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ABSTRACT

Wavelets offer many unique tools for data analysis. The first part of this thesis is an exposition

of wavelet transforms and many of the associated tools for the analysis of time series. Specifi­

cally, wavelet denoising, wavelet power spectra and the detection of singularities are examined

in detail. The second half of the thesis consists of a wavelet perspective on epidemiological time

series. Focus is placed on analysing the incidence of infection of measles in Ontario, Canada.

Other incidence data sets are also considered: chicken pox, rubella, and whooping cough. We

show that wavelet analysis can be used to evaluate mathematical models in epidemiology by test­

ing them against observed data, as well as to characterize the fine scale structure of the data. With

some serendipity, it is also shown that distinct data sets for the same disease are characterized by

a similar multifractal signature.
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Chapter 1

Introduction

Developed in the 1980s, thanks to contributions from Meyer, Morlet, Grossman and others,

wavelet transforms provide a range of tools for data analysis and data compression [8]. The

concepts that lead to the development of wavelets may be traced back much further than the

1980s. In fact, wavelet transforms can be thought of as a natural extension of Fourier transforms.

The idea that functions or signals may be better understood by transforming them to conve­

nient representations is central to wavelet analysis. Joseph Fourier capitalized on this idea in the

early 1800s with the introduction of the Fourier transform. This transform is utilized in many

fields of study for its ability to unveil the frequency content of a signal. Wavelets should not

be thought of as replacing Fourier transforms, but as a new scientific language which offers a

unique description of the analyzed data. Fourier transforms provide a description in terms of

the frequency content alone, while wavelets provide information about both frequency and time

scale.

Fourier transforms provide precise information about how much of each frequency a signal

contains, but give no information about where these frequencies occur. In a sense, the time

information is hidden, or masked, by the transform. After all, reconstruction of the time series

would not be possible if the time information were lost completely. This lack of time resolution

can lead to insurmountable errors [19]. Imagine recording a signal over a period of several hours.

If the last few minutes of the recording are in error, then this error will propagate through the

entire Fourier transform. Local information about the signal becomes global information in the

Fourier transform.

The Windowed Fourier transform is an early attempt to establish localization in time. The

idea of this transform is to analyze smaller segments of the signal with the Fourier transform to

obtain some time localization. A window of constant length is chosen and "slides" across the

signal. If the window is chosen too narrow, low frequency components of the signal become

virtually imperceptible. If the window is chosen too large, time resolution is lost. The need for a
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transform that allowed for variable window lengths became apparent.

In the 1970s, petrochemical engineer Jean Morlet was faced with the problem of analyzing

a signal that had high frequency components on a shorter time span than low frequency compo­

nents. He wished to increase time resolution for the high frequency components and maintain a

reasonable frequency resolution for the low frequency components. To accomplish this, Morlet

developed a new kind of transform based on the Fourier transform. Instead of fixing the window

length and filling the window with oscillations of different frequencies, Morlet kept the number

of oscillations in the window fixed and varied the length of the window. The functions he gen­

erated had the incredible advantage that the high frequency functions were narrow while the low

frequency functions were not [8]. Morlet called these wavelets "wavelets of constant shape" [19]

because the overall shape of the wavelet remained the same despite stretching or compressing.

Mathematical physicist, Alex Grossman, realized that Morlet's transform was very similar

to methods Grossman himself had developed in the field of quantum mechanics. Together, they

came up with a formula for the exact reconstruction of the signal from the transform. Mathe­

matician Yves Meyer also became interested in wavelet research when he discovered that the re­

construction formula of Grossman and Morlet was actually a rediscovery of a formula developed

in the 1960s by Calderon [8]. Through the joint efforts of researchers in physics, engineering,

and mathematics, the theory of wavelet analysis found its roots.

The process of studying coarse to fine resolutions of a signal is referred to as multiresolution

analysis. Mallat's efforts to develop wavelet analysis in a multiresolution based framework lead

to an efficient algorithm for computing the transform [23]. At the age of twenty-three Mallat

contacted Meyer with the idea that orthogonal wavelet transforms would be a versatile tool in

computer vision. With the help of Meyer, Mallat wrote a magnificent paper that would help to

unify wavelet theory and establish a practical framework for wavelet construction. He showed

how a scaling function could be used for fast computations of the transform. His fast O(N)
algorithm used truncated versions of infinite orthogonal wavelets.

The next major contribution to wavelet theory would come from Daubechies. She is credited

with the introduction of compactly supported orthogonal wavelet basis. This improved both com­

putational efficiency and accuracy. The importance of the contributions of Mallat and Daubechies

cannot be overstated. The nuances of their work will become clearer in the next chapter.

This contagious affinity for wavelet analysis continues to inspire researchers. Bi-orthogonal

wavelets and the lifting scheme have gained a lot of attention in recent years. Wim Sweldens can

be credited with much of the work in this area. The great thing about wavelets constructed with

the lifting scheme is that they are independent of the Fourier transform. This means that they can

be used in settings where the Fourier transform is inappropriate. A more detailed exposition of

biorthogonal wavelets will be given in the next chapter.

Three terms are commonly used without explanation in the literature: scale, resolution, oc-

A. HOLDSWORTH McMASTER - MATHEMATICS
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tave. Scale is a term used to describe how changing the size of the wavelet will change the size

of the signal components examined. Coarser scales highlight low frequency components, while

finer scales highlight lower frequencies. Resolution is meant to refer to the number of wavelets

being used or, in other words, the number of times the signal is sampled. The word octave refers

to changes in the resolution of the wavelet. Increasing wavelet frequency on an interval, de­

creases the size or scale of the wavelet. Higher frequency components are encoded by a higher

resolution of wavelets.

Table 1.1 lists and summarizes several applications of the wavelet transform. This list is by no

means exhaustive. Adaptive meshing and data compression are not explored here, but represent

two of the most fruitful applications of wavelet analysis. The reader is referred to an intriguing

historical perspective on wavelets given by Barbara Burke Hubbard for a more comprehensive

review [19].

Many areas of medical imaging had long utilized Fourier transforms until the advantages of

wavelets became clear. Small recording/imaging errors do not corrupt the entire wavelet trans­

form because of their excellent time localization properties. Medical imaging can be quite costly.

Which is part of the reason wavelets have gained such high acclaim in this field. Applications

include high resolution electrocardiographs, brain resonance images and MRIs [19].

As an example of the current use of wavelet technology the Joint Photographic Experts Group

(JPEG) introduced a new image standard called JPEG 2000 [33]. JPEG 2000 uses the discrete

wavelet transform to compress images. This standard has several advantages over the old stan­

dard such as reducing visual artifacts, and offering a multiresolution representation.

In this thesis, epidemiological time series are studied from a wavelet analysis point of view.

Previous work in this area is scarce. Bauch, Grenfell and others used the wavelet power spectrum

to analyze recurrence in epidemiological time series [5] [6]. Some of their results are reproduced

in the last chapter and compared with spectra generated stochastically. Both wavelet power

spectra and singularity spectra are examined as tools for determining the efficacy of stochastic

models. Based on the literature review, we believe that this study is the first to use the language

of multifractal analysis to provide a description of epidemiological time series.

Part of the inspiration for this work is the observation that so-called stochastic models exhibit

fine scale fluctuations that could be indicative of the presence of noise, or an inherent fractal

structure in the data. Wavelet de-noising is used to compare the numerical models to the observed

incidence of infection. The following questions are investigated with regard to this fine scale

structure: is this "noise" Gaussian or are these fluctuations a true feature of the dynamics? Does

the data or model exhibit a multifractal structure?

The interesting questions alluded to here will be examined in the last chapter. Before any

conclusions are drawn, a detailed description of wavelet analysis must be given. To this end,

this thesis is comprised of two distinct sections. Chapters two and three develop the theory of

3



4

wavelet transforms and present tools for the analysis of time series. Chapter four is devoted to

the application of these techniques to incidence of infection time series.

McMASTER - MATHEMATICS

Table I I' WAVELET ApPLICATIONS

A. HOLDSWORTH

..
DATA COMPRESSION: Allows for efficient compression with minimal data loss

due to low magnitude wavelet coefficients.
WAVELET DENOISING: Used to remove noise from a signal. Efficient de-noising

of signals with unknown smoothness. Applications in im-
age processing.

METHODS FOR PDEs: Wavelet based numerical algorithms for generating an
adaptive grid and Galerkin methods for solving PDEs.
Applications to Geodesy, Climate Modeling, Weather Pre-
diction.

MULTIFRACTAL ANALYSIS: Compute the singularity spectrum for a given signal. Ap-
plications in Turbulence.

SPECTRAL ANALYSIS: Offers time localized picture of the power spectrum. Ap-
plications to epidemiology, ecology, astronomy.

LOCAL/GLOBAL REGULARITY: Determine the uniform and pointwise Lipschitz expo-
nent for a singularity at a given point. Applications in
Medicine.



Chapter 2

The Wavelet Transform

2.1 The Fourier Transform

The discovery that many periodic waveforms are well approximated by sums of sine and

cosine functions lead to the development of the Fourier series. The Fourier transform (FT) is a

generalization of the complex Fourier series obtained as the formal limit of the Fourier series as

the period tends to infinity. Discrete Fourier transforms and fast Fourier transforms are used to

approximate the FT using a discrete number of points. The inverse FT is used to restore the input

signal.

FT offer a method of representing functions from the time (or spacial) domain in the fre­

quency domain. The frequency domain is referred to as Fourier space. It is a function space with

sine and cosine functions as a basis; {e- ikt , k E lR}. The Fourier space representation of a signal

reveals the contribution of the sine and cosine functions at various frequencies.

1. The Fourier Transform for a function f which is integrable on lR is de-Definition 2.1.1.

fined by:

j(k) = ~1+00 f(t)e-iktdt
v 21t -00 (2.1)

2. The Discrete Fourier Transform (DFT):

N-I

j(k) = [f(ti)eikt/ l=O,1,2, ... ,N-1.
i=O

(2.2)

The DFT transforms a signal of N complex numbers to a representation in Fourier space

using N complex numbers. The signal is discretized by sampling at the points ti.

The FT allows one to ascertain which frequencies are present in the signal, but gives no tem­

poral information about the frequencies; it is insufficient for representing non-stationary signals.
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2.2 The Continuous Wavelet Transform

(2.5)

(2.4)

(2.3)

McMASTER - MATHEMATICS

J
+OO

-00 ",(t)dt=O.

C\jf = J+oo 1\jJ(k) 1

2
dk < +00.

-00 k

A. HOLDSWORTH

This implies that", is a function of zero average.

Figure 2.1 shows an example of what real wavelets looks like. The factor of a-1 serves to

normalize the wavelet so that the L2 (lR) norm is independent of the scale, a.

The wavelet transform is a convolution of the signal with the basis function ",. Varying the

scale parameter changes the time-frequency spread of the wavelet. The height and width of the

wavelet are affected by changes to the parameter a, but the average remains constant. The time

(position) resolution is inversely proportional to the frequency resolution.

The wavelet function performs signal decomposition by dilating and translating the mother

wavelet at each scale, a > 0, and time, b.

Wavelet transforms are a versatile tool for studying non-stationary time series. To be consid­

ered a wavelet, a function, "', should have some localization in time and position [13]. Wavelets

must satify the admissibility condition.

A potential solution to this problem is offered by the windowed Fourier transform (WFf). This

transform works by dividing the input signal, f(t), into sections and analyzing the frequency

component of each section separately. The WFT transform is said to be localized in time, how­

ever, the width of the window is fixed. Shifting a window of constant size across a signal results

in a time-frequency representation with a constant resolution. A smaller scale basis is required

to detect sharp changes in frequency, possibly due to discontinuities in the signal, while a larger

scale basis is needed to uncover detailed frequency information about the time series. This moti­

vates the need for the wavelet transform which allows for a multitude of basis functions that are

not restricted by a fixed window length.
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co

Figure 2.1: The Mexican hat wavelet basis at the position, to, and scale, a.

Definition 2.2.1. The wavelet transform:

+00 +00
s(a, b) = / s(t)\jIa,b (t)dt = Ja / s(t)\jI C~ b )dt

-~ -~

s(t) is the signal to be decomposed, \jI(t) is the mother wavelet.

(2.6)

s(a, b) is called a wavelet coefficient. It measures the variation of the signal in a neighbor­

hood of the time b and of size proportional to a. Large amplitude coefficients are created by sharp

changes in frequency. A one dimensional time series is transformed to a two dimensional wavelet

coefficient representation. Overlapping basis functions lead to a redundancy in the wavelet co­

efficients. So neighboring coefficients share information. This makes the CWT an excellent tool

for detecting specific features of a signal.

For the transform to be complete one must be able to recover the signal completely. Perfect

reconstruction of the time series make the wavelet transform well suited to applications such as

data compression. Reconstruction is possible using theorem 2.2.2.

Theorem 2.2.2. [17JIf \jI E L2 (JR) is a real junction s. t. equation 2.3 holds then any s E L2 (JR)
satisfies

1 /+00/+00 1 (t -b) da
s(t) = C'I' s(a,b) va\jl -a- db a2

° -00

7
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2.3 The Discrete Wavelet Transform

2.2.1 Implementing the Continuous Wavelet transform

(2.8)

McMASTER - MATHEMATICS

1 /+00 (t -b) 1 ( - t)
S =..;a s(t)\jI -a- dt = s* ..;a\jl -;;

-00

A. HOLDSWORTH

Ff are used to compute the wavelet coefficients. The Fourier transform of a convolution is

the product of the Ff and the Fourier transform of a product is the convolution of the Ff [23].

If j = 0 represents the input signal resolution, where a = 2j , then for all a > I the CWT is

interpreted as a convolution of the signal with the appropriately scaled wavelet function.

The transform can be completed by integrating the CWT given in definition 2.2.1 in phys­

ical space, but the CWT is computed most efficiently using the fast Fourier transform (FFf).

The signal, and appropriately scaled wavelet, is transform into Fourier space, multiplied, and

transformed back into physical space.

In practice, the CWT is computed using a finite number of convolutions. So one must choose

a sufficiently small step size for a and b. The output wavelet coefficient data is one dimension

larger then the input data. Inputing a signal of length N results in output of N points for each

scale of the transform. The number of scales is chosen task specifically, depending on how much

scale resolution is desired. Computational cost increases as the number of scales increases.

Having many scales means having a great deal of redundancy too. This redundancy can be taken

advantage of by choosing a small number of scales for efficiency or a large number for a highly

resolved analysis.

The discrete wavelet transform (DWT) operates on dyadic scales, avoiding the redundancies

of the continuous wavelet transform. A one-dimensional time series is transformed into a one­

dimensional wavelet coefficient representation. The requirement of orthogonality in the wavelet

basis distinguishes this transform from those discussed previously. Although the CWT is com­

puted with a discrete range of values, the wavelets used are not orthogonal. Mallat introduces

the discrete wavelet transform in the context of multiresolution analysis [22]. This section sum­

marizes MaHat's work by first introducing a multi resolution approximation and then proceeding

to describe the theory needed to implement the transform.

Let the scale, 2j , be the inverse of the resolution.

Definition 2.3.1. A multiresolution approximation is a sequence {Vj} jE'Z of closed subspaces

satisfying:
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1. V(j, k) E Z,J(t) E Vj {::::::::> f(t - 2jk) E Vj. Vj is invariant by any translation in proportion

to the scale 2j.

+00

4. .lim Vj = n Vj = {O}.
)->+00 -00

5. j~~ooVj = closure (QVj) = L2(lR) .

6. :J 8 S.t. {8(t - n)}nEZ is a Riesz basis ofVo.

The approximation of a function, f(t), at each scale is an orthogonal projection on the space

Vj C Vj-I. Let Wj be the orthogonal complement of Vj in Vj-I. Then Vj EB Wj = Vj-I. The

orthogonal projection on the space Wj contains the details of the finer approximation Vj-I. The

wavelets span the space {Wj} jEZ, and scaling functions, <1>, span the space {Vj} jEZ, At each scale

the signal approximation is decompose into a detail component and an approximation compo­

nent. In effect, VI = W2 EB W3 EB ... EB WJ EB VJ.

Let A~-J be the discrete approximation of the signal f(t) at a resolution 2- j . The input

signal will be denoted with j = 0 (i.e. A1n. Subsequent approximations are denoted with

o> j ~ -J. The decomposition is dyadic, at each scale the resolution decreases by half and

scales are limited to a maximum J = log2 (N) where N is the number of points used to represent

the input signal.

The notation used in this section mimics that of Manat (1989) [22]. Other notations are

encountered in the literature. Some authors prefer to denote the scale of the signal as 2J
. The

first level of the approximation would then be at scale 2J- I . Because the scales are known to be

dyadic, it is not uncommon to find the scale denoted as simply j corresponding to a resolution of

2- j. One should always be careful to keep in mind the notation which is being used.

Theorem 2.3.2. [22J Let (V2J )jEZ be a multiresolution approximation of L2(1R). :J afunction

<I>(t) E L2(lR), called a scaling function, such that if <l>2J(t) = 2j <I>(2 jt) for j E Z then,

{v'2- j <l>2J (t - 2jn)}nEZ is an orthonormal basis of V2j·

Since <I> generates an orthogonal basis of each space Vj, <I> completely characterizes the mul­

tiresolution approximation. The discrete approximation is given by an inner product which can

be interpreted as a convolution product evaluated at a point 2- j n.

9
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(2.9)

(2.10)

(2.11 )

(2.12)

(2.14)

(2.13)
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+00

= Jj(U)<1>2j(U - 2j n)du

= (j (u)* <1>2j (- U) ) (2- j n)

Agjj =( (j(u), <1>2j(U - 2j n)))

-00

+00
(j(u ), <1>2j (u - 2 j n)) = Eli (2n - k) (j(u) ,<1>2j+ 1(u - 2- j -I k) )

-00

+00
<1>2j (t - 2j n) = 2- j - 1 [(<1>2j (u - 2j n),<1>2j+ 1(u - 2- j- Ik)) .<1>2j+ I (t - 2- j- Ik)

A. HOLDSWORTH

+00
(j(u), <1>2j(U - 2j n)) = [ (<1>2-1 (u), <1>(u - (k - 2n))) . (j(u), <1>2j+1 (u - 2-j-Ik)).

k=-oo

The algorithm described above is sometimes referred to as a fast filter bank algorithm. This

is because any scaling function is specified by a discrete filter called a conjugate mirror filter. A

conjugate mirror filter is a discrete function whose transfer function satisfies:

The transform is computed by passing the signal into a filter bank and downsampling at each

iteration. Let {V2j} jEZ be a multiresolution approximation with scaling function <1>(t). Since

<1>2j (t - 2- j n) E V2j C V2j+1 \;f nEZ, it can be expanded in an orthonormal basis of V2j+1.

Change variables in the inner product integral, U = U - 2-j-I n, and compute the inner products

of j(u) with both sides.

Suppose h(n) = (<1>2-1 (u),<1>(u - n)) for all n E Z. By letting H be the filter with impulse

response h(n) and letting fJ be the mirror filter with impulse response li(n) = h(-n) one obtains:

The approximation at a scale 2j is computed by convolving the approximation at resolution

2j+1 with fJ and dyadically down sampling.
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The original signal, f(t) = Aff, is represented by 21 = N points. For each scale 2j < I

there are ~ points in Ag,f. Similarly there are ~ detail coefficients, D2d, at each scale 2 j . An

orthogonal wavelet representation at a scale 21 is given by the detail coefficients at all scales

21 ~ 2j ~ 1 and the remaining approximation coefficient at the scale 21 ; AgJ and {D2d}o::;j::;J.

At each scale there are N wavelet coefficients. The set of D2i f is computed in a similar process

as above by convolving the approximation Agi with the appropriate filter and keeping half of the

resulting points.

Theorem 2.3.3. [23J Let <j) be a scaling function and H the corresponding conjugate mirror

filter. Let 'I'(t) be the function whose Fourier transform is given by

(2.15)

with G(k) = e-ikfj*(k+1t).

(2.16)

for any scale 2j ,{'I'j,n}j,nEZ is an orthonormal basis ofWj. For all scales {'I'j,n}j,nEZ is an

orthonormal basis ofL2(IR)

For any nEZ, 'l'2i(U - 2-in) E W2l C V2i+I. As before, one can expand this function in an

orthonormal basis of V2l+1. Changing variables and computing the inner product of f(t) with

both sides of the resulting equation gives:

+00
(J(u),'I'2J(u-2 jn)) = [ ('1'2-1 (U),'I'(U- (k-2n)))· (J(U),'I'2l+1(U-2-j-1k)) (2.17)

k=-oo

Let G be the discrete filter with impulse response g(n) and (; be the symmetric filter with impulse

response g(n) = g(-n).

+00
(J(u), 'l'2i(U - 2i n)) = [g(2n - k)(J(u), 'l'2l+! (u - 2-i - 1k))

There is a nice equation for computing the detail coefficients.

+00
D2d = [g(2n - k)Agl+d

-00

(2.18)

(2.19)

This algorithm is equivalent to a two-channel, multi rate filter bank. It splits the input signal

into two bands and reduces the number of points by half. Hand G are called quadrature mirror

11
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(2.20)

(2.21 )
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h=

g(n) = (_l)l-nh(l-n).

A. HOLDSWORTH

C3 C2 CI 0

+00
=2 L h(n-2k)(f(u),<P2J(u-2- j k))

k=-oo

+00
+2 L g(n-2k)(f(u),'JI2J(u-2- j k))

k=-oo

+00 +00
=2 L h(n-2k)AgJ+2 L g(n-2k)D2J!

k=-oo k=-oo

The reconstruction uses perfect reconstruction filter banks. Obtaining the appropriate orthog­

onal reconstruction filter is done using conjugate mirror filters Hand G. A~J+' is reconstructed

by putting zeros between AgJ! and D2J! and convolving with Hand G as follows:

C4 C3 C2 CI 0 0

Cl 0

(2.22)

filters. G is a high pass filter which is the mirror filter of the low pass filter, H. The relationship

between the two filters' impulse responses can be derived from the previous theorem and is given

by:

An orthogonal wavelet basis is used to specify the scaling functions and filter coefficients are

generated from the scaling functions. Details with regard to the choice of basis are given below.

2.3.1 Implementation of DWT

One may compute the DWT using a circular convolution matrix [26]. Start with a wavelet
with impulse response:

Recall that a discrete convolution is given by Yj = L~:AkCj-k' A matrix of the following form

can be used to perform the required convolution.
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If the signal initially contains N sample points CH is a N x N matrix. A similar matrix, CG

is created to perform the convolution associated with the filter G. By taking the odd numbered

rows of CH and placing them into the odd rows of CG a convolution matrix CH,G is formed. CH,G,

when multiplied by a vector containing the N sample points of the signal on the right, performs

the circular convolutions and keeps only half of the resulting points. The result is a vector which

has A~-d in the odd numbered rows and D 2-1! in the even rows. To further decompose the

signal the detail coefficients must be separated from the approximation coefficients. A matrix of

the form CH,G of size ~ x ~ is created and applied to the, ~,Ag-d coefficients.

If the signal is decomposed to the scale 21 it is convenient to store the wavelet coefficients in a

row vector with the single approximation coefficient Ag-J! on the left and the D2-1! coefficients

on the right.

(2.23)

Using the inverse of the matrix CH,G the signal is reconstructed from the wavelet coefficients.

Since CH,G is orthogonal, the inverse matrix is simply the transpose matrix. For efficient compu­

tation it is convenient to use vectors to represent the convolution matrix.

The fast pyramid algorithm of Mallat requires only O(N) multiplications. This is much faster

than the CWT and the FFT which require O(N2 ), and O(Nlog2(N)) multiplications, respectively.

2.3.2 Higher Dimensions

The present work focuses on the one dimensional wavelet transform for a time series, none

the less it is important to mention the extension of the wavelet transform to higher dimensions.

The two-dimensional DWT is a direct extension of the one dimensional DWT. In this case, the

signal to be examined must be a finite energy function !(t,y) E L2 (JR.). Define, (V2j)jEZ, a

multiresolution approximation of L2 (JR.). Where,

Mallat presents a concise, descriptive explanation of how the decomposition is done with

orthogonal wavelets in two-dimensions [22]. The process is very similar to that of the one di­

mensional case. An important difference between the ID and 2D case is that there are more

detail coefficients resulting from the two dimensional decomposition. Agj +1! is decomposed into

AgJ, DiJ, D~J D~J. The 2D transform can be thought of as ID transformations in the t and

y directions. The process is as follows:

• Convolve the rows of approximation AgJ+d with the one dimensional filter N.

13
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Definition 2.4.1. A function 'l'(t) is said to have p vanishing moments if

(2.25)

McMASTER - MATHEMATICSA. HOLDSWORTH

• Keep half of the resulting rows.

In wavelet analysis there is a necessary trade-off between time localization and frequency

localization. This can be understood by recalling the Hiesenberg uncertainty principle. The

principle is often used in physics to describe the uncertainty as to the position and momentum

of a free particle. In the time-frequency plane, (t, k), one defines the Heisenberg rectangle with

time width at. and frequency width ak. The uncertainty principle implies ([22]:

2.4 Properties of Wavelet Basis

For three dimensions the DWT can be thought of as Id transformations in the t, Y and z
directions. There will be seven detail coefficients and one approximation coefficient at each

scale. In this way, the wavelet transform is extended to as many dimensions as is required.

• Keep half of the resulting columns. The result is one of the detail components D~jf and

the approximation component A~jf.

• Now repeat this process using the discrete filter (; instead of fI in the first step. The result

will be the detail components D~jf and D~jf.

• Convolve the columns of the down sampled matrix with the one dimensional filter (; and

separately with the filter N.

I
a2a2 > - (2.24)

t k - 4

Choosing a wider window offers more frequency resolution at the expense of resolution in

time. Conversely, choosing a narrower window results in better resolution in time, but less res­

olution in frequency. Wavelets have variable window lengths which provide wider windows for

low frequencies, to increase frequency resolution, and narrower windows for high frequencies,

to increase time resolution, but not all wavelets are created equal.

The continuous wavelet transform utilizes a real or complex wavelet function, while the dis­

crete wavelet transform relies on an orthogonal basis. Wavelet basis and wavelet functions are

characterized by the number of vanishing moments they possess, the size of their compact sup­

port and the smoothness of the wavelet.
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fora ~ k < p.

McMASTER - MATHEMATICS

The concept is made clear by expanding the wavelet transform given in definition 2.2.1 using

a Taylor series approximation at t = 0[16].

'(a,O) = ~ It#(0)f ; IjI G) dt+ O(n+ 1J]
Define the moments Mp = JtP'J1(t)dt. Now equation 2.26 may be written as:

(2.26)

(2.27)

The admissibility condition indicates that Mo = O. If moments MI ,M2, ..Mn are also zero,

then the wavelet has n vanishing moments and the coefficients s(a, b) will decay as fast as an+2

for a smooth signal. For a wavelet with n vanishing moments any polynomial of degree n - I can

be written as a linear combination of appropriately shifted scaling function 'J1. It should be noted

that the values of Mn need only be close to zero for one to consider it a vanishing moment.

For many applications wavelets are designed so as to minimize the number of non-zero coef­

ficients. Increasing the number of vanishing moments a wavelet possesses results in the removal

of more moments from the signal. Wavelets with a high number of vanishing moments produce a

higher number of zero, or near zero, wavelet coefficients than wavelets with fewer vanishing mo­

ments. Intuitively, one can think of the vanishing moments as a restriction on what the wavelet

can "see" [19]. With one vanishing moment the wavelet does not see linear trends in the data,

with two vanishing moments quadratic functions become invisible to the wavelet and so on.

Vanishing moments provide a necessary condition for the regularity of a wavelet. The number

of continuous derivatives of a wavelet determines the order of regularity. A wavelet must have

at least n + 1 vanishing moments to have regularity greater than or equal to n.

The relationship between vanishing moments and the support of the wavelet suggests that the

choice of wavelet basis should be guided by the signal to be analyzed. For example, an isolated

singularity at a point, tj, will generate high amplitude wavelet coefficients at fine scales at that

position. If the size of the compact support for the wavelet is large, then many wavelet basis

functions will intersect the singularity. For 'J1 with compact support, K, there are K wavelet co­

efficients that intersect tj. To reduce the number of high amplitude coefficients one could choose

a wavelet basis with narrow compact support, or increase the number of vanishing moments.

Wavelets with many vanishing moments are ideal for functions with few isolated regularities,

but for signals with a greater density of singularities it is better to choose wavelets with smaller

support size.

15
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Using orthogonal wavelets Daubechies developed a series of basis functions with compact

support in Fourier space. She showed that to create a orthogonal wavelet with p vanishing mo­

ments it must be of minimum length of 2p. Daubechies wavelets are often referred to by the

length of their associated filters. For example the Daubechies wavelet with 10 vanishing mo­

ments has filters of length 20 and is referred to as the D20 wavelet. The supports of <l> and 'V,
for Daubechies wavelets, are [0, 2p - I] and [-p + I, p] respectively [23]. For p = 1, the Haar

wavelet is produced. Increasing the number of vanishing moments decreases the number of

non-zero coefficients, but also increases the support size which, in turn, affects the number of

non-zero coefficients.

Mallat's fast wavelet algorithm requires approximately 2KN operations for a signal of size N

where K is the size of compact support of the wavelet. So computational efficiency is improved

by reducing the size of support. This is what makes Daubechies wavelets so intriguing. They

have a minimum compact support for a given number of vanishing moments.

Figure 2.2 shows several Daubechies wavelets. Notice how as the number of vanishing mo­

ments increase, the wavelet becomes more smooth.

It is not necessary, and not always possible, to derive an explicit formula to view the wavelet

basis functions. Instead, simply construct a unit vector and apply the inverse wavelet transform.

Continuous wavelets and orthogonal wavelets are both derived as translations and dilations

of a mother wavelet. More recently, biorthogonal wavelets were discovered and constructions

have been established independent from the frequency domain.

A. HOLDSWORTH McMASTER - MATHEMATICS
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Figure 2.2: a) Daubechies 2 wavelet with 1 vanishing moment. b) Daubechies 4 wavelet with
2 vanishing moments. c) Daubechies 6 wavelet with 3 vanishing moments. d) Daubechies 20
wavelet with 10 vanishing moments.

2.5 Biorthogonal Wavelets

To give a complete overview of wavelet analysis an introduction to bi-orthogonal wavelets

is necessary. The discrete wavelet transform was introduced in the context of multiresolution

analysis. Bi-Orthogonal wavelets are similarly defined.

Recall that for every vector space, V, there exists a dual space, V, of linear functionals f :
V ---+ R If the basis of V is {e1, e2, ... ,en} then the basis of the corresponding dual space is called

the dual basis and may be denoted by {e 1, e2, ... ,en}. The dual basis is defined by:

i 3 {l' ifi = j
e e j = ij = 0, ifi =I- j (2.28)

For the vector space V with bases {<I> j,n}nEZ there exists a dual space, V with basis {~j,n}nEZ.

Let {Vj} jEZ and {Vj} jEZ be two multiresolution approximations. The detail spaces Wj and Wj

17
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I. Split
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2.5.1 The Lifting Scheme

have bases given by the dilated wavelets, {'!'j,n}nEIl, and {'iJj,n}nEIl, where Vj EB Wj = Vj_ I and

Vj EB Wj = Vj _ l • Wj is orthogonal to Vj, but not to Vj. Wj is orthogonal to Vj, but not to Vj. The

biorthogonal wavelet transform proceeds using the method of perfect reconstruction filter banks

as previously outlined for orthogonal wavelets.

Wavelets are traditionally defined as translations and dilations of a mother wavelet. These

translations and dilations become algebraic operations after the Fourier transform [28]. Different

choices of filter coefficients dictate wavelet properties such as vanishing moments, support size,

symmetry and regularity. Orthogonal and biorthogonal wavelets were typically constructed in

Fourier space until Sweldens introduced the concept of second generation wavelets. First gener­

ation wavelets are those wavelets which are translations and dilations of functions. Second gen­

eration wavelets are not necessarily translates and dilates of some function, but are constructed

using the lifting scheme [28].

• The data is split into two disjoint sets.

• If the data is split into two disjoint sets of even and odd indices, the procedure is

called the lazy wavelet transform.

• There are no restrictions on how the data must be split, or on the size of the disjoint

subsets.

The lifting scheme is used to construct wavelets in circumstances where dilation and trans­

lation cannot be used. Solving partial differential equations on bounded domains in euclidean

space is one such example. Analyzing data on curves and surfaces requires specially constructed

wavelets for the manifold in question. Other applications include wavelets for irregular sampling,

weighted wavelets for weighted approximations, and solving differential equations in complex

geometries. For a short introduction to the lifting scheme Sweldens offers a concise review [30].

More comprehensive sources with examples are also available [29], [28].

The lifting scheme has been used effectively for solving partial differential equations in flat

geometries and for solving partial differential equations on a sphere [25]. Wavelets are used to

adapt the computational grid and finite differences are used to approximate derivatives. These

recently developed methods offer exciting advancements in fields such as geodesy, weather pre­

diction and climate modeling.

The process of lifting is represented by three stages: split, predict, update.
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• If the signal is highly correlated locally, then the subsets must be highly correlated as

well.

• Given one of the subsets it should be possible to predict the other. For the lazy

wavelet, one might choose to use the even subset to predict the odd one. (arbitrarily)

• Let dj_l,l be the difference between the odd sample and the predicted value. Then,

the operator P is defined: dj_1 = oddj_1 - P(evenj_I).

• This step establishes the number of vanishing moments of the dual wavelet.

3. Update

• Determines the number of vanishing moments of the primal wavelet.

• The updating operator U is defined so that,for sample S j,

Sj_1 = evenj_1 +U(dj_ l )

The following simple example due to Sweldens should clarify the method [30]. Denote the

initial signal 'Ao.k = f(k) for k E Z. For data compression, one desires a transform that captures

the information contained in the signal with as few points as possible. The number of points in

the input signal is reduced by sub sampling the even samples. A-I,k = ;~,2k for k E Z. The idea is

to avoid loss of information so it is important to keep track of how the signal can be reconstructed

from the subsample. Wavelet coefficients, "{-I,k. encode this information.

In this example the most obvious choice for the wavelet coefficients are the odd coefficients

of the input signal "{-I ,k = 'Ao,2k+ I. More elaborate choices are possible. If it is possible to predict

the odd samples from the even ones the wavelet coefficients could be defined as

Here the odd samples are predicted from the even samples by averaging neighboring coefficients.

With this choice the wavelet coefficients provide all the necessary information to reconstruct the

original signal from our sub sampling. If the signal is highly correlated these coefficients will be

very small. To compress even more, one could remove coefficients below a certain threshold.

The process can be repeated to further decompose the signal. If aliasing is to be avoided

the current choice of wavelet coefficients is insufficient. The averag~: of the approximation co­

efficients should be the same at each level LkA-I,k = 1Lk('Ao,k. The appropriate choice is not

difficult to derive:

1
A-I k = -(A_I k-I +A-I k), 4' ,

19
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2.6 Summary

Second generation wavelets hold further advantages over first generation wavelets. Imple­

mentation of the wavelet transform is made more efficient with the lifting scheme as it takes

advantage of similarities between high and low pass filters. Unlike the CWT, the lifting scheme

has a straightforward inverse. The operations preformed are simply reversed, step by step. In

addition, this approach may be more easily understood by a beginner than the classical approach.

McMASTER - MATHEMATICSA. HOLDSWORTH

Wavelets use multiscale decomposition to transform time series. The choice of basis is de­

pendent on the application. The continuous wavelet transform, computed with real and complex

valued wavelets, is ideal for detecting specific features of a signal because of its redundancy.

The discrete wavelet transform is much more efficient. It uses a fast algorithm which relies

on an orthogonal basis. Biorthogonal wavelets provide more degrees of freedom than orthogonal

wavelets and lead to the development of second generation wavelets. Second generation wavelets

are essential for applications where dilations and translations cannot be used. These transforms

are suited to a variety of applications and offer a range of tools for the analysis of non-stationary

time-series.



Chapter 3

Wavelet Analysis Tools

3.1 Reproducing the Fourier Energy Spectrum

In the previous chapter, the relationship between Fourier analysi~, and wavelet analysis was

established. Wavelets are advantageous as they posses both time and frequency localization. FT

have long been utilized to study the energy spectrum associated with a signal, wavelets allow for

the comparison of spectral properties at various locations in time (space). Due to the properties

of wavelets, wavelet analysis depends on the wavelet being used and the signal being analyzed.

To ensure consistency with previously established spectral theory, the mean power spectrum

obtained from wavelet analysis is compared with the classic Fourier spectrum.

Perrier, Philopovitch and Basdevant wondered to what degree the spectral slopes computed

with wavelet analysis are biased by the wavelet being used [27]. They show that the wavelet

spectra is meaningful only when the analyzing wavelet has a sufficient number of vanishing

moments. Using the appropriate wavelet allows one to express the wavelet spectrum as a function

of the Fourier spectrum. What is presented here is largely a review of their work.

Definition 3.1.1. The Fourier power spectrum is given by:

E(k) = 2~ls(k)12

The CWT can be computed as a function of the Fourier transform.

+00

s(a, b) = va Js(c.o)\j1(ac.o)eiOJbdc.o
2n

-00

(3.1)

(3.2)

The local wavelet spectrum measures the contribution to the total energy coming from the vicinity

of t and wave number k. It is given by:

21



22

From these formulas the relationship between the Fourier spectrum and the mean wavelet

spectrum is readily established. That is,

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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a-I
O<n<-­- - 2

+00

E(k) = JE(k,t)dt
-00

-0 S(k2+ I )ft (k) = a e' kIn n > 1n n , _ ,

+00Jtn'l'(t )dt = 0,

A. HOLDSWORTH

E(k,t)=_1_ls(ko,t)1
2

for k~O and tER
2c1j1ko k

The peak wave number of the analyzing wavelet, ko, is the point in Fourier space where \jI(k)
reaches a modulus maximum. The mean wavelet spectrum E(k) is given in terms of the local

spectrum.

+00 2

E(k) = C~k JE(ro) 1\jI (k~ro) I dro
o

Consider a random phase signal where u(k) = k-Pe21tiCf/ with <p E (0, I). This algebraically

decreasing spectrum is characterized by E(k) ~ k-2p = k-a . A sufficient condition for the mean

wavelet spectrum to exhibit the same behavior as the decreasing Fourier spectrum is:

This important result reveals that reproducing the Fourier energy spectrum is accomplished

by choosing a wavelet basis with enough vanishing moments. To accurately describe signals

with singular behavior wavelets with infinitely vanishing moments are ideal. The Paul wavelet

has infinitely many vanishing moments and is expressed in Fourier space by:

Perrier's wavelet also has infinitely many vanishing moments and is expressed in Fourier

space by:

an is chosen for normalization. Examples of Fourier space representations of both wavelets

are found in figure 3.1. The peak wavenumber of Paul's wavelet is always I. The peak wave
I

number for Perrier's wavelet is kno = n 2n+2 , 1 ~ kno ~ 1.15.

The associated mean wavelet spectrum exhibits the same slope at small scales as the Fourier
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Perner's Wavelet in Fourier Space
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Figure 3.1: Paul and Perrier wavelets in Fourier space. Both wavelets have infinitely many
vanishing moments, but Perrier's wavelet decreases faster at the origin in Fourier space

spectrum for both real wavelets. For the Paul wavelet, the power spectrum is shown in figure 3.2.

The redundancy in the frequency content of the wavelet coefficients computed with the CWT

makes the CWT a better choice for reproducing the Fourier power spectrum than the DWT, but

the DWT may also be used to reproduce the slope of the Fourier spectrum at fine scales. Table

3.1 verifies that the claim with regard to the relationship between reproducing the Fourier power

spectrum and vanishing moments is valid [27]. That is, a wavelet with p vanishing moments will

exhibit the same slope at small scales as the Fourier power spectrum if the slope of the Fourier

spectrum, a, is less than 2p+ 1. In table 3.1 the slopes of the energy spectra are displayed for the

Fourier spectrum and the wavelet power spectra related to the Daubechies wavelets: D2(Haar),

D4, D6, and D1O. Note that Daubechies wavelets were defined in section 2.4 and examples are

shown in figure 2.2. If the cancellation order of the analyzing wavelet is not high enough, the

wavelet power spectrum will not resemble the algebraically decreasing Fourier power spectrum.

The Haar wavelet generates the correct slopes, as observed from Fourier power spectra, when

a< 3.

3.2 Signal Regularity

The capabilities of the wavelet transform have been shown to exceed the limited capacity

of the Fourier transform. In this section, another useful advantage of the wavelet transform is

23



Figure 3.2: (a) A random phase signal constructed from an algebraically decreasing Fourier
spectra. (b) The Paul wavelet is used to compute the power spectrum.
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logk

Energy Spectrum E(k) • k·8
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10'

Table 3.1: The table displays the value of
the slope, a, of the energy spectrum for the
Fourier transform and various Daubechies
wavelet transforms. Recall that Daubechies
wavelets of length 2p have p vanishing mo­
ments (D2 is Daubechies wavelet of length
2). To get a reasonable correspondence

a < 2p+ 1.
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unmasked. The FT can be used to characterize the global regularity of a signal, but the FT gives

no information with regard to the regularity of a signal at a particular point. Using the wavelet

coefficients one may gather information about the local singularities. present in a signal. The

decay of wavelet coefficients at fine scales is used to measure the strength of local singularities

in terms of HolderlHurst exponents. Two important methods are presented: the wavelet transform

Maximum Modulus method and the recently developed wavelet leaders based method.

3.2.1 Detecting/Measuring Singularities

The wavelet scalogram is a visual representation of wavelet coefficients. Figure 3.3 shows

an example of the wavelet scalogram for a signal with multiple discontinuities. The minimum

wavelet coefficient is subtracted and the coefficients are multiplied by 256 to fully utilize the 256

bit colormap. The position and scale form the x and y axis, respectively. Sharp changes in the

signal cause high amplitude wavelet coefficients to appear in a cone like region with abscissa

pointing to the singularity. These high amplitude coefficients are represented by the darkest and

lightest patches on the scalogram.

The wavelet spectrogram or wavelet power spectrum is given by:

p = Is(a,b)1 2 (3.9)

The presence of light colored patches in the wavelet spectrogram or scalogram can be indicative

of a local singularity [23]. Stronger singularities create larger coefficients in the energy spectrum.

These strengths are measured using local holder exponents.

Definition 3.2.1. ([23])

• A function f is pointwise Lipschitz/Holder a> 0 at v, if :J K > 0 and a polynomial Pv of

degree m = LaJso that \j t E R If(t) - Pv(t) 1::; Kit - via.

• Afunction f is uniformly Lipschitz a over [a,b] if it satisfies the above equation \j v E [a, b]

with a constant K which is independent ofv.

• The LipschitzIHolder regularity of f at v or over [a, b] is the supremum of a so that f is

Lipschitz a.

Herrmann ([ 18])explains that for finite K the LipschitzlHolder exponents measure:

If(t+&) - f(t)l::; KI&la [18].

• a ~ 1, f(t) is continuous and differentiable.

• 0 < a < 1, f(t) continuous but not differentiable.
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• -1 < a ~ 0, f(t) discontinuous and non-differentiable.

• a ~ -1, f(t) is not locally integrable.

The uniform Lipschitz exponent is a global measurement of regularity, while the pointwise Lip­

schitz exponent characterizes the local regularity of a signal.

If f is uniformly Lipschitz a > m in a neighborhood of v then f is necessarily m times con­

tinuously differentiable in that neighborhood [23]. Assume that the wavelet 'II has n vanishing

moments and is en with derivatives that have fast decay. The relationship between the uniform

Lipschitz regularity and the decay of wavelet coefficients at fine scales is elucidated by the fol­

lowing theorem.

Figure 3.3: The Mexican Hat wavelet used to generate the wavelet scalogram for a signal with
multiple singularities. The we are amplified appropriately to the 256 bit color map. Lighter
pigments correspond to higher values of wavelet coefficients.
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Theorem 3.2.2. ([23]) Iff E L2 (lR) is uniformly Lipschitz a :S n over [a, b] then ::J A > 0 S.t.

(3.10)

conversely, if s(w, u) satisfies the above equation, and if a. < n is not an integer, then f is uni­

formly Lipschitz a on [a + e, b - e] for any e > O.

For signals with several isolated singularities, the uniform Lipschitz exponent reflects the

strongest singularity present in the signal. Finding the Holder exponent at a specific point can be

more difficult. f may have many different singularities accumulated around the point in question.

A necessary and sufficient condition for finding the Lipschitz regularity at a particular point is

given by the following theorem.

Theorem 3.2.3. ([23J) Iff E L2 (lR) is Lipschitz a :S n at v then ::J A > 0 s. t.

(3.11 )

If a < n is not an integer then ::J A and a' < a. so that

(3.12)

Then f is Lipschitz a at v.

These conditions are more easily interpreted by assuming that the analyzing wavelet has

compact support.

Definition 3.2.4. ([23]) Suppose 'V has compact support on [-C,e]. The cone of influence ofv

is the set ofpoint (w, u) s.t. v is included in the support of'Vw,u (t). Because the support of'V( t-:vU
)

is [u-Cw, u+Cw], the cone of influence ofv is given by:

Recall u is the position, w is the scale.

lu-vl :SCw. (3.13)

If 'V is not compactly supported one approximates C by considering a region of effective

support; i.e. where the wavelet becomes very close to zero. Two methods are now presented to

show how the decay of local maxima is used to measure the local regularity.
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The following equation is used to determine a by consider points in the cone of influence of

(3.14)

(3.15)

(3.16)

McMASTER - MATHEMATICS

as(a,b) = 0
aa
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1
10g(ls(w, u) I) ::; 10g(A) + (a + 2) log(w)

3.2.2 Local Regularity: Maximum Modulus Method

A wavelet transform maximum modulus (WTMM) is any point, (ao,bo), where Is(a,bo)1
attains a strict local maximum.

WTMM which converge to the abscissa v are used to measure the pointwise Lipschitz regu­

larity of the signal at that point. The creation of these WTMM lines eliminates spurious maxima

that may be present in the data. The existence of a singularity at a point v is linked to the presence

of a convergent sequence of wavelet maxima, but the presence of a sequence of WTMM con­

verging to a point v is not sufficient to lead to the conclusion of the existence of a singularity at

that point. Noisy data, for instance, may generate high amplitude coefficients. One must measure

the decay of these WTMM at fine scales to determine the pointwise Lipschitz regularity at v. If

Is(a,b)1 has no modulus maxima at fine scales, then f is locally regular. In fact, it can be shown

that the absence of local maxima at fine scales implies that f is uniformly Lipschitz [23].

Approximation of the Holder exponent for local, isolated singularities is accomplished by

observing the decay of modulus maxima within the cone of influence of each point of interest, v.

Notice that in figure 3.3 large coefficients are present in a cone-like region below abscissa which

correspond to the location of a singularity in the signal.

The WTMM within the cone of influence are connected to form a WTMM line. Measuring

the decay of WTMM along these lines as the scale goes to zero gives an approximation of the

Holder exponent. If u is in the cone of influence of the point v then lu:vl ::; c. Equation 3.12 can

be rewritten as:

3.2.3 Local Regularity: Wavelet Leaders

Lashermes Jaffard and Abry recently introduced an alternative method for computing point­

wise regularity based on finite quantities called wavelet leaders [21]. The method improves upon

the results observed from the WTMM method for chirp type singularities. The computation of

wavelet leaders is more systematic and straightforward than the computation of WTMM lines.

Assume'Vo is a compactly supported mother wavelet and that {2 j / 2'Vo(2- j t -k),} E N,k E

v:
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N} forms an orthonormal basis. It is convenient to adopt a alternate notation for the discrete

wavelet transform for the signal s(t):

(3.17)

The DWT is defined on dyadic intervals A= AU,k) = [k2 j , (k + 1)2j ). Then dA = d(j, k). Let

3A denote the union of the interval Aand its two adjacent dyadic intervals:

For s E Co.

IdAI ~JIs(t)II'I'j,k(t)/dt ~ C11'1'oIILlllsllL=

which means that the wavelet leaders given by:

Ls - LA = sup IdA,1
Ale3A

(3.18)

(3.19)

(3.20)

are finite. Computing the wavelet leader at a scale j and position k involves taking the supremum

over wavelet coefficients on adjacent dyadic intervals and all finer scales. To find the holder

exponent one simply determines the log-linear relationship between the wavelet leaders and the

scales as in 3.16. The method is very similar to the WTMM method, but replaces the modulus

maxima quantities with wavelet leaders.

3.2.4 Cusp and Chirp type Singularities

Both WTMM and wavelet leaders work well for determining the strength of cusp type singu­

larities, but only wavelet leaders provides an accurate estimate of the holder exponent for non­

isolated or chirp type singularities. Cusp type singularities are of the form X (t) = A + BI t - to 10:.
Oscillating or chirp type singularities are of the form:

~ is referred to as the oscillating exponent.

Figures 3.4, and 3.5 shows the performance of both methods for chirp and cusp type singu­

larities. As the signal becomes more and more irregular, it becomes more and more difficult to

estimate the Holder exponent.
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Figure 3.5: A chirp type singularity with Holder exponent a = 0.6, ~ = 1. WTMM (left) and

WL (right). Recall: a = slope - 1/2

Figure 3.4: A cusp singularity with Holder exponent a = 0.6. WTMM (left) and WL (right).

Recall: a = slope - 1/2
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3.3 Multifractal Analysis

McMASTER - MATHEMATICS

Abrupt changes in a signal lead to wavelet coefficients of large amplitude. The previous sec­

tion showed how measuring the decay of these high amplitude coefficients allows one to charac­

terize the local singularities present in the signal. Similarly, the decay of wavelet coefficients can

be used to measure the singularity distribution for a fractal signal.

A signal is said to exhibit a multifraetal structure when the holder exponent varies in time.

In contrast, a monofraetal signal has the same unique Holder exponent at each point in the sig­

nal. The singularity spectrum is estimated globally by taking advantage of multifractal self­

similarities [23]. The self-similar structure of a multifractal signal is reflected in the wavelet

transform. Before methodology for obtaining this multifractal spectrum is discussed, a brief

introduction to the underlying theory of fractals is presented.

3.3.1 Fractal Sets and Functions

A proper introduction to fractals begins with an historical perspective. Mandelbrot suggests

that a fractal is "[... ] by definition a set for which the Hausdorff Besicovitch dimension strictly

exceeds the topological dimension" [24]. The definition was thought to be too restrictive and was

subsequently retracted by Mandelbrot. He proposed instead that "[...] a fractal is a shape made

of parts similar to the whole in some way" [14]. A precise definition has yet to be established.

A self similar fractal function often demonstrates singular behavior [24]. Self-affinity is a

concept meant to group together sets which are invariant under affine transformations. For all

self- affine functions

f(to +At) - f(to) ~)..,H(I(to +t) - f(to)) (3.21)

H is the Hurst exponent. When H = 1 the graph of the function is self-similar [3]. The

smaller the value of the Hurst exponent, the more singular the function. The Holder exponent is

thought of as a local Hurst exponent.

A continuous, compactly supported function f is said to be self-similar if there exists S1, ... , Sk

so that the graph of f restricted to each Sj is an affine transformation of f. Consider the following

example commonly found in the literature [2], [14]. Imagine a line of unit length. Changing the

length scale by a factor of r < 1 generates a new line. If r is chosen appropriately r = ~, then

the original line may be covered by N segments of length r. A unit square may be covered by

N 2 scaled down pieces with sides of length r and a unit box may be covered by N 3 versions of

the original with side lengths r. The similarity dimension, d, in the preceding 3 cases is 1, 2, 3,

respectively and is defined by Nc = (~)d. Nc is the minimum number of boxes with side length
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Singularity Spectrum

The singularity spectrum is computed from the real data using a multifractal formalism. The

spectrum offers a description of the pointwise Lipschitz regularity of a signal.

(3.22)

McMASTER - MATHEMATICSA. HOLDSWORTH

D = -lim inf logN(a)
0--40 loga

Here N(a) is the number of balls of radius a needed to cover S.

Wavelets offer a method for determining the fractal dimension of singularities distributed

throughout the signal. This distribution must be determined from global quantities as each finite

sample of the signal may contain infinitely many singularities of varying magnitude. Global

measurements allow one to take advantage of self similarities present in the data to determine the

fractal dimension of points with the same Lipschitz regularity.

For self affine records, a distinction is made between the local and global fractal dimension

[14]. To understand why, consider using a very large box when computing the box-counting

dimension. For a large enough box size, one box is enough to cover the span of the fractal

record. Globally a self affine record has D = 1. Which means that globally a selfaffine record is

not a fractal.

~ needed to cover the set.

Notice that a line may be covered by N planes, squares or cubes of side length r. Regardless

of the dimension of the box, N = (~)Db boxes are always required. DB is referred to as the box

counting dimension. For a unit length line as r ---t °the length estimated by L = N r approaches

the true length of the line. For higher dimensions the limit tends to zero as r ---t 0; A = N? ---t 0,

V = Nr3
---t 0, etc. If the dimension chosen for the cover differs from the dimension of the set

then the limit will tend to infinity or zero depending on weather the chosen dimension is too low

or too high for the set in question. There is a critical value of Db for which the estimated measure

of the set changes from zero to infinity. This value is the Hausdorff dimension.

The Hausdorff dimension, D is also referred to as the fractional dimension or fractal dimen­

sion and is approximated numerically by the capacity dimension. The capacity dimension D of

the set S is given by:

Definition 3.3.1. ([23]) Suppose Sa is the set of all points t E lR s.t. the pointwise Lipschitz

regularity of f is equal to a. The singularity spectrum D(a) off is the fractal dimension ofSa.

The support ofD(a) is the set ofa such that Sa is not empty.

The singularity spectrum, D(a), is used to find the distribution of singularities for a signal.

The spectrum gives the proportion of Lipschitz a singularities that occur at any scale a [23]. The

regularity of a signal is thus characterized by the regularity of its subsets.
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3.3.2 WTMM Multifractal Formalism

McMASTER - MATHEMATICS

A multifmctal fonnalism (MF) is any formula that can be used to determine the spectrum of

singularities of a function from an estimate of global quantities. Mallat introduced a MF based

on wavelet transform modulus maxima.

As discussed previously, for a wavelet 'I' with n vanishing moments if f has pointwise Lip­

schitz regularity ao < n at v then the wavelet transform s(a, b) has a sequence of modulus max­

ima that converge toward v at fine scales. At these maxima Is(a,b)1 ~ auo+1/ 2• Define a set

{bn(a)}nEZ to be the positions of the local maxima at a fixed scale a. Now, define a partition

function Z:

Z(a,q) = Els(a,bn)\q.
n

(3.23)

This function measures the sum at a power q of all the aforementioned local modulus maxima.

The wavelet itself defines the shape of the partitions and the scale parameter dictates the size.

WTMM are used to indicate how the partitions should be taken at each scale. The scaling expo­

nent 't(q) measures the asymptotic decay of Z(a,q) at fine scales a for each q E R

() I
, 'flogZ(q,a)

't q = 1m III l .
a--->O oga

(3.24)

The scaling exponent 't(q) is the Legendre transform of the singularity spectrum D(a) [23].

Jaffard [20] generalized the result of [4] which relates the scaling exponent, 't(q), to the singu­

larity spectrum.

Theorem 3.3.2. Suppose the support of D(a) is A = [amin,amax]' Let 'I' be a wavelet with

n > a max vanishing moments. Iff is self-similar then:

(3.25)

(3.26)

Computing the derivative of equation 3.25 reveals q(a) = ~~. From this computation and

using the fact that 't(q) is at a minimum we derive that D(a) is a convex function, and 't(q) is

an increasing and convex function. For the Legendre transform to be invertible, D(a) must be

convex. Details of the proof are given in [20]. Note that the negative of the scaling function is

used in the computation giving a concave spectrum.

D(a) = minq(a+ ~) - 't(q)
qER 2

D(a) is the fractal dimension of the set with Holder exponent a. If the set of points where

the signal is LipschitzlHolder a is an empty one, by convention D(a) = -00. The approximation

to the singularity spectrum is not necessarily exact one. Some multifractals posses multifractal
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The right side of D(a) is computed from negative q, and the left from positive values of q.

Brownian motion describes the movement, or random walk, of particles in a fluid. Fractional

Brownian Motion (FBm) is a monofractal process which can be thought of as a natural extension

of Brownian motion. In Brownian motion, the increments and position of a Brownian particle is
given by:

(3.27)

(3.28)

McMASTER - MATHEMATICS

X(t) - X(to) ~ ~It - tol H (t ~ to)

A. HOLDSWORTH

-'t(0) = maxf(a)
ex

3.3.3 Examples

Fractional Brownian Motion

spectra which are not concave. The computed D(a) is an upper bound for the actual spectrum
[23].

A closer look at equation 3.25 shows that the maximum or peak of the singularity spectrum
occurs at q = O.

H = 1/2 gives ordinary Brownian motion. Here ~ is a normalized independent Gaussian random

process; X(t) is a random function oftime. Choosing H =I 1/2,0 < H < I, gives FBm [14].

It can be shown that any realization of the process is almost everywhere singular with point­

wise Lipschitz exponent a = H [23]. BH is often used instead of X(t) to denote the particle

position. Hurst found that H = 1/2 characterizes a independent random process. H > 1/2 gives

persistence; an increasing trend in the past implies an increasing trend in the future [14]. H < 1/2

gives antipersistence; an increasing trend in the past implies a decreasing trend in the future [14].

The monofractaI structure of FBm makes it an excellent test case as its theoretical multifractal

spectrum D(a) reduces to a single point, D(a) = 1. Figure 3.6 shows the scaling exponent and

singularity spectrum computed for FBm with H = 0.7.
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Figure 3.6: The singularity spectrum (right) for Bo.? is generated using the Mexican hat wavelet
and 214 points. The scaling exponent (left) is computed with q E [-5,5].

The Devil's staircase

The Devil's Staircase is also referred to as the Cantor function as it is constructed from the

Cantor set. The Cantor set is obtained as the intersection of sets Ci defined recursively by setting

Co = [0,1], CHI is obtained from Ci by removing the middle third of each interval in Ci. The set

C = ni2': I Ci is closed bounded and non-empty. The Cantor function is constant on those intervals

removed in the construction of the Cantor set, [0,1 ]\Cio Mallat gives the following definition

[23]:

{

pI!n(3t)

!n+I (x) = PI

PI + P2!n(3t - 2)

t E [0,1]
t E [1'~]
t E [~, 1]

(3.29)

!o is any function such that !o(0) = °and !o(1) = 1. This function is sometimes referred to

as the Devil's staircase for different values of the weights PI and P2.

The example shown in figure 3.7 uses the parameters PI = 0.4, P2 = 0.6 and is computed

with N = 220 points.
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Figure 3.7: a) The Cantor function with PI = 0.4, P2 = 0.6. 220 points were used. b) Partition
function. c) Scaling exponent. d) Singularity spectrum.

Distinguishing Monofractals from Multifractals

Classifying a signal as either monofractal or multifractal is an important aspect of multifractal

analysis. The concave multifractal spectrum, which is generated by the multifractal formalisms

discussed, can make it difficult to identify a signal as a monofractal. This is due to the fact that

these wavelet based multifractal formalism often generate spurious data points in the resulting

singularity spectrum. The singularity spectrum shown in figure 3.6 for FErn is computed for

q E [-5,5]. The theoretical spectrum is a single point, while the approximation consists of a

range of values. This may lead to the false conclusion that a signal is a multifractal, when it is a

monofractal. Fortunately, the peak of the resulting convex multifractal spectrum 'points to' the

correct value of the Hurst exponent for these monofractal signals. In order for this to be useful

one must have a method for identifying, a priori, the monofractal nature of a signal.

The singularity spectrum of a monofractal reduces to a single point, D(0.0) = 1. Notice

from equation 3.25 there is an important relationship between t(q) and the Hurst exponent, h =
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aO + 1/2, for monofractal signals.

't(q) ~ qh - 1.

McMASTER - MATHEMATICS

(3.30)

Linear behavior of 't(q) indicates the presence of a monofractal, while non-linear behavior indi­

cates multifractility.

The fractal nature of a signal may thus be determined by first evaluating 't(q) for linearity

and second computing the multifractal spectrum. If 't(q) is indeed linear, then the peak of f(a)

corresponds to the parameter ao which characterized the signal. If't(q) is non-linear, f(a) =

D(a) is an approximation of the singularity spectrum.

As a first step to examining the linearity of the scaling functions, the test functions described

above are log transformed and plotted with a line of best fit, figure 3.8. For FBm a strong

linear relationship between 't and q is observed. The estimated scaling exponent for BO.7(t)

deviates from an exact linear relationship with q, but the deviation is relatively small. For the

Cantor function, the scaling exponent exhibits a much more prominent deviation from linearity.

Examining these functions derivatives should accentuate the non-linear behavior of the functions

and may also give some indication of the shape of the scaling exponent for multifractals.

A linear function must have a constant derivative. Scaling exponents which are nearly linear

in q should have derivatives very near a constant value. Numerical derivatives are easily com­

puted with a finite difference scheme. 't'(q) is computed for FBm and the devil's staircase and

shown in figure 3.8. These examples show that the behavior of't(q) for the multfractal Cantor

function is noticeably less linear than the behavior of the scaling exponent in the FBm example.

What is needed here is a quantitative distinction. Some measurable degree of linearity should be

required for monofractal signals.

Linear behavior is expected for the scaling exponents of monofractal signals, but what type

of behavior is expected for mulitifractals? The answer to this question is unknown suggesting

that more research is needed. We noticed that the behavior of 't'(q) is closely modeled by the

function:

Error Convergence

tanh(--9...-)
f(x) = 1.149 _ 4.5045 .

5.607
(3.31)

The reason for examining these test functions is to establish a framework for numerical ap­

proximations of singularity spectra for observed time series. Many of these time series posses

only a small number of points, so, it is imperative that one has some idea of the error in the

approximation. This information is not found in the literature. If the error in the approximation

for a small number of points is unknown, then our computations for a particular data set may
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Figure 3.8: a)Log transformed scaling exponent for FBm, H = 0.7 (220 points). b) Log trans­
formed scaling exponent for the Cantor function with PI = 0.4, P2 = 0.6 (220 points). c) Deriva­
tive of the scaling exponent for both functions. The mean is subtracted for easy comparison. d)
The behavior of T,' (q) for the Cantor function as compared with equation 3.31.

be erroneous. We examine the error in the approximated multifractal spectrum for the devils

staircase, as a function of the number of points, N.

The WTMM implemented with the CWT gives a good approximation of the multifractal

spectrum for both monofractals and multifractals. It is possible to use the discrete wavelet trans­

form, however the DWT based method converges more slowly than the CWT. Figure 3.9 shows

error convergence for both transforms. The error is computed as the norm of the difference be­

tween theoretical spectrum and the approximated spectrum for the Cantor function. The figures

show that the error does decrease as resolution increases, but the rate of convergence is quite

slow.
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Figure 3.9: The convergence of the approximated spectrum to the theoretical spectrum as the
number of points used increases.

3.3.4 Wavelet Denoising

This section presents an overview of wavelet de-noising using orthogonal wavelets. The

term wavelet de-noising refers to the process of using the wavelet transform to eliminate noise

present in a given data set. David Donoho provides a method for removing additive Guassian

noise using thresholding in the wavelet domain [11]. Two distinct approaches are examined: soft

thresholding and hard thresholding. Hard thresholding involves computing the threshold, tn, and

rejecting all wavelet coefficients below that threshold by setting them to zero. Soft thresholding

is slightly more complicated as it involves first rejecting those coefficients below the threshold

and subsequently shrinking the remaining coefficients using the formula:

nt(w) = sign(w)(jwl- t)+

The procedure for both methods are described by Donoho [11] as follows:

(3.32)

1. Apply the discrete wavelet transform to the noisy signal to obtain the wavelet coefficients.

2. Set the threshold.

tn = :n J2Iog(n)

n is the length of the input signal. 0' is the noise level.

3. Apply the inverse wavelet transform to recover the signal.
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3.4 Testing the Capabilities of Wavelet Thresholding

If the noise level, cr, is unknown it can be estimated by computing the median of the absolute

value of the wavelet coefficients (MAD) at the finest scale:

(3.34)
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~ MAD
cr= ---

0.6745
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For soft thresholding, one does not "shrink" the coarsest scale coefficients as they contain in­

formation describing the overall structure of the data. These coarse scale coefficients are needed

to reconstruct essential features of the signal, whereas the finer scale coefficients contain infor­

mation about the details of the signal and may be altered. This method of soft thresholding

is referred to as VisuShrink. The name refers to the good visual quality obtained via wavelet

shrinkage when de-noising images.

Both of the thresholding techniques described here are known to exhibit visual artifacts.

Artifacts are deviations that occur as a result of interactions between the input function and the

wavelet basis [7]. A signal that exhibits visual artifacts after de-noising, may not exhibit those

artifacts if shifted in time or frequency. Donoho and Coifman observe that size of the artifact

is closely related to the spatial location of the singularity in the signal. This led Coifman and

Donoho to develop a translation invariant transform. The idea being, that the signal could be

appropriately shifted to avoid artifacts and subsequently shifted back to reconstruct the signal.

For signals with multiple singularities, there is no way to apply a single shift that will elimi­

nate artifacts for all singularities. Instead, the approach is to apply a range of shifts and average

over the results. A extensive account will not be given here. Coifman and Donoho present a

detailed introduction to the method with computational examples in their 1995 paper[7]. Matlab

programs implementing translation invariant de-noising are available as part of Wavelab850 [1].

To test the effectiveness of wavelet denoising we apply the method to several test functions.

The diagnostics proceed by adding Gaussian white noise with a known amplitude to the signal,

denoising with wavelet thresholding, and comparing the de-noised signal with the original sig­

nal. The noise vector is generated by first creating a vector of signal length containing random

numbers drawn from a normal distribution of zero mean and variance 1; N(O, 1). This vector is

multiplied by the amplitude of the noise, cr. Note that cr is also referred to as the the standard

deviation of the noise. In what follows, the Cantor function with PI = 0.4, P2 = 0.6 and the sine

wave, f(x) = sin(2x), are the primary test functions used.
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Qualitative Comparisons

Gaussian white noise is added to a sine wave and then de-noised using both the Haar (D2) and

the Daubechies 20 wavelet. As the variance of the GWN increases the D20 wavelet is observed

to outperform the Haar wavelet. This could be due to the smoothness of the wavelet basis. Figure

3.10 shows the results of wavelet denoising using hard thresholding.

The VisuShrink method typically leads to noise-free reconstructions, but may shrink impor­

tant features of the data. Figure 3.11 demonstrates that "shrinkage" increases as the standard

deviation, 0', of the additive noise increases.
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Figure 3.10: Wavelet de-noising via Hard thresholding.
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Figure 3.11: Wavelet de-noising via Visushrink. The recovered sine wave "shrinks" more for higher
noise levels, cr.
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Figure 3.12: The results of signal denoising using the Haar wavelet are shown. The length of the input
signal is N = 211 •
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Figure 3.10 shows that the D20 wavelet is a better choice for de-noising the sine function than

the Haar wavelet. The analyzing wavelet used should be chosen according to the regularity of

the signal. As the noise level increases, the D20 wavelet does a better job over all of recovering

the signal. For high amplitude noise, the recovered signals in figure 3.12 exhibit significant

deviations from the input signal. The Haar wavelet is a better choice for the Cantor function

given its singular behavior. Comparing the figures shows that for smaller noise levels (cr ~ 0.0 I)

both hard and soft thresholding work well. For larger values of cr, neither method recovers the

finer details of the Cantor function. In general, we find that Hard thresholding does a better job

of recovering the signal by preserving signal amplitude.

Another visual comparison is made possible through the wavelet scalogram. In figure 3.13

the scalogram for the Cantor function is compared with scalograms produced by adding and

removing Gaussian noise. The de-noised function's scalograms are hard to distinguish from

the original signal's spectrum. Subtle differences are observed, particularly for the signal de­

noised with soft thresholding. As the noise level is increased the recovered spectra exhibit more

dramatic deviations from the original spectrum; figure 3.14. Spurious maxima lines appear in the

de-noised signals scalograms. Some noise remains, but the de-noised scalograms certainly reveal

more about the function than the noisy spectrogram. As expected, as cr increases it becomes

harder to recover the signal from the noisy test functions.
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Figure 3.13: The affect of wavelet de-noising on the wavelet scalogram. a) Cantor function plus GWN
with (J = 0.01. b) The Cantor function. c) The Cantor function recovered with hard thresholding. d)
Cantor function recovered with soft thresholding. The scalograms are plotted within the cone of influence
to eliminate edge effects.
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Pointwise Error

a)

Visual comparisons offer a qualitative analysis of the effectiveness of wavelet denoising.

Quantitative analysis provides a more concrete understanding of the performance of translation

invariant thresholding. Figure 3.15 shows the L2 norm plotted against the amplitude of the

noise for the sine function. For comparison, 2 11 points were used in each case. The figures

show that the D20 wavelet with 10 vanishing moments de-noises more effectively than the Haar

wavelet (D2) for the sine wave; having lower values of error. Hard thresholding outperforms soft

thresholding in this example.

Figure 3.15: Pointwise error analysis for translation invariant de-noising of the Sine function. The slopes
of the associated best fit lines, m are found in the legend. a) The known amplitude of the noise, cr, is used.
b) cr is estimated.

Figure 3.16 displays the pointwise error for denoising of the Cantor function. Again, 2 11

points are used. In the case of the Cantor function, using a Haar wavelet to de-noise produces

lower Errors. Again, hard thresholding outperforms soft thresholding. These results are not un­

expected since the essential difference between hard and soft thresholding is that in soft thresh­

olding the amplitude of the wavelet coefficients are "shrunk".

Figures 3.16 and 3.15 also show the error associated with using the estimation procedure for

the noise level previously discussed (3.34). For the sine wave, the Haar wavelet exhibits much

larger errors when cr is unknown. The error is lower if the variance of the noise is known a

priori. Our analysis shows that when the variance must be estimated the method still provides a

reasonably accurate recovery of the signal, provided the appropriate wavelet is chosen.
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Figure 3.16: Pointwise error analysis for translation invariant de-noising of the Cantor function. The
slopes of the associated best fit lines, m are found in the legend. a) The known amplitude of the noise, 0",

is used. b) 0" is estimated.

Power Spectrum

In section 3.1 the ability of the wavelet transfonn to reproduce the Fourier power spectrum

was tested. In this section, the de-noising capabilities are tested by examining the associated

power spectra. To begin, the wavelet power spectra is computed for a random phase signal with

E(k) ~ k-a . Power spectra are computed and compared for the random phase signal, for the

signal plus Gaussian white noise, and for the signals recovered via soft and hard thresholding.

We also compare the power spectra de-noised using the estimated noise level.

Two distinct random phase signals are considered one with a. = 8, and the other with a. =
5/3. The function corresponding to a. = 8 is much smoother that the function corresponding to

a. = 5/3. This choice of test functions provides insight into the effectiveness of de-noising for

signals with contrasting regularities.

Since our goal is to reproduce the power spectrum, one may wonder whether translation in­

variant denoising is appropriate. The averaging procedure used may alter the resulting power

spectrum giving an average power spectrum instead. The numerical results agree with this hy­

pothesis. Much larger values of error are observed for translation invariant denoising.

The error computed in this analysis is the error in the slope of the computed power spectrum.

Other choices for error analysis are possible such as pointwise error estimation, however it is

the slope which is most critical in many applications. It is interesting to remark that in some

instances the power spectrum may be well approximated, but visual comparisons reveal that the

de-noised signal looks significantly different from the original.
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Figure 3. 18 shows what these power spectra look like. Both graphs display the results for

(3.35)

a-2

McMASTER - MATHEMATICS

-4

- Daub20 Hard
Best fit slope = -0.0031

-6-10 -8
SNR(dB)

-12

SNR = Psignal = (ASignal) 2

Pnoise Anoise

-14-16
-0.7 '-'-------'--_-'--_---'-- -'-_---'-__-'--_---'--__L-.l"

-18

A. HOLDSWORTH

-0.65 -

{,J
C;

.Q

.,"'[
-0.68-

-0.64l

Throughout our investigation, we have seen that the ability to recover a signal from noisy

data depends largely on the signal to noise ratio (SNR). The SNR is a ratio of the average power

in the signal to the average power of the noise.

To compute A, the root mean square amplitude, simply find the L2 (lR) norm for the signal and

divide by the square root of the length of the signal. As a convention, the SNR is computed using

a logarithmic decibel scale, SNR(db) = 20/aglO (AAsi8nGI) . For the same function, the higher the
nOise

variance of the noise, cr, the lower the signal to noise ratio.

Figure 3.17 shows that, for the random phase signal with a = 8, the error in slope is greater

when the SNR is lower. If the average power of the signal is greater than the average power of

the noise, then the power spectrum is recovered from the signal with minimal error. For smaller

SNR the power of the noise dominates the signal making the underlying signal's power spectrum

more difficult to recover. Our observations indicate that a signal can be recovered from noisy

data most effectively when SNR > 1.

Figure 3.17: The error in slope as a function of the SNR for a random phase signal with E(k) ~
k-8.
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cr = 0.1. For a. = 8, SNR ~ 10-6. In the case of a. = 5/3, the ratio is higher, SNR ~ 7.7 x 10-5.

Notice the qualitative differences between the initial power spectrum and the spectrum recovered

from noise. For a. = 5/3, the Haar wavelet does a much better job of signal recovery than the

D20 wavelet. The signal is discontinuous, so it makes sense to choose a wavelet with comparable

regularity.
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Figure 3.18: Both figures show an instance of de-noising the power spectrum for a random phase

signal with algebraically decreasing spectra (cr = 0.1). Left: E(k) ~ k-8. Right: E(k) ~ k-j.

For a. = 8, the Daubechies 20 wavelet does a better job of signal recovery than the D2 (Haar)

wavelet. In section 3.1, a criterion was established for the wavelet to accurately reproduce the

Fourier power spectrum. The Paul wavelet was used to compute the de-noised power spectra.

This wavelet certainly has enough vanishing moments to fit the criterion, however it is evident

from our observations that processing the signal with the Haar wavelet has affected the compu­

tation of the power spectrum. To recover a signals power spectrum via wavelet thresholding one

should use an appropriate number of vanishing moments, see equation 3.6.

The same analysis was done using an estimated noise level, but is not shown here. Using a

known variance leads more precise signal recovery, but a reasonable approximation is obtained

using the estimation procedure (3.34) provided that the SNR is close to, or greater than, one.
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Chapter 4

Applications in Epidemiology

In this chapter, the wavelet tools discussed earlier are applied to epidemiological times series.

To familiarize the reader with the subject area, the first section introduces the basic concepts of

epidemiological studies. Epidemiological time series are then studied from a wavelet perspective

with the goal of answering the question: how can wavelet analysis further our understanding of

disease dynamics and epidemic modeling?

4.1 Modeling in Epidemiology

A concise introduction to the central ideas and concepts of infectious disease modeling is

given by Earn [12]. Mathematical modeling has become an important tool for epidemiological

researchers. An effective model helps to develop strategies for the eradication and control of

infectious diseases. The first step in developing an accurate model is to test it against previously

observed data. If the models can successfully predict patterns of epidemics which occurred in

the past, they should be useful for predicting the effects of changes in control strategies such as

vaccination [12J. There are two standard approaches to modeling in epidemiology one statistical

and one mechanistic.

Mechanistic modeling is often preferred to statistical modeling. The main reason for this

preference is that mechanistic models take advantage of our understanding of the processes that

generate the time series. Statistical time series models treat the time series itself as the only infor­

mation. Compartmental models are examples of mechanistic models. In these model, individuals

are distributed into mutually exclusive compartments based on infection status, age, social group

etc. The SIR model with demographics assigns compartments to the number of infected (1), sus­

ceptible(S) and recovered (R) individuals. Susceptibles have no immunity to the infection and

may catch the infection from an infected individual. Having lived through the infection, the indi­

vidual develops immunity and enters the recovered class. The model makes several, or all of the
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s= vN - ~IS - pS

j = ~IS - yl - pI

R=y/-pR

following assumptions. Individuals are assumed to give birth and die at a constant per capita rate.

Infected individuals are assumed to recover at a constant rate and retain lifelong immunity_ The

incidence of infection is assumed to be proportional to the product of the number of infected and

susceptible individuals. These assumptions lead to the following set of differential equations.

McMASTER - MATHEMATICSA. HOLDSWORTH

s= v(1 - p) - ~IS - pS

E = ~SI -crE -pE

j = crE - yl - pI

R= vp +yl - pR

Here N = S + I +R is the population size. ~ is the mean rate that an infected individual transmits

the infection to a susceptible. p is the constant per capita rate that individuals in each compart­

ment die and v is the constant per capita birth rate. I/y is the mean duration of infection. It

is often assumed that v = p so that N is constant. These simplifications ignore some real world

demography and epidemiology, but the model quantitatively captures many features of real epi­

demics.

Consider a situation where everyone is susceptible, S(O) = N. Now, introduce one infected

individual. The infected person i expected to infect other at a rate of ~N, according to the model.

The number of individuals that this one person is expected to infect is given by Ro = [3; [12].

Ro is called the basic reproduction number. When Ro > I each infected case more than replaces

itself, incidence grows, causing an epidemic.

The SEIR is an extension of the SIR model. The exposed compartment, E, is added to repre­

sent the number of individuals who are infected, but not yet infectious.

cr is the rate at which exposed individuals become infectious and p is the proportion of the pop­

ulation that has been vaccinated. The vaccination term is added to account for the fact that many

children are vaccinated before ever being exposed to the disease. The proportion of vaccinated

individuals immediately enters the immune compartment while the portion that is not vaccinated

enters the susceptible compartment.
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4.1.1 Noise and Stochasticity

MCMASTER - MATHEMATICS

Noise can be thought of as a disturbance which distorts the essential features of a signal

and may be random or systematic. The presence of noise in epidemiological data may mask

important features taking place on long timescales. For this reason the data is often smoothed

[12].

Data generated by compartmental models produces observable effects from the use of a dis­

crete population size. To investigate the effects of demographics the models are recast as stochas­

tic processes. The Gillespie algorithm is used to stochastize the relevant processes for compart­

mental models[15]. The addition of a small amount of demographic noise is enough to prevent

the models from damping out [12].

In recent years some modelers have suggested that, in addition to demographic stochasticity,

environmental stochasticity should be incorporated [5]. Environmental stochasticity refers to

events or effects which have an impact on an entire population. Fluctuations in climate, for

instance, can lead to observable effects on disease incidence.

Gillespies Algorithm

This description of the algorithm summarizes Earn [12]. Let ao be the overall event rate

ao = Liai. Each ai is the rate at which a specific process occurs, birthrate, for example. The

average time between evens is 1/ao. In these models, the transition from state to state is governed

by a Poisson process. The probability that the next event occurs in the interval [t, t + Ot] is aoe-aof .

For U E [0,1] let u = e-aof so that the time until the next event can be found by sampling u from

a uniform distribution in [0, 1] and setting t = do In( ~). By sampling a point from a uniform

distribution on [0, ao] the nature of the event is determined. The event is set to type i if it lies in

the ;th interval:

4.1.2 Seasonal Forcing

Transmission rates are dependent on human interaction. Greater human interaction leads to

higher transmission rates amongst individuals. These rates tend to vary from season to season.

Consider the example of measles. Cases of measles are most often reported in children around

age five. Transmission rates are, in theory, much higher when school is in session. It is appropri­

ate to introduce a transmission rate that varies in time. Seasonal forcing is crudely approximated
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4.2 Power Spectra

The amplitude of seasonal forcing is given by a =! (~h(~rL) and (~) =Ps~H + (1 - Ps)~L. This

model is found to be quite successful at reproducing many of the features observed in the data.

(4.1)

(4.2)

(4.3)

on school days,

on non-school days
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~(t) = ~o(I + ~cos21t t)

number of school days
Ps = 365

on school days, = {[I +2(1- ~s)~](~)
on non-school days [1 - 2ps~](~)
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~(t)={~H
~L

by:

The parameters are defined as follows: Ps is the proportion of school days in a year,

Where ~o is the mean transmission, t is the time in years, and 0 ~ ~ ~ I is the amplitude of

seasonal forcing. A compartmental model is said to posses seasonal forcing if ~ is a periodic

function with an annual period. Without seasonal forcing the deterministic SEIR model exhibits

damped oscillations onto a state of equilibrium. Periodically forcing the model prevents this

damping and may lead to complex dynamics such as chaos for high amplitudes.

The idea that transmission rates for measles are higher when school is in session and lower

when school's out lead to the development of a non-sinusoidal forcing term. The forcing is

generated by incorporating a correspondence to the specific school calendar.

Since the 1980s epidemic modelers have used spectral analysis on incidence time series to

understand epidemic recurrence [5]. Traditionally, the approach is to detrend the data and com­

pute the windowed Fourier transform of the autocorrelation function. The dominant peaks in

the power spectrum indicate the period between successive outbreaks. Power spectra provide

information about the nature of the data that is not available upon inspection. Bauch points out

that power spectra of time series of childhood disease incidence reveals that spectral peaks can

be both seasonal and non-seasonal [5], but the limitations of the windowed Fourier transform

make this method insufficient for complete characterization of the time series. Fourier power

spectra contain no phase information, and may contain spurious peaks if the window selected is

too narrow.

The localization properties of the wavelet transform are used to compute power spectra in
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a range of interesting applications. Most notably Torrence and Compo used wavelet spectral

analysis to analyze ecological time series [31]. They offer a guide for wavelet spectral analysis

complete with a wavelet toolbox available on line. Torrence and Compo not only provide a

summary of the procedures for computing wavelet power spectra, they also develop significance

tests to highlight important features of the data.

In chapter two, the wavelet power spectrum was defined: P = Is(a, b)12 . Torrence and Compo

suggest that in the interest of reproducible research a common normalization should be used in

the wavelet transform [31]. The continuous wavelet transform is computed using the convolution

theorem as the inverse Fourier transform of a product.

N-l

Wn (s) = E xk\fJ(sO)k)ei
<Ok

n8t

k=O
(4.4)

Normalizing the wavelet to have unit energy allows for comparisons across scales, as well as,

with other data sets. Explicitly, the normalization is:

(4.5)

The wavelet coefficients are further normalized by subtracting the mean from the time series and

dividing by the square of the variance of the time series, p2.
The Fourier transform is known to introduce edge effects into the power spectrum because

the data is treated as though it is cyclic. To avoid this problem zeros can be added to both ends

of the time series before transforming and subsequently removed. The cone of influence is often

plotted to demarcate the regions where edge effects are significant.

Typical wavelet spectrograms plot the time verses the scale with power coefficients color

coded to indicate amplitude. For many applications, including epidemiology, what is needed

is not a view of the relationship between scale and time, but instead a view of the relationship

between period and time. It is important to ensure that the results of wavelet analysis are directly

comparable with those of Fourier analysis. To derive the relationship between the Fourier period

and the wavelet scale compute the wavelet transform of a cosine wave with known frequency and

find the scale at which the wavelet power spectrum reaches a maximum. For the Morlet wavelet

the value of the Fourier period is A= 1.03; scale and period are nearly equivalent [31].

Significance testing can be used to highlight significant features of the data. The data is

assumed to have a mean background spectrum. Peaks in the wavelet power spectrum which

are significantly above the expected value of the background spectrum are assumed to be true

features of the data with a certain degree of confidence. Torrence and Compo suggest using the
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4.3.1 The Data

4.3 Wavelet Analysis of Epidemiological Time Series

(4.6)
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discrete Fourier power spectrum to find the expected spectra for an assumed mean background

spectrum (i.e. white or red noise).

(J = 48.6

'Y = 56.15

Ro = 17.5

k = O...N /2 is the frequency index and e is the assumed lag-l correlation. If the lag-I coefficient

is zero, equation 4.6 can be used to model a white noise Fourier spectrum. A white noise process

is expected to have IWn (s) 1
2 = (J2 at all positions, n and scales s; (J is the standard deviation of the

noise. Because the computed spectra is first normalized by subtracting the mean and dividing by

the variance, white noise has an expectation value of I at all frequencies. So, wavelet coefficients

with values significantly larger than 1 are assumed to be true features of time series.

For the epidemiological examples a background spectrum of white noise is assumed, the 95

% confidence level is indicated by dark contours. The analysis which follows will test the validity

of this assumption.

The incidence data used in this study can be found at the International Infectious Disease

Data Archive (IIDDA), an on line resource for infectious disease data [9]. Where data points

were missing, cubic splines were used to interpolate.

The stochastic SEIR model is examined for comparison with measles incidence data. The

data was collected monthly in Ontario from 1904-1989. The stochastic model used was devel­

oped by Wagner [32]. Both types of seasonal forcing discussed previously are tested; sinusoidal

and term-time. The following parameters are implemented (time in years):

The number of live births and population sizes in Ontario from 1921 to present are found at

the Canadian Human Mortality Database [10]. These statistics were used to compute the birth

rates. The relevant data for years before 1921 is not widely available. In both stochastic models

birth rates are continuous functions of time computed using the derived annual birth rates. Model

data is taken in daily samples from t921 - 1989. Figures 4.1 and 4.2 show several realizations of

the models.
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Figure 4.1: Comparison of the sinusoidally forced stochastic model incidence with Ontario inci­
dence.

The actual data exhibits larger peaks before 1940 the stochastic models. This could be due

to high immigration rates around that time. Immigration of school age children introduces sus­

ceptibles and possibly infecteds into the system. The introduction of the measles vaccination

around 1970 had significant effects on the incidence time series. The effects of immigration and

vaccination are not included in the stochastic models so we do not expect to see the same pattern

of recurrence from the stochastic models'.

It is difficult to draw conclusions about which type of seasonal forcing is to be preferred

based on qualitative comparisons of the plotted time series'. In figure 4.1 we see that for ~ = 0

the time series appearance differs a great deal from the appearance of the Ontario data. Clearly,

the addition of seasonal forcing of either type improves the model's ability to reproduce the

Ontario data. We shall soon see how wavelets can help us to determine the appropriate level of

seasonal forcing.

4.3.2 Denoising the Data

Wavelet thresholding is applied to the measles incidence data and the stochastic models. The

purpose is to both observe the affect that de-noising has on the singularity and power spectra,

as well as, to determine the nature of the extracted "noise". Figure 4.3 shows the singularity

spectrum approximated from the Ontario measles data. Most of the singularity spectrum lies

in the non-smooth range, (ex. < 0) and the continuous subsets of the data are anti-persistent (0 ~

ex < .5). Recall antipersistence is the idea that an increasing trend in the past implies a decreasing
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trend in the future and an increasing trend is made probable by a decreasing trend in the past [14].

Soft and hard thresholding are applied using the Daubechies 20 wavelet and the Daubechies

2 (Haar) wavelet. As evidenced by the singularity spectrum of the ON incidence time series,

the data is not continuous or differentiable. The appropriate wavelet basis is, therefore, one with

narrow compact support such as the Haar basis. For the stochastic models, which we will see are

much more monofractal than the Ontario data, a wavelet with many vanishing moments may be

more appropriate; such as the Daubechies 20 wavelet.

The spectra of the de-noised time series' are also shown in figure 4.3. Virtually no change is

observed in the overall singularity spectrum upon de-noising. The data can be de-noised using

wavelet thresholding without altering the regularity of the signal.

Another tool for evaluating the affect of de-noising on the time series is to compute the

wavelet power spectrum for the de-noised ON data. The data is de-noised using an estimated

value for the noise level, cr. Hard thresholding causes no visible changes in the power spectrum

at all, while soft thresholding leads to shrinkage of the contours in some areas. De-noising the

stochastic models gives similar results; no significant changes are observed, but power spectra

does appear lighter in color than the original in some areas.

A simple linear decomposition of our signal isolates the extracted portion of the data. Figure

4.4 displays the results. For the same estimated noise level, soft thresholding removes more noise

than hard thresholding by shrinking the wavelet coefficients.

To characterize the nature of the removed portion of the data, the probability density his­

tograms are plotted in figure 4.5. The PDF for the noise removed using soft thresholding fits

Figure 4.2: Comparison of the term-time model incidence with Ontario incidence.
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Figure 4.3: The singularity spectrum for Ontario measles incidence 1921-1989 plotted with spec­
tra for the de-noised data. The Haar wavelet is used to de-noise the time series and the Mexican
hat wavelet is used to plot the mulitfractal spectra.

well with a Gaussian distribution. The estimated energy spectrum of the noise is nearly flat.

Therefore, the noise may be classified as Gaussian white noise. For the noise removed with hard

thresholding, the PDFs cannot be fit to Gaussian distributions. This does not necessarily mean

that the removed data is not Gaussian. The Ontario incidence data consists of only 1032 points

of monthly data. It could be that the noise removed via hard thresholding is simply too small to

properly fit a distribution to.

4.3.3 Measles Power Spectra

Figure 4.6 shows the wavelet power spectrum for measles incidence of infection data col­

lected monthly in Ontario Canada from 1904-1989. Spectral analysis was first performed on this

time series by Bauch and is reproduced by altering the codes provided by Torrence and Compo

[5], [31]. A seasonal peak of one year is clearly seen in the power spectrum. These seasonal

peaks are understood to be due to an increase in transmission when school is in session and

children are interacting more. The presence of significant coefficients at non-integer periods

indicates non-seasonal recurrence.

In the year 1970, after the vaccine was introduced, the behavior of the power spectrum no­

ticeably changes. The period 2-5 recurrence seen in the power spectrum before 1970 diminishes

reflecting longer periods between epidemics.

The idea that localized power spectra will lead to a better characterization of recurrence is

57



McMASTER - MATHEMATICS

~:..~.Jk~A~WwJ ~~.;
1910 1920 1930 1940 1950 1960 1970 1980

years

6-
8 4-
e:

~ ~ ,
.E .2 I

1910 1920 1930 1940 1950 1960 1970 1980
years

8 0.5-
e:

0'""'u -0.5"
.E -1-

1910 1920 1930 1940 1950 1960 1970 1980
years

-
I II
I III'

1910 1920 1930 1940 1950 1960 1970 1980
years

1910 1920 1930 1940 1950 1960 1970 1980
years

A. HOLDSWORTH

8 4
e: 2
~ 0

~ -2
-4 '--'-'-'---'-'-'--'---'-'----'-'-'---'-...J..-'-'------'..J......J..-'---'---'----'--l...J

1910 1920 1930 1940 1950 1960 1970 1980
years

8
e:
~ 0
u
.E

-1

Figure 4.4: De-noising of measles incidence data 1904-1989. On the left, the Haar wavelet
is used to decompose the signal. The top graph shows the actual incidence data. Below, the
noised removed via Soft thresholding is shown. On the bottom the noised removed via Hard
thresholding is shown. The graphs on the right use the Daubechies 20 wavelet, the ones on the
left use the Haar wavelet.
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the motivation for using the power spectra to fit models to the data. Several realizations of

the stochastic model's power spectra are shown in figure 4.7. If the same parameters as above

for the lag1 coefficient and confidence interval are used then the contour lines are not useful,

they indicate that most of the spectrum is significant. On the other hand, if a much higher

lag 1 coefficient is chosen the contours will reveal the highest amplitude coefficients present; the

significant features of the data. In these examples, lag 1 = 0.9, and a 95% confidence level is

used.

The recurrence of incidence observed in the power spectra for the stochastic models was

different for different amplitudes of seasonal forcing. It seems that a minimum amplitude of

seasonal forcing is required to reproduce the strong period one recurrence seen in the power

spectrum for the Ontario data. For the term-time model the minimum amplitude is around ~ =

0.15, but much lower for the sinusoidally forced model, ~ ~ 0.06. Both seasonal and non­

seasonal peaks appear in the power spectra for the stochastic models. Since the model we chose

to use is relatively simple, we expected that the recurrence of incidence generated by our models

would not fit exceptionally well with the actual data.
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Figure 4.5: Probability density histograms of noise extracted from Ontario incidence data. The
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Figure 4.6: The local wavelet power spectrum for Ontario measles incidence 1904-1989. The
data is log transform, the mean is subtracted and the data is normalized by the variance, 1/p2,
lag I =0, 95% confidence interval shown in thick contours. The Morlet wavelet is used.
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4.3.4 Singularity Spectra

Figure 4.7: Local wavelet power spectra for the stochastic SEIR models. For the term-time
forced model (left) ~ = 0.1 (a), 0.25 (c). For the sinusoidally forced model, (right) ~ = 0.05 (b),
0.08 (d) are shown. The data is log transform, the mean is subtracted and the data is normal­
ized by the variance, 1/p2, lagl =0.9,95 % confidence interval shown in thick contours. The
analyzing wavelet is the Morlet wavelet.

Fitting Models to Data

The wavelet transform maximum modulus multifractal formalism is used to find the sin­

gularity spectrum for the Ontario incidence of infection time series. After comparing several

realizations of the SEIR model for different amplitudes of seasonal forcing, ~, the best matches

to the Ontario spectrum were selected. Spectra for the seasonally forced models are plotted with

~time-term = 0.25, and ~ = 0.2, figure 4.8. The line x = 1/2 is plotted to divide the regions of

anti-persistence and persistence. The line x = 0 marks the transition from smooth (a ~ 0) to

non-smooth signals (a < 0).
Two measures are used to quantify the differences between the singularity spectra: the rel­

ative locations of spectrum maxima and the width of the spectrum. The location of the peak of

the singularity spectrum indicates the kind of regularity which dominates the signal. In other
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Figure 4.8: Singularity spectra of measles data compared with stochastic data. The line x = 0
is plotted to demarcate the smooth (a ~ 0) and non-smooth (a < 0) regions. The line x = 1/2
is plotted to divide regions of persistent and anti-persistent behaviors. The Mexican Hat wavelet
was used to compute all singularity spectra.

Table 4.1: Differences in the singularity spectra for figure 4.8
Data amax width
ON -0.32 1.12
~ = 0.25 (term-time) 0.12 0.88
~ = 0.2 (sine) 0.32 0.86

words, it tells us which Holder exponent characterizes the largest subset of the time series. The

width of the spectrum provides a measure of the multifractal behavior of the time series. The

wider spectra is, the more the Holder exponent varies in time. The values of these parameters,

for figure 4.8, are given in table 4.1. Widths are taken at the base of the spectrum with points

nearest to D(a) = 0,

In general, the stochastic model spectra are narrower and centered further to the right than

the Ontario singularity spectrum. The Ontario spectrum is dominated by a Holder exponent in

the discontinuous non-differentiable range, while the models' spectra are dominated by Holder

exponents in the continuous and non-differentiable range. Compared to the sinusoidal model,

the term-time model tends to have a peak spectrum value closer to the actual data's. The skewed

shape of the Ontario spectrum is mimicked by the term-time model's spectrum. Though neither

stochastic model spectrum matches particularly well with the Ontario data, the term-time model

gives a better fit.
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Recall that monofractals are identified by the linearity of the associated scaling exponents.

Figure 4.9 displays the scaling exponent associated with the Ontario measles data and "best"

stochastic model spectra. For the Ontario data, the behavior of -r(q) is distinctly non-linear. The

behavior of -r for the stochastic models is more linear than that of the Ontario data, but is still

not linear enough to be consider multifractal. This leads us to the conclusion that the actual data

is more multifractal than the models, but it is encouraging to find that that the models and the

Ontario data are both multifractal in structure.

Figure 4.9: Scaling exponents for Ontario measles incidence of infection data and stochastic
model incidence of infection data. Non-linear behavior of the scaling functions indicates that all
of the data exhibits a multifractal structure.
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A Closer Look at Seasonal Forcing

To complete the analysis of epidemiological models, the singularity spectrum for the deter­

ministic SEIR model is computed for comparison with the stochastic versions. Several ampli­

tudes of seasonal forcing are considered. The scaling exponent is observed to be subtly non-linear

in q for all realizations. Thus, the model is weakly multifractal. For ~ = 0.15, most of the spec­

trum lies to the right of a = 1, with a peak at a = 1.5. Increasing the amplitude of seasonal

forcing shifts the peak of the spectrum to the left, taking on values 1 < amax < 1.5. From this

analysis it is obvious that the deterministic SEIR model is much too smooth to model measles

dynamics accurately.

To examine the effects of seasonal forcing in the term-time model more closely, the multi­

fractal spectrum is computed for increasing values of the amplitude of seasonal forcing, ~. In



A. HOLDSWORTH McMASTER - MATHEMATICS

-~=.3

1- ~ =.4
..._•. ~ =.5

-ON Data

0.8 0.8-

~06 ~0.6-
~ ~
0 0

0.4 0.4-

0.2 0.2-

0 0
-1 -C.5 0.5 -1 -C.5 0.5

a a

Figure 4.10: Singularity spectra of the time-term stochastic model for different amplitudes of
seasonal forcing compared with ON data. The Mexican Hat wavelet is used to plot the Multi­
fractal spectra.

this case, spectrum for the Ontario data is skewed to the left, figure 4.10. A similar shape is

observed for spectra with ~ ~ 0.3. Larger values of ~ still shift the stochastic model spectrum,

but the location of the peak of the spectrum changes very little. The base of the spectrum moves

to the left creating a more symmetrical shape.

It is evident from the singularity distributions that the addition of a seasonal forcing term

does improve the model's ability to reproduce the structure of the actual data, within limits.

Observe that increasing ~ leads to a more accurate singularity spectrum up to a certain amplitude

of seasonal forcing, ~ ~ 0.3. Further increasing ~ does not seem to improve the fit of the model

spectra with the Ontario data spectra. In fact, the movement of the base of the spectrum to the

left, for high values of ~, yields spectra which have more symmetrical shapes than those observed

from the actual data.

For high amplitudes of seasonal forcing, the models are said to exhibit chaotic behavior.

The term chaos is here meant to refer to seemingly random, complex, aperiodic behavior with

a sensitivity to initial conditions. The changes in the behavior of the singularity spectrum of

the term-time model as seasonal forcing is increased might be explained as a transition to a

chaotic regime. To verify this assertion, close comparisons between the singularity spectra and

the associated bifurcation diagrams should be made. Time constraints prevent such an analysis

here, but it is a topic for future research.

So far, all observations indicate that although seasonal forcing does improve the fit of the
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model with the data, modifying this parameter is not enough to properly fit the singularity spectra

of the models to the data. The addition of other model parameters may improve the fit of the

model.

To test the effect of the addition of Guassian white noise, different amplitudes of noise were

added to the signal. The singularity spectra are then compared. Adding a large amplitude of

noise to the "best" choices in figure 4.8, 0' = 1000, does move the peak of the spectrum closer to

the peak of the ON data spectrum. Figure 4.11 shows the results of adding GWN of amplitudes,

0' = 1000,2500. Recall that, for a specified signal, the SNR is lower for higher noise levels.

Unique Multifractal Signatures

The qualitative differences observed between the measles data spectrum and the stochastic

models inspired a comparative analysis of the singularity spectra for different types of diseases.

Figure 4.1 1: The effect of adding Gaussian white noise to the models on the singularity spectra
for the stochastic SEIR models. a) 0' = 1000, b) 0' = 2500. Figure 4.8 shows the singularity
spectra for the models with no noise added.

We observe that the more noise is added, the less multifractal the models become; the spec­

tra become narrower and more pointed at the top. Additive GWN does improve the fit of the

stochastic models to the data by shifting the peaks of the singularity spectra to the left, however

the addition of GWN is not enough to cause the stochastic model spectra to mimic the wide,

strongly multifractal shape of the Ontario data's spectrum.
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Do the singularity spectra for different data sets for the same disease vary a great deal, or is there

a characteristic multifractal signature associated with a particular disease?

As a preliminary analysis, the singularity spectra for measles, chicken pox, rubella, and

whooping cough are plotted in figure 4.12. There are certainly distinctive differences between

each of the spectra, but to identify a unique multifracta1 signature several data sets for the same

disease should be compared.
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Figure 4.12: Left: Singularity spectra of incidence of infection for several diseases. Right:
corresponding scaling exponents.

Five separate chicken pox data sets and three measles data sets are used to compute singular­

ity spectra, figure 4.13. The distribution of singularities is identical for the chicken pox incidence

series from New York City and British Columbia. The other three from Manitoba, Saskatchewan

and Ontario are more noticeably different, but all of them share a similar shape. So too, the

measles data sets share a similar shape. For measle , the spectra is smooth on the top with a wide

base, whereas chicken pox spectra have pointed tops with a narrow base.

The singularity spectra for the chicken pox data have more monofractal behavior than the

measles spectra; the spectra are much narrower. Figure 4.14 shows non-linear behavior of the

scaling exponents for both measles and chicken pox, but the scaling exponents for chicken pox

are more linear than those for measles.

The singularity spectrum provides a distinctive signature that can be used to characterized

different diseases. The multifractal spectra are qualitatively similar for the same disease. An ac­

curate numerical model should be able to reproduce this signature. Thus, we have demonstrated

yet another way in which wavelets can be used to fit models to data in epidemiology. We wonder
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what differences in the disease dynamics may cause the distinctive singularity spectra observed

for different diseases and if they can be quantified.
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Figure 4.13: Top: Singularity spectra for incidence of chicken pox. Bottom: Singularity spec­
tra for incidence of measles. The similarities between the various Chicken pox data sets are
contrasted with their differences from the measles data sets.

67



Or------,------,------,---_---. ---, ---,

6

6

4

4

McMASTER - MATHEMATICS

, .' ,., , ,.,_ .0 , ..

2

2

.......................................................,

, ,~.:;.:-;;_.~':';:: _ __ _ _ - .

a
q

a
q

-- NYC 1928-72
•••••.••,Sask 1924-58

ON 1924-58
......... MB 1924-58

• BC 1924-58

-2

-2

-4

-4

a

-1

-2

-3

-6L-----'-----_---.1------=======~---'- -'-- ----.J
-6

-1

-2

-3

-4

68

1,-----,-----,------.- -. -,- -,

-5

-6

.-:l·....'''·
..,..•::,,"

....<;::::~.•

/fj //
..f.···::~::··/

.,.....•.•. .,,,"
i:~·$· ••••

,,/ •••• -- ON 1904-89-8 •

/
'/ ,UK Liverpool 1944-94

UK London 1944-94
-9L----'---__~=========~ __...L ~

-6

A. HOLDSWORTH

Figure 4.14: Left: Scaling exponent for chicken pox incidence. Right: Scaling exponent for
measles incidence.



Chapter 5

Conclusions

The time has come to reflect on the goals initially set forth. Wavelet de-noising via threshold­

ing was tested using power spectra and singularity spectra. The efficacy of stochastic models for

predicting epidemics was tested using both wavelet power spectra and singularity spectra. We

saw that wavelets provide qualitative comparisons of epidemiological time series. Similar behav­

ior of the singularity spectra for several data sets corresponding to the same disease was observed.

This is contrasted with the differences between the spectra for different diseases. These results

have lead to a new description of incidence of infection data using the language of multifractals.

Wavelet thresholding was applied, successfully, to both the stochastic and Ontario data. Soft

thresholding removes a fine scale structure which can be characterized as Gaussian white noise.

The application of wavelet thresholding, for the purpose of de-noising, does not significantly alter

the singularity spectrum or the wavelet power spectrum. Based on the results given here, hard

thresholding and soft thresholding are appropriate methods of signal recovery for epidemiology.

Hard thresholding is a better choice for spectral analysis for its ability to recover the power

spectrum.

Our analysis supports the hypothesis that wavelets offer new methods for qualitatively com­

paring and fitting models to data. By comparing power spectra one ensures that the patterns of

recurrence in the model are consistent with observed recurrence. The singularity spectra provide

a way of describing the autocorrelation of the data and the overall regularity.

It is possible to make some conclusions with regard to the stochastic models. The stochastic

model using term-time forcing was found to improve upon the sinusoidally forced model in

that the fundamental structure is more similar to actual data. Specifically, the distribution of

singularities in the Ontario data is most similar to the term-time forced model's spectra. Neither

stochastic model fits well with the actual data indicating the seasonal forcing parameter alone,

is not enough to reproduce the singularity structure observed in the actual data. Even with a

high degree of seasonal forcing, spectral peaks for the stochastic models' singularity spectra lie
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• Understanding the biological mechanisms which cause the observed similarities in sin­

gularity structure for each disease. What are the differences between the diseases which

may cause differences in their singularity spectra?

• Averaging the singularity spectra for particular diseases is another interesting idea for

future research. It was shown that different diseases have unique singularity spectra, or that

they share unique multifractal signatures. These signatures may be averaged to establish a

basis for comparison with the stochastic models.

McMASTER - MATHEMATICSA. HOLDSWORTH

• In this study, a single realization of the SEIR stochastic models was used for each ~. One

could extend the current approach by averaging over several realizations for compari­

son with the actual incidence data. Ensemble averaging was not performed here because,

although each independent realization of the stochastic SEIR model does differ, the dif­

ferences in the resulting singularity spectrum are quite small. By averaging over several

realizations one can rest assured that the resulting data set is not an extreme case; a case

where the data deviates significantly from the average realization.

• More sophisticated model parameters may shift the spectrum to the left making the sig­

nal less smooth. Environmental stochasticity, the incorporation of immigration statistics,

and a detailed account of age structure are all examples of suggested improvements to

the stochastic SEIR model with demographics [5], [12]. Implementing some or all of the

techniques mentioned may yield a closer singularity spectrum to that of the actual data.

• Studying the bifurcation structure of the stochastic models as a function of the amplitude

of seasonal forcing. This would help to clarify differences in singularity spectra observed

for various amplitudes of seasonal forcing. Can the differences be explained in terms of

chaotic dynamics?

much too far to the right. The behavior of the model data is continuous and not differentiable

while the actual data is not continuous or differentiable. Still, the performance of these models

is a clear improvement on the deterministic SEIR model which gives unrealistic, continuous and

differentiable incidence data.

Wavelet analysis, although relatively new, offers a variety of tools and techniques for un­

derstanding, comparing, describing and manipulating time series. The application of wavelet

spectral analysis, singularity analysis and wavelet de-noising to infectious disease incidence data

was successful. Perhaps the most interesting result is the distinctive multifractal signature as­

sociated with each disease. What are the biological mechanisms that will help to explain these

signatures? In the future, we would like to see this work extended in the following ways:
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The open questions described above all relate to the results of our analysis of epidemiological

time series. Throughout the course of our investigation into wavelet analysis several issues were

encountered which may be a source for future research:

• Hurst's work in relating the Hurst exponent to the correlation of FBm was used here to

describe the time series. Literature in this area is somewhat scarce. An interesting question

arises which will not be addressed here: what can be said about the correlation of times

series with values of ex t/:- (0, 1) and is it valid to generalize the results for FBm to any given

time series?

• It is known that the scaling exponent, 't(q) is linear for monofractals and non-linear for

multifractals. For the Cantor function 1:'(q) was found to be very similar to the hyperbolic

tangent function. Do other multifractals have similar shapes? What more can be said, in

general, about the overall shape of 1:(q) and 1:'(q)?

• Comprehensive error analysis for the WTMM multifractal formalism is not readily avail­

able. In the previous chapter, error convergence for the Cantor function was examined. It

would be interesting to see convergence results for a wide range of test functions.

This research should be looked at as the first step toward using wavelet analysis to understand

epidemiological time series. Future work, testing more sophisticated models and improving

interpretations of singularity spectra may become an area of active research. This new way of

describing incidence data has potential. It is a small step toward predicting future epidemics and

understanding the dynamics of infectious diseases.
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