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ABSTRACT 
The traditional approach for estimating sensitivities utilizes finite difference (FD) 

approximations which are time-intensive even for simple problems. This involves 

perturbing each design parameter in the forward and/or backward directions and 

simulating the perturbed structures. For a problem with N optimizable parameters, this 

approach requires at least N+ 1 simulations. If N is large, this approach may easily become 

impractical due to the intensive simulation time. 

The Adjoint Variable Method (A VM) aims at obtaining the response sensitivities 

using at most one extra simulation regardless of the number of designable parameters. 

The field information is stored at specific points related to each parameter in both the 

original and adjoint simulations. This approach was applied to sensitivity analysis of 

scalar objective functions and frequency domain responses. 

This thesis addresses a new A VM algorithm for estimating time domain response 

sensitivities using time domain transmission-line modeling (TD-TLM) method. Our 

algorithm obtains the sensitivities of any electromagnetic time domain response over the 

whole simulation time with respect to all parameters using only one extra time domain 
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simulation. A very good match is obtained between our sensitivity estimates and those 

obtained through the accurate and time-intensive central difference approximation. 

One of the motivations for sensitivity analysis is gradient-based optimization. The 

optimization process speeds up by using our A VM algorithm for gradient estimation. In 

this literature, we will implement gradient-based optimization using our AVM through 

different applications including microwave imaging problem. The results show good 

match between the sensitivities obtained using our A VM approach and those obtained 

using the more expensive finite difference approximation. 
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CHAPTER! 

INTRODUCTION 

1.1 MOTIVATION 

The sensitivity analysis with respect to all designable parameters is essential in 

many problems such as gradient-based computer-aided design (CAD), inverse problems, 

tolerance analysis, and yield analysis. Traditional electromagnetic (EM) solvers, however, 

do not provide temporal or spacial sensitivity information. Classically, the sensitivities of 

the responses are computed using finite differences (FD). This involves perturbing each 

design parameter in the forward and/or backward directions and simulating the perturbed 

structures. For a problem with N optimizable parameters, this approach requires at least 

N+ 1 simulations. Utilizing the more accurate Central Finite Differences (CFD) required 

extra 2N simulations. This extensive simulation time calls for more efficient simulation 

approaches. 

Recently, an Adjoint Variable Method (AVM) technique with time-domain 

transmission-line modeling (TLM) is developed to efficiently estimate the objective 
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function sensitivities with respect to all designable parameters [1 ]-[1 0]. Regardless of the 

number of design parameters, the sensitivities with respect to all parameters are obtained 

using only two analyses of the original and adjoint systems. The A VM algorithm for 2-D 

time-domain TLM was first presented by Bakr et al. in [1] to compute the sensitivities 

with respect to dimensions of perfectly conducting discontinuities. The technique was 

then extended to compute the sensitivities of 2-D and 3-D dielectric discontinuities [2]-[4]. 

Several other techniques were developed in the past few years. Self-adjoint S-parameter 

sensitivity analysis algorithms for lossless homogeneous and nonhomogeneous TLM 

problems were developed in [5] , [6]. The sensitivities of planar structures using first

order one-way wave equation boundaries were addressed in [7]. Recently, AVM for 

conformal TLM based on the rubber cell implementation is presented [8]. The 

sensitivities of the complete time response for 2-D and 3-D lossless homogeneous and 

lossy nonhomogeneous TLM problems were presented in [9] , [10]. 

The A VM approach is not only limited to the time-domain TLM method but it 

was also applied to other numerical techniques such as the finite-element method (FEM) 

[11 ]-[16], the method of moments (MoM) [17]-[20] , the finite-difference time-domain 

(FDTD) method [21]-[24], and the frequency-domain TLM (FDTLM) method [25] . This 

thesis mainly focuses on the recent developments and applications of the A VM algorithm 

for the time-domain TLM. 

The target response represents the desired performance of the system. The 

physical dimensions and the material properties can be estimated using optimization 

2 
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techniques. In gradient-based optimization, the responses and the sensitivities are 

essential. Thus, the efficiency of the sensitivity analysis approach is crucial for the 

solution of typical gradient-based optimization problems such as microwave mverse 

problems. 

The main contribution in this thesis is the development of novel adjoint based 

algorithm for estimating sensitivities of time-domain responses at any time step with 

respect to all designable parameters [9], [10]. The algorithm is achieved through 

modifying the objective function of the original AVM algorithm in [1]. The field 

information is stored at specific domains related to each parameter during the original and 

adjoint simulations. The equations expressing the original and the adjoint systems have 

different mathematical forms [10]. We illustrate the applications of the algorithm to 

microwave inverse problems such as breast cancer detection [9] , [10]. 

1.2 CONTRIBUTIONS 

The author contributed substantially to the following developments presented in 

this thesis: 

1. Efficient estimation of sensitivities at specific time using A VM for 2-D 

TLM perfectly conducting discontinuities and dielectric discontinuities. 

2. 2-D tumor detection using surrogate models and AVM. 

3. 2-D tumor detection using direct optimization and AVM. 

4. Efficient estimation of sensitivities at specific time using A VM for 3-D 

3 
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TLM problems exploiting the symmetric condensed node. 

1.3 Overview of the Thesis 

The thesis has two major parts. The first part (chapters 2-3) provides the 

comprehensive reviews of previous research done in applying the A VM method. This 

research represents the base for the work reported in this thesis. The second part (chapters 

4-5) presents the major contribution and examples. 

Chapter 2 reviews the theory of the time-domain TLM method [26]-[30]. 2-D 

TLM technique is first discussed [26], [27]. We then explain the 3-D TLM technique with 

symmetric condensed nodes (SCN) [30]. For both approaches, we discuss how the 

variations of dielectric properties and lossy materials are modeled. The boundary 

modeling of the non-dispersive case and the dispersive case are briefly introduced. 

Chapter 3 reviews up-to-date A VM algorithms for time-domain TLM. The A VM 

for the 2-D time-domain TLM is first discussed [1]-[3]. The sensitivity analysis for 

perfectly conducting discontinuities and dielectric discontinuities are demonstrated. The 

next section reviews the AVM for 3-D TLM with SCN [4]. The following few sections 

review further developments of the A VM, such as the self-adjont S-parameter sensitivity 

analysis for lossless homogeneous and nonhomogeneous TLM problems [5] , [6] , 

sensitivities of planar structures using first-order one-way wave equation boundaries [7] , 

and AVM for conformal TLM based on the rubber cell implementation [8]. 

Chapter 4 discusses our novel A VM algorithm for estimating the sensitivities of 

4 
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time-domain responses with respect to all designable parameters [10]. The detailed 

mathematical derivations are presented. The approaches are illustrated through a number 

of examples. 

In Chapter 5, the technique is applied for inverse problems. 2-D breast tumor 

detection using surrogate models is first demonstrated. In the next section, different 

structured 2-D breast tumor detection approaches are presented using direct optimization 

and AVM. In all these problems, the optimized parameters include dielectric properties, 

dimensions, and location. 

Finally, we conclude with a summery of the research contributions and future 

work in Chapter 6. 

5 
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CHAPTER 2 

THE TRANSMISSION- LINE 

MODELING (TLM) METHOD 

2.1 INTRODUCTION 

The TLM method, which was initially proposed by P. B. l ohns [1] , is an efficient 

numerical technique for solving Electromagnetic (EM) problems. The EM fields are 

simulated by a network of transmission lines with a discretized model in both space and 

time. MEFiSTO-2D and MEFiSTO Nova [2] are two powerful EM field modeling 

softwares that utilize the time-domain TLM in 2-D and 3-D, respectively. 

This chapter reviews the time-domain TLM method to model 2-D and 3-D 

electromagnetic problems in both homogeneous and nonhomogeneous structures [1] , [3]

[6]. For 3-D TLM, the mostly commonly used structure, the symmetric condensed node 

SCN [4] , is presented. Modeling of lossy materials and boundary conditions is also 

introduced for both 2-D and 3-D. 
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2.2 BASIC THEORY 

The TLM method is a powerful numerical technique for solving EM problems. 

The main idea is to model the wave propagation in a discretized space-time framework. 

The computation domain is discretized into a network of transmission lines that are 

usually referred to as "link-lines". The intersections of the link-lines are the TLM nodes. 

The structure of each node and its parameters are chosen based on the local material 

properties and the modeled EM phenomena. The voltages and currents on the link-lines 

are used to calculate the different EM field components at the center of the node. In TLM, 

a sequence of scattering and connection is steps carried out [1]. The desired excitation is 

usually added as a soft source to designated link-lines of the excited nodes. The excited 

incident impulses are partially reflected and partially transmitted. The scattered impulses 

then become the incident impulses on the neighbouring nodes at the next time step. The 

boundary conditions are applied if the scattered impulses have interface with the external 

boundaries. 

For the ith node, the scattering relation is given by 

(2.1) 

where Vi is the vector of incident impulses on the lh node at the kth time step, Vt.:.]i is the 

vector of reflected impulses of the lh node at the next time step, and Si is the scattering 

matrix of the ith node. The scattering matrices are different in 2-D TLM and 3-D TLM. 

The reflected impulses from each node become incident on neighbouring nodes. It 

follows that for the case of non dispersive boundaries [3], one TLM step is given by 
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(2.2) 

where Vk is the vector of incident impulses for all nodes at the kth time step. In most 

problems, the initial conditions are all zeros (Vk=o = 0). This means that the incident 

impulses on all link-lines are initially set to zero. The computational domain is discretized 

into a total of N nodes with node size /)J. The matrix S is a block diagonal matrix whose 

i th diagonal block is Si . C is the connection matrix describing how reflected impulses 

connect to neighbouring nodeslboundaries. The vector V; is the vector of source 

excitation at the kth time step. 

The connection matrix is a symmetric matrix with the following properties: 

={ 1 = Cji
, 

Cij r, 
0, 

if link i is connected to link i , iii 
if link i is connected to a non dispersive boundary, i=i 
otherwise 

(2.3) 

where r is the boundary impulse reflection coefficient for non dispersive boundaries, for 

examples, r = 1 for magnetic boundaries and r = -1 for electric boundaries. 

2.3 TWO-DIMENSIONAL TLM METHOD 

Many electromagectic problems can be solved using the 2-D TLM method. The 

2-D problems are more suited for numerical computations compared to 3-D TLM in 

terms of simulation time and memory storage. For the TLM node, there are two types of 

discretization nodes, the series and shunt nodes. The 2-D shunt node is utilized more 

often because it is used to model the dominant mode in waveguide problems. 
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(a) (b) 

(c) 

Figure 2.1: Illustration of the scattering and connection steps in a 2-D TLM 
algorithm. (a) An impulse is incident on the ith node at a given time step. (b) The 
incident impulse is scattered into four reflected impulses. (c) The reflected impulses 
propagate to neighboring nodes where they get scattered at the next time step [9]. 

Figure 2.1 shows an illustration of the scattering and connection steps in a 2-D 

TLM algorithm. The impulse propagation on link-lines at the first and second iterations is 

illustrated. The scattering matrices of homogeneous and non homogeneous mediums are 

different. In the next two sections, the modeling of homogeneous lossless materials and 

non homogeneous lossy materials are discussed separately. 

2.3.1 Modeling of Homogeneous Lossless Materials 

An equivalent structure of a shunt node in a loss less and homogenous medium is 

shown in Figure 2.2. The parameter 11/ is the length of each transmission line segment, L 

is the inductance per unit length, and C is the capacitance per unit length. We utilize basic 
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Figure 2.2: A 2-D shunt node structure of Lumped-element model where L is the 
inductance per unit length and C is the capacitance per unit length .. 

circuit analysis to obtain an expression for the voltages and currents over the transmission 

lines. Using KVL and KCL, we have [8] 

a1 
V/x+&)=V/x)-L& a; 
Vy (z + &) = Vy (z) - L& ~: 

av 
Iz(z) + Ix (x) = 1=(z+&)+ 1xCx+&)+2CM a: 

Maxwell's equations is reduced to the following set for TM-modes [8], 

aEy aH_ 
-=-j.J--ax at 
aEy aH 
_=j.J_x 
az at 

aH aH aEy __ x_~=&_ 

az ax at 

The following equation (2.6) is obtained if we combine the equations in (2.5) 
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where & and J-l are the local permittivity and permeability, respectively. We can thus 

establish a 1-to-1 mapping between circuit and field quantities [8] , 

(2.7) 

Now, the voltage at any node can be obtained using the incident impulses. 

(2.8) 

where ZTL is the characteristic impedance of each line. Combining with the mapping 

given above, the electric field is given by 

E = Vy = V/ + Vi + Vi + V1 
y f..I 2!J.l 

(2.9) 

The scattering matrix for this node is given by [3] 

s=o.s[-; -) _: 
1 1 1-1 

1 
(2.1 0) 

1 

The incident voltages of neighbouring nodes at the next time step are obtained from the 

connection process: 

k +l~i (x,y) = k~' (x,y-l), 

k+r; (x, y ) = kV:' (x-l ,y), 

k +l~i (X,y) = k~' (X,y + 1), 

k+1V:i(X,y) = F ; (x+ l,y). 

14 
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F or boundary nodes, the algorithm in (2.11) should be modified to model different 

boundary conditions. 

2.3.2 Modeling of Non Homogeneous Lossy Materials 

For a non homogeneous media, extra capacitance in the form of open-ended shunt 

stubs is necessary to model the extra permittivity. Synchronism of incident impulses is 

maintained by choosing the length of the capacitive stub to be equal to N / 2 [8]. The 

losses can be modeled by matched loss shunt stubs. The capacitive and loss stubs have 

normalized admittance Yo and go, respectively. In this case, the following 1-to-1 mapping 

between the field components and the transmission line quantities is given by [8] 

(2.12) 

Free space is usually taken as the background medium for nonhomogeneous medium 

modeling. It follows that we have 

[; 
L=II C =-2.. 

/""0' 2 

Combining (2.12) and (2.13), we get 

Yo = 4.0(cr -1) 
!1lo-

go = ,JC / L 

15 
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1 111 1.1 
2 Vjl -'-j-- 2 Vi ----r; 2 Vi T .2 Vi T' 2 VI , ,2 I' 3 I " ' s g 

f ZI rZI 
f

ZI j~- ' 
(a) 

3 L (x,y+ 14 

2 

1 
3 3 3 

(x-J'Y)4 (x,y) 
4 (x+ J'Y4 

2 2 ----- 2 
---- loss stub 

1 1 cpa. stub 1 

3 
(x,y-J)4 

2 

1 

(b) 

Figure 2.3: A 2-D shunt node with capacitive and loss stubs (a)Thevenin equivalent 
circuit. (b) Connection in 2-D shunt nodes. 

Figure 2.3(a) illustrates the equivalent circuit of the 2-D shunt node m a 

nonhomogeneous lossy media. In this case, the electric field is given by 

E = 2(~i +V~ +Vf +V1 + YoV:) 
y Y (2.15) 
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where y = 4+ Yo + go. The scattering matrix of the lossy shunt node with both a 

capacitance stub and a loss stub is thus given by [3] 

2-y 2 2 2 2yo 
2 2-y 2 2 2yo 

1 S=- 2 2 2-y 2 2yo (2.16) y 
2 2 2 2-y 2yo 
2 2 2 2 2yo - y 

The connection process of four impulses is exactly the same as it in the 

homogeneous case. The difference is the connection of the stubs (Figure 2.3(b)). The 

incident voltage of the open-ended capacitive stub at the k+ 1 th time step is equal to its 

reflected voltage at the kth time step. For the loss stub, the energy is simply extracted from 

the domain and no incident impulses appear on this loss stub. It follows that we have the 

following connection steps: 

k+,V;i(x, y) = kV{ (x,y-l), 

k+r~(x,y)= kV; (x-l,y), 

k+r;(x,y) = kv;r(x,y+l), 

k+rl(x,y) = kV{(x+l,y), 

k+r: (x,y) = kV; (x,y). 

(2.17) 

For the boundary nodes, the steps in (2.17) should be modified properly to model 

different boundary conditions. 

2.4 THREE-DIMENSIONAL TLM METHOD 

Many practical electromagnetic problems are three-dimensional. Therefore, the 

3-D TLM is thus essential for general 3-D problems. In this section, the symmetrical 
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}-x 
z 

Figure 2.4: The three-dimensional symmetrical condensed node (SCN). 

condensed node (SCN), which was initially proposed by 10hns [4], is discussed. It is the 

most commonly used structure for TLM simulation because of its simplicity. It also 

enjoys the property that all field components are modeled at the node center. More 

advanced algorithms based on the SCN have been developed, including hybrid SCN and 

the generalized SCN [9]-[13]. 

The SCN has six branches with two transmission lines in each branch (Figure 2.4). 

Each transmission line has a length of N / 2 and a characteristic impedance Zo ' The 

scattering properties are obtained from conservation of energy and charge [4]. The 

following mapping between the circuit and field components is utilized [8]: 

Ex ~-V"Ey ~-Vy , Ez ~-v. , 

Hx ~ Ix, Hy ~ I y, Hz ~ Iz 

18 
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The 3-D TLM analyses of homogeneous and nonhomogeneous media are different. 

In the next two sections, the 3-D modeling of homogeneous lossless materials and 

nonhomogeneous lossy materials are discussed separately. 

2.4.1 Modeling of Homogeneous Lossless Materials 

For a homogeneous loss less medium, the scattering matrix has twelve rows and 

twelve columns. Only few of the matrix components are non-zero. The components of the 

scattering matrix are derived by applying the unitary conditions [4]. The conditions 

exploit the energy and charge conservation principals. In this case, we have [4] 

S TS=I (2.19) 

0 1 1 0 0 0 0 0 1 0 -1 0 

1 0 0 0 0 1 0 0 0 -1 0 1 

1 0 0 0 0 0 1 0 0 0 -1 

0 0 1 0 1 0 -1 0 0 0 1 0 

0 0 0 0 1 0 -1 0 1 0 0 

0 1 0 0 1 0 1 0 -1 0 0 0 
S=0.5 (2 .20) 

0 0 0 -1 0 1 0 1 0 1 0 0 

0 0 1 0 -1 0 1 0 0 0 1 0 

1 0 0 0 0 -1 0 0 0 1 0 1 

0 -1 0 0 1 0 1 0 1 0 0 0 

-1 0 0 1 0 0 0 1 0 0 0 1 

0 1 -1 0 0 0 0 0 1 0 0 

The incident voltages of neighbouring nodes at the next time step are obtained 

from the connection process. Here, the reflected impulses are exchanged between the 

neighbouring nodes (Figure 2.5): 
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Figure 2.5: Connection of SCN nodes. 
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k+l~i (x,y,z) = k~;(x,y-I,z), 
k+ri(x,y,z) = kV{(x,y-l ,z), 

k+rl (x,y,z) = kV{(x,y,z-I), 

k+ri (x,y,z) = kV;(x,y,z-I), 

k+r~ (x,y,z) = kV;(X,y,z+ I), 

k+r~ (x,y,z) = kV{(x,y,z+ I), 

k+l~i2(X,y,Z) = k~r (x,y+ l,z), 

k+r4 (x,y,z) = kV;(X,y+ I,z), 

k+r{ (x,y,z) = k~~ (x - I,y,z), 

k+r~ (x,y,z) = k~~(x-I,y,z), 
k+l~iO(X,y,z) = kV;(X+ I,y,z), 

k+l~\(X, y,z) = kV{(X+ I,y ,z). 

(2.21) 

For the boundary nodes, the equation (2.21) is modified to model different boundary 

conditions. 

All the electromagnetic field components are obtained at any point using the 

values of the incident voltage impulses. The field components may be calculated as 

follows [4] 

E = _ ~i + V~ + V~ + ~i 
x 2!'::..1 ' 

E = V; +V; +~\ +Vf 
y 2!:l1 ' 

E = _ Vi +V~ + V~ +~iO 
z 2!:l1 ' 

H = V; +V~ -Vi -V~ 
x 2Z !:ll ' 

o 

(2.22) 

H = -Vi +V~ + V~ -~~ 
y 2Z0!:l1 ' 

H = ~i - Vi +~il-~~ 
= 2Zo!:l1 . 

where Zo is the characteristic impedance. 
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2.4.2 Modeling of Non Homogeneous Lossy Materials 

In a non homogeneous medium, a host TLM mesh is employed to model a 

background medium. Free space is usually taken as this background medium. Extra stubs 

are added to model the extra permittivity, permeability, and conductivity. Three open-

circuit stubs are used for a material with relative permittivity greater than one. Three 

short-circuit stubs are also added to model permeability values greater than that of air. 

The scattering matrix has eighteen rows and eighteen columns [4]: 

s= 

a 

b 

d 

o 
o 
o 

b 

a 

o 
o 
o 
d 

o 0 
o 0 

b e 

o -d 

-d 0 

e b 

e e 

o 0 

o 0 
o 0 

o -I 
1 0 

d 

o 
a 

b 

o 
o 

o 
o 
b 

a 

d 

o 

o 
o 
o 
d 

a 

b 

o 0 

d 0 

o 0 
o -d 

b e 

a b 

o 
o 
b 

e 

-d 

o 

b 0 
e -d 

o 0 
o 0 

o b 

-d e 

O-de bad 0 b 

be-dO d a 0 0 

00 O-dO 0 ad 

o 0 b e bOd a 

e bOO 0 bOO 

-dO 0000 b 0 

00000 0 e 0 

e e 0 0 0 e 0 0 

o 0 e e e 0 0 e 

o 1 -I 0 1 -I 0 0 

o 0 

-I 0 

010 

000 

o 1 -I 
000 

-d 
o 
e 

b 

o 
o 

egO 0 0 0 

b gOO 0 -i 0 

-d 0 gOO 0 -i 

o 
o 
o 

o g 0 
o 0 g -i 

o 0 g 0 

o 0 

o 0 

o 
o OOOg 00 

bOO g 0 -i 0 0 

o bgOOO 0 

o 0 0 0 g 0 -i 0 

a dOgOOO 

d agO 0 0 0 -; 

o ehOOOOO 

eOOhOOOO 

o OOOhOOO 

OOOOO}OO 

OOOOOO}O 

1 -I 0 0 0 0 0 } 

(2.23) 

Each element of the scattering matrix is expressed in terms of the normalized 

characteristic impedances of the capacitive stubs f and the inductive stubs i . 
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~ ~ 

-Y Z 
a= ~ + ~ , 

2( 4 + Y) 2( 4 + Z) 

4 
b = ~ , 

2(4+Y) 
~ ~ 

-Y Z 
c = 1'\ " , 

2(4+Y) 2(4+Z) 

4 
d = ~ , 

2(4+Z) 

e =b, 
~ 

f =Zd, 
~ 

g =Yb, 
~ 

Y-4 
h= -~-, 

Y+4 
i =d, 

4-Z 
j=--~ . 

4+Z 

y = 2£, ~Y&'-4 
x uo~t & ' 

Y = 2£, &&'-4 
Y uoM Lly , 

Y = 2£, &~y -4 
z uo~t &' ' 

Z = 2Jl, ~Y&'-4 
x uo~t & ' 

Z = 2Jl, &&'-4 
Y uoM ~y , 

Z = 2Jl, &~y -4 
z uo~t &' ' 

1 

(2.24) 

For lossy materials, six more stubs are included to model electric and magnetic 

losses in all directions. The structure of scattering matrix is the same as (2.23), but the 

elements are modified. Each element is expressed not only in terms of Y and i but also in 

~ ~ 

terms of the normalized admittances G and the normalized impedances R of the loss 

stubs. Assuming that & = ~y = &' = ~l , we have [4] 
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,..,.. A,.. 

Y+G Z +R 
Q = - ,..,.. + ,..,., , 

2(4+Y +G) 2(4+Z +R) 

4 
b = ~ ~, 

2(4+Y +G) 
~ ~ ~ ~ 

Y+G Z+R 
c=- ~ ~ 

2(4+Y +G) 
~ ~, 

2(4+Z + R) 

4 
d= ,.. '" 

2(4+Z +R) 

e =b, 
~ 

j=Zd, 
~ 

g=Yb, 
~ ~ 

Y-G-4 
h=,.. " , 

Y+G+4 
i =d, 

4-R-Z 
j = ~ ~. 

4+R+Z 

1 
Zo =-. 

Yo 

(2.25) 

The connection process in a nonhomogeneous lossy medium is implemented by 

exchanging the reflected impulse between the neighbouring nodes, which is the same as 

all the TLM problems. Because the capacitive stubs are modeled by an open circuit, the 

incident impulses in the next time step are equal to the current reflected impulses with a 

reflection coefficient + 1. For the inductive stubs, the reflection coefficient is -1. For the 

loss stub, the energy is extracted out of the domain and no incident impulses appear on it. 

The field components at each direction are given by [4] 
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2(V;1 + Vi + V~ + V;'2 + Yv;13) 
Ex == A 

N(4+Y) 

2(V; +V~ +V;\ +V~ + Yv;14) 
Ey =- N(4+Y) , 

_ 2(V~ + V~ + V; + V;io + Yv;ls) 
E. -- A, 

. N(4+Y) (2.26) 
2(VI-V; +vi -V~ -~~) 

Hx = N(4Zo +ZoZ) , 

_ 2(-Vl +V~ +V~ -V;~ -V;/7) 
Hy - ~1(4Zo +ZoZ) , 

_ 2(V;' - Vi + V;i\ - V;~ - V;i8) 
H. - A. 

~ N(4Zo +ZoZ) 

2.5 MODELING OF BOUNDARIES 

In different electromagnetic problems, different boundary conditions may be 

required. In TLM, different boundaries are modeled for accurate simulation results. 

There are two main categories of boundary conditions: non dispersive boundaries and 

dispersive boundaries. 

2.5.1 Non Dispersive Boundaries 

For TLM problems with non dispersive boundaries, these boundaries are simply 

modeled by a reflection coefficient T (2.27) 

(2.27) 
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Perfectly conducting boundaries (electric wall) is described by a short circuit. The 

connection process for such a boundary is given by 

(2.28) 

For magnetic wall, the connection process is given by 

(2.29) 

For a non dispersive boundary with load impedanceRL' the reflection coefficient of each 

link-line is given by 

(2.30) 

2.5.2 Dispersive Boundaries 

2.5.2.1 Johns Matrix [5] 

In TLM problems with dispersive boundaries, the response of the boundary can 

not be expressed by a single reflection coefficient r . In many cases, the computational 

domain is truncated by absorbing boundaries which simulates perfect transmission of the 

wave with no reflections from the boundary into the computation domain. The most 

popular boundary condition for this case is Johns' matrix boundary [5], [6]. The idea is to 

determine the time domain impulse response of the boundary (the Johns matrix) 

beforehand. In order to model the absorbing boundary of a waveguide, a long enough 

waveguide section must be used to ensure that no reflections reach the input port before 

the simulation stops. To reduce the computation cost of Johns matrix, the implementation 
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of gradually increasing losses in the waveguide section is introduced [15] . The wave is 

attenuated by the losses gradually within a much shorter waveguide section. Once the 

10hns matrix of a specific waveguide is calculated, it can be reused as long as the same 

waveguide is simulated. The response of arbitrary excitations to the waveguide can be 

obtained by convolving it with the 10hns matrix. The TLM expression for a problem with 

10hns' matrix absorbing boundaries is [5] 

k 
Vk+ 1 = CS~ + L J(k - k ')V;' + ~s 

k '=O 

(2.31) 

where J(k) is the kth time layer of the 10hns matrix. 

2.5.2.2 One-way Wave Equations [14] 

In this technique, a boundary operator is used to guarantee the wave at the 

boundaries is travelling in the outgoing direction only. The fields of neighboring nodes at 

current and previous time step are used by the operator to calculate the fields at 

boundaries. The higher the operator order is; the more the absorption is. For the first-

order boundary operator, the E-field at the mth space step and the kth time step is given by 

[14] 

Ek(m,n,l) = aIEk- l(m,n,I)+ /3IEk(m-l,n,I)+ yIE
k- l(m-l,n,l) (2.32) 

where a l ' /3( , and Y1 are interpolation coefficients which depends on the wave angle of 

incident wave at the boundary. Reference [14] also presents higher-order boundary 

operators. 
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2.6 CONCLUSION 

In this chapter, we briefly reviewed some of the basic concepts in the time-domain 

TLM method. We presented how to model different EM problems using time-domain 

TLM. Detailed algorithms for lossless homogeneous and lossy nonhomogeneous 

mediums in both 2-D and 3-D cases were shown. The 2-D shunt node was utilized for the 

2-D TLM and the symmetrical condensed node (SCN) was utilized for the 3-D TLM. We 

also discussed different boundary conditions: dispersive and nondispersive. For dispersive 

boundary, both the techniques of Johns matrix and one-way wave equation were 

discussed. 
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CHAPTER 3 

THE ADJOINT-VARIABLE METHOD 

FOR TIME-DOMAIN TLM 

3.1 INTRODUCTION 

Sensitivity analysis is essential to many electromagnetic (EM) problems including 

gradient-based optimization, tolerance analysis, and yield analysis. For an EM structure, 

the optimization problem can be expressed as 

x* = arg{mlnF(x,R(x))} (3.1) 

where x* is the vector of optimal parameters, x is the vector of optimizable parameters, 

R(x) is the vector of responses, and F is the objective function to be optimized. The 

problem in (3.1) is usually solved using gradient-based optimizers. In this case, the 

optimizers need not only the structure response but also its derivatives with respect to all 

designable parameters. The traditional approach to estimate sensitivities utilizes Finite 
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Difference (FD) approximations. These approximations are time-intensive even for 

simple problems. The Adjoint Variable Method (AVM) , on the other hand, efficiently 

estimates the sensitivities analysis using at most two simulations of the original and 

adjoint systems. 

This chapter reviews the mathematical derivation of the sensitivity analysis of 

time-domain TLM problems using the AVM. The algorithm is first derived for 2-D 

time-domain TLM problems including metallic discontinuities, dielectric discontinuities, 

and waveguides with wide-band Johns matrix boundaries [1]-[3]. The AVM algorithm is 

then derived for 3-D metallic and dielectric discontinuities [4]. The last section discusses 

the further developments of the AVM including self-adjoint S-parameter sensitivities for 

lossless homogeneous and nonhomogeneous TLM problems [5], [6], sensitivities of 

planar structures using first-order one-way wave equation boundaries [7], and AVM for 

conformal TLM based on the rubber cell implementation [8]. 

3.2 AVM FOR 2-D TIME-DOMAIN TLM METHOD [1]-[3] 

In this section we discuss how the sensitivities of 2-D time-domain TLM 

problems can be estimated using the A VM. The objective function as a function of the 

vector of optimizable parameters x has the form [1] 
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Tm Tm 

F = J J g(x,V)do.dt = J G(x,V)dt (3.2) 
o Q 0 

whereG(x,V) is the objective function's kernel,n is the observation domain, V is the 

continuous vector of Vk, the vector of incident impulses for all nodes at the J(h time step, 

and Tm is the maximum simulation time. The analytic derivative of this objective function 

with respect to the ith parameter is given by 

(3.3) 

where ae lfuj denotes the explicit dependence of the objective function on the ith design 

parameter which is equal to zero in most practical cases. 

To solve (3.3), aVlfu, should be computed. The derivative aGI av can be 

easily obtained analytically by taking the derivatives of G(x,V) with respect to V. 

There are two possible approaches to estimate aVlfu, in (3.3). The first one involves 

using FD approximations which may be time intensive. The alternative approach is the 

A VM which efficiently estimates the sensitivities using at most one extra adjoint 

simulation. 

Assuming that a band-limited excitation is applied and a sufficiently small time 

step!!t is utilized, the vector of incident impulses at the k+ 1 th time step can be 

approximated using first order Taylor'S series [1] 
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~+J = V (kl1t + I1t) 

~ ~ +( B:1 I1t. 

Comparing (2.2) and (3.4), we get 

Rearranging (3.5), we get 

~ +( B:1 /).( ~ CS~ +V;. 

BV V' -=A(x)V+-
Bt M 

(3.4) 

(3.5) 

(3.6) 

where A(x) = (C(x)S(x)- I)/ /).( and I is the identity matrix. The matrixA is the system 

matrix which contains all the information about the material properties and the 

connections of all nodes. 

Perturbing one of the designable parameters x, by &, causes a perturbation of 

M, in the system matrix A. It also causes a perturbation of 11V; of the vector of 

incident impulses. For the perturbed system, (3.6) can be written as 

B(V +I1V) V' 
Bt ' =(A(x)+M,)(V+I1V,)+ t:,.t. 

Simplifying (3.6) and (3.7), we get 

BI1V T = M,v + A(x)I1V +M,I1V,. 

Dividing both sides of (3.8) by &" we obtain the second order derivative expression 

B
2
V "" M, V + A BV + M, BV. 

BtBx, Llx, Ox, ax, 

The adjoint vector A. is defined by [9]: 
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(3.10) 

Integrating the first term in the bracket by parts, we get 

(3.11) 

The first term in (3.11) is equal to zero becauseA(Tm ) = 0 andV(O) = o. Comparing (3.11) 

with (3.3), we set [1] 

OAT +AT (A+M,)=(OG )T ot oV (3.12) 

Expanding the matrix A, (3.12) results in the discrete time form: 

(3.13) 

where V:)' = l'l.t(oG / aVhtJ.I is the adjoint excitation. The system (3.13) is the adjoint 

system. 

Because (3.13) is a parameter dependent system, it has to be solved for each 

parameter. This is not efficient, so an assumption is used to overcome this problem. Since 

the perturbation of each parameter is very small and does not affect the incident impulses 

significantly, the adjoint impulses are approximated by the values of the corresponding 

incident impulses for the unperturbed adjoint problem (3.14) [1] 

A = ST (x)CT (X)A - v.s
•
1 A(T) = 0 k-l k k' m (3.14) 

Combining (3.3), (3.11), and (3.12), the sensitivity of F with respect to lh 
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parameter can be expressed as 

(3.15) 

where the vector 1l~ = ( ~ / Ax, ) Vk is a linear combination of the original impulses. The 

vector A is obtained from the backward running adjoint system (3.14). 

To calculate (3.l5),A, Vk and M, must be determined. A is obtained from 

adjoint system, and Vk is from the original system. The M, is the change of system 

matrix due to the perturbation of optimizable parameter x,, so only the links affected by 

the perturbation of the i th parameter have non-zero values of ~. Accordingly, only a 

few of impulses are stored in both the original system and the adjoint system. The 

parameter perturbation causes different perturbations for both metallic discontinuities and 

dielectric discontinuities. Different implementation is utilized in each case. The 

perturbation in metallic discontinuity causes only the connection matrix to change. On the 

other hand, only the scattering matrix changes for dielectric discontinuities. The 

implementation of metallic discontinuity and dielectric discontinuity is discussed 

separately. 
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Original System Adjoint System 

(a) (b) 

Figure 3.1: Illustration of the links storage. (a) The red arrowed bold links are the ones 
for which the matrix M has nonzero components for a perturbation of 1M of the 

parameter L. (b) The adjoint impulses are approximated by their corresponding ones 
for the unperturbed structure. [1] 

3.2.1 Metallic Discontinuities 

A perturbation in a metallic discontinuity causes a change of the system matrix. 

This change is due to the perturbation of the connection matrix of the links around the 

discontinuity: 

~ = L'lC,S(x) = C(x+&)S(x)-C(x)S(x) 
L'lt M . (3.16) 

The evaluation of the components of the vector 1]~ depends on the way nodes are 

metallized or demetallized with a perturbation of &,. We consider the case where the nth 
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link-line is metallized after the perturbation and the mth link-line is connected to the nth 

link in the nominal structure. The mth component of the vector 1]~ is thus given by: 

1]~,m = ~ ((A(x+LU,eJ-A(x))VkL , 

= A'!~ (C(X+LU,)S(X)Vk -C(x)S(x)Vk) . 
~j t m 

(3.17) 

After the perturbation, the mth link is connected to the metallic boundary. The first term in 

(3.17) changes to [1] 

(C(X+LUj)S(X)Vt) =V =-Vr
, 

m k+l,m k,m (3.18) 

The second term in (3.17) refers to the unperturbed problem and is equal to 

(C(x)S(x)Vt) =V =vr. 
m k+l,m k,n (3.19) 

Substituting (3.18) and (3.19) into (3.17), the mth component of the vector 1]~ is obtained 

, - 1 (v,r v,r) 
1h,m -- LU ~t k,m + k,n' , (3.20) 

Figure 3.1 illustrates the links in metallic discontinuities which have 

nonzero M components and should be stored during the simulation. 

3.2.2 Dielectric Discontinuities 

The variation of the system matrix due to a perturbation in a dielectric 

discontinuity is caused by corresponding change in the scattering matrix. The connection 

matrix remains the same. In this case, the vector 1]~ is given by 
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(a) (b) 

Figure 3.2: Illustration of the links storage. (a) The red arrowed bold links are the ones 
for which the matrix M j has nonzero components for a perturbation of lL11 of the 
parameter L. (b) The adjoint impulses are approximated by their corresponding ones 
for the unperturbed structure. [3] 

(3.21) 

The element of Ml is zero everywhere except for the nodes which are affected by the 

perturbationLlx
I

• Figure 3.2 illustrates that the links in dielectric discontinuities which 

have nonzero Ml components and should be stored during the simulation. 

There is another approach for estimating the sensitivities related to dielectric 

discontinuities [3]. If perturbing a parameter Xl results in changing the dielectric constant 

of a certain number of nodes with index n E {/,I + 1, ... ,1 + m}, then the analytical 
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expression of(3.15) is given by [4] 

(3.22) 

where Gr n is the relative dielectric constant of the nth "dielectrified" node. BF I BGr n IS 

given by [3] 

(3.23) 

where BA, I Ber,n is the analytical derivative of the system matrix with 

respect to the relative dielectric constant of the nth node. Thus, (3.22) is given by 

(3.24) 

The sensitivities estimated using this approach are more accurate because there is no 

approximation introduced in the procedure. This approach makes use of the analytic 

dependence on the local material properties. However, perfectly conducting 

discontinuities do not have such dependence. 

3.2.3 Practical Implementation 

The A VM algorithm is implemented in an efficient way. In the implementation, 

the summation term in (3.15) is simplified as [1] 
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"1Trt = "" 1 rt L..;'''Ie k L..; L..; "'k;,p k,p 
k k P 

(3.25) 

where the subscript p denotes the ih component with p ELi' Li is the set of indexes whose 

corresponding connection and scattering matrix changed by the perturbation /::,xi' 1, 2, ... , 

n. 

The A VM algorithm can thus be summarized in the following steps. 

Step 1) Parameterization: Detennine the sets of link indexes L, whose connection and 

scattering matrices are affected by the perturbations /::,x" 1, 2, ... , n. 

Step 2) Original Analysis: Carry out the original TLM analysis (2.2) and store the set of 

corresponding 1] values Vm ELi' i = 1, 2, ... , n at each time step. The values of 

the incident impulses in the observation domain are also stored to detennine the 

adjoint excitation in (3.13). 

Step 3) Adjoint Analysis: Carry out the backward adjoint analysis (3.13). The adjoint 

excitation is detennined from step 2). Store the adjoint impulses for the links with 

indexes L" i = 1, 2, ... , n in the unperturbed structure for all time steps. 

Step 4) Sensitivities Estimation: Evaluate (3.15) for all parameters. 

3.3 AVM FOR 3-D TIME-DOMAIN TLM METHOD [4] 

In this section we discuss how the sensitivities of 3-D TLM problems are 

estimated using the AVM. The node type utilized in the 3-D time-domain TLM is the 
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Symmetric Condensed Node (SCN). The derivation of mathematical formulation is 

exactly the same as the 2-D time-domain TLM problem, so the practical implementation 

follows exactly the same steps as those in the previous section. The only difference is that 

the number of stored impulses is different between 2-D and 3-D TLM problems. The 

required memory space for 3-D problems is much larger than it for 2-D problems. 

Again the implementation of the metallic discontinuity is different from it of 

dielectric discontinuity. Figure 3.3 illustrates the links in metallic discontinuities that 

should be stored during the simulation. Assume the perturbation is 1M in the 

x direction, the metalized nodes are a x b x c nodes in the perturbed region. According to 

(3.20), only the links around the discontinuity of the perturbed structure should be stored 

in the original system, so the total number of stored links is 2Tm (b x c + 2a x c + 2a x b) . 

F or the dielectric discontinuity, all the 18 links of each node at perturbed region 

should be stored (Figure 3.4). If there are a x b x c nodes with non-zero M" then 

18a x b x c impulses should be stored at each time step. The total number of stored links 

through whole simulation is 18Tm x a x b xc. 
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Original System 

L x ( a) front view (b) top view 

Adjoint System 

( c) front view (d) top view 

Figure 3.3: Illustration of the links storage for the 3-D metallic discontinuity 
parameters. a, b, and c are number of nodes in each direction. The red arrowed bold 
links are the ones should be stored for perturbation oflM [4]. 
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(a) front view 

(c) front view 

McMaster - Electrical and Computer Engineering 

Original System 

Adjoint System 

N 

(b) top view 

(d) top view 

Figure 3.4: Illustration of the links storage for 3-D dielectric discontinuity parameters. 
a, b, and c are number of nodes in each direction. The red arrowed bold links are the 
ones should be stored for perturbation oflM [4]. 
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3.4 AVM FOR TIME-DOMAIN TLM WITH WIDE-BAND JOHNS 

MATRIX BOUNDARY [2] 

The previous sections discussed the case of the AVM for the time-domain TLM 

with non dispersive boundaries. In this section, the implementation of the AVM for TLM 

with wide-band Johns matrix is presented. As explained in Chapter 2, the TLM 

expression for a problem with Johns matrix absorbing boundaries is [2] 

k 
~+J =CS~ +~s + L J(k-k')V;' 

k'=O 
(3.26) 

where J(k) is the kth time layer of the 3-D Johns matrix [10],V; is the vector of source 

excitation at the kth time step, ~ is the vector of incidents for all the nodes at the kth time 

step, and V{ is the corresponding vector of reflected impUlses. The summation in (3.26) 

is actually the time-domain convolution of the reflected impulses toward boundaries and 

the time-discrete Johns matrix [10]. 

For the simplification, the following vector expression is used [2]: 

v =[V:] 
k V D 

k 

[
VR.N] VR = k 

k V R•D 
k 

(3.27) 

where the superscript D represents links ending on the Johns matrix boundaries, and N 
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represents links connected to everywhere else except the dispersive boundaries. 

Ifwe consider the lohns matrix, (3.5) is rewritten as follows [2]. 

Vk + (aa
V

) t.t ~ CSVk +V/ + ± J(k-k ')SVk ,. 
t k k '=O 

(3.28) 

Equation (3.28) can be simplified to (3.29) if we useA(x) = (CS -1) / t.t [2] , 

av Vs 1 ~ 
-a =A(x)V +~+-2 f J(t-r)SV(r)dr. 

t tit M 0 
(3.29) 

A perturbation of Xi causes perturbations M i of system matrix A and t. V; 

of the vector V. Therefore, the perturbed system has the following expression: 

Combining (3.29) and (3 .30), we get 

at. V 
a, = M,V + A(x)t.V; +M,t.v. .. 

1 Tm 

+ M2 ! J(t-r)[ M ;(V(r)+t.V;(r))+St.V;(r)]dr. 

(3.30) 

(3.31) 

Because the optimizable parameters are normally the geometrical dimensions or 

the dielectric properties of the discontinuities which are located far way from the 

boundary, the boundary nodes are not affected by the perturbation [2]. It implies that 

M DD = 0 and (3.31) is simplified to 

MV 1 ~ 
a,=M,V+A(x)t.V;+M,t.V+ t.t 2 ! J(t-r)St1V; (r)dr. (3.32) 

Dividing both sides by ~i ' we get 
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(3.33) 

Now we follow the same step as (3.10)-(3.12), introducing the adjoint vector A, 

integration by parts and solving the equations, we get the adjoint system [2] 

(3.34) 

Again we use the mapping approximation for the adjoint system, (3.34) can be rewritten 

as 

(3.35) 

The original impulses and the adjoint impulses are stored from the simulation of 

(3.28) and (3.35), respectively. Then, the sensitivities can be calculated as follows: 

(3.36) 

It should be noted that the lohns matrix of the adjoint system at each time step is 

the transpose of the corresponding lohns matrix for the original system. Once the lohns 

matrix of the original structure is obtained, the sensitivities can be computed following 

the same steps as the AVM for the TLM problem with non dispersive boundaries. 
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3.5 AVl\f FOR PLANAR STRUCTURES USING FIRST-ORDER 

ONE-WAY WAVE EQUATION BOUNDARIES [7] 

In the previous section, we discussed the AVM for structures with 10hns matrix 

boundary. In this section, another kind of dispersive boundary, one-way wave equation 

absorbing boundary condition is presented [7]. The first-order one-way wave equation 

boundary is utilized because of its simplicity compared with other higher order 

boundaries. The original system and adjoint system are derived. 

A first-order one-way wave equation absorbing boundary condition is derived in 

[13]. The E-field at the mth space step and the kth time step is given by [13] 

Ek+l(m,n,l) = aIEk(m,n,l) + fJIEk+l(m-l,n,l) + YIEk(m-l,n,l) (3.37) 

where ai' PI' and YI are interpolation coefficients which depends on the wave angle of 

incident wave at the boundary. Only the fields at neighbouring nodes and the previous 

time step are used to compute current fields. A TLM step with a first-order one-way wave 

equation boundary is given by [13] 

(3.38) 

where V~+l is the vector of incident impulses at selected nodes adjacent to the boundaries 

at the next time step. Only few components corresponding to the fieldEk+1(m-l,n,l)is 

stored for V~+l . 

A simplified notation is utilized to make the links connected to the absorbing 
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boundaries indexed last [7] 

(3.39) 

where the superscript D represents links ending on dispersive boundaries, and N 

represents links connected to everywhere else except the dispersive boundaries. Assuming 

that there is no excitation on the one-way wave equation boundaries, (3.38) is rewritten 

by substituting V~+l = CSVk ' 

(3.40) 

whereK=a+pCS+r· 

Following the same derivation in Section 3.2, the adjoint system is given by [7] 

(3.41) 

where V:)' = M(a! / aV)kL-.t is the adjoint excitation. The one-way wave equation 

boundary operator is transposed and the expanded form of(3.41) is [7] 

(3.42) 

The original impulses and adjoint impulses are obtained using (3.38) and (3.42), 
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respectively. Then, the sensitivity of the objective function (3.2) is obtained using (3.36). 

3.6 SELF-ADJOINT S-PARAMETER SENSITIVITIES [5], [6] 

F or a structure with Np ports, the traditional AVM requires Np original simulations 

and additional Np adjoint simulations to calculate derivatives of the S-parameter with 

respect to all optimizable parameters [14]. A self-adjoint method was developed in [5], [6] 

to estimate the S-parameter sensitivities with respect to all design parameters using only 

the original Np simulations to calculating the S-parameters. In this section, self-adjoint 

S-parameter sensitivities of both lossless homogeneous and lossless nonhomogeneous 

structures are discussed. 

3.6.1 Self-adjoint S-paramter Sensitivity for Lossless Homogeneous Structure [5] 

We first discuss the self-adjoint S-parameter sensitivities for lossless, 

homogeneous, and isotropic problem. The excitation of the qth port at the kth time step is 

given by [14] 

(3.43) 

where Eq (j) is the transversal mode distribution at the jth node of the qth port, and j is the 

index of nodes in the cross-section of the qth port. The excitation of each link at the /h 

50 



M. A. Sc. Thesis - Peipei Zhao McMaster - Electrical and Computer Engineering 

node is determined by the vector w. 

The nodal scattering matrix of this problem is [5] 

(3.44) 

Equation (3.44) implies that the eigenvectors of S{j) have only real eigenvalues with 

absolute value of 1.0. The property of (3.44) applies also to the global scattering matrix: 

(3.45) 

Ifwe utilize the property of (3.45) and the symmetry of Johns matrix, the adjoint system 

of the AVM for TLM with Johns matrix (3.35) can be rewritten as [5] 

(3.46) 

The original TLM simulation (3.26) of this case is then multiplied by the scattering 

matrix S, [5] 

k 
SVk+1 = SCSVk +SV: +S L J(k-k''Y{,. 

k'=O 
(3.47) 

Then, (3.47) can be rewritten by substituting V; = SVk , 

k 
V;+l = SCV; + Vtr + S L J(k - k ~V;. 

k'=O 
(3.48) 

where ~"r = SVks . Equation (3.48) is the original system of lossless, homogeneous, and 

isotropic structure. 

We notice that (3.46) and (3.48) have the same form except that (3.46) is running 

backward in time while (3.48) is running forward. If the adjoint excitation V:,A and 

~"r can be related, then the adjoint impulses Ak can be predicted from original 
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impulses V; . 

The excited transversal electric field at the jth node of the qth port at the J(h time 

step is [14] 

(3.49) 

where the vector a relates the incident impulses to the observed electric field component. 

For a lossless homogeneous medium, the vector wand the vector a are equal. The field 

components are obtained from incident impulses as follows [14]: 

E -aTV E -aTV E -aTV 
x - ex' y - ey ' z - ez' 

Hx = a~~V, H v = a~V, H z = aJzv. 
(3 .50) 

For Johns matrix SCN, the weighting vectors in (3 .50) is [5] 

aex =qe[1 1 o 0 0 0 0 0 1 0 0 l r , 

aey = qe [0 0 1 1 0 0 0 1 0 0 1 Or, 

aez = qe[O 0 0 0 1 1 1 0 0 1 0 or , 

ahx = qh [0 or , 
(3.51) 

0 0 1 -1 0 1 -1 0 0 0 

ahy = qh[O -1 0 0 o 1 0 0 1 -1 0 or , 
ah= =qh[1 0 -1 0 0 0 0 0 0 o 1 -lr, 

where qe =0.5/~landqh=0.5 / (~I.Zo ).Zo is the characteristic impedance of the SCN 

linle. The vectors aex , aey, and aez are the eigenvectors of the matrix S (j) with an 

eigenvalue of 1.0 andahx , ahy , andahz are the eigenvectors with an eigenvalue of -1.0. 

One of the weighting vectors in (3.51) is chosen as a, then the qth port of the 

original problem is excited by (3.52) [5] 
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(3.52) 

According Vt r = SV/ , 

(3.53) 

where Ji is the eigenvalue of selected a, parameter Ji is 1.0 or Ji is -1.0 [5]. 

The adjoint excitation at the /h node of the p th port as a function of adjoint time 

variable r is given by [14] 

(3.54) 

Ifwe seth(n~r) = ho (k~t) , then 

_ -1 R _ -1 R A(r) - - V (t) or AN _ k --~ • 

Ji ' Ji 
(3.55) 

We conclude that the adjoint impulses obtained by exciting the qth port with 

excitation (3 .54) can be derived from the vector V/ obtained by original simulation (3.48) 

excited at the same port by (3.53) . Therefore, extra adjoint excitations are not necessary in 

this case. The S-parameter sensitivities are thus be computed using only the original Np 

simulations. 

3.6.2 Self-adjoint S-paramter Sensitivity for Lossless Nonhomogeneous Structure [6] 

For a lossless nonhomogeneous TLM problem with Johns ' SCN, the nodal 
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scattering matrix satisfies the properties [15] 

SU)T y (j) S Ci) = y Ci) and SCi) = SCit' (3 .56) 

where y Ci) is a diagonal matrix whose elements are the normalized admittances of the 

links at the /h node. Again the eigenvectors of S(j) have only real eigenvalues with an 

absolute value of 1.0. Applying the property in (3.56) to the global scattering matrix [6] , 

we get 

STYS=YandS=S-1 (3.57) 

where Y is a block diagonal matrix whose /h diagonal component is y (j) . From [6], we 

know that 

CY=YC y-IJ= y-'Jand 
, 0 (3.58) 

(3.59) 

where Yo is the normalized admittance of the SCN links. 

Two cases are discussed in [6] : the generalized Johns ' node and modified node 

with a symmetrical scattering matrix. We first address the generalized Johns' node. 

For the generalized Johns' node, the adjoint system (3 .35) is modified using (3.57), 

(3 .58), and (3 .59) [6] , 

N, 
Th _1 = seTh +s L J(k'-k)Th' -V{ ,l] 

k'=k 
(3.60) 

where rh = y -I A k is called transformed adjoint variable, and V{ ,l] = y - IV{ ) ' is the 

excitation of the transformed adjoint problem. 
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For the original simulation, we multiply both sides of (3.26) by the scattering 

matrix S, and we set Y k+1 = SVk and v;,s" = SV/ and therefore 

(3.61) 

Equations (3.60) and (3.61) are in the same form except that (3.60) is running 

backward in time while (3.61) is running forward in time. Again, if the two excitations 

can be related, the adjoint vector can be predicted from the original vector. 

Equation (3.51) is re-derived for the Johns' node in a lossless nonhomogeneous 

TLM [6] , 

aex =qe[1 1 o 0 0 0 0 o 1 0 0 1 Y 0 0 0 0 Of , 

aey = qe [0 0 1 1 0 0 0 1 0 0 1 0 0 Y 0 0 0 Of , 
aez =qe[O 0 0 0 1 1 1 0 0 1 0 0 0 0 Y 0 0 Of , 

ahx =qh[O of, 
(3.62) 

0 0 1 -1 0 1 -1 0 0 0 0 0 0 0 z 0 

ahy =qh[O -1 0 o 0 1 0 0 1 -1 o 0 0 0 0 o z Of , 

ah= =qh[1 o -1 0 0 0 0 0 0 o 1 -1 0 0 0 0 0 Zf , 

where Y = 4 ( &r -1) , Z = 4 ( f-Lr -1), qe = 2 / (11/(Y + 4)) , and qh = 2 / (111. Zo (Z + 4)) . 

The excitation of the transformed adjoint problem (3.60) is derived in [6] 

() 

V!'I) = Y(J) ~Ep(j)ha (kl1r) = a 12 eEp(j)h (kl1 r ) (3 .63) 
,J Iiall Iiall a 

where e is a eigenvector of the nodal scattering matrix, and its elements are 0 and 1 

corresponding to the observed field component. On the other hand, the excitation of the 

transformed original problem at the pili port is [6] 
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(3.64) 

Ifwe setha (k!1 r) = hJk!1t) , comparing (3.63) and (3.64), we have [6] 

nCr) = aJl ret) or n = aJl r 
'I IIal12 'I N,-k IIal12 

k ' 
(3.65) 

Because'lk = Y-'Ak , (3.65) is simplified to 

(3.66) 

We conclude that for the generalized Johns' node, the adjoint impulses obtained 

from (3 .60) with excitation (3.63) can be derived from the original simulation (3.61) 

excited with (3.64). Therefore, the S-parameter sensitivities are thus be computed by only 

Np original simulations. 

The modified node with a symmetrical scattering matrix has the properties of a 

symmetric and unitary nodal scattering matrix. Following similar derivation, the original 

simulation is the same as (3.61), and adjoint simulation has the same form of (3.46) [6] . 

Again, the adjoint simulation and original simulation are the same except that one is 

running backward while the other is running forward. 

Equation (3 .51) is re-derived for the modified SCN [6], 
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aex = qe [1 1 0 0 0 0 0 0 1 0 0 1 .JY 0 0 0 0 or, 
aey = qe [0 0 1 1 0 0 0 1 0 0 1 0 0 .JY 0 0 0 or, 
aez = qe [0 0 0 0 1 1 0 0 1 0 0 0 0 .JY 0 0 Or , 

ahx = qh [0 0 0 1 -1 0 1 -1 0 0 0 0 0 0 0 .fi 0 or, 
ahy = qh [0 -1 0 0 0 1 0 0 1 -1 0 0 0 0 0 0 .fi 0 JT , 

ahz = qh [1 0 -1 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 .fir, 

where Y = 4( Br -1), Z = 4(f-Jr -1) , qe = 2/(!::./(Y +4»), andqh = 2/( !::.l,Zo (Z +4)). 

The original excitation is (3.52), so the transformed excitation is 

~s,r = S (j> ~ E (j)h (k!::.t) = f-J~ E (j)h (k!::.t) 
k,J IIal12 q 0 IIal12 

q 0 

(3.69) 

(3.70) 

where.u is the eigenvalue of selected a, and.u is 1.0 or f-J is -1.0 [6]. Comparing with the 

excitation of the adjoint system (3.54), if we setha(k!::.T)=ho(k!::.t) , the transformation 

between the adjoint impulses and the reflected impulses of the original simulation is 

given by [6] 

-1 -1 
A(r)=-y(t) or A _ =-y . f-J N, k f-J k (3.71) 

It follows that the adjoint impulses can be obtained from the transformation (3.71) 

and no adjoint simulations are needed for S-parameter sensitivities. 

3.7 SENSITIVITIES ANALYSIS EXPLOITING RUBBER CELLS [8] 

The TLM method simulates the EM fields by a network of transmission lines with 
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u!1x 

T-----------------~ ~---I __ -,-
,.:::.-:_--------
I ~----~----~--~ 
I 

w!1z 

!1z 

!1y 
________ J~ 

!1x 

Figure 3.5: A TLM cell stretched by factors u, v and w.[11] 

a discretized model in both space and time. The boundaries in SCN are placed half-way 

between nodes, so the dimensions can only be integer multiples of the mesh size. Huilian 

et al. [11] developed an approach to model boundaries at irregular locations with the 

TLM SCN. The truncated boundary cells are modeled through modifying local tensor 

properties rather than changing the cell size and shape. 

Consider a TLM cell with size & x ~y x !::.z , the material properties of the cell is 

characterized by diagonal permittivity and permeability tensors [11]: 

&xx 0 0 ,uxx 0 0 
&= 0 &yy 0 andjL= 0 ,uyy 0 (3.72) 

0 0 &_- 0 0 ,uzz 
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Figure 3.5 shows a deformed cell with small stretch factors u, v, and w in x, y, and 

z directions, respectively. Without changing the cell capacitance and inductance, the 

modified permittivity and permeability tensors of such a cell are [11] 

'VW 'UW 'uv 
Jixx = u Jixx, Jiyy = v Jiyy , Jizz = w Jizz· 

(3.73) 

Now we have the modified permittivity and permeability tensors ready. The 

overall scattering matrix is obtained using the general formula in [12]. According to the 

above approach, any off-grid discontinuity can be modeled by on-grid discontinuity and 

surrounding rubber cells with modified tensors. Hence, the small perturbation of a 

discontinuity is actually the perturbation in the surrounding rubber cells. This perturbation 

can be modeled by analytical derivative of the global system matrix A with respect to the 

tensor properties [8] 

(3.72) 

Using the chain rule, the derivative of the system matrix A with respect to the scaling 

factors is obtained [8] 
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oA _ oA oCxx oA oCyy oA oCzz oA Of-lxx oA Of-lyy oA Of-lz= ------+----+----+----+----+----
OU oCxx ou oCyy OU oCz:! OU Of-lxx OU Of-lyy OU 0f-l=z OU ' 

oA _ oA oCxx oA oCyy oA oC=z oA Of-lxx oA Of-lyy oA 0f-l== ------+----+----+----+----+----
Ov oCxx ov oCyy Ov oCz= Ov of-lxx Ov of-lyy Ov 0f-l=z Ov ' 

oA _ oA oCxx oA oCyy oA oCz:! oA Of-lxx oA Of-lyy oA Of-lzz ------+----+----+----+----+-- --. 
Ow oCxx Ow oCyy Ow oCz= Ow Of-lxx Ow Of-lyy Ow Of-lz= Ow 

(3.73) 

The system matrix A is an analytical function of scattering matrix S while S is an 

analytical function of tensor permittivities, and permeabilities and the tensors are 

analytical functions of the stretch factors (3.71). Therefore, the derivatives of the system 

matrix A with respect to stretch factors (3.73) can be analytical calculated. Equation (3.72) 

can be thus computed using (3.73). Then, the sensitivity of the objective function F is 

obtained using (3.74) 

(3 .74) 

The implementation of this approach is the same as the analytical approach of 

dielectric discontinuities discussed in section 3.2.2. The advantages of this technique are 

the ability to model the off-grid discontinuities and accurately calculate its sensitivities. 

3.8 CONCLUSIONS 

In this chapter, an up-to-date reVIew of A VM applications for different 

time-domain TLM problems is presented. The A VM algorithm of metallic discontinuities 

and dielectric discontinuities in both 2-D and 3-D cases are introduced separately. The 
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AVM for waveguide problems with wide-band Johns matrix boundaries, self-adjoint 

S-parameter sensitivities for loss less homogeneous and lossless nonhomogeneous TLM 

problems, the A VM for planar structures using first-order one-way wave equation 

boundaries, and conformal TLM based on the rubber cell implementation are all 

presented. The A VM accurately estimates the sensitivities of all discussed problems using 

at most two simulations of the original system and the adjoint system regardless the 

number of optimizable parameters. 

61 



M. A. Sc. Thesis - Peipei Zhao McMaster - Electrical and Computer Engineering 

REFERENCES 

[1] M.H. Bakr and N.K. Nikolova, "An adjoint variable method for time-domain 
transmission-line modeling with fixed structured grids," IEEE Trans. Microwave 
Theory Tech., vol. 52, NO.2, pp554-559, Feb. 2004. 

[2] M.H. Bakr and N.K. Nikolova, "An adjoint variable method for time-domain TLM 
with wide-band Johns matrix boundaries," IEEE Transactions on Microwave 
Theory and Techniques, vol. 52, pp. 678-685, 2004. 

[3] P.A.W. BasI, M.H. Bakr, and N.K. Nikolova, "Efficient estimation of sensitivities in 
TLM with dielectric discontinuities," IEEE Trans. Microwave Wireless Comp., vol. 
15, pp.89-91 , Feb. 2005. 

[4] P.A.W. BasI, M.H. Bakr, and N.K. Nikolova, "An AVM technique for 3-D TLM 
with symmetric condensed nodes," IEEE Trans. Microwave Wireless Componnets 
letters., vol. 15, pp.618-620, 2005. 

[5] M.H. Bakr, N.K. Nikolova, and P.A.W. BasI, "Self-adjoint S-parameter sensitivities 
for lossless homogeneous TLM problems,"International Journal of Numerical 
Modelling: Electric Networks, Devices and Fields, vol. 18, pp. 441-455, 2005. 

[6] P. A. W. BasI, M.H. Bakr, and N.K. Nikolova, "The theory of self-adjoint 
S-parameter sensitivities for lossless nonhomogeneous TLM problems," IEEE 
Transactions on Microwave Theory and Techniques, 2006. 

[7] P.A.W. BasI, M.H. Bakr, and N.K. Nikolova, "Time-domain sensitivity analysis of 
planar structures using first-order one-way wave equation boundaries," in 
International Journal of Numerical Modelling: Electric Networks, Devices and 
Fields: John Wiley and Sons Ltd, Chichester, West Sussex, PO 19 8SQ, United 
Kingdom, 2006. 

[8] P.A.W. BasI, M.H. Bakr, and N.K. Nikolova, "Efficient TLM sensitivity analysis 
exploiting rubber cells," Computational Electromagnetics Research Laboratory, 
McMaster Univ., Canada, 2008. 

62 



M. A. Sc. Thesis - Peipei Zhao McMaster - Electrical and Computer Engineering 

[9] Y.S. Chung, C. Cheon, I.H. Park, and S.Y. Hahn, "Optimal design method for 
microwave device using time domain method and design sensitivity analysis-Part II: 
FDTD case," IEEE Trans. Magn., vol. 37, pp. 3255-3259, Sept. 2001. 

[10] N. K. Eswarappa, G. I. Costache, and W. J. R. Hoefer, "Transmission line matrix 
modeling of dispersive wide-band absorbing boundaries with time-domain 
diakoptics for S-parameter extraction," IEEE Trans. Microwave Theory Tech., vol. 
38, pp. 379-386, Apr. 1990. 

[11] D. Huilian, S. Poman, and W. 1. R. Hoefer, "Cells with tensor properties for 
conformal TLM boundary modeling," 2006 IEEE MTT-S International Microwave 
Symposium, San Francisco, CA, USA, 2006, vol. 11 , pp. 157-160. 

[12] P.B. Johns, "A symmetrical condensed node for the TLM method," IEEE Trans. 
Microwaves Theory Tech., vol. 35, no. 4, pp. 370-377, April 1987. 

[13] C. Eswarappa and W.J.R. Hoefer, "One-way equation absorbing boundary 
conditions for 3-D TLM analysis of planar and quasi-planar structures," IEEE 
Trans. Microw. Theory and Tech. , vol. 42, pp. 1669-1677, 1994. 

[14] M.H. Bakr and N.K. Nikolova, "Efficient estimation of adjoint-variable 
S-parameter sensitivities with time domain TLM," International Journal of 
Numerical Modelling: Electronic Networks, Device and Fields, vol. 18, pp. 
171-187,2005. 

[15] C. Christopoulos, The transmission-line modeling method: TLM. Oxford: Oxford 
University Press, 1995. 

63 



M. A. Sc. Thesis - Peipei Zhao McMaster - Electrical and Computer Engineering 

CHAPTER 4 

SENSITIVITIES OF TIME-DOMAIN 

RESPONSES USING THE A VM 

4.1 INTRODUCTION 

As explained in previous chapters, the A VM approach efficiently estimates the 

response sensitivities with respect to all the design parameters. This approach was already 

utilized for estimating the sensitivity of scalar objective functions [1]-[6] and frequency 

domain responses [7], [8] . However, the gradient of time-domain responses using AVM 

was not addressed. This type of derivatives may have applications in many fields. 

Nowadays, microwave imaging is an efficient method for tumor detection. The derivative 

information of time domain responses is appropriate for this kind of problems. 

We develop a new adjoint-based algorithm to estimate the sensitivities of time 

domain response. These sensitivities can then be used in solving inverse problems [9]-[11] 

where the dielectric properties, dimensions, and location of objects/tumors are estimated. 
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In this chapter, we derive the mathematical expression for our new AVM approach. This 

approach will be illustrated through the estimation of the sensitivities of objective 

function with respect to dimensions, position, and the dielectric properties of the 

discontinuities in a number of examples. 

4.2 SENSITIVITIES OF TIME-DOMAIN RESPONSE USING A VM 

[12],[13] 

Our approach aims at extending the AVM algorithm in [1] to estimate the 

sensitivities of complete time domain responses. The problem can be formulated as a 

convolution of the objective function ' s kernal in (3.2) with a discrete time delta function. 

The discrete delta function is defined as: 

5[kJ={1' k=O 
0, k:t:.O 

(4.1) 

The objective function, which may be any field component, at the mth time step 

Fm can thus be expressed by: 

F., = LF(x,V ,k)5 [ m-k J 
k 

=F(x,V,m) 

1 Tmax 

="A f F(x,V,r)5(t-r)dr 
ot 0 

(4.2) 

where F is the kernel, and Tmax is the maximum simulation time. The function (4.2) is the 

continuous time equivalent of the discrete delta function. The index m is the time step 
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index at which the objective function is calculated. The objective function (4.2) gives the 

field of interest at the mth time step. The analytical derivative of this time-dependent 

objective function with respect to the ith parameter is given by 

(4.3) 

Alternatively, the AVM approach can be applied to estimate the sensitivities in (4.3). 

Following the same steps of (3.4) to (3.11), the adjoint vector A. is introduced and we get 

O;t
T 

+A.T (A+~)= OFT~~'T) J(t-T). (4.4) 

After expanding the system matrix (4.4), we have the backward running discrete time 

adjoint simulation 

(4.5) 

where V~:~ = ~t(oF[ k ]1 oV)J[ m- kJ is the adjoint excitation at the kth time step for the 

sensitivity of the field at the mth time step oFm lox,. Since the perturbation of each 

parameter is small and does not affect the incident impulses significantly, the adjoint 

impulses are approximated by the values of the corresponding incident impulses for the 

unperturbed adjoint problem [1] 

(4.6) 

Combining (4.2), (3.11), and (4.3), the sensitivity of Fm with respect to ith 

parameter can be expressed as 
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aFm =-.L ae 
Fm _-.L Tr AT M V dt 

ax; M ax, Mom &; m 

~-.L aeFm _ LAT M V 
I1t ax, k m,k &, m,k 

(4.7) 

_ I aeFm "AT 
- I1t ---ax.- - L..J m,k17 m,k 

, m 

where Am,k and 17m,k = (M/&,)Vm,k are the vectors of adjoint impulses and original 

impulses at the kth time step for the sensitivity at the mth time step, respectively. 

Comparing (4.7) with (3.15), the expression are different in two main aspects. The 

first aspect is that (4.7) gives a different sensitivity value at different times by changing 

the value of m while (3.15) returns only one sensitivity value. The second difference is 

related to the adjoint excitation. The adjoint excitation in this algorithm is equal to 

V~:t=l1t(aF[kJ/aV)8[m-kJ while the adjoint excitation of (3.15) is 

V:,A = I1t(aG(kM)/ aV) • Therefore, the vector of Am,k here is different for each value of 

m as the excitation is shifted. The vector of 17 is the same in both (3.15) and (4.7). 

4.3 ALGORITHM FOR DETERMINATION OF VECTOR OF A 

In this algorithm, the adjoint excitation is the multiplication of aG( t )I av and the 

discrete time delta function: 

aF[kJ 
v s,A=l1t 8[m-kJ m,k av . (4.8) 

Equation (4.8) has a value of zero everywhere except at k = m. To clearly show the 

relationship among the adjoint excitations for different values of m, we demonstrate the 
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equations for m = n, and m = n2 ' 

for m=n2 , 

8F[k] 
VS,A = M 5[n -k] -::f:. 0 only at k = n 

m,k 8V '"\ '"\' 

8F[k] 
VS,A = M 5[n - k] -::f:. 0 only at k = n 

m,k 8V 2 2' 

(4.9) 

Equation (4.9) shows that the adjoint excitation (4.8) is excited only at k=m and the 

magnitude of (4.9) is different for different m. Therefore, the relationship between the 

adjoint responses Am involves both a scaling in magnitude and a shifting in time. The 

scaling is because of different magnitude of 8F[k ]/8V for different values of k. The time 

shift is due to the adjoint excitation is only nonzero at k = m . 

If the vector Am is different at each m, then the memory requirement for storage 

would be extremely large if we were to estimate the sensitivities of the complete time 

response. To solve this problem we define F(t) = E(t) , the desired field component. This 

field is observed at only one node in the computational domain. Utilizing (2.15) and 

(2.26), we get for both the 2-D and 3.:-D cases 

2-D: 8F(kM)=8E(t)=~[1 1 1 1 ] 
8V 8V Y Yo , 

8F(kM) = 8E(t) = 2 [1 1 1 
8V 8V Al(4+Y) 

1 fJ. (4.10) 
3-D: 

We notice that (4.10) is not dependent on time. It's a constant vector for any k. It follows 

that there is no need of scaling in magnitude to calculate the field response at different 

time instants. We just need to simulate the adjoint system only once for a specific time 

step m and obtain the corresponding adjoint response A through (4.6). The adjoint vector 
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I I II I 

k 0 

~ 

N-m 
0 

I I II I 

k 0 N 

Figure 4.1: Illustration of determination of vector of A. Parameter AN is the adjoint 

vector for the sensitivity at the JIb time step, and Am
o 

is for sensitivity at the moth time 

step which can be obtained from AN by shifting left by N - mo time steps. 

A.m for any other m can be obtained by simply shifting the obtained A by the proper time 

shift. We choose to carry out the adjoint simulation at N = Tmax / /jJ. This simulation 

gives us Am for the sensitivities at the Nh time step, AN. Am for any other time step mo 

can be obtained by shifting AN by N - mo time steps in the backward running simulation 

(See Figure 4.1) 

(4.11) 

Figure 4.1 shows how the adjoint impulses are shifted in the backward running simulation. 
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This time shift eliminates the need for extra adjoint simulations and allows us to use only 

one adjoint simulation. 

4.4 PRACTICAL IMPLEMENTATION 

Our approach is implemented in a very similar way to the A VM approach in 

Chapter 3. The only difference is in the determination of the adjoint impulses for 

different time steps. Thus, our approach can be summarized as the following steps. 

Step 1) Parameterization: Determine the sets of link indexes Li whose connection and 

scattering matrices are affected by the perturbations L\xl' 1,2, ... , n. 

Step 2) Original Analysis: Carry out the original TLM analysis (2.2) and store the set of 

corresponding '7 values \1m ELi' i = 1, 2, ... , n at each time step. The values of 

the incident impulses in the observation point are also stored to determine the 

adjoint excitation in (4.8). 

Step 3) Adjoint Analysis: Carry out the backward adjoint analysis and simulate the adjoint 

system with excitation of blk-N]. Store the adjoint impulses AN for the links with 

indexes LI' i = 1, 2, ... , n with their corresponding adjoint impulses of the 

unperturbed structure for all time steps. 

Step 4) Sensitivities Estimation: Evaluate (4.7) for all m and for all the parameters. The 

vector of Am used in (4.7) can be obtained using the obtained adjoint response 

AN in step 3) and property of(4.11) while '7 is the same all m. 
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4.4.1 Metallic Discontinuities 

The variation of the system matrix due to a perturbation in a metallic discontinuity 

is caused by associated changes in the connection matrix. This was explained earlier in 

Section 3.2.1. Equation (3.20) is used to calculate the original impUlses. 

Figure 3.1 illustrates the link storages for different parameter perturbations in 2-D 

metallic discontinuities. The same method is applied to the 3-D case. 

4.4.2 Dielectric Discontinuities 

The variation of the system matrix due to a perturbation in a dielectric 

discontinuity is caused by associated changes in the scattering matrix, while the 

connection matrix remains the same. This was explained earlier in Section 3.2.2. 

Figure 4.2 illustrates the link storages for different parameter perturbations in 2-D 

dielectric discontinuities. For perturbations of dielectric properties, all the links in the area 

where dielectric properties are changed should be stored in the original system (Figure 

4.2(a)). For the size, only the links in dimension perturbed area should be stored in the 

original system (Figure 4.2(b)). As Figure 4.2(c) shows, if the dielectric moves to the 

right by 1M, then the system matrix of the links on two "columns" (bold links in original 

system) are changed. The actuall effects on these two "columns" are opposite. This is 

because the left-column links (see Figure 4.2(c)) are moving out the object and becoming 

a part of the surrouding medium while the right-column links are becoming a part of the 

object and away from the surrounding medium. This action causes opposite changes of 
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dielectric properties on these two column links. The corresponding links which should be 

stored in the adjoint system are also shown in Figure 4.2. The same approach for links 

storage is applied to the 3-D case. 
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Original System 

McMaster - Electrical and Computer Engineering 

(a) 
Dimension 

(b) 
Position 

(c) 

Figure 4.2: Illustration of the links storage. The bold arrowed links in the original 
system are the ones for which the matrix M has nonzero components for a 
perturbation. The bold arrowed links in the adjoint system are the corresponding links 
for the nonzero original impulses. (a) The dielectric properties in grey region are 
perturbed. (b) The length of grey region is perturbed by M. (c) The position of grey 
region shifts right by 111. The new positioned region is labelled by dash lines. 
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ABC 

Figure 4.3: Structure of the 2-D metallic example: a = 14.0 mm and b = 30.0 mm. 

4.5 EXAMPLES 

We illustrate the new approach through estimation of the sensitivities of objective 

functions with respect to the dimensions of the discontinuities, relative dielectric constant, 

conductivity, and position. Our results are compared with the accurate and time-intensive 

central difference (CD) approximation (4.12) 

of _F(x+fu,eJ-F(x-fu,e,) h ·-1 2 -a - A.. ' were 1-, , ... , n. 
x, 2LU, 

The objective function for all the examples in this section is taken as 

Tm 

F = J E(xo'yo'zo' T)J(t-T)dT 
o 

where (xo' Yo, zJ is the selected observation point. 
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Figure 4.4: Original E-field response of metallic discontinuity. 

4.5.1 2-D Metallic Discontinuities 

We estimate the sensitivities of the objective function (4.13) for the rectangular 

metallic discontinuity shown in Figure 4.3. The width is a = 14.0 mm. The length is b = 

30.0 mm. The dimension of the discontinuity is w = 3.0 mm and I = 2.0 mm. A square 

cell of mesh size 111 = 1.0 mm is utilized. The boundaries are magnetic walls and 

absorbing boundary conditions (ABC). This problem is simulated as a 2-D problem with 

a Gaussian modulated sinusoidal excitation of center frequency f = 3.0 GHz and a 

bandwidth BW=l.O GHz. The excitation domain includes all the nodes at the first column 

75 



M. A. Sc. Thesis - Peipei Zhao McMaster - Electrical and Computer Engineering 

z= 1. The observation point is the mid-point at the last column z= N:. Figure 4.4 shows the 

original E-field response. 

The perturbation of dimension enlarges the object by one cell in the +z and +x 

direction. The comparison between the A VM results and the CD derivatives is shown in 

Figure 4.5. We notice that the error is acceptable for optimization purposes. 
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Figure 4.5: The objective function sensitivities, 8F / 81 and 8F / aw. 
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ABC 

ABC 

Figure 4.6: Structure of the 2-D dielectric example: a = 15.0 mm and b = 31.0 mm. 

4.5.2 2-D Lossy Dielectric Discontinuities 

We estimate the objective function sensitivities for the rectangular dielectric 

discontinuity shown in Figure 4.6. The width is a = 15.0 mm and the length is b = 31.0 

mm. The dimension of the discontinuity is w = 2.0 mm and I = 2.0 mm. The same settings 

as those in 4.5.1 are utilized for the boundaries and excitation. The dielectric properties of 

the object are &r =8.0 and a= 1.0, and the surrounding area has&'r =3.0 and a'=0.5. 

Figure 4.7 shows the original E-field response at these settings. 

The perturbation of dimension enlarges the object by one cell in the +z and +x 

directions. The perturbation of discontinuity's &r and (J is 3%. When estimating 
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Figure 4.7: Original E-field response of dielectric discontinuity. 

sensitivities with respect to &r ' we use (3.24). A similar analytical approach is also 

utilized in estimating the sensitivities with respect to the conductivity a: 

(4.14) 

The perturbation of position is increasing the coordinate of object's top left comer 

by one cell in the +z and +x direction. If the coordinate of top left comer is ( zo' xo) ' then 

the position after perturbation becomes ( zo + 1, xo) or (zo' Xo + 1) , depending on the 

perturbation direction. 
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The comparison between the AVM results and the CD derivatives is shown in 

Figures 4.8 - 4.10. Very good match is observed between the two techniques. Only the 

sensitivity of position x has small difference at the response peaks where the sensitivity is 

highly nonlinear. 
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Figure 4.8: The objective function sensitivities8F 18&r and8F I 8a. 
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Figure 4.11: Structure of the 3-D dielectric discontinuity. The circle is the excitation 
point and the square is the observation point. 

4.5.3 3-D Lossy Dielectric Discontinuities 

We estimate the objective function sensitivities for the rectangular dielectric 

discontinuity shown in Figure 4.11. The discontinuity is cubic of size 2.0 mm. The length 

I is 20.0 mm, the width w is 20.0 mm, and the height h is 10.0 mm. The boundaries are all 

Absorbing Boundary Conditions (ABCs). This problem is simulated with a Gaussian 

modulated sinusoidal excitation of center frequency f = 3.0 GHz and a bandwidth 

BW=1.0 GHz. The excitation point is (xe,ye,ze) = (1,14,20) and the observation is the Ex 

at (xo'Yo,zo> = (20,10,20). Figure 4.12 shows the field response Ex under these settings. 

The perturbation of discontinuity's &r and IT is 3.0%. The nominal discontinuity's 

dielectric constant is &r = 57.2 and IT = 1.08, and the surrounding area has dielectric 

84 



M. A. Sc. Thesis - Peipei Zhao McMaster - Electrical and Computer Engineering 

X 10.3 

2 

1.5 
II 

I) 

n, ,I 
, 

'I 
1 r , ) , 

'\ \ 

f\ 
, I I: 

1\ I 
r I, i' I' I : 1 

' , 
0.5 

IIII d J\ ,I I, I I , 
r "0 (\ f\ I, I, " 

I 
J I Q) 0 ,~,-,,-,,-,-_ /~, ......rr .. ',\..;I' \ 

r \.1 lll\ I I: i ) i I;:::: \ r I 

W 

I 
'[ ,I Ij I,' ' , , I -0.5 \1 \1 " I 

I, r ! 'i \ I , 

I l' \J 

I ,I 'I 
, , I i; 

-1 
IJ I 

' , Ii , I I 

I, I , 
Ii 

II 'I' 'I -1.5 1 ! 
'i 

-2~--~--~--~--~--~----~--~--~--~--~ 

o 200 400 600 800 1000 1200 1400 1600 1800 2000 

Time Step 

Figure 4.12: Original E-field response ofthe 3-D example with a Gaussian modulated 
sinusoidal excitation. 

properties of Br = 16 and (J == 0.16. The perturbation at the position IS IN and the 

nominal discontinuity's top-left corner is located at(10,5,4). 

The comparison between the A VM results and the CD derivatives is shown in 

Figures 4.13 - 4.16. Very good match is observed between the two techniques. 

We also do the simulation with an excitation of Equation (4.14) 

{ 

(I-I')' 

Vs == e 20-' • sin(21T fc l ), I:::; J.I 

sin(21T fct), I > J.I 
(4.14) 

where Ie = 3.0 GHz, J..l is the mean value, and () is the variance. The original E-field 

response of this excitation is shown in Figure 4.17 and the comparison between the AVM 
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results and the CD derivatives is shown in Figures 4.18 - 4.21. Good match is obtained 

between the two techniques. 

4.6 CONCLUSION 

For the first time, an adjoint variable method is presented for efficient estimation 

of sensitivities of complete time-domain responses utilizing the time-domain TLM 

method. Regardless of the number of design parameters, the sensitivities at each time step 

with respect to all of them are obtained using only two analyses of the original and adjoint 

systems. Our approach is illustrated through the estimation of the sensitivities with 

respect to the dimensions, dielectric properties, and the position of the discontinuities in 

both 2-D and 3-D cases. Very good match is obtained between our approach and CD 

derivative. 
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Figure 4.13: The objective function sensitivity with respect to discontnuity's 
dielectric constants 8F /8sr and 8F / 8u . 
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CHAPTERS 

EFFICIENT OPTIMIZATION 

EXPLOITING THE A VM 

5.1 INTRODUCTION 

The new technique presented in chapter 4 provides us accurate sensitivities of the 

complete time-domain response in an efficient way. This response may be any electric or 

magnetic field component. These sensitivities are useful in gradient-based optimization 

which requires not only the objective function value but its gradients as well. A gradient

based optimization technique normally converges to a local optimal solution much faster 

than non-gradient-based optimization technique. Therefore, a fast and accurate approach 

for sensitivity estimation is crucial. 

In gradient-based optimization, there are two factors to determine its efficiency. 

The first factor is the number of iterations which is determined by the combinations of the 

nature of the optimization algorithm, the formulation of the objective function, and the 

accuracy of the objective function gradient. The second factor is the number of the 
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evaluations per iteration which mainly depends on how the gradients are computed. 

Therefore, efficient gradient estimation algorithms are important for optimization 

efficiency. The sensitivities obtained using Finite Differences (FD) approximations are 

time-intensive even for simple problems. This involves perturbing each design parameter 

in the forward and/or backward directions and simulating the perturbed structures. The 

A VM algorithms discussed in Chapters 3 and 4 generate the field response and its 

gradients using at most two analyses of the original and the adjoint simulations regardless 

of the number of design parameters. Therefore, the optimization efficiency can be 

significantly improved if our A VM is used through the optimization process. 

Gradient-based optimization, however, does not guarantee that a global minimum 

is found. The quality of the initial design is also an important factor to the optimization 

performance. With a good initial solution, gradient-based optimization technique is more 

preferred than other optimization techniques for EM problems. 

The sensitivities of time-domain response can be used for object identification [1]. 

Transmitting and receiving antennas are put in the neighborhood of the object. They are 

utilized for sending incident waves and receiving reflected waves, respectively. An object 

function can be optimized using the measured time-domain field and the time-domain 

sensitivities to determine the unknown object parameters. 

For over a decade, microwave engineers have been carrying out research in the 

area of breast imaging. According to Wikipedia [2], it is said that "Worldwide, breast 

cancer is the second most common type of cancer after lung cancer (10.4% of all cancer 
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incidence, both sexes counted) and the fifth most common cause of cancer death. 

However, among women worldwide, breast cancer is by far the most common cause of 

cancer, both in incidence and death. In 2005, breast cancer caused 502,000 deaths 

worldwide (7% of cancer deaths; almost 1% of all deaths). A Us. study conducted in 

2005 by the Society for Women's Health Research indicated that breast cancer remains 

the most feared disease, even though heart disease is a much more common cause of 

death among women." Many techniques [3]-[14] have been developed and applied to 2-D 

and 3-D breast tumor detection problems. All these techniques are based on the fact that 

breast tumors have dielectric properties at microwave frequencies that are different from 

those of normal breast tissue. In this Chapter, we will discuss tumor detection not only for 

the tumors with very different dielectric discontinuities [15] but also for tumors with not 

very different dielectric properties. Such a case exists in certain types of tissues [1]. 

We make use of the sensitivities of time-domain response obtained from our 

novel algorithm introduced in Chapter 4 to estimate the dielectric properties, shape and 

location of breast tumors. Section 5.2 briefly reviews some developments of microwave 

imaging and Section 5.3 presents general idea of the solution of inverse problems. In 

Section 5.4, our approach is applied to a 2-D tumor detection utilizing gradient-based 

surrogate models. The examples of the 2-D tumor detection using direct optimization are 

presented in Section 5.5. Finally, the conclusions are discussed in Section 5.6. 
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5.2 BREAST CANCER DETECTION 

Microwave imaging is becoming a popular method for breast cancer detection in 

recent decades. It utilizes the contrast in dielectric properties of normal tissues and cancer 

tissues to obtain an image of internal body structures. The transmitting and receiving 

antennas in the neighborhood of the breast are utilized for sending the incident waves and 

receiving reflected waves, respectively. The reflected waves are induced by the contrast 

in the dielectric properties at microwave frequencies between normal breast tissue and 

malignantlesion [16], [17]. 

There are three main features for breast cancer detection: active, passive, and 

hybrid. Passive methods (microwave radiometry) detect tumors based on measuring 

temperature differences [3]-[6]. The cancerous breast tissue has an increased tumor 

temperature compared with healthy breast tissue. The breast image is obtained by 

measuring the temperature over the breast. Hybrid methods use ultrasound transducers to 

detect pressure waves generated by the heated tissues [7]-[10]. Active methods use 

microwaves to illuminate the breast. The reflected signals are then measured. The shape 

and location of tumors are estimated using both the incident and scattered fields. In 

general, inverse scattering approaches are involved. There are two categories of active 

microwave breast imaging: microwave tomography and ultra-wide band (UWB) radar 

techniques. Microwave tomography [11] recovers shape, location and dielectric 

properties. Its reconstruction approaches involve iteratively matching computed and 

measured data, where computed data are computed using numerical techniques and a 
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model of the object of interest. UWB techniques [12], [13] seek to identify the existence 

and location of significant tumors in the breast, rather than to recover the dielectric 

properties of the breast. In an UWB microwave imaging system, an array of antennas 

placed near the breast transmits UWB pulses. Reflected microwave signals from the 

breast are recorded and used to identify the existence and location of tumors. Both these 

techniques are essentially expensive optimization problems. 

5.3 THE SOLUTION OF INVERSE PROBLEMS [18] 

Inverse problems involve finding unknown properties of objects or mediums from 

observed response. For electric circuits, the inverse problem may be used to determine the 

circuit topology, time-dependent variations of source and the values of circuit elements 

parameters to achieve a specified circuit response [19]. For electromagnetic problems, the 

solution of the inverse problem is the spatial distribution of sources and material 

properties required to achieve a specified field distribution [20]. In inverse problems, the 

parameters may have some conditions which describe the optimal behaviour of the 

problem. 

A general equation of inverse problem is defined as following equation [18] 

A(p)x=b (5.1) 

where x is a M x 1 vector of actual source, b is a N x 1 vector of existing field, and p is an 

unknown vector of the problem's optimized parameters. Matrix A is a NxM matrix 

representing the source-effect functional relationship. 
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In practice, the search of p in electromagnetic problems is referred to as an 

optimization problem. The optimized parameters p normally includes dielectric properties 

and dimensions of the discontinuity. In our examples, the solution of inverse problem 

includes permittivity, permeability, location and dimensions of the discontinuities. 

5.4 MICROWAVE IMAGING EXPLOITING ADJOINT BASED 

SURROGATE MODELS [1] 

5.4.1 Surrogate Model [21]-[24] 

Most real life electromagnetic problems are solved usmg numerical models. 

These numerical models may be time and memory intensive based on the grid used and 

the size of the computational domain. Applying optimization to such expensive models 

significantly reduces the optimization problems' efficiency in terms of time and memory 

requirements. Surrogate modeling [21]-[24] was introduced to solve this problem. The 

direct optimization of an accurate but expensive model is replaced by the iterative 

optimization of a cheaper but only locally accurate surrogate model. This model may be a 

physically or mathematically derived model. It may also be updated during the 

optimization problems. 

In this work, we choose an adjoint-based surrogate model in microwave imaging 

to estimate tumor's dielectric properties. The model is utilized to predict the time-domain 

response for linear dielectric property values. The surrogate model we propose has the 

form [1] 
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8F(t) 8F(t) 
F, (t, & + Il&, (J' + 1l(J') = F, (t, &, (J') + ---a-;-Il& + 8~ 1l(J' (5.2) 

where F,(t,&,(J') is the observed field component at the nominal values of & and (J', and 

Il& and 1l(J' are the perturbation in the permittivity and conductivity in the considered 

space region, respectively. Equation (5.2) is a simple linearized model that can be used in 

predicting the EM response of human tissues where relatively small changes of 

permittivity and conductivity take place from the normal tissues to cancerous tissues. A 

recent study [25] confirmed that such a small contrast indeed exists in some breast tissues. 

To utilize the surrogate model (5.2), two things should be done before the 

optimization process. The first one is to obtain the initial field response. In a microwave 

imaging problem, the initial response should be the field component simulated from a 

structure without any cancerous tissue. We assume here that such a response is known 

through a good model of the healthy breast. The second thing is tumor's location and 

shape. This is because the derivative terms in (5.2) are changing along with location and 

shape. The dependency on the position and location is thus modeled through our 

estimated adjoint sensitivities. 

5.4.2 Algorithm 

Microwave imaging involves an optimization problem of the form [1]: 

(5.3) 

where x is the vector of optimizable parameters, F is the vector of the simulated field 

104 



M. A. Sc. Thesis - Peipei Zhao McMaster - Electrical and Computer Engineering 

components, and F m is the vector of measured field components from the receiving 

antennas. In the optimization process, F is normally obtained at each x using time 

intensive EM simulator. The optimization process will be significantly accelerated if we 

use the cheap but locally accurate surrogate model (5.2). The derivative terms in (5.2) is 

obtained using our A VM algorithm [15] as explained in Chapter 4 which can further 

improve the optimization efficiency. The optimization process is thus given by: 

where N is the maximum number of time steps and k is the index of time. 

We assume that there exists an EM model of the structure (here the human breast). 

to use and receiving and transmitting antennas are used to transmit and receive the signals. 

Our algorithm of microwave imaging exploiting adjoint based surrogate models can be 

summarized by the following steps. 

Step 1) Run TLM simulation of nominal structure (healthy breast) to get an initial field 

components Fo. 

Step 2) Run original simulation and adjont simulation of the A VM and store all the 

incident impulses V in (4.7) and adjoint impulses It in (4.6) in the region of 

interest where a tumor is suspected (See Figure 5.1). 

Step 3) According to the current position and shape of the tumor, the corresponding V 

are extracted from step 2) and the sensitivities of permittivity and conductivity 

are computed using (4.7). Our surrogate model is ready to use now. 
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Step 4) Carry out the optimization process (5.4). Stop when the termination criterion is 

reached. 

Step 5) Go to Step 3 to estimate the gradient at the new set of parameters. 

The above algorithm only optimizes the dielectric properties with known location 

and shape ofthe tumor. Now, we present another algorithm to optimize both the location 

and dielectric properties. Because the region where a tumor could arise is assumed to be 

known, we can do iteration for the location in this region. The above steps are repeated 

for each location and the optimized dielectric properties are stored. After all the possible 

locations are implemented, the one with the least objective function value will be the final 

optimized solution. The detailed algorithm can be summarized by the following steps. 

Step 1) Run the TLM simulation of nominal structure (healthy breast) to get an initial 

field components F o. 

Step 2) Run original simulation and adjont simulation of the A VM and store all the 

incident impulses V in (4.7) and adjoint impulses A. in (4.6) in the region of 

interest where a tumor is suspected (See Figure 4.2(a)). 

Step 3) Repeat for all the possible N locations in the region from where the tumor could 

arise. According to the current position, the corresponding V are extracted from 

step 2 and the sensitivities with respect to permittivity and conductivity are 

computed using (4.7). The optimization process (5.4) is then carried out. The 

optimized dielectric properties at the current location are recorded. A number of 

N objective function values are thus obtained for different locations. 
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Figure 5.1 : A surrogate model of human breast: the dark grey shaded area is tumor 
tissue; the light grey shaded area is the region of interest where a tumor could arise. 
The dielectric property in the region of interest is fixed (£r = 40.0,0" = 3.5) ; the non 
shaded area is the fat equivalent with properties£r = 9.0 and 0" = 0.5. The red circle is 
the excitation point and the blue square is the observation point. 

Step 4) Find the pair of location and dielectric properties which gives the least objective 

function value among all N objective values. This is the final optimized solution. 

5.4.3 Examples 

We consider optimization of the human breast EM model shown in Figure 5.1. 

This structure coarsely models the human breast. The computational domain dimensions x 

and z are both equal to 68.0 mm. The boundaries of the computational domain are all 
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ABCs. The light grey shaded area is the region from which a tumor could arise and its 

dimensions I and ware both equal to 23.0 mm. The cell size !!J is 1.0 mm. The dielectric 

properties in this region are Br = 40.0 and 0" = 3.5 and these properties are expected to 

have a relative small difference as compared with the tumor properties. The dark grey 

shaded area is the tumor. The unshaded area is composed of fat with dielectric 

properties Br = 9.0 and 0" = 0.5 . 

The excitation is a Gaussian modulated sinusoid with a bandwidth 7.0 GHz and a 

center frequency f= 6.5 GHz. The maximum simulation time step is 1200. The excitation 

point is located at the middle point of the leftmost column and the observation point is at 

the middle point of the rightmost column. 

5.4.3.1 Optimization of dielectric properties 

Here, we first solve for only the dielectric properties of the tumor. The derivatives 

of the nominal structure's dielectric properties are computed. A 3% perturbation is used 

for the central difference (CD) approximation (4.12). The comparison between the A VM 

sensitivities and the CD sensitivities is shown in Figure 5.2 and Figure 5.3. Very good 

match is observed between the two techniques. 

The optimization results are shown in TABLE 5.1. We assume that the position 

and shape are known. For all the positions, the size of the tumor is 6.0 mm by 6.0 mm. 

The permittivity and conductivity for different positioned tumors are optimized to make 

the simulated response match the measured response. The position listed in TABLE 5.1 is 
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TABLE 5.1: 
OPTIMIZATION RESULTS FOR DIELECTRIC PROPERTIES 

Position 
Expected Optimized 

objective 
(&r'O") (&r' 0") 

(27 , 27) (46,4.2) (45.9,4.51) 0.1228 
(45,4.0) (44.5 , 4.29) 0.1331 
(44,3.8) (44.2 , 3.92) 0.0627 
(42,3.6) (42.1 ,3.60) 0.0392 
(38 , 3.2) (37.7 , 3.30) 0.0876 
{36,3.0) {35.7,3.22) 0.1183 

(30,33) (46,4.2) (45.3 ,4.54) 0.2269 
(45,4.0) (44.6 , 4.25) 0.1588 
(44,3.8) (43.8 , 3.97) 0.1012 
(42,3.6) (42.0,3.64) 0.0249 
(38,3.2) (37.9, 3.24) 0.0289 
{36 , 3.0) {35.8,3.18) 0.1127 

(38,23) (46,4.2) (45.2 ,4.57) 0.2130 
(45,4.0) (44.5,4.27) 0.1543 
(44,3.8) (43.8,3.99) 0.1028 
(42,3.6) (42.0,3.65) 0.0268 
(38,3.2) (37.9,3.25) 0.0292 
{36 , 3.0) {35.7,3.21) 0.1200 

the coordinate of the top-left node of the tumor. The starting point for all cases is Cr= 42.0 

and (J" = 2.2. 

The optimized cr and expected Cr are very close. The largest percentage error is 

1.74% . For the conductivity, the largest percentage error is 8.81 % . 
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Figure 5.2: The objective function sensitivity, BF / Bsr • 
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Figure 5.3: The objective function sensitivity, BF / Bu. 
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TABLE 5.2: 
OPTIMIZATION RESULTS FOR DIELECTRIC PROPERTIES AND 

LOCATION 

Expected Optimized 
Gr (j Position Gr (j Position Objetive 

45.0 4.00 (27,27) 43.8 4.36 (39,27) 0.0950 

43.5 3.75 (27,27) 42.9 3.97 (25,27) 0.0627 

42.0 3.60 (27,27) 41.9 3.68 (26,27) 0.0231 

40.5 3.55 (27,27) 40.5 3.55 (27,27) 0.0015 

38.0 3.20 (27,27) 38.4 3.15 (27,34) 0.0182 

5.4.3.2 Optimization of dielectric properties and location 

The optimization parameters include the dielectric properties and location of the 

tumor. The iteration step of the location is 1.0 mm. Because the region of interest is 23.0 

mm by 23.0 mm and the dimensions of tumor are 6.0 mm by 6.0 mm' there are 

(23 - 6) x (23 - 6) = 289 possible tumor locations. The utilized derivatives with respect to 

tumor's dielectric properties at each location are computed the same way as the previous 

example. 

The optimization results are shown in TABLE 5.2. The starting point of dielectric 

properties at each location is Gr= 42.0 and (J' = 2.2. The optimized Gr and expected Gr are 

very close. The largest percentage error is 2.67%. For the conductivity, the largest 
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percentage error is 9.0%. There are two cases that the positions are estimated wrong. For 

the rest ofthree cases, the positions are estimated within 2.0 mm error. 

5.5 TUMOR DETECTION USING DIRECT OPTIMIZATION [16] 

5.5.1 Introduction 

Section 5.4 presented a novel approach for efficient mIcrowave imaging 

exploiting adjoint based surrogate models. However, this approach has some limitations: 

(1) a locally linear relation between normal tissue's dielectric properties and cancerous 

tissue's dielectric properties, and (2) assumption of the known shape of the tumor. In this 

section, we will realize 2-D and 3-D tumor detection using gradient-based optimization 

where the time-domain response gradients are obtained using the AVM in [15]. Although 

we use direct optimization of the expensive actual EM models of human breast, the way 

we compute the response derivatives is much faster and the optimization efficiency is 

improved a lot. 

5.5.2 Algorithm 

Microwave imaging uses measured data to determine the dielectric properties, 

location and size of tumors within the human breast. Therefore, the optimization process 

can be expressed in the form of 

(5.5) 
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where x is the vector of dielectric properties, shape and position parameters and fix) is 

the objective function. The function fix) is a vector with kth elementfk(x) equal to the 

squared difference between measured field F m,k and simulated field Fk at kth time step. 

(5.5) is an optimization problem which finds values of x that minimize the maximum 

value of fix) and stops the simulation when the maximum of the function values 

evaluated at the solution x reaches user-defined criteria. 

The optimizable parameters for tumor detection normally include dielectric 

properties, dimensions and location. The dielectric properties are continuous parameters, 

so there is no problem for optimizing these parameters using (5.5) in a MATLAB 

optimization toolbox [26]. However, this is not the case for position and dimensions. It is 

because we simulate the structure using TLM [27], [28] which discretizes computation 

domain into a network of transmission lines. A square cell of mesh size M = 1.0 mm is 

utilized in our examples, so the position coordinates and dimensions must be integer 

multiples of the cell size. To address this issue, we introduce interpolation into the 

optimization process [15]. We round the optimizer's solutions and pass those to the EM 

simulator. The actual response at the current optimization iteration is approximated using 

the linear model (5.6). The derivatives sent to the optimizer are also generated at rounded 

parameters. The optimization process is shown in Figure 5.4. 

8fT 
f(p) = f(p')+ 8p' (p- p'),p'=round(p) (5.6) 

where p is the vector of dimension and position parameters. 
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Figure 5.4: The optimization process involving interpolation. p is the actual optimizer 
solution, p' is the rounded p and F is the approximated response at p . The derivatives 
sent to the optimizer aF T / ap' are the sensitivities at rounded parameters p' . 

5.5.3 Example: 2-D Tumor Detection 

We consider the optimization of the human breast EM model shown in Figure 5.5. 

The computational domain is a 76 mm by 76 mm square. The boundaries of the 

computational domain are all Absorbing Boundary Conditions (ABC). The non shaded 
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Figure 5.5: A model of human breast: the dark grey shaded area is tumor tissue; the 
non shaded area is the fat equivalent with properties e~ = 16.0,0-' = 0.16. The red circle 
is the excitation point (1,5) and the blue square is the observation point (76, 38). 

region is composed of fat wither = 16.0 and 0- = 0.16. The dark grey shaded area is the 

tumor. The excitation is a Gaussian modulated sinusoidal wave with a bandwidth 7.0 

GHz and a center frequency f= 6.5 GHz. The excitation point is (z,x) = (1,5) which is the 

middle point on the leftmost column and the observation point is (z,x)={76,38) the 

middle point on the rightmost column. 

We optimize the parameter in three cases (1) optimization of location only, (2) 

optimization of dielectric properties and location, and (3) optimization of dielectric 
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properties, location and dimensions. In case (1), the dimensions and dielectric properties 

of the tumor are assumed as 10 mm by 10 mm, and Sr= 57.2 and (j = 1.08, respectively. 

In case (2), only the dimensions of the tumor are assumed to be known and are equal to 

10 mm by 10 mm. Every parameter is unknown in the last case. 

The optimization results are shown in TABLE 5.3. The position we listed in 

TABLE III is the coordinate of the top-left node of the tumor. The starting point of 

parameters is( SnO",z,x,a,b) = (50,1.5,30,30,15,15) . The optimized dielectric properties 

and expected dielectric properties are very close. The largest error of position is 1.9 mm. 

For dimension, the largest error is 0.75mm. The dielectric properties have relative large 

error and it is because this structure is less sensitivity to them. 
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TABLE 5.3: 
OPTIMIZATION RESULTS OF DIRECT OPTIMIZATION 

Case # 

I-position 

2-position and dielectric 
properties 

3-position, dielectric properties 
and dimensions 

5.6 CONCLUSIONS 

Expected 

(z,x) = (15,35) 

(z,x) = (15,35) 

(8r ,0") = (57.2,1.08) 

(z,x) = (15,35) 

(a, b) = (10,10) 

(8r ,0") = (57.2,1.08) 

Optimized 

(z,x) = (14.5,34.1) 

(z,x) = (15.50,35.07) 

(8r ,0") = (57.20,1.47) 

(z,x) = (13.1,33.4) 

(a, b) = (9.25,9.52) 

(870 0") = (68,1.51) 

In this chapter, the applications of the AVM technique for inverse problems were 

demonstrated. Gradient-based algorithm was chosen for EM optimization problems. The 

optimization process speeds up by using our A VM to calculate the gradients. The 2-D 

breast tumor detection using surrogate models was first presented. Direct optimization of 

the 2-D breast structure was implemented as well. Good results were obtained for all the 

optimized parameters of dielectric properties, dimensions and location. 
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CHAPTER 6 

CONCLUSIONS 

This literature mainly discussed the novel algorithm for sensitivity estimation of 

time-domain response using the Adjoint Variable Method (AVM) with time-domain 

transmission-line modeling (TLM). This algorithm efficiently estimates the objective 

function sensitivities with respect to all the parameters using only two simulations. 

Chapter 2 reviewed the basic theory of the time-domain TLM method for both the 

2-D TLM and the 3-D TLM with symmetric condensed nodes (SCN). In each case, we 

discussed how the variations of dielectric properties and lossy materials are modeled. The 

boundary modeling of the non-dispersive case and the dispersive case were briefly 

introduced. For dispersive boundaries, 10hns matrix and absorbing boundary conditions 

implemented by one-way wave equations were presented. 

Chapter 3 reviewed up-to-date A VM developments for EM numerical method: 

time-domain TLM. We presented the AVM algorithm for both 2-D time-domain TLM 

and 3-D TLM with SCN. The sensitivity analysis for perfectly conducting discontinuities 

and dielectric discontinuities were demonstrated. In all the cases, an original simulation 
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and an adjoint simulation are implemented. Only a few links related to optimized 

parameters are stored in both the original and adjoint system. The sensitivities with 

respect to all the optimized parameters are calculated using these two simulations. We 

also reviewed some further developments of the AVM, such as the adjoint-free S

parameter sensitivity analysis for lossless homogeneous and nonhomogeneous TLM 

problems, sensitivities of planar structures using first-order one-way wave equation 

boundaries, and A VM for conformal TLM based on the rubber cell implementation. 

Chapter 4 addressed our novel AVM algorithm for estimating the sensitivities of 

time-domain response with respect to all designable parameters. The algorithm of both 2-

D TLM and 3-D TLM was presented. The sensitivities with respect to all the optimized 

parameters are calculated using two simulations of original system and adjoint system. 

Only a few links related to optimized parameters are stored in each system. A special 

algorithm was developed for determination of adjonit impulses and it induces a lot saving 

of time and memory space requirement. The approach was illustrated through metallic 

discontinuities and dielectric discontinuities. The results were compared to the expensive 

center difference approximation. The performance of good accuracy and high efficiency 

was obtained. 

Chapter 5 demonstrated the applications of the A VM technique for inverse 

problems. Gradient-based algorithm is chosen for EM optimization problems. The 

optimization process speeds up by using our A VM to calculate the gradient. 2-D breast 

tumor detection using surrogate models was fust presented. Direct optimization of 2-D 
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breast structure was implemented as well. The optimized parameters for all the cases 

included dielectric properties, dimensions and location. 

Further research will lead to the following future developments: 

1. Developing adjoint sensitivities of time-domain response for structures with 

dispersive boundaries. 

2. Developing adjoint sensitivities of time-domain response for resonant 

structures. 

3. Developing adjoint sensitivities of time-domain response for metamaterials. 

4. Developing an A VM algorithm for higher order sensitivities of time domain 

responses. 
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