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Abstract

This thesis investigates a 1-dimensional Gross-Pitaevskii (GP) equation from the
viewpoint of a system of Hamiltonian partial differential equations (PDEs). A the-
orem on Birkhoff normal forms is a particularly important goal of this study. The
resulting system is a perturbed system of a completely resonant system, which we

analyze, using several forms of perturbation theory.

In chapter two, we study estimates on integrals of products of four Hermite
functions, which represent coefficients of mode coupling, and play an important role
in the proof of the Birkhoff normal form theorem. This is a basic problem, which
has a close relationship with a problem of Besicovitch, namely the behavior of the

LP? norms of L? -normalized Hermite functions.

In chapter three we carefully reconsider the linear Schrodinger equation with
a harmonic potential, and we introduce a family of Hilbert spaces for studying the
GP equation, which generalize the traditional energy spaces in which one works. One
unexpected fact is that these function spaces have a close relationship with the former
works for the tempered distributions, in particular the N-representation theory due
to B. Simon, and V. Bargmann’s theory, which uncovers relationship between the

tempered distributions and his function spaces through the so-called Segal-Bargmann

il



transformation. In addition, our function spaces have a nice relationship with the
Sobolev spaces. In this chapter, a few other questions regarding these function spaces

are discussed.

In chapter four the proof of the Birkhoff normal form theorem on spaces we
have introduced are provided. The analysis is divided into two cases according to
the regularity of the related function space. After proving the Birkhoff normal form
theorem, we made an analysis of the impact of the perturbation on the main part of

the GP system, which we remark is completely resonant.
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Chapter 1

Introduction

1.1 Background

Bose-Einstein condensation is an exotic quantum phenomenon which is now a subject
of intense theoretical and experimental study. A Bose-Einstein condensate (BEC)
is a state of matter formed by a system of bosons confined in an external potential
and cooled to temperatures very near to absolute zero. This state of matter was first
predicted as a consequence of quantum mechanics by Albert Einstein, building upon
the work of Satyendra Nath Bose in 1925, hence the name. Seventy years later, the
first such condensate was produced by Eric Cornell and Carl Wieman in 1995 at the
University of Colorado at Boulder NIST-JILA lab. For this work, Cornell, Wieman
and Wolfgang Ketterle at MIT were awarded the 2001 Nobel Prize in Physics in

Stockholm, Sweden.

Before this famous experimental realization of BEC, a remarkable series of



investigations were conducted, formulated in terms of the Gross-Pitaevskii (GP)
equation [Gro][Pi], which turns out to provide a good description on the behavior of
BEC’s. This equation can be written as

2

O = — L A+ V(e + AP, (1.1)

2m
where m is the mass of the bosons, V' (z) is the external potential and A is a coefficient
representating the inter-particle interactions. The sign of the coefficient A differs for
different chemical elements. For example, it is negative for "Li atoms ([B-S-T-H][B-S-
H]) as well as for 8Rb, and positive for 8Rb, Na and *H. We would like to mention
m

that the case of harmonic potential, that is, V(z) = Zw?z? (w > 0), is one of the

most important cases, as it models the magnetic field used to confine the particles.

From the point of view in mathematics, equation (1.1) is a nonlinear Schrodinger
equation with a potential function V(z). In the simplest cases, the potential func-
tion can be a constant function. J. Ginibre and G. Velo have considered this kind
of nonlinear Schrodinger equation for a larger class of nonlinearities [G-V], and the
local existence and uniqueness of solutions of the initial value problem in the Sobolev
space H'(R™) were obtained in their work. In some cases, they proved the existence
of the global solutions. The method can be summarized as follows: first study the
corresponding linear PDE and the property of the corresponding Schrédinger kernel;
then write the PDE as an equivalent integral equation in a suitable Banach space;
finally use the property of the Schrédinger kernel and fixed point theorem to get the

solution.

In 1979, D. Fujiwara proved in [F'1][F2] that for potentials of quadratic growth,



the Schrodinger kernel has the form

Kt 2,y) = (—

n/2 WS{t.x.y)
a(t,z,y)e
th) ( y)

for a short of time ¢, where S(¢, z,y) is smooth and a(t, x, y) is a bounded continuous
function of ¢,z and y. This result was a kind of generalization of the Mehlor’s
formula [F-H], which provides the exact Schrédinger kernel for Harmonic potential
V(z) = Zw?z® On the basis of the work by D. Fujiwara. Yong-Geun Oh [O] made

a further study of the following Cauchy problem in 1989
. 1 . -1 4
0 = =3 A+ Ve~ P Y, 1<p<ly=, (1.2

where the potential V is bounded below and satisfies the condition that [D*V] is
bounded for all |af > 2. In the function space of D(y/3A + V), the domain of
definition of the square root of the Schrodinger kernel %A + V, he proved the long

time existence of the flow in that space.

In the recent years, more work have been done, focusing on the case of har-
monic potentials. In 2002, R. Carles [C1] studied a nonlinear Schrédinger equation

in the following form

ihou™ + %—ZAIUE = &;J,’Quﬁ + A }uh‘% ut, (t.r) e Ry x R™,

(1.3)

zzh|f:0 = ug,
where A > 0, A € R and w, o > 0. With the local existence of the equation already
known, the author made use of the conservation laws of the above PDE to study
the global well-posedness in the space ¥ := {u € L2(R")| ru, Vu € L}*(R™)}. The
author pointed out that there are following cases that a datum in the space ¥ can

admit global flows:



e If A > 0, then the solution is defined globally in time;
o If A <0 and o < 2/n, then the solution is also defined globally in time;

o If A < 0and ¢ > 2/n, then the solution is defined globally in time when

the initial data u} is sufficiently small.

He also found that finite blow up solution do indeed exist. The conserved
energy can be written as

H h H2a+2

1
E'= B Hhvxuﬁ(t)H; ”2L2 L2042 °

+ 5 Hruh(t)

The author proved that if A < 0, ¢ > 2/n and E? < “’72 quh(t) then the solution

Iz
collapse at a time ¢* < 7/2w. In that paper. he also provided upper bound and lower

bound estimate of the breaking time.

In addition to the cubic nonlinearity for the Schrodinger equation with har-
monic potential, some other nonlinearities may also be a good choice to model Bose-
Einstein condensation. In [K-N-S-Q)], the author proposes a quintic nonlinearity in

space dimension one; and in [Z], the author suggests more generally the study of

10y + AU = ——x 2u+ Mul""u, (t,z) € R x R™,
(1.4)
U|t=0 = Ug.
Then in the year 2002, R. Carles also studied the partial differential equation (1.4)

n [C2]. He found that there is a coordinate change which transforms the above

equation into the following form

10 + 300 = A" v, (t,z) R X RY, L35

U’t:o = Vo,

while the latter equation had been extensively studied. A quick and complete ref-

erence can be found from the website maintained by Jim Colliander, Mark Keel,



Gigliola Staffilani, Hideo Takaoka, and Terry Tao [Webpagel]. Here we just provide

some basic information for this equation (1.5).

The local well-posedness for this equation (1.5) has been provided by J. Gini-
bre and G. Velo’s work in [G-V]. There are predictions of the blow up time and rate
by C. Sulum. In 1982, M. I. Weinstein proved that if the initial data comes from the
space © := {u € L%(R")| zu, Vu € L*(R™)}, then one can have global solution in
the defocusing case (A > 0); in the focusing case (A < 0), if the initial data is small
enough, then one can also get global solution; otherwise, the wave v may collapse in
finite time. In more detail, qualifying this criterion in the focusing case is called as

critical mass, which equals to the L? norm of the unique radial solution [Kw] of

~38Q+Q=-2Q""Q, mR",
¢ >0, inR"™
In particular, he pointed out that there is an initial data ug with this critical mass
such that it leads to a blow up solution at finite time. In other words, this critical L?
norm is sharp. In 1993, F. Merle [Mel][Me2] proved that up to invariants of (1.5),
the blowing up solutions enlightened by Weinstein are the only ones. More refined
descriptions for the blow-up solutions were obtained in recent years by F. Merle and

P. Raphael [M-R1].

Since R. Carles have found the coordinate transformations between the equa-
tion (1.4) and (1.5) (in the space C'(1.3)), many results obtained for the equation
(1.5) can be transposed into its corresponding version for the equation (1.4) (see
[C2]). Of these results, the existence of the critical mass in fact had been proved by

Zhang Jian in [Z].

In this thesis, we turn our attention into the initial value problem of the



equation (1.1) with the harmonic potential in one space dimension case. That is

i = 30es — S — gl z € R!
Y(z,0) = Po(x) ¥ complex valued,

(1.6)

where ¢ is a constant. According to the materials introduced above, it is already
well understood on the question of the global well-posedness: any initial data in the
space & := {u € L¥R")| zu, Vu € L2(R™)} will result in a global flow in time in the
same space. But beyond that, we are still interested in finding more information to
describe the behaviors of the solutions on time. So we take the viewpoint from the

Hamiltonian system to study this equation in this thesis.

1.2 Hamiltonian systems

Many important physic models can be regarded as Hamiltonian systems, ones often
as nearly integrable. In the case of finite dimensional systems of ODE, A. N. Kol-
mogorov, V. I. Arnold and J. Moser [Ko][A][Mo] introduced a theory, which roughly
speaking, states that for sufficiently small perturbations of an integrable system,
almost all invariant tori are preserved. In other words, there exist abundant quasi-
periodic motions for an integrable system under sufficient small perturbations. This
theory now is known as KAM theory. Of course, there are also many initial data
leading to a motion not quasi-periodic, but they will at least admit the Nekhoroshev
stability. In his paper [N], Nekhoroshev showed that under a small perturbation of
an integrable Hamiltonian system, the action variables of an arbitrary orbit change

exponentially slowly.
When a Hamiltonian system corresponds to a PDE, things become much more

6



complicated. During the last fifteen vears the perturbation theory of Hamiltonian
partial differential equations has been extensively studied, and the subject is still
under development. Typical problems (but not restricted to them) in this field are

as the following:

e Can we get long time stability of solutions of small perturbations of linear or

integrable Hamiltonian PDEs? This is the PDE setting of the Nekhoroshev problem.

e Can we find invariant tori for a given Hamiltonian PDEs? This is the PDE

setting of the KAM theory problem.

e As a flow in a given phase space, how fast its norm can grow as the time

tends to infinity or a finite blow-up time?

One general philosophy is commonly used in the research work within this
field: by carefully choosing symplectic transformations, one changes a Hamiltonian
system into a form with a well understood part, usually a linear or integrable part,
under a sufficient small perturbation. Birkhoff normal form theory in the different
PDE settings [Bam2|[Gre][B-G] can usually take an important role to fulfill this

philosophy.

Here we would like to focus our attention on the study of nonlinear Schrédinger
equations within the Hamiltonian PDE theory structure. In 1996, S. Kuksin and J.

Péschel [K-P] studied the following equation
iy = Uy, — mu — f(Jul®)u (1.7)

on the finite z-interval [0, 7] with Dirichlet boundary conditions. The parameter
m is real and f is real analytic in some neighbourhood of the origin in C. When

f(lul®) = |u)?, it is just the cubic nonlinear Schrédinger equation, which was already

7



known to be integrable. By writing the solution as a sum of the L? normalized
eigenfunction corresponding to the operator —A+m, this equation takes the forms of
an infinite dimensional Hamiltonian system. The authors first proved the existence
of a symplectic transformation, which can turn the Hamiltonian function into its
Birkhoff normal form up to order four. In this way, the original equation became
an integrable Hamiltonian system with a perturbation of order at least six near the
origin point. Then an infinite dimensional KAM-theorem was applied, with which
the authors showed the existence of an invariant Cantor manifolds of quasi-periodic

oscillations.

The same equation was studied also by D. Bambusi in 1999 [Baml] towards
a Nekhoroshev type result. He proved that if a solution initiates near a finite di-
mensional torus, or in other words, the initial energy concentrates essentially in
some finitely many eigenmodes, then it will remain in a small neighbourhood of that
torus for at least an exponentially long time. The first step of his proof consists in
putting the nonlinear Schrédinger equation into a Birkhoff normal form up to an
exponentially small remainder, in which the truncation up to the forth order pro-
vides an integrable system. Then the author, inspired by a variant of the technique
of approximation by periodic orbits introduced by Lochak [L], constructed another
normal form close to a fixed finite dimensional torus and showed the long time sta-
bility of the solution close to it. Later, J. Pdschel simplified D. Bambusi’s proof and
obtained a slight refinement of the theorem in [Po]. In doing this, one key step is to
find a symplectic transformation which transforms the original Hamiltonian into an

integrable one, plus a perturbation which is small.

In those works mentioned above, Birkhoff normal forms have played important



roles. It is a natural choice to use this method to study the nonlinear harmonic
oscillator (1.6). In doing so, we need answer the following questions: What is the
function space that we take for the domain and range of the transformation? Does
the necessary symplectic transformation really exist? What can we deduce out for
the dynamics of the original system? We would like to point out that although our

equation looks similar to the equation (1.7), the two are really very different.

To prove a Birkhoff normal forin theory in infinite dimensional case, the main
difficulty consists in studying nonresonance property that allows to remove from the
nonlinearity all the relevant non-normalized monomials. For the equation (1.7), most
monomials can be removed and the system will be transformed into an integrable one
with a small perturbation. But for equation (1.6), the eigenvalues of the Schrodinger
operator ~A + z? are in the form of (2k + 1) /2 with k¥ € Z,. In this case, many
nontrivial linear combination of the eigenvalues give zero implying the existence
of many resonances. So there is no way to remove those corresponding resonant
monomials by the procedure of canonical transformations. In fact our equation is
called a completely resonant PDE, whose perturbation is much harder to understand

than the nearly integrable cases.

There are also other technical difficulties quite different from those encoun-
tered in work on the equation (1.7). One comes from the nature of the eigenfunctions.
For a problem which is essentially the Laplace operator with Dirichlet or periodic
boundary condition, its eigenfunctions are very simple-trigonometric functions. In
our case, the eigenfunctions of the Schrédinger operator —A + x? are Hermite func-
tions, which are more complicated. It makes the estimates required for our Birkhoff

normal form theorem more complicated to deal with. The second difficulty comes



from the choice of the phase spaces. Traditionally the study of the Gross Pitaevskii
equation is based on the space © := {u € L*(R")| zu, Vu € L*R")}, sometimes
called as the virial space. Our choice should be consistent with this traditional space.
And after it is chosen, we need to answer the question as to what these function spaces

really are.

This thesis mainly focuses on the Birkhoff normal form theorem for the equa-
tion (1.1), and the above problems are addressed. In the chapter two, we study the
estimate on the integrals of the product of four Hermite functions. It turns out to
have relationship with a problem of Besicovitch: what is the behavior of the LP norm
of the Hermite functions? In particular, when all four Hermite functions are equal,
the 4th root of the integral is just the L* norm of that Hermite function. This case
was once studied by G. Freud and G. Németh {F-N]. We generalize that result into
the case of integrals of the square of the products of two Hermite functions. For
other cases, we also provide the estimate needed to prove the Birkhoff normal form

theorem.

In the chapter three we carefully reconsider the linear Schrédinger equation
with harmonic potential, and provide our choice for the phase spaces. One unex-
pected thing is that we realize that those function spaces have a very close rela-
tionship with the theory of tempered distributions, especially the N-representation
theory due to B. Simon [Si] and V. Bargmann's function spaces together with the cor-
responding Segal-Bargmann transformation [Barl|[Bar2]. It is true that our function
spaces can be a very good complement for the N-representation theory, and also a
natural way to provide descriptions for the rapid decreasing functions and tempered

distributions.

10



Besides that, our function spaces have very close relationship with the Sobolev
spaces. It is proved that when the regularity index number is a nonnegative integer,
the function space is just the intersection of the Sobolev space with its image under
the Fourier transformation; when that number is a negative integer, then it is just the
"summation” of those two Banach spaces. This result also seems to be true when the
regularity index is any other real number. To this conjecture, we haven’t yet found
a proof. But we find the following fact that partly supports the conjecture: for any
regularity index big enough our function space forms a subalgebra of the Sobolev
spaces, which itself is a Banach algebra with respect to pointwise multiplication.
In the rest of that chapter, a few other problems of the function spaces are also

discussed.

In the chapter four the proof for our Birkhoff normal form theorem are pro-
vided. It is divided into two cases according to the regularity index of the related
function space. In particular when the index is large, we need a more detailed under-
standing of the integrals of the product of four Hermite functions other than those
provided in the chapter two. Those new estimates are provided in a separated sub-
section. After providing the Birkhoff normal form theorem, we give an analysis on
the impact of the perturbation on the main part system, which is completely reso-
nant. In general, this is a very difficult problem, and here we provide a few results

that we have obtained.

11



Chapter 2

Hermite Functions

2.1 Introduction

This chapter focuses on the properties of the Hermite functions. At first, we review
facts about the eigenfunctions of the operator —A+ 22, which are Hermite functions.
Then any reasonable function in our study can be represented as the summation of
its projections to every eigenfunction space. Below we use h;(z) (j =0,1,2,--+) to

denote the j-th Hermite function with unit L? norm. For our Hamiltonian PDE

. 2 ,
Wy = %wzz - %7# - 9|w]2’¢‘ r € R!

Y(z,0) = ¢o(x) 1) complex valued,

(2.1)

if we write ¥(t,2) = >_ 504, (t)h; (), then the Hamiltonian function of the system

will be (for more details, see chapter four)

2, g S
H = ij ’q]j() + = Z CklanleQan'

720 2k,l,m‘n€Z+

12



A basic problem is how the Hamiltonian function depends on the coordinates g¢s.
In particular. we need understand the behavior of the coefficients Cyimn, which are

integrals of products of four Hermite functions.

We would like to remark that the above problem is related to the following
two questions. One was posed by Besicovitch: what is the behavior of the L norm of
the Hermite functions? In particular, we note that Cyuer = Hh;\(;v){(i4 In 1948, Ida
W. Busbridge [Bu] obtained a formula that can express the integral of the product
of Hermite polynomials with weighted function exp{—z?/a} (a > 0) into the sum-
mation of a sequence. Unfortunately. those terms in the sequence are not in same
signatures, which implies that the formula can’t provide good answer to the Besi-
covitch’s question, or to our question. In 1973, G. Freud and G. Németh [F-N] made
a very exact estimate on the terms Cirrx. And by the year 1984, the Besicovitch’s

question have been completely solved (see lemma 1 in [Ma]).

The other one is related to multilinear eigenfunction estimates. In paper [D-S],
J.-M. Delort and J. Szeftel obtained an estimate for the integral of the product of the
eigenfunctions of the Laplace-Beltrami operator on Zoll manifold, and they used that
result to study long-time existence for small initial data to nonlmear Klein-Gordon

equations on torr and spheres.

Returning to our question, we found a very exact estimate for the term C,,nn.

which generalizes the result by G. Freud and G. Németh. In particular, we get

df

~ _2 . — [ _ 7 : :
Crmnn = ﬁE(s), where s = \/% < 1 and E(s) = f02 ooy is a version
of an elliptic integral. To keep in the same style of the result by G. Freud and
G. Németh, we confirm that Crymun S (m}”% In'/% (m)In/? (n). For general termns

~

Climn, a simple application of the Holder’s inequality provide such an estimate: for

13



nonnegative integers k > [ > m > n, it is true that

S

|Crtmn] < (B)™5 (1)7% (In (k) In (1) In (m) In (n)) (2.2)

We would like to point out that this estimate is good when the numbers k, 1, m and
n almost equal to each other, but it will be too big in some other situations. For
example, if one of the numbers is much larger than all the others, a much better

estimate is also provided in this thesis (see chapter four).

For the purpose of making this chapter self contained, many basic properties
of the Hermite functions are also reviewed. Most of them are needed for the estimate

of the coeflicients Clpynn.

2.2 The quantum harmonic oscillator

In this section we derive the eigenvalues and eigenfunctions of the quantum har-

~Actaf?

monic oscillator. We consider the differential operator A = 5

acting on the
complex-valued function space L?(R"), which is equipped with inner product given
by (0, %)z = [gn 0( Y(x)dz. By the spectral theory[T], A is essentially self-adjoint
on C§°(R") and it has compact resolvent, therefore L*(R™) has an orthogonal basis
made up of eigenfunctions of A. Below we will describe that in the 1-dimensional

case, these eigenfunctions are Hermite functions.

Let us introduce the two well known creation and annihilation operators

with which we can write
A= (a0 —I)/2= (a'a+1)/2,

14



such that

[A,a] = —a,[A,a"] =a".

Suppose that ¢, is an eigenfunction of the operator A, i.e. Ap, = A\;¢, where
¢, € D(A) = {u € L*(R)| — Lu+ 22w € L*R)} and \, € R. Then ay; is also
an eigenfunction of the operator A. Since A is an strict elliptic operator, by the
classical regularity theory of the second order elliptic operators, we can deduce that
any eigenfunction of operator A must be smooth. Furthermore we can easily find
that

0, € DIWVA) = {u e LAR)| - -d%u € L*(R) and zu € L*(R)}).

By the commutator calculation above.
—ag,; = [A, a](pj = A(a@]) - a(ASOJ) = A(CU,O]) — Ayap;.

Thus

Alap,) = (A, = Day,, (2.3)

which implies that ap, € D(A) is also an eigenfunction of operator A for eigenvalue

A -1

Similarly, we also have

atp, € D(A)

and

Ala™y)) = (A + 1)a"p,. (2.4)

Let us define the eigenfunctions space of the operator A as Figen(A, A) =

15



{u € D(A)| Au = Au}. Equations (2.3) and (2.4) imply that
a: Figen(\,A) — FEigen(A—1,A)

(2.5)
a*: Figen(\, A) — FEigen(A+ 1, A).

Since A is self-adjoint and (Au, v) > 1||ul|3. for any u € D(A), it follows that

any eigenvalue A of operator A must satisfy A > %

Noticing
aa* — I =a"a+ I =2A,
we can conclude that a and a™ in (2.5) are both isomorphisms for those eigenvalues

A > g’- On the other hand, @ must annihilate Figen(\g, A) when Xq is the smallest

element eigenvalue of the operator A. If g € Eigen{)g, A), then

1, d
APy = ‘z—(d—xtpo + 1'(,00) =0.

By solving this ODE, we find

2,2
meaning that A\g = % and E?’gen(%, A) = span{e~ 7 }, which is a 1-dimensional space.

For any other eigenvalue A, we apply the operator a : FEigen(A, A) —
Figen(A — 1, A) repeatedly. After finitelv many steps, it must end up with the
mapping a : Figen(s, A) = span{wo(z)} ~—— {0}. And all the mappings in this

process except the last one are in fact isomorphisms. Therefore, we can conclude

that
Spec(A) = {eigenvalues of A} = {},3,5,..-}
= {k+35,k=01,2,---}
and
. 1 0 o1 —22
FEigen((k + 5), A) = span{o(2) = (8_:6 —z)" e T}

16



Those eigenfunctions can be written in such forms

(e =P = = e D) (26)
_ (%)k(e—mzeé) (27)
= (1) H,(2)e" T, (2.8)

where Hy(z) (k = 0,1,2, - - ) are Hermite polynomials, given by Rodrigues’ formula[M-

0-8]
Hi(e) = (~DH (o) e ) (29)

Oz

The first 6 Hermite polynomials are

Ho(z) = 1, (2.10)
Hy(z) = 2x. (2.11)
Hy(z) = 4r* = 2, (2.12)
Hj(z) = 8% — 12z, (2.13)
Hy(z) = 162* — 4822 + 12, (2.14)
Hs(z) = 32.0° — 1602% + 120z. (2.15)

17



2.3 Properties of Hermite polynomials and func-

tions

In this section, we will review some basic properties of the Hermite polynomials
(functions), most of which come from the theory of special functions [M-O-S][A-S].
The materials below are organized in an order with the intention of being a self
contained account and easy accessible. All the properties are provided with a short

proof.

Proposition 2.3.1. Hermite Polynomials are mutually orthogonal, under the inner

xr

product with respect to the weight functions e~ ‘. In particular, we have

+o0

Hy(z)Hp(z)e™ " dr = 81m2™m!V/T. (2.16)

—o0

Proof. Without loss of generality, we assume that £ > m,

+oo

Hi(z)Hp(2)e™ dr

= [Tt (e Hinla)e
+00 2 d )
= [ e 217

Since H,,(z) is a polynomial with order m. so we have two possible cases.

If & > m, we must have (£)*H,,(z) = 0, which implies [ Hy(z)H,(z)e " dz =

18



If k = m, by using the fact that the leading term of H,,(z) is 2™2™, we have

+00
Hy()Hp(zx)e ™ da
- +oc . d
— =t MO
/_0O e (daf) (Hp(z))dx
= 2"m!y/T. (2.18)
Hence (2.16) holds. O

2
Let us denote hx(z) = Hi(2)e 7 /(k!28/7)Y/? as the normalized Hermite

functions, which are also the eigenfunctions of the operator A = (—=A + z%)/2. Ac-

cording to the result in spectral analysis, all these functions {fg(x), by (), -+, he(x), -

}

form an orthonormal basis of the function space L*(R") = {u: R — C| [ Ju(z)]*dz <

+00 }. This result can be easily extended to higher dimensions. In general, for the
complex function space L*(R™) = {u : R" — C| [, lu(z)?dz < +00}, there is an

orthonormal basis as {hy, (z1) ® hi, (12) ® -+ @ by, (2n), k; =0,1,2,--- }.

Proposition 2.3.2. The Hermate functions satisfy the ordinary differential equation:

"

H, (r) = 22H, (r) + 2nH,(x) = 0. (2.19)

[N)

r ~A+1‘2
2

Proof. Since H,(z)e™7 is an eigenfunction of the operator A = with eigen-

value n + %, we can just plug in to get the property above,

27

[N

2_—A+1'2 x

(n+ ) Holz)e™ T = “= I (H, () ) (2.20)
= (n+ Hu2)eF — (Hu()e T ) + A(Ha(@)eT) (221)
—(n+ %)H,l(;r)c”—f —(H, — 22H.(2) — Hu(x) (2.22)
b2 H ()T + 2 Hy(a)e 7. (2.23)



So we have

H,(z) — 2zH, () + 2nH,(z) = 0.
Using the ODEs above, we can get the explicit formula of Hermite functions. O

Proposition 2.3.3. An explicit representation of the Hermate functions is that

(3]
Hn(x) =

k=0

n!

(—1)’fk!(n—_‘2k>—!(2x)n—2k, (2.24)

where as usual [§] denote the biggest integer not greater than 3.

Proof. 1t is easy to see that the Hermite Polynomial H,(z) is an odd function when

n is odd and an even function when n is even. Thus we can write H,(x) as

AnZ™ 4 Qo™ % + -+ asx® +ay 7 even,
Ho(z) = (2.25)
A& + Qo 2 + -+ +agz® + a1z 1 odd.

Through observing (2.9), we can find that the highest order term in H,(z) arises
when every derivative falls on the factor e=*°. Thus we know apz™ = (—2z)"(—1)" =
(2z)™. By proposition (2.3.2), H,(z) satisfies the ordinary differential equation

(2.19), in the case of n even, that is

"

0=H, (z)—2zH, (z) + 2nH,(r) (2.26)
=n(n —1)a 2" 2+ (n—2)(n - 3)an_ox™ *+ -+ 2 lay
+ 2na,x" + 2na,_o + - - + 2nag

— 2nana" — 2(n — 2)an_ox™ % — . — 2. 2a57°. (2.27)

Comparing the coefficients of the polynomials on both sides, we get the combinational

20



expressions

So we have

Ap—2k

. _ n(n=1)
n—2 2.9.1 "

_ (n=2)(n—-3)
Qn—q 2.9.9 An—2,
2-1

ag = 22(%)612

nn—=1)(n—2k+1)
R4 i

!
— (-1 k n 2n—2k <k <
(=1) kl(n — 2k)! ’ O<k

- (-1)

STE

(2.28)
(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

The last equality above implies that we have proved (2.24) when n is even. In the

case of n odd, we can repeat the process above again to arrive at (2.24).

O

With the help of the explicit formula of Hermite functions, we can prove

certain relationships between Hermite polynomials and their derivatives.

Proposition 2.3.4.

’

Proof. This follows from the explicit formula for the Hermite polynomials.

’

Hn-H ($)

M, (2) = 2(n + 1) Hy(a),

(n=0,12-").

p [(n+1)/2]
= A0 %

R sty n g \kgo ek
= & o (1) (22)

= 2(n+1) Hy(x).

(n+1)!

m(_l)k(2x)n+l~2k )

21
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We also have another proposition in a similar form, which is often very useful.

Proposition 2.3.5.
_(Hn(x)ewx ) = (_1) Hn+1('r>€-z2 n= 07172a""

Proof. The result follows from the Rodrigues™ formula,

L(Hy(z)e™™) = (1) (Lre "y

dx"

= (1) &) (Ha(w)e™)

= (-1 Hn+1(33)e_zz-

The next two propositions are devoted to recurrence relations satisfied by of

Hermite polynomials and the generating functions of these polynomials.

Proposition 2.3.6.
Hypi(x) = 22 Hy (1) = 2n Hy o (2). (2.35)

Proof. A direct computation from proposition 2.3.4 gives

H

0 = Hip(2) — 2 Hyoy(2) + 200 + 1) Hop (2)

= 2(n+1)2nH, 1(z) — 222(n + 1)H,(z) + 2(n + 1) Hpr ().

So we get the desired result. O

Proposition 2.3.7. We have

tk

o (2.36)

+0oo
exp(—t® + 2tz) = Y Hy()
k=0

22



Proof.
! 2 N AR d\k 2 tk
exp(—t® +2tx) = exp(x )kz (L) exp(—(t — 7)) |sm0’s
~:O
+o0

= exp(e?)Y (B%)kexp(—ﬁ)(—l)k%
k=0
+oa N
= > Hi(z)%
k=0
O

Corollary 2.3.8. In the particular case that t in proposition 2.3.7 equals £1, +i

respectively, we get these formulas

1 = 1
—sinh2z = 5 —— ), 2
esm T g(2k+1)'H2k+1(”6) ( 37)
1 1
—cosh2z = > — Hq(x 2.
- cosh 2z kZ:OQk! How(z), (2.38)
. = 1
esin2x = Y (—1) Hopir(2), (2.39)

= (2k + 1)1

+oo
ecos2r = Z(—l)kLsz(x). (2.40)
P AT

The proposition 2.3.6 can be read as Hy(z)H,(z) = Hypi1(x) +2nH,—1(z). In
general, any product of two Hermite polynomials can be represented as a summa-
tion of finitely many other Hermite polynomials. The details are given in the next

proposition and its proof is very interesting to us.

Proposition 2.3.9. We have

o (2) Hy () = .giMZWﬂCZ><Z>H%+mQAx) (2.41)

k

Proof. Let us introduce the integrals /,,,; = fj:: H,(z) H.(x) Hl(x)e_zzd:r, which

23



enable us to write the product as

oo [0 Hyn(2) Hy(w) Hi(w)e ™ da
Hm(w)Hn(I) - ZZ%) f;{-;o Hl(ﬂl') Hl(x)e_ﬂd:c

Hl(.'IT)

_+oo ]mnl H.(r
= ;)——————21“\/% 1(1).

So we only need to calculate I,,,;. In fact, all these integrals can be evaluated explic-

itly, as in the proposition below. [

Proposition 2.3.10. [,,,; # 0 can only occur wn case that m +n + [ is even, when

we will have (let s= (m+n+1)/2)

25 /Tm!nll!

oo L s 2 max(m.n,l),

Lt = (2.42)

0 otherwise.

Before evaluating the integral I, let us see how it can help us in writing
the product as the summation of Hermite polynomials. According to proposition
2.3.10, I, is equal to zero unless | = m + n(mod2) and |m —n| <1 <m +n. Let
k= m—*?":—l be an integer, then this is equivalent to say that I, # 0 only occurs at
0 < k < min(m,n). So further computations give

Hm(l)Hn(x) - —iojo ]mn(m+n—2k) Hm+n—2k(x)
2R (m 4 n — 2k)1/T

oo 2=k (m + n — 2k)'minl\ /7

= l:z()2m+n—2k(7n +n— QA)'/C'(m . k)'(n — k)!ﬁHm+n—2k($)

min(m,n) m n
= = Zkk' ( k > <k> Hm_’_n_Qk(ﬂf).

The only thing left is to complete the proof for the proposition 2.3.10.

Proof. Without loss of generality, assume that [ is the smallest integer of the set

24



{m,n,l}. Then

Lyt = ijM@HM@EM@f“m
_ _C”Hﬁcm}upwééin_mxx-“ym
+oo
= /_ (mHp1(z) Hy(z) + nHp(x) Hyy(2)) Hl_l(r)e_xgdx

= 2mIm-1yn(-1) + 20l (n-1)0-1)

= 22m(m — 1>[(m—2)n(l—2) + 2. QQTnnf(m_l)(n_l)(l_Q) + 22n(n — 1)Im('n,—2)(l-—2)

= [ m n
2l<,>< )( .>_]m~ .
J'H%:l Ji)\m—71/\n— )2 (m=51)(n=72)0

According to the orthogonality of Hermite functions, we know that Jim—;;)(n—ss)0 #

0 can only happen when m — j; = n — jy and j; + j» = [, that is, when. j1 =s—n

and j, = s —m. Therefore we have the result that

2t m! n!
It = : 257 Hg — 1)
Al Py TPy T sy RANCRDR
2¢/mm!n!l!

T Gom)i(s—mi(s -

O

At the end of this section we shall introduce some other propositions con-
cerning Hermite functions, which mayv not appear in the rest of this thesis but are
so important that we feel it very necessary to mention. These include the relation-
ship between Hermite functions and eigenfunctions of Fourier operators, the role of
Hermite functions in probability theory related to the normal distribution, and the

integral interpretation of Hermite functions.
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Proposition 2.3.11. [Webpage2] Let F be the Fourier transformation defined on

L%(R), whach is the unique continuous extension of the operator
Fflx)= L /+OO e~ f(x) dx f € L*(R) N L*(R). (2.43)
Nz ,
Then the Hermite functions {hi(z) : k = 0,1,2,---} are eigenfunctions of the
Fourier transformation, and they satisfy

Eigen{(—)*, F} = span{ hymsr(x), m =0,1,2,--- , k=0,1,2,3.}. (2.44)
Proof. At first it is easy to check the case of hg(x) = ﬂ{—_I\/—ji;@:

_ LT aeexp{—2?/2)
fh()(g) = \/—2_7;/_00 € 5———\4/_—7_‘_——d33

N e L
=— exp{—z + 1£)*/2}dxe™2
27?'\4/% /—oo

_1,¢

= 7 )

So ho(z) is an eigenfunction of Fourier transformation with eigenvalue 1.

Noticing that hy(z) = \/é—lk=k,(—% + 2)k ho(z), we can further calculate

Fh —L/%o e L 4k h(2)d
k(g)—\/% . € ’—Qkkl(_da: T o\ ) ax

o1 1 Nk d k e —z
= @r) o ) (4 ) / (e
— ()b 1 d k
— () (g + 0 ho(©)
= (=1)*hy(z)

Since the Fourier transformation is a unitary operator on function space L?(R) by
Parceval’s identity, and {hx(z), £ =0,1,2,3, - - } is an orthonormal basis of the same

space, the operator F can be represented as an infinite diagonal unitary matrix
’7:: (a’]k) = (5]k(_l)k) j?k:0>1727"" (245)
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Therefore

Eigen{(—i)F, F} = span{ hypx(z), m=0,1,2,--- . k=0,1,2,3.}.

d

Remark 2.3.12. In higher dimensional cases, simalar results are also true. The
eigenvalues of the Fourier transformation are still { £1, i}, and the only difference
s that the eigenfunctions are Hermuite functions in high dimensional cases, that 1s,
{hp, (1) @ hyey (12) @ - - R h, (x),  k, =0,1,2,---}, which form orthonormal bases

in high dimensional cases.
Next we will see Hermite polvnomials also play an important role in the
probability theory.

Proposition 2.3.13. If we have a normal distribution p(x) = e_(f"“)z/ﬁ, then the

expectation of the Hermite polynomaals are
E(H,(¢))=2"u". (2.46)

Proof. 1t follows from proposition 2.3.7.

B = [ ()-\17@ @) g

f/“ H(E ol ) s
= 5 (75 VAt
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Finally let us state that Hermite polynomials have their form of integral in-

terpretation.

Proposition 2.3.14.

+2

Hy(z) =27 / +OC(;1‘ + it)"%dt. (2.47)

Proof. A direct computation with the help of explicit formulas of Hermite polyno-

mials will work.

+oo  +X n —t?
x| < );r"—kzktk) it
0 k=0,k even k \/_
+o0 [%] 1 —t2
n €
—9n : n—2k -1 thk Z_dt
[ L (™)

3 2nn! ek I'(k+1/2)
=3 (@ Y )
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2.4 Some estimates of integrals of products of

Hermite functions

+o0
Let us introduce the integral Cin, = / hi(x)hi(x) hp (x) b () dz, which can be

viewed as a symmetric four-tensor. It plays an important role in this thesis to obtain

a good understanding of this four tensor.

In this section, we will pay attention to estimates of the entries Cypnpn. A very
special case, k = [ = m = n, has been studied by G.Freud and G.Németh[F-N]. Their
method depends heavily on the knowledge of special functions such as the Gamma
and hypergeometric functions. A quick review will be provided in this section. Since
their method can only work for estimate of Cyrrr, we will also provide our new method
for estimate on Cyyy, which will recover the result by G.Freud and G.Németh if £ = .
One advantage of our method is that it only depends on the properties listed in the
last section, and doesn’t require the knowledge of other special functions. Now let

us begin with the result of G.Freud and G.Németh.

Theorem 2.4.1. [F-N] We have

! 1
Cnnnn - 2—1/277—3/2 / fﬂ(]‘ - t).—l/Q 2Fl (5) %7 ]" t) dt’ (248)

0

JF, (%; > i(%) P, (2.49)

Corollary 2.4.2. The sequence { C . } is totally monotone and

where

Crmn = 9=1/2,.=2,,~1/2 logn + O(n_l/Q), as T — 400, (2.50)
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Remark 2.4.3. A sequence cg, ¢y, ¢y, -+ of real numbers is called totally monotone

if AMc, >0, (my,n=20,1,2,--- ), where
Amcn =Cp — (T)Cn—H + <Tg)cn+1 -t (_1>m(:)cn+m'

Hausdorff showed that for every totally monotone sequence cg, 3, Cz,- -+ there exists
(essentially unigquely) a monotone nondecreasing real function ¢(u), 0 < u <1, such
that

Cn — folund¢(u), n = 07 1, 27 —

Conversely, if p(u) is a monotone nondecreasing bounded real function on the interval
0 <u <1, then A™¢, = fol(l — u)™udp(u) > 0, m,n = 0,1,2,---, so that

Co, C1, C2,+ + - 18 totally monotone.

We are most interested in the claim in the second part of the corollary above.

A sketch of the proof towards this result is provided. The authors first use Mehler’s
generating series [E] to get
oo 1

> Commnt™ 0" = — (1 —w)(1 — )(1 —uv))~

m,n=0 \/Q_TF
L DO UG YN 41/

Voma e T(/DNT(1/2)AT(1/2)7]

Although general terms C,mnn can't be represented in a clean formula by comparing

(M2

the coefficients on both sides, it can be done for C,nn

o 1+°°<F(j+1/2)>2f‘(n——j+1/2)
T Verim \ T(1/2)30 ) T(/2)(n - )t

By making use of hypergeometric functions, the equation (2.51) can be written as

-1 ! ] d\" _.
Cronnn = 272 ~o2(ZL)" / -2 (=) 31— ) dt
T A (1—t)"2 7)) 2 (1—-1)

1
11
:2—1/27T-3/2/ (1= )77 R <_’—;1;t> dt,
o 2°2

(2.51)

(SIS
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which is just the result in theorem 2.4.1. Using Sterling’s asymptotic series, we

obtain

11 1
o Fy (2 3 1t> IOgl—t+O(1)’ (2.52)

which holds uniformly in ¢ € [0,1). A further computation concludes that

1 1
C’mnn=2—1/27r_5/2/ (1 —t)” zlog1 dt+O( )/ (1 — )" 24t
0

0
= 2712722 og n + O(n~Y3).

In the process above, it is a very important step to establish the formula (2.51).
Below we will provide our methods for estimate of Cigy, and a similar formula will
be obtained. First of all, let us review the fact that C,,.00 can be computed exactly

[E-M-O-T].

Proposition 2.4.4.

+oo ,
Ho(2)H,(x)e™* dz (2.53)

~ 00

_ 0 if m # n(mod?2), (2.54)

(=177 2™ 5T n(mEntly i f = n(mod 2).

Proof. The first case is trivial. Let us now work in the second case m = n(mod 2).
By proposition 2.3.7 in the last section, we can introduce two extra parameter s and

t to get

+o0 #m
exp(—t* +2tx) = 3. Hp(z)—
m=0

'

-+00
exp(—s? + 2sz) = Y. H, () >
n=0

Their product is

exp(—(t* + %)+ 2(t + s) = ZH(”[;

mn—

m'n"
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and in particular,

/+Oo exp(—(t* + s?) + 2(t + s) z) exp(—2z%)dz

+oo 400 ) tmgn
= Z ( H,(z)H,(x)e d:c> . (2.55)
=\ min!

We can also write this integral in another formula by using the same propo-

sition

/+<>o exp(—(#* + §%) + 2(t + s) x) exp(—2x%)dz

o

= /_:o <2Hk(fr) (;;2; > exp(—2z%)dz exp (—(t — 5)*/2) .

Noticing that functions H k(\/ia:), k=0,1,2,---, are orthogonal to each other with

222

respect to weight function e™**", we can proceed as

/_+Oo exp(—(#* + s?) + 2(t + 5) z) exp(—2x%)dz (2.56)
=exp (—(t — 5)%/2) [ ) exp(—2z?)dzx (2.57)
E =L (t—s)¥. (2.58)

] =0 3'2]

By comparing equation (2.55) and (2.58), we deduce that

+o0

Hp(z)Hy(z)e ™ do = \/fm!n!C(tms”; exp (v(t - 5)%/2)

— 00

In the process above, we use C(t™s™; exp (—(t — 5)%/2) to denote the coefficient of
term ¢™s™ in the Taylor series of the entire function exp (—(t — s)?/2) at the point

(0,0). 0



Now we are in a good position to compute out Cpno0, writing it as Cpine =

fj—:: Hn(z)Hn (z)e‘”zdz
V2rmiv2enalr

, from which the corollary follows.

Corollary 2.4.5. We have

o 0 if m # n(mod?2),
mn00 = mn 1°(20tntl
(_1)7%#?‘—% if m = n(mod 2).

After computing out what is ('), 400, let us define the coefficients C? = as num-
bers defined by the relation A, (x)h,(r) = %oc,ﬁn(hp(ﬁxﬂl“). Since {h,(z), p=
0,1,2,--- } is an orthonormal basis of the pf;(;ction space L?(R), a scaling gives us
another orthonormal basis as {h,(v/22)2Y%, p=0,1,2,--- }. One advantage to in-
troduce these coeflicients is that we can interpret Ciypn, easily, as Crimn = fCﬁlCﬁm.
In the following theorem, we will sec that for m,n given, C?  is 11onze11iooonly for
finitely many p, and we can further compute out C?, exactly in some special cases.
Here let us use the notation C'(2?, p(.r)) that denotes the coefficient of term z? in the

polynomial p(x).

Theorem 2.4.6. For guven m,n, C?,, # 0 only occurs at p =m +n — 2r, where r

is an integer satisfying 0 < r <[], And wn that case,

cr = (m+n— 27“)!11;—&— 1/2)(—1)rC(I2"; (14+2z)"(1 - x)“) (2.59)
214273773/ /minl(m + n — 2r)!

To prove this theorem, we need introduce another sequence of integrals I, =
ff(: Hop(x)H,(x) Hp(v22)e 2" dz. Tt is easy to find the relationship between CZ,,

and I, as

CcP = / m B () () (v 22) 21 4

mn
o0

4
— it (260)
- 2"""2"“7 minlplnd/4 )
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We will see that the result of the theorem 2.4.6 is equivalent to the following lemma,

which will be proved.

Lemma 2.4.7. We have

0
if p>m+norp#m+n(mod2),
Imn:p:

m+n—1

QI p(mneptl (1) SR O, (1 4+ 2)™(1 — 2)")

{ ifp<m+nandp=m+n(mod?2).

Proof. 1t is trivial to find I,,,., = 0 when p # m +n(mod2). If p > m +n, then as a
polynomial of order less than p, H,,,(z)H,(2") can be written as the linear combination
of the scaled Hermite polynomials H;(1/2x), which are orthogonal to Hp(ﬁx) in the

22 Thus we must have Lpn, = 0

meaning of integration with weighted function e~
for those p > m + n. The most interesting case is the next one, the computation of
Irnyp when p = m 4+ n(mod 2).

+oo
Ly = ) Hm(x)Hn(x)d(—Hp_l(\/im)e_hg)%

= ﬂ(m[(m—l)n;(p—l) + n[m(n-—l);(p—l))

2
= (V2) (m(m = Dlnanto-z + 2000 imtyn-vyp—2) + 102 = Do) (2))

fi

p! m! n!

p
- <‘/§) 2 & (= ) (= )1 el

di+da=p
0<d1<m, 0<da<n
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By proposition 2.4.4, I(;—d,)n-ds)0 can be computed out exactly, so

L= S oI T Lypmengan g ot
mnip = !
dy+da=p 2
0<dy<m, 0<da<n
m! n!
dil(m — di)! da!(n — dy)!
m4n— — ] 1 e
> (( 1y il )
di1+do=p dl!(rln - dl)' d2‘(n - dg)‘

21 =, VG2

m+n-—-p+1

= 2™ I 5

(~D)TFTECE (L)1 - a)).
O

It is easy to verify theorem 2.4.6 after we have proved lemma 2.4.7. We just
need to use the relationship between C?. and I, (see 2.60), together with the

following two basic propositions for polynomials,

(—1)"C(z™" P (1 + 2)™(1 — 7)), (2.61)

If

Cla?; (1 +2)™(1 - 2)")

Ca?; (1+2)™(1 - ") = (~LPC(%: (1 - 2)™(1 +2)"). (2.62)

In general, C'(a?; (1 — z)™(1 + r)") is hard to figure out. But the situation is

very different for such a special case m = n,

(2m —2r)!-T(r+1/2)C(z*; (1 —22)™)(-1)"

o = |
2 Am/agmrmly/(2m — 2r)!
_o-i -1 (2m — 2r)! (2r)!
=271 \ﬁg,,,qr(m " )(m — ) 2% (2.63)
_ -1 C(r+1/2) (T(m—1r+1/2) 3 |
=0 r(1/2)r! (r(1/2)(m - m!) ' (2.64)

Theorem (2.4.6) gives the following.
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Corollary 2.4.8. For Gwen m, CP_ # 0 only occurs at p = 2r, where 7 is an

integer satisfying 0 < r < m. And in that case, we have

o o Dim=7r+1/2) (T(r+1/2)\?
Crim = 27) 8 23 (m = 1) < {12! ) ' (2:65)

According to theorem 2.4.6, every nontrivial entries Ciimn (kK +1 = m +

n(mod 2)) in the four tensor can be represented as finite summations as follows

min{m+n,k+l)
Chimn = Z CaCon
p=m+n(mod 2)
min{m+n,k+1)
R e e e S TR STT) R S < @S
p=m+n(mod 2) g

m4+n—p+1, _ k+Il—p+1
(R

@™, (14 2)"(1 - 2))CE 7 (L ) (1 = 2)). (2.66)

In particular, we have

_ -1 minmn) [ 4+ 1/2) T(m —r + 1/2) T(n —r + 1/2)
Commn = (27) Z::O T(1/2)r! T(1/2)(m —r)! T(1/2)(n — 1)1’

(2.67)

When m = n, the equation above is just the formula (2.51), which appears in the

paper [F-N].

Although it turns out that Ci,, in the formula (2.66) is still hard to be
analyzed in general settings, we can use it to get good estimates on Cyumn,. Before
we state our results for this, let us introduce two useful bits of notation. We denote
(k) by VET+1 and use the symbol a ~ b to describe the relationship of a and b
as there exist two universal constants c;,co > 0 such that ¢;b < a < ¢3b. Similarly,
we use a < b (@ 2 b) with the meaning that there exist constants ¢ > 0 such that

a < c¢b (a > cb). Now we can have such an estimate on Chmnn.
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Theorem 2.4.9. For nonnegative integers m > n, we have
0 < Commn < (m)™F 02 (m) In"/2 (n) . (2.68)
If m or n is zero, then the part In'? (m) In"? (n) can be completely removed.

Proof. Let us start with formula (2.67). By Sterling’s formula n! = n"e™"y/2rne’" ~
n"e”"/2mn, iy < On < 13- (see [A-S]), we can rewrite equation (2.65) in the form

of
1 ; —
NI if r=0,

Cr2nr,,n ~7 an—l)ll—/_r\/—; Zf r = 771, (269)

ifl<r<m-—1

1
P/ (m—r)L 221/

Formula (2.67) can therefore be written as

C’mmnn = ZCQr CQT

mm T nn
r=0

o 9-1/2,-2 VT VT =S 1
ST R Vi T A

(2.70)

First let us see the case mm = n. We have

(e Bl

Noticing that the function f(r) := m is decreasing on (0, Z'] and then increasing

on [Z,m), we can get

i 1 < m-1 1 1
ZVrm—=r) = Jo  Vr(m=r) Vr(m—r)

< —(nm+1nd) +

§H
S|



and

Thus we conclude that

Crommm & ——=Inm ~ (m)‘é In (m) .

N

(2.71)

In doing so, we have already recovered the result in [F-N] without use of

properties of special functions. We proceed for the case m > n.

When n = 0, according to corollary 2.4.5, we have

c I'm+1/2) 1 1
im0 V27rm! N\/m\/iﬂ'.

When n = 1, we have

Cmmll = anmC?l + CTQnmclgl

E i< (Bems) (5as)

<
. 7
1 1 1 1
= [(1+Z+.. .
m (+2+ + —1) (m—n+1+
1 1
T4 =4 e 1/2
(+2+ +n_ﬁ
1

(2.72)

(2.73)

(2.75)



By using the last result in the equality (2.70), we can conclude the statement in the

theorem. O

Remark 2.4.10. This estimate turns out to be very accurate up to the order of (m),
and the logarithmitic term cannot be removed w the general cases. To see this, we

only need compute the term Chmnn in such two special cases. One is Crumoo, which is

equal to L\%:% = ﬁﬁ + o(ﬁ) asm — +o00. The other one 18 Crm(m—1)(m-1)-

We have

Crm(m—1)(m- 1>~2‘%”_2<\/ﬁ\/\/§1_1 \/;n\/;l mX::\/_\/m—ri/m—l—r>
(Vs T S )

~ (m) " M2 (m) In"/? m — 1) .

Remark 2.4.11. It turns out that Cmnn has another interesting estimate 1f we

make use of the theory of elliptic integrals. Since the function f(r) := 77H—i—r_£\/"_—7

T

is wntegrable on (0,n) and its monotfonicity pertods are easy to analyze, we can find

that Commn = 273772 s mdr. The integral part can be represented by

elliptec integral (see [J]) as [, md \/_ fo 9 = %E(s), where

1- 92 sin? @

s = /% < 1. Thus we get a very exact estimate on Crmpp-

By using Holder inequality, we can easily deduce from the result above an

estimate for the general term Cyn,. Assume that & > 1 > m > n, then

1/2 1/2
|Cklmﬂ’ S Cklénnc !

llmm

< (B (DT (In (&) In (D) In (m) In (n))

PN

(2.76)

Here we list this result as a corollary of the theorem above.
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Corollary 2.4.12. For nonnegative integers k > 1 > m > n, we have

PN
el
N

|Crimn| S (B)7 (1) % (In (k) In (1) In (m) In (n)) (2.77)

If the smallest number n 1s equal to 0, then the part of (In (k) In (n))l/4 can be taken
off.

We should mention that the estimate in (2.77) is not bad when these integers
k,l,m,n are almost equal to each other or the integer pairs (k,n) and (I,m) are
not far away. But it turns out that the entries Cyy, in the four tensor are very
complicated, and show completely different property in some other occasions. In the
next chapter, we will see that when one of the integers { k,l,m,n} is much larger

than all the others, Cym, Will show a fast decreasing property.

2.4.1 The estimate of Cy;,, in a special case

In the second chapter, we have got an estimate on general coefficients Clypnn, which
is sharp when (k,1) = (m, n). But it turns out that the four tensor Cyjmy, shows very
different behavior in other situations. In this section, a different method from that
in the second chapter will be adopted, which is based on the generating functions for
the Hermite polynomials. We will show that when one of the indices, say k, is much

larger than all the others, the coeflicient Cyj,ny, will be rapidly decreasing.
Proposition 2.4.13. We have

L 1,/ kol,mn. ¢ _
Cklmn = ﬁQ_p k'l'm'n'c (t surv ? j(t’ 5, U, U)) lf k + l +m+n= O(H]Od 2)
0 otherwise,

(2.78)
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where p = (k + 1+ m + n)/2, f(t. s, u,v)=exp (Eﬁs—?—ﬂf— — (242 +u? + U2)>,
and C (t*s'u™v™; f(t,s,u,v)) denotes the coefficient of term t*s'u™v" in the Taylor

expansion of the entire function f(t.s, u,v) at point (0,0,0,0).

Proof. Only the first case is nontrivial. Let Hy,(x)Hy(z)Hm(z)H,(z) = Y. B}, . H,(v/27).
1=0
Then

+o0
Chimn = / Biimn Ho(\/if') e_zrzdl’/ <2H_I+2ﬂﬂvk!l!m!n!7r)

oo

= Bl /(V72 - 2555 VRN Iminl),

By the property of the generating function for Hermite functions, we have

+oo H
exp{—t*+ 2rt} = 3 ~k—('@tk

a0 K

+oo [
exp{~s®+2rs} = Y ll('x)sl

=0 U

+oo I ]
exp{—u® + 2ru} = Y —m—(‘ilum

m=0 1!

+00 Hn
exp{—v* + 2rv} = 3 ——n—('x—)v”.

n=0 :

Taking the product of these identities, we get

exp (—(* 4+ s+ 1> +0*) + 2t + s+ u+v)z) (2.79)
e Hy(x)H(z)Hp(z)Ho(T) 4
= t m Vn 28
k,z,,%,:,,:o Elllmin! SUTU (2.80)

from which we find,
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3 (t+s+u+v)y’ _(t+s+utuv)
L.H.S. ——exp( 5 +2 7 V2z

t )?
X exp <( +$+2u+1) —(t2+32+u2+v2)>

2 H,(V22) <t +s+u+v
7=0 ]' \/5

J
) Ft, s u,v)

and

400
RHS = Z —”ﬁ”———@tksluml”

i inl
=0 klllm!in!
+00
klmn ko l,m, n
= (7 .
N ACEIEDS P
=0 k.l.om.n=0

Through comparing the coefficients, we get for each j € Z,

1 t+s+u+v ’ klmn k I, m n
-—(—7_,2————) ftSUI Z Uum'n'tsu v

!
J: k,l,mn=0

In particular, when 5 = 0 we have

+o00
BO (\/’x
fsuv)= Y ————————“’]’;?um'n' ) gty
kJlmmn,3=0

Thus

1 : .
Chrimn = 7_2——-\/ klimlnto=ttmen) 2ok glymayns £t s, u,v)).
T



Corollary 2.4.14. For general nontrwial term Cyymn (k+1+m+n even), we have

1/ (2p)! plp!
‘C’”’””‘S\/ﬁ(z%p!p! KNlimlnl’ (281)

where p = (k+ 1+ m+n)/2.

the estimate

Proof. By the Taylor expansion serics formula for exponential functions, we write

1 ((t+s+u 2 P
Ct*stu™™; f(t.s,u,v)) =C (tkslu”' o = <( 5 oS (24 s* +u? + 1)2)> ) .
!
P
We observe that the coefficient of term t*s'u™v™ in ((t—ﬂw — (P + s+ + v2)>

R p
can always be controlled by that in (M) , therefore

| C(tFs'u™v™; f(t,s,u,v))| < C (t"'slumv”; <<t Rk +2u a U)2>p>

11 (k+1l+m+n)
~plor k\llmlin!

According to the result of the last proposition, we get

1 1 (2p)!
V27 22Pp! VEImIn!

_ 1 eyt /!
Vo 22plpt V ENImin!

] Cklmn 1 S

a

Although the inequality in (2.81) only provides a poor estimate for term Cip,p,
when k, [, m,n are almost equal to each other, it provides a much sharper estimate

than that in last section when one of A,l,m,n is much larger than all of the others.

Corollary 2.4.15. There is a positive integer N and a real number a > 1 such that
if k> N(l4+m +n) then
(Cklmn{ S a—k' (282)
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Proof. By using the Sterling’s formula, the estimate (2.81) can be continued as

|Chimn] < 11 1 PPp?
kmnt e~ o VT VEklmn V EFllm™nn

< PP
~ kk[lymmnn
Let I = \/p?/kFl!m™n™, then we have

1 Bk 11 ,
n- =2 (—ln&+—ln~+mlnm+ﬁlnz>,
I 2\p p p p p P P

which can be regarded as the product of the number p/2 and the sum of the values
of the function f(r) = zlnx at the points of k/p, I/p, m/p and n/p. From the fact
that p = (k+1+m+n)/2, we know k/p+1/p+m/p+n/p = 2, and when k is much
bigger than [, m and n, then k/p is close to 2 and I/p, m/p and n/p will fall into the

internal [0, 1], on which the function f(z) is nonpositive and convex. Thus we have

k. kE L I m. m
~In-+-In-4+ —In—+—-In—
p p P p p
ZEInE+l+m+nlnl+m+n
P D p 3p
k. k

. L Q_E
1n—+(2——>ln P,
p p p 3

This quantity tends to 21n2 as k/p tends to 2. Thus there is a positive integer N

sufficiently large and a positive number ¢ > 0 such that if £ > N([ + m + n) then

In->=6>-6>0.

~ =
o3
|

For example, we give a choice of the pair of (N, d); we can choose N = 7 (which

implies £/p > 1.75) and

6 =0.358 < 1.751n1.75 + 0.25In (0.25/3) .

44



Let a = €%/* > 1, then the inequality (2.82) holds. O

At last, before we end up this section, we provide a few values of nontrivial

entries Crimn (k + [+ m + n even)

1

Coooo = \/% Coory = ﬁ Coooz = - =
Cooze = sjﬁ Cong = ﬁ Cun = 4\?% (2.83)

1 v . 7 - 4l
C0222 NG Cll.’l — 16v2n 02222 61von
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Chapter 3

Function Spaces

3.1 Introduction

Let us consider such a linear Schrodinger equation of the following form (Schrodinger
equation with quadratic potential), also known as the problem of a quantum har-

monic oscillator

’I,QZVt = %d’zm — vI;'(’Lv T € Rn (3 1)

Y(z,0) = Yo(x) ¢ complex valued.
This equation can be solved completely in several ways, one, using the theoretic

structure of (semi)groups [H-P]. By writing the equation in the form of —iy), = Ay =

(—A2+m2)

¥, we express its unique solution as ¥(z,t) = e*4)y(z), where the operator

et is a strongly continuous group (Cy group) on the function space L2(R™). In

1At

particular, for any time ¢t € R the operator ¢** is a bounded linear mapping on

L*(R™), and it satisfies

(i) when ¢ = 0, the mapping is the identity operator on R™;
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(11) Yt s >0, elAlt+s) — gl o (,z.—\s;

(iil) Voo € LEHR™) : [[e"Yp — o{|r2@mn) — 0, as t — 0.

A basic property of this group is that all the operators are unitary.
y g

Proposition 3.1.1. The Cy group 1s made up of unitary operators on L*(R"™), which

1At

means for any time t € R the operator e“* is an isomorphism on the function space

LA(R™), and it preserves the inner product (¢,¢) = [72 ¢(x)p(z)dz on L*(R™), that

is, (4@, €M) = (8, ).

Meanwhile this operator e*!! has an explicit form of its kernel, given by

Mehlor’s formula[F-H][C1].

Proposition 3.1.2. Mehlor’s formula 1s an explicit expression for the kernel of the

operator et for 0 <t < =

1 _, :r2 2
Wtz) = / e costmr) v (3.2)

(—2imsint)"?
where 1y is any function in the space L'(R™) N L2(R").
From the proposition above. we can see that the operator in fact can be

defined on the function space L}(R"). An easy application of the Mehlor’s formula

is that this operator shows a dispersive property for a period of time.
Proposition 3.1.3. For 0 <t < I, this Co group {e'*'} satisfies
1 —n/2
el < el (3:3)

As we have introduced before, Hermite functions are eigenfunctions of the

operator A = (—A + z?)/2. By using this fact, we can write the solution of (3.1)
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in another form. For simplicity, we always work on the 1-dimensional case below
without further specification. But all the results in the following sections are in fact

true for n-dimensional cases.

Since {hi(z),k = 0,1,2---} is an orthonormal basis of the function space
L?(R), we can uniquely write the initial data vo(z) € L?(R) as a series 1o(z) =
+00
> qe(0)hy(z), where it converges with respect to the L?-norm. Then we can write

k>0
the solution as

Bt 7) = Mo (z) = S ge(0)e s hy(a), (3.4)

k>0

where w, = k+ 1/2, k = 0,1,2,--- is the k-th eigenvalues of operator A. In

particular, we have the proposition.

Proposition 3.1.4. For the Cy group {e"!''} acting on L*(R), it has such periodic

properties

exp(iA(t + 27)) = — exp(iAt), (3.5)

exp(1A(t + 4m)) = exp(iAt). (3.6)

A natural idea is that this result may be generalized for a wider family of
functions than L?. Formally we can have such a result: if the initial data
+oc
d’o(l‘) = Z(‘khk(l‘) (37)
k>0
for sequences {c,} with some properties, then the solution »_, Sicre** hy(z) should
be the solution of the partial differential equation (3.1). In the following section,
we will introduce a family of Hilbert spaces X*(R") (a Hilbert scale) based on this

representation of the initial data in decomposition with respect to Hermite functions.
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It is an unexpected thing that this Hilbert scale turns out to have a close
relationship with the theory of rapidly decreasing functions and tempered distribu-
tions. In fact, the representation (3.7) is true for every tempered distribution and
the equality holds in the sense of Hermite expansion series for tempered distribution.
Thus the PDE can have a uniquely global solution for any initial data which is a
tempered distribution. When we twrn to study the Hilbert scale itself, it is found
that these Hilbert functions have many very good properties. For example, they
can determine the topological structure of the Fréchet space S(R"™) and that of the
tempered distribution S’(R™); many familiar operators like the annihilation opera-
tor (lowering operator) and creation operator (raising operator) can be regarded as
homomorphism on the Hilbert scale; iu particular the Fourier transformation can be

regarded as essentially a member in the unitary (semi)group of e,

One particularly interesting thing is that the function spaces X°(R™) have
close relationships with Sobolev spaces H5(R™). When s € Z., they are just the space
H*(R")NF (H*(R™)); when s € Z_. then they are the space H¥(R") + F (H*(R")).
If s is not an integer, similar results secem to be correct too. In that case, we provide
some partial results in the direction of trying to prove it. Some other properties
are also considered, such as the relationship of the spaces X*(R™) and LP(R") and
the definition of the product of two functions in X*(R"). In the process of tracing
back to the theory of rapid decreasing functions and tempered distribution, we re-
alize that the function spaces X*(R") are "essentially” the V. Bargmann's function

spaces F?, which were used to analyze the properties of the tempered distributions

n?

in [Barl]{Bar2].

The following sections are organized in this way. In section 3.2, we provide
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definitions of the function spaces X°*(R™) and prove that they form a Hilbert scale,
whose intersection is the rapid decreasing functions space S(R") and whose union is
the tempered distribution space S’(R"). In section 3.3, we study on the relationship
of topological structure of the function space X*(R"™) and those of the space S(R")
and S’(R™). Besides that we consider on many basic properties of the function spaces
X*(R™) from the viewpoint of Hilbert scale, and many familiar operators are also
considered when regarded as a homomorphism of the Hilbert scale. In section 3.4,
we study on the relationship of the function spaces X*(R") and the Sobolev spaces
H*(R™). In the last section (section 3.5), we study on several problems: the first one
is the relationship between the space X*(R") and the space LP(R"); the second one
is about the definition of the product of the two functions from the space X*(R"™);
the last one is about the proof that for any s € R the function spaces X*(R") are
isomorphic to the V. Bargmann’s function spaces F¥ as two Hilbert spaces. A brief
review on V. Bargmann’s work [Barlj[Bar2] are provided in this section. And then
the difference of our work from that of V. Bargmann, together with B. Simon’s work

[Si], are pointed out .

3.2 Definitions of function spaces

1At

In the last section, some review on the properties of the operator e** are provided.

Now another observation on the operator 4 = (—A + z?) /2 is that it is an positive
definite essentially self adjoint unbounded operator on the function space L?(R), and

—~1/2

the inverse of its square root operator B = 4712 = ((—A + z?) /2) is a compact

operator on the same space. Let us recall that L?(R) is a separable complex Hilbert

(@
=



space with inner product (u,v) = ffoo u(x) v(x)dr. and it has an orthonormal

0

basis {h(z), k£ = 0,1,2,---} Then the operator B can be represented in the form

+o0

Bu= 3" (k+2)7"? (u,hi(x))hr(z). Below let us denote the space L*(R) by E°(R),
k=0

or just £ when the space is already taken as R. Now we can define a scale of Hilbert,

space[Mi, p.93], [Bo], [E-K-M-Y, p.61]. [B-H-K, p.143].

+00
Definition 3.2.1. Let B, = (| B"Ey and for u,v € E,o and Yo € R, define
n=0

(u,v), = (B™%u, B~%*v). Denote by E, as the function space which is the completion

1/2
[0

of the space E. o equipped with the |||z = ()" topology. The family of @ — E,

is called the Hilbert scale defined by B, and E 1 is called the center.

It follows that E. o = () E,, and if we suppose that E,, carries the weakest
acR
topology in which all inclusions F,. — FE, are continuous, then we can get that
_ . . - . _ /3 .
QLEJREa = FE_o is its dual space. Besides that, since lJull, = B uHEHB for all
u € FE o and o, 8 € R it follows that the operator B” extends to an isometry from

E, to E,. s, which we will also denote by B”.

In the following parts. we will use another natural way to define our func-
tion space and then go back to check that our definition fits in the above theoretic

structure.

As we have mentioned, the operator A = (—A + 2?) /2 is a positive definite
self-adjoint unbounded operator on the function space L*(R). In terms of the or-
thogonal basis {hy(z), k¥ = 0,1,2,---}, the operator A can be interpreted as an
infinite matrix A = (a,x) where a,, = d,x (k+ 1/2) and j,k = 0,1,2,---. Then

we can define an linear operator A° for any s > 0 through such an infinite matrix,
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As = (bjk);:;:io = (ajk);f;id In other words.

A(u) = A° (quhm)) — Saslk+ 1/2)ha(o), (3.8)

+o0
where its definition domain can be chose as D(A®) = {u € L] (R)| u = 3 qrhi(z)
k=0

satisfying +Zoo lgel” (k +1/2)% < 400 }. It is easy to verify such two facts for this
operator: giz)oits adjoint operator (A®)" satisfies D((A%)") = D(A®) and (A%)" = A%
(i) (A*(u),u) = Jio lge|> (k + 1/2)* > 0. That means the linear operator defined
by (3.8) is a posit}iC\:/;J unbounded self-adjoint operator. Below we define our function

space like this.

Definition 3.2.2. For any s > 0, if any function u € L*(R) is in the definition
domawn of the operator A%, then we say that u 1s in the function space X**(R). And
we endow this function space with such an wmner product, (u,v) x2e = (A®u, A%)2m)

for all u,v € X*(R).

In general, if T is an unbounded self-adjoint operator on a Hilbert space H
with its inner product (-,-), then its definition domain D(T') can also become a
Hilbert space when we equip this linear subspace with the inner product (u, v)pr) =
(T'u,v) + (u,v). In the definition of our function space, there is no second term for
the inner product. But it turns out that our defined space is still a Hilbert space.
This is due to the fact that our operator A° is in some sense “strict positive” and

the second term (u,v) can thus be absorbed into the first term (A*u, A%v).

Theorem 3.2.3. For s > 0 the function space X**(R) forms a Hilbert space under
the inner product (-,-)xz2s. And this space 1s isomorphic to the space I5(Z4;C) =

+o0
{¢ = (90,01, 92, ) € ZE satisfying Y |qk12 (k)° < +o0} under the mapping T :
k=0
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+00
X2S(R) - l§(Z+;C) by T <ZQkhk(I)> = (QO7QI»QZ7 s )
k=0

+o0
Proof. By the property of the operator A%, we can have that for any u = 3 gphi(x) €

k=0
+00 +0o0

X%(R), (A%, A*u) = S (k+1/2)% |al® = 3 (k)* |gl*, where the last term is
k=0 k=0

the standard inner product on the space [5(Z;C) (without further clarification we
always writing [5(Z,.) instead of the notation I5(Z.;C) in the following part of this
thesis for simplicity). According to this, it is easy to verify that the mapping 7" is a

well defined continuous linear operator and it is injective.

Conversely, since s is nonnegative, for any ¢ = (go, g1, 2, - - - ) € 3(Z) we can
verify that the corresponding function u(z) = :ioqkhk(ﬂ:) are really in the function
space X?¢(R), which means the mapping T is alzg surjective. We can easily further
verify that the inverse of mapping 7 is also continuous. Thus the function space

X?(R) is isomorphic to (5(Z, ), which obviously is a Hilbert space. O

According to the theorem above, we know that every function in X?%*(R)
(s > 0) can be represented as +Zooq;€hk(x), where ¢ = (qo,q1,92," -+ ) is the unique
correspondence in the function ks:;ace [5(Z4). So a natural question next is what
kind of functions are really in our function space X*(R) and whether they have

close relationship with other function spaces which are already familiar to us. The

answer turns out to be yes.

Theorem 3.2.4. If 2s is an integer, say 2s = n € Z., then our function space

X" (R) in fact ts

3
X"(R) = {u € L*(R) |z <%> u(r) € LA(R) for all indices0 < a+ 8 < n} ,
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and there is an equivalent norm |ul)> = 3 Hxau(mHZLz ~ |ulsn = (A%, A%u)
0<a+8<n

on this function space.
Remark 3.2.5. In particular, we have such two special cases: one is the case n = 0,
we have X°(R) = L2(R); the other one 1s the case n = 1, then we have X} (R) =
{ue L*(R) | O,u € LER),zu € L*(R)} = {u € H*R) | zu € L*(R)}, whach is the
virtal space in [M-R2].

Proof. Let us define V*(R) = {u € L*(R) | 2®0%u(z) € L? for all indices 0 < a+ 8 < n}

as a function space equipped with the inner product (u, v)y» = > (a:aafu, :caé)fu)w.
0<atB<n

It is easy to check that this function space V" with the given inner product is a Hilbert

space. So the only thing left to show is that these two function spaces are in fact the

same one. Let us prove this by the method of induction.

When n = 0, then obviously we have the operator A° = Id, thus function

space X°(R) = L*(R) = V!(R).

In the case of n = 1, for those good functions u in the function space X!, say

u € S, we have

We claim that the function space S is both a dense subset of X'(R) and V(R) with

respect to their norms respectively. This is because:
+00

(1) In the case of space X'(R), for any u = > gphw(z) € XY(R), we have

k=0
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N } 400
uy = Sqphe(z) €5, and |Ju —un|li: = S lgl? (k+1/2) — 0 as N — +o0;
k=0 k=N+1

(i1) In the other case, we can first find two C§° function (cut-off functions):
one is 0 < y(z) < 1 satisfying x(«) = 0 if |z] > 2 andx(z) = 1 if |z] < 1; the
other one is 0 < J(x) < 1 satisfying J(z) = 0 if [z] > 1 and fj;oJ(x)dx = 1. Let
xn(x) = x(x/N) and Jiar(z) = M J(xM). Then for any v € VI(R), we have a
family of rapid decreasing functions (in fact C§° functions) Jy/a(x) * (xn(z)v). It
is easy to verify that for any given f,¢ € VY(R), we have |[xn(2z)f = flly» — 0 as
N — 400 and HJ1/M($) * g — gHV1 — 0 as M — 400. Then we can choose a

sequence of functions Ji/ar(wv) (@) * (A x(x)v) — v in the function space V!(R).

The claim implies that X1(R) and V*(R) are respectively the complement of
the function space S under the norm ||| .» and ||-|};-1, which are in fact equivalent
to each other on S. By the uniqueness of the complement of a normed space, we can

draw the conclusion that the function spaces X*(R) and V!(R) are in fact identical.

Suppose our conclusion is true for all the cases 0 < n < k, let us prove it is
also true for case n = k + 1. Again. it is still true that S is a dense subset of both
spaces X**1(R) and V**1(R) under the norm || yxs1 and ||-||,x+: Tespectively. In
fact we can use the exactly same method as in the case X! and V! to get the desired
approximation sequence. We claim that ||| yxriand ||-|}x41 are equivalent norms on
S. By the uniqueness nature of the completion of a normed space, we can deduce
that the two normed spaces, S with restricted norm from ||-f| yxs1and [|-[|,-x+1, are in

fact identical. Below let us prove our claim.
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For u € S, we have
2|l suss = 2 (A u,u)
d. d &
— (Ak(—a;)a;u,u> + (A - ;l'u,u)

d
= (A""‘%—(%)A%u,u) + (AA"IJ‘E:Eu,u)
x

+ (Ak"le;L“u, u) + (Ak_l(—dix)l'u, u>

. d d d ’ d. d
_ k=2 2 k-2 , k=20~
= <A (- = VA _dru u> +2 (A z:Adxu,u> + (A ( dx>dmu’u>

+ (Ak_2xA2xu,U) +2 (Ak"z("%)/mu’u> + (Ak_zx - Tu, u)

— din (((—d—i—)Ak‘d%u, u) C}) + (zA* 2y, u) (Z))
= (o) ()= (o) (1))
O, 5

L d 1/2
( ) (AU“ d)/g Alk d)/z_a_l_u> (A(k'd)/2xU,A(k_d)/zxu)l/Q
X

k
<cy ( d) ([— +||a~uu€m_d)
d even
+ ZZ( > << Alk= d)/2 A(k‘d)”;;u> +(A(k D2y, AK=D/2 xu))
d odd
<c 0 A
- dz: d$ ‘/kd+ ‘Z‘U/‘Ad
<Ol

In the process above, we have used the fact that A(—£) = (—4)A4+ zand A - =
T A+ (—L).
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Similarly, we have

(2 (-£) ) ceonns) ()
(2o (2§

Thus we have finished the proof. O

Let us consider the intersection of the function space X™(R), then the last

theorem implies that
+oo
XT(R) = () X™(R)

d
={ue L*(R) | z° <_r> u € L*(R) for all indices a and & }

={ue H"™(R (-;—) u € L*(R) for all indices « and 3 }
={u e C*°(R (%) u € L*(R) for all indices o and 3 }
= S(R)

It is clear now that our spaces have close relationships with the Schwartz function
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spaces. Furthermore, it is a natural question to ask what is the relationship of the

topological structure of X™ (R) and that of the function space S(R).

As we known, the standard topology on S(R) is given by a family of seminorms
lullg g0 = SUP [xau(ﬁ)(a:)‘, which make the space S(R) become a Fréchet space.
Since the space S(R) turns out to be intersections of all the Hilbert spaces X" (R),
we can have another choice to provide it a topological structure. Let ||-||, be the
restriction of ||-|l . on the function space S(R), then they form a sequence of norms
on that space, which induces a topology on S(R) like this: every open set is the

union of the sets in the form of {f € S(R) | [Ifll,, <d1, -, [Ifll,, <0 }.

In fact, this topology on S(R) is the weakest topology satisfying that all the
inclusion mappings S(R) — X" (R) are continuous. It turns out that these two
topological structure are in fact the same one. Below let us prove it by starting with
the definition on what are two equivalent sequences of seminorms on a topological

space.

Definition 3.2.6. We call two families of seminorms {pa}aca and {dg}ses on a

vector space X equivalent if they generate the same natural topology.

It is often useful to know such a proposition.

Proposition 3.2.7. [9] Let {pa }aca and {ds}sep be two families of seminorms. The

following statement are equivalent:
(a) The families are equivalent famalies of seminorms.

(b) Each po is continuous in the d-natural topology and each dg is continuous

in the p-natural topology.
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(¢) For each o € A, there are Jy, -+ 3, € B and C > 0 so that forallz € X

palr) < C(dy () + - +dg, (1)),

and for each 3 € B, there are oy, .,y € A and D > 0 so that for allz € X

dg(l‘) <D (/)Ol(x) + - +pﬂm(x)) .

Obviously, it is an equivalent relation to say if two families of seminorms are
equivalent. So if we want to show two families of seminorms are equivalent, we can
choose another family of seminorms as a bridge, which is equivalent to both of the

two target families. That is the way we proceed.

Lemma 3.2.8. The families of semmorms {l|ull, 5 o} and {||ull, g,} on S(R) are

equivalent.

Proof. For any given function f € S(R), we have for any r € R

2 77(@)] = | 7,002 FO@)dr + 7 0 O )]
e ] |7 e 5 e

o ([Ja 1 f O @), + 2 P (@) o) [T + 1) hda

+ (H:p"f(ﬂﬂ)(m)HLz + HIa+2f(ﬁ)(I)HL2) _Jroo(a? + 1) dz

< C (Iflasrpz *+ M lacr gz + 1 lagera + 1 lasapina) -

That means |flapoe < C (Illarine + 1 lacrpo + 1 lasre + 1 lasapara) i

true for any index o and .
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And for the seminorm |[ull,, 5, we have

(fj;o ]m“f(") ($)’2 d:v)m

_{ r+oo_2a @+ 1) v

= (e T L

< (P2 + 0 tas) (o 0@ + 0@ ,)

< O (I lasrpoe + 11l

From these two inequalities, we can conclude that the two families of seminorms

{llully 500} @nd {||ull, 5.} Will induce same topology on the function space S(R). O

Note that the result in theorem 3.2.4 states that [|ul> ~ 30 HuHZm,
0<a+p8<n o

which implies that the family of norm {jul|, } induces the same topology on S(R) as

that induced by the norms {flul|, 5,}. So we can state our results as follows.
Theorem 3.2.9. We have
+o0
Xt (R) = N A" (R) = S(R).
n=0

And if we endow the Schwartz function spuce with the weakest topology such that all
the inclusion mappings S(R) — X™ (R) are continuous, then this topology coincides

with the standard topology which is induced by the family of seminorms {||ully 34}

Theorem (3.2.3) states that every function space X™ (R) are "essentially” the

Hilbert space zg/ 2(Z+). So the theorem above can have such a corollary.

Corollary 3.2.10. Suppose that p € L*(R) and denote

gn = fj;ogo(:c)hn(:z)dx e C.
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Then o(z) € S(R) 1f and only if g = (go,qu,- ) € F=(Z4) = (V3 X(Zy). And

in that case Zg;o%hn(fﬁ) converges wn the topology of S(R) to p(z) as N — 400,

N
whach can be denoted as o(z) = Y. quh.(T).

n=0

This result in above corollary was once obtained by B. Simon in 1971 [Si]
in a slightly different form. In his paper. another sequence of norms lj¢li,, =
(|qn'2 (n+ 1)’”)1/2 were directly defined on the Schwartz functions space S(R), and
the author proved that every function ¢ € S(R) corresponds to a point in the se-
quence space satisfying Jrf:o lgn]? (n+1)™ < 400 is true for any m € Z,. In his method
all the viewpoints comen;)om Schwartz function space itself, and the function space

is not complete when it is equipped with only one norm ||-|], ..

However, our proof of the same result essentially comes from taking the
Schwartz function space as the center of an Hilbert scale. In this way. it is easy
to understand that the space S(R) has many good properties such as separability,
completeness, reflexivity etc. Since S(R) is isomorphic to I7*°(Z.), it is easy to con-
jecture that S'(R) = [5°°(Z,.) is true. This space S’(R), which is much larger than
the space L%(R), provides us enough region to construct our Hilbert scale, especially
the Hilbert space X* (R) for s < 0. In the following parts, we will first review Barry
Simon's N-representation theory for S’, then give out the definitions of our function
spaces and finally prove that our function spaces form an Hilbert scale. Let us start

with such a definition.

Definition 3.2.11. A countable famuly of norms ||-||, is called directed if for any

finite set ki, - -, ky there is a k and a constant C so that || f||, +- -+ fll,. < Clfll,-

Directed families are very useful because they provide a simple description of
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open sets and further of continuous functional.

Lemma 3.2.12. A linear map T : E — C with E a countably normed space with

a directed family of norms {HH]} is continuous if and only if 3C > 0.k such that

Tz| < C izl

It is very easy to find that our norms {||-|| v« } with restriction on S(R) are in
fact a directed countable family of norms. So this lemma and the directed nature of
|-l x» enable us to prove such a characterization of the space S’(R). (Although very

similar, it is in a little different form from the result in Barry Simon’s work.)

Theorem 3.2.13. Suppose f is a tempered distribution. Let b, = f(h,(z)), then

+oc
there emsts a real number s satisfying 3. 1bnl* (n)** < 400, i.e. b = (bo, by, --) €

n=0

400
B(Zy), and f(@) = > anby, if an is the n-th Hermite coefficient of ¢. Conversely, if
n=0

+00
b= (by,b1, ) € 5(Zy) for some s € R, then the mapping ¢ — >_ a,b, defines a

n=0

tempered distribution.

Proof. Since f € S'(R) and |||y is directed norms, by the lemma we get |f(p)| <
Cll¢ll xm for some m € Z,.. Noticing ||¢|| ., = <J§o lan|® (n + 1/2)’")1/2 ~ ||(ag, a1,
and S(R) is a dense subset of X™(R), we have zzlinique extension of f into a con-
tinuous linear functional on X™(R), or "essentially” on the space l;"/ 7). As we
know the dual space of [J*(Z.) can be regarded as the Hilbert space I;™/*(Z.,),
so the distribution f has such a representation: let b, = f(h,(z)) then we have
?:Z [bal? (n)™™ < +00. and f(p) = %oanb,,, where a,, is the n-th Hermite coefficient

n=0

of ¢ € S(R).
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Conversely, if b = (bg, by, -+ ) is an element in I5(Z, ), there always exists an

integer m > 0 such that & € [;7(Z. ). Then we only need make such a computation

+00
> anby
n=0

+00
Zan <n>m/2 bn <n>—m/2
n=0

< bllizmzyy ol .
S H“/JHX'" )

+o00
so that the mapping ¢ — > a,b, is a continuous linear functional on S(R). O

n=0

This theorem can be viewed as in the dual form of the N-representation for

the rapidly decreasing functions. It has such a corollary [Si].

Corollary 3.2.14. S(R) us dense in S'(R) wn the weak topology on S’. In particular,

N
if f €S (R) and b, = f (ha(x)) then > byhn(z) — f in the weak topology.

n=0

Proof. The weak topology on S’(R) is the weakest topology to make all the func-

tionals T, : f € S'(R) — f(¢) on S(R) be continuous. So it is only left to check

N +00
that we have > a,b, — > a,bn, which is clearly true. 0
n=0 n=0

Based on these two results about characterization of the tempered distribu-

tion, it is natural to come to the following definition [Si].

Definition 3.2.15. For any function f € S'(R), we call by = f (hi(x)) as the k-th
+00

Hermite coefficient of the tempered distribution f, and we write f = 3 bghg(x)
k=0

as its Hermite expansion.

What is more interesting to us is that we can generalize the definition for our

function spaces into the cases with index s < 0.
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Definition 3.2.16. For any real number s € R, we call a function f € S'(R) s in

the function space X**(R) if its Hermite coefficients {by = f (h())} satisfies

Jrf lbil® (k +1/2)* < +oo. (3.9)

This definition is compatible with the definition once given for the cases s > 0,

or in other words, {f € S'(R) | kf;bkg? (k+1/2)% < 400} = {f € L?(R);:_f:)\bkf

+00
(k+1/2)* < +oo}. Tt is due to the fact: when s > 0, the inequality Y |by|?
k=0
+00
(k+1/2)* < +oco implies that b = (by, by.---) € ly(Zy) and 3 bphe(x) is an L*-
k=0

function.

Like the cases of s > 0, there is also a natural inner product on the function

space X*(R) for s <0
. + %
(u,v) yos = Yo quPr (K +1/2)7,
k=0

where {gx}and {pi} are Hermite coefficients of function u and v respectively. It is

easy to get the following theorem.

Theorem 3.2.17. For any s € R, the function space X**(R) is a Hilbert space,

which 1s isomorphic to the Hilbert space I3(Z.), i.e. X**(R) = I5(Z,).

To prove this theorem, we only need repeat the proof for the case s > 0.
Again, it is the mapping T : f(2) — (by.b1, ) that provides the isomorphism
from X*(R) to I5(Z,).

Up to now, a family of Hilbert spaces parameterized on real number s have
been defined rigorously. We are in a good position to check if these Hilbert spaces

are an Hilbert scale. The answer is yes.
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Theorem 3.2.18. The famaly of Hilbert spaces X*(R) form an Hilbert scale, and
they satisfy X7 (R) = N X* (R) = S(R). and X (R) = |J X* (R) = S'(R).

seR s€R

Proof. 1t is straightforward to prove this theorem, so below we just provide a sketch
of the proof. According to the definition of the Hilbert scale, we need start with a
compact operator. Let B = A7Y? = ((—A +2?) /2)"'/2, an operator acting on a
separable complex Hilbert space Fy = L*(R) = X°(R). This operator turns out to be
compact, positive and self-adjoint, and can be represented as an infinite dimensional

Matrix diag ((k +1/2) V% k=0.1.2,- - ) By the definition of Hilbert scale, we

can have
+00 +o0
(i) Fyoo = N B"Ey = [) X™ (R); so this space (center of the Hilbert scale)
n=0 n=0

is just S(R).

(i1) The space E, equals to the completion of the space E+.. = S(R) equipped
with the norm |jull, = (B %, B_“u)z/f. From the theory of N-representation of
rapid decreasing functions, we can see that E . = S(R) is essentially the space
I;°(Z,), and the norm ||-||, on E, is just the norm ||| aof the space X°(R) with
restriction on By = S(R). Since [7°(Z; ) is a dense subset of l§/2(Z+), and further
same is true for S(R) C X°(R), we must have the function space X*(R) is equivalent

to the space E, in the sense of isomorphism.

Finally, () X% (R) = S(R) comes from the fact of X*(R) C X' (R) for any

s€R
s>t |JX¥(R) =5 (R) comes from the N-representation theorem for S'(R). O
seR
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3.3 A Hilbert scale

In the last section, it took us a long way to bring out the definition of our function
spaces. During the process, we have mentioned some properties of the function spaces
X2 (R), like the characterization of the functions in X" (R) and the relationship of
the topological structure between the space S(R) and X™ (R). In these section, we
will provide a more systematic description for the properties of these function spaces
from the view point of Hilbert scale. At first, we will give out two basic property

coming from the property of a Hilbert scale.

Proposition 3.3.1. For any s € R, the Hulbert space X **(R) is the dual space of
the Hilbert space X*(R).

Since X?¥(R) is isomorphic to the space {5(Z,.), so we only need to prove that

15°(Zy) = 15(Zy), which is obvious. The details are omitted here.

Proposition 3.3.2. If s < t in R, then the imbedding i : X*(R) — X*(R) 1s a

compact mapping.

To prove this proposition, we need a lemma such as the one below. It is a

very basic fact in functional analysis and its proof can be found in any textbook.

Lemma 3.3.3. Let X,Y be two Banach spaces and T is a continuous mapping from
X toY, ve T, € L(X,Y). If there is a sequence of continuous finite rank mapping
T, € L(X,Y) such that ||T,, — T} — 0 as n — +oo, then the operator T 1s a

compact operator.

Now let us see how can we get to the proposition.
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Proof. Since the space X?(R) is isomorphic to I5(Z,), with a little abuse of no-
tation, we only need to prove the imbedding i : 1§(Z,) — [5(Z,) is compact.
There is a sequence of mapping iy : I5(Z+) — 15(Z+) defined by in(qo, 1,92, ) =

(90,41, - qn,0,0,---). This sequence of mappings are all continuous and they satisfy

1/2

. . . ZA>N+1|qk|2 >

lim [z —iyl = lim inf
N—+oo N—+ocqgs0 Z |q |2<
s—ory 1/2
. . Zk>N+llqM2<1> <k7>2 #

= lim inf

=t \ T S larl

lim N9
N-—-+oc

IN

=0 (since t > s).

By the lemma above, we know that all the mappings 7 : X#(R) — X*(R) are

compact imbeddings. O

Another very important property of Hilbert scales is that there usually exist

many good continuous linear mapping between the Hilbert spaces in those scales.

Definition 3.3.4. Guwen two Hilbert scales {E,}, {Fs} and a linear map L : Fi o —
F_ o, we denote by ||L], ,, < oo s norm as a map E;, — Fy,. We say that the
map L defines a morphism of order d of the scales {E;} and {F,} for s € [so, 51),

if HLHS’S_d < 400 for each s € [sg, $1] with some fized —oo < 50 < 51 < +00.

We should be careful on the case of sg = —00 or s; = 400, since Fis, Fig
are given no norms. So if s = —oc, we apply this definition for s > sg and similarly
§ < 400 if 81 = +00. Sometimes this morphism can be invertible or even better, and

here we provide below such two definitions.
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Definition 3.3.5. If in addition the inverse map L™ exists and defines a morphism
of order —d of the scales {Fy}, {Es} for s € [so + d, 81 + d|, we say that L defines an
isomorphism of order d of the two scales. If {Fs} = {Es}, then an isomorphism

is called an automorphism.

Definition 3.3.6. If in addition we have (Lu, Lu)p,_, = (u,u)g_for any s € [so, s1]
and u € E,, we say that L defines an isometry of order d for s € [so, 1], and
the operator L is isometric. If {Es} and {Fy} are complex Hilbert scales, and

L(Eg) = Fs_q, then this isometric operator 1s said to be unitary.

Due to the structure of the Hilbert scale, for any morphism L, it can naturally
induce a sequence of adjoint operators on their dual spaces. It turns out that these

operators also form a morphism.

Definition 3.3.7. If L : E;, — F,_q is a morphism of order d for s € [so, 51, then
the adjoint maps L* : (Fy_q)" = F_goqg — (E)" = E_, form a morphism of the
scales {Fs} and {Es} of the same order d for s € [—s; +d, —so + d]. We call it the

adjoint morphism.

Definition 3.3.8. A morphism L of a Hilbert scale {Es}, complex or real, is called
symmeltric (antisymmetric) if L = L™ (respectively L = —L*) on the space
E.w. In particular, a linear operator L : E,, — Eg,_4 is called symmetric (anti-
symmetric) 1f L = L* (respectively L = —L*) on the space E,. Furthermore,
of L s a symmetric morphism of {Xs} of order d for s € [sg,d — so|, then L* is
also @ morphism of order d for s € [sg,d — so| and L = L* as the scale’s morphism.
We call such a morphism selfadjoint (Anti-selfadjoint) morphisms are defined

stmalarly.
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To check if a morphism on a complex Hilbert space is symmetric (antisymmet-
ric), we usually do this way: let us introduce a sesquilinear form f on Ey x E_, —
C: (u,v) = 7ov(u), where 7 is the natural mapping from E_; — (E)* satisfying
Tv(:) = (,v)E,; so then we only need check if this equality f(Lu,v) = f(u, Lv) for

any u,v € E,.is satisfied.

In the following part, we will discuss on several morphisms on the scales

{X*(R)}, which is of particular interest from the viewpoint of analysis.

First of all, let us consider the operator A°/2. At the beginning of the last
section, we have defined the operator A7/2 = (t%ﬂ)ﬁ? as a linear mapping
from X9(R) — XO%R) = L%*(R). Now with the help of the introduction of the
Hilbert scale X*(R), we can generalizing its definition as in this formula: if p(x) =

+oo
> agrhi(r) € S'(R) (i.e. a tempered distribution), we define
k=0
Al f b+ 1/2)7 gehi(z) € S'(R). (3.10)

Then we can have such a proposition.

Proposition 3.3.9. For any o € R. and s € R, A7/%: §'(R) — S'(R) defines an
automorphism of order o on the scales { X*(R)}, which is isometric, selfadjoint and

satisfying that each operator A?/? . X7 — X% is a unitary mapping.

Proof. Tt is a straightforward work to check that this operator is an automorphism on
the Hilbert scale and each operator is a unitary mapping. To see it is also selfadjoint,
let us introduce the sesquilinear mapping on the product space X*® x X~° for any
seR:

(u.v) Zakbk,
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+oo +00
where u = Y aphi(z) € X*(R), and v = > brhe(z) € X*(R). So we only need
k=0 k=0

f(Au,v) = f(u, Av) is true for any v € X*(R),and v € X **9(R), which can be

easily verified. 0
So until now, we have such three kinds of interpretations for our function
space:
(1) X*(R) = {u € S'(R) | A*u € L*(R)};
+oo
(i) X*(R) = {u € S'(R) | u = kZQkhk(x), ¢=(q0,q, ) € 5’(Z1)};
=0

() X(R) = {f € S®) | v = () such that 3= |+ 1/2)° <

+00}.

In the following let us discuss an interesting automorphism on our Hilbert

scale—Fourier transformation. Let us recall that
Fhi)(x) = (=1)* hi(), (3.11)
which can induce such a proposition.

Proposition 3.3.10. Fourier transformation defines an automorphism of order 0 on
the Hilbert scale {X*(R)}, which is surjective and isometric. In other words, each

operator F : X° — X°® is a unitary mapping.

+00
Proof. For any ¢ = > gphi(x) € X*(R), its Fourier transformation is
k=0
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400
Fo=73" (q;c (~z’)k> hi(z), which is in fact is also in the same space, since
k=0

7ol = (g o (_i)k’2 (k + 1/2)s> )

Il

(glqkf (k + 1/2)s> 1/2
= liellx--

+0o0
And if ¥ = > prhi(z) is any other element in X*(R), we have
k=0

“+0C

(Fo. F) yomy = 2 i (=) pi (=)™ (k + 1/2)°

k=0

= S+ 1/2)°

k=0
= (¥ ¢)ysm) -
Together with the fact that the Fourier transformation is surjective on each space
X*(R), this equality implies the operator is unitary. d
Remark 3.3.11. In the classical theory of Fourier analysis, we know such two facts:
(i) Fourier transformation is a unitary mapping on L* space;
(ii) Fourier transformation gives homeomorphisms on both Schwartz function
space S(R) (with standard topology) and tempered distribution space S’(R) (with weak
topology).

So all these facts can be viewed as special cases s = (0,+00 of the above
proposition, with the attention that there is no longer inner products on S(R) and

S'(R).

Let us recall that our function spaces essentially come from the analysis on

the operator A = (—A + z2)/2. Between the operator A and F, we have such an
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commutative relationship
Fo(=Ap+7%)/2 = (—A¢ + £%)/2,

that is, [F, A] = 0. In fact there is more fundamental relationship between them:
the Fourier transformation can be represented by the operator A. Besides these a
well known fact is that the operators et form a Cj group of unitary mappings on

L? space. All these facts can be uniformly treated together.

Proposition 3.3.12. For any t € R, the operator e defines a surjective isometry
on the Hilbert scale {X°*(R)}. If we fiz the space X°(R) s € R, the operators e**

form a Cy group of unitary mappings on X*(R) space.

+00
Proof. For any v = >_ grhi(z) € X*(R), we have the formula
k=0
+o0o
e Mo = 3 que M hy(z). (3.12)
k=0

Then it is easy to verify that ¢ is onto on each X*(R) and (e, e"y),, =
(1) y for any ,¢ € X°(R). These facts imply that e’ defines an surjective

isometry on the Hilbert scale. To prove it in fact induces a Cy group, the only

1At

nontrivial part is to verify that e**p — p as t — 0.

+00
For any given ¢ € X*(R), we can choose N big enough such that || >~ grhe(z)
k>N+1

¢/8. Then we have

2
1At 2 N 2| gt 2 T
et o —ollye € 3 lal e = 1" +4|| ¥ quhu(z)
k=0 k>N+1
XS
<ef2+4-¢/8=¢
as t — 0. Thus we have finished our proof. O
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Remark 3.3.13. We can also apply the operator et for the cases s = F+oo. Al-
though there is no inner product any more, thus not a chance to become a unitary
mapping, the operator can still be a 1somorphism in each case. Here we assumed that
S(R) is given with standard topology and tempered distribution space S'(R) 1s given
with weak topology. Some other spectal interest is paid to the choice of time t. It is
already stated that {e““} are operators with period 4w satisfying e*4t—o = Id and

e _or = —Id. Now lett = 37, from the equality (3.12) we get

, +oc ] 3
M), _g, = Larexplilk +1/2) - SrHu(a)
k=0
3t .
= exp{i 7} 3 ge(—1) ()
k=0
— ().
So we have the following corollary.

Corollary 3.3.14. When t = gﬂ, the operator e turns out to be essentially a

Fourer transformation. In particular. for any ¢ € S'(R)
€4ET s = ' F (). (3.13)

Remark 3.3.15. This result have a little different form in higher dimensional cases:
for any ¢ € S'(R")
e 27 5 = T (). (3.14)

As a tempered distribution, it admits multiplication with certain smooth
functions, for example the function g(z) = z; it can also be taken derivatives
for arbitrary times. These two kinds of operations can also be regarded as mor-

phisms on the Hilbert scale {X*(R)}. Let us denote by T, : S'(R) — S'(R) and
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D: S'(R) — S'(R) as the operator of multiplication with function g(z) = z and of

taking derivative for one time, then we have such results.

Proposition 3.3.16. The operator T, defines a selfadjoint morphism of order 1 on
the Hilbert scale {X°(R)}.

+o0 +o0
Proof. For any u = Y qrhk(z) € X°(R), we have T, (u) = 3 (Tp(u), hin) hn(z) =
k=0 m=0
+00
> {u, xhy) by (z). By the property of the Hermite functions, we have
m=0
1 +o0
thi(z z m—ihm+1 )+ 3y Shneaa). (3.15)
m=1
Thus we get
Too fm+1 fm
= Z —oGm+1 T+ o dm-1 hm(l’), (316)
g 2 2
where g_; is by defaut taken as 0. Then it turns out that ||T5(w) || ys-1 < 2 i1 (2) 4

Xs—1

< |lull s and for the sesquilinear mapping f and any v =

Xs-1

+00 +o0

kzzopkhk(x) € X'*(R), we have f(zu,v) = 72;0 (\/mTHQm+1m+ ﬁqm_1m> =
flu, zv). O

Proposition 3.3.17. The operator D defines an anti-selfadjoint morphism of order
1 on the Hilbert scale { X*(R)}.

The proof for this proposition is quite similar to the last one. So we only

provided the essential equality needed as

patey m-+1 m
Du = ZO (‘\/ T Ymer \/5qm-1> hm (). (3.17)
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Remark 3.3.18. The compositions of operator T, and D are also morphisms on
the same Hilbert scale. For example, a polynomial with order n, which wn fact the
elements of the tempered distribution, now can be regarded as a morphism of order
n, differential operators with polynomual coefficrents are also morphisms with finite
order. Besides these, the anmhilation operator (lowering operator) a = (D + T,)
and creation operator (raising operator) a* = (D —T;) are both morphisms of order
1; they are conjugate to each other wn the sense that.f(au,v) = f(u,a*v) for all

(u,v) € X*(R) x X'"*(R).

In a Hilbert scale, the space E. .. play two special roles in this family of Hilbert,
spaces. One natural question is what are the relationships of these two spaces and
the other Hilbert spaces such as topological structure, characterization of continuous
linear mappings etc. In our case, the space X**(R) = S(R) or S’(R) are important
to the analysis and have been studied heavily. Now the introduction of the Hilbert
scale provides us a new point of view to understand the spaces S(R) and S’(R). In
the following part of this section, we will first use this new viewpoint to review Barry
Simon's work on the N-representation theory with application in the analysis on the
function spaces S(R) and S’(R). After that, we will study the relationship of the

topological structures of these two spaces and the Hilbert function spaces X*(R).

In 1971, Barry Simon’s once used the N-representation theory to analyze the
structure of the function space S(R) and S'(R) (see [Si]). From the standpoint of
Hilbert scale {X*(R)}. we can easily rewrite most of his results as follows:

e Each Hilbert space X*(R) is separable, and S(R) = XT>(R) is also sepa-

rable under its standard topology.
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N +oc
e Similarly, since > gxhi(z) — >_ grhi(2) in the weak topology o(S'(R), S(R)),
k=0 k=0

S'(R) = X~*°(R) with the weak topology is also separable.

e In particular S(R) = X*°(R) is dense in S'(R) = X °(R) with weak
topology.

e For any function f € S’(R). Then Js € R,m € Z, and a continuous
bounded function g € X™(R) such that f = A°g. (In the next section we will

discuss the relationship between the space X*(R) and Sobolev space, and see a more

dedicated description on the function g)

e Under the standard topology, a subset B C S(R) is bounded if and only if

B is bounded in each Hilbert space X™*(R),n € Z,.

e Under the weak topology o(S’(R), S(R)), a subset C' C S(R) is bounded if
and only if 3m € Z, such that C is a bounded set in Hilbert space X ™(R). (in

fact, this is also true for Mackey topology or strong topology)

e Any closed and bounded subset of S(R) = X*°°(R) in the standard topology

is a compact set.

Now let us further consider the choice of the topological structure on the
spaces XT*°(R). In the case of the space S(R), we have proved that if it is endowed
with the weakest topology such that i, : S(R) — X™(R) are all continuous then
that topology is just the usual Fréchet topology on it. This is still true when we

considering more imbeddings i.

Theorem 3.3.19. If we endow the space S(R) = X1T°(R) with the weakest topology

such that is : S(R) — X*(R) are all continuous for s € R, then that topology 1s
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Just the usual Fréchet topology on it. And it has such a property: for any topological
space E, a mapping [ : E — S(R) 1s continuous if and only of for any s € R the

mapping iso f : E — X*(R) is continuous.

Proof. For the first statement it is enough to prove that when we endow the space
S(R) with the weakest topology such that i, : S(R) — X*(R) are all continuous
for n € Z,, then it makes the mappings i, continuous. This is easy. Since for any
s € R, there is an n € Z, bigger than s, so the mapping i, can be written as the
composition of the mappings ¢, and the compact imbedding form the space X™(R)

to X*(R), thus it must be continuous.

For the second statement, if we have f : £ — S(R) is continuous, then of
course is o f : B — X*(R) is also continuous. Reversely, with the given topology
any open set U on S(R) can be written in the form of the union of the sets in the
form of Usysy.5, = {u € SR) | {[ull,, < en,llull,, < e, llull,, < em}, then if
every i;o f : E — X*(R) is continuous we have f~'(U) is the union of the sets
in the form of f~1(U, 5.6 ). But we have f™1 (U sp.s,) = ﬁl (is, of)_1 ({u €

=

S(R) | ||uHs] < £;}), which is always open, so the set f~*(U) must be open. That

means the second statement is also true. O

When we consider the similar question for the case of the space S’(R), the
situation becomes a little more complicated. Unlike the case of compactly sup-
ported functions the inductive limit is not a possible choice. Although we have
X7(R) = () X*(R), the restriction of the topology of X*(R) to X*(R) (assuming

s€R

t < s) is not the given topology on X*(R), thus the necessary setting for induc-

tive limit topology is missing. But we still have many possible choices such as the
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weak topology o(S'(R), S(R)), Mackey topology 7(5'(R), S(R)), and strong topology
B(S'(R), S(R)). Now let us choose the topology (denoted as 7) as the strongest locally
convex topology on S'(R) so that the injections i; : X*(R) — X ~°°(R) are contin-
uous, then it will finally turn out that this topology is just equal to 7(S(R), S(R))
and B(S'(R), S(R)).

Below let us start with the existence of such a topology. It is useful to provide
such a characterization of the continuous linear mapping between two locally convex

topological spaces.

Lemma 3.3.20. Let E and F be locally convex spaces with families of semi-norms
{pataca and {dg}sep. Then a linear mapping map T : E — F, is continuous if

and only if for any B € B, there are a1, .a, € A and C > 0 with

d5(T2) < C (pay (@) + -+ + pa, (@) (3.18)

This lemma is basic in the theory of locally convex spaces and can be found
in many textbooks, so we don’t provide its proof here. With the help of this lemma,

we can guarantee the existence of the topology 7.

Proposition 3.3.21. The topology T exists and it satisfies: for any locally convex

space F, a linear mapping g+ S'(R) — F 15 continuous if and only if for any s € R

the mapping glxs = gs : X*(R) — F is continuous.

Proof. According to the lemma, if a locally convex space §'(R) with a family of semi-
norms {ds}gep satisfy that all the inclusions 1, : X*(R) — X ~°°(R) are continuous,
then for each 8 € B, and s € R, there existsC' > 0 with ds(is(z)) < C ||z|| y.. Now let

us consider the sets of all the possible seminorms & = {seminorm d|Vs € R,3C; € R
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so that da(is(z)) < Cs x|y« }. This sct is not empty and it can separate points in
S'(R), since for any function u € S(R), the seminorm d,(z) = |z(u)| is an element
in &. Then the locally convex space with such a family of seminorms will induce the
desired topology 7. It is strongest in the meaning: any other locally convex topology
on S’(R) to make all the inclusions /, : X*(R) — X ~*°(R) continuous must be a

weaker topology than it.

For the second statement if we have a locally convex space F' and a continuous
mapping g : S'(R) — F, then g|x« = g o ¢, is of course continuous too. Reversely,
if we have a locally convex space F' a mapping g : S'(R) — F so that for any
s € R the mapping g|xs = gs : X*(R) — F is continuous, then we want to prove
that for any open set U of F' containing zero point, we can find an open set V in 7
satisfying ¢(V) C U. Without loss of generality let us assume U is a circled convex
open set of F, then ¢~(U) = | (glx:)™" (U) is a circled convex set containing
zero point in S'(R) and for eachsze R, (glxs)~" (U) is an open set in X*(R). Tt is
easy to verify that g~}(U) is an absorbing subset of S'(R) with the property that
if z € g7(U) then tz € g *(U) for all 0 < ¢ < 1. Then the Minkowski functional

d(z) = inf{\ |z € A\g~}(U) } is a seminorm on S’(R). We claim that it is in the set

@

Since for any real number s we have g~ (U) N X$(R) = (g|xs)™" (U), which

ys, we can always

is an open set in of X*(R) due to continuity of the mapping g

find a open set of X*(R) satisfying {x| [|z]|, < &} C g~} (U) N X*°(R). Then we

have d(iy(z)) = inf{A |z € A(glxs)" (U)} < inf{\|z € M ||zll, < &}} is true

for all z € X*(R), which implies that d(is(z)) < ;' |iz|/,. So our claim has been

proved. In this way, we can find an open set {z € S'(R) |d(z) < 1} C ¢~'(U) which
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is mapped into the open set U of F. That means the mapping g : S'(R) — F' is

continuous. O

The remaining task is to identify this topology. From the proof above, it
can be deduced that the weak topology o(S'(R),S(R)) is weaker than the topol-
ogy T, since all the seminorms d,(z) = |z(u)| are in § and these norms can define
the topology o(S'(R), S(R)). Another comparison of the topologies can be made
between (S’(R),7T) and the strong topology 5(S'(R), S(R)). The latter one can be
generated by the seminorms {p4| A C S(R) is bounded under standard topology}
where pa(f) = sup,ca|f(z)]. Due to the N-representation theory of the func-
tion space S(R), any bounded set on S{R) must be bounded in each Hilbert space

X"(R),n € Z;. So we have for any n € Z,

palf) =sup|f(2)l < I fllxnsup el S Al

and it can be further improved as for any s € R pa(f) < ||f]ly-s by using the
compact imbedding property of the Hilbert scale {X*}. Recall the definition of the
family of norms &, we know that all these p4 are also in &, which implies that the

strong topology B(S'(R), S(R)) is also weaker than the topology 7 on S§'(R).
When we compare the topology (S'(R),7) and the Mackey topology 7(S'(R), S(R)),

let us consider the dual space of (S’(R), 7). We find such a proposition.

Proposition 3.3.22. The dual space of (S'(R),T) is just the function space S(R).

Proof. Let T is a continuous linear functional on (S’(R),7). By the proposition
above, we have that the restrictions T'|x- : X*(R) — C are all continuous, which

means 1’|y is essentially an element in A*(R). So there exists b, = (by, b1, ) €
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+oo

l;s/Q (Zy) such that T xs(f) = Y (ber ) where f € X*(R) and gy is the k-th Hermite
k=0

coefficient of f. Notice this is true for every s € R, we can deduce that all these

bs are equal and they correspond to a unique element in S(R), which implies that

T(f) = T,(f) = f(p) for some ¢ € S(R). Reversely for any » € S(R), it induces

a linear mapping T,(f) = f(y) on S'(R). For any s € R we have |T,(f)] < [|flly.

l¢ll x-s, so T, is continuous on the topological space (S’(R),T). O

Recall that according to Mackey-Arens theorem, Mackey topology 7(S"(R), S(R))
is the strongest locally convex topologv S’(R) having its topological dual as S(R).
So the proposition above implies that the topology 7 is weaker than the Mackey

topology 7(S’(R), S(R)).

Let us review that Mackey topology 7(S’(R), S(R)) is the locally convex topol-
ogy of uniform convergence on o(S(R), S’(R))-compact convex sets of S(R), and
its generating seminorms can be chosen as pc(z) = sup,cq |y(z)| with C' running
over all the o(S(R), S(R))-compact convex subset of S(R); the strong topology
B(S'(R), S(R)) is the locally convex topology of uniform convergence on bounded
subsets of S(R) with usual topology, and its generating seminorms can be chosen
as pa(f) = sup,e4 | f(z)] with A running over all the bounded sets of S(R). Since
any o(S(R),S’(R))-compact convex subset of S(R) is bounded, thus we have the
strong topology 3(S’(R), S(R)) is stronger than the Mackey topology 7(5'(R), S(R)).
But we have proved that 7 is stronger than the strong topology, so we finally get
such a relationship B(S"(R), S(R)) < 7 < 7(§'(R), S(R)) < B(S'(R), S(R)) (with
~< means "weaker than”), which implies that 7 coincides with the Mackey topology

7(S'(R), S(R)).and the strong topology S(S'(R), S(R)).
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In summary, we have such a theorem for the topology 7 on S'(R).

Theorem 3.3.23. If we endow the space S'(R) = X~°(R) with the strongest locally
convex topology T such that all the injections i, : X*(R) — X ~°(R) are continuous,
then that topology coincides with the Mackey topology 7(S'(R), S(R)) and the strong
topology B(S'(R), S(R)). And it has such a property: for any locally convezr space
F, a linear mapping g : S'(R) — F' is continuous if and only if for any s € R the

mapping glxs = gs : X*(R) — F is continuous.

3.4 Relationship with Sobolev spaces

In this section, we will discuss the relationship of the function spaces X*(R) and
Sobolev spaces H*(R). From the characterization of the function space X™(R) (n
nonnegative integer), we can easily deduce that it is a subspace of the Sobolev space
H™"(R). Meanwhile, X™(R) is a space invariant under the Fourier transformation,
so0 a natural question is the relationships between these two spaces and the Fourier

transformation.

At first let us compare these two spaces X!(R) (virial space) and H*(R). It
turns out the former one is a proper subset of the latter one. To see this, consider
the function u(z) = x(x)1 where 0 < \(x) < 1 is a cut off function satisfying
x(z) =0 for |r] < 1/2 and x(r) = 1 for |+| > 1. This is a smooth function which
belongs to L? space. By using the Leibniz rule, we can confirm that u(z) is in the
space H**(R) = (= H"(R). But on the other hand this is a function not in
XY R) ={f e SNfe HR), zf € L]R)}. since zu(z) = x(z) = 1 for all |z| > 1

which is not in L? space and Fourier transformation is a unitary mapping on X!(R).
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In fact, we can conclude that S(R) = XT*(R) C H**(R).

From this example, we can see that the Hilbert scale {X*(R)} provide a
different way from Sobolev spaces to measure regularities of functions. A function,
like u{z) above, may be very smooth in Sobolev meaning but not so regular in the
meaning of X*(R). This difference comes from that the regularity in the meaning
of X™(R) requires not only the information of local regularity—to how many times
the function can be taken derivatives to get an L? function, it also requires the
information of global regularity—how fast it together with its derivatives can fall off

comparing the inverse of polynomials.

This viewpoint can bring us some other advantages. As we know, the Sobolev
spaces are a good way to understand the regularity of some tempered distribution,
but only some of them. This is due to the fact that H~*(R) = [, H*(R) C S'(R).
But now the Hilbert scale {X*(R)} enables us to discuss the regularity of every
tempered distribution. In particular, let us see such an example u(z) = (2r)~ /2.
This is a function very easy to understand, but we can’t discuss its regularity in
Sobolev meaning, since we have Fu(€) = §(£) and Fu(€) (£)° = §(¢) ¢ L? which

implies that it is never in H~*°(R). Now let us reconsider this by using the Hilbert

scale {X*(R)}. The k-th Hermite coefficient of Fu(§) is

ax = (0(8), hie(§)) = hi(0)
0 if k& odd
= o o . 2 (3.19)
s (‘1) <§k—(k—/2‘5‘,—(m> if k even.

From the Sterling’s formula, we get that gy ~ 7~ Y2(=1)¥/2 (k)™** and further

Fu(€) € X*(R) for any s < —1/2 (denoted as Fu(€) € XY™ (R)). So we can say
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all the nonzero constant functions have regularity degrees as (—1/2)”. Similarly, all
the polynomials of order n can be viewed as tempered distribution and they have
the regularity degrees (—1/2)” —

Although we have mentioned many differences between the function spaces
X°(R) and H*(R), they do have close relationships. When s = 0, they are the same
function space L?(R); when s = 1, X}(R) = {f € §'|f € H'(R), zf € L*(R)} (virial
space) in fact equals to H'(R) N F (H*(R)). This proposition can be generalized. It

turns out that, we have such a theorem.

Theorem 3.4.1. For all real number s > 0. we have X*(R) C H*(R)NF (H*(R)),

1/

and the norm |||y, is stronger than the norm ||ul|, = (HUHHS + ||{x Hp)

In particular. for any nonnegatwe integer n, we have X"(R) = H*(R) N F (H"(R))
1/

and the norm ||-|| x» is equivalent to the norm |ul|, = (HuHHn + ||{x z)|1%,

For any real number —s < 0, we have H*(R) + F (H™*(R)) € X *(R), and 1t is

a dense subset of latter space. In other words, H=3(R) + F (H~*(R)) = X *(R).
In particular, when —n is a negative integer, we have H™™(R) + F (H™"(R)) is
in fact the space X ™(R), and the norm ||-||x. is equivalent to the norm |juf|, =

infoy oy (Junll g + @) ua(@)]] 12)-

This theorem can be generalized to higher dimensional cases. In the following
subsections, we will first prove this theorem for the case of nonnegative integers, and
then use the method of complex interpolation theory to prove the case of nonnegative
real numbers. Finally we will discuss the case of nonpositive real numbers, which is

in fact in the dual form of the case s > 0.
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3.4.1 Nonnegative integer cases

In this subsection, we will rewrite the theorem in the case of n € Z; and then prove
it.

Theorem 3.4.2. For any nonnegative integer n, we have X*(R) = H*(R)NF (H*(R)),

and the norm ||| yn is equivalent to the norm ||uff, = ((lu(l?{n + [[{z)" u(x)l|i2>l/2,

or written as ||ul|, = (Hu))f{n + H]—‘u“‘zn)l/g.

Proof. Recall that we have the characterization of the function space X"(R) as

X"(R) = {u e S'(R)| x> (i)ﬁu € L*(R) for all indices 0 < a + 8 < n}, which im-

dr

plies that it is a subspace of the function space H"(R). Meanwhile, since the Fourier
transformation is a unitary mapping on the space X"(R), then it must be true that
X"R) = F(X"(R)) € F(H"(R)). Reversely, we have H*(R) N F(H"(R)) = {v €

S'(R)| z%u, (;g;)au € L2(R) for all indices 0 < o < n }, then we need to show that it

implies that = (;f;)’g u € L*(R) for all indices 0 < a+ 8 < n.

1/2
Noticing that ||| v» has an equivalent norm in the form of (Za p<n |lzeul® H;)
1/2

and (Jun + W @) = (S (leouls + [a]22)) ", 50 we only
need to prove that

2

Y epen 1200012 = X acs (H:c“u((iz + Hu“’)((;) . (3.20)

Obviously the left side term is not less than the right side term. Another observation
is that the function space S(R) is both a dense subset of the space X"(R) and
H™R) N F(H™(R)) with the concerned norm respectively. So the only thing left is

to prove that

Sacn (el + [0 N5) 2 Laroen 2703, (3.21)
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is true for every function in u € S(R).

Below let us see a few cases with n small and then prove it for any positive
integers by induction method. When n = 0,1, this inequality are very clear. Now
let n = 2. There is only one term de%uHiz at the right side which doesn’t appear

on the left side. But we have

2

d
T—1u

dx

d d :
= (:c%u, xa—;u) (where (-,-) denote the inner product (-,-);.)

2
1
<— ((—%) U, x2u> -2 (éu, xu)
2
x

L2

<

d d
<d—) u . H‘T'QUHLQ + 2 %’UJ L ||.'L’U||L2
1 a2 | d |
<3 ’(z) u L2+|x2uiz) o R

which implies the inequality (3.21) is true in the case n = 2.

2
For the case n = 3, we only need estimate the term HxQEd;uHQLQ and ”x (%)2 u“L2.

We have

T (%)2%1 (%)2 u) + % (z3u, z%u)
+ O o (emulf = [[u@5.)
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And we also have the estimate for the first term in the last line
i 2u i 2u = - —d— Su a:Q—d—u -2 i 2' xiu
"\ dz I\ 4z N dz " dx az) %z
1 i 3 U —d— 3 u |+ 1 Qiu x2iu
2 dz "\dz o \" dz"” dz

0% (el + u]2,)

IA

By using the inequalities above we can get

2 d Q_d._ <l Q_d_ :L'z__d_u +}. d ’ d 3u
Tt EY) I\ Pt 1\\az ) Y \az

1 .
+ 5 ( 3u..’rdu) =+ Czagz (Hxa“HZH + H“(Q)Hiﬁ) J

which implies that

2
o d

ol S 2as (H:Fo‘uﬂiz + Hu(a)“2L2> . (3.22)

L

Together with the fact that (%)3 u is in the L*-space, we can deduce from the
assumption in the induction method that all the terms z°u'® with a+3 = 3 and 3 >
1

1 are also in the L2-space and their norms can be controlled by <Za§3 (Haﬁ"‘uHiz + {|uf Hi?))

Thus the inequality (3.21) is true in the case n = 3.

Through observation of the index of the derivative part in the process above,

we can find the estimate of the term ( .L‘Qﬁu, xQd%U) has experienced such a chain of

processes: 1 =% 2 =2, 1(mod 3). This notation will be used in the following proof.

For the case odd n = 2m -+ 1, we can obtain such a chain 1 =% 2 X%
RN 1(mod (2m + 1)) in finite steps (assuming the step in the chain is k). Its

corresponding process provides us the estimate

2

d
2m
dr U

z < e (2l + [u)]5.) (3.23)

2
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Then by taking the function Ed;u as a new function, we can deduce from the induc-
tion’s assumption that all the terms z®u® with a+8 = 2m+1and 8 > 1 are also in

1/2
the L%-space and their norms can be controlled by (Za<3 (Hxaulliz + {|u() HQB)) .

So our claim in the theorem is true for n = 2m + 1.
For the case even n = 2m, we can first obtain the estimate of the term z™u(™

(xmu(m),:rmu(m)) < (:L“Qmu,wmu)—ké (um’”), 1L(2m))+0§:a$2m_1 (llxaulliz + Hu(a)HiQ> .

N —

Then by taking the function z™u and u(™ as two new functions, we can deduce from

the induction’s assumption that all the terms 2%u(® with o+ 8 = 2m are also in the

;))1/2. So

we have completed the whole proof for our theorem. 0

L%-space and their norms can be controlled by <Za§3 (HxauHiz + |||

3.4.2 Nonnegative real cases

In this subsection, we will first review some materials in the theory of complex
interpolation. Most of these materials come from [R-S2][T], and then prove the
theorem for the case of real numbers. Roughly speaking, interpolation theory is
such a mathematical scheme: assume that we have a vector space £ with two norms
141 and H~H(1) obeying a consistency condition, then the complex interpolation
theory enables us to define a natural family of Banach spaces { £4|0 < § < 1} which
interpolate between Fy and F), the completion of E in H-||(O) and ||-[|V); the abstract
interpolation theorem then follows easily; namely if { Fy} interpolates between E; and
E; and {Fy} interpolates between Fy and F}, then any map T which is in £(Ey, Fp)
and in L(Ey, F}) extends uniquely to a bounded map of Ey into Fj for each 6. Below

we will come to more details.
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Definition 3.4.3. Let E be a complex vector space. Two norms ||-|© and ||-|V on
E are called consistent of any sequence {x,} that converges to zero in one norm
and which is Cauchy in the other morm converges to zero wn both norms. If H-H(O)

and ||-|" are consistent, we define

2l = inf {{lyl@ + 124V |z = y + 2}. (3.24)

In this way, we can get that {|-||, is also a norm on the space E. If £y, E}, and
E. denote the completion of E under H~H(O) , ||-H<1) and |||, , then we have continuous
imbeddings from Ey into E. and from FE; into E.. If  is the vertical strip in the
complex plane Q = {z € C|0 < Rez < 1}, and Q° the interior of 2, we define I'(E)
to be the set of continuous functions [ from Q to F,. which are analytic in Q° and
satisfy:

(i) if Rez = 0, then f(z) € Ep and § — f(if) is continuous in H-H(O); if
Rez = 1. then f(z) € E; and § — f(1 +16) is continuous in |||

(i) sup [l f ()l < +o0;

(if) 11,711 = sup{ILF GO /(1 + )|} < +oo.

It turns out that I'(£) with the norm [||-||] is a Banach space and its subspace
Ky = {f € T(E)|f(#) =0} (0 <6 < 1) is |[||[l-closed. So we can define such a

quotient space

Ey=T(E)/Ky. 0<6<1, (3.25)

and denote the quotient norm on Ey by H-H(e). Note that £ can be regarded as a
subset of Ey under the map & — [x], the constant function with value as z; and E;

can be regarded as a subset of E, under the map [f] — f(6). We now define E,
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to be the completion of E in the norm H‘H(m. Thus, the spaces we have defined are

related as follows:

E — Ey — Ey — E, (3.26)

where each mapping in the chain above is continuous injective map. In special, for
6 = 0 (respectively, 8 = 1), Ey is just the space Ey (respectively, E;). The spaces
are called interpolation spaces between Ej; and £ and the norms ll~H(9) are called
interpolation norms between IH)(O) and |||V, We remark that it is possible to

prove that Ep = {f(0)! f € T(E)}.

Theorem 3.4.4. (Calderdn-Lions interpolation theorem) Let E and F be complex
vector spaces with given consistent norms HH%’) and HHS) on X and HH?) and HHQ)
Suppose that T(-) is an analytic, uniformly bounded, continuous, L(E,, F.)-valued

function on the strip Q0 with the following properties:
(1) T(0) : E — F for each 6 € (0,1):

(i2) For all y € R, T(iy) € L(Ey, o) and

Mo = sup [T ()| ¢,y < +005
yeR

(i1i) For ally € R, T(1 +iy) € L(E1, F1) and
My = sup [|T(1 + lU)Hz:(El,Fl) < +oo.
yeR

Then for any 6 € (0,1),
T(0)[Ep] C Fo
and

WT O gy < Mo~ MY
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One example that fits in this theoretic scheme is Sobolev spaces. If we have
Eo = H*(R) with norm |-} = |||, and E, = HY(R) with norm [-}% = ||l e,
then we have Ey = H=95t04R) (see [T] vol. I p275-278). As to the case of our

functional spaces, they also fit in this scheme.

Proposition 3.4.5. Let £ = S(R) and let -9 = Il s and norm | = -1l

where s and t are any two real numbers. Then we have for any 0 < 6 <1
Ey = XU-0s0(R), (3.27)

(%
‘()

and the interpolation norms ||-||'” are just ||| ya-orsser-

Proof. 1t is easy to verify that the norm ||-||(O) and H-H(l) are consistent and the
completion of the space E under these two norms are X*(R) and X*(R) respectively.
To complete the proof, we only need to show that the norm |[-|*) is just the norm
-1l xa—0)s+0r 01 & dense subset of the space E. Let u(x) be a rapid decreasing function
with only finitely many nonzero Hermite coefficients, say u(x) = Zjvzoqk] hi, (). We
define

F2) = S gan, (ky + 1/2) T hy, (2). (3.28)

Then this mapping satisfies f € T'(E) and f(8) = u(x). We have f(iy) = Z;\;qu] (k,+
1/2) 554 (t=9) hy,(z) and its norm
1@ = 050 law, | |k + 17209 (k +1/2)°

= Zj\,:O , q}"J

= ||U(I)|‘?\((1-H>q+9t .

2k, +1/2)1-05400 (1 1/9)°
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Similarly, f(1 +1iy) = Z;\Jzoqk] (k, + 1/2) 72 -s) hi, (x) and its norm

17+ i) 3 = S0 law | |k +1/2)@7 =909 (k, 4 1/2)"
=y olaw, [* (k, + 1/2) 0040 (o 1 1/2)"

= |‘u(x)1|§((1—9)s+9t .

So we have ||| f|ll = llu(z)]| ya-6jste: and further HuH(e) = ||f(9)H( - Hf”r By/ky <
Hu(x)llx(l—s)swt-

For the converse, let us assume that f € I'(E) such that f(8) = u(z), then
we want to prove that {[fllrgyk, = [lu(t)xa-sse. Let function v is a rapid

decreasing function with only finitely many nonzero Hermite coeflicients, say v(r) =

ZJ]V:oka(ZC)- We define
9(z) = SLops, (k, + 1/ (2) (3.29)

Then this mapping is an analytical mapping from  to the space X~ + X~ which
satisfies g(d) = v(x). From the computation made for f(iy) and f(1 + iy), we know
that {||gl|| = [lv(z)||y-a-e)s—0e. Let us consider the integration H(z) = ::f(z)

g(z)dx, which is an analytical mapping from 2 to C satisfying

Hiy)| = | [ fla)gliy)dz| < 1)1 g, (3.30)

H( +iy)| = | 2210+ i)g(1 + iy)de] < 111l (3:31)

From the Hadarmard’s three line theorem. we can get |H(2)| < ||/l lgll], and in

particular

0) = | [ule)o@yds| < HAIION = AN 0@l -oomo - (332)
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Note that the functions with finitelv many nonzero Hermite coefficients are dense

1-8)s—6t (1-6)s+6t

in the function space X ¢ . which is the dual space of X . So we can

conclude that ||| f||| > |lu(z)|| va-oysse is true for any f € T'(E) and further
el = flw(@) | xaa-apsser (3.33)

In conclusion, we get By = X1=9sH04(R) and ||| = Il xa=eyssor - O

By far we have got two families of function spaces H® and X*, which both fit
well in the scheme of the complex interpolation theory. Then a simple application
of the Calderdn-Lions interpolation theorem can provide us the results of the main

theorem in this section in case of nonnegative real numbers.

Let £ = F = S(R), and |-l . |l5’ . || 7’ and ||-|5 are respectively | xo, |l ]
and {-||;., where n is an integer greater than the fixed nonnegative real number s.
Let T'(-) be the mapping from E, to F continuously extended from the identity map-
ping. on S(R). Note that we have already known that the mappings 7 : X° — H°
and T : X™ — H"™ are both continuous, then the interpolation theorem tells us that
T continuously maps X°® into H*® for any real numbers 0 < s < n. Since X? is
invariant under the Fourier transformation, it can be concluded that X* are sub-
sets of H* N F(H?) and the natural imbeddings X* < H* N F(H*®) are continuous.
Obviously, this result is in fact true for any nonnegative real number s due to the

arbitrariness of the choice of integer n.
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3.4.3 Negative real cases

In this subsection, we will analyze the case of negative numbers. And as the end
of the whole sections, we will provide our conjecture for the characterization of the

spaces X, which is much more elegant and also requires more careful analysis.

For any real number —s < 0, we have that X ~° (R) is the dual space of
X (R) which satisfies X*(R) € H*(R)NF (H*(R)) and 7 : X*(R) — H*(R) (respec-
tively F (H*(R))) is continuous. Then its adjoint operator i* : H7*(R) — X 5(R)
(respectively,it : F (H*(R)) — X™%(R)) is also continuous. These mappings are
both injective because S(R) and thus X*(R) are dense subsets of H*(R) (respectively
F (H*(R))). So it is easy to conclude that the space H™*(R) can be continuously
embedded in the space X *(R). A little more direct computation can show that the

space H~%(R) is really a subspace of the latter one.

Let u € H™*(R) and v € X3(R) € H*(R) (s > 0). We can have

[(u, )| = | [gFu(€) F v (€)de]

S Hlullg-s vl < fullg-s ol xs - (3.34)

Writing the function v in the form of Hermite sequence, then the inequality above
. 2 Cye .
can be rewritten as \Z;Z?)Ukvk\ <M (X5 lok)? (k + 1/2)5)1/ , which implies that
u(x) is a function in X ~*(R).
Since X ~*(R) is invariant under the Fourier transformation, we can further

conclude that H7*(R) + F (H~°(R)) C X*(R). Noting that S(R) is a dense subset
of X7°(R) and obviously a subset of H~*(R) + F (H~*(R)), it can be deduced that

H-5(R) + F(H*(R)) = X*(R). The space H*(R) + F (H™*(R)) has a natural
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Banach structure with norm as

el ey rir-oy =, 0E (el + lvllpey) - (3:39)

u=u1+ug

From the fact that [|u1ll y-s(z) 2 lu1llx-«(g) and w2l -5 (my) 2 Nl x-s(m), We can
easily get ||ull y-omy 7)) 2 14/l x5y, Which implies that the natural inclusion

map H*(R) + F (H*(R)) — X~°(R) is continuous.

We would like to pay special attention to the cases of negative integers. It is

already known that X™(R) = H"(R)NF (H*(R)), which is a Hilbert space under the

inner product (u,v) = 3, /7o (L) (2)* v + 2**uv dz. Then for any element

[ € X~ ™(R), which is the dual space of X™(R), there is an element f € X"(R) such

that for all element u € S(R)

-0 (£ s (£ o

{2 () -t

So we have such a representation

X®) = (ue S®Iu=To, (~) ot Soet’la) (30

where f, and fz are all L? functions. Together with the fact that H™*(R) +
F(H™$(R)) € X *(R), the relation above implies X "(R) = H™"*(R) +F (H"(R)).

It is worth to point out that the mapping i : H™*(R)+F (H *(R)) — X ™(R)
are thus a continuous bijection from Banach space H™"*(R)+F (H~"(R)) with norm
[l g7=n (ry1 #(11-n(r)y Onto the Hilbert space X~"(R) = H™"(R) + F (H (R)) with
norm ||‘Hx—n(R)- Then inverse mapping theorem (a special case of open mapping

theorem) tell us that :7! : X ™"(R) — H™(R) + F (H™(R)) is also continuous.
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Thus we know that these two space are in fact same Banach spaces, and the only

difference between them is they have different but mutually equivalent norms.

There is no essential difficulties to generalizing the results above into higher
dimensions. When we try to generalize the results in integer cases into the cases of
arbitrary real numbers, we have met some difficulties, but we do believe they are in
fact also true. Here we write it into the form of a conjecture below to finish this

section.

Conjecture 3.4.6. For any real number s > 0, we have X*(R") = H*(R") N
1/2
F (H*(R™)), and the norm ||-|| x. is equivalent to the norm ||u||, = (]]u]\zs + [{z)® u(;v)]\QLg> .

For any real number —s < 0, we have H™*(R") + F (H*(R")) = X °(R"), and the

norm ||| x-. 18 equivalent to the norm |[ul|_, = infu, +up=u (HullfH*s + ||{z) ™ uz(x)HiQ)

3.5 Other properties

In this section, we will describe some other properties of the function spaces X°. As
we have found, our function spaces X° have very close relationships with Sobolev
function spaces, which is extensively used in the theory of partial differential equa-
tions. Since when s > 0 our function spaces X* are in fact a subset of the Sobolev
spaces H®, many properties of the function in Sobolev spaces are also true for the

function in our spaces. For example, we have Sobolev imbedding theorems:

¢ If0 < s<n/2and 1/p=1/2—s/n. then the inclusion mapping X*(R") —

LP(R™) is continuous.

o If s—n/2=m+a where m € Z, and 0 < o < 1, then all the functions in
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X*(R™) have continuous derivatives up to m times, and all of its m times derivatives

are Holder continuous of order a.

Meanwhile our spaces have compact imbedding theorem (proposition 3.3.2),
which doesn’t require the assumption of "compactly supported” as the Sobolev spaces

do.

However, our function spaces also possess some properties different from

Sobolev spaces. One of them is its relationship with L? space.

3.5.1 Relationship with L” spaces

At first let us analyze the functions in the space X*(R") with s > n/2.

Proposition 3.5.1. If s > n/2, then any function f = 3 oquhi(z) € X3(R") 1s
a bounded continuous function, which s tending to zero at infinity and integrable on
the whole plane. And the approzimation sequence fy = Zszoqkhk(x) is unaformly

convergent to f on any bounded sets of R™.

Proof. At first, let us see the case of 1-dimension. Since X*(R) (s > 1/2) is a subset
of H*(R), we can get that F f(£) is an integrable function, which implies that f(z)
is a bounded continuous function, which is tending to zero at infinity. Since X*(R)

is a subset of F (H*(R)), we can get

P e < (PRI @F @) (1 @)

S llxe < o0 (s),

(3.37)

which implies that f is integrable.
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As to the uniformly convergence of the sequence, we have for any z in a

bounded sets, say {|x] < M},

|fz) = fn(x)| = | anhe ()]

< (il e+ 1720 (S + 1/2)7° hu@)?)

. (3.38)

We would like to mention that there is such asymptotic representations of the Hermite

functions [M-0O-S]

Hop(z) = (—1)" 2%(2n — 1)le®’/? <cos <\/4n + lm) + 0O <Tl—>> , (3.39)
n
2 1
Hopir(2) = (=1)"2"V2 (20 — D)IV2n + 1e7 /2 (sin (\/472 + 33;) +0 <4—n)> :
(3.40)
which imply that on any bounded sets {|z] < M}
hi(@) S (k)Y (M 3.41
()| < (k) (M), (3.41)
where the notation (M) means that the constant corresponding to hi(z) < (k)_l/ ¥
depends on M. So the inequality (3.38) can be written as
oo s\1/2 oo —5 /1A~ 12 ,
1) = In@) S (St 6+ 1/29) 7 (S b+ 1727 07 7 o),
(3.42)

which implies that fy = Zivzoqkhk(x) is uniformly convergent to f on the sets

{]z| < M}. The proof for higher dimensional case can be obtained similarly. O
Corollary 3.5.2. For 1 < p < +oo, we have the continuous inclusion LP(R™) «—

X8 (R, where X(73) (R™) means any space X*(R") with s < —3

Proof. It suffices to prove the case of L*(R") and LT>(R"), since all the other cases

can be deduced from the interpolation method. Let f is a function in L'(R").
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Then it can induce a linear mapping Ty defined by T¢(p) = fj:: f(x)p(x)dz for

n\t
() € x(8)" This operator is well defined and satisfies

Tr ) < Al Iollpree < Al Il g0+ (3.43)

n

which means that 7y is an element in X (_%)—(]R“), or, for any s < —% it is true
that 7y € X°*(R"). Thus we get a continuous mapping T : L*(R™) — X3(R")
by sending f to the element T;. This mapping 7" is injective due to the fact that
fj;cf(x)gp(x)dx = 0 for all rapid decreasing functions ¢(x) implies f = 0. So it

comes to the conclusion that L}(R") — X(_%)‘(R”) is a continuous inclusion.

For the case of LT*(R") let us consider the mapping T : LT>°(R") — X*(R")

which defined by T (p) = f;c f(z)p(r)dr. Tt is a well defined continuous mapping
due to the inequality

Tr) < Mg Mollr S UFlsee el gy - (3.44)
And we can furthermore use similar reasoning to prove the desired results. O

The results of the proposition 3.5.1 and the corollary 3.5.2 can be written

together as

V1 < p < 4oo, X3 (RY) ¢ 2R ¢ x(B) (R, (3.45)

where each relation ”C” can induce a continuous injection form the former space
to latter space. By the imbedding theorem, we can further have such two finer

relationships
V2 < p < +oo, X+ (R") C LP(R") where s,, = n(1/2 - 1/p), (3.46)

V1< p <2 LP(R™) C X*-(R") where s, =n(1/2 —1/p). (3.47)
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These facts suggest us to ask such a question:

Problem 3.5.3. For 1 < p < 400, what is the best indexes a, (or azf) and b, (or

b ) so that X°»(R™) C LP(R™) C X®(R™), whach satisfies that all the related natural

inclusions are continuous?

This question has close relation with the problem of mean convergence of
expansions in Hermite series. In 1965, Richard Askey and Stephen Wainger once

obtained such a result [A-W].

Theorem 3.5.4. Let f be in LP(—o0,00), 4/3 < p < 4. Definea, = 0+°°f(a:)hn(m)d:c
and set S, = > ¢ _saxhi(z). Then ||S, — fl|,, tends to 0 as n approaches infinity.
And there is an A, such that ||Snll, < Apllfll, (m = 0,1,2,---), where A, 1s

independent of f € LP.

For the case of 1 < p <4/3 and p > 4, they pointed out that the theorem is

false. Now the answers to our question (if available) provide us such inequalities:

”Sn - anbp 5 ”Sn - fHLP 5 “Sn - f]]Xap : (348)

So if the function f is in the space X% (R"), then its Hermite expansion converges

to f in LP space; in other cases, it has lower bound of error estimate as ||.S, — f|| s,

3.5.2 Product of two X°? functions

In this subsection, we will study the following problem: suppose we have two tem-
pered distribution u, € X*(R"), j = 1,2, then how to define their product u;u,; and
what is the property of this product. Formally we can do in this way: let (,) de-

note " pair operation” between two elements coming from a locally convex topological
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space and its dual space, then we define
(uyug, @) = (uy, uap)  for any p € S(R™), (3.49)

where we need usp € X°1(R"™). Obviously, this definition is compatible with the

usual product of two rapid decreasing functions.

The last requirement is not superfluous. In general there is little hope to define
the product of two arbitrary tempered distributions. For example one can hardly
find a reasonable way to define the square of delta function 6(z) as a tempered
distribution. So restrictions must be posed on the choice of u; and uy. It is well
known that if we choose uy from the space OF;, the set of infinitely differentiable
functions on R™ which together with their derivatives are polynomially bounded,
then usp € S(R") € X*1(R"). Here we adopt another restriction, namely that

81+ s > 0.

Proposition 3.5.5. If u, € X*(R"). 7 = 1,2 and 51 + so > 0, then the equality
(3.49) prondes a well-defined tempered distribution ujus, which is independent of the

order of the two elements (uyug = uguy ) and satisfies

[(uiug, o)} S C(2) l[uali o lluzllyse  (51,82), (3.50)

where Clp) — 0 as ¢ — 0 in S(R").

To prove proposition 3.5.5, the essential task is to verify uzp € X *1(R") and
inequality (3.50). This is because we can then deduce that inequality (3.50) defines
a continuous functional on S(R™) and thus a tempered distribution; meanwhile ujuy
can be approximated by the product (3__jarhe(z)) (37 obihi(z)), which is of course

independent of the order of their product. So we only need prove such a lemma:
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Lemma 3.5.6. For any ¢(z) € S(R™), we have the mapping T, : u — @u is a

morphism of order O on the Hilbert scale { X*(R™)}, which satisfies

xe S CO(@) |l

lipul v (). (3.51)

Proof. For simplicity of writing we prove it in one dimensional case. The proof for

higher dimensional cases are essentially same.

When s = 0, we have

loull g2 < llell Lo llull 2 - (3.52)

e (gou)(ﬂ) H

(p(ﬁl)xa (u)(ﬁz)

when s = n € N, we have [loull yn = D ocnis<n e By Leibniz’s rule,

it can be controlled by lpullxn S D g<as g t2<n " Thus we can

further have

loullxn < sup [ e Nullsn - (3.53)
0<B<n

when s = —n is a negative integer, we have (|pull y—n < infy, 4u,—u (HcpmHH,n + "QUQ“F(H_n)),
in which each term can be controlled:
lowr || - < C(@) l|u1]| y-» (see theorem 3.5.13)
and
||<10U2“§E(H~n) = j;o <93>—2n f%purelzdfn < H‘P”%x ||U2||2f(H—n)-
Thus we can have
lullx— < Clo) llullx—n -

Finally by a simple application of Calderén-Lions interpolation theorem, we can

deduce the inequality (3.51). O
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Let us recall that for any tempered distribution, there is a unique sequence
of Hermite coeflicients corresponding to that distribution. We will show next how to
compute these coefficients in one dimensional case. Assume that u = 3 ogehs(z) €
X (RY), v = Z;Z’gplhl(x) € X*2(R!) and s;+s9 > 0. Let cppm = fj;ohk(;v)hl(x)hm(z)dx.
Then formally we have

(uv), = Z:,loio(Jkplcklnp (3.54)

According to proposition 3.5.5, we know that (uv),, = (uv, hyy(x)) is a well defined
complex number. But unfortunately. the formula (3.54) is not absolutely convergent

in general. So we need make clear the precise meaning of the formula (3.54).

Proposition 3.5.7. Let u, v, cpm as above. Let uy, = Zf;oqkhk(x) and vy, =

S pihy(x). Then

Ny N2
wv) = lim Ckim - 3.95
(uv),, Ny No— 00 ]gogqm ki ( )
Nl N2
Proof. Noticing that 3> qrpicrim = (un,VN,),,, We only need estimate the difference

between (uv),, and (un,vn,),,. By the inequality (3.51), we get

[(uv) = (um 0Ny )y < T = uny ) ) [y (V= vn))

S Clhm(2)) [ (u = un, )|

xo w2l xee +

C (b (2)) [ (umi)llxor uallxes (51, 82)-

Take the limit limy, n,-— 4o On the right side, then we get the result. O

There are many cases such that the formula (3.54) are in fact absolutely

convergent. Here is an example.
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Proposition 3.5.8. Assume thatu = 3 ;2 qphie(z) € L2 (RY),andv = 3 [ Sphu(z) €
X°(RY) where s > 1/2. Let cym = [ hio(2)hy(2)hm(z)dz. Then
(Uv)m = Zﬁioq/cpzckzm-

18 absolutely convergent and uv € L*(R").

Proof. We have

1/2

= 1/2
Z:ﬁo'qwlcklﬂ SZLOSJ (Z::0|Cklml2) ( 123!%’2) |p1‘

= ( = [ Ciﬁu) 2 - (3.56)

By the result of the theorem of the last chapter, it is true that ci? < (max(m, l))(_l/QJ_.

mmll ~

Then the inequality (3.56) can be continued as
+00 +o0 2 s\1/2 +00 -5 (=1/2)" 1/2
o lapicuml S (S5 il 0°) (T 07 0T ) 7 e
< C(s) |ullz lv]ly.  since s > 1/2.

The statement of uv € L?*(R") can be deduced like this: v € X*(R") where s > 1/2
implies ||v]| e < |lvlls; and the multiplication of a bounded function and an L?

function must be an L? function. O

By using the Fourier Transformation, the definition formula (3.49) can also

be written in the form of
(urug, 0) = (F (mug) , F2 (@) = 2m) ™" (F (uy) * F (wa) . F>(0)),  (3.57)
where ¢ € S(R") and

F ()« F(ug) (§) = (F (ur) (€ =), F (u2) (1) - (3.58)
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It turns out that the function F (ujus) (€) can be described well. In particular, let
us see the case of u; € X*(R") and us € X°(R™) where s is nonnegative. The

following lemma is crucial.

Lemma 3.5.9. Let 7, : S'(R") — S'(R") is the linear operator mapping f(-) —
fla—"-) fora € R". Then it is a morphism of order 0 on the Hilbert scale {X*(R™)}

which satisfies

et o S Nluell e (@)™ (3.59)

Proof. For simplicity of writing we prove it in one dimensional case. The proof for
higher dimensional cases are essentially same. When s = 0, it is easy to see that
Imaull 2 = llull,2. When s = m € N, we have ||7,ullxm = |[7aul|gm + [|7atllzgm.

Since ||Tull ym = lluf| ym and

Iratlzsm = (fj: u(z)|? (@ — z)™" dw)w

< (J tug@) P de) " 0y,

~ -
we can get that ||7,ull ym < ||ull¢m (@), Then asimple application of Calderén-Lions
interpolation theorem provide us that
Iraully. S lullx. (@)
is true for all s > 0.

For the negative case —s < 0, we only need notice that 7, is symmetric, which
can be deduced from the fact that (r,9,v%) = (@, Ta¥) is true for all v, € S(R").

In particular, we write for any functions v € X*(R'),v € X ~*(R})

(raw, v)] = [(u. ra )] S llellys (@ o]l -
which implies that ||[7,v] y-o S o]y« <a>|”s|. 0
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Coming back to the formula (3.58). it is easy to get

F (ugup) (§)] < (2m) 2 |7 F (wh)]

F (u2)llx-

xs |

Sl el x—s (6)7, (3.60)

which can be written in the form of the next proposition.

Proposition 3.5.10. If u; € X*(R") and uy € X *(R") where s is nonnegative,

then F (ujug) () is a function with polynomial growth rate not greater than s.

It has two corollaries.

Corollary 3.5.11. Let s > 0. The multiplication operation is a continuous mapping
from X*(R") x X~5(R") to the space X(~>"/27(R™). in particular, if u € X*(R")
and v € X*(R"), then

Nl g commm- S ullgs vl = -

Corollary 3.5.12. Let s > 0. The multiplication operation is a continuous mapping
from X0/ (R x X5(R") to the space X*(R™). wn particular, ifu € X+0/27 (R)
and v € X*(R"), then

lwvll o S Null giosnror 1]l xs - (3.61)

By using the fact that |Juv|lyenm- S [|uvl| g=sonsz~, then the corollary
3.5.11 is a direct consequence of the proposition 3.5.10. We will provide the proof of

corollary 3.5.12.

Proof. Assume w is an arbitrary function in the space S(R™), then from the corollary

3.5.11 we have

(uv,w)| = [(u, vw)| S [[ufl qoenmr 0llxs llwllx-s s
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which implies that uv is a function in the space X*(R”) and satisfies the inequality

(3.61). O

One natural question is if we are given the information of the regularities of
the functions v and v, then what kind of information can we get for the regularity of
their product uv. Recall that in the case of Sobolev spaces, one can also define the
product of two functions as a tempered distribution satisfying (ujuz, @) = (ui, uz¢p)

and there is such a result [Q-X-W].

Theorem 3.5.13. Ifu; € H(R"). j = 1,2, and sy + s3 > 0, then it is true that

utg = ugwy € H(R™) and there is a constant C' depending on s, s1, and sg satisfying

luruslige < Clsss1,82) lunll ey 2]l - (3.62)

where s < 81, s < 89 and s < 81 + s —n/2. When one of the s, equals n/2 or the

minimum s just —n/2, the last inequality should be changed into strict inequality.

Corollary 3.5.14. For s > n/2, the Sobolev space H*(R™) forms an algebra under

the product defined above.

In some special cases, the theorem 3.5.13 can have analogue in our function
spaces X*®. For example, when u € X°(R") and v € X7*(R"), we have corollary
3.5.11; when u € X**(R") and v € X*2(R") satisfying 0 < s1, 32 and s; + $2 < n/2,
then we have |juius||ys < [Jurusllys < C(s,81,52) U]l xor |tz yso, where s = 51 +

sy —n/2. But for the general cases, it turns out to be a more complicated problem.

Here we turn our attention to a related but special question: what is the
condition such that the function space X*(R™) is an algebra under the operation of

multiplication. If our conjecture (X*(R™) = H5(R") N F (H*(R™)) for all s > 0)
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is true, then it is an easy task to verify that X°(R") C H*(R") is an algebra for
s > n/2. Furthermore we can get this subalgebra is an ideal of H*(R"). In other
words, if u € H*(R") and v € X°(R"), then uv € X*(R"). Below we will prove that
if m is the smallest integer larger that n/2, this property holds. Let us see the case

of 1-dimension at first.

Theorem 3.5.15. For any real number s > 1, the function space X*(R') is an
ideal of H*(RY) under the multiplication operation. in particular, of u € H*(R') and
v € X3(RY) then

[uvll o S ullge Nollxs (s): (3.63)

Proof. When s = 1, we have

+ fJuvll 2+ fluvl| 2

d
i = | )|

Ml + lullzo V73

Sl ol + | 0]

Sl gasa+ ol + el 1ol o+ (3.64)
S llullgn ol - (3.65)
Similar reasoning can be done for other natural integer numbers.

Assume s = m € N, then from the characterization of the functions in X™(R?!)

(theorem 3.2.4) we have ||uv| ym ~ ZO_<_a+d§ml

z® (uw)?|| | which can be subse-
L2
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quently controlled by

Huvllxm S Z Hxau(ﬁl) (82)
0<Lat-p1+B2<5m

Iz

S el grart Wlxm + lull e [[0llgm-s 4o 4 ull gmoseams [Vl + ullgm (2]

(3.66)

S lullgm 0llm (). (3.67)

We have proved that the theorem is true for all natural integer numbers.

Now assume that s € R is between natural numbers 1 and m. Let u € H*(R")

and v = Y Zoqrhs () € X°(RY). We define the mapping

F(2) = Fi()fa(2) = F (07 Fule)) SiSan (k+ 1/2) 7 by (2,
(3.68)
where 0 < 0 =(s—1)/(m—1) < 1land 2 € @ = {z € C|0 < Rez < 1}. The
mapping f is an analytical mapping on ° with values in X*(R!) + X™(R'). This
fact can be justified by these facts: fi(z) is analytic on §° with values in H'(R!) +
H™(RY); fo(z) is analytic on Q° with values in X*(R!) + X™(R!); together with
H'- X' c X' and H™- X™ C X™ Meanwhile it is easy to verify that f() = uv and

the following two formulae

L @) S LA 1 f20) ) 0 = Nl

vl

s

Hs

IF L+ i) lxm S HAQ+ i) g 120+ )l xm = lullgs 0llxe (m),  (3.69)

Then by the complex interpolation theory

which implies that ||| ]| < l[ullgs [[v] ve-
and noticing that m can be chose as the smallest integers larger than s, it can be

deduced that uv € X®(R!) and it satisfies the inequality (3.63). O
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In the higher dimensional cases, we can still use the same method: first use
the characterization of the functions in X”(R") to prove that for all natural numbers
m big enough the space X™(R") is an ideal of the Sobolev spaces H™(R™); then by
using the interpolation method to prove the theorem is true for all real numbers big
enough. Since the proof is essentially same, we just skip it and give the statement

as follows.

Theorem 3.5.16. Let m is the smallest integer larger than n/2, that is, m = 1 —
[—%] For any real number s > m, the function space X*(R") is an ideal of H*(R")

under the multiplication operation. Specifically, if u € H*(R™) and v € X*5(R"™) then

luv]

X S luf Hs UHxs (s). (3.70)

Remark 3.5.17. From the observation that F (ujug) = (27)"2F (up) * F (ua),
there 1s o similar result stating that in the same conditions as above the function

space X*(R™) is an ideal of F (H*(R™)) under the convolution operation.

3.5.3 Relationship with Bargmann spaces

As the last section of the whole chapter, we would like to point out that our spaces X*
are “essentially” the Bargmann’s spaces, which was once studied by V. Bargmann
in the 1960’s [Barl][Bar2]. In these works, he first established a kind of integral
transformation (the Bargmann transform) and showed that this transformation is
a unitary mapping of L?(R") onto the Fock’s space F,; then in the part two, he
found that a family of related function spaces (the Bargmann’s spaces) can be used

to analyze the properties of tempered distribution. Below is a very rough review
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on his work and pay our attention to proving that our spaces are isomorphic to the

Bargmann's spaces.
Let us start with the definition of Fock’s space.
Definition 3.5.18. Given an identification R*™ = C" (z = (21, -+ ,z,), 2, = T, +

iy, ), Fock space is the space of entwre function on C", with finite norm using the

inner product
(£1(2), fol2) = 7" e i) fal2)e ", (3.71)
where d"z = []]_ dz;dy,.

Bargmann proved that there is a unitary mapping from complex valued func-

tion space L?(R™) onto the the Fock’s space Fy,:
F(z) = Bo(¥) = [ga Bulz,)9(@)d"q, (3.72)

1
By(z,q) = 774 exp{———2—(z2 +¢%) +v2z- ¢}, (3.73)

where 22 = Y22 ¢ = Y¢3,z-q = Yzg and f € F, if v € L*(R"). This
result can be justified by the fact that this transformation maps an orthonormal

basis of L?(R") as an orthonormal basis of F,,. To see this, let us introduce the

some notation here about multi-indices: o = (ay, 09, ,04) € Z7, |a| = a1 +
Qg 4 o oy, 2% = 27025722 and ol = ap! - agl--ay!. As we have stated

the function space L? (R") has an orthonormal basis consisting of Hermite functions
{halq) = ha,(q1) @ hay(q2) ® -+ @ ha,(gn)}. Then the Bargmann transformation
maps hq(g) as the function u, (z) = 2°/va!, which makes up of an orthonormal basis

of the Fock’s space F), when o runs over Z7. In fact, the kernel B,(z, ¢) can be read
as Bn(za Q) = Zaniha(Q)ua(:)'
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A natural result is that the mapping B, induces a unitary isomorphism be-
tween the linear operators on F), and those on L2 (R™). In the part one of the series
of the papers “On a Hilbert Space of Analytic Functions and an Associated Integral
Transform”, V. Bargmann studied many operators on F,, and their corresponding
operators on L? (R™) such as:

e 2/ = ¢+ Uz where ¢ € C" and U is a linear unitary transformation; in

particular, let ¢ = 0 and U be a one parameter subgroup of the multiplier e'” (7 real
numbers), it induces the Fourier transformation on L? (R™) when 7 =

1
2™

e The operators multiplier z; and differential operator 0/0z;
e Linear canonical transformation.
In the part two, V. Bargmann generalized the definition of the Fock’s space.

Definition 3.5.19. For every holomorphic function f on C", the norm | f||, is given
by

1F1ly = fen 1)1 dut (2), (3.74)
where dpf(z) = 70,7 (z)d"z and gy = (1+ ]zlz)p/2 e*/2 It 1s said that f is a

function in the space Ff if || f||, < +oo.

The space F} turns out to be a Hilbert space, with inner product as (f,g), =
Jonf (2)g(2)dut(z). In particular it has an orthonormal basis (see [Bar2] p36) {u”(z) =
()" ?ua(2)}, where ) = [ o (2)]? duf (z) = mf0+°°(1+x)px”+|a“le“zdx
satisfies 7, & (n+]a[)?. Recall that our function space X*(R") has an orthonormal
basis {h2(q) = (|af +n/2)77/*ha(q)} where ha(q) = ha,(q1) @ hay(g2) ®@ -+ - ® R, (qn)-
Then it is easy to confirm that the linear mapping 7" from X?(R") to F¥ satisfying

T (R%(q)) = uf(z) is in fact an isomorphism. So we have such an result.
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Theorem 3.5.20. For each p € R, the function spaces XP(R™) 1s isomorphic to the

’ P
Bargmann’s space FPF.

At that time V. Bargmann had realized that there are close relationships
between his spaces and tempered distribution. For example it had been already
known that the intersection of all the spaces F¥? is “essentially” the rapid decreas-
ing function and their union is “essentially” the tempered distribution. In his
work [Bar2], V. Bargmann studied such function spaces: the Bargmann's space £,

+00 FA

k=—c0*n

the function space E, = N (corresponding to S(R™)), the function space

El = Uf> _F¥ (corresponding to S’(R")), the function space E? (the normed space
with |f], = sup,ecn 0,1 (2)|f(2)]) and their interrelations. The introduction of these
function spaces, especially E, and E . provides an auxiliary tool for distribution the-
ory. So the author applied them in the problems in the tempered distribution theory:
the convergence in S’(R"); the representation in E;, for basic operations on S'(R"),
including the partial derivative operator, multiplier operator of the function ¢, and
the Fourier transformation; the regularity theorem and the kernel theorem of tem-
pered distributions; some special tempered distributions like compactly supported

distributions, periodic distributions and their Fourier expansions and homogeneous

distributions.

The relationship between the V. Bargmann's spaces and tempered distribu-
tion was also noticed by Barry Simon. In the paper [Si], he used the method of
the Hermite expansion for tempered distributions to establish the relationship of a
sequence space and the tempered distribution. Then this method enabled him to
study on an easier target-the sequence space- to get analysis results on the tempered

distribution. He also mentioned the relationship of his work and that of V. Bargmann
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in that paper.

Our work initiates at the analysis on the linear partial differential equation
Wy = %%z - {)—21& = A, where the space X" is in face the definition domain of the
operator A"? and the Hermite functions arise as the eigenfunctions of the operator
A. This is quite different from the work by B. Simon and V. Bargmann, since one
of them initiated from the realization of S(R") as a sequence space, which can be
traced back to Schwartz's book [Sc|; the other one initiated from the relationship

between the Fock space F,, and L? space.

Qur work also differs from the work by B. Simon and V. Bargmann on con-
tents. We directly fitted the function spaces X*(R™) well in the theoretic structure of
Hilbert scales, and most basic operations on those spaces are regarded as the homo-
morphisms on the Hilbert scale. Like what B. Simon and V. Bargmann have done,
we also studied some problems on the topological structure of the spaces S(R") and
S’(R™), such as locally convex topology, characterization of sequence convergence
and characterization of linear operations on S(R™) or S’(R") etc. But we restrict
these parts in the level of just describing the relationship of the function spaces
X*(R") and the spaces S(R") and S’(R™), and many important properties for these
two spaces are not covered. Back to B. Simon and V. Bargmann’s work, the spaces
S(R") and S'(R") themselves were the research target, and the results like the reg-
ularity theorem, kernel theorem and sequence completeness were too crucial to be
skipped over. In our work, the viewpoint is mostly kept from the analysis, especially
PDE, and much concern is paid on the study in the relationship between the Sobolev
spaces and the spaces X*(R") and the problem of how these spaces can be used in

nonlinear PDEs (in particular the definition of the product of two functions). In this
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process, the properties of Hermite functions take some important roles.
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Chapter 4

Birkhoff Normal Form

4.1 Introduction

Let us consider the nonlinear Schrodinger equation

”b = lwa)r - x—zw - ’(f‘//' 21/1 S Rl

t 2 ) gl l (4 1)
¥(z,0) = Yo(x) 1 complex valued,

where g = 1 (g = —1) is for defocusing (focusing) cubic nonlinearity. This equation is

also known as the Gross-Pitaevskii (GP) equation with a parabolic potential, which
was brought up in the theoretical study for Bose-Einstein condensation in 1960’s
[Gro][Pi]. Since a Bose-Einstein condensate was produced for the first time in the
experimental condition in 1995, this partial differential equation has received a lot

of attention.

There are already many mathematical papers [O][Z][C1][C2] with emphasis

on the local or global well-posedness and blow up conditions of the GP equation
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in general dimensions. One of the results in this work is that in one dimensional
case the solution will always globally exist in the space X1(R) = ¥ with conserved
mass and energy. in particular, the equation will always have global solution in the
energy space . := {u € H'(R)|zu € L*(R)}, no matter whether the constant g is
negative or nonnegative, and the solution conserves the mass M = f::o 1]? dz and

the energy F = %fj;o [ + |zl dr + gfj;: lw|* de.

In this thesis, we will discuss this equation in a wider class of function spaces,
which we believe as a very natural choice. One advantage in doing so is that it enables
us to consider the equation for the initial data with different regularities, even not

within the space ¥. Most part of these results will be provided in the section 4.2.

We comment here that this GP equation has a Hamiltonian structure. Let
H= %fj;o el + |z|* do + gfj:: [ dx, then the right side of the equation (4.1)

can be written as

1 a? 9 OH
=Wy — —— jJ— = ——— 4
Ve = U — gl = —— 7 (4.2)
So the equation (4.1) can be changed in this form
0l 1
=15= xr & R
ve=ia (4.3)

W(z,0) = Po{x) 1 complex valued,

which is an infinite dimensional Hamiltonian system. In this thesis, we will make
use of our function spaces X?*(R) and take the viewpoint from Hamiltonian PDE to
study the GP equation. In this process, the Hilbert scale X?*(R) will provide us the
spaces to work in and many technical tools (especially the Birkhoff Normal form)
from the theory of Hamiltonian systems will be applied. Below let us have a quick

review on the Hamiltonian formalism in infinite dimension [Gre].
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Typically a Hamiltonian system in finite dimension reads

. __ OH S

mJFBij ./_‘1>"',n (44)
_ OH S

yy= =2, =1 .n

where the point (z,,y,) is in the phase space (or configuration space) M, an open
set in R?" and the Hamiltonian function H is a regular real valued function, on
the phase space M, that is, H € C*°(M,R). By introducing the canonical Poisson

matrix, that is,

J = ,

and Hamiltonian vector field
Xy(z,y) = IV, H(z,y),

where V, ,H(z,y) denotes the gradient of H with respect to z,y, the Hamiltonian
system (4.4) then can be written as
oH

oy

OH

= Xylzy) = | (4.5)

&=

OH

" Br,,

A very basic concept in the theory of Hamiltonian systems is the Poisson
bracket of two functions defined as: for anv two functions F, G, the Poisson bracket
of them is a new function {F, G} given by

(F.GHaw) = o) (i) ~ g oG (my) (40
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The Poisson bracket { F, H} provide a very good representation of the changing values
of the function F(z,y) along the flow of the Hamiltonian system associated to H. In

particular, if ¢ — (z(t),y(t)) is a solution of the system (4.4), then
d
Z F(a(e),y(t)) = {F, HH(0), 9(0)

Moreover, if F' € C>(M,R) satisfies {F, H} = 0, then it is said that F'is an integral
of motion for H. Obviously, in this setting the function H itself must be an integral

of motion for the Hamiltonian system.

Since solutions to a Hamiltonian system will conserve integrals of motion, the
initial value problem is solved on the intersection of the level sets of those integral
functions, thus a Hamiltonian system becomes easier to study. In some cases, one
can find n independent integrals for a given 2n-dimensional Hamiltonian system. It
is said that a 2n-dimensional Hamiltonian system is integrable in the sense of
Liouville, If there exist n regular functions Fi1,Fs, -, F, : M — R such that: (i)
{F,,)H} =0for j =1,---,n; (ii) {F,.Fx} =0 for j,k = 1,--- ,n (that is, the F;
are in involution); (iii) (Vg F)),=1. ., are linearly independent. If the last condition
is not satisfied on the whole space, but on a dense open subset , it is often called a

Birkhoff integrable Hamiltonian system.

There is one simple example here for the above definition of integrable Hamil-

tonian system. Let A/ = R*" and

n 2 2
(z7 +v;)

H(:U’ y) - ZWJ 2 )
1=1
where w = (wy, - - - ,wn)t € R"™ is the frequency vector. The associated Hamiltonian

system is called harmonic oscillator. whose solutions are all quasi-periodic given
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z,(t) = z,(0) cosw,t + y,(0)sinw,t, j=1,---,n (47

y,(t) = —z,(0)sinw,t + y,(0) coswyt, j=1,---,n.
It is easy to verify that the functions I, = (2% + yf) /2 are all integrals of this system
and they satisfy the conditions (i), (ii) and they satisfy (iii) on a dense open subset.
In other words, this is a Birkhoff integrable Hamiltonian system. It is deserved to

mention that by introducing new complex parameter 2z, = (z, —iy,) /V/2, then the

equation (4.4) can be written as

d OH
—2z, = f— =1, 4.8
at? " o ! " (4.8)
and its solution have a clear form as
z(t) = 2,(0)e™™'. j=1,---,n (4.9)

In many important physics models, the corresponding Hamiltonian systems
may be not integrable themselves, but they can be regarded as a perturbation of
an integrable system. A general philosophy in this situation is to transform the
Hamiltonian in a way such that the new Hamiltonian system is closer to an integrable
one. In particular, if we have a Hamiltonian function H = Hy + P where Hj is
integrable and P is a perturbation term, then we want to find a transformation T'
on the phase space such that H o' = IZ) + P with ffﬂ) still integrable and P<P.
Since we need such a transformation to conserve the Hamiltonian structure, it is a

natural thing to restrict our consideration within this class of transformations.

Definition 4.1.1. A map T : M 3 (z,y) — (§,n) € M is a canonical trans-

formation (or symplectic transformation) if it satisfies: (1) T is a diffeomor-
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phism; (ii) T preserves the Poisson bracket, that is, {F, H}(x,y) = {F, H}(§,n) with

F=Fol

This definition has an equivalent characterization: the diffeomorphism I" pre-
serves the 2-form w? = > y=1dz, A dy, on the space M, that is Iw? = w? Then

under such a transformation, the Hamiltonian system appears in the new variables

(&m) as N -
' 0H OH .
gjzgﬁ;»nj:_a_é]')j:l"“ ) T (4'10)

which is essentially same as (4.4). Oue easy way to construct canonical transforma-

tions is by a Lie transform.

Definition 4.1.2. Let x : M — R be a regular function and denote ®(t,x,y) is the
flow generated by Hamiltorwan vector field X, with initial data (x,y). Then the map

L(z,y) .= ®(1,z.y) (if available) is called the Lie transform associated to x.

A Lie transformation may not be well-defined for every point (z,y) € M,
but for any regular function it is must be locally well defined in a neighborhood of
the zero point, and more important it is always canonical. By making use of these
canonical transformations, many Hamiltonian systems can be changed into the form
of H = Hy + P + R, where Hy = Y. _wy 1y, P satisfying {P, Ho} = 0 (in normal
form) is at least cubic, and R is a higher order term than P. Moreover, under
some kind of nonresonant conditions, the term P can be chosen to depend only on
the parameter I,, which implies that the truncated system ﬁtr = Hg+ P can be

completely solved.

The Hamiltonian formalism introduced above can be generalized into infinite

dimensional case. In this thesis, we will use this idea to deal with the 1-dimensional
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Gross-Pitaevskii equation. One basic difficulty here is that a good understanding for
the Hermite functions, especially of the asymptotic behavior of integrals of products
of Hermite functions, is required in this process. Meanwhile, the Hamiltonian system
corresponding to the GP equation is completely resonant, hence we can’t expect to
have the term P in integrable form. Here we provide the main result of us in this

Hamiltonian formalism.

Theorem 4.1.3. For the Hamiltonian H = Hy+Hy corresponding to the 1-dimensional
GP equation, there exists a real analytic. symplectic change of coordinates I' in a
neighborhood of the origin V C I5(Z+;C) = X*(R) with 2s > 1,that takes H into its
Birkhoff normal form up to order 4. That is H o' = Hy + G + R wth the following

properties:

(i) G(p) = %A ZZ CrimnDRPIDmPr 18 a continuous polynomial of degree four
b +l=m-+n

with a reqular vector field.
(i) R € X(V) and || Xr(p) lliy < Cillpllfy for allpe V.

(1) T is close to the identity: ||T'(p) ~ Id(p) |

i3 < Cslpll}, for allpe V.
- 2

This theorem says, as in the finite dimensional case, that we can change the
coordinates in a neighborhood of the origin in such a way that the Hamiltonian is
in normal form up to order four. This does not mean that the Birkhoff normal form
Hamiltonian is integrable, as there are nontrivial resonances. Its proof consists of
several part of analysis and will be provided from the section 4.3 to the section 4.4.
In the subsequent sections, we will study some truncated Hamiltonian systems and
discuss on the impact of the perturbation term to a class of special solutions to the

truncated system. Now let us begin with section 4.2, devoted to the application of
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the function spaces X2® into the GP equation.

4.2  The equation in the function space X%

In this section, we will use the traditional way to study the local (global) well-
posedness of the PDE (4.1) in our function spaces X 2°. Then we will write the PDE
in the function space I5(Z, ), which is equivalent to the space X2*(R). In this way,
we can adapt the system into the Hamiltonian scheme, and the discussion for the
solution with rougher initial data in X*(R) can be made much easier. Some basic
properties of the solution like mass conservation and energy conservation will also

be discussed.

4.2.1 Local and global existence

Let us consider the 1-dimensional GP equation in the form

iy, = — Ay — glol®y r € R?

= — Ay — glol )
W(z,0) = ty(r) ¢ complex valued.

We say that a continuous curve ¢ : + 2 I — ¥(t) € X?*(R) in the function space

X2(R) (that is, ¥ € C (1. X**(R))) is a solution of the equation (4.11), if it satisfies

for any time t € [
Y(t) = Mo + g foe T () Por)dr, (4.12)

where I is a neighborhood of the origin point. In the following section, we will discuss
on the local existence of the solution and show that the solution will globally exist

for any initial data smooth enough.
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Theorem 4.2.1. For any real number 2s > 1 and any function 1y € X*(R), the
initial value problem (4.11) has a unique solution ¥(-) defined in a tume interval

0.7], T = T(|ltoll or) > 0, satisfying

P e C([0,T], X*R) nC* ([0,T], X**(R)) .
Proof. Consider a nonlinear mapping

Fip(t) == Mo + ig [y e (1) [Py (r)dr. (4.13)

Then the initial value problem can be reduced to a problem of finding a fixed point
of the nonlinear mapping F', which can be achieved by showing that the mapping F
is a contraction mapping.

1 At

Since ¢! is always a unitary mapping on the space X**(R) and for 2s > 1

the space X*(R) is an algebra under the multiplication operation, we can have

[FU@) e < Wolles + lg1 Jy [l 1(7) F(7) | ou dr
< ol yes + Jo () s dr

< ol x2s + Ttle%% Hil)(T)”?;(z dar.

So there is a constant M = M (||¢ho]| y2e) > 2 |[tho]| x2s such that for all T < |[4ho]| yas /M3,
the operation F' is a continuous mapping on the closed subset of C ([0, 7], X*(R)),
= {¢ € C([0,T], X*(R)) | |¥|lyes < A}. Meanwhile, for any two functions
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Wy, 1Py € B, we have

1P = Pl = [[ig e ln (1)1(7) = €407 (1) 4 (r)ar]|

< Jy G ()

(Vi(T) — Yo (T )1 ()Y (T)
Pa(T) () (1 (7) = (7))

X32s

Yo (7)1 () — el (7))

|
X2s X2s
dr
X2s

|

< / — "'q “0s 12 < — - .
S e I (W1(1) = v ()] e MET < 1/{235};] [ (01(7) — 2 (7) | yes

So the mapping F' is really a contraction mapping and thus it can be concluded that
there is locally a unique fixed point for the operation defined in (4.13). Note that
e, (e A D (T2 (r)dr are in C* ([0,T], X*"2(R)). then all the conclusions

in the theorem can be obtained. O

Remark 4.2.2. This proof has essentially used the fact that the space X**(R) is an
algebra for any 2s > 1. If our congecture 8.4.6, which is for the characterization of
the space X*(R), is right, then the space can be guaranteed to be an algebra when 2s
is bigger than 1/2. Thus the local existence theorem can be easily generalized to the

case 2s > 1/2.

After knowing that v € C ([0. T], X**(R))NC* ([0, T], X*~%(R)) is the unique
solution with initial data ¥(z,0) = ¥g(x), we can then consider the same PDE
with new iniatial data gZ(:c,O) = y(r.T). Then the solution can be uniquely ex-
tended for a little more time T = f(l\’z/)(T)szs) > 0. This process can be done
repeatedly. Since for any initial data the solution exists locally and uniquely, it
can be easily deduced that there exists a maximal interval I = [0,7*) such that
¥ e C (I, X*(R))NC! (I, X*7%(R)) satisfies the integral equation (4.12). Here there

are only two possibilities for the maximal time 7™: either 7* = o0 0or 0 < T < 400
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and lim; - [[¥(¢)[| x2c = +00. Using the same reasoning for the negative time di-

rection, we can know that there exists a minimal time T, < 0 with similar properties.

Note that at the endpoint of the maximal solution interval (if finite) the X?®
norm of the solution must tend to infinity, so if at any finite time this phenomenon
will never happen, we can then conclude that the solution must exist globally. Below
we will use this method to get the global existence. During that process, these
facts will be needed: the solution will conserve the mass M = fj;o lw(t, 2)|* dz and
the energy (Hamiltonian) function H = %fj:co e |* + |z(t, )| de + %fj:: lv|* dz.

These facts will be proved in a latter part of this section.

Theorem 4.2.3. For any n € N and any function vy € X™(R), the initial value
problem (4.11) has a unique global solution \'(+) defined in time interval (—oo, +00).

The solution v is in the space C (R, X*(R)) N C* (R, X" 4(R)).

Proof. Let us first consider the case of n = 1. If g = 1, the proof is simple, since
the conserved energy function H = H (1) > £ v (¢, J:)||§(ll, so we can deduce that
[ (t, z)|| x: is always bounded. By the above reasoning about the necessary condition
on the blowing up condition at a finite time 7™, we know that this condition will not
be satisfied, thus the solution must exist globally. If g = —1, we claim that the X!
norm of the solution also remains bounded, which can result in the global existence
of the solution. From the continuous imbedding of the space X'/4(R) into the space
LA(R), we get || Ol S N9 (t)Hx;/“‘? meanwhile, from the complex interpolation

theory on the Hilbert scale X*(R), we get [l (t)]] y1e < |9 (iE)H%(/S1 Il (t)l]l\/l4 Then



by using the conservation laws, we get

H (o) = (1)1, — 3 [0 (I

9

> 0 (03 = 5 18 Ol I ()

=S (1)

> i (Ol = 5

So it can be concluded that the X! norm of the solution remains bounded.

Now let us see the case of integers n > 2. Since the function space X™(R) =
H™R)NFH™(R) and their norms are also equivalent, we turn to estimate the growth
rate of the H"(R) and FH™(R) norn of the solutions. In formal computation we

have

d

= TonpOmpdr = Re [0 (1A + igly|*) Orpda

=Im [°07 (Av) Oppda + T [T°07 (glv|*0) Frdpda

=Im [°[0r, Alpdmdde + glm [T°0" (j¢|%)) Fpdde (4.14)

=T+1I,

since the term f_t:oA (07) O7dx must be real and thus its imaginary part is zero.
This computation is said to be a formal one for ¢ € C (I, X™(R)) because the term

f_*o‘;"a; (A) Orbdx requires the function ¥(t) € X" (R), otherwise it may not exist.

But observing that the right side term of equality (4.14) is well-defined for
Y € C (I, X"(R)), we claim that that equality is in fact true for any solution ¥ €
C'(I, X"(R)). The justification is like this; the whole computation holds for any
function in C (I, X"*(R)); for any time t € [ and |At| < 1 fixed, we can choose

P(t) € X™(R) which is arbitrarily close to the function #(¢) in a period [t, ¢ + At];

taking the derivative on parameter ¢ on the term ffjagiagﬂ?dz, we get term in

127



the right side of equality (4.14) for function 12;; since the result is well defined for

Y e C(I,X"(R)), so let ¥(t) tend to 1(t) then we can get what we have claimed.

We can now continue to estimate the term I and I7. For the first term, since

(07, A] = nadr—! 4+ 2=l gn=2 it proceeds as
1| = |Im [ nzdt " ypdiddz — Im f+°°” )an LyOn—Tydz

< et )| o 1824 42
Sy -

For the second term, we have

11 =|m ¥ % n

n1+ng+n3.—n nl'n2

107 oo 1072 oo 102°M] 2 1107901 2

N IPpO2p O3 Oepd
N
~ ny+n2+ng= nnlln '7’L '
Without loss of generality we can assume that ng > ng > ny, which guarantees that

ni,ne < n. The term H@;%/}HLOO ( = 1,2) can be controlled by

1027 il oo S AIUH on, w2t
n—(ny+(1/2)") (m,+(/nH) -1

Sl ™ Wl ™

the term [|02%v]] . [|024]| . can be controlled by

n—ng ng—1

P I el ) el Y o

Thus their product has a power of the term ||y| . as 1+mi&2_:%31+_1+_—_3 =2-2= <2

From the estimate of the solution for the case n = 1, we know |[9|| 1 will always be
i

bounded, so we can have |[[]| < Hz/)HXn . The only exception is the case of ny =0

or n; = ny = 0, where the term H&?M/J\'Lx = |[¢]| .~ can be controlled instead by
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%]l ¢+ and thus keep bounded. This will result in a little rise on the power of the

term ||¢¥|| in, but anyway it can be controlled as
2
(LIS il xn -
Now it can be concluded that

d proog
S 220w dkdz| S [l

Similarly, we can get the estimate

Q SNl

d pte , —
Ezf+°° r"yrmpdr

Putting these estimate together, it can be deduced that
d 2
7 1l S 191

So the X™ norm of the solution can have at most an exponential growth. In partic-

ular, the initial value problem must have a unique global solution on time. O

4.2.2 The equation in ¢ coordinates

Since the function space X**(R) is equivalent to the space [5(Z.), the nonlinear
Schrodinger equation (4.1) can be written in the g coordinate, where ¢ = (qo, g1, -+ )
is a point in the space I5(Z, ) satisfying that ¥(t, ) = 3 Soqe(t)hr(z) € X>(R). Tt
reads as

—ilg=T.q+gJq, qecliZ
£q q+9Jq, qel5(Zy) (4.15)

q(0) = go,

where g = £1, the operator I, is the mapping corresponding to the operator A and

the operator J is the mapping corresponding to the operator [1|%y. in particular,
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I,, is the mapping from I to [57! defined by (1,q), = wrqr = (k + 1/2)qx; J is the
mapping formally defined by Zl,m,nEZ+Cklm”mqmqn' We say that a continuous curve
q:t> 1w q(t) € 3(Zs) in the function space [5(Z4) (that is, g € C (I,15(Zy))) is

a solution of the equation (4.15), if it satisfies

q(t) = e +ig [ e Jq(r)dr. (4.16)

It is easy to verify that ¢(t) € C'(I,15(Z,)) is a solution of the integral equa-
tion (4.16) if and only if ¢(t, z) = 3.7 2qk(¢)hi(z) belongs to the space C (I, X**(R))
and satisfies the equation (4.12). Then from the results in the theorem 4.2.1 and
theorem 4.2.3, we can know that in the cases of both g = 1 and g = —1, for any real
number 2s > 1 and any initial data qo € [5(Z4 ), the solution ¢(¢) will always locally

exist in the space I3(Z..); if 2s = n € N, then the solution will globally exists.

In the equality (4.16), the operator I, is clearly defined on the space I5(Z)
for any s € R, but the situation is very different for the operator J. This is because
to define the product of two tempered distribution we need a condition on their
regularities, namely s; + s3 > 0. So we want to clarify here what is the condition to

guarantee the operator J to be well defined and how it looks like.

Proposition 4.2.4. For 2s > 1/6, the operator J is well defined from the space
I5(Z..) into the space [;°°(Zy), and for any k € Z,

N1 N2 Ng

Jqg), = li CrtmnQGman - 4.17
(Jq), Nl,Nz,BS?ﬂoo,_g,;O,fég ktmnQ@i4mq (4.17)

For 2s > 3/4 (or 2s = (3/4)%), then for any k € Z,

(JQ)k = Zl,m,neZ+Cklmn%Qan (418)
s absolutely convergent.
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Proof. Note that
25\20 117\/12:0 f\focklmn.q—IQm(]n = fj:hk(m)ﬂNlu’N‘zuNadI = (ﬂN1uN2uN3)k7 (419)

NJ
where uy, = Y qfy(z). By the imbedding theorem, X*(R) — L*(R), we have
=0

X2(R) - X(R) - X2(R) C L(R) and

l(ﬂNluNzuNs)k - (Euu)kl < Hhk(x)Hm (H—U ~Un, ||L3 HU’N2HL3 HuNaHL3

s sy = ulls lungll s + 1 s luasllzs luvs = ulls)

S <k>ﬁl/12 (17 = Wy ] oo el os ([uff o

[l ae e, = ull e [l o0+ 2l o el o flumg = ufixa0),

which implies the equality (4.17).

When 2s = (3/4)", by recalling that |Crymn| < (k)T ()18 e () (F1/8)+e () (7172

we have
+o0 3
Zl.m,neZ+ kalmn@qun‘ < <k>(—1/x)+e <Iz%) <Z>(—1/8)+e I‘Ill>

< (ke (z“ 0 le|2>3 (£ <z>2<-5—”8+6>)3 |

1=0 =0

Since 2s > 3/4 and € > 0 is arbitrarily small, we can get the desired result. O

Remark 4.2.5. In fact, we can get that when 2s > 1/6 the operator J is a bounded
operator from X%(R) to X(=%/3)7(R). This is due to these facts that if u € X*1(R),
v € X®2(R) and 0 < 2s8;,289,251 + 255 < 1/2, then uwv € X*(R) for 2s =
min(2s;, 282,28, + 289 — 1/2); of u € X¥(R), v € X 2(R) for 0 > 0, then
ur € XC2-UDT(R). So juf* € XVO(R) - XVO(R) ¢ X~VS(R) and further Ju>u €

X(237(R). All the mappings (multiplications) arising here are continuous.
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One advantage to write the equation (4.1) in the ¢ coordinate is that this
method enables us to study the behavior of each mode of the solution, and thus
many functions of these modes with some physics or mathematics meaning such as
mass, energy and X% norm. The first thing we want to point out is that although
the solution ¢(t) can only be expected as a continuous curve in a given space [5(Z.),

its A-th mode function g, (t) will be at least continuously differentiable.

It is not hard to deduce from the equation (4.15) that the k-th mode function

qx(t) should satisfy the following equation
—iq, = wrqr + 9(Jq),, Yk € Z,. (4.20)

Note that Jg is well defined for all ¢ € I3(Z,) with 2s > 1/6, then it is easy to know
that if ¢(¢) is a continuous solution curve to the equation (4.15) in this space, the
function g (t) must have continuous derivative i(wigx + g (Jq),). So we have proved

the following proposition.

Proposition 4.2.6. For2s > 1/6, ifq(t) € C (1,15(Z+.)) is a solution to the equation
(4.15), then for any k € Zy its k-th mode function qi(t) 1s at least a C' function on

the interval 1.

Since each g is continuous differentiable, it is natural to expect those func-
tions depending on these ¢ (¢) are also differentiable if ¢(t) is regular enough. In

particular, we can obtain such two conservation laws.

Proposition 4.2.7. For2s > 1/4, if q(t) € C'(1,15(Z.)) is a solution to the equation
(4.15), then it conserves the mass function M(t) = S22 |qi(t)].

For2s>1, if q(t) € C(I,15(Z)) 1s a solution to the equation (4.15). then at
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conserves the energy function

= S wk gk ()] + Y Cumn@e()@(t)gm(t)an(t). (4.21)

2 kil mmneZy

Proof. For any k € Z,, we have

%I%( O = 2Re (i (wrgs(t) + 9 (Ja), (t))m)

= 2Imewy lgi()* + 29 Im (Jq),, (1) e (t)

= 2gTm (Jq),, (t)qu(t).

When 2s > 1/4, we claim that Jq(t) € C (I,l;l/S(Z+)).

Let ¥(z,t) = S 20qr(t)hi(z), then it belongs to C (I, X*(R)). Due to the

following facts: XV/4(R) — L*(R) and
LYR) - LY(R) - L'(R) c L**(R) ¢ X 4(R),
our claim can be easily verified. Thus the summation Y /% (Jq), (t)gr(t) will be

locally uniformly, absolutely convergent for time t. So we have the following equality

d
_]W ) Zk 01(1A |

dt
= 2¢gIm ZA;) (Ja)y (t)(—zl\_zt_)

=29Im Y Crmngs(t)0()gm (1), (t)
klmn€Zy
=2gTm ["° |¢(z,t)] dz = 0,

which implies the conservation law of mass.

As to the energy function E(¢) in the form of equality (4.21), it is well defined

for any ¢(t) € C' (I,15(Z+)) with 2s > 1. To get the conservation law of energy, it
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suffices to prove that E(t) is continuously differentiable and its derivative is always

zero. Let us see how this comes about.

For any & € Z., we have

a0 = 29T (Jg), (Y Loaly )

Since the space X!(R) is an algebra under multiplication, we can have Jq € C (I, l%/2(Z+)>
and I,qg € C (I, 12_1/2(24,)). Then it is true that

d +00 2 +oc T N £\

EZk:Owk (01" = 2932 Im (Jq), (£)(Lug)y (B)- (4.22)

For the other part, let k € Z. fixed, then we get

d o
29 S Camntr O gm(t)gn(t)
dt 2 klmmneZy

=9 > Cumn <thIk( Va1 (1) qm (). (t) + @ (H)g (f)qu() (t))~

klmmneZy

From the symmetry of the tensor Cyymn, it can be continued as

L9 S Gt O Dm(Dan(?)

dt 2 g 1mmez,
=295 5 Red (wigi(t) + g (Ja), (1) (Ja),,
= —293 220 Im (Jq),, (1) (Toq), () — 29”5520 Im (Jq), (Ja),

—2g3 220 Im (Jq),, ()(Lq), (1).

Together with the equality (4.22), we can conclude that the function E(t) always

have zero derivative, which implies the conservation law of the energy. O
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4.3 Birkhoff normal form in the case of 5/4 > 25 >

1/2

In this section, we will adapt the equation (4.1) into the scheme of the infinite
dimensional Hamiltonian system, then many concepts appeared in section 4.1 will
be generalized into the infinite dimensional cases. After these jobs are done, the
Birkhoff normal form theorem corresponding to this system will be proved for the
case of 2s > 1/2. Now let us begin with the writing of the PDE into the Hamiltonian

form.

The Hamiltonian of the nonlinear Schrédinger equation (4.1) is
H(w,$) = [*3 v - Pdo+ 577 [y da.

One observation is that the equation (4.1) can be written in the Hamiltonian form

oH
Jy = i———a.d;, (4.23)
where %% is the gradient of H with respect to .

We rewrite H as a Hamiltonian in infinitely many coordinates by making the

ansatz

Yz, t) = Y q,(t)hy ().

720

Let us take the coordinates from the Hilbert space (5(Z,) of all complex-valued

sequences q¢ = (qo, g1, "+ - ) With
2 2 5 A2
Hqu§ = > 1g,1" (7)) < +oo.
J=0

In this way we obtain the Hamiltonian on the phase space p; = ps(R) := I5(Z4; C)

(recall that all notations of I5(Z,) in this thesis is in fact I5(Z,;C) ) with only real
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values

H(an) = HZ’ + H4

g —
= 2w, PP +2 Y CumnGe@i@mn, (4.24)
720

2A'.I.m.n€Z+
where w, = j 4 1/2. In general, we will say that a function F' defined in the variable

(¢,9) is real when F(q,q) is always real.

Its equation of motion is

qt = 1l——. (425)
In particular, for each component g, it reads as

d OH

—q, = 1—. 4.26
dtq] Zaq]- ( )

This is a classical Hamiltonian equation of motion written in complex notation.

The quadratic term Hs describes the linear integrable Schrodinger equation
and gives rise to a linear Hamiltonian vector field which is unbounded of order 2.
The fourth order term H, is not integrable, but gives rise to a bounded vector field
of order 0. Of course, note that these Hamiltonians and their derivatives are well
defined only for those points in the phase space with sufficient regularities, so we

need first specify what are the regularity conditions.

4.3.1 Regularity of the Hamiltonian functions

Definition 4.3.1. Let E and F be Banach spaces on a field k, and U C E be
an open subset of E. It is said that a function f . U — F is Fréchet dif-

ferentiable at x € U if there exists a linear operator A, € L(E,F) such that
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Wiz +y)— flz) = AcWlir = olllyllp) 1t is said that the mapping f: U — F is a
continuously differentiable function, or C! function, if it is Fréchet differ-
entiable at each point in U, and the mapping f': U — L(E, F) defined by x — A,

18 continuous.

This definition can be generalized into higher order derivative cases.

Definition 4.3.2. For n € Z, it 18 said that the mapping f : U — F is a C"F!

function, if it is a C™ function in U, and the mapping

Fo U S L B (- (B L(EF)) | 2L(Ex - x E,F) = L£(E, F) defined by z — f

n times

n times E

(4.27)
is continuous. In particular, it 1s swd that f : U — F 15 a C° function if the
mapping s continuous, and it is a C'* function if the mapping is C™ for every

nez,.

The Fréchet derivatives are a natural generalization of the conception of
derivatives of the real valued functions on R™, and they have many basic properties
familiar to us. For example, thev satisfy the Fundamental theorem of calculus (the
Newton-Leibniz Formula) and the chain rule for taking derivatives. Here without

proof we want to mention the following two properties.

Proposition 4.3.3. Suppose that the line segment between x € U and z+ h € U
lies entirely within U. If f : E — F is C* then

fla+h) = f(z)+f(z) (h)+%f<”(:r) (hh)+ -+ _1 1)!f“'%:) (hs k- h)+ Ry,

(4.28)
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where the remainder term is given by

Re(z){h} = (k—_ll—),/o (1= 1 f® (b ) dt. (4.29)

Proposition 4.3.4. If the function f 1s C*. then

f(k)( ) (hyyoo s he) = f(k) (hU(l)r T »ha(k)>

for every permutation o of {1,2,...,k}.

Now we will prove that those Hamiltonian functions defined above are in fact

smooth (C*°) on the spaces X*(R) & I§(Z.).

Proposition 4.3.5. Consider the Hamiltonan function H = Hy+Hy as the mapping
from real vector space X?*(R) (15(Z)) to the space of real numbers, then it is C™.
in particular, Hy is C™ on the space X?*(R) for 2s > 1; Hy is C*™ on the space

X% (R) (15(Zy)) for 2s > 1/4.

Proof. First, we claim that the function H, is well defined on the space X**(R) for
2s > 1; and the function H, is well defined on the space X?*(R) for 2s > 1/4. The
former claim comes from the fact that Ho(u) = Hu||2¥1 The latter one is true due
to the fact that X?*(R) with 2s > 1/4 can be continuously embedded in the space

L*(R) and thus |u]*u € LY3(R) ¢ X~Y4(R). So we have for u = 2,500 Ry (T)

2H(w) = | ) T (Jo)

kEZy

N HCIHX% Jallx-1a S (4.30)

Meanwhile, it can be deduced that

N1 No N3 Ny

2H,(u) = lim > Z Yo Y CrimnGrGQiGmn. (4.31)

N1.N2,N3,Ng—+00k Z0] Z0m=0n=0

138



To prove the functions are smooth, we need to determine what are the Fréchet
derivatives of them. For the function H;, we have
Hy(u + 6u) = Zwk (ax + 0ai) (T + Oqx)
kEZy

= Ha(u) + Z (Wkqrdai + wkbarTr) + Zwkqud_qk,

ket keLy
which implies that H5(u)(éu) = (Au.dT) + (A%, du). Since the operator A continu-
ously maps X% (R) onto X%~2(R) = £(X?"2(R),C) and 2s > 1, it can be deduced
that the first order derivative Hj(u) € L{X*(R),R) and continuously depends on

the function u. Further we have

(Hé(u + 6ul?) — Hé(“)) (5“(1)) = Z (wk (Qk + 5Qz(f2) - %) gq;(c—l) + wk5ql(cl) (q_k + ;J? - ka))
ez,

=3 (wmq,ﬁ?)éq,ﬁl) +wk5q,(f)q£2)>,

kel

which implies Hj(u)(6ulV, u®) = <A§u(1),6u(2)> + <A6u<1),5u(2)>. It obviously
belongs to L2(X?*(R),R) and doesn't depend on the function u. Consequently, all
the derivatives of higher orders of the function Hy are always zero. Next let us see

the case of the function Hjy.

We have

2Hy(u+0u)= > Cuimn (@ +0a) (@ + ) (G + 00m) (T + 05)

klmn€Zy

= Z Clclmn%—k_&.fmfna (432)

k,l,m,nEZ+
where £ is either g or §g. Let us count the numbers of the appearance of Jg in the

term £x&émén. If it is zero, then those terms give H(u); if it is one, then they form
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the linear part of the difference of Hy(u + du) — Hy(u). Then we know that 2H(u)
is
2Hi(w)(6u) = Y Chimn (0a1@9mn + T0NGmGn + Teli0Gmn + TrligmOdn)
ked,myn€Zs
(4.33)
By continuing in this way, we can get that

2]1 (J) u’)(é u’( )1 e 7éu( )) Cklmnékélémén ] 17 27 33 1 )
4
Ek{lgmgn E”J

where ¢ is q or 6¢'V or --- or 6gV) and 1V, = {all the terms && &€, that 5¢V),
5q?, ... ,and 6q\ appear for exactly one time}. Due to the inequality of (4.30),
it is easy to verify that all these Fréchet derivatives are bounded multilinear forms
on X2*(R) with 2s > 1/4 and continuously depend on the function v € X**(R).

Meanwhile, the derivative of fourth order can bhe written as
2HD (u)(6uD. - 0u®) = 0.5 ez, Crimndul 60" 6uPoul,

where o runs over all the permutations on {1,2,3,4}, that is the permutation group
S4. This derivative doesn’t depend on the function u, thus all higher order derivatives

are zero operator. So we have completed the proof. O

In fact these Hamiltonians have better smoothness property: they are real
analytic. It is natural to have this property considering all these Hamiltonians are real
valued, continuous polynomials on the phase space. For the sake of the completeness

of this thesis, we also provide the definition of the real analyticity of a mapping

[B-DJ[K-M1].

Definition 4.3.6. A curve in a sequentially complete locally conver space E over

the field C as f : R — E is called (weakly) real analytic if uo f € A(R), the
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space of scalar-valued real analytic functions, for every u € E', and it 1s denoted as
fe AR E).

Definition 4.3.7. A map f: R — E s called topologically real analytic, and it
is denoted as [ € AR, E), if for every t € R there are ¢ > 0 and a, € E such that

flz) = ;’:"Saj (x —t)? forallz € (t —&,t+¢€) and the series converges in E.

When the space £ is a Banach space, then these two concepts are equivalent
to each other. We are interested in the description of the real analyticity of a mapping

from one space to another space. Here is a definition from the paper [K-M1].

Definition 4.3.8. Let E, F be Banach space over the field C, and U be an open
set of E. A mapping f : U — F s called real analytic if it maps smooth curves to

smooth curves and real analytic curves to real analytic curves.

According to the theorem 3.4 in the paper [K-M1}, the mapping f : U — F'in
this setting is real analytic if and only if it is smooth and is real analytic along each
affine line in E. In particular, multilinear mappings are real analytic if and only if
they are bounded. A more dedicated description on the real analyticity of mappings
between convex topological spaces can be found in the paper [K-M2]. So the results
in the proposition (4.3.5) are not only true for the smoothness but also true for real
analyticity. In other words, H, is real analytic on the space X2*(R) for 2s > 1 and

Hy is real analytic on the space X?*(R) for 2s > 1/1.

4.3.2 Symplectic transformations

After obtaining the PDE in the form of a Hamiltonian system, we want to inves-

tigate how the Hamiltonian looks like if the coordinate is changed by a symplectic

141



transformation, especially one induced by Lie transform. To do this, a basic concept
known as Poisson bracket should be generalized into the case of infinite dimension.
Note that the definition of the Poisson bracket in the formula (4.6) can be rewritten

as

OF 0G  OF 0G
F —
ror=i% (5 5% ~52as)

if we introducing the new complex variables z, = (z, — iy,) /v/2. So it is a natural

thing to generalize the concept into the infinite dimensional case in this way

{F.Gy=1)

720

<8FC7G 8FOG> (4.34)

9q, g, 9g; 9g,
When F, G are defined on an open set U of the phase space p; = I5(Z.) such that
F,G € CHU,R) and X € C(U,p,), then the formula (4.34) is a well defined real
valued function and the Poisson bracket {F, G} is continuous on the set U. In this

thesis, we are particularly interested in the following class of Hamiltonian functions.

Definition 4.3.9. Let s > 0, we denote by N° the space of real valued functions F

defined on an open set U of the phase space p, and satisfying

F e C®(U,R) and X € C®(U, p,).

It is not hard to verify that if F' in N® is defined on an open set U C gp;
and G € C*(U,R), then {F,G} is also a smooth real valued function on U. In
some cases, if G is also in N*, then {F,G} is in R® too, and it depends on F and
G continuously. We are particularly interested in the case when F and G are both
continuous homogeneous polynomials on the space {5(Z;) (X?(R)), which is in the

form of

Z]EZQ"CJL]Q“JZHqJIq—]Z” “Qrgn- (4.35)
+
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We can always assume that every coefficient C), ,,...;,, 18 symmetric under any permu-
tation on the set {J1, ja, ** , jon | keeping the subsets {J1, j3, -+ , jon—1} and {j2, ja, - , Jon}
invariant, since all these permutations form a group acting on j € Z2" and C,,,,...5,.
can be redefined as the mean value of the orbit of the group action. Meanwhile,
there is a natural way to define a norm for this kind of continuous homogeneous

polynomials

NEI =" s [Flq1,q2,- -+ 1 qn)l s (4.36)

VJ:H‘IJ ngzl

H[ H‘ Y. ”‘I]Ibb*l

Proposition 4.3.10. Assume that F.G are two real valued functions in the class of

and for F' in N*°

OF

%(ql, g2 s Gn1) (4.37)

1

N and they are mn the form of (4.35) respectwely of order 2n and 2m. Then their
Poisson bracket is also a real valued function in the class of N°, which is in the form

of (4.85) of order 2n + 2m — 2 and continuously depends on the F and G
{F, G} < 2min(m.n) | FI| 1G]l lglls ™+~ (4.38)

{F.G}

< 4max(m,n)
i3

e | Rt

“8‘

Proof. Since we have

oF — A
5—_ =n Z Clj2 cgznr2 " yons
ql (]2,]3," «.]zn)ez?{_n_l
0G T
— =1 Z Dk1k2"'k2m—llq}cl ka e qk2m-l7
aql (k1,k2, - kam - 1)€m2+m '
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then under the introduction of the notation 3’ = (j2, 73, , jon—1) and k' = (ko, k3, < -+ , kam—1)
their Poisson bracket can be written as

{F7 G} = nmi Z E (Dkll\"lcl]’nnqh% o qkzm—lqjj e 2172—7:

(kl K !j/132n)€Z2+n+2mpzl€Z+

- Z Z le’kzm Cj1j/lak—2 ka1 Tham @ G2 " q]2n—l)
(]1‘]/)k/‘kzm)eZin+2m~2leZ+

= nmi Z EJl]'k’ka 319 " " Qyan—_19ks ** * Gkam—1kom>
(klsk/~1'yJ2n)€Zin+2m—2

where

Epikom = 2 (DyitCiykam — Dinttg Crugnt) -
l€Z4

So we can conclude that {F, G} is also a real valued continuous homogeneous poly-

nomials on the space I$(Z,) (X?*(R)) in the form of.(4.35).

As to the estimate of the Poisson bracket, we can proceed like this. Without

loss of generality, let us assume that n < m, then we can have

oG _
{Fv G} = —2nIm Z Z Clj?"']?n 'a_—qu “Ghan-
I€Z+ (33,93, g2 €221 a
It can be regarded as the value of multilinear operator %i;— at point (%%,q, <o ,q) €

I5(Z4)", so the inequality (4.38) follows immediately. Similarly, by taking the partial

derivatives, we get

1o}
0q,

{F,G}
. PF 0G OF 0*°G ) < O*F oG OF 0*G )>
_ L0 OO ) (05 98 TE V) gy
Zl§0 ((a%aﬁh oq  9q 04,07 0q,0q 0q,  0q; 0g,0q (4.40)
The first term is

8*F 0G . oG
5000 0T n(n —1) > Ciyaom-aryon s * - D2 T

(12,33, J2n—2.J2n )€ZE"!
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and it can be regarded as (n — 1) times the value of the multilinear functlonal &L at
the point of (q,q, -, 3q) € I5(Z,)"*. Note that F,G are in the class of functions

of N? and thus %% ~ or and G are both continuous multilinear functionals on the

-l

Repeat this analysis for every term in the equality (4.40), it can be deduced that

space [5(Z..), we can deduce that

O*F Qg
500q0q; 8@

2 {F G} is a C*> mapping on the phase space p, and it satisfies
g

el

< 4max(m,n)

[

2

O

The concept of Poisson bracket can help much in investigating the change of
a Hamiltonian system under symplectic transformation. Suppose that, G is a C*®
real valued Hamiltonian functional of the class X* on the space (5(Z,) (s > 0), then

the Hamiltonian system induced by this Hamiltonian function

d 0G

Al "o
will provide a flow mapping ®(¢,¢). which depends smoothly on the parameter ¢
and depends on the parameter ¢ in this way: belonging to the class of C* ({,{3(Z))
for some time interval I depending on the point ¢. If the Hamiltonian function &G
equals to zero at the origin point, then the time-1 flow mapping ®(1, ¢) will be well
defined for a neighbourhood of the origin point. This mapping is called as the Lie

transformation generated by the functional G.
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In additional, if F'is a C real valued Hamiltonian functional on the same

space, then like in the finite dimensional cases it is true that

& P(®(t,0)) = {F.G}(®(t,q)). (4.41)

Now for any given position g, the curve F'(®(t,q)) is smooth in the space (5(Z. ).
By applying the above equality repeatedly, the Taylor expansion series between time

t =0 and ¢t = 1 provide us

F(2(1,0)) = F(a) + {F,G}{g) + 5 {{F, G} G}a) + -

+ %F("’)(q) + % SN = ™ (FO™, GY (@2, q))de, (4.42)

where F"+1) = {F(™) G} and FO = F.

As to our problem, the Hamiltonian function H = Hy; + Hy is C*° and real
valued on the space (§(Z+) = X?(R) with 2s > 1. If a continuous homogeneous
polynomial F' is in the form of (4.35) and belongs to the class of N°| then under the
Lie transformation I' generated by this functional F, the Hamiltonian function A

can be written as

HOF:H2+H4+{H2,F}+{H4,F}+%{{HQ,F}’F}
+ A {{H P}, Fy + o+ LH - L g™ (4.43)
ik fo (=t (H 4 D) (0, )t

L
m!

In the above formula, each term before Him) is a continuous homogeneous poly-

nomial and its order can be computed out in a straightforward way.
For the sake of simplifying the function H o T', we choose

gt Chimn -
F = = mns 4.44
(@ 2 k,l,m§€Z+ D(k+1—-m~— n)qulq 4 (4.44)
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where
Chimn = fjghk(x)hl(x)hm(T)h'n(fU)dT;
E+l—m-n if k+l-m-n#0
Dk+l—-m—-n)= (4.45)
] if k+l—m-—-n=020.

Then plugging it into the formula (4.43), we can formally get

HOF:H2+H4+{H2,F4}+B

e
=H,+ H, - é > Crmn@r@igmGn + R
k+l—m—ns0
—Hy+2 > CrmnGe@iman + R, (4.46)
2k+lfm—n=0

where R includes all the terms in the right side of (4.43) except Ho+ Hy+{H2, F'}. To
make this formula meaningful rigorously, we need to investigate when the definition
formula (4.44) is well defined. In doing so, the convolution operation of two sequences
will arise and its properties must be studied. And then we will provide the proof of

the main theorem.

4.3.3 Regularity of the convolution operation

We will study the regularity property of the convolution operation. Formally we

always have the convolution of p € I;** and ¢ € l;2'2 as

(P*q); =3 1ecnPelick = 2 rezPi—kl, (4.47)

which suggests the convolution admits the commutative rule. The only problem that
we need be careful on is the problem of convergence. It is a natural choice to ask

$1 + s2 > 0 to guarantee the equality (4.47) well defined. Under this condition we
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have

ZkaZ—k

keZ

< (z el <k>251)1/2 (2t <k>252)1/2

kEZ

< pllgsa llall ez ),

which implies the summation is absolutely convergent and independent of the order
of the p and ¢. Note that ZZ]’Q = H%(T) (j = 1,2) and p * g corresponds to the
product of two functions on H®(T), so it is understandable to get such a result on

the regularity, which is similar to the case of A% (R).

Theorem 4.3.11. Ifp € l;l’z, q € 122’2 and sy + so > 0, then it is true that p * ¢
in (4.47) is well defined and independent of the order of the p and q. Meanwhile

p*xq€E llf’Q, and there is a constant C depending on s, s1. and sy satisfying

P qllipz < Cls,s1.90) [Ipllgr 2 gl (4.48)

where s < s1, § < 83 and s < sy + 59 — 1/2. When one of the s, is equal to 1/2, or

s1+ 89 = 0, then the last inequality should be changed as strict inequality.

Here we would like to provide a proof based on the following method. First
we write the convolution in the form of integral with respect to some kernel function
and then the problem can be transferred into the estimate for certain L? norm of the
kernel function. That estimate is very complicated if one need consider all the cases
of the real numbers s; and sy like what is done in the textbook [Q-X-W]. We would

like to mention that by using duality, one need only consider much simpler cases.

Let us write {1)° (p * @), = peaPhtiok = Spez (0o (0)°) (aio (L= KY*) F(k, D),

where
Fk, ) = k) (1= k)72 (). (4.49)
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Note that py (k)°* and (g—x (! — k)**) corresponding to elements in {2, then the fol-
lowing lemma changes the problem into getting an estimate of the kernel function

F(k,1).

Lemma 4.3.12. Let the operator Tr on the space > x I* defined as Tp(p,q) =

Y kezPrQi—k F'(k,1), where the kernel function satisfies that

Sver [F(k,D)* < M? M independent of I, or (4.50)

Sien |[F(k, D < AM* M independent of k, (4.51)
Then it 1s true that Tr(p,q) € I and
1 Tr(, @)lli: < M Pl llalle -

Proof. 1f the inequality (4.50) is true, then the Schwartz inequality gives

(Tr(p.q),)* < M?Y,cz [

which provides the result immediatelv. If the inequality (4.51) is true, then let us

denote r as an arbitrary element in the space 2, then

‘Zzez (Tr(p.q)), rl‘ = ’Zkezpk (Zlequ_kF(/\‘,l)n)]

< M ipliz llgllz lIrlly2

which provides the desired result. O

So we only need to divide the kernel function F'(k,!) in several parts and
for each of them get the estimate of the L? norm either on the parameter k or on
the parameter { for all possible cases of s; and s;. By duality, we can reduced the

problems into simpler cases.
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Lemma 4.3.13. The theorem 4.3.11 is true if and only if it is true for the cases of

0S82§$1.

Proof. Tt suffices to prove that the theorem is true in the case of 0 < s < 51 are
enough to deduce that the theorem is true for all the possible cases. Since the
convolution p * ¢ is independent of the order of the p and ¢, so without loss of the
generality, we can assume that s; > s5. Notice that the condition 7 + so > 0 thus
implies s; > 0, then only case we need treat on is that s, < 0 < s;. Here let us
introduce the ”pair operator” (,), which is defined between a locally convex vector

lb_U‘Q, the pair

space and its topological dual space. In particular, for p € ZZ’Q, g €
operation gives

(P, @) = >_ P

hez
Now if sy > 1/2, then it is true that s < min(sy, g, 83+ (51 — 1/2)) = s2. Let

us define the convolution in this way

(pxq,r) = (¢.Tp*1), (4.52)

where 7 is the mapping such that (7¢), = ¢—x and r is any element in the space

l—s.Q

5 °°. According to the assumption, it is true that 7p*r € [, *»

*and ||7p * rHlb—52,2 <
Hle;l,z Hr||lb—s.2 (s,81.82), since min(sy, —s, —s + (s; — 1/2)) = —s > —s5. So the
right side of the equality (4.52) is well defined for any r € [ %2 which induces a
well defined convolution p* g € £ satisfying ||p * q”zg’2 < ||le;1,2 anl;q,z (s, 51,82).
Since all the summations appearing in the equality (4.52) are absolutely convergent,
it is easy to confirm that such a defined convolution p * ¢ is same as in the formerly

defined convolution in (4.47).
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If0 < s1 < 1/2, then it is true that s < min(sy, 2, 52+ (51 —1/2)) = s2+(s1—
1/2) or —s > —sy + (1/2 — s1). According to the assumption, we have 7p* r € [, *>?
and ||7p * rHlb-sQ;z < ”p||l§1'2 ||rHlb_s‘z (s,81.82), since min(sy, —s, —s + (51 — 1/2)) =

—s5+ (s —1/2) > —sy. Then the equality (4.52) is well defined for all r € I, *?,

which means p* q € ZZ‘2 satisfying the estimate (4.48).

If s; = 1/2, then we can further consider it in two subcases. When so = —1/2
and thus s < 83+ s; — 1/2 = —1/2, it is true that the right side of equality (4.52)
is still well defined since in this case 7px 7 C I, % * 52/2.2 C l;/m. So this equality
induces a well defined function p * ¢ in the space [, *2 When —s; < sy < 0 and thus
§ < sy+ 51— 1/2 = s, when can consider p € II*7°%, ¢ € [7%% for § < (s, — s)/2
and s; + s9 — 26 > 0. Therefore it is reduced to the case of s; < 1/2 and we can

deduce that px g € l§’2 satisfying the inequality (4.48). So we have analyzed all the

possible cases and the lemma has thus been proved. O

We are now in a very good position to finally prove the theorem 4.3.11, which
has been reduced to the estimate of certain L? norms of the kernel function in the

case of 0 < 8y < 57.

Proof. Let us divide the kernel function F'(k, ) according to the position of the points
(k, 1) into such three mutually disjointed parts: {{k) < () /2}, {{{ — k) < {I) /2} and
{(k) > (1) /2,{I = k) > (I) /2} and denote them respectively as F,(k,l),7 = 1,2,3.
According to the lemma (4.3.12), it suffices to get estimates for these F,(k,!) in the

form of inequality (4.50) and (4.51).

For the first part Fi(k, 1), since all the points are in {(k) < (I) /2}, it can be

deduced that (k) < (I/2) and further |k| < |I/2|. Thus the term (I — k)™** can be
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controlled between (I/2)7°* and (31/2)°*, that is to say, {{ — k)™ = (I)”* (s2).
So we have the estimate
SIRED = T [FRDP<Cla) 0™ X (T (453)
kEZ keZ,(k)y<(1)/2 kez,(k)<(1)/2
If s; > 1/2, then the above inequality can proceed as 3=, |F1(k, ))|* < C(s2) ()75 30, cp (k) 7>
O(1) (s1,82); if s1 = 1/2, then it continues as 3", 5 | Fi(k, 1)]* < C(s2) (N** 7> In () =
O(1) (s, s) sincein this case s < sp; if s; < 1/2, then it continues as >, ., | F1(k, HI* <
Cl(sg) (N**722 (V7> = O(1) (81, 85). For the second part Fy(k, 1), by the param-
eter change we get
YIREOT= X (RTI-RT O
kez kEZ(1R)<(1)/2

= X TR,
WeZW)<()/2

A similar analysis for the case of Fi(k,[) is still true, where the only difference is

that we need compare s and 1/2 at this time.

For the third part F3(k,l), we turn to the estimate for »_, , |F3(k, D). Tt
is easy to confirm the result in the theorem if s < s; + s5 — 1/2, since in this case
> oiez | Fa(k, D < ez (721729282 — (1) (s, 81, 82). That means we have proved
such cases like s; > 1/2 and s; = s = 0. For the remainder cases (0 < 55 < 53 < 1/2
and s; > 0), since ([ — k)72 < C(s3) (1) and s = s; + s2 — 1/2, we have

S E (kD < Clse) ()72 30 (1y? !

leZ leZ,{l)<2(k)

< C(s1,8) (k)27 = O(1) (81, 82).

Thus we have proved the theorem 4.3.11. O



4.3.4 Proof of the main theorem 4.1.3 (in the case of 5/4 >

25 > 1/2)

Now we are at a good position to prove the main theorem. Just like what we have

done in the formal computation, we define a real valued function

_ ﬂ Cklmn
2 pimmen, Dk +1—m —n)

F4(q) MQQO (454)

where
k+l—m-n if E+l—-m-n+#0
Dk+l-m—n)=
i if k+l—-m-n=0.
Then we will see that this function is well defined on the space l§(Z,) with 5/4 >

2s > 1/2, and thus its Lie transform will also exist in the same space.

Lemma 4.3.14. For 5/4 > 2s > 1/2, the Hamiltoran vector field Xr, is real
analytic, and it forms a map from some neighbourhood of the origin in X% (15(Z))

into X% (I5(Z,)), with
2Lt

IXe (@l =0 (lallz)  (s). (4.55)
Proof. We have
Cklmn —
X = min
|( F4(q))k‘ l7m%Z+D(k + l —m = n) qiq q
|Okl'mn| _

< mnl - 4.56
~ Immne€iy <k +1l-m- 7’L> rqlq 4 ‘ ( )

Recall that we have |Crgmn] < (k)Y (1) 718 (m)y~1/8%e (n)V¥E (0 < £ < 1),
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the inequality above can be continued as

<Z>—1/8+a <m>—1/8+e <n>—1/8+€

\(XF-;(Q)) i < > 18 Z _n> \EQanl

,mn€Zy <k + l —m
5 <k>—1/8+5 Z <[>—1/8+€ <m>—1/8+5 <n —1/8+¢

qi9mn| -
d€Zm+n—I=k—d (k+l-m-n) g |
Let 7 be the mapping from [5(Z4) to [;* defined by
Q-1 if k€ N
(T =14 g if k=0 (4.57)
g if —keN.

Obviously, this mapping 7 is a bounded operator. So we have

(Xp(@)l S (RYT S ) —\m LT ey ("D |

d€Zm+1+n+1—-I=k+2— <

< (k)y~H/8te <Tq~* TG AT K — ) for k >0, (4.58)

< > 1/8+e

where ¢; = lg;].

For 5/8 — 2¢ > s > 3/8 + 2¢, it is true that 7¢ belongs to the space 11/2+E 2

which is an algebra under the convolution. Note that 7€ Zl/ 2e2

, we can get that
Xp,(q) € *7*(Z,) and

L
{d)

(s.€). (4.59)

4 3
1 X (@)l grs-2e S AT qllisesin-cz

1/2—¢.2
lb

Since ¢ > 0 can be arbitrarily small, we can deduce that if 5/4 > 2s > 3/4 then

Xr,(q) is in the space l5/8

, which is in general a little more regular than ¢. In
particular, the inequality (4.55) is satisfied.

For 1/4 +5/2¢ < s < 3/8, it is true that 7¢ belongs to the space l1/8+3 o2

which can not be an algebra. But in this time we have 7¢* 7¢ % 7¢ € l35 5/8~ 3€(Z+)
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35—5/83—4de

and further 7qxrqxTq*1/(d) € I, (Z.4). Since it is true that 3s—1/2—5¢ > s

when s > 1/4 + 5/2¢, the inequality (-4.58) implies that
1Kk (@i < 11XE (@] gerr2-5¢

1
{d)

(s,€)

~113
SNTallsys-ce
b li/2_5'2

S la

f (s,€).

Note that € > 0 can be arbitrarily small, we can deduce that if 1/2 < 2s < 3/4,
then Xpg,(q) is in the space [5(Z,) for all the ¢ in the same space, and it satisfies the

inequality (4.55). O

According to this lemma (4.3.14), the Hamiltonian function F; belongs to
the class of X* with 5/4 > 2s > 1/2 and its associated Lie transformation I' is well
defined in a neighbourhood of the origin point in the space I5(Z). Meanwhile, like
the Hamiltonian vector field Xp,, this transformation is also real analytic. Note that
the Hamiltonian function associated to our PDE is regular on the space [§(Z. ) with
2s > 1, we can write the new Hamiltonian function H o I' on the space I5(Z) with
5/4>2s>1as

1
Hol = Hy, + H4 -+ {H2 F4} + {H4, F4} -+ 5{{1{2, F4}, F4}

1 1 (m 1 m
+§{{H4’F4}’F4}+”'+EH2( )+EH§ )

1 m m
@ (B + BV (@, )t

= H2 + g Z Cklmnmqmqn + R,
k+l—m~n=0

where ®(¢,-) is the flow associated to the Hamiltonian function F; and the remainder
term R includes all the terms except H,+ Hy+ {H2, Fy}. We claim that the function

R is in the class of ®° when s satisfies 5/4 > 25 > 1.
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By the proposition 4.3.10, we can easily see that Hﬁm) are all in the class of

¢, Note that

{Hy, Fy} = —H,4 +7 Yo Crimn@x@Gman

2k+1 m—n=0

and

a— Z Cklmnmmen
‘ 0F; k1

—m—n=0

=2 Z lenmaZ-Qan

m+n—Il=y

STV (rgx g% 7G),,

which implies the function G(p) = £, ., ..+n CrimnPrDIPmPr is also in the class

of N* and so does the function Hz(m) with m > 1. So we can use the inequalities
(4.39)(4.38) to deduce that the remainder term R is a well defined function in the

class of W*, which is at least of order 6 at the origin and satisfies

| Xr(p) llig < CSHP||155-

As to the difference between the mapping I and the identity, we have

['(p) —p = ®(1.p) — ®(0,p),

where ®(t, ) denotes the flow associated the Hamiltonian function F;. Then it can

proceed as

IT(p) —plli < LH O(t, p)llisdt

< fo || *’\’F.:L ((D(tvp)) ngdt

:O<'%»
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So we have completed the proof of the main theorem in the case of 5/4 > 2s > 1.

In fact the main theorem is also true in the case of 2s > 5/4. The key fact
needed there is that the Hamiltonian vector field Xp, is also real analytic in that
case. In the following section we will concentrate on proving this key fact in this
new case, since all the other claims in the main theorem will follow by essentially the

same technique.

4.4  Birkhoff normal form in the case of 2s > 5/4

The essential task of this section is to prove the following lemma.

Lemma 4.4.1. For 2s > 5/4, the hamiltonian vector field Xp, is real analytic, and
it forms a map from some newghbourhood of the origin in X (15(Z,)) into X?*
(15(Z+)). with

X (@l =0 (lglli) (). (4.60)

To do this, we need a better understanding on the tensor Ciimn, especially

when one of the indices is much bigger than all the others.

4.4.1 Proof of the lemma 4.4.1 in the case of 2s > 5/4

After obtaining the estimate of the coefficient Ckimy as in the corollary 2.4.15, we
are in a good position to prove the main lemma 4.4.1 and thus the Birkhoff normal

form theorem for our PDE in the function space [5(Z) (X*(R)) with 2s > 5/4.
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Proof. The Hamiltonian vector field X, satisfies the estimate

Cklmn _
X =
|< Fy (q))k‘| l’mmzez_*_D(k + [ — m— n) qQ1dmQn
Cklmn _
= Q1 dmn
W oy <yns Dk +1—=m —n) ="
Cklmn
i p> Qi
W myme s Dk +1—m —n) n

=TI +1I, (4.61)

where M is a number to guarantee that the inequality (I} (m) (n) < (k) /M implies
that [+m+n < k/N, which is the required condition in the corollary 2.4.15. This A
exists since (k) ~ k+1 for all k € Z, and thus (I) (m) (n) = (I{+1)(m+1)(n+1) >

[+m+n.

Recall that |Crmn| < a7 is true for all the terms in part I of the sum (4.61).

Therefore for 2s > 5/4,

—k

s v W 11l 1o 1l

l+m4n<k/N

—k 3/2 3/2

a s —2s
Sl X 0> ol > (07

< > ez l€Zy

—k

a 3
<

Thus the component [ is exponentially decreasing in k large, and it must belong to

the class of I57*.

For terms in part /I, we use the same method as in the proof of the lemma

4.3.14. Using the fact that [Chumal < ((k) (1) (m) (n)) 74 (0 < £ < 1), part two
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can be controlled by

I —1/8+¢ m —1/8+¢ <Tl —1/8+¢ _
Y (m) i @ qman|

11 S (k)3
(y(m)(n)> (k) /M (k+1—m—n)

(1) (m) (n))~**/?*
Oy taew/m (k+Hl—m—mn)

5 <k>—1/4+26 <k>_s+l/2+5 Z Z 1

deZm+n—Il=k—d <k + l -m — n>

< (k) THEYE (B Gamin (M)

Qgmin (M),

A\ 8—1/2—¢ }

where g, = (j) ¢,|. By introducing the mapping 7 as defined in (4.57), which

is a bounded mapping from [5(Z.) to ZZ‘2, the above inequality can be continued for

any k> 0
- £ —$ € 1
1T < (k) VA (k) T > > N ’(T®—1 (T‘Dmﬂ (Ta)m»l, (M)
deZm~+1+n+1—Il=k+2—d <d>
5 <k>—l/4+2c‘ <k>-—s+l/2+8 <7_a’*7—(’j* Ta* _1_> (A[) (462)
{d) ] k42

Note that § € (¥*™(Z.) and w € 11/>7%2 the property of the convolution (see

theorem 4.3.11) enables us to deduce that the part I7 is in the space of [57/*7*¢(Z.,)

and its norm can be controlled by a constant (depending on s, e and A{) times Hqu’;

Since the positive real number = can be chosen arbitrarily small and M is a
universal constant in the estimate of the part II, together with the result of the
estimate on the part I, we have proved that the Hamiltonian vector fields Xg,

s+1/47

is a continuous mapping from [5(Z,) (X*(R)) into a smoother space [, (Z)

(X?+1/27(R)) satisfying

1Xe (@) = O (Il (s):

Of course the inequality (4.60) is also true. Note that F} is a continuous polynomial
on l§(Z,), the C*° smoothness and real analyticity of the Hamiltonian vector fields

Xr, follows at once. O
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After showing that the Hamiltonian vector fields X, is smooth, we can con-
struct the Lie transform generated by the flow of the Hamiltonian vector field of the
function Fy in the space I5(Z,) (X**(R)) with 2s > 5/4, and then consider the orig-
inal Hamiltonian function in the new coordinates. But all these discussions become
straightforward after we have proved lemma 4.4.1, since they are in fact the same
as in the case of 5/4 > 2s > 1/2. So we omit the argument here, and consider the

proof of the main theorem 4.1 complete.

4.5 Application of the Birkhoff normal form

In this section, we will discuss some applications of the Birkhoff normal form theorem,
which can be considered to have transformed the original system into two parts: one
is the principal part, which has resonant nonlinear terms of order four; the other one
is a small perturbation with order of at least six. Unlike the near integrable case,
the principal system can not be solved out explicitly. Here we will focus on a study

of properties of solutions of the principal svstem.

The Birkhoff normal form helps to introduce new coordinates to study the
original PDE. Let p = I'"!q, then the Hamiltonian function H in the new coordinates
will be H(¢q) = HoI'(p). Since the transformation I is symplectic, and thus preserves

the Hamiltonian structure, we can write the system in the new coordinates as

dp Z,aHo r
dt 0P
~ R

op
where (I,p), = (k+1/2) pr and (jp)k = 3 ktieminCrimnPPmPn. In doing this, it
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is natural to ask the transformation to be performed in the space of I5(Z,) (X?*(R))

with 2s > 1, in which the Hamiltonian function H is finite.

The equation (4.63) can be regarded as a perturbation of the following system

(let us call it the truncated system)

% = ilp+igJp, (4.64)

whose associated Hamiltonian function is

Hy. = Hy(p) + G(p)

+oo
= Zwk |pk‘2 + g Z Cklmnmpmpn' (465)
k=0 k+l=m-+n

It is reasonable to believe that solutions of the original system with small amplitude
will have similar properties to those of the truncated system, at least over finite

interval intervals of time.

The truncated Hamiltonian system turns out to be interesting. First of all, it
has local well-posedness in a space consisting of rougher functions. In the proof of
the Birkhoff normal form theorem (case of 2s < 5/4), we showed that if s satisfies
2s > 1/2 then the Hamiltonian function G is in the class of N*. As a consequence,
the operator J in (4.64) is continuous on the space I5(Z ) (X25(R)). Then through a
study of its associated integral equation, we get the local well-posedness in the space
I5(Z,) (X*(R)) with 2s > 1/2. Meanwhile, this system admits several conservation
laws: the L? norm (M = z;’g jkaQ) and X! norm, the Hamiltonian function G(p)
and Hy, itself will be conserved along the flow. These conservation laws can be

deduced from the facts

{Ht'm ]\f[} = 0, {Ht,-, HQ} =0 and {Htry Htr} = 0.
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In particular, any initial data in the space [3/*(Z.) (X'(R)) will result in a global

flow in time.

In general, solutions of the Hamiltonian system (4.64) cannot be solved out
explicitly, but there exist particular single-mode activated solutions, which are ex-

plicit, namely

Py (t) = Pko (O) eXp{iw/\‘ot + iCkokokoko kao‘2 t}a
pe(t) =0,  k# ko.

For other solutions, some interesting symmetry properties will arise.

The first one concerns the difference of the sign of the constant g. Recall that
in the original system, g = 1 (¢ = —1) represents the defocusing case (respectively,
focusing case). Given a fixed datum at time zero, let us denote the k-th action
function of the solution of the truncated system (4.64) by I, de) ‘ (de) ’ and
I(f ’p(f) ‘ respectively for g = 1 and g = —1. We claim that these action

functions only differ in the time direction, that is, I ](f >(t) =] ](de)(—t).

This property is due to the following observation: if we introduce a time-

dependent coordinate change

p(t) = e7"'p(t), (4.66)

or in each direction of the eigenfunction

Pe(t) = e pi(t),

then the system (4.64) will be changed into the form of

5= 19Jp, (4.67)
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whose associated Hamiltonian function is

[¢
G(p) —% S CrtmnDkPiPmbn-
k+l=m-+n

Note that the difference of the signature of the constant g in the system (4.67) will
only result in the reverse of the time direction, and the coordinate change (4.66) will

not affect on its action functions, we can get the claim.

Meanwhile, since the right side of the system (4.67) is homogeneous of order
three, another symmetry property will arise here: if p(t) is a solution of the system

(4.67) then Ap(A%t) (X any positive real number) is also a solution.

Back to the original system (4.63), a simple result on the large time evolution
can be easily deduced. Let us denote Ny(p) := ||pll%s = i (k + )*piPk, which
equals to Al if s = 0 and Hq(p) if s = 1. Using that N; Poisson commutes with itself

and the function G(p), we have

d
'ggNl( )—{Nl,HOF}

= {N,, R}.

According to the Birkhoff normal form theorem, the function R in is in the class of

N®. Then from the property of the Poisson bracket, it follows that
SN0 = 1, R)
< CN}.

We deduce that there exists eg > 0 and C' > 0, such that if the initial data ||pol| y1 =
€ < g the solution p(t) of the Hamiltonian system associated to H which takes value

(po) at t = 0 satisfies

|

o)l < 2¢ for |t] < (4.68)

54’
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and for r > 2
C

INi(plt)) = Ni(p(O))] < = for [t < =

(4.69)

In the rest of this section, we will study another truncated Hamiltonian sys-
tem, which only has one nonintegrable resonant term. In this special case, the

oscillations of the action functions of its solutions can be understood very precisely.

4.5.1 The {0,1,2} system

Let us consider the following truncated Hamiltonian system

2

g S

h= > w |ka2 + 5 > CrtrmnDkPIPmPn; (-1.70)
k=0 k+l=m+n, k.l.m.ne{0,1,2}

where wy, = k+1/2, Chpran = [hi(@)Py(z) R, (2)hn(z)dz and g = +£1 (defocusing and

focusing case). It is an approximation to the truncated system (4.65).

We are interested in the following question: how will the action functions
associated with its eigenmodes behave as time evolves? This problem has a close
relationship with the oscillation of the X norm of the solutions. Let I(t) = |px|*
denote the action function of the k-th eigenmode. There are such two integrals in this
system: one is the mass M = Zi:o-’ « and the other one is the X' norm defined as
P51 = 322 _owilk. From these two conservation law, it can be deduced that if the
initial data p(0) = (p}. p}, p3) is given, the values of the action functions I;(¢) must

lie on a straight line (in fact a line segment. since action functions are nonnegative)

passing through the initial state

Lt)y=1I; L) —17  L{E -1
1 -2 1 '
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We are interested that how the X?° (25 > 1) norm of the solutions will behave
as time evolves. For a general initial datum (I3, I}, I3), if every state in the whole line
segment can be reached, then the minimum and maximumn values of the X2 (25 > 1)
norm will happen at the two end points of the line segment: one is corresponding
to concentrate energy of the system to the eigenmode I; until one of the modes I
and I becomes zero, which gives the minimum value of the X?* (25 > 1) norm; the
other one is corresponding to transfer the energy in the eigenmode I; to the other
two modes until I; becomes zero, which gives maximum value of the X?* (25 > 1)
norm. So we want to investigate the following questions: (i) For a general initial
state, can these two extreme states really appear as time evolves? (ii) What is the
behavior of the X (2s > 1) norm of the solutions, whether or not it is monotone

increasing, decreasing or oscillating between the two extreme states?

These questions can be answered through finding out all the possible phase
portraits for this system. First, let us reduce the problem to a planary Hamiltonian
system depending on two parameters. The basic idea is to choose a good set of

action-angle variables to simplify the Hamiltonian system.

From the study on the infinite dimensional system (4.65), we know that the
constant ¢ = 1 and g = —1, i.e. the focusing case and the defocusing case, only
differs by a choice of the time direction in rotating coordinates. So without loss of

generality, we always set ¢ = 1 in our analysis below. This special truncated system
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leads to the following ODE system

2
Po = twopo + 21 Cookk |pk!2po — 1Coooo |pol” po + iCoa11 P11
k=0

2
Py = iwipr + 203 Crire [pkl> 21 = iCua11 [p1]? p1 + 12C021151p0p2 (4.71)
k=0

2
P = twape + 21 Coopy ]pk|2p2 — 10992 |p2|* P2 + 1Cop11Fop1 1,
k=0

\

where in particular, the coefficient Cp1q2 is 1/8y/7.

Let us introduce the following action-angle variables (I, ) defined by

Pk = v]ke“"’“, k=0,1,2.

This is a symplectic transformation. In the domain of {I; > 0 and ¢, € T = R/27},
this transformation is symplectic. The Hamiltonian function will be in the following

form
h = (w, I) + <I, B[) + 2Co112 11V 1oy COS((,OO + w7 — 2@1), (472)

where w = (wo, w1, w2)! and I = (I, I1, I)" are vectors in R?, (-, ) denotes the usual
inner product of the two vectors, and B = (by;) is the 3 x 3 coefficient matrix defined
by

Coumin if k=1

Creen if k#L

Referring to the explicit value of the coefficients Cyy,,., in the chapter two, the matrix

b =

B is given by

11 3

2 2 8

B = —1 1 3 7
| /271’ 2 8 16

3 1 4L

8 16 128

Noting that there are two integrals of motion (mass and X' norm) for this

system, we can make a further symplectic transformation to simplify the system in
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the domain under consideration. Set the matrix
1/V3 1/V3 13
R=|[1v2 o -1/v2 [, (4.73)
1/v6 —2/v/6 1/V6

and introduce the new parameters (J. #) as follows
J=RI.and 8 = Ry,

or in other words,
Jo= Lo+ L+ D)
Jp = %(Io — 1) (4.74)
Jy = %([0 — 20 + Ip)

and

b1 = J5(vo — ¢2) (4.75)

) = ﬁ(% — 21 + p2).

In this new coordinates (J, ), the Hamiltonian function h can be written as
h = (Rw,J) + (J,RBR'J) 4+ 2Con211 /Iy I cos(v/66,), (4.76)

where [, are all the linear combinations of the variables Jy, Ji, Jo

Iy = Hho+mh+ph
L = Lh+0-%) (4.77)

Iy = Sdo—phit e

The matrix RBR? is computed to be

163 31 5
. 128 1286 128/2
RBR' = —— 3L 9 7 . 4.78
N or 128v6 256 2563 ( )
__5 7 29
128v/2 2563 256
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The point of this coordinate transformation is that the Hamiltonian function
h does not depend on the parameter 8y and #,, and therefore the quantities Jy and J;
are both integrals of motion of the system. From the relationship (4.77), it follows
that the action functions {/¢(¢)} in fact only have one remaining degree freedom.
In particular, from an initial point with action functions (I§, I}, I}), the solution

satisfies

1 *
ZgUR(t) = (L. -2).

It means that the understanding on the behavior of the function Jy(t) provides every

(Lo(t), Ih(t), 12(1)) = (L5, I7, I3) +

detail for the oscillations of action functions {/,(¢)}.

Focus on the oscillation of the function Jy(t). The Hamiltonian system (4.76)

is written as a system of two ODEs

%Jg = _gThg = %I Vigls sm(\/_Hg)
_ Oh __ -5 —29
0, = 5 = — ]u + 128\/—J1 + T Jz)

_1_\/_ L (VL) cos(v/663).

By introducing two functions of J,

5
a(J2> = l27r (WJO - 128\/__(]1 + 128J2) (479)
b(Jg) = 1 WE% (\/ ]012[1) 3

ﬁ

’H

&I

the ODE system can be rewritten as

4], = 4_%11(,1) Io(J)I5(J) sin(/66,)
582 = b(Jz) cos(v/662) — a(Jy).

(4.80)

In the above system, Jy and J; play the role of two parameters, which provide

restrictions on the range of the variable J,. Since all the action functions {7, ()} must
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be nonnegative (including the singular points of the symplectic transformations), we

deduce the following from the relationship (4.74) and (4.77)

Jo=>0
ARRVER: (4:81)

']; < JQ < J2+a

where Ji = Jy/v/2 and J; = —v/2Jy + v/3J1|. We say that a pair of real number
(Jo, J1) is admissible, if it satisfies the first two inequalities in (4.81). Once an
admissible pair of integrals (Jp, Ji) is given, the solutions J5(t) must fall into the
region of {J; < J, < JF}. In particular, J; < J» < JJ corresponds to all the
regular points of the symplectic transformations, J; = J; corresponds to all the
singular points with go or g2 equal to zero, and J, = J5 corresponds to all the

singular points with ¢; equal to zero. Besides that, it is true that

1fJ120, JQ—ZJQ@IQZO

For any given initial data (I5.I7,1;) (or (Jg,J5, J3)), if the solution Jo(t)
approaches point J; (J§, J;). it means that action is being transferred to the 1-th
eigenmode, and the X?* (2s > 1) norm of the solution is becoming smaller; on the
contrary, if the solution Jz(t) approaches the point J; (J3, J7), it means the action
of the 1-th eigenmode is being transferred into the other two modes, and the X2
(2s > 1) norm of the solution is becoming larger. So our task has been reduced
to understand the oscillations of the solution J,(t) of the Hamiltonian ODE system
(4.80) given two admissible parameters (Jy, J;). The domain under consideration is

the set (J5,J5) x R/2V67.
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In the following paragraphs, we will classify and describe all the possible phase
portraits. When J; = 0, the function b(J;) has very different smoothness properties
at the point J; than in the other cases, so we first discuss this case. We find that
there is only one fixed point within the domain being considered. From the first
equality of system (4.80), it follows that all the possible fixed points must fall into
the vertical lines §; = 0,7/v/6; from the second equality, we can further determine
that there is only one fixed point on the vertical line 3 = 0, and there are no fixed
point on the vertical line 6, = /6. The fact needed here is that the functions

a(Jy) and b(.Jo) both depend linearly on .J, and they satisfy

a(Jy) = w5zl alJy) = moz

167 2564/
b(J5) = s%d bUT) =~ .

It is also easy to conclude that the unique fixed point is elliptic by studying its local

linearized system.

The following picture (4.1) is for the case of Jy = 1 and J; = 0. In the
picture the z coordinate denotes v/66> and the y coordinate denotes J,. All the
solutions passing only through the regular points are periodic, which implies that
along that orbit the behavior of the parameters (J5(t),62(t)) is periodic. On the
horizontal line Jo = Jf, that is, I; = 0. system (4.71) reduces to an integrable
system and all solutions will remain on that line. On the horizontal line J, = J;,
that is, Iy = I, = 0, all solutions of system (4.71) reduce to the single mode activated
solution; they will also remain on that line. There is one orbit that remains in the
considered domain but has two “ending” points at point (J3, 46*), where 6* satisfies

b(JJ) cos(v/66*) — a(J;7) = 0. This is a separative solution, and needs infinite time
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Figure 4.1: Jo=1and J; =0

to finish its tour along the whole orbit.

When J; # 0, the phase portrait will be more complicated. The numbers of
the fixed points and the topological structure of the system can both vary according

to the different choices of the admissible integrals pair (Jy, J1).

At first let us study flows near or within the singular points. On the horizontal
line J, = J;7, that is, I; = 0, the system (4.71) reduces to an integrable system and
all the flows there will remain on that line. In other words, if a flow starts from a
regular point, it can at most approach to this horizontal line, but never reach it. As
to the case of the horizontal line J, = .J5, things are different. Suppose a flow reach
a point on that line at some time ty. then it is true that one and only one of the
components [y and Iy is zero. In the case of gg = 0 (respectively ¢; = 0), we deduce

from the system (4.71) that ¢ (respectively, g,) will be nonzero. Thus we know there
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exists an interval of time containing ¢y, such that go(t) (respectively, g(t)) is nonzero
except the time point ¢3. It means that if a flow evolves into a singular point on the
horizontal line J, = J;, it will “leave” it at once and be back into regular points
state again. So there are two kinds of solutions that have its points or its limiting
points on the horizontal lines consisting of singular points: if its limiting points are
on the horizontal line J, = J,F, the flow can be arbitrarily close to the point as time
evolves but never reach it; if one of its points is on the horizontal line J; = J;, then
the flow can really reach that point, but will also leave that line at once and come

back into regular points state again.

Secondly, let us consider the numbers of the fixed points. The fixed points
must satisfy
\/6(92 =0,m
b(J3) Cos(\/f—ié'g) —a(Jy) = 0.
In the case of V66, = 0, there is always a unique solution. This is because the
function b(Jz) is decreasing and a(J») is increasing, and they satisfy
lim  b(Jy) = +oo > a(J; ) and b(Jy) < 0 < a(J5).
- (J7)"

The case of v/66, = 7 is more complicated. Any fixed point on it must satisfy
—b(J2) = a(Jq).

Here let us introduce parameter s # 0 € [—1, 1], which is defined by the relationship
J1 = +/3/2Jps. It can be verified that the function —b(J;) is increasing and concave.

Meanwhile we have
d 1 1

d_Jg (_b(JQ)) St - _\/—E6m
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and
d 1 29
— (alJ ==
(a( 2)) J2=J;_ \/E128\/§

dJy
which means —b'(J;) > a’(J5). So there are only these three possibilities:

o If —b(J5") > a(Jy) then there is exactly one fixed point in the interval of
(J3, J5);

o If —b(J5) = a(J5) then there is exactly one fixed point at J5';

o If —b(JS) < a(JF) then there are no fixed points on the interval [Js, J5].

The equation for the parameter s at the transition points is that
=b(J3) = a(Jy),

or in the form of

Jo . Jo
N T 39 — 7s).
v T T e 2

There are two solutions s; = —0.3877520341 ... and s, = 0.6481239941.... Thus
the three possibilities mentioned above correspond respectively to the following cases

s € (s1,0) U (0,82) and s = s1 or 89 and s € [—1,81) U (s2,1].

Finally we will provide the phase portraits, mentioning these two simple prop-
erties of them: (1) all the fixed points which lie out side of the line of J,. are elliptic
points, (2) the phase portrait should be symmetric respect to the vertical line 6 = 0.
In the following phase portraits, we always choose Jy = 1. They are arranged in the

decreasing order of the parameter s.

When Jy =1 and J; = 1 (s = 0.816...), the phase portrait is the picture

(4.2);
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Figure 4.2: Jy=1and J; =1

When Jy = 1 and J; = 0.79378653779 (s = 0.6481239941, almost equal to

s2), the phase portrait is the picture (4.3);

When Jy =1 and J; = 0.6, (s = 0.489...), the phase portrait is the picture

(4.4);

When Jy =1 and J; = 0.1 (s = 0.081...), the phase portrait is the picture
(4.5);

When Jy = 1and J; = —0.1 (s = —0.081...), the phase portrait is the picture
(4.6);

When Jy = 1 and J; = —0.474897315135 (s = —0.3877520341, almost equal

to s1), the phase portrait is the picture (4.7);

When Jy=1and J; = —1 (s = —0.816...), the phase portrait is the picture
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Figure 4.3: Jy = 1 and J; = 0.79378653779
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Figure 4.4: Jo=1and J; =0.6

175



=0.1

1 and J;

Figure 4.5: Jy

1 and J1

Figure 4.6: Jy
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Chapter 5

Conclusions

This thesis mainly focus on a Birkhoff normal forms theorem for the partial differ-
ential equation
e = g¥ne — FU — glP[Y z €R!

Y(z,0) = Yg(x) 1y complex valued,

(5.1)

which is known as the Gross-Pitaevskii (GP) equation. The following results are
obtained:

1. An estimate of the coupling coefficients for the Hermite functions,

2 [ df ~ 2 p
MU Vm e V1= s2sin?8 VM ’

where s = \/% < 1. Thus we get a sharp estimate on Cpmne. In the case that one

Crm

of the indices is much larger than all the others, say & > N (I +m + n), then
‘C'A‘lmni ,S a_k-
2. We introduce a family of Hilbert spaces X*(R™), which provide good
working spaces for the GP equations with harmonic potential. In particular, many
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important spaces such as S’'(R"), S(R"), L*(R™) and virial space can all be embedded
in this Hilbert scale. We introduce the opcrator A%, which acts as isometry map-
ping between spaces X*(R™) with different regularity index, similar to the operator
(I — A)? acting on the Sobolev spaces. In particular, the unitary group associated

1At

with the operator €' acts on these spaces preserving the norm, and the Fourier

transformation is essentially embedded in this group.

This family of Hilbert spaces provide very natural spaces for the N-presentation
theory for the rapid decreasing functions and tempered distribution [Si]. They are
also closely related with the work is by V. Bargmann, especially the construction of
Bargmann’s spaces. In fact it is implied from his work [Bar2] that our function spaces
X*(R™) are isometric to the Bargmann’s spaces F;;, under the Segal-Bargmann trans-
formation, which originally was defined as a transformation from the space L*(R™)

onto the Fock space.

Meanwhile, the function spaces have very close relationship with the Sobolev
spaces. When s is a nonnegative integer, say s = n > 0, then X"(R™) =
H*R™)NFH™R™); and in the case of negative integer we have X *(R™) =
H™™(R™)+FH™"(R™). In particular, since S'(R™) = [ 723 X (R™), the last result
above implies that for any tempered distribution there is an integer n € N such that
it can be decomposed into two parts: one is in Sobolev space H "(R™) and the other
one is in FH ~™(R™), which must be locally integrable. It is believable that in general
same result holds for any real number s. Although we do not yet have a proof of this
conjecture, the following fact, which can be deduced out by the conjecture, has been

proved independently in this thesis: let [m/2] denote the smallest integer greater

than m/2; then for any real number s > [m/2] the space X°(R™) is an ideal and
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also a subalgebra of the space H*(R™). which itself is an algebra. If the conjecture
is true, then for s > 0 any function in X *(R™) can be decomposed into two parts:

one is in H~*(R™) and the other one is in FH*(R™).

3. We apply these function spaces in the study of the local and global well-
posedness problem for the GP equation. It is known that initial data in the space
X1(R) will lead to a unique global flow in time in the same space, no matter whether
it is in the defocusing or focusing case. We generalize this result into the cases of
the spaces X" (R) with any integer n > 2. In the case of n = 1, its X™ norm remains
bounded; in the cases of n > 2, its norm can have a growth at most at an exponential
rate. When the initial data is not particularly smooth, say ¢¥o(z) € X°(R) with
1/2 < s < 1, our conjecture (X*(R) = H*(R)(FH*(R)) suggests that there should

be a unique local flow in the space X*(R).

We give a proof for a Birkhoff normal forms theorem for the equation (5.1).
Specifically, the Hamiltonian function H of the one dimensional GP equation (5.1)

can be transformed by symplectic transformations into the form

) —
Ho F(p) = Zwk (pk‘2 + Z Z Cklmnpkplpmpn + R(p)~
k20 k+l=m+n

where the remainder term R(p) is real analytic and of order 6 near the origin, for
which Xp is a real analytic Hamiltonian vector fields in the function space X*(R).
In this way, the original Hamiltonian PDE system is transformed to the problem of

a perturbation of the Hamiltonian system with the Hamiltonian function

2, 4 —
Hu(p) = 2 wi ol + 2 Z CrtmnPEPiPmPr.- (5.2)
k20 k+l=m+n

One class of explicit solutions of the system (5.2) are the following one-mode

activated solutions
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Pk (t) = Pk (O) eXp{ikaf + ickokokoko |pko ’2 t}*
pe(t) =0,k # ko.

(5.3)

But unlike integrable cases, in general the solutions of the system (5.2) are
not able to be written out explicitly. All of the solutions of the system (5.2) have
the following properties: They will preserve the (*(Z;) (L*(R)) norm and lé/ Zy)
(X'(R)) norms in the p coordinates; if we compare the oscillations on every eigen-
modes under the focusing and the defocusing case initialed from a common initial
data at time zero, say I](f) (t) and Ij(de)(t). then they only differs in the time direc-
tion in the rotating coordinates, that is, ]J(f)(t) = I](de)(—t). This fact is due to the
observation that the system is equivalent to the system

Htr(ﬁ) :% Z Cklmnﬁﬁmﬁm (54>

k-Hl=m+n
which is not sensitive to the signature of the constant g. As a by product, all the
solutions of the system (5.4) admit the following symmetry property: if p(t) is a

solution then so is Ap(A%t) (A any real number greater than zero).

We have furthermore studied a simplified system modeled as (5.4), namely
the {0, 1,2} system
2 2, 8 —
h= > welpel” + 35 > CrtmnPkDiPmPr-
k>0 2
= k+i=m+n, 0<k,l,mn<2
This system is completely integrable in certain action angle variables, and succeptable

to a phase portrait analysis. We have classified all the phase portraits for this system.

Considering the original system (5.1), one direct corollary of the Birkhoff

normal form is that if the initial data of the system (5.1) is small enough, the X!
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norm of the flow in the coordinate p = I'"!(g) will change very slowly. Meanwhile,
the property of the solutions of the system (5.4) suggests that there is no big dif-
ference between the focusing case and the defocusing case when the perturbation is

sufficiently small.

We are planning future research on solutions of the GP equation from this
point of view. Generally, perturbation theory of completely resonant systems is
harder to study than that of the nearly integrable cases. In the latter case, each
eigenmode’s action function is an integral for the unperturbed system, and Nekhoro-
shev style results state that small perturbation will keep action function of each
eigenmode not far away from the initial state for a long time. In the completely res-
onant system case, even without perturbation those action functions in general are
no longer constants of motion. We may turn to consider under small perturbation
whether the solution will stay close to the orbit of the unperturbed system. Also we
are interested in the following question: Does there exist (quasi) periodic oscillations
to our original system? In particular. the class of special solutions in (5.3) is a good
starting point. Meanwhile, the introduction of our function spaces makes it possible
to do a more careful study on the regularities of the solutions of the nonlinear Gross-
Pitaevskii equation. For example, onc question is whether we have local or global
well-posedness for the Cauchy problem with rough initial data? Harmonic analysis
on Hermite expansions series will play an important role in the studies in this field,

the kernel of which is provided in this dissertation.
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