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Abstract

We extend the original selfish routing setting by introducing users who

are oblivious to congestion. Selfish routing captures only the behavior of selfish

users, who choose the cheapest route based on the current traffic congestion

without caring about the effects of their routing on their fellow users. However,

it is more likely that a certain number of network users will be oblivious to

congestion. For example, data from low-level QoS services will be routed on

predefined routes with no adaptability to network congestion, while data from

high-level QoS services will be routed on the fastest paths available. Networks

with selfish users may lead to a stable state or Nash equilibrium, where no

selfish users can decrease his or her travel time by changing his or her route

unilaterally. Traffic equilibria refer to Nash equilibria in networks only with

selfish users, and oblivious equilibria refer to Nash equilibria in networks with

both oblivious users and selfish users. We study the performance degradation

of networks at oblivious equilibrium with respect to the optimal performance.

Our model has a fraction a of oblivious users, who choose predefined

shortest paths on the network, and the remaining are selfish users. Considering

networks with linear latency functions, first we study parallel links networks

with two nodes, and then general topologies. We provide two tight upper

bounds of the price of anarchy, which is the ratio of the worst total cost expe­

rienced by both oblivious users and selfish users, over the optimal total cost
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when all users are centrally coordinated. Our bounds depend on network pa­

rameters such as a, the total demand, the latency functions, the total cost of a

traffic equilibrium flow, and the total cost of an optimal flow. The dependency

of our bounds on network parameters seems to be inevitable considering the

fact that the price of anarchy can be arbitrary large depending on network

parameters as oblivious users may choose an arbitrarily expensive path.
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Chapter 1

Introduction

1.1 Selfish routing with oblivious users

When a commuter drives a car, just before leaving home or work, he or she

probably makes a sensible decision to choose the fastest path to the destina­

tion considering the current traffic congestion. To choose a route, he or she

considers his or her travel time, but does not care about others' travel time

who will be delayed by his or her action. We use the term selfish users to refer

to non-cooperative network users, who choose the cheapest path connecting

one's origin to one's destination based on the current traffic congestion, with­

out considering the effects of their routing on others. Selfish routing captures

this behavioral aspect of selfish users in network routing. We use a game

theoretical framework to model selfish routing.

Game theory provides a framework to model and analyze situations

1



Master Thesis - Taeyon Kim - McMaster - Computing and Software

where each rational player chooses the best strategy, based on the others'

strategies, to optimize what he or she can gain. For example, it can be used

to analyze equilibrium problems such as producers and consumers in markets,

auctions, load balancing, network routing, and so on. Games may lead to

a stable state, or Nash equilibrium, where no player can gain anything by

changing his or her strategy unilaterally. Specifically, non-cooperative games,

where individual players are in competition with each other, can be used to

model and analyze selfish routing. The network on which the game is being

played is usually called a traffic network.

We consider non-atomic selfish routing games, which have infinitely

many selfish users, each carrying an infinitesimal amount of flow. In non­

atomic cases, we suppose that one user switching routes gives a negligible

change to the current traffic congestion since each user carries a very small

amount of flow. Selfish routing may lead to a traffic equilibrium, where no

selfish user can reduce his or her travel time by changing his or her route

unilaterally. We use the term traffic equilibrium for flows at Nash equilibrium

in traffic networks. Wardop's principle [26] for selfish routing states that

at equilibrium, for each origin-destination pair the travel costs on

all the routes actually used are equal to or less than the travel costs

on all unused routes.

One interesting question is how much worse the performance of a network at

traffic equilibrium is than the optimal performance on the same network. The

performance of a network is measured by the sum of all user travel times, also

2
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called the total cost or social cost. It is a well-known fact that the performance

of a network at traffic equilibrium may not be optimal. Koutsoupias and

Papadimitriou [17] initiated the study of the coordination ratio, also called

the price of anarchy. In selfish routing, the price of anarchy is the worst ratio

of the total cost experienced by selfish users over the optimal performance

that would be achieved if all users were coordinated by a central authority.

Roughgarden and Tardos [24] showed that, in networks with linear latency

functions, the price of anarchy is bounded by 4/3.

In the past, several variations of the original selfish routing setting have

been studied. For example, Roughgarden [20] studied Stackelberg scheduling

strategies, which have a combination of selfish users and centrally coordinated

users. The latter route their flow with the aim of improving the price of

anarchy. Karakostas and Viglas [16] studied the combination of selfish users

and malicious users. The latter use their traffic in an effort to maximize traffic

congestion. Those extended models capture different behavioral aspects of

users on the same network. We also extend the original selfish routing setting

by introducing oblivious users.

Our extended model is based on the following observation: The orig­

inal selfish routing is based on the impractical assumption that every user

can measure latencies of all possible paths connecting one's origin to one's

destination, and that the measurement can be performed instantly. But this

assumption may be unrealistic in large-scaled networks such as the Internet.

It is more realistic that a certain number of users may consult a routing table

3
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based on predefined network parameters such as physical distances or hops

between routers. A similar phenomenon is observed when travelers choose a

route by observing the shortest path on a map without knowing (or caring)

about traffic congestion on routes. We call such users oblivious to congestion.

More specifically, our model has a fraction 0: of oblivious users, and

a fraction 1 - 0: of selfish users. We consider networks with linear latency

functions. Every edge e has a latency function, le(Je) = aele + be, for the

traffic delay caused (and experienced) by the edge flow Ie· While oblivious

users choose a predefined shortest path on the network without any flow, i.e.,

the shortest path when we define edge distances as le(O) = be' selfish users

minimize their own travel cost on the same network. We use the term oblivious

equilibrium for flows with a fraction 0: > 0 of oblivious users, and selfish users

at Nash equilibrium. First we study parallel links networks with two nodes,

and then general topologies. As the result of the study, we provide two upper

bounds of the price of anarchy at oblivious equilibrium in both cases, and

tight examples for them. Our bounds depend on network parameters such

as the fraction 0: of oblivious users, the total flow, the coefficients of latency

functions, the total cost of a Nash flow (a flow at Nash equilibrium), and the

total cost of an optimal flow. The dependency of our bounds on the network

parameters seems to be unavoidable considering the following fact: the price

of anarchy at oblivious equilibrium can be arbitrary large depending on the

network parameters as oblivious users can use an arbitrarily expensive path if

the path is the shortest when no flows are circulating.
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1.2 Previous work

In selfish routing, one of the fundamental questions is to show the existence and

uniqueness of traffic equilibria. Schmeidler [25] proved the existence of a Nash

equilibrium in non-atomic games for mixed and for pure strategies. In mixed

strategies, users have a probability distribution over strategies (or routes), and

gain the expected payoff that depends on the individual strategy and on other

players' strategies. In pure strategies, users choose a strategy with probability

1. For the equilibrium existence in pure strategies, he additionally assumed

the anonymity of users, Le., individual payoffs depend only on the aggrega­

tion of users' strategies without caring about users' identities. Aashtiani and

Magnanti [1] studied the existence and uniqueness of traffic equilibria in a

generalized network model, which accommodates multiple origin-destination

pairs, positive continuous path latency functions, nonnegative continuous de­

mand functions of its shortest travel time, and general link congestion effects

on other links. The existence of traffic equilibrium in the model is established

using Brouwer's fixed-point theorem. They also showed that travel times are

unique under monotonicity conditions of path latency functions and demand

functions, and edges carry a uniquely determined amount of flow in networks

with strictly monotone latency functions and positive demand functions.

Koutsoupias and Papadimitriou [17] initiated the study of the price of

anarchy in selfish routing. Roughgarden and Tardos [24] studied the price of

anarchy in the additive model, where path latencies are the sum of the latencies

of all edges on the path. They showed that, in networks with linear latency
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functions, the price of anarchy is bounded by 4/3. In networks with general

latency functions, they showed that the total cost experienced by selfish users

is no more than the optimal total cost of the same instance having twice as

much demand. Roughgarden [21] also showed that the price of anarchy is

independent of the network topology. In other words, the simple network

topology with two nodes and two parallel links always provides the worst

examples of the price of anarchy for an arbitrary class of standard latency

functions. A latency function l is standard if x ·l(x) is convex on [0,00) [21].

There have been efforts to study the price of anarchy in generalized

models. Perakis [19] studied the price of anarchy in networks with non­

separable, and asymmetric latency functions. Latency functions are non­

separable in the sense that edge latencies also depend on the flows on other

edges, and they are asymmetric in the sense that different non-cooperative

users' strategies (routes) affect their cost differently. She showed that, in

networks with linear latency functions, the price of anarchy is bounded by

4!c2 ' where c2 is the degree of asymmetry, and has value 1 for symmetric la­

tency functions. On the other hand, Correa et al. [8] studied the price of

anarchy in networks with capacities and latency functions that are continu­

ous, and nondecreasing. They proved that the price of anarchy is at most

(1 - {3(£))-1, where £ is a family of continuous nondecreasing latency func­

tions, and {3(£) = SUPlE.c sUPv20 Vl(V) maxx 20{x (l(v) -l(x))}. They computed

(1 - {3(£))-1 for several classes of latency functions. For linear latency func­

tions, (1 - {3(£))-1 is 1.

6
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Selfish behavior of network users can be regulated to correspond to an

optimal flow by imposing the so-called optimal taxes on network edges. Here,

an optimal flow minimizes the total latency without including taxation in the

network. Beckmann et al. [4], and Dafermos and Sparrow [10] showed that an

optimal flow f with edge latency functions le(fe) is at Nash equilibrium with

marginal cost functions l;(fe) = le(fe) + l~(fe)Je, where x . le(x) is a convex

function for each edge e, and l~ denotes the derivative d~le(x) of leo The

marginal cost function has the first term le(fe) describing the per-unit latency

experienced by the edge flow fe, and the second term l~(fe)Je capturing the

increased congestion caused by the flow. It is well known that marginal cost

pricing, i.e., imposing l~ (fe)Je on network edges as taxes, regulates selfish

users to correspond to an optimal flow. Furthermore, Yang and Huang [27]

(see also [14], [12]) studied pricing network edges for multiple classes of selfish

users (or called heterogeneous selfish users), who have a different sensitivity

to taxes according to their classes. Each class has an associated value-of-time

(VOT), which describes how users trade off travel times for tax charges, and

vice versa. Because the time-based and money-based equilibrium problems do

not necessarily give the same equilibrium solution when VOTs are nonlinear,

for both equilibrium problems, they showed the existence of a set of optimal

taxes in multi-commodity networks when latency functions are differentiable,

convex, and monotonically increasing.

As an extended study of pricing network edges, Cole et al. [7] studied

how much taxes can decrease the total disutility, which includes the total

latency and the total taxation in the network. They showed that, in networks
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with linear latency functions, the marginal cost pricing does not decrease the

total disutility of a Nash flow. They also showed that levying taxes can not

improve the total disutility of a Nash flow more than edge removals. Then

they showed that there is an n-node network with nonlinear latency functions

in which imposing taxes, or edge removals, can improve the total disutility

of a Nash flow by a l~J factor. In addition, Karakostas and Kolliopoulos

[15] studied how much taxation has an influence on the coordination ratio

in multi-commodity networks with heterogeneous selfish users. They studied

the coordination ratio of the total disutility over the social cost including the

total taxation, and showed that the ratio when taxation is used is better than

the ratio when no taxation is used for several classes of latency functions. In

addition, they bounded the coordination ratio of the total disutility, when the

marginal costs are imposed as taxes, over the optimal total cost in networks

with homogeneous users for certain classes of latency functions.

There have been efforts to study network models with finitely many

users, each carrying a non-infinitesimal amount of flow. Fotakis et al. [13]

studied the existence of a Nash equilibrium in atomic unsplittable selfish rout­

ing games. In atomic unsplittable cases, finitely many users carry a non­

infinitesimal amount of flow, and route the flow on a path without splitting.

They showed that there exist single-commodity networks with linear latency

functions, for which a Nash equilibrium in pure strategies can not exist. How­

ever, they showed the existence of a Nash equilibrium for multi-commodity

networks with linear latency functions. Orda et al. [18] studied the uniqueness

of a Nash equilibrium for atomic splittable selfish routing games. In atomic

8
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splittable cases, networks have a finite number of selfish users, who are allowed

to carry a non-infinitesimal amount of flow and route the flow fractionally over

many paths. They proved the uniqueness of a Nash equilibrium in two-node

multiple-links networks with latency functions that are continuous, convex,

and differentiable.

For the price of anarchy in atomic splittable cases, Roughgarden [23]

showed that it is no larger than that in non-atomic cases. Awerbuch et al.

[2] studied the price of anarchy in atomic unsplittable selfish routing games

for networks with linear latency functions. They showed that in both mixed

and pure strategies the price of anarchy is at most 3+2vrs for weighted demand

cases, where users may carry a different amount of flow. They also showed

that in pure strategies the price of anarchy is bounded by ~ for unweighted

demand cases, where users carry unit flow. Christodoulou and Koutsoupias [6]

studied the price of anarchy in atomic selfish routing games with finitely many

users, who carry unit flow. They showed that in single-commodity networks

with linear latency functions the price of anarchy is at most ~~~i, where N is

the number of users, which is asymptotically the same as in [2].

So far, the price of anarchy is the ratio of the average latency experi­

enced by selfish users over that by optimal flows. However, there have been

studies to measure the degradation of the network performance due to anarchy

with respect to the maximum latency that users may experience, instead of

the average latency. The price of anarchy relative to the maximum latency

is the ratio of the maximum latency experienced by selfish users over that of

9
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flows which minimize the maximum latency. Roughgarden [22] studied this

new version of the price of anarchy in non-atomic selfish routing games. He

showed that the price of anarchy relative to the maximum latency is n - 1 for

single-commodity networks with n vertices, and with latency functions that

are arbitrary continuous, and nondecreasing. Christodoulou and Koutsoupias

[6] also studied the same price of anarchy in atomic selfish routing games

with finitely many users, who carry unit flow. They showed that the price of

anarchy relative to the maximum latency is at most ~ for single-commodity

networks with linear latency functions.

On the other hand, Farzad et al. [11] studied the flow-free selfish routing

model, in which a user traveling on an edge only causes delays to following

users who use the edge afterward. They showed that, in multi-commodity

networks with splittable non-atomic users and polynomial latency functions

of degree d, the price of anarchy is bounded by (d + l)d+l. They also showed

that, in networks with unsplittable atomic users and linear latency functions,

the price of anarchy is at most 3 + .j2.

1.3 Our contribution

Our contribution is to introduce a new class of oblivious users to the selfish

routing setting, and to provide tight upper bounds of the price of anarchy at

oblivious equilibrium. The selfish routing setting has the assumption that all

network users route their flow selfishly, and that they can measure all path

10
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latencies in every moment. However, it is more likely to have a different

class of users who are oblivious to congestion because they are not willing (or

able) to measure the path latencies as often as needed. For example, data

from low-level QoS services in telecommunications networks may be routed

on predefined paths with no adaptability to congestion, while data from high­

level QoS services are routed on the fastest paths available to them, given the

network congestion at the time.

We study the degradation of the network performance caused by both

selfish users and oblivious users. We consider networks with linear latency

functions, and provide two tight upper bounds of the price of anarchy at

oblivious equilibrium. The bound for parallel links networks with two nodes

is:
cU) C(J*)

C(J0Pt) ::; (1 - 0:) C(Jopt) + 0: max{l, o:r}, if f~. = o:d '2 1:.,

and
cU) 4

C(Jopt) ::; 3' otherwise.

In our bound, we have the fraction 0: of oblivious users, and demand d. C(])

is the total cost of an oblivious equilibrium flow], C(Jopt) is the total cost of

an optimal flow fopt, and C(J*) is the total cost of a traffic equilibrium flow

1*. A flow ]0 denotes the proportion of the flow ] for oblivious users. We

define r = 2:eE£opt ae.lae, where [Opt is the set of the edges that an optimal

flow fopt uses, and es denotes the predefined shortest edge. The ae and be are

the coefficients of linear latency functions le (x) = aex + be. The bound for

11
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general topologies is:

C(J) < 4(1 - a + aD I:iEK I:eEP/(aeD + be)/C(j°Pt))
C(j°pt) - 3 + a .

General topology networks have multiple commodities, and K is the index

set for commodities. Pt is the predefined shortest path for commodity i, and

D is the total demand of all commodities. They are tight for every fraction

a E [0, 1] of oblivious users. Furthermore, our bounds generalize the previous

result of the price of anarchy without oblivious users, which Roughgarden and

Tardos [24] studied in networks with linear latency functions. Note that for

a = 0, our bounds are exactly the 4/3 bound of [24].

1.4 Organization

Chapter 2 provides the background for selfish routing. In Chapter 3, we extend

the selfish routing setting to include the concept of oblivious users. We study

the price of anarchy at oblivious equilibrium, and show tight bounds for parallel

link networks and general topologies. Chapter 4 has conclusions and open

problems.

12



Chapter 2

Selfish Routing

2.1 The Model

We consider a directed network G = (V, E) with vertex set V, and edge set

E ~ V x V. An edge is represented by an ordered pair of two vertices. We have

k origin-destination vertex pairs (Sl' t1), ... , (Sk' tk), and define K = {I, ... , k}.

We use the term commodity i to refer to an origin-destination pair (Si' t i ).

Let P1 denote a set of all simple paths for commodity i. A simple path is a

path with no repeated vertices on the path. We define the set of all paths

P = UiEK P1 • A flow is a function f : P ---+ {O} U R+, mapping each path

pEP to a nonnegative amount of traffic on it. We will use the notation fp

instead of f(p) for simplicity. We also denote a flow vector (JP)PEP by f. Each

origin-destination pair (Si' t1 ) has an associated flow demand of rate di . A flow

f is feasible if 2:PEP, fp = di for all i E K.

13
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Each edge e E E is given a latency function le(Je) which gives the traffic

delay caused (and experienced) by edge flow fe, where fe = LpEP:eEP fp· We

assume that latency functions le are nonnegative, differentiable, nondecreasing,

and convex. We consider the additive model, where path latencies are the

sum of the latencies of all edges on the path, i.e., lp(J) = LeEP le(Je)' We

define the total cost C(J) of a flow f as the total latency experienced by

f, i.e., C(J) = LeEE le(Je)fe' The total cost C(J) can also be defined as

LpEP lp(J)fp·

Finally, we consider non-atomic games, which have infinitely many

users (or agents), each carrying an infini tesimal amount of flow. In non-atomic

cases, we suppose that a route switching of a single user has no influence on

the path latencies, but the aggregate route switching of users can have an

influence on them. We call the triple (G, d, l) an instance of selfish routing,

where d = (di)iEK and l = (le)eEE.

2.2 Flows at traffic equilibrium

We study selfish flows at traffic equilibrium. First we consider that each user

carries a measurable (non-infinitesimal) amount of flow, and then an infinitesi­

mal amount of flow will be considered. A feasible flow f for instance (G, d, l) is

at traffic equilibrium if each agent of the flow routes its traffic on the minimum­

latency path available to it. To choose the minimum-latency path, each agent

of the flow measures the path latencies with respect to the remaining flow. If

14
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agents include the latency caused by itself to the measurement, agents might

always find a path with smaller latency to reroute itself. Hence, the network

might not lead to an equilibrium state. Dafermos and Sparrow [10] (see also

[24]) provided the following definition for Nash flows (or flows at traffic equi­

librium).

Definition 2.2.1. [10; 24] A flow j feasible for instance (G, d, l) is at traffic

equilibrium iffor all i E K, PI,P2 E Pt, and <5 E (0, fpl ], we have lPI (f) ~ lP2(f),

where

jp - <5 if P = PI

jp = jp + <5 if P = P2

fp if P rt. {PI,pd·

Definition 2.2.1 states that a flow f is at traffic equilibrium if agents

for commodity i, each carrying an amount <5 of flow, can not find a path

with smaller latency in Pt. When J tends to 0, i.e., each agent carries an

infinitesimal amount of flow, Definition 2.2.1 corresponds to the next lemma.

Lemma 2.2.2. [24] A flow f feasible for instance (G, d, l) is at traffic equilib­

rium if and only if for every i E K and PI, P2 E Pt with fpI > 0, lPI (f) ~ lP2 (f).

Lemma 2.2.2 is equivalent to Wardop's principle [26]. Since any agent

for commodity i can not find a path that has smaller latency in Pt , the paths

used by the agents have the same latency. Let Lt (f) denote the same (or

common) latency of traffic equilibrium flow f for commodity i. Then lp(fp) =

Lt(f), Vp E P : jp > 0, and lp(O) 2: Lt(f), Vp E P : jp = 0, for Vi E K.

By using the common latencies, the total cost can be defined as C (f) =

15
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i=I,2, ,m

j=I,2, ,r

XEX,

(CP) minimize rp(x)

subject to 9i(X):S; 0

hj(x) = 0
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2.3 Convex programming

where X is a non-empty convex set in R n . We want to find the point x E X

that minimizes the convex and real-valued objective function fCP : Rn ~ R

on X. A function r p is convex if for any x, y E X and any). E [0,1],

2.3.1 Optimal flows

The relations 9i(X) :s; 0 are the inequality constraints, where gi(X) are convex

functions on X. The relations hj(x) = 0 are equality constraints, where hj(x)

are affine functions on X. Affine functions are vector-valued functions of the

We study the properties of optimal flows, which minimize the total cost. We

formulate the optimization problem of finding an optimal flow in convex pro­

gramming. Convex programs have the following form.
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form hJ(x) = Ax + b, where A is a matrix and b is a column vector.

Constrained programs can be transformed to unconstrained programs

by the method of Lagrange multipliers. We denote Lagrange multipliers of

(CP) by A = (1. 1 ,1.2 ), where 1.1 E nm and 1.2 E nT
• We define the Lagrangian

function of (CP) as:

Furthermore, define n = {x E X I g(x) ~ 0, h(x) = O}, and F(A) = infx F(x, A).

We outline some important theorems of convex programming, which

will be used to study properties of optimal flows and Nash flows. We state the

theorems without proof [3]. In the next theorem, given a set S, int of S is the

set of all interior points of S.

Theorem 2.3.1. [3] Let f and 9 be convex and let h be affine. Suppose that

there is an x such that g(x) < 0, h(x) = 0, and °E int{h(x) I x E X}. Then

In what follows, we use the gradient V' fC{l(x) = (aarp , ... , aarp), provided
Xl Xn

jCP is differentiable at x. The next theorem states the equivalence between

convex programs and variational inequality problems.

Theorem 2.3.2. [5] Let x be a solution to the optimization problem (ep) ,

where jCP is continuously differentiable and n is a nonempty closed convex set

17
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Due to Theorem 2.3.1, the problem (CP) is equivalent to finding a

saddle point (x,~) of the function F, i.e.,

(2.1 )

(2.2)

VX,VA.

Vx E O.

\7rp(x) + \7g(X)~l + \7h(x)~2 = 0

18

F(x, A) ::; F(x,~) ::; F(x,~)

in nn. Then x is a solution of the (variational inequality) problem

And, ifr p is a convex function and x is a solution to (2.1), then x is a solution

to the optimization problem (CP).

Theorem 2.3.3. [5] Assume that the optimal value of (CP) is finite and that

there is an x such that g(x) < 0, h(x) = 0, and 0 E int{h(x) I x EX}.

In order that a given vector x is an optimal solution to (CP) , it is necessary

and sufficient that a vector ~ exists such that (x,~) is a saddle-point of the

Lagrangean function F of (CP). Equivalently, a vector x is an optimal solution

if and only if there is a vector ~ of Lagrange multipliers which, together with

x, satisfies the KKT conditions for (CP):

The conditions for the saddle point can be described by the following Karush­

Kuhn-Tucker (KKT) conditions. For a vector fCP of functions f i
cp

, we define

the gradient \7rp(x) = (\7 ffP(x), ... , \l f;t(x)), provided f? are differentiable

at x.
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AT A
g(x) s: 0, A1 ~ 0, A1g(x) = °

h(x) = °
(2.3)

(2.4)

So far, we have summarized theorems of convex programming. From

now, we use convex programming and its theorems to study properties of

optimal flows. The problem of finding an optimal flow can be formulated as

the following convex program.

(NLP1) minimize C(J) = L le(Je)fe
eEE

subject to L fp = dt

pEP,

Vi E K

Ve E E

VpE P.

(2.5)

(2.6)

(2.7)

Constraints (2.5) enforce demand conservation for each commodity i. Con­

straints (2.6) state how to get edge flows from path flows. Constraints (2.7)

are the non-negativity constraints for path flows. The objective function

C(J) = L.eEE le(Je)fe is convex since we have assumed that each edge la­

tency function le is convex and nondecreasing. Let H denote a set of feasible

flows, i.e.,

H = {f I fp ~ 0, Vp E P, and L fp = dt , Vi E K}.
pEP,
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The set H is convex since for any fl' h E H and any A E [0,1],

Ah + (1 - A)h E H.

In what follows, let c~ denote the derivative l:xce(x) of Ce, where ce(Je) =

le(Je)fe. Here, ~(Je) = le(Je) + l~(Je)fe, and l~ denotes the derivative l:x le(x)

of leo We also define cp(J) = LeEpCe(Je), and cp(J) = LeEpc~(Je)' The

next lemma states the conditions of optimal flows, which are similar with that

of Nash flows. Each agent of optimal flows can not find a path with smaller

latency if we define path latency functions as c~(J) instead of lp(J). We present

the proof of this well known lemma for completeness.

Lemma 2.3.4. A flow f is an optimal solution to (NLP1) if and only if for

every i E K and PI, P2 E Pi with fpl > 0, cP1 (J) ~ C~2 (J).

Proof. Let us define 9p(J) = - I p and hi(J) = di - LpEPi I p from the con­

straints (2.7) and (2.5), respectively. We associate Lagrange multipliers Al

with g = (9P)PEP, and A2 with h = (hi)iEK to formulate the following La-

grangean function:

F(J, A) = L Cp(J) + L Al,p9p(J) + L A2,ihi(J).
pEP pEP iEK

From the KKT conditions, Theorem 2.3.3, a flow I is an optimal solution

to (NLPl) if and only if there exists a vector (AI, A2) that, together with I,

20
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satisfies the following conditions:

c~(J) - Al,p - A2,i = 0, Vp E Pt, Vi E K

-fp::;O, Vp E P

c~(J) - A2,i ~ 0, Vp E Pt, Vi E K

(c~(J) - A2,i) fp = 0, Vp E Pi, Vi E K

dt - L fp = 0, Vi E K
pEP,

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Hence, a flow f feasible for (NLP1) that satisfies the conditions below is opti­

mal. Note that a feasible flow f satisfies the conditions (2.9) and (2.12), and

there exists Al,p ~ °satisfying the condition (2.8). The lemma follows from

the following conditions, which have been drawn from the conditions (2.10)

and (2.11).

c~(J) = A2,t, Vp E Pt : fp > 0, Vi E K

c~(J) ~ A2,t, Vp E Pi : fp = 0, Vi E K.

o

Lemma 2.2.2 states the conditions of Nash flows, and Lemma 2.3.4

states the conditions of optimal flows. From the similarity between the con­

ditions of Nash flows and optimal flows, the next proposition shows the rela­

tionship between the two flows.

Proposition 2.3.5. An optimal flow f for instance (G, d, l) is at traffic equi-
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librium for instance (G, d, l*), where marginal cost functions l: are defined as

2.3.2 Nash flows

In networks with linear latency functions, problems of finding a traffic equi-

librium for an instance (G, d, l) can be formulated as the following convex

program [4]:

lfe(NLP2) minimize L le(t)dt
eEE 0

subject to di = L fp Vi E K
pEPi

fe = L fp Ve E E
pEP:eEp

fp ?:. 0 Vp E P.

Under the assumption that latency functions le are convex and nondecreasing,

the objective function of (NLP2) is convex. We show that an optimal solution

to (NLP2) is a Nash flow for instance (G, d, l) in the next proposition. We

present the proof of this well known fact for completeness reasons.

Proposition 2.3.6. Let a flow f be an optimal solution to (NLP2). Then a

flow f is at traffic equilibrium for instance (G, d, l).

Proof. From Lemma 2.3.4, a flow f is an optimal solution to (NLP2) if and
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only if for every i E K and PI, P2 E Pi with f pI > 0, lpi (JPI) ::; lp2 (JP2)' Then

the proposition follows from Lemma 2.2.2. 0

We can also formulate traffic equilibrium problems as variational in­

equality problems. Let (x, y) denote the inner product of two vectors x and

y. Let H be a set of feasible flows for (NLP2), Le., H = {f I fp ~ 0, Vp E

P, and L:pEP, fp = di , Vi E K}. The next proposition follows from Theorem

2.3.2.

Proposition 2.3.7. [9] A flow 1* is an optimal solution to (NLP2) if and

only if 1* is a solution to the following variational inequality:

(l(J*), f - 1*) ~ 0, Vf E H.

Since an optimal point 1* to (NLP2) is at traffic equilibrium for instance

(G, d, l), the next corollary follows.

Corollary 2.3.8. A flow 1* is at traffic equilibrium for instance (G, d, l) if

and only if 1* is a solution to the following variational inequality:

(l(J*), f - 1*) ~ 0, Vf E H.

Additionally, if we define Cf (x) = L:eEE le(Je)xe, then the variational

inequality can be expressed as follows:

C!*(f*) ::; C!*(J), Vf E H.
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2.4 The price of anarchy

The price of anarchy is the worst-possible ratio of the total cost of a Nash

flow over the optimal total cost. Following Roughgarden and Tardos [24], and

Roughgarden [21], we define the ratio p = p(G, d, l) = C(f*)/C(j), where 1*

is a Nash flow and j is an optimal flow for instance (G, d, l). Let I:- be a class

of latency functions that are continuous and non-decreasing. Then the price

of anarchy A(I:-) is defined as A(I:-) = sUPLEe p(G, d, l).

Roughgarden and Tardos [24] studied the price of anarchy, and showed

that it is bounded by ~ in networks with linear latency functions. Because

their proof is rather long, here we present a shorter proof by Correa et al. [8].

Theorem 2.4.1. [24] Suppose an instance (G, d, l) with linear latency func­

tions. Let a flow 1* be at traffic equilibrium and j be an optimal flow for the

instance. Then
C(f*) 4--,- <-.
C(f) - 3

Proof. Let f be any feasible flow. We denote linear latency functions as le(x) =

aex + be' Then

C(f*) = ~(aef; + be)!;
eEE

~ ~(aef; + be)!e
eEE

~ ~(aefe + be)fe + t~ ae1*2
eEE eEE
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~ C(f) + ~C(j*).

Because 1* is at traffic equilibrium, 1* is a solution to the variational inequality

(l(f*), j*) ~ (l(f*), J), Vf,

and the first inequality follows. The second inequality holds since (f - ~1*)2 ~

O. By substituting f with an optimal flow j, the theorem follows.

o

We illustrate the price of anarchy with the two examples of Figure 2.1.

Consider a network with two vertices: origin vertex s and destination vertex

t. The network has two parallel edges connecting s to t, and has demand 1. In

Figure 2.1(a), the Nash flow 1* = (f:1' f:
2

) is (~, ~), and the optimal flow j is

also (~, ~). The ratio p of this example is 1, which is not the worst ratio for the

class I:- of linear latency functions. On the other hand, the example of Figure

2.1(b) provides the worst ratio. In this example, the Nash flow 1* is (0,1), and

C(f*) = 1. The optimal flow j is (~, ~), and CU) = i. Hence, the example

of Figure 2.1(b) has price of anarchy p = ~, which is the worst-possible ratio

in networks with linear latency functions [24].

We now present another proof for the same result by using the {3­

function defined in [8], which will be used to analyze the price of anarchy at

oblivious equilibrium. Recall that Cf* (x) = l:eEE le(f:)xe. The {3-function is

a powerful tool to separate the cost term C f (x), which consists of two different
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(b) Worst-possible ratio(a) Not worst-possible ratio

(3(l) := sup (3(v, l), and (3(£) := sup (3(l).
v2:0 lE£

1
(3(v, l) := -l() max{x(l(v) -l(x))},

v v x2:0

Figure 2.1: Two examples for the price of anarchy

In the next theorem, the price of anarchy at traffic equilibrium is

Master Thesis - Taeyon Kim - McMaster - Computing and Software

bounded by using the (3-function.

where % is 0 by convention. We define

Definition 2.4.2. [8] Let £ be a class of latency functions that are continuous

flows f and x, into C(j) and C(x).

and nondecreasing. For any function l E £ and any value v ~ 0, we define the

Theorem 2.4.3. [8] Let £ be a family of continuous, nondecreasing latency

functions. Consider an instance of the traffic equilibrium problem with latency

functions drawn from £. Then the ratio of the total travel time of a Nash flow

(3-function as
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o
Figure 2.2: Tight example for the bound (1 - (3(£))-1

1* to that of a system optimum j is bounded from above by (1 - (3(£))-1, i.e.,

1 A

CU*) :::; 1 _ (3(£) CU)·

Proof. Let x be a feasible flow. Due to the definition of (3-function,

Cf*(x):::; 2::(3U;,le)leU;)J; + 2::le(Xe):::; (3(£)CU*) +C(x). (2.13)
eEE eEE

From Corollary 2.3.8, we have CU*) :::; Cf* (x). Then the theorem follows by

substituting x with an optimal flow f. o

Correa et al. [8] showed that the bound (1- (3(£)t 1 given in Theorem

2.4.3 is tight. Consider the network of Figure 2.2, with two vertices sand t,

and with two parallel edges e1 and e2. The network has (8, t) flow of rate v.

The Nash flow 1* is (v, 0), and CU*) = l(v)v, while the optimal total cost is

C(j) = min {l(x)x + l(v)(v - x)} = vl(v) - max {x (l(v) - l(x))}.
O~x~v O~x~v
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functions. In particular, they show that if I:- is a family of continuous, non-

Correa et al. [8] give the (3(I:-) values for several classes of latency

(2.14)

_ ( _ maxo<x<v {x (l(v) -l(X))})-1
p- 1 vl(v)

= (1 - {3(v, l))-1

= (1 - {3(I:-)r 1.

28

As a result, the price of anarchy for this example is

l = lsup.

linear latency functions.

For the equality (2.14), I:- contains a latency function lsup, which achieves

(3(v, lsup) = (3(I:-) for v > O. Then the bound in Theorem 2.4.3 is tight for

decreasing latency functions l satisfying l(ex) ~ cl(x) for all c E [0,1], then

(3(I:-) = 1/4. This implies that the price of anarchy is 4/3 for networks with



Chapter 3

Oblivious Users

In this chapter, we study the price of anarchy at oblivious equilibrium, whereas

we have studied the price of anarchy at traffic equilibrium in the previous

chapter. The selfish routing setting in the previous chapter is extended for

the routing setting of oblivious equilibrium problems to include the concept of

oblivious users. We introduce two bounds of the price of anarchy at oblivious

equilibrium for two different topologies: parallel links networks, and general

topologies.

3.1 The Model

The oblivious routing setting extends the selfish routing setting. In the obliv­

ious routing setting, a fixed fraction a of the total demand dz for commodity i

consists of oblivious users, and the remaining fraction (1- a) consists of selfish
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users while in the selfish routing setting the whole demand d i for commodity

i consists of selfish users. Hence, the selfish routing setting is a case of the

oblivious routing setting when a is O. We present the oblivious routing setting

based on the selfish routing setting, which has been covered in the previous

chapter. In the meantime, we outline the overlapping part of the two settings.

We consider a directed network G = (V, E) with vertex set V, edge set

E, and k commodities. Let K = {I, ... , k} be an index set for commodities.

Pi denotes a set of all simple paths for commodity i, and P = UiEK Pi' Each

origin-destination pair (Si, t i) has an associated flow demand of rate di. We

denote traffic on a path p by fp- Each edge e E E is given a latency function

le(Je) of the edge flow fe' where fe = I:PEP:eEP fp. We consider the additive

model, i.e., lp(J) = I:eEP le(Je) , with the assumption that latency functions

le are nonnegative, differentiable, nondecreasing, and convex. We define the

total cost C(J) = I:eEE le(Je)fe or I:PEP lp(J)fp-

We consider non-atomic games with infinitely many users, each carrying

an infinitesimal amount of flow. A fraction a E [0,1] of the total demand di

for commodity i consists of infinitely many oblivious users, who route their

flow on the predefined shortest path in the network. The predefined shortest

path, which is denoted by P/ for commodity i, is the shortest one when path

distances are measured by lp(O). If there are more than one shortest paths, we

assume that all oblivious users choose the first one in a lexicographic ordering.

The remaining fraction (1 - a) of the total demand di for commodity i consists

of infinitely many selfish users.
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Let r denote the proportion of the flow f for oblivious users, and

1* denote the proportion for selfish users. A flow f = r + 1* is feasible if

l:PE'P, fg = O'.dt , and l:PE'P, f; = (1 - O'.)dt for Vi E K. We call the tuple

(G, r, l, 0'.) an instance of oblivious routing, where d = (di)iEK and l = (le)eEE.

Note that we use the triple (G, d, l) for an instance of selfish routing.

3.2 Flows at oblivious equilibrium

A flow f feasible for instance (G, d, l, 0'.) is at oblivious equilibrium if each

selfish user routes one's flow on the minimum-latency path available after

oblivious users have routed their flow on the predefined shortest path. Selfish

users measure path latencies with respect to the remaining flow. The following

lemma describes this idea of a flow at oblivious equilibrium.

Lemma 3.2.1. Suppose a flow f = r + 1* feasible for instance (G, d, l, 0'.),

where r is the oblivious flow that routes demand O'.di on the predefined shortest

path P/ for commodity i, and 1* is a selfish flow satisfying demand (1 - O'.)d.

Then the flow f is at oblivious equilibrium if and only if for every i E K and

Pl,PZ E Pt with f;1 > 0, lpIUo + 1*) ~ lp2(r + 1*).

Suppose a flow f = r + 1* at oblivious equilibrium for instance

(G, d, l, 0'.). Then a flow 1* is at traffic equilibrium for instance (G, (1- O'.)r, I),

where l:(x) = leU~ + x). The problem of assigning oblivious users on the pre­

defined shortest path can be solved efficiently in polynomial time by applying

shortest path algorithms. Hence, oblivious equilibrium problems can be re-
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duced to user equilibrium problems in terms of the modified latency functions

[ and demands (1 - a)d.

We formulate oblivious equilibrium problems as the following convex

program after finding an oblivious flow r. Let he(x) = fox ie(J~ + t)dt. An

optimal solution 1* to (NLP3) is a selfish flow for instance (G, d, i, a), and we

have a flow I at oblivious equilibrium by combining two flows rand 1*.

(NLP3) minimize L he(Je)
eEE

subject to (1 - a)di = LIp Vi E K
pEP;

Ie = L Ip 'lie E E
pEP:eEp

Ip '? 0 VpE P.

Suppose a flow I = r + 1* is at oblivious equilibrium. If we define

path latency functions as i~(J) = I:eEP ie(O), then no oblivious users can find

a path with smaller latency. In other words, an oblivious flow r of the flow

I is at traffic equilibrium for instance (G, ad, iO), where i~(x) = ie(O). Hence,

a flow r is a solution to the following variational inequality (3.1).

W, x - r) '? 0, Vx E {j I I is a flow satisfying demand ad}. (3.1)

A selfish flow 1* of the flow I is at traffic equilibrium for instance (G, (1 - a)d, is),

where i:(x) = ie(J~ + x). Hence, a flow 1* is a solution to the following varia-
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tional inequality (3.2).

(is, x - 1*) ~ 0, '<Ix E {f I f is a flow satisfying demand (1 - a)d}. (3.2)

3.3 Networks of parallel links

We restrict our previous oblivious routing setting to parallel links networks,

which have only two nodes: origin node s and destination node t. Parallel links

networks have multiple links connecting s to t, and have a single commodity.

We denote the total demand of the commodity by d. We assume that oblivious

users route their flow on the shortest edge when edge distances are measured

by ie (0). We denote the shortest edge byes. If there are more than one shortest

edges, we assume that all oblivious users choose the first one in a lexicographic

ordering. Furthermore, we assume that each edge latency is linear and strictly

increasing, i.e., ie(x) = aex + be with ae > O. Hence, in our case ie(O) = be,

'<Ie E E.

3.3.1 The price of anarchy

We bound the price of anarchy at oblivious equilibrium by separating the total

latency C(j) into two terms C(jo) and C(j*): one is a proportion of the total

latency caused by oblivious users, and the other is by selfish users. Suppose

a Nash flow 1* exists for instance (G, d, i) and an oblivious equilibrium flow

J = Jo + J* for instance (G, d, i, a). In parallel links networks, the shortest
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On the other hand, oblivious users only choose the edge es. Hence, we have

anarchy at oblivious equilibrium is the same with the price of anarchy at traffic

o

edge es is attractive to selfish users as long as the flow on the edge es is less

than f:.· If oblivious users fill the edge es more than f:., no selfish users will

use the edge es.

Proof. In case f~. = ad < f:., the edge es is still attractive to users of a selfish

flow j*, some of which will use the edge es. As a tends to 0, the total amount

of the edge flow, f:. = f~. + f:s ' will not be changed, so that a flow j is also

at traffic equilibrium for instance (G, d, i). Since Aashtiani and Magnanti [1]

Proposition 3.3.1. Let j = jo + j* feasible for instance (G, d, l, a) be at

oblivious equilibrium, where 10 is an oblivious flow and j* is a selfish flow.

Let 1* feasible for instance (G, d, i) be at traffic equilibrium. If f~. = ad < f:.,

then f = 1*. Otherwise, f~ f: = 0, \Ie E E.
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f~f: = 0, \Ie E E.

showed that edge flows are unique in networks with strictly monotone latency

functions, we have j = 1*. In case f~s = ad 2:: f:., the edge es is no longer

attractive to users of a selfish flow 1*. No selfish users choose the edge es.

If f~. = ad < f:s' a flow f at oblivious equilibrium has the same

flow pattern with a flow 1* at traffic equilibrium. In this case, the price of

equilibrium 4/3, which has been studied by Roughgarden and Tardos [24].

Hence, for the price of anarchy at oblivious equilibrium, we study the other

- - - -T-
ease f~s = ad 2:: f:s' where vectors jD and 1* are orthogonal, i.e., fO f* = 0.

Since two flows jo and j* do not use the same edge, we can separate the total
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cost C(j) into two terms C(jo) and C(j*). First we study the portion of the

total latency caused by selfish flow j*, Le., C (j*), then the portion caused by

oblivious flow jo, Le., C(jo).

Suppose two flows fd and fdH. A flow fd is at traffic equilibrium with

the total demand d, and a flow fdH is at traffic equilibrium with the total

demand d +8, where 8 ~ O. For every edge e, an edge flow f~H is larger than

or equal to an edge flow f~. Intuitively, a flow fd+o can be constructed from a

flow fd by adding an additional demand 8, while users of fd keep their routes.

Proposition 3.3.2. Let fd and fdH be flows at traffic equilibrium for in­

stances (G, d, l) and (G, d + 8, l), respectively, where 8 ~ O. Then we have

f~ S f~H, 'ie E E.

Proof. Suppose, for the sake of contradiction, that there exists an edge e such

that f~ > f~+o. Let L1(fd) be the common latency for (G,d,l), and L2(fd+O)

for (G, d+8, l). Since f~ > fedH ~ 0, and latency functions are strictly increas­

ing, Wardrop's principle[26] implies that L1 (fd) > L2 (fdH), which contradicts

the fact that d < d + 8. 0

Suppose a flow 1* at traffic equilibrium in a network. If an edge is

removed from the network together with the edge flow from 1*, the remaining

flow is still at traffic equilibrium in the modified network, which does not have

the edge. No users of the remaining flow can find a path with smaller latency

in the modified network.

Proposition 3.3.3. Let a flow 1* be at traffic equilibrium for instance (G, d, l).
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Let us construct a new instance (G', d - f;" l) J where G' = (V, E \ {e'}),

by removing an edge e' from G together with the edge flow f;,. Then flow

(J;)eEE\{e'} is at traffic equilibrium for the new instance (G', d - f;" l).

Proof. Let L(J*) denote the common latency by a traffic equilibrium flow 1* in

instance (G, d, l). Due to Wardrop's principle, a flow 1* at traffic equilibrium

for instance (G, d, l) satisfies the following necessary and sufficient conditions:

le(J;) = L(J*), \:Ie E E : f; > a

le(O) 2 L(J*), \:Ie E E : f; = o.

Let us define 1*' = (J;)eEE\{e'}' By removing an edge e' from G together

with the edge flow f;" the common latency by the flow 1*' in the new instance

(G', d - f;" l) is not changed from L(J*). Since the flow 1*' is feasible for

the new instance, and satisfies the necessary and sufficient conditions of traffic

equilibrium for every e E E \ {e'}, the proposition follows. 0

Suppose that two flows 1* and j carry the same total demand d: 1* is

a traffic equilibrium flow, and j is an oblivious equilibrium flow. The flow 1*

carries the total demand d, and the flow j* carries a fraction (1 - a) of the

total demand d. Then, on every edge e, the flow 1* carries the traffic of selfish

users more than or equal to the flow f*.

Proposition 3.3.4. Let 1* be a flow at traffic equilibrium for instance (G, d, l) J

and j = jo+ j* be a flow at oblivious equilibrium for instance (G, d, l, a). Then

we have f; 2 f:, \:Ie E E.
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Proof. In case f~. = ad < f:., from Proposition 3.3.1 we have that 1* = ],

which implies that f: = ];, Ve E E \ {es } and f:. ~ f;8'

- -
In case f~8 = ad ~ f:8, we have f:8 ~ f;8 = 0 since the edge es is no

longer attractive to selfish users of ]*, and f:
8

is nonnegative. Let us define

E' = E \ {es }. To compare edge flows on the remaining edges, i.e., Ve E E',

let us construct a new network G' = (V, E') by removing the edge es from E

together with the edge flow f e8' From Proposition 3.3.3, the flows (J:)eEEI and

(}; )eEEI are at traffic equilibrium for instances (G', d - J:8, l) and (G', d - ad, l),

respectively. Since d- f:8 ~ d-ad, we have f: ~ ];, Ve E E' from Proposition

3.3.2 . D

In the next lemma, we bound the cost term C(}*) with respect to

C(J*). The flow ]* carries a fraction (1 - a) of the total demand d, while the

flow 1* carries the total demand d. Then the cost term C(}*) is less than or

equal to (1 - a)C(J*).

Lemma 3.3.5. Let 1* be a flow at traffic equilibrium for instance (G, d, l),

and] = ]0 +]* be a flow at oblivious equilibrium for instance (G, d, l, a).

Then we have C(]*) ::; (1 - a)C(J*).

Proof.

C(J*) - C(]*) = 2: (le(J:)f: -le(};)];)
eEE

~ 2:(J: - ];)le(J:)
eEE
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the smallest latency when no users are using it.
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Dand le(J;) ~ L(J*) ~ 0, 'ie E E, the second inequality follows.

So far, we have bounded the cost term c(1*) with respect to C(J*).

Now, we study properties of an optimal flow r pt to bound the cost term C(IO)

with respect to C(Jopt).

We have le(J;) ~ le(1;), 'ie E E since latency functions le are increasing, and

f; ~ I; from Proposition 3.3.4. Hence, the first inequality holds. Let L(J*)

be the common latency by a traffic equilibrium flow 1* in instance (G, d, l).

Wardop's principle implies that le(J;) ~ L(J*), 'ie E E. Since (J; - I;) ~ 0

= adL(J*) = aC(J*).

be decreased by moving a certain amount of flow to the edge es since it has

~ L(J: - I;)L(J*)
eEE

An optimal flow always uses the shortest edge es , in other words f:: t >

o. To see this, suppose that no users use the edge es . Then the total cost will

Proposition 3.3.6. Let fopt denote the optimal flow that minimizes the total

cost. Then we have f::t > 0 where the edge es is the shortest edge.

Proof. From Proposition 2.3.5, an optimal flow fopt feasible for instance (G, d, l)

is at traffic equilibrium for instance (G, d, l*), where l:(x) = le(x) + l~(x)x and

l~(x) is the derivative :fxle(x) of leo Here, le(x) = aex+be, and l:(x) = 2aex+be.
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Let us choose an edge e with f~t > O. Then

The first inequality holds due to the assumption that ae > O. The second

inequality holds since bes is the smallest among all be. Since l: (J~Pt) > l:.(O)

and fopt is at traffic equilibrium for instance (G, d, l*), the proposition follows.

o

In the next lemma, we derive properties of an optimal flow fopt by using

the fact that an optimal flow fopt for instance (G, d, l) is at traffic equilibrium

for instance (G, d, l*), and bes is the smallest among all be.

Proposition 3.3.7. Let fopt be an optimal flow for instance (G,d,l). Then

we have les(J~t) ::; le(J~pt), \:Ie E E. In addition, we have aeJ~rt ~ ae!~t,

\:Ie E [Opt, where [Opt = {e EEl f~Pt > O}.

le(J~pt) = ~ (l:(J~t) + be)

> ~ (l* (foPt) + b )- 2 es J es e

> ~ (l* (fopt) + b )- 2 es J es es
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The first inequality follows from Proposition 3.3.6. The second inequality holds

since bes is the smallest among all be'

We show that aeJ~:t 2: ae!~t, '<Ie E [apt. Since japt is at traffic equilib­

rium for instance (G, d, l*), every edge e E [Opt has the same latency in terms

of l: (x). Then we have the following:

=> (a {apt - a {OPt) < O.
eJ e es J es -

o

In the next lemma, we bound the term ~~:1) by using a lower bound

of C(J°Pt) and a upper bound of CUo).

Lemma 3.3.8. Let a flow j = jo + j* be at oblivious equilibrium jor instance

(G, d, l, a). Let japt be an optimal flow jor instance (G, d, l) . Then we have

CUo) ~ amax{l,ar}C(Japt), where r = LeEEopt, (aejae).

Proof.

C(J°Pt) = 2.= le(J~t)j:Pt

eEE

> l ({Opt) '"' {apt
- es Je s ~ Je

eEE
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From the first part of Proposition 3.3.7, we have les(J~r:t) ::; le(J~pt), \Ie E [OPt.

Hence, the first inequality holds. From the second part of Proposition 3.3.7,

we have aeJ:;t ~ aef~pt, \Ie E [OPt. We get r j~r:t ~ d by summing over all

e E [Opt. Then

c(10) (aesad + beJ ad < {I}
C(jOPt)::; (aes db) d - a max ,ar.r + es

For the second inequality, consider two cases ar ::; 1 and ar ~ 1. In case

ar ::; 1, the term (aes ad + beJ / (a;s d + be.) ::; 1. In case ar ~ 1, the term

(aesad + beJ / (~d + bes ) ::; ar. 0

The next theorem is our main result for parallel links networks. We

bound the price of anarchy of an oblivious equilibrium flow 1by combining

h c(IO) C(l')
t e two bounds for C(fopt) and C(fopt).

Theorem 3.3.9. Let 1= 10 +1* be a flow at oblivious equilibrwm jor instance

(G, d, l, a). Let 1* and jopt be a Nash flow and an optimal flow, respectively,

jor instance (G, d, l). The price oj anarchy p = c~)!;t) at oblivious equilibrium

is:

< (1 ) C(J*) {I} ,;f Fo = ro'd > f*p_ -a C(jOPt) +amax ,ar,. Jes \-< -Jes'

and
4

P < - otherwise.- 3'

Proof. In case hs = ad < j:s' we have 1= 1* from Proposition 3.3.1. Hence,
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The first inequality comes from Lemma 3.3.5, and the second inequality comes

o

c(j) = L le(j; + h)(j; + h)
eEE

- - -
Corollary 3.3.10. Let f = f O + 1* be a flow at oblivious equilibrium for

instance (G, d, l, 0'.). Let 1* and jOpt be a Nash flow and an optimal flow,

= L le(j;)(j;) + L le(j~)(h)
eEE eEE

parameters. However, we also show another bound that does not depend on

these two cost functions. We derive the new bound by applying the worst ratio

= c(j*) + c(jo)

~ (1 - O'.)c(j) + C(jO)

~ (1 - O'.)c(j) + 0'. max{l, O'.r }C(Jopt).

network parameters since they can be calculated from the given basic network

the price of anarchy at oblivious equilibrium is equal to the price of anarchy at

traffic equilibrium, which is ~ [24], and the second part of the theorem follows.

of C(J*) over C(Jopt) , i.e., 4/3. Then the next corollary follows.

The bound of the price of anarchy at oblivious equilibrium in Theorem

3.3.9 depends on C(Jopt) and C(J*), which can be calculated by convex pro­

gram (NLP1) and (NLP2), respectively. We consider C(J*) and C(Jopt) as

from Lemma 3.3.8.

In case f~s = O'.d 2: f:s' we have j: j~ = 0, 'lie E E from Proposition

3.3.1. Hence, C(j) can be separated into C(j*) and C(jO). Then
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l(x) = e~Q) x

l(x) = x + E

Figure 3.1: A tight example for parallel links networks, with demand 1

respectively, for instance (G, d, l). The price of anarchy p = c~j!]t) at oblivious

equihbrium zs:

and

4 .
P ~ "3' otherwzse.

3.3.2 A tight example for parallel links networks

We provide a tight example for the bound of the price of anarchy at oblivious

equilibrium in Theorem 3.3.9. In case f~. = ad ~ f:., we have j = 1*, and

the price of anarchy at oblivious equilibrium is bounded by ~. Since 1= 1*,

the tight example 2.1 (b) for the price of anarchy at traffic equilibrium shows

the tightness of our bound.

In case f:. = ad ~ f:., we consider a parallel links network with

demand 1, and with two edges that have latency functions l(x) = e~a) x and
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l(x) = x + E. Figure 3.1 shows this example. Here, a can be an arbitrary

value between (0,1], and non-negative E tends to O. Since the upper edge has

the smallest latency when no flows are circulating, oblivious users route their

flow on the upper edge, i.e., jo = (a, 0), where the first element is the upper

edge flow. After the routing of oblivious users, selfish users route aE amount

of flow on the upper edge, and (1 - a - aE) amount of flow on the lower edge,

i.e., j* = (aE,l - a - aE). As E tends to 0, we get j = (a, 1 - a). Also,

fcrpt = (a, 1 - a). Hence, c~j!jt) = 1 and our bound is also 1. To make this

example reachable, we set E to 0 under the assumption that oblivious users

choose the upper edge.

3.4 General topologies

We study the price of anarchy at oblivious equilibrium in general topologies,

the setting of which has been specified in the section 3.1. In addition, let us

define D = LiEK di , where K = {l, ... , k} are the commodities. We assume

that edge latency functions are linear and increasing, i.e., le(Je) = aefe + be

with ae 2: O.

3.4.1 The price of anarchy

In general topologies, we separate the total cost c(1) into two terms: Ci (1*)

and Ci(jO). Recall that ci(f*) = LeEEle(1e)j;. Whereas, in parallel links

networks, we have separated the total cost into two terms CI•(f*) and CIa (fo)
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due to Proposition 3.3.1, this does not hold any longer in general topologies.

The path of oblivious users can share edges with the paths of selfish users.

Routing of selfish users might have an influence on Cl(fa), and routing of

oblivious users on c1(1*).

We bound the cost term c f (1*) with respect to two cost terms c(1)

and C(fapt). First the term Cf(I*) can be bounded by (1 - ex)Cf(fapt) as an

intermediate step by using the method of variational inequalities. Then the

term C f (fapt) is separated into c(1) and C(fapt) by using the ,B-function.

Lemma 3.4.1. Let 1= 10 + 1* be a flow at oblivwus equilibrium for instance

(G, d, l, ex), and fapt be an optimal flow for instance (G, d, l). Let I:- be a class

of linear latency functions. Then

Proof. Since flow 1* is at traffic equilibrium for instance (G, (l-ex)d,l), where

l:(x) = le(f~ + x), 1* is a solution to the following variational inequality:

(3.3)

H is the set of feasible flows for instance (G, (1 - ex)d,l) , and (1 - ex)fapt is in

H. If we substitute f with (1 - ex)rpt in (3.3), we have

c f (f*) = (f(f*) ,1*)

~ (1 - ex) (l(f*),japt)
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Proof.

(3.4)

= (1 - a)(l(1), rPt )

= (1 - a)Ci(Japt).

e e

We use the concept of ,8-function to bound the term Ci(Japt).

Ci(Jo) = L(aeJe + be)J~
eEE

ci(1o) ~ aD L L (aeD + be).
iEK eEP/

We bound the cost term Ci(10) in the next lemma. This bound will

~ ,8(£)c(1) + C(J°Pt). (3.5)

Master Thesis - Taeyon Kim - McMaster - Computing and Software

The first and the second inequalities follow from the definition of ,8-function:

,8(£) = SUPlE.cSUPv~o vdv) maxx~o{x (l(v) -l(x))}. The combination of (3.4)

and (3.5) proves the lemma. 0

depend only on the coefficients ae and be, a, and D. Since the term is not

bounded with respect to C(Japt) , the bound of g(j!:t~ will include the factor

l/C(Japt). We assume that the factor l/C(Japt) in the bound is a network

parameter, since it can be calculated by using the convex program (NLP1).

Lemma 3.4.2. Let J = Jo + j* be a flow at oblivious equilibrium for instance

(G,d,l,a). Then
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::; aD L L (aele + be)
iEK eEP:

::; aD L L (aeD + be).
iEK eEP:

o

We show another bound for the cost term Cf(]o). This time, we bound

the term C f (fa) with respect to C(J°pt).

Lemma 3.4.3. Let 1= 10 +1* be a flow at oblivious equilibrium for instance

(G, d, l, a), and jOpt be an optimal flow for instance (G, d, l). Then

Cf(fa) :s n;~faC(JoPt),
mzn

h IV I maxe ae d f opt . f!optwere n = , fa = mine ae ' an mzn = mlne:f~Pt>O J e .

Proof. Since a flow fa is at traffic equilibrium for instance (G, ad, l), where

l:(x) = be, fa is a solution to the following variational inequality:

H is the set of feasible flows for instance (G, ad, l), and ajOpt is in H. If we

substitute f with afopt, then we get the following:

L bel: :S a L bef~t.
eEE eEE
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Theorem 3.4.4. Let j = jo+ j* be a flow at oblivious equilibrium for instance

(G, d, I, a), and fapt be an optimal flow for instance (G, d, I). Then the price

o

(3.7)

(3.8)

= amaxD L nadi

iEK

::; amax D L n f;:
iEK

cJ(jo) = L (aejej~ + bej~ )
eEE

48

L aejel~ ::; amax D L j~
eEE eEE
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To get a upper bound of CJ(jO):

To get a upper bound of the first term:

Since 7~?a 2: a, the combination of (3.7) and (3.8) proves the lemma.

The next theorem is our main result for general topologies. We bound

the price of anarchy of an oblivious equilibrium flow j by combining the two

Cf(foJ Cf(f-)
bounds for C(Jopt) and C(Jopt).
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of anarchy at oblivious equilibrium is

c(f) < 4(1 - a +aD l:iEK l:eEP;' (aeD +be)/C(j°pt)) .

C(f°Pt) - 3 + a

Proof. By combining the two terms from Lemmata 3.4.1 and 3.4.2, we have

the following:

c(f) = Cf(j*) + Cf (jO)

::; (1 - a)C(j°Pt) + (1 - a)(3(£)C(f) + aD:L :L (aeD + be).
tEK eEPs ,

Hence,

c(f) < 1 - a + aD l:iEK l:eEP
si

(aeD + be)/C(j°pt)

C(jopt) - 1 - (1 - a)(3(£) .

Since £ is a set of non-decreasing linear functions, (3(£)

theorem follows.

~ [8], and the

o

The bound for the price of anarchy at oblivious equilibrium in Theorem

3.4.4 depends on C(Jopt) , which can be calculated by the convex program

(NLP1). We show another bound that depends on t:::I~' which also can be

calculated by convex program (NLP1).

Theorem 3.4.5. Let j = jo+ j* be a flow at oblwious equilibrium for instance

(G, d, l, a), and fopt be an optimal flow for instance (G, d, l). Then the price
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Hence,

~ [8] , and the

o

c(f) 1 - a + naD'Ya/f:~_..::.::.-.:._< .
C(Jopt) - 1 - (1 - a){3(£)

c(f) = C j (f*) + C j (fa)

~ (1 - a)C(J°Pt) + (1 - a){3(£)C(f) + na~'YaC(JoPt).
fmin

Proof. By combining the two terms from Lemmata 3.4.1 and 3.4.3, we have

the following:

of anarchy at oblivious equilibrium is
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3.4.2 A tight example for general topologies

Since £ is a set of non-decreasing linear functions, (3(£)

theorem follows.

We provide a tight example for the bound in Theorem 3.4.4. Suppose the

the first half demand through PI : s -t v -t t, and the other half demand

Ps : S -t v -t W -t t. So do selfish users. However, an optimal flow will route

Braess paradox network of Figure 3.2, with a single commodity from vertex

s to t and demand 1. Here, we have a fraction a of oblivious users, and a

can be an arbitrary value between [0,1]. Oblivious users will follow the path
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l(x) = 0

l(x) = x

l(x) = 1 l(x) = x

Figure 3.2: A tight example for general topologies, with demand 1

through H : s ---t W ---t t. Hence, C(}) is 2, C(Jopt) is 3/2, and the price of

anarchy at the oblivious equilibrium is 4/3. Our bound has also the value 4/3.
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Chapter 4

Conclusions

We evaluate our bounds of the price of anarchy at oblivious equilibrium, which

can be unbounded depending on network parameters. Especially, we discuss

how to adjust edge latency functions to minimize the ratio of the total cost

caused by both selfish users and oblivious users over the optimal total cost.

Because our bounds characterize the network parameters that affect the per­

formance degradation of networks at oblivious equilibrium, our bounds can be

utilized to design networks with the aim of minimizing the performance degra­

dation at oblivious equilibrium. However, our bounds do not give a method

how to minimize the optimal cost itself. It is an open question how to min­

imize both the price of anarchy and the optimal total cost in networks with

both selfish users and oblivious users.

We evaluate our tight bound for parallel links networks, which is shown

in Theorem 3.3.9. Let j be a flow at oblivious equilibrium for instance
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(G, d, l, a). Let 1* and jOpt be a Nash flow and an optimal flow, respectively,

for instance (G, d, l). Our bound is:

c(f) < _ C(J*) . 0 _ *
C(J0pt) - (1 a)C(JDpt) +amax{l,ar}, If fe. - ad ~ fe.'

and

c(f) 4 .
C(JDpt) :S 3' otherWIse.

We discuss the case fg. = ad ~ f;., where the price of anarchy at oblivious

equilibrium can be arbitrary large by increasing r = L:eE[Opt ae./ae. In this

case, the other parameters are bounded: a E [0,1], and ~Ya:!) E [1, ~]. We

assume that the fraction a of oblivious users is given.

Our bound has the unbounded term r, while the other term ~Ya:!) is

bounded by 4/3. The term r can be arbitrary large depending on the co-

efficients ae in the situation that oblivious users can suffer arbitrary large

congestion by increasing the coefficient ae., or that an optimal flow can have

very small total cost by decreasing the coefficients ae E [Opt. Hence, to mini-

mize the term r, the coefficients ae should be adjusted. Suppose that ae• = O.

In this case, traffic routing becomes so trivial that all users route their flow

only on the edge es . We would want to avoid this trivial case. In another case,

oblivious users and selfish users can be split into two different edges, which is

illustrated by Figure 3.1. In this case, we have r = l/a, and our bound is 1.

However, if we substitute the term ~Ya:!) with 4/3, our bound can not be tight

any longer in this example. Because the term ~Ya;J) can not be set directly

from the basic network parameters such as the coefficients ae and be, but be
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calculated by convex programs, it might be difficult for network designers to

determine its value. It is an open problem to remove the the term :ir.Ya:~) from

the bound without losing the tightness.

We evaluate our tight bound for general topologies, which is shown in

Theorem 3.4.4. Let Jbe a flow at oblivious equilibrium for instance (G, d, l, a).

Let jopt be an optimal flow for instance (G, d, l). Our bound is:

C(J) < 4(1 - a + aD L.iEK L.eEp:(aeD + be)/C(j°pt)) .
C(jopt) - 3 + a

Suppose that the total demand D is fixed. The parameter a is bounded be­

tween 0 and 1. But, the term L.zEK L.eEp~(aeD+be)/C(jopt) can be arbitrarily,

large by increasing the coefficients ae in the predefined shortest paths.

The coefficients ae and be, which belong to the edges of the shortest

paths, are the network parameters that we can adjust to minimize the ratio,

if we suppose that the total demand D is given, and that the fraction a of

oblivious users is given. However, as the values of the coefficients ae and be

decrease, the term L.iEK L.eEps(aeD + be)/C(jopt) does not always decrease,

correspondingly. The term has the denominator C(j°Pt) , which will also be

decreased as the coefficients ae and be decrease. Therefore, it is not apparent

how to adjust the coefficients ae and be before calculating the factor C(jopt)

with the corresponding coefficients ae and be. Hence, it is an open problem to

remove the factor C(j°pt) from the bound without losing the tightness.

We evaluate another bound for general topologies, which is shown in
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Theorem 3.4.5. Let f be a flow at oblivious equilibrium for instance (G, d, I, a).

Let fapt be an optimal flow for instance (G, d, I). Our bound is:

The bound does not depend on the factor C(f°Pt), but it is not tight and

depends on the factor 1/f:~. Since the bound is not tight, the method of

using this bound does not precisely determine the degradation of the network

performance. While knowing the drawback of using the non-tight bound,

however, we discuss about the conditions of the parameters that minimize the

bound. We suppose that parameters a, and n are fixed. The other terms '"'fa,

and D/f:~ can be arbitrary large by changing the coefficients ae and be.

Let us consider the term '"'fa, which is minimized when all coefficients ae

have the same value. This condition of the coefficients ae implies that each unit

of traffic causes the same degree of congestion for every edge. For example,

the roads that have the same number of lanes will have the same degree of

congestion by the unit traffic. Let us consider the next term D / f:~. This

term captures the smallest fraction of the total demand that an optimal flow

splits over paths. For example, if an optimal flow is routed on a single path,

the term has the value 1. If an optimal flow is routed on two paths evenly,

the term has the value 2. With the increase of the path number that an

optimal flow routes on, the value of the term increases, but the ratio does not

necessarily increase. Hence, in networks with more paths, the bound might

be getting worse with respect to the actual ratio. It is an open problem to
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remove the term D/ f:~ to tighten the bound.
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