are extracted purely from susceptibility maps. The accuracy of the extracted geometries 

could be potentially improved by incorporating the geometries found in the magnitude 

and phase images (8). Second, the lost phase information near the edge of the brain, due 

to erosion of the background field removal algorithm, should be recovered as much as 

possible. This can be achieved by preserving the signal outside the brain. Previous studies 
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have already shown that it is possible to keep the phase in the skull region (22). This 

provides more accurate boundary conditions for background field removal and thus 

reduces the error of background field removal near the edges of the brain. Third, the 

accuracy of susceptibility quantification could be further improved. Particularly, the 

quantification of the susceptibility of veins is usually affected by partial volume effects, 

especially for small veins. Future studies should aim to model and compensate for the 

partial volume effects. Other future directions include: compensation for the signal loss 

caused by homodyne high-pass filtering, in a way similar to the deconvolution step in 

SHARP; incorporation of partial volume effects in the magnitude and phase images of the 

3D brain model.  

In conclusion, quantitative susceptibility mapping is a promising technique which has 

many potential applications. It can be applied to most of the applications found by 

susceptibility weighted imaging (5,23). It is also finding newer applications, given its 

ability to quantify the source of the phase information and its independence of echo time 

or orientation, such as tracking and quantifying iron labeled stem cells (24). The accuracy 

of QSM is dependent on both the imaging acquisition and image post-processing. This 

thesis has focused on two core steps of QSM post-processing: background field removal 

and solving the inverse problem. While a new algorithm has been proposed for 

background field removal, an improved method for solving the inverse problem has also 

been demonstrated. Both of them contribute to a more sophisticated data processing 

scheme for quantitative susceptibility mapping with improved effectiveness and accuracy.  
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