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ABSTRACT

The traditional approach of Magnetic Tracking Systems (MTS) utilizes
approximate models and Parameter Extraction (PE) for Position and Orientation (P&O)
determination. The approximate models give inaccurate P&O information outside the
“constrained region”. PE is an iterative, intensive process for P&O calculations, which
limits the speed of the tracking process.

Our MTS approach aims at accurate real-time P&O tracking. We utilize Artificial
Neural Networks (ANN) with PE functionality to carry out the computational task for
real-time P&O tracking. We apply Space Mapping (SM) modeling afterwards for system
calibration to improve the accuracy of P&O determination.

This thesis addresses a different approach for P&O determination. The main
motivation of this work is to determine the P&O in a fast and accurate manner. It this
work, we mathematically develop and experimentally implement our MTS for both 2-D
and 3-D examples. The results show good match between our extracted P&O based on

our MTS approach and the actual P&O measured values.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Gastrointestinal diseases are commonly occurring diseases and are of great
international concern. People may notice abnormal bleeding such as blood in vomits.
Sometimes, continuous blood loss goes unnoticed. The source of bleeding has to be
identified. The full visualization of the entire gastrointestinal track is required for
diagnostic purposes.

The traditional method is to use wired “scope” equipped with camera and
illumination source for both gastroscopy and colonoscopy. Gastroscopy is used to
examine the upper digestive system [1]. Colonoscopy is used examine the lower digestive
system [2]. Unfortunately, in some cases the bleeding problem lies somewhere in between
the upper and lower digestive systems where traditional gastroscopy and colonoscopy
cannot reach [3]. Scopes with longer cable do not help due to difficulty in its control and

manipulation [3]. Furthermore, the examination is an uncomfortable procedure because of
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the wire and optical fibers needed for imaging and powering purposes.

Ingestible medical devices such as the wireless capsule endoscopy (also known as
capsule endoscopy or wireless endoscopy) are finding increasing use in diagnosing and
monitoring the gastrointestinal track, especially within the small intestine. It has a color
video camera fitted inside. a pill and a wireless radiofrequency transmitter to send the
observation images outside the body. It is easy to swallow with just a sip of water. It
moves along the digestive track naturally with the aid of intestinal muscle activities. The
patients can continue their regular activities comfortably during the examination [3].

Commercial ingestible image devices are available, such as PillCam [4],
EndoCapsule [5], Sayaka and Norika3 [6], MicroCam [7] and OMOM [8].

The image devices can tell us of the existence of the problem source. However, it
cannot tell us the location of the problem source. If we would like to monitor the recovery
status of a certain bleeding source for diagnostics purposes, position information is
required to be correlated with the observed images.

The major techniques for position and orientation determination include magnetic
tracking, optical tracking and ultrasonic tracking. A magnetic tracking system is the best
candidate for wireless endoscopy applications. In electromagnetic tracking, the magnetic
field value is position-dependent. The low frequency magnetic field penetrates the body
without attenuation or change so the tracking may be continuous during the entire
operation. More importantly, the field is not limited by line-of-sight due to operating

room personnel moving into positions that obstruct the line-of-sight paths, which is
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usually required for optical tracking and ultrasonic tracking [9].

Optical or ultrasonic tracking, by contrast, may require a large or excess number
of line-of-sight paths and corresponding detectors to assure that position can be
determined by triangulation despite occluded pathways [9]. The body-penetrating
electromagnetic fields also allow tracking the location or movements inside the body with
minimal resort to the fluoroscopic or ultrasound techniques normally required for
visualization [9].

Most of these devices utilize a magnetic field as the signal source for position and

orientation determination [10] - [19].

1.2 OVERVIEW OF THE THESIS

This thesis consists of two major parts. The first part (chapter 2~4) provides the
comprehensive reviews of Magnetic Tracking Systems (MTS) and the relevant concepts
of Space Mapping (SM) and Artificial Neural Networks (ANN). These researches are the
building blocks for the works reported in this thesis. The second part (chapter 5~6)
presents the major contributions and implementations of MTS for both 2-D and 3-D
cases.

Chapter 2 reviews the basic concepts of MTS. We present various
implementations and its corresponding features. We mathematically develop how to
utilize Faraday’s induction law and Biot-Savart’s law to implement our own portable

MTS for wireless endoscopy application.
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Chapter 3 reviews the concept of ANN, including their structures, information
propagation and the development of the ANN model. We also present the mathematical
formulation for the ANN training process. The NeuroModeler software [20] is
introduced for automated ANN model generation.

In Chapter 4, we briefly review the concept of Space Mapping (SM) and its
framework for optimization and modeling. We present different mapping methods in SM
to match surrogate model responses with the corresponding fine model responses.
Parameter Extraction (PE) is the key to establish the mapping and updating of the
surrogate model. The framework for SM optimization and SM modeling is presented step
by step.

In Chapter 5 and Chapter 6, we present our portable MTS exploiting ANN and
SM modeling. We design a suitable geometrical configuration for our MTS such that
patients can continue their regular activities during the Position and Orientation (P&O)
tracking. Under this design constrain, we optimize the geometrical shape of the field
generating elements of the field generator in order to achieve signals of high sensitivity
with respect to P&O change.

A MatLab [21] program is developed to model the electromagnetic field
distribution. PE is implemented using the MatLab optimization toolbox to verify the
mathematical algorithm of P&O determination.

We apply ANN model for real-time P&O tracking, which is traditionally done by

an iterative PE process. We utilize SM modeling to improve the accuracy of P&O
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responses. The quality of the determined orientation is evaluated by a Quality Factor (QF),
which will tells us how accurate the orientation measurement is in advance, without
knowing the actual orientation.

We combine the ANN and SM modeling to achieve short computational time and
accurate P&O determination simultaneously without the time consuming complex fine
model development. Very good match of P&O is obtained between our calculated P&O
and the actual P&O.

In Chapter 7, we conclude with a summary of the research contributions and

future works.

1.3 CONTRIBUTIONS

The author contributed to the following developments presented in this thesis:

1. Mathematically developed 6 degree-of-freedom MTS algorithm.

2. Determined geometrical configuration and shape of field generating and
field sensing elements.

3. Train and test ANN model.

4. Experimentally verifying 2-D and 3-D MTS.

5. Applying SM modeling for system calibration.
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CHAPTER 2

MAGNETIC TRACKING SYSTEMS

2.1 INTRODUCTION

Magnetic Tracking (MT) provides an inexpensive means to automatically track
the positions and orientations of multiple sensors [1]. Numerous applications exist for
tracking objects that generate or detect magnetic fields. All types of land vehicles, ships,
and aircraft have structures and power systems capable of generating substantial magnetic
signatures [2].

MT offers the advantage that the magnetic field is position dependent, which
makes it possible for the MT algorithm to recover the position parameters from the
magnetic field. The low frequency magnetic field penetrates the human body without
attenuation or change, so MT may be continuous during a surgery. More importantly, the
field is not limited by line-of-sight due to operating room personnel moving into positions
that would obstruct the line-of-sight paths. This is usually required for optical tracking

and ultrasonic tracking [3].
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The early applications of MT systems include underground drilling systems and
landing-aid systems [4]. For landing-aid systems, MT is used to determine the position
and orientation of an airplane with respect to a land site for navigation purposes. For
underground drill systems, it is used to determine the position and orientation of a
remotely controlled underground drill with respect to the surface of the earth.

More and more MT related research has been carried out with special focus on
medical applications such as image-guided surgery [3], [5], and wireless endoscopy for
diagnostic purpose [6]-[9]. In the area of image-guided surgery, the magnetic sensor is
usually mounted on the surgery tools. Position parameters of the surgery tools are
correlated with the scanned images to help the doctors do the surgery during the entire
operation. In the area of diagnoses, the position sensor can be inserted into a wireless
endoscope. Images taken by the endoscope can be correlated with the position of the

inserted magnetic sensor to monitor recovering status of the interest region.

2.2 BASIC CONCEPTS

A MT method utilizes magnetic fields for determining the position and orientation
of a remote object relative to a reference coordinate system. The tracking system
generally has three major components: field generator, field sensor and signal processing
unit (Fig. 2.1).

The field generator includes a plurality of field generating elements to generate

magnetic fields that are distinguishable from one another in the work area. The field
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Fig 2.1: Magnetic Tracking system.

sensor includes one or more field sensing elements to sense the generated fields. The
signal processing unit is used to process the outputs of the sensing elements into remote
object’s position and orientation relative to the generator’s reference coordinate frame.
The position and orientation solution is based on the magnetic field coupling between the

field generator and field sensor.

2.2.1 Magnetic Tracking Assemblies
Magnetic field generating and sensing assemblies can be implemented in different
ways. For example, conventional wire coils forming current loops or paths,
semiconductor formed conductive lead or circuit board traces forming current paths can
be arranged in an appropriate geometry to generate or sense the desired field components.
Various MT systems use circular loop coils for magnetic field generation and
detection [3]-[7], [10]-[11]. One or more coils generate distinguishable magnetic fields

and one or more coils detect the generated fields.

10
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There may be a symmetry or duality between the generating and sensing elements.
For example, in many cases, it is possible to have a small multi-coil array that generates a
spatially distributed magnetic field and a similar or even identical array that senses the
generated field [3]-[5], [11]-[15].

Small coils offer the prospect of generating a close approximation to dipole fields.
On the other side, small sized coils may limit the attainable field strength or the
achievable level of signal amplitude detection.

The generating and sensing coils construction may have different scales. For
example, relatively large and high current coils may be used to establish magnetic field
components along different axes. Smaller and localized coils are used for sensing field
values [7]. For example, small coils may be attached to surgical instruments or inserted
in ingestible devices such as a wireless endoscope for magnetic field sensing and position
tracking.

It is necessary to characterize the magnetic field distribution (signal value) with
some degree of accuracy. It is also necessary to detect the resulting field accurately. The
field distribution can be determined by a combination of field modeling and empirical
field mapping. The field mapping may be carried out as a calibration to correct the

theoretical field distribution in the presence of interfering materials.

11
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Pitch

Fig 2.2: Yaw, Pitch and Roll axis definition for an airplane [16].

2.2.2 Degree of Freedom (DOF)

Depending on the number and the geometrical shape of generating and sensing
coils, up to 6 degree-of-freedom (6-DOF) can be obtained. They include three position
parameters and three orientation parameters. The position parameters are the x, y and z
position values in the observation region. Orientation parameters are the azimuth rotation
¢ (Yaw), the elevation rotation & (Pitch), and the roll rotation ¢ (Roll) as shown in Fig.
2.2,

In most cases, however, we search for only 5 unknowns. The geometrical shape of

the sensing elements usually has a symmetry axis which makes the Roll rotation angle

12
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redundant. For example, simple circular wire loops have a symmetry axis perpendicular

to the surface of the circle and passing through its center point.

2.2.3 Spatial Coordinate Frame

The spatial coordinate system is generally computed for one magnetic assembly
with respect to the other. Typically, one of the assemblies is fixed. The magnetic field
generating coils usually define the coordinate reference frame for position and orientation
measurements, either relative or absolute. Once the spatial coordinate system is defined,
the movable magnetic sensing elements can be located at a given instant in time with

respect to the predefined reference frame.

2.2.4 Position Parameters Determination

Given the geometry, position and orientation of the field generating coils in
addition to the signals sensed in response to magnetic field generation, position and
orientation of the sensing coils can be determined with respect to field generator. To
estimate the position and orientation, a theoretical model describing the coupling between
the generating and the sensing coils is utilized.

In general, the theoretical model includes a number of »n nonlinear system
equations with a number of m unknowns. The nonlinear equations define the coupling

relationship between field generator and field sensor. The unknowns are the position

13
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parameters. m=5 for 5-DOF (3 position parameters and 2 orientation angles) or m=6 for
6-DOF (3 position parameters and 3 orientation angles).

Each equation is an excitation-observation pair. The total number of system
equations depends on the field generating and field sensing elements. The number of
equations 7 is equal to the number of different field generating elements multiplied by the
number of different field sensing elements. Here, “different” field generating elements or
field sensing elements mean that they have different geometrical shape, position and
orientation. It is independent of their excitations.

Since the obtained equations are nonlinear, it is likely that multiple solutions exist.
In order to eliminate all the other unwanted possibilities, an over-determined system with
more equations (n>m) is created.

Traditionally, position and orientation parameters can be calculated through a
Parameter Extraction (PE) process [17]. PE requires a good starting point for global
minimum convergence and it has to be carried out in an iterative process. This makes the
tracking system relatively slow in terms of computational time. Also, the PE process,
which is essentially an optimization problem, may get trapped into a local minimum,

leading to incorrect extracted parameters.

14
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2.3 MAGNETIC TRACKING IMPLEMENTATIONS

Depending on the source excitation, MT can be divided into two major categories:

AC magnetic tracking and DC magnetic tracking.

2.3.1 AC Magnetic Tracking Systems

AC MT utilizes continuous sinusoidal excitation. It allows an efficient phase-
locking and noise filtering of the sensor outputs. Consequently, sensor outputs can be
detected accurately. On the other hand, the magnetic field can be affected by the presence
of nearby conducting materials, because of the eddy current effect. The sensing elements
for AC MT can be as simple as copper wired loops. Sinusoidal excitation can be applied
at a number of areas.

T. Nagaoka et al. [6] developed a 5-DOF small wireless sensor for capsule
endoscopy applications (Fig. 2.3). Current excitation of approximate value of 2.5
Amperes is utilized for magnetic field generation. The calibrated measured values [18]
neglect the influence of the presence of nearby metallic objects. Position and orientation
parameters are calculated based on Newton’s method. Newton’s method is a gradient-
based optimization technique to solve multidimensional nonlinear equations. Its solution
is starting-point dependent and the solution may be a local minimum. In addition, the
solution is carried out by an iterative trial-and-error process. The position error is

2.8+2.2 mm and the orientation error is 13.4+20.9 deg (average + standard deviation).

15
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Fig 2.3: 5-DOF wireless magnetic tracking system [6]. (a) Block diagram of the sensor
system. (b) PCB for the capsule shaped sensor. (c) Fabricated wireless position sensor
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Fig 2.4: 2-DOF magnetic tracking system [7]. (a) Block diagram of the tracking system
(Figure is copied from Fig. 2.1). (b) Field generator. (c) Field sensor.
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M. H. Bakr et al. [7] implemented a 2-DOF sensor for wireless endoscopy
applications (Fig. 2.4). Relatively large field generator can be mounted around the human
body and small sized field sensor can be inserted into ingestible medical devices such as a
wireless endoscope. 2-D position parameters are calculated by an ANN modeling the PE
process. In this particular application, the iterative PE process is replaced with straight
computation and signal processing time is improved significantly. This running time
improvements make the real-time MT possible. In this case, the position error is
2.4+1.4 mm (average *+ standard deviation).

E. Paperno et al. [10] proposed a new, simple and fast 6-DOF MT method (Fig.
2.5). The field generator is a two-axis orthogonal collocated coils. A mechanically
rotating magnetic dipole is used for modeling the generated field. Position and orientation
parameters are determined from analytical computations. No iterative PE is involved.
Preliminary experimental verifications have shown the resolution of 1 mm in a 3.6 m

range fory < 70 deg. The angle y is defined in Fig. 2.5.

2.3.2 DC Magnetic Tracking Systems

DC MT utilizes continuous pulsed excitation. Its magnetic field is not affected by
the conducting material, since there is no eddy current effect for the DC source. On the
other hand, the sensor outputs are not easy for noise filtering. Environmental interference

from DC sources has to be removed. The sensing elements usually are Hall-effect sensors.
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detecting system. (b) Magnetic based localization system. (c) Sketch of a Hall sensor for
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DC pulsed excitation was reported in several applications. Hou et al. [19]
designed a 3-DOF magnetic localization system utilizing a permanent magnet (Fig. 2.6).
The permanent magnet can be inserted into miniature medical devices as a field
generating element. Multiple Hall-effect sensors are used as field sensing elements. The
magnetic position model is created by a curve fitting process using detected data. No
energy is consumed for generating the magnetic field because of the utilization of
permanent magnets.

E. B. Blood [20] proposed a differential MT algorithm, which can effectively
remove the environmental noises from DC sources. The algorithm suggests taking
additional measurements before each set of samples when no excitation is applied. In this
case, the environmental magnetic signal is measured and subtracted from the total signal.

Environmental interferences are removed and accurate measurements can be achieved.

24 MAGNETIC TRACKING FOR WIRELESS ENDOSCOPY
APPLICATIONS

Our MT system approach is based on Faraday’s induction law [21] (Fig. 2.7):

enf -2 @-1)

where emf is the electromotive force (induced voltage), ¢ is the magnetic flux, and ¢ is

time. We also utilize Biot-Savart’s law [21] (Fig. 2.8).
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Fig 2.7: Faraday’s induction law.
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Fig 2.8: Biot-Savart’s law illustration.

H=CfldLXR

4R (2-2)

where H is the magnetic field intensity, R is the vector from the source to the
observation point, dL is the differential vector integration path, / is the current, and . is

the integration path along the current source.

22



M. A. Sc. Thesis — Kai Wang McMaster - Electrical and Computer Engineering

For a given position in 3-D space, the magnetic field generated by the source
excitation can be calculated by Biot-Savart’s law and the corresponding induced voltage
(emf) can be calculated by Faraday’s induction law.

An emf voltage can be produced by a time varying magnetic flux. The nonzero

o¢

value of ry may result from any of the followings situations:

1 A time-varying magnetic flux density B.

2. A time-varying vector area S of a closed path.

3. Relative motion between a steady magnetic flux and a closed path.
4. Any combination of the above.

For MT system, the “relative motion” is our main target. We would like to
determine the relative motion in terms of position change from the induced emf voltage

change.

2.4.1 Position and Orientation Determination

We assume a low frequency sinusoidal current excitation of the form:
I(t)=1,, cos(2x ft) (2-3)
where I, is the amplitude of the AC current and f is the frequency of the AC current.

By combining (2-1), (2-2) and (2-3), we have the following equations:

H(¢) = cos(27 fi){ % (2-4)

23
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__9%__(f98,
emf = Py J(at ds) (2-5)

where ds is the differential vector area of the sensing element. The derivative of the
magnetic field is given by

aaf ==27 fsin(27 ft)B,, (x,y,z) . (2-6)

Here, B, is the amplitude vector of magnetic flux density which is given by (2-7)

Cfl dLx R(x,y,z)

47R*(x,y,z) L=l
emf (t) =27 f sin(27 ft) B, (x,,2)+ds(4,6,0) 2-8)
emf, =2xf j B, (x,,2)ds(¢,0,p) (2-9)

where emf,, is the amplitude of electromotive force. In (2-9) x,y,z are the position
parameters, ¢ €[z, n] is the azimuth rotation angle, 8 e [—%, 12[-] is the elevation

rotation angle, and ¢ €[-z, 7] is the roll rotation angle. In (2-9), we only have one
equation with six unknowns for a general 6 DOF system. In this case, we have infinite
number of solutions.

We can add more constrains and eliminate all the other unwanted possibilities by
introducing multiple independent source excitations. Different source excitations lead to
different integration path ¢ in (2-4). As a result, each additional source excitation will

have its own corresponding emf, pair. We can have as many source excitations as
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needed to satisfy our constraints. The source excitations are independent among
themselves; so the resulting equations are independent as well.

Finally, position and orientation parameters can be solved from these nonlinear
independent equations by a parameter extraction process (PE). To avoid the iterative trial-
and-error process and the starting point dependence, we utilize ANN to carry out the

computational task.

2.4.2 Sinusoidal Signal Measurement

For PE process, measurement of emf amplitude is required. Usually the
experimental emf signal is very small and it is buried in noise because a strong current
excitation is not allowed for safety reasons. How to measure the amplitude of an AC
signal is important to us?

The amplitude of the sinusoidal signal can be measured accurately by a lock-in
amplifier with phase sensitive detector (PSD) feature (Fig. 2.9). Lock-in measurements
require a frequency reference. Typically, an experiment is excited at a fixed frequency
using an oscillator and the lock-in amplifier detects the response from the experiment at
the reference frequency.

Suppose our unknown sinusoidal signal has the following form:
Vo () =V sin(@,2 + 6, ) (2-10) [22]

where V, ”

is the amplitude, @, is the frequency, and 6, is the phase of the unknown

sinusoidal signal.
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Figure 2.9: Functional block diagram of Lock-in Amplifier SR850 [22].

By providing the reference frequency, the lock-in amplifier generates its own

lock-in reference sine wave of the form:

I/Locl'c—in (t) = VL Sin(th + eref) (2'1 1) [22]
The lock-in amplifier amplifies the signal and then multiplies it by the lock-in

reference. The output of the PSD is simply the product of the two sine waves (2-12):
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Voo () =V, V, sin(w,t+6

& o) sin(@,t+6, )

1
=3 ViV cosl(@, - )t +6,, -6, 1-

(2-12) [22]
% ViV cosl(@, + o )t +6,, +6,,]

This output has two AC signals, one at the difference frequency (@, —®,) and the
other at the sum frequency (@, + ®,) . The sum frequency component is filtered out by a
low-pass filter. If @, =w, , the difference frequency component is a DC signal

proportional to an unknown signal amplitude’,,, . In this case, the output of the PSD will

be of the form:
1
Vﬁllered_PSD_l = E I/.s'ig VL cos(esig - eref) (2- 1 3) [22]

In addition, the phase dependence can be eliminated by adding a second PSD. If

we shift the phase of the lock-in reference 6, by 90 degrees, the resulting filtered PSD

output will be of the form:

1 .
V sttered_psp 2 = 5 ViV sin(6,, —6,) (2-14) [22]

sig sig

Combining (2-13) and (2-14), we have

2 2 212
Vsig = 7[(Vﬁltered_PSD_l) + (Vﬁltered_PSD_Z) ] (2-15)
L
-1 Vﬁllered_PSD_Z
Hs,.g —G,ef =tan | ————— (2-16) [22]
filtered _PSD _1
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TABLE 2.1:
MAGNETIC TRACKING TECHNIQUE COMPARISON

DOF signal model model
processing formulation training
PE dipole
T. Nagaoks st al. [6] . trial-and-error  approximation NA
straight complete
M. H. Bakr et al. [7] 2 gt integration  ANN training
computation femsvli
E.Papernoetal. [10] 6 s apdle NA
computation approximation
dipole
Hou et al. [19] 3 NA approximation NA
curve fitting
; complete
Our proposed method 6 stargn L integration ANN training
computation P
ormula

“NA” is defiend as not applicable.

In reality, lock-in reference is phased-locked to the signal reference @, such that o, = @,

and 6, is fixed. Noise signals at frequency @,,,, very close to the reference frequency

noise

o, will result in very slow varying AC outputs. Its attenuation depends on the bandwidth

of the low-pass filter. A narrow bandwidth will remove noise sources very close to the
reference frequency. Only the signal at the reference frequency results in a pure DC
output and is unaffected by the low-pass filter.

Our proposed tracking technique uses complete integration formula for model
development other than approximated model. In addition, we implement ANN to avoid

the iterative trial-and-error process (TABLE 2.1).
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2.5 CONCLUSION

In this chapter, we briefly review the basic concepts of MT systems. Such as its
hardware assemblies, Degrees of Freedoms (DOF), reference coordinates frame and
position an orientations parameters calculations. Various implementations are presented
and its features are highlighted for comparison purposes. We present how to utilize
Faraday’s induction law and Biot-Savart’s law to implement our own portable MT
systems for wireless endoscope application. Detailed implementation for particular cases

will be introduced in the following chapters.
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CHAPTER 3

ARTIFICIAL NEURAL NETWORKS

(ANN)

3.1 INTRODUCTION

Artificial Neural Networks (ANN) have emerged as a powerful technique for
modeling general input and output relationships. It has been used in the area of remote
sensing [1], biomedical [2], pattern recognition [3] and manufacturing [4]. Recently,
ANN has been used more and more in the area of RF and microwave design [5]. They
have been also used in different microwave applications such as automatic impedance
matching [6] and microwave circuit analysis and optimization [7]-[8].

ANN models are more accurate than polynomial region models [9]-[10]. They
also allow more dimensions than look-up table models [11] and also allow multiple
outputs for a single model. ANN models are developed by utilizing sufficient training
data (e.g. EM simulations or measurements). This data helps the ANN learn the

underlying input/output mapping.
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Several valuable features are offered by ANN [12]. First, no prior knowledge
about input/output relationship is required for model development. Unknown
relationships are inferred from the data provided for training. Therefore, inside ANN, the
fitting function is represented by the network and does not have to be explicitly defined.
Second, ANN can be generalized. They can respond correctly to new data that has not
been used for model development. Third, ANN has the ability to model highly nonlinear
input/output mappings. It has been shown that ANN are capable of forming an arbitrarily
close approximation to any continuous nonlinear mapping [13].

ANN provides a general methodology for accurate and efficient EM-based model
development in areas such as RF/microwave circuits, antennas and systems. These
models are capable of providing similar accuracy to full-wave EM simulation and lead to

accurate and efficient CAD.

3.2 ANN STRUCTURES

A neural network has at least two physical components: the processing elements
and the connections between them. The processing elements are called neurons and the
connections are called links.

Each neuron receives stimulus from neighbouring neurons connected to it,
processes the information, and then produces the output. Neurons that receive stimuli
from outside the networks are called the input neurons. Neurons whose outputs that are

used externally are called the output neurons. Neurons that receive stimuli from other
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Fig 3.1: The structure of a Multilayer Perceptrons (MLP) [14].

neurons and whose outputs are stimuli for other neurons are called hidden neurons. The
most popular type of ANN is Multilayer Perceptrons (MLP) shown in Fig. 3.1.

In a MLP, each link has a weight parameter and each neuron has its own
activation function. The weight parameters and the user predefined activation functions

are the internal model parameters for ANN models.
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Fig 3.2: Information Processing by a Neuron [14].

3.3 INFORMATION PROCESSING

In a neural network, each neuron receives and processes inputs from other neurons
with the exception of neurons at the input layer. The processed information is available at

the neurons of the output layer. Consider one hidden neuron for example in Fig. 3.2. the

quantities z ', z,"', ..., zy' are the neurons output responses at the previous hidden

layer with index (I-1). W}, w},, ... , W), are the weight parameters connecting current

neuron i at layer / with all the neurons at previous hidden layer /-1. z/ is the output
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response of current neuron i at layer /. This figure illustrates how the information is
processed. Each input is first multiplied by its corresponding weight parameter, the sum
of products (3-1) are passed through the current neuron activation function o (.) (3-2):

N, =1

7i =2 Wz (3-1)
Jj=l

Ny, (3-2)
4 =o( Sz

3.3.1 Universal Approximation Theorem

To guarantee the existence of an ANN model for any particular application, the
Universal Approximation Theorem has been proved [13], [15]. This theorem states that
with finite number of hidden neurons, there always exists a 3-layer ANN that can
approximate an arbitrary nonlinear, continuous, and multidimensional function with any
desired accuracy. This theorem, however, does not specify the number of hidden neurons
for a given problem. The precise number of hidden neurons required is still an open

question.

3.3.2 Activation Functions

All the activation functions have to be bounded, continuous, monotonic, and
continuously differentiable with respect to the weights w for optimization purposes.

The most commonly used activation function is the sigmoid function (Fig. 3.3).

Other possible activations are the arc-tangent function (Fig. 3.4) and the hyperbolic-
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1.5¢

Fig 3.3: Sigmoid activation function. [14].

tangent function (Fig. 3.5). The mathematical expressions of these activation functions

are given by:

Sigmoid function: o(y)= - (3-3)
1+e”
3-4
Arc-tangent function: o(y) = (z) arctan(y) (3-4)
7
e —e” (3-5)

Hyperbolic-tangent function: o (y)= =
e +e”

After the activation functions are chosen, the weight parameters w have to be

optimized to model the desired input/output relationship.
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1.5;

0.5-

o(y)
(=]

Fig 3.4: Arc-tangent activation function [14].

1.5r

0.5r

o(y)
o

Fig 3.5: Hyperbolic-tangent activation function [14].
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34 ANN MODEL DEVELOPMENT
The theoretical model can be expressed as:
d=f(x) (3-6)
where x is the vector of input parameters and d is the vector of output responses. The
relation f can be highly nonlinear and multidimensional. The ANN model can be
defined as:
y=y(x,w) (3-7)
where x is the design parameters, y is the vector of the ANN output responses, and w

is the vector of unknown weight parameters of the neural network.
The objective in ANN development is to find the optimal weight parameters w of
neural networks so that y = y(x,w) closely approximates the original problemd = f(x).

This process is called ANN training (see Fig. 3.6).

3.4.1 Data Generation
The first step in ANN development is to collect the data for training and testing

the ANN performance. The collected data is the input x, and the corresponding desired
output d, pairs defined in (3-6) in the region of interest of input parameter
space[x,;,, X, ]-

Once the range of the input parameters is fixed, we need to choose the sampling

strategy. Many strategies are used for sampling the input parameter space such as uniform
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error

@

Training ANNs
Data w =

update

X

Fig 3.6: ANN training process [14].

gird distribution, nonuniform distribution, star distribution, and random distribution [16].

The training data set is used for weight parameters w optimization in the ANN
development stage. The number of samples should be sufficient enough for the ANN to
recognize the implicit input/output relationship.

Once the ANN is trained, the accuracy of the obtained model should be tested to
verify whether the ANN model can respond accurately to the inputs which it never “saw”
before. The testing data set is used for this purpose only and it is not involved in the
optimal weights determination. Usually, the testing samples cover the same region as the

training samples to check the ANN’s “intuitive interpolation”.
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3.4.2 The ANN Training
The weight parameters w optimization process is called training. During the
training process, ANN performance is evaluated by the difference between the desired

output d, and the ANN response y, for all the training data. The difference is also called

training error :

E;, =lZZ[yj(xk’w)_djk] (3-8)

where E,, is the total training error, m is the number of output responses. Here 7, is the
training data index, d, is the jth element of d,, and y,(x,,w) is the jth ANN output
approximating d .

After initializing the weight parameters w with some small random numbers, w
is updated along the negative gradient of £, until £, becomes small enough. A one

update step is given by

aE‘Tr

e (3-9)

wnext = wnOW B 77
where 7 is called the learning rate of the ANN.

Training methods based on gradient information % as in (3-9) are called
w

gradient-based techniques. Gradient-based training techniques include Conjugate-

Gradient [17] training method, Quasi-Newton [18]-[19] training method, Levenberg-
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Marquardt [20]-[21], and Gauss-Newton [20] training methods. Non gradient-based

training techniques are also used, such as the Simplex method [22].

3.4.3 Over-Learning and Under-Learning

The normalized training error is given by

PR |7 B R (3-10)

szze(T)xmkeT,j . | iy — By |

Over-learning (3-11) is when the training error ET, is small and testing error is

large. This is the case where the ANN “memorizes” the training data but cannot
generalize well enough. The reasons could be that too many hidden neurons are used or
the training data is insufficient. Too many hidden neurons give the ANN too much degree
of freedom in input/output relationship. We need in this case to remove some hidden

neurons or add more training samples.

ETr zo
T, (3-11)

E. > E,

Under-learning (3-12) is when training and testing errors are both large. This is
the case when the ANN cannot even learn from the training data. The reason could be
insufficient hidden neurons or that training process stops at a local minimum. In this case,

we need to add more neurons or perturb the current weight parameters w .
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ET, >0
(3-12)

E,>0

Good learning is when both training and testing error are small and close to each

other. In this case, the ANN learns from the training data and generalizes well:

E,~E,~0 (3-13)

3.5 AUTOMATED ANN MODEL GENERATOR

NeuroModeler V1.5 [23] is a user-friendly software which can generate ANN
model automatically. The program is developed by Q. J. Zhang and F. Wang with
contributions from members of Prof. Zhang’s research team in Carleton University.

NeuroModeler is a tool set for ANN model development for circuit and systems
design. The generated models are generic, multidimensional and highly nonlinear. These
models are much enhanced in terms of speed, accuracy, generality and adaptability
compared to conventional modeling methods. NeuroModeler provides a new type of
solutions for modeling problems in various engineering tasks.

There are only 4 major steps involved to train the ANN and generate a user
specific ANN model:

Step 1 Get the training and testing data files ready for ANN.

Step 2 Define ANN model from the main menu (Fig. 3.7) by pressing <New

Neural Model> (Fig. 3.8). Select ANN structure, number of hidden

layers, number of input and output.

43



M. A. Sc. Thesis — Kai Wang McMaster - Electrical and Computer Engineering

Step 3 Train the ANN by pressing <Train Neural Model> from main menu
(Fig. 3.7). Various training methods are available (Fig. 3.9). After the
training data set is selected, ANN training can be started. Training
error will be shown when the training process is done.

Step 4 Testing the ANN model by pressing <Test Neural Model> from main
menu (Fig. 3.7). After the testing data set is selected, the ANN testing
process can be started (Fig. 3.10). Average and worst case error will
be shown when the computation is finished. If the error is too large, go
back to Step 3 for further training.

The 4 major steps above are the minimum user interactions in ANN model
generation. Other than the default setting, advanced users can select optional settings such
as activation functions, ANN structures, training methods and its corresponding training
parameters. More advanced users can use NeuroModeler’s simulator drivers for

automatically generating data sets with different simulation tools.
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& NeuroModeler: Main Menu
File Edit Data Training Test Display Help

NeuroModeler

Build Neural Models for RF/Microwave Design

(¢) Prof. Q.J. Zhang, Carleton University

i
: New Neural Model ,[ Open Neural Model | Define Model from Data

Train Neural Model

Test Neural Model

Display Model InputfOutput |

Save Neural Model |

lJaveAppletWMow

Fig 3.7: NeuroModel main menu.

&

& visual Editor For Neural Network Structure: Untitled
File Edit View Template

5 untitied

Three Layer Perceptrons

Fig 3.8: ANN model setup.
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& Training: x10y10_32_2cm_13up
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Training Method

Max. No. Epochs

Error Tolerance
Hessian Refresh Interval
Max Step Size

Model Parameter Tolerance

Start Training

Training Error

Plot Options I

| Quasi-Newton (MLP)

Adaptive Backpropagation

Quasi-Newtan (MLF)
Quasi-Newton
Huber-Quasi-Newton

Auto Pilot (MLP3)

Simplex Method

Genetic Algorithm

Simulated Annealing Algorithm

a0

Neural Model Options ]

¥ Background Run

Final Error=0.002973112

Print |

IJava Applet Window

Fig 3.9: NeuroModel training methods selection.
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2 Testing: x10y10_32_2cm_13up
Get Test Data

Start Testing

Plot Model Output ; [Output_Neuron_#1 |

Qutput Neuran_#1
Output_Neuron_#2
Compare|all Qutputs

OVERALL STATISTICS

Percentage Error

Histogram

Scattering

Output_MNeuron_#1

Plot Options ] Print

Average Error
Worst-Case Error

Correlation Coef

=0.2835071

=2.2352972

=0.9999197

More Statistics ...

— Model:Qutput_N

Exit

Java Applet Window

Fig 3.10: NeuroModel testing statistics.
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3.6 CONCLUSIONS

In this chapter, we briefly reviewed the concept of Artificial Neural Networks
(ANN), including their structures, information propagation and the development of ANN
models. The existence of accurate ANN model for any complex problems is guaranteed
according to the Universal Approximation Theorem [13], [15]. The mathematical
formulation for ANN training process is presented. NeuroModeler [23] is introduced for

automated ANN model generation.
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CHAPTER 4

SPACE MAPPING MODELLING AND

OPTIMIZATION

4.1 INTRODUCTION

Engineers have been using optimization techniques with Computer Aided Design
(CAD) in the area of RF and Microwave design for decades [1]. The objective is to
determine the set of optimal design parameters that satisfies the design specification.

Traditional gradient-based optimization techniques [2]-[3] utilize simulated
responses and available derivatives in determining optimal design parameters values.
Circuit-theoretic-based Computer Aided Design (CAD) tools are fast in terms of
computational time. The available analytical solutions and/or exact derivatives accelerate
the optimization convergence. Electromagnetic (EM) simulators have to be exploited in
the optimization process. The higher the accuracy of simulation, the more “expensive”
direct optimization is expected to be. For complex problems, the cost is impractical in

terms of simulation time and memory requirements. Alternative design schemes
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combining the accuracy of EM solvers and the speed of circuit-theory based simulators
are highly desirable.

Space Mapping (SM) approach, originally introduced by Bandler et al. [4]-[5] in
1994, addresses the optimization problem of time intensive models. It is a fundamental
new theory for optimization utilizing parameter transformation. Its fundamental concept
is to utilize a “coarse” model in the optimization process while calling the time intensive
“fine” model only sparingly.

SM has been proved to be a powerful concept in modeling and optimization.
Many variations of the SM approach are developed [6]-[11]. Its applications include
antenna design [12]-[13], RF circuit optimization [14], microwave filter design [15]-[16],

vehicle crashworthiness [17], yield analysis [18], and system calibration [19].

4.2 THE SPACE MAPPING APPROACH

SM assumes the existence of a coarse model and a fine model for the same
problem. The coarse model is usually relatively fast in terms of the computational time
but less accurate. The fine model is usually CPU intensive but very accurate.

SM intelligently links the companion coarse and fine models with different
complexity together. It establishes a mapping between coarse model and fine model
parameters to match the responses of both models (Fig. 4.1), such that the accuracy and
computational speed are achieved simultaneously.

Typical design parameters for EM problems are the physical geometry and
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Fig 4.1:
mapping [10].

coarse
space

Linking companion coarse (empirical) and fine (EM) models through a

material parameters of a filter, an antenna or the value of electronic devices in the circuit

board. Typical responses are time domain waveform, S-parameters or other responses. In

the design process, we try to determine the design parameters which satisfy the design

specifications imposed on the structure responses.

4.2.1 Space Mapping Construction

Throughout the construction of SM, a suitable “surrogate” model is created. The

“surrogate” model is faster than the time intensive fine model and it is at least as accurate

as the underlying coarse model. SM approach updates the “surrogate” mode to better

approximate the fine model.
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In effect, this approach is equivalent to correcting the error in the surrogate model
responses throughout the region of interest to match the corresponding fine model
responses. More importantly, we avoid the time consuming fine model evaluations and
achieve accuracy similar to that of the fine model at the same time.

Mathematically, we denote the coarse model
R =R(x) 1)
where x, is the coarse model input design parameters and R, is the coarse model
responses. The fine model is denoted by
R, =R/ (x,) 4-2)
where x, is the fine model input design parameters and R, is the fine model responses.
The surrogate model used to replace the fine model is given by
R(x)=A-R(B-x+c,x,)+d (4-3)
where 4, B, c¢,d and x, are the model parameters. x, is the vector of preassigned
parameters and R, is the surrogate model responses.
Here, model parameters are used to adjust the surrogate model to match the fine
model responses, such that R, » R, within the region of interest. The mapping is carried out
through Parameter Extraction (PE) process as shown in (4-4).

(A,B,c,d,xp)=arg min {|

(4,B,c.d,x,)

R,(x)- R, ()|} (4-4)

The PE step is crucial to the success of SM. It is an optimization process that
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extracts model parameters of the surrogate model (4-4) to match the fine model responses

(R, ~ R, ). Inadequate response data in PE process may lead to nonunique solutions.

Sufficient data to overdetermine a solution should be sought. During PE process, model

parameters (4,B,c,d ,xp) are the optimizable parameters and the design

parameters x are treated as constants.

Depending on the selected model parameters used for surrogate model in (4-3),

different types of SM are defined and used. They include Input SM, Output SM (OSM),

Implicit SM (ISM) and Tuning SM (TSM). In addition, any combination of these can be

applied (Fig. 4.2).

4.2.2 Input Space Mapping

Input SM (4-5, 4-6 and Fig. 4.3) aims at adjusting the misalignment of input
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such that
Rc(Pm(xf)) ~ R(x/)

Xy

Fig 4.3: Input Space Mapping concept [10].

parameters between the coarse model and the fine model. It affects the accuracy of
responses indirectly. Usually it is used in the early stage of the process (Fig. 4.2) and is
given by:

R.(x)=R.(B-x+c) (4-5)

(B,c)=arg (rgug{ R (x)-R, (x)"} (4-6)

The mapping relationship P” is established in the input parameter space between the
coarse model input parameters x, and fine model input parameters x, such that the
response of the coarse model R, is close enough to the response of fine model R, . The
accuracy of the coarse model response is improved by mapping x, to x_ before coarse

model was evaluated.

4.2.3 Output Space Mapping (OSM)
OSM [8], [10], [20]-[21] is illustrated in Fig. 4.4. The objective of OSM is to
eliminate the residue misalignment between fine model and surrogate model responses. It

affects the accuracy of the responses directly and it is usually used in the final stage of the
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ko merN | g

such that
R (x;)=~ P™(R,(x,))

Fig 4.4: Output Space Mapping concept [10].
process (Fig. 4.2). It is given by the following equations:
R (x)=A-R(x)+d 4-7)

(A,d )=arg ggg{||Rs(x)—R,(x)||} (4-8)

The mapping relationship P°“ directly maps the coarse model response R, to the fine
model response R, (Fig. 4.4). The accuracy of the coarse model is thus improved by

mapping R, to R, after the coarse model was evaluated.

4.2.4 Implicit Space Mapping (ISM)
ISM [8], [20], [22]-[23] (4-9, 4-10 and Fig. 4.5) is another variation of the SM

concept that exploiting the idea of preassigned parameters [24]. It is given by:

R (x)=R.(x,x,) 4-9)
x,=arg n}‘in{"Rs(x)— Rf(x)"} (4-10)
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such that

R.(x,.x,)~ R/ (x))

Fig 4.5: Implicit Space Mapping concept [10].

The preassigned parameters x, are extracted to match the fine model and surrogate

model response. It is usually used in the middle stage of the process (Fig. 4.2). These
preassigned parameters are usually non-optimizable in traditional optimization process.

Typical examples of preassigned parameters include the dielectric constant and substrate

height.

4.2.5 Tuning Space Mapping (TSM)

TSM [25]-[27] (4-12 and Fig. 4.6) is the most recently developed SM method. It
integrates the tuning concept into SM. In TSM, the surrogate model is replaced by a so-
called “tuning model”, which is constructed by introducing into the fine model circuit
theory-based components (tuning components). The characteristic parameters of the

components are chosen to be “tuning parameters”.
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Fig 4.6: Tuning Space Mapping concept [25].

Tuning parameters x, are adjusted by a PE process (4-12) to match the fine model

responses (R, ~ R, ). The PE process is given by:
x,=arg min{|R,(x,)- R, (x)[} (4-12)

where x, is the tuning parameters and R, is the tuning model responses

4.3 SPACE MAPPING FRAMEWORK

The SM concept has two main applications: SM optimization for design purposes
and SM modeling for simulation purposes.

In SM optimization, only the final optimal design parameters are of interest. In
this case, model parameters are updated at each iteration to match the current surrogate

model response with fine model. The matching between surrogate model and fine model
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is only valid for the current iteration evaluated at the current design parameters. The
model parameters are “dynamic” quantities. The updated surrogate model at the current
iteration is then used to predict the new set of design parameters for the next iteration. SM
optimization features fast computational time and convergence in a few iterations.

In SM modeling, the model parameters are extracted only once at the final stage to
match the surrogate model responses with the fine model within a region of interest. The
matching between the surrogate model and the fine model is valid with all the set of
design parameters evaluations in the region of interest.

The surrogate model parameters are optimized through PE to match the responses
at the preselected sets of “base points”. Other sets of “test points™ are used to evaluate the
performance of surrogate model in terms of accuracy.

The “optimized” surrogate model then replaces the fine model for simulation
purposes. SM modeling features fast simulation time and acceptable accurate responses

in the region of interest.

4.3.1 Space Mapping Optimization
Generally, the framework for SM optimization has the followings steps [28] as in
Fig. 4.7:
Step 1 Define fine mode and coarse models. Choose a mapping method such
as Input SM, OSM , ISM, TSM or combination of these for surrogate

model.
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Fig 4.7: Space Mapping Optimization flow chart [11].

Step 2

Step 3

Step 4

Surrogate model optimization. Here, design parameters are variables
and model parameters are constants.

Fine model evaluation with optimal surrogate model design
parameters.

Terminate if responses meet design specifications.
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Step 5

Step 6

Parameters extraction is carried out to match responses between
surrogate model and fine model. Here, design parameters are constants
and model parameters are variables.

Surrogate model (re)optimization with updated model parameters
from Step 5 to determine the new set of design parameters. Then go to
Step 3. Here, design parameters are variables and model parameters

are constants.

4.3.2 Space Mapping Modeling

4.8:

Usually, the framework for SM modeling has the followings steps [28] as in Fig.

Step 1

Step 2
Step 3

Step 4

Step 5

Step 6

Define fine model and coarse model. Chose a mapping approach such
as ISM, OSM, ISM or combination of these for surrogate model.
Generate the base points and multiple test points.

Simulate the fine model at all the base points.

Match the surrogate to the fine model through PE using all the base
points simultaneously. Here, the design parameters are constants and
the model parameters are variables.

Test the SM-based surrogate model at the test points.

If necessary, interpolate the surrogate responses for arbitrary values.
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select models and mapping
framework

generate base and
test points

simulate fine model points

multi-point parameter extraction

test SM-based model

interpolate responses

Fig 4.8: Space Mapping Modeling flow chart [11].




M. A. Sc. Thesis — Kai Wang McMaster - Electrical and Computer Engineering

4.5 CONCLUSIONS

In this chapter, we briefly review the concept of Space Mapping (SM) and its
framework for optimization and modeling. We discussed different mapping methods in
SM to match surrogate model responses with fine model. The Parameter Extraction (PE)
step is the key to establish the mapping and updating surrogate model. The surrogate
model is then utilized in predicting new designs in the case of SM optimization. It is used
as a substitute of the time intensive fine model in the case of SM modeling. The

framework for SM optimization and SM modeling is present step by step.
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