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Abstract 

Pixel values in MR images are linear combinations of contributions from mul­

tiple tissue fractions. The tissue fractions can be recovered using the Moore­

Penrose pseudo-inverse if the tissue parameters are known, or can be deduced 

using machine learning. Acquiring sufficiently many source images may be 

too time consuming for some applications. In this thesis, we show how tissue 

fractions can be recovered from partial k-space data, collected in a fraction of 

the time required for a full set of experiments. The key to reaching significant 

sample reductions is the use of regularization. As an additional benefit , reg­

ularizing the inverse problem for tissue fractions also reduces the sensitivity 

to measurement noise. Numerical simulations are presented showing the effec­

tiveness of the method, showing three tissue types. Clinically, this corresponds 

to liver imaging, in which normal liver, fatty liver and blood would need to be 

included in a model, in order to get an accurate fatty liver ratio, because all 

three overlap in liver pixels (via partial voluming). 

iii 



iv 



Acknowledgements 

During the last two years I learned how to learn by my own, how to 

reflect my points of view and how to find myself better toward the road ahead 

in life. I learned how to better communicate with people and how to build 

relations and how to use my talents. I do owe all these to my supervisor 

Dr. Christopher Anand for his humble personality and kind behavior and I do 

appreciate his role in guiding me through my career and all his support for 

bringing this opportunity to me to fulfill my M.Sc. career. 

I would like to thank my parents for being by my side. I wouldn't be 

able to do this without their support and encouragements. This is the least I 

can do to show my appreciation and thankfulness. My brother Ardavan and 

his wife Ayda and my little sister Golnaz were always supportive and I should 

thank them for their passion and kindness. 

I would like to thank Dr. Jan Modersitzki and Dr. Mark Lawford for 

accepting to be committe members and for their helpful feedback on my thesis. 

I had a wonderful time during the last two years, and lowe that to 

my wonderful friends Farhad, Kaveh, Hosein, Ershad, Rana, Zahra, Azin and 

Anis and so many more. 

v 



VI 



Contents 

Abstract 

Acknowledgements 

List of Figures 

List of Tables 

Preface 

1 Basic MRI 

1.1 Introduction . 

1.2 Medical Imaging 

1.2.1 Magnetic Resonance Imaging (MRI) 

1.2.2 Tomography. 

1.2.3 Ultrasound 

1.2.4 MRI vs CT 

1.3 Basic MRI ..... 

1.3.1 Resonance and Relaxation 

vii 

iii 

v 

xi 

XIX 

XXI 

1 

1 

1 

3 

3 

4 

4 

7 

9 



1.3.2 Longitudinal Relaxation T1 

1.3.3 Transverse Relaxation T2 

1.4 MRI Scanner ..... . 

1.4.1 Phase Encoding. 

1.4.2 Frequency Encoding 

2 Segmentation 

2.1 Introduction. 

2.1.1 Diagnostic Imaging 

2.2 Image Segmentation Methods 

2.2.1 Thresholding . . . . . 

2.2.2 Histogram-Based Methods 

2.2.3 Deformable Models (Active Contours) 

2.2.4 Clustering Methods ... 

2.2.5 Region Growing Method 

2.2.6 Artificial Neural Networks 

2.2.7 Atlas-Guided/Model-Based Segmentation. 

3 k-Space 

3.1 Introduction....... 

3.1.1 What Is k-Space? 

3.1.2 Conjugate Symmetry of k-Space Data. 

3.1.3 Data in k-Space . 

3.2 Full and Partial k-Space 

3.2.1 Half Fourier Projection . 

viii 

11 

12 

14 

16 

16 

19 

19 

21 

22 

22 

23 

24 

25 

26 

28 

28 

31 

31 

32 

33 

34 

38 

39 



- --- - - --------- -

3.2.2 Removing Lines 39 

4 Tissue Quantification 43 

4.1 Quantification Techniques ........... . 43 

4.2 Tissue Quantification Using the Dixon Method . 45 

4.2.1 A Model for Tissue Quantification . 45 

4.3 Dixon Method . . . . 46 

4.3.1 An Example. 47 

4.4 Specifying the Transformation S . 48 

5 Inverse Problems 51 

5.1 Forward Problem 51 

5.2 Inverse Problem. 52 

5.2.1 Linear Inverse Problem. 53 

5.2.2 Linear Least Squares .. 53 

5.3 Modeling the Quantification Problem 54 

5.3.1 Projection P ........ 55 

5.3.2 Fourier Transformation FT 58 

5.3.3 Pixelwise Sp Transformation 59 

5.3.4 Experimental Data b 60 

5.3.5 Solver ... 61 

5.3.6 Constraints 64 

5.4 Regularization . . . 64 

5.5 Tikhonov Regularization 66 

5.5.1 Choice of Regularization Operator R 67 

IX 



5.5.2 

5.5.3 

Regularization Parameter ............... . 

Determination of the Regularization Parameter via the 

L-curve Approach .................... . 

6 Numerical Results 

6.1 Geometrical Phantoms 

6.2 Tissue Quantification 

6.2.1 Full Sampling 

6.2.2 Quantification From Partially Sampled Data (Without 

69 

71 

75 

75 

79 

81 

Regularization) . . . . . . . . . . . . . . . . . . . . .. 86 

6.2.3 Partial k-Space Sampling with Noise Reconstructed Us-

ing Regularization 

6.2.4 L-curve ..... . 

6.2.5 Standard Deviation of Noise 

6.2.6 Execution Time . . . 

7 Conclusion and Future Work 

7.1 Cond usion. . 

7.2 Future Work. 

Appendix 

x 

92 

93 

96 

99 

101 

101 

102 

103 



List of Figures 

1.1 Multiple two-dimensional cross sections (slices) of the brain, 

starting from the right ear and ending at at the left ear. Derived 

from [39]. .................... . ... .. .. . 6 

1.2 Spin direction is defined by a vector passing through the hydro-

gen atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8 

1.3 RF pulse wobbles the equilibrium and make the magnetization 

vector M z spiral down toward the XY plane. . .. ... .. . 11 

1.4 T1 Relaxation of hydrogen atom with RF = 1.5T (Tesla) exci-

tat ion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 

1.5 T2 Relaxation of hydrogen with RF = 1.5T (Tesla) excitation. 13 

1.6 Image acquisition based on different relaxation times from the 

same anatomy result in different images. (a)Data acquisition 

using T1 relaxation (b )Data acquisition using T2 relaxation [30]. 14 

1. 7 Using different gradients for phase encoding. Resolution in-

creases with the number of phase-encoding steps [9] . . . . . . . 17 

Xl 



2.1 Different approaches toward image segmentation. (a) shows an 

image with three item to be segmented, (b) is the segmentation 

by means of contours to show different constituents in one image 

together (c)-(d) shows the segmented items as a separate image. 20 

2.2 Image segmentation using thresholding. (a) is the original im-

age and (b) is the segmented image with two regions. 23 

2.3 Segmentation by means of a growing contour. .... 25 

2.4 k-means algorithm used for segmentation of randomly spread 

points [38] (a) choose 3 cluster center (b) shows the 3 clusters 

( c) choose a new center (d) set point to the corresponding cluster 

by minimizing the distance of each point to the center. . . ., 27 

3.1 Image space and k-space [5] (a) Image space (b)k-space (c)Conjugate 

symmetry of k-space. . . . . . . . . . . . . . . . . . . . . . ., 34 

3.2 Different constituents of a sample MR signal from a MRI scan-

ner (a) Constituents of read-out MR signal (b)MR signal con-

taining information from all over the image. ., . . . . . . .. 35 

3.3 Visualizing k-space by mapping amplitude of signal to each pixel 

value (a) Sampling the first row in k-space. (b) Building k-space 

row by row. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 

3.4 Location of certain information in k-space [17) (a)Full k-space 

with very detailed image (b) Low-pass filter, center of k-space 

contains low special frequencies signals and information of con­

trast in image (c) High-pass filter, borders of k-space contain 

high spatial frequencies and information of edges. 

xii 

37 



3.5 Presentation of image in both image-space and k-space (a)-

(d) image-space (e)-(f) k-space. 38 

3.6 Full vs half k-space . . . . . . 40 

3.7 Different partial sampling of k-space causes aliasing and artifact 

in reconstructed image. The corresponding sampling of k-space 

is presented in Table 3.1. . . . . . . . . . . . . . . . . . . . .. 41 

4.1 Three simulated tissue fractions (PI, P2, P3) shown in separate 

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 48 

4.2 Having the portion of each tissue in each voxel, we can find the 

density of each voxel in different experiment. Real and imagi­

nary parts for one experiment for each tissue after applying the 

S transformation. . . . . . . . . . . . 

4.3 Linear combination of tissue using S. (a) Real part (b) Imagi-

nary part 

49 

49 

5.1 Structure of block-diagonal matrix P for e experiments. . . .. 56 

5.2 A sample 5x5 block of P. (a) Sampling complex data (b) Sampling 

data with separated real and imaginary part. . . . . . . . . .. 57 

5.3 Removing the singularity of matrix P by deleting rows with 

zeroes on the diagonal. . . . . . . . . . . . . . . . . . 58 

5.4 The product (P . FT) is also a block-diagonal matrix. 59 

5.5 Matrix S indicates the signal produced by pure tissue for dif­

ferent experiments where Expi represents different experiments 

and Ti represents different tissues .. 

xiii 

60 



5.6 Matrix Sp, having t different tissues and e MR experiments. 

Rl,m is al,m in the 2 x 1 block format shown in (5.6). ..... 61 

5.7 Pseudo-code for segmentation k columns at a time, where P (n, k) , 

etc., set up the block matrices for images of size n x k. . 64 

5.8 Col matrix used to regularize image in column direction 68 

5.9 Col matrix used to regularize image in column direction 69 

5.10 Regularizing operator R consists of both row and column regu-

larization. . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

5.11 The L-curve for standard form Tikhonov regularization [14]. 

The points marked by circles correspond to different regulariza-

tion parameters, a. 72 

6.1 Geometrical phantoms representing different tissues in a target 

anatomy. An oblique cylinder, a box, and a sphere in one layer. 76 

6.2 3D view of simulated tissues from different angles (a) top view 

(b)-(d) side view. . . . . . . . . . . . . . . . . . . . . . . . .. 77 

6.3 A 3D view of a layer of body, divided in to voxels. The structure 

of the top right voxel is shown separately, divided into subvoxels. 78 

6.4 Simulated phantom representing flattened MR experiments shown 

in Figure 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . .. 79 

6.5 Fully sampled experiments are simulated using the Bloch equa­

tions from pure tissues as shown in Figure 6.4 using the S trans­

formation. (a)-(d) is the real part and (e)-(h) is the imaginary 

part of the experiments, (i)-(k) is the quantified tissues from 

fully sampled MR experiments. 

xiv 

81 



6.6 Fully sampled experiments contaminated by white Gaussian 

noise with low power p = 0.1 and its corresponding quantifi­

cation. (a)-(d) is the real part and (e)-(h) is the imaginary part 

of the experiments. (i)-(k) is the segmented tissues from fully 

sampled noisy MR experiments. . . . . . . . . . . . . . . . .. 83 

6.7 Fully sampled experiments contaminated by stronger white Gaus­

sian noise with higher power p = 10 and its corresponding 

quantification which, (a)-(d) is the real part and (e)-(h) is the 

imaginary part of the experiments, and (i)-(k) is the segmented 

tissues from fully sampled noisy MR experiments. . . . . . " 84 

6.8 Fully sampled experiments contaminated by higher white Gaus­

sian noise with higher power p = 20 and its corresponding quan­

tification, which is not clear and contains lots of noises. (a)-(d) 

is t he real part and (e)- (h) is the imaginary part of the exper­

iments. (i)-(k) is the segmented tissues from fully sampled but 

very noisy MR experiments. . . . . . . . . . . . . . . . . . .. 85 

6.9 Segmented tissues from partially sampled non-noisy MR experi­

ments with mapping shown in Table 6.2.2. The first two rows of 

the figure are the real and imaginary parts of the experiments, 

(a)-(c) are the segmented tissues from partial k-space. 58% of 

complete data was used. The results are without artifacts. 87 

xv 



6.10 Segmented tissues from partially sampled non-noisy MR exper­

iments with mapping shown in Table 6.4. The first two rows of 

the figure are the real and imaginary parts of the experiments, 

(a)- (c) is the segmented tissues form partial k-space. 48% of 

complete data was used. . . . . . . . . . . . . . . . . . . . .. 88 

6.11 Segmented tissues from partially sampled non-noisy MR exper­

iments with mapping shown in Table 6.3. The first two rows of 

the figure are the real and imaginary parts of the experiments, 

(a)-(c) is the segmented tissues from partial k-space. 39% of 

complete data was used. 

6.12 Segmented tissues from partially sampled noisy MR experi­

ments with mapping shown in Table 6.4. The first two rows of 

the figure are the real and imaginary parts of the experiments, 

(a)- ( c) is the segmented tissues from partial k-space. 48% of 

complete data was used. The results are still fine in spite of 

having noise. 

6.13 Segmented tissues from partially sampled noisy MR experi­

ments with mapping shown in Table 6.3. The first two rows of 

the figure are the real and imaginary parts of the experiments, 

(a)-(c) is the segmented tissues from partial k-space. 39% of 

complete data was used. Having noise and incomplete data, 

the segmentation result is full of noise and includes artifacts. 

We need to add a regularizer to change the problem. 

xvi 

89 

90 

91 



6.14 Segmentation of partially sampled experiments. Using unweighted 

regularization (a = 1) in both row and column direction im­

proves the noise, especially in the background, removes the ar­

tifacts , and also adds a bit of smoothness to the segmented t is­

sues. (a)-(c) are segmentation without regularization (a = 0) , 

( d)- (f) are the segmentation of the same tissue using unweighted 

(a = 1) regularization. . . . . . . . . . . . . . . . . . . . . .. 93 

6.15 Choosing very big or very small a causes over-smoothing and 

under-smoothing respectively. (a)-( c) are over-smoothed tis-

sues, (d)-(f) are under-smoothed tissues. . 94 

6.16 L-curve (zoomed-in by using a linear-linear scale). 96 

6.17 A comparison between different segmentations applied on the 

same partially sampled experiment with sampling patterns shown 

in 6.3 and with the same amount of noise. We obtained better 

segmentation results using weighted regularization. (a)- (c) is 

an unregularized segmentation(a = 0), (d)-(f) is the segmen­

tation using unweighted regularization (a = 1), (g)-(i) is the 

regularized tissue segmentation with regularization parameter 

(a = 3.5). Only using 39% complete data used for image recon-

struction. Table 6.2.4 shows the SNR of the segmented tissues. 97 

XVll 



xviii 



List of Tables 

3.1 Different partial sampling of k-space. 41 

5.1 Solving the problem in a single step, rather than several columns 

at a time, results in very large matrix sizes in IIAx - bll~. 63 

6.1 Sampling of rows from k-space of experiments shown in Figure 6.9. 87 

6.2 Sampling of rows from k-space of experiments shown in Fig-

ure 6.10. 88 

6.3 Sampling of rows from k-space of experiments shown in Fig-

ure 6.11. 89 

6.4 Sampling of rows from k-space of experiments shown in Fig-

ure 6.12. 90 

6.5 Signal to Noise Ratio (SNR) related to segmented tissues shown 

in Figure 6.17 with the same order as tissues are presented. 98 

6.6 Standard deviation of results of different problems. 98 

6.7 Regularized segmentation. Execution time increases by increas-

ing the size of the image .. 99 

XIX 



M.Sc. Thesis - M. MozaJari - McMaster - Computing and Software 

xx 



Preface 

In this thesis we show that the quantification of multiple tissues using multiple 

magnetic resonance images can be done from incomplete data, and that the 

quantitative and qualitative measures of the results can be improved by using 

regularization. Partial sampling of images saves scanning time dramatically 

(relative to conventional methods) but leads to artifacts and unwanted noise 

in the final segmented images. Considering the chemical property of tissues 

and the way tissue molecules respond in magnetic fields , we can model the 

problem as an inverse problem. In this thesis we describe the inverse problem 

in general, but focus on the reduction of sampling time. Numerical simulation 

shows that adding regularization to our inverse problem improves the results 

and enables us to remove errors and artifacts. Results show that by solving 

the regularized inverse problem, we can save up to 61% of scanning time and 

get acceptable segmented tissues. 

The thesis contains seven chapters with three main topics, namely, the 

basics of MRI, MR k-space data and inverse problem modeling of the seg­

mentation/ quantification problem. We have attempted to make this thesis 

self-contained and accessible to be a general audience by giving a short intro-
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duct ion to MRI in chapter 1, and try to explain the concepts that are needed 

to better understand our problem. Basic MRI introduces the concepts be­

hind the problem as used in later chapters. In the second chapter, we present 

a critical appraisal of the current status of semiautomated and automated 

methods for the segmentation of anatomical medical images and also intro­

duce terminology and important issues in image segmentation. In chapter 3, 

we talk about the MR readout signal and its properties in terms of k-space. 

The Dixon fat and water separation method is presented in chapter 4, and we 

extend this technique to separation of any arbitrary number of tissues. We 

introduce the modeled-based segmentation inverse problem in chapter 5 and 

go through details of each component of the problem and show how to use 

regularization to overcome the ill-poseness of the problem. Finally we report 

on numerical experiments with and without partial sampling, simulated noise, 

and regularization in chapter 6. 

xxii 



Chapter 1 

Basic MRI 

1.1 Introduction 

In this chapter we will review the basic concepts of medical imaging with 

concentration on magnetic resonance imaging. Different image acquisition 

techniques and their applications are presented focusing on their applications. 

We will talk about physics principles of MRI, and finally we describe termi­

nology and related concepts that are needed to understand our segmentation 

problem. 

1.2 Medical Imaging 

Medical imaging refers to the techniques and procedures used to visualize the 

inside of the human body for clinical purposes or medical science [41] . This 

process consists of various aspects such as: 

1 
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• Computer processing, analysis and modeling 

• Instrumentation and image acquisition 

• Physics of image 

Medical imaging is a rich source of mathematical inverse problems. From the 

effect (the observed image), the property of tissues can be inferred. For exam­

ple, a 2D image of a body containing a cancerous tissue can be diagnosed by 

modeling the problem in comparison to a healthy tissue of the same anatomy. 

The most common image acquisitions are: 

• Fluoroscopy 

• Magnetic Resonance Imaging (MRI) 

• Nuclear Medicine 

• Photoacoustic Imaging 

• Projection Radiography 

• Tomography 

• Ultrasound 

In the following sections, we will go through different image acquisi­

tion techniques, and discuss the advantages and disadvantages of each one. 

Finally, we will explain the fundamentals of the technique we chose for our 

image-segmentation problem, MRI, in detail and compare it with other imag­

ing techniques. 

2 
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1.2.1 Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging uses t he polarized and excited hydrogen nuclei 

(single proton) in water molecules in human t issue to produce a detectable 

signal which is spatially encoded, resulting in images of the body [11]. Three 

different kinds of electromagnetic fields are involved in the process of image 

acquisition: 

1. a static magnetic field to polarize the hydrogen nuclei called Eo , 

2. a radio frequency (RF) field for excitation of the hydrogen atoms to 

produce detectable signals, collected through an RF antenna, 

3. a gradient field G varying linearly in space, used to specially encode the 

hydrogen atoms. 

The strength of t he three mentioned magnetic fields are 

RF < G < Eo 

Further details regarding magnetic resonance imaging are described in sec­

tion 1.3. 

1. 2.2 Tomography 

Tomas means "a section" or "a cutting" in Greek. Tomography is the method 

of imaging a single plane, or slice, of an object result ing in a tomogram. In to­

mography we usually gather projection data from multiple directions and feed 

3 
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the data into a tomographic reconstruction software algorithm processed by 

a computer. Among the several forms of tomography, computed tomography 

(CT) is the most common technique. 

CT or CAT scan is a noninvasive procedure that produces a 2D image 

of the structures in a thin slice of the body [6]. Ionizing x-ray beams are 

directed to the body, and collected and measured after passing through the 

body. The strength of the signals is inversely proportional to the absorption 

of different tissue and shows the density of corresponding tissues. 

1.2.3 Ultrasound 

Medical ultrasonography is a real-time scanning process that uses high-frequency 

sound waves between 2.0 to 10.0 MHz that are reflected (echo) by tissue with 

different mechanical properties to produce a 2D image. Ultrasound has several 

advantages which make it ideal for real-time application. Unlike CT, ultra­

sound is not harmful to the body. It is also relatively cheap and quick to 

perform. 3D ultrasound is a technique that can be used to visualize a three­

dimensional view of the fetus during pregnancy [1]. However, the images are 

low quality compared to MRI or CT, and that limits the application of ultra­

sound imaging. 

1.2.4 MRI vs CT 

A computed tomography (CT) scanner is based on x-ray technology, using 

ionizing radiation during data acquisition. It performs reasonable scans on 

tissues composed of elements of a relatively higher atomic number than the 

4 
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tissue surrounding them, such as bone and calcified tissues within body. This 

radiation can alter the chemical structure of cells and are harmful in general. 

As far as the human body is concerned, there are three systems which are 

affected by x-rays: 

1. Genitalia: May have a negative effect on progeny. 

2. Skin: Causes rash, hair loss and, apart from being cosmetically harmful, 

also predisposes to cancer. 

3. Blood: Red and white blood cells exposed to x-rays may cause anaemia 

or disorders of the immune system. 

On the other hand, MRI uses non-ionizing radio frequency (RF) signals 

for acquiring its images and is very well suited for non-calcified tissues. It is not 

harmful to the body and can reveal more detailed information about different 

tissues. Therefore, MRI is best suited for cases where a patient is to undergo 

the exam several times, as it avoids the hazard of ionizing radiation. 

Both CT and MRI scanners are capable of generating multiple two­

dimensional cross-sections (slices) of tissue and also three-dimensional recon­

structions. Figure 1.1 on page 6 shows different slices of human brain in order 

to reconstruct a 3D model. One of the major differences between MRI and CT 

scans is that , unlike CT, we can set different parameters in MRI scans in or­

der to get images with different contrasts. By changing scanning parameters, 

such as gradient fields and RF pulse, tissue contrast can be altered in various 

ways to point out different and more desired features . In section 1.4 we will 

talk more about the features and properties of a MRI scan and will show an 

5 
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example of MRI scan with different gradient-field strength in Figure 1. 7 on 

page 17. 

Figure 1.1: Multiple two-dimensional cross sections (slices) of the brain, start­
ing from the right ear and ending at at the left ear. Derived from [39]. 

6 
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Another advantage of an MRI scan is the capability of generating cross­

sectional scans in any plane (including oblique planes). CT is limited to acquir­

ing images in the axial (or near axial) plane. For purposes of tumor detection 

and identification, MRI is generally superior. However, CT usually is more 

widely available, faster, much less expensive, and easier for patients, unlike 

MRI, which takes a long scanning time and has a loud disturbing noise. 

1.3 Basic MRI 

The human body is largely made up of water and fat . Water is the major 

source of hydrogen in the body, followed by fat. Only considering these two 

elements, 63% of human body consists of hydrogen atoms. Because of the 

magnetic property of all hydrogen nuclei (protons) caused by a moving electric 

charge, they behave as small rotating magnets called nuclear spin. It means 

they generate an nuclear magnetic resonance (NMR) signal [24]. These electric 

charges spin very fast and produce a small, but noticeable magnetic field. The 

faster the spin speed, the larger the magnetic field. Each hydrogen atom can 

be considered as a tiny magnet , represented by a vector, passing through the 

center of the atom in order to define the spin direction. Figure 1.2 shows how to 

specify the spin direction. In MRI, the electron does not contribute to obtain 

a signal. However, there is different process for electron excitation similar to 

proton excitation called electron spin resonance. For further information you 

can refer to [28]. 

The magnetic vector of spinning protons can be decomposed into two 

7 
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Figure 1.2: Spin direction is defined by a vector passing through the hydrogen 
atom. 

orthogonal components: a longitudinal or Z component and a transverse com-

ponent lying on the XY plane. In the absence of an external magnetic field, 

all hydrogen atoms are randomly ordered and the net magnetization vector, 

(NMV) or Mc/>, that points to the Z direction is zero. When protons are ex-

posed to a strong external magnetic field , Eo , they tend to leave their current 

behavior and align with the direction of the magnetic field. After a while 

the spinning vector of all protons is either inline or in the opposite direction 

of Eo with the same frequencies. In this case, the net magnetization vector, 

Mc/>, is the sum of magnetization of all protons together in the Z direction. 

By applying this technique, a new criteria is introduced to keep track of any 

further changes in the behavior of protons. By considering the state of being 

aligned with Eo as the initial state, any alteration, such as the frequency or 

8 
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magnetization change, can be measured in comparison to the initial state. 

1.3.1 Resonance and Relaxation 

A new concept introduced here is called resonance. Resonance is the exchange 

of energy between two systems at a specific frequency. In the presence of 

Bo, all the protons will settle to an equilibrium state. Magnetic resonance 

corresponds to the energetic interaction between spins and radio frequency 

electromagnetic waves. 

The Larmor equation specifies the resonance frequency of each nucleus 

shown in equation (1.1), where, is the gyromagnetic ratio, specific to each 

atom, between the external field and the resonance frequency, w¢ is the angular 

frequency of precession of the nucleus in an external magnetic field , and Bo is 

the strength of the external magnetic field. The stronger the Bo, the higher 

the resonance frequency w¢. 

(1.1 ) 

By applying a magnetic RF pulse on resonance, the protons can absorb 

extra energy, and tend to disarrange and start spinning in a different direction 

from Bo. Only protons with resonant frequencies similar to the magnetic RF 

pulse will respond to that RF pulse. 

The magnetic vector of spinning protons can be divided into two or­

thogonal components: 

• A longitudinal component that goes along the Z axis and is aligned with 

9 
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Eo· 

• A transverse component, lying on the XY plane. 

In the case of a pulse applied t o a nucleus in the rest state, the ini-

tial magnetization vector M z that points along the Z direction (longitudinal) 

starts an spiral down toward XY plane shown in Figure 1.3. This modification 

in spin equilibrium and absorption of energy from the RF pulse is called ex-

citation. During excitation time, longitudinal magnetization decreases and a 

transverse magnetization Mxy appears. It causes an asynchronization in spin-

ning of protons in the direction of Eo. On the other hand, there is relaxation 

time when the spinning proton returns from this state of imbalance to equi-

librium. In the relaxation time, the electromagnetic energy gained from RF 

pulse is retransmitted. That is called the NMR signal!. Relaxation combines 

two mechanisms: 

• Longitudinal relaxation corresponds to magnetization recovery in the Z 

direction. 

• Transverse relaxation corresponds to magnetization decay in the XY 

plane. 

These relaxation times are called Tl and T2 and can be used to distin-

guish between different tissues, in the common case that they have different 

Tl and T2 values. In the following section, they are described in detail. We 

1 Nuclei possesses an angular momentum called spin while being in the vicinity of an 
external magnetic field. The signal generated by nuclei spinning is called a NMR signal that 
can be calculated using the Larmor equation 1.1. 

10 

.I 

I 
I 

/ 
/ 



M.Sc. Thesis - M. MozaJari - McMaster - Computing and Software 

z 

Mxy 
x 

Figure 1.3: RF pulse wobbles the equilibrium and make the magnetization 
vector Mz spiral down toward the XY plane. 

consider an excitation with a gO-degree flip angle relative to the Z component 

of magnetization vector before the RF transmitter is turned off: 

1.3.2 Longitudinal Relaxation Tl 

Longitudinal or Tl relaxation corresponds to the energy exchange between 

the spin and the lattice in the vicinity of the protons in order to re-establish 

the thermal equilibrium. When the transmitted RF pulse is stopped, the RF 

en~rgy of the spinning proton is released back into the surrounding lattice. 

The recovery of longitudinal magnetization behaves as an exponential curve. 

Tl is the time it takes during longitudinal relaxation to return to 63% of its 

final value (equilibrium state). The higher the strength of the main field , the 

longer T1. As an example, at 1.5 T (Tesla) , Tl values are approximately 200 

t o 3000 ms. The behavior oflongitudinal relaxation is shown in equation (1.2). 
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Figure 1.4 shows the T1 relaxation time in 63% of energy relaxation time 

-t 

Mz(t) = MZ,eq (l - eT1 ) (1.2) 

where T1 is the decay constant for recovery of the Z component of the nuclear 

spin magnetization, Mz , and MZ,eq is the thermal equilibrium value. 

Signal 

100 % 

75.,. 

63% 

~----~~-4-----------+----------~----------~Tlme 
Om. T1=250 ms 3JS ,." t 1.25 n'l ~ 1500 tn , 

Figure 1.4: T1 Relaxation of hydrogen atom with RF = 1.5T (Tesla) excita­
tion. 

1.3.3 Transverse Relaxation T2 

T2 relaxation takes place in the transverse plane (XY plane) . Also called 

spin-spin relaxation, it happens when spins are getting out of phase or switch 

between high and low energy state and exchange energy. If the energy is 

absorbed by the surrounding lattice, it results in the loss of transverse mag-

netization. Having different characteristics and different physical mechanisms 

makes T1 and T2 independent of each other. 
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The loss in phase causes decay in magnetization that can be shown as 

an exponential curve. T2 is the time it takes transverse magnetization to lose 

63% of its original value because it is the time constant of the first impulse 

response. It is the same as considering T2 at 37% of its energy. The behavior 

of transverse relaxation is shown in equation (1.3) 

(1.3) 

where T2 is the decay constant for the component of M perpendicular to Eo 

and Mxy(O) is the initial value of magnetization vector in the XY plane. 

T2 is tissue-specific and is always shorter than T 1. Transverse relax-

ation is faster than longitudinal relaxation. The T2 relaxation is temperature 

dependent . When the temperature is low it reduces the decay time and T2 as 

well. 

Signal 

LOO % It:. 

75~ 

37"1.- - - - - - - - - - I 

2.5 'I(, 

~--------~----------+----------+----------~~ime 
Q m $ 

Figure 1.5: T2 Relaxation of hydrogen with RF = 1.5T (Tesla) excitation. 

The same anatomy appears differently depending on the scanning method 
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(T1 or T2) . Figure 1.6 shows two images from the same anatomy but acquired 

with two different relaxation times. 

(a) (b) 

Figure 1.6: Image acquisition based on different relaxation times from the same 
anatomy result in different images. (a) Data acquisition using T1 relaxation 
(b)Data acquisition using T2 relaxation [30] . 

1.4 MRI Scanner 

The MRI scanner can be used for cross-sectional views of the body. The output 

of the machine is different images from different layers of a particular anatomy. 

The three major components of an MRI scanner are: 

1. A static magnetic field 

2. An RF transmitter and receiver 

3. Three orthogonal, controllable magnetic gradients 

14 
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While the patient lies in the MRI scanner, they are in a static magnetic field 

10,000 to 30,000 times stronger than the magnetic field of earth. The external 

RF field causes excitation of hydrogen atoms. Tissues with less hydrogen 

atoms, such as bones, are darker while tissues with more hydrogen atoms, 

such as fat, are brighter in the final image, because of the stronger signals that 

result from the increased atom excitation. 

The magnetic field Bo is generated by either permanent magnets or elec­

tromagnets. There is a trade-off between the image quality and the strength 

of Bo. Higher magnetic fields increase signal-to-noise ratio, permitting higher 

resolution or faster scanning [11]. However, higher field strengths require more 

costly magnets with higher maintenance costs, and have increased safety con­

cerns2 . 1.0 - 1.5T field strengths are a good compromise between cost and 

performance for general medical use. However, for certain specialist uses (e.g. , 

brain imaging), higher field strengths may be desirable (3T and higher). 

The RF transmission is generated by a RF synthesizer, power amplifier 

and transmitting coil, and the receiver consists of the coil, preamplifier and 

signal-processing system [11]. Depending on the coil used here, data can be 

acquired in parallel which allows accelerated imaging. The most frequently 

used techniques are SENSE and GRAPPA. Sensitivity encoding (SENSE) is a 

technique that reduces MRI scan time considerably. The spatial information 

related to the coils of a receiver array are utilized for reducing conventional 

Fourier encoding [4]. In principle, SENSE can be applied to any imaging 

2Because of the very strong magnetic field , the MRI suite can be a very dangerous place 
if st rict precautions are not observed. Metal objects can become dangerous projectiles if 
they are taken into the scan room. 
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sequence and k-space trajectory. For further information about SENSE you 

can refer to [31J . 

Gradient coils are used to spatially encode the positions of prot ons. 

The gradient field causes the magnetic-field strength B = Bo + G to vary 

(increase or decrease) linearly across the imaging volume. These gradients are 

employed for slice selection, phase encoding and frequency encoding which are 

discussed in the following section. Scan speed is dependent on performance of 

the gradient system. Stronger gradients allow for faster imaging, or for higher 

resolution. 

1.4.1 Phase Encoding 

MR signals can be located by altering the phase of spins in one dimension with 

a pulsed magnetic-field gradient along that dimension prior to t he acquisition 

of the signal. Images reconstructed at various levels of phase encoding show im­

age sharpness to improve as the number of phase-encoding steps increases [9J. 

However , there is a trade-off between scanning time and the phase-encoding 

process. Figure 1. 7 shows the steps during phase encoding. 

1.4.2 Frequency Encoding 

Reading out a signal in the presence of a constant gradient is called frequency 

encoding. It is a static gradient field which is necessary to acquire a set of 

signals with different frequencies in order to reconstruct the distribution of the 

sources along the direction of gradient field. We can use the Fourier transform 

to separate these signals. 

16 
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F~gllre 1. 7: Using different gradients for phase encoding. Resolution increases 
wIt h the number of phase-encoding steps [9]. 

17 



M.Sc . Thesis - M. MozaJari - McMaster - Computing and Software 

.I 

18 

I 
{ 

I 



Chapter 2 

Segmentation 

In this chapter we talk about different common segmentation techniques , com­

menting on their advantages and disadvantages. We also review basic ter­

minology and important issues regarding segmentation and then present the 

quantification technique we are using in our optimization problem. Quantifi­

cation gives more information about tissue composition than segmentation. 

Its potential applications in MRI are a superset of the applications of segmen­

tation. 

2 .1 Introduction 

In order to segment different objects and shapes in an image, the image needs 

to be parsed and analyzed by different algorithms. These algorithms that 

delineate anatomical structures and patterns in an image are known as seg­

mentation techniques. Segmentation is the process of partitioning a digital 

image into its constituent parts that have similar characteristics or proper-
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ties, such as texture, intensity or color [29]. In general there are two types of 

segmentation: 

1. An image can be split to multiple images, each containing a certain 

constituent. 

2. Contours can be used to indicate different constituents in one image. 

We use the first approach in our segmentation problem, identifying tissue frac-

tion in voxels containing multiple tissues . Figure 2.1 shows the two approaches. 

(a) 

(b) (c) (d) (e) 

Figure 2.1: Different approaches toward image segmentation. (a) shows an 
image with three item to be segmented, (b) is the segmentation by means of 
contours to show different constituents in one image together (c)-(d) shows 
the segmented items as a separate image. 
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2.1.1 Diagnostic Imaging 

Diagnostic imaging is an invaluable tool in medicine. MRI, CT, digital mam­

mography, and other imaging modalities provide an effective means for ac­

quiring the subject 's anatomy [29]. These technologies have greatly increased 

knowledge of normal and diseased anatomy for medical research, and are criti­

cal components in diagnosis and treatment planning. Segmentation algorithms 

play an important role in many biomedical imaging applications such as: 

• Computer-guided surgery 

• Diagnosis 

• Localization of tumors and other pathologies 

• Quantification of tissue volume 

• Study of anatomical structure 

• Treatment planning 

Or in different field of studies such as: 

• Automatic traffic-controlling systems 

• Face recognition 

• Fingerprint recognition 

• Locating objects in satellite images (roads, forests , etc.) 

• Machine vision 
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However, the amount of the acquired data in both CT and MRI is very 

large (multiple images of the same anatomy), and it often takes physicians a 

lot of time to compare and analyze images correctly. Therefore, segmentation 

algorithms are intended to identify regions of interest in the images. In the 

following section, we describe a few techniques used for image segmentation. 

2.2 Image Segmentation Methods 

There are now a wide variety of image segmentation techniques, some consid­

ered general purpose and some designed for specific classes of images. Several 

general-purpose algorithms and techniques have been developed for image seg­

mentation. Different segmentation algorithms might find different solutions. 

In some problems, these techniques often have to be combined with domain 

knowledge in order to effectively solve the problem. In the following section, 

we will describe various segmentation techniques. 

2.2.1 Thresholding 

The thresholding technique segments images by creating two partitions based 

upon the image intensities [33J. It is also called histogram-based model-image 

segmentation. The most important job is to choose an intensity value, called 

the threshold, which separates the desired classes. The segmentation is then 

achieved by grouping all pixels with intensities greater than the threshold into 

one class and all other pixels into another class. 

Thresholding is often used as an initial step in the sequence of inage 
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processing operation. One application of thresholding is tumor detection in 

mammography which is done be dividing tissues into two classes, considered 

as healthy and cancerous. An example of image segmentation by means of 

thresholding is shown in Figure 2.2. 

(a) (b) 

Figure 2.2: Image segmentation using thresholding. (a) is the original image 
and (b) is the segmented image with two regions. 

The main drawback is that, in its simplest form, only two classes are 

generated, and it cannot be applied to multichannel images. In addition, 

thresholding typically does not take into account the spatial characteristics 

of an image. This causes the segmented images to be very sensitive to noise, 

which can occur in MR images [22]. 

2.2.2 Histogram-Based Methods 

A simple improvement is introduced in thresholding called histogram-based 

segmentation. It separates the different parts of an image by thresholding 
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the histogram. It assumes that an image is composed of regions with different 

gray levels, and separates it into a number of peaks, each corresponding to one 

region. With this technique, segmentation is done using only one pass through 

the pixels [10]. A histogram is computed using all pixel values and then for 

each individual pixel, the peaks and valleys in the histogram are used to as­

sign the pixel to a cluster. Histograms are based on different measurements , 

such as color or intensity. One of the disadvantages of the histogram-based 

segmentation is the difficulty in identifying significant peaks and valleys in the 

image. 

2.2.3 Deformable Models (Active Contours) 

This technique, also known as active contours or snakes, tries to delineate 

region boundaries by using closed parametric curves or surfaces that deform 

under the influence of internal and external forces . The first step in segmenta­

tion is to manually place a closed curve near the desired boundary and apply 

an iterative relaxation process [29] . The task is to minimize the force associ­

ated with the current contour as a sum of an internal and external force [18]. 

Internal forces are computed from within the curve to keep it smooth through­

out the deformation. External forces are usually derived from the image to 

drive the curve or surface toward the desired feature of interest. Figure 2.3 

shows the steps of segmentation using a contour which initiated from a circle, 

and deforms and grows until is reaches the boundary of the region of interest. 
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Figure 2.3: Segmentation by means of a growing contour. 

2.2.4 Clust ering Methods 

Clustering methods are based on the concept of clustering algorithms such 

as the k-means algorithm, the fuzzy c-means algorithm and the expectation­

maximization (EM) algorithm. The most commonly used algorithm is the 

k-means algorithm. It clusters n objects, based on certain attributes, into k 

partitions where k < n [16] . The segmentation is done iteratively and starts 

by partitioning an image into k clusters and computing the mean intensity for 

ead. class. The basic algorithm is: 

1. Use a heuristic function to pick k cluster centers. 
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2. Assign each pixel in the image to the cluster that minimizes the distance 

between the pixel and the cluster center. 

3. Recompute the cluster centers by averaging all of the pixels in the cluster. 

4. Repeat steps 2 and 3 until convergence is attained. 

The distance can be defined as either a squared or absolute difference 

between each pixel value within the cluster and a cluster center, possibly in­

cluding differences in intensity, pixel color, texture, and location, or a weighted 

combination of these factors. k can be selected manually, randomly, or by a 

heuristic. The quality of the solution depends on the initial set of clusters and 

the value of k. Figure 2.4 shows how the k-means algorithm segments objects 

by minimizing the squared error function. 

2.2.5 Region Growing Method 

Region growing is a technique for extracting a region in an image that is defined 

based on some certain criteria such as intensity information or edges in the 

image [15]. It takes a manually selected seed point as an input along with 

the image and extracts all pixels connected to the initial seed based on some 

predefined criteria during iterative steps. The difference between a pixel"s 

intensity value and the region's mean, 0, is used as a measure of similarity. 

The pixel with the smallest difference measured this way is allocated to the 

respective region. This process continues until all pixels are allocated to a 

region. 
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• 

Figure 2.4: k-means algorithm used for segmentation of randomly spread 
points [38] (a) choose 3 cluster center (b) shows the 3 clusters (c) choose a 
new center (d) set point to the corresponding cluster by minimizing the dis­
tance of each point to the center. 

The region growing method is typically used for the delineation of small, 

simple structures such as tumors and lesions. The primary disadvantage of 

region growing is that it requires manual interaction to obtain the seed point. 

Thus, for each region that needs to be extracted, a seed must be planted. 

Region growing can also be sensitive to noise, causing extracted regions to 
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have holes or even become disconnected [29] . 

2.2.6 Artificial Neural Networks 

Artificial neural networks (ANNs) are parallel-network nodes that simulate 

biological learning. Each node is capable of performing elementary compu­

tations. Learning is achieved through the adaptation of weights assigned to 

the connections between nodes [7]. ANNs represent a paradigm for machine 

learning and can be used in a variety of ways for image segmentation. 

2.2.7 Atlas-Guided/Model-Based Segmentation 

Atlas-guided approaches are powerful tools for medical image segmentation 

when a standard atlas or template is available. The primary assumption of 

such an approach is that structures of interest/organs have a repetitive form 

of geometry called an atlas. The atlas is generated by compiling information 

on the anatomy that requires segmenting [29]. This atlas is then used as a 

reference frame for segmenting new images. The atlas introduces constraints 

which favor a certain shape. 

Atlas-guided segmentation can also be considered as an image-registration 

problem. Image registration is the process of transforming the different sets of 

data into one coordinate system. Registration is necessary in order to be able 

to compare or integrate the data obtained from different measurements [43]. 

Such a task involves: 

1. Registration of the training examples to a common pose by means of a 
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transformation (called atlas warping). 

2. Probabilistic representation of the variation of the registered samples. 

3. Statistical inference between the atlas and the image. 
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Chapter 3 

k-Space 

In this chapter we present the technique used for data acquisition from mag­

netic resonance (MR) signals. For 2D imaging, k-space can be thought of as a 

2D complex matrix that stores the acquired MR data organized by the phase 

and frequency content. We will explain the different properties of k-space and 

how to move between k-space and image space using Fourier transformations. 

Then we will present how undersampling of the k-space helps us improve data­

acquisition time, discussing the trade-off between under sampling and image 

quality in detail. 

3.1 Introduct ion 

In this section we will talk about the concept of k-space and the Fourier trans­

form. We will also show a sample MR signal and its constituent s. 
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3.1.1 What Is k-Space? 

The task of an MRI scanner is to recognize and collect MR signals and store 

them in a specific order which is recognizable for further analysis. At each RF 

excitation, a combination of different excitations are collected as one complex 

signal as shown in Figure 3.2 on page 35. The read-out MR signal is stored 

in a 2D array called k-space, containing samples of the continuous Fourier 

transform of the object's magnetization. 

In MRI theory [27] , we can derive the equation for MR signals as 

S(t) = 11 m(x, y)e-i27r[kx(t)x+ky(t)Y]dxdy , (3.1) 

where 

(3.2) 

m(x, y) is the transverse nuclear magnetization, and Gx , Gy are gradient fields 

in the x and y directions respectively [32]. Comparing the signal equation 

(3.1) with the Fourier transform of m(x , y), 

(3.3) 

we can see that 

(3.4) 

or 

(3.5) 
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Thus, kx and ky are in units of spatial frequency, typically cycles/cm. This is 

the most important relationship in MRI. At any given time t, s(t) equals the 

value of the 2D Fourier transform of m(x, y) at some spatial frequency. The 

total recorded signals s(t) therefore maps directly to a trajectory through the 

spatial-frequency (Fourier transform) space as determined by the time integrals 

of the applied gradient waveforms Gx(t) and Gy(t). In the MR literature [25] 

and [37], the Fourier-transform space is often called k-space, where k represents 

the spatial-frequency variable. To form an image, the trajectories given by s(t) 

should cover a sufficient part of the k-space to allow reconstruction of m(x, y). 

The relation/tranformation between k-space data and image space is 

the Fourier transform. The Fourier transform of complete data, e.g. the Fast 

(Uniform) Fourier Transform, is an invertible transformation, and no data loss 

happens during each step of transformation. 

k ft2D. 
-space {::: i ft2D ::::} Image-space (3.6) 

3.1.2 Conjugate Symmetry of k-Space Data 

One of the most important properties of k-space that helps us reduce scanning 

time and reconstruct image is the conjugate symmetry of data. The entries 

in k-space are complex numbers that distinguish between signals with similar 

frequency but different phases. Figure 3.1 shows the conjugate symmetry of 

data in k-space. 

Considering the conjugate symmetry of data, the full k-space infor-

mation is redundant, and an image can be reconstructed using only part of 
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(a) (b) (c) 

Figure 3.1: Image space and k-space [5] (a)Image space (b)k-space 
(c) Conjugate symmetry of k-space. 

k-space. However, the MRI scanner is a very noisy environment and recon-

structing the entire image using only a quarter of k-space data may result 

in a noisy and erroneous image. Different techniques such as Half Scan or 

Partial Fourier [20] scan can save a lot t ime during phase encoding. On the 

other hand, techniques such as half echo allow lower frequency-sampling rates 

and/or shorter echo times during frequency encoding. 

3.1.3 Data in k-Space 

The read-out signal is a mixture of different MR signals caused by spinning 

nuclei with different frequencies from all over the object being imaged. Fig-

ure 3.2 shows how different signals can combine together and build a complex 

signal. 

By means of the Fourier transform, the constituent parts of each MR 

signal can be decomposed into a sum of sine waves of different frequencies, 
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(a) (b) 

Figure 3.2: Different constituents of a sample MR signal from a MRI scanner 
(a) Constituents of read-out MR signal (b)MR signal containing information 
from all over the image. 

phases and amplitude. Knowing frequency, amplitude and phase of each sine 

wave, it is possible to reconstruct the signal (inverse Fourier transform). The 

Fourier transform can tell us what these signals are with their exact frequency 

and amplitude. The challenge is to find the amplitude of the read-out signal 

at a certain voxel and translate it to a grayscale value in order to visualize the 

output image. By mapping the different amplitudes to a pixel value, k-space 

can be presented as an image. The higher the amplitude, the brighter the 

pixel shows up in k-space and vice versa. Figure 3.3 shows how each row in 
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k-space is acquired. By applying the proposed technique n times for an n x n 

image, we obtain a complex 2D matrix used for visualizing k-space. 

(a) (b) 

Figure 3.3: Visualizing k-space by mapping amplitude of signal to each pixel 
value (a) Sampling the first row in k-space. (b) Building k-space row by row. 

The location of the data in k-space depends on the strength and the 

duration of the gradient field [36]. The higher the strength ofthe gradient, the 

faster the sampling position moves in k-space. The center of k-space1 contains 

information of low spatial frequency. These signals have low frequencies and 

high magnitude. That is why the center of k-space is always brighter than the 

sides of k-space. On the other hand, the sides of k-space contain information 

of high spatial frequency. By applying a low-pass filter and high-pass filter, 

we can better show the role of each kind of signal in the layout of an image. If 

we omit different parts of k-space, the resulting image would better describe 

the kind and location of data in k-space. Figure 3.4 shows different frequency 

1 Considering an image as a 2D matrix of size n x n , the center of k-space is image( i, i). 
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filters applied to k-space data. 

(a) (b) (c) 

Figure 3.4: Location of certain information in k-space [17] (a)Full k-space with 
very detailed image (b) Low-pass filter , center of k-space contains low special 
frequencies signals and information of contrast in image (c) High-pass filter, 
borders of k-space contain high spatial frequencies and information of edges. 

The periphery of k-space corresponds to high spatial frequencies in k­

space. It is not possible to guess the general layout and edges in an image by 

examining the visualization of k-space. As an example, Figure 3.5 on page 38 

shows four different images with almost the same appearance in k-space yet 

the result of the inverse Fourier transform turns out to be very different . 
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(a) (d) 

(e) (f) (g) (h) 

Figure 3.5: Presentation of image in both image-space and k-space (a)­
(d) image-space (e)-(f) k-space. 

3.2 Full and Partial k-Space 

Acquiring complete data (full k-space) is a long and expensive process. Many 

patients complain about staying still for a long time in a noisy scanner. Even 

a small movement by the patient during scanning can ruin the whole scanning 

process, and make unclear and blurry images. It is called motion artifact 

and results in a strong ghost in the image. There are techniques to reduce 

scanning time. When the MRI machine tries to scan the entire image, we will 

get a very detailed and clear image, but it takes a longer time. Partial Fourier 

reconstruction is a technique that reduces the scanning time by skipping over 

some data and sampling certain rows of k-space. By reducing the amount of 
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data to be collected, the scanning time will be reduced dramatically. 

MRI machines are capable of scanning certain patterns of data in k­

space. Scanning patterns can vary according to the needs and how detailed the 

image should be. k-Space data is collected row by row, and the MRI machine 

can easily skip scanning rows and substitute the whole row with zeros. In this 

case, the k-space appears with a bunch of black lines that correspond to the 

skipped rows of data. 

3.2.1 Half Fourier Projection 

Half Fourier or Half Scan is a scanning technique that only samples half the 

k-space data and then reconstructs the other part of the image from acquired 

data. Scanners can make use of the conjugate symmetry (figure 3.1 on page 34) 

of k-space to reduce scan time. It can be done by using the upper or lower 

part of k-space to reconstruct the other part without any extra scanning. 

Theoretically the reconstruction of the full k-space can be done only using one 

quadrant of k-space. The rest of k-space can be created and filled from that, 

but in practice the conjugate symmetry is not perfect. The noisy environment 

of the scanner and motion artifacts are obstacles toward using only small data. 

Figure 3.6 shows the image obtained from half k-space data. 

3.2.2 Removing Lines 

The most efficient sampling strategy is to interleave rows of k-space with step 

size k where 1 ~ k ~ ~ . Figure 3.7 and Table 3.1 better describe partial 

sampling of k-space. However, undersampling the k-space more than a certain 
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Figure 3.6: Full vs half k-space 

amount of data causes unacceptable reconstruction errors. Any distortion or 

artifact in the image is known as an aliasing error. Figure 3.7. band 3.7. c 

show different aliasing problems while undersampling data less than a certain 

amount. Aliasing may be acceptable if the energy of the alias is lower than 

the energy of the noise , or if the aliasing is localized away from the anatomy of 

interest. By sampling sufficient data, the reconstructed image appears without 

visible artifacts as shown in Figure 3.7.d. 
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(a) (b) (c) (d) 

Figure 3.7: Different partial sampling of k-space causes aliasing and artifact 
in reconstructed image. The corresponding sampling of k-space is presented 
in Table 3.1. 

Experiments Zero Rows in k-space 
Figure 3.7.a Full k-space 
Figure 3.7.b 1/4 Rows: (2, 5, 9,00' , n) 
Figure 3.7.c 1/10 Rows: (2, 12, 22,00' , n) 
Figure 3.7.d 1/30 Rows: (2 , 32, 62,00', n) 

Table 3.1: Different partial sampling of k-space. 
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Chapter 4 

Tissue Quantification 

In this chapter, we will present a quantification technique based on the chem­

ical properties of molecules in tissue. This technique is a modification of the 

Dixon method [8] for fat and water separation in medical imaging. We ex­

tended this technique in order to be able to quantify any arbitrary number 

of tissues. We will show that each MR experiment can be quantified using a 

linear transformation S from pixel value to t issue concentration. Finally we 

will explain our tissue quantification technique by an example. 

4.1 Quantification Techniques 

Tissue quantification refers to the problem of estimating different tissue quan­

tities from a region of interest in an image to build up an anatomical structure. 

This technique provides very important quantitative information about differ­

ent tissue types regardless of their physical distribution and can be used in 

many clinical applications. Tissue quantification can be considered a segmen-
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tation strategy, where the acquired image is split into its constituent regions 

(here tissues). In cases where distinct tissue types are physically well separated 

and are large relative to image resolution, quantitative tissue volumes have 

been successfully extracted from qualitative images by different techniques 

such as active contours (snakes), either manually or automatically. However, 

these methods of tissue seperation are based on selectively suppressing tissue 

from undesired components, and they are sensitive to main field inhomogene­

ity. If there is a voxel that contains a portion of multiple tissues together , 

quantifying each particular tissue is out of reach and is called partial voluming 

effect. Most quantification methods can only quantify anatomies containing 

well-separated tissues. Therefore, they are unsuitable for tissues co-located at 

the image resolution. 

Due to various limitations for the existing tissue-quantificaton methods, 

a new approach is introduced in this chapter, which modifies and improves the 

conventional Dixon method [8]. Dixon methods were proposed to separate fat 

and water in tissues. The result leads to two separate images with improved 

contrast and a reduction of artifact caused by the interference of fat and water. 

We observed that we can apply this quantification method in order to quantify 

any number of tissues. 

However, before we get into the technical subtleties, we first introduce 

the generalized Dixon method, that represents the whole idea of our tissue­

quantification technique. 
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4.2 Tissue Quantification Using the Dixon Method 

4.2.1 A Model for Tissue Quantification 

For a voxel that consists of m different tissue types with concentrations 

which is imaged n times by varying the pulse sequence, the resulting signals 

(I1, 12, . .. ,In) E C , are given by: 

h = al1P1 + a12P2 + ... + a1mPm, 

h = a21P1 + a22P2 + ... + a2mPm, 

where by definition a complex h = Mx(k) + ~My(k) is the projection of 

the magnetization of the Mkth tissue to the x - y plane, which is identified 

with the complex plane, and aij E C gives the expected signal in image i 

of a unit quantity of tissue j [42]. Therefore, the coefficient matrix SC = 

((aij)n xm) defines a linear transformation from tissue concentrations to signal 

measurements. This applies to all voxels equally, and is not dependent on 

position. For efficient low-level implementation, we do not want to rely on 

the compiler to handle complex quantities efficiently. If S is considered as a 

real matrix having twice the number of rows as the complex coefficient matrix 

SC = ((aij)n xm) by splitting the real and imaginary parts of aij into two 

adjacent rows, and rank(S) = m, then we can invert this linear system to find 
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the t issue concentration. This is the basic idea of tissue quantification, and 

we will show how to quantify multiple tissues from multiple images. 

4.3 Dixon Method 

All imaging methods in MR are based on understanding (and working with) 

the behavior of solutions to the Bloch equation [3J. The Dixon method uses 

chemical differences between tissues, which manifest themselves as different 

external field values, and hence different resonant frequencies. Dixon observed 

that for fat and water, if one image is acquired while both are in phase and 

one while they have opposite phases, the resulting images are simple linear 

combinations of the fat and water components, combined using S: 

1 1 

Se = ( : ~1 ) 

a a 
in the real number format, S= (4.1) 

1 -1 

a a 

In this case an addition and subtraction of acquired images is all that 

is required to recover the original fat and water concentrations. The difference 

between the effective excitation and effective measurement time is called echo 

time. Dixon fixed the phase relation by altering the echo time, but ignored 

differences caused by relaxation. 

Dixon introduced the principle of separating different tissue types by 
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manipulating the phase relationships, which can be easily extended to more 

cases than fat and water. The linear transformation S used in the Dixon 

method are simple by design and therefore usually not written in matrix form. 

Not doing so obscured the fact that more general linear combinations of tissue 

densities can be used for tissue quantification. 

If there are n experiments and t tissues, S can be presented as a complex 

matrix of n x t in (4.2). Each row corresponds to pure tissue concentrations 

of a certain experiment. 

S~x t = (4.2) 

4.3.1 An Example 

In order to better understand how the Dixon method quantifies tissues even 

when a voxel contains mixture of multiple tissue values (partial volume effect), 

we use a simple example. Having the experiments, we are trying to separate 

each tissue from each voxel using S. This is the problem we want to solve. The 

forward problem would be to build MR images having pure tissue values and S 

transformation. Each pixel in MR image is built up of the linear combination 

of different tissues: 

( 4.3) 
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where Pi is pure tissue i and anm is element of SIC . The transformation used to 

generate experiments, (S), is defined as a matrix containing complex numbers . 

Elements of S are the density of pure tissues in their corresponding experiment. 

Figure 4.1 is a 2D view of three geometric phantoms. These grayscale 

pictures represent MR images and each one contains a distinct tissue. In 

chapter 6 we will present a 3D view of phantom in a layer of body. 

This example is to better understand the use of the generalized Dixon 

method and the transformation S. By having the portion of pure tissue in each 

voxel, we can set the density of t issues in all voxels . By adding all densities of 

all tissues together in a voxel, we will be able to build the MR experiments. 

Figure 4.1: Three simulated tissue fract ions (PI , P2, P3) shown in separate im­
ages. 

4.4 Specifying the Transformation S 

Each experiment has a specific transformation. If there are n experiments and 

t distinct tissues, S will be an n x t matrix and each row corresponds to one 

of the experiments as shown in Figure 4.2. Each entry of S represents the 
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(a) (b) (c) 

Figure 4.2: Having the portion of each tissue in each voxel, we can find the 
density of each voxel in different experiment. Real and imaginary parts for 
one experiment for each tissue after applying the S transformation. 

(a) (b) 

Figure 4.3: Linear combination of tissue using S. (a) Real part (b) Imaginary 
part 
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concentration of a pure tissue in a cert ain experiment. As an example, aij is 

the concentration of pure tissue j in experiment i. A simple way of finding 

aij is to manually specify a pixel in the acquired image i in a region that only 

contains pure tissue j and figure out the pure tissue concentration. This can be 

done either manually by a medical technician or radiologist , or by means of a 

machine learning algorithm, which we consider as a future work of this thesis. 

In chapter 5, S transformation is used in the modeling of the segmentation 

problem. More details about the structure and elements of S will be discussed 

later. 
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Chapter 5 

Inverse Problems 

In this chapter, we present a new model to solve the tissue-quantification 

problem. Medical image processing is a well-suited platform to propose inverse 

problems. Having the medical images, we are looking for the causes, such 

as cancer detection. To better understand the concept of inverse problems, 

first we explain how to build up images from segmented tissue , using forward 

problems. Then we discuss how to model our problem as an inverse problem. 

Regularization can be used to make an ill-posed problem well-posed [12]. Here 

we used regularization both for noise reduction and to remove the singularity 

caused by ill-condit ioning [40] and [34]. 

5.1 Forward Problem 

The forward problem tries to find the effect and the result of interaction be­

tween different elements of a system in a straightforward way. As an example, 

consider three rivers with a certain amount of water flowing that merge in a 
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lake. If we know the exact amount of water in each river , we can easily esti­

mate the total amount of water accumulated in the lake. Here the elements 

of the system are amount of water and number of rivers , and the interaction 

between them results in a certain amount of water in the lake. 

Let t be the number of different tissues in the target anatomy. We are 

given n images, Cj : Z2 ~ R; each containing the per-pixel concentration 

of a single tissue, where the pixels are indexed by pairs of integers in Z2. 

The forward problem is to find the expected MR images, h In other words, 

knowing the number of experiments, we try to mix all these t pure tissue 

images in order to make MR experiments. We can easily solve this problem by 

having the S matrix (explained in chapter 4) that specifies the contribution of 

each tissue in different experiments: 

(5.1) 

where this product is to be understood as a pointwise product operating in 

parallel on each pixel. 

5.2 Inverse Problem 

Any time we want to know model variables based on experimental measure­

ments with a known mathematical model connecting variable values to ex­

pected experimental outcomes, we have an inverse problem. As a diagram: 

Data ~ Modeled Parameter (5 .2) 
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5.2.1 Linear Inverse Problem 

In this class of problem, the relationship between data and modeled variables 

is linear, e.g. 

Ax = b (5.3) 

where A is a linear operator, and b and x represent data and model parameters 

and the job is to find x . Our quantification problem can be described this way. 

In other words, having the MR experiments, we are trying to find the 

tissue fractions that would result in the observed images. We can define an 

optimization problem in which the objective function measures the likelihood 

of observing image pixel values given underlying t issue concentrations. If the 

measurement error is independent and normally distributed, then this is the 

L2 distance between the measured MR experimental images and the images 

predicted by the forward problem. When we only collect partial k-space data, 

we have to include the effect of the Fourier transform. The job is to solve a 

least-squares problem. In other words , we minimize the distance between the 

measured MR experimental images and the images predicted by the forward 

problem. 

5.2.2 Linear Least Squares 

The linear least squares problem is to find a solution x to 

II Ax - bl1 2 = min 
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for given A E Rm,n and bERm. This problem might be view as a gener­

alization of the linear equation Ax = b, since for invertible A the solutions 

coincides. However, if A is not invertible, the linear equation does not have 

a solution, while the least problem always has a solution. Moreover, if the 

column rank of the matrix A is full ,the solution is unique and given by 

(A' * A) 
x = (A' * b) 

A linear least squares approach is a natural choice for a linear data 

fitting problems since it enables the handling of inconsistent data. However, 

for some inverse problems the above solution may still depend too much of 

the data and hence additional regularization becomes essential. This topic is 

addressed in Section 5.4 in more detail. 

In the following section we will describe each component of our least-

squares problem in detail. 

5.3 Modeling the Quantification Problem 

Considering the general form of an inverse problem in (5.3), we describe the 

quantification problem, where b is the experimental data collected from MRI 

scanners which is both incomplete and noisy with white Gaussian noise in 

k-space. In order to consider the effect of incomplete data (partial k-space) 

b needs to be in Fourier space. Therefore, we need to use a Fourier transfor-

mation in our modeling strategy. A is a transformation from pure tissue to 

pixel values. We used the S transformation in the Dixon method described in 
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chapter 4. In order to make both sides of equation (5.3) in the same space, A 

also needs to include the effect of Fourier transformation. Finally, the modeled 

parameters, x, are the fractions of pure tissues in each voxel. Having A and b, 

the task is to find x in a way that fit in (??). 

In case of least-squares problem, IIAx - bll~ , A and b are described as 

follow: 

A = p. FT · Sp 

b= p. FT·h 

(5.4) 

(5.5) 

where the projection onto partial data P, the Fourier transform FT, and the 

block form of S are explained in the following section. 

5.3.1 Projection P 

The phantoms used here are completely sampled in k-space. We can simulate 

the partial k-space data by projecting the full k-space data onto a subspace. 

It is possible to sample different patterns of data in a way similar to that of a 

MRI scanner. 

projection x full k-space = partial k-space 

The projection can be done by zeroing rows of FT x S that correspond 

to k-space rows not collected. This approach enables us to choose a variety of 
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projection matrices for each specific experiment. If e is the number of different 

MR experiments, P is a block-diagonal matrix with e blocks of projection. 

Each block initially is an identity matrix where zeros are placed on the diagonal 

in order to indicate unsampled rows in k-space (simulate partial k-space). Each 

block presents the sampling map for a certain experiment. Figure 5.1 shows 

the structure of block-diagonal P matrix for e experiments. 

P= 

( Experiment 1 ) 

( Experiment 2 ) 

( Experiment e ) 

Figure 5.1: Structure of block-diagonal matrix P for e experiments. 

In order to show different phases and frequencies of MR signals, all 

the acquired data are complex. We separate the real and imaginary part of 

all complex numbers in order to use real-valued linear algebraic operations. 

Real arithmetic enables us to also implement the solver efficiently in other 

programming languages such as C. However, separating real and imaginary 

parts of data doubles the number of rows in P. C is a complex number and 
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R represents the same number with separated real and imaginary parts. 

C = ai + ~, R = ( ; ) (5.6) 

In this case, P contains pairs, (1 1) or (0 0)' depending on whether 

a row of k-space is selected or not. Figure 5.2 shows how to separate the 

elements of P. 

1 
1 

1 

5x5 

o 
1 

o 
1 

0 
0 

1 
1 

0 
0 

1 
1 

lOx5 

(a) (b) 

Figure 5.2: A sample 5 x 5 block of P. (a) Sampling complex data (b) Sampling 
data with separated real and imaginary part. 

However , removing rows from k-space may cause A to be singular, i.e. , 

not invertible. We can reduce the size of the matrix by deleting the rows in P 

blocks that contain zeros, thereby saving many extra computations (without 

requiring the use of sparse linear algebra). Figure 5.3 shows the compressed 

matrix for each block of P. 
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1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 

--t 
0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 
0 0 0 0 0 1 

(a) (b) 

Figure 5.3: Removing the singularity of matrix P by deleting rows with zeroes 
on the diagonal. 

5.3.2 Fourier Transformation FT 

If e is the number of experiments, FT is a block-diagonal constant matrix of 

ID Fourier transformations with e blocks. Since we either fully sample or do 

not sample rows, the error associated with raw data and data transformed 

in the row direction are both independent , identically distributed Gaussian 

noise. We can reduce the problem size significantly if we consider one or a 

small number of columns at a time, but using row-transformed data in the 

model rather than raw data. In all our computations, we separate the real 

and imaginary parts of all elements. To perform only real computations, the 

real and imaginary parts are separated, and the complex elements of the FT 
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are replaced by 2 x 2 blocks: 

( 

cos (a) 
Jt = 

sin(a) 

- sin(a) ) 

cos (a) 
(5.7) 

a = -27r x (i - 1) x (j - 1)jn; i , j = 1 ... n 

Since we sample different rows in k-space for each experiment, the prod-

uct (p. FT) with zero rows removed varies from image to image. The product 

(P ·FT) also is a block-diagonal matrix with e blocks, and each block represents 

a specific Fourier transform for each partially sampled experiment. Figure 5.4 

shows the product (p. FT) 

P·FT= 

( Expe~~ent 2 ) 

( Expe~~ent e ) 

Figure 5.4: The product (p . FT) is also a block-diagonal matrix. 

5.3.3 Pix elwise Sp Transformat ion 

S is a pixelwise matrix1 and we will use the same letter for the transformation 

from tissue density to pixel values for particular experiments, and for the block-

matrix generalization, which would be block diagonal with identical blocks in 

1 A pixel wise matrix can be transformed by reordering coordinates into a block-diagonal 
matrix with identical blocks, where each block acts on a single pixel. 
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a basis where the elements corresponding to a single pixel value are gathered 

together. We define t as the number of different tissues and e as the number of 

experiments. Each element of S (aij E C) is a complex number that represents 

the signal produced by pure tissue j in experiment i. Figure 5.5 shows the 

format of matrix S. 

Tl T2 Tt 
Exp 1 an a12 alt 

s= 
Exp 2 a21 a22 a2t 

Exp e ael ae2 ... aet 

Figure 5.5: Matrix S indicates the signal produced by pure tissue for different 
experiments where Expi represents different experiments and Ti represents 
different tissues. 

We define a new matrix Sp that rearranges the elements of S in order 

to fit in our least-squares problem. Remember that each element of S is a 

complex number, and we have to separate real and imaginary part as shown 

in (5.6). 

5.3.4 Experimental Data b 

We are trying to find modeled parameter (x) in a way to minimize the dis­

tance between approximated data (p. FT· Sp' x) and experimental data (b). 

Therefore, b must be in the same space as the approximated data. It means b 

has to be in Fourier space and uses the same projection P. In other words, b 

is the row Fourier transform of the collected rows in k-space, which for the nu-

merical simulation are generated by taking column transforms of ideal images 
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Sp = 

cn Rll ) C" R12 

RJ C" Rlt 

RJ Rll 

C" R21 ) C" R 22 

RJ C" R2t 

RJ R21 

. .. 

C" R el 

RJ 
( ~, R e2 

RJ 
( R" R et 

RJ 
Figure 5.6: Matrix Sp, having t different tissues and e MR experiments. Rl,m 

is al,m in the 2 x 1 block format shown in (5.6). 

with noise added, and projecting out the unsampled rows. Using the same P 

and FT, b is defined as follows: 

b = p. FT· Ii (5 .8) 

where Ii is the simulated MR data. 

5.3.5 Solver 

We implemented our algorithm using Matlab. We used the linear least-squares 

function (lsqlin) as a solver for our optimization problem. lsqlin is used to 
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solve constrained linear least-squares problems. The function call and each 

argument is described here: 

x = lsqlin(A, b, C , d , Aeq, beq, lb, ub) (5.9) 

where 

C·x:::; d, 

min IIA · x - bll~ , such that , Aeq· x = beq, 
x 

(5.10) 

lb:::; x :::; ub. 

The objective is to minimize the distance between segmented tissues 

and multiple MR experiments. Solving the problem for multiple images in one 

step results in a very large and sparse system. For example, if the image size is 

n x n and we have e experiments with t tissues, the size of A and b in equation 

(5.10) will be approximately: 

b ~ 2· n2
. e x 1 

(5.11) 

(5.12) 

which requires more than available memory, even for moderate image sizes 

(128 x 128). Table 5.1 shows the size of the least-squares problem for different 

image sizes. 

However, we can split the problem into smaller parts and solve it for k 

columns of the image at a time and cover the whole image through iteration. 

The simplest case is when k = 1. Depending on the regularization method 

being used, k can be chosen in the interval 1 :::; k :::; l N /2 J. If we call s the 
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Image Size Size of A Size of b 
32 x 32 8192 x 3072 4096 x 1 
64 x 64 32768 x 12288 16384 x 1 

128 x 128 131072 x 49152 65536 x 1 
256 x 256 524288 x 196608 262144 x 1 
512 x 512 2097152 x 786432 1048576 x 1 

1024 x 1024 8388608 x 3145728 4194304 x 1 

Table 5.1: Solving the problem in a single step, rather than several columns 
at a time, results in very large matrix sizes in IIAx - bll~. 

step size, each iteration segment s column of the image(s < k). However, 

at the end of the iterations, there might be cases where the set of columns 

left are less than k. In other words, if the iterations pass N - k, there are 

less columns to be chosen in sets of size k. This problem can be recovered 

by appending extra zero columns at the end of the image. Although, there is 

a trade-off between the number of appended zero columns and the clarity of 

the segmented images at the image borders. The bigger the k, the better and 

more accurate the segmentation, but there is less image clarity at the borders 

of the image. Depending on the choice of regularization method, our algorithm 

is capable of solving the problem for different numbers of columns (k's). We 

obtained good results by picking k = 4,6,8. Figure 5.7 shows the pseudo-code 

for the segmentation problem iterating through column groups. 

By this approach, we reduce the size of A and b to acceptable sizes 

for lsqlin(). It also allows parallel computation using a number of processors 

which can scale linearly with the image width. We consider solving the problem 
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[tissues] = Quantification(images,k,s) 
A = P(n,k) * FT(n , k) * Sp(n,k); 
for i = 1 : imageSize with Step Size s; 

tissues = lsqlin(A, Column i to i+k of Image); 
end; 

Figure 5.7: Pseudo-code for segmentation k columns at a time, where P (n, k) , 
etc., set up the block matrices for images of size n x k. 

in parallel as future work. 

5.3.6 Constraints 

Since tissue density is expected to be non-negative, and the sum of all tissue 

densities in a voxel is bounded by voxel size, it would make sense to intro-

duce linear constraints into the least-squares problem, thereby reducing the 

expected noise. In particular, we have made some experiments with non-

negativity constraints on tissue concentrations, but the best form for doing 

this is still an open question. 

5.4 Regularization 

We start by making some comments on ill-posed problems. A problem is 

called well-poed in the sense of Hadamard [12], If A : X ---+ Y and Ax = y , a 

mathematical problem is well posed when: 

1. For each datum y in a given class of function Y there exists a solution x 

in a prescribed class X such that Ax = y (Existence); 
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2. The solution x is unique in X. AXI = AX2 --+ Xl = X2 (Uniqueness) ; 

3. The dependence of X upon y is continuous, i.e., when the error on the 

data y tends to zero, the induced error on the solution x tends also to 

zero which means A-I is continuous (Continuity). 

If a problem does not satisfy one of these three conditions, it is called an 

ill-posed problem. Inverse problems are not usually well posed, and in order 

to be solvable, a variety of regularization techniques can be applied to solve 

the problem [2]. There are many regularization techniques available and are 

categorized in to three classes: 

• optimization-based 

• filtering-based 

• iteration-based 

The linear least squares problem (5.2.2) always has a solution. However , 

it is not necessarily well-posed, i.e. the solution may not be unique and it can 

be very sensitive to the data. In the presents of noise, unexpected results 

can thus be observed. Remedies are to add a regularization which makes the 

solution unique or to add a penalty which out rules unwanted solutions. To 

begin with, we pick the simplest Tichonov regularization. The regularized 

problem thus reads 

where a > 0 is the regularization parameter. 
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5.5 Tikhonov Regularization 

One of the easily designed regularization methods for linear problems is Tikhonov 

regularization [35]. It is also known as ridge regression. 

Assume X, Yare Hilbert spaces2 where x E X and bEY. A linear 

system is defined by the following equation: 

Ax = b + 17 (5.13) 

where 17 is noise in the experiment. From the linear point of view, A is an 

m x n matrix, x is a column vector of length n, and b is a column vector of 

length m. If m > n, the problem is to find an approximate solution of an 

overdetermined system by minimizing 

T(x) = IIAx - bll~ + aP(x), (5.14) 

for some penalty function P. When the penalty is quadratic, we can write the 

problem as 

xa: E argminllAx - bll~ + allRxll~ (5.15) 
xEX 

xa: is an approximate solution to the fit-to-data term IIAx - bll~, depending on 

the penalty weight, a. 

Since our problem is linear and finite dimensional, we can consider lin-

ear penalty functions as a matrix R with a weighting. In this case, all penalties 

2Hilbert space generalizes the notion of Euclidean space in a way that extends methods 
of vector algebra from the two-dimensional plane and three-dimensional space to infinite­
dimensional spaces. 
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and fit-to-data terms can be combined in a single least-squares minimization. 

Equation 5.16 shows the merged least-squares problem. 

IIAx - b l l~ + allRxll~ -

(5.16) 

In the case that R is the identity and a is strictly positive, we can write 

x Q = (A* A + aI)-l A*b (5.17) 

5.5.1 Choice of Regularization Operator R 

The penalty term is sometimes called a discrete smoothing norm. It indicates 

that high frequencies in the solution are penalized and converge to zero, but 

low frequencies remain unregularized. It behaves as a low-pass filter. 

In Tikhonov regularization, the operator R is usually I , an identity 

matrix of n x n (considering Amxn in 5.16). Different weightings are applied 

to R through a, the regularization parameter. In our segmentation problem 

we used the L2 norm of the differences of neighbours in both column and row 

directions. We can subtract each pixel from the neighbors in both row and 

column directions. We can substitute a pixel value by average of neighbor 

pixels. We discuss each case in detail. 
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1 -1 
1 -1 

Col = 
1 -1 

1 
nxn 

Figure 5.8: Col matrix used to regularize image in column direction 

Regularization in Column Direction 

In this case, the term R , named Col, should be designed in a way that by 

multiplying it to pure tissue vector x, subtract current pixel value from its 

lower neighbor pixel. For this means, we use an identity matrix of size n x n 

with -1 on upper sub-diagonal. Figure 5.8 shows the structure of the matrix 

for regularization in the column direction. 

Regularization in Row Direction 

Regularization can also be done in the row direction. In this case we use the 

right neighbor of each pixel to regularize the current pixel value. The matrix 

needed here is the vertical concatenation of two matrices. The first one is an 

identity matrix and the second on is an identity matrix with -1 coefficient. 

We name this block Row with the size n x 2n. By multiplying this block to 

the vector of pure tissue, each pixel value is substituted by its value being 

subtracted from its neighboring pixel value. In Figure 5.9, the structure of the 

row regularization matrix is illustrated. 

We described the simple block of Rowand Col . We have to combine 
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1 -1 
1 -1 

Row = 

1 -1 
1 -1 

nx2n 

Figure 5.9: Col matrix used to regularize image in column direction 

these 2 blocks together as follows: 

R = ( COl ) 
Row 

2nx2n 

(5.18) 

Remember that in the solution we proposed earlier, we processed mul-

tiple columns of an image at a t ime. In the least-squares solver, if we process 

k columns at each iteration, we need k blocks of Col and k -1 blocks of Row. 

As an example, if k = 4 the structure of ( ~ ) in (5.16) is as 

2mx2n 
figure 5.10. 

5.5.2 Regularization Parameter 

The regularization parameter a must be chosen in order to balance the need 

to fit the experimental data and the a priori information represented by the 

penalty term. There is no specific range for variation of a. There are regularization-

parameter selection techniques that have been proposed in the literature in 

order to find a good regularization term a. Techniques such as the L-curve 
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(Col) 
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(Col) 

Row ) 
( Row ) 

( Row ) 
n x 2n 

Figure 5.10: Regularizing operator R consists of both row and column regu­
larization. 

method, cross validation, discrepancy principle and unbiased predictive risk 

estimator. In the following, we explain some of these techniques and L-curve 

parameter selection in detail for our regularization problem. 

Discrepancy P rinciple 

If fJ is the expected value of Ilel b then the regularization parameter should 

be chosen so that the norm of the residual corresponding to the regularized 

solution Il xreg II is TfJ [19], [26]; that is , 

(5.19) 

where T > 1 is some predetermined real number. It is obvious that fJ -+ 0, 

Xreg -+ Xtrue . For example, if the signal-to-noise ratio is known, this method 
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could be used. 

L-curve 

The L-curve for a Tikhonov-regularized solution of an ill-posed problem is a 

parametric plot of the norm of the regularized solution with stabilizer param­

eter IIRxal12 versus the corresponding residual norm for each set of parameter 

values IIAxa - b11 2, and was introduced by Lawson [21J and popularized by 

Hansen [13J. Figure 6.16 shows a sample plot of an L-curve in the plane of 

IIAxa - bl12 , IIRxaI12. The L-curve thus gives insight into the properties of 

the underlying regularization method, and it is used to determine an optimal 

regularization parameter a for the given data. 

5.5.3 Determinat ion of the R egularization Param et er 

v ia the L-curve Approach 

Considering the first derivative with respect to a of IIAxa - bll~ and IIRxall ~, 

IIRxall~ monotonically decreases with respect to a while IIAxa - bll~ mono­

tonically increases with respect to a. This defines a correspondence between 

IIAxa - bll~ and IIRxall~ which when plotted parametrically defines a curve, 

known as the L-curve, because of the shape it commonly takes. 

Choosing a good a can be done by considering a trade-off between 

accuracy and the smoothness of the solution. Depending on various regions 

of interest , different a's can be chosen for different purposes. As an example, 

the regularization parameter for smoothing background in an image needs to 

be larger than a for regularizing edges. 

71 



E 
o 
c: 
c: o 
S 
~ 

M.Sc. Thesis - M. MozaJari - McMaster - Computing and Software 

a = 1e-005 

a = 0.0001 

a= 0.1 

10° 
Residual norm II A xa - b 112 

Figure 5.11: The L-curve for standard form Tikhonov regularization [14]. The 
points marked by circles correspond to different regularization parameters, Q . 

We define two parameters r a and Sa below, in order to better illustrate 
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the trade-offs between accuracy and smoothness of a regularized solution. 

IIAxa - bll~ 

IIRxall~ 

(5.20) 

(5.21) 

where the residual r a determines the accuracy of the solution while Sa deter­

mines the smoothness of the solution. Clearly, the smaller the r a, the better 

and more accurate the solution for (5.20); and also the smaller Sa, the smoother 

the solution. 

The behavior of the L-curve with respect to a was explained by Lung 

and Lu in [23J. If A and R can be simultaneously decomposed, i.e. , with the 

same eigen- or singular-vectors, then the terms r a and Sa, and their derivatives 

with respect to a , can be expanded in series depending on the singular values, 

from which the high and low slopes in the L-curve follow by taking limits. 

Considering a sample plot of the L-curve in Figure 6.16, the left portion 

of the L-curve behaves as a vertical line and hence its curvature is small. It is 

obvious than any point on this portion of the L-curve corresponds to a X a with 

good solution accuracy (i.e. small r a) but poor smoothness. For large values 

of a, Sa and its derivatives are small while r a is independent of a. The right 

portion of the L-curve corresponds to bigger a 's and large r a' The curvature 

in that part of the curve is small. It means this part of the curve has X a with 

smooth points yet poor solution accuracy. 

Considering the trade-off between smoothness and accuracy of X a , the 

best a is located at the very corner of the curve. 
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We can summarize the steps toward finding a good a as follows: 

1. Calculate various number of points ( IIAxo - bll~ , I I Rxoll~) for varying 

a over a wide range of data. 

2. Plot the points, and interpolate parametrically if necessary. 

3. Choose a value of a giving a point in the expected range for the fit-to­

data and penalty terms and relatively more curvature by inspection. 

Considering the behavior of the L-curve and how it alters the solution 

of the least-squares problem, we can consider it as a filter which filters out 

singular components that are small (relatively) while retaining components 

that are large. In this sense, it is called a Tikhonov filter. In the next chapter 

we will show how Tikhonov filtering affects the results. It helps us overcome 

the inaccurate segmentation caused by noisy and partial MRI data acquisition, 

yet makes the results look smoother and clearer. 
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Chapter 6 

Numerical Results 

In this chapter, we present the results of a proposed algorithm and the show 

how regularization improves the results. 

6.1 Geometrical Phantoms 

We simulated three tissue numerical phantoms with simple geometrical shapes, 

including partial volume effects!. It includes a cylinder obliquely intersecting 

the image plane, a cube, and a sphere representing separate tissues. Figures 6.1 

and 6.2 show each tissue and their combination. 

lThere might be situations where each voxel in the images represents more than one 
tissue type. This phenomenon is referred to as the partial-volume effect. 
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(a) (b) (c) 

Figure 6.1: Geometrical phantoms representing different tissues in a target 
anatomy. An oblique cylinder, a box, and a sphere in one layer. 

Recall from the first chapter that an MR image shows different tissues 

within a layer of the body with a certain thickness. We simulated each layer 

by a 3D volume that is shown in Figure 6.3. In order to be able to process the 

layer, we have to flatten the 3D layer to obtain a 2D MR image of size n x n. 

We can approximate the tissue concentration of each voxe12 by splitting it into 

subvoxels shown in Figure 6.3 and find the sum of the subvoxels that belong 

to a certain tissue. Each voxel is of size l x w x a where l is the length, w is the 

width and a is the height. If the the image size is n x n, the tissue concentration 

of pixel (i, j) of tissue t can be calculated by dividing the number of subvoxels 

containing tissue t at their centers by the total number of subvoxels. 

Each voxel has a value between 0 and 1 (0 ~ voxel ~ 1). The brightness 

of a pixel corresponds to the concentration of the tissue in the corresponding 

2 A voxel is a volume element, representing a value on a regular grid in three-dimensional 
space. This is analogous to a pixel, which represents 2D image data. 
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(a) (b) 

(c) (d) 

Figure 6.2: 3D view of simulated tissues from different angles (a) top view 
(b )-( d) side view. 

voxel. In our experiments we used an image size of 128 x 128 and divided 

voxels into units of 10 x 10 x 30. Figure 6.4 shows a flattened layer of tissue 

used for MR experiments. 

Our algorithm works on multiple MR images acquired from one similar 
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SubVoxels 

3D Layer 

Figure 6.3: A 3D view of a layer of body, divided in to voxels . The structure 
of the top right voxel is shown separately, divided into subvoxels. 

anatomy, but with different patterns of data acquisition. We also added white 

Gaussian noise with different powers using the wgn() function in Matlab, in 

order to simulate the noisy environment of MRI scanners. Four different exper-

iments are manipulated from the non-noisy fully sampled image in Figure 6.4. 

We used different patterns of data acquisition for each specific experiment. In 

the following section, we will present different results of our segmentation algo­

rithm on various experiments. We will also show how the regularization term 

helps to reduce the noise and artifacts in the reconstructed tissue densities. 
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Figure 6.4: Simulated phantom representing flattened MR experiments shown 
in Figure 6.2. 

6.2 Tissue Quantification 

Having completely sampled pure tissues, we can manipulate different experi-

ments with different tissue densities using S matrix below. We use 3 distinct 

tissues containing the effect of partial voluming. Rows in S represents differ-

ent experiments and columns are different tissues. Considering the geometric 

shapes in Figure 6.1 , the first column corresponds to the sphere, the second 

column corresponds to the cube, and the third column shows the tissue density 

of the oblique cylinder. Figure 6.5 (a)-(h) shows the real and imaginary parts 

of four distinct experiments of size 128 x 128, which is used as a base for all 

our experiments. Segmented tissues also appear in images of size 128 x 128 
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separately. 

1 + Oi 1 + 0.15i 0.8 + Ii 

0.25 + Ii 0+ 0.3333i 0.4 - Ii 
s= (6.1) 

0.325 + Oi 0.2 + Ii 0.3 - 0.5i 

1 + Oi 0+ 0.2i 1 - Ii 

We show reconstructed images under three conditions: 

1. FUll sampling with zero noise (resulting in reproductions of the model 

densities) . 

2. Partial k-space sampling with noise without regularization (resulting in 

unacceptable noise and artifacts). 

3. Partial k-space sampling with noise reconstructed using regularization. 
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6.2.1 Full Sampling 

Segmentation of fully sampled experiments results in reconstruction of pure 

tissues. Figure 6.5 (i)-(k) shows three tissues with a very clear segmentation. 

•..

..• • ·1 , ~ . . 
i 
, -

I •

.... ' .. ! . • 
, ~: 

(a) (d) 

(e) (f) (g) (h) 

(i) (j) (k) 

Figure 6.5: Fully sampled experiments are simulated using the Bloch equations 
from pure tissues as shown in Figure 6.4 using the S transformation. (a)-(d) 
is the real part and (e)-(h) is the imaginary part of the experiments, (i)-(k) is 
the quantified tissues from fully sampled MR experiments. 
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In order to make the phantoms more realistic, we added white Gaussian 

noise to all experiments. The Matlab function wgn( m , n , p) creates an 2D array 

of size m x n relative to p that indicates the power. By adding the noise to 

both real and imaginary parts of k-space, we will obtain noisy experiments as 

shown in Figure 6.6 (a)-(h). The noise is being added to the experiments as 

follows: 

expNoisei = ifft(fft(exPi) + wgn(n, n, p) +i * wgn(n, n, p)) (6.2) 

where fftO and iff to are Fourier and inverse Fourier transform functions. Re­

sults show that the segmentation is acceptable for experiments with slight 

noise in Figures 6.6 and 6.7, but adding noise with more power causes unclear 

segmentation with artifacts in the results as shown in Figure 6.8. 
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(e) (f) (g) (h) 

(i) (j) (k) 

Figure 6.6: Fully sampled experiments contaminated by white Gaussian noise 
with low power p = 0.1 and its corresponding quantification. (a)-(d) is the 
real part and (e)-(h) is the imaginary part of the experiments. (i)-(k) is the 
segmented tissues from fully sampled noisy MR experiments. 
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Figure 6.7: Fully sampled experiments contaminated by stronger white Gaus­
sian noise with higher power p = 10 and its corresponding quantification which, 
(a)-(d) is the real part and (e)-(h) is the imaginary part of the experiments, 
and (i)-(k) is the segmented tissues from fully sampled noisy MR experiments. 
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Figure 6.8: Fully sampled experiments contaminated by higher white Gaussian 
noise with higher power p = 20 and its corresponding quantification, which is 
not clear and contains lots of noises. (a)-(d) is the real part and (e)-(h) is the 
imaginary part of the experiments. (i)-(k) is the segmented tissues from fully 
sampled but very noisy MR experiments. 
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6.2.2 Quantification From Partially Sampled Data (With­

out Regularization) 

In the previous section, we used the fully sampled experiments and showed 

how noisy data can ruin the segmentation result. In this section, we will 

present the image reconstruction from incomplete data (partial k-space). In 

each figure , the sampling used is listed in the corresponding table. Each figure 

uses a different sampling pattern. We decrease the number of sampled rows in 

each subsequent figure. Results show that having both noisy and incomplete 

data, the segmentation is erroneous. Regularizing image segmentation is the 

approach applied to mitigate the aliasing problem which is presented the next 

section. For all noisy experiments and their segmentation, we also calculate 

the Signal to Noise Ratio (SNR) as follows: 

where 

SNR= _1_ 
error 

~ (norm(Pi - Pi,estimate ))2 
error = L..t 2 

n 
iEpixels 

where the image size is n x n and Pi and Pi,estimate are the basis for segmen-

tation and result of noisy experiment segmentation respectively. Note, the 

eigenvalues of S* S give a lower bound on the SNR, but both regularization 

and the interaction between test problem geometry and sampling patterns may 

increase the SNR. 
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(a) (b) (c) 

Figure 6.9: Segmented tissues from partially sampled non-noisy MR experi­
ments with mapping shown in Table 6.2.2. The first two rows of the figure 
are the real and imaginary parts of the experiments, (a)-(c) are the segmented 
tissues from partial k-space. 58% of complete data was used. The results are 
without artifacts. 

Experiment Collected Rows in k-space 
1 (1 , 2, 3, ... , ~n) 
2 (1 , 2, 3, ... , ~n) 
3 (1,4,7,10, ... ,n) 
4 (1,2 ,3,5,6,7,9, 10,11,13, ... ,n) 

Table 6.1: Sampling of rows from k-space of experiments shown in Figure 6.9. 
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(a) (b) (c) 

Figure 6.10: Segmented tissues from partially sampled non-noisy MR exper­
iments with mapping shown in Table 6.4. The first two rows of the figure 
are the real and imaginary parts of the experiments, (a)- ( c) is the segmented 
tissues form partial k-space. 48% of complete data was used. 

Experiment Collected Rows in k-space 
1 (1 , 2,3, ... , ~n) 
2 (~n, ... , n) 
3 (1 , 2,3,5,6,7,9,10,11 , 13, . .. ,n) 
4 (1 ,4,7, 10, ... ,n) 

Table 6.2: Sampling of rows from k-space of experiments shown in Figure 6.10. 
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(a) (b) (c) 

Figure 6.11: Segmented tissues from partially sampled non-noisy MR exper­
iments with mapping shown in Table 6.3. The first two rows of the figure 
are the real and imaginary parts of the experiments, (a)- ( c) is the segmented 
tissues from partial k-space. 39% of complete data was used. 

Experiment Collected Rows in k-space 
1 (2 , 4,6, ... ,n) 
2 (1,2, ... , ~n) 
3 (1,4,7,10, ... ,n) 
4 (4 , 8,12,16, . .. , n) 

Table 6.3: Sampling of rows from k-space of experiments shown in Figure 6.11 . 
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(a) (b) (c) 

Figure 6.12: Segmented tissues from partially sampled noisy MR experiments 
with mapping shown in Table 6.4. The first two rows of the figure are the real 
and imaginary parts of the experiments, (a)- ( c) is the segmented tissues from 
partial k-space. 48% of complete data was used. The results are still fine in 
spite of having noise. 

Experiment Collected Rows in k-space 
1 (1,2,3, . .. , ~n) 
2 (~n, ... , n) 
3 (1,2,3 ,5, 6,7,9,10, 11 , 13, ... ,n) 
4 (1,4,7,10, ... ,n) 

Table 6.4: Sampling of rows from k-space of experiments shown in Figure 6.12. 
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(a) (b) (c) 

Figure 6.13: Segmented tissues from partially sampled noisy MR experiments 
with mapping shown in Table 6.3. The first two rows of the figure are the real 
and imaginary parts of the experiments, (a)- ( c) is the segmented tissues from 
partial k-space. 39% of complete data was used. Having noise and incomplete 
data, the segmentation result is full of noise and includes artifacts. We need 
to add a regularizer to change the problem. 
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6.2.3 Partial k-Space Sampling with Noise Reconstructed 

Using Regularization 

In the previous section, we showed that undersampling of noisy experiments 

causes aliasing and unwanted artifact in the results (Figure 6.13 (a)-(c)). In 

this section, we regularize the problem in order to get smoother results with 

less noise. Later we use the L-curve method to pick a good regularization 

weight. In Figure 6.17 we compare the three different results. Figure 6.17 

(a)-(c) is the unregularized segmentation from noisy data. Figure 6.17 (d)-(f) 

is the regularized quantification when a = 1. Finally, Figure 6.17 (g)-(i) shows 

the weighted regularized quantification with regularization parameter a = 3.5. 

In the end we will show the L2 norm of residual as a graph showing the lower 

error in the results with regularization. 
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(a) 

(d) (e) (f) 

Figure 6.14: Segmentation of partially sampled experiments. Using un­
weighted regularization (Q = 1) in both row and column direction improves 
the noise , especially in the background, removes the artifacts, and also adds a 
bit of smoothness to the segmented tissues. (a)-( c) are segmentation without 
regularization (Q = 0) , (d)- (f) are the segmentation of the same tissue using 
unweighted (Q = 1) regularization. 

6.2.4 L-curve 

In order to select the best regularization parameter Q , we use the L-curve 

to find a good compromise. In the previous section, the regularization term 

improved the results by reducing the artifacts and background noise. The 

regularization parameter used before was Q = 1. We can apply different 
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weightings to a within a certain range of data. If a is very big, we will get 

over-smoothed results, and if it is very small, the results will look under-

smoothed. An over-smoothed image reduces the noise, but doesn't show the 

details such as edges and contrasts. Figure 6.15 shows over-smoothing and 

under-smoothing in segmentation. 

(d) (e) (f) 

Figure 6.15: Choosing very big or very small a causes over-smoothing and 
under-smoothing respectively. (a)-(c) are over-smoothed tissues, (d)-(f) are 
under-smoothed tissues. 

We can defined a bounded range of data [A, B] and try to solve the 

problem for all a E [A, B]. We set the regularization parameter as follows: 

a = (V2)\i = -10, ... ,10 
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By changing a i in IIAx - bll~ + ai llRxll~ we will get different solutions XCl'i · 

Each XCl' i can be used to find the trade-off between the fit-to-data term and 

the regularization term: 

By using the L-curve technique, we can find a good trade-off a which is located 

at the very left of the curvature shown in Figure 6.16, e.g. a = 3.5. Figure 6.17 

(g)-(i) show the weighted regularization with better and more smooth results. 
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Figure 6.16: L-curve (zoomed-in by using a linear-linear scale). 

6.2.5 Standard Deviation of Noise 

Finding a good regularization parameter is one of the criteria for having the 

visually best results. However , we can§-Jso calculate the error in the segmented 
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(d) 

(g) (h) (i) 

Figure 6.17: A comparison between different segmentations applied on the 
same partially sampled experiment with sampling patterns shown in 6.3 and 
with the same amount of noise. We obtained better segmentation results using 
weighted regularization. (a)-(c) is an unregularized segmentation(a = 0) , (d)­
(f) is the segmentation using unweighted regularization (a = 1) , (g)-(i) is the 
regularized tissue segmentation with regularization parameter (a = 3.5). Only 
using 39% complete data used for image reconstruction. Table 6.2.4 shows the 
SNR of the segmented tissues. 
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Experiment Tissue! Tissue2 Tissue 3 
Tissues (a)-(c) 1.7327 2.9124 1.32870 
Tissues (d)-(f) 105.6959 31.7963 151.3333 
Tissues (g)-(i) 110.2940 35.1466 157.0307 

Table 6.5: Signal to Noise Ratio (SNR) related to segmented tissues shown in 
Figure 6.17 with the same order as tissues are presented. 

image caused by incomplete data sampling and noise. We can consider the 

pure and non-noisy tissue shown in Figure 6.5 (i)-(k) as a basis and compare it 

to our results. Standard deviation is a measure of how spread out the data are 

compared to a basis. If there are n different images, the standard deviation 

Sn is defined as: 

n 

2:= (Xi - Xi)2 (6.3) 
iEpixels 

where x is the basis (pure tissue). 

Table 6.6 shows the standard deviation of the noise in our segmented 

images. Results show that using weighted regularization decreases the L2 norm 

of residual error. 

Segmented Image I IresiduallIL2 
Full k-space, No Noise 0 
Full k-space with Noise, a = 0 6.4397 
Partial k-space With Noise, a = 0 13.995 
Regularized Image, a = 1 5.561 
Regularized Image, a = 3.5 4.556 

Table 6.6: Standard deviation of results of different problems. 
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6.2.6 Execution Time 

All tests were performed on Power Mac G5 which contains the PowerPC 970 

(2.2) Dual CPU and 2 GB of RAM. Matlab version 7.0.4.352(R14) was used. 

Table 6.7 shows the execution time as a function of problem size. When k-

space is fully sampled, the A in fit-to-data term has the maximum size. Where 

k-space is partially sampled, the A would be smaller because we remove the 

rows to prevent singularity of matrix. Results show that the elapsed time 

increases by increasing the size and number of images. 

Experiment Size Elapsed Time (s) Elapsed Time (min) 
16 x 16 0.979 0.016 
32 x 32 10.55 0.17 
64 x 64 109.171 1.8 

128 x 128 935.524 15 
256 x 256 38230.05 637 

Table 6.7: Regularized segmentation. Execution time increases by increasing 
the size of the image. 
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Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

We have formulated tissue quantification from multiple MR images with differ­

ent contrasts as an inverse problem. We have shown that incomplete k-space 

sampling may introduce random and structured noise in the reconstructed tis­

sue fractions, although the results of solving one inverse problem are better 

than the results obtained by reconstructing the images separately and doing 

the quantification pixel by pixel. Further reduction in apparent noise results 

from using the Tikhonov-Phillips regularization as part of the inverse prob­

lem. This also reduces noise in the quantification, when the simulated data 

contains significant noise. In the regularized case, we were able to undersample 

experiments in order to save 61% of the full scan time, without introducing 

noticeable artifacts. The improvements in image quality were reflected in stan­

dard measurements of SNR. 
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7.2 Future Work 

The next steps in developing this method are to (1) construct a phantom with 

known materials and geometry in order to validate the method, and (2) develop 

a method of determining tissue properties (i.e. the S transformation) rapidly, 

either using the collected data or preliminary low-resolution images, and new 

or existing machine learning algorithms (e.g. k-means or more sophisticated 

methods using support vector machines). 

The most successful partial k-space technique for reducing acquisition 

time is Sensitivity encoding (SENSE). SENSE is based on the fact that re­

ceiver sensitivity generally has an encoding effect complementary to Fourier 

preparation by linear field gradients. Thus, by using multiple receiver coils in 

parallel, scan time for Fourier imaging can be considerably reduced. The prob­

lem of image reconstruction from sensitivity-encoded data is formulated in a 

general fashion and solved for arbitrary coil configurations and k-space sam­

pling patterns. In the future , the methods of this paper should be combined 

with SENSE for even greater reductions in acquisition time. 

We used the linear least-squares function in Matlab to solve the prob­

lem. However, by using techniques such as Conjugate Gradient, we will be able 

to solve larger problems. Tikhonov regularization was successful. However, we 

should also try different regularization methods such as Total Variation, which 

have shown themselves to be even better on related imaging problems. 
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Appendix A: The Matlab Codes 

A.I Function imgSegRealRegMultiCol2.m 

function [Rho]=imgSegRealRegMultiCo12(exp, S, projection , rho, alpha) 
%--------------------------------------------------------------------------
%exp: The cell of experiments . Each element of exp 
% (e.g. exp{l}) contains an MR experiment of size n*n 
%S : A tranformaton from tissue density to pixIe value 
%rho : 
%alpha: 
%Rho : 

The number of tissues to be segmented 
Regularization parameter 
A cell which contains the segmented tissues 

%--------------------------------------------------------------------------

%% Variable Assignment 
n=size (exp{l},l); %Image Size 
e=size (exp,l); %Number of Expriments 
t=rho; 
Rho=ce l l(t,l); 
Bcell=cell(e,l); 
piCell=cell(e,l); 
p_ftCell=cell(e,l); 
c=4; 
step=2; 

%Number of Tissues 
%Declaring output Varibale 

%Number of Columns processed at each iterat ion 
%Step Size Used In Regularization 

%% Making Sample Projection Matrix pi and Remove the Zero Rows 

%Finding the error rows in Projection Matrix 
ProTemp=projection; 
tempA=[l:n] ; 

for i=l:e 
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end 

projection{i}=tempA; 
projection{i}(ProTemp{i})=[] ; 
piCell{i}=eye(2*n); 

%removing zero rows from each projection matrix 
if (size(projection{i},2) -= 0) 

index=[2*projection{i}-1 , 2*projection{i}] ; 
piCell{i}(index, :)=[]; 

end%end if 

%% make nxn matrix of 1D Fourier Transform for Real Computation 

FT = makefftReal(n); %Makes 2n x 2n Real Fourier Matrix 

%% Making a Block Digonal P_FTp With Blocks of (P*FTp) 

P_FTp=[] ; 

for i=1:e 
P_FTp=blkdiag(P_FTp,piCell{i}*FT); 

end 

%% Making Sp, a Diagonal Matrix Which Is a Transformation From from tis: 
% densiies to pixel values. 

Scell=cell(t,1); 
SpCell=cell(e , 1); 
Sp= [] ; 

for i=1 :e; 
Scell{i}=S(i, : ); 
for j=1:t 

block=[real(Scell{i}(j»; imag(Scell{i}(j» ] ; 
SpCell{i}= horzcat(SpCell{i}, blockDiagonal(n,block»; 

end 

end 
Sp=vertcat(Sp , SpCell{i}) ; 
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%% Buildinf Varibale for Solver A,b in I IA.x-bl I 

A=P_FTp*Sp; 
A_Block=[] ; 
for i=l:c 

A_Block=blkdiag(A_Block,A); 
end 

expReal=cell(e,l); 
for i=l:e 

expReal{i}=makeReal(exp{i});%separate the real and imaginary part of 
%the image and put them together in 
%2n x 2n matrix 

end 

for i=l :e 
Bcell{i} piCell{i}*FT*(expReal{i}); 

end 

% Buliding Tikhonov Regularization matrix 

TikhvReg=eye(t*n)+diag(-1*ones(t*n-1,1) , 1); 

for i= l :c 
Tikhv_Col=blkdiag(Tikhv_Col,TikhvReg); 

end 
leftBlock=[] ; 
rightBlock=[] ; 
for i=1:c-1 

leftBlock=blkdiag(leftBlock,eye(t*n» ; 
rightBlock=blkdiag(rightBlock,-l*eye(t*n»; 

end 
leftBlock=horzcat(leftBlock,zeros(t*n*(c-1),n*t»; 
rightBlock=horzcat(zeros(t*n*(c-1),n*t),rightBlock) ; 
Tikhv_Row=(leftBlock+rightBlock); 
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%% Solving Linear Least Squares 

options = optimset('LargeScale', 'on', 'Display', ' i ter'); 
col=1; 

for j=1:step :n-2 
b= [] ; 
for k=j : (j -1) +c 

for i=1 :e 
b=vertcat(b,Bcell{i}(: ,k»; 

end%for i 
end%for k 

b=vertcat(b,zeros(c*n*t , 1),zeros((c-1)*n*t,1»; 

end 

[Rhos ( : ,col)] = Isqlin(A_Reg,b, [], [], [], [], [], [], [], 'options') ; 
col=col+1; 

%% Making Output Figure 

Rhos(: ,col)= zeros(size(A_Reg,2),1); 
reshapedRhos=Rhos(1 :n*t,1); 

for i=2:(n/step) 
temp=Rhos( (n*t)+1 :3*n*t,i); 
reshapedRhos=vertcat(reshapedRhos,temp); 

end ;%for i 
reshapedRhos=vertcat(reshapedRhos,Rhos(3*(n*t)+1:4*n*t ,n/step-1»; 

for j=1 :n 
%read a column which contains j'th column inforat i on of all t tiSSl 
column=reshapedRhos((j-1)*t*n +1:t*n*j,1); 
for i=1:t 

Rho{i}(: ,j) =column( (i-1)*n+1 : i*n,1); 
end;%for i 

end%end j 
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%% Plotting The Segmented Results 

figure(1); clf; 

set(gcf, 'Position', [400 600 1000 800]); 

i=3; 
j=4; 
offset=4; 

subplot(i,j,1); imshow(abs(real(exp{1}))); title('Experiment1 Real Part'); 
subplot(i,j,1+offset);imshow(abs(imag(exp{1}))); title('Experiment1 Imagina: 

subplot(i,j,2); imshow(abs(real(exp{2}))); title('Experiment2 Real Part'); 
subplot(i,j,2+offset);imshow(abs(imag(exp{2}))); title('Experiment2 Imagina: 

subplot(i,j,3); imshow(abs(real(exp{3}))); title('Experiment3 Real Part'); 
subplot(i,j,3+offset);imshow(abs(imag(exp{3}))); title('Experiment3 Imagina: 

subplot(i,j,4); imshow(abs(real(exp{4}))); title('Experiment4 Real Part'); 
subplot(i,j,4+offset);imshow(abs(imag(exp{4}))); title('Experiment4 Imagina: 

subplot(i,j-1,7); imshow(real(Rho{1})); title('Segmented Tissue1'); 
subplot(i,j-1,8); imshow(real(Rho{2})); title('Segmented Tissue2'); 
subplot(i,j-1,9); imshow(real(Rho{3})); title('Segmented Tissue3'); 

A.2 Function makeShape.m 

function [img1,img2,img3]=makeShape(n) 
%--------------------------------------------------------------------------
%This function make 3 different geometric phantoms of size n * n 
%n: The size of image 
%Img1, Img2, Img3: Built Tissues 
%--------------------------------------------------------------------------
%% variables 

1=10; 
w=10; 
h=30; 
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imgl=zeros(n); 
img2=zeros(n); 
img3=zeros(n); 
centerE=[2*(n/8)*w,6*(n/8)*1,O] ; 
rE=n/5*1; 

%% Bulid an Sphere 

offesetjj=l; 
offsetii=l ; 
%we process each voxel separately, we try to sum up the sub voxel of eac 
%voxel which are part of our shape 

for i=l:n % i goes in row direction 
for j=l:n % j goes in column direction 

sum=O; 
for kk=O:h % voxel hight 

for jj=offesetjj:w+offesetjj-l %voxel col 

for ii=offsetii:l+offsetii-l % voxel row 

dist=sqrt( (ii-centerE(1))~2 + (jj-centerE(2))~2 
if (dist<=rE) 

sum= sum+ l/(l*w*h); 
end% end if 

end%for ii 
end%for jj 

end%for kk 

if (sum-=O) 
imgl (i , j ) =sum; 

end ; 
offesetjj=offesetjj+w; 

end%for j 
offesetjj=l; 
offsetii=offsetii+l; 

end%for i 
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%% Building Cube 

xlC=5*(n/8)*1; 
x2C=7*(n/8)*1; 

ylC=(n/2)*w; 
y2C=7*(n/8)*w ; 

zlC=O; 
z2C=h; 

offesetjj=O; 
for i=l:n 

offsetii=O ; 
offesetjj=offesetjj+w; 

for j=l:n 
sum=O; 
for kk=O:h 

for jj=offesetjj :w+offesetjj 

for ii=offsetii : l+offsetii 

dist=sqrt( (ii-centerE(1»~2 + (jj-centerE(2»~2 ) ; 
if ( (xlC<=ii)& (ii<=x2C) &(ylC<=jj) && (j j <=y2C) & 

(zlC<=kk) & (kk<=z2C) ) 
sum= sum+ l/(l*w*h) ; 

end% end if 
end%for ii 

end%for jj 
end%for kk 

if (sum-=O) 
img2(i,j)=sum; 

end; 

offsetii=offsetii+l ; 
end%for j 

end%for i 
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%% Building Oblique Cylinder 

C1 = [n/4*1,2*n/8*w,O]; 
C2 = [n/4*1,6*n/8*w,30]; 
rC=n/5*1; 

syms t; 
line = C1 + t*(C2-C1) ; % line passing middle of inclined cylinder 

offesetjj=O ; 
for i=1:n 

offsetii=O; 
offesetjj=offesetjj+w; 

for j=1:n 
sum=O; 
for kk=O :h 

t=(kk-C1(3) )/(C2(3)-C1(3)) ; 
x1=C1(1)+t*(C2(1)-C1(1)); 
y1=C1(2)+t*(C2(2)-C1(2)); 

for jj=offesetjj:w+offesetjj 

for ii=offsetii : l+offsetii 

dist=sqrt( ((ii - x1)-2 + (jj-y1)-2) ); 
if (dist<=rC) 
sum= sum+ 1/(1*w*h); 
end% end if 

a=2; 
end%for ii 

end%for jj 
end%for kk 

if (sum-=O) 
img3(i,j)=sum; 

end ; 
offsetii=offsetii+l; 
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end%for j 
end%for i 

end 

A.3 Function makefftReal.m 

function ft_array = makefftReal(n) 
%---------------------------------------------------------------------
% creates the real FT array of size 2n x 2n 
%---------------------------------------------------------------------
ft_array=[] ; 
for k=l:n 

end 

row= [] ; 
for j=l :n 

if (i==l II j==U 
row=horzcat(row,eye(2»; 

else 
block=[cos((-2*pi*(j-l)*(k-l»/n) -sin((-2*pi*(j-l)*(k-l»/n); 

sin((-2*pi*(j-l)*(k-l»/n) cos((-2*pi*(j-l)*(k-l»/n)] ; 
row=horzcat(row,block); 

end 

end 
ft_array=vertcat(ft_array,row); 
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