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PRELIMINARIES

The notation to be employed is the usual one of set theory.
Inclusion (2 ) will be taken in the broad sense and strict inclu-
sion will be explicitly stated or written ® . The cardinal power of
a set E will be denoted by |E|.

DEFINITIONS. A_partially ordered set is a pair (E,P) where E is a

set and P i1s a reflexive, anti-symmetric, transitive relation on E.
For example, if E is a set of subsets of a set X then (E,”) is a
partially ordered set. That is, for A,B € E, APB if and only if A - B.

Let (E,P) be a partially ordered set. A chain C in E is a
subset of E such that if A,B€C +then APB or BPA.

A graph X is a pair (V(X),E(X)) where V(X) is a set and E(X)
is a set of wnordered pairs of distinct elements of V(X), that is,
E(X) is a symmetric, irreflexive relation on V(X). The unordered
pair of elements x,y will be denoted by [x,y]. The elements of V(X)
will be called the vertices of X and the elements of E(X) the edges
of X.

A subgraph Y of a graph X 1s a graph whose vertex and edge
sets are respectively subsets of the vertex and edge sets of X. An
edge e is incident with a vertex x if and only if e = [x,yl] for some
vertex y. Two edges e = [X,ylnd ¢’ = [x’,y’] are adjacent if and
only if exactly two of x,x’,y,y’ are equal.

Let X and Y be graphs. By X UY and X NY we mean the graphs

defined by:
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VXY Y) = V(X) U V()

E(X U Y) = E(X) UE(Y), and

!

VX NY = v N v

E(XN Y) = E(X) N E(Y) respectively.

If x € V(X) then (x) denotes the subgraph of X for which V_((x)) =f x1
and E((x)) = . If e = [x,y] € E(X) then (e) denotes the subgraph of X for
which V((e)) = [x,y] and E((e)) = {e}. If ¥ is a subgraph of X we define
X\Y to be the smallest subgraph of X with E(X\Y) = E(X) - E(Y).

Let X and Y be graphs. By a homomorphism ¢ of X into ¥ we mean a
function @ : V(X) — V(Y) such that [9(x),9(y)] € E(Y) whenever [x,y] € E(X).
This homomorphism is written ¢ : X — Y. @ induces ¢ : E(X) - E(Y) as
follows: for [x,y] € E(X), cp#([X,y]) = [o(x),9(y)]. ¢ is an isomorphism
if and only if ¢ and cp# are one-one and onto. @(e) will frequently be
written for (p#(e).

Let X be a graph. A path P Joining x and y is a subgraph of X such
that V(P) is the set of elements of a finite sequence (xgsXjjeessx,) with
X, = X and X =7 and

0
E(P) = {[xgr%;,;] |0 =1 =n1}.

We shall denote the path by [XO,...,Xn]. A graph 1s connected if any two
vertices in X are Joired by a pat!. in X, otherwise it is disconnected. A
maximal comnected subgraph is called a gomponent of X.
Let X be a graph. For x € V(X) we let
V(X% = {y] [xy] €E(X) ]}, and
d(X;x) = [V(X;%) |« d(X5x) or d, is called the degree of x in X. For x € V(X)

(1)



and dx 2 3, x i1s called a branch vertex. If dX is finite for every vertex of

X then X is said to be locally finijte.

An Euler graph is a graph with dX positive and even or infinite for
every x € V(X). A circuit is a connected Euler graph where every vertex has

degree 2. If the graph is finite we call it a finite circuit, otherwise it

is an infinite circuit. A ray is a comnected graph with a vertex % such

that Ry X # Xg,

d}(: l,X::XO

R is denoted by R = [xo,...). x, is called the

origin or initial vertex of R. A path P = [xo,...,xn], is non~degenerate if

it contains a circuit, closed if Xg = %p» simple if dxi =2, 0=41=n, and

gimple cloged if 1t is a circuit.

A tree is a connected graph with no finite circuits. A graph is

circuit connected if and only if every edge is in a circuit.
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INTRODUCTION

The term matroid was first introduced into the literature by
Whitney 127 as a pair ( E,9) where E is a finite set and 91'is a col~
lection of subsets of E with the properties :

(1) if Ac B ¢ ¥ then A ¢ U, and

(ii) if A,B ¢ 4, |Al = n, [B| = n+l, then there is b € B such
that A' = AU {o} ¢ U, [A'] = n+l,

A member of 9 is called an independent set and a maximal such
is a pase. I(ii) occurs in a paper by Steinitz 117 and such a property
is known as a Steinitz exchange relation, see for example Bleicher and
Preston 6] (lemma L),

Whitney also shows that I is equivalent as an axiom system to :

let r be a function on the subsets of E to the non-negative
integers such that

(1) r(@ =0,

11 (ii) r(A U {o}) = r(A) or r(A) + 1, and
(1ii) if r(a U {bl}) =r(AU {ba}) = r(A) then r(A U {bl,bz}) =
r(A).

A € ¥ if and only if r(A) = |Al.

This form was extended to include infinite sets E by Rado [10] by
enlarging U to contain any set X < E for which every finite subset
belongs to U, Such a condition as this is known as one of finitary

character. A basic property of these systems is that all bases have
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the same cardinality.

Edmonds 2] (section 1.5, prop.l) shows that I(i) and the
axiom that all maximal members of ¥ have the same cardinality is again
an equivalent axiom system to I. He further shows in proposition 3 that
this is equivalent to the system

(1) if AFUand Bc A, B# A then B U, and
o (ii) if A,B € 9 with a € A-B and b € AN B there is C € ¥
with a € Cc A U B -{b}.

III is the form used by Tutte [57]. A property of matroids defined by
scheme III that has been used to good advantage by Tutte is that of
possessing a dendroid, a dendroid D being a subset of E such that

DN AF ¢ for A € 9 and is minimal such. Notethat one can always ask
for this condition on an arbitrary collection of subsets and it would
be reasonable to then call such a set a dendroid for that collection.

As a result of the many equivalent forms developed by the
authors there is some confusion in terminology and a section (1.4) of
Edmonds (27 sorts out some of this terminology. For example; Tutte's
dendroids occuring in III are the bases in I.

Another form of generalization has been made by Diab [77] who
uses the following axiom scheme for a set E and system 91 on E :

(i)° if ACB € o and A # B then A £ 9,

(ii) 4if A,B € ¥ then for a € A there is b ¢ B such that
v (A-fa}) U fb} € 91, and .

(iii) for X € E there is Y ¢ 91, X c Y if for every finite sub-

set of X there is a member of ¥ containing it.

IV(iii) is also of finite character and IV is shown in 7] p.562 to
(x) | be equivalent to



. Rado's extension of II. This is then equivalent to the system called
proper dependénce relations in 67 (lemmas 7 and 8).

Among the many interesting properties that systems I and III
have is that of possessing a dual. Thgt is, if 9 is a matroid then
there is a matroid m' called the dual of 9 for which (ﬂ*)‘ = 9/, and
the dendroids for m' are the complements of the dendroids for %. This
property of always having a dual is not shared by graphs as is shown
by Whitney (13] (theorem 29). There is a remark in section 1.4 of [2]
to the effect that Whitney's dual using I is then Tutte's III using
the correspondence between these equivalent systems.

Our pyrpose in this thesis is to show that the concept of a
matrqid can be extended to some infinite systems without the usual
axiom of finite character and to obtain a dual with the properties
given in the last paragraph.

The pair (E,%) is an exchange system if E is a set and ¥ is a
non-empty collection of non-empty subsets of E satisfying III(ii). If
in addition the system satisfies III(i) and has a dendroid we call it
a matroid.

In chapter one some general properties of exchange systems are
studied. 1.9 is an example of an exchange system without a dendroid.
1.10 furnishes two exgmples of exchange systems, one of which has only
finite members and the other only infinite members ,These were
suggested by those of Minty 8] (p. 489 exercises 2.2 and 2.3). 1.15
and 1.16 show that these are matroids and characterize their dendroids

while 3.17 and 3.18 show in what manner they are dual one to the other.
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For any exchange systgm with dendroids 1;17 shows the manner in which
they satisfy the system IV(i),(ii) which is shown in [127 (section 7)
to be equivalent to I. 1.31, l.47 and 1.48 are concerned with the
cardinality that a dendroid can have., One of the properties that one
would like a dendroid to have is the local covering property (l.c.p.)
introduced in l.22. In 1.39 an equivalence relation on the set of
dendroids for a matroid is defined and 1.45 shows that l.c.p. is com=
ﬁatible with this equivalence. For finite matroids there is just a
single equivalence class. 2.61 implies that there are infinite systems
with a large number of equivalence classes. 1l.46 shows that each
class determines a distinct submatroid of the system. 1.71 to 1.75
are concerned with the relation between dendroids for the finite sets
in a matroid 91 and dendroids for 9 itself. 1l.77 states that under
suitable conditions there are matroids (EM) and (E8) with¥ e B,
and 2.4 is a realization of this.

The first part of chapter two develops examples of infinite
matroids with considerably more structure than those of chapter one,
while the second part shows for any graph X with a circuit that the
collection of circuits is a matroid. We call this a circuit matroid
to distinguish it from other possible exchange systems derivable from
a graph. The essential steps are in 2.20 and 2.25. The third par? of
chapter two characterizes the dendroids for the circuit matroid of any
graph while the final section develops some of the special properties
of dendroids for a circuit matroid.

Chapter three is concerned with the dual of a matroid. The
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definition of a dual used by Tutte [5] and others does not readily
lend itself to our systems. Hence we redefine the dual for a matroid
91 and denote it by*m#. After a few preliminaries we show in 3,14 that
for any matroid whose elements are finite sets that M# is a matroid
with (m#)# = 91 and that the dendroids for the one are the complements
of the dendroids of the other., In particular for finite matroids we
obtain m# = mf, We next show that for the matroids constructed as exam-
ples that the dual is again a matroid with the desired properties. In
3.23 we show that a circuit matroid with the l.c.p. has as its dual
a matroid again with the same properties and since 2,73 shows that
circuit matroid of a tree has the l.c.p. Hence for this infinite system
whosq:élements are infinite we have not only generalized the concept of
a matroid but also that of the dual matroid .

The final part of chapter three contains some scattered results
on the dual of a circuit matroid. In particular 3,37 describes what
the elements of the dual look like in this case,

There is the possibility that the method of contraction used
in chapter two for a characterization of a dendroid for circuit matroids
can be extended to any graph since this is much the same idea as used
by Nash-Williams [9)(p. 227 and 230 ) for the decomposition of a graph

into circuits and rays.
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CHAPTER I

EXCHANGE SYSTEMS

DEFINITION (1.1) Let E be a fixed set. U is a system on
E if and only if ¥ is a non-empty collection of non-empty

subsets of E, and is an inductive system if the partially

ordered set (¥, @) is inductive, i.e., B € U for any chain

3 C U,

DEFINITION (1.2) A system Y on E has the exchange property if

for any A,B € ¥ and a € A-B, b € ANB there exists C € U with
a € CC AUB - {b}. A system with the exchange property will be

called an exchange system.

DEFINITION (1.3) Let U be a system on E. A € 9 is a minimsl

set in ¥ if BC A and B # A implies B £ 4.

—

LEMMA (1.4) Let ¥ be an exchange system on E. If 4 € ¥ is not

minimal and a € A then there exist proper subsets B and C of A

such that a £ B, a € C and B,C € 2.

Proof. A not minimal in U means there is a member of YU that is a
proper subset of A. If Cc A, C# A, ard a € C, then there is

b € A-C. By the excharze property there 1s B € ¥ with
be€BcCAUC - {a} = A - {a}. Similarly, if BC A, BZ A, a ¢ B
then there is C € % with + € C < AUB - {b}, a € Cc A - {b},

where b € ANB.

(1)



LEMMA (1.5) If 9 is an inductive exchange system on E then

for a € UY there is A € U with a € A and A minimal in %U.

Proof. a € UY implies a € B € ¥ for some B. Take a maximal
chain B in Y such that a € B for each B € 8. Then a € N® = A
which is in 9. If A is not minimal then there is C € ¥ with

a €ECC A, C# A by lemma (1.4). But then 8 U {C} is a chain in

U properly containing B with a € C, a contradiction.

LEMMA (1.6) Let 9 be an inductive exchange system on E. Then the

collection of minimal sets of U is an exchange system on E.

Proof. The minimal sets of Y are the intersections of maximal
chains from Y and belong to Y. Hence they are non-empty and by
lemma (1.5) at least one such set exists. This collection is then
a system on E.

Now take A and B minimal in Y with a € A-B and b € ANB.
By the exchange property there is a C € ¥ such that
a € CC AUB - {b}. By the inductiveness of ¥ there is a minimal
C’ € Y with a € C’ € C, so that a € C' € AUB ~ {b}, as required.

Hence the system of minimal sets has the exchange property.

NOTATION (1.7) 1f 9 is a system »n F then the collection of minimal

sets of ¥ will be denoted by U . .
min

REMARK (1.8) Lemma (1.¢: learly holds if % is an exchange system

on E consisting of fini:e subsets of E.
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REMARK (1.9) The following examples show that there exist
exchange systems which have no minimal sets.

(i) Let E be any infinite set and take ¥ to be the system
9 = {ACE|E-A is finite}. If A,B€ Y and a € A~-Band b € ANB
then AUB - {b} is in ¥ for |E - (AUB - {b})| = |E-A| +1 < Ry
Thus ¥ has the exchange property. If A € % and a € A then
A - {a} € ¥; hence U has no minimal sets.

(ii) Let ¥ be the collection of all non-empty open sets of
a T1—space E with no isolated points, Let A € ¥ with a,b in A.

Using the T, property there is C in Y with a € ¢ and b £ C.  Hence

;
a € ANC=¢’c A - {b}, with C' in ¥. Thus no member of U is
minimal. Now if A,B € ¥ with & € A-B and b € ANB then this same
set ¢’ has a € ¢ € A - {b} C AUB - {b} and ¥ has the exchange

property.

REMARK (1.10) The following examples show there are exchange systems
all of whose members are finite and minimal and exchange systems all of
whose members are infinite and minimal. The first is a well known
example of an infinite exchange system

(i) Let E be any infinite set and k any positive integer.

Consider the system
m, = {ac k| |a] = x}.

Clearly every set in W& is finite with exactly k elements and hence
each member is minical. I7 4,B € Wk with a € ANB and b € A-B then
a € AUB - {b} which &La: at least k elements. Thus there is a C

contained in AUB - {v} witn a € C and |G| = k. Thus C € 7, and T

has the exchange property.
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(ii) Let E be any infinite set and k any positive integer.

Consider the system
% = (AcE | |E-4] = )

Clearly A € 7, implies A is infinite and if BC 4, B # A then

|E—B| > k, hence the members of Wk are minimal. Let A,B € Wk with

a € A-B and b € ANB. Since E-(AUB - {b}) has k or fewer elements
there is G in AUB - {b} with a € C and |E-C| = k, so that C € 7,

Thus Wk has the exchange property.

DEFINITION (1.71) Let 9 be a system on E, and

9 ={DCE|DNAZ#¢ for each A € U}.
For D € § let FD be the set of functions f:D - ¥ with f(x) N D = {x}
for each x € D.D is a dendroid if D is a minimal set in & (relative
to inclusion). We shall denote the set of all dendroids for ¥ by &m.
It is to be noted that E € ¢ and that FD may be empty. If f € FD’ then

f is one-one.

REMARK (1.12) If 4 C 8B are systems on E and D is a dendroid for U

such that BN D # ¢ for each B € B, then D is a dendroid for 8.

REMARK (1.13) If 9 is a system on E consisting of finite subsets of E,

then dendroids for U exist.

Take ¢ as in (1.11), and partially order ¢ by inclusion. Take

any chain 00 in & and let D X é; X. If DN A=¢ for some a € U where
0

{aq,...,an} then for each i there is X; € ¢, such that a, ¢ Xy

i

A

Now . L' X, €9 and (,_0\_X.) N A= ¢, which is a

1 . A
f=iz=n "1 1=i=n"1

1A
H
1A
s

contradiction. Thus & is inductive and minimal sets exist. These

minimal sets are the dendroids for ¥
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LEMMA (1.14) Let ¥ be_a system on E. D is a dendroid for

if and only if FD 7 ¢. Moreover, if 9 has the exchange property

and N is a dendroid for ¥ then lFDI = 1. When this is the case

the single function in F is written as fD'

Proof. let D be a dendroid for U and take x € D. Then

(D - {x})n AX = ¢ for some AX € Y so that the function f:D - U

with f(x) = AX for each x € D belongs to Fp.
Conversely, if f € Fj, then for x € D, £(x)N(D - {x}) = ¢

and f(x) € Y. Thus D is minimal in E with DN A # ¢ for all

A €9, that is, D is a dendroid for .
Let Y be an exchange system and D a dendroid for . Suppose

f and g are in Fj with f # g. Then for some x € D, f(x) # g(x)

with y € £(x) + g(x) and x € £(x)Ng(x). Using the exchange

property there is A € Y with y € A € f(x)Ng(x) ~ {x}, and as a result

DN A=¢, a contradiction. Hence f € FD is unique.

REMARK (1.15) Using (1.13) the systems 7y of (1.10) (i) have

dendroids. For each k > 1 the dendroids of W% are precisely the

systems Wk—T’
If D ¢ Wk—T then ACE with AN D = ¢ implies ACE ~ D and

so |A| < k, and hence A £ . For each x in D the set
{x} U (B-D) = Ahas |A| =k and AND = {x}. Thus A € 7%_and
fr(x) = {x} U (E-D).

Conversely, if D is a dendroid for W& then for x € D,

fD(x) no = {x}.
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Because E-D :>fD(x) - {x}, |BE-D| 2 k-1. If E-D # fD(X) - {x} then
there is ACE - D with |A| = k. i.e., A€M and AND =9, a

contradiction. Hence D € Wk—1’ and 0%% = mk—T'

REMARK (1 16) The systems Ty of (1.10) (ii) have dendroids and

ﬁﬂk = Myeaq
Let D be a dendroid for 7, . For x € D there is fD(x) €y
with D < (E - £f(x)) U {x}. Hence [D| = k+1. If |D| =k then
there 1s A € %k with DCE - A, and so AN D =¢. Thus
[D| = k+1 and D € 7.
Take any D € W%+4, (|p] = k*¥1). For x € D consider A = (E-D)U{x]}.

|E-a| = |D - {x}| = k. Hence A€ 7 _and DNA={x}. IfBEY

with D B = ¢ then D < E-B and so |D| = |E-B| = k, a contradiction.

Hence D € 0ﬁk

and so 0Wk = W§+q'

LEMMA (1.17) Leb 9 be an exchange system on E and N a dendroid

for d. For each a € I, D' = (D - {a},U {a’} is_a_ dendroid for ¥

if and only if a’ € fD(a), and in this case fD(a) = fD:(a') while

for x € D - {a}, f(x) = £/(x) if and only if a' ¢ fry(x).

Proof. If D'N A= ¢ for some A € ¥, then (D - {a}) N A = ¢ so

that A = £ . (a) and a‘ £ fD(a). Hence if a’ € fD(a) then B/ N A = ¢

D
for any A € Y. Now if a’ € fD(x) let x € A_ < £(x) U f.(a) - {a’}
where A € % by the exchange property. If a’ & fD(X) let A= fD(x).
Then for x # a f,(a) N D' = {a} and AN D’ = {x}. Hence D' is a
dendroid with fD(a) = fD,(a’), fD(x) = fﬂtx) if a’ ¢ fD(X) and

fD(x) # fD,(x) if a’ ¢ fD(X).
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Conversely, let D’ be a dendroid. Then
¢ #D'n fpla) = (D - {a}) U {a’}) nfpla) = {a’} N £h(a).
Hence a’ € fy(a) and £ (a) = £.(a’). For x €D - {a} with
a’ d’fD<x), ¢ = (- {x}) neylx) = (D - {a’,x})Nn £r(x) =
(D’ - {a’,x}) N fD(x) = (D’ - {zhn £(x). Hence fD(x) = fD,(x).
If a’ € fD(x), x € D - {a} then f(x) N (D - {x})=

fD(X) n (D~ {a,x}) U{a’}) # ¢ and so fD(x) # fD/(x).

REMARK (1.18) Let D be a dendroid for an exchange system ¥ on E.
If B=E-Dand b € B, a £ B then By = (B - {v}) U {a} is not the

compl€ment of a dendroid for U if and only if there is Y € 9 with

Y c BO. In this case the set Y is unigue and Y = fD(a). This

follows from lemma (1.17) because E - B, = DO-Z((E—ED—»{a}) U {b} =
(D - {a}) U {v} is a dendroid if and only if b € fD(a). Hence if

DO is not a dendroid fD(a) C:BO
property because of the exchange properiy.

and is unique in U with this

LEMMA (1.79) Let 9 be an exchange system on E and D a dendroid

for Y. Then fD(a> €U, for each a € D.

Proof. If fD(a) is not minimal in U then by (1.4) there is
Aed, ag¢Ac fD(a), which is a contradiction to D being a

dendroid because D N A C D ﬂ(fD(a) - {a}) = ¢.
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LEMMA (1.20) Let 9 be an exchange system on E and D a dendroid

for 4.

(i) If AN D is finite for some A € Y then

ACU{fD(a)laEAﬂD}

with equality if |A n DI is least, the minimum taken over all

dendroids for «.

(ii) If AN D = {31’32} then A 2 fD(a1) f (32)

n
Proof. (i) Let AN D = {aq,...,a }, and suppose y € A - U f (a,).
—_— n j=1 D1

Take AO = A and inductively define the sets Ak for 1 = k = n as follows.
If ay ['4 Ak-1 take Ak = Ak—T'
If a, €A , teke A €Uwithy € A C (A 4 U T - {e,}. By

the exchange property this is possible since y € AO. For each k,
k

{aq,...,ak} N A =¢ while A C AU ig1fD(ai) by this construction.

}

.,an} NA =¢. Thus D1 A = g,which is impossible.

n
In particular A < A U igqu(ai) so that DN A < {a1,...,an

while {a1,..

Thus A < U {fy(a)|a € 4 N D}.

Take D in ﬁm such that |D N A| is least. If for some

aEDﬂAthereisyEfD(a)-AthenD':(D—{a})U{y} is a
dendroid by (1.17) and |A N D‘] < |A N D), a contradiction. Hence

for |A N D] least

A=y {ryla)|a € AN D}.
(ii) Let AND = {a,l,az}. Then A < fp (a ) UfD( a,).
Without loss of generality suppose y € fD<a1> - fD(aZ)'

D' = (D - {a;}) U {y} is & dendroid by (1.17) with £ (a,) = £.(y)

and fD,(aZ) =f Now AND =4n ((D - {a,l}) Uiy} = {a2} and

D(az)-
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so A= fD’(a2) = fD(az) and AND= {az}, a contradiction. Thus

4> fD(a,l) + fD(a2>.

REMARK (1.21) Let 9 be an exchange system, D a dendroid for .

Then given any A € mmin with D N A finite then for each a’ € A

there is a D’ € 0% such that fD,(a’) = A.
By (1.20) for |D N A| least, A = u{y(a) |a € A n D}.
Because A €9 ., , AND= {a} and A = fD(a). Now a’ € fD(a).

Hence D’ = (D - {a}) U {a’} is a dendroid and A = fD,(a') by (1.17).

DEFINITION (1.22) A system 9 on E is weakly locally finite if for

every A € Y there exists a dendroid D for ¥ such that AN D is finite.

U is locally finite if there exists a dendroid D for ¥« such that

DN Ais finite for every A € Y. The term "locally finite" will
also be applied to such a dendroid. A dendroid D for YU will be

said to have the local covering property (l.c.p.) if and only if

(1.22.1) Acu {£;(x)|x € AN D}
for every A € U. If every dendroid for Y has the l.c.p. then U

itself will be said to have the l.c.p.

DEFINITION (1.23) An exchange system 2 all of whose elements are

incomparable and withaﬁh 7 ¢ will be called & matroid.

REMARK (1.24) If 9 is a weakly locally finite exchange system then

U . 1is a matroid.
min
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REMARK (1.25) If 9 is an exchange system and D € 0% ig locally

finite then D has the l.c.p. This is lemma (1.20)(i).

REMARK (1.26) If 9 is a weakly locally finite exchange system

then remark (1.21) is a converse to lemma (1,19).

REMARK (1.27) If a system U on E consists of finite subsets of

E then every dendroid for ¥ is locally finite. In particular this

is true for the system 7 of (1.10). TFor the system M, of (1.10) the
dendroids are the members of W%+1, which are finite, and so all the dendroids

for m& are locally finite,

REMARK (1.28) Not all exchange systems have the l.c.p. Consider

the graph X shown in figure 1. Let E be the set E(X) of edges in X.
Each circuit (finite or infinite) in X has a unique set of edges E(C).

Let the system ¥ on E be

A(X) = {E(C)|C a circuit in X}.

Y(X) is an exchange system called the circuit matroid for X.

FIGURE 1
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Let the dedges be @, = [ai’ai+ﬂ] and y; = [b1,ai] for i = 0, and
B; = [bysb54q] for 1> 1.

Every finite circuit is of the form (ai,bq,aj) i # ] and every
infinite circuit is of the form (""bn""bT’ai"")'

A dendroid for the circuit matroid is

D

I

{aili z 0} with fD(ai) = E((ai,b1,ai+1)).

The circuit (...bn,...,b1,ai,...) meets every member of D while

0} U {Yili z 0} :P{BJ}, J>1.

-
W

U f (o
iz0 D

Hence D does not have the l.c.p.

LEMMA (1.29) Let D be a dendroid for 9 with the l.c.p. Then

(1.29.1) ua=u {fD(x)lx € D}.

Proof. For A € ¥, Ac U {fy(a)]a € AN D} c U {fy(x)]x € D}.

Hence U ¥ C:{fD(x)lx € D} and the equality holds.

COROLLARY (1.30) If 9 is_an exchange system and D is locally

finite then UY=u {fy(x)|x € D}.
Proof. This follows immediately from (1.25).

LEMMA (1.31) Let % be an exchange system with some D € 0m finite.

Then all members of ﬁﬁ are finite and have the same cardinality.

Proof. Suppose DO is a dendroid with |DO| > IDI. Choose a
dendroid D, with |D,| = |D| and |D, - D,| least. If x €D, - D,

then because D, N £, (x) # ¢ there is y € D, y # x and y € £ (x).
0 :D,I 0 D,l
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By lemms (1.17) D, = (D1 - {x}) U {y} is a dendroid and

Ip,| = |p,| = |p| wnile |D, - Dy| < |D, - Dy| which contradicts

the choice of D1A Hence D1 C:DO and thus D1 = DO by the minimality
of a dendroid. By symmetry then, if one dendroid is finite they are

all finite and they have a common cardinality.

LEMMA (1.32) Let ¥ be an exchange system with dendroid DO' Then

there is an exchange system mo C'umin for which Do is a locally

finite dendroid.

Proof. Take
¥, = {4 € mminlA N D, is finite}.
Llet A, B € mo with a € A-Band b € Al B. Then there is

C€Uvwitha € CcAUB- {b}. Since AN D, is finite and B N Dy

0
is finite so is C N Ny. By lemma (1.20) (i) there is a dendroid D

with C=U {fD(x)|x €D N C}. Hence a € f(x) S CS AUB- {b}
for at least one x € D N C. fD(x) is & minimal set in Y and
fD(x) N D, is finite. Thus %, is an exchange system. A € ¥ implies

AN D, is finite by the definition of ¥, and f) (x) € ¥, for each

0 0

X € DO' Thus D, is locally finite on ¥

0 0°

LEMMA (1.33) Let 9 be a system on E and X € E such that X N A

is fipite and non-empty for each A € Y. For Y C X there is a 2
minimal in X such that Y Zc X and Z N A # ¢ for each A € 4.

Moreover, if Y = ¢ then Z is a (locally finite) dendroid for .

Proof, Take a chain C of subsets of X such that for C €2, YC C
and CN A# ¢ for any A € Y. Suppose (NC) N A= ¢ for some A € .

Take CO € C and denote the elements of CO N A%by Biseensd . Then
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there is C, € C with &, ['4 C;j» 1 =1 =n. Hence G :bggénci € C and
CNA=¢, a contradiction. Hence minimal elements Z exist in X
containing ¥ with Z N A # ¢ for each A € Y. Clearly, if Y = ¢
then for each z € Z there is A € Y with (Z - {2}) N A = ¢. Hence
Z is a dendroid for Y and is locally finite by definition

(1.22).

THEOREM (1.34) If DO and D1 are locally finite dendroids for an

exchange system U then |DO| = |p,].

Proof. lLet
o = {A€ mminlA N D, is finite}, i = 0,1,

By lemma (1.33) there is Di'<: D, such that Di’ is a locally finite

dendroid for m1—i whence

|, |

Thus |Dy| = [D

z [p,’] =D
-

LEMMA (1.35) Let U be a weakly locally finite exchange system and

D a locally finite dendroid for mmin, Then D is.a locally finite

dendroid for A and thus U is locally finite,

n
020 i i = 2
Proof. By lemma (1.20), A € 9 implies A ig1Ai where A, €% . ,

n

for 1 =i =n. Hence DN A =_U1(D n Ai)’ a finite non-empty set.
1:

By definition (1.22) D is a locally finite dendroid for 9 and ¥ is

locally finite.

REMARK (1.36) Lemma (1.29) does not have a converse. By a

modification of the graph of figure 1 we obtain a circuit matroid
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of a graph X and a dendroid D for X such that U {fD(x)Ix € D} = E(X)

and D does not have the l.c.p. More over this graph (shown in figure 2)

is such that its circuit matroid is weskly 1ocallx finite, and hence
weakly locally finite¢ does not imply the l.c.p.

FIGURE 2
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D is the set of edges marked in red. It is clear that E(C) N D # ¢

for every circuit C of the graph. For e € D, fD(e) = E(C), where
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C is given by:

_ 0 1 _ -n 0 1 n
e = [ao,ao], C = (...,ao , ...,ao,ao,...,ao,...)
0 O _ -n 0O 0 1 n
e = [ao,a1], Cc = (...,ao ,...,ao,a1,a0,...,ao,...)
_ k k _ k k k+1 .
e = [ai,ai+1], Cc = (ai,ai+1,ao ), lk] +1#£0.

Since every edge is in a finite circuit, U {fD(e)le € D} = E(X).
Any circuit C of the form
k k k _k+ n .
C = ("”31’81—1""’ao’a0 ,...,ao,...) with k> 0

has E(C) ¢ U fD(e) and hence D does not have the l.c.p.
e€E(C)ND

It is shown at the end of Chapter II that the circuit
matroid %(X) of a graph X is always weakly locally finite.

The following definition arises naturally from (1.17)

DEFINITION (1.37) Two dendroids Dy» D, of an exchange system
Y are adjacent if and only if DO = D1 or there is x € Di and a

Y € fbi(x) such that D, , = (Di -{x}) U{y}, i=0or 1.

REMARK (1,38) Two distinct dendroids D., D, of an exchange system

0’ M

= 2. This is clear from the

¥ are adjacent if and only if [Dj + 01|

definition, DO + D1 = {x,y}.

REMARK (1.39) The transitive closure of the relation of adjacency

is an equivalence relation on ﬁﬁ for an sxchange system .

THEOREM (1.40) Let % be an exchange system and D,D’ € By D

is equivalent to D’ if and only if D + D’ is finite.

Proof. If D and D’ are equivalent then it is clear from the definition

(1.37) and remark (1.38) that D + D’ is finite.
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Conversely, if D + D’ is non-empty and finite then
without loss of generality there is x € D’ - D. Since D N fD,(x)
is finite lemma (1,20) gives

x € f.(x) « U {f;(y) ]y € £,(x) N D}.
Thus x € fD(y) for some y € fD,(x) N'Dand y # x for x £ D and
soy D', NowD, = (D - {y}) U {x} is a dendroid adjacent to D

1

for D +D, = {x,y} and D, + D’ = (D +D’) - {x,y}, i.e.,

1
lD,] +D’| = |D +D’| - 2. By iterating this procedure we can
find a dendroid D_ equivalent to D such that |Dn + Dl =1. Since

D, and D’ are minimel, D =D’ and so D and D’ are equivalent.

NOTATION (1.41) If D is a dendroid for a system % and X < D then
EXfD(x) is to be the set of all y in exactly one of the fD(x) with
X

x € X,

LEMMA (1,42) Let ¥ be an exchange system and D a dendroid for ¥ with

the 1l.c.p. Then £*f (a) € A for any A € 9.
a€bna D

Proof. Take A € 9. By definition AcC U {fD(a)la €D N 4}. Take

any s € i‘D(aO), ag € Aand s € U DfD(a) - A. By the exchange
a€An

principle there is B € 4, s € B c (AU fD(aO)) - {ao}. Now
B c:begﬂDfD(b) =y {fD(a)la €EAND - {ao}}, and so there is

ag 7 a, 8g,8 € ANDwith s € fpla) N fD(a Thus it follows

O)'
5 *

fD(a) c A.
a€AnD
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COROLLARY (1.43) If D is a dendroid for an exchange system %

and DN A is finite for some A in % then ¥ f/(a) c A,
a€bNA

Proof. By lemma (1.20)(i), Ac U fy(a) and hence the B of the
a€DNA
above lemmsa is such that B (1 D is finite. This makes the same

argument as above valid and the result follows.

REMARK (1.44) Lemma (1.42) is a straight forward generalization

of lemma (1.20)(ii).

THEOREM (1.45) Let 9 be an exchange system and DO’ D,1 equivalent

dendroids for %. Then DO has the l.c.p. if and only if D1 has the

l.c.p., i.e., l.c.p. is compatible with the equivalence relation

defined on §m.

Proof. Using lemma (1.42) it is sufficient to show this for
adjacent dendroids. Assume that D has the l.c.p. and let DO be
adjacent to D. Let A be a fixed member of U and let

=y {fD(x)lx € DN A}. AC B because D has the l.c.p. Take
v € fD(X), ¥ # x and let D, = (D - {x}) U {y} bve an adjacent
dendroid with fDO(y) = fD(x) by lemma (1.17).

If x € A then y can only be in A or B-A whilst if x ¢ A
then x € E-B and y can be in A, B-A or E-B. This gives rise to
the following six cases to consider.

(i) x € B-B and y € E-B,
(ii) x € E-Band y € 4,

(iii) x € E~B and y € B-A with fD(x) NA=g,
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(iv) x € A and y € 4,
(v) x € A and y € B-A,

(vi) x € B-B, y € B-A and fD(x) naAa#o.

Case (i). for each a € AN D, fD(a) C B whence y £ fD(a) and so

, (a) = fD(a) by lemma (1.17), and DyNA=DnN A Thus
0
U £ (a) = U fD(a) = BDA.
a€D,NA 70 a€DNA

Case (ii). DyNA=DNAU {y}. For each a € A N D, either
£ (a) =f, (a) or f

D DO DO
£ (a) UL, () = £(
DO DO D

(a) 2 fD(a) + fD(x). Hence for all such a,

a) U fD(x). Thus

u £ (a) = ( U fp(a)) Ufp(x) 2 B> A,
aEAﬂDO 0 a€DNA

Case (iii). D0 NA=DNA. If ace€ Do N Aand y € fD(a) then

as in (ii) fDO(a) =) fD(a) + fD(x) - fD(a) N A while if y £ fD(a)
then fDO(a) = fpla) = £p(a) N A, Thus

U %(QDAH( U f.(a)) = A.

(
acan, "0 a€AD ©

Case (iv). Dy N A= (DN A~ {x}) U{y}. Again for a € DN A, a ¥ x,

fDO(a) U fDO(y) = fD(a) U fD(x). Hence

U %(@: Ufﬁw:BDA
a€D N4 ~0 a€DNA
Case (v). DyNA=DNA- {x}. By lemma (1.43) there is a, €D N A
with a, 7# x such that y € fD(aO). Since we only want to cover A and

either fDo(a) = fD(a) or fDo(a) D fD(a) + fD(X) it is only necessary
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to show that for every p € fD(x) N4, pefy (a) for some a € AN Dy
0
Consider D' = (D -~ {x}) U {p}. This is adjacent to D and is the type

in case (iv). Hence f..(a) 2 A. AMlsoD,= (D' - {p}) U

cen’ ) 0 {r}) U {y}
is a dendroid adjacent to D’ because y € fD(x) = fD,(p). Again by
lemna (1.43) y € £/(b) for some b # p, b € D' N 4, and

%(Mnyw)+f4m.Tmspe%(wasm@hw(mm
0 P 0
X € fDO(aO)) and so
Ac U fD (a)
aEAﬂDO 0

Case (vi). x € E-B, y € B-A and fD(x) NA#¢., Take t € fD(x) n A.
Then t € fD(a) for some a € DN A, Let D, = (D - {x}) U {t}, which

is adjacent to D and falls into case (ii). Thus Ac U 5 (a)
aGAﬂD1 1

with y € £}, (t) = fD(x). Then (D1 -{thuiy}=0@-{x}H Uiy = Dy
1
is adjacent to D and is then case (v). Thus again Ac U £, (a).
aEAﬂDO 0

We have now shown that Ac U fj (a) in all possible
a€And 0 0
situations and since A was arbitrary in 9 the theorem follows.

LEMMA (1.46) Let 9 be an exchange system and Dy € &y Let

9y = {D € amln + Dy is finite}, and let %, = {f (x)|x € D € v}.

0

Y, is an exchange system and is exactly the system of lemma (1.32), il.e.,

%y = {4 €Y

min]A N D, is finite].

Proof. Since mo is an exchange system it is sufficient to show that

U, = U

0 1°
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Take fD(x) €YU By lemma (1.19) fD(x) €Y., . Now

1
fﬂﬂﬂDoc%&)ﬂu%+D)U%ﬂD)C%&)ﬂwO+MU{ﬂ
and is finite because DO + D is finite. Thus fD(x) € %, and so
4 < 910.

Conversely, if A € mmin and A N DO is finite then there is

D € 0% such that D + DO is finite and AN D is least. If

|A N'D| # 1, then there is a € A N D such that f,(a) and A are
incomparable. Take b € fD(a) - A and consider the dendroid
D'=(D-~{a}) U{p}. D’NA=DNA- {a} and D’ + D is finite,
which contradicts A N D being least with this property. Hence
there is D € 9, with A = fD(a) for some a € A. Thus %, C %, and

the lemma follows.

COROLLARY (1.47) If D is any dendroid for %, with the 1.c.p. then

Iogl = |D].

Proof. D has the l.c.p. implies each a € D is in some fD(x).

Hence Dy © XgD(fD(x)) N DO’ But fD(x) N DO is finite. Hence

Dy | = xéleD(X) N Dyl = |DIX,.
If D is finite so is DO and IDI = ]DOI by lemma (1.31). Thus
IDg| = |D| in voth cases.

REMARK (1.48) In order to have IDOI = |D| it suffices that for each

a € D, there be an x € D with a € fD(X).

0

DEFINITION (1.49) Let 9 be a system on E. U separates points of E

if and only if for any two distinct elementis a,b € E there is A € U

with a € A and b £ A.
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REMARK (1.50) Let % be a system on E. If UY # E then the system

£ given by
£=9U {{x}|x €E-vuu

is a system on E such that U £ = E. Moreover, ¥ is an exchange
system if and only if £ is an exchange system and D is a dendroid
for U if and only if D U (E - U ¥) is a dendroid for £. Notice
that it is necessary that U % = E if Y is to separate points of E.
For this reason, unless otherwise stated, it will be assumed

that a system Y on E has the property U U = E.

LEMMA (1.51) Let % be a system on E. For a € E let

7N = {A € 4|la € A}, and define a relation N on E by aNb if and only

a
ifn = nb' N is an equivalence relation on E, and a =0 Wa, where

Proof. Obvious.
NOTATION (1.52) For AC E set A = {a]a € A}, and U = {A]4 € u}.

THEOREM (1.53) Let % be a system on E. Then in the notation of

(1.52), % is a point separating system on E. Further 9 is an

exchange system if and only if Y is an exchange system and D is a

dendroid for U if and only if D is & dendroid for ﬁ and D is a

representative set for 5.

Proof. & € A € Y if and only if a € A € Y, for & € {b|b € A} implies

N %a =N nb for some b € A, and so a € A.
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Take & # b. Since M, # M and U =E it follows without
loss of generality that there is an A € ¥ such that 8 € A, b £ A.

If ¥ 1s an exchange systenm take & € A-Band b € AN B. Then
a € A-Band b € Al B, Hence there is C € Y with a € C and
CcAUB-{b}, and so8 € CCAUB- {b} and C € U.

Conversely, if 9 is an exchange system and A,B € ¥ with
a € A-Bandb € AN B then & € A-B, b € A N B and hence there is
CeUwitha € CCAUB-{b}. Thus a € CC AU B- {b} and U
is an exchange system.

Let D be a dendroid for ¥ and a,b € D with & = b. Then
b € A for every A € Y with a € A. Hence b € f(a) N D for f € Fy
and so b = a, Thus D i1s a representative set for D. Now for a €D

f£(a).

I

there is A € Y with a € A, b £ A for b € D - {a}, viz. A

Hence 2 € A€ %, b £ Aforb€D- {a}. Clearly, if DN A = ¢ for

some A €9y thenDN A= ¢. Hence D is a dendroid for .
Conversely, let B be a dendroid for % and let D be a

representative set for B. Then D = B, Let b € B, BN A = {b}.

If x € D with x € A then X € A and X € B. Hence X = b so that

DN A= {x}. Clearly if x € D then X = b € B so that for x € D

there is A € Ywith AND={x}. If DN A=¢ for some A € Y then

for all a € A, a £ D so that for all @ € A, a £ D = B. Then

BNA-= ¢, a contradiction and so D is a dendroid for %.

REMARK (1.54) In view of theorem (1.53) it will be assumed that a

system on E is point separating unless otherwise stated.
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REMARK (1.55) The circuit matroid of the graph in remark (1.28)

is not point separating while the circuit matroid for the graph in
remark (1.36) is point separating. Note that the quotient system
for the circuit matroid of remark (1.28) is not the circuit matroid

of the resulting graph shown in figure 3.

FIGURE 3
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DEFINITION (1.56) Let Y be a system on E. A set SCE is a
separator of U if and only if for each A € Y with A N S # ¢, A < S,

Let S(%) be the set of separators of .

LEMMA (1.57) B () is a complete atomic Boolean algebrs of sets.

Proof. (i) ¢ and E belong to «¥(4) as the smallest and largest
elements respectively.

(i1) If S € H(Y) then (B-8) € H(U) for if AN S # ¢ then A C S, hence
AN (E-S) # ¢ implies A € E-S.

(iii) Let C be a chain in & (A). IfFANNC# ¢ then AN S # ¢

for each S €EC and ACSE€C. Thus ACNCand NC € ().
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(iv) Using (ii) and (iii), E~-UC = SQZ(E-S) € JS(¥). Hence
uc e J).
(v) For each a € E let xﬁa be the collection of all separators
containing a and let S, = D,Ja. E€o andsoacsS € Q). If
T e .S, a¢ TcS, thena € (E-T) NS, =5 . Thus T=(ES)NS =9
and Sa is an atom of 23(&).

Each S € A(Y) is the union of the atoms it contains; 1i.e.

S =y tSaIa € s}.

The atoms of x&(ﬂ) have been called elementary separators

by Tutte [5].

DEFINITION (1.58) Let 9 be a system on E and S < E. An S-chain’
is a finite sequence (AT""’An) such that
(1) A, €y, A, €8, 1i=1,.. ,nand

(i1) AL NA L, Z¢,1i=1,...,n-1 if n > 1.

DEFINITION (1.59) Let 9 be a system on E. S C E is connected
if and only if given any a,b € S there is an S-chain whose first
term contains a and whose last term contains b.

A component of U is a subsystem U’ < U such that U ¥’ is

a maximal connected subset of E.

LEMMA (1.60) Let % be & system on E and I an index set such that

(Sa)aeI is a family of connected sets with x € aQISQ' Then

U {Sala € I} is connected.
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Proof. Let a,b € agISa with a € Sa’ b €5 Since x € Sa N1 S, there

B

.,B ) in S and S
m x

5

are Sa—chains and S_-chains (A ..,An) and (B

B 17"
respectively with a € A1, X € An, X € B1, b € Bm. Hence

R 5

(AT""’An’BT""’Bm) is a agISa—chain witha € A, b € B . Hence
U S  1is connected.
o€l @

COROLLARY (1.61) By Zorn's lemma maximal connected sets exist and

every connected set is contained in a maximal connected set.

COROLLARY (1.62) Components of 9 exist and any two components sare

disjoint.

THEOREM (1.63) The atoms of (%) are exactly the maximasl connected

subsets of E.

Proof. Take S an atom in £ (%). If S = {a} then clearly S is connected.
If a, b are two points in S then define recursively the following
countable collection of sets Rk' There is A € Y with a € A C 8.
Set R1 = A, For k =2 let
R, = {x}here exists B € 9 with x € B, BN R, 7 0}
For each k, R, € R for if x € Rk there is B € ¥ with

k k+1

B N R 7 ¢ and x € B. Hence x € R and in fact B€ R .. A=R, < S,

k+1? k+t1 1

Suppose there is Rk ¢ S. Then there is a least positive integer k

with x € R, - S. Thus there is B € Y with x € B, BN R, £ o,

that is, BN S # ¢ and so BC S, a contradiction. Hence R, <8 for

allkand;RkCS. Let B € 9 with B N (?Rk);&gp. TheanRk;«fgb
©

for some k and so B C Rk+1' Hence y Rk is a separator of YU, and

since S is minimal, y Rk = S.
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It is clear that A = R, is connected because (A) is an
R-chain. Let a,b be in S with a € R1 and b € Rk’ k > 1. Choose
k the least integer possible. b € B € YU, BN Rk—1 # ¢. There is
a least k

1
b # b1 by the choice of k. Then there is B

such that BN R, #¢. If k, #1, let b, € BN R, , where
k1 1 1 k1

€ Y such that b, € B1,

1 1
BN Rk2 # ¢ with k2 the least integer possible and k2 < k1. In a

finite number of steps one obtains an S-chain (B,B B, ) such that

b "”"’ krl

b € Band a €B Hence S is connected. If S = {a}, then

kn'
a € A €Y implies {a} = A and S is maximal connected. If [SI >
and 8 € S’ connected then for b € S’ and & € S there is an S’-chain

(& ,...,An) with a € A, and b € A , with A C 5. Since A, N A, Z ¢,

1 1

A, C S and in the same way A < 8. Thus S’ c S and S is maximal
connected in E.

Conversely, suppose S 1s a maximal connected set in E. Let
s’ e J(U) with 8’ = 8. If 8/ # ¢ take a € S’ and b € S. Then there
is an S-chain from a to b. By a repetition of the argument immediately

above this S-chain must be an S’-chain. Hence S’ = S and so S is an

atom of & ().

QEMMA (1,64) let ¥ be a system on E. U is an exchange system if

and only if each component of U is an exchange system and U has

a dendroid if and only if each component of U has a dendroid.

Proof. Let I be an index set for the collection of components of

Y. EFach member of U belongs to some component and hence U = U MQ,
a€l

a disjoint union (by Corollary (1.62)).
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Now suppose that U is an exchange system and A,B € ma
with a € A-Band b € AN B. Then A,B € Y implies there is C € Y
with a € CC AU B - {b}. By lemmas (1.60) and (1.63) C € Y, and
so each component of 9 has the exchange property. If D is a dendroid
for ¥ let Da =DNu ma. Each a € D is in a unique Da by corollary
(1.62) and hence a € fD(a) implies fD(a) €Y, If Da NA=g¢ for
some A € ma then D N A = ¢ with A € Y, a contradiction. Thus each
D, is a dendroid for 9 . Note that D, 7 ¢, for there is A € U,
and DN A # ¢.

Conversely, suppose each ma has the exchange properiy. If
A,BE€ Ywitha € A-Band b € AN B then there is C € Y with
a € CcAyB- {b}, because A and B belong to the same component
of ¥ by lemma (1.60) and corollary (1.62).

Let Da be a dendroid for ﬂa for each @ € 1 and let D :agIDa.
If AND=¢ then AN Da = ¢ for the unigque o with 4 € ma.
For each a, € D there is A €YU with D N A = {aa}. Since A € ¥
and the D 's are pairwise disjoint, AN D = {aa} and D is a

dendroid for ¥.

DEFINITION (1.65) A system ¥ on F will be a connected system

on E if and only if Y has a single component.

REMARK (1.60) Given any complete Boolean algebra B of subsets of
E one can define an equivalence relation R on E by aBlb if and only if
B, =B, where B_ = N {B € B|x € B}. Then B is the algebra of all

R-gaturated subsets of E (i.e., subsets which are unions of
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equivalence classes modulo R). It follows from theorem (1.63)
that in the case of the algebra & (%) the R-saturated sets are

exactly those which are unions of Y-components of E.

DEFINITION (1.67) Let 9 be a system on E and S a subset of E.
If there is A € Y with AN S # ¢ thenU[S={ANS|Aecy, AN SF ¢}
is the retraction of ¥ to S. If there is A € ¥ with A € S then

U = {A € U[A < 8} is the restriction of ¥ to S.
REMARK (1.68) Let ¥ be a system on E and S < E. Then % < ¥|S.

REMARK (1.69) If ¥ is an exchange system and ¥U|S # ¢ # % then

%|S and U, are exchange systems. Take 4,B € %|S with a € A-B and
b€ANB. Then A=A"NSand B=B"NSwith A’,B’ € ¥,
a € A'’-B’ and b € A’ N B’. Hence there is C’ € 9 with
a € C'cA’UB - (b} andsoa €C=C"NSCAUB- {b} with
C € uls.

If A,B € ﬂs then A,B € ¥ and hence a € C € Y with
CcAUB- {b} ©5. Thus C € ¥g,and U|S and YUy have the exchange

property.

REMARK (1.70 If 9 is a system on E with a dendroid D then it does
not follow that U|S has a dendroid,for MIS may have no minimal
elements. Moreover, even though D 1 S has the intersection property
for MS this need not be a dendroid because for some a € D 1 5 there is

no guarantee that fD(a) c S,
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LEMMA (1.71) Let U be & system on E and let & be the collection

of finite subsets of E in U. If there is A € ¥ such that & £ F

and BC A implies B ¢ & then there is a subset M of E such that

Uy N & = 9.

Proof. Let 7= {XCE|d NF =¢}. AEMF¢. LetC be a chain

in (7,<). If F € 3 with FC UC then there is a finite subchain
¢’ of Cwith FC UC’ €@, a contradiction. Thus maximal sets

exist in (7,9 .

COROLLARY (1.72) If ¥ is an exchange system and & 7 ¢ # %, then both

& and iLIM are exchange systems.

Proof. This follows directly from remark (1 .69).

PROPOSITION (1.73) Let Y be a system on E and & the collection of

finite subsets of E in 9. If & # ¢ then in the notation of lemma

(1.71) for every maximal M € %, E-M is a dendroid for & and every

dendroid for & is of this form.

Proof. Let M be meximal in % Since (E-M) N F ¥ ¢ implies F € U
for each F € & it follows from the definition of 7 that
(B-M) N F = ¢. By lemma (1.33) & has a dendroid DC E - M. Now if
D¢ E-M then by the maximality of M there is F € & with
FcMU ((E-M)-D). But then DNF<DNMUDAN ((E-M)-D) = ¢ and
hence D = E-M,

Conversely, let D.be a dendroid for &. Then F ¢ E-D for
any F € & Take Y maximal in 7% such that Y -2 E-D. Then by the

above, E-Y © D is a dendroid for & and hence E-Y = D, 1.e., ¥ = E-D,
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THEOREM (1.74) Let D be a dendroid for a system 9 on E. Then

is a

D = DO U D, (disjoint) where D0 is a dendroid for & and D1

dendroid for MM for some suitable M € 7%, in fact M = E-D

0

Proof. Since DN F # ¢ for any F € &, D contains a dendroid DO for

F by lemma (1.33). By the proof of proposition (1.73) this

determines the maximal set M = E-DO in 7. Let D1 = D—DO. For

x €D, fD(x)nDO: ¢ and so fD(x) < M, and if AN D, = ¢ then

AN D, # ¢ so that A ¢ Y%, Hence D, is a dendroid for .

1

PROPOSITION (1.75) Let 8 € 9 be_a maximal sub-exchange system

such that U ®B contains no member of &. If D, is a dendroid for B

1

then D1 can be extended to a dendroid for U.

Proof. By lemma (1.71) there is a maximal M in % such that
Uy N &F=¢ and M2 U B. By proposition (1.73) Dy = E-Mis a

dendroid for & Let D = DO U D,1 and take x € D1. fD (x) ND =
1

f (x)nDT:{x} since f (x) @M. If AND,=¢ then ACM

and so A € B and AN D, 7 ¢. Hence it only remains to show that

for x € D-D, there is fj(x) € Y with f,(x) N D = {x}. £ (x) is

1 Dy

finite and so £, (x) N D, = {x} and £, (x) N D, is finite. Take
D, 0 Dy 1
A € ¥ such that A N Dy = {x} and |2 n DTI is least. Suppose

a € D{\A.Then there is C € Y with x € CC A U £ (a) - {2} by the
1
exchange property. Since fDq(a) NDy=¢, CNDy= {x} and

[c n Dql < lan DWI' Hence & N D, = ¢ and therefore A = f,(x).

Thus it follows that D is a dendroid for .
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REMARK (1.76) A circuit matroid U has the property that for

A,Bec U, A+ Bis the union of disjoint elements from U. Hence if

D€ By and DN A is finite then A = I fD(a). This is seen as

a€bNA
follows. = f (a) € A by corollary (1.43). Now A+ ( = f._(a
acinD D v v acbalp'®)
is a union from Y while DN (A + Z fD(a)) = ¢ and so
aeDNA
A= % f (a). This means in general that in the notation of
acAnD D

proposition (1.75), fDo(a) 7 fD(a) for fD(a) must be infinite if

fDO(a) n D, # ¢.

THEOREM (|«77) Let % be a matroid on E with the 1l.c.p. and

such that AUD Z E for any A € % and D € dy- Then there is a

matroid £ properly containing Y. Moreover, the dendroids for

£ are precisely the sets D U {a} where D € Jy and a € E-D.

Proof. Let &£ = {E-D|D € 9yt U L.

Dendroids are incomparable and so are their complements.
The elements of Y are incomparable. Take A € Y ana D € ﬁm. Then
A ¢ E-D and if A2 E-D then A UD = B, contrary to hypothesis. Thus
the elements of £ are incomparable.

To show that £ is an exchange system take a € A-B and
b €ANB. If B=ED for some D € & then (B - {1}) U {a} # B-D'
for any D’ € dy if and only if f(a) « (B - {p}) U{a} €4 UB- {1},
byremark(1.18). Since ¥ is an exchange system we need only consider
the remaining case: B is not the complement of a dendroid for ¥,
but A = E-D for some I’ € &§,. Then B-A =B {1 D, and if

U
E- ((A-{p})uU{x}) # dy for any x € D N B, then by remark (1.18)
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and the l.c.p. of ¥, B& U fp(x) (A -{b}) UBND. Thus
x€DNB

b € BN (E-D) € (A - {b}) N (E-D) € A - {b}, a contradiction. Thus
there is some x € BN D such that (A - {b}) U {x} is the complement of
4 dendroid for Y and so there is C € £ witha € C< A U B - {b}.

This proves that £ is an exchange system.

o Set D =Dy U {a}l and take B € &.
If BND=¢ then B Y and so B = E-D’ for some D’ € Jy- But then

n’o>p= Dy U {a}, a contradiction on the minimality of D’. Now

Let DO € 0& and a € E ~-D

consider the function f:D - £ given by

f(a) = (E-D) U {a},

f(x) = (E-D) U {x} = (E—((Do -{x}) U{a)) U {x} esifa €1y (x),
0

f(x) = £y (x) if a ['4 ), (x).

0 0
In each case f(y) N D = {y} for y € D and so f € F, and D is

a dendroid for £ by lemma (1.14).

Conversely, let D be a dendroid for £, and consider
N, ={x¢€ D|fD(x) = B-D’ for some D’ € ﬁm}. Clearly D, # ¢, for
then D is a dendroid for Y which azlways has a proper extension to
one for § by the first part. Take a € D, fD(a) = E-D’, D’ ¢ Sype
Then E-D’ < (E-D) U {a}. That is, D’ 2D N (E - {a}) = D - {a}.

By the first part, D’ U {a} € &%

¥ and so D’ U {a} = D.
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LEMMA (1.78) Let 9 be a system on E and D € E. If B is minimal

in E containing D such that BN A # ¢ for A € Y then for a € B-D

there is A € % such that AN B = {a}. If B'’c B and BNA # ¢ for

A € 9 then B - D =B - D.

Proof. If B-D # ¢ take a € B-D. If AN (B - {a}) # ¢ for any

A € Y then B - {a} 2D and B - {a} has non-empty intersection with
all members of 2, a contradiction on the minimality of B. For each
such a let f(a) be such a set. Take b € B ~ B’. Then if b ¢ D

we have £(b) N (B - {b}) = ¢ and thus f(b) N B’ = ¢, a contradiction.

Thus B’ - D = B - D.



CHAPTER 2

EXAMPLES OF EXCHANGE SYSTEMS

@®

NOTATION (2.1) Let E be an arbitrary infinite set and {Xi}i:2 a

i
partition of E with each Xi infinite. Let Ei = -U2Xj for i 2 2 and
J:
let Wﬁ be the exchange system on E;given in example (1.10). Let

Wé = mz and for k > 2 let
%4 = {A € WkIA B¢ 7, for any s < k}
and define the system U_on E by U_ = kgzmk.

If A C:Xk for some k, and IAI = k, then A € mk and hence

Ac¥ . In addition the sets mk are clearly disjoint.

LEMMA (2.2) Let ACE and s 22 [Then |A ]

w

s if and only if there

is B€ ¥y with BC A and B € mk for some k = s.

Proof. If IASI z s for some s 2 2, there is a least integer k with
|a, | 2 k. Take B< A such that |B| = k. Then B € 7. Also, if
C € B, then by the minimality of k, |ctl <t for t < k. Hence
C, 4 M, for t < k and thus B € 4_as required.

Conversely, if IASI < g for all s 22 then BC A and B € W%

implies s = |B| = |As| < s, a contradiction.

LEMMA (2.3) ¥_ is a point separating, connected system on E with

U mm = E. The elements of Mw are finite and incomparable.
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Proof. Each A € ¥_ is in a unique % which is contained in 7
and thus is finite.

Let A €U and Bg A. Then A € ﬂk for a unique k and
k= |B| < [A] = k. By definition A € %_implies B £ 7,,and so
B £ 9 . Thus the elements of ¥ _ are incomparable.

To show that U_ is connected let X5 i=1,2, be two

distinct points in E. Then without loss of generality x; € Xk

1

with k1 = k2. Consider any set A C E such that A N Xj = ¢ for j > k2,

[AnX, [ =2and [AN le =1 for 2 = j <k,. Then by lemma (2.2)
2

A€ . From all these possible A's choose one such that X, € AN Xk-’
i
i =1,2. Then {x1,x2} CA€YU and so U is connected. Since the X
are arbitrary, U ¥%_ = E.
To show that ¥ is point separating take Ai C:Xi such that

x; €A, |Ai| =k,. Then A, €Y and if k, # ky, A N A, =¢. If

1

k,1 = k2 then because Xk1 is infinite one can still choose A1 n A2 = ¢,

Thus YU 1is point separating.

THEOREM (2.4) 9 is_a matroid.

Proof. Using lemma (2.3) it is sufficient to show that ¥_ has the
exchange property. Let A,B € ¥_with a € A-B, b€ANB then there -“re unique
integers n, k and j such that B € mn, a € Xk and b € Xj' We consider two
cases: (i) n = k and (ii) n < k.

Case (1). (B - {b}) U{a} cE_with |[(B - {b}) U {a}| = [B| = n. By
lemma (R.2) and the minimality of B there is Z € 9 _ with

a€Zc (B-{p}) Uf{a} A UB- {v}.
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Case (ii). Take x € (B~A) N X, with v as large as possible. Let

t = min{m | |(A - {b}) U {x}| =m}. (Note |[(& - {®}) U {x}| = |A]).

Again by lemma (R.2) and the minimality of A there is Z ¢ ¥ with
x€Zc(A-{b})uix}, |2 =s. ThenZ = (2 - {X}) U {x} = (&, - {b}) U{x]}.
(@) Ifszj thenb €A ands = [2] = [A - {b]| +1, so that [A | = s.

This gives s = |A| and a € 2 = (A - {b}) U {x}. (By lemma (2.2)).

(B) If s <j thens = |Z]| = IASl + 1 so that IAS - {v}) U {x}] = g,
That is, s = t and |A | = t-1.

Now B - BS < An - As by the choice of x. Hence
A=A - (An - AS) < An - (B - BS), and hence
s-1=|al=lal-|B-8]=(a]l-8)+|B]|<|B]|<s,a
contradiction, and n < k implies s 2 j. Thus in all cases there 1is )
Zec¥U witha€Z2ZcCAUB- {v}; this then proves that Y_ has the
exchange property.

Since YU consists of only finite subsets of E, ¥  has a

dendroid by remark (1.13). Hence %, is & matroid.

LEMMA (2.5) For each A € Y there is D € 0mm

Proof. Take A € Y_, that is, A € %, k unique and |A] = k. Select

with Ac D,

8 € Xj for j >k + 1 and {az,...,a a k element set in X, ..

o)
Let

=]
1

= E - e U X, - a, .
Y By = lagseenag gl U j=¥+2( 378y

E - {aj | 5223 .

Clearly A < D.
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BN D= ¢, a contradiction. Thus the first of. the properties follows.

Now take x € D where x € Xp for a unique p and set
g = max.(p,k+1); take B = {x} U {;5 |2 23 2q}. Then |BN qu =q
and B €7 . If C=B then.[C N E | <'s for all s. Hence B € 4 and

BND={x}. This B = fD(x) and D is a dendroid.

THEOREM (2.6) The dendroids for Y _ are precisely the subsets D of E

satisfying
(1) lEs -D| <& for all s = 2, and

(11) for each s 2 2 there is t 2 s with |E, - D] = t-1.

Proof. Take any D € E with the properties (i) and (ii) and take
ACE such that AND=¢. Now ACE - D s0 A.S < Es - D for each s 2 2
and hence ]ASI == lES -D| <s. Thus A £ Y_ by lemma (2.2).

To show that D 1s a dendroid take x € D with x € Xs for some s.
Take the first t Z s such that lEt - D[ =t -1 and let A = {x} U (E,-D).
Then |A| = t and A C E, so that A € M . For any r <t
[(ET—D) U {x}, for s = T.

=g
it

T ((Er-D) , for r < s.
- B -D| +1 s (r-2)41 if 8 5 -
Thus A ] = ¢
r ‘ElEr-D|<rifr<s.

In either case |[A | {r so that A € %_with AN D = {x} and hence D
is a dendroid.
Conversely, let D be a dendroid for Y, and suppose IES-DI Zs

for some s 2 2. Then by lemma (2.2) there is B € Y, B C:EB-D and then
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Let BE€Y . If BND =g then |BN le =1 for j >k +2.

HA

Hence B € ﬂt for some t =k + 1. But BN Ek = ¢, thus B € mk+1.

However, IB N E k, which is a contradiction.

e | =
To show the second part take any s 2 2 and x € XS N D. Take

y € fD(x) with y € X, and t as large as possible. Then t Z s, and

v

fy(x) - {x} €E_- D so that t-1 = |E_ - D| < t. Thus for s = 2 there

is t =z s such that IEt-Dl = t-1.

COROLLARY (2.7) For D € Iy

[+]

and x € D, fD(x) = (Et—D) U {x} where

x € X and t is the first integer such that t 2 s and [E,-D| = t-1,

Proof. The proof of theorem (2.6) shows that ]fD(x)| = t, and

]Et—Dl = t-1. Hence fD(x) = (Et—D) U {x}. t is the first integer
equal to or greater than s with property (ii) of theorem (2.6)
otherwise there is an integer p with s = p < t and I(Ep—D) U{x}] =p

and hence an A € ¥_, A ¢ fD(x), a contradiction.

THEOREM (2.8) In the notation of theorem (1.77) the matroid £ containing

ﬂw has the 1.c.p.

Proof. If A€%, D€y , AUD=E, then E-D = A-D any ]Et-D] < |A]

[+<]

for all t, which contradicts property (ii) of 0@ . Thus Y, satisfies

[=<]

the conditions of theorem (1.77). Let D be a dendroid for &. Then

D= DO U {a} for some DO € ﬁm and a € B-D.. For each x € DO the proof

0
of theorem (1.77) shows that fp(x) 2 fDO(X) ~ {a}, while if a € £ (x) then
0]
fD(x) = (E-D) U {x}. Thus if x € BN Dwith x = a or a € £y (x) then
0

U fD(y) O (E-D) UBND>B. If no such x exists and B € ¥ then
yEBND
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U fD(Y) =2 U fp (y) @ B since Y_ has the l.c.p. (° consisting of
yEBND yEBND,, 0

%

only finite sets). If B £ ¥ then B = E-D’ for some D’ € 9y » Now

[oe]

(E-D’) n Ep is finite for all p and we need only consider the case

where BN D is infinite, Thus there is y € BN D N Xp for some p > t

v

where a € X,. WNow f|, (y) = (ES-D) U{y}, s=2p>t. Hence
0

a € f] (y) for every B € - %, and some y € B D,
0

REMARK (2.9) If ® is any system of incomparable sets containing

Y_ then the finite sets in @ sre the sets of U . If B €@ is finite

then there is a least integer k with BC E . If {le <s for all s =k

then take Y< X, with YN B=¢, |Y] =k - |B|]. Then BCBUYCE

k k

with [BU Y| = k. By lemma (2.2) there is A € 9 , with ACBUY.

If A ¢ ¥ then ACANBUANY=ANB, a contradiction. But then

A=BUY 2B, a contradiction. Thus IBSI z s for some s = k, and

1

then B2 A € ¥ by lemma (2.2), and thus B = A € 9.

REMARK (2.10) ﬂw ig not the circult matroid for any graph X.

For any integer k > 2 teke A C X, with lAl = k. Then A € YU . Take

k

B=(A-{a}) U{b} with a € A and b € X Then B € 9_, and

k-1°

A +B = {a,b} which is not the union of members of ¥_. Thus

% # UX) for any graph X.
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THEOREM (2.11) Let m be an arbitrary infinite cardinal, 1 = n =m,

and k an integer with k =2 - n +1 if n is finite. There is an

exchange system mk of m incomparsble elements which separates points

by disjoint members, is connected and hass dendroids., If n is infinite

then the elements of Mk each have cardinality n.

Proof. Let E be a set of cardinality m and let o be the first
ordinal of cardinal n. Let {Xa | 0 =a <o} be a partition of E
into n disjoint sets each of cardinality m. Define ﬂk as the collection
of all subsets A C E which satisfy
(1) AN Xa is finite for each a,
(2) AN Xa is a one element set for almost all o, and
(3) =(]an Xal - 1) = k, where the sum extends over all «

with [ANX | 7 1.

Let A stand for AN X for each o, O = <o. If AE Mk and
o o
[on = - < - = ol

B C A then lBal = |4 |, Thus Z(IBQI 1) = Z(IAQI 1) = k, with
equality if and only if B = A. Hence ﬂk consists of incomparable
elements. It is clear that if n is infinite that mk is non-empty and
when n is finite the restriction k = -n + 1 ensures the same (the worst case
being k = -nt1 which is the discrete one, mk consisting of all one element
sets).

For A€, A 7 ¢ for some . Let lAal = p, finite. Then

i

Ty = (B X, | [B] =p} is such that for each B € 7 the set

H

Vs . .
A" = (A-4A) UBis amenber of % . Tms |4 2n. For A €9 let
I= {of lAal # 1}. It is clear for a finite given set of ordinals

I each less than ¢ that there are at most mlIl = m setg A € ﬂk with IA = I,
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Hence Imkl =mn = m, and therefore Imk] = m.

If n is infinite then the fact that A N Xd 1s finite for
each o implies |A| = n for each A € o -

Let 2gs 8y be distinct points of E . Take any positive
(1)

integer r > |k| and choose R CE - {aO,a1}, 1 =0,1, 4in such a way

that RO n r(1) = ¢ lR(i) n Xal =1 for each o, and

l{alR(i) nNx = ¢}| =r, 1=0,1. Let ai be the unique ordinal for which
o

a; € Xa~’ i=0,1, and select S(i) C:Xa - (R(O) U R(1> U {aO,a1}) such

1 ' i
that lS(i)l =r +k and S(O) n 8(1) = P 1

Then A(i) = R(i) U s ) U {ai}
are two distinct sets belonging to mk:
Z(I(S(i> U gtt) U{a ) nX|-1)
= s q K, =1 ey ra(r® ax |- )
=(r+% -1 = k.

For 49 ana A" take o€ al9) {ag}. Then the set
(A(O> - {ec}) U {a1} clearly has properties 1), 2), and 3) and so is in
U and 4 1= connected with W = E.

To obtein a dendroid for 9%  take Bc E such that |By| =k and
IBal =1 for O<wo<o if k is non-negative, and take B, = ¢ for
0=1=|k| and |BQ| =1 for J|k| <ae<o if k 1is negative. In
elther case 1t is clear that Z(!Bdl -1) =k -1, Let D=E- B, Take

Aeu. If AnD=¢ then AcB sand E(|A ] -1)

1A

z(lBal -1) =k -1,
a contradiction. For x € D consider A = {x} U B, Then Aa is finite for
each @, and 1s a one clement set for almost all ¢ and

z(lAal -1 =z(B] - 1) + |{x}] =k and Ae€w with AnD={x}.

Thus D 1is a dendroid for Y, and for x € D, fD(x) ={x} U €D,
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COROLLARY (2.12) The dendroids for Mk are preclsely the complements

of the sets Y E with I N Xa finite for almost all o, and

(| n Xal - 1) =k - 1. Further, for any dendroid D and x €D

fy (x) = {x} y CD.

Proof. Let Y be any set of the form in the statement of the
corollary, If ANCYI=¢ then ACY and Ad C'Ya for each o.
Tms z(l[ANX | -1)=k-1 and A¢u. Take x ¢ 0¥, Then
(| (¥ y {X}a| - 1) = k. Hence Y y {x} € ¥ and (Y u {x}) nCY = {x}.
Thus €Y 1is a dendroid and fCY(X) = €Y y {x].

Conversely, let D %be a dendroid and x € D, Then
fD(x) - {x} has the property Z(l(fD(x) - {X})al - 1) =k - 1. Hence by
the above paragraph, x GfD(X) is a dendroid (containing D). Thus
D={x} U GfD(x), CD = fD(x) - {x}, and fD(X) =0y {x}, for
D e 0mk_

COROLLARY (2.13) %, has the 1.g.D.

Proof. For A ¢ mk’ Ac(E-D)y(AnpD) = U fD(a).
acDNA

REMARK (2.14) For A €9  and D a dendroid for %,

= fD(a) = AnND.
acAND

LEMMA (2.15) Let ¥ De a graph and %U(X) the collection of all

circuits in X. If 6. and ©, are in U(X) then G, + 0, 1is the

union of edge disjoint members of U(X).
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Proof. Take 01, C, € Uu(X). C, end 02 are locally finite Euler graphs.

Hence by (4], p. 835 so is C1 + Cg. In view of this our lemma is a

consequence of Veblen's theorem (1, Kapitel II, §5, Satz 11].

COROLLARY (2.16) Let C be a graph and U(X) # ¢. Then U(X) is an

—

exchange system.

Proof. Take C1 and C2 in 9(X) with e,

n 02. Then there i1s a circuit C C C1 + C2 with e1 € C.

uc, - {ez} and U(X) is an exchange system.

€ C1— 02 and
e2 € C,l

Hence e, € Cc C

1 1

DEFINITION (2.17) If X is a graph and U(X) # ¢ then U(X) is

called the circuit mairoid of the graph X. In the following we shall

only ocecasionally distinguish between a circuit and its edge set.

LEMMA (2.18) Let X be a graph and ¥ the collecfion of finite

circuits in %U(X). If F # ¢ then F is an exchange system with

g # 9.

Proof. Let F1 and F2 be in &, hence in %A(X). Then F_1 + F2 is
a disjoint union of circuits by lemma (2.15), each of which is finite.
Thus as in the corollary above & 1is an exchange system. By

remark (1.13) Oy Z ¢.

REMARK (2.19) When X is finite then %U(X) is a finite collection

of finite circuits. If U(X) # ¢ then ﬁm '3 has Yeen characterized
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by Tutte [5], as follows. For each component X, of X let T, bea
spanning tree. Then U E(Xi\Ti) is a dendroid for U(X) and all
i

dendroids are of this form.

LEMMA (2.20) Let X be a connected graph with (X)) # ¢. If F # ¢

———

then the dendroids for & are precisely the sets E(X\T) where T

is a spanning free of X.

Proof. By lemma (1.73) the dendroids for & are the sets E(X) - M
where M is maximal such that M(X)M nNg=o¢.

Clearly T 1is maximal in X with no finite circuits if and
only if T 4is a spanning tree. Hence M = E(T) and D = E(X\T) is a

dendroid for & and all dendroids are of this form.

LEMMA (2,21) Let X be a graph and T a (spanning) tree of X.

It u(T) #¢ then W(T) =T, 1is a ftree with u(Ty) = u(T), and T, is

circult connected.

Proof. If C 4is a circult in T +then C is a circult in TO and
vice-versa. Hence it is sufficient to show that TO is circuit
connected.

Let x, (i = 1,2) be two distinct vertices in Ty- Then there

is a path P joining X, and %, in T. Let Ci be circults in TO

with x, € V(Gi), i=1,2. If x, and x, are in either G, or G,

1

there is nothing to prove. Otherwise, if GC. 0 02 = ¢ then take one of

1

the rays Ri in Ci with initial vertex X5 i=1,2. Then R1 +P + R2
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is a circuit in T, hence in TO, containing X, and X5
If ¢ ng, #¢ take x € V(C1) n V(CZ> such that p(X1, )
(= distance) is least, and R, the ray in C, with initial vertex x

and containing x Then R, +R, 1is a circuit in T (in TO)

i° 1

containing X, and X5 Hence TO is a tree.

Let e, e, € E(TO) with e, € Ci’ i=0,1, cireuits In T..

Let P be the path jolning the vertices X, not containing the

edges Iy i=0,1, where X4 is a vertex of ei. Now if

ey 4 E<C1—i>’ 1 =0 or 1 consider the circuit R1 + R, + P where
Ri is the ray in Ci contalning ®; edge disjoint with P and whose
terminal vertex colncides with that of P at e . R1 + R2 +P is in

M(TO) and thus TO is circult connected.

COROLLARY (2.22) Let u(X) be the circuit matroid of a connected

graph X and D a dendroid for U(X). Then D = Dy U E(X\T) for a

sultable spanuing tree T of X and demdroid D, of U(T,).

Proof. By lemma (1.74) D= Dy UD, where D, 1is a dendroid for 1
and D. a dendroid for mE(X)—DT' By lemma (2.20) D, = E(X\T) for a
sultable spanning tree T of X and

mE(X)-E(X\T): mE(T) =u(T) = m(TO). Hence D, must be a dendroid for

U(Ty) .

REMARK (2.23) Although no further use is made of it we add here a

simple characterization of trees for which T = TO.



LEMMA (2,24)

-

A tree is a union of circults if and only if it has no

end vertices of degree one.

Proof. Let T %be a tree which is the union of circults and x a vertex
in T. Then x € e € E(T) and e %belongs to a circuit in T. Hence
d(T3x) = 2 and so T has no vertices of degree one.
Conversely, if alT;x) =2 for esch x € V(T) tske a
maximal path P in T containing x., If P 1is5 not a clrcuit it has
an initial vertex x

0 which must be of degree ore by maximality, a contra-

diction, Hence T 1s the union of circuits.

THFORBM (2.25) Let T be & tree with UM(T) = T. Then ody(qy 7 ¢-

Proof. Let S be a connected subgraph of T such that S contains

no ray. Fix x, on the boundary of S(8 (S), see for example, [3],

0
P. 346) and set N = (V(T) - V(S)) y {XO}. For x € V(T) 1let
E_= {[x,y] € E(T)Ip(xo,y) > p(xo, x)}. Note that EXO: E(T;XO).
Let & %be a cholce function for the family (EK>XFN such that
s(xo) ¢ E(S). This is possible since Xy £ HsT,

We claim that

() p= A v s fewd)
x€H (8)-{x4} xey ¥

is a dendroid for U(T).
Let C be a clreuit In T,

Cagse (1) V(C) € N, let x %he the clopest vertex tc x Then

Q°

|E, nE(C)] =2 and wo [DNEOC)| 21,
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Case (11)  V(C) ¢ N, Then V(C) & V(8) und there is y € 8(S),

yeV(C). If y==x, then |E_ NE(C)| =2 andso [DnEC)|=1.

0
If y#x, then |Ey N EQC)| #0 and so DnE(C) # g.

Thus D intersects all circults in T.

For x € ®(S) - {xo}, Ex NE(S) = ¢, Take e €D, e = [x,57].
Then at least one of x,y 1is In N.

Given x € N define a sequence Tor Tqs eoees Ly Yo = % and
Vyeq W elyy) = [3y59;,,] for 120, Then R = (3,7, «o0.] I5a
ray in T and E(Rx) ND=g.

Now if x and y are in N then [x,y] # e(x') for any x'.
Hence R_N Ry =¢ and C= Rx U (e) U Ry is & cirecuit in T with
E(C) N D = {e}.

If x€N and y €N then y ¢ 8(S) ~ {XO}. Tske P to be the
peth joining x and x5, PcS U (e) and again C = R, UPU Rxo is
a circuit in T with D E(C) = {e}. Hemce D 1is a dendroid for

u(T).

——

COROLLARY (2.26) Let W(X) be the circuit szotrcidi for s connnected

greph X. Ihen oy # ¢, if w(X) # #.

Proof. Let T be a spanning tree of X. Tu . . U7T) 1~ a dendreid
for & if F # ¢. By the above, we have u lerntr 27 D for #¥U(T) if
U(T) # ¢. Hence by lemma (1.75) D U E(X\T) ir = dendroid for U(X).
Note that if F = ¢ then ¥U(T) = U(X) while if Y. T, = ¢, E(X\T)

meets all clrcultis.
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THEOREM (2.27) Let X he & grash wlth u(X) #¢. Then dyyy7 ¢

Proof., By corollary (2.26) each component Y of X has a dendroid
D, for u(Y)., Let D = u{Dy | ¥ & component of ¥}. If © is a
circuit in X then C belongs to a unigue component Y of X,
Hence D N E(C) D Dy N E(C) # ¢.

For y € D, ny(y) is a circuit in Y sand hence in X,
If Yt 4is a component of X, Y' # Y +then FE/Zt) N E{Y) = ¢. Hence
ny(y) ND={y} and D is a dendroid for the circuits of X, i,e.,

for wu(X).

REMARK (2,28) It is clear that if D 1is a dendroid for 9U(X) and
Y is a component of X then D N E(Y) is a dendrzid for (YY) when
U(Y) # ¢. Thus one needs only conslder connec*ed graph: in obtaining

a characterization of the dendroids of a graph X,



A CHARACTFRIZATION OF &y (yy £OR A GRAPH X

REMARK (2,29) If X 4is connected then the dendroids for WU(X) are
given by E(X\T) UD where T 1is a spanning tree of X and D 1is a
dendroid for TO = yu(T), by corollary (2.22), Further, a dendroid
for X 1s the union of dendroids on each component of X by remark
(2.28). Thus we need only characterize the dendroids of circuit matroids

(infinite) of trees.

DEFINITION (2,30) Let X be a tree. The pair [(¢,Y) 1is ZX-admissible
if and only if:
(1) Y 1is a graph,
(11) @ : V(X) »V(Y) 4is an onto funetion,
(1ii) for each y € V(Y) the graph ¢“1(y) in X is
connected and contains no ray {here qft(y) denotes the
subgraph of X whose vertex set iz ¢ (y)),
(iv) [x,y] € E(X) and o(x) # ¢ly) implies
(o(x), 9(7)] € E(T),
(v) (p,q] € E(Y) implies there i: [¥,7] € E(X) with

o(x) = p, oly) = q.

REMARK (2.31) If ¢ is a graph isomorphism fz-n. X to I then {g,<)
1s X-admissible.

LEMMA (2.32) Let (¢,Y¥) be X-admiscible and P 2 psth in X, Then

©(P) is a path in Y.
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Proof. Let P = (x., ..., X ) be a path in X. We use induction on n.
—_—— 0 n
If n=1 the statement follows directly from condition (2.30)(iii).

Let P!

H

(XO""’Xn—1)' By the induction hypothesis @(P') 1is a

path. We distinguish two cases,

Case (1). ¢(xn) = ¢(Xn-1)’ In this case @(P) = ¢(P') and hence
@(P) 1is a path.

Case (ii) @(xn) # ¢(xn_1). Suppose ¢(xn) = w(xi) =y for some i,
0 =i =n-2. Then there is a path Q in ¢—1(y) Joining x;, and x .
Since X 1is a tree, Q 1s a segment of P containing Xy and X, and
hence @(xj) =y for i =j s=n. In particular m(xn_j) = @(Xn),

a contradiction. It follows that ¢(xn) # w(xi) 0 =1 =n-1 and hence

that ¢(P) 1s a path.

LEMMA (2.33) Let (¢,¥) be ZX-admissible and [p,q] € E(Y). Then

there is a unigue edge [x,y] € E(X) with [o(x), o(y)] = [p,q].

Proof. By (2.30)(v) there is [xg x'5] € E(X) with

[p(xg)s @(xi)] = [p,al. By (2.30)(111) ¢ (p) and ¢ (q) are
connected subgraphs of X. Suppose [x1,xH] € BE(X) with p = ¢(x1)
and q = ¢(XH)- There are paths Pi Jolning Xy and x%_ for

1 =0,1 (with P, degenerate if x, = xYy ).

[XT,XO]UPOU[X‘O,X'1]UP1' is a closed path in < which is nontrivial
if xi;éx'i for 1 equal O or 1. Since X 15 a tree this implies

that the edge [x,y] € E(X) for which [o¢(x), 9(y)] = [p,q] 1is unigue.
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LEMMA (2.34) If (¢,Y¥) is X-admissible and S is comnected in X

P~

then ¢(S) Ls connected in Y.

Proof. Take p,q in V(p(S)). Then there is x,y in S such that
o(x) = p and o(y) = q. Since S 4is connected there is a path P in
S from x to y. Hence by lemma (2.32), ¢(P) is s path in ¢(S)

from @(x) = p to oly) = q.

LEMMA (R.35) Let (9,Y) be X-admissible. Every simple path Q
in Y ig the image of a path P in X and Y is a iree. Further,

—— -——

=

Q@ 1s non-degenerate then P can be chosen such that if P' 1is a

m— ——

simple path in X with o(P') = Q then P 1s a subpath of P!,

Proof. If Q 4is a vertex then by (2.30)(ii) there is a vertex
x € V(X) with o(x) = Q.
Suppose Q = (qo,...,qn). By (2.33) there is [Xi’zi] unique
in E(X) with [¢(xi), ¢(zi)] = [a45944¢) for 0 =1 <n. Now
¢(zi) = ¢(xi*ﬂ) for 0 =1 =n-2, and by (2.37)(1ii) there is a

simple path Pi Jolning zy and X, Since X is a tree each Pi

+

1s unique. Thus

P = [XO,ZO] U PO U [X1,Z1] Ueea U Pn_z U [an;??r ]

P

is a simple path in X with «(P) = Q.
Let P' be a path in X such that @(P') = Q. For 0=4i<n
lemma (2.33) implies that [Xi’zi] is an edge In P!, and every path

P Joining =z, and x contains a unijue simple puth joining

b i 1+
zy and X441 since X 1s a tree. Hence Pi 12 & subpath of P’i
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for 0=1<n-1. Thus P! contains P, and if P' is simple,
P 1s a subpath of P!,

If C 1s a simple closed path in Y then C = CO U C1 where
C0 and C1 are edge disjoint paths from say qy to q,. Now
¢, = ¢(P1>’ and there is x;, x;, in P, such that @(xi) = qgpy and
¢(x3) =qq for 1=0,1, By (2.,30)(i11) there are paths Q and Q' in
X Jjoining Xgs%, and xk),xH respectively. Then

QU PO uQ u P1

is a closed non-trivial path in X, a contradiction. Hence ¥ 1is

a tree,
COROLLARY (2.36) If Sc Y is connected then ¢71(S) is connected.
Proof. Obvious from condition (2.30)(1ii).

LEMMA (2.37)  Let (g,Y) be X-admissible. If C e 9(X) then

(C) € U(¥) and for C' € U(Y) there is C € A(X), unigue, with
(p(C) = (! .

Proof. Let C = (...x_k,...,xo,...,xk,...) and for k =z 0 let

P= (X_pyeeepxy). By lemma (2.32) o(C) = kgqu‘;’ il.e., @(C) is
a union of an increasling sequence of paths. H;nce w(C) is one of the
following: a path, a ray, or a circuit. Suppose that @(C) is not a
circuit. Because Y 1is a tree ¢(C) contains a vertex v, ©of degree 1.

If ¢(C) = 7, then ¢_1(yo) contains C, a contradiction to (2.30)(iii).

Let y, be the unique vertex of @(C) adjacent to Yo- Without loss
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of generality we msy assume ¢(xo) =¥, end ¢(x1) =¥, By lemma
(2.33) this implies m(xk) =¥y for all k=0 and so ¢_1(yo)
contains the ray [x,,x ,,...], a contradiction to (R.30)(111). It
follows that ¢(C) 1s an infinite circuit.

Let Ct = (...,y_k,...,yo,...,yk,...) be an infinite circuit in

k -k 0 k o K

(2.35) P! 1is the image of a unique simple path P, in X, and lemma
k 4 k
(2.35) implies P, 1is a proper subpath of P for k z 0 such that
k k+1

both ends of P are different than those of P ., Hence C= P
k+1 k k=0 k

1s a circult for C contains countably meny distinct edges in both
directions from any glven vertex.
To show the unlqueness of this C let 1 = 0,1 and suppose

C, is a circuit in X with ¢(Ci) = C' and for kz 0 P (k) is the

i i
simple subpath of C, such that ¢<Pi(k)) = P!, in the notation of the
last paragraph, Then U Pi(k) =G as in the first paragraph of

1

¥20 (k) (k)
this lemma. Lemma (2.35) shows that Pi 1s a subpath of P,7y for
- (k) _ p(k) C o n -
kzO0 and 1= 0,1, Hence Pi = PT—i for 1= 0,1 and CO = 01.
Thus for C' € %(Y) there is a unique C € U(X) with ¢(C) = C!,
COROLLARY (2.38) Ir (¢,Y) is X-admissible ther ¢ Zinduces a
one-one onto correspondence ¢, between U(X) and u(Y) which is

compatible with the exchange property.

Proof. Define ¢, : U(X) T be means of ¢ as follows. For each

A € U4(X) there is a unique circuit CA in X with E(C,) = A and

L)
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vice-versa. The same holds for U(Y). Define ¢_(A) = B ¢ w(¥)
where B = E(¢(CA)). The uniqueness statement of the lemma above shows
that ¢, 1s one-one.

c

For B € %(Y) this lemma also shows there is a unique
circult C, in X with ¢(C,) = Cy. Hence ¢ (A) =B, and ¢, 1s
both one-one and onto.

Using the fact that A(Y) has exchange, if e € B, - B,

1

-1 -1
et €B, NB,, then e €3B, cB UB, - {e'}. Hence ¢ (&) € o, (BB)

1
~1 -1 -1 -1 .
®, (}33) <o, (B)) Ug, (B,) - ¢ (e'), t.e., if ¢ (4) = B;,1 = 1,2,3 then

@ ‘le) € Aq— A, ¢f1(e‘) € A,I N A, and

cp'1(e) €hch UL - {cp—1(e‘)}-

REMARK (2.39) If (9,Y) 4is X-admissible it follows from lemma (2.33)
that there exists a one-one function Y : E(Y) - E(X) given by

¥([p,q]) = [x,y], where o(x) =p, o(y) =q. By an abuse of

notation we shall denote Y by ¢71. Thus if Q < E(Y), then m—j(Q)
denotes the set {¢-1(e) | e €Q}. If e = [x,y] is in ¢_1(E(Y)) we
shall denote by ¢(e) the edge [o(x), @(y)] € E(Y)., If D c:¢71(E(Y))
we set (D) = {g(e) | e € D}. However for C a circuit in X we still

have @(E(C)) = E(9(C)) as in the corollary above .

NOTATION (2.40) Let X %be a graph and r an equivalence relation

on V(X). For x € (V(X) the subgraph X of X 1s defined by

1

V(XX) {y e V(X) | yrx} and

{[x,y] € E(X) I {x,7} CV(XX>}'

1

E(XX)
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Denote the equivalence class of x by x and let X/r bhe the
quotient graph of X defined by
V(X/r)
E(X/r)

i

(x| x €evV(X)} and

i

{{x,] | * #7 ond there is x' €%, y' €y with
[x'y yv'] € E(X)}
Let ¢. be the natural mapping from X to X/r given by q}(x) = x.
For S a subgraph of X define the relation s on V(X) by
xsy 1if and only if x =y, or {x,y} 1s in = component of S. s

will be called the equivalence induced by S.

LEMMA (2.41) Let X be a tree and r an equivalence relation on

————

V(X). Then (Qr,X/r) is X-pdmissible if and only if each X is

connected and contains no ray. Similarly, if S is a subgraph of X
the equivalence s induced by S on V(X) makes (¢S,X/s) X-

admissible if and only if each component of S 1s connected and

contains no ray.

Proof. Clearly properties (i),(ii),(iv) and {v) of definition (2.30)

are satisfied for (@r,X/r). Since @r_1(x, =X, L X/T) s

X~admissible 1f and only if XX is connected - ¢ wtealns nc ray.
For the equivalence relation s indi.z~1 Ly S, XX : ws«l(§>’

which i1s the component of S containing any x' with x!'sx if

X € ¢S(S) and is just x otherwise, where {x} = x. Fence (@S,X/s)

is X-admissible If and only if each component of S 15 connected and

contalins no ray.
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COROLLARY (2.42) There is a one-one correspondence between the subgraphs

S of X with no isolated vertices such that each component of S 4is

connected and contains no ray and the equlvalence relations r on

V(X) such that (¢},X/r) is X-admissible.

Proof. Obvious.

DEFINITION (2.43) An equivalence relation on V(X) such that (¢},X/r)
is X-admissible will be called an admissible equivalence on X and
X/r will be called a contraction of X.

In the same way if a subgraph S of X induces an admissible
equivalence s on X then S will be called X-admissible and X/s

will be written X/S.

LEMMA (2.44) Let (¢,Y) be X-admissible. There is an admissible

equivalence r on X such that ¢ =1 o ¢, where 7 : X/r- Y is a

graph isomorphism.

Proof. Define r by xry if and only if ol(x) = ¢(y). Then

X =cp—1(

. ¢(x)) 1is connected and contains no ray by definition and so

r 1s an admissible equivalence on X by lemm: (2.41).
Define T : X/r =Y by 7(x) = @(x). Clearly r is well
defined and onto V(Y). For e' € E(Y), e' = ¢le) where e € [x,y]
and (x) # o(y). BHence e = [%,y] € E(X/r) and t(e) = [v(X),7(¥)], i.e.

7(e) = e'. For e € E(X/r), e = [X,¥7], e = [x,y] € E(X), unique.

H

wle) = [(x),p(y)] = [1(x),7(§y)] = 7(e). Hence T 1is a graph isomorphism,
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REMARK (2.45) Using remark (2.31), corollary (2.38) and lemma

(R.44), it is clear that any relation concerning dendroids of U(X)
and dendroids of U(Y) where (¢,Y) 1is X-admissible is essentially
given by a relation concerning dendroids of U(X) and U(X/S)

respectively where X/S is some contraction of X.

LEMMA (2.46) Let X/S be a contraction of X. Then

~1
{o (&) | Aedyyc) Soyyy IE D€ dyy) then

¢(D) € du(x/s) Af and only if D C1¢—1(E(X/S))-

Proof. We shall not distingulsh between circuits and their edge sets.

Let A be a dendroid for u(X/S) and let ¢ '(A) = D.

For &4, ¢ (£,(5) euX) and ¢ '(£,(8) nD =g (£,(5) na),
a single element of E(X). The same lemma (2.37) shows ¢(C) is a
circuit in X/S for each circuit in X. Hence, if CN D # ¢, then
@(C) N A=q(CND) =g, acontradiction. Tms ¢ (4) is a
dendroid for (X).

For the second part, if e € D € 0m(X) with ¢le) ¢ E(X/S)
then ole) = ¢(fD(e) n D) = glfy(e) N ¢(D) £ E(X/5), while w(fD(e))
is a circuit in X/S. Thus D c ¢  (E(X/S)) is necessary.

Suppose that D < ¢ (E(X/S)). For any circuit in X,
CND#¢ and so @(CND)=eg(C)NeDd =C ned) #¢ for any
circuit C' in X/S by lemma (2.37). Since fD(e) N D ={el,
¢lfple) N ¢(D) = {¢le)} and ¢(fD(ex4:f¢(D>(¢(e)). This proves the

lemma,
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REMARK (2.47) Let X be a tree and let X be rooted at X In

the notation of theorem (2.25) [E(X;x)-E | =1 for ell x # x
and ExO = E(X;xo).

LEMMA (2.48) Let X Ye a eircuit comnected free and D a dendroid

for u(X). Then for some %q € V(X), E(X;xo)nD = [xo,y].

Proof. It is clear that E(X;x) -~ D # ¢ for all vertices x. Suppose

IE(X;X)—Dl > 1 for all x € V(X). Choose xy ertitrary in V(X).

let [xo,x1] and [x_1,xo] be distinct edges in E(X;XO) - D.
This forms a path P, = (x_q,xo,x1). Suppose that P, has been
defined with E(Pk) ND=g. Let [x,x,.,,] bean edge in E(X;xk)
not before used and not in D. x, . # x4 for 0=J =k since X 1is

a tree, Do the same at vertex x ,. Then P . = (x—k—T""’xk+ﬂ)

is a path with Pk+1 ND=¢g. C= UP_  1is g cireult in X and

k=0
CND=g¢, acontradiction. Thus the lemma follows.

k

DEFINITION (2.49) If X 18 a tree and D =& dendroid for (X)

then any vertex x with |E(Xjx)~ D| =1 iz wsld to be D-zaturated.

NOTATION (2.50) Let X be a tree with dendroi~ 5 for Uu(X).

Fix a D-saturated vertex x, and an edge ey € E& N D. Glven any

0
0
edge e of X let X 1V g be the two ends of e and let the
notation be so chosen that p(xo,xe) < p(xO,ye).
For e € D, fD(e) = E(C) where C is a circult which may

+ - -
be written C =R U (e) U R, where R_ and R: are the rays from
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x, and y_ respectively in C not containing e = [xe,ye]. Let

=V® ) U UuvE)
AD e, eeD e
E,=DUERI)U U E(R;’).

0 e€D
For each x € V(S) 1let SX be the component of S containing x,

where S 1s any subgraph of X.

LEMMA (2.51) In the notation of (2.50), for ©,s¢,» and e,
distinct in D we have V(R' ) N VR’ ) =g =TVR ) n V@R ).
e,] 62 e,l eo

+ +
Proof. Suppose X € V(Re ) n V(Re ). Then there are distinct
1 2
paeths

P, = (xo,...,x T seesyX) and P, = (xo,...,x ,yez,...,x).

e»] y Mo 62

+ -
Suppose x € V(Re )N V(Re ). Then there are distinct paths
1 0

5]

P1 = (xo,...,x 1,yez,...,x) and P, = (xo,...,x), E(P2) ND=g.

In either case this gives a contradiction, X being a tree.

i
[~y

|

COROLLARY (2.52) For each x ¢ A there 1s a unique e €D

+ . -
x €VERY or € VIR ).

Proof. This i- i.:edlately clear from the above.

LEBMA (2.53) In the notatlon of (2.50) V(S ) nV(S, ) =¢ for
1 2

x,,%x, distinct in V(S.) n and usS = s.
1772 D AD XGV(SD)OAD



Proof. Let x; € v(sD) NAy, 1=1,2 and V(Sx1) nv(s 2) # .

Then S. =8 and there 1s a path P in SD Joining x
%, X,

be the unique edge in D assoclated with Xy Let

X

1 and X5e

Let ei

Pi = (XO,...,Xei,ye ,...,X). Then P
i

closed path if e, # e,. Hence e, = e, = e. Now there is a path

Q in R; U (e) U RZ distinct from P joining x

4V P UP, is a non-degenerate

and
. and x2 and

again P U Q is a non-degenerate closed path unless P = (xq) = Q.

Thus V(Sx1) N V(ng) # ¢ implies X, = x,.

For the second part let y € V(SD). Then there is a path

in X Jolning x, and y. Because |Ex - D| =1 there is either
0

0

un e €DNE(P), orean x€V(ER, ) NV(P) closest to y. In elther
0

case there is an x € A5 N V(P) closest to y and y € V(Sx). Hence
USX = S.
xeV(8)n4,

REMARK (2.54) S 1is the union of all paths P with initlal

vertex x in Ay and E(P) n Ey = 9.

LEMMA (2.55) In the notation of (2.50), there is no ray in S,

H

or each X € V(SD) n AD'

Proof. If R" 1is a ray in Sx then there is a ray R' in SX
with initlal vertex x.

If x ¢ V(R:) set P = (ye,...,x), a subpath of RZ and if

\

X € V(R;o) set P = (xo,...,x), a subpath of R; . In either case
0
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R=PyYR' is aray from some e € D with E(R) N D = ¢. By the
uniqueness of R; U (e) U RZ for each e € D, R!' 1is a ray with

E(R!') E), & contradiction to R' belng in SD’

PROPOSITION (2.56) Let X be a tree with dendroid D for u(X)

rooted at a D-saturated vertex Xy. Then SD is an X-admissible

subgraph and if s is the induced equivalence relation then D

is a dendroid for the contraction X/S and D has the form

(2.56.1) D=y (Ex - ax)
xeV(X/s)

for a suitable choice function n for the family (Ex) X € V(X/S).

——

X/S is to be rooted at EO = {x5}, and x; is a D-gaturated

vertex of X/S.

Proof. Lemmas (2.53) and (2.55) show that no component of 5p

contains a ray. By lemma (2.41) SD is then ZX-admissible. Now

E(s;) = E(X) - B and so ¢‘1(E(x/s>) = Ey, l.e., DcC cp"1 (r(%/8)).

Thus by lemma (2.46) (D) =D is a dendroid for u(%/S). Since

IEX -D| =1 eand E_ <k, 320 = {x} and \Ei - D] =1, t.e., )—co
0] 0 0

is a D-saturated vertex and X/S can be rooted st X..

We now show that ‘Ei -D| =1 foresich x € V(X/S). A4As is
indicated in corollary (2.52) the set Ap 15 = vepresentative set for
V(X/S). Take x € V(X/8). [x,y] € E- if und only if
p()_co,}—C) < p(:‘co,ir) and there is [x,y] € E(X) - E(-SD), with o(x') = x
oy') =y and x#y. If M%J0<p&yw)tmnP:(%”“JW

is a subpath of P! = (XO,...,y‘,x') and @(P) is a subpath of
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@(P') so that p(io,i) < p(io,i), a contradiction. Thus we have

(x,y] € E- if and only if this edge is the image of an edge in

E ., - E(SD) for some x' € V(SX), f.e., E== U E,
X‘EV(SX)

Let X, € Ay with o(x,) = ¢lx') =x. e ¢ E- - D if and only if
e = ¢gle!), e' unique and e' € Ex, - D, e' g E(SD), and X' € V(Sx1)-

Thus e' = [x' ,7'.] € B(R= ) U UE(R’). Lemma (2.53) implies that
e e eo GGD e

= ! =
V(SX) n A, {X1}, and thus that x o = Xt The lemma further
implies there is a unique y in Ap with [x1,y] € E, - D. Thus

there is a unique e € U (Ex! -~ D) n E, with @le) = e. That
x'eV(SX)

is, Ei -0 = (Ex' -D)n ED = ¢, as desired.

U
x'eV(s,)
Thus we may define a function n : V(X/S) - (E;)E € V(X/s)

by t-. ins n(x) to be the unique edge in E- - D. Then
D=y (Ei - n(x)).
x€V(X/S)

COROLLARY (2.57) Let X be an infinite tree. Then D is a

—— —

ontraction X/S of X

Pyt

dendroid for U(X) if and only if there is a

and a dendroid Q of U(X/S) of the form (2.56.1) such that

D = qf1(Q).

Proof. The proposition shows that every D € 0M(X) gives rise to
such an S and Q.
Conversely, for such an S and Q, ¢"1(Q) is a dendroid for

A(X) by lemma (2.51).
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Lemma (2.58) Let X be a tree and S an X-admissible subgraph

"4

of X. Then there is x € V(S) guch that |E(X;x) n E(S)| = 1.

Proof. Suppose not. Take x, € V(s), and [xo,xj] € E(8). Set
P, = (xo,x1). Suppose that P = (xo,...,xn) has been obtained
with Pi a proper subpath of PJ for 1 «<Jjs=n, and

E(P ) N E(S) = ¢. Because |E(X;xn) N E(S)] > 1 there is

X 40 (X% 4q] € E(X5x ) 0 E(S) Xoqq F X 4+ Bgain x 7 X

for 0= J <n because X 1is a tree. Thus R = U Pn 1s a ray in
nz0

S, a contradiction,

NOTATION (2.59) Let X be a tree and S an X-admissible subgraph

of X, Let X be rooted at Xqe For x € V(X) set

= u (8 -E@S).
ZGV(SX§ 2

Remerk (2.60) If in the notation of (2.50) ¢(x) = ¢(y) then

S = Sy by lemma (2.53). Hence if X = § then EX = F,

THEOREM (2.61) Let X be a tree, D 1s a dendroid for U(X) if

and only Af there 1s an X-admissible subgraph S of X, g root X,

of X and a cholce funetlon n : X - (E¥) such that
oL 2 2lEow S XEXS —_—— =

D= y (B - n(x).
XEXS

XS 1s any representative set for the equivalence classeg of s
induced by S.
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Proof. Choose x, such that |E(S;x0) N E(S)| =1 and root X

there. As in proposition (2.56)
E'="U (B - E(5))
ZEV(SX)

E-, where p(x) = x.

X - -
Hence E = ﬂ)l‘ (Ei) for olx) = x.

Now suppose that D 1is a dendroid for #(X). Choose S

and x, as in proposition (2.56).

b=_y (& -aG)= _u_ (& -3@®)
x€ev(X/8) x€p(Xg)
D= ¢(M) = U ¢ E-EE) = U (- ¢ GE@))

xE¢(XS) x€p(Xg)

U E - ¢ (alelx)))
XEXS

Write n=q 'on og. Then

D=y (E*-n(x).
XEXS

Conversely, suppose X 1s rooted at Xqs and S 1is an

X-admissible subgraph of X with representative set XS such that

D= y (8F- n(x)), n: XS - U Ex, choice function. Then
x€eX xeX
S S
b= U (B -nx) = U (B-nx) = u E-nk
xEXS XEXS XEXS
= _y (Ei - n'(x)), where n'(X)= ¢{n(x)), a cholce function on
xXeV(X/S)

V(X/S). Now apply theorem (2.28) with the distinguished set S being

EO‘ This gives D a dendroid for u(X/S). Hence by the corollary

(2.57), D 1is a dendroid for U(X)
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some Properties of Dendroids of Circuit Matroids

LEMMA (2.62) Let X be an infinite graph and B < E(X) such that B NA # §

for any A €.%4(X). Then B contains a dendroid for A(¥). Moreover, if

Do € B is a dendroid for the finite circuits in ¥(X) then there is 2

dendroid D for U(X) with D, € D < B.

0

Proof. Because BN F # @ for the finite circuits in %(X), B contains a

dendroid DO for these circuits by lemma (1.33). Now E(X)—DO = E(X\T) for a

spanning tree of X by lemma (2,20). If %(T) = @ then D, meets all circuits

in Y(X) and the theorem is proved. Suppose that U(T) # P, so that B-D

meets all circuits in T. Then |E(T;xo)—(B—D0)| =1 for some x. € V(T). The

0

proof of this is exactly the same as in lemma(2.48). Root T.at x, and let

0
S’be the minimal subgraph of T whose edge set is E(T)—(B—Do). If K is a com-

ponent of S’and Rl,Rzare rays in K then Rl+-+R2 ls finite for otherwise

there 1s a circult in K not meeting B—Do. Let A be an index set for the

components of S* which contain an infinite ray and for x€n let R, be a max-

A
imal ray in Kk' Let S be the minimal subgraph in T whose edge set is
E(8*) - U E(RA)' Suppose that K is a component of S and R is a ray in K.
AEN

K is contained in a component of S’, and hence X < Kx for some A € A. But

then there 1s a path P joining R and R, so that Ry P U RX contains a cir-

A
cult in KX, a contradiction. Hence no component of S contains a ray and S

is T-admissible. Let @ : T —» T/S and put ¢(x) = x for x € V(T)., Now

(E(T)-E(S)) -~ (B—DO) = U E(Rh)’ a disjoint union of sets. Hence for
A EA
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x € V(T), | Bz ~(B-Dy) | =| U ER)NE | =1. Let
€

Q={ 2 ev(ls) | Ei - (B—DO) = @ }, and define the choice function

n : V(T/S) - U E by n(x) = E- -(B—Do) if x £ Q, and arbitrary
x € V(1/8)
if x € Q. By corollary (2.%7), H = U (Ei - n(x)) is a dendroid for
x € V(1/8)

u(1/5), and by the choice of n(X), ¢ (B - n(¥)) € B-D, for each x € V(T),

Hence ¢_1(H) B'c B-D, is a dendroid for U(T) by corollary (2.57). Thus

s
DOCDOUB

il

D<c B, and D is a dendroid for U(X) by corollary (2.22).

LEMMA (2.63) Let X be an infinite connected graph with Z ¢ Bc< E(X) and

BNA#@ for A€ UX). Then there is D minimal in BwithZc D, DN AZ Y
for A € U(X). If e €D-Z there is A € U(X) such that AND={e}. If Z =g

then D is a dendroid for (X).

Proof. Let & = { A € 9(X) | A is finite }. By lemma (1.33) there is D, mini-

mal in B such that Z € Dy and Dy N A # @ for A € F.D, Dé, a dendroid for

3 and by lemma (1.78), Dj ~Z = D, -Z.

Now E(X) - Dé = E(T), T a spanning tree of X by lemma (2.20). Let

S be the minimal subgraph of X whose edge set i. E'T) - Z, S is the dis-
joint union of trees since T contains no finite circuits. If A(S) = g
then every circuit in T meets Z and the theorem is proved. If U(S) # ¢
then U(T) # @. As shown in lemma (2.62), (B—Dé) A# @ for A € u(T).

B-D§ = (B-D,) U (Z-Dy). If Al Z = f§ for some A € U(T) then A 1y (B-D,) 7 f.

0
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Hence (B—Do) NA#@ for A € U(S). By lemma (2.62) there is a dendroid Dy

for U(S) contained in B-D,. Let D = D,y U Dy. Take A € %(X). If An Dy =

0* 0

then A € U(S) and so A Dl # @, and if A N D, = @ then A is finite or

A € W(T) ~ u(S) and so AN Dy # f. Hence D N A # § for any A € U(X).

For e € D, there is A € %A(S), A N D, = {e}. Since D

1 and E(S) are

0

disjoint, AND=A4N (D, U Dl) = A Dl = {e}. For e € D, — Z there is

0 0

AeFwith ANDy= {e}. Hence if AN D = {e} U {el,...,en} there is

A € U(X) with A’ N D= {e} and A’ c £ (e) U £y (ei) by lemma

Lo Lzi=a
(1.20), and clearly A’ N Z = @.

Thus D is minimal in B such that Z& Dand D 1 A # @ for A € A(X).
We have also shown that for e € D - Z there is A € U(X) with A 1N D = {e].

It is clear that if Z = @ then D is a dendroid for U(X).

REMARK (2.64) Lemma (2.63) is the generalization of lemma (1.33) to

circult matroids.

PROPOSITION (2.65) Let S be a graph and w € E(S) such that

(1) w € E(C), C an infinite circuit,

(ii) S\(W) = TO U Tl’
(111) V(Ty) N V(Tl) =g,

(iv) T, is an infinite graph and is circuit connected, i = 0,1, and some

(v) D, € &M(Ti) meets every ray in T,, i = o,l.

Then %U(S) does not have the l.c.p.
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Proof. If AN (D, U Dl) = @ for some A € A(S) then A.¢.E(Ti) for £ = 0 or 1.
Hence w € A and A is infinite, A = Ay U (w) U A, with the subgraph
corresponding to A, being & ray in Ty, 1 = 0,1. But then A N1 D, #0,a
contradiction. Thus Do U D1 = D is a dendroid for U(S), and for e € D, we

have fD(e) = 1) (e), 1 =0 or 1. Now w € E(C) & U fD(e). Hence
1 e € DN E(C)

U(S) does not have the l.c.p.

REMARK (2.64) Since D meets every ray in Ti above, no inflnite circult has

as an edge set an fD(e), e € D.

EXAMPLE (2.67) The following is a simple example of & graph of the type in
proposition (2.65)

FIGURE 4
w x
hY
DA A S N T .

w is taken as [x,x’] and C = (.esyn’yevs,l’,x ,%,1,.0.,0,+..). The dendroid
is the set of red edges. . By adjolning a,b to V(S), and
(x’,b], [b,al, [a,x], (x',al, [x,b] to E(8) and (a,b], [a,x'], [b,x] to D

we make 2U(S) into e polnt separating matroid which does not have the l.c.p.



LEMMA (2.68) Let X be an infinite graph containing a subgraph S of the

type in proposition (2.65). Let D, be the dendroid for U(S) given there.

Then D, has an extension D, g dendroid for A(X).

Proof. E(X) (1 A# @ for A € %(X) and E(X) - D. Hence by lemma (2.63)

there is D minimal in E(X) containing D, such that D 1 A # @ for A € u(X),

and for e € D - D, there is A € A(X) with AN D = {e}.

Now suppose there 1s ey € D; such that A N (D - {eo} # @ for any

A € A(X). Then (fDl(eO) -{eo}) D, = {el,...,en} for some integer n by

remark (2,66). Let ey = [xi,yi] for 0= 1 =n, and be indexed such that

fDl(eo) —{eo} is the edge set of the path (xo,...,xl,yl,...,xn,yn,...,yo).

If £ (e,) is infinite let R_ U (e,) UR_ be the circuit with that
D1 X, i 7y

1A

edge set. Otherwise let it be P, U (ei), 1=s1

HA

Ne
Suppose that some fD(ei) is infinite. Let j and k be the least and

greatest integer respectively in 1 to n such that this is so. Then

(%””ﬁ)uauumﬂ}ﬂﬂﬁdpw%)M%tﬂmﬂm

@bp.”yﬁ UPnU...UPkﬂLJb%ﬂJH.Jk)Uf%kuke)cmﬁﬂmsan

infinite circuit missing D -{eo}, a contradiction. Hence fD(ei) is finite
for 1 =i = n. Now consider the path P’ joining Xq and 7 and not containing
e which is given by P’ = (xo,...,xl) UP U (yl""’XZ) U...UP U (yl,.--,YQ).

This contains a simple path P with the same end points. Hence
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PU (eo) € %(X) and (E(P) U{eo)) (D - {eo}) = @, a contradiction, Thus D

is a dendroid for U(X).

THEOREM (2.69) Let X be a greph which contains a subgraph of the type in

Proof. Let this subgraph be S, Dl it's dendroid, w it's distinguished edge

and C the related circuit, all as in proposition (2.65). Let D be an exten-

shion of D, as in lemma (2.68). Since 8N (e’) = fD(e') for e’ € D,, we have
1

w € E(C) & U fD(e) c E(S) ~{w}. Thus %(X) does not have the l.c.p.
e €E(C) N D

LEMMA (2,70) Let X be an infinite graph with dendroid D, for (X). Let D’

be & dendroid for %y(X) = {A € u(X) | |AN Dy| is finite }. D’ can be

extended to a dendroid D for U(X).

—— S ————f——————

Proof. If D’ is a dendrold for %(X) there is nothing to prove. Suppose that
D’ is not a dendroid for U(X). D’ meets all finite members Of U(X) since

these are in 9,(X). Now %’ = {A € u(X) | AnD’=¢g 3} #@, and hence is an

exchange system by corollary (1.72), = whose cir~.”' form g disjpint

union of trees. Thus %’ has a dendroid D; by theorem (2.25). Take

— /

Let A € U(X) and e € D; with AN D, = {e}. Since D, is a dendroid

for %’ we may take A € 9‘., Then AN D’ = @ and so AN D = {e}.

Let e € D’ and A € 9 (X), A infinite with AN D’ = {e}. If AN D, # § then



we construct a new circuit as follows. Let e =[x,y] and let

A

E(Rx) U (e) U E(Ry) in the notation of (2,50). If E(RX) n o, # @ take

=
1

lp,q] € E(RX) N D, such that p(p,x) < p(q,x) and p(p,x) is least for
all such w. Again fD,(w) = E(Rp) U{w}u E(Rq) and E(Rp) N D/ = @. Take
Ré = (X,...,p) U Rp. Ir E(RX) nD = @ take R; = R_. In either case
E(R;) nD = @#. Do the same for Ry' Then C = Ré ue)u Ré is a circuit

such that E(C) N D = {e}. Finally, if e € D’ and fj,(e) is finite then

since £ ,(e) N D, is finite and D. N U fos(w) = @, there is A € U(X)
D 1 1 weD! D
with AN D= {e}, by a finite mmber of applications of the exchange
property. It only remains to show that DN A # @ for any A € U(X).
If A € %(X) with A finite then AND’ # @. If AND’ = @, then

A € 9’ and hence AN D, # @, while if A N D, = @ then A ¢ 4’ and so

AND’ #£ 4.

Thus D is a dendroid for U(X) and is an extension of D’.

PROPOSITION (2.71) Let X be a graph and %(X) # @. Then %(X) is weakl

locally finite. In fact, for each A € U(X) and e € A there is D € Y1(x)

with A = fD(e).

Proof. Take e € A € Y(X). If A is finite remark (1.21) shows that A = fD(e>

for some D € ﬁﬁ(X)'
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If A is infinite, A i1s the edge set of a tree. Let T be a spanning

tree of X containing the set of edges A. Set TO = U WT). Let e = [ex ey].

’

Root T, at e and let D, be the dendroid for u(TO) = Y(T) given by

1

b=y (B -an)
x € V(TO)
where n : V(To) -~ U E_, a choice function, where
x
x € V(TO)

(1) n(x) = [x,y] € AN E_ for x # e X € V(CA),
(i1) n(ex) = e, and
(ii1) n(x) is arbitrarily chosen in E_ otherwise.

Clearly A = fp (e). Now D = D, U E(X\T) is a dendroid for U(X) and
1

AN E(X\T) = @. Hence A = fD(e) and the proposition is proved.

PROPOSITION (2.72) Let T be & tree, U(T) # #. Then a necessary and

sufficient condition that all dendroids for U(T) be locally finite is that

no ray of T contain infinitely many branch points.

Proof., Necesslty., Suppose there 1s a ray R = EXO’X1"") C T end an infinite

sequence i} < i, < ... such that d(xi sT) 23 for J 2 1. Since T is a tree,
J

there 1s a circult C in T such that x; € V(C) for 1 2 N, some integer. Let

T.=U %T). Root T, at x

0 0 1 and conslder

»1

D= U (B, - n(x))
x € V(TO)
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where n : V(TO) - U E_ , a choice function such that
X
X € V(TO)

n(x, ) ¢ E N E(R) for j 2 1, which is possible since x, is a branch
iJ Xy ij
J

vertex. Otherwise n(x) may be arbitrarily chosen.

By corollary (R2.57) D is a dendroid for m(TO), and hence for U(T).

Clearly D N E(C) is infinite since [Xk’xk+1] €DNEI) for k = ij = N,

Sufficlency. Let D be a dendroid for U(T) and C = R ., UR, be a circuit in

1
T, R_, and R, edge disjolnt rays. Put R = [xé,xi,...), 1 =-1,1.By
hypothesis d(xi;T) =2 for k =z N, an integer, and i = -1,1. Now if

ey = [x?,x§+1] € Dfor i =-1or 1 and j 2 N then

{ 5, %4 | k2 ¥} €fp(e). Hence |D N E(C)| =2(1), and D is locally

finite.

THEOREM (2.73) Let X be & tree, U(X) # @. Then %(X) has the l.c.p.

Proof. Take A € U(X) and D a dendroid for U(X). Suppose e = [ex,ey],

e € A-U{ fpw | w e DnAJ}. Let C, be the circuit whose edge set is. A.

A

Root X at e, Put C = RX U (e) u Ry in the notation of (2.50), If

E(Ry) ND=g@ take w € DN A with p(wx,ex) least, Then R = Ry u (e ,eX,...,wX)

J

is a ray missing D. Thus R = R; and e € fD(w), a contradiction., A similar

argument holds if E(RX) nD=4g.
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Take wy,2 € AN D such that they are on opposlte ends of e and such

¢ T+ + R™
that p(ex,wX) and p(ex,zx) are least. Then R (ZX,..,,ex,ey,...,WX) R

is a circult with no edge in D, & contradiction. Since these are all the

possible cases then no such e exists in A and ¥(X) has the l.c.p.



CHAPTER 3

THE DUAL OF A MATROID.

NOTATION (3.1) Let 9 be a matroid on E (definition (1.23)). For x € E - D,

and D € 0% put

() e = ulyed|xen@ ],

(11) R ={XcE| |ANX| #1 for any A €A} , and

(1i1) of = { £(x) | x €B-D, D ey} .

% | %
REMARK (3.2) For fixed D € %y the sets fD\x) and fD(y) are distinct for

* *
x # y. However, it can occur that fD(x) = fD,(y) provided D and D’ are

different dendroids for %Y.
In terms of the notation just introduced the results of Tutte [5]
for matroids % on a finlte set E can be stated as

(1) R(Y) is an exchange system,
(i1) 2# c:w(m)min is an exchange system,

(111) REM@)_, ) = ¥, and

min‘min

(iv) f ={ E-D | D¢ g 1
In fact, one can show that ﬂ# = R(m)min in this case. The present

chapter 1s concerned with extensions of Tutte's results to the case where

E is infinite,
(75)
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REMARK (3.3) If the exchange system Y on Ehas { {x} | x€E}nu=¢

then clearly E € R(%). In fact, if D € dy and |D| is infinite then there is

X € R(%) with |X| = |D|. This is seen as follows.

Take D € By with |D| infinite and well order D by the ordinals less

than s, where s is the first ordinal with Isl: |D|. Then

D= 0sp< )
{a, | p<s}

WA

Define recursively the sets Xp, 0 =p < s as follows., Take Xq in

fylay), x5 £ D and set Xy = {x,}. This is possible since f(ay) # {ay}.

Suppose Xi defined for 0 =i <j. If (U X

nf.(a,) = @, select
i< D™

i)

x, € £ (a,), x, £Dand set X, = (UX,) U{x}. If (UX,) nfla,) # 8
3D It J j<j b D™

gset X, = uXx .

J ig] +
Let X_= UX_and put X = D U X_, Clearly |X_| = |s| = |D| so that
5 D s s
p<s
x| = Io].

If A€Ythen AND# @ and thus if [AN (X, UD)| =1 then

l

ANZX = @ and A fD(aj) for some J, 0 = J <s. Now ANX_ = @ implies

(v XN fy(a,)

5 ] @ so by definition there is X € Xj c X, X4 € fD(aj),

x4 ¢ D and hence A N X # @, a contradiction. Thus X € R(Y).
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LEMMA (3.4) Let 9 be an exchange system with a dendroid D. Then if

3
v € £(x) - {x}, there is D.

¥* ¥*
~ D such that £ (y) = £.(x).
1 == =D, D

Proof. By definition x € f5(y). By lemma (1.17) D, = (D -{y}) U {x} is a

dendroid for %, D, ~ D, and if p € D - {y} with x £ £,(p) then f (p) = £5,(p)
1

% %
and hence y £ £, (p)+ Thus £ (y) C:fD(x). Since ~ is symmetric we have
1 1

3t %* 3* 3*
£(x) © fD1 (y), and so fp(x) = fD1 ().

LEMMA (3.5) Let 9 be an exchange system with dendroid D. Then a necessary

¥*
and sufficient condition that |A N fD(x)| #1 for any A € W and x € E - D

is that D have the l.c.p.

Proof, Sufficiency, Let D have the l.c.p. and suppose for some A € Y and

x € E - D that A N f;(x) = {y}. By lemma (3.4) there is D, ~ D with

3¥* 3#*
5 (y) = fp(x) and by theorem (1.45) D. has the l.c.p. Now y € A,

. 1

Acu{ £ (a) | a € AND, } and thus there is a € AN D, withy € £ (a),
1 1

3¢ ¥
ie., {a,y} AN £ (y) =AnN fD(x), a contradiction. This proves the
1

sufficiency.

Necessity. Suppose that D does not have the l.c.p. Then there is A € Y

withy € A - U { fD(a) | @€ AN DJ}. Hence A N f;(y) = {y}.
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LEMMA (3.6) Let ¥ be an exchange system with % # % and A € U, Then a

necessary and sufficient condition that |A N X} # 1 for any X € Qi# is that

Acu{fya) | a€AND] for every D € 9.

Proof. Sufficiency. Take X € &# with ANX # @. For x € AN X we can take
¥*
= fD(x) for some D € ¢ by lemma (3.4). Since x € A C U{fD(a) | 2 € AND },
3*
x € f(a), a € AN D. Hence a € £(x) and |ANX| =22,
Necessity. A& U { fD(a) | a € AND} for some D € dy means D does not have

the l.c.p. by definition and thus by the second part of lemma.(3.5) there is

X ¢ of with X 0 Al = 1.

REMARK (3.7) Using lemmas (3.5) and (3.6), af; c R(Y) if and only if ¥ has

——

the l.c.p.

LEMMA (3.8) Let ¥ be an exchange system with the l.c.p. Then 9,# consists

of incomparsble elements which are minimal in R(%).

Proof. By remark (3.7) 2# c R(Y). Suppose Y € 2#, XerR(W)yy€eY - X, and

YO X, Then Y = £(y) for some D € gy by lema (3.4). Let x € X and

#
a € fD(x) N X, Then a € ¥ = fD(y) and since X ic properly contained in Y,
a # y. Hence a € D and therefore a € fD(X) Nno, ie., a = x, Then
fD(x) N X = {x}, a contradiction to X € R(¥U). Thus the elements of 2# are

minimal in R(Y) and Qf# consists of lncomparable elements.



LEMMA (3.9) Let 9 be an exchange system with the l.c.p. Then E - D is a

dendroid for R(U) with the l.c.p. for each D € 9y In fact, E - D

dendroid for m#.

Proof. If (E-D) NX = for some D € Sy and X € R(Y) then D O X and for
x € X, |fD(x) A X| = 1, contrary to definition. Now ﬂ#<: R(Y) by lemma
(3.8) and for x € E - D, f;(x) N (E -D) = {x} and so E - D is a dendroid
for R(Y) and since f;(x) € 2#, E - D is a dendroid for o .

Take X € R(W) and Y= U { f,(x) | x € (E-D) N X}. If y € (E-D) nX

¥*
then y € f(y) €Y. If y € D N X then |fD(y) N X| 2 2 by remark (3.7) and
¥* ¥*
there is x € fD(y) NX, x#y, le., x€ (E-D)NX y€ fD(x) c Y and

hence X = Y, Thus E -~ D has the l.c.p.

LEMMA (3.10) Let 9 be an exchange system with E - D € 9,#, D € & and

B~FE-D, Then E - B € §

9“g._n._(_i_E-—B'NJ:D.

Proof. It is sufficient to take B adjacent to E - D. Then
B= ((E-D) -{y}) U{x}.E-B=(D-{x}) U{y}. If AN (E-B) =g for
some A € Y then A = fD(x) and v € fD(x). Hence x ¢ f;(Y). Then B N f;(y) = g,

a contradiction. Clearly fD(x) N(E-B) ={y}. If z€E-B, z#ysuch that

((E -B) -{z}) ny(zf # @ theny € £(»). =

v

D ~zchange in ¥ ‘there is AX €4

with z. € A, CT(fD(x) o fD(Z))‘— {y}. Then AN ((E - B) -{z}) = @. Hence

E—BEﬁﬂandE—BND
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LEMMA (3.11) Let ¥ and ﬂ¥ be exchange systems such that mmin

is weakly locally finite. If ¢ 2# ={E-D | D¢ ”m} # ¢, then

(m#># - mmin '

Proof. Let B be a dendroid for ﬂ#, D a dendroid for Y, and
B =E-D. Now BN f%_B(z) = BN fﬁ(z) = {z} and sinece ﬂg is an

exchange system fB(z) is unique by lemma (1.74), i.e. fB(Z) = fE_B(z).

The followlng relation holds between elements of mmin and
CaLl

t5(y) = (v} U{z € Bly € £3(2)} = {y} U {z € ED|y € £} 5(2)]

Il

{7} U{z € B-D|y € £%(2)} = {y} U {z € B-D|z € £(3)}

£(3).
Hence (N#)# = We

LEMMA (3.12) Let % be an exchange system with the l.c.p. If

ﬁ# 1s an exchange system and B € 05# then (E-B) N A # ¢ for any A € .

Proof. Suppose (E-B) N A =¢. Then AC B, Tuke = € A, There is
X e ﬂ# with X N B = {a}. By definition X = fﬁia) for some D € oy ,
using lemma (3.4). Then

a € AN fE(a) BN £i(a) = {a}, lee., AN IR0 = {:],

a contradiction to lemma (3.5). Hence (B-B) N A f/ ¢ for any A € 9.
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COROLLARY (3.13) Let 9 and 91# be exchange systems on E such that 9

has the l.c.p. and, in addition, for any Z < E with Z N A # ¢ there
is Dc Z, g dendroid for %. Then

19&# = {E-D|D € g,}.

Proof. By lemma (3.12) any B € ,92# is such that (E-B) N A # ¢ for

A € 4. Hence there is D C E-B, D € 9. By lemma (3.9), B-D ¢ ﬁgj#’

and E-D © B, Thus E-D = B, and

‘92# = {E-D|D € 9,}.

THEOREM (3.14) Let ¥ be an exchange system on E with A finite for

each A € ¥, Then R(YU) is an inductive exchange system with

R(‘u)min = &#, Ql# is an exchange system,

% (y) = {E-D|D € S = %#, and (af#)# = Uy

Proof. Clearly 9 has the l.c.p. from remarks (1.27) and (1.25).
By lemmas (3.8) and (3.9) Q# c <R(w)min and E-D € 0&(91) for each

) implies B = E-D

D€ oy Sy 292# by lemma (3.9) if B € % (1

for some D € 091 and we have eguality if thi~ is zlso tru. for

B € 02#. Take B a dendroid for R() or 2# If (E-B) N A = ¢ for
some A € ¥ then Ac B, There is f € FB such *mt for a € A C B,

f(a) N B = {a}. Hence f(a) N A = {a}, a contradiction on

f(a) € R(Y) 2 qf" Now by lemma (1.,33) there is D € E-B, D € By

Hence E-D € &R( E-D = B. Thus

u)’

Sp(y) = (E-DID € 9y} = ”ﬂ#’
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let X € R(ﬁ)min and put

0X={BCElXCB,BﬂA;fgbforanyAEi\j}.

E € ¢y. By lemma (1.33) Sy has minimal elements. Let B be such a
minimal element and let D € 0% with D& B, Then D U X DO B and so
DUuX=B. If Xc D then for x € X, fD(x) N X ={x}, a contradiction

on the definition of R(Y). For y € X-D, y € fD(a) for some a € D

by lemma (1.29). Then D’ = (D - {a}) U {y} € dy and D' UX

and so a ¢ D-X by the minimality of B. Hence y € X-D and y € fD(a)

B-{a} € 9

implies a € X, Hence f%(y) c X and so fﬁ(y) = X by the minimality

of X and thus (R(m))min = ﬂ#.

Let &£ be a chain in R(¥%). If (N £ N A = {a} for some A € Y;
A= {a,a1,...,an} then for 1 =4 = n there is B; € &, a; ¢ B, .
Hence B=B, N ...NB €fand BN A= {a}, a contradiction. Thus
R{%) is inductive. 3y lemma (1.6), ﬂ# is an exchange system if
R(YU) is since for x € X € R(YU) there is Y € of with x € 1.

Suppose that R(%) i1s not an exchange system. Then for
some X,Y € R(Y) with x € X-Y and y € X N Y there is no Z € R(%Y)
withxe€ZcXuU¥ - {y}.

Index X N Y by the initial ordinal s of cardinal |X N Y|
so that XN Y = {x‘p|0 = p <s} vith x5 = 7.

The following three sequences are to be constructed,

(1) {N(p)}05p<S such that N(p) < N(q) for 0 = p < q < s,
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(11) Zo=XNY - ({x;} U{x

{Zp}O§p<s’ p )IO =q<p}), and

n(q

(111) TLE U, TN B = xy oy, T NQUD) = {xg,xy

(T Jompess T )

P

To start the sequences take Z, = XUy - {XO}. By hypothesis
there is A € U with A N ZO = {c}. Without loss of generality c € X.
Then |AN X| 22 and thus AN X = {xg,c}. If c T then ANTY = {x;},
a contradiction. Hence ¢ = Xy for some t, 0 =t <s. Take A €Y
vith AN Z, = {xt} and t as small as possitle. Set T, to be this
A and set N(0O) = t. Then N(0) is defined, Lo =XUTY - {XO}, Ty is

defined and Tg € ¥, Ty N 2 = xy gy, To N Xuy = {xo,xN(O>}.

Suppose the three sequences with the stated properties
have been obtained for 0 = p < q, q < s. Take Zq::XUY-({xo}U{xN(p)|0§p<q}).
Since Zq.c:X Uy - {xo} there is A € Y with A N Zq = {c}, by hypothesis.
Without loss of generality take ¢ € X. Then |[AN X| = 2, finite, and
{c}

and {A (X - {xo})l least. Suppose Xy (p) € A for some p, 0 = p < q.

ANX - c 0=p<gqg;. G an A i AN Z
n( {xo}) [XN(p)' P <q} hoose an A € Y with A N q

Then c £ Tp, Xy(p) € AnN Tp. Hence by exchange there is A’ € ¥ with

N(
c€AcAy Tp - [XN(p)}' Then

cealn z, < (AN 2, U T 0 zq)_{xN(p>} c ({c} U N Zp) - {2y} = Led
while

AY N (X—{xo})(: (An (X;{xo}) U Tp n (Xw{xo})ﬁw{xN(p>} = AN (X—{XO})—XN(p>,

a contradiction on the choice of A. Thus there is A € Y with

AN Zq = {c}, and AN X = {xo,c}. Then ¢ € Y for otherwize AN Y = {XO}.



(84)

fi

Thus ¢ X, for some t, 0 = t < s, Now choose A € ¥ such that

AN Zq = {xt}, An XUy = {xo,xt} and t is the least index possible.
T N t th t, Si Z

Set . to be this A and set N(q) to be this nce XN(q) € b

by the choice of Tp’ 0 = p < q we have N(q) > N(p) for O = p < q.

Thus N(q) is defined with N(p) < N(q) for 0 = p < g, Zq is defined,

Zq =XU¥Y- ({xo} U {xN(p)lo =p<gq}) and Tq is defined with Tq €U,

Tq n zq = {XN(q)} and Tq nEuy) = {xo,xN(q)}.

Thus if the sequences are defined for 0 = p < g < s they

are defined for O = p = q and hence for all p, 0 = p < s.

Now take 2 =X U Y - ({x,} U {XN(9>|O = p <s}). Then

x€ZcXyy- {xo} and by hypothesis there is 4 € 9 with A N Z = {c].

v

Again without loss of generality ¢ € X and so |A N X| 2 2, finite,

HA

and AN Xc {xo} U {XN(p)IO p < 8}. Choose such an A € ¥ with

|lan (X - {xo})l least., If x ) € A then ¢ € A—Tp, x € AN Tp and

N(p N(p)
by the exchange property in Y there is A’ € 9 with ¢ € AY,
A'CAUTP- {xN(p)}. Againc € A'NzZc (Aqu) NZ = {c} and

AN (X-{x}) ¢ 40 (X- {x5}). Hence for such an A with |A N(X - {xo})|
least, AN X = {xo,c}. Then, once more, x; € AN Y and Y-X < 2 so

that ¢ € Y. From all such A € ¥ choose one with AN Z = {Xt} and

A (XUY) = {xo,xt}. Since Z © zp then by the choice of Tp and

Xy(p) e have t > N(p) for 0 = p < s. But N is strictly increasing

and hence cofinal with s. Thus such a t cannot exist and a final

contradiction 1s reached. This mean:s .hat the hypothesis is untenable

and thus R(Y) has the exchange property.
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We have now shown that Y satisfies the conditions of

lemma (3.11) and thus (Ql#)# = Uy

REMARK (3.15) That R(%) has the exchange property in theorem
(3.14) depends essentially on the fact that |A N X| is finite for

A€ Y and X €R(U. This naturally leads to the following statement.

THEOREM (3,16) Let 9 be an exchange system on E with D locally

finite for each D € 7991. Then 9,# is an exchange system, and

of calw, .

Proof. % has the l.c.p. by remark (1.25) and definition (1.22),
By lemma (3.8), 21# c R(Ql)min, and consists of incomparable elements.,

Take X,Y € Q# with x € X+¥ and y € X N Y. By lemma (3.4)

we can set X = f‘*ﬁ(y) and Y f*j‘),(y) for some D, D! € §.. Because

D)
An D’ is finite for any A € 9 and D’ € S AN (X U Y) is also
finite for any A € . Thus the argument used in theorem (3.14)
to show there is Z with x € Z2c X U Y - {y} and |2 N A| # 1 for any
A € ¥ is applicable here to obtain the same result.

Let C be any chain such that for Z € C; x € ZCX U Y - {y}
and |ZN Al #1 for any A€ If AN (NC)={.} for some A € U

then for some Z € C, AN Z = {a,a ,an} with ANZcAn XUy,

1,---

For 1 =i =n there is Z E@withai,ézi. Hence 2/ =2 N Z N...nzec

i 1
and Z’ N A = {a}, a contradiction. Thus there is Z € E with x € Z,
ZcXUY- {y}, and minimal such that |A N Z| # 1. We will now show

that any such minimal set is a member of Q# Let Z be any such minimal

element.
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Because D U D’ has finite intersection with each member
of 4 there is P minimal containing X U Y - {x,y} and contained in
DUD‘with PN A# ¢ for any A € 4 by lemma (1.33) and there is Q
minimal in P with (2 -~ {x}) € Q, QN A # ¢ for any & € ¥ and finally
R < Q, R a dendroid for 9. By lemma (1.78) Q2P - (X U Y) and
R2®Q - (Z - {x}). Now if x € Q then there is A € ¥, x € A and
¢ =ANQ~{x})2ANn (Z - {x}) so that AN Z = {x}, a contradiction.
Thus x £ Q and so x £ R. By lemma (1.78), fR(a) N (z-{x}) =¢ for
a €R - (2 - {x}). Hence by remark (3.7) fR(a) NZ#¢for acZ, Thus

fﬁ(x) C Z and by the minimality of Z, fﬁ(x) = Z.

THE DUAL FOR : M, M, ¥ £ U, %, and UX).

THEOREM (3.17) For k > 1 the system W, has the properties

(1) '/ri is an exchange system,
(11) wﬁ: < RO pin. .

(111> 9 4 = {(E-D|D € &, 1,
i, k

(iv) M has the 1.c¢.D.,
(v) (Wi)# = W‘k’

“.Vi) 29?7(k = nk_»l b4 a—nd

(vii) W# = Wk-—Z .

%
Proof. The restriction k > 1 is necessary for if k = O, Wb = {{¢s1}
which is not an exchange system and if k =1, 7, ={{x}|x € E} and the

only dendroid is E. Hence 'ng = {¢} and is not an exchange system,
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Since R is a collection of finite sets which is an
exchange system, W‘k satisfies the conditions of theorem (3.14).
Hence properties (i) through (v) follow from this theorem, Property
(vi) is remark (1.15). Using (vi), for D € Me_qs X € E-D, we have
{x}uD={x} U{y €D|xe{y}uED}={x}UfyeD|xer}=>.
Hence Wi = '}Zk_z.

THEOREM (3.18) The_ system T, has the properties

(1) ’ffi is an exchange system,

(11) 'er{ c sz("nk)

min?
(111) & 4, = {E-D|D € &, },

g,
(iv) T, has the l.c.p.,
@ e =,

(vi) 19,”1{ = 774k 47 and

(vii) 7{1#( = W‘k+2'

Pro.f. From theorem (3.17), 7 = (773k+2>#, thus ﬁf{ = (Wif(+2)# = M4 and
G = ) = .

From remark (1.16), = "4, and hence 7, has the 1.c.p.

19??1{

Again, from theorem (3.17), 07# = %%2 = T4, hence ?97# = {E-D|D € a,nk}.
k k

The properties (i) through (vi) have now been established.

REMARK (3.19) 07{ = M_, and 197# = My4qe This is clear from the
k

statements in theorems (3.17) and (3.18).
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THEOREM (3.20) U has the properties

(1) 9_ is an exchange system,

(i1) ﬁﬁ is an exchange system,

(ii1) ¥_ has the l.c.p.,

(v1) o crlw)

o’'min’
(v) = {E'DlD € 299«[ }, and

A

[+

(vi)

e g2 8

Proof. Property (i) is theorem (2.4). Since 3_ is a collection of
finite sets the conditions of theorem (3.14) are satisfied and
properties (ii) through (vi) hold.
THEOREM (3.21) Let & = {E-D|D ¢ 9y Ju 9 , the system

o e -]

of theorem (2.8). Then & has the followling properties.

(1) £ 1s_an exchange system,

(11) £ has the 1l.c.p.,
W) & cre)y,,,

'iv) S# is an exchange system,

(v) »£# = {E-D|D € 0£}, and
) (=g

Proof. (i) is theorem (1.,77) while (ii) is thoorem (2.8), Hence
(1ii) follows from lemma (3.9). We now show 'iv).

We use the notation of (2.1) and let D be a dendroid for °q_.
Define r:E - {n|n z 2} by r(y) = min{t|y € X.}, and set
D(y) = lfD(y)l for y € D, For q € E-D, q € fD(y) if and only if

r(q) = D(y) as shown in corollary (2.7).
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Take T € 5#. Take q € T such that r(q) is least. Then
there is a dendroid B of § such that T = f%(q) by lemma (3.4).
B =D U {a} where D is a dendroid for #_ by theorem (1.77).
Because q € fB(a) = (E-B) U {a}, r(q) sr(a). For y €D, fB(y) = fD(y)
if and only if r(a) < D(y). There are three possibilities for D(y).
(1) D(y) <r(q). Then q £ fD(y), a £ £(y) and so g £ fB(y).

(11) r(q) s D(y) <r(a). Then q € fD(y) = fB(y).

A

(111) r(q) =r(a) =D(y). Then q € f)(y) and q € £5(y) = (E-D) U {y}.
Hence for y € D, q € fD(y) if and only if q € fB(y). Thus
f%(q) = £% (a) U {a}.

Now take any b € D such that r(a)

HA

b(b). Then a € fD(b)

and D’ = (D - {b}) U {a} is a dendroid for ¥_and B =D’y {b}. Now

1A

r(b), and thus as in the argument above, f%(q) = £%,(q) U {v}.

€ TO n T1, where Ti € S# for 1 = 0,1,

r(q)
Let X € To - T1, Xy

Then T, = f%i(qi) = fﬁi(qi) U {ai} =Q; U {ai}, where B, = D, U {ai},
D; a dendroid for ¥, r(ai) > max{r(xo),r(x1)} as shown in the last
paragraph for 1 = 0,1.

the exchange property as shown in theorem (3.20) znd thus there is

Q = fﬁ(q)<: QU Q - {x1} with x; € Q, D a dendroid for 9_. Choose
D such that r(q) = min{r(y)|y € Q}. Now r(q) = r(xo) < r(ao), and
since a, £Q B=Dy {ag} 1s a dendroid for ¢ and

€ f%(q) = fﬁ(q) U {a0}<: YT, - {x1}. Thus ﬁ# has the exchange

%0
property.
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Let B be a dendroid for £#. Then by lemma (3.12),
(E-B) N A# ¢ for A € £ Thus E-B 2 Z, a dendroid for 3 by lemma
(1.33). Z is not a dendroid for &, and so there is b € (E-B)-Z.
Then D = Z U {b} < E-B, and is a dendroid for £ by theorem (1.77).
By corollary (3.13),
a:# = {E-D|D € e}

Thus £ satisfies the conditions of lemma (3.17) and

& =g

This completes the proof of theorem (3.21).

THEOREM (3.22) Let m, n, and k be as in theorem (2.11). If n

is finite take k > -n+1, and k any integer otherwise. Then ﬂk

has the followlng properties.

1i) ¥, has the exchange property,
(11) %, has the 1.c.p.

(111) gﬁzc R(mk)min’
(iv) o, = ¢B-D|D € s, 1,
o U

(v) ﬂi is an exchange system, and
() ) =

Proof. Property (i) is theorem (2.11) and (ii! is corollary

(2.13), while (iii) follows from lemma (3.9).
Take B a dendroid for ﬁi, and b € B. Then by corollary

(2.12), £,(b) = {p} UD = f%(b) for some I € 8, . Hence BN D = ¢

B Uy

and thus B <€ E-D so that B = E-D, and property (iv) follows.



(91)

We now show that ﬂi has the exchange property. Let
XY € ﬂi with x € X-Y and y € XN Y. Then X = {x} UD and Y = {y} uD’

where D and D’ are dendroids for % end y €D, by corollary (2.12).

Il

Because fD(y) N D= ((E-D) U {y}) ND’ = (E-D) N D’ # ¢ there is

z € fD(y) ND’y z #x, 2z #y. Hence D, (D - {y}) U {2z} 1= a dendroid
for Y and £f (x) = {x} U DyeXUY- {5}, and ﬂi has property (v).
0

We have shown that 9, satlsfies lemma (3.11), hence

(mi)# = 9, and the proof of the theorem is complete.

THEOREM (3.23) Let X be an infinite graph such that %(X) has

the 1.c.p. Then U(X) has the properties:
(1) U(X) has the exchange property,

(11)  a@’ cr@E)
#

min’

(1i1) U(X)" is_an exchange system,

(iv) 0m(x)# = {E-D|D € ”m(x)}’ and

@ @@hH = ).

Proof. (i) is corollary (2,16). (ii) follows from the l.c.p.
condition and lemma (3.9). We now prove that (iii) holds. Let
U,V € M(X)# with w € W, e € U-V, By lemma (3.4 we can take

U

H

f%(w), V= f%z(w), D, D’ dendroids for U(X;. T=ke

Z=UUV - {w}. Then Zc< D UyD’,

1

If AeUX) with AN (DUD’ -~ {e}) = ¢ then A = fD(e) = fD,(e)

and w € fD(e). Hence e € f%z(w), a contradiction to e € U-V,
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By lemma (2.61) there is Q minimal in D U D’ -~ {e} such
that Q 22 and QN A # ¢ for A € U(X). By lemma (2.60) there is R,
a dendroid for %(X) with R € Q and R-Z = Q-Z by lemma (1.78).

Because R has the l.c.p. by hypothesis kme) fR(e’) = E(X).
e’ €R

Take e’ € R such that e € fp(e). If e’ € R-Z then e’ € Q-Z and
fR(e') NZ=¢ by lemma (1.78). Thus fR(e) NU={e,w} by lemma
(3.5) and fD(e) NV =1{w}, a contradiction to lemma (3.5). Hence
e € fR(e’) implies e € Z and so e € fﬁ(e) cZ=UUV - {w}. Thus
M(X)# has the exchange property.

By lemma (3.12), if B € & y then (E-B) N A # ¢ for any
A € 4(X). By lemma (2.60) there ?éX% C E-B, D ¢ 0m(X)' Hence
E-D D B and by (ii-, E-D = B. Thus we have property (v). Now all
)#

the conditions for lemma (3.11) are satisfied so that (M(X)# = 9(X),

and the proof is complete.

COROLLARY (3.24) Let X be a tree with U(X) # ¢. Then the

properties of theorem (3.22) hold for U(X).

Proof. By theorem (2.73) %(X) has the l.c.p. Hence the conditions

of theorem (3.22) hold and the result follows.



Some Further Results on Duals

LEMMA (3.25) Let 9 be an exchange system. If X,Y € ﬂ# with

yE€XNYeandDe o with the 1.c.p, such that T = f%(y) and

|X ~ (Y uD)| is finite then there is R € 9y Such that

(1) |X - (Y UR| is minimal with ¥ = % (y), and

i

(11)  xn Ulge)]z € - T U D} = 0.

Proof. If ¢ =X~ (Y UD) thenXc {y} UD, and (1) immediately holds.
Now z € D - (Y U X) implies y £ fr(z). But £.(z) N D = {z} and
fD(z) N Y = ¢ hence fD(z) NX=¢, and (ii) follows.

If 0# |X -~ (Y UD)|, finite, then there is R € dy such that
(1) holds., We now show that (ii) must hold.

Suppose a € X N qufR(Z)|Z € R—(Y UX)}. Then a € fR(z),
z € R~Y, and a = z. Hence R’ = (R - {z}) U {a} € dy and
|x - (T URD]| < |X - (T UR)|.

Take q € R - fﬁ(y). Then fR,(q) c fR(q) U fR(z) and thus
does not contain y. Hence fﬁ,(y)<: fﬁ(y). But R’ ~ R and so R’
has the 1,c.p. by theorem (1.45). Then lemma (3.5) implies
fﬁ,(y) = fﬁ(y) which contradicts the choice of R. Thus when (i)

holds (ii; must hold, and (i) is always possitle.

THEOREM (3.26) Let Y be an exchange system =nd UO € ﬁﬂ' Let

9 = {D € 9| [DDy| is finite}. Ihen

ﬂg = {fﬁ(X)IX € E-D, D € &O} is an exchange system.
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Proof. Lemmas (1.32) and (1.46) show that

2

Y, = {Ac mminl |& N D, is finite}

={Aey, | |AnD| is finite, D € §3} is an sxchange system.

Take X,Y € &fé with x € X-Y and y € X N Y. By lemma (3.4)

T = f’]’s(y) for a dendroid D, D ~ D.

D has the l.c.p. on mo because A N D ig finite for A € mo. Take R

Then |X - (Y U D)| is finite, and

such that properties (i) and (ii) of lemma (3.45) are satisfied. Then,
as indicated in the proof of that lemma, R is a dendroid for MO and

R~D., and X-R # ¢ by lemma (3.5).

O’
Take z € X-R. Then z € fR(b) only if b € X U Y, and Q € 8,

Q= (R-{p}) U{z}. |Z-(TUQ| < |[X~(TUR)| and p € £%(b) implies
b€ fQ(p). Also, fQ(p) =fp(p) if p € R - (XU Y). Hence
7 et‘g(w cYUX - {y}.

Now if x € X-R, take z = x. If x € X N R then lfR(x) nxlze,
y £ fR(x) end so there is z € X-R with z € f,(x). Take b =x. In
elther case, x € fa(b)<: XUY - {y}. We must now show that this is
in ﬂ#, and we do this by showing that Q is a dendroid for Y. Q “’DO’ and
ifAEQIminwithQﬂA:gbthenwriteQ:(DODT)US, T + 8 finite.
Then A N D0 c AN T, and thus A € ﬁo, a contradiction, Hence

Q € 9y and fa(b) € ﬂ#. Thus ﬂé is an exchange sysTem.
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LEMMA (3.27) Let 9 be an exchange system on E with D, D,
dendroids for Y with the l.c.p. If Xi € Q#, f*f) (y) = Xi’ i=0,1,

L
x € X;-X, and |Dy +D, - (X5 U X1)| is finite then there is R, ~ D,

with Ry + R, © X, U X, fﬁi(y) = f%i(y), i = 0,1 and there is

zE‘)f#witthZCXOU&—{y}.

+ - . . ~
Proof. Because IDO D, (XO U XT” is finite we can take Ri Di

with X, = fﬁi(y), i=0,1 and IRO * R,
pE€Ry~- (X, UX,) with q € fRO(p) N (X, - X;). Then for the dendroid

- (Xy v X1>| minimal, Suppose

D= (Ry - {p}) U {q} we have £,(p’) < £ (p) U fRO(p') by lemma (1.42).

0
I 4
Hence if p’ € RO - (XO U Xq) then y ¢ fD(p ) and so f%(y) c fﬁo(y).
By lemma (3.8) this implies X (y) = 4] (y) and we have a contradiction
Q
since |D +R, - (X;UX)| = [R) +R - (X UuX)]| - 2.

Now suppose p € R - (XO U X1)’ p £ R,. Because R, has the
l.c.p., f (p) c fe (q) by theorem (1.44), and
0 q €t TP NER,
0
q € R, ~ (Xy UX)). Again let D= Ry ~ {p}) U {a},
A ) ’ _ )
fD(p ;e fp (p)UfR (p). Ifp €R, (XOUX1> thenyjéfD(p).

0
fﬁo(y) and again [D + R, - (X, UX)| = [D+R - (X, UuX)]| -2,

o

Thus f*ﬁ(y)

a contradiction, By symmetry we have RO + R1 c XO U X1 .

By lemma (3.5) there is z € £, (x) N (&

RO 0

D= (R, - {x}) U {z}. We have shown that z ¢ f, (p) for p € R~(X, UX,),
0 Ry 0" \o VM

U x1>. Let

and so x € fD(p) = fRO(p). Thus x € f’ﬁ(x) S Xy U {z} - {y} < Xy U X - {v}.
let Z = f‘%(x) and the lemma is proved.
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NOTATION (3.28) Let X be a tree and D g dendroid for u(X). If

e € E(X) ~Dand we€ fﬁ ~ {e} then let R(D,e;w) be the unique

ray in C whose initial vertex belongs to (e), does not contain w_and does
not contain e, where E(C) = fD(w).

LEMMA (3.29) Let X be a circult connected tree, D a dendroid

for u(X), e € E(X) - D, and w, z two distinct edges in f¥(e) - {e}.
Then R(D,e;w) = R(D,e;z).

Proof. If R(D,e;w) # R(D,e;z) then we put
R(D,ejw) + R(D,e;z) if the rays are not vertex disjoint

(e) UR(D,ejw) U R(D,e;z), if the rays are vertex disjoint.

In either case, since X is a tree, C is an infinite circuit, and by
definition of fD(s) for 8 €D, we have E(C) N D = ¢, a contradiction.

Hence R(D,ejw) = R(D,ejz).

REMARK (3,30) For X a circuit connected tree and D a dendroid for

%(X) with e € E(X) ~ D, lemma (3.29) shows R(D,e;w) Lls independent of
w for w € £% - {e}. R(D,e;w) U (e) is then written S(D,e). The
initial vertex of e in S(D,e) will be taken as e g &7 [e ,e 1.

Lemma (3.29) further implies that for w = Gw o ] erx - {e},
p(ex,wx) < ple y’wx)' Hence f¥ D(e) -~ {e} 1s contained in exactly one

of the two components of the minimal subgraph of X whose edge set 1s

X) ~ {e}.
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LEMMA (3.31) Let X be a circuit connected tree and D a dendroid

for U(X). If e € E(X)-D then

R

1

{fD(w)lw € f%(e) - {e}

2 and a ray otherwise.

H

1s & circult if |£%(e)|

Proof. If |f§(e)| =2, fg(e) = {e,w} and R = fD(w), a circuit.

If [fD(e)I # 2 then every edge e € E(X) is in a circuit and
since 9(X) has the l.c.p. by theorem (2.79), Ifg(e)l > 2, The
intersection of circuits in a tree is a circuit, ray or path and
by lemma (3.29) contains the ray S(D,e) but no members of D. Hence,

R is a ray.

LEMMA (3.32) Let X be a circuit connected tree and D a dendroid

for U(X). For e € E(X)-D let K(D,e) be the subgraph of X consisting

of all paths P from e_ to w € fD(e) - {e} not containing e or w.

K(D,e) is X-admissible. If R is a ray from e 1ot containing e then

E(R) N f%(e) # ¢ and w € E(R) N D is_the nearest one to e if and only

if w e fle) - {e}.

Proof. It is clear that K(D,e) is connected and that D i) E(K(D,e)) = ¢.
Lﬁﬂ=[%““)Marwinmm@.TMnC:H%VNJ&ﬁMNR@
ic a circuit and E(C) N D = ¢, a contradictio... Thus K(D,e) contains
no ray and is thus X-admissible.

Let R be any rey from e not containi.g e. Then R U S(D,e) is
a circuit and D N (E(R U S(D,e))) =D N E(R) # ¢. Let w be the member
of DN E(R) closest to e. Then S(D,e) U (ex,...,w ) is a ray from x,

X
edge disjoint from D, and is thus in fD(w) and w € f%(e).



(98)

Lot w € f¥{e) - {e} with w € E(R) for some ray R from
g not containing e. let P be the path jolning Wy and e, Then
P U S(D,e) iz a ray from w_ edge disjoint from D. Hence w is the

nearest edge to e in E(R) N D.

THEOREM (3.33) Let X he u cirouit connected tree with dendroid D
fopr U(X) and e € E{X)-D. Root X at e, and let @:X~%x/K(D,e) with

7 gz cholece function for the family '\ESE"X € vV i/%(D,e)) with

n‘.'-ex\ = o, yhere X = @(x). Then D, = ¢ S J (E—X - n(X))
; ¥ € VIX/X(D,e))
i = dendroid for %(X) with s (e) = f%(e).

1
roof. Since X(D,e) is X-admissille, D, is & dendroid for %(X) by
sorollary (2.97). e £ I, and ¥ € (Eé- - n('éx)) if and only if
w € l\,_,j E.ND = fx(e) —{e:}{. Hence f¥(e) = % (e).

x € V(E(D,e)) * D b Y,
REMBRC  1.34. If X 14 a clrcult connected tree and every vertex is
¢ hranch vertex then theorem (3.33) shows thut for any f’ﬁ(e) there is
f*)‘ (e) = 1"5((—3) with [, not equivalent fo D since there are infinitely
m:—;.rzzy vertices where the cholce function n ¢f thut theorem has two or
wore permlssitle velines. Hence, using lemws (3.4 . ‘here is w # e

znd U not equivslent o U, with fi;‘)(e) = f% “w' Tiie is a much

stronger statement than in lemma (3.4).

SHEMMA 13.,35) Let X be u *ree and S, S’ two Y-.admissible subgraphs

of X yith V(S) N V(8’) = ¢. Then S U S’ iz X-aimizsivle.
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Proof, It is clear that a component of S U S/ 1s a component
of exactly one of S or S’. Since each such component contairs

no ray, S U S’ is X-admissible,

LEMMA (3.36) If X is a circult connected tree, D a dendroid

for A(X), e = [ex,ey] € E(X)-D and S, is X-admissible with
V(8y) n V(K(D,e)) = ¢, then S = 8, U K(D,e) is X-admissible, Root
X at e . For any dendroid for U(X/S) of the form (2.56.1) with

n(EX) = ¢ and ¢:X - X/S,
-1

P
Proof. E- = f%(e) since e ¢ S and for P a path in K(D,e),
x
@(P) = EX. Since S1 is vertex disjoint from K(D,e), ¢(w) € E(X/S)

for w € f%(e). Hence the result follows.

THEQREM (3.37) Let X be a circul‘ _ connected graph snd T a spanning
tree ~f X with D, & dendroid for T, e € E(T)-D1, Dy = E(x/T),
and D = DO U un Then

(L) D is a dendroid for U(X),

(11)  £x(e) ND = 2% (o),
1

(iii) w e Dy N fg(e) if and only if exactly one vertex of w is in

V(K(D1 !e) ),
(iv) if D{ is & dendroid for U(T) of the form in theorem (3.33)

then D’ = D, U It is o Jendroid for U(X) with f%,(e) = f%(e),

(v) if w €D, N fx,/(e) szd £ ,(w) = £, (w) then w is an edge with
0 D D DO —
one vertex in V(K(D{,e}) and the other in V(S(D{,e)), and
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(vi)  R=n{fyw)]e € £,tw), |fD(w)l infinite} is a ray containing
S(D{,e) if there are two or more members being intersected

gnd an infinite circult otherwlse.

Proof. (i) is remark (2.29).
(11) follows from the proof of theorem (1.74) which implies fD(w) = £ (w)

.
for w € D,.

1

(111) Let x € V(T)—V(K(DT,e)), and R the ray in T with initial
vertex e and x a vertex in R. Let P = (ex,...,x) be the pdth in
R Joining x and e . If e € E(P) and E(P) N D = ¢ take R = S(D1,e)+P.
If e ¢ E(P) then E(P) N D # ¢ by definition of K(D1,e). Thus either
e € E(P) and E(P) N D, = ¢, or E(P) N D, # ¢. In the latter case
take z € E(P) N D, z = [ZX’ZY] such that p(zx,x) is least., Put
R = R;’ TRCTRNER

In all cases R_1s a ray, e ['4 E(RX), DN E(Rx) = ¢, and
E(RX) n E(K(Dq,e)) = ¢, This leaves two possibilities for
w = [x,y] € Dy N fﬁ(e).
i) MRS V(K(D1 ,e)). Take Ry = S(Dq,e) 9] (eX,...,y>, a g with

e € E(Ry).

(11) y £ V(K(D,,e)). Construct Ry as R_was. e £ Ry, DN E(Ry) = ¢.

If (ii) holds then R = R_U Ry U [%,y] is circuit connected
and thus there is a circuit C in R, hence in X, with w € E(C) and by
corairuction e £ E(C), E(C) N T = {w}, a contradiction. If (i) holds
and V(Rx) n V(Ry) =9, then U - A UR_ U [x,7] is an infinite circuit

v
with e € E(C), E(C) N D = {w}, and w € fple). If 9 # VR ) N V(Ry)

MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY
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then there is z € V(RX) V(Ry) n V(S(D1,e)) with p(z,ex) least.
Then C = (z,...ex,ey,...y) U [x,y] U (z,...,2) is a finite circuit
with e € B(C), E(C) N D = {w}, and w € £(e).

The only remaining possibility is that both x and , are
in K(DT,e). But then C = (x,...,ex)U(ex,...,y)U[x,y] is a clrcuit
with E(C) N D = {w}, and e £ E(C) = £5(w). Thus w € Dy N £¥(e) if
and only if exactly one vertex of w belongs to V(K(D1,e)).

(1v) Because K(Dq,e) = K(D{,e) and ¥ (e) = f%,(e), (1iii) immediately
1 1

shows that f%(e) = %, (e).

(v) Because E_, - D = x/,y'] ¢ E(S(D{,e) for x’ € V(S(DT,e)) - {e,]
by the construction of D, the proof of (iii) shows that fD,(w) is
finite for w € DO n fD(e) exactly when w has a vertex, say x,

X € V(S(D{,e)).

(vi) If there is only one w € fjy(e) ~ {e} such that £ (w) is
infinite then R is clearly an infinite circuit., The proof of

(iii), shows that every infinite fD(w), W € fﬁ(e) contains the set

E(b‘Dw,e)). Then exactly as in the proof of lemma (3.31), Ris

a ray containing S(Dq,e>.

THEOREM (3.38) Let T be a tree, U U(T) = T. Then the following

statements are equivslent.

(1) T is locally finite,

(it) fg(e) is finite for every D € 9y (py and every e € E(T)-D,

(i11) f;(e) is finite for some D € 0M(T) and every e € E(T)-D.
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Proof. (i) = (ii). Take any D € dy () 2nd any e € E(T)-D, If
|f%(e)| = 2 there is nothing to prove and we mey thus assume that
lfﬁ(e)l > 2. K(D,e) is a locally finite tree and contains no ray.
It follows from Konigs theorem [1 ] that K(D,e) is finite. Let
be the boundary of K(D,e). For x € V, E(T;x) is finite, and

(e) € L_Jé E(T;x). Thus, since % is finite, fﬁ(e) is.
X €

%%
5

(i1) = (ii1). This is clear.
(1i1) = (i), Take any x € V(T) and let C be a circuit with x € V(C).
Since T has the l.c.p. by theorem (2.73), we can take C such that

E(C) N D = {e}, e = [x,y]. Now d(x;T) = |@B(K(D,e))| +1 = If%(e)‘ + 1,

Hence d(x;T) is finite and T is local ly finite.
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