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TO MY PARENTS 



Abstract 

This thesis investigates a I-dimensional Gross-Pitaevskii (GP) equation from the 

viewpoint of a system of Hamiltonian partial differential equations (PDEs). A the­

orem on Birkhoff normal forms is a particularly important goal of this study. The 

resulting system is a perturbed system of a completely resonant system, which we 

analyze, using several forms of perturbation theory. 

In chapter two, we study estimates 011 integrals of products of four Hermite 

functions, which represent coefficients of mode coupling, and play an important role 

in the proof of the Birkhoff normal form theorem. This is a basic problem, which 

has a close relationship with a problem of Besicovitch, namely the behavior of the 

LP norms of L2 -normalized Hermite functions. 

In chapter three we carefully reconsider the linear Schrodinger equation with 

a harmonic potential, and we introduce a family of Hilbert spaces for studying the 

GP equation, which generalize the traditional energy spaces in which one works. One 

unexpected fact is that these function spaces have a close relationship with the former 

works for the tempered distributions, in particular the N-representation theory due 

to B. Simon, and V. Bargmann's theory, which uncovers relationship between the 

tempered distributions and his function spaces through the so-called Segal-Bargmann 
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transformation. In addition, our fUllction spaces have a nice relationship with the 

Sobolev spaces. In this chapter, a few other questions regarding these function spaces 

are discussed. 

In chapter four the proof of the Birkhoff normal form theorem on spaces we 

have introduced are provided. The analysis is divided into two cases according to 

the regularity of the related function space. After proving the Birkhoff normal form 

theorem, we made an analysis of the impact of the perturbation on the main part of 

the GP system, which we remark is completel:y resonant. 
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Chapter 1 

Introduction 

1.1 Background 

Bose-Einstein condensation is an exotic quantum phenomenon which is now a subject 

of intense theoretical and experimental study. A Bose-Einstein condensate (BEC) 

is a state of matter formed by a sy:otem of bosons confined in an external potential 

and cooled to temperatures very near to absolute zero. This state of matter was first 

predicted as a consequence of quantum mechanics by Albert Einstein, building upon 

the work of Satyendra Nath Bose in 1925, hence the name. Seventy years later, the 

first such condensate was produced by Eric Cornell and Carl Wieman in 1995 at the 

University of Colorado at Boulder NIST-JILA lab. For this work, Cornell, Wieman 

and Wolfgang Ketterle at I\IIT were awarded the 2001 Nobel Prize in Physics in 

Stockholm, Sweden. 

Before this famous experimental realization of BEC, a remarkable series of 
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investigations were conducted, formulated in terms of the Gross-Pitaevskii (GP) 

equation [Gro][Pi]' which turns out to provide a good description on the behavior of 

BEe's. This equation can be written as 

(1.1 ) 

where m is the mass of the bosons, V(x) is the external potential and A is a coefficient 

representating the inter-particle interactions. The sign of the coefficient A differs for 

different chemical elements. For example, it is negative for 7Li atoms ([B-S-T-H][B-S­

H]) as well as for 85Rb, and positive for 87Rb, 23Na and 1 H. We would like to mention 

that the case of harmonic potential, that is, l'(x) = !J]W2X 2 (w > 0), is one of the 

most important cases, as it models the maglletic field used to confine the particles. 

From the point of view in mathematics, equation (1.1) is a nonlinear Schrodinger 

equation with a potential function V (x). In the simplest cases, the potential func-

tion can be a constant function. J. Ginibre and G. Velo have considered this kind 

of nonlinear Schrodinger equation for a larger class of nonlinearities [G-V], and the 

local existence and uniqueness of solutions of the initial value problem in the Sobolev 

space HI (JFR,n) were obtained in their work. In some cases, they proved the existence 

of the global solutions. The method can be summarized as follows: first study the 

corresponding linear PDE and the propert\ of the corresponding Schrodinger kernel; 

then write the PDE as an equivalent integral equation in a suitable Banach space; 

finally use the property of the Schrodinger kernel and fixed point theorem to get the 

solution. 

In 1979, D. Fujiwara proved in [F1][F2] that for potentials of quadratic growth, 
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the Schrodinger kernel has the form 

-t 
k( t, x, y) = (~t t/2a( t, x, y)e,S(t,X,Y) 

~71 

for a short of time t, where S(t, x, y) is smooth and a(t, x, y) is a bounded continuous 

function of t, x and y. This result was a kind of generalization of the Mehlor's 

formula [F-H], which provides the exact Schrodinger kernel for Harmonic potential 

V(x) = !fJW 2X 2 . On the basis of the work by D. Fujiwara. Yong-Geun Oh [0] made 

a further study of the following Cauchy problem in 1989 

4 
1 ~ p < 1 +-, 

n 
(l.2) 

where the potential V is bounded below and satisfies the condition that ID"'VI is 

bounded for all lod ::::: 2. In the fUllction space of D( J~b. + V), the domain of 

definition of the square root of the Schrodinger kernel ~b. + V, he proved the long 

time existence of the flow in that space. 

In the recent years, more work have been done, focusing on the case of har-

monic potentials. In 2002, R. Carles [CI] studied a nonlinear Schrodinger equation 

in the following form 

{

if/BtU" + ~2 D..xU" = k~2 J;2U
Ii + A /u li /

2a un, 
uhlt=o = u~, 

(l.3) 

where n. > 0, A E lR and w, (j > O. \Yith the local existence of the equation already 

known. the author made use of the conservation laws of the above PDE to study 

the global well-posedness in the spacp L: := {u E L2(JRn)1 .TU, \lu E L2(JRn)}. The 

author pointed out that there are following cases that a datum in the space L: can 

admit global flows: 
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• If A 2: 0, then the solution is defined globally in time; 

• If A < 0 and (J" < 2/n, then the solution is also defined globally in time; 

• If A < 0 and (J" 2: 2/17" then the solution is defined globally in time when 

the initial data uS is sufficiently small. 

He also found that finite blow up solution do indeed exist. The conserved 

energy can be written as 

n 1 II n 112 w
2 II n 112 A II n( 11

2
0"+2 E = '2 Ii\! xU (t) L2 + 2 xv (t) L2 + (J" + 1 u t) £2a+2' 

The author proved that if A < 0, (J" 2: 2/17, and En::; ~2 Ilxun(t)II~2' then the solution 

collapse at a time t~ ::; 7r /2w. In that paper, he also provided upper bound and lower 

bound estimate of the breaking time. 

In addition to the cubic nonlinearity for the Schrodinger equation with har-

monic potential, some other nonlinearities may also be a good choice to model Bose-

Einstein condensation. In [K-N-S-Q]' the author proposes a quintic nonlinearity in 

space dimension one; and in [Z], the author suggests more generally the study of 

{ 

i8tU + ~~xu = ~2 x2u + A _IU I4In u, (t, x) E lit x lItn
, 

(1.4) 

u!t=o - Uo· 

Then in the year 2002, R. Carles also studied the partial differential equation (1.4) 

in [C2]. He found that there is a coordinate change which transforms the above 

equation into the following form 

{ 

i8tV + ~~xv = A IVI411~1" 
Vlt=o - Vo, 

( 1.5) 

while the latter equation had been extensively studied. A quick and complete ref-

erence can be found from the website mailltained by Jim Colliander, ~lark Keel, 
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Gigliola Staffilani, Hideo Takaoka, and Terry Tao [\Vebpage1]. Here we just provide 

some basic information for this equation (1.5). 

The local well-posedness for this equation (1.5) has been provided by J. Gini­

bre and G. Velo's work in [G-V]. There are predictions of the blow up time and rate 

by C. Sulum. In 1982, M. r. Weinstein proved that if the initial data comes from the 

space L: := {u E L2(]R1l) 1 xu, \1u E L2(]Rn)}, then one can ha\'e global solution in 

the defocusing case (,\ > 0); in the focusing case (,\ < 0), if the initial data is small 

enough, then one can also get global :-;olution; otherwise, the wave v may collapse in 

finite time. In more detail, qualifying this criterion in the focusing case is called as 

critical mass, which equals to the L2 norm of the unique radial solution [Kw] of 

{ 

-~6Q + Q = -,\ IQI 4
/
n Q, 

Q > 0, in ]Rn. 

in ]Rn, 

In particular, he pointed out that there is an initial datauo with this critical mass 

such that it leads to a blow up solution at finite time. In other words, this critical L2 

norm is sharp. In 1993, F. Merle [l\Ie1][Me2] proved that up to invariants of (1.5), 

the blowing up solutions enlightened by Weinstein are the only ones. More refined 

descriptions for the blow-up solution:-; were obtained in recent years by F. Merle and 

P. Raphael [M-R1]. 

Since R. Carles have found the coordinate transformations between the equa-

tion (1.4) and (1.5) (in the space C(I. L:)), many results obtained for the equation 

(1.5) can be transposed into its corresponding version for the equation (1.4) (see 

[C2]). Of these results, the existence of the critical mass in fact had been proved by 

Zhang Jian in [Z]. 

In this thesis, we turn our attention into the initial value problem of the 
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equation (1.1) with the harmonic potential in one space dimension case. That is 

x E JRl 
(1.6) 

1jJ complex valued, 

where 9 is a constant. According to the materials introduced above, it is already 

well understood on the question of the global well-posedness: any initial data in the 

space I; := {u E L2(JRn)1 xu, \lu E L2(JRn)} will result in a global flow in time in the 

same space. But beyond that, we are still interested in finding more information to 

describe the behaviors of the solutions on time. So we take the viewpoint from the 

Hamiltonian system to study this equation in this thesis. 

1.2 Hamiltonian systems 

~Iany important physic models can be regarded as Hamiltonian systems, ones often 

as nearly integrable. In the case of finite dimensional systems of ODE, A. N. Kol-

mogorov, V. 1. Arnold and J. Moser [Ko][A][Mo] introduced a theory, which roughly 

speaking, states that for sufficiently small perturbations of an integrable system, 

almost all invariant tori are preserved. In other words. there exist abundant quasi-

periodic motions for an integrable system under sufficient small perturbations. This 

theory now is known as KAl\1 theory. Of course, there are also many initial data 

leading to a motion not quasi-periodic, but they will at least admit the Nekhoroshev 

stability. In his paper [N], Nekhoroshev showed that under a small perturbation of 

an integrable Hamiltonian system, the action variables of an arbitrary orbit change 

exponentially slowly. 

\Vhen a Hamiltonian system corresponds to a PDE, things become much more 
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complicated. During the last fifteen years the perturbation theory of Hamiltonian 

partial differential equations has been extensively studied, and the subject is still 

under development. Typical problems (but not restricted to them) in this field are 

as the following: 

• Can we get long time stability of solutions of small perturbations of linear or 

integrable Hamiltonian PDEs? Thi8 i8 the PDE setting of the Nekhoroshev problem. 

• Can we find invariant tori for a given Hamiltonian PDEs? This is the PDE 

setting of the KAM theory problem. 

• As a flow in a given phase space, how fast its norm can grow as the time 

tends to infinity or a finite blow-up time? 

One general philosophy is commonly used in the research work within this 

field: by carefully choosing symplectic transformations, one changes a Hamiltonian 

system into a form with a well understood part, usually a linear or integrable part, 

under a sufficient small perturbation. Birkhoff normal form theory in the different 

PDE settings [Bam2][Gre][B-G] can usually take an important role to fulfill this 

philosophy. 

Here we would like to focus our attention on the study of nonlinear Schrodinger 

equations within the Hamiltonian PDE theory structure. In 1996, S. Kuksin and J. 

Poschel [K-P] studied the following equation 

(1.7) 

on the finite x-interval [0,1['] with Dirichlet boundary conditions. The parameter 

Tn is real and f is real analytic in some neighbourhood of the origin in C. When 

f(luI2) = lul 2
, it is just the cubic nonlinear Schrodinger equation, which was already 
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known to be integrable. By writing the solution as a sum of the L2 normalized 

eigenfunction corresponding to the operator -t.+m, this equation takes the forms of 

an infinite dimensional Hamiltonian system. The authors first proved the existence 

of a symplectic transformation, which can turn the Hamiltonian function into its 

Birkhoff normal form up to order four. In this way, the original equation became 

an integrable Hamiltonian system with a perturbation of order at least six near the 

origin point. Then an infinite dimensional KAM-theorem was applied, with which 

the authors showed the existence of an invariant Cantor manifolds of quasi-periodic 

oscillations. 

The same equation was studied also by D. Bambusi in 1999 [Baml] towards 

a Nekhoroshev type result. He proved that if a solution initiates near a finite di­

mensional torus, or in other words, the initial energy concentrates essentially in 

some finitely many eigenmodes, then it will remain in a small neighbourhood of that 

torus for at least an exponentially long time. The first step of his proof consists in 

putting the nonlinear Schrodinger equation into a Birkhoff normal form up to an 

exponentially small remainder, in which the truncation up to the forth order pro­

vides an integrable system. Then the author, inspired by a variant of the technique 

of approximation by periodic orbits introduced by Lochak [L], constructed another 

normal form close to a fixed finite dimensional torus and showed the long time sta­

bility of the solution close to it. Later, J. Poschel simplified D. Bambusi's proof and 

obtained a slight refinement of the theorem in [Po]. In doing this, one key step is to 

find a symplectic transformation which transforms the original Hamiltonian into an 

integrable one, plus a perturbation which is small. 

In those works mentioned above, Birkhoff normal forms have played important 

8 



roles. It is a natural choice to use this method to study the nonlinear harmonic 

oscillator (1.6). In doing so, we need answer the following questions: What is the 

function space that we take for the domain and range of the transformation? Does 

the necessary symplectic transformation really exist? 'What can we deduce out for 

the dynamics of the original system? We would like to point out that although our 

equation looks similar to the equation (1.7), the two are really very different. 

To prove a Birkhoff normal f01'111 theory in infinite dimensional case, the main 

difficulty consists in studying nonresonance property that allows to remove from the 

nonlinearity all the relevant non-normalized monomials. For the equation (1.7), most 

monomials can be removed and the system will be transformed into an integrable one 

with a small perturbation. But for equation (1.6), the eigenvalues of the Schrodinger 

operator -.6. + x 2 are in the form of (2k + 1) /2 with k E Z+. In this case, many 

nontrivial linear combination of the eigenvalues give zero implying the existence 

of many resonances. So there is no way to remove those corresponding resonant 

monomials by the procedure of canonical transformations. In fact our equation is 

called a completely resonant PDE, whose perturbation is much harder to understand 

than the nearly integrable cases. 

There are also other technical difficulties quite different from those encoun­

tered in work on the equation (1. 7). One comes from the nature of the eigenfunctions. 

For a problem which is essentially the Laplace operator with Dirichlet or periodic 

boundary condition, its eigenfunctions are very simple-trigonometric functions. In 

our case, the eigenfunctions of the Schrodinger operator -.6. + x 2 are Hermite func­

tions, which are more complicated. It makes the estimates required for our Birkhoff 

normal form theorem more complicated to deal with. The second difficulty comes 
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from the choice of the phase spaces. Traditionally the study of the Gross Pitaevskii 

equation is based on the space 2: := {u E L2(JRn ) I xu, \1u E L2(JRn )}, sometimes 

called as the virial space. Our choice should be consistent with this traditional space. 

And after it is chosen, we need to answer the question as to what these function spaces 

really are. 

This thesis mainly focuses on the Birkhoff normal form theorem for the equa­

tion (1.1), and the above problems are addressed. In the chapter two, we study the 

estimate on the integrals of the product of four Hermite functions. It turns out to 

have relationship with a problem of Besicovitch: what is the behavior of the LP norm 

of the Hermite functions? In particular, when all four Hermite functions are equal, 

the 4th root of the integral is just the L 4 norm of that Hermite function. This case 

was once studied by G. Freud and G. Nemeth [F-N]. We generalize that result into 

the case of integrals of the square of the products of two Hermite functions. For 

other cases, we also provide the estimate needed to prove the Birkhoff normal form 

theorem. 

In the chapter three we carefully reconsider the linear Schrodinger equation 

with harmonic potential, and provide our choice for the phase spaces. One unex­

pected thing is that we realize that those function spaces have a very close rela­

tionship with the theory of tempered distributions, especially the N-representation 

theory due to B. Simon lSi] and V. Bargmann's function spaces together with the cor­

responding Segal-Bargmann transformation [Bar1][Bar2]. It is true that our function 

spaces can be a very good complement for the N-representation theory. and also a 

natural way to provide descriptions for the rapid decreasing functions and tempered 

distributions. 
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Besides that, our function spaces have very close relationship with the Sobolev 

spaces. It is proved that when the regularity index number is a nonnegative integer, 

the function space is just the intersection of the Sobolev space with its image under 

the Fourier transformation; when that number is a negative integer, then it is just the 

"summation" of those two Banach spaces. This result also seems to be true when the 

regularity index is any other real number. To this conjecture, we haven't yet found 

a proof. But we find the following fact that partly supports the conjecture: for any 

regularity index big enough our function space forms a subalgebra of the Sobolev 

spaces, which itself is a Banach algebra with respect to pointwise multiplication. 

In the rest of that chapter, a few other problems of the function spaces are also 

discussed. 

In the chapter four the proof for our Birkhoff normal form theorem are pro­

vided. It is divided into two cases according to the regularity index of the related 

function space. In particular when the index is large, we need a more detailed under­

standing of the integrals of the product of four Hermite functions other than those 

provided in the chapter two. Those new estimates are provided in a separated sub­

section. After providing the Birkhoff normal form theorem, we give an analysis on 

the impact of the perturbation on the main part system, which is completely reso­

nant. In general, this is a very difficult problem, and here we provide a few results 

that we have obtained. 
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Chapter 2 

Hermite Functions 

2.1 Introduction 

This chapter focuses on the properties of the Hermite functions. At first, we review 

facts about the eigenfunctions of the operator - ~ + x 2
, which are Hermite functions. 

Then any reasonable function in our study can be represented as the summation of 

its projections to every eigenfunction space. Below we use hj(x) (j = 0,1,2,· .. ) to 

denote the j-th Hermite function with unit L2 norm. For our Hamiltonian PDE 

{ 

i7jJt = ~7jJxx - x227jJ - gl?,iJI 2 l/' x E ]Rl 

7jJ(x, 0) = 7jJo(x) 7jJ complex valued, 
(2.1 ) 

if we write 7jJ(t, x) = L.;?oq;(t)h;(x), then the Hamiltonian function of the system 

will be (for more details, see chapter four) 
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A basic problem is how the Hamiltonian function depends on the coordinates qk. 

In particular. we need understand the behavior of the coefficients Ck1mn , which are 

integrals of products of four Hermite functions. 

We would like to remark that the above problem is related to the following 

two questions. One was posed by Besicovitch: what is the behavior of the LP norm of 

the Hermite functions? In particular, \ve note that Ckkkk = Ilhk (x)lli4' In 1948, Ida 

W. Busbridge [Bu] obtained a formuh that can express the integral of the product 

of Hermite polynomials with weighted function exp{ _X2 / a} (a > 0) into the sum-

mation of a sequence. Unfortunately. those terms in the sequence are not in same 

signatures, which implies that the formula can't provide good answer to the Besi-

covitch's question, or to our question. In 1973, G. Freud and G. Nemeth [F-N] made 

a very exact estimate on the terms Ckkkk . And by the year 1984, the Besicovitch's 

question have been completely solved (see lemma 1 in [}.Ila]). 

The other one is related to multilinear eigenfunction estimates. In paper [D-S], 

J.-M. Delort and J. Szeftel obtained an estimate for the integral of the product of the 

eigenfunctions of the Laplace-Beltrami operator on Zoll manifold, and they used that 

result to study long-time existence /07' small initial data to nonlznear Klein-Gordon 

eq'uations on ton and spheres. 

Returning to our question, we found a very exact estimate for the term Cmmnn , 

which generalizes the result by G. Freud and G. Nemeth. In particular, we get 

Cmmnn ~ 'b:E(s), where s = fJI < 1 and E(s) = ro~ J de is a version 
vm VIII J( 1-s2sin2e 

of an elliptic integral. To keep in the same style of the result by G. Freud and 

G. Nemeth, we confirm that Cmmnn :s (m) -~ ln1
/

2 (m) ln1
/

2 (n). For general terms 

Ck1mn , a simple application of the Holder's inequality provide such an estimate: for 
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nonnegative integers k ;:: l ;:: m ;:: n, it is true that 

(2.2) 

We would like to point out that this estimate is good when the numbers k, 1, m and 

n almost equal to each other, but it will be too big in some other situations. For 

example, if one of the numbers is much larger than all the others, a much better 

estimate is also provided in this thesis (see chapter four). 

For the purpose of making this chapter self contained, many basic properties 

of the Hermite functions are also reviewed. Most of them are needed for the estimate 

of the coefficients Cklmn . 

2.2 The quantum harmonic oscillator 

In this section we derive the eigenvalues and eigenfunctions of the quantum har­

monic oscillator. \Ve consider the differential operator A = -C.;lx I2 acting on the 

complex-valued function space L2(JR.n) , which is equipped with inner product given 

by (<p, 'l/J)£2 = In~.n <p(x)'l/J(x)dx. By the spectral theory[T]' A is essentially self-adjoint 

on CQ"(JR.n) and it has compact resolvent, therefore L2(JR.n) has an orthogonal basis 

made up of eigenfunctions of A. Below we will describe that in the I-dimensional 

case, these eigenfunctions are Hermite functions. 

Let us introduce the two well known creation and annihilation operators 

1 d * 1 d 
a = -(- + x) u = -(- - x) 

i dx ' i dx ' 

with which we can write 

A = (aa* - 1)/2 = (a*a + 1)/2, 

1-1 



such that 

[A, a] = -a, [A, a*] = a*. 

Suppose that y) is an eigenfunction of the operator A i.e. Arp) = A)rp) where 

rp) E D(A) = {u E L2(JR) I - d~2U + x2u E L2(JR)} and A) E lR. Then WPJ is also 

an eigenfunction of the operator A Since A is an strict elliptic operator, by the 

classical regularity theory of the second order elliptic operators, we can deduce that 

any eigenfunction of operator A must be smooth. Furthermore we can easily find 

that 

By the commutator calculation above. 

Thus 

(2.3) 

which implies that arp) E D(A) is also an eigenfunction of operator A for eigenvalue 

Similarly, we also have 

and 

(2.4) 

Let us define the eigenfunctions space of the operator A as Eigen(A, A) = 
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{u E D(A) I Au = AU}. Equations (2.3) and (2.4) imply that 

{

a: Eigen(A, A) 

a* : Ezgen(A, A) 

----7 Eigen(A - 1, A) 

----7 Eigen(A + 1, A). 
(2.5) 

Since A is self-adjoint and (Au,u) ~ ~llulli2 for any u E D(A), it follows that 

any eigenvalue A of operator A must satisfy A ~ ~. 

Noticing 

aa* - I = a* a + I = 2A, 

we can conclude that a and a* in (2.5) are both isomorphisms for those eigenvalues 

A ~ ~. On the other hand, a must annihilate Eigen(Ao, A) when Ao is the smallest 

element eigenvalue of the operator A. If 'Po E Eigen(Ao, A), then 

1 d 
a,;?o = --:-( -d zpo + T';?O) = O. 

1 T 

By solving this ODE, we find 

2 

meaning that Ao = ~ and Eigen(~, A) = span{e-T }, which is a I-dimensional space. 

For any other eigenvalue A, we apply the operator a : Eigen(A, A) ----'> 

Eigen(A - 1, A) repeatedly. After finitely many steps, it must end up with the 

mapping a : Eigen(~,A) = span{';?o(x)} ----'> {O}. And all the mappings in this 

process except the last one are in fact isomorphisms. Therefore, we can conclude 

that 

and 

Spec(A) {eigenvalues of A} = H, ~, ~, ... } 
{k+ ~,k = 0,1,2,"'} 

1 8.,,2 
Eigen((k + -), A) = span{ 'P(x) = (-;:) - x)k-l e- T }. 

2 uX 
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Those eigenfunctions can be written in such forms 

(2.6) 

(2.7) 

(2.8) 

where Hk(X) (k = 0, 1,2, ... ) are Hermite polynomials, given by Rodrigues' formula[M-

O-S] 

The first 6 Hermite polynomials are 

Ho(x) = 1. 

HI (x) = 2x. 

H2(X) = ~x~ - 2, 

H3(X) = 8x3 
- 12x, 

H4(X) = IG.r4 
- 48x2 + 12, 

H5(X) = 32f) - 160x3 + 120x. 
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(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 



2.3 Properties of Hermite polynomials and func-

tions 

In this section, we will review some basic properties of the Hermite polynomials 

(functions), most of which come from the theory of special functions [1/1-0-S][A-S]. 

The materials below are organized in an order with the intention of being a self 

contained account and easy accessible. All the properties are provided with a short 

proof. 

Proposition 2.3.1. Hermite Polynomials are mutually orthogonal, under the mner 

product with respect to the weight functions e-x2
. In particular, we have 

(2.16) 

Proof. Without loss of generality, we assume that k ~ m, 

(2.17) 

Since H m (x) is a polynomial with order m. so we have two possible cases. 

o. 
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If k = m, by using the fact that the leading term of Hm(x) is 27nym, we have 

(2.18) 

Hence (2.16) holds. o 

x 2 

Let us denote hk(x) = Hk(:r)e~2 j(k!2kJ1f)1/2 as the normalized Hermite 

functions, which are also the eigenfunctions of the operator A = (-6. + x 2 )j2. Ac­

cording to the result in spectral analysis, all these functions {ho(:r), hl(r),'" ,hk(x),'" } 

form an orthonormal basis of the function space L2(JR I
) = {u : JR -----t C I J~:: lu(xWdx < 

+oo}. This result can be easily extended to higher dimensions. In general, for the 

complex function space L2(JRn) = {u : JRn -----t C I Ir~n lu(xWdx < +00 }, there is an 

orthonormal basis as {h"l (Xl) ® hk2 (·r2) ® ... ® h"Jxn ), kJ = 0,1,2"" }. 

Proposition 2.3.2. The Hermzte junrtions satzsjy the ordznary dlfJerentwl equation: 

(2.19) 

Proof. Since Hn(z)e~4 is an eigenfullction of the operator A = ~L1i:r2 with eigen­

value n + ~, we can just plug in to get the property above, 
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So we have 

H~ (x) - 2xH~(x) + 2nHn(x) = o. 

Using the ODEs above, we can get the explicit formula of Hermite functions. 0 

Proposition 2.3.3. An explicit representation of the Hermzte functions is that 

[~l I 
H () ~()k n. ()n-2k 

n x = ~ -1 k!(n _ 2k)! 2x , 
k=O 

(2.24) 

where as usual [~l denote the biggest integer not greater than ~. 

Proof. It is easy to see that the Hermite Polynomial Hn(x) is an odd function when 

n is odd and an even function when n is even. Thus we can write Hn (x) as 

(2.25) 

Through observing (2.9), we can find that the highest order term in Hn(x) arises 

when every derivative falls on the factor e-~·2. Thus we know anxn = (-2x)n( -l)n = 

(2x)n. By proposition (2.3.2), Hn(x) satisfies the ordinary differential equation 

(2.19), in the case of n even, that is 

(2.26) 

+ 2na"xn + 2nan_2 + ... + 21700 

(2.27) 

Comparing the coefficients of the polynomials on both sides, we get the combinational 
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expressions 

So \ve have 

n(n - 1) 
an-2 = - 2. 2 . 1 an, 

(n - 2)(n - 3) 
an -4 = - an -2, 

2·2·2 

2·1 
ao = - 2 . 2 . (i) a2· 

k n(n - 1) ... (n - 2k + 1) 
an-2k = (-1) Ljkk! an 

1 
- (_l)k II. 2n-2k 
- k!(n - 2k)! ' 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

The last equality above implies that we have proved (2.24) when n is even. In the 

case of n odd, we can repeat the process above again to arrive at (2.24). 0 

With the help of the explicit formula of Hermite functions, we can prove 

certain relationships between Hermite polynomials and their derivatives. 

Proposition 2.3.4. 

(n=0,1,2, .. ·). 

Proof. This follows from the explicit formula for the Hermite polynomials. 

[(n+1)/21 
A( '\' (n+1)! (_1)k(2x)n+1-2k) 
dx L. k!(n+1-2k)! 

k=U 
[n/21 
'\' 2(n+1) n' (_1)k(2x)n-2k 
L. k!{n-2k)! 
k=O 

2(n + 1) Hn(x). 
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(2.34) 
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We also have another proposition in a similar form, which is often very useful. 

Proposition 2.3.5. 

n = 0,1,2, .... 

Proof. The result follows from the Rodrigues" formula, 

(-1)" (dd.z;: e- X2 ), 

( _1)n+l(d~)n+l(Hn(x)e-X2) 

(-1) Hn+l(x)e- x2 . 

o 

The next two propositions are devoted to recurrence relations satisfied by of 

Hermite polynomials and the generating functions of these polynomials. 

Proposition 2.3.6. 

(2.35) 

Proof. A direct computation from proposition 2.3.4 gives 

o = H~+l(X) - 2x H~+l(x) + 2(n + 1)Hn+l(x) 

= 2(71 + 1)2n Hn-1(x) - 2x2(n + 1)Hn(x) + 2(n + 1)Hn+l(x), 

So we get the desired result. o 

Proposition 2.3.7. We have 

(2.36) 
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Proof. 

exp( _t2 + 2tx) 

o 

Corollary 2.3.8. In the partzcular rase that t in proposztion 2.3.7 equals ±1, ±i 

respectwely, we get these formulas 

1 +x 1 
-sinh2x = :z= ),H2k+l(X), 
e k=O (2k + 1 . 

(2.37) 

1 +0.:. 1 
~ cosh2x = ~o2k! H2dx), (2.38) 

+oc 1 
esin2x = :Z=(-l)k (2k )' H2k+1(X), 

k=O + 1 . 
(2.39) 

+00 1 
ecos2x = :Z=(-l)k-k' H2k (X). 

k=O 2 . 
(2.40) 

The proposition 2.3.6 can be read as Hl(X)Hn(x) = Hn +1(x) +2nHn - 1(x). In 

general, any product of two Hermite' polynomials can be represented as a summa-

tion of finitely many other Hermite polynomials. The details are given in the next 

proposition and its proof is very interesting to us. 

Proposition 2.3.9. We have 

(2.41) 
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enable us to write the product as 

H ( )H ( ) 
_ ~ J~: Hm(r) Hn(x) Hl(X)e-

X2 
dX

H 
( ) 

m X n X - U +00 2 I X 
1=0 1-00 HI (x) Hl(x)e- x dx 

+00 I I 
= I: 211~nr,;;HI(:r). 

1=0 .y 7r 

So we only need to calculate Imn1 . In fact, all these integrals can be evaluated explic-

itly, as in the proposition below. o 

Proposition 2.3.10. Imnl =1= 0 can only occur zn case that m + n + l is even, when 

we will have (let s = (m + n + l) /2} 

{ 

2Sy'1i'm!n!l! 

I 
- (s-m)!(s-n)!(s-l)! 

mnl-
o 

if s 2: max(m, n, l), 
(2.42) 

otherwise. 

Before evaluating the integral Imnl' let us see how it can help us in writing 

the product as the summation of Hermite polynomials. According to proposition 

2.3.10, Imnl is equal to zero unless l == m + n(mod 2) and 1m - nl ~ I ~ m + n. Let 

k = m+2n-1 be an integer, then this is equivalent to say that Imnl =1= 0 only occurs at 

o ~ k ~ min( m, n). So further computations give 

+00 Imn(m+n-2k) 
Hm(x)Hn(x) = t; 2m+n-2k(m + n _ 2k)!yriHm+n- 2k (X) 

+00 2m+n-k(m + n - 2k)!m!n!yri 
= ;;;)2m +n- 2k (m + n - 2k)!k!(m - k)!(n _ k)!yriHm+n- 2d x

) 

= mi~~,n)2kk!(7) (~)Hrll+n-2k(X). 

The only thing left is to complete the proof for the proposition 2.3.10. 

Proof. Without loss of generality, assume that l is the smallest integer of the set 



{m,n,l}. Then 

= 2mI(m-l)n(l-l) + 2nlm(n-1)(i-l) 

2 2 2 
= 2 m(rn - 1)I(m-2)n(l-2) + 2 . 2 mnI(m-1)(n-l)(l-2) + 2 n(n - 1)Im(n-2)(l-2) 

According to the orthogonality of Hermite functions, we know that I(m-Jl)(n-J2)O 7= 

o can only happen when m - )1 = n - )2 and )1 + )2 = 1, that is, when. J1 = 8 - n 

and ]2 = 8 - m. Therefore we have the result that 

2ll! m! n! s-l ( , r::; 
Imnl = ( 2 8 -l).y7r 8 - n))(8 - m)! (8 -I)! (8 -I)) 

2s yfiTm!n!l! 

(8 - m)!(8 - 1/ )!(8 -I))' 

o 

At the end of this section we shall introduce some other propositions COll-

cerning Hermite functions, which may not appear in the rest of this thesis but are 

so important that we feel it very necessary to mention. These include the relation-

ship between Hermite functions and eigenfunctions of Fourier operators, the role of 

Hermite functions in probability theory related to the normal distribution, and the 

integral interpretation of Hermite fUllctions. 
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Proposition 2.3.11. [Webpage2) Let F be the Fourier transformation defined on 

L2(JR), whzch is the umque continuous extenswn of the operator 

1 1+00 

Ff(x) = - e-"X'( f(:1:) clx, 
J21r -00 

(2,43) 

Then the Hermite functions {hie (x) : k = 0, 1, 2, ... } are eigenfunctions of the 

Fourier transformation, and they satisfy 

Eigen{( _i)k, F} = span{ h4m+/c(x) , m = 0,1,2"" , k = 0,1,2, 3.}. (2.44) 

Proof. At first it is easy to check the case of ho (x) = exp{ ~2 /2} : 

Fho(~) = _1_1+00 

e-'X (exp{ _x
2 
/2} dx 

J21r -00 fi 
1 1+00 

2 = J21r exp{ -x + i~)2 /2}dxe-S; 
27ffi -00 

1 _s..: 
=-e 2 fi . 

So ho (x) is an eigenfunction of Fourier transformation with eigenvalue 1. 

Since the Fourier transformation is a unitary operator on function space L2(JR) by 

Parceval's identity, and {hk(x), k = 0, 1,2,3,··· } is an orthonormal basis of the same 

space, the operator F can be represented as an infinite diagonal unitary matrix 

j, k = 0,1,2, .... (2.45) 
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Therefore 

Eigen{(-i)k,F} = span{h,lm+k(x), m = 0, 1,2,," . k = 0, 1,2,3.}. 

o 

Remark 2.3.12. In hzgher dzmenswnal cases, simzlar results are also true. The 

eigenvalues of the Fourier tmnsformrdzon are still { ±1, ±i}, and the only difference 

is that the eigenfunctwns are Hermdt, functions in hzgh dimensional cases, that zs, 

in high dimensional cases. 

Next we will see Hermite polynomials also play an important role in the 

probability theory. 

Proposition 2.3.13. If we have a normal distribution p(:r) = e-(:r-1-')2 / ft, then the 

expectation of the Hermite polynomIals are 

(2.46) 

Proof. It follows from proposition 2.3.7. 

o 
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Finally let us state that Hermite polynomials have their form of integral in-

terpretation. 

Proposition 2.3.14. 

(2.47) 

Proof. A direct computation with the help of explicit formulas of Hermite polyno-

mials will work. 

J+OO +00 (() ) _t
2 

= 2" L ~ xn-kiktk e 7r dt 
-00 k-O k even ft - , 

J+OO [~l (' ) _t
2 

= 2n" n. xn- 2k (_1)kt2k _e -dt 
-00 ~ (2k)!(n - 2k)! ft 

=~( 2nn! xn - 2k (_1)k f (k+1/2)) 
o (2k)!(n - 2k)! f(1/2) 
k=O 

[~l (' ) n. n-2k k 
= L k!(n _ 2k)! (2x) (-1) 

k=O 

o 
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2.4 Some estimates of integrals of products of 

Hermite functions 

Let us introduce the integral Ck1mn = 1:00 

hk(x)hz(x)hm(x)hnCc) dx, which can be 

viewed as a symmetric four-tensor. It plays an important role in this thesis to obtain 

a good understanding of this four tensor. 

In this section, we will pay attention to estimates of the entries CkZmn ' A very 

special case, k = l = m = n, has been studied by G.Freud and G.Nemeth[F-NJ. Their 

method depends heavily on the knowledge of special functions such as the Gamma 

and hypergeometric functions. A quick review will be provided in this section. Since 

their method can only work for estimate of Ckkkk , we will also provide our new method 

for estimate on Ckkll , which will recover the result by G.Freud and G.Nemeth if k = l. 

One advantage of our method is that it only depends on the properties listed in the 

last section. and doesn't require the knowledge of other special functions. Now let 

us begin with the result of G.Freud and G.Nemeth. 

Theorem 2.4.1. {F-N} We have 

C = 2- 1/ 21l'-3/21
1 

tn(1 - t)-1/2 F (~ ~. l' t) dt nnnn 2 1 2' 2" , 
o 

(2.48) 

where 

(
1 1. . ) _ +00 (r(j + 1/2)) 2 J 

2Fl 2' 2' 1, t - J~ r(I/2)j! t . (2.49) 

Corollary 2.4.2. The sequence { Cn /llm } is totally monotone and 

as n ~ +00. (2.50) 
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Remark 2.4.3. A sequence co, C1, C2,' •. of real numbers is called totally monotone 

if 6,m cn ::::: 0, (m, n = 0, 1,2, ... ), where 

Hausdorff showed that for every totally monotone sequence co, C1, C2,' .. there exists 

(essentwlly umquely) a monotone nondecreasmg real function ¢(u), 0::; u ::; 1, such 

that 

Conversely, if ¢( u) is a monotone nondecreasing bounded real function on the interval 

co, C1, C2, • .. is totally monotone. 

We are most interested in the claim ill the second part of the corollary above. 

A sketch of the proof towards this result is provided. The authors first use Mehler's 

generating series [E] to get 

+00 1 1 2::: Cmmnnumvn = - ((1 - u)(1 - 1')(1 - UV))-2 
m,n=O y'27r 

_ 1 f r(A + 1/2)r(f-l + 1/2)f(v + 1/2) ( )A /l v 

- y'27r A,/l,v=O r(1/2)A!f(I/2)f-l!r(1/2)v! UV U v . 

Although general terms Cmmnn can't be represented in a clean formula by comparing 

the coefficients on both sides, it can be done for Cnnnn 

C __ 1_+00 (f(j + 1/2)) 2 f(n - j + 1/2) 
nnnn - ~ ~ f(I/2)j! r(I/2)(n _ j)! . 

(2.51) 

By making use of hypergeometric functiolls, the equation (2.51) can be written as 

Cnnnn = T 1/ 27[-3/2 (-n~)n 11 tn(1 - t)-~ ( (:t) n r~ (1 - t)n) dt 

= 2-1/ 27[-3/2 t tn(1 - t)-~ F (~ ~. l' t) dt Jo 2 1 2' 2" , 
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which is just the result in theorem 2.4.1. Using Sterling's asymptotic series, we 

obtain 

(
1 1 ) 1 1 

2 F1 "2'"2; 1: t =;: log 1 _ t + 0 (1) , 

which holds uniformly in t E [0,1). A further computation concludes that 

Cnnn" = T 1/ 27f-5/2 t tn(l - t)-~ log _l_dt + 0(1) t tn(l - t)-~ dt 
Jo 1 - t Jo 

= 2- 1/ 27f-211, -1/2 log 11, + 0(11, -1/2). 

(2.52) 

In the process above, it is a ver~T important step to establish the formula (2.51). 

Below we will provide our methods for estimate of Ckkll , and a similar formula will 

be obtained. First of all, let us review the fact that CmnOO can be computed exactly 

[E-M-O-T]. 

Proposition 2.4.4. 

if m -I- n(mod 2), 

ifm == 11,(mod2). 

(2.53) 

(2.54) 

Proof. The first case is trivial. Let us now work in the second case m == 11,(mod 2). 

By proposition 2.3.7 in the last section. we can introduce two extra parameter 8 and 

t to get 

+00 t m 

exp( -e + 2t1:) = L Hm(x)-" 
m=O m" 
+00 8 n 

exp( _8
2 + 2sx) = L Hn(x),. 

n=O 11,. 

Their product is 
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and in particular, 

1
+00 

-00 exp( _(t2 + 8 2
) + 2(t + 8) x) exp( _2X2)dx 

(2.55) 

We can also write this integral in another formula by using the same propo-

sit ion 

Noticing that functions Hk ( V2x), k = 0,1,2,· .. , are orthogonal to each other with 

respect to weight function e-2x2
, we can proceed as 

1:00 

exp( _(t2 + 8 2
) + 2(t + 8) x) exp( _2X2)dx 

= exp (-(t - 8)2/2) 1:CX:: exp( _2X2)dx 

= ~ ~ ( ~ 1 )J (t _ 8) 2) . V 2J =0 j.2) 

By comparing equation (2.55) and (2.58), we deduce that 

(2.56) 

(2.57) 

(2.58) 

In the process above, we use C (tm 8n; exp ( - (t - 8)2/2) to denote the coefficient of 

term tm
8

n in the Taylor series of the entire function exp (-(t - 8)2/2) at the point 

(0,0). o 
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Now we are in a good position to compute out CmnOO , writing it as CmnOO = 

J+oo Hrn (x)H n (x )e-2~2 dx . 
-C<) ~~7l' ' from whIch the corollary follows. 

Corollary 2.4.5. We have 

{ 

0 
C -

mnOO - m-n 1'(",+,,+1) 
(-1)-2 2 

'/27l'vmln! 

iJm -I- n(mod2), 

iJm == n(mod2). 

After computing out what is c'llnOO, let us define the coefficients C~n as num­
+00 

bers defined by the relation hm(x)hll(x) = LC~n(hp(y'2x)21/4). Since {hp(x), p = 
V"'O 

0,1, 2, ... } is an orthonormal basis of the function space L2(JR), a scaling gives us 

another orthonormal basis as {hp ( y2}')2V-l, p = 0,1,2"" }. One advantage to in­
+00 

troduce these coefficients is that we can interpret Ck1mn easily, as Ck1mn = L CfIC~n' 
p=O 

In the following theorem, we will sec that for m, n given, C~n is nonzero only for 

finitely many p, and we can further compute out C~n exactly in some special cases. 

Here let us use the notation C (xP , pee)) that denotes the coefficient ofterm xP in the 

polynomial p( x). 

Theorem 2.4.6. For gwen m, n, CTIII -I- 0 only occurs at p = m + n - 2r, where r 

is an integer satisfying 0 :S T :S [mi"]. And m that case, 

(2.59) 

To prove this theorem, we need introduce another sequence of integrals Imn;p = 

J~: Hm(x)Hn(x)Hp(y'2x)e- 2X2 dx. It is easy to find the relationship between C~n 

and lmn,p as 

C~n = 1:00 

hm(x)hn(x)hp(y'2x)21/4dx 

ImTl,p2
1

/
4 

(2.60) 
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We will see that the result of the theorem 2A.6 is equivalent to the following lemma, 

which will be proved. 

Lemma 2.4.7. We have 

o 

i J p > m + TI OT P =I m + TI (mod 2) , 

Imn:p = 

2m+;-1r(rn+n;p+1 )p!( -1) n'-~t-PC(xP, (1 + x)m(l _ x)n) 

iJp ~ m + n andp = m + n(mod2). 

Proof. It is trivial to find Imn;p = 0 when p =I m + n(mod 2). If p > m + n, then as a 

polynomial of order less than p, H m (x) H n (J') can be written as the linear combination 

of the scaled Hermite polynomials H z( y2x), which are orthogonal to Hp( y2x) in the 

meaning of integration with weighted function e-2x2
. Thus we must have Imn;p = 0 

for those p > m + n. The most interesting case is the next one, the computation of 

Imn;p when p = m + n(mod 2). 

Imn.p = 1+00 

Hm(x)Hn(x)d(-Hp_1(v'2x)e- 2
:r

2
) ~ 

-00 y2 

= V2(mI(m-1)n;(p-1) + nlm(n-1);(p-1)) 

= (v'2) 2 (m(m - 1)I(m-2)n;(p-2) + 2mnI(m-1)(n-1):(p-2) + n(n - 1)Im(n-2),(p-2)) 

= (v'2y L 
dl +d2=P 

O~dl~m, O~d2~n 

p! m! n! 
-d 'd '( - d )' ( - d ),I(m-dl!(n-d2);o. 

1· 2· mI· n 2· 
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By proposition 2.4.4, I(m-dIl(n-d2 );O can be computed out exactly, so 

Imn;p = 
dl +d2=P 

O<Sdl<Sm,O<sd2<S1l 

m! n! 
d1!(m - d1)! d2!(n - d2)! 

m±n-l , (m + n - p + 1)( )m-n- p 

= 2 2 p.r 2 -1 2 

~ (( _1)d2 In! n!) 
L d1!(rn - d1)! d2!(n - d2)! 

dl +d2=P 
O<Sdl<Sm,O<Sd2<S1l 

m±n-l m + n - p + 1 m-n-p 
= 2 2 p!r( 2 )( -1) 2 C(xP ; (1 + x)m(1 - xt)· 

o 

It is easy to verify theorem 2....l.6 after we have proved lemma 2.4.7. We just 

need to use the relationship between C~n and Imll;p (see 2.60), together with the 

following two basic propositions for polynomials, 

C(xP; (1 + x)m(1- xt) = (_I)"C(xm+n-p; (1 + x)m(1 - X)"), (2.61) 

C(xP; (1 + x)m(1- xt) = (-I)PC(xP; (1 - x)m(1 + X)"). (2.62) 

In general, C(xP ; (1 - ~r)m(1 + .r)") is hard to figure out. But the situation is 

very different for such a special case m = n, 

c2m- 2r = (2m - 2r)! . f( I" + Ij2)C(x2r; (1 - x2)m)( -IY 
mm 21/47f3/42m-rm!J(2m - 2r)! 

(2m - 2r)! (2r)! 
22m - 2r (m - r)!(m - r)! 22rr!r! 

(2.63) 

1 

_l r(r + 1/2) (r(m - r + 1/2)) '2 

= (27f) 4 [(1/2)1"! r(1/2)(m _ r)! (2.64) 

Theorem (2.4.6) gives the following. 
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Corollary 2.4.8. For Given m, C~m i= 0 only occurs at p = 2r, where r is an 

integer satzsjying 0 ::; r ::; m. And in that case, we have 

1 

c 2r = (27r)-i r(m - r + 1/2) (r(r + 1/2))"2 
mm r(1/2)(m - r)! r(1/2)r! 

(2.65) 

According to theorem 2.4.6, every nontrivial entries C k1mn (k + I = m + 

n(mod 2)) in the four tensor can be represented as finite summations as follows 

min(m+n,k+l) 

C k1mn = L CfP!;'n 
p=m+n(mod 2) 

r( m + n - p + 1 )r( k + l - ]J + 1) 
2 2 

C(xm+n- p; (1 + x)m(l - x),,)C(Xk+l- p; (1 + x)k(l - X)l). (2.66) 

In particular, we have 

_! min(m,n)r(r + 1/2) [(m - r + 1/2) r(n - r + 1/2) 
C = (27r) 2 L 

mmnn r=O r(1/2)r! r( 1/2)(m - r)! r(1/2)(n - r)! . 
(2.67) 

When m = n, the equation above is just the formula (2.51), which appears in the 

paper [F-N]. 

Although it turns out that C k1mn in the formula (2.66) is still hard to be 

analyzed in general settings, we can use it to get good estimates on Cmmnn . Before 

we state our results for this, let us introduce two useful bits of notation. We denote 

(k) by Jk2+1 and use the symbol a ~ b to describe the relationship of a and b 

as there exist two universal constants C1, C2 > 0 such that C1 b ::; a ::; c2b. Similarly, 

we use a :S b (a 2: b) with the meaning that there exist constants c > 0 such that 

a ::; cb (a 2:: cb). Now we can have such an estimate on Cmmnn . 
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Theorem 2.4.9. For nonnegative zntegers m 2: n, we have 

(2.68) 

If m or n is zero, then the part In1
/

2 (m) In1
/

2 (n) can be completely removed. 

Proof. Let us start with formula (2.67). By Sterling's formula n! = nne-n,j27rneen ~ 

nne-n,j27rn, 12~+l < en < l~n (see [A-S]), we can rewrite equation (2.6.5) in the form 

of 

if r = 0, 

if r = 7n, (2.69) 

if 1 ::::: r ::::: m - 1. 

Formula (2.67) can therefore be written as 

(2.70) 

First let us see the case m = n. We have 

_ -1/2 -2 (v7T ~ ~1 1 ) 
Cmmmm - 2 7r + r;;;;; + D r;;.( ')' 

In Y m r=l y r m - 7 

Noticing that the function f(r) := vlrl,:,-r) is decreasing on (0, Wl and then increasing 

on [W, m), \ve can get 

I! 1 < rm
-

1 

1 dr + 1 I 
r=l v'r(m - r) - Jo Jr(m - r) v'r(m - r) r=m-l 

1 1 
::::: r;;;;; (1n m + In 4) + Vm-=1 

y1n m-l 
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and 

n-1 1 jm-1 1 1 I 2: > dr+ ----
.=1 vr(m - r) - 1 vr(17l - r) vr(m - r) '=T 

1 9 3V3 1 
> -(lnm+lll-)+---. - yITii 4 2 mylTii 

Thus we conclude that 

(2.71) 

In doing so, we have already recovered the result in [F-N] without use of 

properties of special functions. We proceed for the case m > n. 

When n = 0, according to corollary 2.4.5, we have 

When n = 1, we have 

c _ f(m + 1/2) ~ _1 __ 1_ 
mmOO - V'27r17l! yITii V'27r . 

Cmmll = C~mC\\ + C;mC?l 

~ 2-~7r-i J-m. 

Finally let us check on the case of m > n 2: 2, 

n-1 1 (n-1 1 ) 1/~ (n-1 1 ) 1/2 
2: ~ 2: 2:--
.=1 vrvm - r~ r=l r(m - r) r=l n - r 

(2.72) 

(2.73) 

1 (1 1 1 1 ) 1/2 = - (1 + - + ... + --) + ( + ... + --) 
yITii 2 n-l m-n+l m-l 

(1 + ~ + ... + _1_)1/2 (2.74) 
2 n-l 

~ _1_1n1/ 2 ((m _ 1) n - 1 ) In1/2(n - 1) 
yITii 1n - n+ 1 

~ (m) -~ ln1/2 (m) In1/2 (n) . (2.75) 
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By using the last result in the equalit~t (2.70), we can conclude the statement in the 

theorem. o 

Remark 2.4.10. Thzs estzmate turns out to be very accurate up to the order oj (m), 

and the logarzthmitic term cannot be removed m the general cases. To see this, we 

only need compute the term C mmnn in such two specwl cases. One is CmmOO , which is 

equal to rj;:~!2) = Jm fin + o( Jm) as m -t +00. The other one zs Cmm(m-1)(m-1)' 

We have 

Remark 2.4.11. It turns out that c'nmnn has another znteresting estimate zJ we 

make use oj the theory oj elliptic I.ntegrals. Since the Junction J(r) := vrvrnbv:n=r 

is mtegrable on (0, n) and zts mono tonicity periods are easy to analyze, we can find 

that Cmmnn ~ 2-~7r-2 fon vrvm:bvn=rclr. The integral part can be represented by J( r m-r n-r 

elliptl.c integral (see fJJ) as fron fivmb~dr = ~ fro~ J de. = ~E(s). where 
r 171 1 n r ym 1-s2sln2e ym 

s = j'!f < 1. Thus we get a very exact estzmate on Cmmn71' 

By using Holder inequality, we can easily deduce from the result above an 

estimate for the general term Clelmn . Assume that k ~ I ~ m ~ n, then 

Ic I < C 1
/ 2 1/2 

klmn - kknn CUmm 

(2.76) 

Here we list this result as a corollar~t of the theorem above. 
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Corollary 2.4.12. For nonnegative integers k 2: l 2: m 2: n, we have 

(2.77) 

If the smallest number n zs equal to 0, then the part of (In (k) ln (n) )1/4 can be taken 

off· 

We should mention that the estimate in (2.77) is not bad when these integers 

k, l, m, n are almost equal to each other or the integer pairs (k, n) and (l, m) are 

not far away. But it turns out that the entries Cklmn in the four tensor are very 

complicated, and show completely different property in some other occasions. In the 

next chapter, we will see that when one of the integers {k, l, m, n} is much larger 

than all the others, Cklmn will show a fast decreasing property. 

2.4.1 The estimate of Ck1mn in a special case 

In the second chapter, we have got an estimate on general coefficients Cklmn , which 

is sharp when (k, l) = (m, n). But it turns out that the four tensor Ck1mn shows very 

different behavior in other situations. In this section, a different method from that 

in the second chapter will be adopted, which is based on the generating functions for 

the Hermite polynomials. We will show that when one of the indices, say k, is much 

larger than all the others, the coefficient GUmn will be rapidly decreasing. 

Proposition 2.4.13. We have 

f(t, s, u, v)) zf k + l + m + n == O(mod 2) 

otherwise, 

(2.78) 
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where p = (k + I + Tn + n)/2, f(t, 8, u, v) =exp ((t+8+
2
,,+,,)2 - (t 2 + S2 + u 2 + v2 )), 

and C (tkslumv n ; f(t,s,u,v)) denotes the coefficient of term tI'slumv n in the Taylor 

expansion of the entire function f(t, h, u, v) at point (0,0,0,0), 

00 

Proof. Only the first case is nontrivial. Let Hk(X)HI(X)Hm(x)Hn(x) = "£Bklmn HJ ( V2x). 
)=0 

Then 

1+00 0 r.;. _2",2 / ( k+l+m+n. / ) 
Ck1mn = -00 Bk1mn Ho( v 2,r:) e dx 2 2 v k!l!m!n!7T 

_ 0 /( r-;:;. ,)k+l+2m+n. /k'l' , ') - Bk1mn V 7T2 . - v . . m.n .. 

By the property of the generating function for Hermite functions, we have 

{ 
_ 2 .) } _ ~ H k (X) k ex p t + _.r:t - D ,t 

k=O k. 
+00 Hl(X) 

exp{ _S2 + 2.rs} = "£ _,_sl 
1=0 I. 
+00 H (:1') 

exp{ _u2 + 2J.'u} = "£ m, um 
m=O Tn. 

+00 H (x) 
exp{ _v2 + 2,rv} = "£ _n_, _Vn. 

n=O n. 

Taking the product of these identities, we get 

exp (-(t2 + S2 + 1/
2 + V 2

) + 2(t + s + 11 + V)X) 

~ Hk(X)H/(x)Hm(x)Hn(x) k / m n 
D "'1' , , t s 11 V , k,l,m,n=O r.: . . rn.n. 

from which we find, 
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and 

LHS = (_(t+s+u+v)2 2(t+s+u+v) ~2) 
. .. exp 2 + v'2 v ~x 

t+S+U+V-
x exp ( 2 ) - (e + S2 + U2 + V 2

) ( 0) 
= ~HJ(V2x) (t+S+IL+v)J j ( ,) 
6'1 fC) t,s,U,'t: 
J=O J. V 2 

R.H.S.= 2::+00 Bilmn HJ ( V2x) tk I m n 
S U v 

k!l!m!n! 
k,l,m,n.)=O 

Through comparing the coefficients, we get for each j E Z+ 

1 (t + s + u + v) ] +00 BJ 
j(t S U ,,) '" klmn tkslumo,n 

j! V2 ' , " = L- k!l!m!n! ~ 
k,l,m,n=O 

In particular, when j = 0 we have 

j(t, s, u, v) = ~ BPlmnHJ( V2x) kim n 

L- kIll I Its u v . . . m.n. 
k,l,m,n,J=O 

Thus 
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Corollary 2.4.14. For general nont1'lvial term Ck1mn (k + I + m + n even), we have 

the estimate 

I Ck1mn I:S ~')_ (2(22pP ),! ,) pip! 
V L-/f p.p. k!l!m!n!' 

(2.81) 

where p = (k + I + m + n)/2. 

Proof By the Taylor expansion serici-\ formula for exponential functions, we write 

C(tks'Uml,n; J(t,s,u,V))=C(tks1
U

11I 1,n;;! Ct
+

s
+2

U
+

U
)2 -(e+s2 +u2+v2))P). 

We observe that the coefficient of term t k s'umvn in ((HS+;'+V)2 - (t 2 + S2 + u2 + V2)) P 

can always be controlled by that in Ct+s+2u+V
)2 r ' therefore 

IC(tkslumv"; J(t,s,u,v))1 :SC(tkslumvn; ((t+s~'U+V)2)P) 
1 1 (k+l+m+n)! 

p! 2p k!l!m!n! 

According to the result of the last proposition, we get 

I 
C I 1 1 (2p)! 

klmn :S ~2 22p ! Vk'l' , , v L-IT P . . m.n. 

1 (2p)! pip! 
V2IT 22pp!p! k!l!m!n! . 

o 

Although the inequality in (2.81) only provides a poor estimate for term Ck1mn , 

when k, I, m, n are almost equal to each other, it provides a much sharper estimate 

than that in last section when one of k, I, m, n is much larger than all of the others. 

Corollary 2.4.15. There is a POSli11'(' 1,nteger N and a real number a > 1 such that 

iJk>N(l+m+n) then 

IC I<-k Ullin rv a . (2.82) 
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Proof. By using the Sterling's formula, the estimate (2.81) can be continued as 

I I < 1 1 1 
Ck1mn "'-2 r;;;.~ 7f v 7f ~ mn 

< 

1 p (k k lim m n n) In - = - - In - + - In - + - In - + - In - , 
I 2p p p p p p p p 

which can be regarded as the product of the number pl2 and the sum of the values 

of the function f(x) = xlnx at the points of kip, lip, mlp and nip. From the fact 

that p = (k + l +m+n)/2, we know klp+ IIp+mlp+nlp = 2, and when k is much 

bigger than l, m and n, then kip is close to 2 and lip, mlp and nip will fall into the 

internal [0, 1], on which the function f (x) is nonpositive and convex. Thus we have 

k k I l 117 m n n 
- In - + - In - + - In - + - In -
p p pp p p p p 

kl k l+m+n
l 

l+m+n 
>-n-+ n----
- p p p 3p 

~ ~ In ~ + ( 2 - f,) In C ~ ~) 
This quantity tends to 21n 2 as k/p tends to 2. Thus there is a positive integer N 

sufficiently large and a positive number 0 > 0 such that if k > N (l + m + n) then 

For example, we give a choice of the pair of (N,o); we can choose N = 7 (which 

implies k/p > 1.75) and 

0= 0.358 < 1. 751n 1. 75 + 0.251n (0.25/3) . 



Let a = e6/ 4 > 1, then the inequalit~· (2.82) holds. D 

At last, before we end up this section, we provide a few values of nontrivial 

entries Ck1m11 (k + l + m + n even) 

Coooo = vk ( ' 1 '0011 = ~ 2v21l' 
C

0002 
= __ 1_ 

4y17i' 

C0022 = 8~ C01l2 = 8ft Cl1l1 = 4~ 

C0222 = 32~ ( ' 7 
'11')') = ~ 

-- 16v 271' 
C 41 

2222 = 64V21r 
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Chapter 3 

Function Spaces 

3.1 Introduction 

Let us consider such a linear Schrodinger equation of the following form (Schrodinger 

equation with quadratic potential), also known as the problem of a quantum har-

monic oscillator 

{ 

11/-'t = ~V':rx - .r2
2 

W 

w(x,O) = wo(x) 

x E]Rn 
(3.1 ) 

~' complex valued. 

This equation can be solved completely in several ways, one, using the theoretic 

structure of (semi)groups [H-P]. By writing the equation in the form of -iWt = AVJ = 

(-D.;x
2

)ljJ, we express its unique solution asljJ(x, t) = etAtwo(x), where the operator 

elAt is a strongly continuous group (Co group) on the function space L2 (]Rn). In 

particular, for any time t E lR the operator etAt is a bounded linear mapping on 

(i) when t = 0, the mapping is the identity operator on ]Rn; 
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(ii) Vt s > 0 eiA(Hs) = e,At 0 e,As . , - , , 

A basic property of this group is that all the operators are unitary. 

Proposition 3.1.1. The Co group zs made up of unitary operators on L2 (JR.n), which 

means for any time t E JR. the operator e'At is an isomorphism on the function space 

L2(JR.n) , and it preserves the inner prod'uct (¢, zp) = J~: ¢(x)zp(x)dx on L2(JR.n), that 

is, (e2At¢, elAtzp) = (¢, zp). 

Meanwhile this operator e2At has an explicit form of its kernel, gIven by 

Mehlor's formula[F-H][C1]. 

Proposition 3.1.2. Mehlor's formula. zs an explicit expression for the kernel of the 

operator e'At for 0 < t < 'iT,' 

1jJ(t, x) = ,. , eSii1t( 2 cost-X'Y)1/Jo(y)dy,. 1 1 -, x
2

+y2 

( - 2m S111 t)" 2 IRn 

(3.2) 

From the proposition above. we can see that the operator in fact can be 

defined on the function space U (JR."). An easy application of the Mehlor's formula 

is that this operator shows a dispersive property for a period of time. 

Proposition 3.1.3. For 0 < t ::::: ~, this Co group {e'At} satisfies 

(3.3) 

As we have introduced before. Hermite functions are eigenfunctions of the 

operator A = (-6. + x2 )/2. By using this fact, we can write the solution of (3.1) 

47 



in another form. For simplicity, we always work on the I-dimensional case below 

without further specification. But all the results in the following sections are in fact 

true for n-dimensional cases. 

Since {hk(x), k = 0,1,2··· } is an orthonormal basis of the function space 

£2(JR), we can uniquely write the initial data ?/Jo(x) E £2(JR) as a series ?/Jo(x) = 
+00 
'E.,qk(O)hk(:r), where it converges with respect to the £2-norm. Then we can write 
k?O 

the solution as 
+::>0 

?/J(t, x) = e,At?/Jo(x) = 'E.,qk(O)e,wkthk(x), (3.4) 
k?O 

where Wk = k + 1/2, k = 0, 1,2, . .. is the k-th eigenvalues of operator A. In 

particular, we have the proposition. 

Proposition 3.1.4. For the Co group {eult
} acting on £2(JR), it has such periodic 

properties 

exp(iA(t + 21f)) = - exp(iAt), 

exp(iA(t + 41f)) = exp(iAt). 

(3.5) 

(3.6) 

A natural idea is that this result may be generalized for a wider family of 

functions than £2. Formally we can have such a result: if the initial data 

+00 
?J'o(x) = 'E., ckhk(X) 

k?O 
(3.7) 

for sequences {cd with some properties, then the solution 'E.,::;Cke'Wkt hk (x) should 

be the solution of the partial differential equation (3.1). In the following section, 

we will introduce a family of Hilbert spaces XS(JRn) (a Hilbert scale) based on this 

representation of the initial data in decomposition with respect to Hermite functions. 
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It is an unexpected thing that this Hilbert scale turns out to have a close 

relationship with the theory of rapidl~' decreasing functions and tempered distribu­

tions. In fact, the representation (3.7) is true for every tempered distribution and 

the equality holds in the sense of Hermite expansion series for tempered distribution. 

Thus the PDE can have a uniquely global solution for any initial data which is a 

tempered distribution. When we turn to study the Hilbert scale itself, it is found 

that these Hilbert functions have many very good properties. For example, they 

can determine the topological structure of the Frechet space S(JR.n) and that of the 

tempered distribution S' (JR.n); many familiar operators like the annihilation opera­

tor (lowering operator) and creation operator (raising operator) can be regarded as 

homomorphism on the Hilbert scale; ill particular the Fourier transformation can be 

regarded as essentially a member in the unitary (semi)group of e'At. 

One particularly interesting thing is that the function spaces X S (JR.n) have 

close relationships with Sobolev space~ HS(JR.n). When s E Z+, they are just the space 

HS(JR.n) n.F (Hs(JR.n)); when s E Z_. then they are the space HS(JR.n) +.F (Hs(JR.n)). 

If s is not an integer, similar results seem to be correct too. In that case, we provide 

some partial results in the direction of trying to prove it. Some other properties 

are also considered, such as the relationship of the spaces X S (JRn) and £P (JRn) and 

the definition of the product of two functions in XS(JRn). In the process of tracing 

back to the theory of rapid decreasing functions and tempered distribution, we re­

alize that the function spaces X S (JR.n) are" essentially" the V. Bargmann's function 

spaces F/:, which were used to analyze the properties of the tempered distributions 

in [Barl ][Bar2J. 

The following sections are organized in this way. In section 3.2, we provide 
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definitions of the function spaces XS(JRn) and prove that they form a Hilbert scale, 

whose intersection is the rapid decreasing functions space S(JRn) and whose union is 

the tempered distribution space S'(JRn). In section 3.3, we study on the relationship 

of topological structure of the function space X S (JRn) and those of the space S (JR71) 

and S' (JRn). Besides that we consider on many basic properties of the function spaces 

XS(JRn) from the viewpoint of Hilbert scale, and many familiar operators are also 

considered when regarded as a homomorphism of the Hilbert scale. In section 3.4, 

we study on the relationship of the functioll spaces XS(JRn) and the Sobolev spaces 

HS(JRn). In the last section (section 3.5), we study on several problems: the first one 

is the relationship between the space XS(JR") and the space LP(JRn); the second one 

is about the definition of the product of the two functions from the space XS(JRn); 

the last one is about the proof that for any 8 E JR the function spaces XS (JR71) are 

isomorphic to the V. Bargmann's function spaces F/: as two Hilbert spaces. A brief 

review on V. Bargmann's work [Barl][Bar2] are provided in this section. And then 

the difference of our work from that of V. Bargmann, together with B. Simon's work 

[Si], are pointed out . 

3.2 Definitions of function spaces 

In the last section, some review on the properties of the operator e'At are provided. 

Now another observation on the operator A = (-~ + x2
) /2 is that it is an positive 

definite essentially self adjoint unbounded operator on the function space L2(JR), and 

the inverse of its square root operator B = A~1/2 = ((-~ + x 2) /2)~1/2 is a compact 

operator on the same space. Let us recall that L2(JR) is a separable complex Hilbert 
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space with inner product (u, v) = .C: u(x) v(x)dx. and it has an orthonormal 

basis {hk(x), k = 0.1,2,··· } Then the operator B can be represented in the form 
+00 

Bu = L (k + ~)-1/2 (u, hk(x))hk(.r). Below let us denote the space L2(lR) by EO(lR), 
k=O 

or just EO when the space is already taken as R Now we can define a scale of Hilbert 

space[Mi, p.93], [Bo], [E-K-td-Y, p.61]. [B-H-K, p.143]. 

+00 
Definition 3.2.1. Let E+cx, = n B"EO and for u, v E E+oo and Va E lR, define 

n=O 

(u, v)n = (B-Ou, B-nv). Denote by Eo as the function space which is the completzon 

of the space E+oo equipped with the IIIIE" = (, )~/2 topology. The family of a -t En 

is called the Hilbert scale defined hy B, and E+oo is called the center. 

It fo11o,vs that E+oo = n Eo, and if we suppose that E+oo carries the weakest 
oEiR: 

topology in which all inclusions E+x -t Ea are continuous, then we can get that 

U Ea = E-oo is its dual space. Besides that, since IluliE = IIBi3uIIE for all 
oEiR: n n+p 

u E E+oo and ex, (3 E lR it follows that the operator Bi3 extends to an isometry from 

Eo to Ea+(3, which we will also denote by BP. 

In the following parts. we will use another natural way to define our func-

tion space and then go back to check that our definition fits in the above theoretic 

structure. 

As we have mentioned, the operator A = (-~ + x 2
) /2 is a positive definite 

self-adjoint unbounded operator on the function space L2(lR). In terms of the or-

thogonal basis {h k (x), k = 0, 1,2 .... }, the operator A can be interpreted as an 

infinite matrix A = (a)k) where aJh = 6Jk (k + 1/2) and j, k = 0,1,2" . '. Then 

we can define an linear operator AS for any s :2: 0 through such an infinite matrix, 
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(3.8) 

+00 
where its definition domain can be chose as D(AS) = {u E L2(JR)\ u = ~ qkhk(X) 

k=O 
+00 

satisfying ~ \qk \2 (k + 1/2)2s < +00 }. It is easy to verify such two facts for this 
k=O 

operator: (i) its adjoint operator (As)* satisfies D((ASr) = D(AS) and (Nr = N; 
+00 

(ii) (AS(u), u) = ~ \qk\2 (k + 1/2)S 2: O. That means the linear operator defined 
k=O 

by (3.8) is a positive unbounded self-adjoint operator. Below we define our function 

space like this. 

Definition 3.2.2. For any s 2: O. if any function u E L2(JR) is in the definition 

domazn of the operator AS, then we say that II 1S in the function space X2s(JR). And 

we endow thzs functzon space with such an tnner product, CU, V)x28 = (ASu, ASV)£2(IR) 

for all u, U E X2s(JR). 

In general, if T is an unbounded self-adjoint operator on a Hilbert space H 

with its inner product (-, .), then its definition domain D(T) can also become a 

Hilbert space when we equip this linear subspace with the inner product (u, V)D(T) = 

(Tu, v) + (u, v). In the definition of our function space, there is no second term for 

the inner product. But it turns out that om defined space is still a Hilbert space. 

This is due to the fact that our operator AS is in some sense "strict positive" and 

the second term (u, v) can thus be absorbed into the first term (ASu, ASu). 

Theorem 3.2.3. For s 2: 0 the functzon space X2s(JR) forms a Hilbert space under 

the inner product (-, ·)x2S. And this space IS isomorphic to the space l2(Z+; q := 
+00 

{q = (qo, ql, q2,"') E Z~ satisfying ~ \qk\2 (k)S < +oo} under the mapping T : 
k=O 
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+00 
Proof. By the property of the operator A. s, we can have that for any u = L qkhk (x) E 

k=O 
+= +00 

X 2s (lR), (ASu, ASu) = L (k + 1/2?' Iqkl 2 ~ L (k)2S Iqkl 2
, where the last term is 

k=O k=O 

the standard inner product on the space lH2+; q (without further clarification we 

always writing [2(2+) instead of the notation [2(2+; q in the following part of this 

thesis for simplicity). According to this, it is easy to verify that the mapping T is a 

well defined continuous linear operator and it is injective. 

Conversely, since 8 is nonnegative, for any q = (qo, ql, q2, ... ) E [2(2+) we can 
+00 

verify that the corresponding function u(x) = Lqkhk(x) are really in the function 
k=O 

space X 2S(lR), which means the mapping T is also surjective. We can easily further 

verify that the inverse of mapping T is also continuous. Thus the function space 

X2S(lR) is isomorphic to [2(2+), which obviously is a Hilbert space. o 

According to the theorem above, we know that every function in X25(lR) 
+00 

(8 2: 0) can be represented as Lqkhk(X), where q = (qo, ql, q2,"') is the unique 
k=O 

correspondence in the function spaCt' /2(2+). So a natural question next is what 

kind of functions are really in our function space X 2
s (lR) and whether they have 

close relationship with other function spaces which are already familiar to us. The 

answer turns out to be yes. 

Theorem 3.2.4. If 28 is an integer. say 28 n E 2+. then our function space 

xn (lR) in fact is 

xn(JR) ~ { U E L2(JR) I xn C~ r n(x) E L2(JR) for all indices 0 :5 a + (3 :5 n} , 
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and there is an equivalent norm Ilull~ = L Ilx"'u(3) 11~2 ~ Ilull~n = (ABu, Nu) 
O~Q+i3:;n 

on this function space. 

Remark 3.2.5. In particular, we have such two special cases: one is the case n = 0, 

we have XO(JR) = U(JR); the other oneLS the case n = 1, then we have Xl(JR) = 

virial space in /M-R2J. 

Proof. Let us define vn(JR) = {u E L2(JR) I .T"'[)~u(x) E £2 for all indices 0 S Q + (3 S n} 

as a function space equipped with the inner product (u, v)vn = L (xQ[)~u, xQ[)~u) £2' 
O:;"'+i3:;n 

It is easy to check that this function space V·" with the given inner product is a Hilbert 

space. So the only thing left to show is that these two function spaces are in fact the 

same one. Let us prove this by the method of induction. 

When n = 0, then obviously we have the operator AO = Id, thus function 

In the case of n = 1, for those good functions u in the function space Xl, say 

u E S, we have 

= (u,u)vl. 

We claim that the function space S is both a dense subset of Xl (JR) and VI (JR) with 

respect to their norms respectively. This is because: 

(i) In the case of space Xl(JR), for any u 

5.! 

+00 
Lqkhk(x) E XI(JR), we have 
k=O 



N 2 +00 2 
UN = Lqkhk(X) E S, and Ilu - uNllxl = L Iqkl (k + 1/2) ------+ 0 as N ------+ +00; 

k=-O k=N+1 

(ii) In the other case, we can first find two ego function (cut-off functions): 

one is 0 ~ X(x) ~ 1 satisfying x(:r) = 0 if Ixi ~ 2 and,\,:(x) = 1 if Ixl ~ 1; the 

other one is 0 ~ J(x) ~ 1 satisfying J(x) = 0 if Ixl ~ 1 and J~: J(x)dx = 1. Let 

XN(X) = X(x/N) and J1/1I1 (x) = MJ(:rAI). Then for any l' E Vl(JR), we have a 

family of rapid decreasing functions (in fact ego functions) J1/1I1 (x) * (XN (x)v). It 

is easy to verify that for any given f. g E V1(JR), we have Ib':N(x)f - flip ------+ 0 as 

N ---7 +00 and II J1/1I1 (x) * g - gllp ---7 0 as A1 ------+ +00. Then we can choose a 

sequence of functions J1/1I1(N) (x) * (\N(:r)v) ------+ v in the function space V1(JR). 

The claim implies that XI(JR) and VI(JR) are respectively the complement of 

the function space S under the norm 11·llxl and 11·//\'1, which are in fact equivalent 

to each other on S. By the uniqueness of the complement of a narmed space, we can 

draw the conclusion that the functioll spaces Xl(JR) and Vl(JR) are in fact identical. 

Suppose our conclusion is true for all the cases 0 ~ n ~ k, let us prove it is 

also true for case n = k + 1. Again. it is still true that S is a dense subset of both 

spaces Xk+I(JR) and Vk+I(JR) under the norm 11·llxk+1 and 11·llvk+1 respectively. In 

fact we can use the exactly same method as in the case Xl and VI to get the desired 

approximation sequence. We claim that 11·llxk+land 11·IIVk+1 are equivalent norms on 

S. By the uniqueness nature of the completion of a normed space, we can deduce 

that the two normed spaces, S with restricted norm from 11·llxk+land 11·IIFk+l, are in 

fact identical. Below let us prove our claim. 
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For U E S, we have 

21Iull~k+l = 2 (Ak+1U,U) 

= (Ak( - d~) d~ u, u) + (Akx. xu, u) 

(A k-1( d)A d ) (Ak- 1 d ) = - dx dx u, u + :r dx u, u 

+ (Ak- 1xAxu, u) + ( Ak- 1( - dd
x 

)ni, u) 

= (Ak-2( _~ )A2~U, u) + 2 (Ak-2xA~U, u) + (Ak-2( -~ )~u, u) 
dx dx dx dx dx 

+ (Ak- 2xA2xu, u) + 2 ( Ak- 2( - c:r)AXu, u) + (Ak- 2:r. xu, u) 

== ... 

= d~n ( (( - d~~)Ak-d d~ U, u) (~) + (xAk-dxu, u) (~) ) 
k ( ( k-d d ) (k) ( d k-d ) (k)) + d~d xA dxu,u d + (- dx)A xu,u d 

:s t (d
k

) (II dd ul1
2 

+ IlxUII~k_d) 
d even .7: Xk-d 

+ t 2 (k) (A (k-d)/2 ~u, A (k-d)/2 ~u) 1/2 (A (k-d)/2:ru, A (k-d)/2 xu) 1/2 
dodd d dx dx 

:s c t (d
k
) (II dd ul1

2 

+ II:rull~'k-d) 
d even X l'k-d 

In the process above, we have used the fact that A( - d~) = (- ;x)A + x and A· x = 

X.A+(-d~)· 
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Similarly, we have 

= t 2 ((Ak+1-dU,U) + (,r2A k- du,u)) (k) + t (Ak-dU,U) (k) 
d even d dodd d 

:::; 2t (Ak+lU,U) (k) 
d=O d 

;S IIUII~k+1 . 

Thus we have finished the proof. o 

Let us consider the intersection of the function space xn(JR), then the last 

theorem implies that 

+00 
X+OO(JR) = nxn(JR) 

n=l 

( d) i3 = {u E L2(JR) I xQ - u E L2(JR) for all indices Ct and {3 } 
d.r 

= {u E H+OO(JR) I xC> (~~Jj3 u E L2(JR) for all indices Ct and {3} 

( rl)f3 .. = {u E C+oo (JR) I xC> - u E L (Xl (JR) for all mdlces Ct and ;3 } 
eLr 

= S(JR). 

It is clear now that our spaces have close relationships with the Schwartz function 
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spaces. Furthermore, it is a natural question to ask what is the relationship of the 

topological structure of X" (JR) and that of the function space S(JR). 

As we known, the standard topology on S(JR) is given by a family of semi norms 

Ilulla,o,oo = sup Ixau(O)(x) I, which make the space S(JR) become a Frechet space. 

Since the space S(JR) turns out to be intersections of all the Hilbert spaces xn (JR), 

we can have another choice to provide it a topological structure. Let 11·ll n be the 

restriction of 11·llxn on the function space S(JR), then they form a sequence of norms 

on that space, which induces a topology on S(JR) like this: every open set is the 

union of the sets in the form of {f E S(JR) I IIflln1 < 61,'" ,llfllnk < 6k }. 

In fact, this topology on S(JR) is the weakest topology satisfying that all the 

inclusion mappings S(JR) '----+ xn (JR) are continuous. It turns out that these two 

topological structure are in fact the same one. Below let us prove it by starting with 

the definition on what are two equivalent sequences of seminorms on a topological 

space. 

Definition 3.2.6. We call two familzes of semmorms {Pa}aEA and {dO}j3EB on a 

vector space X equzvalent if they generate the same natural topology. 

It is often useful to know such a proposition. 

Proposition 3.2.7. [9} Let {Pa}aEA and {d i3 }6EB be two families of seminorms. The 

following statement are equivalent: 

(a) The familzes are equivalent fam1.l1.es of seminorms. 

(b) Each Pa is continuous in the d -natural topology and each dj3 is continuous 

in the p-natural topology. 
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(c) For each a E A, there are 31, •. , ,;3n E Band C > 0 so that faT all x E X 

Po.(X) :S C (d'J 1 (.r) + ... + dpn (x)), 

and for each;3 E E, there are 01.'" . am E A and D > 0 so that for all x E X 

dp(x) :S D (POL (x) + ... + Pam (X)) . 

Obviously, it is an equivalent relation to say if two families of semi norms are 

equivalent. So if we want to show two families of seminorms are equivalent, we can 

choose another family of seminorms as a bridge, which is equivalent to both of the 

two target families. That is the way we proceed. 

Lemma 3.2.8. The families of serrmlOrms {llulla.;'3,xJ and {llulla,;'3,2} on S(IR) are 

equivalent. 

Proof. For any given function f E S(IR), we have for any x E IR 

Ixo. jI'(x) I = IJ~oooxo.-lf(;'3)(x)d.r + J~ooxa f(;'3+1 l (X) dx l 

< IOfx (x
2 
+ 1) xa- 1 j'(P)(X) dX I + If X (x

2 
+ 1) xa f(;'3+1) (X)dXI 

- -00(x2 +1)' -00(x2 +1) 

:S a (1I xo.+1f(P)(x)llu + Ilxa
-

1f(;'3)(x)IIL2) J~::(X2 + l)-ldx 

+ (1lxa f(;'3+1) (x) IIL2 + II:ra +2 f(;'3) (x) 11£2) J~::(X2 + 1t1dx 

:S C (1Iflla+1.;'3.2 + Ilfllo.-1,;'3.2 + Ilflla.;'3+1,2 + Ilfllo.+2,;'3+1,2)' 

That means Ilflla,;'3,oo :S C (1Iflla+1.IJ,2 + Ilflla-1,f3,2 + Ilflla,;'3+1,2 + Ilflla+2,;'3+1,2) IS 

true for any index a and ;3. 
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And for the seminorm Ilulln,i3,2 we have 

From these two inequalities, we can conclude that the two families of semi norms 

{llulln,i3,:xJ and {llulln,i3,2} will induce same topology on the function space S(JR). 0 

Note that the result in theorem 3.2.4 states that Ilull~ ~ 2::.: Ilull!,i3,2' 
O:Sn+t3:Sn 

which implies that the family of norm {llullJ induces the same topology on S(JR) as 

that induced by the norms {llulla,t3,2}' So we can state our results as follows. 

Theorem 3.2.9. We have 

+00 
X+oo (JR) = n xn (JR) = S(JR). 

n=O 

And if we endow the Schwartz function space with the weakest topology such that all 

the inclusion mappings S(JR) '--+ xn (JR) are continuous, then thzs topology comczdes 

wIth the standard topology which is induced by the family of semmorms {llulla,IJ,:x,}' 

Theorem (3.2.3) states that every function space xn (JR) are "essentially" the 

Hilbert space l~/2(Z+). So the theorem above can have such a corollary. 

Corollary 3.2.10. Suppose that i.p E L2(JR) and denote 

qn = r~::i.p(x)hTl(x)dx E c. 
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Then y(x) E S(JR) 1f and only if q = (qo, q1,"') E lrO(Z+) = n~:CA'/2(Z+). And 

in that case 'i:.~=oqnhn(x) convergesm the topology of S(JR) to y(x) as N --T +00, 
}V 

whzch can be denoted as cp(x) = 'i:.q"h,,(x). 
,,=0 

This result in above corollary was once obtained by B. Simon in 1971 lSi] 

m a slightly different form. In his paper. another sequence of norms Ilyilm = 

(I qn 12 (n + 1) m) 1/2 were directly defined on the Schwartz functions space S (JR), and 

the author proved that every function cp E S(JR) corresponds to a point in the se-
+00 

quence space satisfying 2:= Iqn 12 (n+ 1)'" < +00 is true for any m E Z+. In his method 
,,=0 

all the viewpoints come from Schwartz function space itself, and the function space 

is not complete when it is equipped with only one norm 11·llm' 

However, our proof of the scune result essentially comes from taking the 

Schwartz function space as the center of an Hilbert scale. In this way. it is easy 

to understand that the space S(JR) has many good properties such as separability, 

completeness, reflexivity etc. Since S(lR) is isomorphic to ZrO(Z+), it is easy to con-

jecture that S'(JR) ~ l2OC(Z+) is true. This space S'(JR) , which is much larger than 

the space L 2 (JR), provides us enough region to construct our Hilbert scale. especially 

the Hilbert space XS (JR) for s < O. In the following parts, we will first review Barry 

Simon's N-representation theory for S', then give out the definitions of our function 

spaces and finally prove that our fUllction spaces form an Hilbert scale. Let us start 

with such a definition. 

Definition 3.2.11. A countable fmmly of norms 11·111.0 is called directed if for any 

finite set k1,'" ,kr there is a k and a constant C so that IIfllk1 + .. '+llfllkr ::; C Ilfll k · 

Directed families are very useful because they provide a simple description of 
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open sets and further of continuous functional. 

Lemma 3.2.12. A linear map T : E --+ C with E a countably normed space with 

a directed family of norms {II'II
J

} is contznuous if and only if:3C > 0, k such that 

ITxl :::::: c Ilxll k . 

It is very easy to find that our norms {11·II.v } with restriction on S(JR) are in 

fact a directed countable family of norms. So this lemma and the directed nature of 

11·llxk enable us to prove such a characterization of the space S'(JR). (Although very 

similar, it is in a little different form from the result in Barry Simon's work.) 

Theorem 3.2.13. Suppose f is a temperf'd distrzbution. Let bn = f(hn(x)), then 
+oc 

there exzsts a real number s satisfying L: Ib,i (n)2s < +00, i.e. b = (bo,b l ,···) E 
n=O 

+00 
12 (Z+), and f (tp) = L: anbn if an is the n-th Hermite coefficient of tp. Conversely, zf 

n=O 
+00 

b = (bo, b1,"') E 12(Z+) for some s E lR, then the mapping tp --+ L:anbn defines a 
n=O 

tempered distributzon. 

Proof. Since f E S'(JR) and 11·llxm is directed norms, by the lemma we get If(tp)1 :::::: 

C Iltpllx m for some mE Z+. Noticing 11'Pllx'" = (% lanl
2 

(n + lj2)m) 1/2 ~ II(ao, al,'" )11 1;"/2(2:+) 

and S(JR) is a dense subset of xm(JR) , we have a unique extension of f into a con-

tinuous linear functional on xm (JR) 1 or "essentially" on the space (:;,/2 (Z+). As we 

know the dual space of Z:;'/2(Z+) can be regarded as the Hilbert space l~m/2(Z+), 

so the distribution f has such a representation: let bn = f (hn (x)) then we have 
+00 +00 
L: Ibn l2 (n)-rn < +00. and f(tp) = L:anb" where an is the n-th Hermite coefficient 
n=O n=O 

of tp E S(JR). 
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Conversely, if b = (bo, bI , ... ) is an element in 1~(Z+), there always exists an 

integer Tn 2: 0 such that b E l2m (Z+). Then we only need make such a computation 

!f>nbn! = !~an (n)m/2bn (n)-m/2! 

+00 

:s; IlbI11;-m(z+) Il all l2'(z+) 

:s 11~llxm , 

so that the mapping 'P ---+ ~ anbn is a continuous linear functional on S(JR.). 0 
n=O 

This theorem can be viewed as in the dual form of the N-representation for 

the rapidly decreasing functions. It has such a corollary [Silo 

Corollary 3.2.14. S(JR.) is dense 1:1/ S'(JR.) m the weak topology on S'. In partzcular, 
N 

if f E S' (JR.) and bn = f (h n (x)) then ~ bnhn (x) ---+ f in the weak topology. 
n=O 

Proof. The weak topology on S'(JR.) is the weakest topology to make all the func­

tionals T<p : f E S'(JR.) ---+ f('P) on S(JR.) be continuous. So it is only left to check 
N +00 

that we have ~ anbn ---+ ~ anbn, which is clearly true. o 
n=O n=O 

Based on these two results about characterization of the tempered distribu-

tion, it is natural to come to the follmving definition [Silo 

Definition 3.2.15. For any functwn f E S'(JR.), we call bk = f (hk(x)) as the k-th 
+00 

Hermite coefficient of the tempered distribution f, and we write f = ~bkhk(X) 
k=O 

as its Hermite expansion. 

'What is more interesting to us is that we can generalize the definition for our 

function spaces into the cases with index s < O. 
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Definition 3.2.16. For any real number s E JR., we call a function f E S'(JR.) tS tn 

the function space X28(JR.) if its Hermite coefficients {bk = f (hk(x))} satisfies 

+00 

L; Ibkl2 (k + 1/2)28 < +00. (3.9) 
k=O 

This definition is compatible with the definition once given for the cases s 2: 0, 
+00 +00 

or in other words, {J E S'(JR.) I L; Ibkl2 (k + 1/2)28 < +oo} = {J E U(JR)I L; Ibkl2 

k=O k=O 
+00 

(k + 1/2)28 < +oo}. It is due to the fact: when s 2: 0, the inequality L; Ibkl2 
k=O 

+00 
(k + 1/2)28 < +00 implies that b = (bo, b1.···) E 12(Z+) and L;bkhk(x) is an £2_ 

k=O 

function. 

Like the cases of s 2: 0, there is also a natural inner product on the function 

space X 25 (JR) for s < 0 

+00 
(u, Vh'2S = L;qk]il.. (k + 1/2)25, 

k=O 

where {qdand {Pk} are Hermite coefficients of function u and v respectively. It is 

easy to get the following theorem. 

Theorem 3.2.17. For any s E JR, the Junction space X28(JR) is a Htlbert space, 

which ts isomorphic to the Hilbert space 12(Z+), i. e. X 2
8 (JR) ~ IHZ+). 

To prove this theorem, we only need repeat the proof for the case s 2: O. 

Again, it is the mapping T : f(:c) ~ (bo. b1,' .. ) that provides the isomorphism 

Up to now, a family of lIilbert spaces parameterized on real number shave 

been defined rigorously. We are in a good position to check if these Hilbert spaces 

are an Hilbert scale. The answer is yes. 



Theorem 3.2.18. The famzly of H1lbert spaces X2s(JR) form an Hilbert scale, and 

they satisfy X+OG (JR) = n X2s (JR) = S(JR). and X-oo (JR) = U X 2s (JR) = S'(JR). 
sEIR sEIR 

Proof. It is straightforward to prm'e this theorem, so below we just provide a sketch 

of the proof. According to the definition of the Hilbert scale, we need start with a 

compact operator. Let B = A-1/2 = ((_~+x2)/2)-1/2, an operator acting on a 

separable complex Hilbert space Eo = L2(JR) = XO(JR). This operator turns out to be 

compact, positive and self-adjoint, and can be represented as an infinite dimensional 

Matrix diag ((k + 1/2)-1/2; k = 0,1. 2" .. ). By the definition of Hilbert scale, we 

can have 

+00 +00 
(i) E+oo = n BnEo = n Xli (JR); so this space (center of the Hilbert scale) 

n==O n==O 

is just S(JR). 

(ii) The space Eo. equals to the completion of the space E+oc = S(JR) equipped 

with the norm Ilulia = (B-o. u , B-QU)~2. From the theory of N-representation of 

rapid decreasing functions, we can see that E+oo = S(JR) is essentially the space 

ItOC(Z+), and the norm II·II Q on E+oo is just the norm 11'llxaof the space XQ(JR) with 

restriction on E+oo = S(JR). Since Zrx (Z+) is a dense subset of 1~/2 (Z+), and further 

same is true for S(JR) c XQ(JR.), we must have the function space XQ(JR.) is equivalent 

to the space Eo. in the sense of isomorphism. 

Finally, n X 2s (JR.) = S(JR.) comes from the fact of xs (JR) c X t (JR) for any 
sEIR 

S > t; U X 2s (JR.) = S'(JR) comes from the N-representation theorem for S'(JR.). 0 
sEIR 
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3.3 A Hilbert scale 

In the last section, it took us a long way to bring out the definition of our function 

spaces. During the process, we have mentioned some properties of the function spaces 

X 2s (JR), like the characterization of the functions in xn (JR) and the relationship of 

the topological structure between the space S(IR) and xn (IR). In these section, we 

will provide a more systematic description for the properties of these function spaces 

from the view point of Hilbert scale. At first, we will give out two basic property 

coming from the property of a Hilbert scale. 

Proposition 3.3.1. For any s E R the Htlbert space X- 2s (IR) is the dual space of 

the Hzlbert space X 2s (IR) . 

Since X 2S(IR) is isomorphic to the space l2(Z+), so we only need to prove that 

l2 S (Z+) ~ l2(Z+), which is obvious. The details are omitted here. 

Proposition 3.3.2. If s < t in IR, then the imbedding i : X2t(IR) '-+ X2S(IR) zs a 

compact mapping. 

To prove this proposition, we need ~ lemma such as the one below. It is a 

very basic fact in functional analysis and its proof can be found in any textbook. 

Lemma 3.3.3. Let X, Y be two Banach spaces and T is a continuous mapping from 

X to Y, i.e. Tn E £(X, Y). If there is a sequence of continuous finite rank mapptng 

Tn E £(X, Y) such that IITn - Til ---+ 0 ILS 11 ---+ +00, then the operator T zs a 

compact operator. 

Now let us see how can we get to the proposition. 
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Proof. Since the space X28(JR) is isomorphic to 12(Z+), with a little abuse of no­

tation, we only need to prove the imbedding i : Z; (Z+) "---' 12(Z+) is compact. 

There is a sequence of mapping iN : li(Z+) "---' 12(Z+) defined by iN(qo, q1, q2, ... ) = 

(qo, q1, ... qN, 0, 0, ... ). This sequence of mappings are all continuous and they satisfy 

(

",+00 I 12 (k)2S))/2 
1· II . II l' . f DI.:>N+1 qk nn z - Z N = nn III 

N---.+oo N-->+ocrrIO I:::alqkI2 (k)2t 

- l' . f Dk>N+1 qk 
(

",+00 I 12 (k)2t (k)2S-2t) 1/2 
- nn III --=---c+-----2"""'t--

N-->+cooqIO I:k:a I ql.: 12 (k) 

< lim N-(t-s) 
- N-->+oc 

= 0 (::;ince t > s). 

By the lemma above, we know that all the mappings i X2t(JR) "---' X2s(JR) are 

compact imbeddings. o 

Another very important property of Hilbert scales is that there usually exist 

many good continuous linear mapping between the Hilbert spaces in those scales. 

Definition 3.3.4. Gwen two Hilbert scales {Es}, {Fs} and a linear map L : E+oo --+ 

F- oo , we denote by IIL11 8 1,82 :; 00 lts norm as a map E81 --+ F82' We say that the 

map L defines a morphism of order d of the scales {Es} and {Fs} for S E [so, sd, 

if IILI18 s-d < +00 for each s E [so, slJwith some fixed -00 :; So :; S1 :; +00. 

We should be careful on the case of So = -00 or S1 = +00, since E±oo, F±oo 

are given no norms. So if So = -00, we apply this definition for s > So and similarly 

s < +00 if S1 = +00. Sometimes this morphism can be invertible or even better, and 

here we provide below such two definitions. 
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Definition 3.3.5. If in addition the inverse map L -1 exists and defines a morphism 

of order -d of the scales {Fs}, {Es} for s E [so + d, Sl + d], we say that L defines an 

isomorphism of order d of the two scales. If {Fs} = {Es}, then an isomorphism 

is called an automorphism. 

Definition 3.3.6. If in addition we have (Lu, LU)Fs _ d = (u,u)Es for any s E [80,81] 

and u E E s, we say that L defines an isometry of order d for 8 E [80,81], and 

the operator L is isometric. If {Es} and {Fs} are complex Hdbert scales, and 

L(Es) = Fs- d , then thzs isometric operator zs said to be unitary. 

Due to the structure of the Hilbert scale, for any morphism L, it can naturally 

induce a sequence of adjoint operators on their dual spaces. It turns out that these 

operators also form a morphism. 

Definition 3.3.7. If L : Es ------7 Fs- d is a morphism of order d for 8 E [80,81], then 

the adjoint maps L* : (Fs- d )* = F- s+d ------7 (Es)* = E- s form a morphism of the 

scales {FJ and {Es} of the same order d for 8 E [-81 + d, -80 + d]. We call it the 

adjoint morphism. 

Definition 3.3.8. A morphism L of a H7lut'rt scale {Es}, complex or real, is called 

symmetric (antisymmetric) if L = L' (respectively L = - L *) on the space 

E+oo. In particular, a linear operator L : ESIJ ------7 E so - d is called symmetric (anti­

symmetric) zf L = L* (respectively L = -L*) on the space E+oo' Furthermore, 

zf L zs a symmetric morphism of {Xs} of order d for 8 E [80, d - 80], then L* is 

also a morphism of order d for 8 E [80, d - 80] and L = L* as the scale's morphzsm. 

We call such a morphism selfadjoint (Anti-selfadjoint) morphisms are defined 

simzlarly. 

68 



To check if a morphism on a complex Hilbert space is symmetric (antisymmet-

ric), we usually do this way: let us introduce a sesquilinear form f on Es x E_ 8 ---t 

C : (u, v) f----t TV(U), where T is the natural mapping from E-s ---t (Es)* satisfying 

TV(') = (', V)Es; so then we only need check if this equality f(Lu, v) = f(u, Lv) for 

any 'U, V E E+oo.is satisfied. 

In the following part, we will discuss on several morphisms on the scales 

{XS(JR)}, \vhich is of particular interest from the viewpoint of analysis. 

First of all, let us consider the operator AO"/2. At the beginning of the last 

section, \ve have defined the operator AO"/2 = -b.;x as a linear mapping (
( 2))0"/2 

from XO"(JR) ---t XO(JR) = U(JR). ~ow with the help of the introduction of the 

Hilbert scale XS(JR), we can generali~ing its definition as in this formula: if cp(x) = 
+00 
L qkhk(,r) E S'(JR) (i.e. a tempered ciistribution), we define 
k=O 

+:)0 
AO"/2cp(X) := L (k + 1/2r/2 qJ,;hk(:C) E S'(JR). (3.10) 

k=O 

Then we can have such a proposition. 

Proposition 3.3.9. For any J E Rand s E lR, AO"/2 : S'(JR) ---t S'(lR) defines an 

automorphzsm of order J on the scales {XS(JR)}, which is isometric, selfadjoint and 

satisfying that each operator AO"/2 : X'+O" ---t XS is a unztary mappzng. 

Proof. It is a straightforward work to check that this operator is an automorphism on 

the Hilbert scale and each operator is a unitary mapping. To see it is also selfadjoint. 

let us introduce the sesquilillear mapping on the product space XS x x-s for any 

sER 
+:)0 

f( u. u) = L akbk, 
k=O 
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+00 +00 
where u = "£akhk(x) E XS(IR) , and v = ,,£bkhk(x) E X-s(lR). So we only need 

k=O k=O 
f (Au, v) = f(u, Av) is true for any u E XS(lR),and v E X-s+U(lR), which can be 

easily verified. o 

So until now, we have such three kinds of interpretations for our function 

space: 

+00 
(ii) XS(lR) = {u E S'(lR) I u = ,,£ql)7h(X), q = (qo, ql,"') E 1;/2(Z+)}; 

k=O 
+00 

(iii) XS(lR) = {f E S'(lR) I qh = f (hh(X)) such that "£ Iqkl 2 (k + 1/2t < 
k=O 

+oo}. 

In the following let us discuss an interesting automorphism on our Hilbert 

scale-Fourier transformation. Let us recall that 

(3.11) 

which can induce such a proposition. 

Proposition 3.3.10. Fourier transformatIOn defines an automorphism of order 0 on 

the Hilbert scale {XS(lR)}, which is surjective and isometnc. In other words, each 

operator:F : XS ---+ XS is a unitary mapping. 

+00 
Proof. For any 'P = ,,£qkhk(X) E XS(lR), its Fourier transformation is 

k=O 

70 



F zp = f (qk ( - i) k) hk (x), which is in fact is also in the same space, since 
k=O 

+00 

IIFyllx 8 = C~J [qk (_i)k[2 (k + 1/2)8) 1/2 

= (~I!JkI2 (k + 1/2)8) 1/2 

= Ilzpllx" 

And if'ljJ = ~Pkhk(x) is any other element in XS(lR), we have 
k=O 

+oc 
(Fzp. F'ljJhs(IR) = ~qk (_i)k2 Pk (_i)k2(k + 1/2)8 

k=O 
+:x: 

= ~ qkPk(k + 1/2)8 
k=() 

- ( , ]/,) 
- '/-" ~ X 5 (IR)' 

Together with the fact that the Fourier transformation is surjective on each space 

X8(lR), this equality implies the operator is unitary. o 

Remark 3.3.11. In the classical theory of Fourier analysis, we know such two facts: 

(i) Fourier transformation is oumtary mapping on £2 space; 

(ii) Fourier transformation giN'S homeomorphisms on both Schwartz function 

space S(lR) (wzth standard topology) and tempered distribution space S'(lR) (with weak 

topology). 

So all these facts can be vie1l'ed as special cases s = 0, ±oo of the above 

proposit1On, wzth the attention that there is no longer inner products on S(lR) and 

S'(lR). 

Let us recall that our function spaces essentially come from the analysis on 

the operator A = (-,0. + x 2 )/2. Bet\veen the operator A and F, we have such an 
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commutative relationship 

that is, [.1", A] = O. In fact there is more fundamental relationship between them: 

the Fourier transformation can be represented by the operator A. Besides these a 

well known fact is that the operators etAt form a Co group of unitary mappings on 

L2 space. All these facts can be uniformly treated together. 

Proposition 3.3.12. For any t E lR, the operator e,At defines a surjective isometry 

on the Hilbert scale {XS(lR)}. If we fix the space XS(lR) s E lR, the operators e'At 

form a Co group of umtary mappings on X"(lR) space. 

+00 
Proof. For any i.p = 'LAkhk(x) E XS(lR), we have the formula 

k=O 

+00 
e'Atip = Lq"elU'kthk(x). 

k=O 
(3.12) 

Then it is easy to verify that e'At is onto on each XS(lR) and (e,Atip, e1At7jJ) x s = 

(ip,7jJhs for any i.p,7jJ E XS(lR). These facts imply that e'At defines an surjective 

isometry on the Hilbert scale. To prove it in fact induces a Co group, the only 

nontrivial part is to verify that e,Atip ~ c.p as t ~ O. 

For any given ip E XS(lR), we can choose 1'1 big enough such that 

c /8. Then we have 

< c/2 + 4 . c/8 = c 

as t --* o. Thus we have finished our proof. 
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Remark 3.3.13. We can also apply the operator etAt for the cases s = ±oo. Al-

though there is no inner product any more, thus not a chance to become a unztary 

mapping. the operator can shll be a 1somorph2sm in each case. Here we assumed that 

5 (lR.) is given with standard topology and tempered distribution space 5' (lR.) 2S given 

with weak topology. 50me other specwl interest is paid to the choice of time t. It is 

already stated that {e tAt } are operato rs with period 47r satisfying e,At I t=o = I d and 

'Atl 3 ( e' t=27r = -Id. Now let t = 27r, from the equality 3.12) we get 

50 we have the following corollary. 

Corollary 3.3.14. When t = ~7r, the operator e'At turns out to be essentially a 

Founer transformation. In particular. for any i.p E 5' (lR.) 

(3.13) 

Remark 3.3.15. This result have a little different form in higher dimensional cases: 

(3.14) 

As a tempered distribution, it admits multiplication with certain smooth 

functions, for example the function g(x) = x; it can also be taken derivatives 

for arbitrary times. These two kinds of operations can also be regarded as mor-

phisms on the Hilbert scale {XS(lR.)}. Let us denote by Tr : 5'(lR.) ---7 5'(lR.) and 
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D : S'(JR) ----+ S'(JR) as the operator of multiplication with function g(x) = x and of 

taking derivative for one time, then we have such results. 

Proposition 3.3.16. The operator Tx defines a selfadjoint morphism of order 1 on 

the Hilbert scale {X S (JR)}. 

+00 += 
Proof. For any u = L~Akhk(X) E XS(JR), we have Tx(u) = L (Tx(u), hml hm(x) = 

k=O m=O 
+= L (u, xhm) hm(x). By the property of the Hermite functions, we have 
m=O 

(3.15) 

Thus we get 

'Tc(u) ~ ~ ( Jm; 1 qm >1 + fIqm-l) hm(x), (3.16) 

where q-l is by defaut taken as o. Then it turns out that IITx(u)llxs-l ::; lifo -/rn;+-lqm+l hm(x)llxs_l-1 

II~ .jWqm-1hm(x)llxs_l ;S Ilull xs and for the sesquilinear mapping f and any v = 

~Pkhk(X) E X1-S(JR), we have f(xu, v) = fa ( -/mtlqm+lPrn + JWqm-lPm) 

f(u,xv). 0 

Proposition 3.3.17. The operator D defines an anti-selfadjoint morphism of order 

1 on the Hilbert scale {X S (JR)}. 

The proof for this proposition is quite similar to the last one. So we only 

provided the essential equality needed as 

(3.17) 
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Remark 3.3.18. The composztions of operator Tr and D are also morphzsms on 

the same Hilbert scale. For example. a polynomial with order n, which zn fact the 

elements of the tempered distributwn, now can be regarded as a morphism of order 

n,. dzjJerential operators wzth polynomzal coefJiczents are also morphzsms with finite 

order. Besides these, the anmhilatlOll operator (lowering operator) a = ~(D + Tx) 

and creatwn operator (raising operator) a* = ~(D - Tx) are both morphisms of order 

1,. they are conjugate to each other m the sense that.f(au, v) = f(u, a*v) for all 

(u, v) E XS(lR) x X1-S(lR). 

In a Hilbert scale, the space E±::>2 play two special roles in this family of Hilbert. 

spaces. One natural question is what are the relationships of these two spaces and 

the other Hilbert spaces such as topological structure, characterization of continuous 

linear mappings etc. In our case, the space X±OO(lR) = S(lR) or S'(lR) are important 

to the analysis and have been studied heavily. Now the introduction of the Hilbert 

scale provides us a new point of view to understand the spaces S(lR) and S'(lR). In 

the following part of this section, we will first use this new viewpoint to review Barry 

Simon's work on the N-representatioll theory with application in the analysis on the 

function spaces S(lR) and S'(lR). After that, we will study the relationship of the 

topological structures of these two spaces and the Hilbert function spaces XS(lR). 

In 1971, Barry Simon's once llsed the N-representation theory to analyze the 

structure of the function space S(JR) and S'(JR) (see [Si]). From the standpoint of 

Hilbert scale {XS(lR)}, we can easily' rewrite most of his results as follows: 

• Each Hilbert space X8(lR) is separable, and S(JR) = X+OO(JR) is also sepa­

rable under its standard topology. 
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N +00 
• Similarly, since L qkhk(x) ---+ L qkhk(X) in the weak topology a(S' (lR), S(lR)), 

k=O k=O 
S'(lR) = X-OO(lR) with the weak topology is also separable. 

• In particular S(lR) = X+OO(lR) is dense in S'(lR) 

topology. 

X-OO(lR) with weak 

• For any function f E S' (lR). Then 38 E lR, m E Z+ and a continuous 

bounded fUllction 9 E xm(lR) such that f = ASg. (In the next section we will 

discuss the relationship between the space XS(lR) and Sobolev space, and see a more 

dedicated description on the function g) 

• Under the standard topology, a subset B C S(lR) is bounded if and only if 

B is bounded in each Hilbert space xn(lR), 'f! E Z+. 

• Under the weak topology a(S'(lR), S(lR)), a subset C C S(lR) is bounded if 

and only if 3m E Z+ such that C is a bounded set in Hilbert space x-m(lR). (in 

fact, this is also true for Mackey topology or strong topology) 

• Any closed and bounded subset of S(lR) = X+OO(lR) in the standard topology 

is a compact set. 

Now let us further consider the choice of the topological structure on the 

spaces X±OO(lR). In the case of the space S(lR), we have proved that if it is endowed 

with the weakest topology such that in : S(lR) ---+ xn(lR) are all continuous then 

that topology is just the usual Fn';chet topology on it. This is still true when we 

considering more imbeddings is. 

Theorem 3.3.19. If we endow the space S(lR) = X+OO(lR) with the weakest topology 

such that is : S(lR) ---+ XS(lR) are all contmuous for 8 E lR, then that topology zs 
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just the usual Frechet topology on zt. And it has such a property: Jor any topological 

space E, a mapping J : E --t S(lR)/s continuous iJ and only zJ Jor any s E lR the 

mapping is 0 J : E --t XS(lR) is contl7lUOus. 

Proof. For the first statement it is enough to prove that when we endow the space 

S(lR) with the weakest topology such that in : S(lR) --t XS(lR) are all continuous 

for n E Z+, then it makes the mappings is continuous. This is easy. Since for any 

s E R there is an n E Z+ bigger than s, so the mapping is can be written as the 

composit.ion of t.he mappings in and the compact. imbedding form the space xn(lR) 

t.o XS(lR), thus it must. be cont.inuour-;. 

For the second statement, if we have j : E --t S(JR) is continuous, t.hen of 

course is 0 j : E --t XS(lR) is also cont.inuous. Reversely, with t.he given topology 

any open set. U on S(lR) can be written in the form of the union of the sets in the 

form of USlS2 ' Sm = {u E S(lR) I Ilulisl < C1, Il u ll s2 < C2,'" ,llullsm < cm}, t.hen if 

every is 0 J : E --t XS(lR) is cont.inuous we have j-1(U) is t.he union of the sets 

in t.he form of j-1(UslS2"'Sm)' But. we have j-1(UslS2 "'Sm) = n (is) ojf1({U E 
j=l 

S(lR) I Ilulls) < Cj}), which is alwa.v~ open, so t.he set j-1(U) must be open. That 

means the second stat.ement. is also true. o 

When we consider t.he similar quest.ion for t.he case of t.he space S' (JR), the 

situat.ion becomes a lit.t.le more complicat.ed. Unlike t.he case of compactly sup-

ported functions the inductive limit is not a possible choice. Although we have 

X-OO(lR) = n XS(lR), the restriction of the topology of xt(lR) to XS(lR) (assuming 
sEiR. 

t < s) is not the given topology on XS(lR), thus the necessary setting for induc-

tive limit topology is missing. But we still have many possible choices such as the 
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weak topology o-(S'(JR) , S(JR)), Mackey topology T(S'(JR), S(JR)), and strong topology 

,6(S' (JR), S(JR)). Now let us choose the topology (denoted as T) as the strongest locally 

convex topology on S'(JR) so that the injections is : XS(JR) ------ X-OO(JR) are contin­

uous, then it will finally turn out that this topology is just equal to T(S'(JR), S(JR)) 

and ,6(S'(JR) , S(JR)). 

Below let us start with the existence of such a topology. It is useful to provide 

such a characterization of the continuous linear mapping between two locally convex 

topological spaces. 

Lemma 3.3.20. Let E and F be locally convex spaces with families of semz-norms 

{Pa} aEA and {did PEE· Then a lmear mappzng map T : E ------ F, is contmuous if 

and only if for any ,6 E B, there are 0:1, .... C\;n E A and C > 0 with 

d(3(Tx) ::; C (Pal (:r) + ... + Pan (X)) . (3.18) 

This lemma is basic in the theory of locally convex spaces and can be found 

in many textbooks, so we don't provide its proof here. With the help of this lemma, 

we can guarantee the existence of the topology T. 

Proposition 3.3.21. The topology T exzsts and it satisfies: for any locally convex 

space F, a linear mappmg g : S'(JR) ------ F 7S continuous if and only if for any s E JR 

the mappmg glxs = gs : XS(JR) ------ F is C071tmuous. 

Proof. According to the lemma, if a locally convex space S' (JR) with a family of semi­

norms {d;3}(3EE satisfy that all the inclusions Is : XS(JR) ------ X-OO(JR) are continuous, 

then for each,6 E B, and s E JR, there existsC > 0 with d(3(i s(x)) ::; C Ilxllxs. Now let 

us consider the sets of all the possible seminorms 8' = {seminorm d I V s E JR, 3Cs E JR 
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so that d;J(is(x)) ::; Cs Ilxllxs}. This set is not empty and it can separate points in 

S'(IR), since for any functionu E S(IR), the seminorm du(x) = Ix(u)1 is an element 

in 'J. Then the locally convex space with such a family of seminorms will induce the 

desired topology T. It is strongest in the meaning: any other locally convex topology 

on S'(IR) to make all the inclusions t, : XS(IR) ----+ X-OO(IR) continuous must be a 

weaker topology than it. 

For the second statement if we have a locally convex space F and a continuous 

mapping 9 : S'(IR) ----+ F, then glx' = go is is of course continuous too. Reversely, 

if we have a locally convex space F a mapping 9 : S'(IR) ----+ F so that for any 

s E IR the mapping glx8 = gs : XS(IR) ----+ F is continuous, then we want to prove 

that for any open set U of F containing zero point, we can find an open set V in T 

satisfying g(V) C U. Without loss of generality let us assume U is a circled convex 

open set of F, then g-1(U) = U (gl.\'"8)-1 (U) is a circled convex set containing 
sEiR 

zero point in S'(IR) and for each s E IR, (g1X8 )-1 (U) is an open set in XS(IR). It is 

easy to verify that g-1(U) is an absurbing subset of S'(IR) with the property that 

if x E g-1(U) then tx E g-1(U) for all 0 ::; t ::; 1. Then the ~1inkowski functional 

d(x) = infp I x E )..g-1(U)} is a semi norm on S'(IR). We claim that it is in the set 

'J. 

Since for any real number s we have g-1(U) n XS(IR) = (g1X8 )-1 (U), which 

is an open set in of XS(IR) due to continuity of the mapping gl.\'"8,· we can always 

find a open set of XS(IR) satisfying {.r I Ilxlls < 5s} c g-1(U) n XS(IR). Then we 

have d(is(x)) = infp I x E ).. (g1X8 )-1 (U)} ::; infp I x E )..{ Ilxlls < 5s}} is true 

for all x E XS(IR), which implies that d(is(x)) ::; 5;1 Ilxlls' So our claim has been 

proved. In this way, we can find an open set {x E S'(IR) I d(x) < 1} C g-1(U) which 
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is mapped into the open set U of F. That means the mapping g : S'(JEt) ---+ F is 

continuous. o 

The remaining task is to identify this topology. From the proof above, it 

can be deduced that the weak topology a(S'(JEt), S(JEt)) is weaker than the topol-

ogy T, since all the seminorms du(x) = IX(Il)1 are in CS and these norms can define 

the topology a(S'(JEt), S(JEt)). Another comparison of the topologies can be made 

between (S'(JEt),r) and the strong topology ;3(S'(JEt) , S(JEt)). The latter one can be 

generated by the seminorms {PA I A c S(JEt) is bounded under standard topology} 

where PA(J) = SUPxEA IJ(x)l· Due to the N-representation theory of the func­

tion space S(JEt) , any bounded set on S(JEt) must be bounded in each Hilbert space 

xn (JEt) , n E Z+. So we have for any n E Z+ 

PA(J) = sup IJ(x)1 ::; IIJllx-n sup Ilxllxn ;S IIJllx-n , 
xEA .rEA 

and it can be further improved as for any s E lEt PA(J) ;S IIJllx -8 by using the 

compact imbedding property of the Hilbert scale {XS}. Recall the definition of the 

family of norms CS, we know that all these PA are also in CS, which implies that the 

strong topology p(S'(JEt) , S(JEt)) is also weaker than the topology T on S'(JEt). 

When we compare the topology (S'(JEt), T) and the Mackey topology r(S'(JEt), S(JEt)), 

let us consider the dual space of (S' (JEt), T). \Ve find such a proposition. 

Proposition 3.3.22. The dual space oj (S'(JEt) , T) is Just the Junction space S(JEt). 

Proof. Let T is a continuous linear functional on (S'(JEt) , T). By the proposition 

above, we have that the restrictions Tis, : XS(JEt) ---+ C are all continuous, which 

means Tis, is essentially an element in X'(JEt). So there exists bs = (bso , bs1 ,"') E 
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+00 
[;-8/\£:+) such that Tlx8 (f) = I: (bSA' qlc) where f E X8(JR) and qk is the k-th Hermite 

k=O 

coefficient of f. Notice this is true for every s E JR, we can deduce that all these 

bs are equal and they correspond to a unique element in S(JR), which implies that 

T(f) = Tip(f) = f(zp) for some zp E S(JR). Reversely for any zp E S(JR) , it induces 

a linear mapping Trp(f) = f(zp) on S'(JR). For any s E JR we have I Trp (f) I :::; Ilfllxs 

Ilzpllx-s, so Tip is continuous on the topological space (S'(JR) , i). o 

Recall that according to .r..'Iacke~T-Arens theorem, Mackey topology T (S' (JR), S (JR) ) 

is the strongest locally convex topolog~' S'(JR) having its topological dual as S(JR). 

So the proposition above implies that the topology T is weaker than the Mackey 

topology T(S'(JR), S(JR)). 

Let us review that l\lackey topology T (S' (JR), S (JR)) is the locally convex topol­

ogy of uniform convergence on cr(S(JR), S'(JR))-compact convex sets of S(JR), and 

its generating seminorms can be chosen as pc(x) = SUPYEC ly(x)1 with C running 

over all the cr(S(JR), S'(JR))-compact convex subset of S(JR): the strong topology 

,6(S'(JR), S(JR)) is the locally convex topology of uniform convergence on bounded 

subsets of S(JR) with usual topology, and its generating seminorms can be chosen 

as PA(f) = SUPXEA If(x)1 with A running over all the bounded sets of S(JR). Since 

any dS(JR), S'(JR))-compact convex subset of S(JR) is bounded, thus we have the 

strong topology ,6 (S' (JR), S (JR)) is stronger than the Mackey topology T (S' (JR), S (JR)). 

But we have proved that T is stronger than the strong topology, so we finally get 

such a relationship ,6(S'(JR) , S(JR)) --< T --< T(S'(JR), S(JR)) -< ,6(S'(JR) , S(JR)) (with 

--< means" weaker than"), which implies that T coincides with the Mackey topology 

T(S'(JR), S(JR)).and the strong topology ,6(S'(JR) , S(JR)). 
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In summary, we have such a theorem for the topology T on S'(lR). 

Theorem 3.3.23. If we endow the space S'(lR) = X-OO(lR) with the strongest locally 

convex topology T such that all the injections is : XS(lR) ----t X-OO(lR) are continuous, 

then that topology coincides with the Mackey topology T(S'(lR), S(lR)) and the strong 

topology ,6(S'(lR) , S(lR)). And it has such n property: for any locally convex space 

F, a linear mapping g : S'(lR) ----t F is contznuous if and only if for any s E lR the 

mapping glxs = gs : XS(lR) ----t F is contwvous. 

3.4 Relationship with Sobolev spaces 

In this section, we will discuss the relationship of the function spaces X S (lR) and 

Sobolev spaces HS(lR). From the characterization of the function space xn(JR) (71 

nonnegative integer), we can easily deduce that it is a subspace of the Sobolev space 

Hn(lR). Meanwhile, xn(lR) is a space invariant under the Fourier transformation, 

so a natural question is the relationships between these two spaces and the Fourier 

transformation. 

At first let us compare these two spaces X 1 (lR) (virial space) and Hl(lR). It 

turns out the former one is a proper subset of the latter one. To see this, consider 

the function u(x) = X(x)~ where 0 :S x(./:) :S 1 is a cut off function satisfying 

X(x) = 0 for Ixl :S 1/2 and x(x) = 1 for I-rl 2: 1. This is a smooth function which 

belongs to L2 space. By using the Leibniz rule, we can confirm that u(x) is in the 

space H+OO(lR) = n~~Hn(lR). But on the other hand this is a function not in 

X 1(lR) = {f E S'lf E Hl(lR), xf E L2(lR)}. since xu(x) = x(x) = 1 for all Ixl 2: 1 

which is not in L2 space and Fourier transformation is a unitary mapping on X 1 (lR). 
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In fact, we can conclude that S(JR.) = X+OO(JR.) <;; H+OO(JR.). 

From this example, we can see that the Hilbert scale {XS(JR.)} provide a 

different way from Sobolev spaces to measure regularities of functions. A function, 

like u(x) above, may be very smooth in Sobolev meaning but not so regular in the 

meaning of XS (JR.). This difference comes from that the regularity in the meaning 

of xn(JR.) requires not only the information of local regularity-to how many times 

the function can be taken derivatives to get an £2 function, it also requires the 

information of global regularity-how fast it together with its derivatives can fall off 

comparing the inverse of polynomials. 

This viewpoint can bring us some other advantages. As we know, the Sobolev 

spaces are a good way to understand the regularity of some tempered distribution, 

but only some of them. This is due to the fact that H-OO(JR) = nSElRHS(JR) <;; S'(JR.). 

But now the Hilbert scale {XS (JR.)} enables us to discuss the regularity of every 

tempered distribution. In particular, let us see such an example u(x) == (211")-1/2. 

This is a function very easy to understand, but we can't discuss its regularity in 

Sobolev meaning, since we have Fu(O = 0(0 and Fu(O (OS = o(~) tj:. £2 which 

implies that it is never in H-OO(JR.). :.Jow let us reconsider this by using the Hilbert 

scale {XS(JR.)}. The k-th Hermite coefficient of Fu(~) is 

qk = (o(~), hk(~)) = hlc(O) 

{ 

0 if k odd 
- l~ 

-1/..!( 1)k/2 ( k! ) if k even. 11" - 2k(k/2)!(k/2)I 

(3.19) 

From the Sterling's formula, we get that q2k ~ 11"-1/2(_1)k/2 (k)-1/4 and further 

Fu(~) E XS(JR) for any s < -1/2 (dclloted as Fu(~) E X(-1/2)- (JR.)). So we can say 
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all the nonzero constant functions have regularity degrees as (-1/2) -. Similarly, all 

the polynomials of order n can be viewed as tempered distribution and they have 

the regularity degrees (-1/2)- - n. 

Although we have mentioned many differences between the function spaces 

XS(lR.) and HS(ffi.), they do have close relationships. When s = 0, they are the same 

function space L2(ffi.); when s = 1, X1(ffi.) = {j E S'lf E H1(ffi.), xf E U(ffi.)} (virial 

space) in fact equals to H1(ffi.) nF(H1(ffi.)). This proposition can be generalized. It 

turns out that, we have such a theorem. 

Theorem 3.4.1. For all real number s 2': O. we have XS(ffi.) C HS(ffi.) n F (HS(ffi.)), 

( 
2 2 ) 1/2 

and the norm 11·llx> is stronger than the norm Ilulis = IIullH3 + II(x)S u(x)llp . 

In particular. for any nonnegatzve integer n. we have xn(ffi.) = Hn(ffi.) n F (Hn(ffi.)) 

and the norm 11·llxn is equivalent to the norm lIulln = (1Iull~n + II(x)nu(x)II~2r/2. 
For any real number -s ::::; 0, we have H-S(ffi.) + F(H-S(ffi.)) c X-S(ffi.) , and zt is 

a dense subset of latter space. In other words, H-s(ffi.) + F (H-s(ffi.)) = X-S(ffi.). 

In particular, when -n is a negative integer, we have H-n(ffi.) + F(H-n(ffi.)) ~s 

in fact the space x-n(ffi.), and the norm 11·llxn is equivalent to the norm Ilulin 

This theorem can be generalized to higher dimensional cases. In the following 

subsections, we will first prove this theorem for the case of nonnegative integers, and 

then use the method of complex interpolation theory to prove the case of nonnegative 

real numbers. Finally we will discuss the case of nonpositive real numbers, which is 

in fact in the dual form of the case s 2': O. 
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3.4.1 Nonnegative integer cases 

In this subsection, we will rewrite the theorem in the case of n E Z+ and then prove 

it. 

Theorem 3.4.2. For any nonnegatzvt' mtegern, we have X"'(JR) = Hn(JR)nF (H"'(JR)), 

( 
2 2 ) 1/2 

and the norm 11·llxn is equivalent to the norm Iluli n = IlullHIt + II (x)'" U(X)/IL2 , 
. (2 ~ ) 1/2 

or wrztten as Iluli n = Ilull Hn + IIFVlljfn . 

Proof. Recall that we have the characterization of the function space xn(JR) as 

X"'(JR) = {1L E 5'(JR) I era UJ(3 U E L2(JR) for all indices 0 ::; Q + /3 ::; n}, which im-

plies that it is a subspace of the function space Hn(JR). l\Ieanwhile, since the Fourier 

transformation is a unitary mapping on the space X'" (JR), then it must be true that 

xn(JR) = F(X"'(JR)) c F(Hn(JR)). Reversely, we have Hn(JR) n F(Hn(JR)) = {u E 

5'(JR) I xau, (tt u E L2(JR) for all indices 0 ::; 0: ::; n}, then we need to show that it 

implies that xa L:l u E L2(JR) for all indices 0::; 0: + /3::; n. 

Noticing that 11·llxn has an equivalent norm in the form of (2::0.+,13::;1'1 //xa u(6) //~2) 1/2 

and (1Iull~n + II(x)nu(x)II~2r/2 ~ (2::0.::;1'1 (1Ixaull~2 + //u(a)//~2))1/2, so we only 

need to prove that 

Obviously the left side term is not less than the right side term. Another observation 

is that the function space 5(JR) is both a dense subset of the space xn(JR) and 

Hn(JR) n F(Hn(JR)) with the concerned norm respectively. So the only thing left is 

to prove that 

(3.21) 
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is true for every function in u E S (JR). 

Below let us see a few cases with n small and then prove it for any positive 

integers by induction method. vVhen n = 0,1, this inequality are very clear. Now 

let n = 2. There is only one term Ilx d~ ull~_2 at the right side which doesn't appear 

on the left side. But we have 

IIxd~ul[2 = (xd~u,xd~U) (where (.,.) denote the inner product (-")£2) 

~ ( -C~)' u, x2u) - 2 U~ u, xu) 

~ C~)' U )lx
2

ull £' + 211 :x UII)'XU""' 

~ ~ ( US U :, + IIX2ull~') + II :A:, + IlxuliL 

which implies the inequality (3.21) is true ill the case n = 2. 

For the case n = 3, we only need estimate the term IIx2 d~ ull~2 and Ilx C~)2 ull~2' 
We have 

IIx2 d~ Ul[2 = (x2 d~ U, x2 d~ 11) 

~ -4 (x d~ u,x2u) - (x (:x) 2 u,x3 :x u) 
~ ~ (x (!) 'u" US U) + ~ (X3

U,X
3
U) 

+ 4 . ~ ( (x d~ u, f (~, U) + (x 2u, x2u) ) 

~ ~ (x C~) 2 U.3 (d~) 2 U) + ~ (X3U,X3U) 

+ CLQ ::;2 (1IxQull~2 + \\u(Q) \\~2) . 
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And we also have the estimate for the first term in the last line 

By using the inequalities above we can get 

which implies that 

(3.22) 

Together with the fact that u~l u is in the L2-space, we can deduce from the 

assumption in the induction method that all the terms xOu((3) with 0'+,6' = 3 and,6' ~ 

1 are also in the L2-space and their norms can be controlled by (2:::0:'03 (1IxQull~2 + IIU(Q) 11~2)) 1 

Thus the inequality (3.21) is true in the case n = 3. 

Through observation of the index of the derivative part in the process above, 

we can find the estimate of the term (.1'2 d~'U' x2 tx u) has experienced such a chain of 

processes: 1 ~ 2 ~ l(mod 3). This notation will be used in the following proof. 

For the case odd n = 2m + 1, we can obtain such a chain 1 ~ 2 ~ 

~ l(mod (2m + 1)) in finite steps (assuming the step in the chain is k). Its 

corresponding process provides us the estimate 

(3.23) 
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Then by taking the function d: u as a new function, we can deduce from the induc­

tion's assumption that all the terms xauUI) with 0: + (3 = 2m + 1 and (3 ~ 1 are also in 

the L2-space and their norms can be controlled by ( La9 (1Ixaull~2 + Ilu(a) 11~2)) 1/2. 

So our claim in the theorem is true for n = 2m + 1. 

For the case even n = 2m, we can first obtain the estimate of the term xmu(m) 

Then by taking the function xmu and u(m) as two new functions, we can deduce from 

the induction's assumption that all the terms x a u(f3) with 0: + (3 = 2m are also in the 

L2-space and their norms can be controlled by (La9 (1Ixaull~2 + Ilu(a) 11~2)) 1/2. So 

we have completed the whole proof for our theorem. 0 

3.4.2 Nonnegative real cases 

In this subsection, we will first review some materials in the theory of complex 

interpolation. Most of these materials come from [R-S2] [T], and then prove the 

theorem for the case of real numbers. Roughly speaking, interpolation theory is 

such a mathematical scheme: assume that we have a vector space E with two norms 

11·11 (0) and 11·11 (1) obeying a consistency condition, then the complex interpolation 

theory enables us to define a natural family of Banach spaces {Ee 10 ::; e ::; I} which 

interpolate between Eo and E1 , the completion of E in 11·11(0) and 11·11(1); the abstract 

interpolation theorem then follows easily; namely if {Ee} interpolates between Eo and 

E1 and {Fe} interpolates between Fo and F1 , then any map T which is in £(Eo, Fo) 

and in £(El' Fd extends uniquely to a bounded map of Ee into Fe for each e. Below 

we will come to more details. 
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Definition 3.4.3. Let E be a complex vector space. Two norms 11·11 (0) and 11·11 (1) on 

E are called consistent zJ any seqllPnce {xn} that converges to zero in one norm 

and which is Cauchy in the other rwr'm converges to zero zn both norms. IJ 11.11 (0) 

and 11·11 (1) are consistent, we define 

Ilxll+ = inf{llyll(O) + Ilzll(l) Ix = y + z}. (3.24) 

In this way, we can get that 11·1/+ is also a norm on the space E. If Eo, E1 , and 

E+ denote the completion of E under 11·1/(0) , 11·11(l) and 11'11+, then we have continuous 

imbeddings from Eo into E+ and from E1 into E+. If 0 is the vertical strip in the 

complex plane 0 = {z E qo ::; Re:: ::; I}, and 0° the interior of 0, we define r(E) 

to be the set of continuous functions J from 0 to E+ which are analytic in 0° and 

satisfy: 

(i) if Rez = 0, then J(z) E Eo and e ........ J(ie) is continuous in 11·11(0); if 

Rez = 1, then J(z) E E1 and e ........ J(l +ie) is continuous in 11·11(1); 

(ii) sup Ilf(z)ll+ < +00; 
zEn 

(iii) IIIJIII == sup{IIJ(ie)II(O) , 11.f(1 + ie)ll(l)} < +00. 
IIEIR 

It turns out that r(E) with the norm 111·111 is a Banach space and its subspace 

KII = {f E r(E)IJ(e) = O} (0 ::; e ::; 1) is III·III-closed. So we can define such a 

quotient space 

Ell = f(E)jKII' 0::; e::; 1, (3.25) 

and denote the quotient norm on EH by 11·11 (e). Note that E can be regarded as a 

subset of Ee under the map x ---+ [x], the constant function with value as x; and Ell 

can be regarded as a subset of E+ under the map [J] ---+ J(e). We now define Ee 
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to be the completion of E in the norm 11·11 (e). Thus, the spaces we have defined are 

related as follows: 

(3.26) 

where each mapping in the chain above is continuous injective map. In special, for 

B = ° (respectively, B = 1), Ee is just the space Eo (respectively, E1)' The spaces Ee 

are called interpolation spaces between Eo and E1 and the norms 11·11 (e) are called 

interpolation norms between 11·11(0) and 11·11(1). We remark that it is possible to 

prove that Ee = {f(B) 1 f E r(E)}. 

Theorem 3.4.4. (Calder6n-Lions interpolation theorem) Let E and F be complex 

vector spaces with given consistent norms II'II~) and II'II~) on X and II'II~) and II·II~)· 

Suppose that T(-) is an analytic, uniformly bounded, continuous, £(E+, F+)-valued 

function on the strip [1 with the following properties: 

(z) T(B): E -t F for each BE (0,1): 

(iz) For all y E lR, T(iy) E £(Eo, Fol and 

Mo = sup IIT(iy)IIL(E Fi) < +00; 
1ll> o. 0 

yE", 

(iii) For all y E JR, T(1 + iy) E £(E1 • F1 ) and 

AIl = sup IIT(1 + lY) IlqE1.FI) < +00. 
yEIR 

Then for any B E (0,1), 

T(B)[Eel C Fe 

and 
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One example that fits in this theoretic scheme is Sobolev spaces. If we have 

Eo = HS(lR) with norm II'II~) = II·IIH, and El = Ht(lR) with norm II'II~) = 11'IIHt, 

then we have Ee = H(1-e)s+et(lR) (see [T] vol. I p275-278). As to the case of our 

functional spaces, they also fit in this ,;cheme. 

Proposition 3.4.5. Let E = S(lR) and let 11·11(0) = 11·llx5 and norm 11·1\0) = 11·llxt 

where sand t are any two real numbers. Then we have for any 0 ::; e ::; 1 

(3.27) 

and the interpolatwn norms 11·11 (e) arE' Just 11·llx(1-8)sHI' 

Proof. It is easy to verify that the norm 11·11(0) and 11·11(1) are consistent and the 

completion of the space E under these two norms are XS(lR) and xt(lR) respectively. 

To complete the proof, we only need to show that the norm 11·11 (e) is just the norm 

11·llx(l-8;,HI on a dense subset of the space E. Let u( x) be a rapid decreasing function 

with only finitely many nonzero Hermite coefficients. say u(x) = 2:.;=oqk) hk ) (x). We 

define 

(3.28) 

Then this mapping satisfies f E r(E) and f(e) = u(x). We have f(iy) = 2:.;=oQk
J 
(kJ+ 

1/2)~(t-s) hk)(x) and its norm 

Ilf(Z!l)II~s = 2:.~=0 IQk) ILI(kJ + 1/2)(e-ly)(t-s) I (kJ + 1/2)S 

= 2:.~0 IQk) 12 (k
J 
+ 1/2)0-e)s+IJt(kJ + 1/2)S 

= Ilu(x) 11~(1-HI'Ht . 
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Similarly, f(l + iy) = L.~=oqk] (kJ + 1/2) H 2-'y (t-s) hk](x) and its norm 

Ilf(l + iY)II~t = L.~=o jqk] j2j(kJ + 1/2)(fJ-I-zy)(t-s)j (kJ + 1/2)t 

= L.~=o jqk
J

I2 (kJ + 1/2)(1-fJ)s+fJt(k] + 1/2)t 

= Ilu(x)II~(l-8)8+8t . 

So we have Illflll = Ilu(x) Ilx(1-8)8+8t and further Ilull(8) = Ilf(tJ) II(fJ) = Ilfllr(E)/K8 ::::; 

II u( x) II X(1-8)8Ht· 

For the converse, let us assume that f E f(E) such that f(tJ) = u(x), then 

we want to prove that Ilfll r(E)/K8 ~ Ilu(.r)II X(1-8)8+8 t . Let function v is a rapid 

decreasing function with only finitely many nonzero Hermite coefficients, say v(x) = 

L.~oPk] (x). We define 

(3.29) 

Then this mapping is an analytical mapping from n to the space x-s + X- t which 

satisfies g(tJ) = v(x). From the computation made for f(iy) and f(l + iy), we know 

that Illglll = Ilv(x)llx-(1--8),-Bt. Let us consider the integration H(z) = J~: f(z) 

g(z)dx, which is an analytical mapping from n to C satisfying 

IH(iy)1 = IJ~:f(iy)g(iy)dxl ::::; Illfllllllglll, (3.30) 

IH(l + iy) I = IJ~: f(1 + iy)g(1 + iy)dxl ::::; Illfllllllglll· (3.31) 

From the Hadarmard's three line theorem. we can get IH(z)1 ::::; Illfllllllglll, and in 

particular 

IH(tJ)1 = IJ~:u(x)v(x)dxl ::::; IIIflllll19111 = Illflllllv(x)llx-(1-8)8-8t. (3.32) 
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Note that the functions with finitely many nonzero Hermite coefficients are dense 

in the function space X-(l-l1)s-l1t, which is the dual space of X(1-I1)s+l1t. So we can 

conclude that 1111111 2: Ilu(x)ll x (l-e)sHi is true for any 1 E qE) and further 

Ilull(l1) 2: Ilu(x)llx(1-e),Ht. (3.33) 

In conclusion, we get EI1 = X(1-I1)sH!t(IR.) and 11'11(11) = 11·ll x (l-e)8H,' o 

By far we have got two families of function spaces HS and XS, which both fit 

well in the scheme of the complex interpolation theory. Then a simple application 

of the Calderon-Lions interpolation theorem can provide us the results of the main 

theorem in this section in case of nonnegative real numbers. 

Let E = F = S(IR.), and II'II~) , II'II~) , II'II~) and II'II~) are respectively 11·llxo , 11·llxn , 11·11 

and 11·IIHll, where n is an integer greater than the fixed nonnegative real number s. 

Let T(-) be the mapping from E+ to F+ continuously extended from the identity map-

ping. on S(IR.). Note that we have already known that the mappings T : XO -----> HO 

and T : xn -----> Hn are both continuous, then the interpolation theorem tells us that 

T continuously maps xs into HS for any real numbers 0 ::; s ::; n. Since XS is 

invariant under the Fourier transformation, it can be concluded that xs are sub-

sets of HS n F(HS) and the natural illlbeddings XS '----+ HS n F(HS) are continuous. 

Obviously, this result is in fact true for any nonnegative real number s due to the 

arbitrariness of the choice of integer n. 
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3.4.3 Negative real cases 

In this subsection, we will analyze the case of negative numbers. And as the end 

of the whole sections, we will provide our conjecture for the characterization of the 

spaces XS, which is much more elegant and also requires more careful analysis. 

For any real number -8 < 0, we have that X-s (IR) is the dual space of 

xs (IR) which satisfies XS(IR) C HS(IR) n F (HS(IR)) and i : XS(IR) ----7 HS(IR) (respec­

tively F(HS(IR))) is continuous. Then its adjoint operator it: H-S(IR) ----7 X-S(IR) 

(respectively, it : F(H-S(IR)) ----7 X-S(IR)) is also continuous. These mappings are 

both injective because S(IR) and thus XS(IR) are dense subsets of HS(IR) (respectively 

F (HS(IR))). So it is easy to conclude that the space H-S(IR) can be continuously 

embedded in the space X-S(IR). A little more direct computation can show that the 

space H-S(IR) is really a subspace of the latter one. 

Let u E H-S(IR) and v E XS(IR) c HS(IR) (8 > 0). We can have 

i(u, v)i = IJlRFu(~)F3U(~)d~1 

~ iiuiiH-s iiviiH' ~ iiuiiH-s iiviixs . (3.34) 

Writing the function v in the form of Hermite sequence, then the inequality above 

can be rewritten as 12.:~~UkVkl ~ M (2.:t:a iVki2 (k + 1/2)s//2, which implies that 

u(x) is a function in X-S(IR). 

Since X-S(IR) is invariant under the Fourier transformation, we can further 

conclude that H-S(IR) +F(H-S(IR)) C X-'(IR). Noting that S(IR) is a dense subset 

of X-S(IR) and obviously a subset of H-S(IR) + F(H-S(IR)), it can be deduced that 

H-s(IR) + F (H-s(IR)) = X-S(IR). The space H-S(IR) + F (H-S(IR)) has a natural 
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Banach structure with norm as 

From the fact that IluIIIH-S(IR) 2: IluIlls-s(IR) and Il u 21IF(H-S(IR)) 2: IluIllx-s(IR)' we can 

easily get IluIIH-S(IR)+F(H-S(IR)) 2: Ilulls-s(IR)' which implies that the natural inclusion 

map H-S(IFt) + F (H-S(IFt)) '---7 X-S(IFt) is continuous. 

We would like to pay special attention to the cases of negative integers. It is 

already known that xn(lFt) = Hn(lFt) nF (Hn(JR)), which is a Hilbert space under the 

inner product (u, v) = L.Q~nJ~: (~~J~ u (~~r v + X2Q uv dx. Then for any element 

I E X-n(IFt), which is the dual space of xn(lFt) , there is an element f E xn(JR) such 

that for all element u E S (1Ft) 

'" j+'x ( d ) a (d) a 2 l(u) = (j, u) = 0Q~n -')0 dx u dx f + X Quf dx 

= L:Q~n \ (- d~) Q (d~) a f'U) + \X2af,u;. 

So we have such a representation 

where fa and f{3 are all £2 functiolls. Together with the fact that H-S(IFt) + 

F (H-S(IFt)) c X-S(IFt) , the relation above implies X-ll(lFt) = H-n(lFt) +F (H-n(IFt)). 

It is worth to point out that the mapping i : H-n(IFt)+F (H-n(IFt)) '---7 X-n(lFt) 

are thus a continuous bijection from Banach space H-n(JR) +:F (H-n(IFt)) with norm 

11'IIH-n(IR)+F(H-n(IR)) onto the Hilbert space X-n(lFt) = H-n(JR) + F (H-n(IFt)) with 

norm 11'llx-n(IR)' Then inverse mapping theorem (a special case of open mapping 

theorem) tell us that i-I: X-n(lFt) ~ H-n(lFt) +F(H-n(JR)) is also continuous. 
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Thus we know that these two space are in fact same Banach spaces, and the only 

difference between them is they have different but mutually equivalent norms. 

There is no essential difficulties to generalizing the results above into higher 

dimensions. When we try to generalize the results in integer cases into the cases of 

arbitrary real numbers, we have met some difficulties, but we do believe they are in 

fact also true. Here we write it into the form of a conjecture below to finish this 

section. 

Conjecture 3.4.6. For any real numbeT S ~ 0, we have XS(JR.n) = HS(JR.n) n 

( 
2 2 ) 1/2 

F (HS(JR.7l )), and the norm 11·ll x " is equivalent to the norm Ilulis = IlullHs + II (x)S u(x) 11£2 . 

For any real number -s :::; 0, we have H-8(JR.n) + F (H- S(JR.7l)) = X-S(JR.n) , and the 

norm 11'llx-" zs equivalent to the norm Ilull_8 = inf111 +112 =11 (1Iu11IH-s + II (xi -s U2(X) 11~2)' 

3.5 Other properties 

In this section, we will describe some other properties of the function spaces XS. As 

we have found, our function spaces XS have very close relationships with Sobolev 

function spaces, which is extensively used in the theory of partial differential equa-

tions. Since when s ~ 0 our function spaces XS are in fact a subset of the Sobolev 

spaces HS, many properties of the function in Sobolev spaces are also true for the 

function in our spaces. For example, we haw Sobolev imbedding theorems: 

• If 0 :::; s < 71/2 and lip = 1/2 - sin. then the inclusion mapping XS(JR.n) '------+ 

LP(JR.n) is continuous . 

• If s - 71/2 = m + Q where m E Z+ and 0 < Q < 1, then all the functions in 

go 



XS (IRn) have continuous derivatives up to m times, and all of its m times derivatives 

are Holder continuous of order a. 

Meanwhile our spaces have compact imbedding theorem (proposition 3.3.2), 

which doesn't require the assumption of" compactly supported" as the Sobolev spaces 

do. 

However, our function space:..; also possess some properties different from 

Sobolev spaces. One of them is its relationship ,vith LP space. 

3.5.1 Relationship with Vi spaces 

At first let us analyze the functions in the space XS(IRn) with 8 > n/2. 

Proposition 3.5.1. If 8 > n/2. then any function f = "£:::aqkhk(X) E XS(lRn) zs 

a bounded continuous function, whzch zs tending to zero at infinity and zntegrable on 

the whole plane. And the approximation sequence fN = "£~=oqkhk(x) is umformly 

convergent to f on any bounded sets of IRn. 

Proof. At first, let us see the case of I-dimension. Since XS(lR) (8 > 1/2) is a subset 

of HS(IR), we can get that Ff(~) is an integrable function, which implies that f(x) 

is a bounded continuous function, which is tending to zero at infinity. Since XS (IR) 

is a subset of F(HS(IR)), we can get 

J~: If(x)1 dx :::; (J~: If(:r)1 2 (X)2s dX) 1/2 (J~: (X)-2S dX) 1/2 

;S Ilfll.\", < +00 (8), 

which implies that f is integrable. 
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As to the uniformly convergence of the sequence, we have for any x in a 

bounded sets, say {ixi :S 1\I}, 

If(x) - fN(X)1 = l2:t~ONqkhk(X)1 

:S (2:~~N Iqkl 2 (k + 1/2y)1/2 (2:~~N(k + 1/2)-8 Ihk(x)12)1/2. (3.38) 

We would like to mention that there is such asymptotic representations of the Hermite 

functions [M-O-SJ 

H2n (x) = (-It 2n(2n - 1)!!e
x2

/
2 (cos (J4n + IX) + 0 (~) ) , (3.39) 

H2n+1(X) = (-It 2n+1/2(2n - 1)!!J2n + 1e
x2

/
2 (sin (v.!n + 3x) + 0 (~)) , 

(3.40) 

which imply that on any bounded sets {I}'I :S M} 

(3.41) 

where the notation (.Ai) means that the constant corresponding to hk(x) ,:S (k)-1/4 

depends on M. So the inequality (3.38) can be written as 

If(x) - fN(X)1 ,:S (2:~~N Iqkl2 (k + 1/2)8) 1/'2 (2:~~N(k + 1/2)-8 (k) -1/2) 1/2 (.Ai), 

(3.42) 

which implies that fN = 2:~=oqkhk(X) is uniformly convergent to f on the sets 

{Ixl :S M}. The proof for higher dimensional case can be obtained similarly. 0 

Corollary 3.5.2. For 1 :S p :S +00, we have the contmuous incluswn U(JRn) '--+ 

x(-¥f (JRn), where x(-¥f (JRn) means any space XS(JRn) wzth s < -~. 

Proof. It suffices to prove the case of L 1 (JR/) and L +00 (JRn), since all the other cases 

can be deduced from the interpolation method. Let f is a function in U (JR71). 
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Then it can induce a linear mapping Tf defined by Tf(CP) J~:: f(x)cp(x)dx for 

cp(x) E xC~Y. This operator is well defined and satisfies 

which means that Tf is an element in x(--8'f(JR"), or, for any s < -% it is true 

that Tf E XS(JRn). Thus we get a continuous mapping T : £1 (JRn) ---t XS(JR") 

by sending f to the element Tf . This mapping T is injective due to the fact that 

J~: f(x)cp(x)dx = 0 for all rapid decreasing functions cp(x) implies f == O. So it 

comes to the conclusion that L1 (JR") '------+ X ( - -8' f (JRn) is a continuous inclusion. 

For the case of L+oo(JRn) let us consider the mapping T : L+OO(JR") ---t XS(JRn) 

which defined by Tf(CP) = J~: fCT)'P(.r)dx. It is a well defined continuous mapping 

due to the inequality 

And we can furthermore use similar reasoning to prove the desired results. 0 

The results of the propositioll 3.5.1 and the corollary 3.5.2 can be written 

together as 

where each relation "e" can induce a continuous injection form the former space 

to latter space. By the imbedding theorem, we can further have such two finer 

relationships 
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These facts suggest us to ask such a question: 

Problem 3.5.3. For 1 :::; p :::; +00, what is the best mdexes ap (or a;) and bp (or 

b;) so that Xap (JR.n) c £P (JR.n) c Xb p (JR.n) , whzch satisfies that all the related natural 

inclusions are continuous? 

This question has close relation with the problem of mean convergence of 

expansions in Hermite series. In 1965, Richard Askey and Stephen Wainger once 

obtained such a result [A-W]. 

Theorem 3.5.4. Let f be in £P( -00,(0),4/3 < p < 4. Define an = fo+ oo 
f(x)hn(x)dx 

and set Sn = ~~=oakhk(x). Then IISn - filLP tends to a as n approaches infinity. 

And there is an Ap such that IISnllLP :::; Ap IlfllLP (n = 0,1,2,· .. ), where Ap zs 

independent of f E £P. 

For the case of 1 :::; p :::; 4/3 and p 2'- 4. they pointed out that the theorem is 

false. Now the answers to our question (if available) provide us such inequalities: 

( 3,48) 

So if the function f is in the space xap (JR./l), then its Hermite expansion converges 

to f in LP space; in other cases, it has lower bound of error estimate as IISn - fllxb p • 

3.5.2 Product of two XS functions 

In this subsection. we will study the following problem: suppose we have two tem­

pered distribution u) E X8](JR.n), j = 1,2, then how to define their product U1U2 and 

what is the property of this product. Formally we can do in this way: let (,) de­

note ,. pair operation" between two elements coming from a locally convex topological 
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space and its dual space, then we define 

(3.49) 

where we need U2tp E x-s!(JR.n). Ohviously, this definition is compatible with the 

usual product of two rapid decreasing functions. 

The last requirement is not superfluous. In general there is little hope to define 

the product of two arbitrary tempered distributions. For example one can hardly 

find a reasonable way to define the square of delta function o(x) as a tempered 

distribution. So restrictions must be posed on the choice of 1.11 and U2. It is well 

known that if we choose 1.12 from the space OAf, the set of infinitely differentiable 

functions 011 JR.n which together with their derivatives are polynomially bounded, 

then U2tp E S(JR.n) C X-S! (JR.Tl). Here we adopt another restriction, namely that 

S1 + S2 2 O. 

Proposition 3.5.5. If UJ E XSJ (JR."). j = 1,2 and SI + S2 2 0, then the equality 

(3.49) provzdes a well-defined temperrd distributionul 1.12, which is independent of the 

order of the two elements (1.111.12 = 11.2U1) and satisfies 

I(Ulu2,tp)l;S C(zp) Ilutllx8! IIu211x82 (S1,S2). (3.50) 

where C(tp) ~ 0 as tp ~ 0 in S(JR.II). 

To prove proposition 3.5.5, the essential task is to verify U2tp E X-S! (JR.n) and 

inequality (3.50). This is because we can then deduce that inequality (3.50) defines 

a continuous functional on S (JR.n) and thus a tempered distribution; meanwhile 1.111.12 

can be approximated by the product (L~=oakhk(x)) C2=~oblhl(X)), which is of course 

independent of the order of their product. So we only need prove such a lemma: 
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Lemma 3.5.6. For any 'P(x) E S(lRn ), we have the mapping T<p : u f----> 'Pu is a 

morphism of order 0 on the Hilbert scale {X S (lRn)} , which satisfies 

(3.51) 

Proof. For simplicity of writing we prove it in one dimensional case. The proof for 

higher dimensional cases are essentially same. 

When s = 0, we have 

(3.52) 

when s = n E N, we have \\'PU\\xn ~ I:0<::n+8<::n lixc> ('Pu)($) 11£2' By Leibniz's rule, 

it can be controlled by II'Pull.,·n < I: jj'P(f31 lxa (u)Uhljj . Thus we can , rv 0<::(1+111 +f32<::n L2 

further have 

(3.53) 

whens = -nisanegativeinteger, we have licpuiix-n ~ infu1 +1l2=1l (11'PU11IH-n + IllPU 21IF(H-nl), 

in which each term can be controlled: 

and 

Thus we can have 

II<pullx-n :::; C(cp) Iluilx-n. 

Finally by a simple application of Calderon-Lions interpolation theorem, we can 

deduce the inequality (3.51). o 
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Let us recall that for any tempered distribution, there is a unique sequence 

of Hermite coefficients corresponding to that distribution. We will show next how to 

compute these coefficients in one dimensional case. Assume that U = 2:.t::aQkhk(X) E 

XSl (lR.1) , v = 2:.~o;;Plhl(X) E XS2(JR 1
) Rnd 81 +82 2: O. Let Cklm = r~:hk(X)hl(X)hm(x)dx. 

Then formally we have 

(3.54) 

According to proposition 3.5.5, we know that (uv)m = (uv, hm(x)) is a well defined 

complex number. But unfortunately. the formula (3.54) is not absolutely convergent 

in general. So we need make clear the precise meaning of the formula (3 . .54). 

Proposition 3.5.7. Let u, v, Cklm as above. Let UNl = 2:.:~oQkhk(X) and VN2 

2:. [:;oPI hi (x). Then 

(3.55) 

Nl N2 
Proof. Noticing that 2:. 2:.QkPlcklm = (UNl VN2)m1 we only need estimate the difference 

k=OI=O 
between (uv)m and (UNjVN2)m' By the inequality (3.51), we get 

;S C(hm(x)) II(u - UN1)llxSl IIu211x82 + 

C(h",Cr)) II(UNJllx81 IIu211x82 (81,82), 

Take the limit limN1,N2--->+OO on the right side, then \ve get the result. o 

There are many cases such that the formula (3.54) are in fact absolutely 

convergent. Here is an example. 
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Proposition 3.5.8. Assume that u = 2:.;::Oqkhk(x) E U(fBL1 ),and v = 2:.~~Plhl(x) E 

XS(fBL1) where s > 1/2. Let Cklm = J~: hk(,r:)hl(x)hm(x)dx. Then 

tS absolutely convergent and u'v E L2 (fBLn). 

Proof. We have 

2:.:'~O IqkPlcklml ~ 2:.i:a (2:.;::0 ICklml2) 1/2 (2:.;~ Iqkl
2
) 1/2 1PII 

= (2:.~~ IPII C;';~ll) II u ll L2. (3.56) 

By the result of the theorem of the last chapter, it is true that C;!~ll :s (max( m, I)) (-1/2)- . 

Then the inequality (3.56) can be continued as 

",+00 I I < (",+00 I 12 ( )S)ln (",+00 (1)-8 (1)(-1/2)-) 1/211 II LA.I=O qkPICklm rv L..l=O Pl I L..1=O U L2 

since s > 1/2. 

The statement of uv E L2(fBLn) can be deduced like this: v E XS(fBLn) where s > 1/2 

implies IIvllv>o :s IIvllxs; and the multiplication of a bounded function and an L2 

function must be an L 2 function. o 

By using the Fourier Transformation, the definition formula (3.49) can also 

be written in the form of 

(3.58) 

10~ 



It turns out that the function :F (Ul (12) (~) can be described well. In particular, let 

us see the case of Ul E XS(JRn) andu2 E x-s(JRn) where s is nonnegative. The 

following lemma is crucial. 

Lemma 3.5.9. Let Ta : S'(JRn) ~ S'(lRn) is the linear operator mapping fe) 1---+ 

f (a - .) for a E lRn. Then zt is a morphzsm of order 0 on the Hilbert scale {XS (JRn)} 

which satzsjies 

(3.59) 

Proof. For simplicity of writing we prove it in one dimensional case. The proof for 

higher dimensional cases are essentially same. When s = 0, it is easy to see that 

IITauIIL2 = Ilulip. When 8 = mEN, we have IITaullxm ~ IITauIIH1n + IITauIIFHm. 

Since llTaullHm = llull Hm and 

( 
+ 2 2) 1/2 llTaullFHffi = L: lu(x)1 (a - x; m dx 

;S (J~: lu(xW (x;2m dX) 1/2 (a;m , 

we can get that IITaullxm ;S I/ullxm (0;111. Then a simple application of Calderon-Lions 

interpolation theorem provide us that 

is true for all s :2: O. 

For the negative case -8 < O. we only need notice that Ta is symmetric, which 

can be deduced from the fact that (Ttl'?, 'l/J; = (rp, Ta'l/J; is true for all tp, ljJ E S(lRn). 

In particular, we write for any functions u E XS(lRl),V E X-s(JRl) 

which implies that IITavllx-s ;S llvll x -s (a)l-sl. o 
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Coming back to the formula (3.58), it is easy to get 

IF (Ul'U2) (~)I ::; (27r)-n/2IhF (u1)ll x s IIF(u2)llx-. 

:s Ilu11l x• Illdlx -8 (OS, 

which can be written in the form of the next proposition. 

(3.60) 

Proposition 3.5.10. If '111 E XS(JRn) and '(12 E x-s(JRn) where s is nonnegative, 

then F ('111'112) (~) is a functwn wzth polynomzal growth rate not greater than s. 

It has two corollaries. 

Corollary 3.5.11. Let s 2': O. The multiphcation operation is a continuous mapping 

from XS(JRn) x X-S(JR11) to the space x(-·-n/2)- (JRn). in partzcular, if u E XS(JRn) 

and v E x-s(JRn), then 

Il uv ll x C-s-n/2l- :s Ilull x • Ilvll x - •. 

Corollary 3.5.12. Let s 2': O. The multiplication operation is a contm'uous mapping 

from x(s+n/2)+ (JRn) xxs(JRn) to the space XS(JRn). m particular, if'll E x(s+n/2)+ (JR11) 

and v E XS (JRn), then 

II uv ll x8 :s IluIIXls+n/2)+ II vll x8 . (3.61) 

By using the fact that 11'U'L'll x c- s - n / 2 )- :s IluvIIHc-s-n/W, then the corollary 

3.5.11 is a direct consequence of the proposition 3.5.10. We will provide the proof of 

corollary 3.5.12. 

PTOOf. Assume w is an arbitrary function ill the space S (JRn), then from the corollary 

3.5.11 we have 

I (uv, w)1 = 1('11, vw)1 :s IluIIXls+n/2)+ Ilvll x ' II1Oll x-., 

106 



which implies that uv is a function in the space XS(1R;n) and satisfies the inequality 

(3.61). o 

One natural question is if we are given the information of the regularities of 

the functions u and v. then what kind of information can we get for the regularity of 

their product 11V. Recall that in the case of Sobolev spaces, one can also define the 

product of two functions as a tempered distribution satisfying (111 U2, !.p) = (111, U2!.p) 

and there is such a result [Q-X-W]. 

Theorem 3.5.13. If Uj E HS) (lR"). j = 1,2, and 81 + 82 ~ 0, then it is true that 

U1U2 = U2U1 E HS(lRn) and there is a constant C dependmg on 8, Sl, and S2 satisfying 

(3.62) 

where s :S 81, 8 :S S2 and 8 :S 81 + 82 - n/2. When one of the 8J equals 71/2 or the 

minimum i8 just -71/2, the last inequality should be changed into strict inequality. 

Corollary 3.5.14. For 5 > 71/2, the Sobolev space HS(lRn) forms an algebra under 

the product defined above. 

In some special cases, the theorem 3.5.13 can have analogue in our function 

spaces X8. For example, when 11 E X8(lRn) and II E x-s(lRn), we have corollary 

3.5.11; when u E X S
l (lR") and v E X'2(lR") satisfying 0 :S 51,82 and 51 + 82 < 71/2, 

then we have IIu1U211xs :s IIu1U211Hs :S C(8,51,82) IIu111x81 Ilu211x82' where 8 = 81 + 

S2 - n/2. But for the general cases, it turns out to be a more complicated problem. 

Here we turn our attention to a related but special question: what is the 

condition such that the function space XS(lRn) is an algebra under the operation of 

multiplication. If our conjecture (X"(lR") = HS(lRn) n :F (Hs(lRn)) for all 8 ~ 0) 
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is true, then it is an easy task to verify that XS(JR11) C HS(JR") is an algebra for 

s > n/2. Furthermore we can get this subalgebra is an ideal of H'(JRn). In other 

if m is the smallest integer larger that n/2. this property holds. Let us see the case 

of I-dimension at first. 

Theorem 3.5.15. For any real number s 2': 1, the Junction space XS(JRl) is an 

ideal oj HS(JR1) under the multzplication operation. in particular, zJu E HS(JR1) and 

Proof. When s = 1, we have 

Iluvllxl ~ II d: (uv) t2 + Iluvllu + IluvllFHl 

;S Ilull£'XJ 1I'Oll x1 + II d~' ullu Ilvll£OXJ + Ilull£OXJ IlvllFHl 

;S IluII H(l!2)+ Ilvllxl + IlullHl IlvII X"(lj2)+ 

Similar reasoning can be done for other natural integer numbers. 

(3.63) 

(3.64) 

(3.65) 

Assume s = mEN, then from the characterization of the functions in xm (JR 1 
) 

(theorem 3.2.4) we have Iluvll xm ~ LO:So+d:Sm IlxCl' ('11'0)(13)11£2' which can be subse-
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quently controlled by 

Iluvllxm ;S 2: Ilxau(!3llvU32) IIL2 
O:S;a+!31 +!32:S;m 

;S Il uIIH(1/2)+ Ilvll xm + IluII H1+\1/2)+ Il vll Xm-1 + ... + IluII Hm-1+(1/2)+ II vll x1 + IlulIH= Ilvll 

(3.66) 

(3.67) 

~re have proved that the theorem is true for all natural integer numbers. 

Now assume that s E JR is between natural numbers 1 and m. Let u E HS(JRl) 

and v = 2:t:aqkhk (x) E XS(JRl). '''Te define the mapping 

l(z) = fr (z)12(z) = ;:--1 ((0 -(m-l)(z-li) Fu(~)) 2:i::aqk (k + 1j2)-(m-I)(z-e)/2 hk (x) , 

(3.68) 

where 0::::; e = (s-1)j(m-1)::::; 1 and z E [2 = {z E <CIa::::; Rez::::; 1}. The 

mapping 1 is an analytical mapping on [20 with values in Xl (JR 1) + xm (JR I). This 

fact can be justified by these facts: h (;;) is analytic on [20 with values in HI (JR I) + 

Hm(JR I ); 12(;;) is analytic on [20 with values in XI(JRI) + xm(JR1 ); together with 

HI. Xl C Xl and Hm . xm c xm J\Ieamvhile it is easy to verify that l(e) = uv and 

the following two formulae 

111(1 + iy)llxm ;S Ilfr(1 + iy)IIHnt Ilh(l + iy)llxm = Ilull Hs Ilvllx' (m), (3.69) 

which implies that 1111111 ;S IlullHs Ilvllx8. Then by the complex interpolation theory 

and noticing that m can be chose ai-l the smallest integers larger than s, it can be 

deduced that uv E XS(JRI) and it satisfies the inequality (3.63). o 
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In the higher dimensional cases, we can still use the same method: first use 

the characterization of the functions in xm (JRn) to prove that for all natural numbers 

m big enough the space xm(JRn) is an ideal of the Sobolev spaces Hm(JRn); then by 

using the interpolation method to prove the theorem is true for all real numbers big 

enough. Since the proof is essentially same, we just skip it and give the statement 

as follows. 

Theorem 3.5.16. Let m is the smallest integer larger than n/2, that is, m = 1 -

[-~J. For any real number s 2: m, the function space XS(JRn) is an ideal of HS(JRn) 

under the multiplication operation. Speczjically, if U E HS(JRn) and v E XS(JRn) then 

(3.70) 

Remark 3.5.17. From the observation that F(U1U2) = (27r)-n/2F(ud * F(U2), 

there zs a similar result stating that in the same conddions as above the function 

space XS(JRn) is an ideal of F (Hs(JRn)) under the convolution operation. 

3.5.3 Relationship with Bargmann spaces 

As the last section of the whole chapter, we would like to point out that our spaces XS 

are "essentially" the Bargmann's spaces, ,vhich was once studied by V. Bargmann 

in the 1960's [Barl ][Bar2]. In these works, he first established a kind of integral 

transformation (the Bargmann transform) and showed that this transformation is 

a unitary mapping of L2(JRn) onto the Fock's space Fn; then in the part two, he 

found that a family of related function spaces (the Bargmann's spaces) can be used 

to analyze the properties of tempered distribution. Below is a very rough review 
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on his work and pay our attention to proving that our spaces are isomorphic to the 

Bargmann's spaces. 

Let us start with the definition of Fock's space. 

Definition 3.5.18. Given an idenbficatwn ]R2n = en {z = (Zl,'" ,zn), z) = x) + 

iy), Fock space is the space of entzre function on en I with finite norm using the 

inner product 

(3.71) 

Bargmann proved that there is a unitary mapping from complex valued func-

tion space L2 (]Rn) onto the the Fock's space Fn: 

(3.72) 

(3.73) 

result can be justified by the fact that this transformation maps an orthonormal 

basis of L2 (]Rn) as an orthonormal basis of Fn- To see this, let us introduce the 

some notation here about multi-indices: a = (aI, a2,' .. ,an) E Z~, lal = a1 + 

the function space L2 (]Rn) has an orthonormal basis consisting of Hermite functions 

{hoJq) := h01 (q1) ® hCX2 (q2) ® ... ® h{lJqn)}. Then the Bargmann transformation 

maps ha(q) as the function uo(z) = z"/JeJ, which makes up of an orthonormal basis 

of the Fock's space Fn when a runs over Z~. In fact, the kernel Bn(z, q) can be read 
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A natural result is that the mapping En induces a unitary isomorphism be-

tween the linear operators on Fn and those on L2 (lRn). In the part one of the series 

of the papers "On a Hilbert Space of Analytzc Functions and an Associated Integral 

Transform", V. Bargmann studied many operators on Fn and their corresponding 

operators on £2 (lRn) such as: 

• z' = c + U z where c E en and U is a linear unitary transformation; in 

particular, let c = 0 and U be a one parameter subgroup of the multiplier e'T (T real 

numbers), it induces the Fourier transformation on L2 (lRn) when T = ~7r; 

• The operators multiplier Zk and differential operator 8/8zk ; 

• Linear canonical transformation. 

In the part two, V. Bargmann generall.zed the definition of the Fock's space. 

Definition 3.5.19. For every holomorphzc function f on en, the norm Ilfllp is given 

by 

(3.74) 

where dfJ~(z) = 7r- n e2;(z)dn z and e; = (1 + IzI2)P/2 el'lzI2/2. It zs said that f is a 

function in the space F!:, if IIfllp < +00. 

The space F!:, turns out to be a Hilbert space, with inner product as (1, g) p = 

fen f(z )g(z )dfJ~ (z). In particular it has an orthonormal basis (see [Bar2] p36) {u~( z) = 

(7]~I)-1/2Ua(Z)}, where 7]~1 = fen lua(z)12 dll~(Z) = r(n~laIJo+OO(l +x)Pxn+laHe-xdx 

satisfies 771al ~ (n+ lal)P. Recall that our function space xp(lRn) has an orthonormal 

basis {h~(q) = (10'1 + n/2)-p/2ha(q)} where ha(q) = hal (qd ® ha2 (q2) ® ... ® han (qn). 

Then it is easy to confirm that the linear mapping T from XP(lRn) to F;: satisfying 

T (h~ (q)) = u~ (z) is in fact an isomorphism. So we have such an result. 
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Theorem 3.5.20. For each p E IR, the function spaces XP(IRn) ~s isomorphic to the 

Bargmann's space F/:.. 

At that time V. Bargmann had realized that there are close relationships 

between his spaces and tempered distribution. For example it had been already 

known that the intersection of all the spaces Fh is "essentially" the rapid decreas­

ing function and their union is .. essentially" the tempered distribution. In his 

work [Bar2], V. Bargmann studied sHch function spaces: the Bargmann's space F/:., 

the function space En = nt::_ooF,~' (corresponding to S(IRn)), the function space 

E~ = ut:_ooF~ (corresponding to S' (IRI1)), the function space E~ (the normed space 

with Illp = SUPzECn B;;l(Z) Il(z)!) and their interrelations. The introduction of these 

function spaces, especially En and E~. provides an auxiliary tool for distribution the­

ory. So the author applied them in the problems in the tempered distribution theory: 

the convergence in S' (IRn); the representation in E~ for basic operations on S' (IRn) , 

including the partial derivative operator, multiplier operator of the function q] and 

the Fourier transformation; the regularity theorem and the kernel theorem of tem­

pered distributions; some special tempered distributions like compactly supported 

distributions, periodic distributions alld their Fourier expansions and homogeneous 

distributions. 

The relationship between the V. Bargmann's spaces and tempered distribu­

tion was also noticed by Barry Simon. In the paper [Si], he used the method of 

the Hermite expansion for tempered distributions to establish the relationship of a 

sequence space and the tempered distribution. Then this method enabled him to 

study on an easier target-the sequence space- to get analysis results on the tempered 

distribution. He also mentioned the relationship of his work and that of V. Bargmann 
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in that paper. 

Our work initiates at the analysis on the linear partial differential equation 

i7jJt = ~7jJXT - ~2 7jJ = A7jJ, where the space X" is in face the definition domain of the 

operator An/2 and the Hermite functions ari8e as the eigenfunctions of the operator 

A. This is quite different from the work by B. Simon and V. Bargmann, since one 

of them initiated from the realization of S(JRn) as a sequence space, which can be 

traced back to Schwartz's book [Sc]; the other one initiated from the relationship 

between the Fock space Fn and L2 space. 

Our work also differs from the work by B. Simon and V. Bargmann on con­

tents. We directly fitted the function spaces XS (JRTI) well in the theoretic structure of 

Hilbert scales, and most basic operations on those spaces are regarded as the homo­

morphisms on the Hilbert scale. Like what B. Simon and V. Bargmann have done, 

we also studied some problems on the topological structure of the spaces S(JRn) and 

S' (JRn) , such as locally convex topology, characterization of sequence convergence 

and characterization of linear operations on S(JRn) or S'(JR") etc. But we restrict 

these parts in the level of just describing the relationship of the function spaces 

XS(JRn) and the spaces S(JRn) and S'(JRn), and many important properties for these 

two spaces are not covered. Back to B. Simon and V. Bargmann's work, the spaces 

S(JRn) and S'(JRn) themselves were the research target, and the results like the reg­

ularity theorem, kernel theorem and sequence completeness were too crucial to be 

skipped over. In our work, the viewpoint is mostly kept from the analysis, especially 

PDE, and much concern is paid on the study in the relationship between the Sobolev 

spaces and the spaces XS(JRn) and the problem of how these spaces can be used in 

nonlinear PDEs (in particular the definition of the product of two functions). In this 
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process, the properties of Hermite fUllctions take some important roles. 
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Chapter 4 

Birkhoff Normal Form 

4.1 Introduction 

Let us consider the nonlinear Schrodinger equation 

x E]Rl 
(4.1 ) 

1/J complex valued, 

where g = 1 (g = -1) is for defocusing (focusing) cubic nonlinearity. This equation is 

also known as the Gross-Pitaevskii (GP) equation with a parabolic potential, which 

was brought up in the theoretical study for Bose-Einstein condensation in 1960's 

[Gro][Pi]. Since a Bose-Einstein condensate was produced for the first time in the 

experimental condition in 1995, this partial differential equation has received a lot 

of attention. 

There are already many mathematical papers [O][Z][C1][C2] with emphasis 

on the local or global well-posedness and blow up conditions of the GP equation 
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in general dimensions. One of the results in this work is that in one dimensional 

case the solution will always globally exist in the space Xl (JR) = 2:: with conserved 

mass and energy. in particular, the equation will always have global solution in the 

energy space 2:: := {'U E HI (JR) \ xu E L2(JR)}, no matter whether the constant 9 is 

negative or nonnegative, and the solution conserves the mass 1\1 = r~: \'lji\2 dx and 

the energy E = ~ L+: Iv>x 12 + IX'lji12 dx + ~ L+: 1'lji14 d:r. 

In thill thesis, we will discuss this equation in a ,vider class of function spaces, 

which we believe as a very natural choice. One advantage in doing so is that it enables 

us to consider the equation for the initial data with different regularities, even not 

within the space 2::. Most part of these results will be provided in the section 4.2. 

We comment here that this G P equation has a Hamiltonian structure. Let 

H = ~J~: l1fJxl2 + Ix'lji12 dx + ~J~: 1~>\4 dx, then the right side of the equation (4.1) 

can be written as 

( 4.2) 

So the equation (4.1) can be changed in this form 

{

oj, = i Dli x E JR 1 
'f/t 81' 

'lji(x, 0) = 7f'O(X) 'lji complex valued, 
(4.3) 

which is an infinite dimensional Hamiltonian system. In this thesis, we will make 

use of our function spaces X2s(JR) and take the viewpoint from Hamiltonian PDE to 

study the GP equation. In this procellS, the Hilbert scale X2s(JR) will provide us the 

spaces to work in and many technical tools (especially the Birkhoff Normal form) 

from the theory of Hamiltonian systems will be applied. Below let us have a quick 

review on the Hamiltonian formalism in infinite dimension [Gre]. 
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Typically a Hamiltonian system in finite dimension reads 

{ 

XJ = ~~, j = 1"" ,n 

Y j = - g~, j = 1, .. . ,n 
(4.4) 

where the point (x)' YJ) is in the phase space (or configuration space) M, an open 

set in lR2n and the Hamiltonian function H is a regular real valued function, on 

the phase space AI, that is, H E Coo (AI, lR). By introducing the canonical Poisson 

matrix, that is, 

J= 
( 

0 In) 
-In 0 ' 

and Hamiltonian vector field 

XH(x, y) = JV.r.yH(x, Y), 

where V x,yH(x, y) denotes the gradient of H with respect to x, y, the Hamiltonian 

system (4.4) then can be written as 

BH 
aYl 

BH 
By" 

aH 
- aXl 

aH 
- aXn 

(4.5) 

A very basic concept in the theor)T of Hamiltonian systems is the Poisson 

bracket of two functions defined as: for any two functions F, G, the Poisson bracket 

of them is a new function {F, G} given by 

n of OC of oG 
{F, G}(x, y) = L ~(x, y)~(:l', y) - ~(x, y)~(x, y). (4.6) 

)=1 UX) UYJ UYJ UXj 
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The Poisson bracket {F, H} provide a Yery good representation of the changing values 

of the function F (x, y) along the flo\\' of the Hamiltonian system associated to H. In 

particular, if t I-' (x( t), y( t)) is a solution of the system (4.4), then 

d 
-d F(x(t),y(t)) = {F,H}(x(t),y(t)). 

t 

1'1oreover, if FE COO(M, JR.) satisfies {F, H} = 0, then it is said that F is an integral 

of motion for H. Obviously, in this setting the function H itself must be an integral 

of motion for the Hamiltonian system. 

Since solutions to a Hamiltonian system will conserve integrals of motion, the 

initial value problem is solved on the intersection of the level sets of those integral 

functions, thus a Hamiltonian system becomes easier to study. In some cases, one 

can find TI independent integrals for a given 2n-dimensional Hamiltonian system. It 

is said that a 2n-dimensional Hamiltonian system is integrable in the sense of 

Liouville, If there exist n regular functions F1 ,F2 ,' .. ,Fn : Ai -----> JR. such that: (i) 

{FJ,H} = ° for j = 1,'" ,n; (ii) {F}.Fd = 0 for j,k = 1,," ,n (that is, the Fj 

are in involution); (iii) ('\7 x,yF) ))=1,. ,II are linearly independent. If the last condition 

is not satisfied on the whole space, but on a dense open subset , it is often called a 

Birkhoff integrable Hamiltonian system. 

There is one simple example here for the above definition of integrable Hamil-

tonian system. Let Ai = JR.2n and 

where W = (WI,' .. ,Wn)t E JR.n is the frequency vector. The associated Hamiltonian 

system is called harmonic oscillator. whose solutions are all quasi-periodic given 
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by 

{ 

x)(t) = x)(O) cosw)t + y)O) sinw)t, 

y)(t) = -x)(O) sinw)t + y)(O) cosw)t, 

j = 1,'" ,n 
(4.7) 

j = 1,'" ,n. 

It is easy to verify that the functions I) = (.I'; + y;)/2 are all integrals of this system 

and they satisfy the conditions (i), (ii) and they satisfy (iii) on a dense open subset. 

In other words, this is a Birkhoff integrable Hamiltonian system. It is deserved to 

mention that by introducing new complex parameter z) = (x) - iYJ) IV'l, then the 

equation (4.4) can be written as 

] =1 '" n . , , (4.8) 

and its solution have a clear form as 

(4.9) 

In many important physics models, the corresponding Hamiltonian systems 

may be not integrable themselves, but they can be regarded as a perturbation of 

an integrable system. A general philosophy in this situation is to transform the 

Hamiltonian in a way such that the new Hamiltonian system is closer to an integrable 

one. In particular, if we have a Hamiltonian function H = Ho + P where Ho is 

integrable and P is a perturbation term, then we want to find a transformation r 
- -

on the phase space such that H 0 r = Ho + P with Ho still integrable and P « P. 

Since we need such a transformation to conserve the Hamiltonian structure, it is a 

natural thing to restrict our consideration within this class of transformations. 

Definition 4.1.1. A map r : M =:1 (x, y) f---4 (~, 7]) E M is a canonical trans­

formation (or symplectic transformation) ~f it satisfies: (i) r is a diffeomor-
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phism; (ii) r preserves the POisson bracket, that is, {F, H}(x, y) = {F, jj}(~, ry) with 

F = F 0 r-l. 

This definition has an equivalent characterization: the diffeomorphism r pre­

serves the 2-form w2 = L;=ldxJ 1\ dUJ on the space AI, that is r*w2 = w 2
. Then 

under such a transformation, the Hamiltonian system appears in the new variables 

(~, ry) as 
. f)jj f)H 
~ J = f)ry J ' 71 J = - EJ ~J ' j = 1, . .. ,n, (4.10) 

which is essentially same as (4.4). OUE' easy way to construct canonical transforma-

tions is by a Lie transform. 

Definition 4.1.2. Let X : AI -+ lR be a regular function and denote <1>(t, x, y) is the 

flow generated by Hamiltoman vector field Xx with initial data (x, y). Then the map 

r(x, y) := <1>(1, x, y) (if available) is called the Lie transform associated to X. 

A Lie transformation may not be well-defined for every point (x, y) EM, 

but for any regular function it is must be locally well defined in a neighborhood of 

the zero point, and more important it is always canonical. By making use of these 

canonical transformations, many Hamiltonian systems can be changed into the form 

of jj = Ho + P + R, where Ho = L~'=lWJIJ' P satisfying {P, Ho} = 0 (in normal 

form) is at least cubic, and R is a higher order term than P. Moreover, under 

some kind of nonresonant conditions, the term P can be chosen to depend only on 

the parameter IJ , which implies that the truncated system Htr = Ho + P can be 

completely solved. 

The Hamiltonian formalism introduced above can be generalized into infinite 

dimensional case. In this thesis, we will use this idea to deal with the I-dimensional 
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Gross-Pitaevskii equation. One basic difficult.y here is that. a good understanding for 

the Hermite functions, especially of the asympt.otic behavior of integrals of products 

of Hermite funct.ions, is required in this process. Meanwhile, the Hamiltonian system 

corresponding to t.he GP equation is complet.ely resonant, hence we can't expect t.o 

have t.he term P in integrable form. Here we provide t.he main result. of us in t.his 

Hamilt.onian formalism. 

Theorem 4.1.3. For the Hamiltonian H = H2+H4 corresponding to the I-dimensional 

GP equation, there exists a real analytzc. symplectic change of coordinates r in a 

neighborhood of the origin V c l~(;Z;+; q ~ X2s(IR) with 25 2: l,that takes H into its 

Birkhoff normal form up to order 4. That is H 0 r = H2 + G + R wzth the following 

properties: 

(i) G(p) = ~ 2: Ck1rnnPkP1PmPn is a continuous polynomial of degree four 
k+l=m+n 

with a regular vector field. 

(ii) R E ~S(V) and IIXR(p) 1112 ~ C,llpllfz for allp E V. 

(izi) r is close to the identity: II r(p) - Jd(p) 111~ ~ Cs lip 11~2 for all P E V. 

This t.heorem says, as in the finite dimensional case, that we can change the 

coordinates in a neighborhood of the origin in such a way that t.he Hamiltonian is 

in normal form up to order four. This does not. mean that the Birkhoff normal form 

Hamiltonian is int.egrable, as t.here are nont.rivial resonances. Its proof consists of 

several part of analysis and will be provided from the section 4.3 to the section 4.4. 

In the subsequent sections, we will study some truncated Hamiltonian systems and 

discuss on the impact of the perturbat.ion term to a class of special solutions to the 

truncated system. Now let us begin with "ection 4.2, devoted to the application of 
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the function spaces X 2s into the G P equation. 

4.2 The equation in the function space X 2s 

In this section, we will use the traditional way to study the local (global) well­

posedness of the PDE (4.1) in our function spaces X 2
s. Then we will write the PDE 

in the function space [2(2::+), which is equivalent to the space X2s(JR). In this way, 

we can adapt the system into the Hamiltonian scheme, and the discussion for the 

solution with rougher initial data in Xl(JR) can be made much easier. Some basic 

properties of the solution like mass conservation and energy conservation will also 

be discussed. 

4.2.1 Local and global existence 

Let us consider the I-dimensional G P equation in the form 

{ 

i1/'t = -A'ljJ - qlil!121jJ x E JRl 

ljJ(x,O) =li'(lr) 'ljJ complex valued. 
(4.11) 

\Ve say that a continuous curve if' : t :3 I f-t 'ljJ(t) E X2s(JR) in the function space 

X2s(JR) (that is, 1/' E C (1, X2S(JR))) is a solution of the equation (4.11), if it satisfies 

for any time tEl 

(4.12) 

where I is a neighborhood of the origin point. In the following section, we will discuss 

on the local existence of the solution and show that the solution will globally exist 

for any initial data smooth enough. 
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Theorem 4.2.1. For any real number 25 2: 1 and any function 'l/Jo E X 2s (JR), the 

initwl value problem (4.11) has a unique solution 'l/J(.) defined in a tzme interval 

[0, T], T = T(II~)ollx28) > 0, satisfying 

Proof. Consider a nonlinear mapping 

(4.13) 

Then the initial value problem can be reduced to a problem of finding a fixed point 

of the nonlinear mapping F, which can be achieved by showing that the mapping F 

is a contraction mapping. 

Since e'At is always a unitary mapping on the space X2s(JR) and for 25 2: 1 

the space X 2
s (JR) is an algebra under the multiplication operation, we can have 

IIF'l/J(t)ll x 2S :S II1/Joll x2' + Igl J; !!eiA(t-r) 1'l/J(TW'l/J(T) !!XZ8 dT 

:S II1/Jo II ,,28 + J; 1!1J'( T) 11~\,Z8 dT 

:S II'l/Joll\,Z8 +T max 11'l/J(T)11
3
\, zs dT. 

- tE[O,T] • 

So there is a constant M = M(II'l/Jollxzs) 2: 211'l/Joll x 28 such that for all T:S II'l/Joll x 28 1M3
, 

the operation F is a continuous mapping on the closed subset of C ([0, T], X 2S(JR)), 

B = {'l/J E C([0,T],X2S(JR))III'l/Jllx28:S AI}. Meanwhile, for any two functions 
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7fJl ,7fJ2 E B, we have 

11F7fJ1 - F7fJ211x28 = lIigJ;e,A(t-T) l?t'l (TW7fJl (T) - e7A(t-T) 17fJ2 (TW7fJ2 (T)dTllx 28 

::; J; II (7fJl(T) - ?t'2(T))01(T)7fJl(T)llx
2s 

+ 117fJ2(T)(7fJl(T) -7fJ2(T))7fJl(T)llx28 

+ 117fJ2(T)02(T) (~,'l(T) -7fJ2(T))llx
29 

dT 

::; max II (7fJl (T) - ~'2(T)IIX2S A/2T ::; 1/2 max II (7fJdT) -7fJ2(T)II x 2S' 
tE[O,T] IE[O,T] 

So the mapping F is really a contraction mapping and thus it can be concluded that 

there is locally a unique fixed point for the operation defined in (4.13). Note that 

e,At?t'o, J; e1A(I-T) 17fJ( TW7fJ( T )dT are in C 1 ([0, T], X 2s- 2 (JR.)), then all the conclusions 

in the theorem can be obtained. o 

Remark 4.2.2. This proof has essentwlly used the fact that the space X2s(JR.) is an 

algebra for any 2s 2: 1. If our conjecture 3·4.6, which is for the characterization of 

the space X 2
s (JR.), is rzght, then the spa.ce can be guaranteed to be an algebra when 2s 

is bzgger than 1/2. Thus the local e:ristence theorem can be easzly generalized to the 

case 25 > 1/2. 

After knowing that·7./J E C ([0, Tj, X2s(JR.))nC1 ([0, T], X 2s-2(JR.)) is the unique 

solution with initial data 7fJ(x,O) = lPo(x), we can then consider the same PDE 

with new iniatial data 7fJ(x,O) = 7J{t. T). Then the solution can be uniquely ex­

tended for a little more time T = T(II7./J(T)IIx 28 ) > O. This process can be done 

repeatedly. Since for any initial data the solution exists locally and uniquely, it 

can be easily deduced that there exists a maximal interval I = [0, T*) such that 

7fJ E C (I, X2s(JR.))nC1 (1, X2s-2(JR.)) satisfies the integral equation (4.12). Here there 

are only two possibilities for the maximal time T*: either T* = +00 or 0 < T* < +00 
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and limt~(T*)- 1I1/J(t) IIx28 = +00. Using the same reasoning for the negative time di-

rection, we can know that there exists a minimal time T* < 0 with similar properties. 

Note that at the endpoint of the maximal solution interval (if finite) the X 2s 

norm of the solution must tend to infinity, so if at any finite time this phenomenon 

will never happen, we can then conclude that the solution must exist globally. Below 

we will use this method to get the global existence. During that process, these 

facts will be needed: the solution will conserve the mass M = J~: 11/J(t,x)1 2 dx and 

the energy (Hamiltonian) function H = ~J~: l1/Jxl 2 + Ix1/J(t, xW dx + ~J~: 11/J14 dx. 

These facts will be proved in a latter part of this section. 

Theorem 4.2.3. For any n E N and any function 1/Jo E xn(JR), the inztial value 

problem (4.11) has a unzque global solution ~{) defined in time interval ( -00, +00). 

The solution 1/J is in the space C (JRt , xn(JR)) n C l (JRt , xn-2(JR)). 

Proof. Let us first consider the case of n = 1. If g = 1. the proof is simple, since 

the conserved energy function H = H(l/Jo) 2: ~ 111/J(t,x)II~;, so we can deduce that 

111/J (t, x) IIx1 is always bounded. By the abo\'C reasoning about the necessary condition 
" 

on the blowing up condition at a finite time T*, we know that this condition will not 

be satisfied, thus the solution must exist globally. If 9 = -1, we claim that the Xl 

norm of the solution also remains bounded. which can result in the global existence 

of the solution. From the continuous imbedding of the space Xl/4(JR) into the space 

L4(JR) , we get 111/J (t)IIL~ :s 111/J (t)llxYI; meanwhile, from the complex interpolation 

theory on the Hilbert scale X 2S (JR), we get 114' (t)llx;/4 ~ 111/J (t)II~; Ilv' (t)ll~t. Then 
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by using the conservation laws, we get 

:2 1 4 
H (7/JO) = 111' (t)llx; - 2117/J (t)IIL:t 

"C 3 
:2 117/J (t)II"~:; - 2 11 1£' (t)llx~ 117J; (t)llx; 

:2 117/J (tJI1
2
\.[ - c A13

/
2 111' (t)1I "1' 

• r 2 AX 

So it can be concluded that the Xl norm of the solution remains bounded. 

Now let us see the case of integers n :2 2. Since the function space xn(JR) = 

Hn(JR)nFHn(JR) and their norms are also equivalent, we turn to estimate the growth 

rate of the Hn(JR) and FHn(JR) norm of the solutions. In formal computation we 

have 

!f~:8~7/J8:;7/Jdx = Re f~:8; (V1~' + igl7/J1 27/J) 8:;7/Jdx 

= 1m f~: 8; (A~') 8');'ljJdx + 1m J~: 8~ (gl7/J1 27/J) 8:;1,dx 

= ImJ~:[8;, A]~}a');~)dx + gImJ~:8; (17/J1 27/J) 8:;7/Jdx (4.14) 

= I + II, 

since the term J~: A (8; 7/J) 8'); IjJdx must be real and thus its imaginary part is zero. 

This computation is said to be a formal one for l' E C (1, xn(JR)) because the term 

J~: a; (A~)) 8:;7/Jdx requires the function 1'(t) E xn+l (JR), otherwise it may not exist. 

But observing that the right side term of equality (4.14) is well-defined for 

IjJ E C (1, xn(JR)), we claim that that equality is in fact true for any solution 1j; E 

C (1, xn(JR)). The justification is like this; the whole computation holds for any 

function in C (1, xn+I(JR)); for any time tEl and Ii).tl « 1 fixed, we can choose 

J;(t) E xn+1(JR) which is arbitrarily close to the function 7/J(t) in a period [t, t + i).t]; 

taking the derivative on parameter t on the term J~: 8;;j;8;;;j;dx, we get term in 

127 



the right side of equality (4.14) for function ;{;; since the result is well defined for 

l/J E C (1, xn(JR)), so let l/J(t) tend to 1/J(t) then we can get what we have claimed. 

We can now continue to estimate the term I and I I. For the first term, since 

[er A] = n:r8n- 1 + n(n-1) 8n- 2 it proceeds as x' x 2 x , 

III = 11m J+oo nxeyn-1 n l'8n1/Jdx _ 1m J+oo n( n - 1) 8n- 11/J8n- 11/Jdx I 
-00 x 'f-' x -00 2 x x 

;S II x8~-I1/J II £2 118~1/J II £2 

;S 11l/JII~n . 

For the second term, we have 

IIII = 11m J~; 2: I nl
l 

I a~11/J8~27jJ8~31/J8,):1/-)dXI 
n1 +n2+n3=n nl· n2· '(1:1· 

< 2: I n\ I 118;11/JII L ·xo 118;21/JIILoo 118;3l/JIIL2 118;1/JII L2 . 
n1 +n2+n3=n n1·n2· n3· 

Without loss of generality we can assume that n3 ~ n2 ~ n1, which guarantees that 

n1, n2 < n. The term 118;J1/JIILoo (j = 1,2) can be controlled by 

n-(n
1 
+( 1/2)+) (n] +(1/2)+)-1 

;S 1I1l'll x l n 1 111/JII.p n 1 

the term 118~31/J1I£2 118~1/J11£2 can be controlled by 

Thus their product has a power of the term 11·]/011 as 1+ TIl+n2+n3+1+-3 = 2-~ < 2. 
'I' Xn n-1 n-l 

From the estimate of the solution for the case n = 1, we know 11l/Jlb"l will always be 
2-~ 

bounded, so we can have IIII ;S Ill/Jll xnn-l. The only exception is the case of nl = 0 

or nl = n2 = 0, where the term 118;J1/Jllpc = 111/Jllux, can be controlled instead by 
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III/Jllxl and thus keep bounded. This will result in a little rise on the power of the 

term 11'lbllxn, but anyway it can be controlled as 

II II :s 111jJII~n . 

Now it can be concluded that 

Similarly, we can get the estimate 

Putting these estimate together, it can be deduced that 

So the xn norm of the solution can have at most an exponential growth. In partic-

ular, the initial value problem must have a unique global solution on time. D 

4.2.2 The equation in q coordinates 

Since the function space x 2s (JR) is t'quivalent to the space l2(Z+), the nonlinear 

Schrodinger equation (4.1) can be written in the q coordinate, where q = (qo, ql, ... ) 

reads as 

{ 

-i1ftq = Iwq + gJq, q E l2(Z+) 

q(O) = qo, 
(4.15) 

where 9 = ±1, the operator Iw is the mapping corresponding to the operator A and 

the operator J is the mapping corresponding to the operator 1'l/J121jJ. in particular, 
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Iw is the mapping from l~ to l~-l defined by (1wq)/.; = w/.;q/.; = (k + 1/2)q/.;; J is the 

mapping formally defined by I:1,m,nEZ+ Ck1mn7Jiqmqn' We say that a continuous curve 

q : t :3 I f---+ q(t) E l~(Z+) in the function space l~(Z+) (that is, q E C (1, l2(Z+))) is 

a solution of the equation (4.15), if it satisfies 

(4.16) 

It is easy to verify that q(t) E C (1, 13(Z+)) is a solution of the integral equa­

tion (4.16) if and only if ?jJ(t, x) = I::::aqk(f)hk(x) belongs to the space C (1, X2s(JK)) 

and satisfies the equation (4.12). Then from the results in the theorem 4.2.1 and 

theorem 4.2.3, we can know that in the cases of both 9 = 1 and 9 = -1, for any real 

number 28 2': 1 and any initial data qo E l2(Z+), the solution q(t) will always locally 

exist in the space 12 (Z+); if 28 = n E N, then the solution will globally exists. 

In the equality (4.16), the operator IlL' is clearly defined on the space l2(Z+) 

for any 8 E JK, but the situation is very different for the operator J. This is because 

to define the product of two tempered distribution we need a condition on their 

regularities, namely 81 + 82 2': O. So we want to clarify here what is the condition to 

guarantee the operator J to be well defined and how it looks like. 

Proposition 4.2.4. For 28 2': 1/6, the operator J is well defined from the space 

l2 (Z+) into the space l2"oo (Z+), and for any k E Z+ 

( 4.17) 

For 28> 3/4 (or 28 = (3/4)+), then for any k E Z+ 

( 4.18) 

is absolutely convergent. 
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Proof. Note that 

(4.19) 

N] 

where UN] = Lqzn/(x). By the imbedding theorem, X2s(JR) '---+ V(JR), we have 
z""o 

X2S(JR) . X2S(1R) . X2S(1R) c L1(1R) and 

I (UN1 U,N2 UN3)k - (uuu)kl ~ Ilhk(x) Ilx (Ilu - uN1 1IL3 IIuN211L3 IIuN311L3 

+ IIuNIIIL3 II Ul\h - ullv IIUN311L3 + IIvNIIIL3 IIuN211L3 IIUN3 - ullv) 

~ (k) -1/12 (11v - UNlllx26 IIullx2S IIullx2S 

+ IIullx2s IIV '\'2 - ull x 2s Ilullx2' + IIullx2S IIull x 2s IIuN3 - ull x2S), 

which implies the equality (4.17). 

When 28 = (3/4)+, by recalling that ICkZmnl ~ (k)(-1/8)+E (l)(-1/8)+E (m)(-1/8)+c (n)(-l/i 

we have 

Since 28 > 3/4 and E > 0 is arbitrarily small, we can get the desired result. 0 

Remark 4.2.5. In fact, we can get that when 28 ~ 1/6 the operator J is a bounded 

operator from X2S(1R) to X(-2/3)-(JR). This is due to these facts that zfu E X 2S1(JR), 

v E X2S2(JR) and 0 ~ 28[,282,281 + 282 < 1/2, then uv E X2s(JR) for 28 = 

min(281' 2s2 , 281 + 282 - 1/2); zf U E X2°-(1R), v E X-2o-(JR) for (j > 0, then 

uv E X(-2o--1/2)- (JR). So lul 2 E Xl/G(JR) . Xl/6(JR) c X-l/6(JR) and further luI 2 
U E 

X(-2/3)- (JR). All the mappmgs (multiplications) arzsing here are contwuous. 
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One advantage to write the equation (4.1) in the q coordinate is that this 

method enables us to study the behavior of each mode of the solution, and thus 

many functions of these modes with some physics or mathematics meaning such as 

mass, energy and X 2s norm. The first thing we want to point out is that although 

the solution q(t) can only be expected as a continuous curve in a given space IHZ+), 

its k-th mode function qk(t) will be at least continuously differentiable. 

It is not hard to deduce from the equation (4.15) that the k-th mode function 

qk( t) should satisfy the following equation 

( 4.20) 

Note that Jq is well defined for all q E l2(Z+) with 28 ~ 1/6, then it is easy to know 

that if q(t) is a continuous solution curve to the equation (4.15) in this space, the 

function qk(t) must have continuous derivative i(Wkqk + 9 (Jqh). So we have proved 

the following proposition. 

Proposition 4.2.6. For2s ~ 1/6, ifq(t) E C (I, IHZ+)) is a solution to the equation 

(4.15), then for any k E Z+ its k-th mode functwn qk(t) zs at least a C1 function on 

the interval I. 

Since each qk is continuous differentiable, it is natural to expect those func­

tions depending on these q (t) are also differentiable if q(t) is regular enough. In 

particular, we can obtain such two conservation laws. 

Proposition 4.2.7. For 2s ~ 1/4, if q(t) E C (I, IHZ+)) is a solutwn to the equation 

(4.15), then it conserves the mass function M(t) = Lt: Iqk(t) 12. 

For 2s ~ 1, if q( t) E C (I, 1~(Z+)) zs a solution to the equation (4.15). then zt 
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conserves the energy function 

E(t) = L;~Wk Iqk(t)1 2 + ~ L Ck1mnqk(t)ql(t)qm(t)qn(t). (4.21) 
kJ,m,nE7i.+ 

Proof. For any k E 2+, we have 

:t Iqk(t)1
2 

= 2 Re (i (Wkqk(t) + g (Jqh (t)) qk(t)) 

= 2 1ml0'I, Iqk(t)1 2 + 2g 1m (Jq)k (t)qk(t) 

= 2g 1m (Jqh (t)qk(t). 

When 282: 1/4, we claim that Jq(t) E C (1, 1~1/8(2+)). 
Let 'ljJ(x, t) = L;~qk(t)hk(X), then it belongs to C (1, X2s(lR)). Due to the 

following facts: Xl/4(JR.) '-+ L4(JR.) and 

our claim can be easily verified. Thus the summation L;~ (Jqh (t)qk(t) will be 

locally uniformly, absolutely convergent for time t. So we have the following equality 

d d ",+00 2 
dtM(t) = dtDk=O Iqk(t)1 

= 2g 1m Lt~ (Jqh (t)(jJJ) 

= 2g1m L Ck1mnqk(t)ql(t)qm(t)q,,(t) 
kJ,1tl,nE7i.+ 

which implies the conservation law of mass. 

As to the energy function E(t) in the form of equality (4.21), it is well defined 

for any q( t) E C (1, l~ (2+)) with 28 2: 1. To get the conservation law of energy, it 
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suffices to prove that E( t) is continuously differentiable and its derivative is always 

zero. Let us see how this comes about. 

For any k E Z+, we have 

Since the space Xl (JR) is an algebra under multiplication, we can have J q E C (I, l;/2 (Z+)) 

and Iwq E C (I,l~I/2(Z+)). Then it is true that 

For the other part, let k E Z+ fixed, then we get 

From the symmetry of the tensor Ck1mn , it can be continued as 

= 29Lt~ Rei (Wkqk(t) + 9 (Jq)k (t)) (Jq)k 

= -29L~:C; 1m (Jqh (t)(Iwqh (t) - 2g2L~:C; 1m (Jqh (Jqh 

= -29L~:C; 1m (Jqh (t)(Iwqh (t). 

( 4.22) 

Together with the equality (4.22), we can conclude that the function E(t) always 

have zero derivative, which implies the conservation law of the energy. o 
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4.3 Birkhoff normal form in the case of 5/4 > 25 > 

1/2 

In this section, we will adapt the equation (4.1) into the scheme of the infinite 

dimensional Hamiltonian system, then many concepts appeared in section 4.1 will 

be generalized into the infinite dimensional cases. After these jobs are done, the 

Birkhoff normal form theorem corresponding to this system will be proved for the 

case of 28 > 1/2. Now let us begin with the writing of the PDE into the Hamiltonian 

form. 

The Hamiltonian of the nonlinear Schrodinger equation (4.1) is 

One observation is that the equation (4.1) can be written in the Hamiltonian form 

.8H 
~'t = l 87f;' 

where ~% is the gradient of H with respect to 7f;. 

( 4.23) 

We rewrite H as a Hamiltonian in infinitely many coordinates by making the 

ansatz 

?jJ(x, t) = 'L,qJ(t)hJ(x). 
J~O 

Let us take the coordinates from the Hilbert space lHZ+) of all complex-valued 

sequences q = (qo, Q1, ... ) with 

In this way we obtain the Hamiltonian on the phase space SJs == SJs(IR) := lHZ+; q 

(recall that all notations of 1~(Z+) in this thesis is in fact 12(1,+; q ) with only real 

135 



values 

(4.24) 

where wJ = j + 1/2. In general, we will say that a function F defined in the variable 

(q, (1) is real when F(q, (1) is always real. 

Its equation of motion is 

(4.25) 

In particular, for each component q) it reads as 

( 4.26) 

This is a classical Hamiltonian equation of motion written in complex notation. 

The quadratic term H2 describes the linear integrable Schrodinger equation 

and gives rise to a linear Hamiltonian vector field which is unbounded of order 2. 

The fourth order term H4 is not integrable. but gives rise to a bounded vector field 

of order O. Of course, note that these Hamiltonians and their derivatives are well 

defined only for those points in the phase space with sufficient regularities, so we 

need first specify what are the regularity conditions. 

4.3.1 Regularity of the Hamiltonian functions 

Definition 4.3.1. Let E and F be Banach spaces on a field lk., and U c E be 

an open subset of E. It is said that a function f : U -----7 F is Frechet dif­

ferentiable at x E U if there exists a lz.near operator Ax E £(E, F) such that 
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Ilf(x + y) - f(x) - Ax(Y)IIF = o(llylld· It is said that the mapping f : U ----7 F is a 

continuously differentiable function, or e 1 function, if it is Frechet dzfJer-

entiable at each point in U, and the mapping l' : U ----7 £(E, F) defined by x t-------; Ax 

is continuous. 

This definition can be generalized into higher order derivative cases. 

Definition 4.3.2. For n E Z+ it IS said that the mapping f : U ----7 F is a e n+1 

function, if zt is a en function in [T. and the mapping 

f(n+l) : U ----7 £ (!, ( ... (E'v£(E, F))),) ~ £(~, F) = £n(E, F) defined by x t-------; f 

n t!mes E n t,mes 

( 4.27) 

is continuous. In partzcular, it zs swd that f : U ----7 F zs a Co function if the 

mapping is continuous; and it is a Coo function z] the mapping is en for every 

The Frechet derivatives are a natural generalization of the conception of 

derivatives of the real valued functions on lR m, and they have many basic properties 

familiar to us. For example, they satisfy the Fundamental theorem of calculus (the 

Newton-Leibniz Formula) and the chain rule for taking derivatives. Here without 

proof we want to mention the following two properties. 

Proposition 4.3.3. Suppose that the line segment between x E U and x + h E U 

lies entirely within U. If f : E ----7 F is e k then 

f(x+h) = f(x)+ J'(x) (h)+ ;!](2)(:r) (h, h)+···+ (k ~ l)!](k-l)(X) (h, h,'" ,h)+Rk, 

( 4.28) 
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where the remainder term is given by 

Proposition 4.3.4. If the function f zs C k
, then 

for every permutation CJ of {I, 2, ... , k}. 

Now we will prove that those Hamiltonian functions defined above are in fact 

Proposition 4.3.5. Conszder the Hamiltomanfunctwn H = H2+H4 as the mappmg 

from real vector space X2s(JR) (l2(Z+)) to the space of real numbers, then it is C'X). 

in particular, H 2 is Coo on the space X 2
8 (JR) for 2s 2: 1; H 4 is Coo on the space 

Proof. First, we claim that the function H2 is well defined on the space X 2
s (JR) for 

25 2: 1; and the function H4 is well defined on the space X 2s (JR) for 25 2: 1/4. The 

former claim comes from the fact that H2 ( u) = lIull~l' The latter one is true due 

to the fact that X 2S(lR) with 25 2: 1/4 can be continuously embedded in the space 

L4(lR) and thus luI 2 
U E L4/3(lR) C X- 1

/
4 (lR). So we have for u = LJ?:.oqJhJ(x) 

2H4(U) = L qk (Jq)k 
kEZ+ 

( 4.30) 

Meanwhile, it can be deduced that 
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To prove the functions are smooth, we need to determine what are the Fn§chet 

derivatives of them. For the function H2 , we have 

H2(u + ou) = LWk (qk + ()(jk) (qk + Oqk) 
kEZ+ 

which implies that H~(u)(ou) = (Au, au) + (Au,ou). Since the operator A continu­

ously maps X2s(JR.) onto X2S-2(JR.) ~ £(X2- 2s(lR), q and 25 2: 1, it can be deduced 

that the first order derivative H~ ( u) E £ (X 2
S (JR.), JR.) and continuously depends on 

the function u. Further we have 

(H~(u + OU(2)) - H~(u)) (OU(l)) = L (Wk (qk + oq~2) - qk) oqk1
) + wkoqk1) (qk + qk2) - qk)) 

kE2+ 

= L (wkOqk2) oqk1) + wkOq~l) q~2)) , 
kE=-:+ 

which implies H~(u)(ou(1),OU(2)) == (Aou(1),ou(2)) + (Aou(1),ou(2)). It obviously 

belongs to £2(X2S(JR.) , JR.) and doesn't depend on the function u. Consequently, all 

the derivatives of higher orders of the function H2 are always zero. Next let us see 

the case of the function H4 . 

We have 

2H4(U + ou) = L Cklmn (qk + Oqk) (ql + Oql) (qm + oqm) (qn + oqn) 
k,l,m,nEZ+ 

L Cklmll~k~l~m~Il' ( 4.32) 
k,l,m,IlEZ+ 

where ~ is either q or oq. Let us count the numbers of the appearance of oq in the 

term ~k~l(m~n' If it is zero, then those terms give H4 (u); if it is one, then they form 
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the linear part of the difference of H4(U + 511) - H4(U). Then we know that 2H~(u) 

is 

( 4.33) 

By continuing in this way, we can get that 

L Ck/mn~k~l~m~n (j = 1,2,3,4), 

where ~ is q or oq(1) or .,. or oqU) and 1l;~ = {all the terms ~k~/~m~n that oq(1), 

oq(2), ... ,and oq(J) appear for exactly one time}. Due to the inequality of (4.30), 

it is easy to verify that all these Fn§chet derivatives are bounded multilinear forms 

on X2s(JR) with 28 2 1/4 and continuously depend on the function U E X2S(JR). 

Meanwhile, the derivative of fourth order can be written as 

2H (4)( )(K (1) K (4)) _ '\' '\' C K (a1) K (a2) K (a3) K (a-/) 
4 U uU ,"', uU - LJaES4 LJk.l,rn,nEZ+ 'klmnUUk UU/ UUm uUn , 

where (J runs over all the permutations on {1, 2, 3, 4}, that is the permutation group 

S4. This derivative doesn't depend on the function u, thus all higher order derivatives 

are zero operator. So we have completed the proof. o 

In fact these Hamiltonians have better smoothness property: they are real 

analytic. It is natural to have this property considering all these Hamiltonians are real 

valued, continuous polynomials on the phase space. For the sake of the completeness 

of this thesis, we also provide the definition of the real analyticity of a mapping 

[B-D][K-Ml]. 

Definition 4.3.6. A curve in a sequentwlly complete locally convex space E over 

the field C as f : JR --t E is called (weakly) real analytic if U 0 f E A (JR), the 
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space of scalar-valued real analytic fun ctions, for every U E E', and it tS denoted as 

f E A(lR,E). 

Definition 4.3.7. A map f : JR ---+ E IS called topologically real analytic, and it 

is denoted as fEAt (JR, E), if for every t E JR there are E: > 0 and a, E E such that 

f(x) = 'L;:aaJ(x - t)J for all x E (t - E, t + E) and the series converges in E. 

When the space E is a Banach space, then these two concepts are equivalent 

to each other. We are interested in the description of the real analyticity of a mapping 

from one space to another space. Here is a definition from the paper [K-M1]. 

Definition 4.3.8. Let E, F be Banach space over the field C, and U be an open 

set of E. A mapping f : U ---+ F is called real analyttc if it maps smooth curves to 

smooth curves and real analyttc curvps to real analytic curves. 

According to the theorem 3.4 in the paper [K-M1], the mapping f : U ---+ Fin 

this setting is real analytic if and only if it is smooth and is real analytic along each 

affine line in E. In particular, multilinear mappings are real analytic if and only if 

they are bounded. A more dedicated description on the real analyticity of mappings 

between convex topological spaces can be found in the paper [K-M2]. So the results 

in the proposition (4.3.5) are not onl)' true for the smoothness but also true for real 

analyticity. In other words, H2 is real analytic on the space X 2s (JR) for 2s 2: 1 and 

H4 is real analytic on the space X 2S(JR) for 2s 2: 1/~. 

4.3.2 Symplectic transfornlations 

After obtaining the PDE in the form of a Hamiltonian system, we want to inves­

tigate how the Hamiltonian looks like if the coordinate is changed by a symplectic 
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transformation, especially one induced by Lie transform. To do this, a basic concept 

known as Poisson bracket should be generalized into the case of infinite dimension. 

Note that the definition of the Poisson bracket in the formula (4.6) can be rewritten 

as 

{F,G} =iI= (8F~G _ 8F8G) , 
)=1 8z] 8z) 8z) 8z] 

if we introducing the new complex variables zJ = (x] - iYJ) /V2. So it is a natural 

thing to generalize the concept into the infinite dimensional case in this way 

( 4.34) 

When F, G are defined on an open set U of the phase space tJs = l~(Z+) such that 

F, G E C1 (U,JR.) and X p E C(U, tJs), then the formula (4.34) is a well defined real 

valued function and the Poisson bracket {F, G} is continuous on the set U. In this 

thesis, we are particularly interested in the following class of Hamiltonian functions. 

Definition 4.3.9. Let s 2: 0, we denote by NS the space of real valued functions F 

defined on an open set U of the phase space Ps and satisfying 

It is not hard to verify that if F in NS is defined on an open set U C tJs 

and G E Coo (U, JR.), then {F, G} is also a smooth real valued function on U. In 

some cases, if G is also in NS, then {F, G} is in NS too, and it depends on F and 

G continuously. We are particularly interested in the case when F and G are both 

continuous homogeneous polynomials on the space lHZ+) (X2s(JR.)) , which is in the 

form of 

( 4.35) 
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We can always assume that every coefficient CJlJ2'''J2n is symmetric under any permu-

invariant, since all these permutations form a group acting on j E z~n and CJIJ2 "')2n 

can be redefined as the mean value of the orbit of the group action. Meanwhlle, 

there is a natural way to define a norm for this kind of continuous homogeneous 

polynomials 

111F111= sup IF(Q1,q2'''',qn)l, ( 4.36) 
Ii), II'!) II/!? =1 

and for F in ~s 

( 4.37) 

Proposition 4.3.10. Assume that F.G are two real valued functions in the class of 

~s, and they are m the form of (4. 85) respectwely of order' 271, and 2m. Then their 

Poisson bracket is also a real valued function in the class of W, which is m the form 

of (4·35) of order 271, + 2m - 2 and continuously depends on the F and G 

I{F,G}1 ~ 2min(m.71,) 1IIFIIIIIIGIIIIIQI17:,+2m-2 
2 

Proof. Since we have 

8F 
-8 = n. L CZJ2 ")2n Q)2 ••• %2n , 

Qz ( ) ry2n-l 
J2,J3,' .12" E,z,+ 
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then under the introduction of the notation l = (j2, j3, ... ,j2n-d and k' = (k2' k3, ... ,k2m-d 

their Poisson bracket can be written as 

where 

So we can conclude that {F, G} is also a real valued continuous homogeneous poly-

nomials on the space l2(2+) (X2s(JR)) in the form of.(4.35). 

As to the estimate of the Poisson bracket, we can proceed like this. Without 

loss of generality, let us assume that n ~ m, then we can have 

It can be regarded as the value of multilinear operator ~~ at point (~, q, ... ,q) E 

l~(2+)n, so the inequality (4.38) follows immediately. Similarly, by taking the partial 

derivatives, we get 

( 4.40) 

The first term is 



and it can be regarded as (n - 1) times the value of the multilinear functional ~~ at 

the point of (q, q,' " , ~~) E l2(Z+)"~l. Note that F, G are in the class of functions 

of NS, and thus ~~ = ~~ and ~~ are Loth continuous multilinear functionals on the 

space lHZ+), we can deduce that 

l~ 

~ (n - 1) III: 111111 ~~ 1I1"q"~r+2m~3 . 
Repeat this analysis for every term in the equality (4.40), it can be deduced that 

h {F, G} is a CX) mapping on the pha8e space &Js and it satisfies 

o 

The concept of Poisson bracket can help much in investigating the change of 

a Hamiltonian system under symplectic transformation. Suppose that, G is a Coo 

real valued Hamiltonian functional of the class W on the space 12(Z+) (8 2: 0), then 

the Hamiltonian system induced by this Hamiltonian function 

will provide a flow mapping <I>(t, q), which depends smoothly on the parameter q 

and depends on the parameter t in this way: belonging to the class of Coo (1, l2(Z+)) 

for some time interval I depending on the point q. If the Hamiltonian function G 

equals to zero at the origin point, then the time-1 flow mapping <I>(1, q) will be well 

defined for a neighbourhood of the origin point. This mapping is called as the Lie 

transformation generated by the functional G. 

145 



In additional, if F is a Coo real valued Hamiltonian functional on the same 

space, then like in the finite dimensional cases it is true that 

d 
dtF(<P(t,q)) = {P G}(<P(t, q)). (4.41) 

Now for any given position q, the curve F(<P(t, q)) is smooth in the space l2(:"~::+). 

By applying the above equality repeatedly, the Taylor expansion series between time 

t = 0 and t = 1 provide us 

1 
F(<P(l,q)) = F(q) + {F,G}(q) + 2!{{F,G},G}(q) + ... 

+ ~F(m)(q) + ~Jol(l - tr{F(m), G}(<P(t, q))dt, (4.42) 
m. m. 

where F(m+l) = {F(m), G} and F(O) = F. 

As to our problem, the Hamiltonian function H = H2 + H4 is Coo and real 

valued on the space l2(2+) ~ X2s(JR) with 28 ~ 1. If a continuous homogeneous 

polynomial F is in the form of (4.35) and belongs to the class of W, then under the 

Lie transformation r generated by this functional F, the Hamiltonian function H 

can be written as 

H 0 r = H2 + H4 + {H2' F} + {H4' F} + ~{{H2' F}, F} 

+.l{{H F} F} + ... + -LH(m) + -LH(m) 
2! 4" m! 2 m! 4 

( 4.43) 

+ ~Jol(l - tr (H~m+l) + Him+1») (<P(t, ·))dt. 

In the above formula, each term before n~r Him) is a continuous homogeneous poly-

nomial and its order can be computed out in a straightforward way. 

For the sake of simplifying the function H 0 r, we choose 

(4.44 ) 
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where 

CkZmn = J~;hk(X)hz(x)hm(x)hn(x)dx, 

{ 

k + l - m - n if k + l - 7n - n -# 0 
D(k+l-m-n)= 

I if k + l - m - n = o. 

Then plugging it into the formula (.JA3), we can formally get 

H 0 r = H2 + H ... + {H2' F ... } + R 

= H2 + ~ L CkZmnqkqZqmq,n + R, 
k+!-I1!-n=O 

( 4.45) 

( 4.46) 

where R includes all the terms in the right side of (4.43) except H2+ H4 +{ H2 , F}. To 

make this formula meaningful rigorously, we need to investigate when the definition 

formula (4.44) is well defined. In doing so, the convolution operation of two sequences 

will arise and its properties must be studied. And then we will provide the proof of 

the main theorem. 

4.3.3 Regularity of the convolution operation 

We will study the regularity propert~r of the convolution operation. Formally we 

always have the convolution of p E 1~1.2 and q E l;2. 2 as 

( 4.47) 

which suggests the convolution admits the commutative rule. The only problem that 

we need be careful on is the problem of convergence. It is a natural choice to ask 

81 + 82 ;:::: 0 to guarantee the equality (4.47) well defined. Under this condition we 
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have 

which implies the summation is absolutely convergent and independent of the order 

of the p and q. Note that l:),2 ~ H8) (T) (j = 1,2) and p * q corresponds to the 

product of two functions on H8) (T), so it is understandable to get such a result on 

the regularity, which is similar to the case of H8) (IR). 

Theorem 4.3.11. If p E l~1,2, q E l~2,2 and 81 + 82 2:: 0, then it i8 true that p * q 

in (4.47) i8 well defined and independent of the order of the p and q. Meanwhile 

p * q E l~,2, and there i8 a constant C dependzng on 8,81, and 82 satisfying 

( 4.48) 

where 8 ::; 81, 8 ::; 82 and 8 ::; 81 + 82 - 1/2. When one of the 8 J is equal to 1/2, or 

81 + 82 = 0, then the last inequality should be changed as 8trict inequality. 

Here we would like to provide a proof based on the following method. First 

we write the convolution in the form of integral with respect to some kernel function 

and then the problem can be transferred into the estimate for certain L2 norm of the 

kernel function. That estimate is very complicated if one need consider all the cases 

of the real numbers 81 and 82 like what is done in the textbook [Q-X-W]. We would 

like to mention that by using duality, one need only consider much simpler cases. 

where 

F(k, l) = (k) -8) (l - k) -82 (W . ( 4.49) 
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Note that Pk (k)Sl and (ql-k (1- k)S2) corresponding to elements in 12 , then the fol­

lowing lemma changes the problem into getting an estimate of the kernel function 

F(k, I). 

Lemma 4.3.12. Let the operator TF on the space 12 x [2 defined as TF(p, q) = 

"£kEZPkql-kF( k, I), where the kernel function satzsfies that 

"£kEZ IF(k, 1)1 2 
::; M2 M independent of I, or 

"£IEZ IF(k, 1)1 2 
::; M2 Ai independent of k, 

Then it zs true that TF(p, q) E 12 and 

Proof. If the inequality (4.50) is true, then the Schwartz inequality gives 

( 4.50) 

(4.51) 

which provides the result immediatel~·. If the inequality (4.51) is true, then let us 

denote r as an arbitrary element in the space 12
, then 

1"£IEZ (TF(p, q))1 Til = l2::kEZPk (2::1 Ezql-k F (k, l)rl) I 

::; M IIpII12 IIqll12 Ilrllf2 , 

which provides the desired result. o 

So we only need to divide the kernel function F(k, l) in several parts and 

for each of them get the estimate of the L2 norm either on the parameter k or on 

the parameter I for all possible cases of Sl and 82. By duality, we can reduced the 

problems into simpler cases. 
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Lemma 4.3.13. The theorem 4.3.11 is true if and only if it is true for the cases of 

Proof. It suffices to prove that the theorem is true in the case of 0 ~ 52 :::; 51 are 

enough to deduce that the theorem is true for all the possible cases. Since the 

convolution p * q is independent of the order of the p and q, so without loss of the 

generality, we can assume that 51 2': 52. Notice that the condition 51 + 52 2': 0 thus 

implies 51 2': 0, then only case we need treat on is that 52 < 0 ~ 51. Here let us 

introduce the" pair operator" (,;, which is defined between a locally convex vector 

d 1 1 d 1 I . 1 r lO' 2 l-O' 2 h . space an its topo ogica ua space. n partlcu ar, lor p E b' , q E b ' , t e pa1r 

operation gives 

(p, q; = LPkqk. 
hE3 

Now if 51 > 1/2, then it is true that .'; ~ min(51: 52, 52 + (51 -1/2)) = 52. Let 

us define the convolution in this way 

( 4.52) 

where T is the mapping such that (Tq) k = q-k and l' is any element in the space 

l~s.2. According to the assumption, it is true that Tp * l' E 1~s2,2 and IITp * 1'11 1- 8 2,2 ;S 
b 

right side of the equality (4.52) is well defined for any l' E l~s,2, which induces a 

well defined convolution P * q E 1~,2 satisfying lip * q1i 1s,2 ;S IlpI1 1s),2 Ilqlll-s2,2 (5,51,52), 
b b b 

Since all the summations appearing in the equality (4.52) are absolutely convergent, 

it is easy to confirm that such a defined convolution P * q is same as in the formerly 

defined convolution in (4.47). 
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If 0 ::; 81 < 1/2, then it is true that 8::; min(81,82,82+(81-1/2)) = 82+(81-

1/2) or -5 2: -52 + (1/2 - 51)' According to the assumption, we have Tp * r E [";;S2,2 

-5 + (51 - 1/2) 2: -52' Then the equality (4.52) is well defined for all r E l;;s,2, 

which means p * q E l~·2 satisfying the estimate (4.48). 

If 51 = 1/2, then we can further consider it in two subcases. When 52 = -1/2 

and thus 5 < 52 + 51 - 1/2 = -1/2, it is true that the right side of equality (4.52) 

is still well defined since in this case T P * r C l;;s,2 * l~/2.2 C l~/2,2. So this equality 

induces a well defined function p * q in the space l;;s,2. When -81 < 52 < 0 and thus 

8 < 52 + 81 - 1/2 = 52, when can consider p E l~1-r5,2, q E l~2-r5,2 for 6 < (52 - 5)/2 

and 51 + 52 - 26 2: O. Therefore it is reduced to the case of 81 < 1/2 and we can 

deduce that p * q E l~,2 satisfying the inequality (4.48). So we have analyzed all the 

possible cases and the lemma has thus been proved. o 

We are now in a very good position to finally prove the theorem 4.3.11, which 

has been reduced to the estimate of certain L2 norms of the kernel function in the 

Proof. Let us divide the kernel function F(k, l) according to the position of the points 

(k, l) into such three mutually disjointed parts: {(k) ::; (l) /2}, {(l - k) ::; (l) /2} and 

{(k) > (l) /2, (I - k) > (I) /2} and denote them respectively as FJ(k, l), j = 1,2,3. 

According to the lemma (4.3.12), it suffices to get estimates for these FJ(k, I) in the 

form of inequality (4.50) and (4.51). 

For the first part F1(k, l), since all the points are in {(k) ::; (l) /2}, it can be 

deduced that (k) < (l/2) and further Ikl < Il/21. Thus the term (l- k)-S2 can be 
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So we have the estimate 

2: IF1(k,l)1 2 = 2: IF(k,IW ~ C(82) (l)2S-2S 2 2: (k)-2s1
• (4.53) 

kEZ kEZ.(k):;'(l)/2 kEZ,(k):;'(l)/2 

If 81 > 1/2, then the above inequality can proceed as 2:kEZ IFI (k, l) 12 ~ C( 82) (l) 2s-
2s

2 2:kEZ (k) -2'1 , 

0(1) (81,82); if 81 = 1/2, then it continues as 2:kEZ IF1(k, 1)1 2 ;s C(82) (1)2S-2S 2 ln (I) = 

0(1) (8,82) since in this case 8 < 82; if 81 < 1/2, then it continues as 2:kEZ IF1(k, lW ;s 
C(82) (l)2s-2s 2 (l)-2s 1 +! = 0(1) (81,82), For the second part F2(k, l), by the param-

eter change we get 

2: IF2(k,l)12 = 2: (k)-2s1 (1- k)-2s2 (1)2S 
kEZ kEZ.(l-k):;'(l) /2 

2: (k,)-2S2 (1- k')-Sl (l)2s. 
k'EZ.(k'):;'(l)/2 

A similar analysis for the case of Fl (k, I) is still true, where the only difference is 

that we need compare 82 and 1/2 at this time. 

For the third part F3(k, I), we turn to the estimate for 2:zEz IF3(k, 1)12. It 

is easy to confirm the result in the theorem if 8 < 81 + 82 - 1/2, since in this case 

2:zEz IF3(k, l)12 ;s 2:lEZ (l)-2s1 -2S2 +2s = 0(1) (8,81,82). That means we have proved 

such cases like 81 2: 1/2 and 81 = 82 = O. For the remainder cases (0 ~ 82 ~ 81 < 1/2 

and 81 > 0), since (I - k) - 2S
2 ~ C(82) (I) -2

0
2 and 8 = 81 + 82 - 1/2, we have 

2: IF3(k, 1)1 2 ~ C(82) (k)-20 1 2: (1)2s 1 -1 
lEZ IEZ,(l)<2(k) 

Thus we have proved the theorem 4.3.11. o 
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4.3.4 Proof of the main theorem 4.1.3 (in the case of 5/4 > 

28 > 1/2) 

Now we are at a good position to prove the main theorem. Just like what we have 

done in the formal computation, we define a real valued function 

(4.54) 

where 

D(k + l- Tn - n) ~ { k + I - m - n if k + l - m - n i= 0 

i if k + l - m - n = O. 

Then we will see that this function is well defined on the space l2(2+) with 5/4 > 

28 > 1/2, and thus its Lie transform will also exist in the same space. 

Lemma 4.3.14. For 5/4 > 28 > 1/2, the Hamiltonwn vector field X F4 is real 

analytic, and it forms a map from some nezghbourhood of the origin in X 2
s (12(2+)) 

( 4.55) 

Proof We have 

( 4.56) 

Recall that we have ICk1mni :s (k)-l/tHc (1)-l/8+c (m)-1/8+c (n)-l/8+c (0 < E « 1), 
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the inequality above can be continued as 

([\-1/8+0 ( \-1/8+c: ( \-1/8+c: 
I(XF4 (q))kl;S(k)-1/8+C: L: I (k+~/- _ n; 1 (]lqm q711 

l,m,71EZ+ m n 

({\ -1/8+c: ( \ -1/8+c: ( \ -1/8+c: 
< (k\ -1/8+c: 'I\" 'I\" I ml nl 1- 1 
rv 'I U U (k + l ) qlqmqn . 

dEZm+n-l=k-d - m - n 

Let T be the mapping from l~ (2+) to 1~,2 defined by 

qk-l if kEN 

qo if k = 0 

q-k if -k E N. 

Obviously, this mapping T is a bounded operator. So we have 

I(XF4 (q)hl ;S (k)-l/8+C: L: L: (d
1
) I(TV-l (TVm+l (TVn+11 

dEZm+ 1 +n+ 1-/=k+2-d 

;S (k) -1/8+c: (Tq * Tq * Tq * (~)) k+2 for k 2: 0, 

where !iJ = (j) -1/8+c: Iqj I. 

(4.57) 

( 4.58) 

For 5/8 - 2E > 8 > 3/8 + 2E, it is true that Tq belongs to the space l~/2+E,2, 

h h 1 b d 1 1 "T h 1 11/2-c:,2 h w ic is an a ge ra un er t 1e convo ution. _ ~ ote t at (d) E b , we can get t at 

X F4 (q) E 1~/8-2C:(2+) and 

( 4.59) 

Since E > 0 can be arbitrarily small, we can deduce that if 5/4 > 28 > 3/4 then 

X F4 (q) is in the space l~5/8)-, which is in general a little more regular than q. In 

particular, the inequality (4.55) is satisfied. 

For 1/4 + 5/2E < 8 :::; 3/8, it is true that Tq belongs to the space l~/8+s-€,2, 

which can not be an algebra. But in this time we have Tq * Tq * Tq E l~s-5/8-3c: (2+) 
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and further Tq*Tq*Tqd/ (d; E l~s-.5i~-4C(1::+). Since it is true that 3s-1/2-5c > s 

when s > 1/4 + 5/2f:, the inequality (~.58) implies that 

Note that f: > 0 can be arbitrarily small, we can deduce that if 1/2 < 2s ~ 3/4, 

then X F4 (q) is in the space 12(1::+) for all the q in the same space, and it satisfies the 

inequality (4.55). o 

According to this lemma (~.3. U), the Hamiltonian function F4 belongs to 

the class of ~s with 5/4 > 2s > 1/2 and its associated Lie transformation r is well 

defined in a neighbourhood of the origin point in the space 12(1::+). Meanwhile, like 

the Hamiltonian vector field X F4 , this transformation is also real analytic. Note that 

the Hamiltonian function associated to our PDE is regular on the space 12(1::+) with 

2s 2 1, we can write the new Hamiltollian function H 0 r on the space 12(Z+) with 

5/4> 2s 2 1 as 

1 
H 0 r = H2 + H4 + {H2' FeI } + {HeI, F4} + 2! {{H2' FeI }, F4 } 

1 {{ } 1 (m) 1 (m) + -2' H,." F4}, F.J + ... + -,H2 + -. ,HeI 
. ~. Tn. 

+ ~!Jol(l - t)m (Ht+1
) + Hdm

+
1
)) (cP(t, ·))dt 

= H2 + !i.
2 

L: Ck1mnqkqZqmqn + R, 
k+Z-m-n=O 

where <1>( t, .) is the flow associated to the Hamiltonian function F4 and the remainder 

term R includes all the terms except fl..! + H4 + {H2' F4}. We claim that the function 

R is in the class of ~s when s satisfies .5/4 > 2s 2: 1. 

155 



By the proposition 4.3.10, we can easily see that H~m) are all in the class of 

~s. Note that 

and 

{H2' F4 } = -H4 + ~ L: Ck1mnqkqlqmqn 
k+l-m-n=O 

= 2 L: C]lmnqlqmqn 
m+n-I=J 

< ( .)-l/S+c (~ ~ ;:;\ 
r-v J Tq * Tq * Tq J J ' 

which implies the function G(p) = ~ L:k+l=m+n Ck1mnPkPlPmPn is also in the class 

of ~s and so does the function HJm) withm 2: 1. So we can use the inequalities 

(4.39)(4.38) to deduce that the remainder term R is a well defined function in the 

class of N', which is at least of order 6 at the origin and satisfies 

As to the difference between the mapping r and the identity, we have 

r(p) - P = <I:>(l,p) - <I:>(O,p) , 

where <I:>(t,') denotes the flow associated the Hamiltonian function F4 . Then it can 

proceed as 

1 d IIr(p) -plllz ~ fa II dt<I:>(t,p)lllzdt 

~ f0111 X F4 (<I:>(t,p)) Illzdt 

= 0 (1Ipll~2)' 
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So we have completed the proof of the main theorem in the case of 5/4 > 25 2: l. 

In fact the main theorem is also true in the case of 25 2: 5/4. The key fact 

needed there is that the Hamiltonian vector field X P4 is also real analytic in that 

case. In the following section we will concentrate on proving this key fact in this 

new case, since all the other claims in the main theorem will follow by essentially the 

same technique. 

4.4 Birkhoff normal form in the case of 23 ~ 5/4 

The essential task of this section is to prove the following lemma. 

Lemma 4.4.1. For 25 2: 5/4, the hamiltonian vector field X P4 is real analytic, and 

it forms a map from some nezghbourh ood of the origin in X 2
s (l2(Z+)) into X 2

s 

(l2(Z+)), with 

( 4.60) 

To do this, we need a better understanding on the tensor Ck1mn , especially 

when one of the indices is much bigger than all the others. 

4.4.1 Proof of the lemma 4.4.1 in the case of 28 ~ 5/4 

After obtaining the estimate of the coefficient Ck1mn as in the corollary 2.4.15, we 

are in a good position to prove the main lemma 4.4.1 and thus the Birkhoff normal 

form theorem for our PDE in the function space 12(Z+) (X2s(I~.)) with 25 ;? 5/4. 
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Proof. The Hamiltonian vector field X F4 satisfies the estimate 

= I + II, (4.61) 

where M is a number to guarantee that the inequality (I) (m) (n) < (k) 1M implies 

that l+m+n < kiN, which is the required condition in the corollary 2.4.15. This AI 

exists since (k) ~ k + 1 for all k E Z+ and thus (l) (m) (n) ~ (l + 1)(m + 1)(n + 1) :2: 

l +m +n. 

Recall that ICklmn I ;S a- k is true for all the terms in part I of the sum (4.61). 

Therefore for 28 ~ 5/4, 

Thus the component I is exponentially decreasing in k large, and it must belong to 

the class of lt oo
. 

For terms in part I I, we use the same method as in the proof of the lemma 

4.3.14. Using the fact that ICk1mni ;S ((k) (l) (m) (n))-l/8+€ (0 < E « 1), part two 
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can be controlled by 

11
< (k)-l/8+o '""" (l)-J/8+0 (m)-l/8+o (n)-1/8+0 1_ 1 
rv L.. (k l ) q,qmqn 

(l)(m)(n)?(k)/M ' + - m - n 

< (k)-1/8+c (k)-l/8+o '""" ((l) (m) (n) )-S+l/2+
o ~~ ~ 

rv L.. (k l ) qlqmqn 
(l)(m)(n)?(k)/M + - m - n 

(M) 

;S (k) -1/H20 (k) -s+1/2+c I: I: 1 qlqmqn 
dE7.m+n-l=k-d (k + l - m - n) 

(M), 

where fh = ur-1
/

2
-

c IqJI· By introducing the mapping r as defined in (4.57), which 

is a bounded mapping from l2(Z+) to li:,2, the above inequality can be continued for 

any k 2:: 0 

II < (k)-1/4+2c (k)-S+1/2+c '""" '""" _1 1(;;\ (;;\ (;;\ I 
rv L.. L.. (d) rq/_l rq/m+1 rq/n+1 

dEZm+ 1 +n+ 1-I=k+2-d 
(M) 

< (k)-1/4+2€ (k)-S+1/2+c (~ - ~ 1) (AI). 
rv . rq * rq * rq * -( ) 

d k+2 
( 4.62) 

Note that q E 1~/2+E(Z+) and (!) E l~/2-c,2, the property of the convolution (see 

theorem 4.3.11) enables us to deduce that the part II is in the space of l;+1/4-40 (Z+) 

and its norm can be controlled by a constant (depending on s, E and l\f) times Ilqll(s. 
2 

Since the positive real number c can be chosen arbitrarily small and M is a 

universal constant in the estimate of the part II, together with the result of the 

estimate on the part I, we have proved that the Hamiltonian vector fields X F4 

is a continuous mapping from l2(Z+) (X2s(JR)) into a smoother space l~+1/4- (Z+) 

(X2S+1/2- (lR)) satisfying 

Of course the inequality (4.60) is also true. Note that F4 is a continuous polynomial 

on l2 (Z+), the Coo smoothness and real analyticity of the Hamiltonian vector fields 

X F4 follows at once. o 
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After showing that the Hamiltonian vector fields X F4 is smooth, we can con-

struct the Lie transform generated by the flow of the Hamiltonian vector field of the 

function F4 in the space 12(Z+) (X2s(JR)) with 28 :? 5/4, and then consider the orig-

inal Hamiltonian function in the new coordinates. But all these discussions become 

straightforward after we have proved lemma 4.4.1, since they are in fact the same 

as in the case of 5/4 > 28 > 1/2. So we omit the argument here, and consider the 

proof of the main theorem 4.1 complete. 

4.5 Application of the Birkhoff normal form 

In this section, we will discuss some applications of the Birkhoff normal form theorem, 

which can be considered to have transformed the original system into two parts: one 

is the principal part, which has resonant nonlinear terms of order four; the other one 

is a small perturbation with order of at least six. Unlike the near integrable case, 

the principal system can not be solved out explicitly. Here we will focus on a study 

of properties of solutions of the principal s~Tstem. 

The Birkhoff normal form helps to introduce new coordinates to study the 

original PDE. Let P = r-1q, then the Hamiltonian function H in the new coordinates 

will be H(q) = H or(p). Since the transformation r is symplectic, and thus preserves 

the Hamiltonian structure, we can write the system in the new coordinates as 

dp .oH 0 r - = z-.,----
dt op 

'J . j- .oR 
=ZwP+lgp+ZOp ' ( 4.63) 

where (Iwph = (k+ 1/2)Pk and (JP)k = '£k+I=m+nCklmnPIPmPn' In doing this, it 
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is natural to ask the transformation to be performed in the space of 12(Z+) (X2s(JR)) 

with 28 2: 1, in which the Hamiltonian function H is finite. 

The equation (4.63) can be regarded as a perturbation of the following system 

(let us call it the truncated system) 

dp. . -
-d = lIwp + zgJp, 

t 

whose associated Hamiltonian function is 

( 4.64) 

(4.65) 

It is reasonable to believe that solutions of the original system with small amplitude 

will have similar properties to those of the truncated system, at least over finite 

interval intervals of time. 

The truncated Hamiltonian system turns out to be interesting. First of all, it 

has local well-posedness in a space consisting of rougher functions. In the proof of 

the Birkhoff normal form theorem (case of 28 < 5/4), we showed that if 8 satisfies 

28 > 1/2 then the Hamiltonian function G is in the class of NS. As a consequence, 

the operator J in (4.64) is continuous on the space 12(Z+) (X2s(JR)). Then through a 

study of its associated integral equation, we get the local well-posedness in the space 

12(Z+) (X2s(JR)) with 28 > 1/2. Meanwhile, this system admits several conservation 

laws: the £2 norm (M = 2:t~ IPkI 2
) and Xl norm, the Hamiltonian function G(p) 

and Htr itself will be conserved along the flow. These conservation laws can be 

deduced from the facts 
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In particular, any initial data in the space 1~/2 (Z+) (Xl (JR)) will result in a global 

fiow in time. 

In general, solutions of the Hamiltonian system (4.64) cannot be solved out 

explicitly, but there exist particular single-mode activated solutions, which are ex-

plicit, namely 

{ 

Pko(t) = Pko(O) exp{iwkot + iCkokokoko IPki t}, 

Pk(t) = 0, k i= ko· 

For other solutions, some interesting symmetry properties will arise. 

The first one concerns the difference of the sign of the constant g. Recall that 

in the original system, 9 = 1 (g = -1) represents the defocusing case (respectively, 

focusing case). Given a fixed datum at time zero, let us denote the k-th action 

function of the solution of the truncated system (4.64) by I~de)(t) = Ip~de)(t)12 and 

Ikf)(t) = IPkf)(t)1
2 

respectively for 9 = 1 and 9 = -1. We claim that these action 

functions only differ in the time direction, that is, 1;f) (t) = 1;de) ( -t). 

This property is due to the following observation: if we introduce a time-

dependent coordinate change 

( 4.66) 

or in each direction of the eigenfunction 

then the system (4.64) will be changed into the form of 

dp -
dt = igJp, ( 4.67) 
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whose associated Hamiltonian function is 

G(:;:;\ 9 '" C -=-=- -p; = -2 D klmnPkPZPmPn· 
k+l=m+n 

Note that the difference of the signature of the constant 9 in the system (4.67) will 

only result in the reverse of the time direction, and the coordinate change (4.66) will 

not affect on its action functions, we can get the claim. 

Meanwhile, since the right side of the system (4.67) is homogeneous of order 

three, another symmetry property will arise here: if p( t) is a solution of the system 

(4.67) then Ap()h) (A any positive real number) is also a solution. 

Back to the original system (4.63), a simple result on the large time evolution 

can be easily deduced. Let us denote Ns(p) := Ilpll~, = L~:a(k + ~)SpkPk' which 

equals to !'II if s = 0 and H2(P) if s = 1. Using that NI Poisson commutes with itself 

and the function G (p), we have 

d 
dtNI(p(t)) = {NI,Hor} 

= {NI' R}. 

According to the Birkhoff normal form theorem, the function R in is in the class of 

NS. Then from the property of the Poisson bracket, it follows that 

~CNr· 

We deduce that there exists Eo > 0 and C > 0, such that if the initial data Ilpo IlxI = 

E < Eo the solution p(t) of the Hamiltonian system associated to H which takes value 

(Po) at t = 0 satisfies 

( 4.68) 
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and for r 2: 2 

( 4.69) 

In the rest of this section, we will study another truncated Hamiltonian sys-

tern, which only has one nonintegrable resonant term. In this special case, the 

oscillations of the action functions of its solutions can be understood very precisely. 

4.5.1 The {O,1,2} system 

Let us consider the following truncated Hamiltonian system 

2 

h = LWk IPkl 2 + ~ L CklmnPkPlPmPn, 
k=O k+l=m+n. k.l.m.nE{O,1,2} 

(cl.70) 

where Wk = k + 1/2, Cklmn = Jhk(x)h/(x)h",(.r)hn(x)dx and g = ±1 (defocusing and 

focusing case). It is an approximation to the truncated system (4.65). 

We are interested in the following question: how will the action functions 

associated with its eigenmodes behave as time evolves? This problem has a close 

relationship with the oscillation of the X 2
s norm of the solutions. Let h(t) = IPkl 2 

denote the action function of the k-th eigenmode. There are such two integrals in this 

system: one is the mass IvI = L~=oh and the other one is the Xl norm defined as 

IIp(t) 1I~1 = L~=OWkh. From these two conservation law, it can be deduced that if the 

initial data p(O) = (Po,pi,p;) is given, the ,'alues of the action functions h(t) must 

lie on a straight line (in fact a line segment. since action functions are nonnegative) 

passing through the initial state 

lo(t) - 10 
1 
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We are interested that how the X 2s (28 > 1) norm of the solutions will behave 

as time evolves. For a general initial datum (10' I;, I~), if every state in the whole line 

segment can be reached, then the minimum and maximum values of the X 2
s (28 > 1) 

norm will happen at the two end points of the line segment: one is corresponding 

to concentrate energy of the system to the eigenmode h until one of the modes 10 

and 12 becomes zero, which gives the minimum value of the X 2
s (28 > 1) norm; the 

other one is corresponding to transfer the energy in the eigenmode II to the other 

two modes until h becomes zero, which gives maximum value of the X 2s (28 > 1) 

norm. So we want to investigate the following questions: (i) For a general initial 

state, can these two extreme states really appear as time evolves? (ii) What is the 

behavior of the X 2
s (28 > 1) norm of the solutions, whether or not it is monotone 

increasing, decreasing or oscillating between the two extreme states? 

These questions can be ans\vered through finding out all the possible phase 

portraits for this system. First, let us reduce the problem to a planary Hamiltonian 

system depending on two parameters. The basic idea is to choose a good set of 

action-angle variables to simplify the Hamiltonian system. 

From the study on the infinite dimensional system (4.65), we know that the 

constant 9 = 1 and 9 = -1, i.e. the focusing case and the defocusing case, only 

differs by a choice of the time direction in rotating coordinates. So without loss of 

generality, we always set 9 = 1 in our analysis below. This special truncated system 
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leads to the following ODE system 

2 

Po = iwoPo + 2i:L COOkk IPk 12 Po - ICOOOO Ipo 12 Po + iC0211P2P1PI 
k=O 
2 

PI = iW1PI + 2i:L CUkk IPk 12 PI - iCuu Ip11 2 
PI + i2C0211 P1POP2 

k=O 
2 

P2 = iW2P2 + 2i:L C22kk IPk 12 P2 - ZC22221p212 P2 + iC0211PoP1Pl, 
k=O 

where in particular, the coefficient C0112 is 1/8J1f. 

Let us introduce the following action-angle variables (I, 'P) defined by 

Pk = ~et'Pk. k = 0,1,2. 

(4.71) 

This is a symplectic transformation. In the domain of {h > 0 and 'Pk E T = lR/27l' }, 

this transformation is symplectic. The Hamiltonian function will be in the following 

form 

h = (w, I) + (1, BI) + 2Coll2h V1012 cos('Po + 'P2 - 2'Pd, (4.72) 

where w = (wo, WI, W2)t and I = (lo, 11, 12)i are vectors in lR3
, (-,.) denotes the usual 

inner product of the two vectors, and B = (bkl ) is the 3 x 3 coefficient matrix defined 

by 

{ 

~Ckkkk if k = I 
bkl = 

Ckkll if k i= l. 

Referring to the explicit value of the coefficients Ck1mn in the chapter two, the matrix 

B is given by 
1 1 3 
2 "2 8 

B=_l_ 1 3 7 

V27f "2 8 16 

3 7 41 
8 16 128 

Noting that there are two integrals of motion (mass and Xl norm) for this 

system, we can make a further symplectic transformation to simplify the system in 

166 



the domain under consideration. Set the matrix 

R= 

1//3 1/V3 1/V3 

1/12 0 

1/J6 -2/J6 

-1/V2 

1/J6 

and introduce the new parameters (1. e) as follows 

or in other words, 

and 

J = RI. and e = Ry, 

Jo = :r,(Io + h + 12 ) 

J1 = :n(Io - h) 

J2 = \~(Io - 211 + 12 ) 

eo = ~(yo + Yl + Y2) 

e1 = :n(rpo - Y2) 

e2 = ~(yo - 2Y1 + Y2)' 

In this new coordinates (J, e), the Hamiltonian function h can be written as 

where h are all the linear combinations of the variables Jo, J1 , J2 

10 ~Jo+ ~Jl + ~h 

~Jo + 0 - J-gJ2 

h ~Jo - ~Jl + ~J2' 

The matrix RBRt is computed to be 

163 31 5 
128 128V6 -128V2 

RBRt = _1_ 31 9 7 

V21T 128V6 256 256\1'3 

5 7 29 
-128V2 256\1'3 -256 
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The point of this coordinate transformation is that the Hamiltonian function 

h does not depend on the parameter eo and e1 , and therefore the quantities 10 and 11 

are both integrals of motion of the system. From the relationship (4.77), it follows 

that the action functions {h (t)} in fact only have one remaining degree freedom. 

In particular, from an initial point with action functions (fa, I~, I~), the solution 

satisfies 

It means that the understanding on the behavior of the function 12(t) provides every 

detail for the oscillations of action functions {h (t)}. 

Focus on the oscillation of the function 12 (t). The Hamiltonian system (4.76) 

is written as a system of two ODEs 

By introducing two functions of 12 

{ 

a(12) = vk (64~10 - 12;,;311 + 12is 12) 

b(12) = 4fod~2 (Jl oI2I1) ' 

the ODE system can be rewritten as 

{ 

:12 = 41I1(I)Jlo(I)I2(I)sin(V6e2) 

'dte2 = b( 12 ) cos( v'6(2 ) - a( 12)' 

(4.79) 

( 4.80) 

In the above system, 10 and 11 play the role of two parameters, which provide 

restrictions on the range of the variable 12 . Since all the action functions {h(t)} must 
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be nonnegative (including the singular points of the symplectic transformations), we 

deduce the following from the relatiollship (4.74) and (4.77) 

Jo 2: 0 

IJ11 :s [fJo 

J:; :s J2 :s Ji, 

(4.81) 

where Ji = Jo/../2 and J:; = -../2Jo + V3IJ1 1. We say that a pair of real number 

(Jo, J1 ) is admissible, if it satisfies the first two inequalities in (4.81). Once an 

admissible pair of integrals (Jo. Jd is given, the solutions J2 (t) must fall into the 

region of {J:; :s J2 :s Ji}· In particular, J:; < J2 < Ji corresponds to all the 

regular points of the symplectic transformations, J2 J2- corresponds to all the 

singular points with qo or q2 equal to zero, and J2 = Ji corresponds to all the 

singular points with q1 equal to zero. Besides that, it is true that 

J:; = J2 {:} 12 = 0 

J:; = J2 {:} 10 = o. 

For any given initial data (10' 1~,I~) (or (Ja, J~, J2)), if the solution J2(t) 

approaches point J:; (Ja, J;). it means that action is being transferred to the 1-th 

eigenmode, and the X 2s (28 > 1) norm of the solution is becoming smaller; on the 

contrary, if the solution J2 (t) approaches the point J:i(Jo, J;), it means the action 

of the 1-th eigenmode is being transferred into the other two modes, and the X2s 

(28 > 1) norm of the solution is becoming larger. So our task has been reduced 

to understand the oscillations of the solution J2(t) of the Hamiltonian ODE system 

(4.80) given two admissible parameters (Jo, J1). The domain under consideration is 

the set (J:;, Ji) x lR/2V61f. 
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In the following paragraphs, we will classify and describe all the possible phase 

portraits. When J1 = 0, the function b(J2) has very different smoothness properties 

at the point J:; than in the other cases, so we first discuss this case. We find that 

there is only one fixed point within the domain being considered. From the first 

equality of system (4.80), it follows that all the possible fixed points must fall into 

the vertical lines 82 = 0, 7r / V6; from the second equality, we can further determine 

that there is only one fixed point on the vertical line 82 = 0, and there are no fixed 

point on the vertical line 82 = 7r / V6. The fact needed here is that the functions 

a(J2) and b(J2) both depend linearly on J2 and they satisfy 

{ 

a(J:;) = l~ftJO a(Jt) = 25~0r10 
b(J:;) = /JJo b(Jt) = -/JJo. 

It is also easy to conclude that the unique fixed point is elliptic by studying its local 

linearized system. 

The following picture (4.1) is for the case of Jo = 1 and J1 = O. In the 

picture the x coordinate denotes V682 and the y coordinate denotes J2 . All the 

solutions passing only through the regular points are periodic, which implies that 

along that orbit the behavior of the parameters (J2(t), ()2(t)) is periodic. On the 

horizontal line J2 = Ji, that is, /1 = O. system (4.71) reduces to an integrable 

system and all solutions will remain on that line. On the horizontal line J2 = J;;, 

that is, 10 = 12 = 0, all solutions of system (~. 71) reduce to the single mode activated 

solution; they will also remain on that line. There is one orbit that remains in the 

considered domain but has two "ending" points at point (Ji, ±8*), where 8* satisfies 

b( Jt) cos( V68*) - a(Jt) = O. This is a separative solution, and needs infinite time 
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Figure "!.1: Jo = 1 and J1 = ° 

to finish its tour along the whole orbit. 

When J1 i= 0, the phase portrait will be more complicated. The numbers of 

the fixed points and the topological structure of the system can both vary according 

to the different choices of the admissible integrals pair (Jo, Jd. 

At first let us study flows near or within the singular points. On the horizontal 

line J2 = Ji, that is, II = 0, the system (4.71) reduces to an integrable system and 

all the flows there will remain on that line. In other words, if a flow starts from a 

regular point, it can at most approach to this horizontal line, but never reach it. As 

to the case of the horizontal line J2 = J:;, things are different. Suppose a flow reach 

a point on that line at some time to. then it is true that one and only one of the 

components 10 and 12 is zero. In the case of qo = ° (respectively q2 = 0), we deduce 

from the system (4.71) that Go (respectively, (2) will be nonzero. Thus we know there 
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exists an interval of time containing to, such that qo (t) (respectively, q2 (t)) is nonzero 

except the time point to. It means that if a flow evolves into a singular point on the 

horizontal line h = J:;, it will "leave" it at once and be back into regular points 

state again. So there are two kinds of solutions that have its points or its limiting 

points on the horizontal lines consisting of singular points: if its limiting points are 

on the horizontal line J2 = Jt, the flow can be arbitrarily close to the point as time 

evolves but never reach it; if one of its points is on the horizontal line J2 = J:;, then 

the flow can really reach that point, but will also leave that line at once and come 

back into regular points state again. 

Secondly, let us consider the numbers of the fixed points. The fixed points 

must satisfy 

In the case of yl6e2 = 0, there is always a unique solution. This is because the 

function b( J2 ) is decreasing and a( J2 ) is increasing, and they satisfy 

The case of yl6e2 = 7f is more complicated. Any fixed point on it must satisfy 

Here let us introduce parameter s -=I 0 E [-1, 1], which is defined by the relationship 

J1 = vf372Jos. It can be verified that the function -b(J2 ) is increasing and concave. 

l\leanwhile we have 

1 1 

.Ji6/l=82 



and 

d I 1 29 
dJ2 (a(J2

)) h=Jt = V1i 128y2' 

which means -b'(J:{) > a'(J:{). So there are only these three possibilities: 

• If -b( J:}:) > a( J:}:) then there is exactly one fixed point in the interval of 

• If -b( J:{) = a( J:{) then there is exactly one fixed point at J:{; 

• If -b( J:}:) < a(J:}:) then there are no fixed points on the interval [J2, J:{l. 

The equation for the parameter .s at the transition points is that 

-b(J:}:) = a(J:}:) , 

or in the form of 

Jo ~ Jo --v 1 - 52 = (39 - 78). 
4j2'1f 256V1i 

There are two solutions 81 = -0.3877520341 ... and 82 = 0.6481239941. ... Thus 

the three possibilities mentioned abovE' correspond respectively to the following cases 

8 E (81,0) U (0,82) and 8 = 81 or 82 and 8 E [-1, 8d U (82, IJ. 

Finally we will provide the phase portraits, mentioning these two simple prop-

erties of them: (1) all the fixed points which lie out side of the line of h are elliptic 

points, (2) the phase portrait should be symmetric respect to the vertical line B2 = 0. 

In the follmving phase portraits, we ahvays choose Jo = 1. They are arranged in the 

decreasing order of the parameter 8. 

When Jo = 1 and J1 = 1 (8 = 0.816 ... ), the phase portrait is the picture 

(4.2); 
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Figure 4.2: Jo = 1 and J1 = 1 

When Jo = 1 and J1 = 0.79378653779 (8 = 0.6481239941, almost equal to 

82), the phase portrait is the picture (4.3); 

When Jo = 1 and J1 = 0.6, (8 = 0 . ..189 ... ), the phase portrait is the picture 

(4.4); 

When Jo = 1 and J1 = 0.1 (8 = 0.081 ... ), the phase portrait is the picture 

( 4.5); 

When Jo = 1 and J1 = -0.1 (8 = -0.081 ... ), the phase portrait is the picture 

( 4.6); 

When Jo = 1 and J1 = -0.474897315135 (8 = -0.3877520341, almost equal 

to 81), the phase portrait is the picture (4.7); 

When Jo = 1 and J1 = -1 (8 = -0.816 ... ), the phase portrait is the picture 
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Figure 4.3: 10 0.79378653779 

Figure 4A: 10 0.6 
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Figure 4.5: 10 0.1 

-6 

Figure 4.6: 10 -0.1 
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( 4.8). 
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Chapter 5 

Conclusions 

This thesis mainly focus on a Birkhoff normal forms theorem for the partial differ-

ential equation 

x E JR.l 
(5.1) 

1/' complex valued, { 

hpt = ~¢xx - ~2 ~i _ gl¢12¢ 

¢(x, 0) =It'o(J:) 

which is known as the Gross-Pitaevskii (GP) 

obtained: 

equation. The following results are 

1. An estimate of the coupling coefficients for the Hermite functions, 

2 1~ de 2 
Cmmnn ~ r;;:;: J 2 = r;;:;:E(5), 

v m 0 1 - 52 sin e v m 

where 5 = ~ < 1. Thus we get a sharp estimate on Cmmnn . In the case that one 

of the indices is much larger than all the others, say k > N(l + m + n), then 

Ie' I<-k klmn rv a . 

2. We introduce a family of Hilbert spaces X8(JR.m), which provide good 

working spaces for the GP equations with harmonic potential. In particular, many 
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important spaces such as S'(JRn), S(JRn), L2(JRnt) and virial space can all be embedded 

in this Hilbert scale. We introduce the operator AU, which acts as isometry map­

ping between spaces XS(JRm) with different regularity index, similar to the operator 

(I - t,y acting on the Sobolev spaces. In particular, the unitary group associated 

with the operator e'At acts on these spaces preserving the norm, and the Fourier 

transformation is essentially embedded in this group. 

This family of Hilbert spaces provide very natural spaces for the N -presentation 

theory for the rapid decreasing functions and tempered distribution [Si]. They are 

also closely related with the work is by V. Bargmann, especially the construction of 

Bargmann's spaces. In fact it is implied from his work [Bar2] that our function spaces 

XS(JRnt) are isometric to the Bargmann's spaces F':'" under the Segal-Bargmann trans­

formation, which originally was defined as a transformation from the space L2(JRm) 

onto the Fock space. 

Meanwhile, the function spaces have very close relationship with the Sobolev 

spaces. When s is a nonnegative integer, say s = n 2': 0, then xn(JRm) = 

Hn(JRm) nFHn(JRm): and in the case of negative integer we have x-n(JRm) 

H-n(JRm) + F H-n (JRm). In particular, since S' (JRnt
) = U~~ x-n(JRm), the last result 

above implies that for any tempered distribution there is an integer n E N such that 

it can be decomposed into two parts: one is in Sobolev space H-n(JRm) and the other 

one is in FH-n(JRm), which must be locally integrable. It is believable that in general 

same result holds for any real number s. Although we do not yet have a proof of this 

conjecture, the following fact, which can be deduced out by the conjecture, has been 

proved independently in this thesis: let \711/21 denote the smallest integer greater 

than m/2; then for any real number s 2': \711/21 the space XS(JRm) is an ideal and 
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also a subalgebra of the space HS(lR m ), which itself is an algebra. If the conjecture 

is true, then for s ~ a any function in X-s (lRm) can be decomposed into two parts: 

3. We apply these function spaces in the study of the local and global well-

posedness problem for the GP equation. It is known that initial data in the space 

Xl(lR) will lead to a unique global flow in time in the same space, no matter whether 

it is in the defocusing or focusing case. We generalize this result into the cases of 

the spaces xn (lR) with any integer n ~ 2. In the case of n = 1, its xn norm remains 

bounded; in the cases of n ~ 2, its norm can have a growth at most at an exponential 

rate. When the initial data is not particularly smooth, saYl/Jo(x) E XS(lR) with 

1/2 < s < 1, our conjecture (XS(lR) = HS(lR)nFH5(lR)) suggests that there should 

be a unique local flow in the space X'(lR). 

We give a proof for a Birkhoff normal forms theorem for the equation (5.1). 

Specifically, the Hamiltonian function H of the one dimensional GP equation (5.1) 

can be transformed by symplectic transformations into the form 

H 0 f(p) = LWk IPkl
2 + ~ ~ Ck1mnPkPZPmPn + R(p), 

k~O k+l=m+n 

where the remainder term R(p) is real analytic and of order 6 near the origin, for 

which X R is a real analytic Hamiltonian vector fields in the function space XS(lR). 

In this way, the original Hamiltonian PDE system is transformed to the problem of 

a perturbation of the Hamiltonian system with the Hamiltonian function 

(5.2) 

One class of explicit solutions of the system (5.2) are the following one-mode 

activated solutions 
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{ 

PkO(t) =Pko(O)exp{iwkot+iCkokokoko IpkoI2t}, 

Pk(t) = 0, k -=I ko. 
(5.3) 

But unlike integrable cases, in general the solutions of the system (5.2) are 

not able to be written out explicitly. All of the solutions of the system (5.2) have 

the following properties: They will preserve the l2(Z+) (L2(JR)) norm and l~/2(Z+) 

(XI(JR)) norms in the P coordinates; if we compare the oscillations on every eigen-

modes under the focusing and the defocusing case initialed from a common initial 

data at time zero, say I~f) (t) and I~de) (t). then they only differs in the time direc­

tion in the rotating coordinates, that is, IJn(t) = I;de)(_t). This fact is due to the 

observation that the system is equivalent to the system 

HtrCp) = ~ ~ CklmnPkPlPmPn, (5.4) 
k+l=m+1I 

which is not sensitive to the signature of the constant g. As a by product, all the 

solutions of the system (5.4) admit the following symmetry property: if p(t) is a 

solution then so is )..p().,2t) ().. any real number greater than zero). 

We have furthermore studied a simplified system modeled as (5.4), namely 

the {O, 1, 2} system 

This system is completely integrable in certain action angle variables, and succeptable 

to a phase portrait analysis. We have classified all the phase portraits for this system. 

Considering the original system (5.1), one direct corollary of the Birkhoff 

normal form is that if the initial data of the system (5.1) is small enough, the Xl 
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norm of the flow in the coordinate p = r- 1 (q) will change very slowly. Meanwhile, 

the property of the solutions of the s)"stem (5.4) suggests that there is no big dif­

ference between the focusing case and the defocusing case when the perturbation is 

sufficiently small. 

\Ve are planning future research on solutions of the GP equation from this 

point of view. Generally, perturbation theory of completely resonant systems is 

harder to study than that of the uearly integrable cases. In the latter case, each 

eigenmode's action function is an integral for the unperturbed system, and Nekhoro­

shev style results state that small perturbation will keep action function of each 

eigenmode not far away from the iuitial state for a long time. In the completely res­

onant system case, even without perturbation those action functions in general are 

no longer constants of motion. \Ve may turn to consider under small perturbation 

whether the solution will stay close to the orbit of the unperturbed system. Also we 

are interested in the following question: Does there exist (quasi) periodic oscillations 

to our original system? In particular. the class of special solutions in (5.3) is a good 

starting point. Meanwhile, the introduction of our function spaces makes it possible 

to do a more careful study on the regularities of the solutions of the nonlinear Gross­

Pitaevskii equation. For example, oue question is whether we have local or global 

well-posedness for the Cauchy problem with rough initial data? Harmonic analysis 

on Hermite expansions series will play an important role in the studies in this field, 

the kernel of which is provided in this dissertation. 
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