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Abstract 

Partial differential equations that conserve energy can often be written as infinite­

dimensional hamiltonian systems ofthe following general form: ~~ = J E'( u(t)), u(t) E 

X where: J : X -7 X is a symplectic matrix and E : X -7 R is a C2 functional defined 

on some Hilbert space X. A critical point of this equation is a point </> E X such that 

E'(</» = O. 

We investigate the spectral stability of solutions in a neighborhood of the critical 

point by using the linearized Hamiltonian system ~~ = J E" (</> )v. The main objective of 

this thesis is to develop analysis of the spectral properties of the non-self-adjoint operator 

J E" (</» using the Pontryagin space decomposition. We adopt parallel computations on 

Sharcnet clusters to study eigenvalues and eigenvectors of J E" (</» numerically. 

The structure of the thesis is as follows. The brief introduction to the spectral 

stability theory is given in Chapter 1. Count of spectrally unstable eigenvalues of the lin­

earized Hamiltonian system using the indefinite metric approach is given in Chapter 2. 

This chapter with general theory is followed by case study of three particular problems 

where applications of analysis are interwinded with numerical approximations. In Chapter 

3, we analyze spectral stability of double-hump solitary wave solutions of the fifth-th or­

der Korteweg-de Vries equation. In Chapter 4, we deal with the coupled-mode system of 

the Dirac type, where the linearized operators can be block-diagonalized for analytical and 

numerical studies. In Chapter 5, we study the spectrum of the singular differential operator 

L = 00 + Eoo(silleOo) subject to the periodic boundary conditions on e E [-Jr,Jrj. We 

prove that the set of linearly independent eigenfunctions for isolated simple purely imagi­

nary eigenvalues is complete but does not form a basis in H~er([ -Jr, Jrl). In the concluding 

Chapter 6, we summarize all our results and formulate a list of open questions for further 

research. 
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CHAPTER 1 

INTRODUCTION 

1.1 The organization of the thesis 

Chapter 1 gives a brief introduction to solitary wave solutions of nonlinear PDEs, to the 
spectral stability theory and a review of different numerical approaches. 

Chapter 2 develops the count of isolated and embedded eigenvalues in a gener­
alized eigenvalue problem defined by two self-adjoint operators with a positive essential 
spectrum and a finite number of isolated eigenvalues. This generalized eigenvalue problem 
determines spectral stability of nonlinear waves in a Hamiltonian dynamical system. The 
theory is based on Pontryagin's Invariant Subspace theorem in an indefinite inner product 
space but it extends beyond the scope of earlier papers ofPontryagin, Krein, Grillakis, and 
others. In particular, we prove the following three main original results: 

(i) the number of unstable and potentially unstable eigenvalues of the generalized eigen­
value problem Au = ,Ku equals the number of negative eigenvalues of the self­
adjoint operators A and K- 1, 

(ii) the total number of isolated eigenvalues of the generalized eigenvalue problem Au = 
,K u is bounded from above by the total number of isolated eigenvalues of the self­
adjoint operators A and K- 1 , 

(iii) the quadratic forms defined by the two self-adjoint operators A and K- 1 are strictly 
positive on the subspace related to the continuous spectrum of the generalized eigen­
value problem Au = ,Ku. 

Applications of general theory are developed for three examples: solitons and vortices of 
the nonlinear Schrodinger equations and solitons of the Korteweg-De Vries equations. 

Chapter 3 deals with the existence and stability of two-pulse solutions in the fifth­
order Korteweg-de Vries (KdV) equation. Two new results are obtained: 

(i) the Petviashvili method of successive iterations is developed for numerical (spectral) 
approximations of the two-pulse solitons and convergence of the iterations is proved 
in a neighborhood of the solutions, 
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(ii) structural stability of embedded eigenvalues of negative Krein signature is proved in 
a context of a linearized KdV equation. 

Combined with stability analysis in Pontryagin spaces from the second chapter, the new 
results complete the proof of spectral stability of the corresponding two-pulse solutions. 
Eigenvalues of the linearized problem are approximated numerically in exponentially weighted 
spaces where embedded eigenvalues are isolated from the continuous spectrum. Approx­
imations of eigenvalues and full numerical simulations of the fifth-order KdV equation 
confirm stability of two-pulse solutions related to the minima of the effective interaction 
potential and instability of two-pulse solutions related to the maxima points. 

Chapter 4 considers the Hamiltonian coupled-mode system that occur in nonlinear 
optics, photonics, atomic physics, and general relativity. Spectral stability of gap solitons is 
determined by eigenvalues of the linearized coupled-mode equations, which are equivalent 
to a four-by-four Dirac system with sign-indefinite metric. Our main result is: 

(i) the block-diagonal representation of the linearized coupled-mode equations is con­
structed to reduce the spectral problem to two coupled two-by-two Dirac systems. 

This block-diagonalization is used in numerical computations of eigenvalues that determine 
stability of gap solitons. 

Chapter 5 studies the spectrum of the linear operator L = -oe - tBe(sinOoe) 
subject to the periodic boundary conditions on [-7r, 7rJ. Our three main results are: 

(i) the operator L admits the closure in L2([_7r, 7rJ) with the domain in H~er([-7r, 7rJ) 
for lEI < 2, 

(ii) the spectrum of the operator L consists of an infinite sequence of isolated eigenvalues 
with accumulation point at infinity, 

(iii) the set of eigenfunctions of the operator L is complete in L~er([-7r, 7rJ). 

By using numerical approximations of eigenvalues and eigenfunctions, we show that all 
eigenvalues are simple, located on the imaginary axis and the angle between two subse­
quent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of 
linearly independent eigenfunctions does not form a basis in L~er([-7r, 7rJ). 

Chapter 6 summarizes the main results and states open questions for further re­
search. 

1.2 Nonlinear waves and solitons 

Solitary waves or solitons are localized travelling wave solutions of nonlinear PDEs, re­
sulting from a certain balance of dispersive and nonlinear effects. A variety of examples 
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exists in the natural science. A solitary wave was first observed by J. Scott Russell in 1834 
while riding on horseback beside the narrow Union canal near Edinburgh, Scotland. He 
described his observation as follows: 

"1 was observing the motion of a boat which was rapidly drawn along a narrow 
channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in 
the channel which it had put in motion; it accumulates round the prow of the vessel in a 
state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, 
assuming the fonn of a large solitary elevation, a rounded, smooth and well defined heap 
of water, which continued its course along the channel apparently without change of form 
or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate 
of some eight or nine miles an hour, preserving its original figure some thirty feet long and 
a foot to a foot and a half in height. Its height gradually diminished, and after a chase of 
one or two miles I lost it in the windings of the channel. Such, in month of August 1834, 
was my first chance interview with that rare and beautiful phenomenon which I have called 
the Wave of Translation ... " 

Further investigations were undertaken by G.B. Airy [1845], G.G. Stokes [1847], 
J.Y. Boussinesq [1871] and B. Rayleigh [1876] in an attempt to understand this phenom­
enon. J.v. Boussinesq derived a one-dimensional nonlinear evolution equation, which now 
bears his name, in order to obtain an approximate description of the solitary wave. 

Soliton collisions were studied by the computer experimentation in the 1960s by M. 
Kruskal and N. Zabusky [126]. The experiment can be described as follows. If we start with 
two solitons, the faster one will overtake the slower one and, after a complicated nonlinear 
interaction, the two solitons will emerge unchanged as they move, except for a slight delay. 
This kind of behaviour is expected for linear problems since each eigenfunction evolves 
separately, but that it could happen for a nonlinear problem was a complete surprise at that 
time. 

The development of the mathematical theory of solitons started from the works of 
P. Lax [83], V. Zakharov and A. Shabat [127], M.J. Ablowitz, DJ. Kaup, A.c. Newell and 
H. Segur [1]. In parallel, optical solitons were independently predicted and experimentally 
realized in 1980 [90]. 

The easiest way to describe an optical soliton is using the spatial domain, where 
it is simply a self-guided wave. Consider an optical beam as narrow as 5 microns. If 
such a beam propagates in a linear medium it diffracts and broadens after even a short 
1 mm distance. In a nonlinear material light actually changes the index of refraction of the 
medium in which it propagates, leading to self-focusing. This self-focusing competes with 
diffractive effects, and at sufficient intensities can lead to the development of a structure for 
which diffraction and self-focusing exactly balance to create a soliton. The field of optical 
solitons has greatly developed over the past decade, and they have become a promising 
candidate for optical communication networks. 

Typical examples of nonlinear partial differential equations that have soliton so-
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lutions include the Korteweg-de Vries equation, the nonlinear Schrodinger equation, the 
coupled-mode Dirac equations, and the sine-Gordon equation. Soliton solutions of nonlin­
ear partial differential equations have arisen in a number of physical contexts: water waves, 
collision-free hydro magnetic waves, plasma physics, non-linear optics, lattice dynamics, 
ion-acoustic waves (for details and further references see, for example: M.J. Ablowitz and 
H. Segur [2]; S.P. Novikov, S.Y. Manakov, L.P. Pitaevskii and Y.E. Zakharov [9]]) 

1.3 Spectral stability problems 

Partial differential equations that conserve energy can often be written as infinite-dimensio­
nal Hamiltonian systems. We investigate the spectral stability of critical points of such 
systems by using the linearization. We call the critical point spectrally stable if the whole 
spectrum of the linearized energy operator lies in the closed left complex half plane. Spec­
tral stability is the necessary condition for the Lyapunov stability. 

Spectral stability of solitary waves has been studied extensively in the recent past. 
The first stability instability theorem for a scalar NLS equation was proved by J. Shatah, 
W. Strauss [59] and M. Weinstein 1122]. Their result was restricted to the case when the 
linearized energy operator had not more than one negative eigenvalue and method was 
based on the variational structure of the problem. More general approach (for the case of a 
finite number of negative eigenvalues) was developed in [60]. This work was followed by 
the work of M. Grillakis [62] who derived existence criteria of an eigenvalue of linearized 
energy operator with strictly positive real part in terms of the difference in the number 
of negative eigenvalues of two self-adjoint operators L+ and L_ which diagonalize this 
operator. 

In many problems, stability of equilibrium points in a finite-dimensional Hamil­
tonian system of finitely many interacting particles is determined by the eigenvalues of 
some generalized eigenvalue problem [49], 

Au = "),Ku, u E ~n, (1.1) 

where A and K are symmetric matrices in ~nxn which define the quadratic forms for 
potential and kinetic energies, respectively. The eigenvalue 'Y corresponds to the normal 
frequency A = iw of the normal mode of the linearized Hamiltonian system near the equi­
librium point, such that 'Y = - A 2 = w2

• The equilibrium point is unstable if there exists 
an eigenvalue 'Y such that 'Y < 0 or 8'( 'Y) -=I O. Otherwise, the system is spectrally sta­
ble. Moreover, the equilibrium point is a minimizer of the Hamiltonian if all eigenvalues 
'Yare positive and semi-simple and the quadratic forms for potential and kinetic energies 
evaluated at eigenvectors of Au = 'YK u are strictly positive. 

The eigenspace corresponding to a given eigenvalue is the vector space of all its 
eigenvectors. The geometric multiplicity of an eigenvalue is the dimension of the associ­
ated eigenspace. The generalized eigenspace is the vector space of all eigenvectors and 
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generalized eigenvectors corresponding to the eigenvalue. The algebraic multiplicity is the 
dimension of the associated generalized eigenspace. When the matrix K is positive definite, 
all eigenvalues '/ are real and semi-simple (that is the geometric and algebraic multiplici­
ties coincide). By the Sylvester's Inertia Law theorem [50], the numbers of positive, zero 
and negative eigenvalues of the generalized eigenvalue problem Au = '/ K u equal to the 
numbers of positive, zero and negative eigenvalues of the matrix A. 

In our context, the Hamiltonian system is infinite dimensional as it represents a 
nonlinear PDE, while the critical points of the system are solitary wave solutions. In many 
PDE problems, a linearization of the nonlinear system at the spatially localized solution 
results in the generalized eigenvalue problem of the form Au = ,/K u, where A and K-1 
are self-adjoint operators on a complete infinite-dimensional metric space (Hilbert space). 
This generalized eigenvalue problem can be studied using the Pontryagin space 11K where 
the index /'i, equals to the number of negative eigenvalues of the operators A or K- 1 • 

The indefinite metric space 111 (that is with the index /'i, = 1) was first introduced 
by S.L. Sobolev in 1940's when he studied the rotating shallow water model. S.L. Sobolev 
sparked the interest of L.S. Pontryagin who wrote a pioneer article "Hermitian operators in 
spaces with indefinite metric" in 1944. This Pontryagin's result started the new branch of 
the functional analysis - theory of linear operators in indefinite metric space. 

Most of fundamental results in this theory were obtained by M.G. Krein in 1960's: 
axiomatic approach to the Pontryagin space 11"" spectral theory of unitary and self-adjoint 
operators acting in Pontryagin space, sign definite invariant subspaces of these operators, 
bifurcation theory. M.G. Krein also described application of this indefinite matric spectral 
analysis to the problem of oscillations of heavy viscous fluid in the open motionless vessel 
(the most complete list of references can be found in [8, 67]). The spectral properties 
and sign definite invariant subspaces of dissipative and contractive operators acting in the 
spaces with indefinite metric were studied in 1980's by T. Azizov and I.S. Iohvidov [8]. 

There has been recently a rapidly growing sequence of publications on mathemati­
cal analysis of the spectral stability problem in the context of nonlinear Schrodinger equa­
tions [37, 70, 97]. Besides predictions of spectral stability or instability of spatially lo­
calized solutions in Hamiltonian dynamical systems, linearized Hamiltonian systems are 
important in analysis of orbital stability [59, 60, 33], asymptotic stability [lOS, 107, 36], 
stable manifolds [32, 112], and blow-up of solutions in nonlinear equations [104, 80]. 

1.4 Numerical methods in nonlinear PDEs. 

Both spectral and nonlinear stability of a critical point in a dynamical system can be inves­
tigated numerically. 

To solve a spectral stability problem, the eigenvalues of the operator JE" (¢) can 
be found by the Fourier basis decomposition and the Galerkin approximation. Although 
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this is a very robust numerical method it may also result in spurious unstable eigenvalues 
originated from the continuous spectrum as it was found for the coupled mode Dirac sys­
tem in [9, 10]. A delicate but time-consuming implementation of the continuous Newton 
method was developed to identify the "right" unstable eigenvalues from the spurious ones 
[9, 10]. Similar problems were discovered in the variational method [76, 77] and in the nu­
merical finite-difference method [114, 115]. To analyse the bifurcations from the edge of 
the continuous spectrum, however the more accurate method of the discretization should be 
applied. A new progress on computations of eigenvalues in the coupled-mode system was 
made with the use of exterior algebra in the numerical computations of the Evans function 
[41]. 

Another approach is the discretization of the linear differential operator JE" (¢ ) 
using approximation of derivatives by the differentiation matrices. It is a very useful tool to 
convert a two-point boundary eigenvalue problem to a matrix eigenvalue problem [22,44]. 
Differentiation matrices are derived from a spectral collocation method. In this method, 
an unknown solution to the differential equation is expanded as a global interpolant, such 
as trigonometric or polynomial functions [45, 58]. In other methods, such as finite ele­
ments or finite differences, the underlying expansions involves local interpol ants such as 
piecewise polynomials. In practice that means that the accuracy of the spectral methods is 
superior: for problems with smooth solutions convergence rates of O( e-cn ) or O( e-cy'n) 
are routinely achieved, where n is the number of grid nodes. In contrast, finite difference 
or finite elements yield convergence rates that are only algebraic in n, typically O(n-2) or 
O(n-4 ). 

The negative side of using spectral methods instead of finite differences or finite el­
ements is replacing sparse matrices by full matrices that leads to the significant increase of 
the computational time. Partially this long-computational-time problem can be solved by 
means of parallel software libraries (Scalapack) which were recently developed for com­
putations of large eigenvalue problems [54]. Distribution of computations of eigenvalues 
for different parameter values between parallel processors can be implemented by using 
Message Passing Interface [30]. 

To solve a nonlinear stability problem, a slightly perturbed spectrally stable critical 
point ¢ can be used as an initial value of the nonlinear dynamical problem. A split-step 
method can be used to discretize the time variable of the partial differential equation and 
the finite-difference or Fourier methods can be used to discretize space variable [121]. 
Although this method is robust and widely used, it does not solve the stiffness problem, 
which arises in the higher-order weakly nonlinear partial differential equations such as the 
fifth-order KdV equation with cubic nonlinearity. The reason why the problem is stiff 
can be explained by different scales associated with linear and nonlinear components of 
the equation. The linear part involves a huge range of scales from the very slow to the 
very fast, while the effects of nonlinearity are significant only over long time intervals and 
couple the various linear modes. The problem can be eliminated by numerical pseudo-
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spectral method which is described in details in (89]. The method is based on the explicit 
analytical integration of the linear part of the equation, through an integrating factor. The 
fourth-order Runge-Kutta method can be used to integrate the evolution equation in time. 
The greatest advantage of this numerical method is that no stability restriction arising from 
the linear part of the partial differential equation is posed on the timestep of the numerical 
integration scheme. 
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CHAPTER 2 

SPECTRAL ANALYSIS OF LINEARIZED HAMILTONIAN 
SYSTEMS USING THE PONTRYAGIN SPACE 

DECOMPOSITION. 

2.1 Introduction 

Nonlinear partial differential equations that conserve energy can often be written as infinite­
dimensional Hamiltonian systems in the following general form: 

dd
U 

= J E'(u(t)), u(t) E X, 
t 

(2.l.1 ) 

where J : X ~ X is a symplectic operator with the property J* = -J and E : X ~ 
lR. is a C 2 functional defined on some Hilbert space X. A critical point ¢ E X of the 
Hamiltonian functional E, such that E' (¢) = 0, represents a localized solution of the 
nonlinear partial differential equation. The spectral stability of a localized solution ¢ is 
defined by the spectrum of the non-self-adjoint eigenvalue problem 

JE"(¢)v = '\v, v E X, (2.1.2) 

which is obtained after a linearization of the Hamiltonian system (4.2.6). Although the 
operator JE" (¢) is non-self-adjoint, it is related to the self-adjoint operator E" (¢) by mul­
tiplication of the symplectic operator J. In many specific examples, such as the nonlinear 
Schrodinger and Korteweg---de Vries equations, the non-self-adjoint eigenvalue problem 
(2.1.2) can be rewritten as the generalized eigenvalue problem 

Aw = "(Kw, WEX, (2.1.3) 

where A and K are self-adjoint operators in the Hilbert space X and l' = _,\2. The critical 
point ¢ is said to have an unstable eigenvalue "( if "( < 0 or Im( "() =I- O. Otherwise, the 
critical point is weakly spectrally stable. Moreover, it is a minimizer of the Hamiltonian 
functional E( ¢) if all eigenvalues "( are positive and the quadratic forms (A·, .) and (K·, .) 
evaluated at the eigenvectors of the generalized eigenvalue problem (2.1.3), are strictly 
positive. 

9 
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The main purpose of this chapter to develop analysis of the generalized eigenvalue 
problem 2.1.3 in infinite dimensions by using the Pontryagin space decomposition [106]. 
The theory ofPontryagin spaces was developed by M.D. Krein and his students (see books 
[8, 53, 67]) and partly used in the context of spectral stability of solitary waves by R. 
MacKay [86], M. Grillakis [62], and V. Buslaev & G. Perelman [21] (see also a recent 
application in [64]). We shall give an elegant geometric proof of the Pontryagin's Invari­
ant Subspace theorem.We shall give an elegant geometric proof of Pontryagin's Invariant 
Subspace Theorem and then apply this theorem to establish our main results: 

(i) the number of unstable and potentially unstable eigenvalues of the generalized eigen­
value problem (2.1.3) equals the number of negative eigenvalues of the self-adjoint 
operators A and K- 1

, 

(ii) the total number of isolated eigenvalues of the generalized eigenvalue problem (2.1.3) 
is bounded from above by the total number of isolated eigenvalues of the self-adjoint 
operators A and K- 1

, 

(iii) the quadratic forms defined by the two self-adjoint operators A and K- 1 are strictly 
positive on the subspace related to the continuous spectrum of the generalized eigen­
value problem (2.1.3). 

The first result is a remake of the main results obtained in [37, 70, 97], although the 
method of proof presented therein is quite different than that given here. The second result 
gives a new inequality on the number of isolated eigenvalues of the generalized eigenvalue 
problem (2.1.3), which can be useful to control the number of neutrally stable eigenvalues 
in the gap of the continuous spectrum of the linearized operator associated with the stable 
localized solutions. The third result has a technical significance since it establishes a simi­
larity between Sylvester's Inertial Law used in [97] and Pontryagin's space decomposition 
used here. With this construction, one can bypass the topological theory developed in [62] 
and used in [70]. 

The structure of this chapter is as follows. Main formalism of the generalized eigen­
value problem is described in Section 2.2. The Pontryagin Invariant Subspace theorem is 
proved in Section 2.3. Spectral properties of self adjoint operators acting in the Pontryagin 
space are studied in the Section 2.4. Main results on eigenvalues of the generalized eigen­
value problem are formulated and proved in Section 2.5. Sections 2.6, 2.7 and 2.8 contain 
applications of the main results to solitons and vortices of the nonlinear Schrodinger equa­
tions and solitons of the Korteweg-De Vries equations. 
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2.2 Formalism and review of results 

Let L+ and L_ be two real-valued self-adjoint operators defined on a Hilbert space X with 
the inner product (', .). Our two assumptions on operators L+ and L_ are listed here: 

PI The essential spectrum a"e(L±) includes the absolute continuous part bounded from 
below by w+ 2: 0 and w_ > 0 and finitely many embedded eigenvalues of finite 
multiplicities. 

P2 The discrete spectrum O"d(L±) in X includes finitely many isolated eigenvalues of 
finite multiplicities with p(L±) positive, z(L±) zero, and n(L±) negative eigenval­
ues l

. 

We consider the linear eigenvalue problem defined by the self-adjoint operators L± in the 
form 

U,W E X, (2.2.1 ) 

where>. E C. Under the assumptions PI-P2 the kernel ker L_ of the operator L_ is finite 
dimensional, the eigenvalue>. = 0 of this operator is isolated. It follows from above that 
the range of the operator ran L_ =: H is closed. Let P be the orthogonal projection from 
X to H, where H is the constrained Hilbert space 

H = {u EX: u..l Ker(L_)} . 

Since Pu E range(L_), then Pw = >.PL=lpU and 

PL+Pu = _>.2PL=lpU, u E H. 

(2.2.2) 

Therefore, the linear eigenvalue problem (2.2.1) in the Hilbert space X is rewritten as the 
generalized eigenvalue problem in the constrained space H as follows 

Au = ,,(Ku, u E H, (2.2.3) 

where A = PL+P, K = PL=lp, and"( = _>.2. We note that K is a bounded invertible 
self-adjoint operator on H, while A is a generally unbounded non-invertible self-adjoint 
operator on H. Finitely many isolated eigenvalues of the operators A and K- 1 in H are dis­
tributed between negative, zero and positive eigenvalues away from the essential spectrum. 
By the spectral theory of self-adjoint operators, the Hilbert space H can be equivalently 

1 These indices can be zero and the corresponding subspaces can be empty. For instance, if w+ = 0, then 
p(L+) = z(L+) = 0. 
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decomposed into two orthogonal sums of subspaces which are invariant with respect to the 
operators J{ and A: 

'l.J _ 'l.J - fT\ 'l.J + ill 'l.J <T e (K) 
It- /tK'l7 / tK\l7 / tK , 

H = HA EB H~ EB H1 EB H~e(A), 

(2.2.4) 

(2.2.5) 

where notation -( +) stands for negative (positive) isolated eigenvalues, 0 for the isolated 
kernel, and O"e for the essential spectrum that includes the absolute continuous part and 
embedded eigenvalues. The subspaces H1 and 1t~ are empty if w+ = 0, while O"e(A) 
belongs to the interval [w+, (0). Since P is a projection defined by eigenspaces of L_ 
while J{ = PL=lp, it is obvious that dim(H1J = n(L_), dim(Hj() = p(L_), and O"e(K) 
belongs to the interval (0, W=I]. The eigenvalues of A are related to the eigenvalues of L+ 
according to the standard variational theory in constrained Hilbert spaces [60, 37]. The 
main result of this theory is formulated in the following proposition. 

Proposition 2.1 Let w+ > O. Ker(L_) = Span{ VI, V2, ... , Vn } E X. and define the matrix­
valued function M (f-L): 

1 :S i,j :S n. (2.2.6) 

Let no. zoo and Po be the number of negative. zero and positive eigenvalues of Mo = 
limllTO M(f-L)2. Then, 

dim(HA) = n(L+) - Po - Zo, dim(H~) = z(A) + zo, 

(2.2.7) 

Proof. According to the results of [37], all n eigenvalues of M (f-L) are strictly decreasing 
functions of f-L on the intervals (-00, w+ )\O"d(L+). These functions may have infinite jump 
discontinuities from minus infinity to plus infinity across the points of O"d(L+) and have a 
uniform limit to minus zero as f-L ---t -00. The count of jumps of the eigenvalues of M (f-L) 
gives the count of eigenvalues of the constrained variational problem 

n 

(f-L - L+)v = L VjVJ' (2.2.8) 
)=1 

where (VI, V2, ... , vn ) are Lagrange multipliers. The first two equalities (2.2.7) are proved in 
Lemma 3.4 of [37] for the case z(L+) = z(A) = 0 and in Theorem 2.9 of [37] for the case 
z( L+) =I o. The last inequality (2.2.7) follows from the count of positive eigenvalues of 

2Since L+ is generally non-invertible. some eigenvalues of Mo can be infinite if z(A) of. z(L+) that is if 
Ker( L+) rt H. The numbers no, Zo, and Po denote finite eigenvalues of Alo, such that no + z+ + Po ::::: n. 
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the constrained variational problem (2.2.8), which originate from jumps of eigenvalues of 
M(/t) on 0 < tL < W at p(L+) positive eigenvalues of L+, from Po positive eigenvalues of 
Mo, and from (z(L+)- z(A)) eigenvalues of M(tL) which have infinite jump discontinuities 
across tL = O. The upper bound in the last inequality is achieved if all limiting eigenvalues 
of M + = 1imJliw+ M (tL) are either negative or diverge to negative infinity. _ 

Since A has finitely many negative eigenvalues and K has no kernel in 1t, there 
exists a small number 8 > 0 in the gap 0 < 8 < 10"-11, where 0"-1 is the smallest (in absolute 
value) negative eigenvalue of K- 1 A. The operator A + 8K is continuously invertible in 1t 
and the generalized eigenvalue problem (2.2.3) is rewritten in the shifted form, 

(A + 8K)u = b + 8)Ku, u E 1t. (2.2.9) 

By the spectral theory, an alternative decomposition of the Hilbert space 1t exists for 0 < 
8 < ICLll: 

'lJ _ 'lJ- 'lJ+ 'lJ!7e(A+oK) ° 
I L - IL A+8K EB IL A+8K EEl I L A+8K , (2.2.1 ) 

where O"e(A + 8K) belongs to the interval [WA+OK, 00) and WA+JK is the minimum of 
O"e(A + 8K). If w+ > 0, then WA+8K > 0 for sufficiently small 8 =1= O. If w+ = 0, we shall 
add the following assumption: 

P3 If W+ = 0, then WA+oK > 0 for sufficiently small 8 > 03
. Moreover, dim(Ker(A)) :S 

1 and there exists at most one small negative eigenvalue JL(8) of A + 8K, such that 
limoiO tL( 8) = O. 

We shall now introduce notations for particular eigenvalues of the generalized eigen­
value problem (2.2.3) and formulate our main results proved in this chapter. Let N; (N;;), 
N~ (N~), and Nt (N;;> be respectively the numbers of negative, zero, and positive eigen­
values r of the generalized eigenvalue problem (2.2.3) with the account of their algebraic 
multiplicities whose eigenvectors are associated to the non-negative (non-positive) values 
of the quadratic form (K·, .). The positive eigenvalues r with r ~ W+W_ are embedded 
into the continuous spectrum of the generalized eigenvalue problem (2.2.3). Finally, let 
N c+ (Nc ) be the number of complex eigenvalues in the upper (lower) half-plane r E C, 
1mb) > 0 (1mb) < 0). Because A and K are real-valued operators, it is obvious that 
Nc+ = Nc . 

Theorem 1 Let assumptions PI-P3 be satisfied. Eigenvalues of the generalized eigenvalue 
problem (2.2.3) satisfy the following two equalities: 

N; + N~ + N:: + Nc+ = dim(1t:4+0K) 

N;; + N~ + N: + Nc+ = dim(1tK) 
(2.2.11) 

(2.2.12) 

3The first statement of assumption P3 was recently proved for abstract operators A and K in [7]. 
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Proof. The theorem is proved in Section 5. • 
Corollary 2.2 Let N neg = dim(1(4+OK) + dim(Hj{) be the total negative index of the 
shifted generalized eigenvalue problem (2.2.9). Let N unst = N; + N;; + 2Nc+ be the total 
number of u1lstable eigenvalues that includes N- = N; + N;; negative eigenvalues / < 0 
and Nc = Nc+ + Nc complex eigenvalues with Im( I') of- o. Then. 

b.N = N neg - N unst = 2N; + 2N~ 2: O. (2.2.13) 

Proof. The equality (2.2.13) follows by the sum of (2.2.11) and (2.2.12). • 
Theorem 2 Let assumptions P I-P2 be satisfied and w+ > O. Let N A = dim(HA: EB H~ EB 
H~) be the total number of isolated eigenvalues of A. Let NK = dim(Hj{ EB Hj{.) be 
the total number of isolated eigenvalues of K. Isolated eigenvalues of the generalized 
eigenvalue problem (2.2.3) satisfy the inequality: 

(2.2.14) 

where Nt is countedfrom isolated positive eigenvalues 'Y < w+w_. 

Proof. This theorem is proved in Section 5. • 
Corollary 2.3 Let Ntotal = N A + N K be the total number of isolated eigenvalues of oper­
ators A and K. Let N iso1 = N; + N;; + N~ + N~ + Nt + N;t; + Nc+ + Nc- be the total 
number of isolated eigenvalues of the generalized eigenvalue problem (2.2.3). Then, 

N iso1 ::; Ntotal + dim(Hj{), (2.2.15) 

where Nt and N;; are counted from isolated positive eigenvalues 'Y < w+w_. 

Proof. The inequality (2.2.15) follows by the sum of (2.2.12) and (2.2.14). • 
To prove Theorems 1 and 2, we shall prove Pontryagin's Invariant Subspace The­

orem and apply this theorem to the count of isolated and embedded eigenvalues for the 
non-self-adjoint operator K- 1 A. 

2.3 Pontryagin's Invariant Subspace Theorem 

We develop here an abstract theory of Pontryagin spaces with sign-indefinite metric, where 
the main result is Pontryagin's Invariant Subspace Theorem. 



PHD THESIS - M. CHUGUNOVA McMASTER - MATHEMATICS & STATISTICS 15 

Definition 3.1 Let 1{ be a Hilbert space equipped with the inner product (', -) and the 
sesquilinear form [', .]4. The Hilbert space 1{ is called the Pontryagin space (denoted as 
II,.,) if it can be decomposed into the sum, which is orthogonal with respect to [', -], 

(2_3_1 ) 

where II+ is a Hilbert space with the inner product (-, -) = [-, -], II_ is a Hilbert space with 
the inner product (-, -) = -[-, -], and r;, = dim(II_) < 00. 

Remark 3.2 We shall write components of an element x in the Pontryagin space II" as a 
vector x = {x_, x+}. The orthogonal sum (2.3.1) implies that any non-zero element x =f. 0 
is represented by two terms, 

(2.3.2) 

such that 
(2.3.3) 

Definition 3.3 We say that II is a non-positive subspace of II" if [x, x] ::; 0 \Ix E II. We say 
that II is a maximal non-positive subspace if any subspace of II" of dimension higher than 
dim(II) is not a non-positive subspace of II". Similarly, we say that II is a non-negative 
(neutral) subspace of II" if [x, x] 2': 0 ([x, x] = 0) \Ix E II. 

Lemma 3.4 The dimension of the maximal non-positive subspace of II" is /'l,. 

Proof. By contradiction, we assume that there exists a (r;, + 1 )-dimensional non-positive 
subspace IT. Let {el' e2, ... , e,,} be a basis in II_ in the canonical decomposition (2.3.2). 
We fix two elements Yl, Y2 E IT with the same projections to {el' e2, ... , e,,}, such that 

Yl = CYI el + CY2e2 + ... + CY"e,. + YIp, 

Y2 = CYI el + CY2e2 + ... + CY"e" + Y2p, 

where YIp, Y2p E II+. It is cIearthat YI-Y2 = Ylp-Y2p E II+ such that [Ylp-Y2p, Ylp-Y2p] > 
O. On the other hand, Yl - Y2 E IT, such that [Yl - Y2, Yl - Y2] _::; O. Hence, we have a 
contradiction, which is resolved only if YIp = Y2p = O. Therefore, II is still a r;,-dimensional 
non-positive subspace of II,.. • 

4We say that a complex-valued fonn [u, v] on the product space H x H is a sesquilinear fonn if it is linear 
in u for each fixed v and linear with complex conjugate in v for each fixed u. 
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Lemma 3.5 (Cauchy-Schwartz) Let II be either non-positive or non-negative subspace 
ofIIK. Then, 

\:/f,g E II: 1[J,gW:s [J,J][g,g]. (2.3.4) 

Proof. The proof resembles that of the standard Cauchy-Schwartz inequality. Let II be a 
non-positive subspace of II K , Then, for any f, 9 E II and any a, (3 E <C, we have 

o 2': [af + (3g, af + (3g] = [J, f]lal2 + if, g]a;3 + [g, f]a(3 + [g, g]I(312. (2.3.5) 

If if, g] = 0, then inequality (2.3.4) is satisfied since if, f] :S 0 and [g, g] :S O. If [J, g] -I 0, 
then we choose 

a E JR, 

such that inequality (2.3.5) becomes 

(3 = [f,gJ 
l[f,g]I' 

02': [f,f]a2 + 2al[f,g]1 + [g,g]. 

The inequality is satisfied if the discriminant of the quadratic equation is non-positive such 
that 41 if, g]12 -4[f, f][g, g] :S 0, that is inequality (2.3.4). Let II be a non-negative subspace 
of IIK. Then, for any f, 9 E II and any a, (3 E <C, we have [af + (3g, af + (3g] 2': 0 and the 
same arguments result in the same inequality (2.3.4). • 

Corollary 3.6 Let II be either non-positive or non-negative subspace of IIK. Let f E II 
such that [f, fJ = O. Then [f,gJ = 0, \:/g E II. 

Proof. The proof follows from inequality (2.3.4) since 0 :S 1 [f, g]12 :S O. • 
Lemma 3.7 Let II be an invariant subspace ofIIK with respect to operator T and II~ be 
the orthogonal compliment of II in IIK with respect to [', .]. Then, II~ is also invariant with 
respect to T. 

Proof. For all f E Dom(T) n II, we have T f E II. Let 9 E Dom(T) n II~. Then 
[g, Tf] = [Tg, f] = 0. • 

Theorem 3 (Pontryagin) LetT be a self-adjoint bounded operator in IIK, such that [T·,·] = 
[', T·J. There exists a r;,-dimensional, maximal non-positive, T-invariant subspace of II",. 

Remark 3.8 There are historically two completely different approaches to the proof of this 
theorem. A proof based on theory of analytic functions was given by L.S. Pontryagin [106] 
while a proof based on angular operators was given by M.G. Krein [53] and later developed 
by students of M.G. Krein [8, 67]. Theorem 3 was rediscovered by M. Grillakis [62] with 
the use of topology. We describe a geometric proof of Theorem 3 based on Shauder's 
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Fixed Point Theorem. The proof uses the Cayley transformation of a self-adjoint operator 
in IT" to a unitary operator in IT" (Lemma 3.9) and the Krein representation of the maximal 
non-positive subspace of IT" in terms of a graph of the contraction map (Lemma 3.11). 
While many statements of our analysis are available in the literature, details of the proofs 
are missing. Our presentation gives full details of the proof of Theorem 3 (see [64] for a 
similar treatment in the case of compact operators). 

Lemma 3.9 Let T be a linear operator in IT" and z E C, Im(z) > 0 be a regular point 
of the operator T, such that Z E p(T). Let U be the Cayley transform of T defined by 
U = (T - z)(T - Z)-l. The operators T and U have the same invariant subspaces in IT". 

Proof. Let IT be a finite-dimensional invariant subspace of the operator T in IT". It follows 
from z E p(T) that (T - z)IT = IT then (T - Z)-lIT = IT and (T - z)(T - zt1IT s:;; IT, 
i.e UIT s:;; IT. Conversely, let IT be an invariant subspace of the operator U. It follows from 
U - I = (z - z)(T - Z)-1 that 1 E p(U) therefore II = (U - I)IT = (T - zt1ll. From 
there, IT s:;; dom(T) and (T - z)IT = IT so TIT s:;; IT. • 

Corollary 3.10 1fT is a self-adjoint operator in IT", then U is a unitary operator in IT". 

Proof. We shall prove that [U g, U gl = [g, gJ, where 9 E dom(U), by the explicit compu­
tation: 

[U g, U gl = [(T - z)f, (T - E)fl = [Tf, T fl- E[f, T fl - z[T f, fl + IzI2[f, f], 

[g,gl = [(T - z)f, (T - z)fl = [Tf, Tfl- ;;[f, Tfl- z[Tf, fl + IzI2[f, f]' 

where we have introduced f E dom(T) such that f = (T - Z)-1 g. • 
Lemma 3.11 A linear subspace II s:;; IT" is a ",,-dimensional non-positive subspace of ITK 
if and only if it is a graph of the contraction map K : ll_ ---+ ll+, such that IT = {x_, Kx_} 
and IIKx-11 :s: Ilx-ll· 

Proof. Let IT = {x _, x + } be a ",,-dimensional non-positive subspace of IT". We will show 
that there exist a contraction map K : IT_ f-t IT+ such that II is a graph of K. Indeed, the 
subspace IT is a graph of a linear operator K if and only if it follows from {O, x+} E IT that 
.r+ = O. Since IT is non-positive with respect to [.,.J, then [x, xl = Ilx+112 - Ilx_1I2 :s: 0, 
where II . II is a norm in H. As a result, 0 :s: Ilx+ II :s: Ilx-11 and if x_ = 0 then x+ = O. 
Moreover, for any x_ E ll_, it is true that IIJCx-11 :s: IIx-11 such that JC is a contraction 
map. Conversely, let K be a contraction map K : IT_ f-t ll+. The graph of K belongs to 
the non-positive subspace of IT" as 



18 PHD THESIS - M. CHUGUNOVA McMASTER - MATHEMATICS & STATISTICS 

Let II = {:L, Kx _ }. Since dim (Il_ ) = K, then dim (II) = K,. 5 • 
Proof of Theorem 3. Let Z E C, Im( z) > 0 be a regular point of the self-adjoint operator 
T in IlK' Let U = (T - z)(T - zt1 be the Cayley transform ofT. By Corollary 3.10, U is 
a unitary operator in IlK' By Lemma 3.9, T and U have the same invariant subspaces in IlK' 
Therefore, the existence ofthe maximal non-positive invariant subspace for the self-adjoint 
operator T can be proved from the existence of such a subspace for the unitary operator U. 
Let x = {x_. x+} and 

U = [U11 U12] 
U21 U22 

be the matrix representation of the operator U with respect to the decomposition (2.3.1). 
Let II denote a K-dimensional non-positive subspace in IlK' Since U has a trivial kernel 
in IlK and U is unitary in IlK such that [U x, U :r] = [x, x] ::; 0, then fr = UIl is also a 
K,-dimensional non-positive subspace of IlK' By Lemma 3.11, there exist two contraction 
mappings K and K for subspaces II and fr, respectively. Therefore, the assignment fr = 

UIl is equivalent to the system, 

( x_) [Un U12 ] ( x_) ( (U11 + U12K)x- ) 
Ki_ = U21 U22 Kx_ = (U21 + U22 K)x- ' 

and it follows from the mapping Il_ I--t Il_ that 

U21 + U22K = K(Un + U12K). 

We shall prove that the operator (Un + U12K) is invertible. By contradiction, we assume 
that there exists x_ =I- 0 such that x_ = (Un + U12K)x- = O. Since x_ = 0 implies that 
x+ = Kx_ = 0, we obtain that {x _, Kx _ } is an eigenvector in the kernel of U. However, 
U has a trivial kernel in IlK so that x_ = O. Let F(K) be an operator-valued function in the 
form, 

F(K) = (U21 + U22 K)(Ul1 + U12Kt1, 

such that K = F(K). This function is defined for any contraction operator K. By Lemma 
3.11, the operator F(K) maps the operator unit ball IIKII ::; 1 to itself. Since U is a con­
tinuous operator and U12 is a finite-dimensional operator, then U12 is a compact operator. 
Hence the operator ball IIKII ::; 1 is a weakly compact set and the function F(K) is con­
tinuous with respect to weak topology. By Schauder's Fixed-Point Principle, there exists 
a fixed point Ko such that F(Ko) = Ko and IIKoll ::; 1. By Lemma 3.11, the graph of 
Ko defines the K,-dimensional non-positive subspace II, which is invariant with respect to 
U. By Lemma 3.4, the K,-dimensional non-positive subspace II is a maximal non-positive 
subspace of IlK' • 

5Extending arguments of Lemma 3.11, one can prove that the subspace II is strictly negative with respect 
to [', .J if and only if it is a graph of the strictly contraction map K : II_ I-> II+, such that II = {x _, Kx _ } 
and IIKx-1i < IIx-ll· 
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2.4 Spectrum of a self-adjoint operator in Pontryagin space 

We apply here Pontryagin's Invariant Subspace Theorem (Theorem 3) to the product of 
two bounded invertible self-adjoint operators T = BC in Pontryagin space TI K , where 
K = dim(He). In the context of the shifted generalized eigenvalue problem (2.2.9), we 
shall consider two operators T in two different Pontryagin spaces TIK • In the first setting, 
B = (A + 8Kt l and C = K with K = dim(Hj(), while in the second setting, B = K 
and C = (A + 8K)-1 with K = dim(HA+8K ). With a slight abuse of notations, we shall 
denote eigenvalues of the operator T = BC by A 6 . In the context of the shifted generalized 
eigenvalue problem (2.2.9), A = ("( + 8t l in the first setting and A = (,' + 8) in the second 
setting. 

Lemma 4.1 Let H be a Hilbert space with the inner product (., .) and B, C : H ---t H be 
bounded invertible self-adjoint operators in H. Define the sesquilinear form 

[.,.] = (C·,·) (2.4.1 ) 

and extend H to the Pontryagin space TIK , where K, is the finite number of negative eigenval­
ues of C counted with their algebraic multiplicities. The operator T = BC is self-adjoint 
in TIK and there exists a K-dimensional maximal non-positive subspace ofTIK which is in­
variant with respect to T. 

Proof. It follows from the orthogonal sum decomposition in the Hilbert space H that the 
quadratic form (C·,·) is strictly negative on the K-dimensional subspace He and strictly 

positive on the infinite-dimensional subspace H6 EEl H~e(C). By continuity and Gram­
Schmidt orthogonalization, the Hilbert space H is extended to the Pontryagin space TIK 
with respect to the sesquilinear form (2.4.1). The bounded operator T = BC is self-adjoint 
in TIK , since Band C are self-adjoint in Hand 

[T·,·] = (CBC·,·) = (C·,BC·) = [·,T·]. 

Existence of the ,,"-dimensional maximal non-positive T -invariant subspace of TIK follows 
from Pontryagin's Invariant Subspace Theorem (Theorem 3). • 

Remark 4.2 The decomposition (2.3.1) of the Pontryagin space TIK is canonical in the 
sense that TI+ n TI_ = 0. We consider now various sign-definite subspaces of TIK which 
are invariant with respect to the operator T = BC. In general, these invariant sign-definite 
subspaces do not provide a canonical decomposition of TI". 

6Spectral parameter A here does not correspond to parameter A used in the linear eigenvalue problem 
(2.2.1). 
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Let Hc+ (He) denote the T -invariant subspace associated with complex eigenval­
ues A in the upper (lower) half-plane and Hn(Hp) denote the non-positive (non-negative) 
T-invariant subspace associated with real eigenvalues A. Spectrum of T consists of three 
disjoint sets: isolated and embedded eigenvalues, continuous spectrum, and residual spec­
trum (see Definitions 4.3 and 4.4). We will show that the maximal non-positive T-invariant 
subspace in Lemma 4.1 does not include the residual and continuous spectra but may in­
clude isolated and embedded eigenvalues of finite multiplicities. 

Definition 4.3 We say that A is a point of the residual spectrum ofT if 

Ker(T - AI) = 0, Range(T - AI) -I II" 

and A is a point of the continuous spectrum ofT if 

Ker(T - AI) = 0, Range(T - AI) -I Range(T - AI) = II". 

Definition 4.4 We say that A is a point of the discrete spectrum of T (an eigenvalue) if 
Ker(T - M) -I 0. The eigenvalue is said to be multiple if 

dim (nkENKer(T - AI)k) > 1. 

Let Ao be a multiple eigenvalue with 

dim (Ker(T - AI)) = 1, dim (nkENKer(T - AI)k) = n < 00. 

The canonical basis for the corresponding eigenspace is defined by the Jordan block of 
generalized eigenvectors 

j = 1, ... ,n, (2.4.2) 

where fo = o. If n = 00, the eigenvalue Ao is said to have an infinite multiplicity. If 
dim (Ker(T - AoI)) > 1, the eigenspace associated with the eigenvalue Ao can be repre­
sented by the union of the Jordan blocks. 

Lemma 4.5 The residual spectrum ofT is empty. 

Proof. By a contradiction, assume that A belongs to the residual part of the spectrum of 
T such that Ker(T - AI) = 0 but Range(T - AI) is not dense in II". Let g E II" be 
orthogonal to Range(T - AI), such that 

Vf E II",: 0 = [(T - AI)j,g] = [j, (T - :\I)g]. 

Therefore, (T - :\I)g = 0, that is :\ is an eigenvalue of T. Since T is real-valued operator, 
A is also an eigenvalue of T and hence it can not be in the residual part of the spectrum of 
T. • 
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Lemma 4.6 The continuous spectrum ofT is real. 

Proof. Let P+ and P- be orthogonal projectors to II+ and II- respectively, such that 
I = P+ + P-. Since II± are defined by the quadratic form (2.4.1), the self-adjoint op­
erator G admits the polar decomposition G = JICI, where J = P+ - P- and IGI is a 
positive operator. Since j2 = I and G is self-adjoint, we have JIGIJ = IGI. As a result, 
JIGI1/2 J = IG11/2 and the operator T = BG is similar to the operator 

IG11/2 BJIGI 1/2 = IG11/2 BJIGI1/2(J + 2P-) = IG11/2 BIGI1/2 + 21C11/2 BJIGI1/2 P-. 

Since P- is a projection to a finite-dimensional subspace, the operator IG11/2 BJIGI1/2 is a 
finite-rank perturbation of the self-adjoint operator IG11/2 BIGI1/2. By Theorem 18 on p.22 
in [51], the continuous part of the self-adjoint operator IG11/2 BIGI 1/2 is the same as that of 
IG11/2 BJIGI 1/2. By similarity transformation, it is the same as that of T. • 

Theorem 4 Let IIc be an invariant subspace associated with the continuous spectrum of 
T. Then, [f, fl > 0, V f E IIc. 

Proof. By Lemma 4.1, the operator T has a I\;-dimensional maximal non-positive invariant 
subspace of II". Let us denote this subspace by II. Because spectrum of T is decomposed 
into disjoint sets of eigenvalues and the continuous spectrum, any finite-dimensional invari­
ant subspace of T cannot be a part of IIc. Therefore, II and IIc do not intersect. Assume 
now that there exists fa E IIc such that [fa, fol ::; O. Since fa rt. II, the subspace spanned 
by fa and the basis vectors in II is a (I\; + I)-dimensional non-positive subspace of II". 
However, by Lemma 3.4, the maximal dimension of any non-positive subspace of II" is 1\;. 

Therefore, [fa, fol > 0 for any fa E IIc. • 

2.5 Eigenvalues of the generalized eigenvalue problem 

We count here isolated and embedded eigenvalues for the product operator T = BG. This 
operator is self-adjoint in the Pontryagin space II", which is defined by the sesquilinear 
form (2.4.1) with I\; = dim(Hc). This count is used in the proofs of our main Theorems 
1 and 2. We assume that the eigenspaces associated with eigenvalues of T are represented 
by the union of the Jordan blocks, according to Definition 4.4. Each Jordan block of gen­
eralized eigenvectors (2.4.2) is associated with a single eigenvector of T. We start with an 
elementary result about the generalization of the Fredholm theory in the Hilbert space H 
to that in the Pontryagin space II". 

Proposition 5.1 Let Ao be an isolated eigenvalue of T = BG associated with a one­
dimensional eigenspace HAo = Span{Jo}. Then, Ao = :\0 is algebraically simple if and 
only if [fa, fol -=f 0, while Ao -=f :\0 is algebraically simple if and only if [fa, 10l -=f o. 
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Proof. Since Band C are bounded invertible self-adjoint operators in the Hilbert space H, 
the eigenvalue problem T f = Af in the Pontryagin space III< is rewritten as the generalized 
eigenvalue problem C f = AB-1 f in the Hilbert space H. Since Ao is an isolated eigen­
value, the Fredholm theory for the generalized eigenvalue problem implies that Ao = >'0 
is algebraically simple if and only if (B- 1 fa, fa) -I- 0, while Ao -I- >'0 is algebraically 
simple if and only if (B- 1 fa, Jo) -I- O. Since Ao -I- 0 (otherwise, C would not be invert­
ible), the condition of the Fredholm theory is equivalent to the condition that (C fa, fa) -I- 0 
and (C fa, fa) -I- 0, respectively. The assertion is proved due to definition (2.4.1) of the 
sesquilinear form. _ 

Lemma 5.2 (Pontryagin) Let H).. and H" be eigenspaces associated with eigenvalues A 
and Jl, of the operator T in III< and A -I- p. Then H).. is orthogonal to H" with respect to 
[', .]. 

Proof. Let nand m be dimensions of H).. and H", respectively, such that n > 1 and 
m ~ 1. By Definition 4.4, it is clear that 

f E H).. {:=} (T - )..Itf = 0, 

9 E H" {:=} (T - Jd)m 9 = O. 

(2.5.1 ) 

(2.5.2) 

We should prove that [f, g] = 0 by induction for n + m ~ 2. If n + m = 2 (n = m = 1), 
then it follows from system (2.5.1 )-(2.5.2) that 

(A - p)[f, g] = 0, 

such that [1, g] = 0 for A -I- p. Let us assume that subspace~ H).. and H" are orthogonal 
for 2 :::; n + m :::; k and prove that an extended subspace H).. with n = n + 1 remains 
orthogonal to HI" To do so, we define j = (T - A1)f and verify that 

By the inductive assumption, we have [j, g] = 0, such that 

[(T - A1)f,g] = o. (2.5.3) 

By using system (2.5.1 )-(2.5.2) and relation (2.5.3), we obtain that 

(A - p)[f, g] = 0, 

Using the same analysis, one can prove that an extended subspace it" with m = m + 1 
remains orthogonal to H)... As a result, the assertion of the lemma follows by the induction 

m~~. -
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Lemma 5.3 Let HAO be an eigenspace associated with a multiple real isolated eigen­
value Ao ofT in II" and {iI, 12, ... fn} be the Jordan chain of eigenvectors. Let Ho = 

Span{iI, 12, ···,fd CHAO' where k = ~ if n is even and k = n~l if n is odd, and 

flo = Span{iI, 12, ... , fk' fk+d CHAO' 

• If n is even (n = 2k), the neutral subspace Ho is the maximal sign-definite subspace 
ofHAo' 

• If n is odd (n = 2k + 1), the subspace flo is the maximal non-negative subspace 
of HAo if [iI, fn] > 0 and the maximal non-positive subspace of HAo if [iI, fn] < 
0, while the neutral subspace Ho is the maximal non-positive subspace of HAO if 
[iI, fn] > 0 and the maximal non-negative subspace ofHAo if [iI, fn] < O. 

Proof. Without loss of generality we will consider the_case Ao = 0 (if Ao i= 0 the same 
argument is applied to the shifted self-adjoint operator T = T - AoI). We will show that 
[f, f] = 0, V f E Ho. By a decomposition over the basis in Ho, we obtain 

k k k 

Vf = ~aJz: [f, f] = ~ ~ a'&J [f" fJ] . (2.5.4) 
,=1 1=1 j=l 

We use that 

for any 1 :::; i, j :::; k. In the case of even n = 2k, we have [Ii, fJ] = [Tnf,+k, h+kl = 0 for 
aliI:::; i, j :::; k. In the case of odd n = 2k+ 1, we have [I" fJ] = [Tn+1 fz+k+b fJ+k+l] = 0 
for all 1 :::; i,j :::; k. Therefore, Ho is a neutral subspace of H AO ' To show that it is 
the maximal neutral subspace of H AO ' let H~ = Span{iI, 12, ... , fk' fko}, where k + 1 :::; 
ko :::; n. Since fn+! does not exist in the Jordan chain (2.4.2) (otherwise, the algebraic 
multiplicity is n + 1) and Ao is an isolated eigenvalue, then [iI, fn] i= 0 by Proposition 5.1. 
It follows from the Jordan chain (2.4.2) that 

(2.5.5) 

When n = 2k, we have 1 :::; n - ko + 1 :::; k, such that [Iko ,fn-ko+ll i= 0 and the 
subspace H~ is sign-indefinite in the decomposition (2.5.4). When n = 2k + 1, we have 
1 :::; n - ko + 1 :::; k for ko ~ k + 2 and n - ko + 1 = k + 1 for ko = k + 1. In 
either case, [Iko, fn-ko+1] i= 0 and the subspace H~ is sign-indefinite in the decomposition 
(2.5.4)unlessko = k+1. In the latter case, we have [fk+1,fk+1l = [iI,fn] i= o and 
[h fk+1] = [T2k fJ+k' fn] = 0 for 1 :::; j :::; k, such that this subspace flo == H~ with 
!to = k + 1 is non-negative for [II, fnl > 0 and non-positive for [iI, fn] < O. • 
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Remark 5.4 If Ao is a real embedded eigenvalue of T, the Jordan chain (2.4.2) can be trun­
cated at fn even if [f1, fn] = 0. Indeed, the Fredholm theory for the generalized eigenvalue 
problem (used in Proposition 5.1) gives a necessary but not a sufficient condition for exis­
tence of the solution fn+l in the Jordan chain (2.4.2) if the eigenvalue AO is embedded into 
the continuous spectrum. If [f1, fn] = ° but fn+l does not exist in TIK , the neutral subspaces 
Ho for n = 2k and Ho for n = 2k + 1 in Lemma 5.3 do not have to be the maximal non­
positive or non-negative subspaces. The construction of a maximal non-positive subspace 
for embedded eigenvalues depends on the computations of the projection matrix [fz, f}] in 
the eigenspace HA = Span{I1' ... , fn}. For instance, if AO is an algebraically simple em­
bedded eigenvalue, then the corresponding eigenspace H)..o = Span {II} is either positive 
or negative or neutral depending on the value of [f1, f1]. 

Lemma 5.5 Let Ao E C, Im(Ao) > ° be an eigenvalue ofT in TIK , HAo be the correspond­
ing eigenspace, and H)..o = {H Ao , H>.o} C TIK • Then, the neutral subspace H)..o is the 
maximal sign-definite subspace o/H)..o' such that [f, f] = 0, V f E H Ao· 

Proof. By Lemma 5.2 with A = J.L = AO, the eigenspace H)..o is orthogonal to itself 
with respect to [., .], such that H)..o is a neutral subspace of H)..o. It remains to prove that 
H)..o is the maximal sign-definite subspace in H A. Let H)..o = Span{h, 12, ... , fn}, where 
{h, 12, ... , fn} is th~ Jordan chain of eigenvectors (2.4.2). Consider a subspace H~o = 
Span{fbh, ... ,in,f}} for any 1 ::; j ::; n and construct a linear combination of fn+l-} 
andh: 

(2.5.6) 

By Proposition 5.1, we have [fn,11] -# ° and, by virtue of the chain (2.5.5), we obtain 
[h, fn+l-}] -# 0. As a result, the linear combination fn+l-} + oJ} in equality (2.5.6) is 
sign-indefinite with respect to [., .]. • 

We shall summarize the count of the dimensions of the maximal non-positive and 
non-negative subspaces associated with eigenspaces of T in TIK • Let Nn(AO) (Np(AO) 
denote the dimension of the maximal non-positive (non-negative) subspace of TIK corre­
sponding to the eigenvalue AO. By Lemma 5.3, if AO is a real isolated eigenvalue, then the 
sum of dimensions of the maximal non-positive and non-negative subspaces of H)..o equals 
the dimension of H)..o (although the intersection of the two subspaces can be non-empty). 
For each Jordan block of generalized eigenvectors, we have 

(i) If n = 2k, then Np(AO) = Nn(AO) = k. 

(ii) If n = 2k + 1 and [fb fn] > 0, then Np(AO) = k + 1 and Nn(AO) = k. 

(iii) If n = 2k + 1 and [h, fn] < 0, then Np(AO) = k and Nn(AO) = k + 1. 
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By Remark 5.4, if Ao is a simple embedded eigenvalue, then 

(i) If [fl, II] > 0, then Np(AO) = 1, Nn(AO) = 0. 

(ii) If [Jl, fd < 0, then Np(Ao) = 0, Nn(AO) = 1. 

(iii) If [II, II] = 0, then Np(Ao) = Nn(AO) = 1. 

We note that the sum of dimensions of the maximal non-positive and non-negative sub­
spaces of H AO ' that is Np(Ao) + Nn(Ao), exceeds the dimension of HAO in the case (iii). 
If AO is a multiple embedded eigenvalue, computations of the projection matrix [J" fJl is 
needed to find the dimensions Np(AO) and Nn(Ao). Finally, by Lemma 5.5, if Ao is a com­
plex eigenvalue, then Np(AO) = Nn(AO) = dim(HAo) = ~dim(HAO). 

Before proofs of Theorems I and 2, we have to deal with one more complication, 
which is the presence of zero eigenvalues of operator A. Operator A determines either B 
or C in the product operator T = BC. Since we shift A to A + 5K for sufficiently small 
5 > 0, all zero eigenvalues of A become small non-zero eigenvalues of A + 5K, where K 
is a bounded invertible self-adjoint operator that also determines either B or C. Therefore, 
we need to know how many zero eigenvalues of A becomes small positive and negative 
eigenvalues of A + 5K. This splitting is described by the following result. 

Lemma 5.6 Let Ho be an eigenspace associated with a multiple zero eigenvalue of opera­
tor K- l A in Hand {fl, ... , fn} be the Jordan chain of eigenvectors, such that fl E Ker(A). 
Let w+ > ° and ° < 5 < IO"-d, where 0"-1 is the smallest negative eigenvalue of K-IA. 
Then (Kfl,Jn) -# ° and 

• If n is odd, the subspace Ho corresponds to a positive eigenvalue oj the operator 
(A + 5K) if(K fl' fn) > ° and to a negative eigenvalue if (K fl,!n) < 0 . 

• If n is even, the subspace Ho corresponds to a positive eigenvalue oj the operator 
(A + 5K) if (KJl' In) < ° and to a negative eigenvalue if(KJl' In) > 0. 

Proof. Let fl (5) be an eigenvalue of the self-adjoint operator A +5 K related to the subspace 
Ho. By analytic perturbation theory for isolated eigenvalues of self-adjoint operators (see 
Chapters VII.3 in [75]), eigenvalue flJ (5) is a continuous function of 5 and 

lim f.L(5) = (-It+l (K iI, In). 
0->0+ 5n (II, Jr) 

(2.5.7) 

Since w+ > 0, the zero eigenvalue of A is isolated from the continuous spectrum of K- l A, 
such that (K II, In) -# ° by the Fredholm theory for the generalized eigenvalue problem 
(2.2.3). The assertion of the lemma follows from the limiting relation (2.5.7). Since no 
eigenvalues of K-IA exists in (-I(Lll,O), the eigenvalue f.L(5) remains sign-definite for 
0< 5 < 10"-11. • 
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Remark 5.7 If w+ = ° and assumption P3 is satisfied with Ker(A) = Span{!I}, then the 
eigenvalue fL( 15) is negative only if (K l1,il) ~ 0. If (K 11, !I) > 0, the eigenvalue fL( 15) 
is either positive or does not exist 7 • All other small eigenvalues, which may bifurcate from 
the end points of the essential spectrum of A by means of the edge bifurcations [74], are 
positive, according to assumption P3. 

Proof of Theorem 1. We use the shifted generalized eigenvalue problem (2.2.9) for suf­
ficiently small 15 > ° and consider the bounded operator T = (A + r5K)-1 K, that is 
B = (A+r5K)-1 and C = K. By Lemma 4.1, the operator T is self-adjoint with respect to 
[".J = (K·,·) and it has a r;;-dimensional maximal non-positive invariant subspace, where 
r;; = dim(H:K). Counting all eigenvalues of the shifted generalized eigenvalue problem 
(2.2.9) with the use of notations of Section 2, we establish equality (2.2.12). 
Now, let B = K and C = (A + r5K)-1 and consider the bounded operator T = K(A + 
r5K)-1 which is self-adjoint with respect to [".J = ((A + r5K)-I., .). The self-adjoint 
operator (A + r5K)-1 defines the indefinite metric in the Pontryagin space ti it , where K, = 

dim(HA:+8K)' For any simple eigenvalue 'Yo of the shifted eigenvalue problem (2.2.9), we 
have 

\/1,g E HiO : ((A + r5K)I,g) = bo + r5)(Kl,g)· 

If 'Yo 2: ° or Im( 'Yo) =I- 0, the maximal non-positive eigenspace of Tin tii< associated with 
'Yo coincides with the maxim~l no~-positive eigenspace of Tin 11". If 'Yo < 0, the maximal 
non-positive eigenspace of T in Ili< coincides with the maximal non-negative eigenspace 
of T in 11". The same statement can be proved for the case of multiple eigenvalues 'Yo. 
Threrefore, the dimension of the maximal non-positive eigenspace of T in tii< is N; + 
N~ + N;; + N c+, such that equality (2.2.11) follows by Lemma 4.1. • 

Proof of Theorem 2. We prove this theorem by contradiction and explicit computations. 
First, we introduce T and 11" according to the choice B = (A + r5K)-1 and C = K. 
Let 11 be a non-negative invariant subspace in 11", which is spanned by eigenvectors of 
the generalized eigenvalue problem (2.2.3) for Np- negative eigenvalues 'Y < 0, N~ zero 
eigenvalues 'Y = 0, Nt positive isolated eigenvalues 'Y > 0, and Nc+ complex eigenvalues 
with 1mb) > 0. Let us assume that N; + N~ + Nt + N c+ > N A + N K and derive a 
contradiction. 

By Gram-Schmidt orthogonalization with respect to the inner product in the Hilbert 
space H, if N; + N~ + Nt + N c+ > NA + NK , then there exist a vector hE 11 such that 
(h, f) = ° and (h, g) = ° for any 1 E HA: EB H~ EB H~ and 9 E HI{ EB Hi<. Therefore, 
h E H~e(A) n H,;;(K), such that 

(Ah, h) 2: w+(h, h), 

7Positive eigenvalues can disappear in the essential spectrum of A + oK if p,( 0) > wAHK for sufficiently 
small 0 > O. 
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and 
(Ah, h) ~ w+w_ (Kh, h). 

" N- +No+N+ +N + 
On the other hand, SInce h E II, then It can be represented by h = :L'~l p P C a,h" 
where (hI, h2' ... , hN-+NO+N++N ) is a basis in II associated with the eigenspaces of the 

P p P c+ 
generalized eigenvalue problem (2.2.3). By Lemmas 5.2 and 5.5, we obtain 

(Ah. h) = L a,&)(Ah" h)) 
',) 

By Lemma 5.3, the non-zero values in (All" h)) for isolated eigenvalues occur only for 
(Afk+l' fk+d, where A+l is the generalized eigenvector for a multiple eigenvalue with 
odd algebraic multiplicity n = 2k + 1. Since all these cases are similar to the case of 
simple eigenvalues, we can write the representation above in the simplified form 

(Ah, h) = L la)12(Ah), hj ) + L la)12(Ah), h)) + L la)12(A.h), h)) 

< w+w_ L la)1 2(Kh), h)), 
,))>0 

where we have used the fact that (Kh), h)) ~ 0 for any eigenvector h) E II and that 
Ij < w+w_ for any isolated eigenvalue I)' On the other hand, 

(Kh, h) = L a,&) (Kh" h)) 
'.J 

~ L la)12(Kh), h)). 
,))>0 

Therefore, (Ah, h) < w+w_ (Kh, h), which is a contradiction. As a result, N; + Ng + 
~+~~~+~. • 
Remark 5.8 Isolated eigenvalues of infinite multiplicities are excluded by the counts of 
Theorems 1 and 2. Embedded eigenvalues of infinite multiplicity are possible but they may 
only correspond to finitely many Jordan blocks of finite length, according to Theorem 1. In 
the Jordan block decomposition, one can not exclude an infinite number of simple Jordan 
blocks corresponding to the same embedded eigenvalue with infinitely many eigenvectors 
in the positive invariant subspace of II". 
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2.6 Application: NLS solitons 

Consider a nonlinear Schrodinger (NLS) equation in multi dimensions, 

(2.6.1) 

where (x, t) E lRd X lR and 1fJ E C. For a suitable nonlinear function F(I1fJ1 2
), where F 

is Coo and F(O) = 0, the NLS equation (2.6.1) possesses a solitary wave solution 1fJ = 

¢(x )e1vJt
, where w > ° and ¢ : JRd ---t JR is an exponentially decaying Coo function. See 

[88] for existence and uniqueness of ground state solutions to the NLS equation (2.6.1). 
Linearization of the NLS equation (2.6.1) with the ansatz, 

(2.6.2) 

where'\ E C and (u(x), w(x» E C2 , results in the linear eigenvalue problem (2.2.1)(after 
neglecting all terms with u and w with the order higher than one), where L± are Schrodinger 
operators given by 

L+ = -/:::"+W+F(¢2) + 2c/iF'(¢2) , 
L_ = -/:::"+W+F(¢2). 

(2.6.3) 

(2.6.4) 

We note that L± are unbounded operators and a e (L±) = [w±, (0) with w+ = w_ = w > 0. 
The kernel of L_ includes at least one eigenvector ¢(x) and the kernel of L+ includes at 
least d eigenvectors oxJ¢(x), j = 1, ... , d. The Hilbert space is defined as X = L2(JRd

, C) 
and the main assumptions PI-P2 are satisfied due to the exponential decay of the functions 
F(¢2) and ¢2 F'(¢2). Theorems 1 and 2 give precise count of eigenvalues of the stability 
problem L_L+u = _,\2U, provided that the numbers dim(Hl()' dim(HA+oK )' NK and NA 
can be computed from the count of isolated eigenvalues of A = P L+ P and K = P L=lp, 
where P is the orthogonal projection to the complement of Ker( L_). We illustrate these 
computations with two examples. 

Example 1. Let ¢(x) be the ground state solution such that ¢(x) > ° on x E JRd. 
By spectral theory, Ker( L_) = {¢} is one-dimensional and the subspace Hl( is empty . 

• It follows by equality (2.2.12) that N;; = N~ = N: = N c+ = 0. Therefore, 
the spectrum of the generalized eigenvalue problem (2.2.3) is real-valued and all 
eigenvalues l' are semi-simple . 

• Since Ker(L_) rt. Ker(L+) and Hl( is empty, eigenvectors of Ker(A) are in the 
positive subspace of K, such that N~ = z(L+). By Lemma 5.6, zero eigenvalues of 
A become positive eigenvalues of A + 8K for any 8 > 0, such that dim(HA+8K) = 

dim(HA)· 
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• It follows by equality (2.2.11) that N; = dim(1(4:+6K)' By Proposition 2.1, we have 
dim(1(4:) = n(L+) - Po - zo, where Po and Zo are the number of positive and zero 
values of a scalar function Mo = _(D~l</J, </J). Since L+ow</J(x) = -</J(:r), we have 

AIo = ~:L 11</Jlli2' 

• It follows by inequality (2.2.14) that N; + N~ + Np+ ~ dim(HAJ + dim(H~) + 
dim(H~) + dim(Ht). By Proposition 2.1 and the previous counts, we obtain Nt ~ 
p(L+) + p(L_) + Po + Zoo 

Remark 6.1 If n(L+) = n E Nand :L 11</Jlli2 > 0, the count above gives N; = n(L+) -
1, which coincides with Theorem 2.1 of [61] (the case n = 1 is known as the Stability 
Theorem in [59]). Ifn(L+) = 1, z(L+) = d, p(L+) = p(L_) = 0 and !11</JlIi2 < 0, the 
count above gives N; = 1, N~ = d, and Nt = 0, which is proved, with a direct variational 
method, in Proposition 2.1.2 [104] and Proposition 9.2 [80] for d = 1 and in Lemma 1.8 
[112] for d = 3, in the context of the super-critical power NLS equation with F = 14'IQ and 

2 
q> d' 

Remark 6.2 Stability of vector solitons in the coupled NLS equations, which generalize 
the scalar NLS equation (2.6.1), is defined by the same linear eigenvalue problem (2.2.1), 
where L± are matrix Schrodinger operators. General results for non-ground state solu­
tions are obtained in [70, 97] for d = 1 and in [37] for d = 3. Multiple and embedded 
eigenvalues were either excluded from analysis by an assumption [97, 37] or were treated 
implicitly [70]. The present work generalizes these results with a precise count of multiple 
and embedded eigenvalues. 

Example 2. Let the cubic NLS equation (2.6.1) with F = 11};1 2 be discretized 
so that Ll == fLldisc , where Lldisc is the second-order discrete Laplacian and f is a small 
parameter. We note that Lldisc is a bounded operator and a"c( -Lldisc ) E [0, 4d]. The Hilbert 
space is defined as X = 12 (7l,d, C). By the Lyapunov-Schmidt reduction method, the 
solution 1j; = </Je".ut with w > 0 and </J E 12(7l,d) bifurcates from the limiting solution with 
N non-zero lattice nodes at f = O. It is proved in [98] for d = 1 and [99] for d = 2 that 
:L II </JII f2 > 0, Ker( L+) = 0, and Ker( L_) = {</J} for sufficiently small f "I O. It follows 
by equalities (2.2.11) and (2.2.12) that 

N; + N/: + Nc+ = n(L+) - 1, 
N;; + N;; + Nc+ = n(L_), 

where it is found in [98, 99] that n(L+) = Nand n(L_) ~ N - 1. Lyapunov-Schmidt 
reductions give, however, more precise information than the general count above, since 
Corollary 3.5 in [98] for d = 1 predicts that N;; = n(L_), N;; = Nc+ = 0, and N; = 
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N - 1 - n (L_)8. Similarly, it follows by inequality (2.2.14) and the above count that 

If the solution ¢ is a ground state, then N = 1 and n(L_) = O. In this case, the above 
inequality shows that the number of edge bifurcations from the continuous spectrum of 
/(-1 A (given by N;) is bounded from above by the number of edge bifurcations from the 
essential spectrum of A (given by dim(1t~) and the numbers of edge bifurcations from 
the essential spectrum of /(-1 (given by dim(1tj{)). The bound above becomes less useful 
if N > 1 and n(L_) i= o. 

Remark 6.3 The Lyapunov-Schmidt reduction method was also used for continuous cou­
pled NLS equations with and without external potentials. See [71, 103] for various results 
on the count of unstable eigenvalues in parameter continuations of the NLS equations. 

2.7 Application: NLS vortices 

Consider the two-dimensional NLS equation (2.6.1) in polar coordinates (r, e): 

2 1 1 2 
6. = Orr + -Or + 2000' r r 

(2.7.1) 

where r > 0 and e E [0, 27rJ. Assume that the NLS equation (2.7.1) possesses a charge­
m vortex solution 4) = ¢(r)e,mO+,wt, where w > 0, mEN, and ¢ : lR.+ --+ lR. is an 
exponentially decaying Coo function with ¢(O) = o. See [94] for existence results of 
charge-m vortices in the cubic-quintic NLS equation with F = -14' 12 + 14' 14. Linearization 
of the NLS equation (2.7.l) with the ansatz, 

'IjJ = (¢(r)e,mo + <p+(r,e)eAt + 'P_(r,e)e~t) e'wt , (2.7.2) 

where,\ E <C and (<p+(r, e), <p_(r, e)) E <C2, results in the stability problem, 

(2.7.3) 

8Corollary 3.5 in [98] is valid only when small positive eigenvalues of L_ are simple. It is shown in [99] 
for d = 2 that the case of mUltiple small positive eigenvalues of L_ leads to splitting of real eigenvalues 
N;; of the generalized eigenvalue problem (2.2.3) to complex eigenvalues N c+ beyond the leading-order 
Lyapunov-Schmidt reduction. 
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Expand i.p( r, B) in the Fourier series 

i.p = I.: i.p(nl( r )eme 

nEZ 

and reduce the problem to a sequence of spectral problems for ODEs: 

n E 23, (2.7.4) 

The operator Ar is given by expression 

A = _82 - ~8 (n+m? 
r rr r+ 2 r r 

When n = 0, the stability problem (2.7.4) transforms to the linear eigenvalue problem 
(2.2.1), where L± is given by (2.6.3)-(2.6.4) with ~ = 8;r + ~8r - r;: and (u, w) are 

given by u = i.p~m) + i.p~-m) and w = -i( i.p~m) - i.p~-m)). When n E N, the stability 
problem (2.7.4) transforms to the linear eigenvalue problem (2.2.1) with L+ = Hn and 
L_ = a3Hna3, where 

and (u, w) are given by u = i.pn and w = -ia3i.pn. When -n E N, the stability problem 
(2.7.4) admits a transformation with H_n = alHnal and a3al = -ala3 to the stability 
problem with n E N. Let us introduce the weighted inner product for functions on r :::: 0: 

(J, g)r = 1= f(r)g(r)rdr. 

In all cases n = 0, n E Nand -n E N, L± are unbounded self-adjoint differential operators 
and a e (L±) = [w±, (0) with w+ = w_ = w > O. The kernel of the linearized operators 
includes at least three eigenvectors: 

where 1 = (1, If. The Hilbert space is defined as X = L;(l~+, q for n = 0 and 
X = L;(IR.+, ([:2) for ±n E N. In all cases, the main assumptions PI-P2 are satisfied due 
to exponential decay of the functions F( q}) and q} F' (q}). 
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The case n = 0 is the same as for solitons (see Section 5.1). We shall hence 
consider adjustments in the count of eigenvalues in the case ±n E N, when the stability 
problem (2.7.4) is rewritten in the form, 

{ 
{73Hn'Pn = i)\'Pn 

(73 H-n'P_n = i>"'P-n 
n E N. (2.7.5) 

Lemma 7.1 Let>.. be an eigenvalue of the stability problem (2.7.5) with the eigenvector 
('Pn'O). Then there exists another eigenvalue - >.. with the linearly independent eigen­
vector (0, (71'Pn). IfRe(>..) > 0, there exist two more eigenvalues >.,->. with the linearly 
independent eigenvectors (0, (71<Pn), (<Pn'O). 

Proof. We note that {71{73 = -{73{71 and {7r = {7~ = {70, where (70 = diag(l, 1). Therefore, 
each eigenvalue>.. of Hn with the eigenvector 'Pn generates eigenvalue ->.. of H_n with 
the eigenvector 'P-n = (71'Pn' When Re(>..) i- 0, each eigenvalue>.. of Hn generates also 
eigenvalue - >. of Hn with the eigenvector <Pn and eigenvalue>. of H -n with the eigenvector 

• 
Theorem 5 Let Nrea1 be the number of real eigenvalues in the stability problem (2.7.5) with 
Re(>..) > 0, Ncomp be the number of complex eigenvalues with Re(>..) > 0 and Im(>") > 0, 
Ni~ag be the number ofpurely imaginary eigenvalues with Im(>..) > 0 and ('Pn, Hn'Pn) ::::; 
0, and N;;'ro be the algebraic multiplicity of the zero eigenvalue of {73Hn'Pn = i>"'Pn with 
('Pn, Hn'Pn) ::::; O. Then, 

(2.7.6) 

where N rea1 is even. 

Proof. By Lemma 7.1, a pair of rea] eigenvalues of {73Hn'Pn = i>"'Pn corresponds to 
two linearly independent eigenvectors 'Pn and <Pn' Because (Hn'Pn, 'Pn) is real-valued and 
hence zero for >.. E JR, we have 

By counting multiplicities of the real negative and complex eigenvalues of the general­
ized eigenvalue problem (2.2.3) associated with the stability problem (2.7.5), we have 
N;; = N; = Nrea1 and Nc+ = 2Ncomp • By Lemma 7.1, a pair of purely imaginary and zero 
eigenvalues of the stability problem (2.7.5) corresponds to two linearly independent eigen­
vectors ('Pn, 0) and (0, 'P-n), where 'P-n = {71 'Pn and (H-n'P-n, 'P-n) = (Hn'Pn, 'Pn)· By 
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counting multiplicities of the real positive and zero eigenvalues of the generalized eigen­
value problem (2.2.3) associated with the stability problem (2.7.5), we have N~ = 2Nz--;'ro 
and N:!; = 2 Ni-:nag' Since the spectra of Hn , a1Hnab and a3Hna3 coincide, we have 
n(L_) = 2n(Hn ). As a result, equality (2.7.6) follows by equality (2.2.12) of Theorem 1. 
By Lemma 7.1, the multiplicity of Nrea1 is even in the stability problem (2.7.5). • 

Corollary 7.2 Let A = P L+ P and K = P L=lp, where P is an orthogonal projection to 
the complement ofKer(L_) = Span{ VI, ... , vn}. The number of small negative eigenvalues 
of A + oK for sufficiently small 0 > 0 equals the number of non-negative eigenvalues of 
Mo = limJLiO M(fL), where M'J(fL) = ((fL - L+t1vi, v)). 

Proof. The same count (2.7.6) follows by equality (2.2.11) of Theorem 1 if and only 
if dim(7-(4+oK) = dim(Hj{) = n(L_). Since the zero eigenvalue of A is isolated from 
the essential spectrum and n(L+) = n(L_), the number of small negative eigenvalues of 
A + oK for sufficiently small 0 =1= 0 must be equal to 

dim(HA+6K) - dim(HA) = n(L+) - dim(HA). 

By Proposition 2.1, this number is given by the number Po + Zo of non-negative eigenvalues 
of matrix Mo. • 

Example 3. Let ¢( r) be the fundamental charge-m vortex solution such that ¢( r) > 
o for r > 0 and ¢(O) = O. By spectral theory, Ker(Ho) = Span{<po} and the analysis for 
n = 0 becomes similar to Example 1. In the case n E N, let us assume that Ker(H1) = 
Span{ <PI} and Ker(Hn) = 0 for n 2: 2. 

• By direct computation, we obtain (a3Hla3)-I<pl = -~r¢(r)l and 

((a3Hla3)-I<Pl,<Pl) = 100 

r¢2(r)dr > O. 

By Lemma 5.6, we have N~ = 0 for n = 1 (N~ = 0 holds also for n 2: 2). By 
Proposition 2.1, we have then Mo < 0 such that Po = Zo = 0 for all n E N. 
Corollary 7.2 is hence confirmed. 

• Since (a3<Pl,<Pl) = 0 and Ker(a3Hla3) = {a3<Pl}' then <PI ..l Ker(a3Hla3)' By 
Proposition 2.1, we have z(A) = z(L+) = 1 for n = 1 and z(A) = z(L+) = 0 for 
n 2: 2. 

• By Theorem 5, we have 

Nrea1 + 2Ncomp = 2n(Hn) - 2Ni-:nag, (2.7.7) 

where Ni-:nag gives the total number of eigenvalues in the stability problem (2.7.5) 
with Re(A) = 0, Im(A) > 0, and (Hn'Pn, 'Pn) < 0, while Nz--;'ro = N~ = O. 
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Remark 7.3 Stability of vortices was considered numerically in [94], where Lemma 7.1 
was also obtained. The closure relation (2.7.7) was also discussed in [70] in a more gen­
eral context. Vortices in the discretized scalar NLS equation were considered with the 
Lyapunov-Schmidt reduction method in [99]. Although the reduced eigenvalue problems 
were found in a much more complicated form compared to the reduced eigenvalue problem 
for solitons, equality (2.7.7) was confirmed for all vortex configurations considered in [99]. 

2.8 Application: KdV solitons 

Consider a general fifth-order KdV equation, 

(2.8.1) 

where (aI, U2, a3) and (bl , b2, b3) are real-valued coefficients for linear and nonlinear terms, 
respectively. Without loss of generality, we assume that a3 > 0 and 

kER (2.8.2) 

For suitable values of parameters, there exists a traveling wave solution v{x, t) = </J{x- ct), 
where c > 0 and </J : ~ I-t ~ is an even and exponentially decaying function. Existence 
of traveling waves was established in [128, 65, 5] for b2 = b3 = 0, in [25] for b3 = 0, in 
[68] for bl = -b2 = b3 = 1, and in [84] for b3 = 0 or bl = b2 = O. Linearization of the 
fifth-order KdV equation (2.8.1) with the ansatz 

v{x, t) = </J{x - ct) + w{x - ct)eAt 

results in the stability problem 
OxL_w = AW, 

where L_ is an unbounded fourth-order operator, 

(2.8.3) 

L_ = a3 d~4 - a2 d~2 + al + c + 3b l </J{x) - b2 d~ </J{x) d~ - b2</J"{X) + 6b3</J2{X). (2.8.4) 

Due to the condition (2.8.2), we have (/e(L-) E [c, (0), such that w_ = c > O. The kernel 
of L_ includes at least one eigenvector </J'(x). Since the image of L_ is in L2(~), the 
eigenfunction w{x) E LI{~) for AI- 0 satisfies the constraint: 

(l,w) = 1 w{x)dx = O. (2.8.5) 

Let w = u'{x), where u(x) -+ 0 as Ixl -+ 00 and define L+ = -oxL_ox. The essential 
spectrum of L+ is located at (/e(L+) E [0,(0), such that w+ = O. The kernel of L+ includes 
at least one eigenvector </J( x). 



PHD THESIS - M. CHUGUNOVA McMASTER - MATHEMATICS & STATISTICS 35 

Let the Hilbert space X be defined as X = L2(lR, q. The main assumptions Pl-P2 
for L_ and L+ are satisfied due to exponential decay of the function ¢(x). Since w+ = 0, 
the kernel of L+ is embedded into the endpoint of the essential spectrum of L+. This 
introduces a technical complication in computations of the inverse of L+ [79], which we 
avoid here with the use of the shifted generalized eigenvalue problem (2.2.9) with 8 > O. 
We still need to check assumption P3. It is easy to see that 

. [2 8 ] 8 
WA+bK = mf k (c + cwave(k)) + (k) 2': - > 0, 

kElR C + Cwave ' C 

such that the first part of assumption P3 is satisfied. Since new eigenvalues of A +8]( bifur­
cating from the end points of the essential spectrum of A + 1)]( with the edge bifurcations 
are quadratic with respect to 8 [74], while the end points are linear with respect to I), all new 
eigenvalues are positive for sufficiently small I) > O. Therefore, assumption P3 is satisfied 
if we assume that the kernel of L+ is one-dimensional, that is Ker( L+) = Span { ¢ }. 

We shall apply Theorem I after the count of isolated and embedded eigenvalues in 
the stability problem (2.8.3). Since w+ = 0, the continuous spectrum of oxL_ covers the 
entire imaginary axis of A. Therefore, all real and complex eigenvalues are isolated, while 
all purely imaginary eigenvalues including the zero eigenvalue are embedded. 

Lemma 8.1 Let A) be a real eigenvalue of the stability problem (2.8.3) with the real-valued 
eigenvector IV) (x). such that Re(A)) > 0 and Im(AJ ) = O. Then there exists another 
eigenvalue - AJ in problem (2.8.3) with the linearly independent eigenvector wJ ( -x). The 
linear combinations wi (x) = wJ (x) ± wJ (-x) are orthogonal with respect to the operator 
L_, 

(2.8.6) 

Proof. Since ¢( -x) = ¢(x), the self-adjoint operator L_ is invariant with respect to the 
transformation x f--t -.r. The functions IVJ (x) and wJ (-x) are linearly independent since 
w) (x) has both symmetric and anti-symmetric parts provided that AJ =1= O. Under the same 
constraint, 

and the orthogonality relations (2.8.6) hold by direct computations. • 
Corollary 8.2 Let AJ be a complex eigenvalue of the stability problem (2.8.3) with the 
complex-valued eigenvector wJ (x), such that Re(Aj) > 0 and Im(AJ ) > O. Then there exist 
eigenvalues ,\]' - Aj, and -,\J in problem (2.8.3) with the linearly independent eigenvectors 
wJ(x), 10)( -x), andwJ( -x), respectively. 
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Lemma 8.3 Let Aj be a purely imaginary embedded eigenvalue of the stability problem 
(2.8.3) with the complex-valued eigenvector wJ(x), such that Re(AJ) = 0 and Im(AJ ) > 
O. Then there exists another eigenvalue -Aj = ;\J in problem (2.8.3) with the linearly 
independent eigenvector wJ( -x) = lDJ(x). The linear combinations w;(x) = wJ(x) ± 
u'J(x) are orthogonal with respect to the operator L_, 

(2.8.7) 

Proof. Since operator L_ is real-valued, the eigenvector wJ (x) of problem (2.8.3) with 
Im( AJ ) > 0 has both real and imaginary parts, which are linearly independent. Under the 
constraint AJ i= 0, 

(L_Wj, wJ) = A;l (L_'wJ,8x L_wJ) = 0, 

and the orthogonality equations (2.8.7) follow by direct computations. • 
Theorem 6 Let Nrea1 be the number of real eigenvalues of the stability problem (2.8.3) 
with Re(A) > 0, N comp be the number of complex eigenvalues with Re(A) > 0 and 
Im(A) > 0, and Ni~ag be the number of imaginary eigenvalues with Im(A) > 0 and 
Re (L_wJ(x), wJ(x)) ::; Of or the corresponding eigenvectors Wj. Assume that Ker(L+) = 

Span{4>} E 1-l and fcll4>lIi2 i= o. Then, 

(2.8.8) 

where Po = 1 if fc 114>lli2 > 0 and Po = 0 if fc II 4> lIi2 < o. 

Proof. Each isolated and embedded eigenvalue Ij = - A; of the generalized eigenvalue 
problem (2.2.3) is at least double with two linearly independent eigenvectors u; (x) defined 
by w; = 8x u;. By Lemma 8.1 and Corollary 8.2, the dimension of the maximal non­
positive invariant eigenspace for isolated (real and complex) eigenvalues coincide with the 
algebraic mUltiplicities of isolated eigenvalues, such that N;; = N; = Nrea1 and Nc+ = 
2Ncomp • By Lemma 8.3 and the relation for eigenvectors of the stability problem (2.8.3), 

(2.8.9) 

we have N:j; = 2Ni~ag. By Remark 5.7 and the assumption that Ker(L+) = Span{ 4>} E 1-l 
and fcll4>lli2 i= 0, we have N~ = Po, where Po = 1 if (L=l4>, 4» ::; 0 and Po = 0 if 
(L=l4>,4» < O. Since L_8c4>(x) = -4>(x), we obtain that (L=14>,4» = -(8c4>,4» = 
-!fcll4>lli2. The count (2.8.8) follows by equality (2.2.12) of Theorem l. • 

Remark 8.4 Since dim(1-lA+OK ) = dim(1-lA) + N~ and N; = Nrea1 , the same count 
(2.8.8) also follows by equality (2.2.11) of Theorem 1: 

(2.8.10) 
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provided that dim(1tA) = m(L_) - Po. By Proposition 2.1, we have Zo = 0 (since 
fcll¢lli2 =I- 0 by assumption) and dim(1tA) = n(L+) - Po, where Po is the same as in 
Theorem 6 since (L-;/¢', ¢') = (L=l¢, ¢). Similarly, because of relation (2.8.9), we have 
n( L+) = n (L_) and equality (2.8.10) is identical to equality (2.8.8). 

Remark 8.5 If n(L_) = 1, Theorem 6 predicts stability for fcll¢lli2 > 0 and instability 
with N real = 1 and Ncomp = 0 for fc 11¢lli2 < o. This result coincides with the Stability­
Instability Theorems in [13, 116]. By a different method, Lyapunov stability of positive 
traveling waves ¢(x) was considered in [122]. Specific studies of stability for the fifth­
order KdV equation (2.8.1) were reported in [66,42] with the energy-momentum methods. 
Extension of the Stability-Instability Theorems of [13, 122] with no assumption on a sim­
ple negative eigenvalue of L_ was developed in [84, 93] with a variational method. The 
variational theory is limited however to the case of homogeneous nonlinearities, e.g. b3 = 0 
or b1 = b2 = O. Our treatment of stability in the fifth-order KdV equation (2.8.1) is novel 
as it exploits a similarity between stability problems for KdV and NLS equations. The first 
application of this theory to stability of N-solitons in the KdV hierarchy was reported in 
[79]. Another treatment of the coupled Klein-Gordon-Boussinesq system, which satisfies 
properties w+ = 0 and n(L_) = 1, is reported in [81]. The case fcll¢lli2 = 0 was recently 
considered in [32] for the generalized KdV equation. 

Remark 8.6 Theorem 6 can be generalized to any KdV-type evolution equation, when the 
linearized operator L_ is invariant with respect to the transformation x f-t -x. When 
Ni-:nag = 0, the relation (2.8.8) extends the Morse index theory from gradient dynamical 
systems to the KdV-type Hamiltonian systems. For gradient dynamical systems, all nega­
tive eigenvalues of L_ are related to real unstable eigenvalues of the stability problem. For 
the KdV-type Hamiltonian system, negative eigenvalues of L_ may generate both real and 
complex unstable eigenvalues in the stability problem (2.8.3). 
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CHAPTER 3 

SPECTRAL STABILITY OF TWO-PULSE SOLUTIONS IN 
THE FIFTH-ORDER KDV EQUATION. 

3.1 Introduction 

One-pulse solutions (solitons) are commonly met in many nonlinear evolution equations 
where dispersive terms (represented by unbounded differential operators) and nonlinear 
terms (represented by power functions) are taken in a certain balance. Typical examples 
of such nonlinear evolution equations with one-pulse solutions are given by the NLS (non­
linear Schrodinger) equation, the Klein-Gordon (nonlinear wave) equation and the KdV 
(Korteweg-de Vries) equation, as we11 as their countless generalizations. 

One-pulse solutions are the only stationary (traveling) localized solutions of the 
simplest nonlinear evolution equations. However, uniqueness is not a generic property 
and bound states of spatially separated pulses can represent other stationary (traveling) 
localized solutions of the same evolution equation. For instance, two-pulse, three-pulse, 
and generally N -pulse solutions exist in nonlinear evolution equations with a higher-order 
dispersion (represented by a higher-order differential operator). The prototypical example 
of such situation is the fifth-order KdV equation in the form, 

Ut + Uxxx - Uxxxxx + 2uux = 0, (3.1.1) 

where U : JR x JR+ f----t JR and all coefficients of the nonlinear PDE are normalized by 
a scaling transformation. The more general 5th order KdV equation has been used by 
W. Craig and M. Groves [35] to describe weakly nonlinear long waves on the surface of 
a fluid with surface tension. See T.J. Bridges & G. Derks [161 for a review of history and 
applications of the fifth-order KdV equation (3.1.1) to magneto-acoustic waves in plasma 
and capillary-gravity water waves. 

Traveling localized solutions u(x, t) = ¢(x - ct) of the fifth-order KdV equation 
(3.1.1) satisfies the fourth-order ODE 

z E JR, (3.1.2) 

where z = x - ct is the traveling coordinate and one integration of the fifth-order ODE in 
z is performed subject to zero boundary conditions on ¢(z) and its derivatives as Izl ---+ 00. 

39 
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Existence of localized solutions (homoclinic orbits) to the fourth-order ODE (3.1.2) was 
considered by methods of the dynamical system theory. See AR. Champneys [24] for a 
review of various results on existence of homoclinic orbits in the ODE (3.1.2). 

In particular, it is proved with the variational method by B. Buffoni & E. Sere [19] 
and M. Groves [63] (see references to earlier works in [24]) that the fourth-order ODE 
(3.1.2) has the one-pulse solution ¢( z) for c > 0, which is the only localized solution of 
the ODE (3.1.2) for ° < c < ~ up to the translation ¢( z - 3) for any 3 E R The analytical 
expression for the one-pulse solution is only available for c = 136~ < i with 

¢(z) = - sech4 ~. 105 (-) 
338 2y 13 

(3.1.3) 

For c > t, the fourth-order ODE (3. I .2) has infinitely many multi-pulse solutions in addi­
tion to the one-pulse solution [19,63]. The multi-pulse solutions look like multiple copies 
of the one-pulse solutions separated by finitely many oscillations close to the zero equilib­
rium ¢ = 0. Stability and evolution of multi-pulse solutions are beyond the framework of 
the fourth-order ODE (3.1.2) and these questions were considered by two theories in the 
recent past. 

The pioneer work of K.A Gorshkov & L.A Ostrovsky explains multi-pulse solu­
tions of the fifth-order KdV equation (3.1.1) from the effective interaction potential com­
puted from the one-pulse solution [56, 57]. When the interaction potential has an alternat­
ing sequence of maxima and minima (which corresponds to the case when the one-pulse 
solution ¢(z) has oscillatory decaying tails at infinity), an infinite countable sequence of 
two-pulse solutions emerge with the property that the distance between the pulses occurs 
near the extremal points of the interaction potential. Three-pulse solutions can be con­
structed as a bi-infinite countable sequence of three one-pulse solutions where each pair of 
two adjacent pulses is located approximately at a distance defined by the two-pulse solu­
tion. Similarly, N -pulse solutions can be formed by a (N - 1 )-infinite countable sequence 
of N copies of one-pulse solutions. The perturbative procedure in [56] has the advan­
tages that both the linear and nonlinear stability of multi-pulse solutions can be predicted 
from analysis of the approximate ODE system derived for distances between the individual 
pulses. Numerical evidences of validity of this procedure in the context of the fifth-order 
KdV equation are reported in [20]. 

A different theory was developed by B. Sandstede [I 10] who extended the X.B. 
Lin's work on the Lyapunov-Schmidt reductions for nonlinear evolution equations [85]. 
In this method, a linear superposition of N one-pulse solutions ¢(z) = 2:;:1 <I>(z - 3 J ) 

is a solution of the ODE (3.1.2) in the case when the distances between pulses are infinite 
(i.e. 13J+1 - 3J I = 00, Vj). The Jacobian of the nonlinear ODE (3.1.2) defines a linear 
self-adjoint operator from H4(1R) to L2(1R): 

c> 0, (3.1.4) 
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where the unbounded differential part c - 8; + 8; is positive and bounded away from zero 
while the exponentially decaying potential term -2¢(z) is a relatively compact perturba­
tion. When ¢( z) is a linear superposition of N infinitely-separated one-pulse solutions 
<I>(z - sJ)' the Jacobian 11 has N zero eigenvalues related to the eigenfunctions <I>'(z - sJ) 
due to the translational invariance of the ODE (3.1.2). The Lyapunov-Schmidt method 
leads to a system of bifurcation equations for the distances between individual pulses. 
When ¢(z) is the N-pulse solution with finitely separated pulses (i.e. ISJ+1 - sJI < 00, 

Vj), one zero eigenvalue of the Jacobian operator 11 survives beyond the reductive pro­
cedure due to the translational invariance of the N-pulse solution ¢(z), while N - 1 real 
eigenvalues bifurcate from zero. The reduction method may give not only information 
about existence of multi-pulse solutions but also prediction of their spectral stability in the 
linearized time-evolution problem [110]. The linearized problem for the fifth-order KdV 
equation takes the form 

z E JR, (3.1.5) 

where v : JR f-t C is an eigenfunction for a small perturbation of ¢( z) in the reference 
frame z = x - ct and ,\ E C is an eigenvalue. We say that the eigenvalue ,\ is unstable 
if Re('\) > 0. We say that the eigenvalue ,\ is of negative Krein signature if Re('\) = 0, 
Im('\) > 0, v E H2(JR) and (11v, v) < 0. 

Our interest to this well-studied problem is revived by the recent progress in the 
spectral theory of non-self-adjoint operators arising from linearizations of nonlinear evolu­
tion equations [29). These operators can be defined as self-adjoint operators into Pontrya­
gin space where they have a finite-dimensional negative invariant subspace. Two physically 
relevant problems for the fifth-order KdV equation (3.1.1) have been solved recently by us­
ing the formalism of operators in Pontryagin spaces. First, convergence of the numerical 
iteration method (known as the Petviashvili method) for one-pulse solutions of the ODE 
(3.1.2) was proved using the contraction mapping principle in a weighted Hilbert space 
(which is equivalent to Pontryagin space with zero index) [101]. Second, eigenvalues of 
the spectral stability problem in a linearization of the fifth-order KdV equation (3.1.1) were 
characterized in Pontryagin space with a non-zero index defined by the finite number of 
negative eigenvalues of 11 using the invariant subspace theorem [79, 29]. 

Both recent works rise some open problems when the methods are applied to the 
N -pulse solutions in the fifth-order KdV equation (3.1.1), even in the case of two-pulse 
solutions (N = 2). The successive iterations of the Petviashvili's method do not converge 
for two-pulse solutions. The iterative sequence with two pulses leads either to a single pulse 
or to a spurious solution with two pulses located at an arbitrary distance (see Remark 6.5 in 
[101 D. This numerical problem arises due to the presence of small and negative eigenvalues 
of 11. A modification of the Petviashvili's method is needed to suppress these eigenvalues 
similarly to the work ofL. Demanet & W. Schlag [40] where the zero eigenvalue associated 
to the translational invariance of the three-dimensional NLS equation is suppressed. We 
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shall present the modification of the iterative Petviashvili's method in this chapter. See also 
[26, 92] and [14, 15] for alternative numerical techniques for approximations of multi-pulse 
solutions of the fifth-order KdV equation. 

Another open question arises when spectral stability of multi-pulse solutions is con­
sidered within the linear eigenvalue problem (3.1.5). By either the Gorshkov-Ostrovsky 
perturbative procedure or the Sandstede-Lin reduction method, the small eigenvalues of 
the Jacobian operator 1{ result in small eigenvalues of the linearized operator 8z 1{, which 
are either pairs of real eigenvalues (one of which is unstable) or pairs of purely imaginary 
eigenvalues of negative Krein signature (which are neutrally stable but potentially unsta­
ble). Both cases are possible in the fifth-order KdV equation in agreement with the count 
of unstable eigenvalues in Pontryagin spaces (see Theorem 6 in [29]). (Similar count of 
unstable eigenvalues and eigenvalues of negative Krein signatures was developed for the 
NLS equations in recent papers [70, 97].) Since the real eigenvalues are isolated from the 
continuous spectrum of the eigenvalue problem (3.1.5), they are structurally stable and per­
sist with respect to parameter continuations. However, the purely imaginary eigenvalues 
are embedded into the continuous spectrum of the eigenvalue problem (3.1.5) and their 
destiny remains unclear within the reduction methods. It is well known for the NLS-type 
and Klein-Gordon-type equations that embedded eigenvalues are structurally unstable to 
the parameter continuations [62]. If a certain Fermi golden rule related to the perturba­
tion term is nonzero, the embedded eigenvalues of negative Krein signature bifurcate off 
the imaginary axis to complex eigenvalues inducing instabilities of pulse solutions [37]. 
(The embedded eigenvalues of positive Krein signature simply disappear upon a generic 
perturbation [37].) This bifurcation does not contradict the count of unstable eigenvalues 
[70, 97] and it is indeed observed in numerical approximations of various pulse solutions 
of the coupled NLS equations [103]. 

From a heuristic point of view, we would expect that the time evolution of an en­
ergetically stable superposition of stable one-pulse solutions remains stable. (Stability of 
one-pulse solutions in the fifth-order KdV equation (3.1.1) was established with the vari­
ational theory [84] and the multi-symplectic Evans function method [16, 17].) According 
to the Gorshkov-Ostrovsky perturbative procedure, dynamics of well-separated pulses is 
represented by the Newton law for particle dynamics which describes nonlinear stability 
of oscillations near the minima of the effective interaction potential [57]. Therefore, we 
would rather expect (on the contrary to embedded eigenvalues in the linearized NLS and 
Klein-Gordon equations) that the embedded eigenvalues of negative Krein signature are 
structurally stable in the linear eigenvalue problem (3.1.5) and persist beyond the leading 
order of the perturbative procedure. (Multi-pulse solutions of the NLS and Klein-Gordon 
equations with well-separated individual pulses are always linearly stable since the small 
purely imaginary eigenvalues of the Lyapunov-Schmidt reductions are isolated from the 
continuous spectrum of the corresponding linearized problems [124].) 

Since the count of unstable eigenvalues in [29] does not allow us to prove structural 
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stability of embedded eigenvalues of negative Krein signature, we address this problem 
separately by using different analytical and numerical techniques. In particular, we present 
an analytical proof of persistence (structural stability) of embedded eigenvalues of nega­
tive Krein signature in the linearized problem (3.1.5). We also apply the Fourier spectral 
method and illustrate the linearized stability of the corresponding two-pulse solutions nu­
merically. Our analytical and numerical methods are based on the construction of expo­
nentially weighted spaces for the linear eigenvalue problem (3.1.5). (See [96] for analysis 
of exponentially weighted spaces in the context of the generalized KdV equation.) See 
[28J for computations of the Maslov index for two-pulse solutions of the fifth-order KdV 
equation (3.1.1) and [123] for stability analysis of two-pulse solutions of the coupled KdV 
equations. 

This chapter is structured as follows. Section 3.2 contains a summary of avail­
able results on existence and stability of one-pulse and two-pulse solutions of the fifth­
order KdV equation (3.1.1). Section 3.3 presents a modification of the iterative Petviashvili 
method for convergent numerical approximations of the two-pUlse solutions in the fourth­
order ODE (3.1.2). Section 3.4 develops the proof of structural stability of embedded 
eigenvalues in the eigenvalue problem (3.1.5) and numerical approximations of unstable 
and stable eigenvalues in an exponentially weighted space. Section 3.5 describes full nu­
merical simulations of the fifth-order KdV equation (3.1.1) to study nonlinear dynamics of 
two-pulse solutions. 

3.2 Review of available results 

Linearization of the ODE (3.1.2) at the critical point (0,0,0,0) leads to the eigenvalues '" 
given by roots of the quartic equation, 

",4 _ ",2 + c = o. (3.2.1 ) 

When c < 0, one pair of roots", is purely imaginary and the other pair is purely real. When 
o < c < ~, two pairs of roots", are real-valued. When c > ~, the four complex-valued 
roots", are located symmetric about the axes. We will use notations ko = Im( "') > 0 and 
"0 = Re( "') > 0 for a complex root of (3.2.1) in the first quadrant for c > ~. The following 
two theorems summarize known results on existence of one-pUlse and two-pulse solutions 
of the ODE (3.1.2). 

Theorem 3.2.1 (One-pulse solutions) 

(i) There exists a one-pulse solution ¢(z) of the ODE (3.1.2) for c > 0 sllch that ¢ E 

H2(R)nC5 (R), ¢(-z) = ¢(z), and¢(z) ---+ o exponentially as Izl---+ 00. Moreover, 
¢(z) is Cm(R) for any m 2: o. 
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(ii) The Jacobian operator Hill (3.1.4) associated with the olle-pulse solution ¢(z) has 
exactly one negative eigenvalue with an even eigenfunction and a simple kernel with 
the odd eigenfunction ¢'(z). 

(iii) Assume that the map ¢(z) from c > 0 to H2(JR) is C1(JR+) and that P'(c) > 0, where 
P( c) = II ¢lIi2. The linearized operator Oz H has a two-dimensional algebraic kernel 
in L2(JR) and no unstable eigenvalues with Re(A) > o. 

Proof (i) Existence of a symmetric solution ¢( z) in H2(JR) follows by the mountain-pass 
lemma and the concentration-compactness principle (see Theorem 8 in [63] and Theorem 
2.3 in [84]). The equivalence between weak solutions of the variational theory and strong 
solutions of the ODE (3.1.2) is established in Lemma 1 of [63] and Lemma 2.4 of [84]. 
The exponential decay of ¢(z) follows from the Stable Manifold Theorem in Appendix A 
of [19]. Finally, the smoothness of the function ¢( z) is proved from the ODE (3.1.2) by the 
bootstrapping principle [32]. 

(ii) The Jacobian operator H coincides with the Hessian of the energy functional 
J(u) used in the constrained variational problem in [63]. By Proposition 16 in [63], the 
one-pulse solution ¢( z) is a global minimizer of J ( u) subject to the constraint K (u) = K 0, 

where K(u) = In~ u3dx. By Lemma 2.3 in [101], ¢ is a minimizer of the constrained 
variational problem if H has exactly one negative eigenvalue. Since the negative eigenvalue 
corresponds to the ground state of H, the corresponding eigenfunction is even. The kernel 
of H includes an eigenvalue with the odd eigenfunction ¢' (z) due to the space translation. 
The one-pulse solution is isolated, and the kernel of H is hence simple, due to the duality 
principle in Theorem 4.1 of [19]. If it is not simple, then global two-dimensional stable 
and unstable manifolds coincide and the time for a homoclinic orbit to go from the local 
unstable manifold to the local stable manifold is uniformly bounded. However, a sequence 
of homoclinic solutions {Un}nEN was constructed in [18] such that the time between local 
manifolds grows linearly in n. By the duality principle, no second even eigenfunction exists 
in the kernel of H. 

(iii) Smoothness of the map ¢(z) from c > 0 to H2(JR) is a standard assumption 
(see Assumption 5.1 in [84]). If P' ( c) > 0, the one-pulse solution is stable, according 
to Theorem 4.1 of [84] and Theorem 8.1 of [16]. Therefore, no eigenvalues of ozH with 
Re(A) > 0 exist. The two-dimensional algebraic kernel of Oz H follows from the derivatives 
of the ODE (3.1.2) in z and c: 

H¢'(z) = 0, (3.2.2) 

The algebraic kernel of Oz H is exactly two-dimensional under the condition P' ( c) -=I 0 
[95]. 0 
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Theorem 3.2.2 (Two-pulse solutions) There exists an infinite countable set of two-pulse 
solutions ¢(Z) of the ODE (3.1.2) for c > 1 such that ¢ E H2(JR) n C 5 (JR), ¢( -z) = ¢(z), 
¢(z) -+ 0 exponentially as Ixl -+ 00, and ¢(z) resembles two copies of the one-pulse 
solutions described in Theorem 3.2.1 which are separated by small-amplitude oscillatory 
tails. The members of the set are distinguished by the distance L between individual pulses 
which takes the discrete values {Ln}nEN. Moreover, for any small 8 > 0 there exists "Y > 0 
such that 

n E N. (3.2.3) 

Proof Existence of an infinite sequence of geometrically distinct two-pulse solutions with 
the distances distributed by (3.2.3) follows by the variational theory in Theorem ].] of 
[19] under the assumption that the single-pulse solution ¢( z) is isolated (up to the space 
translations). This assumption is satisfied by Theorem 3.2.] (ii). D 

The following theorem describes an asymptotic construction of the two-pulse solu­
tions, which is used in the rest of this chapter. 

Theorem 3.2.3 Let c > 1 and <I>(z) denote the one-pulse solution described by Theorem 
3.2.1. Let L = 2s be the distance behVeen tlt'o copies of the one-pulse solutions of/he ODE 
(3.1.2) in the decomposition 

¢(z) = <I>(z - s) + <I>(z + s) + <p(z), (3.2.4) 

where <p(z) is a remainder term. Let lV(L) be C2 (JR+) function defined by 

W(L) = 1 <I>2(Z)<I>(Z + L)dz. (3.2.5) 

There exists an infinite countable set of extrema ofW(L), which is denoted by {Ln}nEN. 

(i) Assume that W"(Ln) i- 0 for a given n E N. There exists a unique symmetric 
two-pulse solution ¢(z) described by Theorem 3.2.2, such that 

IL - Lnl :::; Cne- KoL
, 11<pIIH2(lR) :::; Cne- KoL

, (3.2.6) 

for some Cn, en > O. 

(ii) The Jacobian H associated with the two-pulse solution ¢( z) has exactly two finite 
negative eigenvalues with even and odd eigenfunctions, a simple kernel with the odd 
eigenfunction ¢' (z) and a small eigenvalue f-l with an even eigenfunction, such that 

1/ +' n < D e-2KOL 

I 
2lV"(L ) I 

,- Q(c) - n 
(3.2.7) 

for some Dn > 0, where Q(c) = 1I<I>'lli2 > o. In particular, the small eigenvalue f-l 
is negative when W"(Ln) > 0 and positive when W"(Ln) < O. 
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(iii) There exists a pair of small eigenvalues ,\ of the linearized operator 8/H associated 
with the two-pulse solution ¢( z), such that 

/

,\2 + 4Wl/(Ln) / < D e-2KOL 
P'(c) - n , 

(3.2.8) 

for some Dn > 0, where P(c) = Ilcplli,2 and P'(c) > 0. In particular, the pair is 
real when WI/(Ln) < 0 and purely imaginary (up to the leading order) with negative 
Krein signature when IVI/(Ln) > 0. 

Proof. When the tails of the one-pulse solution cp(z) are decaying and oscillatory (i.e. when 
c > ~), the function TV (L) in (3.2.5) is decaying and oscillatory in L and an infinite set of 
extrema {Ln}nEN exists. Let us pick Ln for a fixed value of n E N such that W'(Ln) = ° 
and WI/(Ln) =I- O. 

(i) When the decomposition (3.2.4) is substituted into the ODE (3.1.2), we find the 
ODE for ip(z): 

(c - 8; + 8; - 2CP(z - s) - 2CP(z + s)) ip - ip2 = 2CP(z - s)cp(z + s). (3.2.9) 

Let E = e-KoL be a small parameter that measures the Loo-norm of the overlapping term 
cp(z - s )cp(z + s) in the sense that for each E > 0 there exist constants Co, So > ° such that 

Ilcp(z - s)cp(z + s)llv'" ~ COE \:Is 2:: So· (3.2.10) 

Denote L = 2s and EW(Z; L) = 2CP(z)CP(z + L) and rewrite the ODE (3.2.9) for <p(z) = 
ip(z + s): 

(c - 8; + 8; - 2CP(z)) <p - 2CP(z + L)<p - <p2 = EW(Z; L). (3.2.11) 

The vector field of the ODE (3.2.11) is closed in function space H2(I~). while the Jacobian 
for the one-pulse solution 

1{ = c - 8; + 8; - 2CP(z) 

has a simple kernel with the odd eigenfunction cp'(z) by Theorem 3.2.1 (ii). By the Lyapunov­
Schmidt reduction method (see [55]), there exists a unique solution <p = <p,(z; L) E 
H2(JR.): (cp', <p) = 0, such that <po(z; L) = ° and <p,(z; L) is smooth in E, provided L 
solves the bifurcation equation F, (L) = 0, where 

F,(L) = E (cp'(z), w(z; L)) + 2 (cp'(z), cp(z + L)<p,(z; L)) + (cp'(z), <p;(z; L)) 

= E (cp'(z), w(z; L)) - E (8L w(z; L), <p,(z; L)) - E (w(z; L), 8z <p,(z; L)) 

+ (cp'(z),<p;(z;L)). 
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Since 0t(z; L) is smooth in E and 0o(z; L) = 0, then 110t(z; L)IIH2(1R) < CE for 
some C > ° such that 

Ft(L) = -rV'(L) + Ft(L), 

where IW'(L)I ::; CIE and IFt(L)1 ::; C 2 f
2 for some C l , C2 > 0. The statement follows 

by the Implicit Function Theorem applied to the scalar equation ~ Ft (L) = ° under the 
assumption that the root Ln of lV' (L) is simple. 

(ii) The Jacobian H associated with the two-pulse solution ¢(z) in (3.2.4) has the 
form: 

H = c - 0; + 0; - 2<I>(z - s) - 2<I>(z + s) - 2<p(z). 

In the limit s -+ 00, the Jacobian H has a double negative eigenvalue and a double zero 
eigenvalue. By a linear combination of eigenfunctions, one can construct one even and 
one odd eigenfunctions for each of the double eigenvalues. By continuity of eigenvalues 
of self-adjoint operators, the double negative eigenvalue splits and the two simple eigen­
values remain negative for sufficiently large s. By reversibility of the system, eigenfunc­
tions for simple eigenvalues are either even or odd and by continuity of eigenfunctions, 
there is exactly one even and one odd eigenfunctions for the two negative eigenvalues. By 
the translation invariance, the double zero eigenvalue splits into a simple zero eigenvalue 
which corresponds to the odd eigenfunction ¢' (z) and a small non-zero eigenvalue that 
corresponds to an even eigenfunction. The splitting of the double zero eigenvalue in the 
problem Hv = J-lV is considered by the perturbation theory, 

V(z) = cyl<I>'(z - s) + cy2<I>'(z + s) + V(z), (3.2.12) 

where (CYl' CY2) are coordinates of the projections to the kernel of H in the limit s -+ 00 and 
V(z) is the remainder term. By projecting the eigenvalue problem Hv = J-lV to the kernel 
of H and neglecting the higher-order terms, we obtain a reduced eigenvalue problem: 

where Q(c) = 11<I>'lli2 > 0, W"(Ln) is computed from (3.2.5) and 

l'V = 2 ([<I>'(z - sW,'P(z) + <I>(z + s)) = 2 ([<I>'(z)]2,0(z) + <I>(z + L)). 

Since one eigenvalue must be zero with the odd eigenfunction ¢'(z), the zero eigenvalue 
corresponds to the eigenfunction (3.2.12) with CYI = CY2 up to the leading order. By looking 
at the linear system, we find that the zero eigenvalue corresponding to CYI = CY2 exists 
only if vV = W"(Ln ). The other eigenvalue at the leading order is J-l = -2W"(Ln )/Q(c) 
and it corresponds to the even eigenfunction (3.2.12) with CYI = -CY2. By continuity of 
isolated eigenvalues H with respect to perturbation terms and estimates of Theorem 2.3(i), 
we obtain the result (3.2.7). 
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(iii) In the limit S -t 00, the linearized operator 8z h for the two-pulse solution 
¢(z) has a four-dimensional algebraic kernel according to the two-dimensional kernel of 
the one-pulse solution (3.2.2). By the translation invariance, the two-dimensional algebraic 
kernel survives for any s with the eigenfunctions { ¢' (z), 8c¢( z) }. Two eigenvalues ,\ of the 
operator 8z h may bifurcate from the zero eigenvalue. The splitting of the zero eigenvalue 
in the problem 8z hv = '\v is considered by the perturbation theory, 

where (0'1,0'2, (31, (32) are coordinates of the projections to the algebraic kernel of 8z h in 
the limit s -t 00 and V(z) is the remainder term. By projecting the eigenvalue problem 
8zhv = Xv to the algebraic kernel of the adjoint operator -h8z and neglecting the higher­
order terms, we find at the leading order that;3j = '\O'j' j = 1,2 and (0'1,0'2) satisfy a 
reduced eigenvalue problem: 

where P(c) = 11<I>III2 and TV = TV"(Ln). The non-zero squared eigenvalue ,\2 at the 
leading order is 

,\2 = 2Q(c)p, = _ 4W"(Ln) 
P'(c) P'(c)' 

Isolated eigenvalues 8z h are continuous with respect to perturbation terms, so that we 
immediately obtain the result (3.2.8) for ,\ E IR. when W"(Ln) < 0. In order to prove 
(3.2.8) for'\ E ilR. when W"(Ln) > 0, we compute the energy quadratic form at the 
leading order 

(hv, v) = -4l'V"(Ln) - P'(c)I'\12, 
where v(z) is given by the eigenfunction (3.2.13) with 0'1 = -0'2 = 1 and (3J = '\O'J' j = 
1,2. When'\ E ilR. and W"(Ln) > 0, we have (hv, v) < ° up to the leading order, such 
that ,\ E ilR. is an eigenvalue of negative Krein signature. Persistence of the eigenvalues 
of negative Krein signature (even although the eigenvalues ,\ E ilR. are embedded into 
the continuous spectrum of 8z h) follows from the invariant subspace theorem (Theorem 
1 in [29]). In the exponentially weighted spaces [96], the eigenvalues of negative Krein 
signature are isolated and hence continuous, such that they satisfy the bound (3.2.8). D 

Remark 3.2.4 Theorem 3.2.3 is a modification of more general Theorems 1 and 2 in [110] 
(see also [85]). We note that the persistence of eigenvalues (3.2.8) on the imaginary axis for 
W"(Ln) > ° cannot be proved with the Lyapunov-Schmidt reduction method since the es­
sential spectrum of 8z h occurs on the imaginary axis (contrary to the standard assumption 
of Theorem 2 in [110] that the essential spectrum is located in the left half-plane.) 
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The following conjecture from the Gorshkov-Ostrovsky perturbative procedure 
[56, 57] illustrates the role of J,V (L) as the effective interaction potential for the slow dy­
namics of a two-pulse solution: 
Conjecture: Let C1 , C2 be some positive constants. For the initial time interval 0 ::; t ::; 
C1 e"oL/2 and up to the leading order O( e-KoL ), the two-pulse solutions of the fifth-order 
KdVequation (3.1.1) can be written as the decomposition 

u(:r, t) = 1>(x - ct - s(t)) + 1>(x - ct + s(t)) + U(x, t), 

where IJUIIL= < C2e-"oL and the slow dynamics of L(t) 2s(t) is represented by the 
Newton law: 

F'(c)£ = -4W'(L). (3.2.14) 

Although rigorous bounds on the time interval and the truncation error of the Newton law 
were recently found in the context of NLS solitons in external potentials (see [47]), the 
above conjecture was not proved yet in the context of two-pulse solutions of the fifth-order 
KdV equation (3.1.1). We note that perturbation analysis that leads to the Newton law 
(3.2.14) cannot be used to claim persistence and topological equivalence of dynamics of 
the second-order ODE (3.2.14) to the full dynamics of two-pulse solutions in the fifth-order 
KdV equation (3.1.l). 

According to Theorem 3.2.3, an infinite set of extrema of W (L) generates a se­
quence of eqUilibrium configurations for the two-pulse solutions in Theorem 3.2.2. Since 
F'(c) > 0 by Theorem 3.2.1(iii), the maxima points of W(L) correspond to a pair of real 
eigenvalues>. of the spectral problem (3.1.5), while the minima points of W (L) corre­
spond to a pair of purely imaginary eigenvalues >.. The two-pUlse solutions at the maxima 
points are thus expected to be linearly and nonlinearly unstable. The two-pUlse solutions 
at the minima points are stable within the leading-order approximation (3.2.8) and within 
the Newton law (3.2.14) (a particle with the coordinate L(t) performs a periodic oscilla­
tion in the potential well). Correspondence of these predictions to the original PDE (3.1.l) 
is a subject of the present chapter. We will compute the interaction potential TV (L) and 
the sequence of its extrema points {Ln}nEN, as well as the numerical approximations of 
the two-pulse solutions of the ODE (3.1.2) and of the eigenvalues of the operator Oz 1-{ in 
(3.1.5). 

3.3 Modification of the Petviashvili method 

We address the Petviashvili method for numerical approximations of solutions of the fourth­
order ODE (3.1.2) with c > O. See review of literature on the Petviashvili's method in 
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[101]. By using the standard Fourier transform 

J(k) = 1 </J(z)e-tkZdz, k E JR, 

we reformulate the ODE (3.1.2) as a fixed-point problem in the Sobolev space H2(JR): 

A </J2(k) 
</J(k) = (c + k2 + k4)' k E JR, (3.3.1) 

where j2 (k) can be represented by the convolution integral of J( k) to itself. An even 
real-valued solution </J( - z) = </J( z) of the ODE (3.1.2) in H2(JR) is equivalent to the even 
real-valued solution J( - k) = J( k) of the fixed-point problem (3.3.1). Let us denote the 
space of all even functions in H2(JR) by H;v(JR) and consider solutions of the fixed-point 
problem (3.3.1) in H;v(JR). 

Let {un (k )}~=o be a sequence of Fourier transforms in H;v(JR) defined recursively 
by 

(3.3.2) 

where uo(k) E H;v(JR) is a starting approximation and Mn == A1[un] is the Petviashvili 
factor defined by 

l\1[u] = fIR(c + k2 + ':) [U(k)]2 dk. 
fIR u(k)u2(k)dk 

(3.3.3) 

If Un E H2(JR), then U E L3(JR) due to the Sovolev embedding theorem, and both the 
nominator and denominator of l\1[u] are bounded. It follows from the fixed-point problem 
(3.3.1) that M[J] = 1 for any solution J E H;v(JR). The following theorem was proved in 
[101] and reviewed in [40]. 

Theorem 3.3.1 Let J( k) be a solution of the fixed-point problem (3.3.1) in H;v (JR). Let 'H 
be the Jacobian operator (3.1.4) evaluated at the corresponding solution </J(z) of the ODE 
(3.1.2). 1f'H has exactly one negative eigenvalue and a simple zero eigenvalue and if 

either </J(z) 2: 0 or linf </J(Z) I < ~, (3.3.4) zEIR 2 

then there exists an open neighborhood of J in H;v (JR), in which J is the unique fixed point 
and the sequence of iterations {un(k)}~=o in (3.3.2)-(3.3.3) converges to J. 
Proof. We review the basic steps of the proof, which is based on the contraction mapping 
principle in a local neighborhood of J in H;v(JR). The linearization of the iteration map 
(3.3.2) at the solution </J is rewritten in the physical space z E JR as follows: 

(3.3.5) 
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where an is a projection of Un onto qi in L2 (JR): 

such that Un = ¢ + Vn and Mn = 1 - etn to the linear order. The operator T = (c - 8; + 
[J';)-lH is a self-adjoint operator in Pontryagin space ITo defined by the inner product 

See [29] for review of Pontryagin spaces and the invariant subspace theorem. Since c > 0, 
the Pontryagin space ITo has zero index and, by the invariant subspace theorem, the operator 
T in ITo has exactly one negative eigenvalue, a simple kernel and infinitely many positive 
eigenvalues. (Since T is an identity operator with a compact perturbation, the spectrum of 
T is purely discrete.) The eigenfunctions for the negative and zero eigenvalues are known 
exactly as 

T¢= -¢, T ¢'(z) = 0. 

Due to orthogonality of the eigenfunctions in the Pontryagin space ITo and the relation 

we observe that an is a projection of Un to ¢ in ITo, which satisfies the trivial iteration map: 

etn +1 = 0, n ~ 1, 

no matter what the value of eto is. In addition, projection of Un to ¢' in ITo is zero since 
Un E H;v(JR). As a result, the linearized iteration map (3.3.5) defines a contraction map if 
the maximal positive eigenvalue of Tin L2(JR) is smaller than 2. However, 

(3.3.6) 

If ¢( z) ~ ° on z E JR, the right-hand-side of (3.3.6) is zero. Otherwise, the right-hand-side 
of (3.3.6) is bounded from above by ~ linfzElR ¢(z)l, which leads to the condition (3.3.4). 
o 

Corollary 3.3.2 Let ¢(z) be a one-pulse solution of the ODE (3.1.2) with c > ° defined 
by Theorem 3.2.1. Then, the iteration method (3.3.2)-(3.3.3) converges to ¢(z) in a local 
neighborhood of ¢ in H;v (JR) provided that the condition (3.3.4) is met. 

The condition (3.3.4) is satisfied for the positive exact solution (3.1.3) for c = 1
3
;9' 

Since the one-pulse solution is positive definite for ° < c < ~ [5], it is also satisfied for 
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all values of C E (0, D. However, the solution is sign-indefinite for c 2: ~, such that 
the condition (3.3.4) must be checked a posteriori, after a numerical approximation of the 
solution is obtained. 

Besides the convergence criterion described in Theorem 3.3.1, there are additional 
factors in the numerical approximation of the one-pulse solution of the ODE (3.1.2) which 
comes from the discretization of the Fourier transform, truncation of the resulting Fourier 
series, and termination of iterations within the given tolerance bound. These three numeri­
cal factors are accounted by three numerical parameters: 

(i) d - the half-period of the computational interval Z E [-d, d] where the solution ¢( z) 
is represented by the Fourier series for periodic functions; 

(ii) N - the number of terms in the partial sum for the truncated Fourier series such that 
the grid size h of the discretization is h = 2d / N; 

(iii) E - the small tolerance distance that measures deviation of lIfn from 1 and the distance 
between two successive approximations, such that the method can be terminated at 
the iteration n if 

and 

and ¢ == un(z) can be taken as the numerical approximation of the solution ¢(z). 

The numerical approximation depends weakly of the three numerical parameters, 
provided (i) d is much larger than the half-width of the one-pulse solution, (ii) N is suf­
ficiently large for convergence of the Fourier series, and (iii) E is sufficiently small above 
the level of the round-off error. Indeed, the constraint (i) ensures that the truncation error 
is exponentially small when the one-pulse solution is replaced by the periodic sequence 
of one-pulse solutions in the trigonometric approximation [Ill]. The constraint (ii) en­
sures that the remainder of the Fourier partial sum is smaller than any inverse power of 
N (by Theorem 3.2.1(i), all derivatives of the function ¢(z) are continuous) [I19]. The 
constraint (iii) specifies the level of accuracy achieved when the iterations of the method 
(3.3.2)-(3.3.3) are terminated. While we do not proceed with formal analysis of the three 
numerical factors (see [40] for an example of this analysis), we illustrate the weak depen­
dence of three numerical factors on the example of the numerical approximation ¢( z) of 
the exact one-pulse solution (3.1.3), which exists for c = 136~. Numerical implementation 
ofthe iteration method (3.3.2)-(3.3.3) was performed in MATLAB according to a standard 
toolbox of the spectral methods [I 19]. 

Figure 3.1 displays the distance E = II¢ - ¢11£'xo versus the three numerical fac­
tors d, h, and E described above. The left panel shows that the error E converges to the 
numerical zero, which is 0(10-15) in MATLAB under the Windows platform, when the 
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Figure 3.1: The distance E = II¢ - ¢IIL'''' for the ODE (3.1.2) with c = 1
3
6
6
9 versus the 

half-period d of the computational interval, the step size h of the discretization, and the 
tolerance bound E. 

step size h is reduced, while d = 50 and E = 10-15 are fixed. The middle panel computed 
for h = 1 and E = 10-15 shows that the error E converges to the level 0(10-13

) when the 
half-width d is enlarged. The numerical zero is not reached in this case, because the step 
size h is not sufficiently small. The right panel computed for h = 1 and d = 50 shows that 
the error E converges to the same level 0(10- 13 ) as the tolerance bound E is reduced. In 
all approximations that follow, we will specify h = 0.01, d = 50 and E = 10-15 to ensure 
that the error of the iteration method (3.3.2)-(3.3.3) for one-pulse solutions is on the level 
of the numerical zero 0(10- 15 ). 

Figure 3.2 (left) shows the numerical approximation of the one-pulse solutions 
for c = 4, where the small-amplitude oscillations of the exponentially decaying tail are 
visible. We check a posteriori the condition (3.3.4) for non-positive one-pulse solutions 
linfzEIR ¢(z)1 < 2 for c = 4. Figure 3.2 (right) displays convergence of the errors EM = 

IMn - 11 and E= = Ilun +! - Un ilL'''' computed dynamically at each n as n increases. We 
can see that the error EM converges to zero much faster than the error E=, in agreement 
with the decomposition of the linearized iterative map (3.3.5) into the one-dimensional pro­
jection an and the infinite-dimensional orthogonal compliment (see the proof of Theorem 
3.3.1). In all further approximations, we will use the error E= for termination of iterations 
and detecting its minimal values since E= is more sensitive compared to EM. 

Figure 3.3 shows the dependence of p(c) = 1I¢lIi2(IR) on c > O. Since the de-

pendence of p( c) is strictly increasing and the approximation error is controlled in the 
numerical method, the assumption of Theorem 2.1 (iii) that p' ( c) > 0 is verified. 
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Figure 3.3: The squared L2-norm of the one-pulse solutions of the ODE (3.1.2) versus c. 
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Since the numerical approximations ¢( z) of one-pulse solutions can be computed 
for any value of c > 0, one can use ¢( z) for a given c and compute the effective interaction 
potential (3.2.5), which defines the extremal values {Lr,}nEN. Theorem 3.2.3 guarantees 
that the two-pulse solution ¢( z) consists oftwo copies of the one-pulse solutions separated 
by the distance L near the point Ln where W'(Ln) = 0 and W"(Ln) -I- O. Table 1 shows the 
first four values of the sequence {Ln}~=1 for c = 1 (where 5 n = Ln/2 is the half-distance 
between the pulses). It also shows the corresponding values from the first four numerical 
approximations of two-pulse solutions ¢( z) (obtained below) and the computational error 
computed from the difference of the two numerical approximations. We can see that the 
error decreases for larger indices n in the sequence {Ln}nEN since the Lyapunov-Schmidt 
reductions of Theorem 3.2.3 become more and more accurate in this limit. 

solution effective potential root finding error 

5 = 51 5.058733328146916 5.079717398028492 0.02098406988158 
5 = 52 8.196800619090793 8.196620796452045 1.798226387474955.10-4 

5 = 53 11.338414567609066 11.338406246900558 8.320708507980612.10-6 

5 = 54 14.479997655627219 14.479996635578457 1.020048761901649. 10-6 

Table 1: The first four members of the sequence of two-pulse solutions for c = 1. 

By Theorem 3.2.3(ii), the Jacobian operator 1t associated with a two-pulse solu­
tion ¢(z) has one finite negative eigenvalue in the space of even functions and one small 
eigenvalue which is either negative or positive depending on the sign of W"(Ln). This 
small eigenvalue leads to either weak divergence or weak convergence of the Petviashvili 
method in a local neighborhood of ¢ in H;v(I~). Even ifthe small eigenvalue is positive and 
the algorithm is weakly convergent, the truncation error from the numerical discretization 
may push the small eigenvalue to a negative value and lead thus to weak divergence of the 
iterations. 

Figure 3.4 illustrates typical behaviors of the errors EM and Eoo versus n for the 
starting approximation 

Uo(z) = Uo(z - 5) + Uo(z + 5), (3.3.7) 

where Uo (z) is a starting approximation of a sequence {un (Z )}nEN which converges to the 
one-pulse solution <I>(z) and 5 is a parameter defined near L n /2 for the two-pulse solution 
¢(z). The left panel shows iterations for 5 near 51 and the right panel shows iterations for 5 

near 52. Since W"(L1) > 0 and W"(L2 ) < 0, the iteration method (3.3.2)-(3.3.3) diverges 
weakly near the former solution, while it converges weakly near the latter solution. 

At the initial stage of iterations, both errors EM and Eoo quickly drops to small 
values, since the starting iterations Uo(z =F 5) converge to the one-pUlse solutions <I>(z =F 5) 
while the contribution from the overlapping tails of <I>(z =F 5) is negligible. However, at 
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the later stage of iterations, both errors either start to grow (the left panel of Figure 3.4) 
or stop to decrease (the right panel). As it is explained above, this phenomenon is related 
to the presence of zero eigenvalue of H in the space of even functions which bifurcates 
to either positive or negative values due to overlapping tails of <I> ( Z =f 8) and due to the 
truncation error. At the final stage of iterations on the left panel of Figure 3.4, the numerical 
approximationun(z) converges to the one-pulse solution <I>(z) centered at Z = ° and both 
errors quickly drop to the numerical zero, which occurs similarly to the right panel of 
Figure 3.2. No transformation of the solution shape occurs for large n on the right panel of 
Figure 3.4. 

The following theorem defines an effective numerical algorithm, which enables 
us to compute the two-pulse solutions from the weakly divergent iterations of the Petvi­
ashvili's method (3.3.2)-(3.3.3). 

Theorem 3.3.3 Let ¢(z) be the two-pulse solution of the ODE (3.1.2) defined by Theorems 
3.2.2 and 3.2.3. There exists 8 = 8* near 8 = Ln /2 such that the iteration method (3.3.2)­
( 3.3.3) with the starting approximation Uo (z) = <I> (z - 8) + <I> (z + 8) converges to ¢( z) in 
H':v(JR). 

Proof The iteration operator (3.3.2)-(3.3.3) in a neighborhood of the two-pulse solution 
¢(z) in H':v(JR) can be represented into an abstract form 

nEN, 

where the linear operator M (E) has a unit eigenvalue at E = ° and the nonlinear vector field 
N(vn, E) is Coo in Vn E H;v and E E JR, such that N(O, 0) = DvN(O, O) = 0. Here Vn is 
a perturbation of 'Un to the fixed point ¢ and E is a small parameter for two-pulse solutions 
defined in Theorem 3.2.3. By the Center Manifold Reduction for quasi-linear discrete 
systems (Theorem 1 in [48]), there exists a one-dimensional smooth center manifold in a 
local neighborhood of ¢ in H,:v (JR). Let ~ be a coordinate of the center manifold such that 
~ E IR, ~ = ° corresponds to v = 0, and the dynamics on the center manifold is 

n E N, 

where /1(E) satisfies /1(0) = 1 and I(~n' E) is Coo in ~ E JR and E E JR, such that 1(0, 0) = 

8d(0, 0) = 0. Consider the one-parameter starting approximation uo(z) = <I>(z - 8) + 
<I>(z + 8) in a neighborhood of ¢ in H':v(JR), where 8 is close to the value 8 = 8 n defined in 
Theorem 3.2.3. By the time evolution of the hyperbolic component of Vn (see Lemma 2 in 
[48]), the sequence Vn approaches to the center manifold with the coordinate ~n. Iterations 
of ~n are sign-definite in a neighborhood of ~ = 0. Moreover, there exists 81 < 8 n and 
82 > 8n, such that the sequences {~n(8d}nEN and {~n(82)}nEN are of opposite signs. By 
smoothness of Vn and ~n from parameter 8, there exists a root 8* in between 81 < 8* < 82 

such that ~n(8*) = ° for all n E N. 0 
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Remark 3.3.4 The proof of Theorem 3.3.3 does not require that the root s. be unique for 
the one-parameter starting approximation uo(z) = <I>(z - s) + <I>(z + s). Our numerical 
computations starting with a more general approximation (3.3.7) show, however, that the 
root s* is unique near s = Sn. 

To capture the two-pulse solutions according to Theorem 3.3.3, we compute the 
minimum of the error Eoo for different values of s and find numerically a root s = s. of 
the function 

f(s) = min (Eoo), 
O::;n::;no 

where no is the first iterations after which the value of Einfty increases (in case of the left 
panel of Figure 3.4) or remains unchanged (in case of the right panel of Figure 3.4). The 
numerical root s = s. is found by using the secant method: 

sk-2!(Sk-1) - Sk-I!(Sk-2) 
Sk = . 

f(Sk-1) - f(Sk-2) 
(3.3.8) 

The Petviashvili method (3.3.2)-(3.3.3) with the starting approximation (3.3.7) where s is 
close to the root s = s. near the point s = Sn converges to the two-pulse solution ¢(z) 
within the accuracy of the round-off error. 

Figure 3.5 shows the graph of f(s) near the value s = Sl for c = 1. (The graph of 
f(s) near s = S2 as well as other values of Sn look similar to Figure 3.5.) The left panel 
shows uniqueness of the root, while the right panel shows the linear behavior of f (s) near 
s = s. which indicates that the root is simple. Numerical approximations for the first four 
values of the sequence {Sn}nEN obtained in this root finding algorithm are shown in Table 
1. We note that the number of iterations Nh of the secant method (3.3.8) decreases with 
larger values of n, such that Nh = 14 for n = 1, Nh = 12 for n = 2, Nh = 10 for n = 3 
and Nh = 9 for n = 4, while the number of iterations of the Petviashili method for each 
computation does not exceed 100 iterations. 

Figure 3.6 shows numerical approximations of the two-pulse solutions for c = 1 
and c = 4. We can see from the right panel that two-pulse solutions with c = 4 resemble 
the two copies of the one-pulse solutions from the left panel of Figure 3.2, separated by the 
small-amplitude oscillatory tails. 

Finally, the three-pulse and multi-pulse solutions of the fixed-point problem (3.1.2) 
cannot be approximated numerically with the use of the Petviashili method (3.3.2). The 
Jacobian operator 1{ associated with the three-pulse solution has two finite negative eigen­
values and one small eigenvalue in the space of even functions, while the stabilizing factor 
of Theorem 3.3.1 and the root finding algorithm of Theorem 3.3.3 can only be useful for 
one finite negative eigenvalue and one zero eigenvalue. The additional finite negative eigen­
value introduces a strong divergence of the iterative method (3.3.2) which leads to failure 
of numerical approximations for three-pulse solutions. This numerical problem remains 
open for further analysis. 
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Figure 3.6: Numerical approximation of the first four two-pulse solutions of the ODE 
(3.1.2) for c = 1 (left) and c = 4 (right). 

3.4 Application: KdV two-pulse solitons 

We address spectral stability of the two-pulse solution by analyzing the linearized problem 
(3.1.5), where the operator H : H4(JR.) f-+ L2(JR.) is the Jacobian operator (3.1.4) evaluated 
at the two-pulse solution </.>( z). 

By Theorem 3.2.3(ii), operator H has two finite negative eigenvalue, a simple ker­
nel and one small eigenvalue, which is negative when W"(Ln) > 0 and positive when 
IF"(Ln ) < O. Persistence (structural stability) of these isolated eigenvalues beyond the 
leading order (3.2.7) is a standard property of perturbation theory of self-adjoint operators 
in Hilbert spaces (see Section IV.3.5 in [75]). 

By Theorem 3.2.3(iii), operator Oz H has a pair of small eigenvalues, which are 
purely imaginary when W"(Ln) > 0 and real when W"(Ln) < O. We first prove that no 
other eigenvalues may induce instability of two-pulse solutions (i.e. no other bifurcations 
of eigenvalues of ozH with Re(A) > 0 may occur). We then prove persistence (structural 
stability) of the purely imaginary eigenvalues beyond the leading order (3.2.8). Combined 
together, these two results lead to the theorem on spectral stability of the two-pulse solution 
</.>(z) that corresponds to Ln with W"(Ln) > O. 

Theorem 3.4.1 Let N real be the number of real positive eigenvalues of the linearized prob-
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lem (3.1.5), Ncomp be the number of complex eigenvalues in the first open quadrant, and 
Ni-:nag be the number of simple positive imaginary eigenvalues with (Hv, v) ::; 0, where 
v(x) is the corresponding eigenfunction for A E ill~+ Assume that no multiple imaginary 
eigenvalues exist, the kernel ofH is simple and pl(C) > 0, where P = 11¢lli2. Then, 

N rea1 + 2Ncomp + 2Ni-:nag = n(H) - 1, (3.4.1 ) 

where n(H) is the number of negative eigenvalues ofH 

Proof The statement is equivalent to Theorem 6 in [29] in the case (H- 1¢, ¢) = -(oc¢, ¢) = 
_~PI(C) < O. The result follows from the invariant subspace theorem in the Pontryagin 
space II", where K = n(H). 0 

Corollary 3.4.2 Let ¢(z) == <I>(z) be a one-pulse solution defined by Theorem 3.2.1. Then, 
it is a spectrally stable ground state in the sense that N rea1 = N comp = Ni-:nag = o. 

Remark 3.4.3 Figure 3.3 confirms that pl(C) > 0 for the one-pUlse solution. In addition, 
it is shown in Lemma 4.12 and Remark 4.14 in [29] that multiple imaginary eigenvalues 
may only occur if (Hv, v) = 0 such that n(H) ~ 2 is a necessary condition for existence 
of multiple eigenvalues (with pi (c) > 0). No multiple imaginary eigenvalues exists for the 
one-pUlse solution <I>(z). 

Corollary 3.4.4 Let ¢(z) be a two-pulse solution defined by Theorem 3.2.3. Then, 

(i) the solution corresponding to Ln with W"(Ln) < 0 is spectrally unstable in the sense 
that N rea1 = 1 and N comp = Ni-:nag = 0 for sufficiently large Ln 

(ii) the solution corresponding to Ln with ~V"(Ln) > 0 satisfies N rea1 = 0 and N comp + 
Ni-:nag = 1 for sufficiently large Ln. 

Proof It follows from Theorems 3.2.1 and 3.2.3 for sufficiently large Ln that the kernel of 
H is simple for W"(Ln) =I 0 and the only pair of imaginary eigenvalues with (Hv, v) < 0 
in the case W~(Ln) > 0 is simple. Therefore, assumptions of Theorem 3.4.1 are satisfied 
for the two-pulse solutions ¢(z) with W"(Ln) =I O. By the count of Theorem 3.2.3(ii), 
n(H) = 3 for lV"(Ln ) > 0 and n(H) = 2 for lV"(Ln ) < O. Furthermore, persistence 
(structural stability) of simple real eigenvalues of the operator oz H follows from the per­
turbation theory of isolated eigenvalues of non-self-adjoint operators (see Section VIII.2.3 
in [75]). 0 

There exists one uncertainty in Corollary 3.4.4(ii) since it is not clear if the eigen­
value of negative Krein signature in Theorem 3.2.3(iii) remains imaginary in Ni-:nag or bi­
furcates to a complex eigenvalue in N comp . This question is important for spectral stability 
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of the corresponding two-pulse solutions since the former case implies stability while the 
latter case implies instability of solutions. We will remove the uncertainty and prove that 
Ni~ag = 1 and N comp = 0 for sufficiently large Ln. To do so, we rewrite the linearized 
problem (3.1.5) in the exponentially weighted space [96]: 

(3.4.2) 

The linearized operator 3z H transforms to the form 

(3.4.3) 

which acts on the eigenfunction voJz) = eazv(z) E L2(~). The absolute continuous part 
of the spectrum of La is located at A = Aa(k), where 

kER 

A simple analysis shows that 

The following lemma gives a precise location of the dispersion relation A 
A E <C. 

(3.4.4) 

Lemma 3.4.5 The dispersion relation A = Aa(k) is a simply-connected curve located in 
the left half-plane of A E C if 

1 
0< a < 11f'\' 

vl0 

1 
c> "4. (3.4.5) 

Proof The mapping k J---+ Im(Aa) is one-to-one provided that c - 3a2 + 5a4 > 0 and 

1 - 10a2 > O. Since c - 3a2 + 5a4 reaches the minimum value on a E [0, Jio] at the right 

end a = Jio and the minimum value is positive if c > i, the first inequality is satisfied 

under (3.4.5). The second inequality is obviously satisfied if lal < Jio. The mapping 

k J---+ Re(Ao) has a single extremal point at k = 0 provided 3 -10a2 > 0, which is satisfied 
if lal < Jio. The extremal point is the point of maximum and the entire curve is located in 

the left half-plane of A E C if 0 < a < Jio. 0 
The following two lemmas postulate properties of eigenfunctions corresponding to 

embedded eigenvalues of negative Krein signature. 
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Lemma 3.4.6 Let vo(z) be an eigenfunction of ozHfor a simple eigenvalue AO E ilR+ in 
L2 (IR). Then, AO E ilR+ is also an eigenvalue in L; (IR) for sufficiently small a. 

Proof Let k = ko E IR be the unique real root of the dispersion relation Ao( k) = Ao 
(with a = 0) for a given eigenvalue Ao E ilR+. The other four roots k = k1,2,3,4 for 
a given AO E ilR+ are complex with IRe( k j ) I ;:::: "'0 > O. By the Stable and Unstable 
Manifolds Theorem in linearized ODEs [31], the decaying eigenfunction vo(z) E L2(1R) is 
exponentially decaying with the decay rate greater than "'0 > 0 and it does not include the 
bounded term e'koz as z -7 ±oo. By construction, va(z) = eC>Zvo(z) is also exponentially 
decaying as z -7 ±oo for sufficiently small lal < "'0. Since Vo E L2(1R) and due to the 
exponential decay of va(z) as Izl -7 00, we have Va E L2(1R) for any small a. 0 

Lemma 3.4.7 Let vo(z) E H2(1R) be an eigenfunction of ozH for a simple eigenvalue 
Ao E ilR+ with (Hvo, vo) < O. Then, there exists Wo E H2(1R), such that Vo = wb(x) and 
wo(z) is an eigenfunction ofHoz for the same eigenvalue AO. Moreover, (wo, vo) E ilR+. 

Proof Since H : H4(1R) t--t L2(1R), the eigenfunction vo(z) of the eigenvalue problem 
Oz Hvo = AOVo for any AO =1= 0 must satisfy the constraint fIR Vo (z )dz = O. Let Vo = 
wb(z). Since vo(z) decays exponentially as Izl -7 00 and (1, vo) = 0, then wo(z) decays 
exponentially as Izl -7 00, so that Wo E H2(1R). By construction, 1tozwo = Hvo = 

AO f vo(z)dz = AWo. The values of (wo, vo) are purely imaginary as 

(Wo,vo) = 1 wovodz = 1 woozwodz = -1 woazwodz = -1 wovodz = -(wo,vo)· 

Since Hvo = AoWo with AO E ilR+ and (Hvo,vo) < 0, we have (wo,vo) 

= Xc/(Hvo, vo) E ilR+. 0 
The following theorem states that the embedded eigenvalues of negative Krein sig­

nature are structurally stable in the linearized problem (3.1.5). 

Theorem 3.4.8 Let Ao E ilR+ be a simple eigenvalue of az 1t with the eigenfunction Vo E 
H2(1R) such that (Hvo, vo) < O. Then, it is structurally stable to parameter continuations, 
e.g. for any V E L=(IR) and sufficiently small 8, there exists an eigenvalue \5 E ilR+ of 
az (H + 8V(z)) in H2(1R), such that lAo - Aol ::; C8forsome C > O. 

Proof By Lemma 3.4.6, AO is also an eigenvalue of La in L2(1R) for sufficiently small 
a. Let a be fixed in the bound (3.4.5). There exists a small neighborhood of AO, which 
is isolated from the absolute continuous part of the spectrum of La. By the perturbation 
theory of isolated eigenvalues of non-self-adjoint operators (see Section VIII.2.3 in [75]), 
there exists a simple eigenvalue Ao of aAH + 8V(z)) in L;(IR) for the same value of a 
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and sufficiently small 8 in a local neighborhood of Ao, such that IA6 - Aol :=; C8 for some 
C> O. 

It remains to show that the simple eigenvalue A6 is purely imaginary for the same 
value of 0: > O. Denote the eigenfunction of 8AH + 8V(z» in H;(JR) for the eigenvalue 
A6 by V6(Z), such that eQZv6 E H2(JR). If V6 ¢ H2(JR), then the count of eigenvalues (3.4.1) 
is discontinuous at 8 = 0: the eigenvalue Ao in the number Nj--;"'ag at 8 = 0 disappears from 
the count for 8 i= o. If V6 E H2(JR), then (1, V6) = 0 and since V6(Z) is exponentially 
decaying as Izi -+ 00, there exists W6(Z) E H2(JR) such that V6 = w;'(z). The 2-form 
(W6, 'Vii) is invariant with respect to the weight 0: since if eQZvc5(Z) is an eigenfunction of 
8z (H+8V(z» for the eigenvalue A6 (i.e. V6 E H~(JR», then e-QZw6(Z) is an eigenfunction 
of (H + 8V(z»8z for the same eigenvalue A6 (i.e. W6 E H~Q(JR». Computing (W6, V6) at 
0: = 0, we have 

Ao(Wo, U6) = (HV6, V6) E R 

Since (wo, vo) is continuous in 8 and (W6, vo) E iJR by Lemma 3.4.7, then \5 E iJR for any 
8 i= o. 0 

Corollary 3.4.9 Let ¢(z) be a two-pulse solution defined by Theorem 3.2.3 that corre­
sponds to Ln with H/I/(Ln) > O. Then, it is spectrally stable in the sense that Nreal 

Ncomp = 0 and Nj-:nag = 1 for sufficiently large Ln. 

Remark 3.4.10 Using perturbation theory in exponentially weighted spaces for a fixed 
value 0: > 0, one cannot a priori exclude the shift of eigenvalue Ao to A6 with Re(Ao) > O. 
Even if vo(z) for Ao contains no term ezkoz as z -+ -00 (see Lemma 3.4.6), the eigen­
function Vii(Z) for A6 may contain the term ezkoz as z -+ -00 with Im(ko) < 0 and 
lim6~0 k6 = ko E JR. However, when Theorem 3.4.8 holds (that is under the assumptions 
that Vo E H2(JR) and (Huo, vo) < 0), the eigenvalue A6 remains on iJR and the eigenfunc­
tion V6(Z) must have no term eikoz with ko E JR as z -+ -00 for any sufficiently small 8. 
The hypothetical bifurcation above can however occur if Vo ¢ H2 (JR) but Vo E H1, (JR) with 
0: > O. We do not know any example of such a bifurcation. 

Remark 3.4.11 When the potential is symmetric (Le. ¢( - z) = ¢( z», the stability prob­
lem 8z Hv = AV admits a symmetry reduction: if v(z) is an eigenfunction for A, then 
v( -z) is the eigenfunction for -5.. If Ao E iJR is a simple eigenvalue and Vo E H';(JR) with 
0: 2': 0, the above symmetry shows that Vo E H~Q(JR) with -0: :=; O. If Re(A6) > 0 and 

Vii E H';(JR), then -V6( -z) E H~Q(JR) is an eigenfunction of the same operator for eigen­

value Re( -A6) = -Re(A6) and Im( -A6) = Im(A6)' Thus, the hypothetical bifurcation in 
Remark 3.4.lO implies that the embedded eigenvalue Ao E iJR may split into two isolated 
eigenvalues A6 and -A6 as 8 i= O. Theorem 3.4.8 shows that such splitting is impossible if 
Vo E H2(JR) and (Hvo, vo) < O. 
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We confirm results of Corollaries 3.4.4 and 3.4.9 with numerical computations of 
eigenvalues in the linearized problem (3.1.5). Throughout computations, we use the values 
0: = 0.04 and c = 1, which satisfy the constraint (3.4.5). The spectra of the operators 1{ in 
L2(JR.) and Oz 1{ in L; (JR.) are computed by using the Fourier spectral method. This method 
is an obvious choice since the solution <p(z) is obtained by using the spectral approxima­
tions in the iterative scheme (3.3.2)-(3.3.3). As in the previous section, we use numerical 
parameters d = 100, h = 0.01 and E = 10-15 for the Petviashvili method (3.3.2)-(3.3.3). 

Eigenvalues of the discretized versions of the operators 1{ and Lo: are obtained 
with the MATLAB eigenvalue solver eig. The spectra are shown on Figure 3.7 for the 
two-pulse solution <Pl(Z) and on Figure 3.8 for the two-pulse solution <P2(Z). The inserts 
show zoomed eigenvalues around the origin and the dotted line connects eigenvalues of the 
discretized operators that belong to the absolutely continuous part of the spectra. Figures 
3.7 and 3.8 clearly i1lustrate that the small eigenvalue of1{ is negative for <PI (z) and positive 
for <P2(Z), while the pair of small eigenvalues of Lo: is purely imaginary for <Pl(Z) and 
purely real for <P2(Z). This result is in agreement with Corollaries 3.4.4 and 3.4.9. We 
have observed the same alternation of small eigenvalues for two-pUlse solutions <P3(Z) and 
<P4(Z), as well as for other values of parameters c and 0:. 

The numerical discretization based on the Fourier spectral method shifts eigenval­
ues of the operators 1{ and Lo:. In order to measure the numerical error introduced by the 
discretization, we compute the numerical value for the "zero" eigenvalue corresponding to 
the simple kernel of1{ and the double zero eigenvalue of Lo:. Table II shows numerical val­
ues for the "zero" and small eigenvalues for two-pulse solutions <Pn(z) with n = 1,2,3,4. 
It is obvious from the numerical data that the sma]] eigenvalues are sti1l distinguished (sev­
eral orders higher) than the numerical approximations for zero eigenvalues for n = 1,2,3 
but they become comparable for higher-order two-pulse solutions n 2: 4. This behavior is 
understood from Theorem 3.2.3 since the sma]] eigenvalues becomes exponentially small 
for larger values of s (larger n) in the two-pulse solution (3.2.4) and the exponential1y smal1 
contribution is negligible compared to the numerical error of discretization. 

<Pl(Z) <P2(Z) <P3(Z) <P4(Z) 
"Zero" EV of 1{ 1.216.10 9 2.668·10·Y 1.474·10 -y 1.894·1O-Y 

Sma]] EV of 1{ 1.785.10 2 7.664. 10 5 3.334.10.7 2.921.10 9 

"Zero" EV s of Lo: 0.365.10 5 0.532.10 5 0.783.10 5 1.237.10 5 

Re of small EV s of Lo: 4.529.10 6 3.285·10·;5 6.326.10 -5 1.652.10 5 

1m of sma]] EV s of Lo: 0.502.10-1 1.152· 10 .~ 2.167.10-4 5.444.10-6 

Table II: Numerical approximations of the zero and sma]] eigenvalues (EV s) of operators 
1{ and Lo: for the first four two-pulse solutions with c = 1, 0: = 0.04, d = 100, h = 0.01 

and E = 10-15 . The absolute values are shown. 
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Figure 3.7: Numerical approximations of the spectra of operators 1i and LO/ for the two­
pulse solution (PI (z) with c = 1 and a: = 0.04. The insert shows zoom of small eigenvalues 
and the dotted curve connects eigenvalues of the continuous spectrum of LO/. 
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Figure 3.8: The same as Figure 3,7 but for the two-pulse solution <P2(Z). 
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We have confirmed numerically the analytical predictions that all two-pulse solu­
tions corresponding to the points Ln with H'I/(Ln) < 0 (which are maxima of the effective 
interaction potential) are unstable with a simple real positive eigenvalue, while all two­
pulse solutions corresponding to the points Ln with ~F" (Ln) > 0 (which are minima of the 
effective interaction potential) are spectrally stable. The stable two-pulse solutions are not 
however ground states since the corresponding linearized problem has a pair of eigenvalues 
of negative Krein signature. 

3.5 Nonlinear dynamics of two-pulse solution 

The Newton law (3.2.14) is a useful qualitative tool to understand the main results of this 
chapter. Existence of an infinite countable sequence of two-pUlse solution {<Pn (z )}nEN is 
related to existence of extremal points {Ln}nEN of the effective potential function W(L), 
while alternation of stability and instability of the two-pulse solutions is related to the al­
ternation of minima and maxima points of lV(L). It is natural to ask if the Newton law 
(3.2.14) extends beyond the existence and spectral stability analysis of two-pulse solutions 
in the fifth-order KdV equation (3.1.1). In particular, one can ask if the purely imaginary 
(embedded) eigenvalues of the linearized problem (3.1.5) lead to nonlinear asymptotic sta­
bility of two-pulse solutions or at least to their nonlinear stability in the sense of Lyapunov. 
From a more technical point of view, one can ask whether the Newton law (3.2.14) serves 
as the center manifold reduction for slow nonlinear dynamics of two-pUlse solutions in 
the PDE (3.1.1) and whether solutions of the full problem are topologically equivalent to 
solutions of the Newton law. While we do not attempt to develop mathematical analysis 
of these questions, we illustrate nonlinear dynamics of two-pulse solutions with explicit 
numerical simulations. 

The numerical pseudo-spectral method for solutions of the fifth-order KdV equa­
tion (3.1.1) is described in details in [89]. The main idea of this method is to compute 
analytically the linear part of the PDE (3.1.1) by using the Fourier transform and to com­
pute numerically its nonlinear part by using an ODE solver. Let u(k, t) denote the Fourier 
transform of u(x, t) and rewrite the PDE (3.1.1) in the Fourier domain (since the solution 
decays exponentially, the Fourier domain can be applied as a substitution for the unbounded 
domain): 

(3.5.1) 

In order to compute ;}2(k, t) we evaluate u2 (x, t) on x E lR and apply the discrete Fourier 
transform. Substitution u = s(k, t)e i (k

3
+k

5
)t transforms the evolution equation (3.5.1) to 

the form: 
St = _ike-1(k

3
+k

5 )t;}2(k, t). (3.5.2) 

The fourth-order Runge-Kutta method is used to integrate the evolution equation (3.5.2) in 
time with time step D.t. To avoid large variations of the exponent for large values of k and 
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t, the substitution above is updated after m time steps as follows: 

mLo.t s; t S; (m + l)Lo.t. (3.5.3) 

The greatest advantage of this numerical method is that no stability restriction arising from 
the linear part of (3.5. 1) is posed on the timestep of numerical integration. On contrast, the 
standard explicit method for the fifth-order KdV equation (3. 1.1) has a serious limitation 
on the timestep of the numerical integration since the fifth-order derivative term brings 
stiffness to the evolution problem. The small timestep would be an obstacle for the long 
time integration of the evolution problem due to accumulation of computational errors. 

Numerical simulations of the PDE (3.5.1) are started with the initial condition: 

u(x,O) = <p(x - 8) + <p(x + 8), (3.5.4) 

where <P( x) is the one-pulse solution and 28 is the initial separation between the two pulses. 
The one-pulse solution <p(:r) is constructed with the iteration method (3.3.2)-(3.3.3) for 
c = 4. The numerical factors of the spectral approximation are L = 100, N = 212, 

E: = 10-15 , while the timestep is set to Lo.t = 10-4. 

Figure 3.9 shows six individual simulations of the initial-value problem (3.5. 1) and 
(3.5.4) with 8 = 2.3, 8 = 2.8, 8 = 3.6, 8 = 4.2, 8 = 4.5 and 8 = 4.7. Figure 3.10 
brings these six individual simulations on the effective phase plane (L, i) computed from 
the distance L( t) between two local maxima (humps) of the two-pulse solutions. 

When the initial distance (8 = 2.3) is taken far to the left from the stable equilib­
rium point (which corresponds to the two-pUlse solution <PI (x ), the two pulses repel and 
diverge from each other (trajectory 1). When the initial distance (8 = 2.8) is taken close 
to the left from the stable eqUilibrium point, we observe small-amplitude oscillations of 
two pulses relative to each other (trajectory 2). When the initial distances (8 = 3.6) and 
(8 = 4.2) are taken to the right from the stable equilibrium point, we continue observing 
stable oscillations of larger amplitudes and larger period (trajectories 3 and 4). The oscil­
lations are destroyed when the initial distances are taken close to the unstable equilibrium 
point (which corresponds to the two-pulse solution <P2(X) from either left (8 = 4.5) or right 
(8 = 4.7). In either case, the two pulses repel and diverge from each other (trajectories 5 
and 6). Ripples in the pictures are due to radiation effect and the numerical integration does 
not make sense after t ~ 500, because the ripples reach the left end of the computational 
interval and appear from the right end due to periodic boundary conditions. 

The numerical simulations of the full PDE problem (3.1.1) indicate the validity of 
the Newton law (3.2.14). Due to the energy conservation, all eqUilibrium points in the New­
ton law are either centers or saddle points and the center points are surrounded by closed 
periodic orbits in the interior of homoclinic loops from the stable and unstable manifolds 
of the saddle points. Trajectories 2,3, and 4 are taken inside the homoclinic orbit from the 
saddle point corresponding to <P2(X) and these trajectories represent periodic oscillations 
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Figure 3.9: Individual simulations of the initial data (3.5.4) with s = 2.3 (top left), s = 2.8 
(top right), s = 3.6 (middle left), s = 4.2 (middle right), s = 4.5 (bottom left) and 4.7 
(bottom right). 

of two-pulse solutions near the center point corresponding to (PI (x). Trajectories 1 and 
6 are taken outside the homoclinic orbit and correspond to unbounded dynamics of two­
pulse solutions. The only exception from the Newton law (3.2.14) is trajectory 5, which 
is supposed to occur inside the homoclinic loop but turns out to occur outside the loop. 
This discrepancy can be explained by the fact that the Newton law (3.2.14) does not exactly 
represent the dynamics of the PDE (3.5.1) generated by the initial condition (3.5.4) but it 
corresponds to an asymptotic solution after the full solution is projected into the discrete 
and continuous parts and the projection equations are truncated (see details in [47] in the 
context of the NLS equations). 

Summarizing, we have studied existence, spectral stability and nonlinear dynamics 
of two-pulse solutions of the fifth-order KdV equation. We have proved that the two-pulse 
solutions can be numerically approximated by the Petviashili method supplemented with a 
root finding algorithm. We have also proved structural stability of embedded eigenvalues 
with negative Krein signature and this result completes the proof of spectral stability of 
two-pulse solutions related to the minima points of the effective interaction potential. The 
validity of the Newton Jaw is illustrated by the full numerical simulations of the fifth-order 
KdV equation (3.1.1). 
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Figure 3.10: The effective phase plane (L, t) for six simulations on Figure 3.9, where L 
is the distance between two pulses. The black dots denote stable and unstable equilibrium 
points which correspond to the two-pulse solutions rPl (x) and rP2(X). 
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CHAPTER 4 

BLOCK DIAGONALIZATION OF THE COUPLED-MODE 
SYSTEM 

4.1 Introduction 

Various applications in nonlinear optics [118J, photonics band-gap engineering [69J and 
atomic physics [34J call for systematic studies of the coupled-mode system, which is ex­
pressed by two first-order semi-linear PDEs in one space and one time dimensions. In non­
linear optics, the coupled-mode system describes counter-propagating light waves, which 
interact with a linear grating in an optical waveguide [117]. In photonics, the coupled­
mode system is derived for coupled resonant waves in stop bands of a low-contrast three­
dimensional photonic crystal [3]. In atomic physics, the coupled-mode system describes 
matter-wave Bose-Einstein condensates trapped in an optical lattice [102]. Existence, sta­
bility and nonlinear dynamics of gap solitons, which are localized solutions of the coupled­
mode system, are fundamental problems for interest in the aforementioned physical disci­
plines. 

In the context of spectral stability of gap solitons, it has been discovered that the 
linearized coupled-mode equations are equivalent to a four-by-four Dirac system with sign­
indefinite metric, where numerical computations of eigenvalues represent a difficult numer­
ical task. The pioneer work in [9, 10] showed that spurious unstable eigenvalues originate 
from the continuous spectrum in the Fourier basis decomposition and the Galerkin approx­
imation. A delicate but time-consuming implementation of the continuous Newton method 
was developed to identify the "right" unstable eigenvalues from the spurious ones [9, 10]. 
Similar problems were discovered in the variational method [76, 77] and in the numerical 
finite-difference method [114, 115]. 

While some conclusions on instability bifurcations of gap solitons in the coupled­
mode equations can be drawn on the basis of perturbation theory [9J and Evans function 
methods [73, 100J, the numerical approximation of eigenvalues was an open problem until 
recently. A new progress was made with the use of exterior algebra in the numerical com­
putations of the Evans function [41], when the same results on instability bifurcations of 
gap solitons as in [9] were recovered. Similar shooting method was also applied to gap soli­
tons in a more general model of a nonlinear Schrodinger equation with a periodic potential 
[102]. 

71 
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Our work addresses the problem of numerical approximations of eigenvalues of the 
linearized coupled-mode system with a different objective. We will show that the linearized 
coupled-mode system with a symmetric potential function can be block-diagonalized into 
two coupled two-by-two Dirac systems. The two Dirac systems represent the linearized 
Hamiltonian of the coupled-mode equations and determine instability bifurcations and un­
stable eigenvalues of gap solitons. 

The purpose of block-diagonalization is twofold. First, the number of unstable 
eigenvalues can be estimated analytically from the number of non-zero isolated eigenval­
ues of the linearized Hamiltonian. This analysis will be reported elsewhere. Second, a 
numerical algorithm can be developed to compute efficiently the entire spectrum of the lin­
earized coupled-mode system. These numerical results are reported here for an example of 
symmetric quadric potential functions. 

The chapter is organized as follows. Section 4.2 describes the model and its symme­
tries. Section 4.3 gives construction and properties of gap solitons in the nonlinear coupled­
mode system. Section 4.4 presents block-diagonalization of the linearized coupled-mode 
system. Section 4.5 contains numerical computations of the spectrum of the block-diago­
nalized system. Section 4.6 presents examples of gap solitons for various models. 

4.2 Coupled-mode system 

We consider the Hamiltonian coupled-mode system in the form: 

{ 
i.(ut + ux) + v:: ouW(u,~, v,~) 
t(Vt - vx) + u - OvW(u,u,v,v) 

(4.2.1) 

where (u,v) E ((:2, X E JR, t 2: 0, and W(u,u,v,v) is real-valued. We assume that the 
potential function satisfies the following three conditions: 

(i) W is invariant with respect to the gauge transformation: (u, v) f--t eio: (u, v), for all 
O:EJR 

(ii) TV is symmetric with respect to the interchange: (u, v) f--t (v, u) 

(iii) W is analytic in its variables near u = v = 0, such that W = 0(4). 

The first property is justified by the standard derivation of the coupled-mode sys­
tem (4.2.1) with an envelope approximation [3]. The second property defines a class of 
symmetric nonlinear potentials. Although it is somewhat restrictive, symmetric nonlin­
ear potentials are commonly met in physical applications of the system (4.2.1). The third 
property is related to the normal form analysis [113], where the nonlinear functions are 
approximated by Taylor polynomials. Since the quadratic part of the potential function 
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is written in the left -hand-side of the system (4.2.1) and the cubic part violates the gauge 
transformation and analyticity assumptions, the Taylor polynomials of TV start with quadric 
terms, denoted as 0 ( 4). 

We find a general representation of the function W(u, u, v, u) that satisfies the con­
ditions (1)-(3) and list all possible (four-parameter) quadric terms of W. 

Lemma 4.2.1 If lV E C and property (J) is satisfied, such that 

TF( - -) TX' ( III - -Ux W - -1"') 
I" U,U,V,V = IV ue ,ue ,ve ,ve , Va E JR., (4.2.2) 

Proof By differentiating (4.2.2) in a and setting a = 0, we have the differential identity: 

DlV == i (u~ - u~ + v~ - v~) W(u u v v) = 0. au au av av ' , , (4.2.3) 

Consider the set of quadratic variables 

which is independent for any u -=1= ° and v -=1= ° in the sense that the Jacobian is non-zero. 
It is clear that DZ1,2,3 = ° and DZ4 = 2z4. Therefore, DHl = 2z4aZ4 l'V = 0, such that 
TV = W(ZI, Z2, Z3). 0 

Corollary 4.2.2 If TV E JR. and property (I) is met, then 

Lemma 4.2.3 If W E JR. and properies ( J )-(3) are satisfied, then 

Proof By Corollary 4.2.2 and property (2), we can re-order the arguments of W as TtT = 

W(lul + lvi, luI/vi, uv + vu). By analyticity in property (3), W may depend only on lul 2 

and Ivl2 rather than on lui and Ivl. 0 

CoroJiary 4.2.4 If W E JR. and properties ( J )-(3) are satisfied, then 

(u~ +u~_ -v~ -v~_)W(U,U'V'V)1 =0 
uU uU uV uV /u/ 2=/v/ 2 

(4.2.4) 
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Corollary 4.2.5 The only quadric potential function 1 V E lR that satisfies properties ( 1)­
(3) is given by 

where (aI, a2, a3, a4) are real-valued parameters. Itfollows then that 

{ auW = a11ul2u + a2ulvl2 + a3 [(2IuI 2 + Ivl 2)v + u2v] + a4 [v2u + Ivl 2u] 
3vlV = a11vl2v + a2vlul2 + a3 [(2IvI2 + lul2)u + v2iL] + a4 [u2v + lul2v] 

The potential function (4.2.5) with aI, a2 =f 0 and a3 = a4 = 0 represents a 
standard coupled-mode system for a sub-harmonic resonance, e.g. in the context of optical 
gratings with constant Kerr nonlinearity [118]. When a1 = a3 = a4 = 0, this system 
is integrable with inverse scattering and is referred to as the massive Thirring model [78]. 
When a1 = a2 = 0 and a3, a4 =f 0, the coupled-mode system corresponds to an optical 
grating with varying, mean-zero Kerr nonlinearity, where a3 is the Fourier coefficient of 
the resonant sub-harmonic and a4 is the Fourier coefficient of the non-resonant harmonic 
[3] (see also [110]). 

We rewrite the coupled-mode system (4.2.1) as a Hamiltonian system in complex­
valued matrix-vector notations: 

du 
dt = J\l H(u), (4.2.6) 

where u = (u, iL, V, V)T, 

J = [~ ~i ~ ~ ] = _JT 

o 0 0 -i ' 
o 0 i 0 

and H (u, iL, v, v) = Inf. h( U, iL, v, v)dx is the Hamiltonian functional with the density: 

The Hamiltonian H(u, iL, v, v) is constant in time t 2: O. Due to the gauge invariance, the 
coupled-mode system (4.2.1) has another constant of motion Q( u, iL, v, v), where 

(4.2.7) 

Conservation of Q can be checked by direct computation: 

(4.2.8) 
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where the operator D is defined in (4.2.3). Due to the translational invariance, the coupled­
mode system (4.2.1) has yet another constant of motion P(u, u, v, v), where 

P=~ f(uux-uxu+vvx-vxv)dx. 
2 J~ 

(4.2.9) 

In applications, the quantities Q and P are referred to as the power and momentum of the 
coupled-mode system. 

4.3 Existence of gap solitons 

Stationary solutions of the coupled-mode system (4.2.1) take the form: 

{ 
Ust(x, t) = uo(x + s)eiu;t+,e 
Vst(x, t) = vo(x + s)e,wl+le (4.3.1) 

where (s, B) E JR.2 are arbitrary parameters, while the solution ('110, vo) E (C2 on x E JR. and 
the domain for parameter w E JR. are to be found from the nonlinear ODE system: 

{ 
iu~ = WUo - Vo + ouo W(uo, uo, Vo, vo) 
-iv~ = wVo - '110 + ovo~V(uo,uo,vo,vo) 

Stationary solutions are critical points of the Lyapunov functional: 

A = H(u,u,v,v) +wQ(u,u,v,v), 

such that variations of A produce the nonlinear ODE system (4.3.2). 

(4.3.2) 

(4.3.3) 

Lemma 4.3.1 Assume that there exists a decaying solution ('110, vo) of the system (4.3.2) on 
x E lR.. If W E JR. satisfies properties (1 )-(3), then '110 = Vo (module to an arbitrary phase). 

Proof It follows from the balance equation (4.2.8) for the stationary solutions (4.3.1) that 

Vx E JR., 

where the constant Co = 0 is found from decaying conditions at infinity. Let us represent 
the solutions ('110' va) in the form: 

such that 

{ 
uo(x) = JQ(x)eze(x)+z1>(x) 

vo(x) = y'Q(x)e-ze(x)+z1>(x) 

{ 
iQ' - 2Q(8' + <1>') = 2wQ - 2Qe-2ze + 2uoouo W(uo, uo, va, va) 
-iQ' - 2Q(8' - <1>') = 2wQ - 2Qe2ze + 2vOOjjo W(uo, uo, va, va) 

(4.3.4) 

(4.3.5) 
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Separating the real parts, we obtain 

{ 
Q(cos(29) - w - 9' - <p') = Re [UOOuo W(UO, un, va, va)] 
Q(cos(29) - w - 9' + <p') = Re [VoOvo W( un, un, vo, Va)] 

By Corollary 4.2.4, we have <P' == 0, such that <p(x) = <Po. 

(4.3.6) 

D 

Corollary 4.3.2 Let Uo = Va. The ODE system (4.3.2) reduces to the planar Hamiltonian 
fonn: 

d (p) (0 -1) dx q = +1 0 V'h(p,q), (4.3.7) 

where p = 29, q = Q, and 

h = W(p,q) - 2qcosp + 2wq, (4.3.8) 

Proof. In variables (Q,9) defined by (4.3.4) with <p(x) = <Po = 0, we rewrite the ODE 
system (4.3.5) as follows: 

{ 
,Q' = 2Q sin(29) + 21m [uoou~ W( un, UN, v~, vo)] _ 

Q9 = -wQ + Q cos(29) - Re [uoouo W(uo, un, vo, vo)] 
(4.3.9) 

The system (4.3.9) is equivalent to the Hamiltonian system (4.3.7) and (4.3.8) if 

{ 
opW(p, q) = i [uoouo - uoouo] W( un, un, vo, va) 
qOqW(p,q) = [uoouo +uoouo]lV(uo,uo,vo,vo) (4.3.10) 

The latter equations follows from (4.2.3), (4.2.4), and (4.3.4) with the chain rule. D 

Corollary 4.3.3 Let Uo = Va. Then, 

(4.3.11) 

The only homogeneous potential function W E ~ of the order 2n that satisfies 
properties (1)-(3) is given by: 

n n-1 n-s 
W = L ak,0[iuI2n-2klvI2k]+ L([uSvs+usvS] L ak,s[luI2n-2k-2slvI2k])+An(unvn+unvn). 

k=O s=l k=O 
(4.3.12) 

Where (ak,s, An) are real-valued coefficients which are subject to the symmetry 
conditions: akl,S = ak2,S if k1 + k2 = n - s for s = O .. n - l. 

Let's introduce new parameters ( s = 0, L.n - 1 ): 
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n-s-1 
-2-

As = L ak,s if n - s is odd 
k=O 

n-8-2 
-2- 1 

As = '\' ak s + -an-s s if n - s is even 6 ' 2 2' 
k=O 

Using the variables (Q, 8) defined in (4.3.4) with <p(x) = <Po = 0, we rewrite the 
ODE system (4.3.9) in the explicit form: 

{ 
Q' = 2Qsin(28) - 4Qn L:~~ sAs sin(2s8) - 2nA"Q" sin(2n8) 

8' = -w + cos(28) - nAoQn-1 - 2Q,,-1n L;~i As cos(2s8) - nA"Q,,-1 cos(2n8) 
(4.3.13) 

First integral 

,,-1 

-w + cos(28) - AoQn-1 - 2Qn-1 LAs cos(2s8) - AnQn-1 cos(2n8) = O. 
s=1 

subject to the zero conditions Q(x) -+ 0 as Ixl -+ 00, reduces the second-order system to 
the first-order ODE 

8'(x) = (n - 1)(w - cos(28)), 

while the function Q(x) can be found from 8(x) as follows: 

Q,,-1 = (cos(28) - w) . 
Ao + 2 L;~i As cos(2s8) + An cos(2n8) ' 

We introduce two auxiliary parameters: 

l-w 
j1= l+w' j3 = VI - w2 , 

(4.3.14) 

(4.3.l5) 

(4.3.16) 

such that 0 < j1 < 00 and 0 < j3 ~ 1. In general case we will have two branches of 
solutions for 8(x): 

cos(8+) = cosh((n - l)j3x) 

Jcosh2 ((n - 1)j3x) + j1sinh2((n - 1)j3x) 

sin(8+) = -y'ltsinh((n - l)j3x) 

Jcosh2 ((n - 1)j3x) + j1sinh2((n - 1)j3x) 
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and 
cos(8_) = sinh((n - 1),6x) 

JSinh2 ((n - l),6x) + p,cosh2 ((n - 1),6x) 

sin(8_) = -y7icosh((n - 1),6x) 

JSinh2 ((n - 1),6x) + ILCOsh2 ((n - 1),6x) 

Choice of the branch depends on the condition Q(x) 2: o. 
In more general case for the non-homogeneous symmetric potential solutions of the 

ODE do not exist in the explicit form, because the elliptic integrals which will be naturally 
originated by the ODE system do not have explicit solutions in the general case. 

We will illustrate decaying solutions of the system (4.3.2) for the quadric potential 
function (4.2.5). Decaying solutions may exist in the gap of continuous spectrum of the 
coupled-mode system (4.2.1) for W E (-1, 1). We will derive explicit conditions on exis­
tence of gap solitons for the general quadric potential function lV given by (4.2.5). Using 
(4.3.14) and (4.3.15)for the case n = 2 we obtain: 

8'(x) = w - cos(28), 

where 

(t - w) 
Q = ¢(t) ; 

t = cos(28), 

such that t E [-1, 1]. Let's consider two cases: 

{ 
t 2: w; 
t < w· - , 

¢(t) 2: 0 
¢(t) ::; 0 

Q 2: 0 

(4.3.17) 

(4.3.18) 

(4.3.19) 

We can solve the first-order ODE (4.3.17) using the substitution z = tan( 8), such that 

1- Z2 
t=--

1 + Z2 

I-t 
Z2= __ 

l+t 

After integration with the symmetry constraint 8(0) = 0, we obtain the solution 

where 

I 
(z - y7i) I = e2/3x 

(z + y7i) , 

,6 = VI - w2 , 
l-w 

P,=I+w 

(4.3.20) 
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and -1 < w < 1. Two separate cases are considered: 

Izl :::; Vii _ Vii sinh (;3x) z - - f1 
cosh (;3x) 

t= 
COSh2(;3:/:) - JLsinh2(;3x) 

(4.3.21) 
COSh2(;3x) + JLsinh2(;3:r)' 

where t ~ W, and 

Izl ~ Vii z = _Viicosh (;3x) t= 
sinh2(;3x) - JLcosh2(;3x) 

(4.3.22) 
sinh(;3x) sinh2(;3x) + Ji,COSh2(;3x) ' 

where t :::; w. Let's introduce new parameters 

al + a2 
A = - 2a3 + a4 + 2 ' ( 4.3.23) 

E= -2a4+al+a2, 
al + a2 

C = 2a3 + a4 + 2 . 

It is clear that A = ¢( -1) and C = ¢( 1). If t ~ wand ¢( t) ~ 0, it follows from (4.3.19) 
and (4.3.21) that 

Q
+(x) = (1 - w)((JL + 1) COSh2(;3x) - JL) . 

-1 2 (4.3.24) 
(AJL2 + EJL + C) cosh (;3:1') - (EJL + 2AJL2) cosh (;3x) + AJL2 

1ft :::; wand ¢( t) :::; 0, it follows from (4.3.19) and (4.3.22) that 

Q-(x) = (w - 1)(~ + 1) COSh2(;3x) - 1) . 
(AJL2 + EJL + C) cosh (;3x) - (EJL + 2C) cosh2(;3x) + C 

(4.3.25) 

The asymptotic behavior of the Q(x) at infinity depends on the location of the zeros of the 
function 1jJ(JL) = AJi,2 + EJL + C. The function 1i-'(JL) is related to the function ¢(t), such 
that if 1jJ(JL) = 0 then ¢(w) = O. 

Case: A < 0, C > 0 
In this case the quadratic polynomial ¢(t) has exactly one root ¢(tl ) = 0 such that 

tl E [-1, 1]. We have two branches of decaying solutions with the positive amplitude 
Q(x). One branch occurs for h < w :::; 1 with Q(x) = Q+(x) and the other one occurs 
for -1 :::; w < tl with Q(x) = Q-(x). At the point w = t l , the solution is bounded and 
decaying. 

Case: A > 0, C > 0 
In this case the quadratic polynomial ¢( t) has no roots or has exactly two roots on 

[-1,1]. We have a decaying solution with the positive amplitude Q(x) for any -1 < w < 1 
with Q(x) = Q+(x) if ¢(t) does not have any roots on [-1,1]. If ¢(t) has two roots 
¢(tt} = 0 and ¢(t2) = 0 such that tl , t2 E [-1,1] then we have a decaying solution with 
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Q(x) = Q+(x) only on the interval max(tI, t2) < W ~ 1. At the point w = max(t1 , t2)' 
the solution becomes unbounded. 

Case: A < 0, C < 0 
In this case the quadratic polynomial 4;(t) has no roots or has exactly two roots on 

[-1,1]. We have a decaying solution with the positive amplitude Q(x) for any -1 < w < 1 
with Q(x) = Q-(x) if 4;(t) does not have any roots on [-1, 1]. If 4;(t) has two roots 
4;( td = 0 and 4;( t2) = 0 such that t l , t2 E [-1, 1] then we have a decaying solution with 
Q(x) = Q-(x) only on the interval -1 ~ w < min(tl' t2). At the point w = min(tl' t2)' 
the solution becomes unbounded. 

Case: A > 0, C < 0 
In this case no decaying solutions with positive amplitude Q(x) exist. 
Other cases 
Two special cases occur when 4;(1) = 0 or 4;( -1) = o. If 4;(1) = 0, then Q+(x) 

has a singularity at x = 0 for any -1 < w < 1. If 4;( -1) = 0, then Q- (x) has a singularity 
at x = 0 for any -1 < w < 1. 

4.4 Block-diagonalization of the linearized couple-mode system 

Linearization of the coupled-mode system (4.2.1) at the stationary solutions (4.3.1) with 
s = e = 0 is defined as follows: 

(4.4.1) 

where Vo = uo, according to Lemma 4.3.1. Let (f, g) be a standard inner product for 
f, g E L2(JR, ([:4). Expanding the Lyapunov functional (4.3.3) into Taylor series near Uo = 
(uo, uO, VO, vo)T, we have: 

1 
A = A(uo) + (U, \7 Aluo) +:2 (U, HwU ) + ... , (4.4.2) 

where U = (UI , U2 , U3 , U4f and Hw is the the linearized energy operator in the explicit 
form 

(4.4.3) 

where 

( 

w - i8x 0 -1 0) 
D = 0 w + i8x 0 -1 

-lOw + i8x 0 
o -1 0 w-iox 

(4.4.4) 
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and 

( 

[j2 a2 
[j2 a2 

) UOUo u6 'llO'tlO '!Lova 

82 a2 [j2 82 
_ u6 110UO U01'O HOVO , l - -

V - 8? a? ~ 8? 82 II (uo, uo, vo, vo). 
Va Uo VO Uo VoVo v5 

a2 a2 a2 82 
Votlo Voua v5 vova 

(4.4.5) 

The linearization (4.4.1) of the nonlinear coupled~mode system (4.2.1) results in the lin­
earized coupled-mode system in the form: 

(4.4.6) 

where a is a diagonal matrix of (1, -1, 1, -1). Due to the gauge and translational symme­
tries, the energy operator Hw has a non-empty kernel which includes two eigenvectors: 

U l = auo(x), (4.4.7) 

The eigenvectors U 1,2 represent derivatives of the stationary solutions (4.3.]) with respect 
to parameters ((), s). 

Due to the Hamiltonian structure, the linearized operator a Hw has at least four­
dimensional generalized kernel with the eigenvectors (4.4.7) and two generalized eigen­
vectors (see [97] for details). The eigenvectors of the linearized operator a Hw satisfy the 
a-orthogonality constraints: 

(uo, U) = 1 (fLOUl + UOU2 + VOU3 + VOU4 ) dx = 0, 

(u~, aU) = 1 (fL~Ul - U~U2 + V~U3 - V~U4) dx = o. 

(4.4.8) 

(4.4.9) 

The constraints (4.4.8) and (4.4.9) represent zero variations of the conserved quantities Q 
and P in (4.2.7) and (4.2.9) at the linearization (4.4.1). 

It follows from the explicit form of Hw and from Corollary 4.3.3 that the eigenvalue 
problem HwU = /-LU has two reductions: 

(4.4.10) 

Our main result on the block-diagonalization of the energy operator Hw and the linearized 
coupled-mode system (4.4.6) is based on the reductions (4.4.10). 

Theorem 4.4.1 Let W E JR satisfy properties (J )-(3). Let (uo, vo) be a deca.ving solution 
of the system (4.3.2) on x E JR, where Vo = flo. There exists an orthogonal similarity 
transformation S, such that S-1 = ST, where 

1 0 1 0 1 

(

10 1 0) 

S = J2 0 1 0 -1 ' 
10-1 0 
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that simultaneously block-diagonalizes the energy operator Hw, 

(4.4.11) 

and the linearized operator a Hw 

5 -1 H 5 (0 H -) - 'L a w = a H+ 0 = 1 , (4.4.12) 

where H ± are two-by-two Dirac operators: 

(4.4.13) 

and 

(4.4.14) 

Proof Applying the similarity transformation to the operator D( ax ) in (4.4.4), we have the 
first terms in Dirac operators H±. Applying the same transformation to the potential V(x) 
in (4.4.5) and using Corollary 4.3.3, we have the second term in the Dirac operators H±. 
The same transformation is applied similarly to the linearized operator a Hw with the result 
(4.4.12). 0 

Corollary 4.4.2 The linearized coupled-mode system (4.4.6) is equivalent to the block­
diagonalized eigenvalue problems 

(4.4.15) 

where V 1,2 E C2 and a3 is the Pauli's diagonal matrix of (1, -1). 

Corollary 4.4.3 Let Uo = (uo, uo) E C2 and (f, g) be a standard inner product for f, g E 

L2(ffi., C2 ). Dirac operators H± have simple kernels with the eigenvectors 

(4.4.16) 

while the vectors V 1,2 satisfy the constraints 

(4.4.17) 

Remark 4.4.4 Block-diagonalization described in Theorem 4.4.1 has nothing in common 
with explicit diagonalization used in reduction (9.2) of [100 J for the particular potential 
function (4.2.5) with a1 = a2 = a4 = 0 and a3 = 1. Moreover, the reduction (9.2) of [lOOJ 
does not work for w -=f 0, while gap solitons do not exist in this particular model for w = o. 
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4.5 Numerical computations 

Numerical discretization and truncation of the linearized coupled-mode system (4.4.6) 
leads to an eigenvalue problem for large matrices [108]. Parallel software libraries were 
recently developed for computations of large eigenvalue problems [54]. We shall use Scala­
pack library and distribute computations of eigenvalues of the system (4.4.6) for different 
parameter values between parallel processors of the SHARCnet cluster Idra using Message 
Passing Interface [30]. 

We implement a numerical discretization of the linearized coupled-mode system 
(4.4.6) using the Chebyshev interpolation method [109]. Given a function defined on the 
Chebyshev points v] = cos(j7r/N),j = 0, L.N we obtain a discrete first derivative as a 

multiplication by an (N + 1) x (N + 1) matrix, which we shell denote by D~). Let's the 

rows and columns of the differentiation matrix D~) be indexed from ° to N. The entries 
of this matrix are: 

(
D(1)) _ 2N2 + 1 

N 00- 6 ' (
D(I)) __ 2N2 + 1 

N NN - 6' 

(1) -Vj 

(DN )]] = 2(1 - vJ)' j = 1, ... ,N -1, 

(D(I)) _ Ci (-l)'+j . -I- . 
N ZJ - , ·z r], 

Cj (Vi - V]) 
i,j = 0, ... ,N, 

where 
and c, = 1, i = 1, ... N - 1. 

To transform the Chebyshev grid from [-1, 1] to the infinite domain [-00, +00] we 
will use the map 1(v) = Ltanh-Iv,x, = 1(Vi). This is the most efficient map for our 
case because the solitons decay exponentially. Decaying also implies the zero boundary 
conditions on the truncated interval. The constant L sets the length scale of the map. 
Differentiation in x is carried out using the chain rule so that 

i = O ... N. 

Denote as IN+! the identity matrix with N + 1 elements. Finally we have a dis­
cretized eigenvalue problem for the operator H: 

H± = (WIN+1 - iDN+! ~IN-t:l ) + diagV±(xi) 
~IN+! wIN+! + zDN+1 

The main advantage of the Chebyshev grid is the clustering distribution of the grid 
points and for the N = 2500 this clustering prevents the appearance of spurious complex 
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eigenvalues from the discretized continuous spectrum up to the accuracy Im'\ :::; 10-5 on 
the interval [-2,2J. 

Chebyshev points infIm ,\[-2, 2] infIm ,\[-10,10] 
100 0.085 0.75 
200 0.0095 0.52 
400 0.0053 0.21 
800 7.12 ·10-4 0.12 
1200 2.34 ·10-4 0.09 
2500 3.91·10-5 0.06 

In general, USIng higher number of polynomials the Interval can be expanded al­
though for the numerical analysis of the edge bifurcations of the continuous spectrum the 
number of Chebyshev polynomials mentioned above is sufficient. 

If the eigenvector is analytic in a strip near the interpolation interval, the corre­
sponding Chebyshev spectral derivatives converge geometrically, with an asymptotic con­
vergence factor determined by the size of the largest ellipse in the domain of analyticity. 
[109]. As a result the accuracy of the numerical eigenvalues depends on the parameter w 
and on the degree of the nonlinearity. 

The continuous spectrum for the linearized coupled-mode system (4.4.6) can be 
found from the no-potential case V (x) == O. It consists of two pairs of symmetric branches 
on the imaginary axis ,\ E ilR. for IIm('\)1 > 1 - wand IIm('\)1 > 1 + w [9,41]. In the 
potential case V (x) i- 0, the continuous spectrum does not move, but the discrete spectrum 
appears. The discrete spectrum is represented by symmetric pairs or quartets of isolated 
non-zero eigenvalues and zero eigenvalue of algebraic multiplicity four for the generalized 
kernel of (J Hu; [9,41]. We note that symmetries of the Chebyshev grid preserve symmetries 
of the linearized coupled-mode system (4.4.6). 

We shall study eigenvalues of the energy operator Hu;, in connection to eigenvalues 
of the linearized operator (J Hu;. It is well known [108, 109] that Hermitian matrices have 
condition number one, whi1e non-Hermitian matrices may have large condition number. 
As a result, numerical computations for eigenvalues and eigenvectors have better accu­
racy and faster convergence for self-adjoint operators [108, 109]. We will use the block­
diagonalizations (4.4.11) and (4.4.12) and compute eigenvalues of H+, H_, and L. The 
block-diagonalized matrix can be stored in a special compressed format which requires 
twice less memory than a full matrix and as it can be derived from the table below (cpu 
time is given in seconds) this representation accelerates computations of eigenvalues ap­
proximately in two times. 
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Chebyshev points cpu time (full matrix) cpu time (block-diag. matrix) 
100 l.656 l.984 
200 11.219 12.921 
400 130.953 207.134 
800 997.843 l.583 . 103 

1200 3.608.103 6.167· 103 

2500 7.252.103 12.723.103 

4.6 Application: gap solitons 

Example 1: gap solitons in nonlinear optics 

In nonlinear optics, the coupled-mode system describes counter-propagating light 
waves. A pulse of light moving through a periodic medium consists of coupled back­
ward and forward electric field components. A gap soliton emerges from the balance of 
the strong photonic band dispersion with the nonlinear effects present at sufficiently high 
intensities. 

Define parameters as al = 1, a2 = p, and a3 = a4 = o. We find the decaying 
solution uo(x) in the explicit form: 

j2(1-W) 1 
Uo = 1 + P (cosh fJx + ifo sinh fJx)" 

(4.6.1) 

When w -t 1 (such that J.L -t 0 and fJ -t 0), the decaying solution (4.6.1) becomes 
small in absolute value and approaches the limit of sech-solutions sech(fJx). When w -t 

-1 (such that J.L -t 00 and fJ -t 0), the decaying solution (4.6.1) remains finite in absolute 
value and approaches the limit of the algebraically decaying solution: 

2 
Uo = yT+f5(1 + 2ix)· 

Potential matrices V±(x) in the Dirac operators H± in (4.4.13)-(4.4.14) can be 
written in the explicit form: 

V _ ( 21uol2 
(1 - P)U6) 

- - (1 - P)U5 21uol2 . (4.6.2) 

Figure 4.1 displays the pattern of eigenvalues and instability bifurcations for the 
symmetric quadric potential (4.2.5) with al = 1 and a2 = a3 = a4 = o. The decaying 
solution uo(x) and the potential matrices V±(x) are given by (4.6.1) and (4.6.2) with p = O. 
Parameter w of the decaying solution Uo (x) is defined in the interval -1 < w < l. Six 
pictures of Fig. 4.1 shows the entire spectrum of L, H+ and H _ for different values of w. 
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When w is close to 1 (the gap soliton is close to a small-amplitude sech-soliton), 
there exists a single non-zero eigenvalue for H+ and H_ and a single pair of purely imag­
inary eigenvalues of L (see subplot (1) on Fig. 4.1). The first set of arrays on the subplot 
(1) indicates that the pair of eigenvalues of L becomes visible at the same value of w as 
the eigenvalue of H+. This correlation between eigenvalues of Land H+ can be traced 
throughout the entire parameter domain on the subplots (1)-(6). 

When w decreases, the operator H _ acquires another non-zero eigenvalue by means 
of the edge bifurcation [73], with no changes in the number of isolated eigenvalues of L 
(see subplot (2». The first complex instability occurs near w ~ -0.18, when the pair of 
purely imaginary eigenvalues of L collides with the continuous spectrum and emerge as a 
quartet of complex eigenvalues, with no changes in the number of isolated eigenvalues for 
H+ and H_ (see subplot (3). 

The second complex instability occurs at w ~ -0.54, when the operator H _ ac­
quires a third non-zero eigenvalue and the linearized operator L acquires another quartet 
of complex eigenvalues (see subplot (4». The second set of arrays on the subplots (4)-(6) 
indicates a correlation between these eigenvalues of Land H_. 

When w decreases further, the operators H+ and H_ acquires one more isolated 
eigenvalue, with no change in the spectrum of L (see subplot (5)). Finally, when w is close 
to -1 (the gap soliton is close to the large-amplitude algebraic soliton), the third complex 
instability occurs, correlated with another edge bifurcation in the operator H _ (see subplot 
(6». The third set of arrays on subplot (6) indicates this correlation. The third complex 
instability was missed in the previous numerical studies of the example under consideration 
[9,41]. In a narrow domain near w = -1, the operator H+ has two non-zero eigenvalues, 
the operator H _ has five non-zero eigenvalues and the operator L has three quartets of 
complex eigenvalues. 

Example 2: gap solitons in photonic crystals 

In photonics, the coupled-mode system is derived for coupled resonant waves in 
stop bands of a low-contrast three-dimensional photonic crystal. Spatial soliton solutions 
is proved to exist in photonic crystal fibers. These guided localized nonlinear waves appear 
as a result of the balance between the linear and nonlinear diffraction properties of the 
inhomogeneous photonic crystal cladding. 

Define the parameters as al = a2 = 0, a3 = 1 and a4 = s. The decaying solution 
uo(x) exists in two sub-domains: w > 0, s > -1 and w < 0, s < 1. When w > 0, s > -1, 
the solution takes the form: 

U 
= VI -w (cosh,6x - ifosinh,6x) 

O ~, (4.6.3) 
2 y ~+(x) 

where 

~+ = [(s - 1)/12 - 2s/1 + (s + I)J COSh4(,6X) + 2[s/1- (s - 1)/12J cosh2(,8x) + (s - 1)/12. 
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When w < 0, s < 1, the solution takes the form: 

u = VI -w (sinh(3x - iyfiicosh(3x) 
o 2 JLL(X) . 

(4.6.4) 

where 

LL = [(s + 1) - 2slL - (s - l)fL2l COSh4((3x) + 2[s + 1 - sILl coSh2((3X) - (s + 1). 

In both limits w -......07 1 and w -......07 -1, the decaying solutions (4.6.3) and (4.6.4) approach the 
small-amplitude sech-solution sech((3x). In the limit w -......07 0, the decaying solutions (4.6.3) 
and (4.6.4) degenerate into a non-decaying bounded solution with luo(x)12 = ~. 

The potential matrices V±(x) in the Dirac operators H± in (4.4.13)-(4.4.14) take 
the form: 

v =3(u6+U6 21uol 2 
)+s( 21uol 2 

U6 +3'U6) 
+ 21 uo/2 u6 + fi6 fi6 + 3u6 21 uol 2 

, 
(4.6.5) 

v_ =(u6+fi6-2/uoI2)+s( 0 -U6-fi6). 466 
-211/01 2 u6 + fi6 -u6 - fi6 0 ( .. ) 

Figure 4.2 displays the pattern of eigenvalues and instability bifurcations for the 
symmetric quadric potential (4.2.5) with al = a2 = a4 = 0 and a3 = 1. The decaying 
solution uo(x) and the potential matrices V±(x) are given by (4.6.3) and (4.6.5) with w > 0 
and s = O. Eigenvalues in the other case w < 0 can be found from those in the case w > 0 
by reflections. 

When w is close to 1 (the gap soliton is close to a small-amplitude sech-soliton), 
there exists one non-zero eigenvalue of H_ and no non-zero eigenvalues of Land H+ (see 
subplot (1) on Fig. 4.2). When w increases, two more non-zero eigenvalues bifurcate in 
H _ from the left and right branches of the continuous spectrum, with no change in non­
zero eigenvalues of L (see subplot (2». The first complex bifurcation occurs at w ~ 0.45, 
when a quartet of complex eigenvalues occurs in L, in correlation with two symmetric 
edge bifurcations of H+ from the left and right branches of the continuous spectrum (see 
subplot (3». The first and only set of arrays on the subplots (3)-(6) indicates a correlation 
between eigenvalues of Land H +, which is traced through the remaining parameter domain 
of w. The inverse complex bifurcation occurs at w ~ 0.15, when the quartet of complex 
eigenvalues merge at the edge of the continuous spectrum into a pair of purely imaginary 
eigenvalues (see subplot (5». No new eigenvalue emerge for smaller values of w. When 
w is close to 0 (the gap soliton is close to the non-decaying solution), the operator H+ has 
two non-zero eigenvalues, the operator H _ has three non-zero eigenvalues and the operator 
L has one pair of purely imaginary eigenvalues (see subplot (6». 

We mention two other limiting cases of the symmetric quadric potential (4.2.5). 
When al = a3 = a4 = 0 and a2 = 1, the coupled-mode system is an integrable model 



88 PHD THESIS - M. CHUGUNOVA McMASTER - MATHEMATICS & STATISTICS 

and no non-zero eigenvalues of L exist, according to the exact solution of the linearization 
problem [76, 77]. When al = a2 = a3 = ° and a4 = ±1, one branch of decaying solutions 
uo(x) exists for either sign, according to (4.6.3) and (4.6.4). The pattern of eigenvalues and 
instability bifurcations repeats that of Fig. 4.2. 

Example 3: gap solitons in relativity theory 

Nuclear physics provides a unique laboratory for investigating the Dirac picture of 
vacuum. The basis for this is given by relativistic mean-field models. Within this approach 
nucleons are described by the Dirac equation coupled to scalar and vector meson fields. The 
potential function (4.2.5) with al = a2 = a3 = 0, a4 = 1 represents a standard nonlinear 
Dirac equation that is used as a model of vacuum. The existence of standing waves in the 
nonlinear Dirac equation was proved in [23]. 

We find the decaying solution Uo (x) in the explicit form: 

(1 - W)((JL + 1) COSh2(,6X) - JL) 'Uo = ____ --'-_--'-~--''------2:.---''-----'--'-~---
(JL2 - 2JL + 1) cosh4 (,6.1') - (-2JL + 2JL2) cosh2,6x + JL2' 

(4.6.7) 

When W belongs to the interval (-1, OJ the Q(x) blows up to infinity in two sym­
metric points tanh2,6x = 1. These two points are getting separated to plus and minus 

Jl 
infinity and Q(x) tends to 1/2 cosh(2x) as W goes to 0 as a conclusion we do not have a 
soliton type solution for this interval of w. 

When w belongs to the open interval (0.5,1) the Q(x) is one pulse soliton solution 
with max(Q(x)) = 1 - w as w goes to 1 the Q(x) tends to 0. 

When w belongs to the interval (0,0.5) the Q(x) is two pulse soliton solution with 
min(Q(x)) = 1 - w at the origin and max(Q(x)) = L at two points cosh(2,6x) = 1_~w2 
(see Fig. 4.3 (b». In the limit w goes to 0 the pulses are getting more and more separated 
and the amplitude of the pulses tends to infinity. The two pulse soliton solutions in the 
coupled mode system were also discovered but for the different type of the nonlinearity in 
the problem of the light propagation through deep nonlinear grating. 

We can also find the exact analytical expression for the 8(x) (4.3.4) as 

cosh,6x 
cos8=~==~========~== J cosh2 ,6x + JL sinh2 ,6x' 

This gives 

sin(8) = ---;:::.=-~y1i=JL=si=nh=(=,6x=)=;;== 
J cosh2 ,6x + JL sinh2 ,6x 

cos 28 = cos2(8) _ sin2(8) = (1 + w) cosh
2 

,6x - (1 - w) sinh
2 

,6x = 1 + w cosh (2,6x) 
(1 + w) cosh2,6x + (1 - w) sinh2,6x cosh(2,6x) + w 

The spectral stability of the gap solitons follows from the linearization (4.4.1) and 
diagonal blocks H ± of the linearized energy operator (4.4.13) can be written as 
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H - uJ - lux - '110 - 'UO 
[ 

'!Cl 1 2 -2] 
- - 1 - '116 - V6 uJ + iOx 

(4.6.8) 

H _ [W - Wx + 2\UO\2 U6 + 3U6 - 1 ]_ 
+ - U6 + 3'116 - 1 w + iax + 2\'110\2 - (4.6.9) 

The subspaces 

x+ = [ j(x) ] 
" f(-x) , 

X- = [ [(x) ] 
- f( -x) 

are invariant under the action of H±. So are the spaces 

Xl = [~~~j], J(x) = f(-x), g(x) = g(-x); 

X 2 = [~~:j], J(x) = - f( -x), g(x) = -g( -x). 

Denote 
j = 1,2. 

The kernel of H _ is 

/ [ (h - i<P2 ] ) -ker H_ = span \ -<PI _ i<P2 eX. (4.6.10) 

The kernel of H + is 

k H - / [<PI - i<P2] ) X+ er + - span \ <PI + i <P2 C . (4.6.11) 

(4.6.12) 

where 

(4.6.13) 

This could be verified by taking the x-derivative of (4.6.12) and using the relations 

<pi = 2Qcos2 8 = Q(l + cos28), <p~ = 2Qsin2 8 = Q(1-cos28). 

The essential spectrum of H _ consists of two intervals: 

O'ess(H-) = (-(X), -1 + w] U [1 + w, (0). 
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Lemma 4.6.1 The spectrum of H _ is symmetric with respect to A = w. Moreover, If [j~] 

is an eigenvector of H _ that corresponds to an eigenvalue A, then [ !fl] is an eigenvector 

of H_ that corresponds to an eigenvalue N = 2w - A. 

Proof The relation A [j~] = H _ [j~] can be written as 

8x h = -i(w - A)h + io:(.r)h, 8T h = -ia(x)h + i(w - A)h, (4.6.14) 

where a(x, w) = u5 + u6 - 1 = 1 - co;~e- We can rewrite these equations as 

8x h = i(w - A)h + ia(x)( - h), 8;A - fl) = -ia(x)h - i(w - A)( - h). (4.6.15) 

Taking into account that w - A = -(w - N), we get: 

8T h = -i(w-N)h+ia(x)( - h), 

which finishes the proof. 

8T (-ld = -ia(x)h+i(w-A')(-IIL (4.6.16) 

o 

Corollary 4.6.2 2w E IJd(H_), ~I/ith the corresponding eigenvector [~~ ~ !~:l 

Proof If w were an eigenvalue with an eigenvector [j~], then, by Lemma 4.6.1, the vector 

[ !fl] corresponds to the same eigenvalue, and so does the vector 

[h]+.[h]_[ll+ ih]_[ h+ih ] 12 Z -11 - h-ifl - -i(h+ih) . 

Thus, we may assume that the eigenvector that corresponds to A = w has the form [ ~ 11 ] . 
It follows that fl satisfies 8T h = (~(x) -1)fl, hence 11 (x) rv c±e-x for x --t ±oo, which 
does not allow 11 E L2(lR). 0 

The continuous spectrum for the linearized coupled-mode system can be found 
from the no-potential case V (x) = O. It consists of two pairs of symmetric branches on 
the imaginary axis with positive and negative Krein signatures. The branches can be found 
analytically as A E ilR for the IIm(A)1 > 1 + wand IIm(A)1 > 1 - w. By perturbation the­
ory in the nonzero potential case the continuous spectrum does not move but the additional 
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discrete spectrum appears. Eigenvalues of the operators L, H + and H _ are detected nu­
merically for two values of the parameter w by the Chebyshev interpolation method and are 
displayed in Figures 4.3( a) and 4.4. The ends of the branch of the continuous spectrum with 
the negative Krein signature I are 11m AI = 1.2 for w = 0.2 and 11m AI = 1.7 for w = 0.7, 
the zero eigenvalue I I of the operator L is of the multiplicity 4 and for the uJ = 0.2 we 
can see a quadruplet of complex eigenvalues I I I. We can see a correlation to the discrete 
spectrum of the operators H± for the w = 0.7 the discrete spectrum of H± consist only 
of the kernel I and positive eigenvalue I I, while for w = 0.2 the discrete spectrum of the 
operator H+ has also two negative eigenvalues IV. 

When w is close to the double pulse bifurcation threshold (uJ ~ 0.5), the operator 
L has a four-dimensional kernel at A = 0 and a quadruplet of small complex eigenvalues I 
bifurcating from the continuous spectrum of L with the correlation to the edge bifurcation 
ofthe operator H+ at w ~ 0.5. The bifurcated eigenvalues ofthe operator L moves toward 
the origin and away from the real line as w goes from 0.5 to 0 (see Fig: 4.5). 

Within the numerical accuracy we can conclude that for the interval w E [0.5, 1) 
the one pulse soliton solution are spectrally stable while for the interval uJ E (0,0.5) the 
double pulse soliton solutions are spectrally unstable, because of the oscillations related to 
small complex eigenvalues. 
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Figure 4.1: Eigenvalues and instability bifurcations for the symmetric quadric potential 
(4.2.5) with al = 1 and a2 = a3 = a4 = O. 



PHD THESIS - M. CHUGUNOVA McMASTER - MATHEMATICS & STATISTICS 93 

,::1 '"~ .~.'".o L"." l- "'", I ,] "~~"oro"~'") "." l- O~," I 

-022 0 15:2 -2 -15 _1 -05 0 15:2 

ImA Iml 

~.:I--I -" ,j ~.:I' : =1 
2 05 0 15:2 -2 _1 0 15 2 

"I , "' J ;:1", '>: :=1 
_2 _1 ~ _05 Q 05 1 15 2 -2 _15 _1 -05 0 05 15 2 

~i Rei 

NumerICal eigenvalues at l, H+, H_ (ro= 0 453) 

~ o1-----

-OO~;-, -----,~__:____cC;___::_0 -C;__---:--\--;-,-----! 
1m, 

§ 01-___ _ 

Numencal eigenvalues of L, H +' H _ ( (J)::: 0.140) 

~:I , 

: 
-2 . " 

o 
ImA 

0 

ReA 

: 
0 

Ro; 

:~ 
1 15 2 

Numencal eigenvalues of L, H+, H_ (00= 0 267) 
, 

0 

I~. 

\ , ., ." ., ~. 0 " '\ " 
, 

ImA 
, 

\.-0 

eo> : •• ~ 
o 15 2 

R.A 

Numerical eigenvalues of L, H+, H _ ((J)::: 0 070) 

;i or--- '/_--i 
-O~2~~~~~-~0-----'C;--~--;-'--~ 

ImA 

.. 0 

0 
ReA 

~ .:1 , 
, . 

, 

. ..: , I ., ." ~ . 0 , 
Rei 

Figure 4.2: Eigenvalues and instability bifurcations for the symmetric quadric potential 
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CHAPTER 5 

SPECTRAL PROPERTIES OF THE NON-SELF-ADJOINT 
OPERATOR ASSOCIATED WITH THE PERIODIC HEAT 

EQUATION 

5.1 Introduction 

We address the Cauchy problem for the periodic heat equation 

{ 
h = -he - E(sinehe)e, 
h(O) = ho, 

t > 0, (5.1.1 ) 

subject to the periodic boundary conditions on e E [-1f,1f]. This model was derived in 
the context of the dynamics of a thin viscous fluid film on the inside surface of a cylinder 
rotating around its axis in [11]. Extension of the model to the three-dimensional motion of 
the film was reported in [12]. 

The parameter E is small for applications in fluid dynamics [11] and our main results 
correspond to the interval !t:1 < 2 in accordance to these applications. For any E > 0, the 
Cauchy problem for the heat equation (5.1.1) on the half-interval e E [0,7f] is generally 
ill-posed [82J and it is naturally to expect that the Cauchy problem remains ill-posed on 
the entire interval e E [-7f,1f]. The authors of the pioneer work [1lJ used a heuristic 
asymptotic solution to suggest that the growth of "explosive instabilities" might occur in 
the time evolution of the Cauchy problem (5.1.1). 

Nevertheless, in a contradiction with the picture of explosive instabilities, only 
purely imaginary eigenvalues were discovered in the discrete spectrum of the associated 
linear operator 

a (. a) a L = -E ae sm e ae - ae' (5.1.2) 

acting on sufficiently smooth periodic functions f (e) on e E [-1f, 7f]. Various approxi­
mations of eigenvalues were obtained in [11] by two asymptotic methods (expansions in 
powers of E and the WKB method) and by three numerical methods (the Fourier series 
approximations, the pseudo spectral method, and the Newton-Raphson iterations). The re­
sults of the pseudospectral method were checked independently in [120] (see pp. 124-125 
and 406--408). It is seen both in [1lJ and [120] that the level sets of the resolvent (A - L)-l 

95 



96 PHD THESIS - M. CHUGUNOVA McMASTER - MATHEMATICS & STATISTICS 

form divergent curves to the left and right half-planes and, while true eigenvalues lie on the 
imaginary axis, eigenvalues of the truncated Fourier series may occur in the left and right 
half-planes of the spectral plane. This distinctive feature was interpreted in [11] towards 
the picture of growth of disturbances and the phenomenon of explosive instability. 

One more question raised in [11] was about the validity of the series of eigenfunc­
tions associated to the purely imaginary eigenvalues of the operator L for E =/:. 0. Although 
various initial conditions ho were decomposed into a finite sum of eigenfunctions and the 
error decreased with a larger number of terms in the finite sum, the authors of [11] conjec­
tured that the convergence of the series depended on the time variable and "even though 
the series converges at t = 0, it may diverge later". This conjecture would imply that the 
eigenfunctions of L for E=/:.O do not form a basis of functions in the space HS([-7r, 7r]) 
with s > ~ unlike the harmonics of the complex Fourier series associated with the operator 
L for E = 0. 

In this chapter, we prove that the operator L is closed in L~er([-7r, 7r]) with a do­
main in H;er ([ -7r, 7r]) for IE I < 2, such that the spectrum of the eigenvalue problem 

d ( . df ) df 
-E dB sm B dB - dB = )..f, (5.1.3) 

is well-defined. Here and henceforth, we denote 

H~er([-7r, 7rJ) = {f E Hl([_7r, 7rJ): f(7r) = f( -7r)} . (5.1.4) 

Furthermore, we prove that the residual and continuous spectra of the spectral problem 
(5.1.3) are empty and the eigenvalues of the discrete spectrum accumulate at infinity along 
the imaginary axis. We further prove completeness of the series of eigenfunctions as­
sociated to all eigenvalues of the purely discrete spectrum of L in L~er([-7r, 7r]). Using 
the numerical approximations of eigenvalues and eigenfunctions of the spectral problem 
(5.1.3), we show that all eigenvalues of L are simple, located at the imaginary axis, and 
the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As 
a result, the complete set of linearly independent eigenfunctions does not form a basis in 
L~er ([ -7r, 7r]) and hence it cannot be used to solve the Cauchy problem associated with the 
heat equation (5.1.1). 

This chapter is structured as follows. Properties of the operator L are analyzed in 
Section 5.2. Eigenvalues of the operator L are characterized in Section 5.3. Sections 5.4 
- 5.5 present numerical approximations of eigenvalues and eigenfunctions of the spectral 
problem (5.1.3). 

5.2 General properties of the linear operator L 

It is obvious that the operator L is densely defined in L~er( [-7r, 7r]) on the space of smooth 
functions with periodic boundary conditions. However, the operator L is not closed in 
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L~er([-7T, 7T]) if the functions are infinitely smooth. We therefore prove in Lemma 5.2.1 that 
the operator L admits a closure in L~er([-Jr, Jr]) with a domain in H;er([-7T, 7T]). Eigen­
functions and eigenvalues of the spectral problem (5.1.3) are studied in Lemmas 5.2.4 and 
3.4.7. The absence of the residual and continuous spectra of operator L is proved in Lem­
mas 5.2.6 and 5.2.7. 

Lemma 5.2.1 The operator L admits a closure in L~er([-Jr, 7T])jor lEI < 2 with Dom(L) 
C H;er([-Jr, 7T]). 

Proof According to Lemma 1.1.2 in [38], if an operator has a non-empty spectrum in a 
proper subset of a complex plane, then it must be closed. The operator L has a non-empty 
spectrum in L~er([-7T, 7T]) since A = 0 is an eigenvalue with the eigenfunction fo(B) = 1 E 

L~er([-Jr, Jr]). We should show that there exists at least one regular point Ao E C, such that 

(5.2.1) 

for some ko > O. In particular, we show that any Ao E ~ is a regular point of L in 
Ho c H;er([-7T, Jr]), where 

(5.2.2) 

By using straightforward computations, we obtain 

(f', Lf) = -1: (1 + E cos B) 1f'12dB - E 1: sin B l' 1" dB, (5.2.3) 

where (g, f) = ,CIr g(B)f(B)dB is a standard inner product in L2. If f E H;er([-Jr, Jr]), 
then 

Re(f', f) = 0, Re(f', Lf) = _jlr (1 + ~ cos B) 1J'12dB, 
-7r 2 

(5.2.4) 

such that for any Ao E ~ it is true that 

By using the Cauchy-Schwarz inequality, we estimate the left-hand-side term from above 

such that 

(5.2.5) 
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According to the Neumann-Poincare inequality on e E [-;r,;rJ, we have 

(5.2.6) 

If f E Ho C H~er([-;r, ;rl), we continue the right-hand-side of the inequality (5.2.5) and 
recover the inequality (5.2.1) for any ).0 E lR with 

ko = ~ (1 -1:1) > o. 
2;r 2 

The estimate holds if lEI < 2. D 

Corollary 5.2.2 ). E lR \ {o} is not in the spectrum of L in L~er ([ -;r, ;r J). 

Remark 5.2.3 The formal adjoint of L in L~er([-;r,;rJ) is L* = -dYe (sineae) + ae. Ac­
cording to Lemma 1.2.1 in [38], the operator L * also admits a closure in L~er ([ -;r, ;r l) with 
Dom(L*) C H~er([-;r,;rJ) for lEI < 2. 

Lemma 5.2.4 Let). be an eigenvalue of the spectral problem L f = ).f with an eigenfunc­
tion f E H~er([-;r, ;rl). Then, 

(i) -).,,\ and -,\ are also eigenvalues of the spectral problem Lf = ).f with the eigen­
functions f( -e), J(e) and J( -e) in H~er([-;r, ;rD· 

(ii) ). is also an eigenvalue of the adjoint spectral problem L * 1* = ).1* with the eigen­
function 1* = f(;r - e) in H~er([-;r, ;rl). 

(iii) ). is a simple isolated eigenvalue of Lf = ).f if and only if (1*, J) i= o. 

Proof. (i) Due to inversion e -+ -e, the spectral problem (5.1.3) transforms to itself with 
the transformation). -+ -).. Due to the complex conjugation, it transforms to itself with 
). -+ '\. (ii) Due to the transformation e -+ ;r - e, the spectral problem (5.1.3) transforms 
to the adjoint problem L * f = ).f with the same eigenvalue. (iii) The assertion follows by 
the Fredholm Alternative Theorem for isolated eigenvalues. 0 

Lemma 5.2.5 Let). be an eigenvalue of the spectral problem (5.1.3) with the eigenfunction 
f E H~er([-;r, ;rl). Then, 

R ().) = (1', sin e 1') 
e E (f,f) , 

"I ().) = (1', f) 
z m (1,1)' (5.2.7) 

and Im().) i= 0 except for a simple zero eigenvalue). = O. 
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Proof By constructing the quadratic form for J E H~er([-n, n]), we obtain 

(5.2.8) 

where the second term is purely imaginary since 

Moreover, the equality (5.2.4) can be rewritten in the form 

ilm(A)(f',J) = Re(f',LJ) = -1: (1 + ~cos8) 1J'(8Wd8:S; - (1- 1;1) IIJ'IIi2, 
(5.2.10) 

where the right-hand side is negative if iEl < 2 and J(8) is not constant on 8 E [-n, n]. 
Therefore, (f', J) 1- ° and Im(A) 1- 0. Finally, the constant eigenfunction J(8) = 1 
corresponds to the eigenvalue A = ° and it is a simple eigenvalue since (f*, J) 1- 0, where 
1*(8) = J(n-8) = 1 is an eigenfunction ofthe adjoint operator L* for the same eigenvalue 
A = 0. 0 

Lemma 5.2.6 The residual spectrum oj the operator L is empty. 

Proof By a contradiction, assume that A belongs to the residual part of the spectrum of 
L such that Ker(L - U) = 0 but Range(L - A1) is not dense in L~er([-n, n]). Let 
g E L~er([-n, n]) be orthogonal to Range(L - U), such that 

VJ E L2([-n, n]): 0= (g, (L - U)J) = ((L* - )"1)g, J). 

Therefore, (L* - )..1)g = 0, that is).. is an eigenvalue of L*. By Lemma 5.2.4(ii), ).. is an 
eigenvalue of L and by Lemma 5.2.4(i), A is also an eigenvalue of L. Hence A can not be 
in the residual part of the spectrum of L. 0 

Lemma 5.2.7 The continuous spectrum of the operator L is empty. 

Proof According to Theorem 4 on p.1438 in [43], if L is a differential operator defined on 
the interval 8 E (-n, n) = (-n, 0) U (0, n) and L± are restrictions of Lon 8 E (-n, 0) and 
8 E (0, n), then (Jc(L) = (Jc(L+) U (Jc(L_), where (Jc(L) denotes the continuous spectrum 
of L. By the symmetry of the two intervals, it is sufficient to prove that the operator L+ has 
no continuous spectrum on 8 E (0, n) (independently of the boundary conditions at 8 = ° 
and 8 = n). It is also sufficient to carry out the proof for E > 0. Let J + (t) = J ( 8) on 
8 E [0, n] and 

cos 8 = tanh t, sin 8 = secht, t E lR, 
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such that the interval [0,71"] for e is mapped to the infinite line JR for t. The function f+(t) 
satisfies the spectral problem 

-Ef~(t) + f~(t) = Asecht f+(t). (5.2.1l) 

With a transformation f+(t) = et/ 2fg+(t), the spectral problem (5.2.11) is written in the 
symmetric form 

(5.2.12) 

Thus, our operator is extended to a symmetric operator with an exponentially decaying 
weight p(t) = sech(t). According to Corollary 3 on p. 1437 in [43], if L is a symmetric 
operator on an open interval (a, b) and Lo is a self-adjoint extension of L with respect to 
some boundary conditions at x = a and x = b, then aAL) = CTc(Lo). Here a = -00, 

b = 00, and we need to show that the continuous spectrum of the symmetric problem 
(5.2.12) is empty in U(JR). This follows by Theorem 7 on p.93 in [51): since the weight 
function p(t) of the problem -y"(t) - Ap(t)y(t) = 0 on t E JR decays faster than 1/t2 as 
Itl-+ 00, the spectrum of -y"(t) - Ap(t)y(t) = 0 is purely discretel . 0 

5.3 Eigenvalues of the linear operator L 

By results of Lemmas 5.2.4, 5.2.5, 5.2.6, and 5.2.7, the spectral problem (5.1.3) for lEI < 2 
may have only two types of eigenvalues in addition to the simple zero eigenvalue: either 
pairs of purely imaginary eigenvalues or quartets of symmetric complex eigenvalues. We 
prove in Lemmas 5.3.1 and 5.3.4 that there exists an infinite sequence of eigenvalues A 
which accumulate to infinity along the imaginary axis. Furthermore, we prove in Theorem 
5.3.6 that the eigenfunctions associated to all eigenvalues of the spectral problem (5.1.3) 
form a complete dense set in L~er([-7I", 71"]). In the end of this section, Theorem 5.3.9 
gives a necessary and sufficient condition that the set of eigenfunctions forms a basis in 
L~er([-7I", 71"]). 

Lemma 5.3.1 Let 0 < E < 2 and E i- ~, n E N. For A E C, the spectral problem (5.1.3) 
admits three sets of two linearly independent solutions in the form of the Frobenius series 

-71" < e < 71" : (5.3.1) 

lAlthough the spectral problem (5.2.12) has an additional term Cy(t) with C > 0, this term only makes 
better the inequality (30) on p.93 in the proof of Theorem 7 of [51]. 
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and 

0< ±e < 7r : ft = 1 + I.: a~ (7r =f et, 
nEN 

fi = (7r =f e)l/e (1 + I.: b~(7r =f e)n) , 
nEN 

(5.3.2) 
where all coefficients are uniquely defined. The solution fl (e) is an analytic function of 
A E C uniformly on e E [-7r,7rJ. 

Proof Existence of two linearly independent solutions on -7r < f) < 7r in the form (5.3.1) 
and on ° < ±f) < 7r in the form (5.3.2) follows by the ODE analysis near the regular 
singular points [31]. The difference between the two indices of the indicial equation is 
~ and it is non-integer for E =I ~, n E N2

• Since the spectral problem (5.1.3) depends 
analytically on A and the Frobenius series converges absolutely and uniformly in between 
two regular singular points, the solution h (e) is analytic in A E C for any fixed e E 

( -7r, 7r). Due to uniqueness of the solutions of the ODE (5.1.3), the solution h (f)) can be 
equivalently represented by the other solutions 

h(e) = A± ft(f)) + B± Ji:(f)), 0< ±e < 7r, (5.3.3) 

where A± and B± are some constants, while the functions ft (f)) and fi (f)) are analytic 
in A E C for any fixed ±e E (O,7rJ. By matching analytic solutions for any ±e E (0,7r), 
we find that A ± and B± are analytic functions of A E C, the Frobenius series for h C e) 
converges absolutely and uniformly on f) E [-7r, 7r J, and the solution h (f)) is an analytic 
function in A E C uniformly on e E [-7r,7rJ. D 

Corollary 5.3.2 There exists an analytic function Fe (A) on ImA > 0, roots of which give 
isolated eigenvalues of the spectral problem (5.1.3) with the account of their multiplicity. 
The only accumulation point of isolated eigenvalues in the A-plane may occur at infinity. 

Proof The function f E Hl([_7r,7rJ) satisfies the spectral problem (5.1.3) if and only if 
f (f)) = Coh (e) on e E [-7r, 7rJ, where Co = 1 thanks to the scaling invariance of homoge­
neous equations. By using the representation (5.3.3), we can find that A± = lim hce) are 

8-+±1f 

uniquely defined analytic functions in A E C. The function Fe(A) = A+ - A- is analytic 
function of A E C by construction and zeros of FE (A) on ImA > ° coincide with the eigen­
values A of the spectral problem (5.1.3) with the account of their multiplicity. If FeCAo) = ° 
for some Ao E C, the corresponding eigenfunction fce) lies in H~er([-7r, 7rD, i.e. it sat­
isfies the periodic boundary conditions f(7r) = f( -7r). By analytic function theory, the 
sequence of roots of Fe (A) can not accumulate at a finite point on A E C. D 

2 An additional logarithmic term loge 7r - B) may need to be included into the Frobeneus series if E = ~, 
n E Z. 
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Remark 5.3.3 We will use the method involving the analytic function Ff ()..) on ).. E <C for 
a numerical shooting method which enables us to approximate eigenvalues of the spectral 
problem (5.1.3). This method involves less computations than the shooting method de­
scribed in Appendix C of [11]. Nevertheless, it is essentially the same shooting method 
and it uses the ODE analysis near the regular singular point (Lemma 5.3.1), which repeats 
the arguments in Appendix B of [11]. 

Lemma 5.3.4 Fix 0 < E < 2 and let {)..n}nEN be a set of eigenvalues of the spectral 
problem (5.1.3) with Im)..n > 0, ordered in the ascending order ofl)..nl. There exists afinite 
number N ~ 1, sllch that for all n ~ N, )..n = iWn E iJR+ and 

(5.3.4 ) 

for some C > 0. 

Proof We reduce the spectral problem (5.1.3) to two uncoupled Schroodinger equations 
on an infinite line. Let f( 8) be represented on two intervals ±8 E [0,7r] by using the 
transformations 

sin 8 = ±secht, (5.3.5) cos 8 = tanht, 

where t E lR. Then, the functions J±(t) 
spectral problems 

J(8) on ±8 E [0,7r] satisfy the uncoupled 

-Ef~(t) + f~(t) = ±)..secht !±(t), t E JR, (5.3.6) 

The normalization condition f (0) = 1 is equivalent to the condition lim f ± (t) = 1. The 
t-"'CXJ 

periodic boundary condition f(7r) = J(-7r) is equivalent to the condition lim f-(t) = 
t~-CXJ 

lim f+(t). The linear problems (5.3.6) are reformulated as the quadratic Ricatti equations 
t-"'-CXJ 

by using the new variables 

J±(t) = eJ~ S±(t')dt': S± - E(S~ + S~J = ±)..secht. (5.3.7) 

We choose a negative root of the quadratic equation in the form 

() 
1 - Jl =f 4E)..secht - 4E2 R± 

S± t = ----'---------
2E ' 

(5.3.8) 

The representation (5.3.8) becomes the chain fraction if the derivative of S± (t) is defined 
recursively from the same expression (5.3.8). By using the theory of chain fractions, we 
claim that R± = O( M) as 1)..1 --> 00 uniformly on t E lR. The function F,()..) of 
Corollary 5.3.2 is now expressed by 

F
f

()..) = lim [f+(t) - f-(t)] = eJ~""S+(t)dt - ee""S-(t)dt. 
t-"'-CXJ 

(5.3.9) 
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Zeros of Fe(>,) are equivalent to zeros of the infinite set of functions 

1 100 

Gn(.X) = -. [JI + 4f)..secht - 4E2R_(t) - JI - 4E)..secht - 4E2R+(t)] dt - n, 
41T1E -00 

(5.3.10) 
where n E N. If R±(t) == 0, the function Gn(w) = G(iw), n E N is real-valued and strictly 
increasing on w E lR+ with Gn(O) = -no By performing asymptotic analysis, we compute 
that 

1 100 

-. [JI + 4iEwsecht - 4E2R_(t) - JI- 4iEwseeht - 4E2R+(t)] dt 
4JrlE -00 

= ~ 100 

2iwseeht + E(R+ - R_) dt 
Jri -00 JI + 4iEwsecht - 4E2R_(t) + JI- 4iEwseeht - 4E2R+(t) 

vw 100 

dt ( r:.) --- +0 yW - V2Err -00 veosh t ' 
(5.3.11) 

such that lim Gn(w) = 00. Therefore, there exists exactly one root w = Wn of Gn(w) 
"-'->00 

for each n. Since R_ = R+ for)" = iw E ilR, each simple root of Gn(w) persists for 
non-zero values of R±(t) = O( vw) uniformly on t E lR as w ~ 00. According to the 
asymptotic result (5.3.11), the roots Wn of Gn (w) satisfy the asymptotic distribution (5.3.4) 
with C = 201"2 • 0 

( 
oc dt )2 I-x vcosht 

Remark 5.3.5 Analysis of Lemma 5.3.4 extends the formal WKB approach proposed in 
Section 3 of [1] J. In particular, the equation (5.3.] 0) with R± = 0 has been obtained in Eq. 
(3.11) of [11]. 

Theorem 5.3.6 Let {fn}nEN be the set of eigenfunctions corresponding to the set of eigen­
values {)..n }nEN in Lemma 5.3.4 with Im)..n > O. The set of eigenfunctions is complete in 
Xo C L~er([-Jr, Jrl), where 

Proof By Corollary 5.3.2, eigenvalues of L with 1m).. > 0 accumulate to infinity, such 
that the operator M = L -1 acting on elements in Xo is compact. By Lemma 5.3.4, there 
are infinitely many eigenvalues of L and large eigenvalues are all purely imaginary, such 
that I)..nl = O(n2

) as n ~ 00. These two facts satisfy two sufficient conditions of the 
Lidskii's Completeness Theorem. According to Theorem 6.1 on p. 302 in [52], the set of 
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eigenvectors and generalized eigenvectors of a compact operator AJ in a Hilbert space Xo 
is complete if there exists p > 0 such that 

-1 

sn(M) = o(np), as n -t 00, (5.3.12) 

where Sn is a singular number of the operator A,/, and the set 

lVM = {(MI,!): IE X O, IIIIIxo = I} (5.3.13) 

lies in a closed angle eM with vertex at 0 and opening :!!:. Since the singular numbers Sn are 
p 

eigenvalues of the positive self-adjoint operator (M M*)1/2 and the eigenvalues of L grow 
like O(n2 ) as n -t 00, we have sn(M) = O(n-2) as n -t 00, such that the first condition 
(5.3.12) is verified with p = 1. Since all Im),n > 0 for the set of eigenvalues {An}nEN of 
Lemma 5.3.4, the spectrum of M lies in the lower half plane, such that the second condition 
(5.3.13) is also verified with p = 1 (el\! = Jr). 0 

Corollary 5.3.7 The set of eigenfunctions {fn}nEZ with fo = 1 and f-n = In, \In E N is 
complete in L~er([-Jr, Jr]). 

Remark 5.3.8 Due to linear independence of eigenfunctions for distinct eigenvalues, the 
set of eigenfunctions {fn}nEZ is also minimal if all eigenvalues are simple3. If the set 
{fn}nEZ is complete and minimal, any function f E L~er([-Jr, Jr]) can be approximated 

N 
by a finite linear combination f N = 2: enfn in the following sense: for any fixed c > 

n=-N 
0, there exists N 2: 1 and the set of coefficients {Cn}-N:Sn:SN, such that the inequality 
III - fNIIL~er([-7r;1f]) < E holds. This approximation does not imply that the set {fn}nEZ 
forms a Schauder basis in the Hilbert space L~er([-Jr, Jr]), in which case there would exist 
a unique series representation f = 2: cnfn for any f E L~er([-Jr, JrD. 

nEZ 

Theorem 5.3.9 Let {fn}nEZ be a complete and minimal set of eigenfunctions of the spec­
tral problem (5.1.3) for the set of eigenvalues {),n}nEZ in Theorem 5.3.6. The set of eigen-----functions forms a basis in Hilbert space L~er([ -Jr, Jr]) if and only if lim cos(fn,fn+1) < l. 

n->oo 

Proof According to Theorem 2 on page 31 in [87], the complete and minimal set of 
eigenfunctions {fn}nEZ forms a basis in Hilbert space X = L~er([-Jr, Jr]) if and only if 
sup IIPN II < 00, where PN is the projector of the linear span {fn} -N:Sn:SN in the direction 

N 

of the linear span {fn}lnl2:N+1' Since the Hilbert space X is a direct sum of the two lin-
ear spans above, the norm of the parallel projector PN has the geometrical representation 

3By Lemma 5.3.4, all eigenvalues are simple starting with some n 2: N. 
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IIPNII = sin
1
"N' where aN is the angle between the two linear spans [4]. This implies that 

the set {fn}"a is a basis in the Hilbert space X if and only if 

( ---) I (f" , fn+dl 
cos f",f,,+1 = IIf"IIIIfn+111 < 1, (5.3.14) 

for sufficiently large n E Z [53]. D 

5.4 Numerical shooting method 

We approximate isolated eigenvalues of the spectral problem (5.1.3) for 0 < f < 2 nu­
merically. In agreement with numerical results in [11], we show that all eigenvalues in the 
set Pn}nEZ are simple and purely imaginary. Therefore, the set Pn}nEZ can be ordered 
in the ascending order, such that Ao = 0, An = -A_n, \In E N, ImAn < ImAn+1 and 
lim IAnl = 00. We also show that the angle between two subsequent eigenfunctions fn(B) 

n""'oo 
and fn+1(B) in the set {fn(B)}nEZ tends to zero as n --+ 00. 

The numerical shooting method is based on the ODE formulation of the spectral 
problem (5.1.3). By Lemma 5.3.1 and Corollary 5.3.2, complex eigenvalues A E <C are 
determined by roots of the analytic function F,(A) in the A-plane. The number of complex 
eigenvalues can be computed with the winding number theory. The number and location of 
purely imaginary eigenvalues can be found from real-valued roots of a scalar real-valued 
function. 

Proposition 5.4.1 Let the eigenfunction f(B) of the spectral problem (5. 1.3) for 0 < f < 2 
be normalized by the condition f(O) = 1. The eigenvalue A is purely imaginary if and only 
if f(B) = f( -B) on BE [-n, nl· 
Proof If A E ilR and f(B) satisfies the second-order ODE (5.1.3) on B E [-n, nl, 
then J( -B) satisfies the same ODE (5.1.3) on B E [-n, nJ. By Corollary 5.3.2, if f E 
H~er([-n, n]), f(O) = 1 and 0 < f < 2, the solution f(B) is uniquely defined. By unique­

ness of solutions, f(B) = f( -B) on B E [-n, nl. 
If f(B) = ](-B) on BE [-n,nJ, then, 

j 1r sinBIf'(B)12dB = r sinBIf'(BWdB _ r sinBIf'(-BWdB = 0, 
-1r Jo Jo 

such that ReA = 0 according to the equality (5.2.7) in Lemma 5.2.5. D 

Corollary 5.4.2 Let f(B) be an eigenfunction of the spectral problem (5. 1.3) for A E iR 
suchthatf E H~er([-n,n])andf(O) = 1. Then, f(n) = f(-n) is equivalent to f(n) E R 
The eigenvalue A E ilR is simple if and only if 

(f*,f) = 2Re l1r f(B)](n - B)dB -I O. (5.4.1) 
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Proof. The first assertion follows by the symmetry relation f(()) = J( -()) evaluated at 
() = 'IT. The second asserion follows by Lemma 5.2.4 with the use of the symmetry J*(()) = 

f('IT - ()). 0 
By Lemma 5.3.1, the function f(()) with f(O) = 1 is represented uniquely by the 

Frobenius series 
f(()) = h(()) = 1 + LCn()n, (5.4.2) 

nEN 

where the coefficients {en }nEN are uniquely defined by the recursion relation 

1 ( ,,(-l)¥m) 
Cn =- ( ) ACn-l+En~ ( ),cm , n1+En n-m+1. 

mEN' 

nE N, (5.4.3) 

where Co = 1 and N' is a set of integers in the interval [1, n - 2J such that n - m is even. 
For instance, 

A 
Cl = -1 + f' C2 = 2 (1 + f) (1 + 2f) , C3 = - 3!(1 + f)(l + 2f)(1 + 3f)' 

and so on. We truncate the power series expansion on N = 100 terms and approximate 
the initial value [f (()o) , f' (()o) J at Bo = 10-8 • By using the fourth-order Runge-Kutta ODE 
solver with time step h = 10-4, we obtain a numerical approximation of f == f+(()) on 
() E [Bo, 'IT - ()oJ for A and f == f_(B) on the same interval for -.\. By Lemma 5.2.4(i), the 
numerical approximation of the function F,(A) of Corollary 5.3.2 is 

(5.4.4) 

If A E ilR., the function F,(A) is simplified by using Corollary 5.4.2 as F,(A) = 2ilmf+('IT­
()o). Table 1 represents the numerical approximations of the first four non-zero eigenvalues 
A E ilR. for f = 0.5, l.0, l.54 with the error computed from the residual 

R = I (I, LJ) - AI. 
(I,J) 

We can see from Table 1 that the accuracy drops with larger values of f and for larger 
eigenvalues, but the eigenvalues persist inside the interval If I < 2. 

Figure 5.1 shows the profiles of eigenfunctions f(()) on () E [0, 'lTJ for the first two 
eigenvalues A = iWl,2 E ilR.+ for f = 0.5 (left) and f = l.5 (right). We can see from Fig. 

4We note that the Frobenius series (5.4.2) is not affected by the logarithmic terms for E = 0.5 and E = 1.0, 
since 0 is the largest index of the indicial equation at (J = 0. 
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1 that the derivative of f (e) becomes singular as e -7 Jr- for f 2': 1. We can also see that 
the real part of the eigenfunction f(e) has one zero on e E (0, Jr) for the first eigenvalue 
and two zeros for the second eigenvalue, while the imaginary part of the eigenfunction 
f (e) has a fewer number of zeros by one. The numerical approximations of the eigenvalue 
and eigenfunctions of the spectral problem (5.1.3) are structurally stable with respect to 
variations in eo, Nand h. 

Figure 5.2 shows the complex plane of w = Pc(>') (left) and the argument of w 
(right) when A traverses along the first quadrant of the complex plane A E Al U A2 U A3 

for f = 0.5. Here Al = x + ir with x E [r, R], A2 = Re''P with 'P E ['Po, ~ - 'Po] and 
A3 = r + iy with y E [r, Rj, where r = 0.1, R = 10, and 'Po = arctan(r / R). It is obvious 
that the winding number of Pc(A) across the closed contour is zero. Therefore, no zeros 
of Pc(A) occurs in the first quadrant of the complex plane A E C. The numerical result is 
structurally stable with respect to variations in r, Rand f. 

f WI RI W2 R2 
0.5 1.167342 0.000051 2.968852 0.000405 
1.0 1.449323 0.000837 4.319645 0.007069 
1.5 1.757278 0.002691 5.719671 0.018412 

f W3 R3 W4 R4 
0.5 5.483680 0.001436 8.715534 0.003653 
1.0 8.631474 0.024964 14.382886 0.061881 
1.5 11.846709 0.054271 20.138824 0.113834 

Table 1: Numerical approximations of the first four eigenvalues A = iWn of the 
spectral problem (5.1.3) and the residuals R = Rn for three values of f. 

5.5 Numerical spectral method 

The numerical spectral method is based on the reformulation of the second-order ODE 
(5.1.3) as the second-order difference equation and the subsequent truncation of the differ­
ence eigenvalue problem. It is found in [119] that the truncation procedure lead to spurious 
complex eigenvalues which bifurcate off the imaginary axis. 

Let f E H~er([-Jr, Jr]) be an eigenfunction of the spectral problem (5.1.3). This 
eigenfunction is equivalently represented by the Fourier series 

f(e) = :L fne- mO
, (5.5.1 ) 

nEZ 

where the infinite-dimensional vector f ( ... ,f-2,f-l,fo,h,h, ... ) is defined in f E 

l~(Z) equipped with the norm Ilfll~i = I:nEZ(l + n 2 )lfnl 2 < 00. The spectral problem 
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Figure 5.1: The real part (blue) and imaginary part (green) of the eigenfunction f(8) on 
8 E [0,1T] for the first (solid) and second (dashed) eigenvalues A = iWl,2 E ilR+ for E = 0.5 
(left) and E = 1.5 (right). 

• ~ 0 

Figure 5.2: The image of the curve w = Ff(A), when A traverses along the contours Al 
(blue), A2 (green) and A3 (magenta) for E = 0.5: the image curve on the w-plane (left) and 
the argument of w (right). 
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(5.1.3) for lEI < 2 is equivalent to the difference eigenvalue problem 

E 
nfn + "2 n [(n + l)fn+1 - (n - l)fn-I)] = -i)..fn, n E Z. (5.5.2) 

The difference eigenvalue problem (5.5.2) splits into three parts 

AL = i)"L, )..fo = 0, (5.5.3) 

where f± = (f±I, f±2, ... ) and A is an infinite-dimensional matrix 

1 E ° 0 ... 
-( 2 3( 0 ... 

A= 0 -3E 3 6E ... (5.5.4) 
0 0 -6E 4 

Since A = D - is, where D is a diagonal matrix and S is a self-adjoint tri-diagonal matrix, 
one can define the discrete counterpart of Lemma 5.2.5 

where 1m).. > O. The adjoint eigenfunction 1*(8) = f(1r - 8) is recovered from the 
eigenvector f by f* = Jf, where 

[ 

0 0 JO] 
J = 0 1 0 

Jo 0 0 

and Jo is a diagonal operator with entries (-1,1, -1, 1, ... ). 
According to Theorem 5.3.6, rewritten from the set of eigenfunctions {fn}nEZ to 

the set of eigenvectors {fn}nEZ, the inverse matrix operator A-I is of the Hilbert-Schmidt 
type, and hence compact. Let ANI = PNA- I PN denote the truncation of the matrix op­
erator A-I at the first N rows and columns, where PN is an orthogonal projector from an 
infinite-dimensional vector to the N-dimensional vector of the first N components. 

Proposition 5.5.1 Operator sequence ANI converges uniformly to the compact operator 
A-I as N -+ 00. Eigenvalues of the matrices ANI converge to the eigenvalues of the 
compact operator A-I as N -+ 00. 



110 PHD THESIS - M. CHUGUNOVA McMASTER - MATHEMATICS & STATISTICS 

Proof It follows from the Finite Rank Approximation Theorem that PNA- I converges 
uniformly to the compact operator A-I. Therefore, for any E > 0, there exists a number 
NI 2': 1 such that 

'liN> N I : 

Because the adjoint operator is also compact and the orthogonal projector PN is a self­
adjoint operator, the sequence PNA-h is uniformly converges to A-h. Therefore, for any 
E > 0, there exists a number N2 2': 1 such that 

'liN> N2 : IIPNA- h - A-hll < ~. 

Let No = max(NI' N2). For any N > No, we have 

IIA-1 
- PNA-IPNII = II(A- I 

- PNA- I ) + PN(A- h - PNA-h)*11 
:S II(A- I - PNA-I )II + IIPNIIII(A- h - PNA-h )*11 
:S IIA- I - PNA- I PNII + II(A-h - PNA-h)11 :S E. 

Therefore, limN-too Aj\;I = A-I. 
Let AO =1= ° belongs to the spectrum of the operator A-I. Because all eigenvalues 

are isolated, there exists an open ball Do E Dom(A- I
) with the boundary aDo passing 

though regular points of operator A such that AO is the only point of Do in the spectrum set 
of A-I. It follows from the compactness of a Do that the set { (A Ii - AI) -1: A E a Do} 
is uniformly bounded by N and by A. Therefore, the sequence of the Riesz projectors 

strongly converges to the limiting projector 

If all RN = 0, then the limiting projector R = 0. o 

Remark 5.5.2 The distance between eigenvalues of Al/ and A-I may not be small for 
fixed N, but it becomes small in the limit of large N. The convergence of eigenvalues is 
not uniform in A. 

The smallest eigenvalues of the truncated matrix Aj;/ are found with the parallel 
Krylov subspace iteration algorithm [46]. Figure 5.3 shows the distance between eigenval­
ues of the shooting method and eigenvalues of the Krylov spectral method fOrE = 0.1. The 
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3 

n 

Figure 5.3: The distance between eigenvalues computed by the shooting and spectral meth­
ods for E = 0.1. 

difference between two eigenvalues is small of the order O( 10-3 ) but the advantage of the 
parallel algorithm is that the calculating time of 20 largest eigenvalues of ANI for N = 106 

takes less than one minute on a network of 16 processors while finding the same set of 
eigenvalues by the shooting method with the time step h = 10-5 takes about one hour. 

Figure 5.4 shows symmetric pairs of eigenvalues of the matrix AN for E = 0.3 
at N = 128 (left) and N = 1024 (right). We confirm the numerical result of [119] that 
the truncation of the matrix operator A always produces splitting of large eigenvalues off 
the imaginary axis. Moreover, starting with some number n, the eigenvalues of AN are 
real-valued. This feature is an artifact of the truncation, which contradicts to Lemmas 
5.2.5 and 5.3.4 as well as to results of the shooting method. However, the larger is N, 
the more eigenvalues remain on the purely imaginary axis. Therefore, the corresponding 
eigenvectors can be used to compute the angle in Theorem 5.3.9. 

Figure 5.5 (left) show the values of the cosine of the angle (5.3.14) for the first 20 
purely imaginary eigenvalues for E = 0.1. As we can see from the figure, the angle between 
two eigenvectors tends to zero for larger eigenvalues up to the numerical accuracy. Figure 
5.5 (right) and Table 2 show that the angle drops to zero faster with larger values of the 
parameter E. 



112 PHD THESIS - M. CHUGUNOVA McMASTER - MATHEMATICS & STATISTICS 

25 25 

20 20 

15 15 

10 10 

;;:;- ;;:;-
I 0 I 0 

-5 -5 

-10 -10 

-15 -15 

-20 -20 

-~~o 0 50 
-25 

-50 0 50 

Re(1..) Re(1..) 

Figure 5.4: Spectrum of the truncated difference eigenvalue problem (5.5.2) for f = 0.3: 
N = 128 (left) and N = 1024 (right). 
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eigenvectors f = 0.1 f = 0.3 f = 0.5 
1-2 0.120166 0.325116 0.431987 
2-3 0.461330 0.716192 0.780641 
3-4 0.680709 0.838889 0.878055 
4-5 0.799235 0.890440 0.9]4622 
5-6 0.858944 0.921498 0.940306 
6-7 0.892869 0.940395 0.955239 
7-8 0.914745 0.953124 0.965235 
8-9 0.930023 0.962120 0.972204 

9-10 0.941262 0.968732 0.977265 
10-11 0.949843 0.973741 0.981057 
11-12 0.956580 0.977629 0.983988 
12-13 0.961987 0.980702 0.986072 
13-14 0.966407 0.983297 0.989617 
]4-15 0.970073 0.983459 0.990547 
15-16 0.973153 0.995335 0.999101 
16-17 0.975764 0.998749 0.999601 

Table 2: Numerical values of casU::];"l) for the first 16 purely imaginary eigen­
values for three values of f. 

The angle between two subsequent eigenvectors is closely related to the condition 
number [108] 

(5.5.5) 

By Lemma 5.2.4(iii), the condition number is infinite for multiple eigenvalues since Un' f~) = 

O. From the point of numerical accuracy, the larger is the condition number, the poorer is 
the structural stability of the numerically obtained eigenvalues to the truncation and round­
off errors. 

Figure 5.6 shows the condition number (5.5.5) computed for the first 40 purely 
imaginary eigenvalues for f = 0.001 and f = 0.002. We can see that the condition number 
grows for larger eigenvalues which indicate their structural instability. Indeed, starting with 
some number n, all eigenvalues are no longer purely imaginary, according to the numerical 
approximations on Figure 5.4. The condition numbers become extremely large with larger 
values of E-

We finally illustrate that all true eigenvalues of the spectral problem (5.1.3) are 
purely imaginary and simple. To do so, we construct numerically the sign-definite imagi­
nary type function and obtain the interlacing property of eigenvalues of the spectral prob­
lem (5.1.3) for two values f = EO and f = f1. where If1 - Eol is small. We say that the 
eigenvalues exhibit the interlacing property ifthere exists an eigenvalue for E = f1 between 
each pair of eigenvalues for E = fO and vice verse. 
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Figure 5.6: The condition number for the first 40 purely imaginary eigenvalues for f 

0.001 (red) and f = 0.002 (blue). 

A meromorphic function G('\) is caIled a sign-definite imaginary type function if 
ImG('\) ::; 0 (ImG('\) ~ 0) on Im('\) ::; 0 (Im('\) ~ 0) [6]. We construct the meromorphic 

function G(w) in the form G('\) = ~:~i~~, where F€('\) is an analytical function ofCoroIlary 

5.3.2. The numerical approximation of the merom orphic function G('\) is given by G('\) = 

~<Q((A)). According to Theorems II.2.t - II.3.t on p. 437-439 in [6], the function G('\) 
Fq A 
is a meromorphic function of sign-definite imaginary type if and only if it has the form 
G('\) = ~~~j where P(,\) and Q(,\) are polynomials with real coefficients, with real and 
simple zeros, which are interlacing. 

Table 3 shows this interlacing property of eigenvalues for fO = 0.48 and f1 = 0.5. 
The remainder term R€ = IIL{Af~fll measures the numerical error of computations. We 

have also computed numerically the values of G('\) on the grid 0.1 < Im'\ < 100 and 
0.1 < Re'\ < 100 with step size 0.1 in both directions (not shown). Based on the numerical 
data, we have confirmed that the function G('\) does indeed belongs to the class of sign­
definite imaginary type functions while the eigenvalues {,\n}nEZ exhibit the interlacing 
property. This computation gives a numerical verification that all eigenvalues of the spectral 
problem (5.1.3) are simple and purely imaginary. 
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Im}.,o R,o Im}.'l REl 
1.063112 2.3244e - 10 1.068314 2.4073e - 10 
2.970880 2.1967e - 10 3.024428 2.2531e - 10 
5.414789 2.2024e - 10 5.542829 2.2683e - 10 
8.471510 2.0904e - 10 8.693066 2.1572e - 10 
12.312548 2.007ge - 10 12.665485 2.060le - 10 
16.816692 1.9765e - 10 17.327038 2.0288e - 10 
22.014084 1.9617e - 10 22.711070 2.0l97e - 10 
27.899896 1.9527e - 10 28.812177 2.0157e - 10 
34.474785 1.950le - 10 35.631088 2.0l90e - 10 
41.738699 1.9558e - 10 43.167733 2.0313e - 10 
49.691673 1.9671e - 10 51.422281 2.0476e - 10 
58.333258 1.9796e - 10 60.391382 2.0623e - 10 
67.665387 1.9904e - 10 70.140636 2.0725e - 10 
77.95787l 1.998ge - 10 79.828287 2.0782e - 10 
89.484519 2.6566e - 10 91.544035 2.0821e - 10 

Table 3: The interlacing property of the first 15 purely imaginary eigenvalues for E = 0.48 
and E = 0.5. 
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CHAPTER 6 

SUMMARY OF RESULTS AND OPEN QUESTIONS 

The four main new results of my doctoral research are represented as separate chapters of 
the thesis. 

The first result is a proof that spectral stability problems for Hamiltonian systems 
with semi-bounded energy can be reformulated in terms of self-adjoint operators acting on a 
space with indefinite metric. This allows deriving the criteria for stability and instability of 
solitons in terms of sign-definite invariant subspaces using Pontryagin space (II,J decom­
position method. Three major spectral theorems resulted from this approach: the number 
of unstable and potentially unstable eigenvalues equals the number of negative eigenvalues 
of the self-adjoint operator in II", the total number of isolated eigenvalues is bounded from 
above by the total number of isolated eigenvalues of the self-adjoint operator in III<, the 
subspace that related to the absolute continuous spectrum is positive sign-definite. This de­
composition method is used to determine the stability of solitary waves in various classes 
of nonlinear PDEs: the NLS, Klein - Gordon and KdV equations. 

One of the interesting open questions is an extension of the Pontryagin subspace 
theorems to operators acting on exponentially weighted spaces. This is relevant for stability 
problems of multi-pulse solitary wave solutions in the 5-th order KdV equation. Potential 
applications for this research are magneto-acoustic waves in plasma and capillary-gravity 
water waves. It is also an open question how to apply indefinite metric space approach to 
spectral analysis of the quadratic pencils of the differential operators. This is relevant for 
the spectral stability problems associated with the linearized sine Gordon equation. 

The second result is numerical calculations of two-pulse solutions for the fifth­
order KdV equation. Two-pulse solutions are bound states of two solitary waves which 
travel together as a single coherent structure with a fixed peak-to-peak separation. We 
applied a new numerical method which is a modification of the Petviashvili method of 
successive iterations for numerical approximations of pulses. The successive iterations of 
the original Petviashvili method do not converge for two-pulse solutions. The iterative 
sequence with two pulses leads either to a single pulse or to a spurious solution with two 
pulses located at an arbitrary distance. This numerical problem arises due to the presence 
of small and negative eigenvalues of the linearized energy operator. We found that this 
nearly singular quasi-translational eigenmode does not create any serious problems for 
our numerical algorithm. Modification and a proof of the convergence of iterations in a 
neighborhood of two-pulse solutions are based on the Lyapunov-Schmidt reduction. It 
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is also shown that the embedded eigenvalues of negative Krein signature are structurally 
stable in a linearized KdV equation. Combined with stability analysis in Pontryagin spaces, 
this result completes the proof of spectral stability ofthe corresponding two-pUlse solutions. 

Although one-dimensional models are very useful for conceptual purposes the real 
world is not made that way. An open question is: can this method or its modification be 
applied in two or three dimensions? Another question is to see if this algorithm can be 
used the N -pulse solutions with N > 2. 

The third result is a construction of the canonical transformation of the linearized 
coupled-mode system to the block anti-diagonal form, when the spectral problem reduces 
to two coupled two-by-two Dirac systems. This block-diagonalization is used in numerical 
computations of eigenvalues that determine stability of gap solitons. This transformation is 
significant for numerical approximations of eigenvalues of the linearized Hamiltonian sys­
tems, because the block-diagonalized matrix can be stored in a special compressed format 
which requires twice less memory than a full matrix. Spectral analysis of Dirac systems can 
be done in terms of self-adjoint operators acting on Krein space (which is a generalization 
of Pontryagin space with index K, = (0). Potential applications for this research are optical 
solitons in fibres and photonic crystals which provide an efficient (reliable and fast) means 
of long-distance communication. 

The last new result is a proof that the operator L associated with the heat equation 
(5.1.1) admits a closure in L~er([ -Jr, Jrl) with a domain in H;er([ -Jr, Jr]) for If I < 2. The 
spectrum of L consists of eigenvalues of finite multiplicities. Using the analytic function 
theory and the Fourier series, we have approximated eigenvalues numerically and showed 
that all eigenvalues of the spectral problem (5.1.3) are purely imaginary. Furthermore, we 
have proved with the assistance of numerical computations that the set of eigenfunctions 
of the spectral problem (5.1.3) is complete but does not form a basis in the Hilbert space 
L~er([-Jr, Jrl). 

We think that there is a relation between these properties of the linear operator L 
and ill-posedness of the Cauchy problem for the periodic heat equation (5.1.1). According 
to the Hille-Yosida Theorem (see Section IX.7 in [125]), if L is a linear operator with a 
dense domain in a Banach space X and the resolvent operator (I - A-I L )-1 exists for any 
ReA > 0, then L is the infinitesimal generator of a strongly continuous semi group if and 
only if 

(6.0.1) 

for some C > 0 uniformly in ReA > O. Moreover, if C :s; 1, then the semi-group is a 
contraction. When the conditions of the Hille-Yosida Theorem are satisfied, the Cauchy 
problem associated with the operator L is well-posed, whereas it is ill-posed if these con­
ditions are not met. 

According to the numerical results on pseudo-spectra in [11] and [119], the level 
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set of the resolvent nonn 

extends to the right half-plane, such that R('\) does not decay along the level set curves 
with Re.\ > O. This numerical fact serves as an indication that the conditions of the Hille­
Yosida Theorem are not satisfied and the Cauchy problem for the heat equation is ill-posed. 
Furthermore, our work in progress is to prove that the ill-posedness of the periodic heat 
equation (5.1.1) follows from the fact that the set of eigenfunctions of the operator L does 
not form a basis in the Hilbert space X = L~er([-7r, 7r]). 

Although the series of eigenfunctions of operator L can not be used to solve the 
Cauchy problem for the periodic heat equation, conditional convergence of the series of 
eigenfunctions can sometimes be achieved at least for finite times, as illustrated in [12]. 
Therefore, more detailed studies of applicability of the series of eigenfunctions and its 
dependence from the initial data ho are opened for further work. 
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