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ABSTRACT 

Children with acute lymphoblastic leukemia (ALL) are at high risk for getting 

thromboembolism (TE), which is a serious complication leading to morbidity and 

mortality. As treatment protocols have been developed achieving the cure rates as high as 

80% [39] , study efforts need to turning to evaluating the risk and management of 

associated TE. Published studies in this field have been mostly exploratory and have had 

different results in terms of screening TE risk factors predisposing to TE. 

Based on the records of 150 ALL children treated with central venous line (CVL) 

from 1995 to 2005 at McMaster Children 's Hospital, this study was conducted to 

evaluate the prevalence ofTE, to explore the association between TE and infection, and 

to screen TE and Infection risk factors disposing children with ALL for TE and for 

Infection. The prevalence ofTE was estimated as 15 .07% (9.27%, 20.87%). Logistic 

regressions, Bayesian approaches, in combination with multiple imputation techniques, 

were employed to estimate predictors ' odds ratios and their 95% confidence (credibility) 

intervals. The study suggested two significant factors , CVL functionality and ANC 

category for infection, and no significant factors for TE. 

As a comparative and supplementary tool to the traditional parametric analyses, 

we conducted Classification and Regression Trees (CART) modeling, by using three 

software packages, with intention to visualize predictors ofTE and Infection by level of 

importance. SAS EM 5.0, SPSS 14.0 and S-Plus 6.1 were compared in their tree 

misclassifications based on our data and their features of tree growth algorithms, 

validation techniques, missing data handling, model pruning / recovering, output setting, 

tool tabs transparency, and advantages. SPSS 14.0 and SAS EM 5.0 are recommended 

based on our experience, though the strengths and weaknesses of each package should be 

weighted according to the users and the problem natures. 

The limitations of this exploratory study such as small sample size, missing 

values, imbalance between data categories, the lack of information about the timing of 

treatment and the lack of cross-validation techniques in some CART modeling packages 
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led biases to our results . Large prospective cohort studies with few missing values are 

critical to achieve more accurate results. 
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1 INTRODCTION 

1.1 Overview of the Problem 

Acute lymphoblastic leukemia (ALL) is a common childhood disease. Being 

associated with ALL, thromboembolism (TE) is recognized as a serious complication 

leading to significant morbidity. The reported prevalence ofTE in children with ALL 

varies from the lowest 1.1 % to the highest 36.7% [1 , 2, 3], compared to the much lower 

estimates of the prevalence of deep venous thrombosis (OVT) and pulmonary embolism 

in the general pediatric popu lation and hospital admissions [4, 5, 6]. 

The occurrence ofTE seems to be emerging from the interaction of the disease with 

the therapy and possible genetic predisposition for hypercoagulability [1] . Compared to 

adult malignancy-related TE, on which many studies have been conducted and many 

evidence-based guidelines have been established, quantitative studies on ALL-related TE 

in children are limited, and have inconsistent results . 

Central Venous Line (CVL) or Central Venous Catheter is a commonly used 

catheter inserted into a large vein in the neck Gugu lar vein), chest (subclavian vein) or 

groin (femoral vein) for chemotherapy. It is a recognized risk factor for infection. 

However, little is known about the association between infection and TE, or impact of 

any optimal techniques and locations for CVL insertion, if they exist. 

1.2 Objectives of the Thesis 

Based on a non-interventional retrospective study of 150 treatment cases at 

McMaster Children 's Hospital, this thesis aims to tackle the following clinical and 

statistical objectives: 

1.2.1 Clinical Objectives 

The first part of the thesis addresses the original clinical objectives of the study, 

which were as follows : 
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a. To determ ine the prevalence ofTE and the prevalence of infection in children 

with ALL over the period from 1995 to 2005; 

b. To detect association between TE and infection in children with ALL; and 

c. To generate hypotheses about risk factors for TE and for infection in children 

with ALL. 

1.2.2 Statistical Objectives 

The second part of the thesis objectives involved some statistical issues. In 

particu lar, the statistical objectives were: 

a. To generate hypotheses about important risk factors of CVL-related TE and 

infection; 

b. To compare various analyses targeting on clinical objectives band c. The 

approaches are 

a) Simple logistic regression without multiple imputation (MI) [7] 

b) Fisher 's exact test without multiple imputation 

c) Logistic regression with rounding incorporated MI [7, 8, 9,10,11] 

d) Logistic regression with non-rounding incorporated MI [12, 13] 

e) Bayesian analysis [17, 18, 19] 

f) Classification and Regression Trees (CART) modeling [23 , 24] without MI 

g) CART modeling with MI 

b. To construct by clinical importance ordered trees for TE and Infection for 

therapeutic and preventive purpose; 

c. To compare SAS, SPSS and S-Plus in CART modeling. 

1.3 Ethical Considerations 

This study was conducted in accordance with the Trial Council Policy Statement 

Guidelines [25] , including the Good Clinical Practice (GCP) Guidelines [25]. 

The study was approved by the McMaster University Research Ethics Board. Since 
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it is a retrospective chart review, it does not impose any additional risk to the patients. 

1.4 Significance of the Study 

As more aggressive treatment protocols are being developed to achieve high cure 

rates, studies evaluating the risk and management of associated TE have become 

increasingly important. Being a widely used instrument in ALL therapy, CVL is naturally 

suspected in association with increased risk ofTE. To prevent TE-related morbidity, we 

need to identify patients at risk of TE first and then move on to develop therapeutic 

protocols and guidelines in CVL-involved disease treatment. 

Although the conclusions drawn from this study are based on data from patients 

with ALL, it is rational to believe that similar mechanisms exist with other CVL

involving treatments. Greater knowledge of how the site and technique of CVL insertion 

affect TE is essential in setting up future management guidelines for CVL. 

The results of this study will be useful in designing further studies to definitively 

explore the risk factors of CVL-related TE and infection, not only in patients with ALL, 

but also in patients with medical conditions that require CVL treatment. Using different 

statistical methods will provide useful information about the robustness of the findings. 

1.5 Scope of the Report 

Limited by a small sample size of 150, a small event (TE) percentage (22 out of 

150), and a noticeable missing data rate, the presented results of the study are 

exploratory. By conducting this study, we intended to generate hypotheses for future 

research. 

Chapter 2 covers analysis methods used in this study. We first estimate the 

prevalence of TE and the prevalence of infection and their 95% confidence intervals in 

children with ALL, from 1995 to 2005. Then, based on patient demographics and pre

screened factors for TE and infection, we discuss three logistic regression analyses with 
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and without MI, in combination with rounding and non-rounding considerations. We also 

describe Bayesian analysis approach. 

Next, we describe CART modeling as a different approach from traditional 

parametric analysis, with and without MI integrated. The aim was to investigate how the 

results of CART model ing were different from those of logistic and Bayesian analyses. 

SAS EM 5.0, SPSS 14.0 and S-Plus 6.1 Tree Functions are discussed with respective 

built-in node splitting criterion. The aim is to compare the three types of software for 

implementing CART modeling and to construct clinical importance ordered trees for TE 

and Infection for therapeutic and preventive strategies. 

Chapter 3 covers all results created by approaches discussed in Chapter 2. 

Chapter 4 provides some discussions of the results, including hypotheses generated 

by results in Chapter 3. We discuss limitations of this study and give suggestions for 

future studies. 

Chapter 5 provides some concluding remarks, focusing on the key messages of the 

thesis. 
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2 STUDY METHODS 

2.1 Description of the Data Set 

This study is a retrospective chart review. We retrieved 150 records of children (~ 

18 years of age) who were treated with CVL at McMaster Children 's Hospital from 1995 

to 2005. Each record consists of25 variables, of which five are basic patient information, 

nine about CVL, six about infection, two about TE and the other three about 

asparaginase, linogram and outcome of death. 

For those cases with one or more factor values changing in the course of 

treatments, such as Type of CVL, CVL Insertion Technique and Site of CVL Insertion, 

we retrieved their first-time values and ignored those at later times so as to avoid possible 

within-patient correlation issues. 

2.2 Statistical Analyses 

2.2.1 Description of Outcomes and Predictors 

We chose 10 out of 25 variables for analysis in our study. 

TE and Infection were taken as outcome or response variables. The predictors 

considered for TE were Infection, Age, Gender, ALL-Risk category, Phase of 

Chemotherapy at CVL Insertion, CVL Insertion Technique, CVL Functionality, Type of 

Asparaginase, Type of CVL and Site of CVL Insertion. The predictors considered for 

Infection were TE, Age, Gender, ALL-Risk category, Phase of Chemotherapy at CVL 

Insertion, CVL Insertion Technique, CVL Functionality, Type of CVL, Site of CVL 

Insertion and Absolute Neutrophil Count (ANC). 

2.2.2 Description of Outcomes Including Coding 

Both deep venous thrombosis (OVT) and pulmonary embolism (PE) cases were 

counted as TE. 

Infection cases were screened with positive CVL blood culture readings. 
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2.2.3 Description of Predictors Including Coding 

Tables 2.5 and 2.6 break down values of all the outcome and predictor variables 

in the form of value, count, percentage and coding scheme. Variables renamed in short 

forms are listed in the first column, with their full names included in brackets. 

Age and ANC data were originally ordinal or continuous. They were redefined as 

binary variables depending on the coverage in which their continuous counterparts fall. 

Both the analyses with continuous variables, and the analyses with categorical variables 

were conducted. 

Category -t 

Age category 1 -t 

Continuous Value Coverage 

~ 10 years of age 

Age category 2 -t < 10 years of age 

ANC category 1 -t < 0.5 109/L 

ANC category 2 -t ~ 0.5 \09/L 

ALL-Risk has two categorical values: Standard Risk (SR) and High Risk (HR). 

By definition, SR includes cases satisfying: (1) age of 1 to 10 years; (2) precursor B Cell 

type of ALL; (3) absent mediastinal mass; (4) white blood cell (WBC) reading less than 

50K; (5) absent central nervous system (CNS) ALL. Cases not satisfying any of the 

above conditions belong to HR. 

2.2.4 Imbalance of the Data 

Tables 2.3 and 2.4 provide patient demographics and prognostics by TE and 

Infection. 

Four records have TE status missing and five records have Infection status 

miSSing. We observed that apart from Age, ANC and binary variables Gender, ALL

Risk, CVL Insertion Technique, CVL Functionality, Site of CVL Insertion, three muIti

category variables presented data imbalance. For Chemotherapy Phase at CVL 

Insertion, seven cases dispersed into 5 categories. We grouped them into the "Post 

Chemotherapy" category, in parallel to other two dominant groups "Prior to 

Chemotherapy" and "Induction". For Type of Asparaginase, out of 4 groups, only 
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Escherichiae Coli (E.Coli) have both present and absent TE cases. Similarly, Type of 

CYL consists of 140 cases in one single group, but only six cases in the other two groups. 

After removing these two variables, we ended up with a dataset of2 continuous, I ternary 

and 7 binary variables for logistic and Bayesian analyses. We included Type of CYL and 

Type of Asparaginase in Fisher 's exact tests. 

2.3 Missing Data and Imputation 

For TE, fifteen records (10%) have at least one variable with missing values. For 

Infection, twenty four records (16%) have at least one variable with missing values. We 

need to take into account these considerable missing rates in order to avoid further power 

loss of our study. 

Many methods are available for handling missing data. The simplest approach is 

to ignore missing data records and to do complete-case multivariate analysis or available

case univariate analysis. Such kinds of analysis, based on completely observed values, 

result in decreased power due to sample size reduction. This makes difference especially 

for frequently missing or small sample size data. In our study, we conducted available

case analysis by logistic Bayesian approaches. 

Single imputation procedures such as mean imputation, hot-deck / cold-deck 

imputation, regression imputation, stochastic regression imputation and last observation 

carried forward , composite method etc., replace each missing value with "an" estimate by 

some certain rules [27 , 28]. They do not take into account the sampling variability 

produced by the imputed values, hence they generally result in underestimation of the 

variance [27, 28]. 

Multiple imputation (MI) procedure [8-11] , in contrast, is a simulation-based 

approach which replaces each missing value with a set of m plausible values by assuming 

that all involved variables in the imputation are multivariate normally distributed. Each 

of the m created complete versions of the data set are analyzed by a pre-specified 

method. Results of point estimates and estimated standard error are generated as usual. 

Then by Rubin 's rule [9, 11], they are pooled to arrive at a final single result of the point 
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estimate and associated confidence interval. The MI approach is advantageous over other 

imputation approaches in terms of minimizing inference bias, maintaining power, and 

reflecting sampling variability [7-11]. It serves as the optimal approach to missing values 

in most scenarios. 

SAS Proc MI and SAS MJANALYZE [14, 15, 16] were employed to conduct MJ 

analysis. In particular, the Markov Chain Monte Carlo simulation (MCMC) technique 

was used instead of the other two built-in techniques (parametric regression method and 

non-parametric propensity scores method) based on the arbitrary missing-at-random 

(MAR) pattern of the data being studied. However, the multivariate normality assumption 

on which MCMC is based is not exactly satisfied because most of our variables with 

missing values are not continuous but categorical. Should we round the imputed values to 

their closest categorical values so that all created m datasets preserve the same 

categorical frame as the original but with multivariate normality being compromised 

somehow, or keep the imputed values as they are with the m datasets not strictly 

preserving categorical data pattern? Simulation studies [12] show that rounding in 

multiple imputation leads to biasness. They suggest retaining imputed values non

rounded for analysis [13] . 

To "fill in" the missing values, we employed a multiple imputation approach to 

create five imputed datasets and took rounding and non-rounding strategies separately. 

These two strategies incorporated to the logistic model led to our second and third 

logistic approaches. Five non-rounded imputed data sets and five corresponding imputed 

datasets with values rounded to their closest categorical values were saved for separate 

logistic analyses. Results drawn from original data, multiple imputed rounded data and 

multiple imputed non-rounded data are to be compared. 

2.4 Brief Description of the Different Statistical Methods 

2.4.1 Outcome Prevalence Estimates 

Prevalence ofTE (or infection) was estimated based on that the probability that 
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for each ALL child treated with CVL to have TE complication (or infection) is identically 

independently Bernoulli distributed. In other words, the number ofCVL-related TE (or 

infection) in ALL children follows Binomial distribution. By computing the proportion of 

TE (or infection) over the number of available cases, which is 146 (TE) or 145 

(infection), we estimated 1995-2005 TE and infection prevalence P S. The standard 

deviation sds of the estimate p's were approximated by 

sd = .J P (1 - p) / n 

The 95% confidence intervals for the estimates ofTE and infection prevalence 

were approximated as 

(p-1.96sd, p+ 1.96sd) 

2.4.2 Logistic Regressions 

To generate hypotheses about risk factors ofTE and Infection, Simple logistic 

regressions with available cases were conducted first, then logistic regressions with 

rounded / non-rounded multiple imputation approaches were conducted. The model is 

shown below. 

where 

log ( Pi J = a + f3 Xi 
1 - Pi 

j = 1,2, ... , n 

pi= Probability (yi= 1) 

xibeing the ith sampled value of the predictor variable; 

Yi being the ith sampled value of the outcome variable; and 

a, ~ being the parameter estimates. 

The numbers ofTE and Infection are 22 (15.07%) and 83 (57.24%). This limits to 

some extent the number of covariates being analyzed simultaneously in logistic 

regression especially for outcome TE. Starting from univariate regression, and by using 

forward stepwise selection, we aimed to find as many significant factors as appropriate 
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(limited to 2 for TE and 8 for Infection). In a study like ours with small sample size and 

low event incurrence (for TE), one can only conduct exploratory analysis and generate 

hypotheses for further verification by future researches. 

2.4.3 Bayesian Analysis 

Next, we employed Win bugs 14 [22] to conduct the Bayesian analysis on the 

original dataset based on the following model. 

where 

j = 1, 2, ... , n 

Xi being the ith sampled value of the predictor variable; 

Yi being the ith sampled value of the outcome variable; and 

a , ~ being the parameter which follow certain distributions. 

We conducted the Bayesian analysis by introducing a non-informative normal 

prior distribution N(O , 0.0001) for a and~ , by setting 3000 burn-in 's and 10000 

iterations, aiming to achieve converged estimates of Ws (95% credibility intervals). Note 

that for WinBugs one needs to state the precision for the Normal prior instead of the 

variance . Bayesian analysis results are then to be compared with those resulted from 

classical logistic regression approaches . 

The reporting of the Bayesian results is done in accordance with the ROBUST 

(Reporting Of Bayes Used in clinical STudies) guidelines for Bayesian Analysis of 

CI inical Studies. [21] 

2.4.4 CART Modeling 

While parametric approaches such as logistic and Bayesian analyses are widely 

used in estimating regres ion parameters and thus screening significant factors for the 

outcomes, CART modeling uses efficient non-parametric data mining algorithms to 
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generate binary or k-nary trees, along which predictors are top-down ordered by their 

importance in predicting the outcome. 

In our study, CART modeling was conducted with the same data set by using 

three software packages SAS EM 5.0, SPSS 14.0 and S-Plus 6.1. We intended to compare 

difference of traditional regression approaches and CART modeling in predicting 

outcomes. As various tree growth and node splitting rules are integrated with each 

software package, we also intended to compare the above three packages in their 

predicting misclassification rates and their CART modeling functions. 

Table 2.2 provides a summary of three main tree growth and node splitting rules. 

They are Automated Interaction Detection (CHAID) [29], Classification and Regression 

Tree (CART / CRT) [24] and Quick Unbiased Efficient Statistical Tree (QUEST) [30]. 

For CART / CRT, the split is selected which divides the observations at a node 

into subgroups in which a single class predominates. The tree reaches a leaf node until no 

split can be found that increases the class specificity at a node. When all observations are 

in leaf nodes the tree has stopped growing. Each leaf can then be assigned a class and an 

error rate. The tree may be cut back to a size which allows effective generalization to new 

data. Branches of the tree that do not enhance predictive classification accuracy are 

eliminated in a process known as "pruning". Three main impurity reduction criteria 

employed by CART / CRT are Entropy reduction, Gini-index and Twoing [24]. Table 2.2 

provides their related purity functions. 

CHAID differs from CART in that it stops growing a tree before over-fitting 

occurs. When there are no more splits available that lead to a statistically significant 

improvement in classification, the tree stops growing. By using CHAID, any 

continuously valued attributes must be redone as categorical variables. Chi-Square-tests 

(Pearson / likelihood ratio), with / without Bonferroni adjustments are the common 

criteria employed by CHAID. [29] 

QUEST is another type of decision tree which performs approximately 

unbiasedness as to class membership variable selection to split nodes. It separates 

splitting predicator selection into variable selection by F-test and Chi-Square-test (with or 
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without Bonferroni adjustment) and split point selection by quadratic discriminate 

analysis (QDA). [30] 

First, In order for the results of CART modeling to be comparable to the results of 

the traditional approaches, we include the same predictors as before. For age and ANC, 

we take their categorical variables Agee _ cate and ANC _ cate, rather than their continuous 

counterparts Age_cont and ANC_cont, in the CART modeling. 

Considering the difference between TE and Infection in their event rates and 

numbers of significant predictors by traditional ways, we set the maximum depth of tree 

for TE and for Infection as 3 and 5 respectively. The other basic options for both were 

set as: (1) maximum number of branches from a node: 2; (2) minimum number of 

observations in a leaf: 5; (3) observations required for a split search : 10; (4) number of 

candidate rules saved in a node: 5; (5) surrogate rules saved in each node: 5; (6) 

significance level (CHAID and QUEST): 20%; (7) treat missing as an acceptable value. 

As the three software packages differ in validation [32, 33,34], and the study has 

a small sample size, we chose not to separate the data into groups of training, validation 

and testing whenever possible (SPSS 14.0, S-Plus 6.1) [32, 33 , 34], to include as many 

records as possible (SAS 5.0) [32 , 33, 34] and to employ 10-fold cross-validation [31] 

whenever possible (SPSS 14.0) [32, 33 , 34] in estimating the misclassification. 

Misclassification rates resulting from the original data are to be compared to the averaged 

misclassification rates of the five "filled-in" data sets by multiple imputations. 

Secondly, to make the generated trees for TE and Infection more helpful for 

therapeutic and preventive strategies, we conducted CART modeling differently by 

selecting six predictors interactively in certain time orders. The six predictors time 

orderly for TE are CYL Insertion Technique, Site of CYL Insertion, Age categorical or 

Gender, CYL functionality and Infection. The 6 predictors time orderly for Infection are 

CYL Insertion Technique, Site of CYL Insertion, Age categorical or Gender, CYL 

functionality and TE. 

Finally, based on ur experience using the three software packages in conducting 

CART modeling with the project data, we compare their overall functionality and 
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feasibility and give our choice recommendation accordingly. 
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3 RESULTS 

3.1 Descriptive Statistics for the Sample 

Patient demographics and prognostics by TE and Infection are summarized in 

Tables 2.3 and 2.4. 

3.1.1 Key Demographics 

The average age of the patients having TE was 7.27 years with standard deviation 

5.22 years, whereas the age averaged on those having no TE was 6.27 years with 

standard deviation 4.20 years . The average age of the patients being infected was 6.97 

years with standard deviation 4.79 years, whereas the age averaged on those not infected 

was 5.68 years with standard deviation 3.65 years. About 18% (1 1) and 58% (36) of 

female patients had TE and were infected respectively. About 13% (11) and 57% (47) of 

male patients had TE and were infected respectively. 

3.1 .2 Key Prognostics 

About 19% (14) patients who had CVL inserted before induction of 

chemotherapy, about II % (7) of patients who had CVL inserted during chemotherapy 

induction and about 33% (1) of patients who had CVL inserted after induction of 

chemotherapy developed TE. Respectively, about 58% (4 1) of those with CVL inserted 

before induction of chemotherapy, about 60% (40) of those with CVL inserted during 

induction of chemotherapy and about 29% (2) of those with CVL inserted after induction 

of chemotherapy were infected. About 21 % (7) of patients with CVL dysfunction and 

about 13% (14) of those with CVL functioning well had TE. 25% (1) of patients who had 

their CVL functionality information missing had TE. About 74% (26) and about 51 % 

(54) of patients with CVL dysfunction and CVL functioning well were infected. 60% (3) 

patients with their CVL functionality information missing were infected. About 8% (3) of 

cases with CVL inserted at the left side of the body had TE, while about 18% (19) of 

those with CVL inserted at the right side of the body had TE. 9 patients had their absolute 

- 14 -



M.Sc. Thesis - W. Xiong McMaster - Statistics 

neutrophil count (ANC) data missing. Average ANC readings of infected and not infected 

cases were 1.97 109/L and 1.79 1 09/L with standard deviation 3.64 1 09/L and 2.60 109/L 

respectively. 

About 14% (19) and 55% (77) of patients treated with portacath type ofCYL had 

TE and infection respectively. Of the 5 patients treated with Hickman I ine type of CYL 

and 1 treated with a peripherally inserted central catheter (PICC), 50% had TE and all 

were infected. Portacath cases influentially dominated the type of CYL (96%). The data 

pattern of this variable was very imbalanced. We excluded it in our study. Type of 

Asparaginase was also excluded for a similar reason . 

3.2 Clinical Results 

3.2 .1 Prevalence of TE and Prevalence of Infection 

The prevalence ofTE was estimated as 15.07% (9 .27%, 20.87%). The prevalence 

ofInfection was estimated as 57.24% (49.19%, 65 .29%). 

3.2.2 Key Findings on Those Which Are Statistically Significant 

Tables 3.1 and 3.2 summarize odds ratio estimates by TE and by Infection, and 

their 95% confidence (credibil ity) intervals, using logistic regressions, Fisher 's exact test 

and Bayesian analysis . Figures 3.1 and 3.2 provide Bayesian convergence plots and 

results by TE and by Infection. Statistically, the results did not reveal any of the 8 

predictors significant to TE, but identified CYL functionality (2.728 (1.167 , 6.378)) and 

ANC category (2.180 (1.063, 4.475)) are significant predictors ofInfection. Patients with 

CYL not functioning properly had over 2.7 times the odds of infection compared to 

patients with CYL functioning properly. Patients with ANC readings below 0.5 had over 

2 times the odds of infection compared to patients with ANC above or equal to 0.5. 
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3.2.3 Key Findings on Those Which Are Not Statistically 

Significant, but Are Clinically Important 

Four predictors, although not statistically significant, were found to be clinically 

important to TE. They were Infection (1.727 (0 .657, 4.538)), Age category (0.541(0.199, 

1.469)), CYL functionality (1.741 (0 .638,4.747)) and Site ofCYL insertion (0.404 

(0.112, 1.454)). In particular, patients being infected, patients either younger than 1 year 

of age or older than 10 years of age, patients with CYL not functioning properly, and 

patients with CYL inserted at the right side of the body all had nearly over 2 times the 

odds ofTE compared to those in the opposite categories. However the 95% confidence 

(credibility) intervals of these odds ratio estimates ranged from below 1 to over 1. They 

did not show statistical significance. 

Three predictors were found not statistically significant but clinically important to 

Infection . They were TE (1.727 (0.657, 4.538)), Age category (0.533 (0.232, 1.228)) and 

Phase of chemotherapy at CYL insertion (3.416 (0.620, 18.810) prior to vs. post, 3.703 

(0.669, 20.489) induction vs. post) . In particular, patients having TE, patients either 

younger than 1 year of age or older than 10 years of age, patients having CYL being 

inserted before or during chemotherapy, and patients with ANC less than 0.5 109/L all 

had nearly over 2 times the odds of infection compared to those in the opposite 

categories. However the 95% confidence (credibility) intervals of these odds ratio 

estimates ranged from below 1 to over 1. They did not show statistical significance. 

3.3 Statistical Results 

3.3.1 Sensitivity Analysis with Different Methods 

The point estimates of odds ratios by TE and by Infection resulted from the 

simple logistic regression, the logistic regression with rounding incorporated and non

rounding incorporated MI, Fisher 's exact test, and Bayesian analysis are close to each 

other with respective to every predictors. The only observed difference is that the odds 

ratio confidence (credibility) intervals with respect to ANC category estimated by simple 
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logistic regression (2.180 (1.063 , 4.475)) and Bayesian method (2.202 (1.064, 4.513)) 

suggest their significance to Infection, whereas the logistic regression with rounding 

incorporated MI (1.974 (0.943, 4.134)) and the logistic regression with non-rounding 

incorporated MI (1.974 (0.943, 4.131)) didn ' t imply the significance of ANC category to 

Infection outcome. This trivial difference doesn't imply real inconsistency because the 

lower bounds of 95% confidence intervals by MI incorporated logistic regressions, which 

are 0.943 , are very close to I. 

Based on our original data, TE decision tree examples are provided in Figures 3.5, 

3.6 and 3.7. They were generated by SAS EM 5.0, SPSS 14.0 and S-Plus 6.1 respectively. 

Infection decision tree examples generated by the three software packages are provided 

in Figures 3.8, 3.9 and 3.10. These decision trees show that the predictors by their 

importance to TE (high to low) include Site of CYL insertion in the first level , CYL 

functional ity and Phase of Chemotherapy at CYL insertion in the second level , Age 

category, ALL-risk, Gender and Infection in the third level. These are the variables 

worthy of attention when predicting TE status. Most of them were also screened by 

traditional analysis (see above) as clinically important to TE. The predictors by their 

importance to Infection (high to low) include CYL functionality in the first level, ANC 

category in the second, TE in the third, Site of CYL insertion and Gender in the fourth , 

and ALL-risk in the fifth. These are the variables worthy of attention when predicting 

Infection status. The variables in the first three levels were the same as those identified 

statistically significant or clinically important to Infection by the traditional analyses. The 

other three in the lower levels of the tree, however, were different with the results of 

those traditional approaches. 

Figure 3.11 presents clinical importance ordered trees for TE and Infection by 

using SAS EM 5.0 on the original data set. They were generated by interactively 

selecting among the given six factors in a certain time orders, which were described in 

2.4.4. The average misclassification rates of the clinical importance ordered trees in 

predicting the outcomes were 15.11 % and 39.37%, respectively. 

Tables 3.3 and 3.4 summarize CART modeling misclassification rates by SAS EM 
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5.0, SPSS 14.0 and S-Plus 6.1 , each based on the data sets of our study, with and without 

MI. In predicting TE, the misclassification rates resulted from the three packages with the 

original data set, on average, are 15.1 1%, 14.86% and 15.79%, respectively. The 

misclassification rates resulted from the three packages with the MI data sets, on average, 

are 15.61 %, 15.32% and 15.20%, respectively. 

In predicting Infection, the misclassification rates resulting from the packages 

with the original data set, on average, are 41.96%, 35.76% and 29.37% respectively. The 

misclassification rates resulting from the three packages with the MI data sets, on 

average, are 38.51 %, 35.53% and 32.40% respectively. 

Generally, SPSS trees had lower misclassification rates than SAS trees in both TE 

and Infection predictions, whereas S-Plus trees had the highest misclassification rates in 

TE cases and the lowest misclassification rates in Infection cases. The misclassification 

rates with MI data sets in TE predictions were slightly higher than those with the original 

data set for whichever tree growth methods used, whereas in Infection predictions, the 

misclassification rates with MI data sets were generally about 3% and I % lower than 

those with the original data set. SPSS I O-fold validation and split sampling techniques 

resulted in consistent averaged misclassification rates. SPSS CHAID misclassifications 

were close to SAS Chi-Square misclassifications. Its CRT with Gini or Twoing gave 

consistently lower misclassifications than all other techniques. Its QUEST algorithm gave 

the highest misclassifications in almost all cases. 

3.3.2 Impact of Missingness 

Missingness in our study didn ' t make much difference in terms of odds ratio 

estimates. Analyses with and without MI gave consistent odds ratio estimates. Likewise, 

a minor difference existed when calculating 95% confidence intervals of odds ratios by 

Infection for CVL funct ionality and ANC category. Analyses with MI led to a statistical 

insignificance conclusion, with the lower bounds just passing 1, where as simple logistic 

regression and Bayesian analysis suggested their significance. 

As for rounding versus non-rounding incorporated MI, the results were all 
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consistent. 

Figures 3.3 and 3.4 are forest plot examples which show by TE and by Infection 

the point estimates and 95% confidence (credibility) intervals of particular odds ratios, by 

using the three different logistic approaches and Bayesian approach. 

3.3.3 Comparison of Cart Modeling Packages 

Table 3.5 summarizes CART modeling features bu ilt in SAS EM 5.0, SPSS 14.0 

and S-Plus 6.1 includ ing tree growth , validation technique, missing data handling, 

model pruning and recovering, output setting, tool tabs transparency, and advantages. 

SAS EM 5.0 provides a bui lt-in comparison between CART modeling and logistic 

regression . It supports both automatic and interactive training of the model, at each level 

with each node. Tree pruning, recovering and node selecting are a matter of a click at the 

users ' discretion. Data set, attribute settings, partitions, and tree options are connected as 

a project, and they can conveniently be adjusted and saved for modeling with a switched 

data set. However, SAS EM 5.0 requires the sample to be separated into training, 

validation and test, no matter how small the sample size might already be. 

Misclassification is assessed based on the train ing group or combined group of training 

and validation. 

With SPSS 14.0, sample grouping is an option, not a must, for misclassification 

assessment. Validation can be none, split sampling or V-fold cross-validation. Results can 

be output in table and lor chart form with node content, label and color options. Pruning 

can be better conducted by specifying minimum risk I impurity reduction instead of at 

users ' discretion. SPSS 14.0 provides very user-friendly platform with concrete and 

concise option tabs. It outputs misclassification results directly. 

S-Plus 6.1 provides easy tree pruning by its simple programming codes. Model 

assessment graphics are based on misclass ification or deviance results which can be read 

directly. S-Plus 6.1 provides an option for specifying validation data simultaneously to 

running training data. It is less plausible in terms of option settings and flexibilities. 

In summary, consider both misclassification results of our data set and overall 
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functions in CART modeling, we recommend SPSS 14.0 or SAS EM 5.0 the first, 

depending on the needs and goals of particular studies. S-Plus is the least preferable. 
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4 

4.1 Key Fndings 

4.1.1 Clinical Fndings 

McMaster - Statistics 

DISCUSSION 

The prevalence estimate of TE and Infection in children with ALL during the 

period between from 1995 and 2005 is 15.07% (9.27%,20.87%) and 57.24% (49.19%, 

65.29%). 

TE and Infection are clinically associated with each other. Age category, CVL 

functionality, Site of CVL insertion, and Infection are four clinically important predictors 

ofTE. ANC category, Age category, CVL functionality, and TE are four clinically 

important predictors of Infection. 

4.1.2 Statistical Findings 

In exploratory sense, TE and Infection are not statistically significantly associated 

with each other. No predictors are significant predictors ofTE. CVL functionality and 

ANC category are significant predictors ofInfection. 

With and without multiple imputation technique incorporated, logistic 

regressions, Fisher's exact test and Bayesian analysis arrived at consistent results in 

screening significant predictors of TE and of Infection. 

With and without multiple imputation technique incorporated, SAS EM 5.0, SPSS 

14.0 and S-Plus 6.1, taking into account various tree growth methods and node splitting 

rules, resulted in consistent misclassification results in predicting TE. However, in 

predicting Infection, the averaged misclassification rates with multiple imputed data sets 

were lower than those resulted from the original data set. Compared to split sampling 

validation, 10-fold cross-validation with the multiple imputed data sets resulted in closer

to-original misclassifications. Misclassifications resulted by SPSS CHAID method were 

consistent to those resulted by SAS EM Chi-Square methods. This implies that in our 

study, Kass adjustment for multiple testing in CHAID did not make much difference with 

- 21 -



M.Sc. Thesis - W. Xiong McMaster - Statistics 

Chi-Square testing. SPSS CRT with Gini or Twoing gave consistently lower 

misclassifications than all other techniques. SPSS QUEST algorithm resulted in 

considerably higher misclassifications than all other methods. This was partly because 

QUEST need to transform values of the predictors which were all categorical to 

monotonic numbers for modeling. 

SAS EM 5.0 and SPSS 14.0 are more feasible and have more plausible options 

than S-Plus 6.1 in doing CART modeling. Their misclassification rates are more stable 

and accountable than those assessed by S-Plus 6.1. 

4.2 Comparison of the Results with Those from Similar 

Studies 

4.2.1 Clinical Results 

We estimated the prevalence of TE in children with ALL from 1995 to 2005 to be 

15.07%, with 95% confidence interval between 9.27% and 20.87%. The published 

estimates of prevalence of TE in children with ALL vary from the lowest 1.1 % to the 

highest 36.7% with an overall average of 3.2%, most occurring within two to four years 

of study periods [1, 2, 3]. 

4.2.2 Statistical Results 

Table 4.1 demonstrates a comparison of this study and other five published 

studies. Two studies [3, 32] identified CVL insertion technique and site of CVL insertion 

to be significant predictors of TE. The above studies screened all patients for 

asymptomatic TE whereas we only included clinically evident TE. One study [33] 

identified type of CVL to be a significant predictor ofTE. Our study did not find any 

significant predictor of TE. Its results, however, might be impacted by the exclusion of 

Type of CVL and Type of Asparaginase at the beginning of the study. 

As for association ofTE with Infection, our study agrees with one study [34] in 

that there is no significant association between thrombophilia or infection and 
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development of TE. Most of these studies has the problem of small sample size. 

Infection was studied as another outcome besides TE in our study. Our study is 

the only one which conducted CART modeling in parallel to traditional studies and 

compared results with theirs. In addition, from therapeutic point of view, CART modeling 

was conducted a second time to generate clinical importance ordered decision trees. 

The robustness of results under classical logistic regression and Bayesian analysis 

when using non-informative priors in this study agrees with previous studies in that the 

two approaches lead to similar results [35-38]. 

4.3 Limitations of the Study 

Attention need to be paid to some limitations of this study. 

4.3.1 Small Sample Size 

Sample size of 150 limited the precision of our analysis and resulted in wide 

confidence intervals. Some potential significant factors would not have been excluded 

from analysis if we had had larger sample. Small sample size also led to issues in CART 

modeling performance assessment, such as misclassification evaluation. 

4.3.2 Missing Values 

We conducted multiple imputation on categorical variables based on a 

compromised multi-normality assumption, which was not justifiable theoretically. 

Systematic bias existed along with the "filling-in" of missing data, though we used non

rounded imputation strategy in comparison. 

4.3.3 Imbalance of Data 

We considered Type of CVL and Type of Asparaginase for inclusion as predictors 

in the analysis. But we did not have adequate information on these variables. There is 

some evidence [1] to suggest that they may also be important variables to consider. 
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4.3.4 Time Point 

The data used in our study covered a long period of 16 years. Time of Treatment 

might be a potential predictor for our outcome because treatment progressed as time 

passed. However, we could not include this into our analysis due to the unavailability of 

such information. 

4.3.5 CART Modeling 

With such a small sample size data, to estimate reliable misclassifications 

comparable among the three CART modeling packages, we would, on one hand include 

as many records as possible in estimating, on the other hand, get as little bias as possible 

with such internal (resubstitution) estimation. As a balanced approach, V-fold cross 

validation was the preferable assessment technique for our case. However, this option is 

provided with SPSS 14.0 only. 

First, with the three packages, we separated data into training and validation / 

testing groups and then chose to assess misclassifications based on training and 

validation parts. The misclassification estimates were comparable among the packages, 

however with unavoidable downward bias. Last, we used 10-fold cross-validation with 

intention to reach less-biased misclassification estimates. 

4.4 Implications of the Findings 

4.4.1 Clinically: Hypothesis Generation 

From this study, we hypothesize that 

Age category, Site of CVL, CVL functionality, and Infection are clinically 

important to TE. ANC category, Age category, CVL functionality, and TE are clinically 

important to Infection. Among them, CVL functionality and ANC category are significant 

to Infection. 

Further studies need big enough in sample size so that Type of CVL and Type of 

Asparaginase can be included in the analysis and their significance to TE and Infection 
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can be tested. 

CART modelings for TE and for Infection by clinical importance order provide 

helpfu l insights into setting therapeutic or preventive protocols for each particular 

patient. 

4.4.2 Statistically: Modeling 

CART modeling can be a valuable tool in one's arsenal of data analysis tools. It 

provides valid and helpful supplement to the traditional approaches. However, CART 

models need to be used in conjunction with subject matter experts instead of being used 

in isolation. 

Our software evaluations were a look at the potential each products offers in 

decision tree methodology. Accuracy, parsimony, non-trivial , feasibility, transparency and 

interpretability were the evaluation bases. However, the strengths and weaknesses of each 

package should be weighted according to the audience (statistician) and the problem 

domain (medicine, industry, etc.) 

The comparisons of misclassifications by the three software packages were 

estimated with our project data only. General conclusion about accuracy need to be 

further studied with various patterns of data sets. 
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5 CONCLUSIONS 

The prevalence estimate ofTE in children with ALL from 1995 to 2005 is 15.07% 

(9.27%,20.87%). The prevalence estimate of Infection in children with ALL from 1995 

to 2005 is 57.24% (49.19%, 65.29%). In ALL children treated with CVL, ANC category 

and CVL functionality were identified as two significant factors leading to infection. No 

factors were identified to be significant to the incurrence ofTE. 

In terms of exploring significant factors of TE and of infection, simple logistic 

regression, logistic regression with rounding and non-rounding incorporated MI, Fisher's 

exact test, Bayesian analysis led to consistent results. The estimates of odds ratios by the 

two outcomes, as well as the estimates of CART modeling misclassification errors are 

generally consistent, with and without integrating multiple imputation approaches. 

CART modeling is a valuable exploratory tool supplementary to traditional 

parametric analyses in exploring outcome predictors through generating intuitive and 

interpretable decision trees. Its value can be better exploited when being collaborative 

used by statistician and subject matter experts, which is essential in interactively growing 

and pruning the trees. Based on our data, SAS EM 5.0, SPSS 14.0 and S-Plus 6.1 led to 

consistent CART modeling accuracy. Although the common splitting sampling validation 

techniques we chose with the three packages introduced biases in estimating 

misc1assification, the results were generally comparable to each other. SAS EM 5.0 and 

SPSS 14.0 are more plausible than S-Plus for their advantages in feasibility, transparency 

and interpretability. However, the strengths and weaknesses of each package should be 

weighted according to the users and the problem natures. 

The limitations of this exploratory study such as small sample size, missing 

values, unbalance between data categories, ignorance oftime point, lack of cross 

validation techniques of some packages in evaluating CART modeling performance led 

biases to our results. Large data set with few missing values set is critical to arrive at 

more accurate results. Meta analysis should be a worthy approach to further conduct on 

similar studies in this field selected by certain criteria given the low event rate of TE. 
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CART modeling provides visual prediction methods which can be easily applied 

in a clinical setting. But it does not provide estimates of measures of association to assess 

the strength of the association. Classical and Bayesian logistic models provide estimates 

of odds ratios (95% confidence intervals) and associated p-values. These results can also 

be used for developing prediction equations or rules for use in a clinical setting. 
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Table 2.1 Terminologies and Abbreviations 

Abbreviation Full Terminology Explanation & Remarks 

ALL acute lymphoblasic leukymia 

Age_cate age category binary measurement 

ANC absolute neutrophil count continuous measurement 

ANC cate absolute neutrophil count category binary measurement 

Bodyside site of CVL insertion 

Chemophase phase of chemotherapy at CVL insertion 

CNS central nervous system 

CVL central venous catheter 

developed by Brieman, 
CART/CRT classification and regression trees Friedman, Olshen, and Stone in 

1984 

CHAID chi-square automated interaction detection 
developed by Kass (Applied 
Statistics, 1980) 

DFCI 
Dana-Farber Cancer Institute ALL 
Consortium 

DVT deep venous thrombosis 

E.Coli escherichiae coli asparaginase type 

Entropy impurity reduction algorithm 

Gini impurity reduction algorithm 

HR high risk of TE definition in Section 3 

MAR missing at random 

MCMC Markov chain Monte Carlo simulation 

PE pulmonary embolism type ofTE 

PEG polyethelyne glycosalated asparaginase type 

PICC peripherally inserted central catheter 

QUEST quick, unbiased, efficient, statistical tree 
developed by Loh and Shih 
(Statistica Sinica, 1997) 

SR standard risk ofTE definition in Section 3 

TE thromboembolism 

Twoing 

WBC white Blood Cell 
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Table 2.2 Summary of Tree Growth & Node Splitting Rules 

Feature CHAID CART QUEST 

Kass ( Applied Statistics, 
Brieman, Friedman, 

Loh and Shih (Statistica 
Developer Olshen, and Stone 

1980) 
(1984) 

Sinica, 1997) 

2-c1ass / multi-class both both 2-class 

criteria of node 

Variable selection X2 test with Bonferroni 
splitting/remerging 

F and X2 tests with 
Method adjustment 

- Gini 
Bonferroni adjustment 

- Entropy 
- Twoing 

quadratic discriminant 
Split point selection splitting and remerging exhaustive search analysis (QDA»or 

exhaustive search 

free 
- categorical 
- ordinal categorical with monotonic 

Predictor variable one exceptional category numerical - numerical 

type 
(e.g. missing value) Ordinal - categorical transfonned 

Categorical to numerical 
Monotonic 

- numerical discretized 
to ordinal categorical 

Uni- / Multi- splits univariate only both both 

Pruning top-down bottom-up top-down 

Cost -complexity 
pruning yes 
(Cross validation) 

Missing values surrogate split mean / mode imputation 

Split of Entropy minimizes - L p(j I t) x loge p(j It» 
(pult): probability of node t classified to j) j 

Split of Gini minimizes I p(i I t) x p(j I t) 
(PUll): probability of node t classified to j) i'l:.) 

Split of Twoing maximizes P
L

: P
R [~ Ip(J1 tLl - p(J1 tRllr 
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Table 2.3 Patient Demographics by TE 

Presence of Absence Valid 

Variables Statistics TE ofTE Number 
Age (in years) mean (sd) 7.27 (5.22) 6.27 (4.20) 146 

Gender 
- female count (%) 11(17.74) 51(82.26) 62 
- male 11(13.10) 73(86.90) 84 
ALL-risk 
- SR count (%) 12 (14.12) 73 (85.88) 85 
-HR 10 (16.67) 50 (83.33) 60 
- missing a I 
Chemotherapy Phase at CVL Insertion 
- prior to start of chemo count (%) 14(19.18) 59 (80.82) 73 
- induction 7 (10.61) 59 (89.39) 66 
- CNS and intensification I (33.33) 2 (66.67) 3 
- consolidation a (0) 2 (100) 2 
- maintenance a (0) 1 (100) 1 
- CNS prophylaxis & consolidation a (0) 1 (100) 1 
- missing a a 
CVL Insertion Technique 
- percutaneous count(%) 14 (14.29) 84 (85 .71 ) 98 
- open 8 (18.60) 35 (81.40) 43 
- missing a 5 
CVL Functionality 
- dysfunction 7 (20.59) 27 (79.41) 34 
- function 14(12.96) 94 (87.03) 108 
- missing 1 3 
Type of Asparaginase 
- E. Coli count (%) 15 (15.79) 80 (84.21 ) 95 
- Erwinia a (0) 23 (100) 23 
- PEG a a a 
- others (switches) a a a 
- missing 7 21 
TypeofCVL 
- portacach count (%) 19(13.57) 121 (86.43 ) 140 
- hichman 3 (60) 2 (40) 5 
- PICC a (0) I (lOa) 1 
Site of Insertion 
- left count (%) 3 (8.11) 34 (91.89) 37 
- right 19(17.92) 87 (82.08) 106 
- missing a 3 
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Table 2.4 Patient Demographics by Infection 

Variables Statistics Presence of Absence of Valid 

Infection Infection Number 
Age (in years) mean (sd) 6.96 (4.79) 5.68 (3.65) 145 

Gender 
- female count (%) 36 (58.06) 26 (41.94) 62 
- male 47 (56.63) 36 (43.37) 83 
- missing 0 0 
ALL-risk 
- SR count (%) 46 (55.42%) 37 (44.58%) 83 
-HR 36 (59.02%) 25 (40.98%) 61 
- missin& 1 (100%) 0(0%) 
Chemotherapy Phase at CVL 
Insertion 
- prior to start of chemo count (%) 41 (57.75) 30 (42.25) 71 
- induction 40 (59.70) 27 (40.30) 67 
- CNS and intensification 0(0) 3 (100) 3 
- consolidation 1 (50) 1 (50) 2 
- maintenance 0(0) 1 (100) 1 
- CNS prophylaxis & consolidation 1 (100) 0(0) 1 
- missinK 0 0 
CVL Insertion technique 
- percutaneous count (%) 55 (57.29) 41 (42.71) 96 
- open 25 (56.82) 19 (43.18) 44 
- missing 3 2 
CVL functionality 
- dysfunction Count (%) 26 (74.29) 9 (25.71) 35 
- function 54 (51.43) 51 (48.57) 105 
- missing 3 2 
TypeofCVL 
- portacach count (%) 77 (55.40) 62 (44.60) 139 
- hichman 5(100) 0(0) 5 
- PICC 1 (100) 0(0) 1 
- missing 0 0 
ANC at CVL Insertion mean (sd) 1.97 (3.63) 1.79 (2.60) 136 
- missing count 4 5 
Site of Insertion 
- left count (%) 19 (52.78) 17 (47.22) 36 
- right 62 (59.05) 43 (40.95) 105 
- missing 1 2 
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Table 2.5 Predictor Summary and Coding for TE 

Variable (full name) Values Number Percent CodioJ! 

TE 
present 21 14.66% 1 
absent 124 2.67% 0 

(thromboembolism) 
unknown (missing) 4 82.67% 9999 

infection 
positive 83 55.33% 1 

(infection) 
negative 62 41.33% 0 
unknown 5 3.33% 9999 
continuous value 150 100.00% 

age_cont (continuous age) age<=10 118 78.67% 1 
age cate (categorical age) 10< age <=18 32 21.33% 0 
gender female 64 42.67% 1 
(gender) male 86 57.33% 0 

risk 
HR 61 40.67% 1 
SR 87 58.00% 0 (ALL-risk) 
unknown (missing) 2 1.33% 9999 
before chemo 73 48.67% 1 
induction 68 45.33% 2 

chemophase 
CNS& 
intensification 3 2.00% 

( phase of chemotherapy at 
consolidation 2 1.33% 
maintenance 1 0.67% 0 

CVL Insertion) 
relapse 0 0.00% 
CNS prophylaxis & 
consolidation 1 0.67% 
unknown (missing) 2 1.33% 9999 

insertion 
percutaneous 99 66.00% 1 

(CVL insertion technique) 
open 44 29.33% 0 
unknown (missing) 7 4.67% 9999 

dysfunCVL 
yes 35 23.33% 1 
no 108 72.00% 0 

(CVL functionality) 
unknown 7 4.67% 9999 
E. Coli 96 64.00% 1 

asprgtype Erwinia 23 15.33% 0 
(type of asparaginase) PEG 0 0.00% 

unknown (missing) 31 20.67% 9999 
portacath 142 94.67% 1 

typeCVL hickman 5 3.33% 
(type of CVL) PICC 1 0.67% 0 

unknown (missing) 2 1.33% 100 

bodyside 
left 37 24.67% 1 
right 108 72.00% 0 (site of CVL insertion) 
unknown (missing) 5 3.33% 9999 
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Table 2.6 Predictor Summary and Coding for Infection 

Variable (full name) Values Number Percent Coding 

TE 
present 21 14.66% 1 
absent 124 2.67% 0 (thromembolism ) 
unknown (missing) 4 82.67% 9999 

infection 
positive 83 55.33% 1 

(infection) n~ative 62 41.33% 0 
unknown 5 3.33% 9999 

age_cont (continuous age) 
continuous value 150 100.00% 
age<=10 118 78.67% I 

age_cate (categorical age) 
10 < liKe <=18 32 21.33% 0 

gender (gender) 
female 64 42.67% 1 
male 86 57.33% 0 
HR 61 40.67% 1 

risk (ALLJisk) SR 87 58.00% 0 
unknown (missing) 2 1.33% 9999 
before chemo 73 48.67% 1 
induction 68 45.33% 2 

chemophase CNS & intensification 3 2.00% 

( phase of chemotherapy at 
consolidation 2 1.33% 
maintenance 1 0.67% CVL Insertion) 0 
relapse 0 0.00% 
CNS prophylaxis & 
consolidation 1 0.67% 
unknown (missing) 2 1.33% 9999 

insertion percutaneous 99 66.00% 1 
(CVL insertion oQen 44 29.33% 0 
technique) unknown (missing) 7 4.67% 9999 

dysfunCVL 
yes 35 23.33% 1 
no 108 72.00% 0 (CVL functionality) 
unknown 7 4.67% 9999 

typeCVL 
portacath 142 94.67% 1 
hickman 5 3.33% 

(type of CVL) PICC 1 0.67% 0 
unknown (missing) 2 1.33% 100 

ANC_cont 
continuous values 139 92.67% 
unknown 11 7.33% 9999 

(ANC continuous) 
ANC <0.5 57 38.00% 1 ANC_cate 
ANC >= 0.5 82 54.67% 0 (ANC categorical) 
unknown 11 7.33% 9999 
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Table 3.1 Odds Ratio Estimates by TE 

Logistic Fisher's 
Logistic Logistic 

Bayesian Regression Regression 
Factor Regression Exact Analysis with MI with MI 

without MI Test (Rounding) (Non-Rounding) 

Infection 1.727 1.727 1.802 1.733 1.733 
(present vs absent) (0.657, 4.538) (0.607, 5.363) ( 0.676, 5.068 ) (0.660,4.555) (0.660, 4.555) 

Age in Year 1.051 1.050 1.048 1.048 
( per year increase) (0.952, 1.159) ( 0.950, 1.159) (0.950, 1.157) (0.950, 1.157) 

Age Category 0.54 1 0.541 0.555 0.544 0.544 
(l - lOyr vs others) (0.199, 1.469) (0.184, 1.751) (0.202, 1.542) (0.201 , 1.663) (0.20 1, 1.474) 

Gender 1.431 1.431 1.435 1.447 1.447 
(female vs male) (0.577, 3.553) (0.518, 70.103) ( 0.559, 3.550) (0.578,3.620) (0.578, 3.620) 

All-risk 1.2 17 1.217 1.205 1.268 1.256 
(HR vs SR) (0.488, 3.033) (0.434, 3.339) ( 0.458, 3.065) (0.507,3.172) (0.504, 3.130) 

Phase of 
Chemotherapy 
at CVL Insertion 1.424 1.424 1.449 1.405 1.405 
(prior to vs post) ( 0.158, 2.795) (0.152, 70.103) ( 0.204,14.077) (0.604,3.267) (0.604, 3.267) 

Phase of 
Chemotherapy 
at CVL Insertion 0.7 12 0.712 0.727 0.736 0.736 
(induction vs jlost) (0.074, 6.804) (0.068, 37.365) (0.110, 7.248) (0.301 , 1.804) (0.301 , 1.804) 
Phase of 
Chemotherapy 
at CVL Insertion 
(induction vs prior 0.5 0.5 2.116 0.736 0.736 
to) (0.188, 1.328) (0. 160, 1.445) (0.805,5 .972) (0.301, 1.804) (0.30 1, 1.804) 

CVL Insertion 
Technique 
(percutaneous vs 0.729 0.729 0.746 0.714 0.697 
open) ( 0.281, 1.893) (0.258, 2.200) (0.286, 1.970) (0.275 ,1.627) (0.271 , 1.795) 

CVLFunctionality 
(dysfunction vs 1.74 1 1.741 1.703 1.842 1.908 
function) (0.638, 4.747) (0.536, 5.170) ( 0.602, 4.627) (0.654, 5.183) (0.687, 5.296) 

Site ofCVL 
Insertion 0.404 0.404 0.352 0.403 0.397 
(left vs right) (0. 112, 1.454) (0.072, 1.514) (0.082, 1.200) (0.11 4,1.418) (0. 111 , 1.422) 

Type of 
Asparaginase >999.999 
(E. Coli vs Erwinia) (2.001 ,00) 

TypeofCVL 
(portacach vs 0.105 0.105 
others) (0.016, 0.668) (0.009, 1.001) 
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Table 3.2 Odds Ratio Estimates by Infection 

Logistic 
Logistic 

Logistic Fisher's Regression 
Factor Regression Exact 

Bayesian Regression 
with MI 

withoutMI Test 
Analysis with MI (Non-

(Rounding) 
Rounding) 

TE 1.727 1.727 1.778 1.733 1.733 
JJ!resent vs absent) ( 0.657, 4.538) (0.607, 5.363) ( 0.680, 4.884) (0.660,4.555) (0.660,4.555) 

Age in Year 1.074 1.077 1.074 1.074 
(per year increase) (0.991,1.163) (0.994, 1.169) (0.992,1.164) (0.992, 1.164) 

Age Category 0.533 0.533 0.520 0.535 0.535 
(1-10 yr vs others) ( 0.232, 1.228) (0.207, 1.308) (0.217,1.189) (0.232,1.235) (0.232, 1.235) 

Gender 1.061 1.061 1.056 1.092 1.092 
(female vs male) ( 0.545, 2.063) (0.518,2.181) ( 0.543, 2.069) (0.563,2.119) (0.563,2.119) 

All-risk 1.158 1.158 1.158 1.166 1.152 
(HR vsSRl ( 0.593, 2.261) (0.563,2.392) ( 0.590, 2.265) (0.600,2.266) (0.590,2.251) 
Chemotherapy 
Phase 
At CVL Insertion 3.416 3.417 3.423 1.408 1.408 
(prior to vs post) (0.620,18.810) (0.509,37.591) ( 0.651,20.352) (0.729,2.722) (0.729,2.722) 
Chemotherapy 
Phase 
At CVL Insertion 3.703 3.74 3.722 1.562 1.562 
(induction vs post) (0.669,20.489) (0.547,40.844) (0.658, 23.017) (0.806,3.024) (0.806,3.024) 
Phase of 
Chemotherapy 
at CVL Insertion 
(induction vs prior 1.084 1.084 0.912 1.562 1.562 
to) (0.550,2.136) (0.521,2.259) (0.458, 1.820) (0.806,3.024) (0.806,3.024) 
CVL Insertion 
Technique 
(percutaneous vs 1.020 1.020 1.022 0.978 1.001 
open) l0.496, 2.096) (0.463,2.223) (0.496,2.115) (0.471,2.032) (0.483,2.075) 
CVL Functionality 
(dysfunction vs 2.128 2.128 2.815 2.896 2.929 
function) (1.167, 6.378) * (1.100, 7.231) (1.221,7.008) * (1.228,6.828) * (1.235,6.947) 

ANC 1.017 1.021 1.019 1.023 
(per unit increase) (0.913,1.133) (0.915, 1.148) (0.914, 1.135) (0.915, 1.145) 

ANC Category 2.180 2.181 2.202 1.974 1.974 
(<0.5 vs >=0.5 )* ( 1.063, 4.475)* (1.006, 4.802) (1.064,4.513) * (0.943,4.134) (0.943,4.131 ) 
Site ofCVL 
Insertion 0.775 0.775 0.758 0.754 0.732 
(left vs right) (0.362, 1.660) (0.338, 1.789) (0.347, 1.626) (0.338, 1.682) (0.338, 1.587) 
TypeofCVL 
(portacach vs <0.001 
others) (0,0.480) 
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Table 3.3 Misclassification Comparison - Outcome TE 

Software & Method Misclassification Rates 

Node 
Original Software Splitting MIl MI2 MI3 MI4 MI5 

Rules Data Set 

SASEM Chi-Square 15.11% 15.38% 15.38% 15.38% 16.08% 16.08% 
5.0 

Split Entropy 
Sampling 

15.11% 15.38% 15.38% 15.38% 16.08% 16.08% 

Training Gini 15.11% 15.38% 15.38% 15.38% 16.08% 15.38% 
90% 

Validation 
5% 

Test 5% Average 15.11% 15.38% 15.38% 15.38% 16.08% 15.85% 

Max. 
depth: 3 

CHAID 15.07% 15.33% 15.33% 15.33% 15.33% 15.33% (Pearson) 
SPSS 14.0 CHAID 

Split 
(Likelihood 15.07% 15.33% 14.67% 15.33% 16.00% 15.33% 

Ratio) 
Sampling 

CRT Training 
(Gini) 14.38% 15.33% 15.33% 15.33% 16.00% 15.33% 

90% 
Test 10% CRT 

15.07% 15.33% 14.67% 15.33% 16.00% 15.33% 
(Twoinru 

Max. QUEST 15.07% 15.33% 15.33% 15.33% 16.00% 15.33% 
depth: 3 

Sub-
Avera~e 

14.93% 15.33% 15.07% 15.33% 15.87% 15.33% 

CHAID 
15.07% 15.33% 14.67% 15.33% 15.33% 15.33% (Pearson) 

SPSS 14.0 
CHAID 

10-fold 
(Likelihood 15.07% 15.33% 14.67% 15.33% 15.33% 15.33% 

Ratio) 
validation 

CRT Training 14.38% 15.33% 14.67% 15.33% 15.33% 15.33% 
90% (Gini) 

Test 10% CRT 
14.38% 15.33% 14.67% 15.33% 15.33% 15.33% (Twoing) 

Max. QUEST 15.07% 15.33% 15.33% 15.33% 16.00% 15.33% 
depth: 3 

Sub-
Average 14.79% 15.33% 14.80% 15.33% 15.46% 15.33% 

S-PLUS 6.1 15.79% 15.33% 14.67% 15.33% 15.33% 15.33% 

CART I CRT: Classification and RegressIOn Trees; 
CHAID: Chi-Square Automated Interaction Detection 
Gini, Entropy and Towing: Impurity Reduction Algorithms 

.. 
QUEST: another type of deCISion tree 
MI: multiple imputation 
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Average 

15.66% 

15.66% 

15.52% 

15.61% 

15.33% 

15.33% 

15.46% 

15.33% 

15.46% 

15.38% 

15.20% 

15.20% 

15.20% 

15.20% 

15.46% 

15.25% 

15.20% 
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Table 3.4 Misclassification Comparison - Outcome Infection 

Software & Method Misclassification Rates 

Node 
Original Software Splitting MIl MI2 MI3 MI4 MI5 

Rules 
Data Set 

EM 5.0 Chi-Squre 42.75% 43.36% 42.66% 44.06% 34.97% 38.46% 
Split 

Sampling Entropy 43.55% 43.36% 35.66% 35.66% 34.97% 41.26% 
Training 

90% GINI 39.58% 35.66% 35.66% 35.66% 34.97% 41.26% 
Validation 

5% 
Test 5% Average 41.96% 40.79% 37.99% 38.46% 34.97% 40.33% 

Max. 
depth: 5 

CHAID 
45.21% 34.67% 31.33% 45.50% 35.33% 32.67% 

(Pearson) 
SPSS 14.0 

CHAID 

Split 
(Likelihood 41.10% 33.33% 32.00% 40.00% 34.67% 38.00% 

Ratio) 
Sampling 

CRT Training 
(Gini) 31.51% 34.67% 30.00% 44.40% 31.33% 34.00% 

90% 
Test 10% CRT 

32.88% 34.00% 31.33% 56.20% 35.33% 35.33% 
(Twoing) 

Max. QUEST 42.47% 43.33% 42.67% 44.00% 44.00% 41.33% 
depth: 5 

Sub-
AveraJ!e 

38.63% 36.00% 33.47% 46.02% 36.13% 36.27% 

CHAID 
31.51% 31.33% 28.67% 31.33% 31.33% 30.00% 

(Pearson) 
SPSS 14.0 

CHAID 

10-fold 
(Likelihood 31.51% 31.33% 28.67% 31.33% 31.33% 30.00% 

Ratio) 
validation 

CRT Training 
(Gini) 29.45% 33.33% 28.67% 33.33% 31.33% 31.33% 

90% 
Test 10% CRT 

29.45% 33.33% 28.67% 33.33% 31.33% 31.33% 
(Twoing) 

Max. QUEST 42.47% 43.33% 42.67% 44.00% 44.00% 41.33% 
depth: 5 

Sub-
Average 32.88% 34.53% 31.47% 34.66% 33.86% 32.80% 

S-PlusS 6.1 29.37% 32.00% 32.67% 32.00% 32.67% 32.67% 

CART / CRT: ClassIficatIon and RegressIOn Trees; 
CHAID: Chi-Square Automated Interaction Detection 
Gini, Entropy and Towing: Impurity Reduction Algorithms 

.. 
QUEST: another type of decIsIOn tree 
MI: multiple imputation 
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Average 

40.70% 

38.18% 

36.64% 

38.51% 

35.90% 

35.60% 

34.88% 

38.44% 

43.07% 

37.58% 

30.53% 

30.53% 

31.60% 

31.60% 

43.07% 

33.47% 

32.40% 
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Table 3.5 Software Packages Comparison in CART Modeling 

Feature SAS EM 5.0 SPSS 14.0 S-PLUS 6.1 
~hi-Squre CHAID / Exhaustive CHAID - Pearson 

Ci- - Pearson / significance ignificance level with - Likelihood Ratio 
Square level - Pearson 

tree growth - Likelihood Ratio 
method Node Splitting Method Node Splitting Method ~A 
& splitting CART 

- Gini - Gini 

rule - Entropy - Twoing 
- Ordered Twoing 

QUEST INA QUEST INA 
- significance level 

- data needs to be - partition (training & - no need to specifY 
~alidation flexibility partitioned to training, validation) is optional not a partition 

validation, testing groups must - cross validation 
- cross validation - cross validation 

Applicable for Applicable for ~es 
- Chi-Square - CHAID and CRT 

~urrogate 
- CART with Entropy and -for QUEST, missing values 

Gini are treated as floating 
for missing ategory that is allowed to 

merge with other categories 
in tree nodes 

missing data an be omit - can be omit lean be omit 
can be treated as valid - can be treated as valid I'-'an be treated as valid 

predicted value misclassification (risk) rate nisclassification errors 
~tatistics within-node yes / no ~ummary table Pearson residuals 

output proportion Deviance residuals 
number of terminal nodes 

applicable for CART ~pplicable for CRT and "best=" command option 

pruning 
flexible pruning and PUEST ' or pruning 
ecovery by clicking by setting maximum 

~ifference of risks 
Solutions-+ Analysis -+ V\,nalyze-+ClassifY-+ Tree Statistics-+ Tree -+ 
Enterprise Miner-+Tools Tree-+ Models 

putput-+ Validation-+Criteria 

tabs for conducting Input Data Source -+ I-> Save Model-+Result-+Plot-+Pr 
Insight -+ Transform une / Shrink-+Predict 

CART modeling Varialbes -+ Data Set 
Attributes -+ Data Partition 
--> Tree -+ Assessment -+ 
Report 
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Table 3.5 Software Packages Comparison in CART Modeling 
(Continued) 

Feature 
Options 

Advantages 

SAS EMS.O SPSS 14.0 S-Plus 6.1 
1. data partition methods: simple random I. maximum depths: I. min. number of obs before 
II stratified / user defined. automatic or custom plit 
~ . training/validation/testing percentage 2. CHAID significance 2. min. node size 
~etting level for splitting / 3. min. node deviance 
~ . sampling process initiation seed merge nodes 4. P-value adjustment 
~. missing values replacement 3. maximum number of Bonferroni) 
Imechanism iterations 5. plot text label: response-
S. significance level with Chi-Squre 4. minimum change in variable / node size / node 
imethod expected cell frequencies deviance 
~. minimum obs in a leaf 5. saved variable: terminal 6. cost complexity pruning: 
7. obs required for a split search nodes number, predictive cost complexity pruning 
8. maximum number of branches from a value, predictive parameter / size of returned 
node probability ree 
9. maximum depths of tree 6. P-value adjustment 7 . pruning / shrink method : 
10 . splitting rules saved in each node Bonferroni) for CRT and cost complexity / optimal 
II. surrogate rules saved in each node QUEST ecursive shrinking / deviance 
12. ignore or treating missing value as 6. prior probability misc1ass 
valid data. 7. cost / profit 8. summary: summary 
13. model assessment measure: 8. scores description / full tree / print 
automatic; proportion misc1assified; total 9. importance to model or save summary: 
leaf impurity (Gini index) 10. forcing the first misclassification error / 
15. P-value adjustment independent variable Pearson residuals / deviance 
16. prior proabililty; cost / profit esiduals 
17. Scores 9. plot: branch size / branch 

label 
I. Easy comparison between logistic I . Data grouping is an I. Easy pruning 
egression and CART option not a must. 2 . Direct summary of 

2. Easy pruning and recovery 2. Node content combines m isc lassification and 
3. Flexible nodes choice at user's able and chart with label deviance 
discretion at any level definition and color 3. Model assessment graph ics 
4. Convenient switch of data sources for option . based on misc1assification or 
ree modeling with saved project 3. Pruning is better deviance 

5. Data set, attribute settings, partitions, onducted by specifying 4. Option for specifying 
ree options are connected as a project. minimum risk / impurity validation data 

CART modeling can be conducted with eduction. simultaneously to running 
any of them adjusted and others 4. User friendly platform raining data 
unchanged . with concrete and concise 
6 . Supports both automatic and option tabs 
interactive training of the model. 5. Direct misclassification 

esults 

** *** * 
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Table 4.1 Comparison of ALL Studies 

Study N Risk Factors Identified 
PARKAA Study 

66 CVL insertion technique, Site of CVL insertion Thromb Haemost. 2002; 87(4): 593-8. 
Mitchell LG, et al. 
"A prospective cohort study determining the CVL insertion technique site of insertion 
prevalence of thrombotic events in children 
with acute lymphoblastic leukemia and a 
central venous line who are treated with L-

60 
asparaginase: results of the prophylactic 
antithrombin replacement in kids with acute 
lymphoblastic leukemia treated on 
asparaginase (PARKAA protocol)." 
Cancer 2003; 97(2): 508-16. 
McLean TW, et al. 
"Central venous lines in children with lesser 
risk acute lymphoblastic leukemia: optimal 
type and timing of placement" 

362 Type ofCVL 
POG (Pediatric Oncology Group) protocol 
9201. 
Journal of Clinical Oncology 2005; 23: 3024-
3029 
Rudd et al 
Prevalence of thrombophilia and central 
venous catheter-associated neck vein 

41 
No correlation between thrombophilia or infection 

thrombosis in 41 children with cancer - a and development ofTE 
prospective study. 
Med Pediatr Onco12002; 38: 405-10 

Significant risk factors for 
Our study by Logistic and Bayesian analyses 150 TE: none 

Infection: CVL functionality, ANC category 
Misclassification 

Our study by CART modeling 150 
Clinical importance ordered TE and infection 
decision trees 
Software comparison in doing CART modeling 
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Outcome: TE 

Predictors: 
- Infection 
-Age 

f---+ -Gender 
-ALL-Risk 
- Phase of Chemotherapy 
at CVL Insertion 
- Insertion Technique 
- Functionality of CVL 
- Site of CVL Insertion 

Outcome: Infection 

Predictors: 
-TE 
-Age 
- Gender 
-ALL-Risk 
- Phase of Chemotherapy 

~ at CVL Insertion 
- Insertion Technique 
- Functionality of CVL 
- Site of CVL Insertion 
-ANC 

Figure 1.1 

Logistic Regression 
Without Multiple I Imputation 

- Logistic Reg,."ion 

J4 With Multiple 
/ Imputation 

CART Modeling 
--. With Multiple 

Imputation 

CART Modeling 
Without Multiple 
Imputation 

Bayesian Analysis 
Without Multiple 
Imputation 
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Study Diagram 

ALL Observational Study 
n = 150 

'--

Imputed Data 1 I--'---__ --->1 

o Imputed Data 2 

~. ~ Imputed Data 3 

_~ Imputed Data 4 

, Imputed Data 5 

Logistic 
i-+ Regression ~ 

- Odds Ratio ---..-
- 95% 

CART Modeling 
- Misclassifcation 

,/ 
SAS 9.1 
EMS.O 
-Chisqure 
-Entropy 
G· . - 1O1 

I Spius 

Comparison 

SPSS 14.0 
-CHAID 
-CRT 
-QUEST 

I 

- Misclassification 

Bayesian Analysis 
- Odds Ratio 
- 95% Confidence 
Interval 

Comparison 
- Odds Ratio 
- Forest Plot 
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node 
b.lnsertion 

node 
b.risk 

2.0 

1.0 

0.0 
-1.0 

-2.0 

-3.0 

2.0 

1 0 

00 

-1.0 

-2.0 

Figure 3.1 Bayesian Odds Ratio Examples by TE 
b.insertlon 

2500 

1.0 
0.75 

0.5 
0.25 

5000 

iteration 

b.insertion sample: 10000 

7500 

O.OL....,-----r_--r __ r--_-r-_~ 

-3.0 -2.0 -'.0 0.0 '.0 

mean sd MC error 2.5% 
-1.253 -0.2937 0.4939 0.01024 

b.nsk 

2500 

1.0 
0.75 

0.5 
0.25 

5000 

iteration 

b.risk sample: 10000 

median 97.5% start 
-0.2959 0.6779 1 

7500 

O.0L...r __ -r-__ ~--,..--___,,_J 

-2.0 

mean sd MC error 
0.1861 0.4784 0.008184 

-1.0 

2.5% 
-0.7814 
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0.0 1.0 

median 97.5% start 
0.1936 1.12 1 

10000 
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sample 
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Figure 3.2 Bayesian Odds Ratio Examples by Infection 

node 

3.0 

2.0 

10 

00 

-1.0 

b.dysfunCVL 

3.0 

2.0 

1.0 

00 

-10 

node 
b.ANCcate 

b dysfunCVL 

mean sd 
1.035 0.4444 

b.ANCcate 

mean sd 
0.7892 0.3698 

2500 5000 

iteration 

b.dysfunCVL sample: 10000 

1.0 
0.75 

0.5 
0.25 

0.0 

-10 0.0 1.0 

MC error 2.5% 
0.004181 0.1994 

2500 5000 
Iteration 

b.ANCcate sample: 10000 

1.5 

1.0 

0.5 

0.0 

-1.0 0.0 1.0 

MC error 2.5% 
0.005206 0.06178 
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2.0 
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Figure 3.3 Forest Plot Example for Odds Ratios by TE 

CVL Insertion by TE Odds Ratio 
(percutaneous to open) 

95% 95% 
Method OR Lower Upper 

Logistic w/o MI 0.729 0.281 1.893 
Bayesian 0.746 0.286 1.97 
Logistic MI&Rounding 0.714 0.275 1.627 
Logistic MI wlo Rounding 0.697 0.271 1.795 

05 

• • • • 
, 0 

At-Insertion Chemophase by T E Odds Ratio 
(induction to post chemotherapy) 

95% 95% 
Method OR Lower Upper 

Logistic wlo MI 0.712 0.074 6.804 • 
Bayesian 0.727 0.11 7.248 • 
Logistic MI&Rounding 0.736 0.301 1.804 • Logistic MI wlo Rounding 0.736 0.301 1.804 • 
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Figure 3.4 Forest Plot Example for Odds Ratios by Infection 

CVL Functionality by Infection Odds Ratio 
(dysfunction t.o funct.ion) 

95% 950/0, 
Method OR LO\Ner Upper 

Logistic w/o MI 2.728 1.167 6.37B • Bayesian 2.815 1.221 7.00B • Logistic MI&Rounding 2.896 1.228 6.82B • Logistic MI w/o Rounding 2.929 1.235 6.947 • 
3 

ANC Category by Infection Odds Ratio 
(less than O.SX1 O"'9/L to others) 

95% 95% 
Method OR LO\Ner Upper 

Logistic w/o MI 2.18 1.063 4.475 • Bayesian 2.202 1.064 4.513 • 
Logistic MI&Rounding 1.974 0.943 4.134 • Logistic MI w/o Rounding 1.974 0.943 4.131 • 
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Figure 3.5 CART Modeling Tree Example for TE by Using SAS EM 5.0 

Mutiple Imputed Data - TE (Chi Square) 

Pred:lC:ted. value: 
StatistiC: 

1: 
0: 

N in node: 
PerC:4Int Corract: 

training 
cases 

100 
5 
8 

22 

, 
o 
III 

Pre:d:1C:eed value: 
Seatist1c Tra1.n1ng 

1: 16' 
0: 84' 

N l.n node: 135 
Percent Correct: 84 . 

bodysJ.de , 

Vall.datJ.on 
0' 

100' 
8 

100 

Predicted value: 

I 
1 
! 

Ta:a1ning Validation Seae1sel.c 
1: 

Tr&1n1no
~, 

Validaeion 

0' 
100' 

l~' 0' 
eu 100' 
100 5 

81 100 

Pred1c:t.d value: 
Statistic: 

1 

H in node 
Percent. Correc:t. 

validation 
cases 

5 
1 
1 
1 

0: 9H 
:N in node: 35 

Percent Correct: ~l 100 

I 
<- 1 ,- z 

I I 
Predl.cted value: 

Training Validation Statl.stl.C Tral.nl.ng Vall.datl.on 

23' os 1: 0' 0' 
,,. 100' 0: 100\ 100l 

13 2 N l.n node: ZZ 
11 100 Percent Correct: 100 100 

Predicted value: 
Statist:LC: Tral.nl.ng Vall.datl.on 

1: O. O. 
0: 100\ 100\ 

N l.n node: 
Percent Correct: 100 100 

leaf statistics 
training validation misc1assified 
correct correct cases 
percent percent 

81 100 19 
60 0 3 
100 100 a 
100 100 a 

misc1assification rate 15.38% 
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Figure 3.6 CART Modeling Example for TE by Using SPSS 14.0 

Original Data 

Specifications 

Results 

Growing Method 

Dependent Variable 

Independent Variables 

Model Summary 

CHAID (Likelihood Ratio) 

TE 

agecate, gender, bodyside, risk, chemophase, 

insertion, dysfunCVL, infection 

Validation Split Sample (Training 90%, Test 10%) 

Maximum Tree Depth 3 

Minimum Cases in Parent Node 10 

Minimum Cases in Child Node 5 

Independent Variables Included infection, chemophase, bodyside 

Number of Nodes 

Number of Terminal Nodes 

Depth 

Risk 

Sample Estimate 

Training .135 

Test .308 

Growing Method: CHAID 

Dependent Variable: TE 

- 50-

Std. Error 

.030 

.128 

7 

4 

3 
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TE 

NOlde 0 
CatesoD£ .... -0.000 ee.1!5 ...... e; -"1.000 "13.5 1e 
Total 

in'feotion 
..A..dj. P-V"a I u e-=O .... 20. C h i-sq u ...... e==4. 

I 
0.0; <missing> 

NOlde ... 

Category <:-Eo 

- 0.000 
- '1.000 

To't~1 

93.... :54 
e.9 4 

'13 .... d..-.'1 

I 

--
I 

1.0 

NOlde 2 
C ate !!iii OI!)£ .... 
0.000 e1.3 
"1.000 "'S.7 
Tot~1 

oh IIiiiiI rnophoilS:Q 

161 
1""1-

.Adj. P-voiIl .... sp-;:C)."1QO. Chi-squ"'I'"IIiI=3 . 
..q....:::::a.a. d"f=1 

.Adj. 

I 
0.0 

I 
I 

2.0: 0.0 

Cattl!!go!::::£ -0.000 3""1--1.000 ""I-

Total 

bodyslde 
P-voiIluoIiII-=O.174. Chl-squ.iiiilrlliiill-3 . 

~gO. d1'=1 

I 
I 

"1.0; <11$$ing:> 

NOIdQ ~ NOlde e 
C ate !iii o.-y 

- 0.000 
_ .... 000 

TC)tal 

64.0 :21 
110.0 4 

18.8 25 

Category '% 

- 0.000 
_ "1.000 

TQtal 

Classification 

100.0 
0.0 

"'.8 

I 
1.0 

NOlde 

C ata!lil CII!J! -0.000 -"1.000 

Total 

13 
o 

Predicted 

""I-.... 
73.0 27 
27.0 10 
27.8 37 

Sample Observed 0 1 Percent Correct 

Training 0 

1 

Overall Percentage 

Test 0 

1 

Overall Percentage 

Growing Method: CHAID 

Dependent Variable: TE 

115 

18 

100.0% 

9 

4 

100.0% 
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0 

0 

.0% 

0 

0 

.0% 

100.0% 

.0% 

86.5% 

100.0% 

.0% 

69.2% 

Misclassification 

15.07% 
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Figure 3.1 CART Modeling Example for TE by Using S-plus 6.1 

Original Data 

Classification Tree for TE with the Original Dataset 
3 Nodes, 15.79% Misclass, 0.8278 Res. Mean Deviance 

I 

o 

o o 
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Figure 3.8 

training 
cases 

95 
35 

CART Modeling Example for Infection by SAS EM 

5.0 

Original data - Chi Square 

, 
o 

validation 
cases 

8 
0 

dysfunCVL , 

leaf statistics 
training validation 
correct correct 
percent percent 
52.6316 37.5 
74.2857 0 

misclassification rate 
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Figure 3.9 CART Modeling Example for Infection by Using SPSS 14.0 

Model Summary 

Specifications Growing Method CHAID (Pearson) 

Dependent Variable infection 

Independent Variables agecate, gender, bodyside, risk, chemophase, 

insertion, ANCcate, dysfunCVL, TE 

Validation Cross Validation (Training 90%, Test 10%) 

Maximum Tree Depth 5 

Minimum Cases in Parent Node 10 

Minimum Cases in Child Node 5 

Results Independent Variables Included 
dysfunCVL, ANCcate, gender, risk, agecate 

Number of Nodes 

Number of Terminal Nodes 

Depth 

Risk 

Method Estimate 

Resubstitution 

Cross-Validation 

Growing Method: CHAID 

Dependent Variable: infection 

Observed 

0 

1 

Overall Percentage 

Growing Method: CHAID 

Dependent Variable: infection 

.317 

.531 

Std. Error 

.039 

.041 

Classification 

0 

34 

18 

35.9% 
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Predicted 

1 

28 

65 

64.1% 

Percent Correct 

Misclassification 

31.51% 

54.8% 

78.3% 

68.3% 

17 

9 

4 
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Figure 3.10 CART Modeling Example for Infection by Using S-plus 6.1 

Original Data 

Classification Tree for Infection with the Original Dataset 
7 Nodes, 29.37% Misclass, 1.257 Res. Mean Deviance 

I 

o 

o 
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Figure 3.11 Clinical Importance Ordered Tree Example by SAS 
EM 5.0 

Original Data - TE (Gini) 
(Insertion- Site of Insertion- Gender & Age category - CVL functionality

Infection) 
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leaf statistics 
training validation training validation misclassified 

cases cases correct correct cases 
percent percent 

8 0 75 0 2 
5 1 80 100 1 
13 2 76.9231 100 3 
5 0 80 0 1 
8 0 87.5 0 1 
6 0 50 0 3 
18 1 88.8889 100 2 
6 1 66.6667 100 2 
17 0 88.2353 0 2 
14 1 92.8571 100 1 
17 0 100 0 0 
7 2 71.4286 100 2 
7 0 85.7143 0 1 

misclassification rate 15.11% 
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Original Data - Infection (Gini) 
(ANC - Insertion - Site of Insertion - Gender - CVL functionality - TE) 
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leaf statistics 
training validation training validation misclassified 

cases cases correct correct cases 
percent percent 

12 2 50 50 7 
5 1 60 100 2 
9 0 55.5556 0 4 

27 3 55.5556 33.3333 14 
6 0 50 0 3 
9 1 66.6667 0 4 
10 0 80 0 2 
10 1 70 0 4 
15 0 66.6667 0 5 
27 0 70.3704 0 8 

misclassification rate 38.41% 
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7 APPENDICES 

1.1 R Code: Logistic Regressions 

data<-read.table("data_all.txt",na.string="",sep="\t",header= T) 
te. infection< -glm(data=data, TE -infection, family=binomial(link= "login) 
summary(te.infection) 
exp(te.infection$coefficient[2j) 
exp(te.infection$coefficient[2]+c(-1,1 )*1.96*0.4929) 

te.agecont<-glm(data=data,TE-agecont,family=binomial(link="logit"» 
summary(te.agecont) 
exp(te.agecont$coefficient[2J) 
exp(te.agecont$coefficient[2]+c(-1,1 )*1.96*0.05009) 

te.agecate<-glm(data=data,TE-agecate,family=binomial(link="logit"» 
summary(te.agecate) 
exp(te.agecate$coefficient[2]) 
exp(te.agecate$coefficient[2]+c(-1, 1 )*1.96*0.5095) 

te.gender<-glm(data=data,TE-gender,family=binomial(link="Iogit") 
summary(te.gender) 
exp(te.gender$coefficient[2]) 
exp(te.gender$coefficient[2]+c(-1,1 )*1.96'0.4638) 

te.risk< -glm( data =data, TE -risk, family=binomial(link= "log it") 
summary(te.risk) 
exp(te.risk$coefficient[2]) 
exp(te.risk$coefficient[2]+c( -1,1 )'1.96*0.4659) 

te.chemophase<-glm(data=data,TE-factor(chemophase),family:binomial(link="logit") 
summary(te.chemophase) 
exp(te.chemophase$coefficient[2J) 
exp(te.chemophase$coefficient[2]+c(-1,1 )*1.96*1.1203) 
exp(te.chemophase$coefficient[3J) 
exp(te.chemophase$coefficient[3]+c(-1,1 )*1.96*1.1517) 
datal <-data[data$chemophase!=O,] 
te .chemophase 12 < -glm( data :data 1 ,TE - factor( chemophase), family=binomial(link= "log it") ) 
summary(te.chemophase12) 
exp(te.chemophase12$coefficient[2J) 
exp(te.chemophase12$coefficient[2]+c(-1,1 )*1.96*0.4982) 

te .insertion < -glm( data=data, TE - insertion, family=binomial (link= "log it"» 
summary(te. insertion); exp(te. insertion$coefficient[2j) 
exp(te.chemophase$coefficient[2]+c(-1,1 )'1.96'0.4867) 

te.dysfunCVL<-glm(data=data,TE-dysfunCVL,family=binomial(link="logit") 
summary(te.dysfunCVL) 
exp(te.dysfunCVL$coefficient[2J) 
exp(te.chemophase$coefficient[2]+c(-1,1 )'1.96*0.5118) 
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te .bodyside< -glm( data =data, TE -bodyside, family= binomial (link= "Iogit"» 
summary(te.bodyside); exp(te.bodyside$coefficient[2j) 
exp(te.bodyside$coefficient[2)+c(-1,1 )*1.96*0.6534) 

infection.te<-glm(data=data, infection-TE, family=binomial(link="logit"» 
summary(infection .te) 
exp(infection. te$coefficient[2j) 
exp(infection.te$coefficient[2)+c(-1,1 )*1.96*0.4929) 

McMaster - Statistics 

infection.agecont<-glm(data=data,infection-agecont,family=binomial(link="logit"» 
summary(infection.agecont) 
exp(infection.agecont$coefficient[2J) 
exp(infection.agecont$coefficient[2)+c(-1,1 )*1.96*0.04083) 

infection.agecate<-glm(data=data,infection-agecate,family=binomiaIOink="logit") 
summary(infection.agecate) 
exp(infection.agecate$coefficient[2J) 
exp(infection.agecate$coefficient[2j+c(-1,1 )*1.96*0.4255) 

infection.gender<-glm(data=data,infection-gender,family=binomiaIOink="logit"» 
summary(infection.gender) 
exp(infection.gender$coefficient[2j) 
exp(infection.gender$coefficient[2j+c(-1,1 )*1.96*0.33955) 

infection.risk<-glm(data=data,infection-risk,family=binomial(link="logit") 
summary(infection.risk) 
exp(infection.risk$coefficient[2j) 
exp(infection.risk$coefficient[2j+c(-1,1 )*1.96*0.3414) 

infection.chemophase<
glm(data=data,infection-factor(chemophase),family=binomial(link="logit") 
summary(infection.chemophase) 
exp(infection.chemophase$coefficient[2j) 
exp(infection.chemophase$coefficient[2j+c(-1,1 )*1.96*0.8705) 
exp(infection.chemophase$coefficient[3]) 
exp(infection.chemophase$coefficient[3j+c(-1,1 )*1.96*0.8729) 
datal <-data[data$chemophase!=O,) 
infection.chemophase12<-
glm( data =data 1, infection-factor(chemophase), family=binomial (link= "Iogin) 
summary(infection.chemophase12) 
exp(infection.chemophase12$coefficient[2j) 
exp(infection.chemophase12$coefficient[2j+c(-1,1 )*1.96*0.34606) 

infection.insertion<-glm(data=data,infection-insertion,family=binomial(link="logit") 
summary(infection.insertion) 
exp(i nfection . insertion $coefficient[2J) 
exp(infection. insertion$coefficient[2j+c( -1,1)"1 .96"0.3677) 

infection.dysfunCVL<-glm(data=data,infection-dysfunCVL,family=binomial(link="logit"» 
summary(infection .dysfunCVL) 
exp(infection.dysfunCVL$coefficient[2) 
exp(infection.dysfunCVL$coefficient[2j+c(-1,l )*1.96*0.43324) 
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infection.bodyside<-glm(data=data,infection-factor(bodyside),family=binomial(link="logit")) 
summary(infection.bodyside) 
exp(i nfection . bodyside $coefficient[2]) 
exp(infection.bodyside$coefficient[2]+c(-1, 1 )*1.96*0.3881) 
infection.ANCcont<-glm(data=data,infection-ANCcont,family=binomial(link="logit")) 
summary(infection.ANCcont) 
exp(infection.ANCcont$coefficient[2]) 
exp(infection.ANCcont$coefficient[2]+c(-1, 1 )*1.96*0.05494) 

infection.ANCcate<-glm(data=data,infection-ANCcate,family=binomial(link="logit")) 
summary(infection.ANCcate) 
exp(infection .AN Ccate $coefficient[2]) 
exp(infection.ANCcate$coefficient[2]+c(-1, 1 )*1.96*0.36678) 

infection. dysfu n. AN Ccate <
glm(data=data,infection-factor(dysfunCVL)*factor(ANCcate),family=binomial(link="logit")) 
summary(infection.dysfun.ANCcate) 
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1.2 SAS Code: Multiple Imputation Logistic Regression 

proc import out= all_data datafile= "D:\trialsas1.xls" 
dbms=excel2000 replace; 
range="Sheet1 $A 1 :0151 "; 
getnames=yes; 
run; 

# with rounding adjustment 
proc mi data=alLdata seed=8633155 out=mimcmc 

round=1 1 1 1 1 1 1 1 1 0.1 1 1 noprint; 
var TE infection agecont gender risk chemophase insertion dysfunCVL asprgtype ANCcont 
typeCVL bodyside; 
run; 

data mimcmc; 

run; 

modify mimcmc; 
if TE>=0.5 then TE=1; 
else TE=O; 
if infection>=0.5 then infection=1; 
else infection=O; 
if agecont<O then agecont=O; 
if agecont<=10 and agecont>1 then agecate=1; 
else agecate=O; 
if gender>=0.5 then gender=1; 
else gender=O; 
if risk>=0.5 then risk=1; 
else risk=O; 
if chemophase<0.5 then chemophase=O; 
else if chemophase>=0.5 and chemophase<1.5 then chemophase=1; 
else chemophase=2; 
if insertion>=0.5 then insertion=1; 
else insertion=O; 
if dysfunCVl>=0.5 then dysfunCVL=1; 
else dysfunCVL=O; 
if asprgtype>=0.5 then asprgtype=1; 
else asprgtype=O; 
if bodyside<0.5 then bodyside=O; 
else bodyside=1; 
if ANCcont<O then ANCcont=O; 
if ANCcont<0.5 then ANCcate= 1; 
else ANCcate=O; 

proc logistic data=mimcmc outest=outlg descending covout noprint; 
class chemophase; 
model TE =gender; 
by _imputation_; 
run; 
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proc print data=outlg; 
var _Imputation __ Type __ Name_ Intercept; 

title 'Logistic Model Coefficients and Covariance Matrix from Imputed Data Sets'; 
run; 

proc mianalyze data=outlg; 
var Intercept gender; 
run; 

#without rounding adjustment 
proc mi data=all_data seed=8633155 out=mimcmc noprint; 
var TE infection agecont gender risk chemophase insertion dysfunCVL asprgtype ANCcont 
typeCVL bodyside; 
run; 

data mimcmc (drop=typeCVL); 
modify mimcmc; 

if TE<O.5 then TE=O; 
else TE=1; 

if infection<O.5 then infection=O; 
else infection=1; 

if chemophase<O.5 then chemophase=O; 
else if chemophase>=O.5 and chemophase<1.5 then chemophase=1; 
else chemophase=2; 

if agecont<=10 and agecont> 1 then agecate=1; 
else agecate=O; 

if ANCcont<O.5 then ANCcate=1; 
else ANCcate=O; 

run; 

proc print data=mimcmc; 
title 'Imputed Data Sets'; 
run; 

ods listing close; 
proc logistic data=mimcmc outest=outlg descending covout noprint; 
class chemophase; 
model TE =chemophase; 
by _imputation_; 
run; 

proc mianalyze data=outlg; 
var Intercept chemophase1 chemophase2; 
run; 

data mimcmc1; 
set mimcmc; 
if _imputation_ ne 1 then delete; 

run; 

data mimcmc2; 
set mimcmc; 
if _imputation_ ne 2 then delete; 
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run; 

data mimcmc3; 
set mimcmc; 
if _imputation_ ne 3 then delete; 

run; 

data mimcmc4; 
set mimcmc; 
if _imputation_ ne 4 then delete; 

run; 

data mimcmc5; 
setmimcmc; 
if _imputation_ ne 5 then delete; 

run; 

McMaster - Statistics 
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7.3 R Code: Forest Plots 

library (rmeta) 
data<-read.table("ORs.txt", header= T) 

McMaster - Statistics 

texue1 <-cbind(c("","Method","","Logistic w/o MI","Bayesian","Logistic MI&Rounding","Logistic MI 
w/o Rounding"), 

c("","OR","", data[1 :4,2]), 
c("95%","Lower","", data[5:8,2]), 
c("95%", "Upper", '''', data[9:12,2]) 
) 

m<-c(NA,NA. NA,log(data[1 :4,2])) 
k-c(NA,NA, NA,log(data[5:8,2])) 
u<-c(NA, NA,NA,log(data[9:12,2])) 
forestplot(texUe1,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,5)), 
clip=c(log(0.01 ),log(1 0)), xlog= TRU E,col=meta.colors(box="royalblue",line="darkblue")) 
title ("Infection by TE Odds Ratio") 

texue2<-cbind(c("", "Method","","Logistic w/o MI", "Bayesian", "Logistic MI&Rounding", "Logistic MI 
w/o Rounding"), 

c("","OR","", data[1:4,3]), 
c("95%","Lower","", data[5:8,3]), 
c("95%","Upper","", data[9:12,3]) 
) 

m<-c(NA,NA,NA,log(data[1 :4,3])) 
1<-c(NA.NA,NA,log(data[5:8,3])) 
u<-c(NA.NA. NA.log(data[9:12, 3])) 
forestplot(texUe2,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,5)), 
clip=c(log(0.01 ),log(1 O)),xlog= TRU E,col=meta.colors(box="royalblue" ,Iine="darkblue")) 
title ("Age by TE Odds Ratio 
(1-year increase)") 

texue3<-cbind(c("", "Method","", "Logistic w/o MI", "Bayesian", "Logistic MI&Rounding", "Logistic MI 
w/o Rounding"), 

c("","OR","", data[1 :4.4]), 
c("95%","Lower","", data[5:8.4]), 
c("95%","Upper", "", data[9:12.4]) 
) 

m<-c(NA,NA,NA,log(data[1 :4.4])) 
k-c(NA. NA. NA.log(data[5:8,4])) 
u<-c(NA,NA. NA,log(data[9:12.4])) 
forestplot(texUe3,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,5)), 
clip=c(log(0.01),log(10)), xlog= TRUE,col=meta.colors(box="royalblue",line="darkblue")) 
title ("Age Category by TE Odds Ratio 
(between 1 and 10 to otherwise)") 

texue4<-cbind(c("","Method","","Logistic w/o MI","Bayesian","Logistic MI&Rounding","Logistic MI 
w/o Rounding"), 

c("", "OR", "", datal1 :4,5]), 
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c("95%", "Lower", "", data[5:8,5]), 
c("95%","Upper","", data[9:12,5]) 
) 

m<-c(NA.NA,NA,log(data[1 :4,5])) 
l<-c(NA,NA,NA,log(data[5:8,5])) 
u<-c(NA,NA,NA,log(data[9:12,5])) 

McMaster - Statistics 

forestplot(texue4,m,l,u,zero=0, is.summary=c(TRU E, TRU E.rep(FALS E,5)), 
clip=c{log(O .01), log(1 0)) ,xlog= TRU E,col=meta .colors(box= "royalblue" ,line= "darkblue ")) 
title ("Gender by TE Odds Ratio 
(female to male)") 

texue5<-cbind(c("","Method","","Logistic w/o MI","Bayesian","Logistic MI&Rounding","Logistic MI 
w/o Rounding"), 

c("","OR","", data[1 :4,6]), 
c("95%", "Lower", "", data[5:8,6]), 
c("95%","Upper","", data[9:12,6]) 
) 

m<-c(NA,NA,NA,log(data[1 :4,6])) 
1<-c(NA, NA. NA,log(data[5:8,6])) 
u<-c(NA.NA,NA,log(data[9:12,6])) 
forestplot(texue5, m, I, u,zero=O, is.summary=c(TRU E, TRU E ,rep(FALS E, 5)), 
clip=c{log(O.01 ),log(1 0)), xlog= TRU E,col=meta.colors(box="royalblue" ,Iine="darkblue")) 
title ("ALL-Risk by TE Odds Ratio 
(High Risk to Standard Risk)") 

texue6<-cbind(c("", "Method", '''',''Logistic w/o MI", "Bayesian", "Logistic MI&Rounding", "Logistic MI 
w/o Rounding"), 

c("","OR","", data[1 :4,7]), 
c("95%", "Lower", '''', data[5 :8,7]), 
c("95%", "Upper", '''', data[9:12, 7]) 
) 

m<-c(NA,NA,NA,log(data[1 :4,7])) 
l<-c(NA. NA, NA. NA,log(data[5:8, 7])) 
u<-c(NA,NA,NA,log(data[9:12,7])) 
forestplot(texUe6,m,l.u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,5)), 
clip=c{log(O.01 ),log(1 0)), xlog= TRU E,col=meta .colors(box="royalblue" ,Iine="darkblue")) 
title ("At-Insertion Chemophase by TE Odds Ratio 
(before chemotherapy to post chemotherapy)") 

texue7 <-cbind(c("", "Method", "", "Logistic w/o MI", "Bayesian", "Logistic MI&Rounding", "Logistic MI 
w/o Rounding"), 

c("","OR","", data[1:4,8]), 
c("95%", "Lower", '''', data[5:8,8]), 
c("95%","Upper", '''', data[9:12,8]) 
) 

m<-c(NA,NA,NA,log(data[1 :4,8])) 
1<-c(NA.NA,NA,log(data[5:8,8])) 
u<-c(NA,NA,NA,log(data[9:12,8])) 
forestplot(texue7,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,5)), 
clip=c{log(O.01 ),log(1 0)), xlog= TRU E,col=meta .colors(box="royalblue" ,Iine="darkblue")) 
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title ("At-Insertion Chemophase by TE Odds Ratio 
(induction to post chemotherapy)") 

McMaster - Statistics 

texue8<-cbind(c("", "Method",'''', "Logistic w/o MI", "Bayesian","Logistic MI&Rounding", "Logistic MI 
w/o Rounding"), 

c("", "OR", "", data[l :4,9]), 
c("95%","Lower","", data[5:8,9]), 
c("95%","Upper","", data[9:12,9]) 
) 

m<-c(NA,NA,NA,log(data[l :4,9])) 
k-c(NA,NA,NA,log(data[5:8,9])) 
u<-c(NA,NA,NA,log(data[9:12,9])) 
forestplot(texue8,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,5)), 
clip=c(log(O.Ol ),log(l 0)), xlog= TRU E,col=meta.colors(box="royalblue" ,Iine= "darkblue")) 
title ("CVL Insertion by TE Odds Ratio 
(percutaneous to open)") 

texue9<-cbind(c('''',''Method'','''',''Logistic w/o MI","Bayesian","Logistic MI&Rounding","Logistic MI 
w/o Rounding"). 

c("","OR","", data[1:4,10]), 
c("95%","Lower",'''', data[5:8,10]), 
c("95%","Upper",'''', data[9:12,10]) 
) 

m<-c(NA,NA, NA,log(data[l :4,10])) 
k-c(NA,NA,NA,log(data[5:8,10))) 
u<-c(NA,NA,NA,log(data[9:12,10])) 
forestplot(texue9,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,5)), 
clip=c(log(O.01 ),log(l 0)), xlog= TRU E,col=meta.colors(box="royalblue",line= "darkblue")) 
title ("CVL Functionality by TE Odds Ratio 
(dysfunction to function)") 

texUel O<-cbind(c("", "Method", "", "Logistic w/o MI", "Bayesian", "Logistic MI&Rounding", "Logistic 
MI w/o Rounding"), 

c('''',''OR'','''', data[l :4,11]), 
c("95%", "Lower",'''', data[5:8.11]), 
c("95%","Upper","", data[9:12, 11]) 
) 

m<-c(NA,NA,NA,log(data[l :4,11])) 
k-c(NA,NA, NA,log(data[5:8, 11))) 
u<-c(NA,NA,NA,log(data[9:12, 11])) 
forestplot(texue 1 O,m, I, u, zero=O, is.summary=c(TRU E, TRU E,rep(FALS E, 5)), 
clip=c(log(O.Ol ),log(l 0)), xlog= TRU E,col=meta.colors(box="royalblue",line="darkblue")) 
title ("Site of Insertion by TE Odds Ratio 
(left to right)") 

data<-read.table("ORs.txt", header= T) 

texUnfectionl <-cbind(c("", "Method", "", "Logistic w/o MI", "Bayesian", "Logistic 
MI&Rounding"."Logistic MI w/o Rounding"). 
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c("","OR","", data[l :4,12]), 
c("95%","Lower", "" , data[5:8,12]), 
c("95%","Upper","", data[9:12,1 2]) 
) 

m<-c(NA,NA,NA,NA,log(data[l :4,12))) 
i<-c(NA,NA,NA,NA,log(data[5:8,12))) 
u< -c(NA,NA,NA,NA,log(data[9:12,12))) 

McMaster - Statistics 

forestplot(texUnfection 1 ,m, I. u,zero=O,is.summary=c(TRU E, TRU E,rep(FALS E, 5)), 
clip=c(log(O.01 ),log(l 0)) , ,xlog= TRU E, col=meta .colors(box="royalblue",line="darkblue")) 
title ("TE by Infection Odds Ratio") 

texUnfection2<-cbind(c("", "Method", "", "Logistic w/o MI", "Bayesian", "Logistic 
MI&Rounding","Logistic MI w/o Rounding"), 

c("", "OR","", data[l :4,13]), 
c("95%", "Lower","", data[5:8,13]), 
c("95%","Upper","", data[9 :12, 13]) 
) 

m<-c(NA,NA,NA,log(data[l :4,13))) 
i<-c(NA, NA,NA,log(data[5:8,13))) 
u<-c(NA,NA,NA,log(data[9:12,13))) 
forestplot(texUnfection2,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,5)), 
clip=c(log(O.01 ),log(l 0)) , xlog= TRU E,col=meta .colors(box="royalblue",line= "darkblue")) 
title ("Age by Infection Odds Ratio 
(l -year increase)") 

texUnfection3<-cbind(c("", "Method", "", "Logistic w/o MI", "Bayesian", "Logistic 
MI&Rounding","Logistic MI w/o Rounding") , 

c(" ","OR","", data[1 :4, 14]), 
c("95%", "Lower","", data[5 :8,14)), 
c("95%","Upper", "", data[9 :12, 14]) 
) 

m<-c(NA,NA,NA,log(data[l :4,14])) 
i<-c(NA,NA,NA,log(data[5 :8,14))) 
u<-c(NA,NA,NA,log(data[9:12,14))) 
forestplot(texUnfection3,m,l,u, zero=O,is.summary=c(TRU E, TRU E,rep(FALS E, 5)), 
clip=c(log(O .01 ),log(l 0)) , xlog= TRU E,col=meta.colors(box= "royalblue", line= "darkblue")) 
title ("Age Category by Infection Odds Ratio 
(between 1 and 1 ° to otherwise)") 

texUnfection4<-cbind(c("" , "Method", "", "Logistic w/o M I", "Bayesian", "Logistic 
MI&Rounding","Logistic MI w/o Rounding") , 

c("" ,"OR","", data[l :4,15]), 
c("95%","Lower", "", data[5:8,15]) , 
c("95%", "Upper", "", data[9 :12, 15]) 
) 

m<-c(NA,NA,NA,log(data[l :4,15])) 
i<-c(NA,NA,NA,log(data[5:8,15])) 
u<-c(NA,NA,NA,log(data[9 :12,15))) 
forestplot(texUnfection4, m, I, u, zero=O,is .summary=c(TRU E, TRU E,rep(FALS E, 5)), 
clip=c(log(O .Ol) , 10g(1 0)), xlog= TRU E,col=meta .colors(box= "royal blue" ,Iine= "darkblue")) 
title ("Gender by Infection Odds Ratio 
(female to male)") 
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texUnfection5<-cbind(c("", "Method", "", "Logistic w/o MI", "Bayesian", "Logistic 
MI&Rounding","Logistic MI w/o Rounding"), 

c("","OR",'''', data[1 :4,16]), 
c("95%", "Lower", "", data[5 :8, 16]), 
c("95%","Upper",'''', data[9:12,16]) 
) 

m<-c(NA,NA,NA,log(data[1 :4,16])) 
k-c(NA,NA,NA,log(data[5:8,16])) 
u<-c(NA, NA,NA,log(data[9:12, 16])) 
forestplot(texUnfection5, m, I, u, zero=O,is.summary=c(TRU E, TRU E,rep(FALS E, 5)), 
clip=c(log(0.01 ),log(1 0)), xlog= TRU E,col=meta.colors(box= "royalblue",line= "darkblue")) 
title ("ALL-Risk by Infection Odds Ratio 
(High Risk to Standard Risk)") 

texUnfection6<-cbind(c("", "Method", "", "Logistic w/o MI", "Bayesian", "Logistic 
MI&Rounding","Logistic MI w/o Rounding"), 

c("", "OR", '''', data[l :4,17]), 
c("95%","Lower","", data[5:8,17]), 
c("95%","Upper","", data[9:12,17]) 
) 

m<-c(NA,NA,NA,log(data[l :4,17))) 
k-c(NA,NA,NA,log(data[5:8,17))) 
u<-c(NA,NA,NA,log(data[9:12,17))) 
forestplot(texUnfection6, m, I, u, zero=O,is. summary=c(TRU E, TRU E,rep(FALS E, 5)), 
clip=c(log(0.01 ),log(1 0)), xlog= TRU E,col=meta.colors(box="royalblue" ,Iine="darkblue")) 
title ("At-Insertion Chemophase by Infection Odds Ratio 
(before chemotherapy to post chemotherapy)") 

texUnfection7 <-cbind(c("","Method", '''', "Logistic w/o MI", "Bayesian","Logistic 
MI&Rounding","Logistic MI w/o Rounding"), 

c("", "OR", "", data[l :4,18]), 
c("95%","Lower","", data[5:8,18]), 
c("95%","Upper","", data[9:12,18]) 
) 

m<-c(NA,NA,NA,log(data[1 :4,18))) 
k-c(NA,NA,NA,log(data[5:8,18])) 
u<-c(NA,NA,NA,log(data[9:12,18))) 
forestplot(texUnfection7,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,5)), 
clip=c(log(O.01 ),log(1 0)), xlog= TRU E,col=meta.colors(box= "royalblue",line="darkblue")) 
title ("At-Insertion Chemophase by Infectioin Odds Ratio 
(induction to others)") 

texUnfection8<-cbind(c("","Method","","Logistic w/o MI","Bayesian","Logistic 
MI&Rounding","Logistic MI w/o Rounding"), 

c("","OR","", data[l :4,19]), 
c("95%","Lower","", data[5:8,19]), 
c("95%", "Upper", "", data[9: 12, 19]) 
) 

m<-c(NA,NA,NA,log(data[l :4,19))) 
k-c(NA,NA,NA,log(data[5:8,19])) 
u<-c(NA,NA, NA,log(data[9:12, 19])) 
forestplot(texUnfection8,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,5)), 
clip=c(log(0.01 ),log(l 0)), xlog= TRUE,col=meta.colors(box="royalblue",line= "darkblue")) 
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title ("CVL Insertion by Insertion Odds Ratio 
(percutaneous to open)") 

McMaster - Statistics 

texUnfection9<-cbind(c("", "Method", "", "Logistic w/o MI", "Bayesian", "Logistic 
MI&Rounding","Logistic MI w/o Rounding") , 

c("","OR","", data[1 :4,20]), 
c("95%", "Lower", "", data[5:8,20]), 
c("95%","Upper","", data[9:12,20]) 
) 

m<-c(NA,NA,NA, log(data[1 :4,20])) 
1<-c(NA,NA,NA,log(data[5:8,20])) 
u< -c(NA, NA,NA,log(data[9:12,20])) 
forestplot(texUnfection9,m, I, u,zero=O,is.summary=c(TRU E, TRU E,rep(FALS E, 5)), 
clip=c(log(0.01 ),log(1 0)), xlog= TRU E,col=meta .colors(box="royalblue",line="darkblue")) 
title ("CVL Functionality by Infection Odds Ratio 
(dysfunction to function)") 

texUnfection1 O<-cbind(c("", "Method", "", "Logistic w/o MI", "Bayesian", "Logistic 
MI&Rounding","Logistic MI w/o Rounding"), 

c('''',''OR'','' '', data[1 :4,21]) , 
c("95%","Lower","", data[5 :8,21]), 
c("95%", "Upper","", data[9:12,21]) 
) 

m<-c(NA, NA, NA,log(data[1 :4,21])) 
k-c(NA, NA, NA,log(data[5 :8, 21])) 
u<-c(NA,NA,NA,log(data[9:12,21 ])) 
forestplot(texUnfection 1 O,m,l, u,zero=O, is.summary=c(TRU E, TRU E, rep(FALS E, 5)), 
clip=c(log(O.01 ),log(1 0)), xlog= TRU E,col=meta.colors(box="royalblue",line="darkblue")) 
title ("ANC by Infection Odds Ratio 
(per 1 0"9 I L increase)") 

texUnfection11 <-cbind(c("", "Method", "", "Logistic w/o MI", "Bayesian","Logistic 
MI&Rounding","Logistic MI w/o Rounding"), 

c("","OR","", data[1 :4,22]), 
c("95%","Lower","", data[5 :8,22]), 
c("95%","Upper" ,"", data[9:12,22]) 
) 

m<-c(NA,NA,NA,log(data[1 :4,22])) 
1<-c(NA,NA,NA,log(data[5:8,22])) 
u<-c(NA,NA,NA,log(data[9 :12,22])) 
forestplot(texUnfection11 ,m,l,u,zero=O,is.summary=c(TRU E, TRU E,rep(FALS E, 5)), 
clip=c(log(0 .01),log(10)) , xlog= TRUE,col=meta .colors(box="royalblue",line= "darkblue")) 
title ("ANC Category by Infection Odds Ratio 
(less than 0.5 x 10"9 I L to others)") 
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7.4 SAS Code: Fisher's Exact Test 

data pred; 
input freq predictor $ outcome $; 
datalines; 
15 YY 
67 NY 
7YN 

54 N N 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
15 YY 
7NY 
99Y N 
25 N N 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
11 Y Y 
11 NY 
51 Y N 
73 N N 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
10YY 
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12 NY 
50Y N 
73 N N 

proc freq data=pred; weight freq; 
tables predictor"outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
14 YY 

1 NY 
59Y N 
6NN 

proc freq data=pred; weight freq; 
tables predictor"outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
9YY 
1 NY 

59 Y N 
6NN 

proc freq data=pred; weight freq; 
tables predictor"outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
7YY 

14 N Y 
59YN 
59 N N 

proc freq data=pred; weight freq; 
tables predictor"outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
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model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
14 YY 
8NY 

84 Y N 
35 N N 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
7YY 

14 NY 
27 Y N 
94 N N 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
3YY 

19 N Y 
34 Y N 
87 N N 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
15 YY 
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ONY 
80YN 
23 N N 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=0.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 

19 YY 
3NY 

121 Y N 
2NN 

proc freq data=pred; weight freq; 
tables predictor"outcome; 
exact fisher or/alpha=0.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
61 YY 
22 N Y 
52 Y N 
10 N N 

proc freq data=pred; weight freq; 
tables predictor"outcome; 
exact fisher or/alpha=0.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
36YY 
47 NY 
26 Y N 
36 N N 

proc freq data=pred; weight freq; 
tables predictor' outcome; 
exact fisher or/alpha=0.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
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model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
46YY 
36 N Y 
37 Y N 
25 N N 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome= predictor/clodds= pi; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
41 YY 
2NY 

30Y N 
5NN 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
40YY 
2NY 

27 Y N 
5NN 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
40YY 
41 NY 
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27 Y N 
30 N N 

proc freq data=pred; weight freq; 
tables predictor·outcome; 
exact fisher or/alpha=0.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
55 YY 
25 N Y 
41 Y N 
19 N N 

proc freq data=pred; weight freq; 
tables predictor·outcome; 
exact fisher or/alpha=0.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
26YY 
54 N Y 
9YN 

51 N N 

proc freq data=pred; weight freq; 
tables predictor· outcome; 
exact fisher or/alpha=0.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
77 YY 
6NY 

62Y N 
ONN 

proc freq data=pred; weight freq; 
tables predictor·outcome; 
exact fisher or/alpha=0.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
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run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
38YY 
41 NY 
17 Y N 
40 N N 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=0.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 

data pred; 
input freq predictor $ outcome $; 
datalines; 
19 YY 
62 NY 
17 Y N 
43 N N 

proc freq data=pred; weight freq; 
tables predictor'outcome; 
exact fisher or/alpha=O.05; run; 
proc logistic data=pred; freq freq; class predictor outcome; 
model outcome=predictor/clodds=pl; 
run; 
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7.5 Winhugs Code: Bayesian Analysis 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i)) <- alpha + b.infection*infection[i); 
TE[i) - dbern(p[i]); 
} 
alpha - dnorm(0.0,1.0E-4); 
b.infection- dnorm(0.0,1.0E-4); 
} 
#Initial Values 
list(alpha=O, b.infection=1) 
list(n = 143) 
TE(] infectionll 
1 1 
1 1 

END 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.agecont*agecont[i); 
TE[i) - dbern(p[i]); 
} 
alpha - dnorm(0.0,1.0E-4); 
b.agecont - dnorm(0.0,1.0E-4); 
} 
#Initial Values 
list(alpha=O, b.agecont=1) 
list(n = 146) 
TEll agecontll 
1 13 
1 4 
o 10 

END 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.agecate*agecate[il; 
TE[i) - dbern(p[i]); 
} 
alpha - dnorm(0.0,1.0E-4); 
b.agecate - dnorm(0.0,1.0E-4); 
} 
#Initial Values 
Iist(alpha=O, b.agecate=1) 
list(n = 146) 

-79 -

McMaster - Statistics 



M.Sc. Thesis - W. Xiong 

TEf] agecatef] 
1 0 
1 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.gender*gender[i]; 
TE[i] - dbern(p[i]); 
} 
alpha - dnorm(O.O,1.0E-4); 
b.gender - dnorm(O.O, 1.0E-4); 
} 
#Initial Values 
list(alpha=O, b.gender= 1) 
list(n = 146) 
TE[] gender[] 
1 1 
1 0 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.risk*risk[i]; 
TE[i] - dbern(p[i]); 
} 
alpha - dnorm(O.O,1.0E-4); 
b.risk- dnorm(O.O,1.0E-4); 
} 
#Initial Values 
Iist(alpha=O, b.risk= 1) 
list(n = 145) 
TE[] risk[] 
1 1 
1 0 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.chemophase*chemophase[i]; 
TE[i1 - dbern(p[iJ); 
} 
alpha - dnorm(O.O,1.0E-4); 
b.chemophase- dnorm(O.O,1.0E-4); 
} 
#Initial Values 
list(alpha=O, b.chemophase= 1) 
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list(n = 146) 
TE[) chemophase[) 
1 1 
1 1 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[ij) <- alpha + b.insertion*insertion[i]; 
TE[i] - dbern(p[ij); 
} 
alpha - dnorm(O.O,1.0E-4); 
b.insertion- dnorm(O.O,1.0E-4); 
} 
#Initial Values 
list(alpha=O. b.insertion= 1) 
list(n = 141) 
TE[) insertion[] 
1 1 
1 0 

End 
#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[ij) <- alpha + b.dysfunCVL *dysfunCVL[i}; 
TE[i] - dbern(p[ij); 
} 
alpha - dnorm(O.O.1.0E-4); 
b.dysfunCVL- dnorm(O.O,1.0E-4); 
} 

#Initial Values 
list(alpha=O, b.dysfunCVL= 1) 
list(n = 142) 
TE[) dysfunCVL[] 
1 0 
1 1 

End 

#Model (Logistic Regression) 
model { 
for (i in 1: n) { 
logit(p[ij) <- alpha + b.bodyside*bodyside[i]; 
TE[i] - dbern(p[ij); 
} 
alpha - dnorm(O.O.1.0E-4); 
b.bodyside- dnorm(O.O,1.0E-4); 
} 
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#Initial Values 
list(alpha=O, b.bodyside=1) 

list(n = 143) 
TE[) bodyside[) 
1 1 
1 0 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.te*TE[i); 
infection[i) - dbern(p[i]); 
} 
alpha - dnorm(O.O,1.0E-4); 
b.te- dnorm(O.O,1.0E-4); 
} 
#Initial Values 
list(alpha=O, b.te=1) 
listen = 143) 
infectionll TEll 
1 1 
1 1 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.agecont*agecont[i); 
infection[i) - dbern(p[i]); 
} 
alpha - dnorm(O.O,1.0E-4); 
b.agecont- dnorm(O.O,1.0E-4); 
} 
#Initial Values 
list(alpha=O, b.agecont= 1) 
list(n = 145) 
infectionll agecont[] 
1 13 
1 4 

End 

#Model (Logistic Regression) 
model { 
for (i in 1:n) { 
logit(p[i]) <- alpha + b.agecate*agecate[i); 
infection[i) - dbern(p[i]); 
} 
alpha - dnorm(O.O,1.0E-4); 
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b.agecate- dnorm(O.O.1.0E-4); 
} 
#Initial Values 
list(alpha=O. b.agecate= 1) 
list(n = 145) 
infection[j agecate[] 
1 0 
1 1 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.gender*gender[i]; 
infection[i] - dbern(p[i]); 
} 
alpha - dnorm(O.O.1.0E-4); 
b.gender- dnorm(O.O.1.0E-4); 
} 
#Initial Values 
Iist(alpha=O. b.gender=1) 
list(n = 145) 
infection[j gender[j 
1 1 
1 0 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.risk*risk[ij; 
infection[i] - dbern(p[i]); 
} 
alpha - dnorm(O.O.1.0E-4); 
b.risk- dnorm(O.O.1.0E-4); 
} 
#Initial Values 
list(alpha=O. b.risk= 1) 
list(n = 144) 
infection[j risk[j 
1 1 
1 0 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.chemophase*chemophase[i]; 
infection[i] - dbern(p[i]); 
} 
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alpha - dnorm(0.0.1.0E-4); 
b.chemophase- dnorm(0.0.1.0E-4); 
} 
#Initial Values 
list(alpha=O. b.chemophase= 1) 
list(n = 145) 
infection[) chemophase[) 
1 1 
1 1 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.insertion*insertion[ij; 
infection[ij - dbern(p[i]); 
} 
alpha - dnorm(0.O.1 .0E-4); 
b.insertion- dnorm(0.0.1.0E-4); 
} 
#Initial Values 
Iist(alpha=O. b.insertion= 1) 
list(n = 140) 
infection[) insertion[) 
1 1 
1 0 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[i]) <- alpha + b.dysfunCVL *dysfunCVL[ij; 
infection[ij - dbern(p[i]); 
} 
alpha - dnorm(0.O.1.0E-4); 
b.dysfunCVL- dnorm(O.0.1.0E-4); 
} 
#Initial Values 
list(alpha=O. b.dysfunCVL= 1) 
list(n = 140) 
infection[) dysfunCVL[) 
1 0 
1 

End 

#Model (Logistic Regression) 
model { 
for (i in 1: n) { 
logit(p[i]) <- alpha + b.ANCcont*ANCcont[ij; 
infection[ij - dbern(p[i]); 
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} 
alpha - dnorm(O.O,1.0E-4); 
b.ANCcont- dnorm(O.O,1.0E-4); 
} 
#Initial Values 
list(alpha=O, b.ANCcont= 1) 
list(n = 136) 
infection[] ANCcont[] 
1 5.4 
1 5 

End 

#Model (Logistic Regression) 
model { 
for (i in 1 :n) { 
logit(p[ij) <- alpha + b.ANCcate*ANCcate[i]; 
infection[i] - dbern(p[i]); 
} 
alpha - dnorm(O.O,1.0E-4); 
b.ANCcate- dnorm(O.O,1.0E-4); 
} 
#Initial Values 
list(alpha=O, b.ANCcate=1) 
list(n = 136) 
infection[] ANCcate[] 
1 0 
1 0 

End 
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7.6 S-Plus Code: CART Modeling 
te.trialsasl <-tree(formula = TE - infection + agecate + gender + risk + chemophase + insertion + 
dysfunCVL + bodyside,data = trialsasl, na.action = na.exclude, mincut = 5, minsize = 10, mindev 
= 0.01) 
summary(te .trialsasl) 
summary(prune.tree(te.trialsasl,best=2)) 
plot(prune.tree(te.trialsasl, best=2)) 
text(prune.tree(te.trialsasl, best=2)) 
title("Classification Tree for TE with the Original Dataset 
3 Nodes, 15.79% Misclass, 0.8278 Res. Mean Deviance") 

infection.trialsasl <-tree(formula = infection - TE + agecate + gender + risk + chemophase + 
insertion + dysfunCVL + ANCcate,data = trialsasl, na.action = na.exclude, mincut = 5, minsize = 
10, mindev = 0,01) 
summary(infection.trialsas 1) 
summary(prune.tree(infection.trialsasl,best=5)) 
plot(prune.tree(infection.trialsasl, best=5)) 
text(prune.tree(infection.trialsasl, best=5)) 
title("Classification Tree for Infection with the Original Dataset 
7 Nodes, 29.37% Misclass, 1.257 Res. Mean Deviance") 

te.mimcmcl <-tree(formula = TE - infection + agecate + gender + risk + chemophase + insertion 
+ dysfunCVL + bodyside, data = mimcmcl, na.action = na.exclude, mincut = 5, minsize = 
10, mindev = 0.01) 
summary(te.mimcmcl ) 
plot(te.mimcmcl ) 
text(te.mimcmcl ) 
title("Classification Tree for TE with the 1 st Imputed Dataset 
18 Nodes, 15.33% Misclass, 0.7704 Res. Mean Deviance") 
summary(prune .tree(te .mimcmcl ,best=2)) 
plot(prune.tree(te.mimcmcl,best=2)) 
text(prune.tree(te.mimcmcl,best=2)) 
title("Classification Tree for TE with the 1 st Imputed Dataset 
4 Nodes, 15.33% Misclass, 0.8139 Res. Mean Deviance") 

infection.mimcmcl <-tree(formula = infection - TE + agecate + gender + risk + chemophase + 
insertion + dysfunCVL + ANCcate,data = mimcmcl, na.action = na.exclude, mincut = 5, minsize 
= 10, mindev = 0.01) 
summary(infection. mimcmc 1) 
summary(prune.tree(infection.mimcmcl,best=3)) 
plot(prune. tree (infection . mimcmc 1 ,best= 3)) 
text(prune.tree(infection.mimcmcl,best=3)) 
title("Classification Tree for Infection with the 1 st Imputed Dataset 
8 Nodes, 32% Misclass, 1.266 Res. Mean Deviance") 

te.mimcmc2<-tree(formula = TE - infection + agecate + gender + risk + chemophase + insertion 
+ dysfunCVL + bodyside,data = mimcmc2, na.action = na.exclude, mincut = 5, minsize = 10, 
mindev = 0.01) 
summary(te.mimcmc2) 
summary(prune. tree(te. mimcmc2, best=2)) 
plot(prune.tree(te.mimcmc2, best=2)) 
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text(prune.tree(te.mimcmc2, best=2» 
title("Classification Tree for TE with the 2nd Imputed Dataset 
4 Nodes, 14.67% Misclass, 0.7633 Res. Mean Deviance") 

McMaster - Statistics 

infection.mimcmc2<-tree(formula = infection - TE + agecate + gender + risk + chemophase + 
insertion + dysfunCVL +ANCcate, data = mimcmc2, na.action = na.exclude, mincut = 5, minsize 
= 10, mindev = 0.01) 
summary(infection.mimcmc2) 
summary(prune.tree(infection.mimcmc2,best=5» 
plot(prune.tree(infection.mimcmc2, best=5» 
text(prune.tree(infection.mimcmc2, best=5» 
title("Classification Tree for Infection with the 2nd Imputed Dataset 
5 Nodes, 32.67% Misclass, 1.285 Res. Mean Deviance") 

te.mimcmc3<-tree(formula = TE - infection + agecate + gender + risk + chemophase + insertion 
+ dysfunCVL + bodyside,data = mimcmc3, na.action = na.exclude, mincut = 5, minsize = 10, 
mindev = 0.01) 
summary(te.mimcmc3) 
summary(prune.tree(te.mimcmc3,best=5» 
plot(prune.tree(te.mimcmc3, best=5» 
text(prune.tree(te.mimcmc3, best=5» 
title("Classification Tree for TE with the 3rd Imputed Dataset 
5 Nodes, 15.33% Misclass, 0.7831 Res. Mean Deviance") 

infection.mimcmc3<-tree(formula = infection - TE + agecate + gender + risk + chemophase + 
insertion + dysfunCVL + ANCcate,data = mimcmc3, na.action = na.exclude, mincut = 5, minsize 
= 10, mindev = 0.01) 
summary(infection.mimcmc3) 
summary(prune.tree(infection.mimcmc3, best=8» 
plot(prune.tree(infection.mimcmc3, best=8» 
text(prune .tree(infection .mimcmc3, best=8» 
title("Classification Tree for Infection with the 3rd Imputed Dataset 
9 Nodes, 32% Misclass, 1.278 Res. Mean Deviance") 

te.mimcmc4<-tree(formula = TE - infection + agecate + gender + risk + chemophase + insertion 
+ dysfunCVL + bodyside,data = mimcmc4, na.action = na.exclude, mincut = 5, minsize = 10, 
mindev = 0.01) 
summary(te.mimcmc4 ) 
summary(prune.tree(te.mimcmc4,best=2» 
plot(prune.tree(te.mimcmc4, best=2» 
text(prune.tree(te.mimcmc4, best=2» 
title("Classification Tree for TE with the 4th Imputed Dataset 
4 Nodes, 15.33% Misclass, 0.7836 Res. Mean Deviance") 

infection.mimcmc4<-tree(formula = infection - TE + agecate + gender + risk + chemophase + 
insertion + dysfunCVL + ANCcate,data = mimcmc4, na.action = na.exclude, mincut = 5, minsize 
= 10, mindev = 0.01) 
summary(infection.mimcmc4) 
summary(prune.tree(infection.mimcmc4,best=5» 
plot(prune .tree(infection. mimcmc4, best=5» 
text(prune.tree(infection.mimcmc4, best=5» 
title("Classification Tree for Infection with the 4th Imputed Dataset 
8 Nodes, 32.67% Misclass, 1.282 Res. Mean Deviance") 
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te.mimcmcS<-tree(formula = TE - infection + agecate + gender + risk + chemophase + insertion 
+ dysfunCVL + bodyside,data = mimcmcS, na.action = na.exclude, mincut = S, minsize = 10, 
mindev = 0.01) 
summary(te.mimcmcS) 
summary(prune.tree(te.mimcmcS,best=2» 
plot(prune.tree(te.mimcmcS, best=2)) 
text(prune.tree(te.mimcmcS, best=2» 
title("Classification Tree for TE with the Sth Imputed Dataset 
3 Nodes, lS.33% Misclass, 0.817S Res. Mean Deviance") 

infection.mimcmcS<-tree(formula = infection - TE + agecate + gender + risk + chemophase + 
insertion + dysfunCVL + ANCcate,data = mimcmcS, na.action = na.exclude, mincut = S, minsize 
= 10, mindev = 0.01) 
summary(infection.mimcmcS) 
summary(prune.tree(infection.mimcmcS,best=4» 
plot(prune .tree(infection. mimcmcS, best=4» 
text(prune.tree(infection.mimcmcS, best=4» 
title("Classification Tree for Infection with the Sth Imputed Dataset 
6 Nodes, 32.67% Misclass, 1.3 Res. Mean Deviance") 
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7.7 SPSS 14 Code: CART Modeling 

*TE 
* CHAID (Pearson) 
* SPLIT SAMPLING (Training 90%, Test 10%) 

* Classification Tree. 
TREE TE [n) BY agecate [n) gender [n) risk [n) infection [n) chemophase [n) bodyside [n) insertion 
[n) dysfunCVL [n) 

!TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=[VALlD] 
fPRINT MODELSUMMARY CLASSIFICATION RISK 
fMETHOD TYPE=CHAID 
fGROWTHLIMIT MAXDEPTH=3 MINPARENTSIZE=10 MINCHILDSIZE=5 
!VALIDATION TYPE=SPLITSAMPLE(90) OUTPUT =BOTHSAMPLES 
fCHAID ALPHASPLIT =0.2 ALPHAMERGE=0.2 SPLITMERGED=YES 

CHISQUARE=PEARSON CONVERGE=0.001 
MAXITERATIONS=1 00 ADJUST =BONFERRONI 

fCOSTS EQUAL 
IMISSING NOMINALMISSING=MISSING. 

*TE 
* CHAID (Likelihood) 
* SPLIT SAMPLING (Training 90%, Test 10%) 

* Classification Tree. 
TREE TE [n) BY agecate [n] gender [n) risk [n] infection [n] chemophase [n] bodyside [n] insertion 
[n) dysfunCVL [n) 

!TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

/DEPCATEGORIES USEVALUES=[VALlD] 
fPRINT MODELSUMMARY CLASSIFICATION RISK 
/METHOD TYPE=CHAID 
fGROWTHLIMIT MAXDEPTH=3 MINPARENTSIZE=10 MINCHILDSIZE=5 
!VALIDATION TYPE=SPLITSAMPLE(90) OUTPUT =BOTHSAMPLES 
fCHAID ALPHASPLIT =0.2 ALPHAMERGE=0.2 SPLITMERGED=YES CHISQUARE=LR 

CONVERGE=O.OOl 
MAXITERATIONS=100 ADJUST =BONFERRONI 

fCOSTS EQUAL 
fMISSING NOMINALMISSING=MISSING. 

• TE 
• CRT (Gini) 
* SPLIT SAMPLING (Training 90%, Test 10%) 

* Classification Tree. 
TREE TE [n) BY agecate [n) gender [n) risk [n) infection [n) chemophase [n] bodyside [n) insertion 
[n) dysfunCVL [n) 
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!TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

{DEPCATEGORIES USEVALUES=[VALlD] 
{PRINT MODELSUMMARY CLASSIFICATION RISK 
{METHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE 
{GROWTHLIMIT MAXDEPTH=3 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=SPLITSAMPLE(90) OUTPUT =BOTHSAMPLES 
{CRT IMPURITY=GINI MINIMPROVEMENT =0.0001 
{COSTS EQUAL 
{PRIORS FROMDATAADJUST =NO 
{MISSING NOMINALMISSING=MISSING. 

*TE 
* CRT (Entropy) 
* SPLIT SAMPLING (Training 90%. Test 10%) 

* Classification Tree. 
TREE TE [n] BY agecate [n] gender [n] risk [n] infection [n] chemophase [n] bodyside [n] insertion 
[n] dysfunCVL [n] 

!TREE DISPLAY = TOPDOWN NODES=STATISTICS BRANCHSTATISTICS= YES 
NODEDEFS=YES SCALE=AUTO 

{DEPCATEGORIES USEVALUES=[VALlD] 
{PRINT MODELSUMMARY CLASSIFICATION RISK 
{METHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE 
{GROWTHLIMIT MAXDEPTH=3 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=SPLITSAMPLE(90) OUTPUT =BOTHSAMPLES 
{CRT IMPURITY= TWOING MINIMPROVEMENT =0.0001 
{COSTS EQUAL 
{PRIORS FROMDATA ADJUST =NO 
{MISSING NOMINALMISSING=MISSING. 

* TE 
* QUEST 
* SPLIT SAMPLING (Training 90%. Test 10%) 

* Classification Tree. 
TREE TE [n] BY agecate [n] gender [n] risk [n] infection [n] chemophase In] bodyside In] insertion 
[n] dysfunCVL [n] 

!TREE DISPLAY = TOPDOWN NODES=STATISTICS BRANCHSTATISTICS= YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=IVALlD] 
{PRINT MODELSUMMARY CLASSIFICATION RISK 
{METHOD TYPE=QUEST MAXSURROGATES=AUTO PRUNE=NONE 
{GROWTHLIMIT MAXDEPTH=3 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=SPLITSAMPLE(90) OUTPUT =BOTHSAMPLES 
{QUEST ALPHASPLIT =0.2 
{COSTS EQUAL 
{PRIORS FROMDATAADJUST =NO 
{MISSING NOMINALMISSING=MISSING. 
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• TE 
• CHAID(Pearson) 
• 10-FOLD CROSS VALIDATION 

• Classification Tree. 
TREE TE In] BY agecate In] gender In] risk In] infection In] chemophase In] bodyside [n] insertion 
In] dysfunCVL [n] 

fTREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=[VALlD] 
fPRINT MODELSUMMARY CLASSIFICATION RISK 
fMETHOD TYPE=CHAID 
fGROWTHLIMIT MAXDEPTH=3 MINPARENTSIZE=10 MINCHILDSIZE=5 
/VALIDATION TYPE=CROSSVALIDATION(l 0) OUTPUT =BOTHSAMPLES 
fCHAID ALPHASPLIT =0.2 ALPHAMERGE=0.2 SPLITMERGED=YES 

CHISQUARE=PEARSON CONVERGE=O.OOl MAXITERATIONS=100 ADJUST =BONFERRONI 
fCOSTS EQUAL 
fMISSING NOMINALMISSING=MISSING. 

• TE 
• CHAID(Likelihood) 
• 10-FOLD CROSS VALIDATION 

• Classification Tree. 
TREE TE [n] BY agecate In] gender In] risk In] infection In] chemophase In] bodyside In] insertion 
[n] dysfunCVL [n] 

/TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=[VALlD] 
fPRINT MODELSUMMARY CLASSIFICATION RISK 
fMETHOD TYPE=CHAID 
fGROWTHLIMIT MAXDEPTH=3 MINPARENTSIZE=10 MINCHILDSIZE=5 
/VALIDATION TYPE=CROSSVALIDATION(10) OUTPUT =BOTHSAMPLES 
fCHAID ALPHASPLIT =0.2 ALPHAMERGE=0.2 SPLITMERGED=YES CHISQUARE=LR 

CONVERGE=O.OO1 MAXITERATIONS=100 ADJUST =BONFERRONI 
fCOSTS EQUAL 
fMISSING NOMINALMISSING=MISSING. 

• TE 
• CRT(Gini) 
• 10-FOLD CROSS VALIDATION 

• Classification Tree. 
TREE TE In] BY agecate In] gender In] risk In] infection [n] chemophase In] bodyside In] insertion 
In] dysfunCVL In] 

/TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

fDEPCATEGORIES USEVALUES=IVALlD] 
fPRINT MODELSUMMARY CLASSIFICATION RISK 
IMETHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE 
IGROWTHLIMIT MAXDEPTH=3 MINPARENTSIZE=10 MINCHILDSIZE=5 
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NALIDATION TYPE=CROSSVALIDATION(10) OUTPUT =BOTHSAMPLES 
fCRT IMPURITY=GINI MINIMPROVEMENT=O.OOO1 
fCOSTS EQUAL 
fPRIORS FROMDATAADJUST =NO 
fMISSING NOMINALMISSING=MISSING. 

* TE 
* CRT(Twoing) 
* 1 O-FOLD CROSS VALIDATION 

* Classification Tree. 
TREE TE In] BY agecate In] gender In] risk In] infection In] chemophase In] bodyside In] insertion 
[n] dysfunCVL [n] 

!TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=[VALlD] 
fPRINT MODELSUMMARY CLASSIFICATION RISK 
fMETHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE 
fGROWTHLIMIT MAXDEPTH=3 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=CROSSVALIDATION(10) OUTPUT =BOTHSAMPLES 
fCRT IMPURITY= TWOING MINIMPROVEMENT =0.0001 
fCOSTS EQUAL 
fPRIORS FROM DATA ADJUST =NO 
fMISSING NOMINALMISSING=MISSING. 

*TE 
* QUEST 
* 10-FOLD CROSS VALIDATION 

* Classification Tree. 
TREE TE [n] BY agecate [n] gender [n] risk [n] infection [n] chemophase [n] bodyside [n] insertion 
In] dysfunCVL In] 

!TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

fDEPCATEGORIES USEVALUES=[VALlD] 
fPRINT MODELSUMMARY CLASSIFICATION RISK 
fMETHOD TYPE=QUEST MAXSURROGATES=AUTO PRUNE=NONE 
fGROWTHLIMIT MAXDEPTH=3 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=CROSSVALIDATION(1 0) OUTPUT =BOTHSAMPLES 
fQUEST ALPHASPLIT =0.2 
fCOSTS EQUAL 
fPRIORS FROMDATAADJUST =NO 
fMISSING NOMINALMISSING=MISSING 

'INFECTION 
* CHAID (Pearson) 
* SPLIT SAMPLING (Training 90%, Test 10%) 

* Classification Tree. 
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TREE infection [n] BY agecate In) gender [n] risk In) chemophase In) bodyside [n] insertion In) 
ANCcate [n] dysfunCVL In) TE In) 

!TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=IVALlD) 
fPRINT MODELSUMMARY CLASSIFICATION RISK 
IMETHOD TYPE=CHAID 
IGROWTHLIMIT MAXDEPTH=5 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=SPLITSAMPLE(90) OUTPUT =BOTHSAMPLES 
fCHAID ALPHASPLIT =0.2 ALPHAMERGE=0.2 SPLITMERGED=YES 

CHISQUARE=PEARSON CONVERGE=O.OO1 
MAXITERATIONS=1 00 ADJUST =BONFERRONI 

fCOSTS EQUAL 
IMISSING NOMINALMISSING=MISSING. 

"INFECTION 
, CHAID (Likelihood) 
, SPLIT SAMPLING (Training 90%, Test 10%) 

" Classification Tree. 
TREE infection In] BY agecate In) gender [n] risk [n] chemophase In) bodyside [n] insertion In) 
ANCcate [n] dysfunCVL [n] TE In] 

!TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=[VALlD] 
IPRINT MODELSUMMARY CLASSIFICATION RISK 
fMETHOD TYPE=CHAID 
fGROWTHLIMIT MAXDEPTH=5 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=SPLITSAMPLE(90) OUTPUT =BOTHSAMPLES 
fCHAID ALPHASPLIT =0.2 ALPHAMERGE=0.2 SPLITMERGED=YES CHISQUARE=LR 

CONVERG E=0.001 
MAXITERATIONS=1 00 ADJUST =BONFERRONI 

fCOSTS EQUAL 
fMISSING NOMINALMISSING=MISSING. 

'INFECTION 
"CRT (Gini) 
" SPLIT SAMPLING (Training 90%, Test 10%) 

, Classification Tree. 
TREE infection [n] BY agecate [n] gender [n] risk In] chemophase In) bodyside [n] insertion In) 
ANCcate In) dysfunCVL [n] TE [n] 

!TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

fDEPCATEGORIES USEVALUES=[VALlD] 
fPRINT MODELSUMMARY CLASSIFICATION RISK 
fMETHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE 
fGROWTHLIMIT MAXDEPTH=5 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=SPLITSAMPLE(90) OUTPUT =BOTHSAMPLES 
fCRT IMPURITY=GINI MINIMPROVEMENT =0.0001 
fCOSTS EQUAL 
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{PRIORS FROMDATA ADJUST =NO 
IMISSING NOMINALMISSING=MISSING. 

'INFECTION 
, CRT (Entropy) 
, SPLIT SAMPLING (Training 90%, Test 10%) 

, Classification Tree. 

McMaster - Statistics 

TREE infection In] BY agecate In] gender In] risk In] chemophase In] bodyside In] insertion In] 
ANCcate In] dysfunCVL In] TE In] 

/TREE DISPLAY=TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YESSCALE=AUTO 

IDEPCATEGORIES USEVALUES=IVALlD] 
IPRINT MODELSUMMARY CLASSIFICATION RISK 
{METHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE 
{GROWTHLIMIT MAXDEPTH=5 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=SPLITSAMPLE(90) OUTPUT =BOTHSAMPLES 
ICRT IMPURITY= TWOING MINIMPROVEMENT =0.0001 
{COSTS EQUAL 
{PRIORS FROMDATAADJUST =NO 
{MISSING NOMINALMISSING=MISSING. 

'INFECTION 
, QUEST 
, SPLIT SAMPLING (Training 90%, Test 10%) 

, Classification Tree. 
TREE infection In] BY agecate In] gender In] risk In] chemophase In] bodyside In] insertion In] 
ANCcate In] dysfunCVL [n] TE [n] 

/TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=[VALlD] 
IPRINT MODELSUMMARY CLASSIFICATION RISK 
{METHOD TYPE=QUEST MAXSURROGATES=AUTO PRUNE=NONE 
IGROWTHLIMIT MAXDEPTH=5 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=SPLITSAMPLE(90) OUTPUT =BOTHSAMPLES 
{QUEST ALPHASPLIT =0.2 
{COSTS EQUAL 
{PRIORS FROMDATAADJUST =NO 
IMISSING NOMINALMISSING=MISSING. 

'INFECTION 
, CHAID (Pearson) 
, 10-FOLD CROSS VALIDATION 

, Classification Tree. 
TREE infection In] BY agecate [n] gender In] risk [n] chemophase In] bodyside In] insertion In] 
ANCcate In] dysfunCVL In] TE In] 

/TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=IVALlD] 
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fPRINT MODELSUMMARY CLASSIFICATION RISK 
frv.1ETHOD TYPE=CHAID 

McMaster - Statistics 

IGROWTHLIMIT MAXDEPTH=5 MINPARENTSIZE=10 MINCHILDSIZE=5 
,. NALIDATION TYPE=CROSSVALIDATION(l 0) OUTPUT =BOTHSAMPLES 

fCHAID ALPHASPLIT =0.2 ALPHAMERGE=0.2 SPLITMERGED=YES 
CHISQUARE=PEARSON CONVERGE=O.OOl 

MAXITERATIONS=100 ADJUST =BONFERRONI 
fCOSTS EQUAL 
fMISSING NOMINALMISSING=MISSING. 

'INFECTION 
, CHAID (Likelihood) 
• 10-FOLD CROSS VALIDATION 

, Classification Tree. 
TREE infection In] BY agecate In] gender In] risk In] chemophase In] bodyside In] insertion In] 
ANCcate In] dysfunCVL In] TE In] 

!TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=IVALlD] 
IPRINT MODELSUMMARY CLASSIFICATION RISK 
IMETHOD TYPE=CHAID 
IGROWTHLIMIT MAXDEPTH=5 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=CROSSVALIDATION(l 0) OUTPUT =BOTHSAMPLES 
ICHAID ALPHASPLIT =0.2 ALPHAMERGE=0.2 SPLITMERGED=YES CHISQUARE=LR 

CONVERGE=O.OOl MAXITERATIONS=100 ADJUST =BONFERRONI 
ICOSTS EQUAL 
IMISSING NOMINALMISSING=MISSING. 

'INFECTION 
'CRT (Gini) 
* 10-FOLD CROSS VALIDATION 

, Classification Tree. 
TREE infection [n] BY agecate [n] gender [n] risk [n] chemophase [n] bodyside [n] insertion [n] 
ANCcate [n] dysfunCVL [n] TE [n] 

!TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=[VALlDj 
IPRINT MODELSUMMARY CLASSIFICATION RISK 
IMETHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE 
IGROWTHLIMIT MAXDEPTH=5 MINPARENTSIZE=10 MINCHILDSIZE=5 
NALIDATION TYPE=CROSSVALIDATION(10) OUTPUT =BOTHSAMPLES 
ICRT IMPURITY=GINI MINIMPROVEMENT =0.0001 
fCOSTS EQUAL 
IPRIORS FROMDATAADJUST =NO 
IMISSING NOMINALMISSING=MISSING. 

'INFECTION 
• CRT (Gini) 
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• 10-FOLD CROSS VALIDATION 

• Classification Tree. 
TREE infection [n] BY agecate [n] gender [n] risk [n] chemophase [n] bodyside [n] insertion [n] 
ANCcate [n] dysfunCVL [n] TE [n] 

/TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=(VALlD] 
IPRINT MODELSUMMARY CLASSIFICATION RISK 
IMETHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE 
IGROWTHLIMIT MAXDEPTH=5 MINPARENTSIZE=10 MINCHILDSIZE=5 
/VALIDATION TYPE=CROSSVALIDATION(1 0) OUTPUT =BOTHSAMPLES 
ICRT IMPURITY= TWOING MINIMPROVEMENT =0.0001 
ICOSTS EQUAL 
IPRIORS FROMDATA ADJUST =NO 
IMISSING NOMINALMISSING=MISSING . 

• INFECTION 
• QUEST 
• 10-FOLD CROSS VALIDATION 

• Classification Tree . 
TREE infection [n] BY agecate [n] gender [n] risk [n] chemophase [n] bodyside [n] insertion [n] 
ANCcate [n] dysfunCVL [n] TE [n] 

/TREE DISPLAY= TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES 
NODEDEFS=YES SCALE=AUTO 

IDEPCATEGORIES USEVALUES=(VALlD] 
IPRINT MODELSUMMARY CLASSIFICATION RISK 
IMETHOD TYPE=QUEST MAXSURROGATES=AUTO PRUNE=NONE 
IGROWTHLIMIT MAXDEPTH=5 MINPARENTSIZE=1 a MINCHILDSIZE=5 
/VALIDATION TYPE=CROSSVALIDATION(10) OUTPUT =BOTHSAMPLES 
IQUEST ALPHASPLIT =0.2 
ICOSTS EQUAL 
IPRIORS FROMDATAADJUST =NO 
IMISSING NOMINALMISSING=MISS 
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